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Abstract—Analytically described toroidal (axisymmetric and three-dimensional) equilibrium magnetic field
configurations with a “flat” current density, j = λB (λ = const), are proposed. Such configurations are superpo-
sitions of several force-free two-dimensional configurations with plane, axial, or helical coordinate symmetry.
Each of them is generated by an exact partial solution to the corresponding Grad–Shafranov equation. A variety
of toroidal configurations thus obtained allows one to model topological changes of magnetic surfaces, such as
magnetic axis splitting (doublets) in axisymmetric equilibrium configurations and the appearance and interac-
tion of magnetic islands and ergodic lines in three-dimensional configurations. © 2002 MAIK “Nauka/Interpe-
riodica”.
1. GENERAL DESCRIPTION
OF TWO-DIMENSIONAL FORCE-FREE 

CONFIGURATIONS

Two-dimensional equilibrium magnetic configura-
tions with a corresponding coordinate symmetry (pla-
nar, axial, or helical) can be conveniently described
using the following “poloidal” representation of the
magnetic field,

, (1)

with the known base vector fields b (see below), satis-
fying the relationships

(2)

and the scalar functions ψ and F = F(ψ), proportional
to the poloidal magnetic flux and electric current,
respectively (see [1]). For the three above symmetries,
periodic (closed in the axisymmetric case) streamlines
of the base vectors b correspond to the natural topology
of the contours through which the flux and current are
calculated (here, we use cylindrical coordinates (r, φ,
z)):

(3)

in case of planar symmetry; 

(4)

in case of axial symmetry; and

(5)

in case of helical symmetry.
Taking into account the base vector properties (2)

and the current density definition j = ∇  × B, it follows

B —ψ b× Fb+=

b —ψ⋅ 0, ∇ b⋅ 0, b ∇ b×( )× 0,= = =

b bp —z, ψ ψ r φ,( )= = =

b ba —φ, ψ ψ r z,( )= = =

b bh –n/k—z r2—φ+( )/ n2/k2 r2+( ),= =

ψ ψ r ζ,( ), ζ nφ kz+= =
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from the two-dimensional (2D) magnetic field repre-
sentation (1) that, in all these cases, the function ψ sat-
isfies the elliptic equation

(6)

which is obtained by applying the operator ∇ · to the
vector product of representation (1) with b.

In the specific case of force-free equilibria, j = λB,
the coefficient λ = λ(ψ) determines the relation
between the current and magnetic flux: F = λψ and
j · b = λ2b2ψ. Therefore, all 2D force-free magnetic
configurations can be described by the formula

(7)

where the function ψ satisfies the equation

(8)

with one of the three versions of the base vector b [(3),
(4), or (5)]. Equation (8) is a generalized Grad–Shafra-
nov equation for force-free configurations under con-
sideration.

We note that representation (7) and Eq. (8) are valid
for any 2D force-free equilibrium configuration with an
arbitrary function λ(ψ); however, in this paper, we con-
sider only the simplest case with λ = const, which
allows the analytic generation and superposition of
such magnetic configurations.

2. EXAMPLES OF 2D FORCE-FREE 
CONFIGURATIONS

In the case of a “flat” current profile, λ = const, par-
tial analytic solutions for all three versions of Eq. (8)

∇ b2—ψ( )⋅ Fb ∇ b×( )⋅ j b⋅– ,=

B —ψ b× λψb,+=

∇ b2—ψ( )⋅ λψ b ∇ b×( )⋅ λb2–( )=
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can be obtained. Here, we use some of them to examine
the following specific examples:

(9)

in case of planar symmetry;

(10)

in case of axial symmetry; and

(11)

in case of helical symmetry, assuming that k2 > λ2.
Here, J1 is the first-order Bessel function and In is the
nth-order modified Bessel function. The corresponding
magnetic fields will be referred to as Bp , Ba , and Bh,
respectively.

Numerous other exact solutions can be generated
using other (in particular, higher order) trigonometric
and cylindrical functions.

Moreover, any superposition of symmetric magnetic
fields of form (7) with the same value of the parameter
λ is again an equilibrium force-free configuration. This
makes it possible to generate essentially three-dimen-
sional (3D) equilibrium magnetic configurations.

ψ ψp y( ) λy( )cos= =

ψ ψa r z,( ) rJ1 λ2r( ) λ1z( ),cos= =

λ1
2 λ2

2+ λ2=

ψ ψh r ζ,( )=

=  
1

k2 λ2–
-----------------------rIn' t( )

nλ
k k2 λ2–( )
------------------------In t( )+ 

  ζ ,cos

t k2 λ2– r=

2

0

–2

2 4 6

z

r

0

Fig. 1. Magnetic surfaces in the (r, z) plane for an axisym-
metric equilibrium from family (4), (7), and (10) with the

parameter values λ = 0.95, λ1 = λ2 = λ.0.5
Analytic solutions for force-free fields were previ-
ously obtained by the variable separation method: in
the 1950s, axially and helically symmetric fields [2–4]
and, later, essentially 3D configurations [5], including
those with a split magnetic axis and magnetic islands
beyond the region of nested magnetic surfaces. One of
the 2D force-free configurations with helical symmetry
[4] was used to test the PIES 3D equilibrium code [6].

In this paper, the attention is focused on closed tor-
oidal configurations as the most interesting from a prac-
tical standpoint. They are formed primarily by axisym-
metric fields determined by flux function (10). Let us
consider in more detail the corresponding system of
magnetic surfaces, i.e., the isolines of function (10) on
the (r, z) plane. This is a mirror symmetric system of
rectangular cells having O-points (magnetic axes) in
the equatorial plane z = 0, where J0(λ2r) = 0. The elon-
gation of the magnetic surfaces near the axes is the
same and is determined by the ratio E = |λ2/λ1 |. One
such cell with circular magnetic surfaces in the vicinity
of the magnetic axis (λ1 = λ2) is shown in Fig. 1.

Knowing the shape of the magnetic surfaces near
the axes, we can exactly calculate the safety factor q
using the following general expression relating its
value at the magnetic axis qax to the derivative of the
volume V enclosed by the surface:

where all the values are taken at the magnetic axis.
For the flux function ψ(r, z) belonging to family

(10), we can easily calculate the derivative of the vol-
ume

which leads to the following expression for qax:

(12)

where r0, i is the ith zero of the Bessel function J0 .
In particular, for the cell shown in Fig. 1, we have

qax = /r0, 1 = 0.5881. To obtain the entire profile of
the safety factor, we used the CAXE 2D equilibrium
code [7]. As was expected, the flat current density pro-
file corresponds to the q profile decreasing from the
value qax at the magnetic axis to zero at the separatrix
(see Fig. 2). Apparently, such a profile is typical of all
the magnetic axes and all the values of the parameters
λ1 and λ2.

Combining several functions from family (10),
more complicated configurations can be generated. Let
us show how a special combination of the two functions

(13)

qax
F

4π2rax
2

---------------dV
dψ
-------,–=

dV
dψ
-------

4π2rax
2

λ1λ2ψax

-------------------,–=

qax
λ

raxλ1λ2
------------------

λ
λ1r0 i,
-------------,= =

2

ψa
j( ) rJ1 λ2

j( )r( ) λ1
j( )z( ), jcos 1 2,= =
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(and, accordingly, the magnetic fields  and )
transforms an O-point into an X-point, as a result of
which a doublet configuration appears.

We chose the values of the parameters  and 
such that the position of the first extremum (maximum)

of the function  coincides with the position of the

second extremum (minimum) of the function :

(14)

where r0, 1 = 2.4048 and r0, 2 = 5.5201 are the first two
zeros of the Bessel function J0.

The remaining freedom in the choice of  and 
can be used to impose the additional relations

(15)

which are not of crucial importance, but are chosen
here for the sake of convenience.

The above conditions are satisfied with the follow-
ing parameter values:

Due to condition (15), the elongation of the mag-
netic surfaces is the same at all the magnetic axes:

E(2) = 1/E(1) = /  = 2.295; however, the surfaces
are elongated in different directions (see Fig. 3): in the

vertical direction for the function  and in the hori-

zontal direction for the function .

In the case of the function , formula (12) gives

qax = λ/( r0, 1) = 1.041 for the first extremum and

qax = λ/( r0, 2) = 0.4536 for the second extremum. It
follows from conditions (14) that the latter value of qax

also corresponds to the first extremum of the function

.

Let us now consider a field superposition corre-
sponding to the linear combination

(16)

where  < 0 and  > 0 are, respectively, the val-

ues of the functions  and  at the point (rax, 0).

By appropriately choosing the weight coefficients
w1 and w2, we can provide the following properties of
the function ψ(sum) (16) at this point:

Ba
1( ) Ba

2( )

λ1
j λ2

j

ψa
1( )

ψa
2( )

λ2
1( )rax r0 1, , λ2

2( )rax r0 2, ,= =

λ1
j λ2

j

λ1
1( ) λ2

2( ), λ2
1( ) λ1

2( ),= =

λ2
1( ) λ1

2( ) 1 r0 2, /r0 1,( )2+( ) 1/2– λ 0.3994λ ,= = =

λ1
1( ) λ2

2( ) 1 r0 1, /r0 2,( )2+( ) 1/2– λ 0.9168λ .= = =

λ2
2( ) λ1

2( )

ψa
2( )

ψa
1( )

ψa
2( )

λ1
2( )

λ1
2( )

ψa
1( )

ψ sum( ) w1ψa
1( )/ψmax

1( ) w2ψa
2( )/ψmin

2( ) ,–=

ψmin
2( ) ψmax

1( )

ψa
2( ) ψa

1( )
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(i)  = 0, which corresponds to the infinitely

elongated vertical magnetic axis with w2/w1 =

( / )
2
 = (r0, 2/r0, 1)2 = 5.269;

(ii)  = 0, which corresponds to the infinitely

elongated horizontal magnetic axis with w2/w1 =

( / )
2
 = (r0, 1/r0, 2)2 = 0.1898; and

(iii)  < 0, which corresponds to an

X-point (in place of an O-point) with 0.1898 < w2/w1 <
5.269. In the latter case, the values of w2/w1 close to the
left (right) boundary of the interval correspond to the
vertical (horizontal) figure-eight separatrix surrounded
by nested magnetic surfaces. Figure 4 shows examples
for all these cases.1 

3. 3D TOROIDAL CONFIGURATIONS 
AS SUPERPOSITIONS OF 2D ONES

As was noted above, any linear combination of mag-
netic fields (7) with the same value of the parameter λ
is also a force-free equilibrium configuration. More-
over, the surfaces of the resulting 3D configuration
remain closed (toroidal) in the vicinity of the magnetic
axis if the axisymmetric field has sufficiently high
weight in the superposition.

1 All the axisymmetric configurations considered here are also mir-
ror symmetric. By using another partial solution, asymmetric
configurations can easily be generated (see, e.g., [8]).

∂2ψ sum( )

∂z2
-------------------

λ1
1( ) λ1
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Fig. 2. Profiles of the plasma current and safety factor q for
the configuration shown in Fig.1. The normalized poloidal
flux ψ, changing from zero at the magnetic axis to unity at
the boundary, is used here as a surface label.
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Fig. 3. Magnetic surfaces in the (r, z) plane for two axisymmetric configurations from family (4), (7), and (10) with vertical and

horizontal elongations: the contour lines of the functions (a)  and (b)  with the parameter values λ = 0.95 and  =

 = 0.3994λ and  =  = 0.9168λ.
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In general, such essentially 3D configurations can-
not be described by scalar flux functions. They can be
analyzed by using the numerical tracing of the mag-
netic field lines and the Poincaré mapping in several
cross sections φ = const. The results presented below
were obtained with the use of a standard ordinary dif-
ferential equation solver from the NAG library by trac-
ing the magnetic field line over 400 turns in the toroidal
angle.

Two examples of 3D toroidal force-free magnetic
configurations were presented in [8]. One of them dem-
onstrates a big magnetic island m/n = 1/2 appearing at
the resonant surface q = 0.5 when an axisymmetric
equilibrium configuration with circular surfaces (Fig. 1)
is perturbed with a small helical field. A distinctive fea-
ture of the example is the presence of “good” magnetic
surfaces, including the island separatrix: no evidence of
the field line stochastization was found in the region
under consideration. Another example in [8] shows the
effect of 3D stochastization of an internal figure-eight
axisymmetric separatrix of the doublet type. These and
other examples presented below confirm the general
expectation that the regions with a fast change of q (an
external separatrix, a doublet separatrix, or a strongly
elongated magnetic axis) are topologically unstable:
small 3D perturbations make field lines stochastic,
whereas, in low-shear regions, the magnetic surfaces
can remain well shaped even in the presence of big
islands.

Several new examples (Figs. 5–7) show various
transformations of the magnetic surface topology for
the same parent axisymmetric configuration (Fig. 3a)
and different additional fields.

As was mentioned in the previous section, the verti-
cally elongated configuration in Fig. 3a has a decreas-
ing q profile with qax = 1.041. Hence, 3D effects mani-
fest themselves, first of all, at the resonant surface q = 1.

Figure 5 shows a series of magnetic configurations,

B =  + whBh, with a progressively increasing con-
tribution (weight wh) of the helical field Bh. Here, the
growing magnetic island m/n = 1/1 suppresses the main
magnetic axis; finally, at sufficiently large values of wh,
the configuration with nested magnetic surfaces
(Fig. 5c) appears again.

Another example is a superposition of an axisym-

metric and a plane 2D field, B =  + wpBp, which
provokes an m/n = 2/2 island at the same resonant sur-
face (Fig. 6).

Perturbing an axisymmetric field with a helical and

a plane field, B =  + whBh + wpBp, leads to the inter-
action of the islands (Fig. 7): inside the m/n = 1/1
island, a figure-eight separatrix (helical doublet)

Ba
2( )

Ba
2( )

Ba
2( )
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Fig. 4. Result of superposition ψ(sum) (16) of the two functions  and  for different values of weight coefficients: (a) an

infinitely elongated vertical magnetic axis, w2/w1 = 5.269; (b) an infinitely elongated horizontal magnetic axis, w2/w1 = 0.1898;
(c) a vertical doublet configuration, w2/w1 = 2.02; and (d) a horizontal doublet configuration, w2/w1 = 0.32.

ψa
1( ) ψa

2( )
appears in place of the island magnetic axis. At the
same time, magnetic surfaces remain well shaped.

Figure 8 demonstrates the stochastization of the
magnetic field near the magnetic axis with infinitely
elongated surfaces. Here, the parent axisymmetric con-
figuration corresponding to Fig. 4b is perturbed by a
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002
helical field, B = w1  + w2  + whBh with w1 = 1
and w2 = 0.1898. It is interesting to note the appearance
of good nested magnetic surfaces inside the stochastic
region.

In conclusion, we note that the family of force-free
equilibrium configurations presented here contains a

Ba
1( ) Ba

2( )
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Fig. 5. Suppression of the main magnetic axis by a growing magnetic island m/n = 1/1: Poincaré maps for the 3D toroidal magnetic

field B =  + whBh, generated by the superposition of an axisymmetric field (Fig. 3a) and a helical field corresponding to flux

function (11) with the parameter values λ = 0.95, n = 1, and k = –1 for wh = (a) 0.004, (b) 0.02, and (c) 0.04. Here and in the
following figures, the toroidal cross sections φ = 0, π/4, π/2, 3π/4, and π are shown.
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Fig. 6. Magnetic island m/n = 2/2: Poincaré maps for the 3D toroidal magnetic field B =  + wpBp, generated by the superposition

of an axisymmetric field (Fig. 3a) and a plane field corresponding to flux function (9) with the parameter values λ = 0.95 and
wp = 0.02.
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Fig. 7. Result of the interaction between two magnetic islands, m/n = 1/1 and m/n = 2/2: Poincaré maps for the 3D toroidal magnetic

field B =  + whBh + wpBp, generated by the superposition of an axisymmetric field (Fig. 3a), a helical field, and a plane field.

The parameters of the additional fields are the same as in Figs. 5 and 6 with the weight coefficients wh = 0.004 and wp = 0.01.
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Fig. 8. Two regions with nested magnetic surfaces separated by a stochasticity zone: Poincaré maps of the 3D toroidal magnetic

field B = w1  + w2  + whBh (with w1 = 1, w2 = 0.1898, and wh = 0.002), generated by the superposition of two axisymmetric

magnetic fields (Fig. 4b) and a helical one. The parameters of additional fields are the same as in Fig. 5.
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wide range of different magnetic field topologies. They
can be modeled and analyzed with relatively simple
tools, which can help to understand the specific features
of 3D MHD equilibrium configurations. They can also
be used as a nontrivial test for equilibrium numerical
codes.
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Abstract—The dynamics of the ion temperature of the target plasma in a gas-dynamic trap during high-power
neutral beam injection is measured by using the Rutherford scattering technique. A comparison of the experi-
mental results with the results of simulations by a model based on the theory of pair Coulomb collisions indi-
cates no significant anomalous losses from the ion plasma component.© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The paper is devoted to investigating the dynamics
of the ion and electron temperatures in a warm target
plasma in a gas-dynamic trap (GDT) during high-
power neutral beam injection (NBI).

The GDT device [1] (Fig. 1) is an axisymmetric
magnetic mirror system with a mirror-to-mirror dis-
tance of 7 m and two end tanks (2, 5) playing the role
of MHD stabilizers. In one of these tanks, a plasma gun
(7) designed for creating a relatively cold (Te = 3–
10 eV) and dense (up to 1014 cm–3) plasma is installed.
An NBI system consisting of six START injectors (4) is
used to heat the target plasma and form the fast ion
component. The injectors are divided into two groups
and situated on the opposite sides of the central cell.
The most important technical characteristics of the
experimental setup and the plasma parameters are listed
in Table 1.

Fast ions originated due to the trapping of the
injected neutral beams are decelerated mainly in colli-
sions with plasma electrons, thereby heating them to a
temperature of about 100 eV. Then, the electron energy
is transferred to the target plasma ions due to electron–
ion collisions. Simultaneously, the plasma flows out of
the trap through the end magnetic mirrors. The charac-
teristic time of the longitudinal loss of the target plasma
is determined by the ion and electron temperatures and
changes significantly during the NBI pulse. Along with
the longitudinal energy losses, there is a loss channel
across the magnetic field. Under the GDT experimental
conditions, the NBI duration is comparable to both the
time of electron–ion energy exchange and the charac-
teristic time of longitudinal energy losses. As a result,
the electron temperature differs significantly from the
ion temperature. A comparison of the theoretical pre-
dictions with the experimental results allows us to eval-
uate the possible contribution of instabilities to the tar-
1063-780X/02/2804- $22.00 © 0268
get plasma heating and to correct the model of energy
balance in the target plasma during the NBI pulse.

2. EXPERIMENTAL TECHNIQUE

2.1. The Choice of Experimental Conditions

The method used to determine the ion temperature
is based on the injection of a monoenergetic beam of
fast atoms and the subsequent measurement of the
energy spectrum of the atoms scattered at a certain
fixed angle.

It follows from the laws of energy and momentum
conservation that the spectrum of the scattered atoms
broadens and shifts with respect to the spectrum of the
injected atoms. In elastic scattering, this shift is deter-
mined by the scattering angle and the mass ratio
between injected atoms and plasma ions, as well as by
the ion directed velocity, whereas the broadening is
governed by the ion thermal motion [2, 3]. It was shown
in [4] that, if the velocity of the injected atoms substan-
tially exceeds the thermal velocity of the target plasma
ions (v b @ ) and the scattering angle is sufficientlyv Ti

Table 1.  GDT parameters

Distance between the mirrors 7 m

Magnetic field in the midplane Up to 0.22 T

Field in the mirrors 2.5–15 T

Injection energy Up to 16 keV

Injection power Up to 4.5 MW

NBI duration ≈1.2 ms

Injection angle 45°
Average fast ion energy 3–10 keV

Fast ion density Up to 1013 cm–3

Target plasma density (0.1–1.5) × 1014 cm–3
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic of the GDT: (1) plasma receiver, (2) expander, (3) main magnetic coils, (4) START-3 atomic injector, (5) cusp,
(6) end tank, (7) plasma gun, (8) limiters, (9) titanium evaporator, (10) facility for axial gas injection, (11) DINA-4 diagnostic injec-
tor, and (12) energy analyzer of scattered atoms.
small, the full width at half-maximum ∆  of the
energy spectrum of the scattered atoms is

(1)

where Eb is the energy of the injected particle, Ti is the
plasma ion temperature, η = mb/mi is the incident-to-
target particle mass ratio, and ϑ  is the scattering angle

in the laboratory frame. It is seen that ∆  increases in
proportion to the square root of Ti and is fairly high
even at moderate temperatures. Under the GDT exper-
imental conditions (Ti ≈ 50 eV, the scattering angle ϑ =
5°, and the injection energy of helium atoms Eb =

9 keV), the energy spectrum of width ∆  should be
≈160 eV. The average energy of the scattered particles

 is lower than the injection energy Eb and depends on
the scattering angle ϑ  as

(2)

When choosing the scattering angle and the species
and energy of the probing atoms, the following circum-
stances were taken into account:

(i) The scattering differential cross section increases
with increasing charge number Zb and decreasing injec-
tion energy and scattering angle (Fig. 2) as

(3)

where χ is the scattering angle in the center-of-mass
frame. The scattering angles in the laboratory and the
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center-of-mass frames are related by χ = ϑ  +
.

(ii) The flux density of the injected particles
increases with increasing injection energy (j ~ E3/2) and
decreasing particle mass.

(iii) The recording efficiency of scattered atoms
sharply decreases when the injection energy falls below
1–2 keV and varies slightly in the energy range above
5–10 keV.

(iv) In the stripping chamber of the energy analyzer,
the efficiency of ionization of hydrogen atoms is sev-
eral times higher than that of helium atoms.

η ϑsin( )arcsin

5 6 7 8 9 10 11 12 13 14 15
0.01

0.1

1

10

Scattering angle, deg

Intensity, arb. units

Fig. 2. Flux density of helium atoms scattered by a cold
hydrogen target vs. observation angle in the laboratory
frame.
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(v) At injection energies lower than 8 keV, the pro-
cesses of elastic and inelastic scattering of the beam
particles in the stripping chamber of the energy ana-
lyzer become of importance.

Under the GDT experimental conditions, a helium
atomic beam is preferable for measuring the ion tem-
perature of the target plasma by the Rutherford scatter-
ing technique. The minimum energy of the probing
atoms is limited by a value of 8–9 keV, mainly because
of the reduction in the attainable beam current density
and a possible decrease in the useful signal due to the
processes of elastic and inelastic scattering in the strip-
ping chamber of the energy analyzer and the charge-
exchange chamber of the diagnostic injector. On the
other hand, the increase in the helium atom energy to
higher than 10 keV seems to be inexpedient because of
the decrease in the scattering cross section and the more
rigid requirements for the angular divergence of the
injected beam [see inequality (7)].

The presence of a significant flux of charge-
exchange atoms emitted from the plasma is characteris-
tic of the GDT experiments. These atoms are produced
in the interaction of fast ions with the residual gas. Esti-
mates show that, in the central cell, the flux of charge-
exchange atoms can exceed the flux of scattered atoms
by several orders of magnitude. To minimize the flux of
charge-exchange atoms, the diagnostic complex was
placed behind the fast-ion stopping point, in the region
where the mirror ratio was R = 3, which made it possi-
ble to increase the signal-to-noise ratio by almost two
orders of magnitude. A typical time behavior of the
total current of the scattered atoms is shown in Fig. 3.

Since the flux density of scattered atoms is relatively
low, the fluctuations of the recorded signal play an
important role. To attain the required accuracy of the
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Fig. 3. Time evolution of the total flux of scattered helium
atoms toward the energy analyzer: (1) scattered helium
atoms and (2) background (charge-exchange neutrals and
photons).
measurements of the target plasma ion temperature
(±10%), the results were averaged over a series of shots
with the same parameters.

The acceptable divergence of the injected beam and
the acceptable spread in the atom energies can be found
from the following requirement: the instrumental line
width measured in experiments with a cold gas (e.g.,
hydrogen at room temperature) must be less than the

expected experimental thermal broadening ∆ . It fol-

lows from formula (2) that the contribution of ∆E  to
the instrumental line width is determined by the expres-
sion

(4)

whereas the contribution related to the angular spread is

(5)

Comparing these expressions with the temperature
broadening (1), we obtain

(6)

(7)

Thus, to measure the ion temperature starting from
20 eV with the use of a beam of helium atoms with an
energy of 9 keV at a scattering angle of 5°, it is neces-
sary that ∆Eb < 150 eV and ∆ϑ < 2°. Thus, the require-
ments for the energy and angular spreads of the injected
beam are not too stringent. It must however be taken
into account that the maximum angular spread also
depends on the angle specified by the collimation sys-
tem of the energy analyzer (Fig. 4). To provide a suffi-
cient flux of scattered atoms into the analyzer, this
angle should not be too small (a value of 1°–1.5° can be
considered a compromise).

2.2. Experimental Setup

An electrostatic energy analyzer and a DINA-4
diagnostic injector were used to measure the ion tem-
perature. The electron temperature and the target
plasma density in the GDT were measured by the
Thomson scattering technique.

A schematic of the experiment on fast atom scatter-
ing is shown in Fig. 4. The DINA-4 diagnostic injector
1 was installed at the side flange of the GDT facility, in
the region where the mirror ratio was R = 3. The energy
and equivalent current density (on the facility axis) of
the helium atomic beam were 9 keV and 25 mA/cm2,
respectively. The beam diameter was 5 cm, the total
equivalent beam current was 1.5–2 A, the beam angular
divergence was ±1° in the drawing plane and ±1.5° in
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Fig. 4. Schematic of the diagnostic facility for measuring the ion temperature of the target plasma: (1) DINA-4 diagnostic injector,
(2) helium atomic beam, (3) target plasma, (4) energy analyzer of scattered atoms, (5) stripping chamber, (6) system for trapping
the light emitted from the plasma, (7) microchannel plate and receiving collectors of the 12-channel dc amplifier, (8) collimation
system, and (9) volume under investigation.
the perpendicular direction, and the duration of the
injection pulse was 150 µs. The beam passing through
the target plasma was recorded with secondary emis-
sion detectors. A 45° electrostatic analyzer of neutral
particles 4 equipped with a stripping gas target was
used to detect and analyze the scattered atoms. The use
of a detector based on a microchannel plate made it
possible to reliably record the shape of the relatively
narrow spectrum of scattered particles. A provision was
made for the preliminary deceleration of the detected
ions in the analyzer, which allowed us to greatly
enhance the energy resolution. The resolution of the
12-channel analyzer was ∆E/Eb ≈ 0.5%. The energy
range (i.e., the ratio between the maximum and mini-
mum energies measured simultaneously) attained
Emax/Emin ≈ 2.5. To increase the measurement accuracy,
the analyzer was calibrated by measuring the relative
sensitivity of the analyzer channels with the help of a
low-current ion source.

The recording efficiency of the scattered atoms
depends on the stripping efficiency in the analyzer gas
target. To enhance the analyzer sensitivity, we used
pulsed gas puffing into the stripping chamber 5 of the
analyzer up to the pressure that enabled the maximum
efficiency of ionization of the scattered atoms. To detect
helium atoms, hydrogen puffing into the target proved
to be the most efficient. The main technical characteris-
tics of the diagnostic beam and the analyzer are listed
in Table 2.

3. EXPERIMENTAL RESULTS
AND NUMERICAL SIMULATIONS

The measured energy spectra of the scattered parti-
cles are shown in Fig. 5. Test experiments with scatter-
ing by argon (1), when both elastic and inelastic energy
losses are negligible, made it possible to determine the
initial energy and energy spectrum of the probing parti-
cles without changing the geometry of the experiment.
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002
The measurements of the spectrum of the atoms scat-
tered by a cold plasma (3) allowed us to evaluate the
minimum ion temperature that can be measured with
the help of our diagnostic system. The broadening of
the energy spectrum of the scattered atoms in a hot
plasma (2) enables the determination of the ion temper-
ature.

3.1. Brief Description of the Numerical Code

To determine the ion temperature, the spectra of the
scattered atoms for different ion temperatures were cal-
culated using the Rutherford Scattering Code (RSC)
based on the Monte Carlo method. The results obtained
were statistically averaged and compared with the mea-
sured energy spectrum of the atoms scattered in the

Table 2.  Parameters of the diagnostic beam and analyzer

Injected particles He

Helium atom energy 9 keV

Scattering angle 5°
Equivalent injection current 1.5–2 A

Current density (on the facility axis) 25 mA/cm2

Injection duration 150 µs

Beam angular divergence:

in the scattering plane ±1°
in the perpendicular plane ±1.5°

Spread in the beam atom energy ≈100 eV

Spatial resolution 5 × 5 × 10 cm3

Number of recording channels 12

Energy resolution ≈0.5%

Temperature resolution ≈10 eV
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plasma. The initial data for calculating the ion temper-
ature of the target plasma incorporate

(i) the energy spread and the angular divergence of
the injected atomic beam,

(ii) the energy of the injected helium atoms,
(iii) the potentials of the capacitor plates in the

energy analyzer (Fig. 4),
(iv) the radial profile of the plasma density, and
(v) the data on the actual geometry of the experi-

ment.
The injection energy and the potentials at the capac-

itor plates were measured in the main shots. The data on
the energy distribution function of the injected atoms
were obtained by analyzing the spectra of the helium
atoms scattered by argon. The beam angular divergence
was estimated from the profile measured with a set of
secondary emission detectors.

Figure 6 presents the energy spectrum of the scat-
tered helium atoms calculated by the RSC code (2) for
a scattering angle of 5° and an ion temperature of the
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Fig. 5. Energy spectra of the scattered helium atoms for an
injected particle energy of 8.8 keV: scattering (1) by argon
(T = 0 eV), (2) hydrogen plasma with Ti = 66 eV, and
(3) hydrogen plasma with Ti = 6 eV.
target plasma of 66 eV. For comparison, the figure also
presents the measured energy spectrum of the scattered
helium atoms (1).

A model describing the heating of the target plasma
in the GDT during NBI incorporates the following pro-
cesses: the trapping of the neutral beams and the forma-
tion of the fast ion group, the loss of fast ions because
of charge exchange with the residual gas and the neutral
beams, the scattering by the plasma ions, the decelera-
tion of the fast ions by the plasma electrons and the
heating of the target plasma, the longitudinal confine-
ment of the particles and energy, and transverse losses
from the plasma. The Fast Integrated Transport Code
(FITC) [5] was used to describe the target plasma heat-
ing and approximately calculate the fast ion parame-
ters. In the calculations, the radial profiles of the target
plasma density and the electron temperature measured
by the Thomson scattering technique were used as the
initial data. The electron temperature and density at the
plasma periphery were measured with a triple probe.
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Fig. 6. Measured and computed distribution functions of the
scattered atoms: (1) experiment and (2) calculations by
Monte Carlo RSC code for Ti = 66 eV.
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3.2. Ion Temperature Measurements

Figure 7 shows the dynamics of the ion temperature
of the target plasma measured by the Rutherford scat-
tering technique for two characteristic GDT regimes.

Figure 7a presents the temperature behavior for the
regime in which the plasma density in the GDT was sus-
tained with the help of a plasma gun (Fig. 1, position 7).
In this regime, the plasma gun was switched off a short
time before the end of the NBI pulse. The figure also
shows the results of numerical simulations of the ion
temperature relaxation with allowance for only colli-
sional mechanism for the energy exchange between the
electrons and ions of the target plasma and the energy
losses along the magnetic field lines through the mag-
netic mirrors. In the simulations, the profiles of the den-
sity and electron temperature of the target plasma mea-
sured by the Thomson scattering technique were used.
It is seen that, within the measurement error, the exper-
imental data are in fair agreement with the results of
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Fig. 7. Dynamics of the ion and electron temperatures dur-
ing NBI (the instant t = 0 corresponds to the beginning of
NBI) for two regimes (a) with the plasma gun: (1) Te on the
axis (measurements), (2) 〈Ti〉  (measurements), (3) Ti on
the axis (calculations), and (4) 〈Ti〉  (calculations) and
(b) with axial gas injection: (1) 〈Ti〉  (measurements) and
(2) Te on the axis (measurements).
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numerical simulations. The ion temperature becomes
noticeably higher than the electron temperature 900 µs
after the beginning of NBI, which can also be seen in
the calculated curves 3 and 4. This is related to the high
electron longitudinal thermal conductivity and the sig-
nificant particle flux in phase space from the “deceler-
ated” group of fast ions toward the target plasma. The
decrease in the accuracy of ion temperature measure-
ments at the end of the NBI pulse is related to the
decrease in the target plasma density to (1.5–4) ×
1013 cm–3.

Figure 7b presents the temperature behavior for the
regime in which the plasma density in the GDT during
the operation of the heating injectors (Fig. 1, position 4)
was sustained by the paraxial injection of molecular
hydrogen [6] (Fig. 1, position 10). In this case, the gun
produced an initial target plasma required to trap the
atomic beams and was switched off a short time before
the beginning of the NBI pulse. The target plasma den-
sity gradually increased during the NBI pulse to (1.5–
4) × 1014 cm–3. At such a high density, the electron and
ion temperature were equalized ≈200 µs after switching
off the heating injectors. This time is close to the calcu-
lated characteristic time of the energy exchange
between the electrons and ions under the given experi-
mental conditions.

4. CONCLUSION

The experimental data obtained make it possible to
refine the model of the plasma energy balance during
pulsed NBI. The data also indicate no significant anom-
alous energy losses from the ion plasma component in
the GDT operation regimes studied.
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Abstract—The potentialities of the diagnostic method for determining the plasma parameters by recording the
surface waves guided by a dielectric waveguide and scattered by plasma oscillations are discussed. The use of
surface (slowed) waves makes it possible to improve both the sensitivity and spatial resolution of measure-
ments. The scattering is the most intense near the waveguide cutoff, at which the dependence of the wave prop-
agation constant on the plasma density is the steepest. It is shown experimentally that the method proposed
makes it possible to determine the discharge plasma density and electron energy and to estimate the amplitude
of the RF field of the plasma waves forming the discharge and the amplitude of plasma density oscillations in
these waves. The data obtained from the measurements of the amplitudes of both high- and low-frequency
plasma density oscillations by the proposed method agree satisfactorily with theoretical predictions. The exper-
imental data on the plasma density are confirmed by other diagnostic measurements. The ways of reducing mea-
surement errors are proposed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known (see, e.g., [1]) that wave diagnostics
of plasmas with a comparatively low density in various
medium-size devices encounter serious difficulties.
This is true of both interferometric methods and the
methods based on wave scattering by a plasma. Con-
ventional interferometry requires that the following two
main conditions be satisfied: first, the plasma should
significantly affect the phase of the wave propagating
through it (in order for the phase change to be recorded)
and, second, the wavelength of the sounding wave
should be smaller than the plasma size (in order for the
geometrical-optics approximation to be applicable). It
is easy to see that, for a finite-size low-density plasma,
these two conditions are mutually contradictory. How-
ever, this contradiction can be resolved by slowing the
wave in the plasma in one way or another, thereby
shortening its wavelength and, accordingly, increasing
the phase change. For this purpose, Katin and Markov
[2] proposed to place thin dielectric plates in the plasma
and to use the surface waves guided by them. Such
plates may serve as a diagnostic tool for determining
the phase change of the waves in plasmas; however, the
field of applicability of this method is wider. Thus, in
[2], it was proposed to determine the plasma density by
using the plates as low-Q resonators for surface waves.
The aim of this paper is to consider the ways of improv-
ing the accuracy of the measurements of the plasma
density, taking into account the fact that the amplitude
of the surface wave excited by a dipole antenna depends
on the extent to which the wave is slowed.

One of the main difficulties of implementing the
scattering diagnostic method in a low-density plasma is
1063-780X/02/2804- $22.00 © 0274
that the scattering effect is small. In [3, 4], it was pro-
posed to enhance this effect by observing the scattering
of the sounding wave in the vicinity of the hybrid reso-
nance, where the wave field and wave vector both
increase considerably.1 Since the scattering occurs in a
narrow resonance layer, the scale of the plasma oscilla-
tions by which the sounding waves are scattered is
fairly short. Here, we consider another possible way of
enhancing the scattering. Specifically, we propose to
use not only the above method for slowing the sounding
and scattered waves but also the fact that the pro-
pagation constant of the surface wave depends strongly
on the plasma density near the cutoff of a dielectric
waveguide (plate).2 We tested the proposed method
experimentally and obtained preliminary estimates for
the plasma wave amplitudes, which are significantly
above the thermal level, and for the oscillation ampli-
tudes of the plasma density in such waves. The mea-
surements were carried out in a device for studying the
ionization self-channeling of fine-scale whistlers
(oblique plasma waves in the frequency range between
the electron and ion gyrofrequencies, ωHi < ω < ωHe) by
exciting specific RF discharges in the form of spatially
localized plasma-waveguide channels [6]. The data

1 It is also assumed that, during the scattering, the wave frequency
changes only slightly (e.g., by an amount equal to the ion acous-
tic frequency), so that, in the scattering region, the hybrid reso-
nance condition is also satisfied for the scattered wave. On the
other hand, a strong increase in the wave field in this region can,
in particular, give rise to additional plasma ionization (see, e.g.,
[5]).

2 This fact actually indicates a stronger nonlinearity in this range of
the plasma and plate parameters.
2002 MAIK “Nauka/Interperiodica”
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obtained by applying this diagnostic method to mea-
sure the amplitudes of both high-frequency (at the fre-
quency ω of the discharge-forming field) and low-fre-
quency plasma density oscillations are compared with
theoretical predictions. In the Appendix, the question is
discussed of how to reduce the measurement errors in
determining these parameters. The electron energy in
the discharge is calculated from the measured data on
low-frequency plasma density oscillations.

We also propose another, fairly exact, diagnostic
method for determining the plasma density in such dis-
charges in a magnetic field. This method is related to
the condition for wave propagation in the channel,
which implies that the wave frequency should be lower
than the critical frequency corresponding to the maxi-
mum plasma density in the channel.

2. EXPERIMENTAL CONDITIONS 
AND MEASUREMENT RESULTS

The experiments were carried out with a glass dis-
charge chamber 200 mm in diameter and 1800 mm in
length in the presence of a longitudinal magnetic field
B0. The discharge was excited in air at pressures in the
range p ≤ 10–3 torr by a symmetric dipole antenna con-
sisting of three coaxial rings 60 mm in diameter located
at the axis of the chamber near its end at a distance of
30 mm from each other. The end rings were connected
to the outer conductor of the supply cable, and the cen-
tral ring was connected to the inner conductor of the
cable. The total length of the antenna for exciting
plasma waves was lu = 6 cm. An RF voltage (f =
200 MHz and U0 = 50 V) was supplied to the antenna
from a GST-2 oscillator. The plasma column formed as
a result of the ionization self-channeling of plasma
waves in the magnetic field B0 [6] originated from the
dipole antenna and was stretched out over the entire
length of the discharge chamber. A 160 × 160-mm diag-
nostic plate made of fiberglass plastic with the permit-
tivity ε = 4 (the dielectric dissipation factor being

 = 10–2) and thickness 2δ = 2 mm was placed in the
longitudinal cross section of the plasma column in a
position symmetric with respect to the column axis at a
distance of 300 mm from the RF antenna. The diagnos-
tic signal (fD = 920 MHz) from a G4-160 oscillator
propagated in the direction perpendicular to B0, along
the dielectric waveguide and was fed to the input of an
S4-27 spectrum analyzer. In a thin dielectric
waveguide, the first (lowest order) even TM mode was
excited by a T-shaped junction from the coaxial supply
cable [2]. At the opposite end of the plate, a similar
junction was used to record the signal, whose intensity
was proportional to the wave field amplitude at this

point. It should be noted that the intensity  of the
sounding signal that has passed through the dielectric
waveguide increases by 25–30 dB after switching on
the discharge and is maximum near the waveguide cut-

χtan

ED
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off [2] at B0 ~ 330 G, p ≤ 10–3 torr, and Ne ~ 3 × 109 cm–3.
We also point out a substantial spectral broadening of
the signal transmitted through the plasma column of the
discharge.

In Fig. 1, the squared amplitude of the wave fields of
the sounding signal scattered by the plasma is plotted
on the vertical axis on a logarithmic scale, and the fre-
quency (in MHz) is plotted on the horizontal axis. In
Fig. 1, we can see not only the signal at the sounding
frequency fD but also four modulation peaks, which
provide evidence for the existence of plasma oscilla-
tions at the pump frequency (f = 200 MHz) and at its
harmonics with frequencies 2f, 3f, and 4f . It was found
that these harmonics, as well as the main signal, are
generated by the GST-2 oscillator itself and that their
fields increase significantly in the presence of a plasma
due to both their trapping in the produced plasma
waveguide channel and the enhanced coupling of the
antenna to the plasma under the actual discharge condi-
tions. Figure 2 shows how the normalized (to the ampli-
tude of the main signal at the frequency ω = 2πf) ampli-
tudes Eqω of the harmonics observed during the dis-
charge depend on the strength of the external magnetic
field. The harmonics were measured by the above-
described method in the absence of the diagnostic sig-
nal. It is seen that the curves showing the amplitudes of
the first and second harmonics are generally similar in
shape. The observed discrepancies are probably associ-
ated with different degrees of the antenna–plasma cou-
pling at different frequencies. As the wave frequency
increases and approaches the critical frequency above
which the wave cannot propagate in the channel, this
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Fig. 1. Spectral content and relative intensities (~ ) of

the wave fields of a diagnostic signal scattered in the dis-
charge by plasma density oscillations at the frequencies of
the pump field (f = 200 MHz) and its satellites (qf) for p =
10–3 torr, B0 = 330 G, and U0 = 50 V, the sounding fre-
quency being fD = 920 MHz. The nonlinear decibel scale on
the vertical axis at high decibel levels is associated with the
nonlinearity of the measurement channel of a C4-27 ana-
lyzer.
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coupling reduces, as expected. On the other hand,
according to our estimates, the amplitude of, e.g., the
second harmonic of the pump wave, which is generated
due to the nonlinear effects in a plasma, is about E2ω ≤

Eω (where nω is the amplitude of the electron density

oscillations in the wave and Ne is an unperturbed
plasma density), which is insufficient to fit the experi-
ment. According to Fig. 2, the harmonics are the most
intense at about B0 ~ 300 G; the amplitude of the second
harmonic is about one order of magnitude smaller than
the amplitude of the first harmonic; the amplitude of the
third harmonic is about one order of magnitude smaller
than the amplitude of the second harmonic; and, for the
magnetic fields in the range 72 < B0 < 450 G, the ampli-
tude of the fourth harmonic is two orders of magnitude
smaller than the amplitude of the third harmonic. For B0
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Fig. 2. Relative values of the squared amplitudes of the

plasma density oscillations ( ) at the pump frequency

and its satellites vs. the external magnetic field B0 for p =

10–3 torr and U0 = 50 V.

Eqω
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Fig. 3. Plasma density  (averaged over the cross section
of the plasma column) vs. the external magnetic field B0 at
the distance z = 400 mm from the RF antenna for p =
10−3 torr and U0 = 50 V.

Ne
≤ 72 G (ωHe ≤ ω), the discharge structure changes: the
discharge resembles a diffuse ellipsoid rather than a
plasma waveguide channel localized at the chamber
axis. At B0 ≤ 50 G and p ≤ 10–3 torr, the discharge comes
to an end because the amplitude of the RF field pro-
duced by our pump oscillator is insufficient to maintain
the discharge, in which case the relative amplitudes of
the harmonics change substantially. In Fig. 2, these rel-
ative amplitudes are indicated by the asterisks at the
vertical axis. The data in Fig. 2 imply that, in contrast
to the first three harmonics, the fourth harmonic is not
guided by the plasma column of the discharge at B0 <
450 G. This indicates that the plasma density in the col-
umn is below the critical density for the frequency 4f =
800 MHz because, for B0 ≥ 300 G, we have ωHe > 4ω
= 2π × 4f, so that, at Ne > Ne  cr (4f ), fine-scale plasma
waves at the frequency of the fourth harmonic can prop-
agate in the plasma column [7]. Figure 3 shows the mea-
sured dependence of the plasma density Ne averaged
over the cross section of the plasma column on the
external magnetic field B0 under the same discharge
conditions [2]. On the other hand, the probe measure-
ments show that the plasma density distribution along
the dielectric waveguide is fairly well described by a
power law Ne(x) ≈ N0/[1 + (x/d)3], where the scale d =
2.7 cm is approximately equal to the radius of the bright
discharge region in the chamber. This power law yields
the following relationship between the averaged and
maximum plasma densities:

(1)

where L = 14 cm is the length of the dielectric
waveguide (the distance between T-shaped junctions).

Based on both relationship (1) between  and N0

and the data from Fig. 3, we can explain the sharp
growth of the fourth harmonic in the range B0 > 450 G
in Fig. 2 as being due to the fact that, as the magnetic
field in this range increases, the central plasma region
in which the plasma density is above the critical density
progressively expands, so that the antenna is increas-
ingly well coupled to the plasma column at the fre-
quency of the fourth harmonic. The averaged plasma
density  ~ N0/2 ~ 4 × 109 cm–3 at the critical point
(B0 ~ 450 G), at which the wave at this frequency can
still propagate in the channel, corresponds to the den-
sity determined by the curve (B0) in Fig. 3. In the

range B0 ≥ 600 G, in which the averaged density  is
a factor of 3 higher than the critical density for the
fourth harmonic, the amplitude of the fourth harmonic
is only several times smaller than the amplitude of the
third harmonic. Note that the signals scattered at the
harmonics of the pump wave were the most intense at
B0 ~ 300 G, and the spectral widths of these signals

Ne
2
L
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N0 xd

1 x/d( )3
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were determined by the line widths of the correspond-
ing harmonics. The relationship between the ampli-
tudes of the transmitted diagnostic signal and its satel-
lites, which are generated as a result of the scattering of
the sounding wave by plasma density oscillations,
depends on the magnitude B0 of the external magnetic
field. As an example, Fig. 4 shows the field amplitudes
of both the main diagnostic signal at the frequency fD =
920 MHz (upper curve) and its first satellite at the fre-
quency fD1 = 1120 MHz (lower curve) as functions
of B0. It is important that the observed amplitudes vary
in antiphase over the entire range of B0 values, except
for the subrange ∆B0 from 290 to 340 G. Calculations
of the dispersion curves [2] show that, in the range
∆B0 = 290–340 G, the slowing-down factor of the
sounding wave is maximum and even a slight change in
B0 produces a substantial change in the transmission
coefficient for the signal. Because of the spatial mag-
netic-field variations, the fine structure of the maxima
and minima in the transmitted signals ED(B0) and
ED1(B0) in the range ∆B0 is smoothed into a broad peak.
For this reason, under our experimental conditions, it is
impossible to establish whether or not the changes in
ED(B0) and ED1(B0) correlate in the range of B0 values
from 290 to 340 G.

The spectral lines of the scattered signals are rather
complicated in shape. As an example, we show in Fig. 5
the spectral line of the signal scattered by the plasma at
the frequency fD for B0 = 330 G and p = 10–3 torr. The
curve is seen to have modulation peaks separated by
frequency intervals ∆ fD ≈ 105 Hz. The amplitude of the
peaks decreases sharply as the external magnetic field
either decreases or increases from the value B0 = 330 G.
Under the same discharge conditions, analogous peaks
(but less pronounced and of smaller amplitude) were
observed in the spectral line of the pump signal scat-
tered by the plasma at the frequency f. These experi-
mental findings provide evidence for the existence of
oscillations of the discharge plasma density at low fre-
quencies fS ~ 105 Hz. The scattering of both the plasma
waves forming the discharge and the diagnostic signal
with its satellites gives rise to the modulation peaks in
the spectral lines of the scattered pump signal (at the
frequency f) and its harmonics (at the frequencies qf)
and the scattered diagnostic signals (at the frequencies
fD and fDq). Below, we will show that these low-fre-
quency (at frequencies fS) oscillations can be excited by
a pump signal whose spectral width exceeds fS .

3. DISCUSSION OF THE EXPERIMENTAL 
RESULTS

The dependence of the amplitude of the diagnostic
signal recorded at the output of a dielectric waveguide
(resonator) on the plasma parameters can be deter-
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002
mined through the following approximate expression
for the transmission coefficient:

(2)

where the propagation constant h( , B0) of a diagnos-
tic wave along a dielectric waveguide is determined
from the solution of the corresponding dispersion rela-
tions [2]. The plasma density oscillations in the waves
forming the discharge change the value of h. In the
cross section of the plasma column, these oscillations,
as well as the field of the plasma waves forming a cylin-
drical waveguide channel [6], possess the structure of a
standing wave whose amplitude decreases in the radial
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Fig. 4. Relative variations in the intensities of the main diag-
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Fig. 5. Spectral structure of the main diagnostic signal scat-
tered by the plasma (the spectral density of the signal inten-
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direction. Since this amplitude is small, we can expand
the propagation constant h in a series and keep only the
first two terms in the expansion:

where k⊥ q is the transverse (with respect to B0) compo-
nent of the wave vector of plasma waves and the depen-
dence of the quantities on the z-coordinate along the
channel is ignored, for simplicity. Substituting the
expression for h into expansion (2), we obtain the time-
varying (modulation) terms in the transmission coeffi-
cient:

(3)

where T0 ≡ cos(h0L) and h0 ≡ h( ). From expression (3),
we can see that, as the phase change h0L in the plasma
varies, the amplitudes of the modulation terms, which
describe the scattered signal, vary in antiphase with the
amplitude of the main diagnostic signal (T0). This is
confirmed by the experimental data illustrated in Fig. 4.
Other conditions being equal, the ratio of the transmis-
sion coefficient of the satellite (Tq), shifted by the fre-
quency of the plasma oscillations (qω), to that of the
main signal (T0) at the sounding frequency is maximal
in the magnetic field range in which the dependence of
the wave propagation constant h on the plasma density
is the steepest, i.e., at B0 ~ 300 G. The value of the

corresponding derivative  can be estimated from

Figs. 3 and 4. In fact, as may be seen in Fig. 3, the
change in the magnetic field strongly affects the plasma
density in the discharge; moreover, for magnetic fields
up to B0 ≈ 400 G, the plasma density increases linearly
by 2 × 109 cm–3. As a result, the phase change h0L of the
diagnostic signal also varies. When it varies by π/2, this
can correspond, in particular, to the transition from the
maximum value of ED to the minimum value, and vice
versa (Fig. 4). With this point in mind, we can readily

find that  ~  ≈ 5 × 10–10 cm2 for

 ~ 3 × 109 cm–3. We should note that, by virtue of the
specific properties of the antenna, namely, its symmetry
about the chamber (channel) axis (x = 0) and the fact
that all the points of any of the exciting rings have
almost identical potentials, the radial component of the
electric field of the plasma waves vanishes at the axis,
%⊥ (x = 0) = 0. On the other hand, under our experimen-
tal conditions, the amplitude of this electric field com-
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Ne
ponent at x ~ d/2 is several times greater than the ampli-
tude of the longitudinal electric field component and, as
was mentioned above, it decreases in the radial direc-
tion. Consequently, the equation =· %%%% = –4πe(Ne – Ne0)
implies that the amplitude of the wave of the perturbed
plasma density has an extremum (maximum or mini-
mum) at the chamber axis, in which case we can esti-

mate the integral in expression (3) as nqω(0). In par-

ticular, at the carrier frequency ω and for B0 ≈ 300 G

(  ≈ 3 × 109 cm–3), the component k⊥ 1 can easily be
determined from the dispersion relation for the oblique

waves, ω ~  (where  is the electron

plasma frequency corresponding to ), in which it is
reasonable to treat the quantity 2π/k|| as the distance lu

between the end rings of the antenna, which are held at
the same potential. Therefore, we have k⊥ 1 ~ 2.5 cm–1.
In expression (3), we also set  ~ 1, which cor-
responds to B0 ≈ 275 G (Fig. 4) and, accordingly, to
T1/T0 ≈ −25 dB. As a result, we arrive at the estimate

(4)

We can compare this approximate value with the fol-
lowing estimate, which follows from Maxwell’s equa-
tions for the potential wave:

(5)

where Eω|| ~  is the amplitude of the electric field

component along the chamber axis, 2U0 ≈ 100 V is the
voltage difference between the central and end rings of
the antenna (the coefficient 2 accounts for the onset of
the antinode of the voltage as the wave excited by the
GST-2 generator is reflected from the open end of the
coaxial supply cable), and lu ≈ 6 cm. Inserting these val-
ues into formula (5), we obtain nω ~ 108 cm–3.

The strong dependence of the slowing-down factors
γ ≡ h/kD of the waves guided by the dielectric
waveguide on the plasma density makes it possible to
substantially improve the sensitivity of the proposed
diagnostic method based on the recording of the sound-
ing wave fields scattered by plasma density oscillations.
Thus, under the experimental conditions, when the
power carried by the surface wave was ≤10 mW and
the external magnetic field was B0 > 450 G, the method
was able to record a significant increase in the ampli-
tude of the signal scattered by the plasma oscillations at
the fourth harmonic of the pump wave. This result
allowed us to determine the averaged plasma density in

π
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the discharge,  (450 G) ~ Necr(4f )/2 ~ 4 × 109 cm–3,

and to calibrate the curve (B0) in Fig. 3. In our
method, the accuracy of measurements of the plasma
density is governed by the frequency difference
between the harmonics and increases with the har-
monic number, ∆Ne /Ne ~ 1/q. For q ≥ 3, our method
provides more accurate measurements as compared to
probe measurements.

The sharp dispersion of the slowing-down factor

γ( ) near the cutoff of the waveguide (plate) also
makes it possible to resolve the modulation peaks asso-
ciated with the scattering of the sounding wave by low-
frequency oscillations of the plasma density. Since the
frequency fS of these oscillations is several times lower
than the line width of the signal from the pump oscilla-
tor, they can be excited in the nonlinear interactions
between the spectral components of the pump signal. In
accordance with the estimates that will be made below,
this excitation mechanism is more probable than the
drift instability mechanism (discussed, e.g., in relation
to experiments with narrow tubes [5]).3 The reasons
for this are twofold. On the one hand, in our experi-
ments, the plasma density gradient was relatively
small—it was actually near the threshold for the onset

of the drift instability,  > , where the electron

distribution function is assumed to be Maxwellian, ρe is
the electron gyroradius, m is the electron mass, M is the

ion mass, and  ≈  [7]. On the other hand,

under our experimental conditions, the plasma diffu-
sion from the discharge occurred mainly in the longitu-
dinal direction, so that the intensity of the low-fre-
quency plasma density oscillations changed moder-
ately along the chamber, in contrast to the drift
instability mechanism, which implies an exponential
change.

To obtain estimates, we can represent the structure
of the pump field at the first harmonic in the form4 

(6)

where the frequency ω varies insignificantly within the
above spectral line. We can easily see that the nonlin-
earity in the averaged ponderomotive force of the high-

3 Note that, in [5], the frequency of the excited low-frequency
oscillations was significantly higher than the line width of the
pump signal.

4 Here, we take into account the fact that, in the radial direction, the
field of the oblique plasma waves is nonzero up to the radius x ≈
2d, at which we have Ne(2d) ≈ Necr( f ) in accordance with the
radial plasma density profile (1).
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frequency field gives rise to the beat term with the
wavenumber κ = π/2d, which is equal to the difference
of the wavenumbers in the arguments of the sines in
representation (6). If these wavenumbers refer to the
spectral components with the frequency difference

2πfS ≈ κvS (where v S =  is the ion acoustic speed
and Te is the electron temperature), then the above com-
ponent of the ponderomotive force can efficiently gen-
erate ion acoustic waves in a plasma under the condi-
tions Te @ Ti and κρi ! 1 (where Ti is the ion tempera-
ture and ρi is the ion gyroradius) [7], which are
consistent with our experimental conditions.

The amplitude of the excited ion acoustic waves can
be estimated in the same way as was done for the
plasma waves. In this way, we can use a formula analo-
gous to expression (4) in which we now must set

 ≠ 1. The reason is that the waves are scattered
by low-frequency plasma density oscillations at the
path of the diagnostic signal (Fig. 5). Consequently, it
is clear that the larger the quantity , the more
distinguishable are these scattered waves against the
background of the diagnostic signal. In turn, it is seen
from Fig. 4 that  ~ 3 at B0 ≈ 300 G. As a result,

making the replacement    and put-

ting T1/T0 ~ 1 (Fig. 5) in expression (4), we obtain

nS ~ 3 × 108 cm–3. (7)

Note also that the multipeak character of the spectral
line in Fig. 5 can be explained using a formula analo-
gous to expression (3) and in which account is taken of
not only the first term but also higher order terms in the
expansion of the sine of the perturbed argument,

sin(  – h0)dx, in a Taylor series. Clearly, this cor-

responds to taking into account cascade scattering pro-
cesses. The scattering at the harmonics of the frequency
fS seems less probable, because the above condition for
the existence of ion acoustic waves in a magnetized
plasma, qκρi ! 1 (q = 2, 3, …), does not hold for them.

Now, let us determine whether the above amplitudes
of the pump fields are sufficient to excite ion acoustic
waves with the required intensities. To do this, we must
take into account the following two circumstances: on
the one hand, the GST-2 oscillator operates in a contin-
uous mode and, on the other hand, the line width of the
signal from this oscillator is several times greater than
the frequency of the excited low-frequency oscillations
(see the above discussion). As a consequence, the char-
acteristic time over which the phase of the emitted radi-
ation deflects from being regular is shorter than the
period of the ion acoustic oscillations, so that their exci-
tation is incoherent and, moreover, the waves them-
selves are excited “within the emission line.” In order to
analyze this fairly complicated process, we turn to the
well-known models of plasma turbulence [8, 9],

Te/M
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according to which the excited ion acoustic waves in
the assumed decay interaction are described by the
equation

(8)

Here, v Sz is the projection of the velocity of ion acoustic
waves onto the z-axis;  and @k are the spectral den-
sities of the number of plasmons of the oblique Lang-
muir waves and ion acoustic waves, respectively; wκ(k1,
k1 – k) is the probability for an oblique Langmuir plas-
mon with the wave vector k1 to emit an ion acoustic
plasmon with the wave number k; and δ(∆Ω) is the
delta function of the frequency mismatch ∆Ω = κv S –
ω(k1) + ω(k1 – k).

Note that all spectral components of the pump signal
contribute to the generation of ion acoustic waves, and
the integration in Eq. (8) is carried out over the entire
spectrum of the pump wave. The first term in parenthe-
ses in Eq. (8) is the main term for the following two rea-
sons. On the one hand, the s-plasmons (@k) originate
over the entire path along the z direction and are absent
in the initial stage, in contrast to the l-plasmons ( ).
On the other hand (and more importantly), after inte-
gration, the second and third terms in parentheses can-
cel each other, in which case each of the high-frequency
components of the emission line generates s-plasmons
when it decays and absorbs them when it grows,
thereby increasing the number of higher frequency
l-plasmons. As a result, using Eq. (8), we arrive at the
following estimate for the generation of s-plasmons:

(9)

where  is the averaged spectral density of the num-

ber of plasmons in the packet, W1 =  is the

energy density of the pump wave, and δΩ is the aver-
aged frequency mismatch of the interacting waves (δΩ
is on the order of the emission line width, i.e., about
ωS).

5 We multiply relationship (9) by the phase volume
occupied by the s-plasmons (because of the cylindrical

5 Note that the spatial spectrum of the pump signal in a plasma is
more rich than the temporal spectrum and that the frequency of
each emission line corresponds to a finite set of wave vectors k1
arising, e.g., due to the inhomogeneity of the formed waveguide.
However, the effect of this factor, which increases the number of
triplets of the waves that do not satisfy the exact synchronism
conditions, is somewhat balanced by the effect of the correlation
broadening of the resonance itself (∆k = 0, ∆Ω = 0) because of
the nonlinearity arising in a sufficiently strong field (W1/NeTe ~
4 × 10–2) [9]. This circumstance was taken into account in deriv-
ing expression (9) from Eq. (8).
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geometry of the problem, this volume is about k1/κ
times smaller than that occupied by the l-plasmons) and
obtain

(10)

In deriving this estimate, we used the well-known rela-
tionship between the energy of an ion acoustic wave

and the plasma density perturbation in it,  =

, and took into account the fact that the distance

from the entrance to the chamber (from the antenna) to
the center of the plate is z = z0 ~ 40 cm. Then, from esti-
mate (10), we obtain6

nS ~ 2 × 108 cm–3. (11)

The excitation of ion acoustic waves influences the
spectrum of the pump signal (Fig. 6). This influence is
described by an equation analogous to Eq. (8). For the
case of energy transfer down to the spectrum (from
higher to lower frequencies), it has the following form:

(12)

where vωz ~  is the component of the group velocity

of the plasma waves along the channel and the remain-
ing notations are similar to those used in Eq. (8). How-
ever, in contrast to the processes described by Eq. (8),
Eq. (12) implies that each of the components of the
emission line interacts not with the entire spectrum but
rather with the components whose frequencies differ
from its frequency by an amount ωS, with allowance for
the width of the low-frequency spectral line and the
above-mentioned broadening of the resonance. Conse-
quently, after integration, the second and third terms in

6 Note that estimates (10) and (11) were derived for a forward-
propagating wave, i.e., for an ion acoustic wave whose propaga-
tion direction along the magnetic field coincides with the direc-
tion of the plasma ambipolar diffusion. Under the steady-state
discharge conditions of our experiments, it is a simple matter to
estimate that the ambipolar diffusion rate is about the sound

speed. On the other hand, we have vSz = vS  ~ vS . There-

fore, the backward-propagating wave, traveling in the direction
opposite to that of the diffusion flux, is generated more effi-
ciently, because the plasma density perturbations in it escape
from the interaction region much slower than the perturbations in
the forward-propagating wave. As a result, the density perturba-
tions nS associated with the backward-propagating wave may
exceed those in formulas (10) and (11) by several times or more.
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parentheses in Eq. (12) do not cancel each other out. In
addition, according to the above estimates, the spectral
density of the low-frequency plasmons is much higher
than that of the high-frequency plasmons, although the
energy of high-frequency plasmons is much higher than
the energy of low-frequency plasmons. In this case, the
main terms in parentheses in Eq. (12) are the second
and third terms. As a result, the deformation of the
high-frequency spectrum is the most pronounced in the
part of the line over which the line shape depends most
strongly on the frequency. So, we can set  @

 in Eq. (12) and take into account relationships (10)
to obtain

(13)

Setting nS ~ 108 cm–3 at the plate (z = z0) gives
/  ~ 1, which indicates the spectrum broad-

ening. This broadening increases as the path length
along the z-direction increases. However, the increase
is relatively insignificant (Fig. 6), because, on the one
hand, the ion acoustic perturbations (10) grow at a mod-
erate rate and, on the other hand, the damping of plasma
waves, which was neglected up to this point, comes into
play on long paths (z1 ≈ 100 cm). Under our experimen-
tal conditions, the plasma wave energy is damped over

a distance of length ΛdampW ~  ~ 100 cm ~ z1 (where

νem ~ 107 s–1 is the electron–molecule collision fre-
quency in the discharge plasma). The damping reduces
nonlinear effects.

Finally, we note that the experimental profiles in the
figures are seen to be asymmetric, indicating the asym-
metry of the spectrum of waves propagating in the
plasma. On the other hand, an equation that is similar to
Eq. (12) and describes the transfer of the ion acoustic
energy from lower to higher frequencies leads to the
same estimate (13). In principle, it follows from these
equations that energy transfer toward the red part of the
spectrum is more intense (because of the presence of
the terms  in braces). However, under our
experimental conditions, these terms are insufficiently
large to fit the observed asymmetry. Presumably, agree-
ment with the experiment can be achieved through a
more correct description of the relevant nonlinear pro-
cesses, without assuming the plasma turbulence to be
weak, because, as was already mentioned, our experi-
ments were carried out with fairly strong fields. Thus,
the nonlinear scale length on which the ion acoustic
fields increase along the chamber axis is about their
longitudinal wavelength. The development of such a
description is a fairly complicated task and goes
beyond the scope of this study.
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Note that the above parameters of the excited ion
acoustic waves permit us to determine the electron tem-
perature:

(14)

where M is the mass of a nitrogen atom. This tempera-
ture value is confirmed by direct measurements of the
retardation curves of the electron flux toward the elec-
trostatic energy analyzer of charged particles. For the
discharge parameters under consideration, these mea-
surements were carried out by Markov et al. [6].

The results obtained show that dielectric
waveguides and resonators are promising for the wave
diagnostics of gas-discharge plasmas.
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APPENDIX

Possible Ways of Extending the Range of Applicability 
of the Proposed Diagnostic Method 

In the case of a significant slowing-down, which is
the most interesting for our study, the dispersion prop-
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Fig. 6. Shape of the spectral line of the discharge-forming
pump field from a T-shaped junction between the coaxial
supply cable and the dielectric plate (the spectral density of
the diagnostic signal intensity is ~!ω) for B0 = 330 G,

U0 = 50 V, and p = 10–3 torr. Curves 1 and 2 (the signal is
attenuated by 20 dB) refer to the cases without and with the
discharge, respectively. Curve 3 (the signal is attenuated by
15 dB) was measured under the same conditions as curve 2
by an electric probe at a distance of z ~ 1 m from the RF
antenna.
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erties of the waves traveling along a dielectric
waveguide can be determined analytically. These prop-
erties can be found from the following set of character-
istic equations, which were investigated numerically in
[2]:

(A.1)

Here, h is the longitudinal wavenumber and α and β are
the external and internal dimensionless transverse
wavenumbers, respectively, in terms of which the com-
ponents of the wave field are expressed. Thus, the
Hz-component of the magnetic field of a symmetric TM
mode has the form

(A.2)

The unit vectors of the coordinate system with which
we are working here form a right-hand triad: the z-axis
is directed along the external magnetic field B0 and the
y-axis is perpendicular to the plate. We are considering
waves propagating transverse to B0. The quantities ε1
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Fig. 7. Real part (solid curves) and imaginary part (dashed
and dot-and-dash curves) of the slowing-down factor γ for
the forward-propagating (Reh > 0) and backward-propagat-
ing (Reh < 0) surface waves vs. the plasma density Ne for

ωD = 5.78 × 109 s–1, ωHe = 5.27 × 109 s–1 (B0 = 300 G), δ =

0.1 cm, νem = 5 × 106 s–1, and; γ = ,

Nm and Nm0 are the plasma densities at which the real part
Reγ reaches the maximum values for the forward- and
backward-propagating waves, respectively).
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and ε2 in Eqs. (A.1) are the elements of the dielectric
tensor of the plasma surrounding the plate [10]:

(A.3)

Setting h2 @ , (  – )/ε1 in the last two of
the characteristic equations (A.1), we obtain β ≈ ±ihδ
and α ≈ hδ (the latter value will be used in further anal-
ysis).7 We substitute these expressions into the first
equation in system (A.1) and obtain the following equa-
tion for h:

(A.4)

where we set |ωD – ωHe | @ νem and, in accordance with
the above analysis, ε = 4. It is easy to see that, if ωD >
ωHe , this equation has positive solutions, h > 0. The
existence of such solutions imposes the following
restriction on the factor in the square brackets:

(A.5)

For hδ ! 1, the solution to Eq. (A.4) has the form

(A.6)

This brief analysis is confirmed by the results from
solving Eqs. (A.1) on a computer (see, e.g., Fig. 7). We
can see that, at plasma densities for which condition
(A.5) fails to hold, the imaginary part Imγ of solutions
with a large real part Reγ is large, indicating strong
wave damping or, in fact, the cutoff of the waveguide.
On the other hand, at minimum possible plasma densi-
ties, which satisfy condition (A.5), or, equivalently,
near the peaks of the curves in Fig. 7, the slowing-down
factor is actually smaller than that predicted by numer-
ical simulations. The reason for this is the following:
the wave that is slowed down very strongly turns out to
be tightly bound to the plate (α ≈ hδ, see the above anal-
ysis), in the immediate vicinity of which the plasma
density decreases sharply to almost zero. The thickness
of the transition layer between the plasma and the plate

is about several Debye radii rde = (Te/ )1/2. Conse-
quently, our analysis is valid if the layer thickness is
much smaller than the size h–1 of the region occupied by
the surface wave [see expression (A.2)]. Thus, under
our experimental conditions, we have  ~ 0.5 mm,

7 We must also keep in mind the condition h > 0, which follows
from the definition of surface waves.
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 = 5 cm, and h–1 = 0.5 cm for γ = 10. We also men-
tion an interesting property of such waveguide systems
surrounded by the plasma. Since the first equation in
system (A.1) comprises an odd power of h, the waves
in such waveguides are nonreciprocal [11]. A similar
analysis of system (A.1) and the results of numerical
integration (Fig. 7) show that, in the region of compar-
atively low plasma densities, the backward-propagating
surface wave is slowed to a much lesser extent than the
forward-propagating wave.

The wave characteristics described allow us to pro-
pose the following diagnostic technique for measuring
the plasma density. The technique is based on the use of
an oscillator that excites a diagnostic wave, whose fre-
quency ωD can be continuously tuned over a compara-
tively broad range. First, this frequency should be cho-
sen to be markedly higher than ωHe . Then, it is neces-
sary to continuously reduce the difference ωD – ωHe . It
is readily seen that, as this difference decreases, the
curve in Fig. 7 passes from the left to the right, first,
through the region where inequality (A.5) fails to hold
and, then, through the region where this inequality
holds. It is the transition point  between these
regions that is determined by condition (A.5). At this
point, the surface wave is slowed to the greatest extent
(which corresponds to the peak in the curve in Fig. 7).
However, we recall that, under actual experimental con-
ditions, this peak is appreciably smoothed out and is
lower. Nevertheless, the ωD value at which the mea-
sured intensity of the diagnostic wave sharply increases
corresponds to the above transition point . Hence,
the plasma density can be determined with acceptable
accuracy. In an inhomogeneous plasma (as in our
experiments), the path of the diagnostic wave at the fre-
quency  (from the emitting antenna at the entrance
of the waveguide to the receiver, through the central
higher-density plasma) is entirely within the transpar-
ency region of the plate in view of the wave character-
istics described above.8 Moreover, it is easy to see that,
due to the above-mentioned smoothing of the peak of
the slowing-down factor, this factor remains essentially
unchanged along the entire path of the diagnostic
wave.9 Then, by displacing the emitting and receiving
dipoles along the plate, while keeping them symmetric
with respect to the chamber axis, it is possible to mea-
sure the radial plasma density profile. For this purpose,
the plate with fixed dipoles can also be raised and
descended parallel to itself, while keeping it perpendic-

8 Here, by , we mean the frequency corresponding to the

plasma density in the region of a dipole antenna.
9 A strong wave slowing-down makes it possible to use a plate with

a smaller transverse size (along B0). On the other hand, since the
backward-propagating surface wave is slowed down to a much
lesser extent than the forward-propagating wave (see the above
discussion), such a plate reduces the resonator effect that mani-
fests itself in the segment of a dielectric waveguide (plate).

kD
1–

ωD*

ωD*

ωD*

ωD*
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ular to the vertical longitudinal cross section of the
chamber and symmetric with respect to this cross sec-
tion.

The above analysis implies clearly that, for the pro-
posed method to be implemented, it is important that
the external magnetic field B0 be uniform. Conse-
quently, in order to improve the measurement accuracy,
the diagnostic plate should be placed in the region
enclosed by the magnetic coils, where the magnetic
field is fairly uniform. Another important factor is the
form of an antenna emitting a surface wave. Our exper-
iments were carried out with the simplest antenna,
namely, a dipole whose length was equal to the plate
thickness and which was oriented perpendicular to the
plate. However, such a dipole can emit not only the
modes that are the subject of our discussion but also
other types of modes. For the modes under consider-
ation to dominate the emission spectrum of the dipole,
the dipole itself should be sufficiently uniform in the
direction transverse to the plate (along B0). The dipole
can be made sufficiently uniform by equipping it with
two mutually parallel conductors (filaments), which
should be attached to its ends, should be oriented along
B0, and whose length should be equal to the transverse
size of the plate.

The accuracy of the method proposed here for deter-
mining the amplitudes of the discharge-forming plasma
waves by recording the diagnostic signal scattered by
them can be improved in an analogous (but a more
complicated) way. However, since the longitudinal
component of the wave vector of the plasma waves in
our experiments was k|| ≈ 1 cm–1, system (A.1) is insuf-
ficient to characterize the scattering process, because it
describes only the transverse propagation of the waves.
Of course, this question requires a separate consider-
ation, but here we put forward certain ideas that may, in
our opinion, provide the basis for the improvement of
the method. Thus, we propose to strongly slow down
the first satellite of the scattered diagnostic wave with
the frequency ωD (e.g., the blue satellite). The fre-
quency ωD1 = ωD + ω of the satellite slowed down to the
desired extent should be determined from the corre-
sponding equations in a way analogous to the deriva-
tion of formula (A.6). For convenience, in further cal-
culations, the wavenumber of the satellite in an inho-
mogeneous plasma should satisfy (at least, in the region
where the diagnostic signal is scattered) the condition
of the geometrical-optics approximation: hD1d @ 1. The
radial plasma density profile is calculated by the
method described above. In particular, if the slowing-
down factor is set equal to γ = 10 at the radius x = 2d
under the conditions corresponding to the radial plasma
density profile (1), then the possible decrease in the
slowing-down factor in the direction in which the
plasma density gradually increases (toward x = 0) can
be compensated to a significant extent by a continuous
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reduction in the plate thickness δ [see, e.g., solution
(A.6)].10 

The frequency ωD of the diagnostic wave is deter-
mined from the frequency ωD1. Let us assume that the
diagnostic wave propagates in the direction perpendic-
ular to B0. Taking into account the fact that, at a com-
paratively low plasma density, this wave is strongly
slowed down in a narrow frequency range around the
frequency ωHe [see Eq. (A.5)], we can expect that the
frequency ωD will lie outside this range and that the
wave will be slowed down only slightly.11 In this case,
as in the geometrical-optics approximation, the struc-
ture of the diagnostic wave in the plasma can also be
determined analytically.

In order to derive an expression for the nonlinear
current exciting the satellite wave at the frequency ωD1,
it is necessary to know not only the field at the sounding
frequency ωD but also the field of the plasma waves. In
a channel with the known profile Ne(x), the field struc-
ture of the plasma waves can be calculated analytically.
Thus, for the radial plasma density profile (1), the field
structure in the region |x| ≤ d can easily be described in
the geometrical-optics approximation because the con-
dition k⊥ 1d @ 1 is satisfied in this region.

The experimental conditions should ensure the scat-
tering of the diagnostic wave when it propagates in the
plate segment between the reflection points of oblique
plasma waves. The generation of the satellite wave at
the frequency ωD1 should be described in a weakly non-
linear approximation, using shortened equations and
assuming that the wave field at the frequency ωD and
the plasma wave fields are both prescribed. A dipole
antenna that emits radiation at the frequency ωD should
be located outside the discharge plasma region, closer
to the chamber wall, and the frequency itself should be
chosen in such a way that the slowing-down factor for
the satellite at the frequency ωD1 in the region of reflec-
tion of the plasma waves is equal to γ ≈ 10. In order to
enhance the scattering effect, it is desirable to achieve
(if possible) the spatial synchronization of the interact-

10Note that the plasma density gradient in the higher density region
corresponding to the upper part of the profile Ne(x) is smaller
than that at the periphery; consequently, in this region, the slow-
ing-down factor can be set somewhat smaller.

11In particular, for waves with the frequencies ωD and ωD1 travel-
ing in the direction transverse to the external magnetic field, the
wavenumber h of a weakly slowed diagnostic wave can easily be
found from the basic equations (A.1). Setting h ~ kD in these
equations and taking into account the fact that the frequency dif-
ference entering the dielectric tensor elements ε1 and ε2 is ωHe –
ωD ≈ ω, we can see that the right-hand side of the first equation
(A.1) in system (A.1) can be neglected, in which case we obtain
α = hδε2/ε1. We substitute this relationship into the third equation

to find h ≈ kD , which agrees with the results of numerical

integration of system (A.1) on a computer. Thus, for the parame-
ter values typical of our experiments (Ne = 3 × 109 cm–3), we

have  ≈ 1.3.

ε1

ε1
ing waves, especially in the central discharge region,
where the amplitudes of the plasma waves are maxi-
mum. In fact, this indicates that the condition hD1(x) ≈
k⊥ 1(x) should be satisfied along the entire plate, because
hD ! hD1 (see the above analysis); in other words, the
plate thickness should be appropriately shaped in the x
direction.12 

An antenna receiving the scattered wave should be
located in such a way that it and the emitting antenna
are symmetric with respect to the chamber axis. The
receiving antenna should be designed so as to record
the scattered wave with the above-described transverse
or longitudinal (in the z direction) structure as effi-
ciently as possible.13 Let the power recorded by the
receiving antenna at the frequency ωD1 be equal to Πa =
ηPD1, where PD1 is the wave power at the exit from the
generation region and the coefficient η needs to be
determined. In order to find this coefficient, we choose
the emitting antenna to be the same as the receiving
antenna and place them in a symmetric position with
respect to each other. Let a voltage at the frequency ωD1
be supplied to the emitting antenna. In this case, we can
expect that the power Πr from the emitting antenna will
be related to the power of the surface wave in the gen-
eration region (recall that, in this region, the surface
wave is described in the geometrical-optics approxima-
tion) in a similar way: PD1 = ηΠr. As a result, we
obtain14 

(A.7)

Finally, we note that, in order for the above consider-
ations to be valid, the possible resonator effect of the
plate should be destroyed by slightly varying the sound-
ing frequency ωD .
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Abstract—A study is made of the method for numerical modeling of pulsed plasma systems by simultaneously
solving two-temperature MHD equations and the equations of ionization kinetics. As an example, the method
is applied to simulate a relatively slow moderate-density Z-pinch, whose dynamics is well studied experimen-
tally. A specially devised two-dimensional computer code makes use of a promising technique of parallel mod-
eling. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In this paper, we present the results of numerical
experiments aimed at modeling the dynamics of a mod-
erate-density Z-pinch on characteristic time scales of
about 600–700 ns [1–3]. The computer code devised
for simulations is based on the hydrodynamic model
developed in [4] and on the kinetic model describing
the dynamics of ionization states [1]. In the experi-
ments of [1–3], the pinch was created with the help of
a ring nozzle with an electromagnetic valve in CO2,
which served as the standard working gas. Since our
numerical experiments were based on one-fluid MHD
theory, we considered a purely carbon gas jet. The main
objective of our simulations was not only to reproduce
the experimental results in detail but, even more impor-
tantly, to prove the feasibility of our combined method
and to test numerical techniques. The reason is that the
most informative methods for investigating pulsed
plasmas (regardless of the way in which they are pro-
duced) are provided by spectroscopy and the most con-
venient objects in testing spectroscopic methods are
Z-pinches, which ensure a sufficiently high radiation
intensity and high reproducibility of results at a rela-
tively low cost of experiments.

2. MATHEMATICAL MODEL AND BRIEF 
DESCRIPTION OF THE NUMERICAL METHOD

The MHD part of the combined method assumes the
solution of the following one-dimensional model equa-
tions of motion for a two-temperature one-fluid plasma
in a magnetic field in dimensionless form:
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where Qr is the radiative (bremsstrahlung) loss power
and Qei is the power of collisional energy exchange
between electrons and ions. The subscripts e and i refer
to electrons and ions, respectively. Most of the notation
is standard: P without the subscript is the total pressure
(i.e., the sum of the partial pressures of plasma elec-
trons and ions), and the function J(zeff) accounts for
energy losses from ionization. The equations were non-
dimensionalized with respect to the following main
scales: the time scale is [t] = 10–7 s, the length scale is
[r] = 1 cm, the mass density scale is [ρ] = 10–3 g/cm3,
and the temperature (energy) scale is [T] = 1 keV. The
plasma is described by the ideal gas equations of state:

(2)

Here and below, A is the number of nucleons in a
nucleus (the atomic weight). The model equations are
written in dimensionless form. The power of collisional
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energy exchange between electrons and ions is

(3)

and the radiative loss power is

(4)

The electron and ion thermal diffusivities are chosen
to be

(5)

and the magnetic viscosity has the form

(6)

where zeff is the effective ion charge number in the
plasma. Our earlier studies showed that plasma magne-
tization at ωBe ! ωpe (or equivalently B2 ! nmc2) has no
significant effect on the macroscopic pinch dynamics.
That is why we assumed that the plasma is unmagne-
tized, the more so because we were primarily interested
in proving the feasibility of our combined method.

At the outer pinch boundary, we imposed the condi-
tions corresponding to those at the boundary between a
plasma and vacuum. In this case, the azimuthal mag-
netic field at the boundary is related to the total current
in the external electric circuit by the familiar dimen-
sionless relationship

where I is the current in the external circuit and R is the
instantaneous radius of the corresponding point in the
Z-pinch corona.

The above set of MHD equations was solved by the
method of separation of the scales of the physical pro-
cesses. In the first stage of calculations, the code takes
into account the plasma motion and solves inviscid
MHD equations without allowance for dissipative
effects. The difference scheme is constructed using
Lagrangian mass coordinates and provides the second-
order approximation in the spatial variables. In order to
reduce the oscillations that appear in calculating dis-
continuous solutions (such as shock waves and contact
and tangential discontinuities), the pressure term is sup-
plemented with an artificial viscosity term. The simula-
tions were carried out with a combination of linear and
quadratic viscosity coefficients [5]. The explicit, com-
pletely conservative difference schemes that were
implemented computationally in the code are analo-
gous to those described in [5]. The code also imposes
restrictions on the minimum size of cells of the differ-
ence mesh. When the spatial dimension of one of the
cells becomes smaller than the minimum allowable
dimension, all of the quantities (specifically, not only
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the “traditional” parameters such as the plasma temper-
ature, momentum, and mass but also the mean ion
charge in the cell and radiative losses) are conserva-
tively recalculated for a new mesh. Since an algorithm
for such recalculation is fairly obvious, we do not
describe it here. The numerical methods used in com-
putations are quite similar to those applied in earlier
papers [4, 6]. In the next stages of calculations, the code
solves the equations for the electron and ion thermal
diffusivities and the magnetic-field diffusion equation
by the flux sweep methods [7]. In the final stage, the
code takes into account the energy exchange between
electrons and ions and also radiative losses. The sets of
ordinary differential equations (ODEs) that are pre-
cisely determined in this stage of separation of the
scales of the physical processes are solved by the
method of trapezoids.

In each Lagrangian cell in each hydrodynamic time
step (or several steps), the code integrates (on the intrin-
sic kinetic time scale) a set of 200–300 ODEs determin-
ing the population of the quantum states of plasma
atoms and ions. All of the seven charge states of carbon
atoms are taken into account. For the first six charge
states, systematic account is taken of the lowest 20–
40 terms for electron configurations with one or two
excited electrons. The higher terms are modeled by
Rydberg levels with the statistical weights taking into
account all of the terms of the residual atomic core [8].
For each charge state, the Rydberg levels are used to
model all higher-lying levels, up to the instantaneous
effective boundary of the continuum; in turn, this
boundary is usually calculated in the ion sphere approx-
imation (and, more rarely, in the Debye–Hückel
approximation) [9]. The effective decrease in statistical
weights for higher-lying levels as the boundary energy
of the continuum decreases [10] is neglected because of
the contradictions between the approaches to estimat-
ing this effect quantitatively (see, e.g., [11, 12]). The
model used in our simulations assumes that, as the
energy of a discrete level becomes higher than the
boundary energy of the continuum, all of the electrons
occupying this level remain unbound. An increase in
the ionization potential above its previous value (e.g.,
during plasma expansion) is accompanied by the repro-
duction (or appearance) of the higher lying discrete
quantum states, whose population is calculated from
the Saha–Boltzmann relationships, which are valid for
all discrete levels adjacent to the boundary of the con-
tinuum [9, 13].

The set of kinetic equations describes the popula-
tions of all quantum states incorporated into the model
and expresses each of the populations in terms of the
instantaneous populations of the remaining quantum
states and the probabilities for all possible quantum
transitions. Under the thermodynamic conditions pre-
vailing in small Z-pinches (in the case at hand, the
plasma line density is up to 50 mkg/cm), the most prob-
able transitions are spontaneous radiative transitions
and transitions induced by free electrons. Transitions
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induced by the radiation field and ion impact are
neglected because they are far less probable. The model
incorporates the following one-electron processes: one-
electron ionization (in the case at hand, the ejection of
an electron from the outermost shell and from the near-
est nl subshell, including ionization to the excited states
[14, 15]) and transitions within the same charge state
(collisional excitation and deexcitation as well as spon-
taneous radiative transitions).

For carbon, the data on the Grotrian diagrams for an
atom and ions, the energies of the bonded states, the
oscillatory forces, and the ionization potentials in vac-
uum are available in the NIST Atomic Database
(http://physics.nist.gov/). In the computer code, the
probabilities of all collision processes are expressed in
terms of their cross sections for an arbitrary distribution
function. In this paper, we present the results that were
obtained only for a Maxwellian distribution function.

The cross sections for one-electron ionization are
described by the semi-empirical formula [16], which is
a refined version of the Lotz formula (see, e.g., [17]).
Numerous comparisons with the results of quantum
mechanical calculations showed that, to within 20%,
the semi-empirical formula [16] yields the same ioniza-
tion cross sections as the disturbed wave (DW) method,
including the cross sections for ionizations from and to
the excited states. The cross sections for the reverse
processes (three-body recombination) are expressed
through the ionization cross sections in accordance
with the principle of detailed balance [18, 19], which is
a consequence of the quantum mechanical reciprocity
theorem [20]. The cross sections for multielectron ion-
ization is calculated from the formula obtained in [21].
The cross sections for radiative recombination are
described by the Milne formula [18, 19], which relates
them to the associated photoionization cross sections,
described, in turn, by the Kramers formula. It is well
known that, for many-electron ions, the Kramers for-
mula also provides a satisfactory degree of accuracy
[9]. The dielectronic recombination is described in
accordance with the monograph by Griem [9]. The
cross sections for all of the excitation processes are cal-
culated by L.A. Vainshtein’s ATOM software program
[22, 23], written on the basis of the Coulomb–Born
method with allowance for exchange and renormaliza-
tion. The excitation cross sections are included into the
corresponding database and are then used to calculate
the excitation probabilities. The cross sections for the
reverse processes are expressed in terms of the excita-
tion cross sections through the Klein–Rossealand for-
mula [18, 19], which reflects the principle of detailed
balance.

Previously, the model described here (or, more pre-
cisely, the corresponding model for a zero-dimensional
Z-pinch) was tested by simulating different scenarios
for plasma ionization. The software program devised
for integrating the set of ODEs numerically is based on
the Gear method [24] and includes the corresponding
program module from the NAG library, which is widely
used in computations. According to the present-day
classification, the Gear method belongs to a class of the
so-called “multivalued” methods. Given that the step of
numerical integration is constant, the family of these
methods is equivalent to the backward differentiation
formulas [25–27]. The implicit backward differentia-
tion formulas provide a high degree of approximation
by the use of the results calculated at several preceding
time steps, in which case, however, in several initial
time steps, the set of ODEs should be integrated by
some other numerical method. In contrast to these for-
mulas, the Gear method starts to integrate the equations
immediately from the first time step and has a variable
order of approximation (convergence). At several initial
time steps, it may have a somewhat lower order of con-
vergence [25]. These intrinsic properties of the Gear
method constitute its advantage in investigating the
zero-dimensional model, because they make it possible
to obtain solutions for different scenarios of the ioniza-
tion of Z-pinch plasmas, including those at the limits of
applicability of the physical model [21]. However,
computer programs making allowance for ionization
that were described in [21] are somewhat difficult to
combine directly with the above MHD module of the
code. In this context, the main advantage of the Gear
method (namely, an algorithm for automatic choice of
the time step, guaranteeing the desired accuracy)
becomes unnecessary because the equations of ioniza-
tion kinetics are integrated on a too short time scale
and, accordingly, the mean degree of approximation
decreases. On the other hand, the number of references
to the subroutine integrating the set of kinetic equations
is large.

In order to increase the mean order of convergence
of the Gear method and to successfully carry out inte-
gration over the above initial time steps, the subroutine
integrating the set of kinetic equations was called up
after a fixed number of time steps. Note that, during the
calculation of the processes occurring in a plasma, the
time intervals after which the subroutine integrating the
set of quantum mechanical equations was called up
became progressively shorter. Simultaneously, the ion-
ization processes being modeled became more rapid,
thereby shortening the time integration step and, as a
consequence, the time intervals after which the subrou-
tine integrating the set of kinetic equations was called
up.

The above features of the one-dimensional numeri-
cal method did not allow us to implement the two-
dimensional method on sufficiently fine difference
meshes, because a decrease in the spatial cell size leads
to a proportional decrease in the time step and, conse-
quently, worsens the approximation achievable in the
calculation of ionization processes. Using implicit
schemes does not improve the situation. The reason is
that it is necessary to satisfy not only the Courant con-
dition [28, 29] but also the following condition, which
is important for a correct description of the physical
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002
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processes incorporated into the model: in each time
step, the perturbations in the pinch should propagate
through no more than one Lagrangian cell. These
restrictions could be overcome by using implicit
schemes, but then the model of ionization processes
would be incorrect. Nevertheless, the results obtained
in our numerical experiments are of interest from the
physical standpoint.

3. NUMERICAL RESULTS 
FROM THE ONE-DIMENSIONAL MODEL

We simulated a Z-pinch in a carbon plasma. The line
pinch density was in the range from 0.006 to 0.01 mg/cm,
and the initial pinch radius was 2.6 cm. These values
are close to the experimental data of [1–3]. We did not
solved the electric-circuit equation but instead interpo-
lated the experimental dependence of the total current
in the circuit [1–3]. This dependence is well approxi-
mated by a straight line corresponding to a current rise
time of 610 ns and a peak current of 300 kA. Because
of the large amount of calculations, we succeeded in
tracing all stages of the Z-pinch evolution on a mesh
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002
consisting of only 30 cells. A typical scenario for the
pinch evolution can be described as follows. Initially
(during a time interval of about 200 ns), the plasma is
essentially at rest. The plasma of the liner is slightly
heated only in the nascent corona (a low-density cur-
rent-carrying plasma region), and this process is
accompanied by a small increase in the effective ion
charge number. In the remaining liner regions, the ini-
tial ion charge number (0.9) is somewhat different from
its equilibrium value at these densities and tempera-
tures, so that the effective ion charge number also
increases only slightly (up to 0.93) and the plasma elec-
tron temperature decreases from 2 to 1.6–1.8 eV. At
about 200 ns after the switching-on of the current, the
liner starts moving, in which case the plasma is largely
concentrated near the outer pinch boundary and the
corona practically disappears; i.e., the “snowplow”
effect is observed.

Figure 1 illustrates the time evolution of the radial
profiles of the plasma mass density in the pinch. The
profiles shown in Fig. 1a were obtained at 0, 150, 225,
and 300 ns in the initial stage, during which the liner
0.50
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Fig. 1. Radial profiles of the plasma mass density obtained in the plasma compression stage and in the initial stage of plasma expan-
sion. The profiles in Fig. 1a were calculated at 0, 150, 225, and 300 ns. The profiles in Fig. 1b were calculated at 420, 510, 570, and
590 ns. The profiles in Fig. 1c were calculated near the time of maximum compression, i.e., at 610, 630, and 655 ns (from right to
left). The profile calculated at the time when the plasma starts expanding (690 ns) is shown by a light curve.
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plasma is at rest. At later times (up to about 550 ns), the
plasma is compressed in essentially the same manner.
The plasma mass is mostly accumulated in the snow-
plow region. The profiles shown in Fig. 1b were
obtained at 420, 510, 570, and 590 ns. We can see that,
after 550 ns, a shock wave forms ahead of the snow-
plow region.

Figure 1c shows the radial profiles of the plasma
mass density calculated at 610, 630, 655, and 690 ns,
i.e., over the time interval from the instant at which the
current in the external electric circuit is switched on
(610 ns) to the instant at which the plasma starts to
expand (690 ns). The profile corresponding to the latter
instant is shown by a light curve. We can clearly see the
reflection of a shock wave from the pinch axis and the
formation of an entropic layer [7], in which the plasma
temperature is elevated and the plasma density is
depressed. Such entropic effects are an undesirable fea-
ture of the numerical methods used to solve the MHD
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Fig. 2. Radial profiles of the plasma velocity calculated at
610, 630, 655, 690, 730, and 770 ns (from top to bottom).
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Fig. 3. Radial profiles of the plasma mass density obtained
in the stage of plasma expansion (at 970 and 1170 ns).
equations. The entropic layer is present throughout all
subsequent stages of calculations and, as will be shown
below, decreases the reliability of the results obtained
in the stage of plasma expansion.

At the time of maximum compression, all the liner
plasma essentially comes to a stop. Figure 2 shows the
radial profiles of the plasma velocity calculated at 610,
630, 655, 690, 730, and 770 ns. We can see that, at
650 ns, the plasma is practically at rest, and, at 690 ns,
it expands with a certain positive velocity. A disconti-
nuity in the plasma velocity is associated with the
reflection of the shock wave from the outer boundary of
the liner. The representative radial profiles of the
plasma mass density in the expansion stage (at 970 and
1170 ns) are shown in Fig. 3. The plasma velocity is
uniform along the pinch radius, the maximum velocity
at 1170 ns is about 3 cm/ms, and the radius of the
entropic layer, which is present as before, is now about
5–6 mm.

Figure 4 illustrates the time evolution of the radial
profiles of the electron and ion temperatures. The pro-
files were calculated at 610, 630, 655, and 690 ns. It is
notable that the ion temperature in the entropic layer
increases considerably (from 1300 to 4000 eV). The
possible causes of this phenomenon will be discussed
below. The ion temperature values behind the shock
wave seem to be quite realistic (from 300 to 800 eV).
This is also true for the electron temperature values in
the main plasma (from 50 to 80 eV) and in the corona
(from 100 to 350 eV).

Note that, at these times, the plasma is ionized
almost completely, except in the maximum density
region, in which the mean ion charge number is about
five. The dynamics of the mean ion charge number in
the plasma at earlier times (at 420, 510, 570, and
590 ns) is illustrated in Fig. 5. The ion charge in the
corona increases because, at such electron tempera-
tures, the magnetic field does not penetrate into the
plasma, but rather is completely concentrated in the
skin layer. Under these conditions, the Joule heating of
the plasma in the skin layer plays an important role: in
particular, it increases the mean ion charge. Initially, an
increase in the mean ion charge ahead of the skin layer
is associated with the effects of electron heat conduc-
tion, and later, with the combined action of electron
heat conduction and the heating by a propagating shock
wave.

Unfortunately, a completely developed shock wave
affects the course of calculations: it slightly decreases
the reliability of the results computed in the stage of
plasma expansion.

We now address the question of the temperature
increase immediately before the focusing of the shock
wave at the pinch axis. This increase can only be
explained as being due to the formation of one more
(weaker) shock wave, which was focused at the axis at
an earlier time and was not captured numerically
because the time intervals after which the calculated
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002
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Fig. 4. Dynamics of the (a) electron and (b) ion temperatures. The radial profiles were calculated at 610, 630, and 655 ns. The pro-
files calculated at the time when the plasma starts expanding (690 ns) are shown by the light curves.
results were read into computer memory were too large.
Such a wave does indeed exist and was captured in the
simulations of a pinch with a line density of
0.01 mg/cm and with small values of the artificial vis-
cosity coefficients on the difference mesh.

Because of the larger mass of the pinch, it was com-
pressed on a somewhat longer time scale (about
695 ns). Figure 6 shows the radial profiles of the effec-
tive ion charge number, plasma mass density, and elec-
tron and ion temperatures calculated at 670 and 690 ns.

In the case of a liner with a line density of
0.01 mg/cm, the time 690 ns coincides not only with
the time at which a weaker shock wave starts to form
but also with the time at which the previous shock wave
is reflected from the axis. On the calculated profiles,
one can see the nascent entropic layer and oscillations
stemming from the small artificial viscosity used in the
simulation of the liner under consideration. The oscilla-
tions are most pronounced in the radial profile of the
electron temperature. The oscillations of the effective
ion charge number result from those of the electron
temperature.

Another interesting effect revealed in simulations is
that the electron temperature and effective ion charge
number oscillate in a fixed Lagrangian cell. Such small-
amplitude periodic variations in the electron tempera-
ture in a fixed cell were observed between 300 and
500 ns in essentially all of the calculation versions.
Unexpectedly, this effect was also captured by two-
dimensional modeling.

4. RESULTS OF TWO-DIMENSIONAL 
SIMULATIONS

Here, we describe the results of modeling of a pinch
with a line density of 0.006 mg/cm, an initial radius of
2.6 cm, and a length of 2 cm. The pinch was initiated in
a carbon gas between two electrodes, which were
assumed to be “cold” (in simulations, their temperature
was set equal to zero) and impenetrable by the plasma.
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002
The corresponding boundary conditions for Eqs. (1)–
(5) were chosen to be analogous to those used in [4].

Up to 500 ns, a two-dimensional pinch evolves in
the same manner as a one-dimensional pinch, the only
difference being that the plasma temperature near the
cold electrodes is slightly depressed. The discrepancy
between the evolutions becomes significant on longer
time scales. The depressed temperature of the electrode
plasmas (Fig. 7) gives rise to a slight longitudinal (in
the z-direction) plasma inhomogeneity, which is
enhanced by oscillations of the plasma temperature and
of the effective ion charge number. As a result, two
inward-directed plasma jets form at a distance of about
0.3 cm from each of the electrodes. The jets are dis-
tinctly seen in the ion pressure distribution in Fig. 8 and
in the projections of the isolines of the plasma mass
density in Fig. 9.

Figures 7–9 show the distributions calculated at
630 ns, at which time, two jets reach the symmetry axis
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Fig. 5. Radial profiles of the mean ion charge calculated in
the liner compression stage (at 420, 510, 570, and 590 ns).
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(Fig. 8) and the third jet forms in the main pinch just
between the electrodes. This jet is seen in both the ion
pressure (Fig. 8) and plasma mass density (Fig. 9) dis-
tributions. It appears in the region of elevated electron
temperature.
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Fig. 7. Electron temperature distribution in two-dimen-
sional modeling.
After the jet reaches the pinch axis, the electron and
ion temperatures in the axial region increase. The cal-
culated results show that the ion temperature increases
to a significant extent, specifically up to 6–7 keV, which
is high in comparison with the ion temperature in the
“cold” regions (4 keV). However, such a significant
increase is only associated with the entropic effects. In
the electron temperature distribution, similar hot points
appear somewhat later. They are associated with the
energy exchange between very hot ions and compara-
tively cold electrons and are less pronounced than those
in the ion temperature distribution. The presence of hot
points at the pinch axis can be established primarily
from the calculated ion pressure distribution, because
the ion pressure is least sensitive to the entropic effects.

Unfortunately, we failed to obtain the two-dimen-
sional picture of plasma motion on time scales longer
than 670 ns.

On time scales of up to 500 ns, the perturbations of
the outer pinch boundary were found to result only in
slight deviations from the evolution of a one-dimen-
sional pinch.
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5. USE OF THE CLUSTER OF PERSONAL 
COMPUTERS FOR TWO-DIMENSIONAL 

SIMULATIONS

Estimates show that, with present-day single-pro-
cessor personal computers (PCs), numerical integration
of two-dimensional problems on fine meshes (contain-
ing from 60 × 134 to 100 × 204 Lagrangian cells) usu-
ally takes from a week to a month of computer time.
Because of this, it is desirable to exploit parallel com-
puters. Since most computer time (up to 90%) is
expended on simulating the kinetic (quantum mechani-
cal) part of the problem, it is expedient to parallel only
kinetic calculations, whereas the hydrodynamic pro-
cesses and magnetic field diffusion can be simulated, as
before, on a single-processor PC.

Even with the semiautomatic estimation of the run
time of the program (™BERT77, the trademark of Par-
alogic Inc., http://www.plogic.com), it was not possible
to estimate the total time required to execute it, because
the cycles in the program are organized so that it termi-
nates only when the prescribed accuracy is achieved. In
order to estimate the actual efficiency of using a parallel
computer, we carried out some test measurements in
solving the kinetic part of the problem on the above dif-
ference mesh under the Linux operating system on a PC
with a Celeron-366 microprocessor. On average, this
part took 27 min of computer time. The fact that the
kinetic part can be calculated for each Lagrangian cell
independently opens great possibilities for using paral-
lel computers. In order to distribute the kinetic calcula-
tions almost equally between 12 processors in a PC
cluster, the difference mesh was divided into 12 equal
components in the radial direction. The choice of the
direction was dictated by the fact that the main pertur-
bations (shock waves) propagate from the periphery of
the plasma toward its center, so that, with such a divi-
sion of the plasma region, the processors handle an
approximately equal number of Lagrangian cells adja-
cent to the shock front.

The execution of the remaining part of the program
requires that the amount of information exchanged
between the PCs be 280 KB, which takes less than one
second.

Estimates showed that, on a PC cluster organized in
this way, calculating the kinetic part of the problem
takes about 2.5 minutes. With allowance for the time
required to execute all of the moduli of the program, the
cluster completes the problem 10.8 times faster than
does a single-processor PC.

Let us consider some of the results from two-dimen-
sional simulations on a PC cluster. The results again
refer to a pinch with a line density of 0.006 mg/cm, an
initial radius of 2.6 cm, and a length of 2 cm, but now
the simulations were carried out on a finer mesh. The
pinch was initiated in a carbon gas between two elec-
trodes, which were assumed to be “cold” (in simula-
tions, their temperature was set equal to zero) and
impenetrable by the plasma. In order to describe the
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002
effects of the Rayleigh–Taylor instability, the condi-
tions imposed at the right boundary of the plasma
region specified a small sinusoidal perturbation with an
amplitude of 0.25 to 5% of the initial pinch radius.
The problem was solved on meshes containing from
60 × 134 to 100 × 206 Lagrangian cells, and the corre-
sponding calculations on a 12-PC cluster took from 24
to 48 h.

In order to illustrate the effects revealed in simula-
tions, we present the electron and ion temperature dis-
tributions calculated for a pinch whose right boundary
was perturbed sinusoidally at an amplitude of about
2.5% of the initial pinch radius. The temperature distri-
butions obtained from two-dimensional simulations on
a fine mesh are shown graphically in Fig. 10, in which
only each fourth point obtained in every direction is
plotted. We can see that the compression proceeds in
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essentially the same way as in the above one-dimen-
sional case. On such time scales, the Rayleigh–Taylor
instability does not affect the compression of the liner.
Nonetheless, small-scale structures are seen to appear
near the electrodes (Fig. 10). The PC cluster was capa-
ble of handling the problem on time scales of about
500–510 ns. On longer time scales, the simulations
were terminated because of the rapid deformation of
the Lagrangian mesh near the cooled electrode.

6. CONCLUSIONS

An analysis of the results of our one- and two-
dimensional simulations show that we can speak of the
formation of a high-density plasma layer and its subse-
quent transformation into a shock wave. Although our
numerical experiments provide indirect evidence for
such behavior of an imploding plasma, they cannot give
detailed information about the underlying mechanisms
that cause it. It is also of interest to point out the role of
the supersonic propagation of the ionization front: pre-
sumably, it is this factor that is responsible for the
destruction of a shock wave.

Note that our main results were obtained on fairly
rough meshes, containing from 17 × 17 to 27 ×
47 Lagrangian cells. On a mesh with 30 cells, one-
dimensional calculations of all the stages of the process
(compression, pinching, and plasma expansion) on
time scales of about 1200 ns require 60–80 h of com-
puter time on a PC with a Celeron-433 microprocessor;
moreover, about 90% of this time is expended on simu-
lating the kinetic (quantum mechanical) part of the
problem. Even with very rough meshes, two-dimen-
sional simulations of the pinch evolution up to the stage
of maximum compression require at least 100 h. The
progress toward the development of the models com-
bining hydrodynamic and quantum mechanical
approaches is expected to be made through increased
use of parallel computers. That this way is promising is
evidenced, in particular, by the results of our work.
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Abstract—It is shown that the development of instabilities in a Z-pinch plasma formed by loading a relatively
thick Al wire (an initial diameter of 120 µm and a maximum discharge current of 2–3 MA) is slowed down due
to the high plasma density in the wire corona. A cylindrically symmetric, regular, and stable corona surrounding
the wire contains a helical formation with a dense, cold, and magnetized plasma. X-ray pulses with a photon
energy of several keV and an FWHM duration of 10–20 ns are generated by a few imploded neck structures in
the pinch phase of the corona evolution (70–100 ns after the current onset). The main part of X radiation emitted
by individual bright spots in the photon energy range 1.5–2.4 keV (up to 40 J at a peak power of 4 GW) consists
of the continuum and the bound–bound transition radiation from H- and He-like Al ions. A possible scenario
for the axial magnetic field evolution during an X-ray pulse is outlined. © 2002 MAIK “Nauka/Interperiodica”.

s⁄ ý
1. INTRODUCTION

Z-pinches, which are the most intense sources of
X radiation, offer a large variety of applications [1].
Currently, the main subject of Z-pinch investigations is
the suppression of instabilities and the optimization of
the X-ray yield. Liners [2–4] and fibers [5] are often
used as discharge loads. Recently, the diagnostic char-
acteristics of a plasma corona formed on a wire load at
a current of several megaamperes were reported [6–8].
Most of the radiation is emitted in the thermal energy
range from 10 to 200 eV in the phase of maximum com-
pression. Only a few percent of the overall emission
corresponds to unstable and randomly located hot spots
emitting in the kiloelectronvolt energy range. A system-
atic investigation of the stable corona generated by
using thicker fibers in small Z-pinch devices and, in
particular, its intense nonthermal emission have
recently been reported [9–12]. Strong emission in the
wavelength range 17–25 nm accompanying the explo-
sion of a carbon fiber with a diameter of 6–20 µm was
observed at a discharge current of 20 kA [9, 10]. Load-
ing a graphite rod with a diameter of 2 mm resulted in
the creation of a relatively stable corona with a helical
or toroidal surface [11], which emitted in the wave-
length range 14–21 nm. The soft X-ray and VUV spec-
tra of the corona produced in the same device with car-
bon fibers 20 and 100 µm in diameter [12] indicated
that 60% of the energy was emitted in the nonthermal
range 17–35 nm; the recombinative character of the
emitted lines was pointed out.

A fairly large diameter of the wires used in those
experiments seems to be a stabilizing factor. Presum-
1063-780X/02/2804- $22.00 © 0296
ably, the fiber material in the central region near the
axis remains in solid state and the corona plasma is con-
fined by the high magnetic field. High-energy photons
are mainly emitted from the helical and ringlike struc-
tures. In this paper, we present analogous diagnostic
results on the corona generated with thicker wires (up
to 120 µm) by using an S-300 megaampere Z-pinch
generator (4 MA, 70 ns) developed at the Russian
Research Centre Kurchatov Institute, Moscow.

2. EXPERIMENTAL TECHNIQUE 
AND DIAGNOSTIC SETUP

A powerful pulsed S-300 machine [13] is intended
for investigating the compression of a liner or fiber
corona and the development of bright X-ray sources.
The eight-module generator (see Fig. 1) consists of a
capacitor energy storage system; two water pulse-form-
ing stages; and a vacuum chamber, containing an
energy concentrator based on magnetically insulated
transmission lines (MITL). The output forming stage,
transmission lines, and the vacuum chamber are placed
in a common water tank 4 m in diameter. The current
flowing through the wire attains 3 MA, and the current
rise time is 100 ns.

The complex information on the pinch behavior was
obtained with a set of diagnostics (Fig. 2):

(i) visible photography with a streak camera observ-
ing the plasma in the radial direction with a slit aligned
either parallel to the wire axis or perpendicular to it (in
the latter case, a region located at a distance of 4 mm
from the anode and cathode faces was observed) and
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic of the S-300 Z-pinch generator. The ver-
tical axis of the installation is indicated on the right-hand
side of the figure.
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three frame image converters (FICs) grabbing plasma
images in the radial direction with an exposure time of
3 ns with an interval between frames of 10–15 ns;

(ii) VUV and soft X-ray FIC photography with an
exposure time of 3 ns;

(iii) detection of X-ray emission with two beryl-
lium-filtered semiconductor PIN diodes observing
plasma from both radial and axial directions with a tem-
poral resolution of 3–4 ns;

(iv) convex mica crystal X-ray spectrometer with
one-dimensional spatial resolution, absolutely cali-
brated in a photon energy range of 1–10 keV;

(v) pinhole camera (100-µm diameter pinhole fil-
tered with mylar and Al foils) located in the radial posi-
tion; and

(vi) two- or three-frame shadow and schlieren diag-
nostics based on the second harmonics emission of a
YAD : Nd laser (a wavelength of 532 nm and pulse
duration of 10 ns) and observing the plasma in the
radial direction.
1

8

76
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3 2
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Fig. 2. Spatial configuration of the diagnostics: (a) axial and (b) radial views.
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3. EXPERIMENTAL RESULTS

In the experiments, Al wires with a diameter of
120 µm and length of 8 mm were used as loads. To
demonstrate the complexity of the diagnostics used to
explore the pinch plasma, Figs. 3–5 show the tempo-
rally and spatially resolved data taken at three different
shots. The data presented in these records are of key
importance for understanding the evolution and proper-
ties of the corona and X-ray bursts. Their detailed inter-
pretation is given in Section 4.

The absolutely calibrated PIN diodes were filtered
with beryllium foils 100–300 µm thick. During each
discharge, they detected one to three short X-ray bursts
with a FWHM duration of ~10–20 ns. The bursts were
emitted randomly 70–100 ns after the current onset.
Typical examples of oscillograph records are shown in
Figs. 3a, 4a, and 5a; trace 1 characterizes the discharge
current (1.3 MA/division) and traces 2 and 3 corre-
spond to the axial and radial PIN diode signals, respec-
tively. At the bottom, the instants of the relevant diag-
nostic records are marked. The sensitivity range of the
X-ray frame cameras corresponded to the photon
energy range 0.02–10 keV. The records exposed before
an X-ray burst display a regular sausage structure con-

Fig. 3. Shot no. 193: (a) oscilloscope records of (1) the cur-
rent and (2) X-ray signal from a PIN diode filtered with a
beryllium foil, (b, c) X-ray frame images, and (d) a pinhole
image filtered with a 10-µm Al foil and 10-µm mylar foil.
One can see the spatial correlation between the regular
necks (b), imploding necks (c), and bright spots (d) and the
temporal correlation between the imploding necks (c) and
the X-ray pulse (a). Marks on the bottom of plot (a) indicate
the instants corresponding to frame images (b) and (c).

8 
m

m

(b) (c) (d)

(a)

1

2

(b) (c) 50 ns/division
taining five to eight brighter ringlike constrictions
(necks) with a diameter of 1.8–2 mm and darker crests
with a diameter of 2–3.5 mm, in which the plasma
expands in the radial direction (Figs. 3b, 4d, 5b).

These radially symmetric regular structures are sta-
ble over several nanoseconds. Photographs exposed
during the X-ray bursts display the increase in the neck
brightness and the implosion of one to five necks to a
diameter smaller than 1 mm with a velocity of 2 ×
106 cm/s and the explosion of the crests to a diameter of
6–10 mm with a velocity of (5–10) × 106 cm/s
(Figs. 3b, 3c, 5b, 5c).

A similar plasma behavior was observed with the
use of the schlieren diagnostics. Two records shown in
Figs. 4b and 4c were exposed with a time interval of
50 ns. The images were recorded by using the refrac-
tion of a probing diagnostic laser beam in the outer
plasma layers, where the electron density gradient is
fairly high.

Schlieren images recorded before an X-ray burst
clearly display four to five necks with a diameter of
about 2 mm and a crest with a diameter of 2.5 mm
(Fig. 4b). Schlieren images recorded during an X-ray
burst (Fig. 4c) show that some necks implode to lower
than 1 mm and the crests expand to 6–10 mm. The
corona contour indicates that the instability is symmet-
ric along the axis. The positions of the imploded necks
in the schlieren images correlate well with those in the
X-ray frame images recorded before the plasma corona
starts to expand (Fig. 4c, 4d). After the X-ray burst, the
corona shape becomes irregular.

The pinhole camera records were protected from
visible light by using an aluminized mylar film 12 µm
thick or a combination of a 12-µm mylar film and
10-µm aluminum film (X-ray emission with a photon
energy lower than 1 keV was cut off). The filtered
images indicate that the keV radiation is emitted from
oblong spots with characteristic dimensions of ~1 mm.
These spots corresponds to the imploded necks visual-
ized by schlieren and X-ray frame diagnostics (Fig. 3d).

The velocity of the corona expansion (106 cm/s) was
estimated from the visible streak camera images
(Fig. 5f) observed perpendicularly to the wire axis.
This velocity is constant to about 300 ns after the cur-
rent onset, i.e., up to the end of the corona expansion
(which probably corresponds to the time of the com-
plete wire evaporation). In the course of the neck evo-
lution, the diameter of the intense plasma region
decreases to 1 mm over 60–100 ns after the current
onset. The appearance of these compressed regions cor-
relates in time with the X-ray signal from the PIN diode
(Fig. 5a, trace 2). After the end of the soft X-ray pulse,
these regions rapidly expand (with a velocity of
107 cm/s) to a diameter of 5–6 mm; then, they continue
to expand with a velocity of 106 cm/s up to the instant
of corona explosion.

Streak camera images obtained with a longitudi-
nally orientated slit recorded emission pulses from sev-
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002
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Fig. 4. Shot no. 152: (a) oscilloscope records of (1) the current and (2, 3) X-ray signals, (b, c) schlieren photographs, (d) X-ray frame
images, (e) a pinhole image filtered with a 10-µm aluminized mylar film, and (f) a visible streak image taken with a slit parallel to
the wire. One can see the spatial correlation between the necks (c, d) and bright spots (e, f) and the temporal correlation between
the imploding necks (c), bright spots (f), and the X-ray pulse (a). Marks on the bottom of plot (a) indicate the instants corresponding
to (b, c) the schlieren photographs and (d) X-ray frame image.
eral spots ~1 mm in diameter with a characteristic dura-
tion of 10 ns. Repeated emission from the same spot
was also observed (Fig. 4f).

Visible frame camera images recorded before an
X-ray pulse showed the formation of a helical structure
on the corona surface with a diameter of 1 mm and a
lifetime of several nanoseconds (Fig. 5d).

The time-integrated X-ray spectrum was recorded
with the average spectral resolution λ/∆λ = 200. A
rather coarse spatial resolution of 500 µm was provided
along the discharge column. The theoretically calcu-
lated energy-dependent characteristics of the spec-
trograph with a convex mica crystal and the transmis-
sion coefficients of filters and protective foils were used
to convert the blackening of a Kodak DEF X-ray film to
the absolutely calibrated emission spectra. The inten-
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002
sity of line emission corresponding to the bound–bound
transitions of H- and He-like Al ions was higher than
that of the bremsstrahlung and recombination contin-
uum. As an example, Fig. 6 shows the spectra corre-
sponding to Fig. 4e (necks 1, 2, and 3). The character of
the spectrum depends strongly on the parameters of the
emitting plasma object.

A comparison of the measured spectra with spectra
computed with the RATION diagnostic code [14]
allowed us to estimate the electron temperature Te and
the electron density ne in the imploded necks. A
detailed analysis shows that at least two characteristic
sets of plasma parameters can be associated with the
first spectrum in Fig. 6. The intensity distribution in the
∆n = 1 spectral lines (where n is the principal quantum
number) of H- and He-like ions can be satisfactorily
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Fig. 5. Shot no. 192: (a) oscilloscope records of (1) the current (1.3 MA/div) and (2) X-ray signal, (b, c) X-ray frame images,
(d, e) visible frame images, and (f) a visible streak camera image taken with a slit oriented perpendicularly to the wire. One can see
the spatial correlation between the helical tubes (d, e) and X-ray frame images (b, c) and the temporal correlation between the
imploding necks (c) and the X-ray pulse (a). Marks on the bottom of plot (a) indicate the instants corresponding to (b, c) the X-ray
frame images and (d, e) visible frame images.

200 ns150100500
(f)

8 
m

m

8 
m

m

(b) (c) (d) (e)

(a)

2

(b, d) (c, e) 50 ns/division

1

approximated with Te = 250 eV and ne = 3 × 1021 cm–3,
whereas the relative intensities of the ∆n = 2 spectral
lines correspond to higher temperature and density
(Te = 550 eV and ne = 2 × 1022 cm–3). This fact can be
attributed to the overlap of emission from two stages of
the neck implosion. In contrast, the spectra of X-ray
emission from the other spots are satisfactorily
described by a single set of plasma parameters. The
absolute spectral intensity determined from the spec-
trograph gathering power provides information on the
radiance of different bright spots. For the above spec-
trum, the integral emission energy in the spectral ranges
1500–1670, 1670–1780, and 1780–2400 eV is 20, 3,
and 16 J, respectively.

4. DISCUSSION AND CONCLUSIONS

The results obtained with optical and X-ray diag-
nostics allow us to suggest the following scenario of the
plasma evolution. After the current onset, a stable
corona with an average expansion velocity of 106 cm/s
is formed around the wire. As is seen in schlieren and
X-ray frame images, the corona surface is characterized
by the large plasma density gradient and emits in the
soft X-ray and VUV regions. Typically, the corona
undergoes the m = 0 (sausage) instability with a wave-
length of about 1 mm, which results in the formation of
narrow necks and broader crests. About 50–100 ns after
the current onset, the characteristic diameter of this
structure amounts to 2 mm. The surface temperature is
estimated as a few tens of electronvolts, and the plasma
density inside the structure is higher than 1019 cm–3.

At currents of 0.7–1 MA, X-ray pulses with a pho-
ton energy of above 1 keV were observed 100 ns after
the current onset. The FWHM duration of these pulses
was 10–20 ns, and the total energy was ~40 J. The main
part of this radiation was identified as the continuum
and K-shell emission of H- and He-like Al ions. The
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002



        

DYNAMICS OF AN AL WIRE CORONA OF A MEGAAMPERE Z-PINCH 301

       
pulses correlate in time with the abrupt change of the
coronal surface shape. Ringlike necks implode with a
velocity of 2 × 106 m/s, and their diameter decreases to
1 mm over several nanoseconds. Simultaneously, the
crests interleaving the compressed plasma necks
expand with a velocity of about ~107 cm/s. The posi-
tions of the imploded necks correspond to bright spots
emitting in the kiloelectronvolt photon energy range.
The spot positions were determined from time-inte-
grated pinhole photographs and spatially resolved
K-shell spectra of Al emission. The bright spot param-
eters determined from spectroscopic measurements (an
electron temperature of 200–500 eV and a density of
1021–1022 cm–3) indicate the high degree of plasma
compression—up to 1011 Pa. This value is consistent
with the magnetic pressure induced by the 1-MA cur-
rent flowing through the corona with a radius of
0.5 mm. After the X-ray pulse, the regular corona sur-
face and internal helical formations disintegrate and
vanish.

Spectroscopic measurements indicate that the dense
plasma of the wire corona can be an efficient source of
soft X radiation and, thus, can be used to produce
inverse population in recombination lasing schemes
[15].

Images taken with a frame camera in the visible
spectral region indicate that, inside the corona, a
1.5-turn helical surface with a radius of ~1 mm and
length of 8 mm is formed (Figs. 5d, 5e). The helicity
direction seems to be random: it can be either clockwise
or counter-clockwise. The helical structures can induce
axial and azimuthal electric currents and magnetic
fields. The plasma in these structures is magnetized,
dense, and relatively cold. The magnetic field is ~106 G,
the electron and ion densities are estimated as 1021 cm–3,
and the temperature amounts to several electronvolts.

The dynamics of the helical formations can be
roughly estimated from the pressure ratio between the
azimuthal and axial magnetic field components, Bϕ and
Bz. We consider a simple model for the current distribu-
tion in the helical formations, which fill a thin cylindri-
cal layer with a diameter of 2r ≈ 1 mm. The current in
this layer flows along the helical magnetic field lines
directed at an angle α with respect to the z-axis.
According to Fig. 5d, the length of the 1.5-turn struc-
ture is 8 mm and α ≈ 30°. Then, the azimuthal and axial
currents are

(1)

(2)

respectively. Both the current components are depicted
in Fig. 7.

The azimuthal and axial magnetic field components
can be estimated by the formulas

Iϕ I α ,sin=

Iz I α ,cos=

Bϕ
µI αcos

2πr
------------------- Bz, µI αsin

2r
------------------.= =
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Fig. 6. Spatially resolved X-ray spectra demonstrating the
variation in the effective parameters of individual implod-
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emission of the Al Heα line and accompanying satellites is
always dominant; the appearance and relative intensities of
the other spectral lines depend strongly on the temperature
and density of the emitting plasma formations.
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The ratio between the imploding and expanding
pressures can be written as

These estimates imply the dominating role of the
helical structure expansion. The existence of relative
stable helical structures is provided by an addition com-
pression of the outer corona layers. The outer corona
layer recorded with an X-ray frame camera is shown in
Figs. 3b, 4d, and 5b. In this cylindrically symmetric
layer, the ringlike necks probably result in additional
compression. Assuming that, in these necks, the
induced azimuthal current (–Iϕ in Fig. 7) is directed
oppositely to the azimuthal current flowing along the
helical structure, the total axial magnetic field inside
the ringlike neck is zero. In the expansion stage of the
helical structure, the magnetic field pressure tends to
zero during the diffusion and penetration of the mag-
netic fields induced by the oppositely directed currents
Iϕ and –Iϕ. This process enables the pinching of the
rings (see Figs. 3c, 4d, and 5c) and the emission of
high-energy photons.

The reason for the generation of current loops with
oppositely directed currents is not quite clear. Probably,
they can be formed by radial plasma streams flowing
out of the corona.

It seems that the main part of the current I ≈ 1 MA
flows through the internal helical tube. According to
formula (1), for a helical structure 8 mm long, the azi-
muthal component of the current is Iϕ ≈ 0.8 MA. Then,
the oppositely directed current Iϕ in each of the five or
six rings is 150 kA. The maximum value of the azi-
muthal component of the internal magnetic field
induced by the helical current is Bϕ ≈ 106 G, whereas
the mean value of the axial magnetic field can be esti-
mated as Bz ≈ 4 × 106 G.

The generation of radiation with a photon energy on
the order of several kiloelectronvolts can be ascribed to
electric fields induced by the variations in the helical
magnetic fields. These fields are strong enough to
accelerate electrons up to energies required for the ion-
ization of the K-shell of Al ions. The induced voltage U
can be estimated as

To resume, the diagnostic data obtained in these
experiments demonstrate the important role of the axial
magnetic field in the evolution of the Z-pinch plasma
formed by loading thick Al wires. The investigated
radiative characteristics of the corona stabilized by a

Bϕ
2

Bz
2

------
αcos

2

π2 αsin
2

------------------- 0.3.≈=

U
∆B
∆t
-------πr2 100

10 8–
----------π 5 10 3–×( )2

8 kV.≈≈=
dense wire plasma can be used in developing various
Z-pinch applications.
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Abstract—The role of the polarization mechanism in bremsstrahlung and radiative recombination in a plasma
with heavy ions is investigated. A study is made of a hot plasma with the electron temperature Te = 0.5 keV,
containing Fe, Mo, W, and U ions, a relatively cold plasma with a temperature of 0.1–10 eV, and a storage-ring
plasma with relatively low-energy electrons. The spectral characteristics, as well as the total cross sections and
rate constants for electron–ion recombination, are calculated with allowance for real ionization equilibrium in
a plasma. The calculations are carried out using the quasiclassical approximation for electron scattering and the
statistical model for the ions, which provides a universal description of the spectra of various chemical elements
over a wide temperature range. It is shown that the polarization mechanism contributes to both the effective
radiation intensity and the total radiative recombination rate. The temperature range is found where the polar-
ization recombination of electrons in collisions with FeIII ions plays an important role, which indicates the col-
lective behavior of the electron core of an iron ion in this temperature range. Taking into account polarization
effects increases the calculated total continuum intensity. As a consequence, the effective plasma charge Zeff
determined from this intensity without allowance for polarization effects turns out to be overestimated. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Numerous theoretical investigations of the polariza-
tion radiation (PR) carried out over the past decade [1]
were based on calculating the parameters of the most
elementary radiation event and dealt primarily with
free–free transitions in the interaction with neutral
atoms. At the same time, the actual plasma ion compo-
sition was not taken into account when studying the
role of the polarization mechanism in the radiation
observed and in the recombination of a plasma with
heavy ions. The present study bridges this gap.

In what follows, we will calculate the contribution
of the PR to the total intensity of radiation from a
plasma containing multicharged ions of heavy ele-
ments. As was already noted, this contribution depends
on the plasma ion composition, which is determined by
the plasma temperature and the atomic number of the
element under consideration. In fact, we consider a hot
plasma with intermediate and heavy elements, such as
Fe, Mo, W, and U. Note that the investigation of the
polarization mechanisms at a fixed ion charge is impor-
tant for describing plasmas in storage rings, in which
the energy of the relative motion of the electrons and
ions is very low. In this case, the PR is accompanied by
electron–ion recombination. Hence, we are interested
in calculating the radiation intensity in free–free and
free–bound transitions of quasiclassical electrons scat-
tered by the electron core of an ion. It is well known
(see, e.g., [1]) that, in this case, radiation can be gener-
1063-780X/02/2804- $22.00 © 0303
ated through two different mechanisms: the conven-
tional (static) mechanism and the polarization mecha-
nism. The “static” radiation (SR) is produced by the
acceleration of an incident electron (IE) in the static
field of the target atom (ion) [2]. The PR is associated
with the electron core of an ion and arises from the
dynamic polarization of the core under the action of the
electric field of an IE. In [3], the spectral intensity of the
PR from fast electrons in a partially ionized plasma was
calculated by the standard methods of perturbation the-
ory and by describing the IE motion in the Born
approximation. The same issue was also investigated
by the method of the dynamic form factor of the plasma
components (see [1], Section 4), which makes it possi-
ble to systematically take into account the scattering of
the equivalent electric field of an IE into a real photon
by the fluctuations of the plasma charge. The PR from
thermal electrons scattered by the Debye sphere of an
ion in a low-temperature plasma was considered by one
of us in [5].

Earlier, the SR spectra of moderate energy electrons
typical of plasmas were calculated by the consistent
quantum-mechanical approach [6] and by various
approximate methods [4, 7–11]. In [10, 11], it was
shown that the predictions of the quasiclassical approx-
imation and the methods of the so-called Kramers elec-
trodynamics [12], in particular, the rotational approxi-
mation (RA) [10], agree well with the results of
detailed quantum-mechanical calculations [6]. The RA
2002 MAIK “Nauka/Interperiodica”
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can easily be generalized to the case of PR [13]; it is
only necessary that the polarizability of the electron
core of a target ion be estimated using the model of the
local plasma frequency [14]. In this model, all of the
emissive parameters of the target ion are functionals of
the density n(r) of its electron core, thereby providing
the possibility of a universal (applicable to all atomic
numbers Z) description of the PR on the basis of the
Thomas–Fermi statistical profiles [15] for the density
n(r). An important point here is that this approach is
also capable of incorporating the effects that are associ-
ated with the penetration of an IE into the electron core
of a target ion and, thus, play an important role in both
the static and polarization mechanisms. In our paper
[16], we applied this approach to obtain a universal
expression that describes the effective radiation from
quasiclassical electrons in collisions with neutral atoms
with the Thomas–Fermi potential and generalizes the
corresponding result obtained by Kogan and Kukush-
kin [10] to the case of PR. Applying these results to a
plasma requires that they be generalized to atomic ions
in a way analogous to the generalization done for the
static mechanism by Ivanov et al. [11]. In this way, the
dipole (with respect to the interaction of an IE with the
electron core) approximation, which was applied by
two of us [17] to analyze the phenomenon in question,
should be generalized to include the effects of the pen-
etration of a recombining electron into the electron
core.

2. METHOD OF CALCULATION

The method of calculation of the effective radiation
and radiative recombination of an electron scattered by
the electron core of an ion is based on the Thomas–
Fermi model distribution of the electron density in the
electron core [18] (here and below, we use the atomic
system of units):

(1)

where rTF = b/Z1/3 is the Thomas–Fermi radius, Z is the
atomic number, Zi is the ion charge number, b =

 . 0.8853, q = Zi /Z is the degree of ionization,

and χ(x, q) is the Thomas–Fermi function for an ion
with a given q value. It is convenient to calculate the
function χ(x, q) from the following expression, which
was derived by Sommerfeld and was refined in [15]:

(2)
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where x0(q) is the reduced radius of an ion, χ0(x) is the
Thomas–Fermi function for a neutral atom, λ1 = (7 +

)/2, and λ2 = (–7 + )/2. The reduced radius of
the ion is approximated well by the following formula
in the Thomas–Fermi–Dirac model [19]:

(3)

Approximation (3) is sufficient for the description of a
high-temperature plasma with the electron temperature
T > 500 eV. For a plasma with a lower temperature and,
accordingly, with a lower degree of ionization, the
parameter x0(q) can be found by solving the transcen-
dental equation q = –xdχ/dx [15], in which the function
χ(x, q) is given by formula (2).

In the approximation at hand, the electron–ion inter-
action potential has the form

(4)

where θ(x) is the Heaviside step function.
In the high-frequency (Kramers) spectral range

ω > ω* (where ω* = v /r*, v  is the initial velocity of the
IE, and r* is the minimum distance to which the IE
approaches the nucleus of the ion), the effective spec-
tral intensity of the SR can be calculated in the RA [10,
12], which implies that, at these frequencies, the IE
radiates most strongly when it moves at a minimum dis-
tance from the scattering center. Consequently, each
point of the trajectory of the IE is assigned a “rota-
tional” frequency ωrot(r) defined by the relationship

(5)

where E is the initial energy of the IE, and it is assumed
that the frequency ω at which the IE radiates is equal to
the rotational frequency. The RA yields the following
expression for the effective spectral intensity of the SR
[7, 10, 12]:

(6)

where Zeff(r) = r2|dU/dr | is the effective charge of the
target ion at a given point and c is the speed of light.

The most simple way to generalize the RA to
include the PR is to replace the effective charge Zeff of
the target ion in formula (6) by the frequency-depen-
dent effective charge Npol(r, ω) of the electron core.
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POLARIZATION MECHANISM 305
This charge determines the PR intensity at a given fre-
quency ω and, in the model of the local electron den-
sity, it can be represented as [13, 16]

(7)

where β(r, ω) is the spatial density of the dynamic
polarizability of the target ion. In a statistical descrip-
tion of the electron core of a target ion, a physically cor-
rect expression for this quantity is provided by the
Brandt–Lundqvist model [14, 16]:

(8)

where (r, q) = 4πn(r, q) is the local electron plasma
frequency, in which the density n(r, q) is to be calcu-
lated from the Thomas–Fermi–Sommerfeld model
expressions (1)–(3). The variable upper limit of integra-
tion in formula (7), namely, the instantaneous distance
from the IE to the nucleus, describes the effects associ-
ated with the penetration of an IE into the electron core.
Note that the effective polarization charge depends also
on the degree of ionization (through the electron den-
sity n(r, q)) in such a way that it decreases as the degree
of ionization (the parameter q) increases.

Hence, in the RA, we arrive at the following expres-
sion for the effective spectral intensity of the PR, which
is completely analogous to expression (6) for the SR:

(9)

An important point here is that, as was shown in [16],
formula (9) can be extended over the entire spectral
range of the emitted photons, because the PR is weakly
sensitive to the trajectory of the IE. In contrast, extend-
ing formula (6) for the SR to the low-frequency range
is a fairly difficult problem, which is solved in different
ways for a neutral atom and for a target ion. It turned
out that, for a neutral atom, it is sufficient to linearly
interpolate formula (6) to the transport limit [10]. How-
ever, this interpolation is inapplicable to an ion,
because the transport cross section for electron scatter-
ing in the Coulomb field diverges as the energy of the
IE approaches zero. In this limit, we will use the for-
mula obtained by matching the corresponding formulas
in the high- and low-frequency ranges, as was done in
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[11]. The corresponding Gaunt factor for the SR has the
form

(10)

where ν = ω/Z and ε = Eb/Z4/3 are the reduced fre-

quency and reduced energy, µ(ε) = (1 – ln )/2, and

(ν, ε) is the Gaunt factor for the SR from an electron
scattered by a neutral atom with the Thomas–Fermi
potential. A comparison between the spectral cross sec-
tions for bremsstrahlung obtained from the interpola-
tion formula (10) and from systematic quantum-
mechanical calculations [6] shows that formula (10)
provides a good degree of accuracy (usually, about
10%).

Notably, in the RA, the spectral intensities of the
bremsstrahlung and recombination radiation gradually
approach one another at the high-frequency boundary
of the spectrum, ωh = E + I(Zi , Z), where I(Zi , Z) is the
ionization potential of the target ion.

3. RADIATION FROM QUASICLASSICAL 
ELECTRONS IN COLLISIONS 

WITH MANY-ELECTRON IONS

We start by considering both mechanisms for the
effective radiation, without applying the procedure of
averaging over the temperature. It is of interest to esti-
mate the contribution of the PR from low-energy IEs
(such that E ! I(Zi , Z)) in the interaction with multi-
charged ions, in which case the recombination radiation
is dominant. This situation is, in particular, typical of
experiments on storage rings [20]. The ionization
potential I(Zi , Z) of an ion, which determines the high-
frequency boundary of the spectrum emitted in the case
at hand, can be described by the analytic fit obtained
in [4]:

(11)

The effective spectral intensities of the PR and SR
calculated from formulas (9) and (6) with the Gaunt
factor (10) are shown in Fig. 1. The calculations were
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carried out using the statistical model expressions (1)–
(4), (7), and (8) for an iron ion with a charge number of
four and for an IE with the energy equal to one atomic
unit. We can see that the contribution from the PR
increases with increasing radiation frequency and
becomes comparable to that from the SR in the fre-

5

500 100

10

15

ω, eV

κ(ω), au × 105

Fig. 1. Effective spectral intensities of the PR (dashed
curve) and SR (solid curve) in the scattering of a quasiclas-
sical electron with an energy equal to 1 au by a Fe4+ ion.
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Fig. 2. Spectral R factor for the recombination radiation
emitted by electrons with an energy equal to 0.1 au in the
scattering by uranium ions (Z = 92) with different degrees
of ionization: Zi = (1) 12, (2) 15, and (3) 28.
quency range ω > 50 eV. Since the initial energy of the
IE is relatively low, its penetration into the electron core
of the target ion does not substantially lower the PR
intensity in the high-frequency limit, in which case,
however, the SR intensity somewhat increases. In the
frequency range ω < E = 1 au, the IE generates only PR,
while, at higher frequencies, only recombination radia-
tion is emitted. Of course, as the energy of the IE
decreases, the short-wavelength boundary of the emit-
ted radiation is displaced toward the lower frequencies.
The shapes of the spectra and the relationship between
the effective spectral intensities remain essentially the
same.

We define the spectral R factor as the ratio of the
contribution from the PR to the contribution from con-
ventional SR:

(12)

Here, we introduce the explicit dependence of all the
quantities on the degree of ionization of the target atom.
This is an important point in which our analysis differs
radically from that of the radiation generated in colli-
sions of electrons with neutral atoms.

The frequency dependence of the R factor for the
recombination radiation emitted by monoenergetic (E =
0.1 au) slow electrons in collisions with uranium ions
with different degrees of ionization is illustrated in
Fig. 2. Among the chemical elements under consider-
ation, we chose uranium (Z = 92) atoms because they
have the largest electron core. Of course, the R factor is
maximum for the lowest degree of ionization (in the
case at hand, Zi = 12), when the polarization charge (7)
is relatively large. In this case, the contribution from the
polarization mechanism to the recombination radiation
at sufficiently high frequencies exceeds that from the
static mechanism. For the parameter values of Fig. 2,
the R factor is seen to be maximum at a certain opti-
mum frequency. At higher frequencies, the relative con-
tribution of PR to the total radiation intensity decreases
because of the effects associated with the penetration of
an IE into the electron core of the target ion (and,
accordingly, with the accompanying decrease in the
polarization charge Npol). The larger the ion charge, the
higher the optimum frequency. In this case, the R factor
decreases and the short-wavelength boundary of the
emitted radiation is displaced toward the higher fre-
quencies.

Now, we calculate the spectral intensities of the SR
and PR in a high-temperature plasma in coronal equi-
librium. We approximate the temperature dependence
of the mean degree of ionization of ions with a given
atomic number by the expression

(13)
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This formula, which is a slightly modified version of
the corresponding formula from [21], provides the
reproducibility of the data presented in [22] with an
accuracy of 5–10% (by solving the set of coronal equi-
librium equations). Formula (13) makes it possible to
easily calculate the SR, PR, and recombination radia-
tion intensities (per one electron–ion collision event) as
functions of the plasma temperature:

(14)

where the lower integration limit is determined by the
obvious equality

(15)

The R factor, which describes the ratio of the tempera-
ture-averaged PR and SR intensities, can be written in
a form analogous to definition (12):

(16)

Figure 3 displays the PR and SR spectra calculated
from formula (14) with (the total spectra) and without
allowance for recombination. The calculations were
carried out for the scattering of plasma electrons with a
temperature of 500 eV by tungsten ions (Z = 74) whose
degree of ionization was determined from expression
(13). The bremsstrahlung intensity was calculated from
formula (14) by using the radiation frequency as the
lower integration limit. For the above plasma tempera-
ture and ion atomic number, we have  = 0.244 and  =
473 eV. It can be seen in the figure that the total PR and
SR spectra are peaked and have breaks just at the fre-
quency ω = , reflecting the well-known threshold
nature of the frequency spectrum of the recombination
radiation, which is the dominant process in the situation
at hand. In the frequency range ω < I, the recombination
radiation is emitted by electrons as they undergo transi-
tions to states with lower bonding energies (with larger
principal quantum numbers). In the approximation
used here, the energy states of the bound electrons of
the target ion are modeled by a continuous electron
energy distribution. The relative contributions from the
polarization mechanism to the bremsstrahlung and total
radiation intensities (the R factor) are practically the
same. The corresponding frequency dependence of the
R factor is represented by curve 4. It is seen that the R
factor increases according to a power law at low fre-

quencies, reaches its maximum  (T = 500 eV, W) ≈
0.6 at a frequency approximately equal to the electron
temperature (in energy units), and decreases monoton-
ically in the high-frequency range (because of the
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effects associated with the penetration of an IE into the
electron core of the target ion). These results show that
the PR plays an important role in the case under discus-
sion, although, for the above parameters, the mean
charge of the target ions is fairly large,  = 18.

The frequency dependence of the R factor averaged
over the coronal equilibrium state of a plasma with the
electron temperature T = 500 eV in the case of electron
scattering by the ions of different chemical elements
(Fe, Mo, and W) is illustrated in Fig. 4. One can see
that, at the given electron temperature, the contribution
of PR increases with increasing atomic number—from
0.1 for iron (at the peak of the frequency dependence)
to 0.6 for tungsten. The reason for this is the decrease
in the temperature-averaged degree of ionization of the
target ion as the atomic number increases. This results
in an increase in the effective core charge, which gov-
erns the PR. We should point out that the mean charge
of iron ions (equal to 16.3) differs insignificantly from
that of tungsten ions (equal to 18). The R factor for iron
ions peaks at a somewhat higher frequency than that for
tungsten ions. As the plasma electron temperature
increases, the contribution of PR to the total radiation
intensity decreases because of the increase in the mean
degree of ionization of the target ions, in which case the
optimum frequency also increases. Thus, for T =
1000 eV and for tungsten ions (in which case  = 0.34

and, accordingly,  = 25), our calculations give

 ≈ 0.43 and ωmax ≈ 900 eV.

Zi

qT

Zi

RT
max

2

2000 400 600 800 1000
ω, eV
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8
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Fig. 3. Radiation spectra from plasma electrons scattered by
tungsten ions (Z = 74): (1) PR spectrum, (2) SR spectrum,
(3) total PR spectrum, and (4) total SR spectrum. The spec-
tra are averaged over the coronal equilibrium state of a
plasma with the electron temperature T = 500 eV.
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The analysis of the role of PR by means of the
approach developed here shows that the polarization
mechanism can also contribute substantially to the total
intensity of radiation from a plasma with light atoms,
provided that the plasma electron temperature is suffi-
ciently low. Thus, for carbon ions in a plasma with T =
10 eV (  = 0.32), the maximum averaged R factor isqT

0.2

5000
ω, eV

1000 1500 2000

0.4

0.6

0.8
RT

1

2

3

Fig. 4. R factor averaged over the coronal equilibrium state
of a plasma with an electron temperature of 500 eV for
(1) W, (2) Mo, and (3) Fe target ions.
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Fig. 5. R factor for the recombination radiation vs. the initial
energy of an IE scattered by uranium ions with the degrees
of ionization q = 0.1 (solid curve) and q = 0.3 (dashed
curve).
approximately equal to 0.46. In this case, the optimum
frequency at which the polarization effects are most
pronounced is about ωmax ≈ 80 eV, which is higher than
the optimum frequency ωmax ≈ T for heavy elements. Of
course, for light elements, our statistical model is only
a rough approximation.

4. CONTRIBUTION FROM THE POLARIZATION 
MECHANISM TO THE CROSS SECTION 

AND RATE OF RADIATIVE RECOMBINATION

In our approach, the cross section for the radiative
recombination of an electron with the initial energy E is
related to the effective spectral radiation intensity by

(17)

Formula (17), which was derived with allowance for
the relationship κ = ωσ between the effective spectral
intensity and the cross section for radiative recombina-
tion, describes both the SR and PR if the quantity
dκ/dω is assumed to mean the corresponding effective
spectral intensity.

It should be kept in mind that the classical approach
used here, of course, does not take into account virtual
excitations of the electron core of the target ions. Con-
sequently, the accuracy of the approach depends on the
contribution from the discrete spectrum to the polariz-
ability of the electron core of the target ion: the smaller
the contribution, the more accurate the approach will
be. Since the role of the discrete spectrum is insignifi-
cant for atoms (or ions) with closed electron shells [23],
our approach is best suited for describing this type of
target. Otherwise, the approach, as a rule, allows only
lower estimates for the contribution from polarization
effects to the processes under consideration.

The effects of the polarization of the electron core
on radiative recombination can also be characterized by
the R factor in a form similar to definition (12):

(18)

Figure 5 shows how the contribution from the polariza-
tion processes to the cross section for the recombina-
tion of electrons and uranium atoms with different
degrees of ionization q depends on the initial energy of
the IE. These results are of interest for interpreting
experimental data from storage rings [20], in which
both the degree of ionization of the target ions and the
energy of an electron beam can be fixed. The larger the
degree of ionization q, the lesser the role played by the
polarization of the electron core of the target ion in the
recombination process (as in the case of the spectral R
factor in Fig. 2).

The radiative recombination rate averaged over the
coronal equilibrium state is also an important parame-
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POLARIZATION MECHANISM 309
ter characterizing recombination processes in a plasma.
In terms of the radiative recombination cross section,
this rate is expressed as

(19)

Here, we used the mean degree of ionization (13),
which depends on the electron temperature and ion
atomic number.

In particular, in the Kramers approximation, we can
use formula (17) to obtain the following expression for
the contribution from the static mechanism to the radi-
ative recombination rate:

(20)

where Zeff(x) is the effective ion charge, which depends
generally on the initial IE energy. At sufficiently low
electron temperatures (when an electron recombining
with an ion penetrates into the electron core for a small
distance), the effective ion charge can be set equal to
the total ion charge and thus can be factored out of the
integral sign on the right-hand side of expression (20).

Figure 6 illustrates the results of our calculations of
the contributions from the polarization and static chan-
nels to the rate of the radiative recombination of quasi-
classical electrons with uranium ions. We can see that
the polarization and static mechanisms lead to different
temperature dependences of the degree of ionization.
The radiative recombination rate associated with the
static mechanism increases monotonically with tem-
perature, whereas the recombination rate associated
with the polarization mechanism is maximum at a cer-
tain optimum temperature (in the case at hand, about
100 eV). When interpreting the dependences calculated
from formula (19), it should be kept in mind that the
mean degree of ionization of the target ions also
increases with temperature. This leads to an increase in
the effective ion charge, on the one hand, and to an
increase in the characteristic frequency of recombina-
tion radiation, on the other. The first effect raises the
rate of the static radiative recombination and lowers the
rate of the polarization radiative recombination; in con-
trast, the second effect raises the rate of the polarization
radiative recombination. As a result, the temperature
dependence of the rate of the polarization radiative
recombination has a maximum, at which the polariza-
tion mechanism for the chemical element at hand dom-
inates over the static mechanism.

The results of our calculations show that there exists
a fairly wide parameter range in which the polarization
radiative recombination of electrons with multicharged
ions is comparable in importance with or even domi-
nates over the static recombination. At the same time, it
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is necessary to keep in mind that the IE energies corre-
sponding to this parameter range are relatively high:
they are comparable with the excitation energy of the
electron shells of the target ions. In this case, the main
contribution to recombination comes, as a rule, from
dielectronic recombination. Consequently, the contri-
bution from the polarization mechanism can be impor-
tant only at intermediate energies between the low-
energy range, in which radiative recombination is dom-
inated by the static mechanism, and high-energy range,
in which dielectronic recombination is dominant. This
is well illustrated by the recombination of electrons
with FeIII ions, which is of interest from an astrophys-
ical standpoint. The recombination of these iron ions
was calculated in detail by Nahar [24] in the framework
of the so-called “Iron Project.” The computations car-
ried out in [24] by using the R-matrix method with
allowance for 83 states of FeIII ions turned out to be
very laborious (the number of ion states taken into
account in simulations was restricted because of the
limited computer time on a Cray computer), and the
results obtained were found to be sensitive to the choice
of the target ion states. It should be noted that those cal-
culations were carried out for the recombination radia-
tion from the entire “incident electron–recombining
ion” system, without singling out the contributions
from the static, polarization, and dielectronic recombi-
nation mechanisms to the total radiation intensity. A
comparison between the computational results of [24]
and the results on radiative and dielectronic recombina-
tions in Fig. 7 shows that there exists a fairly wide tem-

αr cm3/s × 1012

1000 200 300
T, eV

Fig. 6. Contributions from the polarization (solid curve) and
static (dashed curve) channels to the rate of the radiative
recombination of an electron and a uranium ion with a tem-
perature-dependent degree of ionization.
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perature range (from 0.2 to 2 eV) in which the calcu-
lated recombination rate is several times (up to five
times) higher than the total rate of the static recombina-
tion and the dielectronic recombination. The compari-
son also shows a marked discrepancy with the results of
previous calculations of dielectronic recombination
[26]; this discrepancy stems from the difference in the
chosen states of the target ion. It is also of interest to
compare the results of the detailed computations of [24]
with the results from the classical approach developed
here. For this purpose, we also show in Fig. 7 the results
obtained by averaging formulas (17) and (18) over the
Maxwellian electron velocity distribution function
under the assumption of constructive interference of the
SR and PR (the constructive interference was modeled
by summing the intensities of these types of radiation).
We can see that the agreement between our results and
the results of [24] is fairly good, especially if we take
into account the fact that the statistical ion model used
here takes no account of the specific features of the
electron structure of FeIII ions. Such a close agreement
indicates that, from a physical standpoint, our approach
to describing the polarization channel as an indepen-
dent mechanism for radiation and recombination may
be judged adequate. Moreover, since the approach is
based on the model of the local plasma frequency and
the results obtained agree with the results of more exact
calculations, we can speak with a relatively high degree

1

20 4 T, eV
0.1

10
αr cm3/s × 1012

1

2

3

4
5

Fig. 7. Temperature dependence of the recombination rate
of Fe2+ ions: (1) the total recombination rate calculated in
[24] with allowance for 83 states of FeIII ions, (2) the total
radiative recombination rate calculated in the present paper
without allowance for interference, (3) the radiative recom-
bination rate calculated from formula (20) in the Kramers
approximation, (4) the static radiative recombination rate
calculated in [25], and (5) the dielectronic recombination
rate calculated in [26].
of confidence about the collective behavior of the elec-
tron core of an ion in these processes. It is also of inter-
est to note that a comparison between the curves
describing the static radiative recombination permits us
to conclude that, in calculations over the temperature
range under consideration, the Kramers approximation
provides a high degree of accuracy.

5. CONCLUSION

Using the model of the local plasma frequency, we
have developed a unified method for calculating the
intensity of radiation from quasiclassical electrons and
the rate of their radiative recombination in the scatter-
ing by partially ionized ions with allowance for the con-
tribution from the polarization mechanism and the
effects associated with the penetration of IEs into the
electron cores of the target ions. We have described the
electron cores using the Thomas–Fermi–Sommerfeld
model, which provides a universal means for taking
into account the dependence of the electron density dis-
tribution on the degree of ionization. PR from the IEs
has been considered by using one of the methods of the
Kramers electrodynamics, namely, the RA, which was
successfully applied in previous studies to describe SR
[10, 11].

The approach developed here has been applied to
analyze how PR affects both the averaged (over the
coronal equilibrium state of the plasma) and unaver-
aged radiation spectra and the radiative recombination
rate depending on the parameters of the problem. It has
been shown that the contribution of PR can be compa-
rable with or even larger than the contribution of the
conventional SR (including the case of multicharged
ions), provided that the number of bound electrons in
an ion at a given plasma electron temperature is suffi-
ciently large.

We have calculated the spectrum of the recombina-
tion radiation of low-energy IEs scattered by the ions
with a given degree of ionization. The resulting spectrum
is of interest for experiments with storage rings [19]. For
the particular case of uranium ions, we have established
that PR dominates over SR in the range Zi ≤ 12.

We have shown that, at a given electron temperature,
the role of polarization effects in the radiation process
increases with the atomic number of the target ions. The
reason for this is the increase in the effective bound
polarization charge. The higher the plasma electron
temperature, the higher the degree of ionization and the
lower the relative PR intensity.

We have found that PR also plays an important role
for light elements (carbon, oxygen, etc.) in a plasma
with a sufficiently low electron temperature.

The contribution from the polarization channel to
the cross section and to the rate of radiative recombina-
tion has been analyzed for both fixed and temperature-
dependent degrees of ionization of the target ions with
allowance for the effects associated with the penetra-
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002
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tion of IEs into the electron cores. It is shown that, in
certain energy and temperature ranges, the contribution
from the polarization channel can exceed the contribu-
tion from the static channel, provided that the plasma
contains sufficiently heavy ions.

We have determined the electron temperature range
in which the polarization mechanism for the recombi-
nation of a FeIII ion plays an important role along with
the well-known radiative and dielectronic recombina-
tion mechanisms. This allows us to draw the conclusion
about the collective behavior of the electron core of an
iron ion in this temperature range.

The results of our investigations may prove to be
useful, in particular, for improving plasma diagnostic
methods. In fact, taking into account polarization
effects changes the relationship used to determine the
effective charge Zeff of the plasma ions, namely, the
relationship between the intensity of the experimentally
recorded continuum and the mean ion charge. This rela-
tionship, which is traditionally calculated in the static
approximation, should be supplemented with the cor-
rection factor 1 + R. As a result, the actual mean ion
charge turns out to be smaller than that calculated in the
static approximation.
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Abstract—Possible configurations of current filaments in Z-pinch and tokamak plasmas are analyzed. A thin
current-carrying beam injected in a plasma should be surrounded by a halo of countercurrents, in which case
the resulting configuration may resemble a tubular structure. A.B. Kukushkin and V.A. Rantsev-Kartinov
pointed out the existence of specific plasma structures of the squirrel-cage type and interpreted them as “wild
cables of solid-state nanotubes.” It is shown that these structures can also be attributed to the fundamental mode
of the conventional magnetic filamentation in the form of a “hexagonal parquet.” Also, a study is made of the
phenomena governing the pattern of plasma structures, namely, tearing filamentation, two types of longitudinal
beam bunching, and self-organization of the filaments. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION. 
OBSERVATIONS OF PLASMA FILAMENTS

Thin filaments that are stretched both along and
across the direction of the current and resemble light-
ning channels are often seen in the photographs of high-
temperature discharge plasmas in Z-pinches and toka-
maks. In some experiments, the formation of individual
current filaments was artificially stimulated by shaping
the electrodes in a special way. Thus, some experiments
of N.V. Filippov and his colleagues were carried out
with a planar circular anode with a finely serrated edge,
generating a set of current filaments, which merge into
one during subsequent compression of the pinch. Sim-
ilar current filaments were observed in the experiments
of [1, 2], as well as in many experiments with pinches,
e.g., in [3, 4], where the discharges were initiated in a
discharge tube with the hexagonal cross section, which
stimulated the formation of six current filaments.

The role of another mechanism for forming fila-
ments may be played by various filamentation and
bunching instabilities of the beams of accelerated elec-
trons or ions. The phenomenon of filamentation and
bunching of the plasma discharges under different con-
ditions has been studied experimentally for many years.
Thus, the well-studied phenomenon of stratification of
a low-temperature plasma is governed by the ionization
of gas atoms by electrons accelerated in an external
electric field and by the recombination of gas atoms
with these electrons.

This paper is aimed at a theoretical analysis of cur-
rent filaments in fully ionized, high-temperature plas-
mas of Z-pinches, plasma foci, and tokamaks, in which
case the filamentation processes are not, as a rule, asso-
ciated with ionization and recombination phenomena.
It should be noted that typical filaments are very thin
and thus cannot be treated in the linear approximation,
because linear equations yield only sinusoidal perturba-
tion profiles. The development of perturbations with
1063-780X/02/2804- $22.00 © 20312
very nonsinusoidal, strongly peaked profiles can be
described only by solutions to the nonlinear equations.
A solid basis for a description of regimes with strongly
peaked perturbation profiles is provided by the so-
called quasi-gaseous equations, the general theory of
which was developed in a book by Zhdanov and Trub-
nikov [5], where about 50 examples of different insta-
bilities are described and solutions to the corresponding
equations are presented. In what follows, only four of
these instabilities will be recounted here and will be
compared with the results of particular observations of
the beams and plasma filaments. Formally, quasi-gas-
eous equations lead to perturbation profiles, which col-
lapse completely on finite time scales. However, these
equations actually assume that the plasma is quasineu-
tral and that the quasineutrality condition fails to hold
when the profiles become peaked at spatial scales of
about the Debye length, which thus determines the
maximum possible degree of peakedness of the pro-
files.

The theory of the acceleration of ion beams in
Z-pinches and plasma foci was originally developed in
my paper [6], in which, among other things, the disrup-
tion of current sheets of different configurations was
considered (see Figs. 4–8 in [6]) and it was shown that
the current disruption gives rise to an increasing electric
field, which accelerates the particles. In subsequent
papers [7–10], it was shown that the peripheral plasma
that always surrounds the main pinch prevents the cur-
rent compression into an ultrathin filament in which
thermonuclear conditions are achievable. (It is for this
reason that “direct” plasma ignition in traditional
pinches is impossible, so that, at present, the most high-
power pinches are regarded as possible sources of
X radiation, which, in principle, can be used to com-
press fusion targets.) In discharges in deuterium, the
observed neutrons are produced by the generated beams
of D+ ions accelerated to energies of several MeV,
002 MAIK “Nauka/Interperiodica”
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in which case the beams may split into individual mic-
robeams.

The trace of an ion beam extracted from a hole in the
cathode of a plasma focus is shown in Fig. 1 from [11].
As may be seen, the beam splits into many individual
microbeams, which produce their own images on the
plate. Experiments aimed at revealing the number of
such microbeams for a relativistic electron beam (REB)
are reported in [12], and, for Z-pinches, this number
was estimated theoretically in [13].

The results of theoretical calculations of the beam
filamentation are shown in Fig. 2 from [14], which is
very similar to Fig. 1. It is clear that the plasma in cur-
rent-carrying filaments is hotter than the surrounding
plasma. In positives, the filaments can be seen either
brighter or darker than the surrounding background.
The filaments are brighter in a plasma with a low degree
of ionization, in which case they emit radiation in the
form of recombination spectral lines in the visible
range (as is the case with a lightning). However, when
the plasma temperature is sufficiently high (T ~ 102–
103 eV), the recombination processes are suppressed
and the filaments are darker than the surrounding
medium.

In contrast to Z-pinches, the tokamak plasma is
more quiescent, but it can also generate beams of accel-
erated electrons and ions, because the operating condi-
tions of tokamaks with Joule heating are close to those
of betatrons with a continuous acceleration of runaway
electrons. The runaways are generated when the main
induction electric field is stronger than the so-called

Dreicer critical field Ecr ≈ |e |/D2, where D = 
is the Debye length. At T = 1 keV and n = 1013 cm–3, we
have D ~ 10–2 cm and Ecr ~ 0.01 V/cm, so that the
Dreicer criterion fails to hold for n ≥ 1013 cm–3. How-
ever, even when the Dreicer criterion is not satisfied,
some electrons from the tail of the Maxwellian distribu-
tion function will run away, forming accelerated beams,
which may also tend to split into filaments. Filamenta-
tion phenomena can also take place when the current is
carried by the majority of electrons rather than by the
beam. For certain aspects of filamentation, it does not
matter whether the current is driven by the beam or is
associated with the relative motion of the majority of
electrons against the background of majority ions.

Figure 3 from paper [15] by Kukushkin and Rant-
sev-Kartinov (KRK) shows a unique case of a cable (in
their original terminology) in the form of a dark “squir-
rel cage” in the TM-2 tokamak. KRK called analogous
plasma formations “tubular structures.” They antici-
pated that these are “solid-state carbon nanotubes” (!)
but ignored the fact that, at typical tokamak plasma
temperatures of T ~ 100 eV ~ 1 million degrees, any
nanotubes should instantly evaporate. As will be shown
below, the particular structures observed by KRK might
be explained in terms of the familiar filamentation and
bunching mechanisms. (Notably, they obtain the fig-

T /4πne2
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ures by the method of contrasting the photographs on a
computer. However, some physicists doubt the effi-
ciency of this method and even the very existence of
tubular structures; see, e.g., a comment by Strelkov
[15].)

20
 µ

m

Fig. 1. Trace of a microbeam (borrowed from [11]).

Fig. 2. Calculated beam trace (borrowed from [14]).

Fig. 3. Example of the cable observed by KRK (borrowed
from [15]).
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2. NONLINEAR FILAMENTATION
EQUATIONS

A beam of accelerated particles can be split into fil-
aments by several types of instabilities, e.g., by thermal
instability or thermal–ionizational instability, which
develop on the Coulomb collision time scale. However,
in what follows, we restrict ourselves to considering
several dissipationless instabilities, which grow on
shorter time scales. In the long-wavelength approxima-
tion, most of them are described by the so-called quasi-
gaseous equations in the standard form [5, 7–10]:

(1)

where ρ* = n/n0 is the electron density normalized to
the unperturbed density, m is the azimuthal number, and
c0 = const. In the linear approximation, in which ρ* =

1 + ρ(1) and ρ(1) ! 1, these equations describe standing
perturbations ρ(1) ~ exp(γt)sin(kx) with the growth rate
γ = kc0. However, Eqs. (1) also admit solutions in non-
linear cases.

We start by considering the magnetic filamentation
instability, which is associated with the appearance of a
magnetic field perpendicular to the propagation direc-
tion of the beam. In principle, this well-studied filamen-
tation mechanism has been known for many years, but
it is nontrivial and can manifest itself in several ways.
First, it is expedient to discuss this mechanism for the
simple case of beams of accelerated particles in a
plasma with no magnetic field present. In this case, of
particular importance is the following equation describ-
ing the screening of the current by electrons:

(2)

where jext = –|e |nv0 is the external beam current. This
equation implies that an increase in the current pro-
duces the electric field pointing in the direction oppo-
site to the current, and vice versa, a decrease in the cur-
rent produces the field pointing in the direction of the
current.

If the beam is no longer fed with new particles, it
should be gradually damped. This process can be
described by supplementing Eq. (2) with Ohm’s law
E = ρj, where ρ = me/τne2 is the Spitzer electrical resis-
tivity of the plasma. We thus arrive at the equations

(3)

where τ = 1/nvTσC is the time scale on which the beam
is damped by Coulomb collisions. Under the conditions
prevailing in tokamaks, the plasma density is about n ~
1013 cm–3, the plasma temperature is about T ~ 1 keV,

the electron thermal velocity is about vT =  ~

t∂
∂ ρ* — ρ*v( )⋅+  = 0,
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109 cm/s, and the cross section for Coulomb collisions
is about σC = Λ(e2/T)2 ~ 2 × 10–19 cm2, so that we have
τ ~ 0.5 ms (note that the duration of one stroke in light-
ning, which may consist of 10 to 40 strokes, is shorter
by a factor of 10 to 100). For tokamaks and Z-pinches,
we consider faster filamentation processes, neglecting
the damping of filaments.

Equation (2) is derived from Maxwell’s equations
with allowance for the permittivity operator:

(4)

where ε⊥  = 1 – (ω0/ω)2,  = 4πNe2/me, and N is the
density of the plasma electrons. For ω ! ω0, we can
neglect unity in the expression for ε⊥ . Then, we differ-
entiate with respect to t, make the replacement (∂/∂t)2 =
–ω2, and take into account the second equation to
obtain the screening equation in the form

(5)

According to this equation, the electric field E is
screened on the skin depth δ = c/ω0. For a tokamak
plasma density of N ~ 1014 cm–3, we have ω0 ~ 5 ×
1011 s−1 and δ ~ 1 mm. In what follows, we restrict our-
selves to considering larger-scale structures, so that we
neglect the term ∆E and thus arrive at formula (2).

3. MAGNETIC FILAMENTATION 
INSTABILITY OF A BEAM

In this case, the second of the Maxwell equations
determines the transverse components of the magnetic
field B = (mc/Ne2)∇  × jext. If the beam propagates along
the z-axis, these components are equal to

(6)

and the equation of transverse motion of the beam elec-
trons takes the form

(7)

Here, ρ* = n/n0 is the reduced density of the beam elec-

trons (with n0 = const being their unperturbed density)

and  = (n0/N) . Equation (7) should be supple-
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mented with the continuity equation, which can be
written as

(8)

Finally, we transform to the reference frame moving
uniformly with the beam velocity v z = v 0 and introduce
the operator  =  + v 0  in order to write
the above two equations in the form

(9)

These equations were used in a number of papers to
solve the problems of beam filamentation (see [14, 16,
17]). Equations (9) are represented in the standard form
of the “quasi-Chaplygin” dynamic equations for unsta-
ble media; a comprehensive theory of these equations is
given in monographs [5, 9, 10]. They describe the
growing perturbations of the type of water droplets on
the ceiling (or inverted shallow water layer).

If the perturbations depend only on the x coordinate
and the time τ, then we can derive the relevant exact
nonlinear “spontaneous” solution, which is expressed
in terms of the complete elliptic integrals and describes
the splitting of an initially homogeneous beam into pla-
nar layers. Two-dimensional numerical calculations
carried out by Lee and Lampe [14] yielded the picture
reproduced in Fig. 2, in which an individual spot is very
similar to the experimental picture from Fig. 1. If the
structures shown in these two figures were continued
along the z-axis, they also would be similar to the squir-
rel-cage structure observed by KRK (Fig. 3). Clearly,
the specific structure in Fig. 2 originates from the initial
(seed) perturbations. However, below, we try to analyt-
ically model the development of the slowest two-
dimensional intrinsic perturbation mode.

Assuming that the initial (at τ = –∞) beam density is
uniform (n0 = const), we consider the ideal case, in
which the entire (x, y) plane is covered by a perturba-
tion “parquet.” In this case, the fastest growing modes
are those in the form of hexagonal cells similar to Benar
cells. Setting v⊥  = —ϕ(τ, x, y), we obtain from the last
equation the Bernoulli integral  + (1/2)(—ϕ)2 =

(ρ* – 1), so that Eqs. (9) reduce to the following
equation for the velocity potential:

(10)

It is of interest to note that this nonlinear equation is
formally similar in structure to the equation describing
parametric waves on the water surface in a vessel with
a vibrating bottom (see [18]). Small-amplitude waves

t∂
∂ ρ* v 0 z∂

∂ ρ* ∇ ρ *v⊥( )⋅+ + 0.=

…( )τ' …( )t' …( )z'

τ∂
∂ ρ* ∇ ρ *v⊥( )⋅+ 0,=
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v⊥ v⊥ —⋅( )v⊥+ c0
2—⊥ ρ*.=

ϕτ'

c0
2

ϕττ'' c0
2∆ϕ+ A2 A3, A2+ ϕτ' ∆ϕ– —ϕ( )2[ ] τ' ,–= =

A3 1/2( )— —ϕ( )2—ϕ[ ] .⋅( )–=
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on the water surface are organized into a hexagonal par-
quet, larger-amplitude waves form square parquet, and
waves with even larger amplitudes are one-dimen-
sional, so that we can speak of the phase transitions in
the lattice of parametric waves on a water surface.

4. PARTICULAR SOLUTIONS 
TO THE FILAMENTATION EQUATIONS

In the case under consideration, the perturbations
grow exponentially, so that, in the linear approxima-
tion, the structure that is first to occur is that composed
of hexagonal beams:

(11)

where the vectors kj lie in the same plane, the angle
between them being 120°, so that we have |k |j = k and
k1 + k2 + k3 = 0. For such a cellular structure, we obtain
∆R = –k2R; in the first approximation, this gives T =
aexp(γτ) and γ = kc0. The pattern of the contour lines
R(x, y) = C* = const < 3 (or, in explicit form, y =

(2/ )  – x)/2cos(x/2)]) is depicted in
Fig. 4, and the three-dimensional relief of the function
R = R(x, y) is displayed in Fig. 5. The two-dimensional

ϕ T τ( )R x y,( ),=

R C1 C2 C3+ + C j, C j∑ r k⋅ j( ),cos= = =
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–4

–4 0 4
–6

–2

0
2
4
6

0
4

–4

0
4

–4

–1

0

1

2

3

Fig. 4. Hexagonal parquet.

Fig. 5. Function R(x, y).

x, arb. units

x, arb. units

y, arb. units

y, arb. units



316 TRUBNIKOV
equations can be solved only numerically (cf. Fig. 2).
However, we will not present here the relevant solution,
because it is clear that the nonlinear solution leads to
peakier profiles in comparison with the simple linear
cosinusoidal profiles. Since the filaments in the photo-
graph are very thin, the nonlinear approach is more ade-
quate for describing them. Another difference between
the linear and nonlinear approximations is that nonlin-
ear equations describe a collapse on a finite time scale
rather than the exponential growth of the linear pertur-
bations. Also, the simplest nonlinear solutions can cor-
respond to solitary local perturbations.

Another linear solution in polar coordinates (ϑ , r) is
that expressed through the Bessel function, Rn =
cos(nϑ)Jn(kr), with the asymptotic Jn ~ r–1/2cos[kr –
(π/2)n – (π/4)]. For n = 6, this solution is close to a hex-
agonal parquet. The related pattern of contour lines
R6 = const, which will be referred to as the “Bessel
wheel” for brevity, is presented in Fig. 6. An essentially
similar family of current filaments of the squirrel-cage
type, continued along the z-axis, is shown in Fig. 3,
which is borrowed from a paper by KRK [15]. The non-
linear terms in Eq. (9) give rise to additional filaments.
Thus, the hexagonal parquet (11) is imposed on the
square parquet described by the quadratic term R(2) =
cos[(k1 – k2) · r] + cos[(k1 – k3) · r] + cos[(k2 – k3) · r],
so that the resulting structure is similar to the experi-
mentally obtained structure shown in Fig. 1.

In some cases, the structures that are treated by
KRK as solid-state nanotubes may actually be current
sheets, which can also be described by Eq. (9). For such
current sheets with ϕ = ϕ(τ, x), this equation becomes

(12)

where the prime denotes the partial derivative with
respect to x . Although the nonlinear equation (12) is
fairly complicated, it admits an exact solution, which
can be derived in the following way. We introduce the
notation

(13)

∂2
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--------ϕ c0
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∂ ϕ– τ∂
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Fig. 6. Bessel wheel.
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 and again obtain two quasilinear equations:

(14)

Switching to the inverse functions t = T(ρ*, v) and x =
X(ρ*, v ), we arrive at the linear equations, whose exact
solutions are presented in monographs [5, 9, 10].

It is also useful to consider the two-dimensional
case with allowance for the pressure in the compressed
plasma filaments. To do this, we supplement the right-
hand side of the second of Eqs. (14) with the conven-
tional term δ = –ρ−1—p with the pressure described by
the Poisson’s adiabat, p = p0(ρ/ρ0)γ. The simplest case
is that with the model adiabatic index γ = 2, for which

we have δ = – ∇ρ * , where  = 2p0/ρ0 is the squared
speed of sound in the beam plasma. Then, Eqs. (14) can
be written in the standard form

(15)

where  =  – . Hence, for  > 0, we deal with

unstable standing perturbations, and, for  < 0,
Eqs. (15) admit solutions describing the waves running
with the velocity ceff across the propagation direction of
the beam.

To conclude this section, we explain the mechanism
for generating ion beams in Z-pinches, in which the
bulk of the plasma is compressed toward the axis (until
a singularity arises at the axis), whereas a certain frac-
tion of the plasma always remains in the peripheral
regions. We can assume that, by the time at which the
current in the main plasma column reaches its maxi-
mum value Imax, the peripheral plasma turns out to be
magnetized by the main magnetic field B0 = 2Imax/cr =
const/r of the pinch. In the limit me  0, the disper-
sion relation for a radially propagating extraordinary

wave has the form ω2 = k2c2 + ( /ωBe)
2
. For low fre-

quencies ω, we can make the replacement k2  –∆ in
order to see that this dispersion relation is equivalent to
the following equation describing the magnetic screen-
ing of a cylindrical pinch:

(16)

where A = Az is the vector magnetic potential of the
wave and C* = (2πNec/Imax)2 = const (the density of the
peripheral plasma is also assumed to be constant, N =

const). Setting C* = 4/  (where R0 =  is
the radius at which the current is screened by the mag-
netic field) and introducing the new argument x =
(r/R0)2 yields the solution A = aK0(x), where K0 is the
modified Bessel function of the second kind, which, at
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small arguments, is approximately equal to K0 ≈
ln(2/x).

In the model developed here, the main pinch is
assumed to be an infinitely thin conductor with the cur-
rent I = Imax + I1(t). In the limit r  0, the correction
I1(t) gives the wave magnetic field B1 = 2I1/cr = – ,
which allows us to find the wave amplitude, a = a(t) =
I1(t)/c , and the wave electric field

(17)

Since K0(x) > 0, we can see that a decrease in the main
pinch current generates the induction electric field in
the peripheral regions, which is directed along the cur-
rent, as is the case described by formula (2). At the “sin-
gularity” time, when the main pinch current in a deute-
rium pinch breaks, this field accelerates beams of deu-
terium ions and produces nonthermonuclear neutrons.
Simultaneously, the beams can be split into thinner fil-
aments by the above-described mechanism.

In essence, it is this filamentation mechanism that
hinders the ignition of fusion targets by the beams of
ions and relativistic electrons: attempts to focus the
beams give rise to their filamentation. The situation
with laser beams in plasmas is essentially the same: the
laser beam self-focusing, described by the familiar non-
linear Schrödinger equation, actually leads to defocus-
ing in a way that is analogous to the above filamentation
of particle beams.

5. FILAMENTATION BY TEARING
INSTABILITY

Along with the magnetic filamentation, thin current-
carrying layers can also be subjected to the tearing fila-
mentation. A simple example of the tearing filamenta-
tion mechanism was described by Bulanov and Sasorov
[17] (see also [5]). Let us briefly discuss this example.

We consider a thin plasma layer of thickness L(t, x)
and assume that the current in the layer flows in the z
direction. The layer is located near the plane y = 0. The
plasma density in the layer is n(t, x) = ne = ni and the
volume current density is jz = |e|n(v iz – v ez), so that the
current per unit width of the layer is equal to i1 = jzL =
cB0/2π = const, where ±B0 is the magnetic field on the
outside of the layer.

For long-wavelength perturbations (with λ @ L)
propagating with the velocity v x = v(t, x), the conserva-
tion law for the number of particles in the cross section
of the layer, nL, has the form

(18)

and yields the first of the quasi-gaseous equations. In
the second quasi-gaseous equation, we neglect the

Ar'

E Ez t r,( )
∂

c∂t
--------A– K0 x( )

d

c2dt
---------- I1 t( ).–= = =

t∂
∂ ρ* x∂

∂ ρ*v+ 0, ρ*
nL

n0L0
-----------= =
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plasma motion in the x direction and set v ze  @ vTe . We
thus arrive at the equations

(19)

where A = (t, x) is the correction to the unperturbed
vector potential. Then, we take into account the conser-
vation laws for the generalized electron and ion
momenta and their consequences

(20)

which yield the following expression for the magnetic
field component transverse to the layer:

(21)

With all these results in mind, we rewrite the second of
Eqs. (19) in the final form:

(22)

where c0 = 2cA(δ/L0), cA = B0/  is the Alfvén
speed, and δ = c/ω0 is the skin depth. The nonlinear
equations (18) and (22) have the structure of the quasi-
gaseous equations (1) with the azimuthal number m =
−1/2 and admit the simplest nonlinear spontaneous
solution

(23)

where T = γt < 0, X = kx, and γ = kc0 . For t  –∞, we
deal with an unperturbed state with ρ∗  = 1. However, as
time elapses, the perturbations grow with the rate γ =
2πc0/λ0 , where λ0 is the wavelength of the seed pertur-
bations. At the critical time t = 0, the layer splits into
individual filaments, as in the case observed in
Z-pinches and plasma foci.

6. CURRENTS TRANSVERSE 
TO THE MAGNETIC FIELD

Here, we consider the injection of a current-carrying
beam into the plasma in the direction perpendicular to
the uniform magnetic field By = B0 = const. We start by
analyzing an infinitely thin conductor with the current
J that is directed along the z-axis and passes through the
point (x = a = J/cB0 > 0, y = 0). In the plane y = 0, this

current creates the magnetic field  = 2J/cx. At the
line (x = –a, y = 0), the total magnetic field is zero. If a
second conductor with the opposite current Jz = –J were
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placed at this line, then, on the one hand, it would expe-
rience no Ampére force and, on the other, it would can-
cel the external magnetic field at the position of the first
conductor. We thus can conclude that the dipole system
of these two oppositely directed currents should be in
equilibrium, in which case the vector potential A = Az of
the total magnetic field and the magnetic field lines are
described by the equations

(24)

where  = y2 + (x ± a)2, X = x/a, Y = y/a, and ξ = X/2 +
const. The pattern of the magnetic field lines in the first
quadrant in the (x, y) plane is shown in Fig. 7.

Instead of infinitely thin currents, we now consider
an analogous equilibrium dipole MHD configuration
with distributed currents. We assume that the currents
j = jz flow inside a cylinder of radius r = a and that there
are no currents on the outside of the cylinder. In this sit-
uation, the external magnetic field is equal to Be = —ψ
(where ∆ψ = 0, as is the case in vacuum), so that, in
cylindrical coordinates, the scalar magnetic potential in
terms of the field components has the form

(25)

where α is a constant. At infinity, this scalar potential
corresponds to a uniform magnetic field By = B0 =
const. At the cylinder surface r = a, we impose the con-
dition Br = 0, so that we have α = a2B0 . Hence, at the
cylinder surface, the only nonzero magnetic field com-
ponent is the component Bϕ = 2B0cosϕ, which pro-

duces the magnetic pressure Pm = /8π = Pmaxcos2ϕ,

where Pmax = /2π. If the cylinder is surrounded by a
plasma at a uniform pressure p0 = const, then the total
pressure at its surface is equal to PΣ = p0 + Pmaxcos2ϕ.
Let us consider the pressure inside the cylinder (r < a).

Because of the currents j = jz flowing inside the cyl-
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Fig. 7. Two currents in a magnetic field.
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inder, the magnetic field is determined by the vector
potential A = Az , so that we arrive at the MHD equations

(26)

which imply that p = p(A) is an arbitrary function and
that the current density is equal to j = cdp/dA . Setting
p(A) = p0 + |β|A2 gives the current density j = 2c|β|A
and yields the following Bessel equation for the vector
potential:

(27)

where k = . The solution in terms of the first-
order Bessel function gives the components of the vec-
tor potential and magnetic field:

(28)

where J = J1 = J1(ρ) and ρ = kr. This solution also sat-
isfies all of the required conditions under which the
configuration is in equilibrium.

Specifically, at the cylinder surface r = a, the com-
ponent Br of the internal magnetic field vanishes if
J1(ka) = 0, where ka = ξ1 = 3.8317 is the first zero of the
Bessel function J1 , which is approximately equal to
J1(ρ) ≈ (ρ/2)[1 – (ρ/3.8317)2] across the region 0 < ρ <
3.8317. In this case, we have A = 0 at the cylinder sur-
face, at which the pressure of the plasma inside the cyl-
inder is accordingly equal to pA = 0 = p0 and thus coin-
cides with the plasma pressure on the outside of the cyl-
inder.

The magnetic field component Bϕ = Bacosϕ, where
Ba = –A0kJ '(ka), produces the magnetic pressure Pm =

( /8π)cos2ϕ, so that the complete equilibrium of a
configuration with a dipole current-carrying cylindrical
beam, which moves apart the lines of the external mag-
netic field, will be achieved when Ba = 2B0 . The tabu-
lated values of the Bessel functions give J '(ξ1) =
−0.4028, which enables us to determine the amplitude
A0 = 1.3aB0 and, thereby, the current density j =
j0 J1(kr)cosϕ, where j0 = 1.5(cB0/a). In such a configu-
ration, the current flowing through the right half of the
cylinder is about I+ ≈ 0.8caB0 , and the same current
flows through the left part but in the opposite direction.
If the current I+ and the field B0 are specified, we can
determine the equilibrium radius a of the cylinder.
Thus, in order for the dipole current I+ = –I– = 10 A to
be in equilibrium with the tokamak magnetic field B0 =
10 kG, it should flow across the field B0 and inside the
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region with a diameter of about 2a ~ 3 mm. The fila-
ments of roughly the same diameter were observed by
KRK.

For brevity, we will refer to this configuration as a
plasma bicylinder. It can be shown that, on the outside
of the cylinder, the so-called “stability integral” J =

 decreases with increasing distance from the cyl-

inder surface (this result was obtained in collaboration
with V.P. Vlasov). Consequently, it might be expected
that such a bicylinder will be stable at least against the
sausage instability. Inside the bicylinder, snakelike per-
turbations should be unstable; however, we can antici-
pate that the time scale on which the bicylinder forms
is too short for them to develop. For comparison, recall
that, for an ordinary Z-pinch, in which current I is dis-
tributed uniformly over the cross section of radius a, the

integral J =  inside the pinch is constant, Ji =

πa2c/I = const, while, on the outside, it increases with
increasing distance from the cylinder surface according
to the law Je = Ji(r/a)2, thereby leading to instability.

Figure 8 shows the pattern of the magnetic field
lines inside the bicylinder, where the magnetic potential
is expressed in terms of the first Bessel function J1 =

(kr/2)  – (kr/Ri)2] (where Ri = 3.83, 7.02, 10.17, …

are the zeros of the function). However, to a high accu-
racy, we can keep only the first factor, corresponding to
the first zero, and set J1 ~ ρ(1 – ρ2), where ρ = kr/R1 , in
which case the potentials inside and outside the cylin-
der are described by the approximate formulas

(29)

Accordingly, the equations for the magnetic field lines
in these regions have the form

(30)

where Ci, e are constants. These magnetic field lines are
shown in Fig. 8, illustrating the configuration (for brev-
ity, called the current bicylinder) that is very similar to
the configuration in Fig. 7. Recall that Figs. 7 and 8
present the patterns of the field lines only in the first
quadrant (x > 0, y > 0). The overall pattern of the mag-
netic field lines is symmetric about the origin of the
coordinates (see Fig. 16). Now, we proceed to an anal-
ysis of longitudinal beam bunching.

7. TWO TYPES OF THE BUNCHING 
INSTABILITY

The photographs of plasma focus discharges of the
Mather type, taken from the end of the device, often
show double filamentary structures in the form of cur-
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rent-aligned filaments and a set of rings perpendicular
to them. The appearance of filaments can be attributed
to current filamentation by the mechanisms considered
above, while the formation of rings is, presumably, a
consequence of the synchronous longitudinal bunching
of the parallel beams, which was also studied earlier in
many papers. Let us briefly describe two possible
bunching mechanisms.

The first is the so-called Buneman instability, which
involves both electrons and ions. In the linear approxi-
mation, it was studied by Buneman [19]; however, we
describe it here in the nonlinear approximation. We
denote the density, velocity, charge, and mass of the
electrons by ne, v e, qe = –|e |, and me, respectively; the
same parameters of the ions, by ni , v i , qi = Zi |e |, and mi;
and the longitudinal electric field, by E. For the five
functions ne , ni , v e , v i, and E, we have the following
five one-dimensional nonlinear equations:

(31)

where α = e, i. Here, the pressure is neglected, the ini-
tial velocity v0e of the electron is assumed to be higher
than their thermal velocity, and the ions at the initial
instant (at t  –∞) are assumed to be immobile. These
equations can be easily solved in the linear approxima-
tion. However, in [5, 9, 20], it was shown that, in the
nonlinear approximation, they also admit an exact solu-
tion. In order to obtain this solution without making any
additional assumptions, it is sufficient to introduce the
effective density ρ = ne/n0e = ni/n0i and effective veloc-
ity v  = (Zimev e + miv i)/(Zime + mi) , with which
Eqs. (31) is reduced to the two quasi-Chaplygin equa-
tions

(32)

where c0 = v 0e  and the azimuthal number is

equal to m = –1/2, as is the case with tearing instability.
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For this reason, the simplest spontaneous solution is
analogous to solution (23):

(33)

where T = γt < 0, X = kx, and γ = kc0. For t  –∞, we
deal with an unperturbed state with ρ = 1. However, as
time progresses, the seed perturbations grow at the rate
γ = 2πc0/λ0 (where λ0 is the wavelength of the seed per-
turbations) and, at the critical time t = 0, the plasma
breaks into pancakelike bunches, as is the case shown
in Fig. 9. In Z-pinches, this may results in the disruption
of the conduction current.

The role of the second mechanism can be played by
the bunching of an electron beam propagating through
the main plasma. In contrast to the Buneman instability,
we assume here that the ions are immobile and that
their density is constant, Ni = const. We denote the elec-
tron densities of the beam and of the main plasma by nb

and ne, respectively, and the corresponding electron
velocities, by v b and v e in order to write the initial equa-
tions in the form

(34)

From these equations, we obtain the quasineutrality
condition and the current conservation law

(35)

where  and  are the initial (at t  –∞) density
and velocity of the beam. An approximate solution to
Eqs. (34) is presented in [21]. However, in [5, 9, 10], it
was shown that, without making any additional
assumptions, they can also be reduced to two quasi-
Chaplygin equations with the azimuthal number m = 1

and the parameter c0 = , which determines
the linear growth rate γ = kc0 .

In order to convince ourselves of this, we must carry
out the following nontrivial transformations. First, we
introduce two new functions, u = v b – v e  and ξ = (ne –
 nb)/Ni, and the constant mean electron velocity V0 =
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Fig. 9. Beam bunching.
(nbv b + nev e)/Ni . Then, we pass over to the reference
frame moving with the velocity V0 and introduce the

operator  =  + V0  in order to rewrite
Eqs. (34) as

(36)

These equations cannot be reduced to the standard
quasi-Chaplygin equations. However, introducing a

new pair of functions, ρ = (u/u0)2(1 – ξ2)/(1 – ) and

v  = uξ – u0ξ0, and the new operator  + (V0 +

u0ξ0)  puts Eqs. (36) in the standard quasi-Chaply-
gin form

(37)

with the parameter  = (1 – ) /4 > 0 and the azi-
muthal number m = 1 (which differs from m = 1/2 in the
case of Buneman instability). The growing nonlinear
parametric spontaneous solutions (which originate
from indefinitely small seed perturbations at t  –∞)
are expressed in terms of elliptic integrals and also
describe the bunching process that breaks the beam into
pancakelike bunches of the Buneman type.

Hence, the beam filamentation may result in a set of
longitudinal parallel filaments and synchronous beam
bunching may give rise to bright ring structures perpen-
dicular to the current direction. Presumably, it is this
effect that is observed in plasma focus discharges.

It is expedient to compare the growth rates γ(i) =

2π /λ of the above three instabilities, assuming, for
definiteness, that their wavelengths λ are the same. In
this case, the instabilities differ only in the value of the
parameter determining the growth rate:

(i) for the magnetic filamentation instability, we

have  = v 0 ;

(ii) for the Buneman instability, we have  =

v 0 ; and

(iii) for the electron bunching instability, we have

 = v 0 .

The growth rates of the instabilities will be close to
each other for beams with densities such that n nb/Ni ~
me/mi ~ 5 × 10–4. In plasma foci, fast (accelerated) elec-
trons generate X-ray photons with energies of about
100–200 keV, so that their velocities can be regarded as
being weakly relativistic: v 0 ~ 1010 cm/s and c0 ~
108 cm/s. We thus can see that the perturbations grow
on nanosecond time scales.
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8. CONCLUSION

The main features of the behavior of beams in plas-
mas can finally be summarized as follows:

(i) Thin current filaments that are sometimes
observed in Z-pinch and tokamak plasmas should be
analyzed theoretically not by simple linear equations,
but rather by a more adequate set of nonlinear equations
capable of describing operating modes with nonsinuso-
idal, strongly peaked plasma density profiles.

(ii) It is clear that a beam can be injected into a
plasma only when a halo of Foucault currents that
screen the magnetic self-field of the beam and are
directed opposite to it is immediately generated around
the beam path (this is generally true for any thin current
channel in a plasma). In this case, the screening radius
is about δ ~ c/ω0 (in tokamaks, the electron density is
ne ~ 1013 cm–3, so that we have δ ~ 1 mm) and, in photo-
graphs, such a configuration may resemble a tubular
structure.

(iii) In certain cases, the currents that are opposite to
the main current (countercurrents) can presumably
attract each other, thus evolving into a spiral wound
around the central current channel, whose magnetic
field helps them to group together into a spiral. How-
ever, it is extremely difficult to calculate such a config-
uration theoretically.

(iv) If there is a magnetic field B0 frozen in the
plasma, a beam can be injected both along and across
this field, moving apart the field lines and simulta-
neously splitting into thinner filaments (see also
Appendices 1, 2).

(v) A beam of initially finite length and the counter-
currents that it itself excites may stop moving as a sin-
gle entity after the beam has passed a certain distance
in a plasma. However, the beam current may be short-
circuited by the countercurrents at the beam ends and
thus can continue to circulate for a certain time, but now
in closed current circuits (loops) of the form of paper
clips. Presumably, configurations of the squirrel-cage
type, which might have been observed sometimes by
KRK in several tokamaks, form precisely in this way.

In conclusion, it may be worthwhile to say a few
words about the papers by KRK that were devoted to
the problem under consideration here, namely, current
filaments (or, in KRK’s terminology, solid-state
cables).

Since 1993, they have written about 50 papers on
this subject, but most of them were reported at confer-
ences as poster papers, so that only papers [15, 22–25]
are listed here as references. These five papers have
much in common (which is already clear from their
titles), but in none of them do the authors mention that
there is an alternative (and generally accepted!) inter-
pretation, according to which the structures that they
observed are explained as current filaments. They con-
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sider these structures as rigid solid-state nanotubes,
which may be present not only in Z-pinch and tokamak
plasmas but also in plasmas of space objects (see [22,
23]).

The abstract of their recent paper [15] may be cited
as an example.

“Evidence is obtained for the existence of straight
tubular structures in a tokamak plasma that are similar
to long-lived filaments observed previously in
Z-pinches. A hypothesis is advanced to explain these
structures as wild cables formed as a result of the chan-
neling of electromagnetic energy. The energy is sup-
plied from an external electric circuit and propagates as
high-frequency electromagnetic waves toward the
plasma core along hypothetical microsolid (carbon)
skeletons that are assembled during electric breakdown
and are protected by the waves from the violent action
of the surrounding high-temperature plasma.”

Let us discuss this hypothesis. In pinch and tokamak
plasmas, in which the plasma temperature may be as
high as several keV, any solid objects (like pellets) rap-
idly evaporate. Since the plasma density in tokamaks is
approximately a million times lower than the air den-
sity under normal conditions (Loschmidt’s number)
and the plasma temperature is approximately a million
times higher than the room temperature, the pressure of
the plasma that should be pushed away from the cables
is about the atmospheric pressure. Assuming that this
plasma pressure is even ten times lower, we obtain from
the equality p‡tm/10 = E2/8π the required electric field
strength E ~ 1 MV/cm. The question then arises: what
is the mechanism for generating such an enormous
high-frequency field?

Here are some other quotations from [15].

“An analysis of the phenomenology of filamentary
structures allowed us to hypothesize that the observed
rigidity of such structures can be provided only by
quantum mechanisms because it cannot be explained in
terms of the known structuring mechanisms in systems
of classical charged particles. Going beyond the scope
of classical electrodynamics is also motivated by the
following (equally important) considerations. In [22,
23], topologically equivalent structures were observed
to occur over an immensely wide ranges of spatial
scales: from those consisting of individual filaments
several micrometers in diameter in laboratory discharge
plasmas to those arising on galactic (and even larger)
scales… . This equivalence gave rise to the idea of the
possible existence of a universal block on a quantum
spatial scale that is similar to one or another of the
observed characteristic structures… . A carbon nano-
tube was chosen to be a candidate for such an elemen-
tary block of the filamentary structure.”

No comments will be given to the ideas of KRK
about galaxies composed of carbon nanotubes.
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It seems that KRK merely observed some specific
filamentary structures on the photographs of plasma
bunches. However, they were wrong in interpreting
such structures as solid-state cables, because they
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Fig. 10. Two currents in a magnetic field.

Fig. 11. Four currents in a magnetic field.

Fig. 12. Eight currents in a magnetic field.

Fig. 13. Eighteen currents in a magnetic field.
ignored the generally accepted explanation of such
structures as current filaments.

Appendices 1 and 2 present examples of possible
equilibrium configurations of pairwise countercurrents
perpendicular to the main magnetic field. Although
most of these configurations are unstable, they may
occur on short time scales. Presumably, it is these con-
figurations that were observed by KRK and were
reported in their papers.
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APPENDIX 1

Equilibrium Configurations of Conductors
in a Magnetic Field

The most interesting objects observed by KRK are
likely those of the squirrel-cage type, which, however,
can be explained as a system of close filaments interact-
ing by means of magnetic forces. In Section 4, it was
shown that, in the linear approximation, these filaments
in the absence of the main magnetic field are described
by the formula ρ = Aexp(γt)Jn(kr)cosnϕ, containing the
Bessel function, so that they also can be referred to as
Bessel wheels. However, according to KRK’s observa-
tions, they are oriented predominantly perpendicular to
the main magnetic field. Let us consider a simplified
model of such structures in the approximation of infi-
nitely thin filaments in free space.

As an example, Figs. 10–13 show four model con-
figurations that consist of pairs of conductors with
oppositely directed currents in vacuum, are oriented
along the z-axis, and are perpendicular to the external
uniform magnetic field B0 = By. All dimensions and the
directions of the currents are indicated. In order for
these configurations to be equilibrium, the total mag-
netic field (the field of the currents plus the external
field) should vanish at the intersection points of the
conductors with the (x, y) plane. The relative dimen-
sions and the relationships between the currents were
determined precisely from these equilibrium condi-
tions.

Let us examine these examples in more detail. The
first model configuration, which is equilibrium for a0 =
J0/cB0, was analyzed above and the relevant patterns of
the magnetic field lines are shown in Figs. 7 and 16. It
is clear that, in the idealized case of infinitely thin con-
ductors, all these configurations, although equilibrium,
are unstable against the merging of the nearest unidi-
rectional currents. The stability of a configuration in
which the regions enclosed by the separatrices of the
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002
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currents are filled with plasma (as is the case with a
plasma bicylinder considered in Section 6) requires a
separate analysis.

In the second model configuration, which is formed
by four conductors that are all positioned at y = 0, the
magnetic field coefficient Bx vanishes at y = 0, so that
we need to determine only the component By at the
positions xi of the conductors. The conditions By(xi) = 0
yield two relationships

(A1.1)

where p = a2/a1 > 1. If the field B0 , the first current J1,
and the first dimension a1 (and, accordingly, the param-
eter β) are all specified, it is expedient to introduce the
parameter γ = (3 + β)/2. Further, by inverting the second
of formulas (A.1.1), we find the argument p2 = (2 + γ +

)/(3γ – 5) and then determine the second
dimension a2 = a1p and the second current J2 = J1f(p).

As for the third example illustrated in Fig. 12, we
can readily see that, because of the symmetry of the
configuration, the upper and lower pairs of the currents
do not affect the middle four currents because the mag-
netic field of the four currents J0 vanishes at y = 0. Con-
sequently, the two stability conditions for the middle
currents can be taken from the previous example. Fur-
ther, by virtue of the symmetry of the configuration, it
is sufficient to take into account the reverse effect of the
middle currents only on one of the four currents J0. Let

us choose the case with a1 = 2a0 and h = a0 , in which
the six currents are at the vertices of a regular hexagon
but J1 ≠ J0. Then, at the upper right point, the total mag-
netic field has the components

(A1.2)

where p = a2/a1 = a2/2a0. The necessary equilibrium
conditions Bx = By = 0, J2 = J1f(p), and ca1B0 = J1g(p)
give the relationships

(A1.3)

where x = p2. We thus arrive at the fourth-order equa-
tion for x and obtain the values x = p2 = 2.1283, p =
a2/a1 = 1.4588, and J0/J1 = 1.684, which ensure the
equilibrium of the system of eight currents shown in
Fig. 12.
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Finally, Fig. 13 shows a possible equilibrium system
of 18 currents, which is very similar to the squirrel-cage
structure observed by KRK (see Fig. 3). Note that, in
Fig. 13, there are three repulsing countercurrents
around each of the inner currents. However, the five
negative currents from the left (as well as the five posi-
tive currents from the right) are unidirectional, thereby
adjusting the pattern of the magnetic field lines to that
of the lines of the external magnetic field.

KRK noted that, in discharge plasmas observed, the
beams were several centimeters in length, so that the
oppositely directed currents at the beam ends could be
short-circuited to each other, forming structures similar
to wheel spokes (see also Appendix 2).

APPENDIX 2

Self-Organization of Filaments
in a Magnetic Field

An individual charged particle in a magnetic field
moves along a Larmor orbit: the gyration of the elec-
trons is that of a right-handed screw and, accordingly,
the gyration of the ions is that of a left-handed screw. If
the particles form a continuous thin beam with a suffi-
ciently high current J, their behavior has a number of
interesting features, which are associated with the fact
that the current filament does not experience magnetic
forces in the following two cases: when the current
flows along a magnetic field line or when the magnetic
field along the filament equals zero.

(i) In order to give better insight into these features,
we consider an imaginary experiment illustrated sche-
matically in Fig. 14.

Let two formless loops of flexible conductors be laid
out on the table and let the ends of the conductors be
fixed (Fig. 14). Also, let the magnetic field By = B0 be
directed upward and, accordingly, be perpendicular to
the table’s surface. After switching on a battery produc-
ing a direct current, the loops start to interact with the
magnetic field, which thus drives them into motion (it
is assumed that there is no friction between the loops
and the table surface). The right loop, in which the
direction of the current with respect to the magnetic

– +

J

2a = 2J/cB0
B0

–+

J

J
J

Fig. 14. Behavior of current loops in a magnetic field.
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2

1

Fig. 15. Filaments at the plasma periphery in the T-6 tokamak (borrowed from [15]).
field is that of a right-handed screw, will form a circle
whose radius will increase without bound provided that
the loop is perfectly elastic.

In turn, in the interaction with the field B0, the left
loop, in which the current flows in the direction oppo-
site to that in the right loop, will form two parallel lines,
which will approach one another until the repulsing
forces produced by the oppositely directed currents in
them come into play. We can easily see that the parallel
lines stop moving when the total magnetic field along
them vanishes, i.e., when the distance between them
becomes equal to 2a = 2J/cB0.

(ii) Then, we consider the behavior of the bridge
between the ends of the lines. At first glance, it appears
that the interaction of the current J flowing in the bridge
with the magnetic field B0 should push the bridge
toward the battery while simultaneously trying to
crease it. Instead, the bridge indeed moves away from
the battery. In order to convince ourselves of this, note
that, along the line z = const that crosses the two paral-
lel conductors and is far from the bridge, the total mag-
netic field is equal to By = B0[1 – 4a2/(a2 – x2)]. We can
see that, in the region between the conductors, the total
field is negative; in particular, just between the conduc-
tors (at x = 0), we have By = –3B0 < 0. In turn, the neg-
ative magnetic field pushes the bridge outward from the
battery, thereby elongating the two parallel conductors.
Figuratively speaking, the elongating conductors “ger-
minate” in the direction perpendicular to the magnetic
field.

Such germinated double filaments presumably form
in tokamak plasmas. In particular, the photographs pre-
sented in the papers by KRK sometimes show pairs of
close filaments perpendicular to the magnetic field,
which are interpreted by KRK as nanotubes. Figure 15
shows one such photograph from [15]. The two fila-
ments in Fig. 15 are most likely not nanotubes but
rather the pair of countercurrents just described. How-
ever, it should be noted that the above configuration of
two infinitely thin filamentary conductors is unstable
against vertical displacements along the field B0 (pro-
vided that the gravity force is negligible in comparison
with the magnetic forces). Of course, the stability of a
configuration in which two semi-cylinders formed by
the separatrix are filled with plasma (see Fig. 8)
requires a separate analysis.

(iii) Let us consider in more detail the equilibrium
configuration of a pair of semi-infinite countercurrents.
Using the Biot–Savart law, we can calculate the mag-
netic field of an arbitrarily thin, semi-infinite straight
conductor in which the current J flows along the z-axis
from z = –∞ to z = 0. In cylindrical coordinates (r, ϕ, z),
we obtain

(A2.1)

At z = –∞, this field, as is expected, is equal to Bϕ =
2J/cr; however, at z = 0, it turns out to be two times
weaker. Consequently, under equilibrium conditions in
the external magnetic field B0 = By, the distance
between the ends (at z = 0) of two semi-infinite straight
conductors with oppositely directed currents ±Jz should
be equal to 2anew = J/cB0, which is two times shorter
than the distance between two infinite (–∞ ≤ z ≤ +∞)
conductors in equilibrium.

If we introduce the dimensionless variables Z = z/a
and X = x/a, where a = J/cB0, then, from the above for-
mula, we can readily find the equilibrium positions of
two semi-infinite conductors that are in equilibrium
with one another in an external magnetic field and the
distance between which becomes progressively smaller
toward their ends:

(A2.2)

where |x | is the absolute value of x. In the photograph
in Fig. 15, the right two filaments are distinctly seen to
approach one another up to the points at which they ter-
minate.
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(iv) Moreover, the current in the bridge presumably
tends to bifurcate (branch) in two directions and to flow
along the two semicircles shown in Fig. 16. This possi-
ble structure is evidenced by the pattern of the magnetic
field lines in the end cross section. If, for simplicity, we
assume that the pattern is the same as that for two arbi-
trarily thin, infinite conductors with countercurrents ±J
separated by the two times smaller distance 2anew =
J/cB0 , then the magnetic field lines A = const are
described by the simple formula

(A2.3)

The pattern of these field lines is shown in Fig. 16,
where the separatrix is indicated by dots.

The tubular structures in the photographs presented
by KRK are such that the possible current path may be
as follows. First, the current +J flows from infinity (z =
–∞) to the point x = +anew . Second, the current flows to
the right toward the nearer (right) equatorial point of
the common circular separatrix. Third, at this point, the
current bifurcates into two equal currents J/2, which
flow along the upper and lower semicircles (i.e., along
the separatrix of the magnetic field lines) toward the left
equatorial point of the separatrix, where they merge
into one current. And finally, the current flows to the
right toward the end x = –anew , from where it flows to
z = –∞.

It is clear that, for straight-line parts of finite length,
the separatrix in the form of two semicircles should
form at the remote end of the structure, as is the case
with the left tubular structure in Fig. 15. On the whole,
such a structure may resemble a squirrel cage with
wheel-like ends and two bridges between then. Presum-
ably, it is these structures that were revealed by KRK in
tokamak plasmas and were mistakenly interpreted by
them as solid-state nanotubes.

It seems likely that, in tokamak plasmas, such struc-
tures may result from short-term local fluctuations of
the main longitudinal magnetic field: the fluctuations
give rise to closed current loops that are perpendicular
to the main field and evolve into pairs of countercur-
rents in the way described above. Another possible
mechanism for the onset of squirrel-cage structures that
have bridges and are oriented perpendicular to the mag-
netic field may be associated with the local potential
difference that arises between neighboring magnetic
surfaces, especially in the vicinities of rational surfaces
with integer q values. At a certain time, the differential
rotation of a plasma along the magnetic surfaces in the
poloidal direction may result in the close opposition of
two local spotlike regions with different potentials, as is
the case with two capacitor plates. In turn, the potential
difference can generate a local cross-field particle
beam, which splits into individual filamentary bridges
and thereafter forms wheel-like ends.

Y
y
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--------- 4X A 2X+( )coth 1– 4X2– .±= =
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To the best of my knowledge, it is unknown what the
role is of such structures in the global heat transport in
tokamak plasmas.
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Abstract—The problem is considered of determining the electric field induced in the vicinity of a conducting
spherical body that is at rest in a collisionless plasma and at the surface of which there is a prescribed sink of
negative charge. The problem is solved for the general relativistic case under the assumption that the electron
velocity in the neutralizing current is comparable with the speed of light. An integrodifferential equation is
derived that describes the radial behavior of the electric field potential in the vicinity of the injector. A simplified
method for determining the potential in the perturbed region is developed. The method implies that the prob-
lems of the potentials in a space charge region of radius R* (with a prescribed boundary potential ϕ*) adjacent
to the body and in the outer region r > R* are solved separately and then the solutions obtained are matched at
the boundary between these regions. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that one of the problems arising in
active space experiments on the injection of charged
particle beams, as well as in the development of various
special-purpose particle-beam space systems, is that of
neutralizing the electric charge induced in a space vehi-
cle (SV) during the operation of an onboard charged-
particle accelerator. In ionospheric regions in which the
ambient plasma density is relatively high, the neutraliz-
ing plasma current to the conducting surface of the SV
is, as a rule, sufficient to prevent strong electrostatic
charging of the injector [1, 2]. However, in experiments
on the injection of charged particle beams from high-
altitude SVs in a very tenuous plasma of the outer
region of the plasmasphere or in the plasma sheet, as
well as in particle-beam space systems intended for
exploitation near celestial bodies having no atmosphere
[3, 4], the operation of the onboard charged-particle
accelerator can be accompanied by the generation of a
strong electric field in the vicinity of the injector. In
turn, the electric fields so generated can strongly affect
the beam dynamics, so that, in some cases, it becomes
impossible to inject beams from the SV. Under such
conditions, special measures must be taken to prevent
electrostatic charging of the injector and thus to keep it
electrically neutral. These measures include, in particu-
lar, the use of “screen” neutralizing systems that
enlarge the area of the SV surface collecting the neu-
tralizing plasma current. The role of such a screen may
be played, e.g., by a large-area inflatable sheet made of
a thin metallized film and connected electrically to the
SV injecting a charged particle beam [3].

The subject of the present paper is the problem of
determining the electric field induced in the vicinity of
1063-780X/02/2804- $22.00 © 20327
a conducting spherical body that is at rest in a collision-
less plasma and at the surface of which there is a pre-
scribed sink of negative charge. Solving this problem
provides a theoretical basis for calculating the required
parameters of a spherical screen system for neutralizing
the SV during the operation of an onboard electron-
beam injector. In contrast to previous studies in this
direction (see, e.g., [5]), the problem of the electric field
in the vicinity of a spherical injecting body is treated in
the general relativistic case (i.e., under the assumption
that the electron velocity in the neutralizing plasma cur-
rent is comparable with the speed of light). Conse-
quently, the method developed here for solving the
above problem can be used to calculate the parameters
of the screen neutralizing system of a SV equipped with
an onboard accelerator of relativistic electrons.

2. FORMULATION OF THE PROBLEM

We consider a spherical conducting body of a given
radius R0 from the surface of which the negative electric
charge is removed at a specified constant rate, which is
determined by the current Jb of an electron beam
injected under actual space conditions. We assume that
the body is at rest in the surrounding (background)
plasma and that the plasma itself is collisionless. These
assumptions correspond to the conditions

(1)

(2)

where Le, i are the mean free paths of the plasma elec-
trons and ions, R* is the characteristic radius of the per-
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turbed region (see below), Te and Ti are the electron and
ion plasma temperatures, and V is the injector velocity
with respect to the plasma. We treat the problem in a
steady-state formulation with allowance for the numer-
ical results of [6], which show that oscillations pro-
duced in a collisionless plasma at the beginning of
injection are damped with time and the plasma param-
eters in the perturbed region relax to their steady-state
values. We neglect the possible effect of turbulent
plasma heating by the beam (due to the onset of the
beam instability) at large distances from the injector,
because, according to the results of experimental inves-
tigations of the collective interaction of an electron
beam with a plasma (see, e.g., [7]), this effect is actu-
ally observed only when the energy and angular spreads
of the beam electrons satisfy fairly strong restrictions.

Under the above assumptions, the electric field in
the vicinity of the injecting body can be found by
simultaneously solving the set of time-independent
Vlasov kinetic equations for the distribution functions
Fe, i(r, p) of the plasma electrons and ions in phase
space (r, p):

(3)

where ve, i = p/γe, ime, i  and qe, i = , and Poisson’s
equation for the potential ϕ of the self-consistent elec-
tric field,

(4)

where

are the ion and electron plasma densities.
Equations (3) and (4) should be solved under the

corresponding boundary conditions for the distribution
functions and the potential at the body surface and at
infinity:

(5)

where  = (2πme, ikTe, i)–3/2exp(–p2/2me, ikTe, i),

(6)

(7)

ϕ  0, (8)

(9)

Boundary conditions (5)–(9) have the following
physical meaning: condition (5) corresponds to the
assumption that an unperturbed plasma is equilibrium,
condition (6) indicates that the vehicle surface is per-

ve i, —rFe i, qe i, —rϕ– —pFe i,⋅ ⋅ 0,=

e+−

—2ϕ 4πe ni ne–( ),–=

ni Fi r p,( ) p, ned∫ Fe r p,( ) pd∫= =

Fe i, r p,( ) Fe i,
∞

p( ),

Fe i,
∞

np
0

Fe i, r p,( )
r R0=
p r,( ) 0>

0,≡

ϕ r R0= const,=

r → ∞

4πR0
2

qe i, v e i,
r

Fe i, r p,( ) r R0= pd∫
e i,
∑ Jb.=
fectly absorbing for plasma particles, conditions (7)
and (8) follow from the assumption that the injector
material is conducting and there are no external electric
fields, and condition (9) reflects the balance between
the beam current Jb and the neutralizing plasma current.

Note that, unlike in the problem solved in the earlier
paper [8], the electric potential at the body surface is
not specified in advance, but is determined in solving
the problem as formulated.

Now, we turn to Eqs. (3). Taking into account the
equations of motion  = –qe, i—ϕ and  = ve, i, we can
readily see that Eqs. (3) are equivalent to the conserva-
tion laws for the distribution functions Fe and Fi along
the electron and ion trajectories, respectively.

Then, using the boundary conditions (5) and (6), we
obtain the distribution functions Fe, i at an arbitrary
point r in the vicinity of the body:

(10)

Here, Qe, i(r) is the momentum space region of finite
trajectories and trajectories coming to an observation
point r from the surface of a spherical body, Ge, i =
CQe, i(r) is the complement of the region Qe, i(r) in

momentum space, and  is the momentum at infinity
of a particle having momentum p at the point r.

Taking into account distribution functions (10), we
arrive at the following integral expressions for the elec-
tron and ion plasma densities at the point r:

(11)

where dp = dprdpϑdpϕ is the momentum space volume
element and pr, pϑ, and pϕ are the projections of the
momentum vector onto the unit vectors ir , iϑ, and iϕ of
the spherical coordinate system. We pass over to the
new variables pθ, ψ, and , which are related to the
projections pr, pϑ, and pϕ by the relationships (see
Fig. 1) 

In the new variables pθ, ψ, and  integrals (11)
become

(12)

We introduce the variables ε and M2, which have the
meaning of the total particle energy and the squared

ṗ ṙ

Fe i, r p,( ) r R0>  = 
Fe i,

∞
pe i,

∞ r p,( )[ ] , p Ge i, r( )∈
0, p Qe i, r( )∈
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pr'

pθ
2

pϕ
2

pϑ
2
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particle momentum, respectively. The variable pθ can
be expressed in terms of the variable M as

(13)

The relationship of the variable pr = mγv r to ε and M
can be obtained using the energy integral

and the formulas

After some simple manipulations, we find

(14)

We transform integrals (12) to the variables ε, ψ, and
M2:

(15)

where the region (r) in the space of the variables ε,
ψ, and M2 corresponds to the region Ge, i(r) in momen-
tum space and D(pθ, ψ, pr)/D(ε, ψ, M2) is the Jacobian
of the transformation (ε, ψ, M2)  (pθ, ψ, pr). We cal-
culate the Jacobian and take into account formula (13).
As a result, the pθ-dependent part of the integrand in
expression (15) simplifies to

(16)

Generally, the particle momentum at infinity is
related to the total energy by

(17)

However, since the total energy of the plasma particles
satisfies the condition ε ! me, ic2 by virtue of the
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assumed classical nature of the plasma at infinity, rela-
tionship (17) reduces to

(18)

Substituting relationship (18) into expression (5) for the

unperturbed distribution functions  yields

(19)

We take into account expressions (16) and (19) and per-
form integration over ψ in expression (15) to obtain

(20)

where dV(r) is the coordinate space volume element
containing surface of radius r and

(21)

In expression (20), the region Γe, i in the space of the
variables ε and M2 corresponds to the trajectories that
come to the observation surface from infinity. Note that,
according to this expression, the mathematical expecta-
tion of the number of particles in the volume element
dV(r)dεdM2 in the space of the variables r, ε, and M2

has the form

(22)
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Fig. 1. Relationship between the old variables (pr , pϑ, pϕ)

and the new variables (pθ, ψ, and ).pr'
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Consequently, the functions Φe and Φi have the mean-
ing of the distribution functions of the plasma electrons
and ions in the space of the variables r, ε, and M2.

Now, we turn to Poisson’s equation (4). Inserting
expression (20) into its right-hand side, we can rewrite
it as

(23)

Hence, in the general case, the electric potential in
the perturbed region should satisfy the integrodifferen-
tial equation (23).

3. STRUCTURE OF THE PERTURBED REGION 
AND EQUATION FOR THE ELECTRIC 

POTENTIAL IN THE SPACE CHARGE REGION

Before passing to the development of the procedure
for solving Eq. (23), note that, under actual space con-
ditions, the case of practical interest is that in which the
body is charged to the surface potential ϕ0 satisfying
the condition

(24)

We restrict ourselves to constructing solutions to
Eq. (23) in the class of monotonic potentials. In other
words, we assume that the function ϕ(r) decreases
monotonically as r increases. We also assume that the
plasma is isothermal; i.e., the electron and ion temper-
atures are the same, Te = Ti ≡ T.

We define the space charge region as the region R0 ≤
r ≤ R*, which is adjacent to the body and in which the
potential decreases from the surface value ϕ0 to a cer-
tain fixed value ϕ* satisfying the conditions

(25)

(26)

We assume that the radius R* is large enough to satisfy
the inequality

(27)

where D = (kT/4π e2)1/2 is the Debye radius in an
unperturbed plasma. Note that the radius R* corre-
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np
0

sponding to the chosen value ϕ* is not known a priori
and should be determined when solving the problem.

First, we consider the question of the radial behavior
of the electric potential in the outer region r ≥ R*. By
virtue of condition (25), there are essentially no ions at
the distance R* from the center of the sphere. At the
same time, the plasma electrons move in nearly the
radial direction, so that, under the additional restriction
(34) on the radius R* (see below), the majority of
plasma electrons reach the body surface, where they are
absorbed. In this case, the electric field in the region
r ≥ R* is equivalent to the electric field of an absorbing
spherical body with the radius R* satisfying condition
(27) and with the surface potential ϕ* satisfying condi-
tions (25) and (26).

This problem was solved by Al’pert et al. in [5].
They showed, in particular, that, under the necessary
condition

, (28)

the perturbed plasma region r ≥ R* consists of a double
layer of thickness

(29)

adjacent to a sphere of radius r = R* and a quasineutral
plasma region. They also developed the iterative
method for calculating the radial behavior of the elec-
tric potential in the perturbed region. In relationship
(29), the electric field strength E(R*) at the inner
boundary of the double layer has the form

(30)

In accordance with the results of [5], the total cur-
rent of the plasma electrons that arrive at a sphere of
radius R* is described by the expression

(31)

Here,  = (8πkT/me)1/2 R*2 and the function λ(ϕ*)
is represented in integral form:

(32)

where  = e |ϕ|/kT and ξ = (r – R*)/D. In [5], the values
of the function λ(ϕ*) were calculated by taking the
integral in expression (32) for the function  and its
derivative d /dξ corresponding to the solution to the
problem of the radial behavior of the electric potential
on the outside of an absorbing sphere of radius R* with
the boundary value ϕ = ϕ*. The tabulated data on the
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function λ(ϕ*) [5] show that it asymptotically
approaches the value 1.47 as ϕ* increases.

Now, we consider the equation for the electric
potential in the region r < R*. Let us show that, in this
region, the basic equation (23) can be significantly sim-
plified. First, note that, since there are essentially no
plasma ions in the region r < R*, we can neglect the ion
contribution to the space charge density on the right-
hand side of Eq. (23). By virtue of the condition ε !
mi, ec2 on the total energy of the plasma particles, we can
omit the terms on the order of ε/mec2 in the expression
for the electron distribution function Φe(r, ε, M2).
Finally, taking into account the fact that the angular
momentum of the plasma electrons is equal in order of

magnitude to ~R* , we can readily show that, if
the electric potential in the region r < R* satisfies the
conditions

(33)

then the terms with M2 in expression (21) for Φe(r, ε,
M2) can also be discarded. In fact, conditions (33) indi-
cate the onset of the single-velocity radial motion of
plasma electrons in the region r < R*. From conditions
(33), we find the following necessary conditions, which
should be satisfied by the potential ϕ0 and radius R* in
order for the single-velocity radial motion to occur in
the region r < R*:

(34)

Under conditions (33), the current (31) of the
plasma electrons that reach a sphere with the radius
r = R* is equal to the current of the plasma electrons
that are absorbed by the body. Then, we substitute for-
mula (31) into condition (9) for the current balance at
the body surface to obtain the following equation for
the radius R*:

(35)

In what follows, we will work under conditions
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sion for the distribution function (r, ε, M2) and write
Eq. (23) in the form

(36)

We can easily show that the integral 

on the right-hand side of Eq. (36) is proportional to the
current of the plasma electrons through a spherical sur-
face with the radius r = R*. First, note that, the plasma
electrons that move in the radial direction under con-
ditions (33) in the region r < R* and reach the surface
r = R* are later observed at arbitrary distances r from
the body surface in the region R0 < r < R*. Conse-
quently, for any radius r from the radial interval [R0,
R*], the regions Γe(r) of the permissible values of ε and
M2 at a distance r are equivalent to the regions Γe(R*)
at the spherical surface r = R*. The current of the
plasma electrons through the spherical surface r = R* is
described by the integral expression

(37)

Using the energy and angular momentum integrals, we
can readily express the radial velocity v r of a particle in
terms of the variables ε and M2:
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With formula (38) for v r and formula (21) for
Φe(r, ε, M2), the integral expression (37) becomes
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On the other hand, the current of the plasma electrons
through the spherical surface r = R* is described by for-
mula (31). Substituting this formula into the left-hand
side of expression (39) yields the following expression

for the integral :

(40)

We take into account expression (40) and introduce the
dimensionless variables v  = eϕ/mec2 and η = r/R* to
write Eq. (36) in the form

(41)

where the radius R* of the space charge region is
related to the potential ϕ* and the beam current by
Eq. (35). Taking into account the asymptotic value
λ(ϕ*) ≈ 1.47 in the limit ϕ* @ 1, we reduce Eq. (41) to

(42)

The dimensionless potential v  should satisfy the
boundary conditions

(43)

(44)

Condition (43) corresponds to the boundary condition
ϕ(R*) = ϕ*, and condition (44) corresponds to the
boundary condition (30) for the electric field strength at
the inner boundary of the double layer. One can readily
see that, for nonrelativistic velocities of the neutralizing
plasma flux (v  ! 1), Eq. (42) yields the familiar equa-
tion [5]
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case the boundary conditions (43) and (44) correspond,
respectively, to the conditions
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Hence, we have reduced the problem of determining
the electric field in the region R0 ≤ r ≤ R* to that of con-
structing the solution to Eq. (42) across the radial inter-
val η0 = R0/R* ≤ η ≤ 1 under the boundary conditions
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ṽ 1( ) ṽ *
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(43) and (44) at η = 1. This problem is easy to solve by
the corresponding methods for numerical integration of
second-order ordinary differential equations, e.g., by
one of the Runge–Kutta methods. However, it is neces-
sary to keep in mind that the solution so obtained
exactly describes the radial behavior of the electric
potential in the space charge region only under the
assumptions made in deriving Eq. (42), namely: the
potential of the body at the surface η = η0 should sat-
isfy condition (24); the quantities ϕ* and R* should
satisfy conditions (25), (26), and (28); and the local
potential values should satisfy conditions (33).

4. SOME RESULTS OF NUMERICAL 
CALCULATIONS

In order to demonstrate a practical application of the
method developed here, we calculate the electric field
induced in the vicinity of the screen neutralizing system
of a SV injecting a steady electron beam in the follow-
ing particular case. Let the beam current be 10 A, and
let the beam energy be high enough for the beam elec-
trons to escape from the potential well that forms in the
vicinity of the injector during its electrostatic charging.
The screen neutralizing system is a spherical conduct-
ing shell with the given radius R0 = 20 m, connected
electrically to the SV by a set of conductors (the char-
acteristic dimensions of the SV are assumed to be much
smaller than the screen radius R0). The background

plasma parameters are set to be T = 1 eV and  =
10 cm–3.

According to the above analysis, the radial profile of
the electric potential in the space charge region around
the screen is determined by solving Eq. (41) with the
boundary conditions (43) and (44) at η = r/R* = 1. In
order to specify the radius R* of the space charge region
in Eq. (41) and conditions (43) and (44), we set the
electric potential ϕ* at r = R* equal to 10 V (in which
case we have eϕ*/kT = 10). The radius R* correspond-
ing to the chosen value for ϕ* can be found from
Eq. (35). Substituting the asymptotic value λ(ϕ*) ≈
1.47 (in the limit eϕ*/kT @ 1) and the above values of

the beam current Jb , the density  of an unperturbed
plasma, and its temperature T into Eq. (35), we obtain
R* = 1.42 × 105 cm = 1.42 km.

We numerically integrate Eq. (42) with conditions
(43) and (44) at the outer boundary of the space charge
region to obtain the dimensionless electric potential v
and its derivative at the screen surface:  = 3.11

and (dv /dη)  = –226 (in the case at hand, we have
η0 = R0/R* = 0.0141). Using these values, we find that
the dimensional electric potential of the screen is ϕ0 =
1.59 MV and the electric field strength at the screen sur-
face is E0 = 81.3 kV/m. The radial profile of the electric
potential across the space charge region is shown in
Fig. 2. We can see that, in the case under consideration,

np
0

np
0

v η η 0=

|η η 0=
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it is only at large distances from the screen (comparable
to R*) that the radial behavior of the potential of the
electron space charge is significantly affected by the
neutralizing plasma current. Consequently, across the
main part of the space charge region, the potential of
the induced electric field decreases with distance from
the screen center according to the vacuum law ϕ =
ϕ0(R0/r).

In order to demonstrate the possible values of the
screen potential at different currents of the injected
beam, Fig. 3 shows the surface potential ϕ0 calculated

10

102101 103 10410–1

102

103

104

1

ϕ, kV

r, m

5

200 3010
Jb, A

10

15
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1

2

Fig. 2. Electric potential ϕ vs. radial coordinate r across the
space charge region.

Fig. 3. Screen potential ϕ0 vs. injected current Jb for the

background plasma density  = (1) 10 and (2) 1 cm–3.np
0
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as a function of the current Jb for two background

plasma densities:  = 10 cm–3 (curve 1) and  =
1 cm–3 (curve 2). In both cases, the plasma temperature
was set equal to 1 eV. As may be seen, the screen poten-
tial increases essentially linearly with beam current. At

the background plasma density  = 10 cm–3, the sur-
face potential at which the relativistic motion of the
electrons of the neutralizing plasma current becomes
important (eϕ0 i 200 keV) is reached at a beam current

of about Jb i 1.3 A. In the case  = 1 cm–3, relativistic
effects should be taken into account at beam currents
Jb i 0.4 A.

5. CONCLUSION

The main results of the present work can be summa-
rized as follows.

(i) A kinetic approach has been developed to solve
the problem of determining the plasma particle distri-
butions and the electric field induced in the vicinity of
a conducting spherical body that is at rest in a collision-
less plasma and at the surface of which there is a pre-
scribed sink of negative charge. The formulation of the
problem takes into account the possibility of charging
the body to the potential at which the electron velocity
in the neutralizing plasma current are comparable with
the speed of light.

(ii) A general integrodifferential equation has been
obtained that describes the radial behavior of the elec-
tric field potential in the vicinity of the injector.

(iii) A simplified method for determining the elec-
tric potential in the perturbed plasma region has been
developed. The method implies that the problems of the
potentials in a space charge region of radius R* (at
which the potential ϕ* is prescribed) adjacent to the
body and in the outer region r > R* are solved sepa-
rately and then the solutions obtained are matched at
the boundary between these regions. It is shown that,
under certain restrictions on the parameters R*, ϕ*, R0,
and ϕ0, the general integrodifferential equation for the
electric potential in the space charge region can be sig-
nificantly simplified; specifically, it can be reduced to a
second-order ordinary differential equation that gener-
alizes the corresponding familiar equation from [5] to
the case of relativistic motion of the electrons of the
neutralizing plasma current.

(iv) Results have been presented from numerical
calculations of the electric field induced in the vicinity
of a spherical screen system for neutralizing a SV
injecting a steady relativistic electron beam. The calcu-
lated results show that, for background plasma densi-

ties of about  ~ 1–10 cm–3, which are characteristic
of plasma conditions near high-altitude SVs, the

np
0

np
0

np
0

np
0

np
0
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motion of the electrons of the neutralizing plasma cur-
rent becomes relativistic at comparatively low beam
currents, Jb i 0.1–1 A.
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Abstract—The propagation of MHD plasma waves in a sheared magnetic field is investigated. The problem is
solved using a simplified model: a cold plasma is inhomogeneous in one direction, and the magnetic field lines
are straight. The waves are assumed to travel in the plane perpendicular to the radial coordinate (i.e., the coor-
dinate along which the plasma and magnetic field are inhomogeneous). It is shown that the character of the sin-
gularity at the resonance surface is the same as that in a homogeneous magnetic field. It is found that the shear
gives rise to the transverse dispersion of Alfvén waves, i.e., the dependence of the radial component of the wave
vector on the wave frequency. In the presence of shear, Alfvén waves are found to propagate across magnetic
surfaces. In this case, the transparent region is bounded by two turning points, at one of which, the radial com-
ponent of the wave vector approaches infinity and, at the other one, it vanishes. At the turning point for magne-
tosonic waves, the electric and magnetic fields are finite; however, the radial component of the wave vector
approaches infinity, rather than vanishes as in the case with a homogeneous field. © 2002 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

In this paper, we study the resonant excitation of
Alfvén waves in an inhomogeneous plasma. The phe-
nomenon of Alfvén resonance is of fundamental impor-
tance in the physics of wave processes in the magneto-
sphere [1, 2]. At present, there are numerous observa-
tions indicating the resonance excitation of Alfvén
modes by fast magnetosonic (FMS) waves arriving
from the outer layers of the magnetosphere or from
interplanetary space [3]. This involves the excitation of
Alfvén waves in which the magnetic field lines execute
azimuthal oscillations (these waves are usually referred
to as toroidal). At the same time, there are Alfvén waves
that are characterized by radial oscillations of the mag-
netic field lines (poloidal oscillations). The origin of
these waves is still poorly understood [4]. When study-
ing hydromagnetic waves in an inhomogeneous
plasma, we will focus mainly on magnetospheric
issues. We note, however, that Alfvén resonance is a
more universal phenomenon. For example, it was
invoked to explain solar corona heating [5] and to
develop new methods for plasma heating in fusion
devices [6–9]. The character of the models used in this
study makes it possible to easily extend our results to
Alfvén resonances in these and other branches of phys-
ics.

In the simplest model in which the plasma is
assumed to be inhomogeneous in one direction and the
magnetic field lines are straight and mutually parallel,
the Alfvén resonance implies that FMS waves arriving
from the outer layers of the magnetosphere excite an
Alfvén mode near the surface at which the wave fre-
quency ω is equal to the local Alfvén frequency ΩA =
1063-780X/02/2804- $22.00 © 20335
k||A(x), where A is the Alfvén velocity [1, 2]. A large
number of studies were devoted to the development of
the theory of Alfvén resonance with the use of more
complicated (but, at the same time, more realistic)
models. Thus, it was shown that Alfvén resonance also
occurs in a two-dimensional model that takes into
account the curvature of the magnetic field lines and the
inhomogeneity of the background plasma in the direc-
tion of the magnetic field [10–16]. Furthermore, the
field line curvature gives rise to a specific transverse
dispersion of Alfvén waves, i.e., the dependence of the
radial component of the wave vector on the Alfvén
wave frequency [16]. In this case, the waves propagate
across the magnetic shells. Taking into account the
finite plasma pressure and equilibrium current in a
magnetic field with curved field lines leads to an even
more drastic change of the transverse dispersion law for
hydromagnetic waves [17].

When the problem is treated in a two-dimensional
model, some of the factors related to inhomogeneity are
often ignored. This naturally brings up the question as
to whether these factors can significantly contribute to
the overall picture of the process. In recent paper [18],
attention was drawn to one of the factors that was pre-
viously disregarded—the magnetic field shear caused
by the current flowing along the magnetic field. Since
field-aligned currents are a rather common phenome-
non in the magnetosphere [19], it is worthwhile to take
magnetic shear into account in order to gain a compre-
hensive insight into the physics of MHD waves in the
magnetosphere. Up to the present time, much attention
has been given to the effect of shear on the plasma sta-
bility (see, e.g., [20]). In our study, the problem is for-
002 MAIK “Nauka/Interperiodica”
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mulated in a different way: we investigate the structure
of the wave field at a fixed wave frequency ω. Note that
many authors treated the wave structure near the reso-
nance surface without allowance for shear (see, e.g., [1,
2, 11]). In this paper, we investigate the wave structure
not only in the vicinity of the resonance, but also in the
entire plasma volume.

The paper is organized as follows. In Section 2, we
introduce the coordinate system and specify the equi-
librium plasma parameters. In Sections 3 and 4, we
derive an equation describing the structure of a wave
traveling in the plane parallel to the magnetic field lines
and study the character of the wave field at the singular
points. Section 5 is devoted to the study of the wave
structure. The results obtained are summarized in Sec-
tion 6.

2. EQUILIBRIUM STATE
AND COORDINATE SYSTEM

To ascertain how shear can influence the structure of
the wave field, we investigate a relatively simple model
in which all the equilibrium parameters depend only on
one coordinate x, imitating the radial coordinate in the
magnetosphere. The magnetic field lines are straight
and lie in the (y, z) plane. At a given coordinate x, the
magnetic field lines are parallel to each other; however,
the angle between the field lines and the z-axis depends
on the x coordinate (the field lines rotate about the
x-axis). One-dimensional models similar to that
employed in this study are widely used to investigate
MHD waves in the Earth’s magnetosphere and the res-
onance heating of space and laboratory plasmas,
whereas the plasma stability is usually examined in

x

A(x)

0

τ(x)

x
0

(a)

(b)

Fig. 1. (a) Profiles of τ(x) for τ' > 0 (solid line) and τ' < 0
(dashed line) and (b) the Alfvén velocity profile A(x).
cylindrical or toroidal geometry. As a shear parameter,
we will use the tangent of the angle between the field
lines and the z-axis,

where B0y and B0z are the components of the ambient
magnetic field B0. The nonzero derivative dτ/dx implies
the presence of magnetic shear.

The plasma is assumed to be cold; therefore, the
equilibrium current with the density J0 = =  × B0 can
only flow along the magnetic field lines; i.e. J0 × B0 =
0. It is easy to see that the current density and the shear
parameter τ are related by 

In this paper, we focus on the study of the wave pro-
cesses in the magnetosphere. The x and y coordinates
imitate, respectively, the radial and azimuthal coordi-
nates in the magnetosphere. The parameter τ(x) and the
Alfvén velocity A(x) are assumed to be monotonic
functions varying on the same scale length L, as is
shown in Fig. 1. It is also assumed that, these functions
tend to constant values as x  ±∞.

3. DERIVATION OF AN EQUATION DESCRIBING 
THE WAVE STRUCTURE ALONG 

THE x COORDINATE

A linear monochromatic MHD wave propagating
through a cold plasma is described by the equation

– (1)

where x(x, y, z) is the vector of the plasma displacement
from the equilibrium position; ω is the wave frequency;
ρ0 is the plasma mass density; and δB and δJ are small
deviations of the magnetic field and current density
from their equilibrium values B0 and J0, respectively.
The magnetic field perturbation δB can be expressed in
terms of the wave electric field E:

(2)

where c is the speed of light. The displacement x can be
found from the frozen-in condition by assuming the
plasma to be perfectly conducting:

(3)

The infinite plasma conductivity also implies that the
wave electric field is perpendicular to field lines,

(4)

αtan
B0y

B0z

-------- τ x( ),= =

J0 B0
τ'

1 τ2+
--------------.=

4πρ0ω
2x J0 δB× δJ B0× ,+=

δB
ic
ω
---- ∇ E× ,–=

x ic
ω
----B0

2– B0 E× .–=

EyB0y EzB0z+ 0.=
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Substituting expressions (2) and (3) into Eq. (1), we
obtain:

where A = B0/  is the Alfvén velocity. We take
the vector product of the above equation with B0 and, in
view of Eq. (4), retain only the transverse components.
As a result, we arrive at the equation

(5)

where κ = J0 · B0/  = τ'/(1 + τ2) is the shear-related
quantity. Thus, we have obtained an equation describ-
ing an MHD wave in a cold plasma in a sheared mag-
netic field. A particular model of the medium described
in the previous section has not yet been used; hence,
Eq. (5) describes an MHD wave in a cold plasma with
an arbitrary magnetic field configuration. Below, we
will apply the above model to examine the propagation
of MHD waves.

We seek the solution to Eq. (5) in the form

which implies that the wave is a traveling wave in the
(y, z) plane. Then, after simple but laborious manipula-
tions, we obtain from Eq. (5) the equation for the Ey

component,

(6)

where the prime denotes differentiation with respect to
x. Here, the following notation is introduced:

(7)

, (8)

where KA = ω2/A2 – , KF = ω2/A2 –  – , and k⊥  =

(ky – τkz)/  and k|| = (kz + τky)/  are the
transverse and longitudinal components of the wave
vector, respectively. If τ' = 0, Eq. (6) reduces to a one-
dimensional equation describing the wave structure in
a cold plasma in a magnetic field with straight parallel
field lines:

(9)

which was derived in [1, 2].

ω2
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4. SINGULAR POINTS

Equation (6) involves singular points xA and xF, at
which the functions a(x) and b(x) become infinite. It is
seen from expressions (7) and (8) that these points sat-
isfy the equations KA(xA) = 0 and KF(xF) = 0; i.e.,

where

To analyze the solution to Eq. (6), we expand KA and KF

in the vicinities of the points xA and xF:

(10)

(11)

In view of expansion (11), Eq. (6) in the limit x  xF

reduces to the equation

(12)

where γ = –τκ  is a quantity related to shear. The solu-
tion to this equation is the function

where Y2(Z) and J2(Z) are the linearly independent solu-

tions to the Bessel equation and Z = . This
solution contains a singularity of the form (x –
xF)2ln(x – xF); i.e., xF is a branch point. Nevertheless,
the function Ey(x) is finite near the point xF . In this
regard, the situation is similar to that in the absence of
shear, when Eq. (9) near the point xF takes the form

(see, e.g., [1]). This equation has the same singular
point xF , but its solution has no singularity. In both
cases (with and without shear), the electromagnetic
field is finite near this point. An important difference
between these cases arises when the WKB approxima-
tion is applied (see the next section).

In the vicinity of the point xA, expansion (10) is valid
and Eq. (6) reduces to

(13)

where β = τκ . The solution to this equation is

ω2 ΩA
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where J0(Z) and Y0(Z) are the linearly independent solu-

tions to the Bessel equation and Z = . As
x ≈ xA, this solution has the following asymptotic repre-
sentation:

i.e. the wave field has a singularity of the same type as
in the absence of shear [1, 2]. Hence, at the point xA,
Alfvén resonance occurs. In view of this, the surface
x = xA will be referred to as the resonance surface. The
functions ΩA(x) for kz @ ky and ky @ kz are plotted in
Fig. 2. It is seen in the figure that, even with a mono-
tonic A(x) profile, there can be several Alfvén reso-
nances, whose number depends on the τ(x) profile and
the relation between the wave vector components ky and
kz. Note that resonance exists even if A(x) = const.
Hence, magnetic shear is an additional factor that,
along with the plasma inhomogeneity, gives rise to
Alfvén resonance. We note that the inequalities Ex @ Ey

and δBx ! δBy hold near the point xA; i.e., the field lines
oscillate in the (y, z) plane. Such oscillations are often
referred to as toroidal pulsations (especially, in publica-
tions on magnetosphere physics).

4β x xF–( )

Ey C1 x xF–( )ln C2,+≈

ΩΑ, ΩP

xxA1 xA2 xA

xA xA1 xA2 xA3 x

ΩΑ, ΩP (b)

(‡)

Fig. 2. Functions (x) (solid line) and (x) (dashed

line) for (a) kz @ ky and (b) ky @ kz. Indices 1, 2, and 3 stand
for different Alfvén resonances at the same frequency ω.

ΩA
2 ΩP

2

5. RADIAL STRUCTURE OF AN MHD WAVE
IN THE WKB APPROXIMATION

When studying the excitation of Alfvén waves in the
magnetosphere, the following scenario is usually con-
sidered: FMS waves arrive from the outer layers of the
magnetosphere, reach the boundary of the transparent
region, and are reflected back; however, their field par-
tially penetrates deep into the magnetosphere and
excites oscillations in the Alfvén resonance region. With
this scenario in mind, we will use, as the boundary con-
dition, the boundedness of the function Ey as x  –∞.
Furthermore, in the case of an inhomogeneous plasma,
we should speak of a single MHD mode, because the
separation of the solution into an Alfvén mode and an
FMS wave is, strictly speaking, rather arbitrary. Never-
theless, by tradition, we will use these terms, trying to
more strictly define them.

To solve Eq. (6) with the boundary condition
|Ey(x  –∞)| < ∞, we will use the WKB approach,
assuming that the inequalities ky @ L–1 and kz @ L–1 are
satisfied, where L is the typical scale length on which
the equilibrium parameters of the medium vary. The
main WKB order gives the radial component of the
wave vector. In the case at hand, we have

(14)

In the next WKB order, we can determine the wave
amplitude as a function of the radial coordinate. In our
analysis, the terms with the first derivative with respect
to the radial coordinate refer just to this order because
they contain a large parameter to the first power.

In the transparent region, we have  > 0. One of the
transparent regions exists even in the absence of shear:
if τ' = 0 and κ = 0, then, from Eq. (14), we obtain a well-

known FMS dispersion relation,  = KF . In the pres-
ence of shear, the FMS transparent region consists of
two separate (but close to each other) regions (Fig. 3b).
One of these regions (to the left of the point xF) is sim-
ilar to the transparent region in the absence of shear
(Fig. 3a). The second region is bounded by the point

where  = 0 and the point xF , where  = ∞; i.e., it
resembles the Alfvén transparent region described
below. Recall that the wave amplitude is finite near the
point xF.

The other transparent region is adjacent to the reso-
nance surface xA(ω). In this transparent region, the
waves have, to a high degree of accuracy, the Alfvén
mode polarization (Ex/Ey = kx/ky). Hence, this region
will be referred to as the Alfvén transparent region. It is
seen from relation (14) that, when ω = ΩA(x), we have

  ∞. Let us introduce the poloidal frequency
ΩP(x), such that, when ω = ΩP(x), the equality kx = 0 is

kx
2 x ω,( ) KF κτ

KA'
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satisfied. Accordingly, the surface xP(ω), on which the
equality ω = ΩP(x) is satisfied, will be referred to as
poloidal, because, near the point xP, the inequality
kx ! ky holds and, consequently, we have Ex ! Ey and
δBx @ δBy . The second of the last two inequalities sug-
gests that the field lines oscillate in the radial direction;
i.e., the oscillations are poloidal in character. At large
values of ky and kz, it is easy to obtain from relation (14)
the difference between the poloidal and resonance fre-
quencies,

where k2 =  +  and q = τκ . The distance
between the poloidal and resonance surfaces is deter-
mined by the expression

The function ΩP(x) is plotted in Fig. 2. It is seen in
the figure that ∆ ! L. In the vicinities of the resonance
and poloidal surfaces, relation (14) takes a simpler
form:

(15)

This formula can be regarded as a dispersion relation
for Alfvén waves in the presence of magnetic shear in a
plasma whose parameters vary along one coordinate.
The dependence kx(ω) indicates the emergence of the
transverse dispersion of Alfvén waves. As is known, the
dispersion relation for the Alfvén mode in a homoge-

neous plasma is ω2 = A2. The dependence of the
transverse component of the wave vector on the fre-
quency appears when nonideal MHD effects (such as
the electron inertia and the effects related to the finite
ion Larmor radius) are taken into account. We can see
that, even in an ideal one-fluid magnetohydrodynamics,
the transverse dispersion arises if magnetic shear is
taken into account. It should be noted that the trans-
verse dispersion similar to that described by Eq. (15)
was found for waves in a two-dimensional plasma in a
magnetic field with curved field lines [16], whereas, in
our model, the magnetic field lines are straight and the
plasma is inhomogeneous along one direction.

The profiles of (x) outside the FMS transparent
region (i.e., at x < xF) are plotted in Fig. 4. The plots
illustrate the arrangement of the transparent regions for
Alfvén waves under different assumptions about the
ambient medium. It is seen in the figure that there are
generally several such regions. Let us consider Fig. 4a
in more detail, where only one Alfvén transparent
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region is present. If ky, kz @ L–1, then, in this region and
around it, Eq. (6) can be brought to the form

(16)

Near the Alfvén resonance, this equation can be even
more simplified [see Eq. (13)]. Near the poloidal point,
it reduces to the Airy equation. To solve Eq. (6), the
WKB solutions must be matched with the solutions
near the points xA , xP, and xF . Omitting intermediate
manipulations, we give the final solution. In accordance
with the boundary condition, in the opaque region (at
x ! xA), we have

(here and below, we will not give the expressions for
the constants because they are rather unwieldy). In the
Alfvén transparent region (i.e., at xA < x < xP), the wave
is described by the expression

i.e., it is a traveling wave propagating across magnetic
shells. In this case, the wave phase velocity is directed
along the x-axis (v ph > 0) and the group velocity, as is
seen from relation (15), is directed from the poloidal
surface toward the resonance surface. Note that this is a
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Fig. 3. Profiles of (x) near the xF point (a) without and

(b) with shear.
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general result, irrespective of the relative positions of xP

and xA; i.e., we always have v ph > 0, and the group
velocity is always directed toward xA . As the wave
propagates, its radial wavelength decreases and the
character of the mode polarization also changes. At
x ≈ xP, the wave is poloidally polarized (Ey @ Ex and
δBy ! δBx), whereas at x ≈ xA, it is toroidally polarized
(Ey ! Ex and δBy @ δBx). Near the points xP and xA, the
applicability conditions of the WKB approximation fail
to satisfy and the structure of the wave is described in
terms of the functions obtained by solving Eq. (16) near
these points:

where K0 is the modified Bessel function,  is the
Hankel function, and Ai is the Airy function. The con-
stants are obtained by matching these solutions with the
WKB solutions. Finally, in the FMS transparent region,
we have a standing wave; thus, at x @ xF , we obtain
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Fig. 4. Profiles of (x) at x < xF for the cases of (a) one,

(b) two, and (c) three resonances. Indices 1, 2, and 3 stand
for the Alfvén transparent regions adjacent to the different
Alfvén resonances shown in Fig. 2.
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Note that the penetration of an FMS wave beyond the
transparent region slightly affects the structure of this
mode (see also [21]).

Such a structure of an MHD wave generally corre-
sponds to the conventional propagation scheme of low-
frequency waves in the magnetosphere, as was
described at the beginning of this section. However, the
situation with the Alfvén transparent region differs rad-
ically from that in the absence of shear [1, 2] (in the lat-
ter case, the wave is a solitary resonance and there is no
poloidal surface). On the other hand, it resembles a sit-
uation considered in [16, 17]. In that case, the waves
also propagate across the magnetic shells; however, this
is related to the curvature of magnetic field lines.

6. CONCLUSION

(i) An equation describing the electric field of a
wave propagating in a cold plasma in a sheared mag-
netic field has been derived. The equation holds for any
magnetic field configuration. A particular case of a
wave traveling in the plane parallel to the magnetic field
lines has been examined assuming that the plasma is
inhomogeneous along one direction and the magnetic
field lines are straight.

(ii) It has been shown that, on the magnetic surfaces

where the condition ω2 = A2  is satisfied, there are
logarithmic singularities similar to that in the absence
of shear. Thus, we can state that the Alfvén resonances
occur just on these surfaces. In a sheared magnetic field
(unlike the case without magnetic shear), there can be
several Alfvén resonances at a fixed frequency even if
the Alfvén velocity A(x) has no local extrema. The
number of resonances depends on the τ = τ(x) profile
and the relation between the wave vector components ky

and kz. It has been shown that the Alfvén resonance
exists even if A(x) = const. This suggests that shear is
one of the factors (along with the plasma inhomogene-
ity) that gives rise to Alfvén resonance.

(iii) It has been shown that, at the turning point for
magnetosonic waves, the equation possesses a singular-
ity. At this point, the solution is finite, but has a branch-
ing singularity.

(iv) It has been established that the presence of shear
gives rise to the transverse dispersion of Alfvén waves,
i.e., the dependence of the radial component of the
wave vector on the wave frequency ω. This phenome-
non has no analogue in the case of a magnetic field with
straight parallel field lines and a plasma that is inhomo-
geneous along one direction. However, transverse dis-
persion can also arise due to the field line curvature [16]
or the finite plasma pressure [17]. The presence of shear
also slightly changes the FMS dispersion law; however,
this change does not play an important role because
this  mode has a significant transverse dispersion

(  = ω2/A2(x) –  – ) even in the absence of shear.

k ||
2

kx
2 ky

2 kz
2
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(v) The wave structure has been studied in the model
in question. It is shown that the MHD mode has two
transparent regions. The first region, corresponding to
small values of the Alfvén velocity, refers to FMS
waves. In this region, the mode is a standing wave
occurring between magnetic shells. The second trans-
parent region is adjacent to the Alfvén resonance sur-
face and, thus, can be called the Alfvén region. This
region is bounded by the Alfvén resonance surface on
the one side and the poloidal surface (kx = 0) on the
other side. Within this transparent region, the mode is a
traveling wave and the energy of the wave is trans-
ported from the poloidal surface to the resonance sur-
face. This situation differs radically from that with
straight parallel field lines [1, 2], in which case an
Alfvén wave is a solitary resonance and there is no
poloidal surface. However, it resembles a situation in
which a similar phenomenon is caused by the curvature
of magnetic field lines [16, 17].
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Abstract—The motion of a charged particle in a dipole magnetic field is considered using a quasi-adiabatic
model in which the particle guiding center trajectory is approximated by the central trajectory, i.e., a trajectory
that passes through the center of the dipole. A study is made of the breakdown of adiabaticity in the particle
motion as the adiabaticity parameter χ (the ratio of the Larmor radius to the radius of the magnetic field line
curvature in the equatorial plane) increases. Initially, for χ * 0.01, the magnetic moment µ of a charged particle
undergoes reversible fluctuations, which can be eliminated by subtracting the particle drift velocity. For χ * 0.1,
the magnetic moment µ undergoes irreversible fluctuations, which grow exponentially with χ. Numerical inte-
gration of the equations of motion shows that, during the motion of a particle from the equatorial plane to the
mirror point and back to the equator in a coordinate system related to the central trajectory, the analogue of the
magnetic moment µ is conserved. In the equatorial plane, this analogue undergoes a jump. The long-term par-
ticle dynamics is described in a discrete manner, by approximating the Poincaré mapping. The existence of the
regions of steady and stochastic particle motion is established, and the boundary between these regions is deter-
mined. The position of this boundary depends not only on the adiabaticity parameter χ but also on the pitch
angle. The calculated boundary is found to agree well with that obtained previously by using the model of a
resonant interaction between particle oscillations associated with different degrees of freedom. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

An effective, generally accepted method for investi-
gating particle dynamics in magnetic fields is that pro-
vided by the adiabatic (drift) theory [1–3], which
implies that, under certain circumstances, the compli-
cated motion of a particle can be described as the super-
position of two independent motions: the particle
cyclotron gyration and the motion of the instantaneous
center of this gyration, i.e., the particle guiding center
(GC) motion. The guiding center moves along mag-
netic field lines and, in the case of a nonuniform mag-
netic field, drifts across the magnetic field. In a moving
coordinate system (CS) related to the GC, the particle
trajectory is almost circular, in which case the first adi-
abatic invariant (the magnetic moment) is conserved,

(1)

where m is the mass of a particle, V is its velocity, the
pitch angle α is the angle between the vectors V and B
(the magnetic field strength at the GC). The conven-
tional applicability conditions for the validity of the
adiabatic theory are

(2)

where ρ = V/ω is the gyroradius, ω = eB/mc is the
gyrofrequency, e is the charge of a particle, and c is the

µ mV
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speed of light. According to [4], it is more correct to
rewrite the first of conditions (2) in terms of the adiaba-
ticity parameter χ = χ/Rc (where Rc is the radius of cur-
vature of a magnetic field line in the region where the
field strength is minimum), specifically, χ ! 1. In fact,
this condition indicates that a particle makes each Lar-
mor revolution in a uniform field. However, as the par-
ticle energy increases, this condition is inevitably vio-
lated (e.g., due to the increase in ρ). It therefore seems
worthwhile to analyze the limit of applicability of the
adiabatic theory and the methods for describing particle
motions near this limit. This will be done below for par-
ticle motion in a dipole magnetic field by using the
quasi-adiabatic model that has been developed by the
authors in recent years [5–7].

2. FORMULATION OF THE PROBLEM

The magnetic field of a dipole that is placed at the
origin of a Cartesian CS and whose magnetic moment
M is oriented antiparallel to the z-axis has the compo-
nents

Bx 3xz
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The steady-state problem of the motion of a charged
particle in such a field was first formulated and solved
in a general form by Stormer [8], who obtained the sec-
ond integral of motion (the generalized angular
momentum) and showed the existence of allowed and
forbidden regions of motion. Under certain conditions,
there exists an internal allowed region, namely, a dipole
trap, in which a particle executes finite motion [9]. In
this region, the relationship that is usually called the
Stormer integral and corresponds to the second integral
of motion can be written in the following form [5–7]:

(3)

where r is the position vector of the particle, S =

 is the Stormer length unit, and λ =

 is the latitude measured from the equato-
rial plane of the dipole. The dimensionless Stormer
constant γ, which is directly proportional to the angular
momentum and is larger than unity for finite motion
(γ > 1), is calculated from the particle parameters in
accordance with relationship (3). The angles α and ϕ
are defined in an orthogonal local coordinate system
(LCS) with origin at the instantaneous position of the
particle. The unit vector e3 is defined by the vector B
[6, 7]:

The phase ϕ is determined by the projection of the vec-
tor V onto the plane (e1, e2) and is measured from e2, in
which case the value ϕ = π/2 corresponds to the direc-
tion of the azimuthal drift of a positively charged parti-
cle. In the LCS, the particle velocity V is equal to

Note that, by virtue of the axial symmetry of the prob-
lem, Eq. (3) completely (correct to a rotation about the
z-axis) determines the phase trajectory of a particle, and
the components of the velocity vector (as well as of any
other vector) are determined by its absolute value and
by the angles α and ϕ.

In a dipole magnetic field, the adiabaticity parame-
ter χ can be defined [10] as the ratio of the gyroradius
ρ to the radius Rc = re/3 of the magnetic field line cur-
vature in the equatorial plane (here, re is the distance
from the field line in this plane). Setting λ = 0 and
sinα = 0 (or sinϕ = 0) in Eq. (3), we can show that
χγ2 = 0.75; i.e., the value of χ is calculated from the
integral of motion and, consequently, is constant along
the entire particle trajectory.
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In the absence of an electric field, the motion of a
charged particle in a magnetic field is described by the
Lorentz equation

(4)

Note that, in the case at hand, the total particle energy
and, accordingly, the relativistic particle mass remain
unchanged, so that there is no need to consider relativ-
istic effects.

We investigated the particle dynamics by integrating
Eq. (4) numerically using a fourth-order Runge–Kutta
method supplemented with the standard techniques for
controlling the accuracy of calculations and the conser-
vation of the integrals of motion—the energy and the
Stormer constant γ. An analysis of the computational
results shows that, even for χ * 0.01, the pitch angle
should be calculated with allowance for the azimuthal
drift of the GC, whose velocity in the equatorial plane
is equal to

(5)

For χ * 0.1, the deviation of the GC trajectory from the
magnetic field line cannot be explained exclusively in
terms of the azimuthal drift [7]. Retaining next-order
terms in the expansion of the adiabatic invariant in
powers of χ leads to fairly lengthy expressions [6], but
even these expressions do not ensure that the invariant
is conserved as χ increases.

Figure 1 shows the magnetic moment µ calculated
from expression (1) for two different values of χ. Sig-
nificant fluctuations of µ are associated primarily with
the particle gyration. This conclusion is confirmed by
the circumstance that fluctuations are synchronous with
the change in the phase ϕ. Note that the fluctuations of
µ are most intense in the region of the weakest mag-
netic field. This seemingly paradoxical result is
explained as being due to the fact that the breakdown of
adiabaticity in the particle motion is associated with the
ratio ρ/Rc rather than with the quantities B and gradB.
The local value of this ratio is maximum precisely near
the equatorial plane and decreases substantially with
distance from the equator, as does the drift velocity,
whose dependence on the latitude has the form

(6)

For χ = 0.12, the fluctuations are almost completely
reversible and the magnetic moment µ takes on the
same values at the mirror points. For χ = 0.30, the mag-
netic moment µ undergoes not only reversible but also
irreversible fluctuations, which change the magnetic
field strength at the mirror points.
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Fig. 1. Change in the magnetic moment µ (dashed curves)
and in the quasi-magnetic moment µ* (solid curves) over
one-half of the bounce period for χ = (1) 0.3 and (2) 0.1.
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Fig. 2. Latitude dependence of (1) the pitch angle α and
(2) the phase ϕ along the direct CT (dashed curves) and
along the GC trajectory (solid curves) for χ = 0.30.
3. QUASI-ADIABATIC MODEL

Based on the analysis of the results of our numerical
simulations, we developed a quasi-adiabatic model of
particle motion, which adequately describes particle
dynamics in the range 0.1 < χ < 0.75, i.e., over the
entire region of finite motion. The basic assumptions of
the model can be formulated as follows.

(i) In a dipole trap, the character of particle motion
is governed primarily by the adiabaticity parameter χ.

(ii) The best model of the particle GC trajectory is
the central trajectory (CT)—a part of the particle tra-
jectory that is between the dipole and the equatorial
plane and passes through the dipole center along the
magnetic field line r = recos2λ, in which case we have
2γre = S. When moving along the CT, a particle under-
goes no obvious cyclotron gyration, because its veloc-
ity component in the direction of the unit vector e1 of
the LCS is essentially equal to the velocity of its drift
motion around the dipole. Figure 2 shows how the pitch
angle and phase of a particle change along the CT. The
phase of the particle deviates from π/2 because its
radial velocity is nonzero. It is necessary to distinguish
between the CT toward the dipole (the direct CT) and
the CT outward from the dipole (the reverse CT): along
the direct CT, we have ϕ1 > π/2 (the CT approaches the
magnetic field line), while, along the reverse CT, we
have ϕ2 < π/2 (the CT departs increasingly from it). For
the above χ value, the direct and reverse CTs are, in par-
ticular, symmetric at an arbitrary latitude such that ϕ1 +
ϕ2 = π. The particle trajectory that passes through the
dipole center has peculiar properties only in the region
between the dipole and the equatorial plane; in the
opposite hemisphere, the trajectory becomes twisted
and does not reach the dipole (see Fig. 1 from [7]). The
departure of the CT from the magnetic field line is max-
imum in the equatorial plane and tends to zero as the
dipole is approached [7]:

(7)

where r(λ) is the instantaneous distance from the CT, re

corresponds to the field line along which the CT passes
when approaching the dipole, and the function f(λ) is
given by formula (6). In numerical simulations, the role
of the CT was played by the trajectory of a particle
injected from the region near the dipole center along the
field line, i.e., at the pitch angle α = 0.

The values of the parameters α0 and ϕ0 of the CT in
the equatorial plane (Fig. 3) depend only on χ. For
0.08 < χ < 0.75, these values are approximated by the
expressions

(8)
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For χ > 0.1, the CT is such that  ≠ 0, which

results in the inequality ϕ0 ≠ π/2. Consequently, the
function describing the matching of the direct and
reverse CTs in the equatorial plane has a discontinuous
(rather than continuous) derivative in this plane. The
angle δ (given in degrees) between the tangents to the
direct and reverse CTs is equal to

(10)

(iii) Along the particle trajectory from the equatorial
plane to the mirror point and back to the equator, the
analogue of the magnetic moment,

(11)

is conserved to a high degree of accuracy. In what fol-
lows, we will call this analogue the “quasi-magnetic
moment.” We will also use the term “quasi-pitch angle”
for the angle α* between the vector V and the straight
line that is tangent to the CT with the same χ value at
the same latitude and whose direction corresponds to
particle motion along the direct or reverse CT. The
quasi-pitch angle is calculated from the relationship

(12)

where the subscript zero stands for the values of the
quantities at the CT and B is the magnetic field strength
at the position of the particle. Figure 1 shows the behav-
ior of the quasi-magnetic moment calculated from
expression (11) for the same particles for which the
conventional magnetic moment µ was previously deter-
mined from expression (1). We can see that, between
the equatorial plane and the mirror point, the quasi-
magnetic moment µ* remains essentially constant.

Figure 4 shows how the parameters of the particle
with χ = 0.30 at the equator change over the period of
longitudinal bounces. In simulations, the particles
injected from the equatorial plane were divided into
two ensembles. The particles in the first ensemble are
injected at the same pitch angle, α = 12°, and are dis-
tributed uniformly over the phase ϕ (curve 1). At the
mirror points, the magnetic field strength Bm for the par-
ticles from this ensemble differs by more than one order
of magnitude. In the equatorial plane, the reflected par-
ticles are randomly distributed over a wide range of α
and ϕ values (Fig. 4 presents only a part of the particles
from the first ensemble, namely, those in the ranges 0 <
α < 40° and 0 < ϕ < 180°).

The particles in the second ensemble are injected at
the constant quasi-pitch angle α* = 12° (measured from
the direct CT with the same χ value) and are uniformly
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Fig. 3. Parameters of the CT in the equatorial plane: (1) the
phase ϕ for the direct CT, (2) the phase ϕ for the reverse CT,
and (3) the pitch angle α for the direct and reverse CTs.
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Fig. 4. Change in the parameters of the particle with χ =
0.30 during its motion from the equatorial plane to the mir-
ror point and back. Dashed curve 1 indicates the initial posi-
tions of the particles with α = 12°, and the crosses show
their final positions. The initial positions of the particles
with α* = 12° are represented by curve 2, and their final
positions are shown by closed circles. Points 3 and 4 indi-
cate the positions of the direct and reverse CTs, respec-
tively.
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distributed over the initial gyrophase angle φi (where i
is the number of the particle), which is related to ϕ by

(13)

The injection points so defined are represented by curve 2
in Fig. 4. At the mirror point for the particles from the
second ensemble, the magnetic field strengths Bm differ
by no more than fractions of a percent. In the equatorial
plane, the reflected particles form a nearly perfect circle
with the same value of the quasi-pitch angle α*, which
now is measured from the reverse CT (corresponding to
particle motion outward from the dipole).

When moving either toward or away from the
dipole, the particles injected at the same α* (and,
accordingly, µ*) values describe perfect circles not
only in the equatorial plane but also at any latitude up
to the mirror point. This circumstance makes it possible
to determine from relationship (12) such values of α0
and ϕ0 for the centers of these circles at which the dis-
persion of the α* values about their ensemble average
is minimum. The full set of these centers at different
latitudes can be legitimately regarded as the GC trajec-
tory for the particle ensemble under investigation. The
GC trajectory that refers to Fig. 2 and is associated with
an ensemble of the particles whose initial positions are
shown in Fig. 4 deviates considerably from a magnetic
field line. For a given χ value, the pitch angle along the
GC trajectory and along the CT with the corresponding
direction obeys essentially the same latitude depen-
dence; for the phase, this is true only on the average.
The fluctuations of ϕ, and, in particular, their growth
with λ, stem from the fact that ϕ was calculated from
formula (12), which produces large errors in the limit
α0  0. In the first approximation, the GC trajectories
with different α* values in the equatorial plane coin-
cide at a given χ value.

Hence, it is the CT that defines the desired moving
coordinate system, in which the magnetic moment (or,
more precisely, the quasi-magnetic moment) of a gyrat-
ing charged particle is conserved. In particular, the
drift-induced parts of the deviations of the GC trajec-
tory and the CT from a magnetic field line cancel one
another (in which case the CT itself is not a plane curve
because of the particle drift).

Note that, in the presence of an absorbing sphere
around a dipole (as is the case in, e.g., a geomagnetic
trap), there is a loss cone for a group of particles that are
reflected at magnetic field strengths Bm larger than a
certain value. The axis of the loss cone is not a magnetic
field line but rather a tangent to the CT. In turn, the CT
itself can be regarded as a limiting (at α*  0) trajec-
tory for an ensemble of particles reflected at the same
magnetic field strength Bm .

(iv) When the particle crosses the equatorial plane,
the quasi-magnetic moment µ* undergoes a jump
(Fig. 1) because the GC trajectory has a break related to

φisin
ϕ i ϕ0–( ) α0sinsin

α i*sin
-------------------------------------------.=
the transition from the CS associated with the reverse
CT to that associated with the direct CT. It is for this
reason that the quasi-pitch angle α* and, consequently,
the quasi-magnetic moment µ* change in a jumplike
manner as a particle crosses the equatorial plane. The
mean jump ∆µ* is determined by the angle δ [see for-
mula (10)] between the tangents to the direct and
reverse CTs and increases exponentially with χ. For
each individual particle, the jump ∆µ* depends on the
relative position of the particle with respect to the direct
CT [11], i.e., on the phase of the particle in the equato-
rial plane. In fact, Fig. 4 shows that particles with the
same value of α* measured from the reverse CT have a
significant spread in the values of α* measured from
the direct CT. That is why this ensemble of particles
subsequently spreads out over a wide range of α and ϕ
values.

(v) The jump in the magnetic moment obtained ana-
lytically by Il’in and Il’ina [12] for a particle moving
between the mirror points depends not only on χ but
also on α:

where

(14)

Numerical experiments yield an analogous result: the
reversible fluctuations of µ* are minimum if the trajec-
tory of the GC of a particle with the quasi-pitch angle
α* is modeled by a CT corresponding to the effective
value

(15)

in terms of the χeff value in the equatorial plane. The
dependence of χeff on α stems from the fact that,
according to expression (5), the drift velocity, in turn,
depends on α, or, more precisely, on α*.

(vi) The phase accumulation ∆φ during the motion
of a particle from the equatorial plane to the mirror
point and back to the equator depends not only on χ and
α* but also on the initial phase φ of cyclotron gyration.
For χ = 0.1–0.3 and for pitch angles of about 10°, the
particle makes several tens of Larmor revolutions over
one-half of the bounce period, in which case the mean
phase accumulation in terms of α* and χ is equal to [7]

(16)

In addition, the mean phase accumulation undergoes
variations with an amplitude of at most a few percent,
which depend on the initial value of the phase φ mea-
sured in the CS associated with the direct CT. The
numerically calculated value of ∆φ(φ) is shown in
Fig. 5, where ∆φ is measured from the phase of the par-

∆µ
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ψ α( )
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χeff α∗( ) χψ 0( )/ψ α∗( )=
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ticle that was injected with the phase φ = 0. The func-
tions  and ∆φi are seen to be in antiphase. Curve 3 is

the plot of the function α*(φ) =  + k∆φ(φ), where the
quantities  and k were determined from the computed
values of  by the least squares method. The ampli-
tude of ∆φ increases with increasing χ and decreasing
α*.

(vii) The residual fluctuations of µ*, as well as the
φ-dependent variations of the phase accumulation ∆φ,
can be described by the following approximate expres-
sion for the fluctuations of α*:

(17)

Of course, this representation simplifies the corre-
sponding dependence shown in Fig. 5, but, on the other
hand, it significantly reduces the number of adjustable
parameters.

Note that the above model is adequate at quasi-pitch
angles ranging to approximately 30°. In our opinion, at
larger quasi-pitch angles, it is necessary to take into
account the difference between the drift velocities of
the particles moving along the CT and those moving
along other trajectories. In fact, the drift velocity (5) of
a particle on the CT in the equatorial plane is approxi-
mately equal to Vd ≈ χV, which is also true for particles
with small α* values. However, for α*  π/2, we
have Vd ≈ 0.5χV, which restricts the applicability region
of the CT approach when modeling the GC trajectory.

For χ  0, the quasi-adiabatic model gradually
passes over to the traditional adiabatic model, in which
case the CT asymptotically approaches the magnetic
field line [see formula (7)].

4. MAPPING WITH THE CT

In the quasi-adiabatic model, reversible fluctuations
of the quasi-magnetic moment µ* can be reduced to
nearly zero and irreversible fluctuations can be reduced
to the jump ∆µ* in the equatorial plane of a dipole trap.
Such a piecewise constant behavior of the conserved
quantity µ* makes it possible to pass over in a natural
way to a discrete model of particle motion, specifically,
a model based on the mappings that approximate the
Poincaré mapping. The approximating mapping is
constructed in the equatorial plane using the pitch angle
α–phase ϕ variables in the LCS. In addition, we use the
quasi-pitch angle α*–gyrophase φ variables in the coor-
dinate system associated with the direct CT (CSCT1)
and in the coordinate system associated with the reverse
CT (CSCT2).

The successive steps in the iterative procedure for
constructing the mapping are as follows.

α i*

α̃
α̃
α i*

∆α∗ 1.25χ0.753 0.524/χ–( ) α∗sin
1.09

exp=

× 1 α∗sin
1.258

–( ) 2φ/ α∗ .cossin
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(i) Let the particle coordinates be specified in the
LCS: αi and ϕi (where i = 1, …, N is the number of the
iteration step).

(ii) The coordinates (α0)1 and (ϕ0)1 of the origin of
the CSCT1 in the LCS and the quasi-pitch angle  are
determined from the solution to Eqs. (8), (9), (12), and
(15).

(iii) The coordinates φi in the CSCT1 are calculated
from relationship (13).

(iv) According to the quasi-adiabatic model, the par-
ticle that starts from the equatorial plane at the angles

 and φi in the CSCT1 will be reflected and will reach

the equator at the angles  and φi + 1 in the CSCT2:

where ∆  and ∆φi are determined from expressions
(17) and (16), respectively.

(v) The coordinates of the origin of the CSCT2 are
determined from  using Eqs. (8), (9), and (15), in

which case (ϕ0)2 = π – (ϕ0(χeff( )).

(vi) Finally, the coordinates αi + 1 and ϕi + 1 in the LCS
are calculated from relationships (12) and (13). Then, the
procedure may be repeated starting with step (i).

This iterative procedure, although fairly involved,
provides single-valued mappings and can be imple-
mented as a computer algorithm. Simulations of parti-
cle dynamics with the help of computer programs
implementing this algorithm showed that the particles
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Fig. 5. Dependence of (1) the phase accumulation ∆φ and
(2) the quasi-pitch angle α* on the initial phase φ over one-
half of the bounce period for χ = 0.273 and α* = 10°.
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Fig. 6. Phase diagrams of the particles for χ = 0.18. The circles and crosses are for the particles in the states of stable and stochastic
motions, respectively.

Fig. 7. Dependence of the quasi-pitch angle α* on the number N of the iteration step. Curves 1 and 2 are for the states of stable and
stochastic motions, respectively.
keep their state of motion even after 106 iterations.
There are two states of particle motion: the stochastic
state, in which the quasi-pitch angle α* and, accord-
ingly, the quasi-magnetic moment µ* change in a jum-
plike manner from one iteration step to another, and the
stable state, in which the quasi-pitch angle α* is con-
served. Figure 6 shows the phase diagrams of two par-
ticles with χ = 0.18 in these two states of motion. Fig-
ure 7 shows the time dependence of the quasi-pitch
angle for these particles, specifically, the dependence of
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α* on the number N of the iteration step, i.e., on time
(shown are the points obtained after every 50 itera-
tions).

In the range 0.1 < χ < 0.3, the boundary between
these states of motion is described by the approximate
expression

(18)

The width of this boundary is determined by the spread
in the initial φ values and does not exceed 1°.

The mapping constructed is not canonical because

its Jacobian is  ≠ 1. In our opinion, this

stems from the approximate character of the mapping.
On the other hand, an analysis of the long-term dynam-
ics of the parameters α* and φ shows that the phase vol-
ume occupied by the particle is essentially conserved.

We emphasize that it is precisely by using the effec-
tive value χeff of the adiabaticity parameter and by tak-
ing into account the modulation of α*(φ) [see expres-
sion (17)] that we were able to construct a stable map-
ping, i.e., to achieve the situation in which the particles
keep their state of motion for a long time.

5. RESONANT PROCESSES

That the magnetic moment µ in a magnetic trap is
not conserved is explained, according to [4], by the res-
onant interaction between particle oscillations associ-
ated with different degrees of freedom, primarily,
between cyclotron gyration and longitudinal bounces
of the particles. These resonant processes were consid-
ered in [13] for a dipole trap under the assumption of
particle gyration about the magnetic field lines.
According to the quasi-adiabatic model, the cyclotron
gyration should be described using the quasi-pitch
angle α*. Near the boundary of the region of stochastic
motion, the most important resonant processes are
those for which  – 2nω2 = 0, where  is the gyrof-
requency averaged over the period T2 = 2π/ω2 of longi-
tudinal bounces and n is the order of the resonance.
Note that the frequency ω2 depends on the α* value in
the equatorial plane. In accordance with [13], we have

(19)

where F(α*) is determined from expression (16). From
formula (19), we can calculate the angular distance
∆α*(n) between the neighboring resonance lines. On
the other hand, the mean amplitude of the fluctuations
of the quasi-pitch angle α* that are associated with the
nonadiabatic character of particle motion is equal to

When ∆α*(n) is larger than ∆α*, the phase oscillations
of the particles in the vicinity of the resonance are sta-

α∗ 0.486χ 2– 0.615/χ–( )exp[ ] .arcsin=

∂ α i 1+* φi 1+*,( )
∂ α i* φi*,( )

--------------------------------

ω1 ω1

n
3F α∗( )

πχ
-----------------,=

∆α∗ 0.185 14 α∗sin
2

–( )/ α∗cos
2 ψ α∗( )/χ–( ).exp=
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ble. Otherwise, the resonances overlap and the particles
are in the state of stochastic motion. Figure 8 illustrates
the results calculated from formula (19), specifically,
the resonance curves and the boundary that separates
the regions of steady and stochastic particle motions
and is governed by the overlapping of resonances. Also
shown in Fig. 8 is the relevant boundary calculated
from expression (18). Note that, for χ < 0.07, the reso-
nances do not overlap regardless of the value of the
pitch angle, indicating that the particle motion is abso-
lutely stable.

In our opinion, a good coincidence of these bound-
aries indicates that the quasi-adiabatic model and the
corresponding mapping provide an adequate descrip-
tion of particle dynamics in a dipole magnetic trap.

The boundary between the regions of stable and sto-
chastic motions depends not only on the adiabaticity
parameter χ but also on the quasi-pitch angle α*. The
dependence on the quasi-pitch angle determines, in par-
ticular, the maximum energy of the deeply trapped,
anomalous cosmic ray ions (primarily, oxygen ions)
that are accelerated in the heliosphere in the charge
state Q = 1(2), penetrate into the Earth’s magneto-
sphere, and are completely stripped of their electrons in
the outer atmospheric layers [14]. An analysis of the
experimental data on the fluxes of oxygen ions in the
Earth’s radiation belts show that the boundary of the
region of stable ion motion corresponds to the range of
χ values from 1/9 to 1/7 [15]. This conclusion agrees
well with our results, especially if we take into account
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2310152030
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Fig. 8. Resonance curves and boundaries of the region of
stochastic motion. Numerals above the curves refer to the
order n of the resonance. Curve 1 is the boundary deter-
mined by the overlapping of resonances and curve 2 is cal-
culated from expression (18). Regions A and B correspond
to stable and stochastic particle motions, respectively.
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the fact that the geomagnetic field near the Earth, being
as a whole nearly dipolar, at the same time has non-
dipole components and varies in time.

The quasi-adiabatic model can also be efficiently
utilized to describe another magnetic configurations. In
particular, the quasi-adiabatic approach was applied to
study particle dynamics in a geomagnetic trap whose
magnetic field was described with allowance for the
contribution from external current systems. In the zone
of the quasi-dipolar field, the experimentally obtained
boundary of the region where the particle motion is adi-
abatic corresponds to the boundary determined from
the break in the CT in the equatorial plane [16].

6. CONCLUSION
The quasi-adiabatic model of particle motion in a

dipole magnetic field has been developed based exclu-
sively on the analysis of the results of numerical inte-
gration of the equations of motion. Approximating the
GC trajectory by the CT made it possible to automati-
cally take into account the effects associated with both
particle drift around the dipole and the deviation of the
GC trajectory from a magnetic field line. This approach
allowed us to construct a mapping that approximates
the Poincaré mapping and to model the long-term
dynamics of a particle. The calculated boundary of the
region of stable particle motion, on the one hand, coin-
cides with the boundary determined from the model of
the resonant interaction between cyclotron gyration and
longitudinal bounces of a particle and, on the other
hand, correlates reasonably well with the experimental
data on charged particles in the Earth’s radiation belts.
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Abstract—A nonlinear theory is developed that describes the interaction between an annular electron beam
and an electromagnetic surface wave propagating strictly transverse to a constant external axial magnetic field
in a cylindrical metal waveguide partially filled with a cold plasma. It is shown theoretically that surface waves
with positive azimuthal mode numbers can be efficiently excited by an electron beam moving in the gap
between the plasma column and the metal waveguide wall. Numerical simulations prove that, by applying a
constant external electric field oriented along the waveguide radius, it is possible to increase the amplitude at
which the surface waves saturate during the beam instability. The full set of equations consisting of the wave-
envelope equation, the equation for the wave phase, and the equations of motion for the beam electrons is solved
numerically in order to construct the phase diagrams of the beam electrons in momentum space and to deter-
mine their positions in coordinate space (in the radial variable–azimuthal angle plane). © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Active research on hybrid waveguide structures dur-
ing the last 15 years has been motivated by the demand
for continuously tunable (over a broad frequency
range) and relatively small-scale microwave oscillators
and amplifiers in modern-day radio engineering and
electronics. The term “hybrid waveguide structures”
refers to plasma-filled metal waveguides, in which the
plasma serves to neutralize the space charge of the
transported beams. The plasma also affects the disper-
sion properties of such waveguide structures. The
waveguide walls may be protected by dielectric coat-
ings, and the waveguide itself may have a certain slow-
wave system. Thus, the waveguide walls may be corru-
gated, which makes it possible to lower the phase
velocity of the eigenmodes of the waveguide and,
accordingly, to enhance their interaction with charged
particle beams. Various aspects of the problem of the
interaction between electron beams and the eigenmodes
of hybrid waveguides were investigated in [1–3].

Interest in studying the beam–plasma interaction
stems primarily from the potential importance of the
results obtained in this field, because they are expected
to have a broad range of applications: from the beam
heating of plasmas in controlled fusion devices [4] and
geophysical experiments in space [5, 6] to solving the
problems in plasma electronics. Our theoretical paper is
devoted to investigating one of the problems of plasma
electronics [7, 8], namely, the problem of the interac-
tion between charged particle beams and the eigen-
waves of the plasma waveguide. Here, we develop a
nonlinear model of a fairly small-scale hybrid
1063-780X/02/2804- $22.00 © 0351
waveguide capable of generating continuously tunable
radiation over a broad frequency range.

Among the issues that have been studied in consid-
erable detail are the conditions for the onset of beam
instabilities and the nonlinear interaction of charged
particle beams with plasmas in an infinitely strong
external magnetic field (a one-dimensional model) and
in a magnetic field of finite strength. The effect of the
spectra of the generated waves on the nature of the
beam–plasma interaction has also been analyzed quite
thoroughly, but without allowance for the effect of
plasma boundaries [9, 10]. However, the finite plasma
dimensions not only change the excitation dynamics of
bulk waves but also provide conditions favorable for the
onset of surface waves (SWs) [11].

This study is focused on the above characteristic
features of the beam–plasma interaction in hybrid
waveguides. Our purpose here is to investigate how an
electron beam resonantly excites a surface wave with
the extraordinary polarization, which is an eigenmode
of a cylindrical metal waveguide partially filled with a
cold plasma. The wave under consideration propagates
across a constant external axial magnetic field (and,
accordingly, along the minor azimuthal angle) and is
called an azimuthal SW (ASW) [12]. In the plasma
region, the ASW field is described in terms of a super-
position of the modified Bessel functions and their
derivatives. In the vacuum region, where a low-density
electron beam propagates, it is expressed in terms of the
first- and second-order Bessel functions [13]. The lin-
ear theory of the excitation of an ASW by a beam was
constructed in [14]. In that paper, it was shown that the
growth rate of the resonant beam-driven instability of
2002 MAIK “Nauka/Interperiodica”
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an ASW increases with the azimuthal wavenumber m
and there exists an optimum value of m/R1 (where R1 is
the radius of the plasma column) at which the growth
rate of the instability of an ASW is maximum. The dis-
sipative instability of an ASW was studied in [15],
where it was found that its growth rate is lower than that
of the resonant beam-driven instability of an ASW. The
nonlinear theory of the excitation of ASWs by an annu-
lar electron beam propagating in the vacuum region
surrounding the plasma column in an axial magnetic
field under the resonant instability conditions was
developed in [16]. Here, we investigate the nonlinear
interaction of an ASW with an electron flow in a class
of radio engineering devices called magnetrons, which
operate with both a constant axial magnetic field and a
constant radial electric field.

2. FORMULATION OF THE PROBLEM

It is proposed to excite ASWs in a cylindrical metal
waveguide of radius R2 with a coaxial plasma column
of radius R1. The waveguide is supposed to operate with
a gaseous plasma in a thin-walled dielectric vessel or
with a semiconductor plasma. The gap between the
plasma and the metal waveguide wall is assumed to be
small, R2 – R1 ! R2. The density nb of an annular elec-
tron beam rotating in the region R1 < r < R2 around the
plasma column is much lower than the plasma density
np. The beam rotates in constant crossed magnetic and
electric fields. The constant external magnetic field B0

is oriented along the cylinder axis (the z-axis), and the
electric field is directed along the cylinder radius. Such
an electric field in the waveguide can be created by aux-
iliary electrodes, e.g., in the form of thin axial conduc-
tors that are built at equal distances into the dielectric
vessel filled with a gaseous plasma.

The electrical conductivity of the metal waveguide
wall is assumed to be high enough for the tangential
component of the electric field of an ASW to satisfy the
boundary condition Eτ(R2) = 0 at the metal surface. In
the z direction, the system is assumed to be uniform, so
that the electromagnetic perturbations under consider-
ation are independent of the z coordinate.

The desired set of differential equations describing
the nonlinear stage of the excitation of an ASW by an
electron beam can be obtained from the hydrodynamic
equations for the plasma, Maxwell’s equations, and the
equation of motion for the beam electrons in the region
R2 > r > R1. Since the beam and plasma densities are
such that nb ! np, we can neglect both the effect of the
beam on the dispersion properties of an ASW and the
effect of the self-field of the beam on the electromag-
netic field in which the beam propagates.
3. DERIVATION OF THE MODEL
EQUATIONS

In the cold plasma approximation, Maxwell’s equa-
tions can be split into two independent subsets of equa-
tions by representing the dependence of the wave field
on the time t and the azimuthal angle ϕ in the form E,
H ∝  exp(imϕ – iωt) and assuming that the system at
hand is uniform along the z-axis. One of the subsets
describes the field of an ASW with the extraordinary
polarization. For the magnetic component Hz of the
ASW field, it is possible to obtain a second-order dif-
ferential equation, in which case the components of the
wave electric field in a plasma cylinder r < R1 are
related to Hz by

(1)

where ξ = krψ, k = ωc–1, c is the speed of light, ψ2 =

(  – ) , and ε1 and ε2 are the components of the
dielectric tensor of a cold magnetized plasma (see, e.g.,
[11]).

In the plasma region, the solution to Eqs. (1) for the
Hz component of the ASW field is expressed in terms of
the modified Bessel functions Im(ξ) and the solutions
for the Er and Eϕ field components are represented as
linear combinations of the functions Im(ξ) and their

derivatives (ξ) with respect to the argument. The
corresponding boundary condition on these solutions
implies that the ASW field is finite at the waveguide
axis (r = 0).

In the beam region, the ASW field is described by
the following set of differential equations, which differ
from Eqs. (1):

(2)
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and δ is the delta function.

Equations (2) were solved by the method of varia-
tion of a constant. The components of the ASW field in
the region R1 < r < R2 are expressed in terms of the
Bessel functions of the first kind Jm(ζ), the Neumann
functions Nm(ζ), their derivatives with respect to the
argument, and the components jr and jϕ of the beam cur-
rent density.

In order to derive the wave-envelope equation and
the equation for the wave phase, we turn to the following
boundary conditions: (i) the tangential electric field of
an ASW vanishes at the metal surface of the waveguide
wall, Eϕ(R2) = 0; (ii) the field component Eϕ is continu-
ous at the plasma boundary r = R1, {Eϕ(R1)} = 0; and
(iii) there are no currents at the metal surface of the
waveguide wall and at the plasma–vacuum interface,
jϕ(R1) = jϕ(R2) = 0.

Neglecting the dissipative processes in the plasma
and using the standard procedures for averaging and
singling out the slow time (see, e.g., [2, 7]), we arrive at
the following equations for the envelope and phase of
the natural waves excited in the waveguide:

(3)

where A = Ey  is the dimensionless amplitude of the

wave envelope, Θ is the wave phase, α = nb , z =

|ωe | , w = , Ri = riΩec–1, ωe is the electron
cyclotron frequency, Ωe is the electron Langmuir fre-

quency, L = Jm(ζ1) (ζ2) – (ζ2)Nm(ζ1), ζ1 = kR1, ζ2 =
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(ζi) (ζ2) – (ζ2) (ζi), Dp =  +

, and P =  + .

The equation of motion for the beam electrons can
be conveniently written in terms of the electron
momentum p = γmeV (where γ is the relativistic factor):

(4)

Substituting the ASW field components calculated in
the region R1 < r < R2 yields the following set of equa-
tions for the ith electron:

(5)

Here, Rα = ri  – 1, v  = pr c–1, u = pϕ c–1, and
ε = E0/B0, where v  and u are, respectively, the dimen-
sionless radial and azimuthal momenta of the beam
electrons.

Equations (3) and the last two equations in set (5)
were derived under the basic assumption that the region
where the beam propagates is relatively narrow, R2 –
R1 ! R1. This assumption made it possible to signifi-
cantly simplify these equations by using the asymptotic
expansions of the cylindrical Bessel functions and their
Wronskians (see, e.g., [13]) and, thus, to substantially
reduce a large amount of computer time required for the
direct calculation of all cylindrical functions in Eqs. (3)
and (5). The nonlinear interaction of an ASW with an
annular electron flow was investigated by solving
Eqs. (3) and (5) numerically.

4. RESULTS OF NUMERICAL SIMULATIONS 
OF THE ASW–ELECTRON 

BEAM INTERACTION

The model set of equations was solved using a
fourth-order Runge–Kutta method, which is one of the
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Fig. 1. Dependence of the dimensionless amplitude A of the
envelope of two oppositely propagating ASWs (with the
azimuthal wavenumbers m = 2 and m = –2) on the dimen-
sionless time τ.

0.068

0.051

0.034

0.017

0 0.2 0.4 0.6 0.8 τ

A

m = 3

m = 2

m = 4

0.024

0.018

0.012

0.016

0 2 4 6 8

A

τ

Fig. 2. Dependence of the dimensionless amplitude A of the
envelope of three ASWs on the dimensionless time τ. The
time evolutions A = A(τ) for the waves with m = 2, m = 3,
and m = 4 are shown by the solid, dashed, the dashed-and-
dotted curves, respectively.

Fig. 3. Effect of the external radial electric field on the
development of the beam-driven instability of ASWs. The
dimensionless amplitude A of the envelope of ASWs was
calculated as a function of the dimensionless time τ for
three different values of the parameter ε = E0/B0. The solid,
dashed, the dashed-and-dotted curves show the time evolu-
tions A = A(τ) for ε = 0, –0.08, and –0.1, respectively.
best standard methods for numerical integration of dif-
ferential equations and which makes it possible to
reduce the number of computational operations
required to calculate their right-hand sides. This cir-
cumstance is especially important for the solution of
equations whose right-hand sides are very complicated.
Fourth-order methods provide high accuracy of the
numerical integration of differential equations and are
traditionally used to solve the problems of the beam–
plasma interaction. The time integration step was var-
ied depending on the rate at which the functions
changed during the process of numerical integration.

The number of macroparticles used to model an
electron beam was N = 500. The interaction of the beam
electrons with the plasma boundary and metal
waveguide wall was simulated using the mirror reflec-
tion model, which implies that the electrons do not dis-
appear in interactions, but rather their radial momenta
are reversed by mirror reflection and they are reflected
back into the region R1 < r < R2. This model is fre-
quently used to investigate the interaction of charged
particle beams with finite-size plasmas and is best
suited for the description of a beam–solid body bound-
ary [11].

The results of numerical simulations of the develop-
ment of the resonant beam-driven instability of an ASW
are illustrated in Figs. 1–8. The simulations were car-
ried out for the following starting values of the
waveguide and beam parameters: the wave amplitude
was A = 10–3, the waves phase was Θ = 0, and the radial
momentum of the beam electrons was v i = 0. The geo-
metric parameters of the waveguide were chosen to sat-
isfy the condition R2 – R1 = 0.1R1. The initial distribu-
tion of the beam electrons over the angle ϕ was approx-
imately uniform, the random deviation being small,
∆ϕ = ±1%. Over the radius, the beam electrons were
initially distributed in a random manner in the spatial

region R1 + (R2 – R1) < r < R1 + (R2 – R1). In most

of the simulations, the initial angular momentum ui of
the beam electrons was set equal to zRi, the random
deviation being ±2%.

As was shown in [14], there is an effective wave-

number keff = mc Ωe for which the growth rate of the
beam-driven instability of an ASW is maximum. In the
case at hand, the effective wavenumber is approxi-

mately equal to  ≈ 0.4. That is why, for simulations,
we chose the corresponding values of R1 for different
azimuthal wavenumbers. Our investigation of the ques-
tion of how the choice of the value of keff affects the
development of the beam instability confirmed the
results obtained in [14]. In fact, we found that, if the

value of keff was chosen to differ from , the ASW
amplitude increased at a slower rate.

1
3
--- 2

3
---

R1
1–

keff*

keff*
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From Fig. 1, we can see that the only waves that are
excited resonantly are ASWs with positive values of the
azimuthal wavenumber m, propagating in the direction
in which the beam electrons gyrate in the external axial
magnetic field. The waves with m < 0 are not excited.
The excitation of ASWs is highly sensitive to the beam
electron density. A decrease in the beam density by a
factor of 2 to 2.5 reduces the wave amplitude in the sat-
uration stage of the instability by a factor of approxi-
mately 2, in which case the time required for the insta-
bility to saturate becomes longer by about 50%. A

decrease in the ratio |ωe|  and an increase in the
parameter α shorten the time scale on which the ASW
amplitude increases from the initial to the maximum
value. The curves in Fig. 1 were obtained for |ωe| =
0.1Ωe and nb = 0.01np.

In the saturation stage of the beam instability, the
ASW amplitude increases significantly with increasing
azimuthal wavenumber m. Figure 2 illustrates the
results of studying the dependence of the ASW ampli-
tude on the m value for |ωe | = 0.01Ωe and nb = 0.01np. It
can be seen that, as the azimuthal wavenumber
increases from 2 to 3, the amplitude of the ASW
increases by a factor of about 2, and an increase in the
azimuthal wavenumber from m = 2 to m = 4 results in
an increase in the ASW amplitude by a factor of more
than 3.

Figure 3 shows the results of simulations of the non-
linear stage of the beam-driven instability of an ASW in
external radial electric fields of different strengths. The
values of α and z were chosen to be the same as those
in Fig. 1. One can see that applying an external electric
field makes it possible to enlarge the fraction of the
energy of an annular electron beam that is expended on
the excitation of an ASW. Of course, this series of com-
putations was carried out for higher initial momenta of
the beam electrons. In the presence of a constant exter-
nal electric field E0 directed opposite to er , the ASW
amplitude in the saturation stage of the resonant beam
instability is larger than that in the absence of E0.
Reversing the field E0 reverses the drift velocity of the
beam electrons, thereby significantly affecting the
development of the instability of an ASW. The stronger
the external electric field so directed, the smaller is the
saturating ASW amplitude and the lower is the instabil-
ity growth rate. Applying a sufficiently strong electric
field suppresses the instability.

An increase in the width of the gap between the
plasma column and the metal waveguide wall, R1 @ R2 –
R1 > 0.1R1, also unfavorably affects the development of
the resonant beam instability. The reasons for this are
twofold: the spatial distribution of the ASW field
changes and the beam electrons move at a larger dis-
tance from the plasma surface, at which the SW ampli-
tude is known to be maximum (see, e.g., [11]).

In order to confirm that the ASW amplitude
increases as a result of energy transfer from the beam to

Ωe
1–
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the wave, we calculated the time evolution of the sum
of the squared momenta of all the beam electrons (this
sum determines the beam kinetic energy). According to
Fig. 4, the ASW amplitude and the beam kinetic energy
change in antiphase: as the wave amplitude increases,
the beam electron energy decreases synchronously.
Using these data, we can estimate the electron effi-
ciency of the waveguide structure under discussion. For
R2 – R1 = 0.1R1, the maximum efficiency is about 10%.
The curves in Fig. 4 were calculated for |ωe | = 0.01Ωe ,
nb = 0.05np, and m = 2.

It is also of interest to investigate the time evolution
of the phase diagram of the beam electrons and their
spatial distribution. Figure 5 shows the initial distribu-
tion of the beam electrons in coordinate space. The
electrons are distributed nearly uniformly in the azi-
muthal angle around the plasma in the middle of the
gap between the metal waveguide wall and the plasma
cylinder. The distribution to which the initial electron
beam evolves over the time interval τ = 0.2 under the
action of the growing ASW field is shown in Fig. 6. In
the field of an ASW with the azimuthal wavenumber
m = 2, the spatial distribution of the electrons acquires
an elliptical shape. At the same time, we can see the for-
mation of two groups of electrons: under the action of
the ASW field, one group is forced to move closer to the
inner boundary of the beam (r = R1) and another, to the
outer boundary (r = R2).

Figures 7 and 8 depict phase diagrams of the beam
electrons in the form of the dependence of the azi-
muthal momenta of the electrons on their angular coor-
dinates at different times during the development of the
beam-driven instability of an ASW. The phase diagram
in Fig. 7 was obtained at the time τ = 0.2, at which the
ASW amplitude approaches its first maximum (but
have not yet reached it). The phase diagram in Fig. 8
refers to the time when the ASW amplitude has already
passed its minimum and when the dense bunches
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Fig. 4. Illustration of the energy conservation in the wave–
beam system. The upper curve shows the time evolution of
the dimensionless squared momentum of the beam elec-
trons (left coordinate axis) and the lower curve shows the
time evolution of the dimensionless amplitude A of the
envelope of ASWs (right coordinate axis).
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Fig. 5. Distribution of the beam electrons in coordinate space (in the radial variable–azimuthal angle plane) at the initial time τ = 0.

Fig. 6. Distribution of the beam electrons in coordinate space (in the radial variable–azimuthal angle plane) at the time τ = 0.555.
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Fig. 7. Distribution of the beam electrons in phase space (in the radial momentum–azimuthal momentum plane) at the time
τ = 0.555, at which the ASW amplitude is maximum.

Fig. 8. Distribution of the beam electrons in phase space (in the radial momentum–azimuthal momentum plane) at the time
τ = 0.624, at which the beam electrons have already transferred a portion of their energy to the excited wave and have lost their
phase synchronism with the wave.
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358 GIRKA, PUZYR’KOV
formed by the beam electrons in the regions in which
the ASW field is minimum are destroyed. We can see
that, at a fixed angular coordinate, the beam electrons
have a large spread in the momentum component pϕ. In
contrast, in Fig. 7, the spread in the angular momenta at
each angular coordinate is very small. The computa-
tional results presented in Figs. 5–8 were obtained for
|ωe | = 0.01Ωe , nb = 0.05np, and m = 2.

5. CONCLUSION

We have studied the excitation of ASWs with fre-

quencies in the range |ωe| < ω <  – |ωe |/2 by
an annular electron beam rotating around the plasma
column that partially fills a cylindrical metal waveguide
operating with steady-state crossed magnetic (axial)
and electric (radial) fields. The resonant beam-driven
instability of an ASW has been investigated in the sin-
gle-mode approximation.

We have derived a two-dimensional model set of
equations describing the evolution of the envelope of
the wave field, the phases of ASWs, and the coordinates
and momenta of the electrons of a low-density beam.
We have numerically analyzed the effect of the
waveguide and beam parameters on the development of
the resonant beam instability. We have shown that
changing the sign of the azimuthal wavenumber (or,
equivalently, reversing the propagation direction of the
ASW) leads to the suppression of the instability. The
rate at which ASWs with large azimuthal wavenumbers
are excited is high, so that large wave amplitudes are
achievable in the saturation stage of the instability.
Applying an external radial electric field makes it pos-
sible to increase the fraction of the kinetic energy of
beam electrons that is transferred to the ASW, provided
that the condition for phase synchronization of the
ASW with an annular electron beam are satisfied.

The results obtained can be used to develop small-
scale devices for radio engineering and electronics and
to explain the results obtained from experiments on the
excitation of SWs. Finally, we point out the following
two characteristic features of the above model of a
hybrid waveguide structure excited by an electron
beam: first, the eigenfrequency of the structure can be
continuously tuned by varying the plasma density and,
second, the axial dimensions of the structure are small

Ωe
2 ωe

2
/4+
because the beam interacts with the wave propagating
in the azimuthal direction.
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Abstract—The contributions of heat fluxes of different nature to the total heat flux from a weakly ionized oxy-
gen plasma of a low-pressure (20–120 Pa) RF discharge onto the calorimeter surface, on which a chemical reac-
tion between atomic oxygen and a polymer proceeds, are distinguished. The activation energy (∆E ≈ 0.37 eV),
the reaction heat (H ≈ 27 kJ/g), and the rate constant for heat release in a surface plasmochemical reaction are
determined.© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Indirect methods based on analyzing the plasma
chemical composition with the help of optical spectros-
copy or mass spectrometry [1] are widely used to inves-
tigate surface plasmochemical reactions. Studying the
plasmochemical processes directly on the surface is a
rather difficult problem because of the low thickness of
the surface layer (~10 nm) in which the reaction goes
on.

It is known that chemical reactions are related not
only to the particle conversion, but also to the energy
transformation, whose rate is proportional to the reac-
tion rate. Macrokinetics of a surface plasmochemical
process can be studied by measuring the rate dT/dt at
which the sample temperature varies, i.e., the heat
power released or absorbed in the reaction zone [2]. A
preliminary task is to distinguish the contributions from
different heat sources: the heat power fraction related to
the surface plasmochemical reaction is to be resolved
against the background of heat transfer from the dis-
charge.

In this study, differential scanning calorimetry [3] is
used to quantitatively investigate the kinetics of plas-
mochemical polymer etching in a plasma of a low-pres-
sure RF discharge in oxygen. The contributions of heat
fluxes from the sources of different nature on the
plasma–surface interface are distinguished. The main
energy characteristics of the reaction are determined.

2. TEMPERATURE SCANNING

Differential scanning calorimetry in a discharge
(SCD) consists in permanently measuring heat power
transferred to a calorimeter, provided that its tempera-
ture varies in time in a known manner determined by
the heat flux from the discharge. The measurement of
the non-steady-state temperature T(t) is simultaneously
the measurement of the power P = cm(dT/dt), where c
and m are the specific heat capacity and mass of the cal-
1063-780X/02/2804- $22.00 © 20359
orimeter. Continuously changing the calorimeter tem-
perature in the discharge can be regarded as scanning
over the temperature, in the course of which the powers
of heat fluxes transferred to the surface via different
heat exchange mechanisms change.

At pressures of ≥10 Pa and low degrees of ioniza-
tion (≤10–5–10–6), the main heat transfer mechanism
ensuring temperature scanning is gas heat conduction
and the energy relaxation of the particle translational
(and, possibly, rotational) degrees of freedom in colli-
sions with a surface [4]. The dependence T(t) is nonlin-
ear. For a plane inert calorimeter with the thickness h,
in the absence of radiative heat exchange, this depen-
dence takes the form

(1)

where Tg is the gas temperature in the discharge
(beyond the thermal boundary layer), T0 is the calorim-
eter initial temperature, α is the heat transfer coefficient
(proportional to the heat conductivity), and ρ is the
material density. According to formula (1), the temper-
ature dependence of the power density D = P/S (where
S is the area of the calorimeter surface) is linear,

(2)

where α is independent of T (as was experimentally
established in [4], this is valid at gas pressures on the
order of 1 torr). The catalytic inertia of the calorimeter
is ensured by depositing thin films made of materials
for which the relaxation probability of the particle
excited states in collisions with the surface is very low
(no higher than 10–4). In particular, water vapor
adsorbed on the surface significantly reduces its cata-
lytic activity; even in a discharge, the removal of water
vapor from the surface takes a long time (in our exper-
iments, this time exceeded 100 s [5]). It is also neces-
sary that the surface be chemically inert with respect to
any particles generated in the discharge. When deriving
formulas (1) and (2), it was assumed that heat transfer

T t( ) Tg Tg T0–( ) 2α t/cρh–( ),exp–=

D T( ) 2α Tg T–( ),=
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by charged particles can be ignored, because, at low
degrees of ionization, the contribution of charged parti-
cles to the heat flux is negligible.

The quantity α depends on neither the surface mate-
rial nor the presence/absence of the adsorbed surface
layers, provided that the condition of continual heat
exchange, Kn · Nu ! γ, is satisfied (here, Kn = λp/ L is
the Knudsen number, λp is the gas particle mean free
path, L is the calorimeter characteristic size, Nu = αL/λ
is the Nusselt number, λ is the gas thermal conductivity,
and γ is the coefficient of thermal accommodation of
the particle kinetic energy in collisions with the sur-
face) [6]. At a calorimeter size of about 1 cm, this con-
dition is satisfied at a gas pressure of p ≥ 10 Pa. Both
parameters (α and Tg) in formula (2) are determined
from the heating kinetics of the inert calorimeter. The
limiting stage of this heat exchange mechanism is
energy transfer through the thermal boundary layer.

In the case of a chemically and catalytically inert
calorimeter, the linear behavior of the D(T) dependence
allows one to consider it as a base line, with respect to
which the onset of additional heat sources or sinks
related to plasmochemical reactions on the surface can
be recorded. The calorimeter heat capacity must be suf-
ficiently high for its heating time to be significantly
longer than the relaxation time of the discharge param-
eters.

3. HEAT RELEASE IN A PLASMOCHEMICAL 
REACTION

We suppose that, on one of the surfaces of a plane
calorimeter, an exothermic plasmochemical reaction
proceeds, whose rate is determined by an Arrhenius
temperature dependence. Since the reaction rate is
directly related to the heat release rate, the temperature
dependence of the specific power released in the reac-
tion is also described by the Arrhenius dependence:

(3)

where H [J/g] is the reaction heat (at H > 0, the reaction
is exothermic, whereas, at H < 0, it is endothermic);
Z [g/(cm2 s)] is the preexponential factor, having the
dimension of the reaction rate; and ∆E is the activation
energy. In the simplest case, the non-steady-state equa-
tion of the heat balance of an active calorimeter is

(4)

where D1 is the total power density spent on the calo-
rimeter heating, Dg is determined by formula (2), Dr is
determined by formula (3), and De is the power density
of the radiative cooling of the calorimeter.

The heat balance equation of an inert calorimeter is

(5)

Let us assume the total thermal flux toward the calorim-
eter to be the sum of independent fluxes related to dif-

Dr HZ ∆E/kT–( ),exp=

D1 cρh dT1/dt( ) Dg Dr De,–+= =

D2 cρh dT2/dt( ) Dg De.–= =
ferent heat exchange mechanisms. Apparently, ion
bombardment (which causes the sputtering of adsorbed
layers and the creation of active sites on the surface)
can violate the additivity and lead to the synergism of
the heat fluxes. However, at low degrees of ionization,
at the floating potential of the surface (approximately
equal to –10 V), and in the drift mode of ion motion in
the near-surface layer, such an influence is unlikely to
occur and, thus, is not taken into account in Eq. (4).

The left-hand side of Eq. (4) is determined by differ-
entiating the measured non-steady-state temperature of
the calorimeter. To determine Dr(T), we need to deter-
mine the Dg(T) and De(T) dependences. Under the con-
dition Dg(T), the De(T) ! Dg(T) dependence can be
determined based on the heating kinetics of an inert cal-
orimeter using Eq. (5). For a silicon calorimeter, this
condition is satisfied at T ≤ 200–250°ë. The power of
radiative heat removal is determined from the calorim-
eter cooling kinetics after switching off the discharge.

To determine the reaction heat it is necessary to inte-
grate Dr over a time period during which the chemical
reaction on the active calorimeter surface goes on. In
the experiment, only the δH (where 0 ≤ δ ≤ 1) fraction
of the total reaction heat transferred to the calorimeter
is determined. The rest of the energy (equal to (1 – δ)H)
is carried away with the reaction products. To find δH,
the mass of the substance involved in the reaction must
be determined. For this purpose, it is enough to weigh
the calorimeter before and after the discharge, because
the reaction products go away from the surface to the
gas phase. Then, we can determine the reaction heat
fraction transferred to the calorimeter:

(6)

where the Si index denotes the calorimeter, the f index
indicates the film of the reacting material, and the inte-
gration limit te is equal to the time required for the com-
plete removal of the film from the surface.

The geometry of the experiment with a finite-size
plane calorimeter in a plasma is not one-dimensional;
hence, it is necessary to control the reaction rate homo-
geneity over the calorimeter surface. The inhomogene-
ity of the reaction rate may be related to the inhomoge-
neity of the flux density of chemically active particles
arriving at the calorimeter surface from the discharge
(the flux density near the calorimeter edge is higher
than in the geometrical center of the calorimeter). The
second probable reason for the reaction rate inhomoge-
neity is in the temperature inhomogeneity over the cal-
orimeter surface. If a small-sized semiconductor single

δH

=  

cSiρSihSi T1/ tdd( ) 2α Tg T1–( )– De( )1+[ ] td

0

te

∫

ρ f h f / tdd( ) td

0

te

∫
-------------------------------------------------------------------------------------------------------------,
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crystal is used as a calorimeter, the temperature inho-
mogeneity is unimportant because of the high thermal
conductivity of the crystal.

4. EXPERIMENT

We studied the plasmochemical etching of a 1- to
2-µm polymer film deposited on the surface of a silicon
calorimeter (a square single crystal with an area of
6 cm2 and a thickness of ~0.5 mm). The polymers
used—phenolformaldehyde resin (PFR) and polyimide
(PI)—are widely employed in microtechnology as pro-
tective masks in producing integrated microcircuits.
The polymer film was deposited on the crystal surface
from the solution with the help of a centrifuge with a
subsequent drying and thermal treatment. The film
thickness was determined using a Linnik microinterfer-
ometer and also by transmission spectrum interfero-
grams in the wavelength range 2–25 µm (the spectrum
was recorded using a Bruker IFS-88 IR Fourier-trans-
form spectrometer). The methods for the film deposi-
tion and controlling the film thickness are standard in
microtechnology [7]. The PFR vitrification temperature
lies in the range T ≤ 120°C; in the temperature range
150–300°C, the polymer undergoes thermal destruc-
tion, whose activation energy is ~1.5 eV. PI is more
thermostable; the loss of mass due to thermal destruc-
tion begins at T ≥ 400–450°C.

Etching was performed in a cylindrical 45-cm-long
quartz reactor 20 cm in diameter. A capacitive RF dis-
charge was driven at a frequency of 13.56 MHz using
external electrodes. The discharge was ignited in oxy-
gen at a pressure of 50 Pa. When the matching condi-
tions between the oscillator and reactor are satisfied,
the discharge runs in the α-form, which is characterized
by a higher temperature and higher gas chemical activ-
ity at the reactor axis. The oxygen flow rate through the
reactor is ≈100 cm3/min, the degree of gas ionization is
~10–6, and the degree of molecular oxygen dissociation
is (1–3) × 10–2. The calorimeter is placed at the dis-
charge axis using a holder made of two thin (1.5 mm in
diameter) quartz rods. In more detail, the experimental
setup is described in [3, 4].

The etching reaction is the breaking of the polymer
chains under the action of atomic oxygen and discharge
radiation with the formation of volatile products going
away to the gas phase (in the case of complete PFR
transformation, these products are H2O and CO2). The
reaction is exothermic, and its rate increases with the
surface temperature according to the Arrhenius law.
The calorimeter size and the film thickness were chosen
such that, at the highest temperature, the flux of the
reaction products from the surface did not exceed the
flux of impurities present in oxygen passing through the
reactor (approximately 0.3 vol %). The etching rate in
the sample geometrical center was monitored using
reflected light interferometry at a He–Ne laser wave-
length of λ = 0.63 µm (the laser beam diameter being
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002
1 mm, and the angle of incidence onto the sample sur-
face being 5°).

The crystal non-steady-state temperature T(t) was
measured by laser interferometric thermometry at a
He–Ne laser wavelength of λ = 1.15 µm (the laser beam
diameter on the crystal surface being 0.5 mm, and the
angle of incidence being 5°) [8]. The plane-parallel
crystal acts as a Fabry–Perot interferometer for the
probing radiation in the crystal transparency region.
After the polymer film is completely removed from the
surface, the discharge is switched off. Then, for the pur-
pose of comparison, the same crystal, used as an inert
calorimeter, is heated in the discharge under the same
conditions and the T(t) dependence is measured.

On the silicon crystal surface, there is a native oxide
film with a thickness of ~10 nm. At relatively low tem-
peratures characteristic of this study, no further silicon
oxidation occurs (as is proved by the ellipsometry mea-
surements of the oxide film thickness after 30-min-long
stay of the crystal in the discharge).

5. RESULTS AND DISCUSSION

5.1. Interferograms

Figure 1 shows the time evolution of the light reflec-
tion coefficients (interferograms) measured when prob-
ing the silicon–polymer structure starting from the
instant of discharge ignition in oxygen. Oscillations of
the reflection coefficient at a wavelength of λ = 633 nm
stem from the decrease in the film thickness hf . The
shift of the interferogram by one fringe corresponds to
the decrease in the thickness by ∆hf = λ/2nf ≈ 0.2 µm
(for the polymers under study, the refractive index is

2.5
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1.5

1.0

0.5

0 10 20 30 40 50 60 70 80
Time, s

Reflected light intensity, arb. units

Fig. 1. Coefficient of light reflection from an 0.5-mm-thick
silicon single crystal covered with a transparent 1.2-µm
polymer film after discharge ignition in oxygen at a pressure
of 50 Pa and an input power of 180 W. The He–Ne laser
wavelength is 1.15 (upper curve) and 0.633 µm (lower
curve).
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nf ≈ 1.6). The initial film thickness is h0 ≈ 1.2 µm. After
the complete removal of the film from the surface (at
t ≥ 72 s), the reflection coefficient becomes constant.
Silicon is opaque for radiation with λ = 633 nm (the
absorption coefficient is ≈4 × 103 cm–1).

The structure of interferograms in reflected light at
a wavelength of λ = 1.15 µm can be explained as fol-
lows. The high-frequency oscillations are related to the
increase in the crystal temperature; the shift of the inter-
ferogram by one fringe corresponds to the increase in
temperature by

For T ≈ 300 K and 0.5-mm-thick silicon single crystal,
∆T ≈ 5 K; at higher temperatures, ∆T is somewhat
lower. The low-frequency modulation is caused by a
decrease in the film thickness hf , and the shift by one
fringe corresponds to the decrease in the thickness by
∆hf = λ/2nf ≈ 0.34 µm (the number of periods is almost
two times smaller than that for λ = 0.63 µm). After the
film removal, only oscillations related to the change in
the crystal temperature are present in the interferogram.
It is seen in both interferograms that the rate at which
the film thickness changes increases with time.

5.2. Calorimeter Temperatures

Figure 2 shows the time evolution T(t) of the tem-
perature of crystals covered with a 2.1-µm polymer film
after the discharge ignition in oxygen for two values of
the RF input power. For comparison, the T(t) depen-
dences for crystals without a film are also presented.
The T(t) curve for an inert calorimeter is described by
expression (1), whereas that for an active calorimeter
has two inflection points. At the instant corresponding

∆T λ /2nh( ) n
1– ∂n/∂T( ) h

1– ∂h/∂T( )+[ ]
1–
.=

0

200 40 60 80
Time, s

100

150

200

250

300
Temperature, °ë

1
2 3

4

Fig. 2. Time evolution of the temperature of a silicon single
crystal (1, 3) with and (2, 4) without a surface polymer film
after discharge ignition in oxygen at a pressure of 50 Pa and
an input power of (1, 2) 300 and (3, 4) 200 W. The initial
film thickness is 2.1 µm, the crystal size is 2.5 × 2.5 cm, and
the crystal thickness is 0.5 mm.
to the complete removal of the film from the crystal sur-
face, the heating rate substantially decreases.

5.3. Heating Kinetics

At temperatures of ≤200–250°ë, radiative losses
from a silicon single crystal are negligibly small as
compared to those from a polymer film. For this reason,
in the initial stage, the inert calorimeter is heated faster
than a crystal covered with a film. The rate of the chem-
ical reaction and the related heat release power increase
with the temperature. For the calorimeter covered with
a film, the first inflection point in the T(t) curve indi-
cates the beginning of a significant heat release in the
plasmochemical reaction. The positive feedback
between the crystal temperature and the reaction rate
results in the exponential growth of the temperature,
lasting until the film is completely removed from the
crystal surface. Time dependences of the calorimeter
heating rate after the discharge ignition are shown in
Fig. 3.

Temperature dependences of the calorimeter heat-
ing rate are shown in Fig. 4. The existence of two seg-
ments in the plot that can be fitted by straight lines
implies that the heat exchange kinetics within these
segments can be described by the first-order linear dif-
ferential equations [2]

(7)

(8)

where Eq. (7) corresponds to heating lasting from the
instant of discharge ignition to the inflection point,
Eq. (8) corresponds to heating lasting from the inflec-
tion point to the end of the reaction, k1 = 2α/cρh is the
rate constant for the plasma–surface heat exchange pro-

dT /dt k1 Tg T–( ),=

dT /dt k1– k2+( )T k1 k3–( )Tg,+=

200 40 60 80
Time, s

2

4

6

8
dT/dt, K/s

1 2

Fig. 3. Heating rate of a silicon single crystal covered with
a polymer film in an oxygen plasma for an input power of
(1) 300 and (2) 200 W. After the film has been completely
removed from the surface, the endothermic reaction termi-
nates, which corresponds to a sharp decrease in the heating
rate.
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ceeding via molecular heat conduction, k2 =

HZ∆E/cρhk  is the rate constant for heat release
related to the chemical reaction, k3 =
HZ(cρTg)−1exp(∆E/kT0)(∆E – kT0)/kT0 is the auxiliary
parameter with a dimension of s–1, k is the Boltzmann
constant, and T0 is the temperature in the vicinity of
which the exponential dependence was linearized (in
the theory of thermal explosion [9], this temperature is
called the temperature of self-ignition).

Designating the heating rates of the inert and active
calorimeters as V1 and V2 and differentiating them over
the temperature, we obtain

(9)

(10)

From here, we can determine the rate constant k2 for the
reaction heat release. For tens of PI and PFR samples of
different thicknesses exposed to an oxygen plasma in
the pressure range 20–120 Pa and at the discharge input
powers in the range 140–340 W, it was found that k2 > k1,
which implies the development of a thermochemical
instability. Using empirical approximations of the plot
segments in Fig. 3, we obtain that, at an input power of
P = 200 W, the rate constants are k1 ≈ 1.52 × 10–2 s–1 and
k2 ≈ 4.14 × 10–2 s–1. The corresponding scanning and
plasmochemical reaction time constants are τ1 ≈ 66 s
and τ2 = (k2)–1 ≈ 24 s, respectively. At P = 300 W, we
have k1 ≈ 1.57 × 10–2 s–1, k2 ≈ 5.04 × 10–2 s–1, τ1 ≈ 64 s,
and τ2 ≈ 20 s. Generally, the rate constants are related to
each other as k2 ≈ (2–3)k1 for PFR and k2 ≈ (1.5–2)k1
for PI.

5.4. Mechanisms for Crystal Heating

Any particle species in the discharge can be associ-
ated with a certain heat exchange mechanism involving
the creation of an energy reservoir (gas heating, ioniza-
tion, excitation of the metastable states, etc.), the trans-
portation of this energy toward the surface, and the
energy relaxation accompanied by the heating of a
solid. These mechanisms are relatively independent
because the energy relaxation rates in different sub-
systems of a low-pressure nonequilibrium plasma are
rather low (except for the fast rotational–translational
relaxation).

The contribution of charged particles to the heat flux
onto the surface is negligible because of the low degree
of gas ionization. Earlier, it was shown that the contri-
butions of the discharge optical radiation and the RF
power absorption by a silicon single crystal are also
negligible [4].

Estimates show that, at a degree of gas ionization of
≤10%, the power density transferred to the crystal sur-
face covered with a silicon oxide or polymer film due to
the recombination of atoms does not exceed 5 ×

T0
2

dV1/dT k1,=

dV2/dT k1– k2.+=
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10−3 W/cm2. The contribution from quenching the

metastable levels of oxygen molecule (  and 1∆g

states with energies of 1.6 and 1 eV, respectively) is
even lower. These estimates were confirmed by experi-
ments. The relaxation probabilities for the excited lev-
els increase with the surface temperature [10]; hence,
the slope of the D(T) dependence must decrease with
the temperature if this mechanism plays an important
role in the heating of the inert calorimeter. Curves 3 and 4
in Fig. 4 do not show a tendency to the slope lowering.
This means that heterogeneous relaxation does not play
a significant role in the calorimeter heat balance. How-
ever, provided the surface is cleaned in a discharge or is
covered by a thin film with catalytic properties (plati-
num, etc.), this mechanism explicitly manifests itself
by an increase in the power transferred to the calorime-
ter. Thus, on a silicon surface cleaned of water vapor
with the help of a surface active Langmuir–Blodgett
film, which is quickly removed in the discharge, an
extra power of ~40 mW/cm2 is released [5]. For a crys-
tal surface covered with a platinum film (whose cata-
lytic properties are the strongest), the extra power trans-
ferred to the calorimeter is ~0.1 W/cm2 [11]. On the
crystal surface covered with a polymer film, whose cat-
alytic properties are significantly weaker than those of
a platinum film, the extra heat release related to the
deactivation of the excited states should be much less
than 0.1 W/cm2. Hence, extra heat release with a power
of up to 0.5–0.7 W/cm2, which is observed in the exper-
iment, results from chemical reactions.

The neutral gas temperature beyond the calorimeter
thermal boundary layer was determined from the inert
calorimeter heating kinetics. For P = 300 and 200 W,
this temperature is 420 and 350°ë, respectively. Within
the boundary layer, whose thickness is comparable with
the calorimeter size, the energy density in the sub-
system of translational degrees of freedom of the
neutral particles decreases as approaching the surface.
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Fig. 4. Temperature dependence of the heating rate of a sil-
icon single crystal (1, 2) with and (3, 4) without a 2.1-µm
polymer film in an oxygen plasma for an input power of
(1, 3) 300 and (2, 4) 200 W.
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The origin of the boundary layer is related to (i) the
high relaxation rate of the energy of translational
degrees of freedom in collisions of the particles with
the surface (the accommodation coefficient is approxi-
mately 0.3–1) and (ii) the limited rate of energy transfer
from the discharge to the surface. For subsystems of
vibrational and electronic levels, in which the probabil-
ity of energy transfer to a solid is low, the energy den-
sity does not depend on the coordinate, so that the
boundary layer is absent. In this case, heat transfer is
limited by the low rate of energy relaxation on the sur-
face.

5.5. Radiative Heat Losses

Radiative properties of a silicon single crystal and a
silicon–polymer structure are very different. Polymer
films are characterized by a set of strong absorption
bands in the mid-infrared range. In the range λ ≈ 5–
20 µm, about ten absorption bands with bandwidths of
∆ν ≈ 20–40 cm–1 and absorption coefficients of α ~
10−4 cm–1 are observed in the PI transmission spectrum.
For films with a thickness of 1–2 µm, the absorption
factor in these bands is as high as A ≈ 0.5–0.8. Accord-
ing to Kirchhoff’s law, thermal emission is also local-
ized in these spectral bands.

At temperatures of T ≤ 200–250°C, a weakly doped
silicon single crystal with a free carrier (electrons or
holes) concentration of n ≤ (0.1–1) × 1016 cm–3 is
almost transparent in the mid- and far-infrared spectral
regions. At 400 ≤ T ≤ 700 K, the temperature depen-
dence of the power radiated by a single crystal is of the
Arrhenius type with an activation energy close to the
one-half of the band gap energy [12].

The presence of a film on the surface substantially
modifies the calorimeter radiative properties. Figure 5

40
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Time, s
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Fig. 5. Heating kinetics of a 0.5-mm-thick silicon single
crystal (2.5 × 2.5 cm in size) covered with a polymer film in
a discharge and the cooling kinetics after the discharge is
switched off. The film thickness is (1) 0, (2) 1.5, (3, 5) 2.5,
and (4) 0.2 µm; the input power is (1–3) 110 and (4, 5)
160 W.
presents the time dependences of the temperature of
calorimeters covered with PI films of different thick-
ness (in the range 0–2.5 µm) after the discharge is
switched on and off. It is seen that, in the discharge, the
crystal covered with a film is heated more slowly than
without a film. The larger the film thickness, the lower
the calorimeter heating rate (this fact proves the radia-
tive loss mechanism: if the film somehow influenced
the particle–surface heat exchange, then the film thick-
ness would not reduce the heating rate because the
properties of the film surface are independent of the
film thickness). After the discharge is switched off, a
crystal covered with a film is cooled faster than that
without a film.

To properly take into account radiative losses from
a calorimeter covered with a film is not a simple matter
because the film thickness decreases with time (or with
increasing temperature). For this reason, precise mea-
surements of the temperature dependence of (De)1 are
rather difficult and require the determination of thermal
losses for crystals covered with films of different thick-
ness at specific temperatures depending on the thick-
ness itself. The temperature dependences of the inten-
sity of radiative heat removal were measured for calo-
rimeters covered with films of three different
thicknesses. When calculating the integrals in formula
(6), the results obtained with films of the largest, inter-
mediate, and the smallest thickness were used in the
temperature ranges 20–180, 180–260, and T > 260°ë,
respectively.

5.6. Reaction Heat and Activation Energy

By taking the integrating in the numerator of expres-
sion (6), we find an extra heat energy received by the
calorimeter in the process of plasmochemical oxidation
of a PFR polymer film: ∆Qchem = 6.76 J/cm2 for the
input power P = 300 W and ∆Qchem = 6.79 J/cm2 for P =
200 W. The heat released in the chemical reaction
amounts to higher than 30% of the energy (≈20 J/cm2)
transferred to the inert calorimeter from the discharge
over a time required for the complete oxidation of the
film on the active calorimeter.

The heat of the plasmochemical oxidation of PFR,
determined by expression (6), is δH = 2.68 × 104 J/g for
P = 300 W and δH = 2.69 × 104 J/g for P = 200 W. The
mean value obtained by averaging over five samples is
δH = (27 ± 1) kJ/g. The measurements carried with a
calorimetric bomb showed that the enthalpy of the com-
plete combustion of PFR in molecular oxygen is ≈2.8 ×
104 J/g [7, 13]. In this case, the work of expansion is
negligible because the number of atoms involved in the
reaction is close to the number of molecules produced
in the reaction. The value of δH obtained when oxidiz-
ing the film in the plasma and the heat of complete com-
bustion in hot oxygen are close to each other, which,
however, does not mean that δ ≈ 1. The point is that, in
a nonequilibrium plasma, atomic oxygen is produced
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002
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from an é2 molecule via an electron impact in the dis-
charge volume, rather than via thermal dissociation on
the calorimeter surface. Hence, the heat of polymer oxi-
dation by atomic oxygen must be ~6.5 × 104 J/g. It fol-
lows from here that δ ≥ 0.4. The energy fraction not
intercepted by the calorimeter can be taken away by the
electronically and vibrationally excited reaction prod-
ucts. The desorption of incompletely oxidized macro-
molecule fragments (monomeric links, molecular
hydrogen, etc.) is also possible. Per every removed
C7H6O fragment of a (C7H6O)n PFR macromolecule
(where n > 100), an energy of ~30 eV is transferred to
the calorimeter. For complete oxidation, it is necessary
that 9.4 × 1022 oxygen atoms react with 1 g of polymer.
On each oxygen atom involved in the reaction, an
energy of ≈2 eV is released in the calorimeter. This is
an estimate from below because polymer oxidation is
usually not completed and a lesser amount of oxygen
atoms is required to remove the film. The study of the
issues related to both the degree of the substance trans-
formation in plasmochemical reactions and the energy
distribution among the calorimeter and reaction prod-
ucts is also of interest.

The slope of the temperature dependence of the
power released in the chemical reaction is constant in
Arrhenius coordinates (  – T–1), which enables
the determination of the activation energy of the exo-
thermic process: ∆E = 0.38 eV for P = 300 W and ∆E =
0.36 eV for P = 200 W. The average over five samples
is ∆E = (0.37 ± 0.02) eV. The same quantity also char-
acterizes the temperature dependence of the chemical
reaction rate. The preexponential factor Z increases
from 4 to 9 mg/cm2 s with increasing discharge input
power. The constant slope of the Dr(T) dependence
allows us to conclude that, in this case, the rates of the
surface processes are the reaction limiting factor. When
the transportation of chemically active particles from
the discharge to the surface is the limiting factor, the
temperature dependence in Arrhenius coordinates is a
curve whose slope decreases with the temperature (i.e.,
the temperature dependence of the reaction rate
becomes saturated).

5.7. Film Oxidation Rate

The interferometric oscillations of the intensity of
the reflected light with a wavelength of 633 nm allow
one to plot the time dependence of the film thickness
after the discharge ignition. This method is based on the
assumption on the layer-by-layer removal of the film
from the surface. This assumption is confirmed by ana-
lyzing the film transmission spectra after removing
one-half and three-quarters of the initial film thickness.
The refractive index holds constant in the mid-infrared
spectral region, which indicates that the composition
and structure of the remaining film remain unchanged.

Let us consider another method, which is more uni-
versal and may be applied, for example, to the plasmo-

Drlog
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002
chemical etching of opaque (e.g., metal) films. The heat
energy δ(∆H) released in a chemical reaction by the
instant t is proportional to the decrease in the film thick-
ness; i.e., h(t) = h0[1 – ∆(δH)/δH]. The instant ∆(δH) can
be found by performing integration in expression (6) to
the instant t. Figure 6 shows the h(t) dependences
obtained by two different methods. The difference
between them stems from the fact that the interferome-
try method of the thickness determination is local,
whereas the thermal method is integral because of the
high thermal conductivity of the silicon single crystal.
The film thickness at the edge of the sample decreases
faster than in the center (Fig. 7).

The fact that the film etching rates obtained by the
two different methods are close to each other allows us
to conclude that the power of extra heat release and the
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Fig. 6. Decrease in the polymer film thickness in an oxygen
plasma for an input power of (1) 300 and (2) 200 W. The
thickness is determined from an interferogram at a wave-
length of 0.633 µm (symbols) and from the released thermal
energy (solid lines).
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Fig.7. Profiles of the film thickness along the 2 × 2-cm sam-
ple 55 (circles) and 65 (squares) s after discharge ignition in
oxygen for an input power of 185 W. The initial film thick-
ness is 2 µm; the film is completely removed over ≈70 s.
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film etching rate increase with temperature in the same
way. This is indirect evidence that the source of extra
heat release, which leads to the heating of the calorim-
eter covered with a film, is related to a surface chemical
reaction. If there were several surface heat sources with
comparable powers and different activation energies,
then the h(t) dependences obtained by these two meth-
ods would differ from each other.

6. CONCLUSION

Monitoring the rate of heat release in a surface plas-
mochemical reaction allows one to determine such
reaction parameters as the reaction heat, the activation
energy, and the rate constant of heat release. The acti-
vation energy measured when oxidizing a polymer in
an oxygen plasma is about three times lower than that
during polymer heating in oxygen. Varying the power
deposited in the discharge does not considerably
change the activation energy. Reactions with the partic-
ipation of radicals, discharge initiation by UV radia-
tion, etc., can lead to a decrease in ∆E in the plasma.

The heat released in a plasmochemical reaction is
lower than the heat of the complete combustion of a
polymer film in atomic oxygen. One of the possible rea-
sons is the desorption of deficiently oxidized products
from the film surface. To verify this assumption, it is
necessary to analyze the reaction products.

With a scanning calorimetry, the number of mecha-
nisms governing heat release on the calorimeter surface
can be determined from the number of the nearly linear
segments in the temperature dependence of the power
transferred to the calorimeter. The problem of resolving
contributions from different heat sources by the method
concerned is similar to resolving overlapped spectral
lines: if the maxima of heat release are localized in dif-
ferent temperature ranges, resolving is an easy task. If
some sources with approximately equal powers act
simultaneously and their powers have similar tempera-
ture dependences (e.g., several sources with Arrhenius
temperature dependences), then the problem becomes
more complicated but not insolvable, because each
source has its own characteristic activation energy; i.e.,
on the temperature–power plane, its contribution is
marked off by a linear segment with its own slope.

ACKNOWLEDGMENTS
This study was supported by the Russian Founda-

tion for Basic Research, project no. 01-02-17209.

REFERENCES
1. I. P. Herman, Optical Diagnostics for Thin Film Process-

ing (Academic, San Diego, 1996).
2. A. N. Magunov, Pis’ma Zh. Tekh. Fiz. 21 (5), 44 (1995)

[Tech. Phys. Lett. 21, 185 (1995)].
3. A. N. Magunov, Prib. Tekh. Éksp., No. 5, 131 (1995).
4. A. N. Magunov, Fiz. Plazmy 23, 1018 (1997) [Plasma

Phys. Rep. 23, 940 (1997)].
5. A. N. Magunov, Prib. Tekh. Éksp., No. 1, 92 (1999).
6. A. N. Magunov, A. Yu. Gasilov, and O. V. Lukin,

Teplofiz. Vys. Temp. 37, 202 (1999).
7. W. M. Moreau, Semiconductor Lithography (Plenum,

New York, 1988; Mir, Moscow, 1990).
8. A. N. Magunov and E. V. Mudrov, Teplofiz. Vys. Temp.

30, 372 (1992).
9. N. N. Semenov, Chain Reactions (Nauka, Moscow,

1986).
10. V. D. Berkut, V. M. Doroshenko, V. V. Kovtun, and

N. N. Kudryavtsev, Nonequilibrium Physicochemical
Processes in Hypersonic Aerodynamics (Énergoatomiz-
dat, Moscow, 1994).

11. A. N. Magunov, Fiz. Plazmy 27, 378 (2001) [Plasma
Phys. Rep. 27, 355 (2001)].

12. A. N. Magunov, Pis’ma Zh. Tekh. Fiz. 20 (7), 65 (1994)
[Tech. Phys. Lett. 20, 289 (1994)].

13. Concise Handbook of Physicochemical Quantities, Ed.
by A. A. Ravdel’ and A. M. Ponomareva (Khimiya, Len-
ingrad, 1983).

Translated by N. Ustinovskiœ
PLASMA PHYSICS REPORTS      Vol. 28      No. 4       2002


	259_1.pdf
	268_1.pdf
	274_1.pdf
	286_1.pdf
	296_1.pdf
	303_1.pdf
	312_1.pdf
	327_1.pdf
	335_1.pdf
	342_1.pdf
	351_1.pdf
	359_1.pdf

