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Abstract—A model is developed for the electromagnetic form factor of the pion. One-loop corrections are
included in the linear σ-model. The ρ-meson contribution is added in an extended VMD model. The form factor,
calculated without fitting parameters, is in a good agreement with experiment for spacelike and timelike photon

momenta. Loop corrections to the two-pion hadronic contribution  to the muon anomalous magnetic
moment are calculated. The optimal value of the σ-meson mass appears to be very close to the ρ-meson mass.
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1. INTRODUCTION

It has recently been understood that the pion electro-
magnetic form factor is a very important physical quan-
tity that plays a key role in testing the Standard Model
at the electroweak precision level. The reason is that, at
low energies, the production cross section

(1)

where s is the squared total energy in center-of-mass
system, α is the fine structure constant, and mπ is the
pion mass, dominates over the other hadronic channels
and accounts for more than 70% of the total hadronic
contribution to the muon anomalous magnetic moment
(AMM)

The recent measurement of aµ from the Brookhaven
E821 experiment [1] has boosted interest in a renewed
theoretical calculation of this quantity [2].

The main ingredient of the theoretical prediction of
aµ , which is responsible for the bulk of the theoretical
error, is the hadronic contribution to the vacuum polar-
ization. The contribution of the π+π– channel to the
electron–positron annihilation process can be written
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in terms of the form factor Fπ(s) via the dispersion inte-
gral [3]

(2)

where mµ is the muon mass.

Conventional strategy of the model-independent
evaluation of this integral consists in using precise
experimental data (at least at low energies, where per-
turbative QCD cannot reliably be applied). However,
the predicted accuracy, which should be reached soon
in the E821 experiment, requires calculation of electro-
magnetic radiative corrections to cross section (1) [4].
Apart from pure π+π– events, electromagnetic radiative
corrections include the π+π–γ process where the photon
is radiated from the final pions. In current experiments
at Φ and B factories, based on the radiative return
method [5], this contribution cannot be extracted in a
model-independent way1 and the corresponding proce-
dure requires model-dependent approaches. This, in
turn, stimulates development and study of different the-
oretical models of pion–photon interaction. The sim-
plest is the pointlike scalar quantum electrodynamics
(sQED) [7] combined with the standard vector meson
dominance (VMD) model (see, e.g., [8]) for description

1 Even in direct scanning experiments, a model-independent treat-
ment of π+π–γ events suggested in [6] seems too complicated to
be used in the near future.
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of the γ*  π+π– transition form factor in the ρ-reso-
nance region. Such a model was used in [4] for con-
struction of the Monte Carlo event generator.

In the present paper, we consider a modification of
the pion electromagnetic form factor in the linear
σ-model [9] with spontaneously broken chiral symme-
try, which includes the nucleon sector. The ρ-meson
contribution is added following [10, 11]. In particular,
the ρ coupling to the pion and nucleon is introduced
through gauge-covariant derivatives, while the direct γρ
coupling has an explicitly gauge-invariant form. We
calculate the pion form factor in the one-loop approxi-
mation in the strong interaction and compare Fπ(s) with
precise data from elastic e–π+ scattering and e+e– anni-
hilation in the pion pair.

We take the loop corrections to  into
account. In general, because the σ-model Lagrangian
contains the sQED Lagrangian as a constituent part,
one can expect that the difference between the predic-
tions of σ-model + VMD and sQED + VMD is small.
Indeed, it follows from our calculation that the loop
corrections increase the low-energy part of the right-
hand side of Eq. (2) by about 2%, as compared with
sQED + VMD.

2. FORMALISM

2.1. Lagrangian 

The Lagrangian of the model consists of two parts,

The first is the Lagrangian of the chiral linear σ-model
[9] with an explicit symmetry-breaking term cφ. After
spontaneous breaking of chiral symmetry and redefini-
tion of the scalar field via

where v  = 〈φ〉 is the vacuum expectation value, the
Lagrangian takes the form

(3)

where N, , and σ are the respective fields of the
nucleon, pion, and meson with vacuum quantum num-
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bers; gπ is the coupling constant; λ is the parameter of
the meson potential; and

etc. All parameters of the model are related via

(4)

Moreover, in the tree-level approximation, v  = fπ,
where fπ = 93.2 MeV is the pion weak decay constant.
More details on the σ-model can be found, e.g.,
in [12, Ch. 5, Sec. 2.6].

The second part of the Lagrangian includes cou-
pling to electromagnetic field Aµ and field ρµ of the neu-
tral ρ-meson. This coupling can be obtained using the
minimal substitutions

(5)

where e is the proton charge, gρ is the coupling con-
stant, and τ3 is the third component of the Pauli vector

 = (τ1, τ2, τ3). In addition, we include the direct cou-
pling of the photon to the ρ-meson in the version of
VMD model from [10, 11]. We thus obtain

(6)

where

and fρ determines the γρ coupling. In Eq. (6), we
assume equal coupling constants of ρ to the pion and
the nucleon in accordance with the universality hypoth-
esis of Sakurai (see, e.g., [12, Ch. 5, Sec. 4]). At the
same time, the γρ coupling constant fρ does not neces-
sarily coincide with gρ. Lagrangian (6) is gauge-invari-
ant because of the form of the γρ coupling. We mention
that the nucleon contribution is also included in
Lagrangian (6), contrary to [10, 11].
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2.2. Counterterms and Renormalization 

Because one of the purposes of the present paper is
to take loop corrections to the pion electromagnetic
vertex into account, we need to specify the way in
which the parameters are renormalized. We use the
conventional approach and assume that Lagrangians (3)
and (6) involve the “bare” fields, coupling constants
and masses, to be marked by the subscript 0. The bare
fields require rescaling,

where Zπ, ZN , Zρ, and ZA are the respective wave-func-
tion renormalization constants for the pion (or sigma),
nucleon, rho, and photon. The procedure for obtaining
the counterterm Lagrangian is known (see, e.g., [13,
Ch. 10]). For +(1), the corresponding counterterm
Lagrangian is given by

(7)

There are six constants , , δµ , δλ , , δc , which

can be fixed by imposing six conditions on the Green
functions in general. In calculating the pion electro-
magnetic vertex, only one constant  is needed (see

Section 2.3).

For Lagrangian (6), we can first define the physical
values of the electric charge

and the ρ coupling
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+ct
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It is also convenient to introduce

(the ρ-meson mass in the absence of coupling to pions).
The counterterm Lagrangian can be written as

(8)

It follows that we in general need three additional con-
stants , , and  once  and  are fixed.
Finally, the total Lagrangian is the sum2 

(9)

2.3. Contribution 
to the Pion Electromagnetic Form Factor 

from the σ-Model Sector

The Feynman rules for Lagrangian (9) are obtained
according to the standard prescriptions [14]. The coun-
terterm constants can be found by imposing the follow-
ing constraints on the respective self-energy operators
of the pion, sigma-meson, and nucleon:

(10)

These conditions imply that the respective pole posi-
tions of the pion, nucleon, and sigma propagators are
located at the physical mass of the pion, nucleon, and
sigma. In addition, the residue of the pion and nucleon
propagators is unity, ensuring the absence of renormal-
ization for the external pion and nucleon (but not for the
external sigma-meson). We also impose the condition
〈σ〉  = 0 by requiring that the so-called tadpole diagrams
vanish. Accordingly, the tadpole diagrams do not con-
tribute to the quantities calculated below.

In calculation of the loop integrals, we use the
dimensional regularization method (see, e.g., [13,

2 The mass mρ in +(2) is replaced by .
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(a) (b)

q p2

p1a

b
(c) (d)
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Fig. 1. One-loop diagrams contributing to the pion electromagnetic form factor in the σ-model. Dashed lines depict pion; dotted
lines, sigma; solid lines, nucleon; and wavy lines, photon. Small crossed circle denotes the counterterm. Diagram (a) corresponds
to the pion form factor in sQED.
Appendix A.4]). Exploiting conditions (10), we find the
constant :

(11)

(12)

In these equations,

where D is the space–time dimension, γE ≈ 0.5772 is the
Euler constant, and Λ is an arbitrary scale mass, which
drops out in the physical observables.

The one-loop contributions to the pion electromag-
netic vertex coming from the σ-model are shown in
Fig. 1. Using the isospin structure of the vertices, or
negative charge-conjugation parity of the photon, one
can show that diagrams (e), (f), and (g) vanish. Coun-
terterm (h) cancels the divergences coming from loop
contributions (b) and (c), while contribution (d) is
finite.

In the general case of the off-mass-shell pions, the

electromagnetic vertex (p1, p2, q) for the process
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has the form

(13)

with scalar functions F( , , q2) and G( , , q2).

On the mass shell,  =  = , the function

G( , , q2) drops out, while F( , , q2)
becomes equal to the pion form factor Fπ(q2). With the
loop corrections denoted by ∆F(σ)(q2), we find

(14)

where the total correction is finite and is given by

(15)

(16)

with  and  defined in Eq. (12).
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2.4. Contribution
to the Pion Electromagnetic Form Factor

from the ρ-Meson 

The contribution to the pion electromagnetic form
factor from the ρ-meson can be written in the com-
pact form

(17)

This expression includes several effects coming from
the loop corrections shown in Fig. 2.

(1) The q2-dependent vertex gρ(q2) describes loop
corrections to the ρππ coupling that originate from the
σ-model (Fig. 2, diagrams (a)). These corrections have
not been included in [11]. We can write

(18)

It is seen that the expression in the square brackets is
the same as in Eq. (14) and is finite. From Eq. (18), we
obtain

(19)

in terms of the constant gρ( ). From the experimental

Fπ
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gρ q2( ) gρ 1 ∆F σ( ) q
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+ +

1 ∆F σ( ) mρ
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+ +
-----------------------------------------------=

mρ
2
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width of the ρ  ππ decay, Γρ → ππ = 150.7 MeV [15],

we have |gρ( )| = 6.05. To find the real and imaginary

part of gρ( ), we can use the relations

(20)

(2) The ρ-meson self-energy has the structure

and corresponds to the diagrams shown in Fig. 2b. It
leads to the following exact propagator of the ρ-meson
(Fig. 2, diagrams (c)):

(21)

Calculation of the loop integrals in Fig. 2b results in

mρ
2

mρ
2

Regρ mρ
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1 λ2+
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q

p2
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b

=

(b)

(c)

(d)

gρ(q2) gρ

µ ν

µ ν

Fig. 2. Diagrams (a) show π, σ, and N loop corrections to the ρππ vertex; diagrams (b) show the π and N loop corrections to the
self-energy of the ρ-meson; diagrams (c) graphically represent the equation for the exact ρ-meson propagator; diagrams (d) repre-
sent the π and N loop corrections to the γρ vertex. Double wavy lines depict the ρ-meson. The corresponding counterterms are indi-
cated by crossed circles.
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(22)

(23)

with

The self-energy has a logarithmic divergence and
requires renormalization. The authors of [11] renormal-
ized the self-energy by applying a dispersion relation
with two subtractions. We prefer an alternative method
of counterterms, which is expressed in Eq. (22) via the
constant . We can fix the latter from the constraint
on the self-energy at physical mass mρ of the ρ-meson,

(24)

(25)

where

It is seen from Eqs. (22) and (25) that the self-energy

is finite. Near the physical mass, it has the expansion

(26)

and therefore the coupling gρ is not renormalized due to
self-energy loops [11]. There is also a finite mass shift:

(27)

For the definition of , see the paragraph before
Eq. (8).

Above the two-pion threshold, the self-energy
acquires an imaginary part that comes from the pion
loop (the third diagram in Fig. 2b). Namely, at q2 <

4 , the imaginary part and the q2-dependent ρ 
ππ decay width are given by the respective expressions

(28)
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(3) Closely related to the self-energy are loop cor-
rections to the γρ coupling constant shown in Fig. 2d.
The sum of all contributions is proportional to the ten-
sor gµν – qµqν/q2, similarly to the tree-level term. Intro-
ducing the q2-dependent vertex, we obtain

(29)

where  can be fixed by requiring that on the mass

shell q2 = , the coupling fρ( ) is related to the
ρ  e+e– decay width. The experimental width

 = 6.77 keV [15] is reproduced with |fρ( )|≈
5.03. From Eq. (29), we find

(30)

where the real part of the constant fρ( ) is determined

from |fρ( )| and from the imaginary part,

It is seen from (30) that the effective γρ vertex is finite.
A similar procedure for this vertex was used in [11],

although only the real part of fρ( ) was taken from
experiment.

We also mention that, in calculating Πρ(q2) and

fρ(q2), we used |gρ( )| instead of gρ in order to obtain
the correct width of the ρ-meson.

(4) The last term in Eq. (17) describes the ρ–ω inter-
ference due to electromagnetic effects [8]. The explicit
form of the contribution to the pion form factor can be
taken from [16],

(31)

(32)

where Γω = 8.43 MeV is the full decay width of the
ω-meson with mass mω, fω = 17.05 is the γω coupling
constant, which is fixed from the ω  e+e– decay
width  = 0.6 keV [15], and Πρω ≈ –3.8 ×
10−3 GeV2 is the mixed ρ–ω self-energy.

3. RESULTS AND DISCUSSION

We first specify the parameters of the model. The
constant gπ is determined from the tree-level Gold-

1
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Fig. 3. The pion electromagnetic form factor for spacelike q2 (a) and timelike q2 (b). Experimental data are from [18] and [19],
respectively. Solid lines, σ-model + VMD; dotted lines, σ-model.
berger–Treiman relation

(the first equation in (4)), while gρ( ) and fρ( ) are
fixed from experiment, as described in Section 2.4. The
σ mass is chosen equal to the mass of ρ, i.e., mσ = mρ,
in line with [17], where σ and ρ are assumed degener-
ate. Furthermore, mρ = 768.5 MeV and mω =
782.57 MeV [15].

It is interesting to note that calculation of the self-
energy of the ρ-meson gives  = 795 MeV. This value
is rather close to the physical mass mρ. In this connec-
tion, we note that the authors of [11] fitted  from the
ππ scattering and obtained 810 MeV. The difference in
the above values of  is partially due to our taking the
nucleon loop into account, which was not considered
in [11].

As mentioned in Section 2.4, both the real and imag-

inary parts of the coupling constants gρ( ) and fρ( )
have been included. The calculation yields

Taking the imaginary parts into account leads to a small
correction to the results obtained with

Our main results are demonstrated in Fig. 3 and
Tables 1 and 2. The calculated pion form factor |Fπ(q2)|2

gπ mN/ f π=

mρ
2 mρ

2

m̂ρ

m̂ρ

m̂ρ

mρ
2 mρ

2

Regρ mρ
2( ) 6.036, Imgρ mρ

2( ) 0.405,= =

Re f ρ mρ
2( ) 4.96, Im f ρ mρ

2( ) 0.82– .= =

Imgρ mρ
2( ) Im f ρ mρ

2( ) 0.= =
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for spacelike and timelike values of q2 is presented in
Fig. 3. Apparently, the agreement with the data [18]
from elastic electron–pion scattering and the data [19]
from e–e+ annihilation in two pions is quite good. We
emphasize that there are no fitting or tuning parameters
in our approach.

There is a strong interference of the two contribu-

tions,  and , in the total form factor. In Fig. 3,

we show the contribution  separately. It follows
from Eqs. (17) and (18) that the ρ contribution also
includes π, σ, and N loops coming from the σ-model.
Switching off these corrections, i.e., setting

we obtain

(33)

Here, the first term corresponds to sQED, and the sec-

Fπ
σ( )

Fπ
ρ( )

Fπ
σ( )

∆F σ( ) q2( ) δZπ
+ 0,=

Fπ
sQED VMD+( ) q2( )

=  1
gρ

f ρ q2( )
---------------- q2

q2 m̂ρ
2

– Πρ q2( )–
-----------------------------------------– ∆Fπ

ρω( ) q2( ).+

Table 1.  Two-pion contribution  to the muon anom-

alous magnetic moment (in units 10–11). The upper integra-
tion limit in Eq. (2) is 0.8 GeV2

sQED σ-model sQED
+ VMD

σ-model
+ VMD

σ-model
+ VMD (fρ = gρ)

Ref.
[2]

525 753 4667 4763 4745 4774
± 51

aµ
had π,( )
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Table 2.  Dependence of  on the mass of σ-meson

mσ, GeV 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

, 10–11 4546 4583 4640 4710 4788 4867 4946 5024 5099

aµ
had π,( )

aµ
had π,( )
ond and the third terms are the ρ-meson contributions.
We note that Eq. (33) corresponds to the extended ver-
sion of VMD in [11]; in the “standard” VMD model [8],
we have the dependence

Our calculation shows that the difference between
the form factor calculated in σ-model + VMD
(Eqs. (14) and (17)), and that in sQED + VMD
(Eq. (33)), is small, and therefore the results for
sQED + VMD are not plotted in Fig. 3. Nevertheless,
the difference may show up in the integrated quantity

 for the muon AMM.

The calculated values of  are shown in
Table 1. In general, loop corrections are important in
the σ-model (compare the first and the second col-
umns). Their role is, however, diminished in the full
calculation, which includes the dominant ρ-meson con-
tribution (the third and the fourth columns in Table 1).
The difference between σ-model + VMD and sQED +
VMD calculations is about 2%.

In this connection, our result can be used to estimate
the size of radiative corrections due to final-state-pho-
ton radiation in the e–e+  π+π–γ process. The corre-

sponding contribution to the muon AMM, , is
calculated in [4] in the sQED + VMD framework. In
general, the ratio

is on the order of α. We expect that the model depen-

dence of  is similar to that of . There-

fore, the deviation of  calculated in sQED +

VMD from  in a more realistic model, for
example, in σ-model + VMD, is about 2%. The overall

model-dependent effect in the contribution  to
the muon AMM is of the order α × 2% ≈ 0.015% and is
therefore negligible.

In the fifth column, we show the result obtained if
we set fρ = gρ in Lagrangian (6). This approximation
corresponds to the full universality of Sakurai. In this
case, the renormalization procedure for the γρ vertex
changes and  in Eq. (8) is equal to /gρ. The

mρ
2

mρ
2

q2– imρΓρ q2( )–
-------------------------------------------------.

aµ
had π,( )

aµ
had π,( )

aµ
had πγ,( )

σ e+e– π+π–γ( )/σ e+e– π+π–( )

aµ
had πγ,( ) aµ

had π,( )

aµ
had πγ,( )

aµ
had πγ,( )

aµ
had πγ,( )

δ f ρ
δZρ
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numerical results for the form factor and , how-
ever, change very little, e.g., by about 0.4% for the
integral.

As mentioned above, we chose the mass mσ = mρ for
the σ-meson in the calculation. This particle is associ-
ated with the f0(400–1200)-meson in [15]. In view of its
undetermined status, we study the dependence of the

calculated integral  on mσ in Table 2. As can be
seen from Table 2, the integral varies considerably. We
take the value 4774 ± 51 from [2] as a very accurate fit
to the experimental integral. Then, for the indicated
error bars, we obtain the mass of σ in the interval from
720 to 850 MeV. The central value 785 MeV is surpris-
ingly close to the ρ-meson mass. Therefore, our calcu-
lation agrees with the hypothesis in [17] about degener-
acy of σ- and ρ-mesons.

In the calculations, we took only the diagrams with
the ρ-meson entering on the tree level into account. In
particular, the loops with an intermediate ρ-meson for
the γπ+π– and ρπ+π– vertices are left out. Such contribu-
tions can be consistently considered in the models in
which the ρ-meson is included together with its chiral
partner, the axial vector a1-meson, for example, in the
so-called gauged σ-model [20] or chiral quantum
hadrodynamics [21, 22]. This work requires further
investigation.

4. CONCLUSIONS

We developed a model for the electromagnetic ver-
tex of the pion. The model is based on the linear
σ-model, which generates loops with the intermediate
pion, sigma, and nucleon. The ρ-meson is included in
line with the extended VMD model [11]. The coupling
of ρ to the pion and nucleon is introduced via gauge-
covariant derivatives, and the direct γρ coupling has a
gauge-invariant form. The ρ-meson self-energy and the
modified γρ vertex are generated by the pion and
nucleon loops. The renormalization is consistently per-
formed using the method of counterterms without cut-
off parameters.

The pion electromagnetic form factor calculated in
the one-loop approximation in strong interaction agrees
well with the precise data obtained from elastic e–π+

scattering and e+e– annihilation into π+π–. The effect of
the σ-model loops turns out to be small.

We calculated the contribution of the e+e–  π+π–

process to the muon AMM, . The calculation
agrees quite well (by 0.15%) with the recent, very accu-

aµ
had π,( )

aµ
had π,( )

aµ
had π,( )
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rate fit in [2]. The contribution of the σ-model loops to

 is about 2%.

We also estimated the size of the model-dependent

effects in , the contribution to the muon AMM
from final-state-photon radiation in the e+e–  π+π–γ
process. It is about α × 2% ≈ 0.015% and is therefore
negligible. Hence, our calculation does not contradict
the conclusion in [4] that the final-state radiative pro-
cess e+e–  π+π–γ can be evaluated in scalar QED
supplemented with the VMD model.

The only free parameter of the model, which is not
fixed from the experiment, is the σ-meson mass. Com-
parison with the fit in [2] strongly indicates that the
value of this mass is close to the mass of the ρ-meson.
This conclusion is consistent with [17], where the
mesons σ and ρ are assumed to be degenerate.
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Abstract—Higher orders in perturbation theory can be calculated by the Lipatov method [1]. For most field
theories, the Lipatov asymptotics has the functional form caNΓ(N + b) (N is the perturbation theory order); rel-
ative corrections to this asymptotics have the form of a power series in 1/N. The coefficients of higher order
terms of this series can be calculated using a procedure analogous to the Lipatov approach and are determined
by the second instanton in the field theory in question. These coefficients are calculated quantitatively for the
n-component ϕ4 theory under the assumption that the second instanton is (i) a combination of elementary
instantons and (ii) a spherically asymmetric localized function. A technique of two-instanton computations, as
well as the method for integrating over rotations of an asymmetric instanton in the coordinate state, is devel-
oped. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION AND MAIN RESULTS
According to Lipatov [1], higher orders of perturba-

tion theory are determined by saddle-point configura-
tions (instantons) of the corresponding functional inte-
grals. A typical asymptotics for coefficients ZN in the
expansion of a certain quantity Z(g) in the coupling
constant g,

(1)

has the form

(2)

where S0 is the instanton action and b and c are constants.
The corrections to the Lipatov asymptotics (2) have the
form of a regular expansion in 1/N, 

(3)

the calculation of these corrections provides additional
information on the coefficient function ZN. It was proved
recently by one of the authors [2] that the series (3)
diverges factorially and the typical asymptotics of coef-
ficients AK for K  ∞ has the form

(4)

Z g( ) ZNgN ,
N 0=

∞

∑=

ZN cS0
N– Γ N b+( ), N ∞,=

ZN cS0
N– Γ N b+( )=

× 1
A1

N
------

A2

N2
------ …

AK

NK
------- …+ + + + +

 
 
 

;

AK c̃
S1

S0
-----ln 

  K–

Γ K
r' r–

2
-----------+ 

  ,=
1063-7761/04/9902- $26.00 © 20234
where S0 and S1 are the values of the first and second
instantons in the given field theory, while r and r' are the
corresponding numbers of zeroth modes; we assume
that instantons are labelled in the order of increasing the
corresponding action. This study is aimed at obtaining
close results for the asymptotic form AK in the n-com-
ponent ϕ4 theory with the action

(5)

where d is the dimension of the space. Initially, we
planned to calculate the constant in formula (4); how-
ever, it was found in the course of analysis that the func-
tional form of this constant in the presence of soft
modes requires correction.

Unfortunately, complete information on higher
order instantons in the ϕ4 theory is not available. It is
known [3] that the zero-node spherically symmetric
instanton derived analytically for d = 1, 4 and numeri-
cally for d = 2, 3 [4] possesses the minimal action S0.
Configurations with actions 2S0, 3S0, etc., correspond-
ing to several infinitely remote elementary instantons,
obviously also exist; for d = 1, such configurations
cover the entire instanton spectrum. Higher order
spherically symmetric instantons are higher lying1 for

1 The second spherically symmetric instanton has an action 6.6S0
for d = 2 and 6.3S0 for d = 3.

S g ϕ,{ } xd 1
2
--- ∇ϕ α x( )[ ] 2

α 1=

n

∑




d∫=

+
1
2
---m2 ϕα

2 x( )
α 1=

n

∑ 1
4
---g ϕα

2 x( )
α 1=

n

∑ 
 
 

2





,+
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d = 2, 3 and are missing for d = 4. A group of scientists
headed by Eleonsky [5] attempted to find instantons
that do not possess spherical symmetry; two instantons
with an action higher than that for the third spherically
symmetric instanton were found for d = 2, while no
nontrivial instantons were discovered for d = 3. Ushver-
idze [6] found analytically a series of asymmetric
instantons for d = 4, which begins with2 8S0. A numer-
ical algorithm for determining the “main sequence” of
instantons was proposed in [7]. The realization of this
algorithm shows3 that lower order instantons in this
sequence split into elementary instantons. Thus, the
most probable candidate for the role of the second
instanton in the ϕ4 theory is a combination of two ele-
mentary instantons; the present study is mainly based
on this assumption. However, since the existence of an
asymmetric instanton with an action smaller than 2S0

cannot be ruled out, formal results corresponding to
this case are given in Section 8.

It will be proved below that result (4) is valid when
the “equipartition law” is applicable, i.e., when all fluc-
tuation modes can be completely separated into the
zeroth and vibrational modes (Section 2). For two-
instanton configurations, a soft mode corresponding to
a change in the distance between elementary instantons
and reducible to vibrations at a nonanalytic minimum
inevitably exists. As a result, the right-hand side of for-
mula (4) acquires logarithmic corrections for d = 1, 2,
and 3 and even power corrections for d = 4.

Calculations for two-instanton configurations by the
saddle-point method were considered in [8–12] in con-
nection with the Lipatov asymptotics for problems with
degenerate vacuum (such as quantum chromodynamics
problems). In this case, the main difficulty lies in the
emergence of poorly defined integrals, which were
interpreted in [8–12] at the level of heuristic receptors,
the interpretation being not quite consistent even
according to the authors of these publications. In the
computation of the asymptotic form of AK , this problem
acquires a new aspect and requires a thorough analysis.
For this reason, we begin with the discussion of the
Bogomolny–Parisi dispersion relation [13, 14], which
is a source of poorly defined expressions (Section 3).
On the basis of this relation, the general interrelation
between the corrections to the asymptotics and higher
order instantons, which was heuristically pointed out
in [2], is established (Section 4). Then the combination
rule for instantons is derived (Section 5) and the general
computational algorithm in the presence of soft modes
is formulated (Section 6) and subsequently applied to
the ϕ4 theory (Section 7). The results for an asymmetric
second instanton are considered in Section 8.

2 The value 27/16S0 obtained in [2] is erroneous.
3 E.R. Podolyak, private communication.
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We will study functional integrals of the form

(6)

via which M-point Green functions can be expressed,

(7)

We have derived the following expression for the
asymptotic form of coefficients AK corresponding to the
Green function GM(g) for d = 1:

(8)

here, CE is the Euler constant and ψ(x) is the logarith-
mic derivative of the gamma function. For d = 2, to
within logarithmic accuracy, we have

(9)

similarly, for d = 3, we have

(10)

For d = 4, the results depend on the coordinates appear-
ing in the Green function and are rather cumbersome
(see Section 7). The results are slightly simplified as we
pass to the momentum representation and choose
momenta pi corresponding to a symmetric point (pi ~ p):

(11)

where µ is the point of charge normalization, ν = (n +
8)/3, and the values of constant B are given in the table.
In the scalar case (n = 1), the main contribution to the

ZM g( )

=  Dϕϕ α1
x1( )ϕα2

x2( )   …  ϕ α 
M

 x M ( ) S g ϕ,{ } – ( ) exp ∫  ,

GM g( )
ZM g( )
Z0 g( )
--------------.=

AK
2 M /2–

π/2( )Γ n/2( )
----------------------------- 3

2 2ln
----------- 

 
n/2

–=

× Γ K
n
2
---+ 

  2ln( ) K– Kln C+[ ] ,

C CE
6
2ln

-------- 
  ψ 1/2( ) ψ n/2( )–

2
--------------------------------------;+ln+=

AK
2 M /2–

19.7
----------- 0.702( )n

Γ n/2( )
--------------------–=

× Γ K
n 1+

2
------------+ 

  2ln( ) K– K ;2ln

AK
2 M /2–

2.12
----------- 0.704( )n

Γ n/2( )
--------------------–=

× Γ K
n 2+

2
------------+ 

  2ln( ) K– K3 .ln

AK B ν µ
p
---ln 
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× Γ K
n 4+

2
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  2ln( ) K– ,
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asymptotic form vanishes and we should expect the
behavior corresponding to the next order in 1/K:

(11')

The results for the logarithm of the vacuum integral
Z0(g) can formally be obtained from expressions (8)–
(11) by substituting M = 0 and introducing an addi-
tional factor 1/2 into the right-hand sides of these
expressions. In particular, for the ground-state energy
of a harmonic oscillator (d = 1, n = 1), we obtain

(12)

which can be compared with the results obtained by

AK const ν µ
p
---ln 

 exp⋅=

× Γ K
n 4+

2
------------ ν 1–+ + 

  2ln( ) K– .

AK
K 2.74+ln
3.78

--------------------------Γ K
1
2
---+ 

  2ln( ) K– ,–=

Values of parameter B in formula (11)

n
B × 104

M = 2 M = 4

0 –9.05 –8.72

1 0 0

2 3.25 1.45

3 4.55 1.50

2
0

4 6 8 10

K

1

2

3

4

5

6

7

8

log |AK|

Fig. 1. Comparison of asymptotic formula (12) (solid
curve) with coefficients AK determined numerically in [15]
(circles)
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Bender and Wu [15] (Fig. 1); in contrast to [2], this com-
parison is carried out without any fitting parameters.

For an asymmetric instanton (Section 8), soft modes
are absent and the structure of the result can be pre-
dicted beforehand proceeding from formula (4). For the
first instanton of the ϕ4 theory, zero modes contain d
translational, n – 1 rotational (associated with a change
in the direction of the vector field ϕ) and (for d = 4) one
dilatational mode corresponding to a change in the
instanton radius.4 For the second instanton, in view of
its low symmetry, d(d – 1)/2 additional modes associ-
ated with rotations in the coordinate space appear; con-
sequently, we have

(13)

The latter modes have not been considered before,
which makes the calculation of constant  (Section 8)
nontrivial from the methodical point of view. The
method for integrating with respect to these modes is of
interest for quantum electrodynamics, where even the
first instanton is asymmetric [16].

2. STRUCTURE
OF THE SADDLE-POINT CONTRIBUTION:

EQUIPARTITION LAW

In the subsequent analysis, we will use the brief
notation for integral (6),

(14)

and will normalize this integral to an analogous integral

with M = 0, g = 0, including factor  in the symbol
Dϕ. Using the properties of action uniformity,5 which
are typical of the ϕ4 theory,

(15)

and introducing the saddle-point configuration via the
condition S'{φc} = 0, in the vicinity of the saddle-

4 For a two-instanton configuration, the number of zeroth modes is
doubled (r' = 2r); by virtue of Eq. (4), this makes the contribution
r/2 to the argument of the gamma-function, which is equal to
(n − 1 + d)/2 for d < 4 (formulas (8)–(10)) and (n + 4)/2 for d = 4
(formula (11)).

5 Analogous properties of uniformity are also used in other field
theories; consequently, the subsequent analysis is also applicable
to these theories after slight modifications.

AK c̃
S1

S0
----- 

 ln
K–

Γ K
d d 1–( )

4
--------------------+ 

  .=

c̃

Z g( ) Dϕϕ 1( )…ϕ M( ) S g ϕ,{ }–( ),exp∫=

Z0
1– 0( )

S g ϕ,{ } S ϕ{ }
g

------------- for ϕ φ
g

-------,
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point we have

(16)

(δϕ = ϕ – ϕc , ϕc = φcg–1/2); in the absence of zero modes,
this leads to

(17)

We use the symbolic notation introduced in [2], where
the prime and double prime denote the first and second
functional derivatives, which are treated as a vector and
a linear operator, respectively, while variables ϕi

included in the symbol Dϕ are assumed to be compo-
nents of vector ϕ.

Expansion coefficients ZN are defined by the integral

(18)

where contour C circumvents the point g = 0 in the pos-
itive direction. According to Lipatov [1], for large val-
ues of N, the integral can be evaluated by the saddle-
point method. Introducing the saddle-point configura-
tion via the conditions

(19)

and carrying out the expansion in the vicinity of this
point, we obtain

(20)

where g = gc + igct; in the absence of zero modes, this
gives

In fact, the functional integral always contains zero
modes; for correct integration with respect to these
modes, we introduce collective variables λi (such as the

Z g( ) g M /2– Dϕφc
1( )…φc

M( )∫=

× –
S φc{ }

g
-------------- 1

2
--- δϕ S'' φc{ }δϕ,( )– 

 exp
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2πi
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gd

2πig
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g
-------------– N gln– 
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center of an instanton, its orientation, etc.), which are
formally determined for an arbitrary configuration of ϕ
and are its functionals, λi = fi{ϕ}. The latter can be treated
as uniform in ϕ with zero degree of uniformity [2]. We
introduce into the integrand of integral (14) the expan-
sion of unity,

(21)

where r is the number of zero modes. Using the degrees
of freedom corresponding to zero modes, we choose
the instanton from the condition λi = fi{φc}, after which
φc becomes a function of λi (i.e., φc ≡ φλ). Simple calcu-
lations lead to the following results (see [2] for details):

(22)

(23)

(24)

(25)

where f '{φc} is the operator whose matrix consists of
columns {φc} and subscripts P and P' mark the pro-
jection onto the subspace of zero modes and the supple-
mentary subspace, respectively.6 Expression (24)
matches the functional form of the Lipatov asymptot-
ics (2) given above.

In accordance with relation (24), each degree of
freedom for zero modes corresponds to 1/2 in the argu-

6 In formulas (32) and (48) of [2], the power –1 of det[f'{φc}]P and
det[f'{ψc}]P' is omitted. In some cases, these determinants are
functions of collective variables and should be introduced into the
integral with respect to λi .
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∏
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ment of the gamma function. This resembles the classi-
cal equipartition law. A thorough analysis reveals that
this is indeed true and an exact correspondence to this
law is observed. As a matter of fact, the classical parti-
tion function Z is determined by a configurational inte-
gral of exp(–H/T); as the number rosc of the oscillatory
degrees of freedom increases by unity, the substitution
Z  ZT1/2 takes place, which makes an additional con-
tribution of 1/2 to the heat capacity [17]. Integral (14),
which we are interested in, is determined by the expo-
nential exp(–S{φ}g), where the coupling constant g
plays the role of temperature. An increase in the number
r of zero modes by unity corresponds to a decrease in rosc

by unity and leads to the substitution Z  Zg–1/2 (see
relation (22)). In the calculation of the Lipatov asymp-
totics, factor g–1/2 is estimated at the saddle point gc ~
1/N (see relation (19)), which leads to the substitution
ZN  ZNN1/2 and to the addition of 1/2 to the argument
of the gamma function.

The equipartition law can be violated in the pres-
ence of soft modes associated with approximate sym-
metries of the system. In this case, some degrees of
freedom in the first approximation appear as zero
modes; however, in a more accurate analysis, these
degrees of freedom correspond to motion in a potential
relief that may be irreducible to a quadratic minimum.
Examples of soft modes are dilatations in the massive
four-dimensional or (4 – e)-dimensional ϕ4 theory [18,
19] and the change in the distance between elementary
instantons in a two-instanton configuration (see below).

3. DISPERSION RELATION 
AND ROTATION RULE

In view of the factorial increase in coefficients ZN ,
series (1) has zero radius of convergence. This is due to
the fact that point g = 0 is a branching point; to single
out the regular branch of Z(g), we must cut the complex
plane g from 0 to ∞. It is convenient to cut along the ray

(26)

on which the Borel sum of series (1) is poorly defined.7

Using the Cauchy formula and writing it in the form of
a dispersion relation, we obtain

(27)

(28)

where contour C embraces the point  = g and then is
deformed so as to circumvent the cut. Expanding func-

7 In the ϕ4 theory, action S0 is smaller than zero and the cut is made
along the negative semiaxis.

g g S0,sgn=

Z g( )
1

2πi
-------- Z g̃( )

g̃ g–
-----------dg̃

C

∫°=
1

2πi
-------- ∆Z g̃( )

g̃ g–
-------------- g̃,d

0

∞ S0sgn⋅

∫=

∆Z g( ) Z g i0 S0sgn+( ) Z g i0 S0sgn–( ),–=

g̃
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tion (27) into a series in g, we obtain the following
expression for the expansion coefficients:

(29)

The asymptotic form of ZN for N  ∞ and the dis-
continuity on the cut for g  0 are connected via the
relation

(30)

which can easily be derived from formula (29) or by
calculating the discontinuity in the cut of the Borel sum
of series (1). The next step is to identify ∆Z(g) with the
result of the saddle-point evaluation of integral Z(g) in
the vicinity of the same configuration ϕc as in the Lipa-
tov method,

(31)

Relations (30) and (31) were proposed by Bogomolny
[13] and Parisi [14] and form the basis of the approach
to calculating higher orders, which is an alternative to
the Lipatov method. These relations enable us to easily
find the asymptotic form of ZN if the result of the saddle-
point calculation of Z(g) is already known. Relation (31)
can be substantiated for a conventional integral using
the elegant analysis proposed by Langer [12, 20]; how-
ever, this relation has never been proved in general
form; besides, it is poorly defined and requires an
appropriate interpretation.

To substantiate relation (31), we must formulate the
rule of permutation of integrations with respect to g and
ϕ; we introduce this rule using a conventional integral
as an example:

(32)

(33)

Diverging series (1) is obtained as a result of a reg-
ular expansion of the exponent in relation (32) in g fol-
lowed by interchanging summation and integration;
however, the direct expansion of Z(g) into a series is not
quite correct since it corresponds to the Taylor expan-
sion at a definitely singular point. For this reason, it is
appropriate in expression (33) to integrate first with
respect to g (determining the coefficient of the expan-
sion of exp(–gϕ4)) and then with respect to ϕ; the con-

ZN
1

2πi
-------- ∆Z g( )

gN 1+
-------------- g.d

0

∞ S0sgn⋅
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∆Z g( ) 2πic
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g
----- 

 
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g
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 exp=

ZN cS0
N– Γ N b+( ),=

∆Z g( ) Z g( )[ ] saddle–point φc
.=

Z g( ) ϕ ϕ 2– gϕ4–( ),expd

0

∞

∫=

ZN
gd

2πig
------------
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∫= ϕ ϕ 2– gϕ4– N gln–( ).expd

0

∞

∫
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tour C can be chosen circular so that it passes through
the saddle point gc = –1/N in the vertical direction
(Fig. 2a). Interchanging the integration sequence is not
quite trivial in view of the presence of the cut in Z(g)
along the ray (26). We confine the integration to the
domain of large ϕ values using a cutting multiplier to
shift the cut by a distance ∆ from zero and deform the
contour as shown in Fig. 2b. If we expand the contour
and remove the truncation, the cut will be circumvented
in the negative direction; it can easily be seen that this
corresponds to formula (29).8 

Depending on the sequence of integration, the sad-
dle point gc is passed either in the vertical (see Fig. 2a)
or in the horizontal direction (Fig. 2b). It is well known
that we should pass by this point in the steepest descend
direction (it remains to be seen whether this direction is
vertical or horizontal).

In integral (33), the saddle point takes place at ϕc =

, gc = –1/N and the quadratic form appearing in
the expansion in the vicinity of this point (ϕ = ϕc + δϕ,

g = gc + itgc ) can be written as

(34)

If we integrate first with respect to g, the shift in vari-
able t leads to the well-defined Gaussian integral

(35)

If we integrate first with respect to ϕ, we obtain a
“poor” integral

(36)

Let us turn the contours of integration with respect to t
and ϕ in Eq. (36) through the same angle in the opposite
directions (t  te–iα, δϕ  δϕeiα); this does not
change the determinant of the quadratic form, which
defines the Gaussian integral. For α = π/2, integral (36)

8 At first glance, another line of reasoning is possible. First, con-
tour C should be deformed so that it embraces the negative semi-
axis and the cut appears within it (this ensures the circumvention
of the cut in the positive direction). We mean that the cut “grows”
from zero to infinity. This corresponds to the Taylor expansion at
the singular point and, hence, is incorrect.

2N

2/N

δϕ( )2– t i 2δϕ–( )2
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.+
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∞
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∞

∫
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∞

∫d
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∫

t ϕ δϕ i 2t+( )2
t2+[ ]expd
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∞
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∞–
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∫

=  t ϕ δϕ( )2 t2+[ ] .expd

∞–

∞

∫d

∞–

∞

∫
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is transformed into (35) and a transition from Fig. 2c to
Fig. 2d takes place: the vertical integration with respect
to g becomes horizontal, as is required by formula (29),
while the discontinuity at the cut ∆Z(g) is obtained
from the initial integral Z(g) by rotating the contour rel-
ative to the saddle point ϕc through an angle π/2 in the
positive direction.

Fig. 2. (a) The contour of integration with respect to g in
expression (33) can be chosen in the form of a circle if we
first integrate with respect to g; (b) contour of integration
with respect to g after the change in the sequence of integra-
tion; (c, d) contours of integration with respect to g and ϕ
are rotated in the opposite directions upon the change in the
order of integration.

g

g

g

g

ϕ

ϕ

(a)

(b)

(c)

(d)

gc

gc ∆
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gc
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The “rotation rule” formulated above can easily be
extended to the general case. The main contribution to
integral (18) comes from the configuration of φc corre-
sponding to the maximum of the integrand. Conse-
quently, the quadratic form in the exponential in
Eq. (20) must lead to the sum of squares, which is pos-
sible for

(37)

However, integral (16) for Z(g) in this case is poorly
defined: it contains a “poor” Gaussian integration,
which should be understood in the sense

(38)

after which integral (16) defines the discontinuity at the
cut ∆Z(g). “Poor” integration can be regarded as unique
due to a possible simultaneous reversal of signs of the
squares of two variables. Thus, the square root of the
determinant in Eq. (23) should obviously be assumed to
be treated as

(39)

after which the results (22) and (24) satisfy relation (30).

The rotation rule solves the problem of interpreting
the discontinuity at the cut ∆Z(g) in the framework of
the Gaussian approximation, while additional analysis
is required in the presence of soft modes (Section 6).

4. RELATION BETWEEN CORRECTIONS 
TO THE ASYMPTOTICS 

AND HIGHER ORDER INSTANTONS

Separating the Lipatov asymptotics from coeffi-
cients ZN , we obtain, in accordance with expression (3),

(40)

and coefficients AK can be expressed in terms of func-
tion F(e):

(41)

Substituting expression (18) into (40), setting e = 1/N,
and carrying out the substitution g  eS0g, we obtain

NdetS'' φc{ }– 0.>

xex
2

d

∞–
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∫ xe x
2– ,d
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∞

∫
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ed

2πi
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e
K 1+

-----------.

C
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an exact expression for AK:

(42)

which can be estimated by the saddle-point method for
large values of K. The saddle-point configuration is
defined by the conditions

(43)

after the expansion in the vicinity of this configuration,
the exponential assumes the form

(44)

where g – gc = igct and e – ec = iecτ. For ψc , we cannot
use the configurations ψc = 0 and ψc = φc since gc = 0 or
ec = 0 in this case; this corresponds to a singularity
rather than a saddle point. The saddle point corresponds
to the maximum of the integrand under the condition

(45)

and we must take the first of higher order instantons for
which detS ''{ψc} > 0 for ψc . This condition is usually
satisfied even for the second instanton, which will be
presumed in the subsequent analysis. Evaluation of
integral (42) gives formula (4), in which

(46)

and S1 = S{ψc} (see [2] for details).
The dispersion relation (see Section 3) enables us to

establish the relation between the corrections to the
asymptotics and higher order instantons in the general
form without resorting to specific features of the ϕ4 the-
ory. Let coefficients AK increase for large values of K
according to the factorial law

(47)

with  > 0; in this case, the Borel sum of the series in
Eq. (3) is poorly defined for N > 0 and the coefficient
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function ZN has a cut with a discontinuity in it defined
by rule (30):

(48)

On the other hand, this discontinuity can be defined in
analogy with (31) as the contribution of the saddle-
point configuration ψc to the Lipatov integral (18).
Assuming that the functional form of this contribution
is analogous to (2),

, (49)

and identifying expression (48) with (49), we obtain

(50)

As a result, the determination of the parameters of the
asymptotic form of AK can be reduced to the well-known
procedure: it is sufficient to evaluate the saddle-point
contributions (2) and (49) to the Lipatov integral (18)
from two configurations, φc and ψc. Result (46) readily
follows from (50) if we take into account the fact that
expression (49) can be derived from (25) via the substi-
tution φc  ψc , r  r', and (–det[S''{ψc}]P')–1/2 is
treated as i|det[S''{ψc}]P'|–1/2 in accordance with the
rotation rule.

Formulas (50) solve the problem of evaluating the
asymptotic form of AK under the condition of applica-
bility of the equipartition law; for this purpose, all fluc-
tuational modes in the vicinity of classical configura-
tion φc and ψc must be distinctly separable into zero and
vibrational modes. In this case, b1 – b = (r' – r)/2 irre-
spective of the specific features of the ϕ4 theory: a con-
tribution of the M/2 type in the argument of the gamma
function, which stems from the preexponential factor in
formula (14), may have different values in other field
theories, but it is the same for the first and second
instantons. In the presence of soft modes, the situation
is more complicated and will be considered in the fol-
lowing sections.9 

5. INSTANTON COMBINATION RULE

Let us find out how to construct the contribution from
a two-instanton configuration knowing the contribution
from one instanton to the functional integral (14). In

9 Relations of type (50) are valid in this case as well (with allowance
for possible change in the functional form of expressions (47) and
(49)); however, these relations are practically useless since the
emerging integrals are poorly defined.
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accordance with Section 2, the contribution to ZM(g)
from the saddle-point configuration φc has the structure

(51)

where c0 = c0{φc} and S0 = S{φc} are functionals of φc.
The contribution from the two-instanton configuration
is defined by an analogous expression, in which φc is
replaced by φλ + φλ'. If we introduce the instanton inter-
action Sint by the relation

(52)

and take into account the doubling of the number of
collective variables, we obtain the sum of terms of the
form

(53)

where L + L' = M. For small values of g, the exponential
limits the interaction between instantons by the condi-
tion Sint{φλ, φλ'} & g; consequently, we can disregard
this term in the preexponential factor. It can naturally be

expected that c1 must be equal to  for expression (53)
at Sint ≡ 0 to be just the product of the right-hand sides
of Eqs. (51) with M = L and M = L'. Small values of Sint
correspond to remote instantons,10 which enables us to
disregard cross terms simultaneously containing φλ and
φλ' . In this case, the sum over L, L' will contain only two
terms with L = M, L'= 0 and L = 0, L'= M, which are
obviously identical. The emerging factor 2 is cancelled
out with the combinatorial multiplier 1/2!, which
should be introduced in view of the fact that configura-
tions differing in the transposition of instantons are
taken into account twice. As a result, the two-instanton
contribution assumes the form

(54)

where the fact that Sint{φλ, φλ'} for a fixed formed of
instantons depends only on λ and λ' is taken into
account. For M = 0, configurations with L = M, L'= 0
and L = 0, L'= M coincide and the result is defined by
formula (54) with an additional factor 1/2 on the right-

10See Section 7 for d = 4.
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hand side; this remark applies to all subsequent expres-
sions as well.

Formula (54) enables us to write the expression for
the two-instanton contribution from the well-known
result (51) for the one-instanton contribution; we only
require additional information about the interaction of
instantons at large distances. The instanton combina-
tion rule appears quite natural, but some fine aspects
missing in a heuristic derivation must be discussed.

Introduction of a constraint. In fact the replace-
ment of φc by φλ + φλ' is not quite correct since the linear
combination of instantons is not the exact solution to
the equation S '{φ} = 0. For this reason, the expansion
in the vicinity of this configuration acquires terms
which are linear in δφ and require accurate elimina-
tion.11 

Let us introduce the collective variable z character-
izing the separation R between the instantons and for-
mally defined for an arbitrary instanton configuration,
z = f{φ}. The idea consists in finding the extremum of
action under an additional condition (constraint) f{φ} =
const (i.e., for a fixed distance between instantons) and
in subsequent integration with respect to this distance.
In this case, the instanton is defined by the equation

(55)

(µ is the Lagrange multiplier) and the integration with
respect to z is carried out by introducing the expansion
of unity,

(56)

into the functional integral. Choosing the instanton
from the condition z = f{φc}, we obtain

(57)

and the terms linear in δφ in the exponential are elimi-
nated by the δ-function in view of condition (55). For
f{φ}, it is convenient to take the quantity Sint{φλ, φλ'}
since Eq. (55) has a combination of instantons φλ + φλ'
as the exact solution for µ = 1 (cf. formula (52)).

We can disregard the instanton interaction in the
preexponential factor; in this case, zero modes are sep-

11The instanton interaction depends to a considerable extent on the
specific choice of the two-instanton configuration; with an inap-
propriate choice, the results can easily be erroneous (cf. [8–12]).
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arated as if they were independent. The only fine point
is that, instead of zero modes

(58)

corresponding to translations of instantons along the
straight line passing through their centers and coincid-
ing with the x1 axis, we must take their linear combina-
tions

(59)

corresponding to translation of a pair as a whole and to
a change in the spacing between the pair components.
In this case, the δ-function corresponding to the second
mode in (59) is not introduced into product (21) since
this role is played by expansion (56). This modification
is of no importance since det[f '{fc}]P in expressions (23)
and (25) is in fact determined by the Gram matrix con-
structed on zero modes (Section 8) and is independent
of the choice of functionals fi{ϕ}. Consequently, the
final result (44) corresponds to the formal substitution
φc  φλ + φλ'.

Factorization of determinants. While deriving for-

mula (54), we assumed that c1 = , or

(60)

To clarify this relation, we note that operator S ''{φc} in
the scalar case has the form of the Schrödinger operator
(Section 8)

(61)

and, instead of a single potential well, two potential
wells separated by a large distance appear upon the sub-
stitution φc  φλ + φλ'. Consequently, the eigenvalues
of operator S ''{φλ + φλ'} are doubly degenerate eigen-
values of operator S"{φc} and

(62)

under the condition that the product of eigenvalues con-
verges. No such convergence is observed for operator
S ''{φc}, and the normalization of integral (14) to quan-
tity Z0(0) is significant. As a result of this normaliza-
tion, the combination

(63)

appears, where operator S ''{φc}/S ''{0} has a discrete
spectrum [21] and the convergence of the products of
eigenvalues is ensured by a simple renormalization
(see [4] for details). The multipliers singled out from
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relation (63) as a result of renormalization and during
the elimination of zero modes as a result of the substi-
tution φc  φλ + φλ' are squared in view of the equiv-
alence of two instantons. Factorization of det[f '{φλ +
φλ'}]P similar to (62) is due to the fact that zero modes
are considered in the approximation of noninteracting
instantons.

It should be noted that factorization (60) is not valid
in the combination of topological instantons connecting
degenerate but nonequivalent vacuums [8, 12]. In this
case, the effective potential appearing in the
Schrödinger operator of type (61) does not appear as
two isolated potential wells: a potential barrier emerg-
ing between the wells renders the interaction between
the instanton a long-range interaction.

Subtraction of the contribution from an ideal
gas. As we pass to the Green function, result (54)
assumes the form

(64)

i.e., the contribution of noninteracting instantons is
subtracted in the same way as in the case of the virial
expansion [17]. Indeed, we can write the Green func-
tion in the form

(65)

where the superscripts “0,” “1,” “2,” … mark the contri-
butions from saddle-point configurations12 φ = 0, φ =
φc, φ = φλ + φλ' , … and having the order 1, exp(–S0/g),
exp(–2S0/g), … . For convenience, the normalization of
functional integrals in this expression is carried out not

to Z0(0), but to , which is immaterial in the main
order in g. The contribution to GM(g) on the order of
exp(–2S0/g) has the form

(66)

where the last term is small for M > 0 in keeping with
the smallness of gM/2. It can easily be seen that the sec-

12Such an “expansion in instantons” in the case of an ordinary inte-
gral is obtained by deforming the integration contour in such a
way that it can be presented as the sum of integrals over contours
C0, C1, C2, …, where each contour Ci passes through the saddle
point zi in the steepest descent direction and its ends pass to
infinity.

GM
2( ) g( ) c0

2g M /2– r– 2S0

g
--------– 

 exp=

× λi λ i'φλ
1( )…φλ

M( ) Sint λ λ ',{ }
g

------------------------– 
  1–exp ;dd

i 1=

r

∏∫

GM g( )
ZM g( )
Z0 g( )
---------------=

=  
ZM

0( ) g( ) ZM
1( ) g( ) ZM

2( ) g( ) …+ + +

1 Z0
1( ) g( ) Z0

2( ) g( ) …+ + +
------------------------------------------------------------------------,

Z0
0( ) g( )

ZM
2( ) g( ) ZM

1( ) g( )Z0
1( ) g( )– ZM

0( ) g( )Z0
2( ) g( ),–
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ond term corresponds to expression (54) with Sint ≡ 0,
which gives –1 in formula (64). Similarly, after taking
the logarithm of the vacuum integral,

(67)

the last term leads to the subtraction of the contribution
from noninteracting instantons in the expression for

; in this case, the presence of the additional fac-
tor 1/2 is significant in expressions with M = 0.

6. HIGHER ORDER CORRECTIONS
TO ASYMPTOTICS IN THE PRESENCE

OF SOFT MODES

Let us analyze expression (64) in the case of a power
interaction between instantons separated by large dis-
tances:

(68)

Introducing into expression (64) the expansion of unity,

(69)

and considering that integration with respect to collec-

tive variables includes the integral , we obtain

(70)

where ν = d/α. As a result, expression (64) assumes the
functional form

(71)

where

(72)

(73)

Z0
0( ) g( )ln 1 Z0

1( ) g( ) Z0
2( ) g( ) …+ + +[ ]ln=

=  Z0
1( ) g( ) Z0
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1
2
--- Z0

1( ) g( )[ ] 2
– …,+ +

Z0
2( ) g( )

Sint λ λ ',{ } a λ λ ',( )
Rα------------------.=

1 zδ z
Sint λ λ ',{ }

2S0
------------------------– 

 d

0

∞

∫=

+ zδ z
Sint λ λ ',{ }

2S0
------------------------+ 

  ,d

0

∞

∫

Rd 1– Rd∫

δλiδλi'φλ
1( )…φλ

M( )δ z
Sint λ λ ',{ }

2S0
------------------------± 

 
i 1=

r

∏∫ A±

z1 ν+
----------,=

G 2( ) g( ) B
2S0

g
-------- 

 
M 2r+( )/2 2S0

g
--------– 

  F
2S0

g
-------- 

  ,exp=
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Fig. 3. (a) Integration contour C0 in integral I+(x) is bent upwards or downwards upon a displacement of g to the complex plane;

(b) integration contour C defines the discontinuity at the cut of integral I+(x); to evaluate the integral, the contour is deformed to C1;
(c) in the calculation of the asymptotic form of AK , half-sum of the integrals over contours C' and C" appears.

z z z(a) (b) (c)

C+

C0

C–

C

C1

zc zc

C '

C ''
We will henceforth assume that ν ≥ 0 since negative
values of ν correspond to nonphysical increase in the
interaction intensity with the distance. For ν ≥ 1, sub-
traction of unity does not ensure the convergence of the
integral in formula (73). Such values of ν correspond to
a slowly decreasing interaction, for which the virial
expansion is not applicable. The interaction for large
values of R should be modified in the spirit of Debye
screening, which leads to truncation of the integral for
small values of z. The type of truncation is immaterial
since integral I–(x) can be evaluated by differentiating
with respect to parameter x; for F(x), we formally get

(74)

where […] is the integral part of the number. The values
of g near the cut, where x = 2S0/g > 0 and expression (74)
is poorly defined in view of integral I+(x) being poorly
defined is of practical importance. The interpretation of
this expression depends on the formulation of the prob-
lem; two versions of the interpretation will be consid-
ered below.

Contribution to the Lipatov asymptotics. Analy-
sis of the contribution from a two-instanton configura-
tion to the asymptotic form of coefficients ZN is impor-
tant for problems with degenerate vacuum, in which a
solitary instanton is topological and the Lipatov asymp-
totics is determined by the instanton–antiinstanton pair
[8–12]. In view of formula (71), the discontinuity at the
cut of function G(g) is defined by the formula

(75)

where we represent G(g) as an “expansion” in instan-
tons G (0)(g) + G (1)(g) + G (2)(g) + … (see Section 4) and

F x( ) Γ ν–( ) A–xν A+ xν–( ) O x ν[ ]( )+ +[ ] ,=

∆G g( ) B
2S0

g
-------- 

 
M 2r+( )/2 2S0

g
--------– 

 exp±=

× F
2S0

g
-------- i0– 

  F
2S0

g
-------- i0+ 

 – ,
JOURNAL OF EXPERIMENTAL 
assume that G (0)(g) and G (1)(g) make zero contributions
to the discontinuity at the cut. The indefinite sign in for-
mula (75) is due to the fact that the expansion in instan-
tons requires a preliminary deformation of the integra-
tion contour so that it passes through all saddle points
(see Footnote 12): in the general case, such a deforma-
tion is ambiguous and leads to the indefinite sign of
G (2)(g) in view of the possibility to pass through a sad-
dle point in two opposite directions. It can easily be
seen that the well-defined integral I–(x) makes zero
contribution to discontinuity (75), while in expression
for I+(x), we can omit the term with –1. As g is shifted
to the lower or upper half-plane, the contour of integra-
tion with respect to z in integral I+(x) should be bent
upwards or downwards (Fig. 3a). The discontinuity at
the cut is determined by the difference in the integrals
over contours C+ and C– and can be reduced to the ver-
tical contour C (Fig. 3b).

To fix the sign in expression (75), we must establish
its relation with the rotation rule (see Section 3). We
replace R–α in Eq. (68) by R–α + eRα; then the exponent
in integral I+(x) acquires x(z + e/z) and a saddle point

zc =  appears, through which contour C should be
drawn. The integration must be carried out in the
upward direction so that contour C is obtained from the
initial contour C0 by rotation through π/2 in the positive
direction around point zc . For e  0, the saddle point
disappears, but the direction of contour C is preserved
and corresponds to the negative sign in expression (75).
Evaluating integral I+(x) using the deformation of con-
tour C to position C1, we obtain

(76)

which gives the following expression for the disconti-

e

I+ x( )
2πi

Γ 1 ν+( )
---------------------xν,
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nuity at the cut of function G(g):

(77)

The Lipatov asymptotics for GN is obtained in accor-
dance with the correspondence rule (30),

(78)

and is well defined for all values of ν > –1. Expres-
sion (76) corresponds to the algorithm correctly formu-
lated by Bogomolny and Fateyev [9], although their
line of reasoning leads to a result with the opposite
sign.13 

Asymptotic form of coefficients AK. Analogously
to expression (42), we have the following exact expres-
sion for coefficients AK corresponding to quantity G(g):

(79)

Substituting quantity G (2)(g) from Eq. (71) for G(g) and
evaluating the integrals with respect to g and e in the
saddle-point approximation, we obtain

(80)

Vertical contours of integration with respect to g and
e correspond to “poor” Gaussian integrals (cf. for-
mula (44)) and must be rotated simultaneously to the
horizontal position in accordance with Section 3. The
sign in formula (80) turns out to be indeterminate for
the same reason as in the above case. To fix the sign, we
replace R–α by R–α + eRα and consider the saddle-point
configuration in the range of parameters, where Sint > 0,
which corresponds to integral I–(x). For this region,
detS ''{ψc} > 0 and the sign in formula (80) must corre-
spond to the arithmetic root of the determinant, which
leads to the condition ±B > 0. Formula (80) is valid if
function F(x) is well defined on the real axis. Other-
wise, F(x) should be treated as the half-sum of F(x + i0)
and F(x – i0) since half the saddle-point contribution

13The incorrect sign also appeared in the work by Balitsky [22],
who calculated the Lipatov asymptotics in QCD and was cor-
rected in the review by Zakharov [23] proceeding from physical
considerations.

∆G g( ) 2πi
BA+
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--------------------
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g
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 
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g
--------– 

  .exp=
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AK
1

2πc
------------- ed

2πie
-----------∫ gd

2πig
------------e

M r 1–+( )/2G g( )∫=

× 1
e
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S0e

g
-------- 1+ 

  K eln–
 
 
 

.exp

AK
B

c 2π( )2 2ln( )r/2
-----------------------------------±=

× Γ K
r
2
---+ 

  2ln( ) K– F
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2ln
-------- 

  .
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stems from region Img > 0, while the other half, from
region Img < 0. Thus, we can write

(81)

and the substitution of Eq. (74) gives

(82)

The poorly defined integral I+(x) is treated as the half-
sum of integrals over contours C' and C" (see Fig. 3c),

(83)

(cf. formula (76)). If the saddle point is created artifi-
cially by replacing R–α by R–α + eRα, contours C' and C"
correspond to the steepest decent as before and the
saddle point zc makes zero contribution to AK in accor-
dance with the fact that detS ''{ψc} < 0 for this point
(Section 4). It can be seen that for a power law of
instanton interaction (68), the argument of the gamma-
function acquires an additional contribution ν = d/α as
compared to formula (4). This contribution is in fact
important only for d = 4. For d < 4, the interaction of
instantons is exponential, which corresponds to α = ∞
and ν = 0: the argument of the gamma-function
matches Eq. (4), but additional logarithmic multipliers
appear (Section 7).

Interpretation of integral I+(x) completes the formu-
lation of the general computational algorithm. Proceed-
ing from the well-known expression (51) for the one-
instanton contribution, we construct the contribution
from two-instanton configuration (64), in which we
must calculate the interaction of instantons Sint(λ, λ') in
the region where this interaction is weak. Introducing
the slowly varying function F(x) in accordance with
formula (71), we can straightaway write the result (81).

7. COEFFICIENTS AK IN THE ϕ4 THEORY

7.1. Interaction of Instantons 

Action (5) is reduced to the form (15) using the sub-
stitution14

 ϕα(x) = (–g)–1/2φα(x). An instanton is pre-

14The additional minus as compared to relation (15) ensures the
real-valuedness of φc. In this case, the substitutions g–b 

(−g)–b and   (–S0)–N take place in Eqs. (22) and (24).

AK
B

c 2π( )2 2ln( )r/2
-----------------------------------Γ K

r
2
---+ 

 =

× 2ln( ) K– ReF
K

2ln
-------- i0+ 

 
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B Γ ν–( ) A– A+ πνcos+( )

c 2π( )r 2ln( )ν r/2+
-------------------------------------------------------------=
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r
2
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  2ln( ) K– .
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1
2
--- I+ x i0+( ) I+ x i0–( )+[ ]
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N–
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sented in the form φα(x) = uαφc(x), where uα are the
components of the unit vector u and φc(x) is the solution
to the equation

(84)

Using the general form of the two-instanton configura-
tion,

(85)

for the interaction of instantons, we have

(86)

where we have used definition (52) and eliminated gra-
dients with the help of Eq. (84). For d < 4, we can
assume that m = 1, since the substitution x  x/m,
φ  φm eliminates the mass from Eq. (84), after
which it disappears in all dimensionless quantities. For
large values of |x|, the spherically symmetric solution to
Eq. (84) has the form

(87)

where µ = (d – 2)/2 and Kµ(x) is the Macdonald func-
tion. The substitution of relation (87) into Eq. (86)
shows that the main contribution is determined by the
first term,

(88)

where  ~ 1. For d = 1, the constant can be evaluated

using the explicit form of instanton φc(x) = / ,

(89)

In the four-dimensional case, the massless theory is of
principal importance, in which Eq. (84) has a solution

(90)

with an arbitrary instanton radius ρ. In the linear com-
bination (85), we must permit various radii ρ and ρ1

–∆φ m2φ φ3–+ 0.=

ψα x( ) uαφc x( ) uα' φc x R+( ) uαφ uα' φR,+≡+=
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Sint u u' R, ,{ } u u'⋅( )φc R x+( ) φc
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x

2 xcosh

Sint u u' R, ,{ } 16 u u'⋅( )e R– .=

φc x( ) 2 2ρ
x2 ρ2+
----------------=
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for functions φ and φR . Disregarding quantity x in rela-
tion (88), we obtain

(91)

where we assume that

(92)

since precisely these configurations are of interest for
the subsequent analysis.15 

7.2. Results for d < 4 

Proceeding from the well-known Lipatov asymptot-
ics (formula (79) in [18]) and using the correspondence
rule (30), for the one-instanton contribution, we obtain

(93)

where

(94)

φc(x) is the solution to Eq. (84) with m = 1; and 

and  are the renormalized determinants whose
values will be given below. In accordance with the
instanton combination rule, we write the expression for
the two-instanton contribution

15The possibility of disregarding the crossed terms in Eq. (53) in
this case is associated not with the large distance between the
instantons, but with different degrees of their localization φλ
and φλ'.
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(95)

The last integral (R ≡ ),

(96)

is independent of A to logarithmic accuracy (σd is the
area of a unit sphere in the d-dimensional space); for
this reason, the dependence on u' is absent and H(g) can
be obtained from relation (96) simply by multiplying it
by σn . Following the algorithm described in Section 6,
we obtain the following result for AK:

(97)

Using the numerical values [21]

(98a)

for d = 2 and

(98b)

for d = 3, we obtain formulas (9) and (10) given in the
Introduction. For d = 1, the result can be obtained not
with a logarithmic, but with a power accuracy in 1/K.
Integral (96) for u · u'/g > 0 has the form

(99)

and integration with respect to u' gives

(100)

Passing to the expression for AK and using the values of
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parameters [4]

(101)

we obtain result (8).

7.3. Four-Dimensional Case 

In the four-dimensional case, the expression for the
one-instanton contribution differs from (93) in view of
the presence of an extra zero mode associated with pos-
sible variation of instanton radius ρ. This expression can
be derived from formula (113) from [19] by using the
correspondence rule (30):

(102)

where φc(x) is the instanton solution (90) with ρ = 1, µ
is the momentum of charge normalization,16 

(103)

and the expressions for S0 and Ip are the same as in (94).
The two-instanton contribution has the form

(104)

16For a transition from the initial to a renormalized charge in the
formulas from [19], we must carry out the substitution lnΛρ –
ln2 + CE + 1/3  lnµρ – (1/2)ln3 + CE – 1/6.
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Using the relation17 

(105)

we can transform the integral with respect to ρ1 and 
in expression (104) to the form

(106)

and obtain an integral of the type (73). Following the
algorithm described in Section 6, for the asymptotic
form of AK we obtain

(107)

where the quantity

(108)

substantially depends on the external coordinates x1,
…, xM . The expression for this quantity can be slightly

17In deriving formula (105), it is found that the main contribution
to the integral appears from region ρ1 ~ R. In the subsequent anal-
ysis, the values of ρ1 and R are large in view of the large value of
parameter 1/g, while the value of ρ turns out to be on the order of
the reciprocal external momentum. This justifies condition (92).
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simplified by passing to the momentum space and by
choosing the values of external momenta pi on the
order of p, estimating their values at a symmetric point
(pi · pj = p2(4δij – 1)/3),

(109)

where K1(y) is the Macdonald function. Substituting
numerical values

(110)

leads to

(111)

and to the numerical results given in the Introduction.

8. ASYMMETRIC INSTANTON

In this section, we consider the situation when the
second instanton is definitely localized in space, but
does not possess any special symmetry. In view of the
absence of soft modes, we can use the algorithm devel-
oped in Section 4, according to which it is sufficient to
calculate the contribution of an asymmetric instanton to
the Lipatov integral (18). Following the line of reason-
ing in Section 7, we assume that

(112)

and divide fluctuations into longitudinal and transverse:

(113)

Q

yy2M 5– 2ν+ K1
M y( )d

0

∞

∫

yy2M 5– ν+ K1
M y( )d

0

∞

∫
----------------------------------------------- ν µln

p
------------ 

  ,exp=

I4
32
3
------π2, I6

128
5

---------π2, J
32
15
------π2,= = =

DR 1( ) 578, DR 1/3( )– 0.872= =

AK
2 M /2–

20.2
-----------= 0.842nΓ ν–( ) 1 πνcos+( )

n 2+( ) n 5+( )
--------------------------------------------

×
Γ 1 ν+

2
------------ 

 

Γ n ν+
2

------------ 
 

----------------------QΓ K
r
2
--- ν+ + 

  2ln( ) K–

ϕα x( ) g–( ) 1/2– φα x( ), φα x( ) uαφc x( ),= =

δϕα x( ) δϕL x( )uα δϕα
T x( ),+=

δϕα
T x( )uα

α
∑ 0.=
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Analogously to relation (20), we then obtain

(114)

where

(115)

The integrals with respect to longitudinal and trans-
verse fluctuations are factorized so that zero modes for

operators  and  can be singled out indepen-
dently. Carrying out the orthogonal transformation of

variables δϕ, which diagonalizes  and , we per-
form the division in accordance with the scheme

(116)

for  and , where tildes and primes mark the
subspace of zero modes and the space orthogonal to it,
respectively. Performing Gaussian integration over
nonzero modes, we obtain

(117)

where D0 = detS ''{0},  = det[ ]P ', and  =

det[ ]P '.

It is well known that the existence of zero modes is

associated with the symmetry of action, S{φ} = S{ },
relative to a certain continuous group of transforma-

tions defined by operator ; if φc is an instanton (i.e.,

the solution to the equation S '(φc) = 0), φc is also an

instanton (S '( φc) = 0). Using the infinitesimal form of

operator  close to the unit operator,  = 1 + e , we

can easily see that φc is a zero mode of operator
S ''{φc}, which is obviously connected with the genera-

ZN e N– –gc( ) M /2– gc
N– td

2π
------ DϕL∫

∞–

∞

∫=

× Dϕα
T uα1

…uαM
φc x1( )…φc xM( )∫

× Nt2

2
--------

1
2
--- δϕL M̂LδϕL,( )–

1
2
--- δϕα

T M̂Tδϕα
T,( )

α 1=

n 1–

∑–
 
 
 

,exp

M̂L p̂2 m2 3φc
2 x( ),–+=

M̂T p̂2 m2 φc
2 x( ).–+=

M̂L M̂T

M̂L M̂T

δϕ δϕ' δϕ̃, Dϕ+ D δϕ'( )D δϕ̃( )= =

δϕL δϕα
T

ZN

S φc{ }–( ) M r+( )/2–

2π( )1 r/2+
----------------------------------------S φc{ } N– Γ N

M r+
2

-------------+ 
 =

×
D0

DL'
------

D0

DT'
------- 

  n 1–

– D δφ̃L( )φc x1( )…φc xM( )∫
× D δφ̃α

T( )uα1
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,∫
DL' M̂L DT'

M̂T

L̂φ

L̂

L̂

L̂

L̂ L̂e T̂

T̂
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tor of group . In the given case, the following groups
of transformations are significant:

(a) rotations in the vector space,

(118)

where gαβ are the elements of an orthogonal matrix;
(b) translations

(119)

(c) dilatation for d = 4, associated with the scale
invariance of the massless four-dimensional theory,

(120)

(d) rotations in the coordinate space,

(121)

where  =  is the orthogonal matrix defined by
the rotational angles θs .

Transformation (118) is reduced to the rotation of
the unit vector u in (112) and generates the zero mode

(122)

of operator ; in expression (114), this mode is (n –
1)-fold degenerate. The separation of this mode is per-
formed in the conventional way [24] and corresponds to
the following substitution in formula (117):

(123)

where integrals Ip are defined in (94). Infinitesimal
forms of operators Lt, L∂, and Lr can be written as

(124)

where each operator from  corresponds to rotation in
one of the d(d – 1)/2 planes (xi, xj) and subscript s

T̂

L̂
Tφα x( ) gαβφβ x( ),=

L̂
t

x0( )φ x( ) φ x x0+( );=

L̂
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ĝ ĝ θs{ }
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M̂T
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…uαM∫

I2
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,d∫

L̂
t δx0( ) 1 δx0 i, xi∂

∂

i

∑+= 1 δx0 i, T̂ i
t
,

i
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L̂
∂ ε( ) 1 ε 1 xi xi∂

∂

i

∑+
 
 
 

1 εT̂
∂
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r≡ xi x j∂

∂
x j xi∂

∂
,–=

T̂ s
r
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denotes these planes. Accordingly, the following zero

modes belonging to operator  exist:

(125)

The existence of rotational modes  is a specific
feature of a spherically asymmetric instanton; these
modes have not been considered earlier. The nontrivial
moments are connected with the non-Abelian form of
the group of transformations and with nonorthogonality
of the basis constructed from vectors (125).

The complete group of transformations is deter-
mined by the operator

(126)

so that

(127)

The infinitesimal form of this operator,

, (128)

includes as  all generators , , and  introduced
by relations (124), while µi labels the variables x0, i , lnρ,
and θs .

Following the algorithm used in Section 2, we intro-
duce the expansion of unity into the integrand in
expression (114) (rL is the number of zero modes of

operator ),

(129)

where we specified to a certain extent the form of func-
tionals fi(φ) in expression (21) by introducing the coor-

M̂L

hi
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∂φc x( )
∂xi

---------------,=
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---------------,
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--------------- x j
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L̂ θs ρ x0,ln,{ } L̂
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∂ ρln{ } L̂
t
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L̂ f x( ) ρf ĝρ x x0+( )( ).=

L̂ δµi( ) 1 δµiT̂ i

i

∑+=

T̂ i T̂ i
t

T̂
∂

T̂ s
r

M̂L

1 λ iδ λi

xd φ4 x( ) f i( ) x( )d∫
xd φ4 x( )d∫

--------------------------------------–
 
 
 

d∫
i 1=

rL

∏=

=  I4( )
rL λ iδ λi xd 4φc

3 x( )δφ x( )d∫
d∫

i 1=

rL

∏

– xd 4φc
3 x( )δφ x( ) f i( ) x( )d∫ 

 ,
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dinate functions f (i)(x),18 carried out the expansion in
the vicinity of the saddle-point configuration, and chose
the instanton from the condition

(130)

To prove the arbitrariness in the choice of the instanton,

we represent φc(x) as the result of action of operator 

on a certain fixed function ,

(131)

In this case, we obtain

(132)

Expanding δφ(x) in orthonormal eigenfunctions ej(x) of

operator , we obtain 

(133)

where we have singled out the terms corresponding to
the subspace of zero modes and reexpanded these

terms in functions (125). Integration of  in
expression (117) is in fact the integration with respect
to coefficients Cj:

(134)

where Γ is the Gram matrix plotted on vectors (125).
Substituting expression (133) into (129) and consider-
ing that

(135)

18In fact, the results are independent of this choice, which is mani-
fested in the fact that functions f (i)(x) do not appear in the final
formula (141).

λ i

xd φc
4 x( ) f i( ) x( )d∫
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--------------------------------------.=
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φc x( )
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∑ …+ B jh j x( ) …;+
j 1=

rL

∑= =

D δφ̃L( )

D δφ̃L( )∫ C jd
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∏∫ detΓ( )1/2 B j,d
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rL
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xd 4φc
3 x( )h j x( )d∫ 0=
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for all zero modes hj(x), we obtain

(136)

Now we can easily prove that

(137)

for translations and rotations, while an analogous for-

mula with    – 1 is valid for dilatation. We per-
form the variation of variables θs  θs + δθs , lnρ 
lnρ + ε, and x0  x0 + δx0 in Eqs. (132) and take into
account the group relation

(138)

where the primed and nonprimed increments do not
coincide (in view of the non-Abelian nature of the
group), but are connected via a linear transformation.
It can easily be proved that ε' = ε,  = , and

the relation between  and δθs is defined by the
relation [25]

(139)

Using the infinitesimal form of operator

, we obtain from relations (132)

(140)

Substituting Eqs. (137) and (140) into expression (136)
and introducing the expansion of unity obtained in this

1 I4( )
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i
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δx0' ĝρδx0

δθs'
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s'

∑=

L̂ δθs' ε' δx0', ,{ }

xd φc
4 x( )T̂ j

t
f i( ) x( )d∫

xd φc
4 x( )d∫

---------------------------------------------
1
ρ
--- g jl

∂F i( )

∂x0 l,
-----------,

l

∑=

xd φc
4 x( ) T̂

∂
1–( ) f i( ) x( )d∫

xd φc
4 x( )d∫

-----------------------------------------------------------
∂F i( )

∂ ρln
------------,=

xd φc
4 x( )T̂ s

r
f i( ) x( )d∫

xd φc
4 x( )d∫

--------------------------------------------- Js's θs{ } ∂F i( )

∂θs'
-----------.

s'

∑=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
way into relation (134), we obtain

(141)

where we assume that the quantity /detJ{θs} is
the definition of the invariant measure of integration of
dτg over the group of rotations [25]. Using relation (131)
and performing the substitution x0, i  x0, i/ρ, we
obtain the sought rule of transition to collective vari-
ables,

(142)

which is valid for d = 4. The result for d < 4 can be
obtained by setting ρ = 1 and eliminating the integra-
tion with respect to lnρ. The expression for invariant
measure dτg depends on the method for parametrizing

matrix ; if we use the Euler angles , this expression
has the form

(143)

When the Euler angles are introduced in the d-dimen-
sional space, the rotation matrix can be written in the
form [26]

where  ≡  and  is the matrix of
rotation through angle θ in the plane (xi, xj). Substitu-
tion (131) is also carried out in the Gram matrix; as a
result, this substitution turns out to be a function of col-
lective variables. In fact, the dependence on ρ can be
factorized, (detΓ)1/2 = ρ–4(det )1/2 (for d = 4), and the
dependence on x0 is ruled out in view of the possibility
of transition to linear combinations of rows and col-
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umns in the determinant; apparently the dependence on
the angles of rotation is also absent.19 

The nonorthogonality of zero modes hi(x) is also
taken into account in the transformations of determinants
according to Brézin and Parisi (see notation in [4, 19]),

(144)

as a result, the Gram matrix disappears in expression (117)
and a matrix G with the elements

(145)

appears instead of Γ; the dependence of G on the col-
lective variables is the same as for Γ. As a result, for
d = 4, we obtain

(146)

while for d < 4, we must set ρ = 1 and eliminate inte-
gration with respect to lnρ. The normalization of deter-
minants is carried out in the conventional way [19, 24]
by separating diverging factors and compensating them
by their counterterms. As a result, quantity  and

 are simply replaced by (1) and (1/3) for
d < 4, while for d = 4, the substitution

(147)

19After the substitution y = , generators Ti are transformed in
terms of one another. For d = 2 and d = 3, the determinant of the
transformation is equal to unity and the dependence of detΓ on 
is absent; apparently, this also holds in the general case.
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takes place, where

(148)

and  is the Fourier component of function .

To pass to the asymptotic form of AK (see Section 4),
we must carry out the substitution φc  ψc and r 
r ' in all expressions and represent expression (146) in
the form (49). Then we have for AK formula (47) with
parameters (50), where S1 = S{ψc}, b1 – b = d(d – 1)/4,
and

(149)

for d < 4 and

(150)

for d = 4; here, r ' = r + d(d – 1)/2. All quantities appear-
ing in this formula can be calculated if the form of
instanton ψc(x) is known.
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c1

S1–( ) M r'+( )/2–

2π( )1 r' /2+
------------------------------- DR 1( )DR

n 1– 1
3
--- 

 
1/2–

=

× I4
n 1–( )/2 3

4
---r– ν 1

2
--- 4

3
---ln

Ĩ4
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Abstract—Electromagnetic form factors of a massive neutrino are studied in a minimally extended standard
model in an arbitrary Rξ gauge and taking into account the dependence on the masses of all interacting particles.
The contribution from all Feynman diagrams to the electric, magnetic, and anapole form factors, in which the
dependence of the masses of all particles as well as on gauge parameters is accounted for exactly, are obtained
for the first time in explicit form. The asymptotic behavior of the magnetic form factor for large negative squares
of the momentum of an external photon is analyzed and the expression for the anapole moment of a massive
neutrino is derived. The results are generalized to the case of mixing between various flavors of the neutrino.
Explicit expressions are obtained for the electric, magnetic, and electric dipole and anapole transitional form
factors as well as for the transitional electric dipole moment. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Analysis of electromagnetic properties of neutrinos
is of considerable interest in light of the recent experi-
mental verification of the existence of a nonzero neu-
trino mass and mixing between different neutrino fla-
vors [1–3]. At the present time, it remains incompletely
clear whether the neutrino is a Dirac or Majorana parti-
cle. It should be noted that these two types of elemen-
tary particles possess basically different electromag-
netic characteristics [4]. It is well known that a fermion
with a spin of 1/2 can possess no more than four electro-
magnetic form factors. As a rule, these quantities are
defined in terms of the electric, magnetic dipole, electric
dipole, and anapole form factors (see also Section 2).
However, a Majorana neutrino can exhibit its electro-
magnetic properties only in terms of the interaction of
the anapole form factor with an external electromag-
netic field.

The calculation of radiative correction to static char-
acteristics of an elementary particle, viz., its charge
determined by the values of the corresponding form
factors for zero momentum transfer, is of considerable
interest. In this connection, publications [5–10], in
which the electromagnetic moments of neutrinos were
calculated in various theoretical models, are worth men-
tioning. In the series of recent publications [11–13], the
electric charge and the magnetic moment of a neutrino
in an arbitrary Rξ gauge were studied. It should be
recalled that the corresponding form factors for zero
momentum transfer are elements of the S matrix and,
hence, can be measured in experiment. Thus, the elec-
tric charge and magnetic moment should be independent
of the choice of the gauge. This was demonstrated
in [11–13] even for a massive neutrino [13]. Analysis of
radiative corrections to electromagnetic parameters of
1063-7761/04/9902- $26.00 © 20254
the neutrino may directly indicate which physical the-
ory should be used beyond the range of the standard
model and provide important information on the
parameters and structure of the proposed model of
interaction between elementary particles. For example,
for particles described in the framework of the theories
with broken CP invariance, an electric dipole moment
inevitably appears.

For nonzero momentum transfer, the electromag-
netic form factors are not invariants of the gauge trans-
formation group and, hence, are not measurable quan-
tities. However, in analyzing some processes (e.g., cal-
culating higher order corrections), the values of the
electromagnetic form factors of neutrinos with a non-
zero momentum transfer must be taken into account.
One of such processes corresponding to radiative cor-
rections to scattering of a neutrino by a lepton is shown
in Fig. 1.

l l

γ

ν ν

Fig. 1. A diagram illustrating the contribution to the elastic
scattering of a neutrino by a lepton. The hatched circle sche-
matically represents the neutrino electromagnetic vertex
function.
004 MAIK “Nauka/Interperiodica”
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The electric and magnetic form factors of elemen-
tary particles were analyzed in [6, 14] in the content of
various gauge theories The case of a zero-mass neutrino
was studied and not only static electromagnetic param-
eters, but also the asymptotic behavior of the magnetic
form factors for high negative squares of the external
photon momentum were considered. It is well known
that the magnetic moment of a neutrino in the mini-
mally extended standard model is proportional to the
particle mass. In a number of theoretical models (see,
for example, [15]), the magnitude of the magnetic
moment depends on the neutrino mass only slightly and
is completely determined by the mass of the heavy par-
ticle in the polarization loop.

One of electromagnetic properties of an elementary
particle is its charge radius, which has been studied in
many publications. The expression for the charge
radius of a zero-mass neutrino in the standard model
was derived in [16]. It was found that the charge radius
for a zero-mass particle is a diverging quantity; more-
over, it depends on the choice of gauge. In this connec-
tion, the concept of electroweak radius was introduced
in [16, 17]. This quantity is determined by radiative cor-
rections to the process of scattering of a lepton by a
neutrino. The electroweak radius of a neutrino is con-
nected with the effective Weinberg angle. Obviously, a
quantity defined in this way is finite and gauge invari-
ant. Calculation of the electroweak radius of a zero-
mass neutrino in the framework of the standard model
in an arbitrary Rξ gauge was carried out in [17].

The neutrino anapole moment was considered by
many authors. Among the corresponding publications,
work [18], in which the anapole moment is shown to be
gauge-dependent in the frame of the standard model
and, hence, unobservable, is worth mentioning. In a
series of publications [19, 20] using the dispersion rela-
tion method, the expression for the neutrino anapole
moment was derived in the ’t Hoft–Feynman gauge and
the dependence of the anapole form factor on the square
of the external photon momentum was studied. We
must also mention the article [21], in which the expres-
sion for the anapole moment of a zero-mass neutrino
was derived on the basis of the electroweak radius. As
a matter of fact, a zero-mass particle is characterized by
a certain relation between these quantities (see also
Section 5). Thus, knowledge of one of the electromag-
netic parameters (in the present case, the electroweak
radius) makes it possible to easily reconstruct another
characteristic and to derive an expression for the neu-
trino electroweak anapole moment.

In this study, we analyze the electromagnetic vertex
form factors of a massive Dirac neutrino in the frame-
work of the minimally extended standard model sup-
plemented with a SU(2)-singlet right-handed neutrino.
All calculations are made in an arbitrary Rξ gauge,
while enables us to study the dependence of the results
on gauge parameters for both W and Z bosons. It should
be noted that the masses of the neutrino and the charged
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
lepton were never fixed; consequently, our analysis
makes it possible to consider the limit of not only light,
but also heavy neutrinos. In Section 2, the Feynman
amplitudes are determined for all contributions to the
electromagnetic vertex function of a massive neutrino.
The expressions for the contributions of self-energy
γ−Z diagrams are calculated in explicit form containing
a single definite integral with respect to the Feynman
parameter. The ultraviolet divergences emerging in the
analysis of the neutrino electromagnetic vertex func-
tion are also treated in Section 2. In Sections 3 and 4,
the contributions of all Feynman diagrams to the charge
and magnetic form factors of a massive neutrino are
studied. The asymptotic behavior of the magnetic form
factor is analyzed for large negative squares of the
external photon momentum. The anapole form factor
and the anapole moment of a massive neutrino are con-
sidered in Section 5. The results of this study can be
generalized to the case of mixing between different fla-
vors of the neutrino. In particular, transitional electro-
magnetic form factors are studied in Section 6 in the
framework of the minimally extended standard model
permitting mixing between different flavors of charged
leptons and neutrino. Explicit expressions are derived
for the charge, magnetic, and electric dipole and tran-
sient anapole form factors. The cases of mass-degener-
ate and nondegenerate neutrino states are studied.
Moreover, the expression for the transitional electric
dipole moment is also derived in Section 6.

2. NEUTRINO VERTEX FUNCTION

The matrix element of electromagnetic current aver-
aged over the neutrino states can be written in the form

(2.1)

where the most general expression for the electromag-
netic vertex function Λµ(q) is

(2.2)

Here, fQ(q2), fM(q2), fE(q2), and fA(q2) are the electric,
magnetic and electric dipole, and anapole form factors
of the neutrino; qµ =  – pµ , σµν = (i/2)[γµ, γν], and γ5 =
–iγ0γ1γ2γ3. The values of these form factors for q2 = 0
determine the static electromagnetic properties of neu-
trinos. In the case of a Dirac neutrino, which will be
considered here, the assumptions concerning the CP
invariance and the hermiticity of the electromagnetic

current operator  lead to zero value of the dipole
electric form factor. At zero momentum transfer, only
fQ(0) and fM(0), which are known as the electric charge
and magnetic moment, make a contribution to Hamilto-

nian Hint ~ , which describes the interaction of
the neutrino with the external electromagnetic field Aµ.

ν p'( ) Jµ
EM ν p( )〈 〉 u p'( )Λµ q( )u p( ),=

Λµ q( ) f Q q2( )γµ f M q2( )iσµνqν+=

– f E q2( )σµνqνγ5 f A q2( ) q2γµ qµq–( )γ5.+ /

pµ'

Jµ
EM

Jµ
EM

Aµ
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The expressions for the electromagnetic function of
a massive and a zero-mass neutrino differ radically. If we
consider a massless elementary particle, relation (2.2)
implies that the matrix element of the electromagnetic
current can be written using only one form factor (see,
for example, [21]),

u p'( )Λµ q( )u p( ) f D q2( )u p'( )γµ 1 γ5+( )u p( ).=

(a)

(c)

(e) (f)

(d)

(b)

l l

ν νW

l l

ν νχ

χ χ

l

ν

ν

W W

lν ν

γ

γ γ

γ γ

W χ

ν ν νl l

W

ν

χ

Fig. 2. Proper vertices diagrams.

γ
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It follows hence that the electric and anapole form
factors are connected with function fD(q2) via obvious
relations:

However, in the case of a massive elementary particle,
a simple relation connecting the electric and anapole
form factor does not exist since we cannot disregard
matrix terms of the form qµ γ5 in a term proportional
to the anapole form factor. Moreover, direct calculation
of the neutrino electromagnetic form factors revealed
that, in addition to the well-known form factors given in
relation (2.2), each Feynman diagram makes a nonzero
contribution to the additional term proportional to
matrix γµγ5. These contributions differ from zero even
for q2 = 0. It was found in our earlier publication [13]
that the sum of these contributions from all Feynman
diagrams to the additional “form factor” is zero for
q2 = 0. The equality to zero of the “form factor” in
question for q2 ≠ 0 in a special gauge was also proved
in [13].

We will consider the calculation of one-loop Feyn-
man diagrams for the vertex electromagnetic function
of a massive neutrino in the framework of the mini-
mally extended standard model with an SU(2)-singlet
right-handed neutrino in an arbitrary Rξ gauge. These
diagram can be divided into two types: triangular (Fig.
2) and γ–Z diagrams (Fig. 4). Using Feynman’s rules
formulated in [22], we can determine the contributions
to the neutrino vertex function Λµ(q). Applying dimen-
sional regularization in the corresponding Feynman
integrals, we find that the contributions from the proper
vertices diagrams (Fig. 2) can be written in the form

f Q q2( ) f D q2( ), f A q2( ) f D q2( )/q2.= =

q/
(2.3)

(2.4)

(2.5)

(2.6)

Λµ
1( ) i

eg2

2
-------- kNd

2π( )N
-------------- gκλ 1 α–( ) kκkλ

k2 α MW
2–

-----------------------–
γκ

L p' k– ml+( )γµ p k– ml+( )γλ
L

p' k–( )2 ml
2–[ ] p k–( )2 ml

2–[ ] k2 MW
2–[ ]

--------------------------------------------------------------------------------------------------,∫=
/ / / /

Λµ
2( ) i

eg2

2MW
2

------------ kNd

2π( )N
--------------

mνPL mlPR–( ) p' k– ml+( )γµ p k– ml+( ) mlPL mνPR–( )
p' k–( )2 ml

2–[ ] p k–( )2 ml
2–[ ] k2 α MW

2–[ ]
------------------------------------------------------------------------------------------------------------------------------------------,∫=

/ / / /

Λµ
3( ) i

eg2

2MW
2

------------ kNd

2π( )N
-------------- 2k p– p'–( )µ

mνPL mlPR–( ) k ml+( ) mlPL mνPR–( )
p' k–( )2 α MW

2–[ ] p k–( )2 α MW
2–[ ] k2 ml

2–[ ]
-------------------------------------------------------------------------------------------------------------,∫=

/

Λµ
4( ) i

eg2

2
-------- kNd

2π( )N
--------------γk

L k ml+( )γλ
L δβ

κ 1 α–( )
p' k–( )κ p' k–( )β

p' k–( )2 α MW
2–

-----------------------------------------– δγ
λ 1 α–( )

p k–( )λ p k–( )γ

p k–( )2 α MW
2–

--------------------------------------–∫=

×
δµ

β 2 p' p– k–( )γ gβγ 2k p– p'–( )µ δµ
γ 2 p p'– k–( )β+ +

p' k–( )2 MW
2–[ ] p k–( )2 MW

2–[ ] k2 ml
2–[ ]

-----------------------------------------------------------------------------------------------------------------------------------,

/
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(2.7)

Λµ
5( ) 6( )+ i

eg2

2
-------- kNd

2π( )N
--------------

γβ
L k ml–( ) mlPL mνPR–( )

p' k–( )2 MW
2–[ ] p k–( )2 α MW

2–[ ] k2 ml
2–[ ]

--------------------------------------------------------------------------------------------------------- δµ
β 1 α–( )

p' k–( )β p' k–( )µ

p' k–( )2 α MW
2–

-----------------------------------------–




∫=

–
mνPL mlPR–( ) k ml–( )γβ

L

p' k–( )2 α MW
2–[ ] p k–( )2 MW

2–[ ] k2 ml
2–[ ]

--------------------------------------------------------------------------------------------------------- δµ
2 1 α–( )

p k–( )β p k–( )µ

p k–( )2 α MW
2–

---------------------------------------–




.

/

/

Here, mν , MW , and ml are the masses of the neutrino, the
W boson, and the charged lepton (which is the lower
component of the isodoublet relative to the neutrino); e
is the proton charge; g is the coupling constant in the
standard model; θW is the Weinberg angle; α = 1/ξ is the
gauge parameter for the W boson; and PL, R = (1 ± γ5)/2
are the projection operators.

The contributions from the γ–Z diagrams (Fig. 4) to
the vertex function Λµ(q) are shown in Fig. 3 and are
given by the following expressions:

(2.8)

where

(2.9)

(2.10)

Λµ
j( ) q( )

g
2 θWcos
------------------Πµν

j( ) q( )
1

q2 MZ
2–

------------------=

× gνa 1 αZ–( ) qνqα

q2 αZMZ
2–

-------------------------–
 
 
 

γα
L ,

j 7 … 14,, ,=

Πµν
7( ) q( ) ieg θWcos–=

× kNd

2π( )N
-------------- 1

k q–( )2 MW
2–[ ] k2 MW

2–[ ]
---------------------------------------------------------------∫

× gγα 1 α–( )
k q–( )γ k q–( )α

k q–( )2 α MW
2–

--------------------------------------–

× gβλ 1 α–( )
kβkλ

k2 α MW
2–

-----------------------–

× k q+( )γδµ
β q 2k–( )µgβγ k 2q–( )βδµ

γ+ +[ ]

× k q+( )αδν
λ q 2k–( )νgαλ k 2q–( )λδν

α+ +[ ] ,

Πµν
8( ) q( ) 2ieg

θsin
2

W

θWcos
----------------MW

2–=

× kNd

2π( )N
-------------- 1

k q–( )2 α MW
2–[ ] k2 MW

2–[ ]
-------------------------------------------------------------------∫

× gµν 1 α–( )
kµkν

k2 α MW
2–

-----------------------– ,
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(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

Here, MZ and αZ denote the mass and the gauge param-
eter of the Z boson. The minus and plus signs in expres-
sion (2.15) correspond to the “upper” (u, c, and t
quarks) and “lower” (electron, muon, τ lepton as well
as d, s, and b quarks) components of the isodoublet and
mf and Qf are the mass and the electric charge (in units
of e) of a fermion in the loop.

It will be convenient in the subsequent analysis to
expand each contribution from the γ–Z diagrams for an

Πµν
9( ) q( ) ieg

θWcos
2 θWsin

2
–
θWcos

----------------------------------------=

× kNd

2π( )N
--------------

gµν

k2 α MW
2–

-----------------------,∫

Πµν
10( ) q( ) ieg θWcos–=

× kNd

2π( )N
--------------

δµ
αδν

β δµ
βδν

α 2gαβgµν–+

k2 MW
2–

------------------------------------------------------∫

× gαβ 1 α–( )
kαkβ

k2 α MW
2–

-----------------------– ,

Πµν
11( ) 12( )+ q( ) 2ieg θWcos=

× kNd

2π( )N
--------------

kµ k q–( )ν

k q–( )2 α MW
2–[ ] k2 α MW

2–[ ]
-----------------------------------------------------------------------,∫

Πµν
13( ) q( ) ieg

θWsin
2 θWcos

2
–

2 θWcos
---------------------------------------- kNd

2π( )N
-------------- 2k q–( )µ∫=

× 2k q–( )ν
1

k q–( )2 α MW
2–[ ] k2 α MW

2–[ ]
-----------------------------------------------------------------------,

Πµν
14( ) q( )

ieg
2 θWcos
------------------ Q f

kNd

2π( )N
--------------∫

f

∑=

× 1

k q–( )2 m f
2–[ ] k2 m f

2–[ ]
----------------------------------------------------------Tr γµ k m f+( )γν

× 1
2
---± 2Q f θWsin

2
–

1
2
---γ5± 

  k q– m f+( ) .

/

/ /
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arbitrary q2 and to explicitly separate the transverse
part:

(2.16)

Using expressions (2.9)–(2.15) for the contributions

Πµν
j( ) q( ) A j( ) α q2,( ) gµν

qµqν

q2
-----------– 

  B j( ) α q2,( )gµν,+=

j 7 … 14., ,=

(a)

(c)

(e)

(g) (h)

(f)

(d)

(b)W

W

γ Z γ Z

χ

γ Z γ Z

W

χ

c,

c,

γ

γ

Z

Z

γ Z

γ Z

χ

χ

f

f

c,

c,

W

Fig. 4. γ–Z diagrams: f denotes an electron, muon, τ lepton
as well as the u, c, t, d, s, and b quarks.

Z

γ

ν ν

Fig. 3. Contributions of the γ–Z diagrams to the neutrino
electromagnetic vertex function. Hatched circle schemati-

cally represents the function .Πµν
j( )

q( )
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from the γ–Z diagrams in the form of Feynman integrals
as well as formula (2.16), we can write the functions
A(j)(a, q2) and B(j)(a, q2), where j = 7, …, 14, in explicit
form:

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

A 7( ) α q2,( ) 2MW
2 θWcos

3 θW MZ
2 G̃Fτsin=

× ω –
14
3
------ α+ 

  1
6
---

α
2
---+ +

– 2τ x 1 x2–( )2
1 ζ– x 1 α–( )–( )ln 1 ζ–( )ln–{ }d

0

1

∫

+ 2 x 5x2 5x– 1–( ) 1 ζ–( )lnd

0

1

∫

– 2 x 4x2 3–( ) 1 ζ– x 1 α–( )–( ){d

0

1

∫

× 1 ζ– x 1 α–( )–( )ln 1 ζ–( ) 1 ζ–( )ln– }

+
τ
2
--- x 2 1 ζ– x 1 α–( )–( ) 1 ζ– x 1 α–( )–( )ln{d

0

1

∫

--– 1 ζ–( ) 1 ζ–( )ln α ζ–( ) α ζ–( )ln }– ,

A 8( ) α q2,( ) 4MW
2 θW θWsin

3
MZ

2 G̃Fτcos–=

× xx2 1 ζ– x 1 α–( )–( )ln α ζ–( )ln–{ } ,d

0

1

∫

A 9( ) α q2,( ) 0,=

A 10( ) α q2,( ) 0,=

A 11( ) 12( )+ α q2,( ) 2MW
2 θWcos

3 θW MZ
2 G̃Fτsin=

× ω
3
---- 2 xx 1 x–( ) α ζ–( )lnd

0

1

∫+ ,

A 13( ) α q2,( ) MW
2 θWsin

2 θWcos
2

–( ) θW θWsincos=

× MZ
2 G̃Fτ –

ω
3
---- x 2x 1–( )2 α ζ–( )lnd

0

1

∫– ,

A 14( ) α q2,( ) 8MW
2 θW θW MZ

2 G̃Fτsincos=
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(2.23)

(2.24)

(2.25)

(2.26)

× ω
6
---- 3–

28
3
------ θWsin

2
– 

 

+ Q f
1
2
---± 2Q f θWsin

2
– 

  1
6
---

m f

MW

-------- 
 

2

ln




f

∑

+ xx 1 x–( ) 1
MW

m f

-------- 
 

2

ζ– 
 lnd

0

1

∫ 



,

B 7( ) α q2,( ) 2MW
2 θWcos

3 θW MZ
2 G̃Fsin=

× ω τ
2
--- 12 3α 1 α+( )+

2
-------------------------------------– 

 

+
3
4
--- 2 α 1 α+( )+( ) τ

24
------ 25 3α+( )–

– 3τ x 2x 1–( )2 1 ζ–( )lnd

0

1

∫ 9 x 1 ζ–( ) 1 ζ–( )lnd

0

1

∫–

– 3τ xx2 1 ζ– x 1 α–( )–( ) 1 ζ– x 1 α–( )–( )ln{d

0

1

∫

– 1 ζ–( ) 1 ζ–( )ln } 9
2
--- x 1 ζ– x 1 α–( )–( )2{d

0

1

∫–

--× 1 ζ– x 1 α–( )–( )ln 1 ζ–( )2 1 ζ–( ) }ln– ,

B 8( ) α q2,( ) 2MW
2 θW θWsin

3
MZ

2 G̃Fcos=

× ω3 α+
2

-------------– 1 α–
2

------------– 2 x 1 ζ– x 1 α–( )–( )lnd

0

1

∫–

+ x 1 ζ– x 1 α–( )–( ) 1 ζ– x 1 α–( )–( )ln{d

0

1

∫

– α ζ–( ) α ζ–( ) }ln

+ 2τ xx2 1 ζ– x 1 α–( )–( )ln α ζ–( )ln–{ }d

0

1

∫ ,

B 9( ) α q2,( ) 2MW
2 θWcos

2 θWsin
2

–( ) θWcos=

× θW MZ
2 G̃F α ω 1–( ) α αln+[ ] ,sin
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(2.27)

(2.28)

(2.29)

(2.30)

where

GF is the Fermi constant, ζ = τx(1 – x), τ = q2/ , ε and
λ are the constants introduced during dimensional reg-
ularization, and C is the Euler constant.

In deriving relations (2.17)–(2.30), we used the
properties of the algebra of γ matrices in the N-dimen-
sional space and the expressions for the characteristic
Feynman integrals given in [22, 23]. Note that ε = 2 –
N/2 > 0, where N is the dimension of space. When reg-
ularization is removed, ε  0.

Let us now consider ultraviolet divergences emerg-
ing in the calculation of the electromagnetic vertex
function. The sum of the contributions of the diverging
parts of proper vertices diagrams (2.3)–(2.7) to the
electromagnetic vertex function of a massive neutrino
has the form

(2.31)

Note that this expression is independent of the external
photon momentum qµ .

In the subsequent analysis of diverging contribu-
tions from the γ–Z diagrams (2.9)–(2.15), it is conve-
nient to use relations (2.8) and (2.16). Using these for-
mulas, we obtain the following expression for the sum
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of the contributions from the γ–Z diagrams to the elec-
tromagnetic vertex function of a massive neutrino:

(2.32)

The diverging parts of functions A(α, q2) and B(α, q2)
have the form

(2.33)

(2.34)

Formulas (2.31)–(2.34) imply that all the form factors
except the magnetic one contain divergences and
depend on the choice of the gauge (both on α and on
αZ). In spite of this, we can choose the gauge parame-
ters in such a way that the complete expression for
Λµ(q) including the contributions from the triangular
(Fig. 2) and γ–Z diagrams (Fig. 4) does not contain
ultraviolet divergences. Indeed, fixing the gauge
parameters as

we find that all the terms in Λµ(q) containing the pole
1/ε mutually cancel out. Thus, in the given gauge, the
electromagnetic vertex function of a massive neutrino
is finite in the one-loop approximation for an arbitrary
external photon momentum qµ .

An analogous statement can be formulated for the
case of the electron electromagnetic vertex function in
quantum electrodynamics. The expression for the elec-
tron vertex function in the one-loop approximation is
given in [23] in an arbitrary gauge. Using formula (24'),
p.358, in [23], we find that all form factors in the vertex
function are finite for dl = 3, where dl is the photon
gauge parameter.

3. ELECTRIC FORM FACTOR OF A NEUTRINO

In this section, we consider the electric form factor of
a massive neutrino. Using the results obtained in the pre-
ceding section for various contributions to the neutrino
vertex function Λµ(q), we single out in formulas (2.3)–
(2.15) the coefficients proportional to matrix γµ , which
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are the corresponding contributions to the electric form
factor fQ(q2) in accordance with the expansion given in
relation (2.2).

First of all, we consider the contributions of one-
loop proper vertices diagrams (Fig. 2) to the neutrino
electric from factor. Using the familiar identity

and integrating over the momenta of virtual particles
(the details of this procedure for dimensional regular-
ization are given in [23]), we obtain exact expressions
for the contributions of the diagrams considered here to
the electric form factor of a massive neutrino in terms
of definite integrals:

Here,
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(3.3)

(3.4)

f Q
3( )

q2( )
a b+

2
------------ ω

2
----– z y D2 α( )lnd

0

z

∫d

0

1

∫–
 
 
 

=

+ b z y 3az az2– 2a– bz 1 z–( )+( ) 1
D2 α( )
----------------,d

0

z

∫d

0

1

∫

f Q
4( )

q2( ) ω3
4
--- 1 α+( )– 1– 3 z y D2lnd

0

z

∫d

0

1

∫–=

+ z y 3bz 1 z–( ) τ z y z y–( )–( )–( ) 1
D2

--------d

0

z

∫d

0

1

∫

–
9
2
--- z y D2 α( ) y 1 α–( )+( )[d

0

z

∫d

0

1

∫
× D2 α( ) y 1 α–( )+( )ln D2 D2ln– ]

– z y 2b2 1 z–( )2 z 1 z–( ) y–( )[d

0

z

∫d

0

1

∫

– bτ y z y–( ) 5z 3z2– 3y–( ) z 1 z–( )2 y 2 y– y2–( )–+( )

– τ2y z y–( ) 1 z– yz y y2+ + +( ) ]

× 1
D2 α( ) y 1 α–( )+
----------------------------------------- 1

D2

--------–

+
1
2
--- z y 3b 1 z2–( ) τ 4 6 z y–( ) 11y z y–( )+–( )+[ ]d

0

z

∫d

0

1

∫
× D2 α( ) y 1 α–( )+( ) D2ln–ln[ ]

–
bτ
2
----- z y bz 1 3z– z2 z3+ +( )(d

0

z

∫d

0

1

∫

– τy z y–( ) z z2 2y–+( ) )

× 1
D2

-------- 1
D2 α( )
---------------- 2

D2 α( ) y 1 α–( )+
-----------------------------------------–+

+
τ
4
--- z y b 9 13z– 4z2+( ) 2τy z y–( )–( )d

0

z

∫d

0

1

∫
× D2ln D2 α( )ln 2 D2 α( ) y 1 α–( )+( )ln–+[ ]

+
3τ
4
----- z y D2 D2 D2 α( ) D2 α( )ln+ln[d

0

z

∫d

0

1

∫
– 2 D2 α( ) y 1 α–( )+( ) D2 α( ) y 1 α–( )+( )ln ] ,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(3.5)

where

Note that the values of the mass parameters of a charge
lepton (a) and a neutrino (b) are exactly taken into
account in expressions (3.1)–(3.5). The value of the
gauge parameter α is arbitrary. The calculations were
made for an arbitrary value of q2.

The contributions from the γ–Z diagrams shown in
Fig. 4 to the electric form factor of a neutrino can be
obtained on the basis of expansion (2.32) and have the
form

(3.6)

Using the explicit form of functions A(j)(α, q2) (formu-
las (2.17)–(2.23)) and B(j)(α, q2) (formulas (2.24)–
(2.30)) and employing relation (3.6), we can derive
expressions for the contributions from the γ–Z diagrams
for arbitrary values of gauge parameter α and for q2 ≠ 0.
However, these formulas are cumbersome and are not
given here.

f Q
5( ) 6( )+

q2( ) z y a bz–( ) 1
D2 α( ) y 1 α–( )+
-----------------------------------------d

0

z

∫d

0

1

∫=

– b z y 1 z–( ) 1 z–( ) a bz–( ) τy z y–( )–( )d

0

z

∫d

0

1

∫

× 1
D2 α( ) y 1 α–( )+
----------------------------------------- 1

D2 α( )
----------------–

–
1
2
--- z y a 5b 6bz–+( )d

0

z

∫d

0

1

∫

× D2 α( ) y 1 α–( )+( )ln D2 α( )ln–[ ] ,

a
ml

MW

-------- 
 

2

, b
mν

MW

-------- 
 

2

,= =

D1 α( ) α a α–( )z bz 1 z–( )   τ –  y z y –( ),–+=

D1 D1 α 1=( ) 1 a 1–( )z bz 1 z–( )–+= =

–  τ y z y –( ),

D2 α( ) a α a–( )z bz 1 z–( )   τ –  y z y –( ),–+=

D2 D2 α 1=( )=

=  a 1 a–( )z bz 1 z–( )   τ –  y z y – ( ) .–+

f Q
j( ) q2( )

g
4 θWcos
------------------ A j( ) α q2,( ) B j( ) α q2,( )+

q2 MZ
2–

-------------------------------------------------------,=

j 7 … 14., ,=
SICS      Vol. 99      No. 2      2004



 

262

        

DVORNIKOV, STUDENIKIN

 

4. MAGNETIC FORM FACTOR 
OF A NEUTRINO

Relation (2.2) representing the general expansion of
the neutrino electromagnetic vertex function Λµ(q)
implies that the neutrino magnetic form factor fM(q2) is
the coefficient in the term proportional to iσµνqν. In this
section, we give the exact expression for fM(q2) taking
into account the dependence on two mass parameters a
and b as well as on parameter α fixing the gauge.

Note that the Feynman diagrams depicted in Fig. 4
make zero contribution to the neutrino magnetic form
factor. Thus, the exact expression for the neutrino mag-
netic form factor has the form

where coefficients  are the contributions from
the corresponding diagrams shown in Fig. 2 to the neu-
trino magnetic form factor. For this coefficients, we
have the following relations:
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Let us analyze the asymptotic behavior of the inte-
grals contained in the contributions from proper verti-
ces diagrams to fM(q2) for large positive values of t. For
example, let us consider the following integral for
t  ∞:

(4.6)

here,

, (4.7)

and

(4.8)

Carrying out elementary integration, we obtain

(4.9)

In formulas (4.6)–(4.8), we omitted terms proportional
to 1/t and (lnt)/t, which are infinitely small for large
positive values of t. The remaining integrals can be esti-
mated similarly. Finally, we find that

The asymptotic behavior of the magnetic form factor
for large negative values of q2 described here is in
accordance with the general Weinberg theorem [24].
However, the case of the magnetic form factor of a mas-
sive neutrino has never been analyzed before. It should
be noted that, in deriving relations (4.6)–(4.8), we
assumed that α < ∞. Thus, the obtained result
(   0 as t  ∞) is valid for any gauge except

the unitary one. The value of (t  ∞) may differ
from zero if we first set α = ∞ and then proceed to the
limit t  +∞. The behavior of magnetic form factors
in the framework of the Weinberg–Salam model in the
unitary gauge is analyzed, for example, in [14]. Using
explicit expressions for the magnetic form factor of a
massive neutrino for an arbitrary value of gauge param-
eter α, Fig. 5 shows the behavior of function  in
various gauges for a wide range of t values: 0 ≤ t ≤ 5 ×
10–4. It can be seen that the magnetic form factor
becomes independent of the choice of the gauge at
t = 0, which corresponds to a photon on the mass sur-
face. The value of fM(t = 0) is equal to the neutrino mag-
netic moment. The fact that the magnetic moment of the
massive neutrino is independent of the choice of the
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gauge was proved by direct calculation in our previous
publication [13].

5. ANAPOLE FORM FACTOR 
OF A NEUTRINO

In this section, we consider the anapole form factor
of a massive neutrino. Using the results obtained in Sec-
tion 2 for various contributions to the neutrino vertex
function Λµ(q), we single out in formulas (2.3)–(2.15)
the coefficients proportional to (q2γµ – qµ)γ5, which
are, in accordance with the expansion in relation (2.2),
the corresponding contributions to the anapole form
factor fA(q2). It should be noted that, in separating sim-
ilar terms in the contributions from each of the dia-
grams depicted in Figs. 2 and 4, we inevitably obtain
additional terms proportional to matrix γµγ5. Conse-
quently, it is necessary to make sure that the corre-
sponding form factor has zero value even at q2 ≠ 0. This
problem was also touched upon in Section 2.

We will first consider the contributions from single-
loop proper vertices diagrams (see Fig. 2) to the neu-
trino anapole form factor. Integrating with respect to
momenta of virtual particles (see monograph [23]), we
obtain exact expression for the contributions of these
diagrams to the anapole form factor of a massive neu-
trino in terms of definite integrals,

q/
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Fig. 5. Magnetic form factor of a massive neutrino as a
function of t for various values of the gauge parameter. The
dashed curve corresponds to α = 100, the solid curve to the
’t Hoft–Feynman gauge (α = 1), and the dot-and-dash
curve, to α = 0.1.
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Note that the values of the mass parameters of a
charged lepton (a) and a neutrino (b) are taken into
account exactly in expressions (5.1)–(5.5). The value of
gauge parameter α is arbitrary. All calculations were
made for an arbitrary value of q2.

The contributions from the γ–Z diagrams shown in
Fig. 4 to the neutrino anapole form factor can be
derived using expansion (2.32) and have the form

(5.6)

Using the explicit form of functions A(j)(α, q2) (formu-
las (2.17)–(2.23)) and B(j)(α, q2) (formulas (2.24)–
(2.30)) and employing relation (5.6), we can derive
expressions for the contributions from the γ–Z diagrams
for arbitrary values of gauge parameters α and αZ and
for q2 ≠ 0. However, these formulas are cumbersome
and will not be given here.

Anapole Moment 

Let us consider the anapole moment of a massive
neutrino. We have obtained the contributions from the
proper vertices diagrams (formulas (5.1)–(5.5)) as well
as from the γ–Z diagrams (5.6) to the neutrino anapole
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form factor for an arbitrary value of q2. Since the ana-
pole moment is a static electromagnetic parameter of
the neutrino, the value of q2 should be set equal to zero
in the formulas under consideration.

In the case of a zero-mass neutrino, the value of the
anapole moment is connected with the charge radius
via the relation (see, for example, [21])

However, in the case of a massive particle, this simple
relationship is violated for the reasons described in Sec-
tion 2.

In the expression for the anapole moments, the con-
tributions come both from the proper vertices diagrams
depicted in Fig. 2 and from the γ–Z diagrams shown in
Fig. 4. Thus, the complete expression for the anapole
moment has the form

The contributions (a, b, α) from the proper vertices
diagrams can be written in the form

(5.7)

(5.8)

(5.9)
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(5.10)

(5.11)

It should be noted that, as in the case of a zero-mass
neutrino, the contributions from proper vertices dia-
grams to the anapole moment are finite.

To obtain the contributions from the γ–Z diagrams
to the anapole moment, it is convenient to use for-
mula (2.32), setting q2 = 0 in this case. Thus, the
expressions for

assume the form

(5.12)

where the contributions to the neutrino electric charge
Q(j) can be derived from expressions (2.24)–(2.30) and
(3.6) (see also our previous publication [13]). While
deriving relation (5.12), we assumed that αZ = ∞. Using
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formula (5.12), we obtain the following expressions for

(a, α):

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

a j( )

a 7( ) a α,( ) θW θWcos
2 ω 3

3
4
---α 1 α+( )+ 

 




cos
2

=

– 1 5α
8

-------– 5α2

8
---------–

3α3

4
--------- αln

1 α–
------------–

–
1
2
--- ω 14

3
------– α+ 

  1

18 1 α–( )3
--------------------------–

× 11 54α– 54α2 2α3– 9α4–+(

--– 18α2 α 12α3 α 18α4 α )ln+ln–ln




,

a 8( ) a α,( ) θWsin
2 θWcos

2 ω3 α+
4

------------- 5 α+
8

-------------–




=

–
α
2
--- 1 α

2
---+ 

  αln
1 α–
------------ 1

18 1 α–( )3
------------------------–

× 11 18α– 9α2 2α3– 6 αln+ +( )




,

a 9( ) a α,( ) θWcos
2 θWsin

2
–( ) θWcos

2
=

× 1
2
--- ωα– α α αln–+{ } ,

a 10( ) a α,( ) θWcos
4

=

× 3
4
---ω 3 α2+( )– 3

8
--- 5α2

8
---------

3
4
---α2 αln–+ +

 
 
 

,

a 11( ) 12( )+ a α,( ) θWcos
2

=

× 1
2
--- θW ωα– α α αln–+( )cos

2 1
3
--- ω αln+( )–

 
 
 

,

a 13( ) a α,( ) θWsin
2 θWcos

2
–( )=

× 1
2
--- θWcos

2 ωα– α α αln–+( ) 1
6
--- ω αln+( )+

 
 
 

,

JOURNAL OF EXPERIMENTAL 
(5.19)

Expressions (5.13)–(5.19) are diverging; consequently,
the final form of these formulas depends on the method
for regularizing Feynman integrals (2.9)–(2.15). This
circumstance can be used to explain a certain difference
between relations (5.13)–(5.19) and the corresponding
contributions to the charge radius, which were derived
in [16].

The direct calculation performed here gives diverg-
ing expressions for the anapole moment of a massive
neutrino. It should be recalled in this connection that
the corresponding corrections to the electromagnetic
vertex function can be treated from the standpoint of
radiative corrections to the expression for a physical
process (e.g., neutrino scattering by a charged lepton).
It is quite obvious that the scattering cross section,
which is a measurable quantity, must be finite and inde-
pendent of the choice of the gauge. It is precisely this
approach, which was developed in [17, 21, 25, 26] for
the case of a zero-mass neutrino, that formed the basis
of the definition of the electroweak anapole moment
and the electroweak charge radius. Note that, in addi-
tion to the Feynman diagrams considered here, the cor-
rections to the electromagnetic vertex function of a
charged lepton should also be taken into account in
studying the radiative corrections to scattering. More-
over, the so-called “box” diagram, in which the neu-
trino and the lepton exchange two virtual bosons in the
course of the interaction, will also affect the scattering
process. Detailed calculations of the corresponding dia-
grams for the case of a zero-mass neutrino are given in
the recent publications [25, 26]. It would be interesting
to demonstrate that, for a massive neutrino also, the
diverging terms depending on the gauge parameters
will cancel out. However, in the case of a massive neu-
trino, this problem is not trivial and requires an addi-
tional independent analysis.

6. ELECTROMAGNETIC CHARACTERISTICS
OF A NEUTRINO IN THE CASE

OF MIXING BETWEEN DIFFERENT 
GENERATIONS

It was noted in Section 1 that contemporary experi-
mental data speak in favor of mixing existing between
different flavors of neutrinos. In the study of the elec-
tromagnetic properties of neutrinos, this is manifested
in the existence of a transitional electromagnetic dipole
moment (and also transitional form factors) of a neu-
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trino. Indeed, formula (2.1) in the present case assumes
the form

where summation is carried out over neutrino types (νe,
νµ and ντ). By analogy with expansion (2.2), we con-
clude that the most general expression for vertex func-

tion  is

(6.1)

where the quantities  (I = Q, M, E, A) have the
meaning of transitional form factors.

By way of an example, we analyze the minimally
extended standard model with mixing between differ-
ent flavors of charged leptons and neutrinos. The inter-
action Lagrangian and the Feynman rules are given
in [22]. First, we consider the situation when  =

 =  = mν . Such a choice of parameters corre-
sponds to three flavors of neutrinos degenerate in mass.

In this case, we can prove that expressions for  have
the form

(6.2)

where Uβl is the unitary matrix describing mixing
between different generations of leptons and neutrinos

(see review [22]) and  = fI(al , b, q2, …) are the
expressions for form factors derived in Sections 3–5 of
this paper; al = (ml/MW)2.

In actual practice, the case of nearly degenerate neu-
trino masses is not ruled out by the available experi-
mental data (see [27, 28]). Considering the case of
mass-degenerate neutrinos, we in fact introduce two
additional (apart from parameters a = (ml/MW)2 and b =
(mν/MW)2 used above) mass parameters ci = (∆mi/MW)2,
where ∆mi are two independent values of the mass dif-
ferences between three flavored neutrinos, and carry
out the expansion in these parameters in subsequent
calculations, assuming that c ! a, b.

If we set q2 = 0 in formula (6.2), this will lead to
expressions for transient charges, which determine the
static electromagnetic properties of three types of neu-
trino. It is interesting to note that the structure of rela-
tion (6.2) and the results obtained in out previous pub-
lications [13] imply that the values of neutrino transient

charges Qβα = (q2 = 0) are identically equal to zero
for an arbitrary value of gauge parameter α.
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In the case of nondegenerate neutrino masses, apart
from the three form factors considered in this section,
relation (6.1) also acquires a transitional electric dipole
form factor that is identically equal to zero for neutrinos
with degenerate masses. For this reason, we will give
the expression for this form factor only. The simplest
expression for the electric dipole form factor is
obtained in the ’t Hoft–Feynman gauge. Note that the
contributions to this form factor comes only from
proper vertices diagrams. On the basis of expressions
(2.3)–(2.7) (substituting mβ for mν in the extreme left
parentheses and mα for mν in the extreme right paren-
theses in formulas (2.4) and (2.5), where mβ, α are the
flavor masses of the final and the initial neutrino states),
averaging over the initial and final neutrino states, we
find that

Here, the contributions from each Feynman diagram
have the form

(6.3)

(6.4)

(6.5)

(6.6)
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(6.7)

and

bα = (mα/MW)2. We have derived formulas (6.3)–(6.7)
using the fact that the relation

also holds for a neutrino in the mass shell.
It follows from formulas (6.3)–(6.7) that, in the case

of degenerate neutrino masses (i.e., for mβ = mα), the
contributions from each Feynman diagram to the elec-
tric dipole form factor are identically equal to zero.

On the basis of relations (6.3)–(6.7), we can derive
the expressions for transitional electric dipole moments
of neutrinos. To this end, we must set τ = 0 in the for-
mulas under investigation. The simplest expressions for
the electric dipole moments are obtained for light
neutrinos (bα ! 1). Expanding the integrands in formu-
las (6.3)–(6.7) in parameter bα and integrating with
respect to Feynman parameters x and y, we obtain

(6.8)

Proceeding from the fact that charged leptons must be
much lighter than a W boson (i.e., al ! 1), we obtain
from relation (6.8) the final expression for transitional
electric dipole moments of the neutrino in the form

(6.9)

Note that this relation does not contain the dependence
on the mixing angle since we disregard the masses of
charged leptons. It is obvious from formula (6.9) that,
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in the minimally extended standard model with mixing
between different flavors of charged leptons and neutri-
nos, the neutrino electric dipole moments that are diag-
onal in flavors are equal to zero, while nondiagonal ele-
ments are proportional to the difference in the neutrino
flavor masses.

7. CONCLUSIONS

We have investigated the electromagnetic vertex
form factors of a massive Dirac neutrino in the frame-
work of the minimally extended standard model sup-
plemented with a SU(2)-singlet right-handed neutrino.
In all calculations, we have exactly taken into account
the masses of a charged lepton and a neutrino. Calcula-
tions were made in an arbitrary Rξ gauge, which makes
it possible to analyze the dependence of the results on
the gauge parameters of both W and Z bosons. It was
found in Section 2 that, for a certain choice of gauge
parameters, all electromagnetic form factors of the neu-
trino become finite (i.e., contain no ultraviolet diver-
gence). This statement has been proved in the one-loop
approximation. An analogous property of the electro-
magnetic vertex function can be formulated in the
framework of quantum electrodynamics. For a definite
choice of the photon gauge parameter (αγ = 3), the elec-
tron electromagnetic vertex function in the one-loop
approximation does not contain infrared divergence. In
Sections 3 and 4, the contributions from all Feynman
diagrams to the charge and magnetic form factors,
which exactly take into account the dependence on
mass parameters a and b as well as on the gauge param-
eter α, have been determined for the first time. The
asymptotic behavior of the magnetic form factor of a
massive neutrino is investigated for q2  –∞ and it is
found that fM(q2)  0 in this case. The anapole form
factor and the anapole moment of a massive neutrino
are considered in Section 5 for an arbitrary value of
gauge parameter α. It is also found that, like in the case
of a zero-mass particle, the anapole moment of a mas-
sive neutrino is a diverging quantity and depends of the
choice of the gauge. The transient electromagnetic
form factors of the neutrino are studied in Section 6 in
the framework of the minimally extended standard
model permitting mixing between different flavors of
charged leptons and neutrinos. Using the results
obtained in Sections 3–5, we have obtained for the first
time the explicit expressions for the transient charge,
magnetic, and anapole form factors for neutrino states
degenerate in flavor masses. It is shown that transient
electric charges are identically equal to zero. For the
case of neutrino states nondegenerate in masses, an
exact expression for the transitional electric dipole
form factor is obtained in the ’t Hoft–Feynman gauge.
This form factor is identically equal to zero for mass-
degenerate neutrinos. Moreover, the expression for the
transitional electric dipole moment was also found in
this gauge. It was found that the transitional electric
 AND THEORETICAL PHYSICS      Vol. 99      No. 2      2004
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dipole moment is proportional to the difference in the
masses of the initial and final neutrino states.
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Abstract—Anomalous behavior of the shape of saturated absorption resonance on the transition 1s5  2p8
(J = 2  J = 2) in the Ne atom is experimentally observed. The shape of the saturation resonance on transi-
tions with degenerate excited states of atoms is analyzed numerically and the reasons for the anomalous behav-
ior of the resonance shape and the formation of its doublet spectral structure are established. The effect of the
resonance light pressure on the amplitude and frequency properties of resonance is investigated. It is shown that
the asymmetry of the doublet splitting of the resonance is associated with the effect of resonance light pressure.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Degenerate atomic systems with a long-lived lower
(ground, or metastable) state remain interesting as an
object for studying processes of their interaction with
high-intensity laser radiation not only due to rich spec-
troscopic manifestations emerging in this case, but also
possible practical applications for solving a number of
fundamental and applied problems.

The saturated absorption spectra of such Λ systems
under the conditions of optical orientation in strong
laser fields were studied experimentally on atomic tran-
sitions in Na and Ne [1–3]. An important result of these
experiments was the observation of a dip in saturated
absorption resonances at high strengths of the orienting
field. A peculiarity in the dips was their anomalously
small width for large values of the saturation parameter
and asymmetric arrangement relative to the center of
the resonance line.

The spectral singularities observed in [3] stimulated
theoretical analysis of spectroscopic manifestations
emerging during the interaction of degenerate metasta-
ble atomic systems with an orienting field of arbitrary
intensity [4, 5]. Analysis carried out for transitions
between levels with identical values of the total angular
momenta J = 2 revealed that the shape of the saturated
absorption resonance in this case is determined by a
number of factors that are far from obvious and lead to
the formation of dips and peaks of various amplitude
and width as well as to their superposition. An impor-
tant result was the discovery of a strong dependence of
these parameters on the value of the branching factor
characterizing the relative probabilities of relaxation
channels of the excited state.

An important property of degenerate atomic sys-
tems as applied to resonant interaction with laser radia-
1063-7761/04/9902- $26.00 © 20270
tion is the formation of several two-level M subsystems,
which are coupled via spontaneous and induced transi-
tions (M is the magnetic quantum number of the level).
As a result, the system of kinetic equations describing
the process of interaction is one of 2Mth order even if
we disregard correlations between magnetic sublevels.
For M ≥ 2, it is very difficult to obtain an exact analytic
solution to such systems of equations. For this reason,
such systems are solved using approximations in a
number of parameters. Such an approach does not
allow one to trace the dynamics of behavior of a num-
ber of informative characteristics (such as the absorp-
tion line shape or the population of the Zeeman sublev-
els) that depend on parameters being varied (intensities
of the orienting and test fields, branching factor, etc.). It
cannot be ruled out that a number of important features
of the processes under investigation will be lost since it
is difficult to account for these processes (e.g., the
effect of light pressure) correctly. Modern computa-
tional methods remove these limitations to a consider-
able extent and make it possible to analyze the kinetic
equation for arbitrary values of intensities of the orient-
ing and test fields as well as the total angular momenta
of the lower and upper states of the atom.

In this study, we report on the results of investiga-
tions of the shape of the absorption spectrum of the test
field in the presence of a strong orienting field on tran-
sition in the Ne atom (J = 2  J = 2, J = 2  J = 1).
The results were obtained by solving the equations
numerically in a large range of atomic system parame-
ters (branching factors), polarization, and intensity of
the strong field. Calculations are based on the analysis
of resonant interaction of a high-intensity polarized ori-
enting field with degenerate metastable atomic sys-
tems, which was developed in [4]. It was found that the
004 MAIK “Nauka/Interperiodica”
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shape of the saturated absorption resonance near the
line center depends on the branching factor and the
dipole moment of the transition between magnetic sub-
levels. The resonance has a Doppler contour with a tra-
ditional Lamb-type dip and with an absorption peak,
whose amplitudes and widths are determined by the
intensity (saturation parameter) of the strong field. On
the transition J = 2  J = 2, a doublet structure
appears in the shape of the resonance absorption peak
near the line center for certain values of the branching
factor and the saturation parameter, while no doublet
splitting in the resonance peak is observed on the tran-
sition J = 2  J = 1. The second part of this article is
devoted to analysis of the effect of the light pressure
force on the shape of the saturated absorption reso-
nance. The results of numerical analysis are used for
explaining the experimental data obtained for the Ne
atom on the transition 1s5  2p8 and partly reported
in [3].

2. THEORETICAL MODEL
The problem of interaction of metastable states of

atoms with laser radiation is essentially nonlinear and
complicated in view of the specific features of such
states, and requires specification of the energy level dia-
gram and the properties of resonant radiation. For this
reason, we will consider transitions between the mth
and the nth levels of the Ne atom with total momenta
Jn = 2  Jm = 2 and Jn = 2  Jm = 1. However, the
results are also valid for transitions in other atoms with
the same values of total angular momenta.

We will consider the problem of the absorption
spectrum of a test field in the presence of counterprop-
agating radiation from a strong field of the same fre-
quency. Radiation from a strong field of strength E1 is
assumed to have the form of a plane monochromatic
wave (of frequency ω and wave vector k), which is in
resonance with the m–n atomic transition (transition fre-
quency is ωmn) with a linear or circular σ+ polarization.

Radiation emitted by a test field of strength E2 is
presented by a plane monochromatic wave (frequency
ω2 = ω and wave vector k2 = –k) with a circular σ–

polarization, which propagates in a direction opposite
to that of the high-intensity light wave. Such a formula-
tion of the problem is analogous to the experimental
conditions in [3]. The case of a test wave with a linear
polarization orthogonal to the strong field can also be
reduced to the problem in question.

We assume that the gas pressure is quite low; in this
case, collisions can be neglected and the only relaxation
mechanism is associated with spontaneous transitions
in the atom.

In the case of the linear polarization of the strong
field, we will consider the problem in a coordinate sys-
tem with the quantization axis z directed along the field
E1. In this coordinate system, the strong field induces
transitions involving a change in the magnetic quantum
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
number ∆M = 0 (Fig. 1); spontaneous transitions in this
case are observed with a change of ∆M = 0, ±1. In the
given problem, we assume that the strong field sets a
nonequilibrium population of magnetic sublevels and
the absorption coefficient for the weak field is deter-
mined by this nonequilibrium difference in the popu-
lations.

We will solve this problem proceeding from the
kinetic equations for the density matrix of the atomic
system, which, according to [4, 6] and the notation
adopted there, have the following form in steady-state
conditions:

(1)

(2)

Here, ρM and rM are the diagonal elements of the den-
sity matrix describing the population of the lower and
upper magnetic sublevels, |M|, |M'| ≤ 2;

is the probability of the induced transitions nM 
mM1; Ω1 = Ω – k · v, Ω = ω – ωmn being the detuning
of the strong field frequency from the frequency of the

ΓnρM WM ρM rM1–( )– AMM'rM' QM,+
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Fig. 1. Diagram of spontaneous and induced transitions
between the degenerate upper (m) and lower (n) levels of the
Ne atom: (a) Jn = 2  Jm = 2; (b) Jn = 2  Jm = 1.
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resonant transition of the atom with allowance for the
Doppler shift; Γ = (Γm + Γn)/2 is the transition width;

is the parameter of the interaction of the atom with the
strong field (in the case of a strong field with a circular

polarization,  = GM/ ); Γm , Γn , qM , and QM are the
rates of relaxation and excitation of sublevels mM and
nM; v is the velocity of the atom; d is the reduced dipole
moment of the m–n transition; and the expression in the
angle brackets is the coefficient of vector summation.
The rates of the spontaneous transitions mM '–nM are
determined by the Einstein coefficients Amn and the vec-
tor summation coefficients. In Eqs. (1) and (2), the sub-
scripts M1 = M in the case of linear polarization of the
strong field and M1 = M + 1 in the case of circular
polarization.

The absorption coefficient of the counterpropagat-
ing test light wave with circular polarization (all subse-
quent results are given for the σ– polarization) per atom
was defined as

(3)

where

dMM–1 is the dipole moment of the transition between
the magnetic sublevels, and the angle brackets indicate
averaging over velocities. Averaging in expression (3)
was carried out with equilibrium (Maxwellian) and
nonequilibrium velocity distributions of particles.

System of equations (1), (2) together with Eq. (3)
was solved numerically on a mesh with a step of rela-
tive frequency detuning of Ω/k · vt and a relative parti-
cle velocity v /v t of 10–3, where v t is the most probable
velocity of the ensemble. In averaging, particles with
velocities |v /v t | ≤ 3 were taken into account. It can be
seen that the number of discarded particles is exponen-
tially small. The following values of the atomic transi-
tion parameters were taken for calculations [5]: the
probabilities of spontaneous transitions with J = 2 
J = 2 and J = 2  J = 1 were Amn = 1.36 × 107 s–1 and
Amn = 3.34 × 107 s–1, respectively; the rate of decay from
the lower level was Γn = 105 s–1; and the rate of decay
from the upper level, Γm , was determined in terms of
the branching parameter α = Amn/Γm , the value of α
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being varied in the range 0.1–1. The strong field satura-
tion parameter, defined as

was varied in the range 0.5–104. Excitation rates QM

and qM determine the population of states of the Ne
atom in the absence of a strong field. Since the popula-
tion n of the lower state in a gas discharge is consider-
ably higher than the population m of the upper state, we
set qM = 0 in numerical calculations and assumed that
the pumping of the lower state is the same to all sublev-
els with a rate QM = Γn , although the population of sub-
levels with |M| = 2 under the conditions of the discharge
cell is slightly higher than the population of the remain-
ing sublevels [7].

3. SINGULARITIES IN THE ABSORPTION 
SPECTRUM OF THE TEST FIELD 

ON THE TRANSITION Jn = 2  Jm = 2
OF THE Ne ATOM

Transition Jm = 2  Jn = 2 is characterized by the
following features: the dipole moment and, hence, the
probability of a spontaneous transition between mag-
netic sublevels with M = 0 are equal to zero (d00 = 0,
A00 = 0), while the ratio of the maximal probability A22
to the minimal probability A11 is equal to 4. This leads
to an elevated population n of the level with M = 0 (in
view of the absence of an induced transition from this
sublevel in a strong field; see Fig. 1a) and to signifi-
cantly different effects (broadening) of the strong field
on the shape of the absorption line of the weak field on
transitions between individual magnetic sublevels. This
is manifested in the complex form of the spectrum of
the resultant absorption coefficient in the vicinity of the
center of the transition line.

Numerical investigations in the given model prob-
lem show that the absorption spectrum of the test field
on a transition between degenerate states of the Ne
atom with total angular momenta Jn = Jm = 2 is deter-
mined by the result of summation of four (and not two,
as indicated in [4]) Lorentz-type contours against the
Doppler background. These contours are formed as a
result of absorption from the corresponding magnetic
sublevels of the lower state and have different ampli-
tudes and widths near the transition line center due to
different values of the dipole moments of the transitions
between the magnetic sublevels and of their occupan-
cies under the action of a strong light field.

It was found that the action of a strong field leads to
the following dynamics in the velocity distribution of
particles on the magnetic sublevels of the lower state:

(a) the formation of a dip in the particle distributions
function (Bennett hole) on sublevels with M = ±2 for
any values of saturation parameter R;

R
2 GM

2

ΓΓ n

----------------,=
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(b) the emergence of a small-amplitude peak on sub-
levels with M = ±1 for R ≤ 1 and of a dip with a width
much smaller than on sublevels with M = ±2 for R > 1;

(c) the formation of a peak on a sublevel with M = 0
for any saturation parameter R. It is the result of sum-
mation of these contours with different amplitudes and
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Fig. 2. Shape of the test field absorption line calculated tak-
ing into account the equilibrium velocity distribution of par-
ticles for branching parameter α = 0.8 and various values of
strong field saturation parameter R = 1 (1), 10 (2), 102 (3),
103 (4), and 104 (5).
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widths that determines the type of the behavior of the
saturation absorption resonance shape, including the
doublet structure in the resonance peak discovered in
experiment [3].

Numerical analysis reveals that the shape of the
absorption line of the test field is determined by the
branching parameter of the atomic system, which is
defined as α = Amn/Γm . For values of α < 0.85, the
absorption spectrum near the center of the transition
line is a conventional saturated absorption resonance in
the form of a Lorentzian dip against the background of
a broad Doppler absorption contour with a width and an
amplitude depending on the intensity (saturation
parameter) of the strong field (Fig. 2).

In the range 0.85 ≤ α ≤ 1, an absorption peak with
an amplitude and a spectral width depending on the
intensity of the strong field is formed instead of the dip.
In the vicinity of α ≈ 0.85, a complex field dependence
of the saturated absorption resonance spectrum on the
saturation parameter of the strong field is observed
(Fig. 3).

For values of saturation parameter R & 1, a small-
amplitude peak is observed (curve 1 in Fig. 3). With
increasing intensity of the strong field, for a saturation
parameter of R & 10, this peak splits into two compo-
nents (characteristic curve 2), while for values of R ≥
10, a dip with a width and an amplitude determined by
the intensity of the strong field is formed (curves 3–6).
In this case, the maximum amplitude of the dip consid-
erably exceeds the amplitude of the peak.
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Fig. 3. Shape of the test field absorption line calculated with allowance for the equilibrium velocity distribution of particles for
branching parameter α = 0.85 and various values of strong field saturation parameter R = 1 (1), 5 (2), 10 (3), 102 (4), 103 (5), and
104 (6).
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In the range of the branching parameter 0.9 ≤ α ≤
0.95 and for saturations parameters R ≥ 50, the reso-
nance peak splits into two components. The depen-
dence of the peak amplitude of the strong field intensity
exhibits saturation, while the peak width and the value
of the doublet splitting strongly depend on the field
intensity in the range of values under investigation. Fig-
ure 4 shows typical contours of the absorption line of
the test field as functions of the strong field absorption
parameter for branching parameter α = 0.9.

Figure 5 shows the experimental frequency depen-
dences of the absorption coefficient of the test field on
the saturation parameter of a high-intensity light wave
from [5]. A comparison of the shape of the curves in
Figs. 4 and 5 shows that the experimental and calcu-
lated data are in good quantitative agreement. It follows
from the results of calculations that the variation of the
saturation parameter of strong field in the range of R =
102–104 leads to the variation of the half-amplitude
width of the absorption resonance peak in the range 12–
95 MHz, while the doublet splitting varies in this case
from 3 to 33 MHz. According to experimental data, the
maximal value of frequency between peaks of the dou-
blet splitting was about 25 MHz for a value of parame-
ter R ~ 500, while the absorption peak width varied
from 14 to 70 MHz upon a change in the saturation
parameter in the range 100–500.

It should be emphasized that model calculations
lead to a symmetric splitting of the peak of the saturated
absorption resonance line, while asymmetric splitting
of the resonance line was observed in experiments [5].
It should be noted in this connection that the value of
the branching parameter obtained from the data [4] on
the rates of spontaneous decay channels of the 2p8 level
of the Ne atom is α = 0.336. In accordance with the
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Fig. 4. Shape of the peak of the test field absorption line cal-
culated for various values of strong field saturation parame-
ter R = 50 (1), 102 (2), 103 (3), and 104 (4) with allowance
for the equilibrium velocity distribution of particles for
branching parameter α = 0.9.
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results described above, the absorption spectrum of the
test field must have a dip for this value of α (see Fig. 2).
However, in experiments, an absorption peak was
observed, indicating the emergence (under the given
experimental conditions [5]) of physical processes that
considerably increase the contribution from the transi-
tion on which the strong field is acting and reduces the
contribution from other relaxation channels of the
upper level. The nature of these processes still remains
unclear.

For values of α > 0.95, the doublet structure at the
line center is not manifested and the resultant spectrum
has the form of an absorption peak (Fig. 6) whose
amplitude and width are determined by the intensity of
the strong field.

A similar analysis for the case of a strong field with
circular polarization, inducing transition with ∆M = ±1,
leads to a qualitatively similar behavior of the saturated
absorption resonance of the test light wave, the only
difference being in the values of the peak width and the
doublet splitting.

Concluding this section, let us consider the physical
origin of the strong dependence of the shape of the
absorption line for the test field on the branching coef-
ficient α. This coefficient essentially determines the
fraction of the “useful” decay rate of level m via chan-
nel m–n of the total decay rate of the level to all the
states optically coupled with the given level. In this
connection, the values of parameter α are determined
by the amplitudes of resonances as well as by their
widths in the spectroscopy of coupled transitions [6].
This effect is manifested most clearly in the case of
degenerate atomic systems with a long-lived lower
level, when the strong optical pumping field and subse-
quent spontaneous transitions couple a considerable
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Fig. 5. Experimental shape of the test field absorption line
for various values of the strong field saturation parameter.
ND THEORETICAL PHYSICS      Vol. 99      No. 2      2004



THE SHAPE OF SATURATED ABSORPTION RESONANCE IN ATOMS 275
number of two-level systems. This leads to the decisive
role of the optical pumping effect in the population of a
number of magnetic sublevels of the lower state.

It was noted above that transition Jn = 2  Jm = 2
in the Ne atom is characterized by different widths of
the Bennett structures in the populations of the mag-
netic sublevels of the lower and upper states of the tran-
sition, which are coupled by a strong pumping field, for
saturation parameters R @ 1 (see Fig. 1a). In this case,
the population of the sublevel with M = 0 of the lower
state is determined by the number of cascade-type
spontaneous transitions via the upper state; the contri-
bution to its population from other magnetic sublevels
is proportional to α|M|.

The contour of the absorption line of the test field is
the result of summation of the four contours corre-
sponding to transitions between individual magnetic
sublevels. For this reason, a competition appears
between the dips and Bennett peaks in the differences
in the populations of the sublevels of the lower and
upper states with M = ±2, ±1, which are coupled by the
strong pumping field, as well as the Bennett peak in the
population of the lower state with M = 0.

For small values of α (α ≤ 0.8), the fraction of par-
ticles reaching the sublevel with M = 0 from the lower
state as a result of optical pumping is relatively small
(particles are mainly pumped to the third levels via the
channel n  m  j ≠ n). For this reason, the result-
ant contour of the test field absorption line is deter-
mined by the Bennett structures in the population of the
energy levels coupled by the strong field and has the
shape of a Doppler-type absorption line with a tradi-
tional dip at the line center (see Fig. 2).

With increasing α, the fraction of particles reaching
the sublevel with M = 0 as a result of optical pumping
increases, which leads to an increase in the contribution
of the given sublevel to the shape of the absorption
coefficient of the test field in the form of a peak at the
line center (for α ~ 1, this contribution becomes deci-
sive; Fig. 6). In a certain range of α values (0.85–0.9),
the amplitudes of dips and peaks of the Bennett struc-
tures are almost identical, while their widths differ sub-
stantially. This leads to a complex dependence of the
total absorption coefficient of the test field. Figures 3
and 4 reflect the dynamics of the saturated absorption
resonance spectrum for a varying intensity of the strong
field in the given range of α.

4. SINGULARITIES
IN THE TEST FIELD ABSORPTION SPECTRUM

IN THE TRANSITION Jn = 2  Jm = 1
IN THE Ne ATOM

In the case of an atomic transition with Jn = 2 
Jm = 1, the dipole moments and the probabilities of
spontaneous transitions between magnetic sublevels
differ insignificantly (the values of d00 and A00 differing
from zero), while the ratio of the maximal probability
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
A00 to the minimal probability A11 (A11 = A–1–1) is equal
to 4/3. In the given case, the strong field E1 with linear
polarization, inducing transitions without a change in
the magnetic quantum number (∆M = 0), leads to a
decrease in the population of the lower levels with M =
0, ±1 as a result of optical pumping (the particle distri-
bution function acquires dips) and to an increase in the
population of levels with M = ±2 (a peak appears in the
distribution function), the difference in the field-
induced broadening of the peaks and the dips being
insignificant. These circumstances make the situation
substantially different from that considered above for
the transition between the energy levels with the total
angular moments Jn = Jm = 2.

The numerical solutions of the modified system of
equations (1)–(3) with the corresponding values of
transition parameters (spontaneous transition probabil-
ities, dipole moment, and vector summation coeffi-
cient) give the following singularities in the form of the
absorption coefficient of the antiparallel test field with
circular polarization.

1. The absorption spectrum of the test field in the
vicinity of the center of the atomic transition line is the
sum of three Lorentzian profiles against a broad Dop-
pler background line. In this case, a dip is observed in
the shape of the line near its center on transitions from
magnetic sublevels with M = 0, ±1, while a peak
appears on transitions from sublevels with M = ±2. It is
important that the amplitudes and spectral widths of the
peak and the dips differ insignificantly in view of small
differences in the probabilities and dipole moments for
transitions from different magnetic sublevels.
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Fig. 6. Shape of the test field absorption line calculated with
allowance for the equilibrium velocity distribution of parti-
cles for branching parameter α = 0.98 and various values of
strong field saturation parameter R = 1 (1), 10 (2), 102 (3),
103 (4), and 104 (5).
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2. The resultant absorption spectrum also depends
on branching coefficient α: for values of α < 0.65 a
characteristic dip is observed near the line center, while
the absorption peak is observed instead of the tradi-
tional dip for α = 0.65–1. The spectral widths of the
peak and the dip are determined by the intensity of the
strong field, while their frequency behavior is similar to
the dependences depicted in Figs. 2 and 6. In this case,
the doublet splitting structure typical of the absorption
peak on the transition Jn = 2  Jm = 2 does not appear
in the absorption peak.

5. EFFECT OF LIGHT PRESSURE 
ON THE TRANSITION Jn = 2  Jm = 2 

IN THE Ne ATOM

The model calculations with an equilibrium particle
distribution over magnetic sublevels led to symmetric
resonance peak splitting (see Fig. 4), while the experi-
mentally observed amplitudes of the peak components
are different (see Fig. 5). In this connection we ana-
lyzed the effect of the force of light pressure (associated
with the strong field) on the shape of the saturated
absorption resonance. The analysis was based on the
technique developed by us earlier [8, 9].

In contrast to transitions from the ground state, the
action of the force of light pressure for transitions from
excited states of atoms exhibit features associated with
the following factors.

(a) A finite lifetime of the lower state and the exist-
ence of several decay channels for the upper state. In
this case, time tr of the resonant interaction of an atom
with the strong field is determined by the spontaneous
transition probability and the branching parameter α
(tr = /(1 – α)). Time tr is found to be the same for
all atoms in the ensemble in contrast to the case of inter-
action between atoms in the ground state, while the
time of the interaction is determined by the time of
flight of the atom through the light beam.

(b) A difference in the values of the dipole moment
and probabilities of transitions between degenerate
sublevels with different values of magnetic quantum
number M. As a result, the light pressure due to the
strong field produces different effects on the particle
distribution on these magnetic sublevels. Analysis
shows that the maximum effect of the strong field is
manifested in the particle distribution over sublevels
with M = ±2.

The particle distribution over sublevels in the field
of a high-intensity light wave was determined from the
solution of a Fokker–Planck equation having the form

(4)

Amn
1–

∂f v z t,( )
∂t

---------------------
∂ Az f v z t,( )( )

∂v z
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∂v z
2

-------------------------------------+ + 0=
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for a small Doppler shift of the atomic frequency;
k · vr = "k2/ma (ma is the atomic mass) versus the uni-
form transition width (k · vr ! Γ) [10, 11]. Here, factor
Az is determined by the light pressure force,

(5)

while the quantity Czz determining particle diffusion in
the velocity space has the form

(6)

The plus and minus signs correspond to particles mov-
ing parallel and antiparallel to the wave vector k of the
strong light field.

Fokker–Planck equation (4) was solved numerically
on a 2D 600 × 1000 mesh with a step of relative velocity
variation of κ∆v z/Γ = 0.5–0.1 and a step of relative time
variation (τr = κv rt) ∆τ = 0.1–0.05. In our calculations,
we used the following values of atomic parameters: the
most probable velocity v t ≈ 7 × 102Γ/κ at a gas temper-
ature of T = 300 K, a radiation wavelength λ ≈ 633 nm,
a recoil frequency ∆ωr = κv r = 3.3 × 105 s–1, a ratio
∆ωr/Γ ~ 5 × 10–2, and values of saturation parameter R
varied in the range 0.1–104. The relative time of inter-
action of an atom with the strong field (during which
the particle velocity distribution function changes) was
τr ≈ 0.5–1 for values of branching parameter α ~ 0.9–
0.95. It should be recalled that the doublet form of the
saturated absorption spectrum is observed for the given
values of the parameters.

The results of calculations of the behavior of the sat-
urated absorption resonance shape near the center of
the transition line of the Ne atom depending on the
strong field saturation parameter R taking into account
the nonuniform distribution of particles are shown in
Fig. 7.

The behavior of the curves demonstrates that the
action of light pressure force is manifested in the
asymmetry of the absorption peak for R ≤ 50 and in
the amplitude ratio of the peak splitting doublet for
R ≥ 100.

Figure 8 shows the frequency behavior of the rela-
tive change in the test field absorption coefficient,

(  – )/  for various intensities of the strong
field, directly reflecting the manifestation of the effect
of light pressure on the transition being studied. It can
be seen that the experimental [5] and calculated data on
the relative change in the amplitudes of the splitting
doublet are in good quantitative agreement: the maxi-
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mal calculated value amounts to about 9%, while the
experimental value is approximately equal to 8%.

It follows from [8] that the effect of light pressure on
the spectral parameters of the saturated absorption res-
onance (the shape of the resonance and the position of
its minimum relative to the atomic transition fre-
quency) is maximal for values of the saturation param-
eter R = 1–2. However, the peculiarity of the formation
of the doublet spectral structure on transitions with
degenerate states of the atom as a result of subtraction
of several contours (realization of a difference scheme

–0.05 0 0.05

8.3

8.2

8.1

8.0

Ω/kv , rel.units–

A
bs

or
pt

io
n 

co
ef

fi
ci

en
t, 

re
l. 

un
its

4

2
1

3

0.05 0.10

Fig. 7. Shape of the peak of the test field absorption line cal-
culated for various values of strong field saturation parame-
ter R = 50 (1), 102 (2), 103 (3), and 104 (4) with allowance
for the effect of light pressure for branching parameter
α = 0.9.
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of observation on atomic level) makes it very sensitive
to the distribution function of particles interacting with
the field and permits the observation of light pressure
force in the region nonoptimal for the effect.

6. CONCLUSIONS

Thus, the results described above show that, with
increasing degeneracy of the levels participating in the
resonant interaction of an atom with optical fields and
the lifetime of these levels, the potentialities of satu-
rated absorption spectroscopy as regards obtaining nar-
row resonance structures considerably increase. This is
manifested most clearly under the optical pumping
conditions in high-intensity laser fields. It should be
noted that resonances anomalous in widths and ampli-
tude signs were observed even in the first experiments
with high intensities of orienting fields [1–3]. The rea-
sons for such anomalies have not yet been unambigu-
ously interpreted. For example, under our experimental
conditions, the mechanism of the effective increase in
branching parameter α of the Ne atom in the discharge
conditions for the 1s5 level from the block of closely
spaced 1si levels remains unclear. A possible reason for
this increase can be atomic collisions with electrons,
leading to mixing of populations of these levels in the
block of 1si levels.

In addition, the above results indicate that light pres-
sure has a considerable effect on the parameters of the
saturated absorption resonance on transitions from
excited states. The possibility of manifestations of the
light pressure effect on the spectroscopic parameters of
transitions in excited atoms were not considered earlier.
The intensity of the effect can be significant, especially
for light atoms. The latter circumstance appears as
especially important for interpreting the results of pre-
cision metrological measurements on the basis of the
saturated absorption method, including the Rydberg
constant [12].
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Abstract—A modified Gross–Pitaevskii equation for a Bose–Einstein condensate with nonlocal interaction
between atoms is used to analyze and calculate the characteristics of internal modes of bright solitons (eigen-
modes of small perturbations of the condensate). The spectra of even and odd internal modes are found for one-
and two-dimensional solitons, and the rate constant characterizing nonlinear internal-mode damping is deter-
mined. The possibility of experimental verification of the results is discussed. © 2004 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Analysis of small-amplitude collective oscillations
of an atomic Bose–Einstein condensate (BEC) confined
in a trap provides an effective tool for analyzing this
macroscopic quantum object and verifying its theoreti-
cal description [1–6]. Recent experimental observa-
tions of bright solitons in lithium BECs [7, 8], which
are characterized by a negative scattering length, have
demonstrated the possibility of studying an untrapped
condensate. This offers new opportunities for analysis
of the physics of BECs, including analysis of the eigen-
modes of small-amplitude perturbations of BEC soli-
tons (usually called internal modes).

In the standard approximate description of BECs
based on the Gross–Pitaevskii equation [1], interaction
between atoms is assumed to be local (the interatomic
potential is reduced to the delta function of the inter-
atomic distance). Under this assumption, stable nonlin-
ear localization (due to interatomic interaction) is pos-
sible only along one direction. In other words, only
quasi-one-dimensional BEC solitons can be stable, pro-
vided that the condensate can be localized along the
remaining two coordinates by applying an external
field. This scheme was implemented in the experiment
reported in [7, 8].

It was shown in [9] for several model examples that
collapse can be prevented by using a nonlocal potential,
which implies that two- and three-dimensional BEC
solitons can be obtained. An analysis of the Gross–
Pitaevskii equation modified to describe weakly nonlo-
cal interatomic interaction predicts that sufficiently
large two-dimensional BEC solitons with negative scat-
tering lengths are stable and that internal modes of
these solitons exist [10]. In [11, 12], one-, two-, and
three-dimensional BEC solitons were obtained as
numerical solutions to the modified Gross–Pitaevskii
1063-7761/04/9902- $26.00 © 20279
equation and it was pointed out that solitons of this kind
can be used in creating nanostructures and in nano-
lithography.

In this paper, we analyze the effect of nonlocality of
interatomic interaction on the properties of one-dimen-
sional BEC solitons. Stable solitons can be obtained
without assuming nonlocality, but they do not have any
internal modes. In Section 2, we show that nonlocal
interaction gives rise to an internal-mode spectrum
when a certain threshold is exceeded and determine
some characteristics of even and odd internal modes.
The internal-mode oscillations are not damped in the
linear approximation. In Section 3, we apply the semi-
analytical approach developed in [13–16] and validated
numerically in [17] to analyze the rate of nonlinear
damping due to outward flow of atoms (which escape to
infinity since there is no trap). Section 4 presents anal-
ogous results concerning two-dimensional BEC soli-
tons, a discussion, and conclusions.

2. INTERNAL MODES 
OF A ONE-DIMENSIONAL BOSE–EINSTEIN 

CONDENSATE SOLITON

In the case of a negative scattering length, the mod-
ified Gross–Pitaevskii equation for a single-particle
wave function Φ(x, t) of a system with a weakly nonlo-
cal interatomic interaction is written as

(1)

where t and x are dimensionless time and coordinate,
respectively, and all parameters are eliminated by
appropriate normalization [11, 12]. Note that renormal-
ization can be used to ensure that Eq. (1) is applicable

i
∂Φ
∂t
------- ∂2Φ

∂x2
---------- Φ Φ 2 Φ∂2 Φ 2

∂x2
---------------+ + + 0,=
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Fig. 1. One-dimensional BEC soliton with κ = 300: (a) amplitude A(x) and eigenfunctions ψ(x) and χ(x) of (a) the first even, (b) the
fourth even, (c) the first odd, and (d) the fourth odd internal modes.
when the divergence of the integrals representing the
moments of the interatomic potential is eliminated by a
more general method than that proposed in [11].

Stationary solutions to (1) have the form

(2)

where the function A(x) (exponentially decreasing as
x  ±∞) is an eigensolution of the real nonlinear
ordinary differential equation

(3)

The characteristics of one-, two-, and three-dimen-
sional solitons were determined by solving (3) numeri-
cally in [12]. Equation (3) can be solved analytically by
changing to the variable p = dA/dx. The solutions to the
resulting first-order linear differential equation in p2

can be expressed in terms of elliptic integrals of the first
and third kinds in the general case and in terms of ele-

Φ x t,( ) A x( ) iκ t( ),exp=

d2A

dx2
--------- κA– A3 A

d2A2

dx2
-----------+ + 0.=
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mentary functions in some special cases [18]. For the
localized symmetric solution of interest here, A and x
are related as follows (see Fig. 1a):

(4)

where Am =  is the peak soliton amplitude (at x =
0). As x  ∞, solutions have the asymptotic form

The spectral parameter characterizing a soliton, κ > 0,
is proportional to the chemical potential (energy) of the
condensate and is uniquely related to the following

x
A2 1

2
---+

1
2
---κ A2 1

4
---A4–

---------------------------- Ad

A

Am

∫ 2arccotq= =

+
1

2 κ
---------- 2q κ 1+

2q κ 1–
----------------------- , qln

A2 1
2
---+

2κ A2–
------------------,=

2κ

A x( ) κ x–( ).exp∼
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quantity proportional to the number of particles (see
Fig. 2):

(5)

If κ ! 1, then N ≈ 4 ; if κ @ 1, then N ≈ 2πκ.
Let us introduce a small deviation of the wave func-

tion from (2):

(6)

The governing equation (1) linearized with respect to
δΦ(1) is

(7)

We seek localized solutions to this equation. By virtue
of the symmetry of (1) under phase shift in the wave
function, there exists a solution to (7) that is even in x
and has the form δΦ = iA(x). Furthermore, the transla-
tional invariance of (1) implies that there exists an odd
solution δΦ = dA/dx. The existence of either “neutral”
mode can readily be verified by substituting it into (7)
and comparing the result with (3). The sought-for inter-
nal modes of a soliton are described by localized solu-
tions to (7) oscillating in time:

(8)

Here, the eigenvalues p are supposed to be real and pos-
itive. The eigenfunctions ψ(x) and χ(x) are determined
by equations following from (7):

(9)

where primes denote derivatives with respect to x,

(10)

The boundary conditions for a discrete spectrum corre-
spond to modes vanishing at infinity:

(11)

The eigenfunctions are normalized by the relation

(12)

N A2 x( ) xd

∞–

∞

∫ 2 κ 4κ 1+( )arccot
1

2 κ
----------.+= =

κ

Φ x t,( ) A x( ) δΦ 1( ) x t,( )+[ ] iκ t( ).exp=

i
∂δΦ
∂t

----------- ∂2δΦ
∂x2

------------- A
∂2

∂x2
--------+ A δΦ δΦ*+( )[ ]+

+ A2 κ– d2A2

dx2
-----------+ 

  δΦ A2 δΦ δΦ*+( )+ 0.=

δΦ 1( ) x t,( ) a ψ x( ) ipt( )exp χ x( ) ipt–( )exp+[ ] .=

p2ψ'' p1 ψ' χ'+( ) M p–( )ψ A2χ'' qχ+ + + + 0,=

p2χ'' p1 χ' ψ'+( ) M p+( )χ A2ψ'' qψ+ + + + 0,=

p1 2AA', p2 1 A2, q+ A2 AA'',+= = =

M 2A2 2 A'( )2 3AA'' κ .–+ +=

ψ ∞±( ) χ ∞±( ) 0.= =

ψ2 χ2+( ) xd

∞–

∞

∫ 1,=
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and a small value of the real amplitude a in (8) ensures
that the perturbation is small.

Since the soliton is symmetric, we consider pertur-
bations that are even and odd in x on the semi-infinite
interval 0 < x < ∞. It holds that

(13)

for even modes, while

(14)

for odd modes. The conditions at infinity are identical
for modes of either parity:

(15)

More precisely, it follows from Eq. (9) that, if

, (16)

then both ψ(x) and χ(x) exponentially decrease as
x  ∞:

(17)

According to (17), the function χ(x) decreases more
slowly as compared to ψ(x), particularly when p  κ,
in which case the function ψ(x) is localized within a
finite interval, whereas the width of χ(x) increases
indefinitely.

We found the internal modes for solitons with 0 <
κ < 1000 by using the tridiagonal algorithm to solve (9)
subject to boundary conditions (15) combined
with (13) or (14). The functions ψ(x) and χ(x) corre-
sponding to κ = 300 are shown in Figs. 1a and 1b for

ψ' 0( ) χ' 0( ) 0= =

ψ 0( ) χ 0( ) 0= =

ψ ∞( ) ξ ∞( ) 0.= =

0 p κ< <

ψ x( ) κ p+ x–( ),exp∝

χ x( ) κ p– x–( ).exp∝
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Fig. 2. Number of particles versus spectral parameter: N1
and N2 correspond to one- and two-dimensional solitons,
respectively.
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two even modes and in Figs. 1c and 1d for two odd
ones. The number of oscillation cycles in an eigenfunc-
tion increases with mode number. According to (17),
the width of χ(x) increases as p approaches the contin-
uous-spectrum boundary pb = κ. The number of inter-
nal-mode branches increases with κ. Figure 3a shows
that the first even mode exists when κ > 0.4; the second
one, when κ > 15; the third, when κ > 70; and so on.
The odd modes follow a similar pattern (see Fig. 3b).
Note that neither even nor odd modes exist when κ <
0.4 and the interval of p for which they exist is bounded
from above by pb = κ.

3. NONLINEAR DAMPING
OF INTERNAL MODES

In the linear approximation with respect to δΦ(1), the
amplitudes of oscillating perturbations localized in the
neighborhood of a soliton do not decrease with time.
The corresponding total wave functions describe
undamped periodic oscillations of atom concentration
in a BEC. However, when the terms nonlinear in δΦ(1)
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Fig. 3. Ratio of the internal-mode eigenfrequency p to the
spectral parameter κ of a one-dimensional BEC soliton ver-
sus κ for (a) even and (b) odd modes. Numbers at curves are
mode numbers.
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are taken into account, the harmonics of the second
and/or higher order (with frequencies shifted by 2p and
so on) belong to the continuous spectrum correspond-
ing to outward-propagating matter waves. This implies
that internal modes are damped and a steady soliton is
obtained in the long-time limit. In this section, the rate
of nonlinear damping is found for the internal modes of
one-dimensional BEC solitons by calculating the out-
ward flow of atoms in a second-order perturbation the-
ory. Since we use a procedure analogous to that devel-
oped in [13–17] for optical solitons, only a brief sum-
mary is presented here. Note also that the nonlinear
damping mechanism does not work for collective oscil-
lations of a BEC confined in a trap, because the trap
prevents atoms from moving away to large distances
from the condensate. The fact that BEC solitons have
finite lifetimes (due to two- and three-body collisions
resulting in spin flip or loss of condensate atoms) is
ignored in this study, since they cannot be evaluated by
solving the Gross–Pitaevskii equation. Some estimates
concerning these processes were presented in [11, 12]
for the (2,2) and (1,1) states of 7Li atoms.

To introduce second-order terms in the perturbation
amplitude, we write

(18)

where the superscript corresponds to the perturbation
order. The second-order function can be sought in the
form

(19)

Generally, C, B, and C0 are functions of time. In partic-
ular, they are responsible for nonlinear shift in the oscil-
lation frequency p. However, the ensuing weak time
dependence does not affect the internal-mode damping
rate in question.

Substituting (19) into (1) and collecting the second-
order terms, we obtain the following equations for C(x)
and B(x):

(20)

The function C0(x) describes both variation of per-
turbed soliton profile and nonlinear frequency shift.
The corresponding evolution equation is not written out

Φ x t,( )

=  A x( ) δΦ 1( ) x t,( ) δΦ 2( ) x t,( )+ +[ ] iκ t( ),exp

δΦ 2( ) x t,( )
=  C x( ) 2ipt( )exp B* x( ) 2ipt–( )exp C0 x( ).+ +

C'' 2 p κ 2A2+ +( )C– A2B ψ ψ 2χ+( )A+ +

+ A BA( )'' C A2( )'' A CA( )''+ +

+ ψ Aψ( )'' ψ Aχ( )'' A ψχ( )''++ 0,=

B'' 2 p κ– 2A2+( )B A2C χ χ 2ψ+( )A+ + +

+ A CA( )'' B A2( )'' A BA( )''+ +

+ χ Aψ( )'' χ Aχ( )'' A ψχ( )''+ + 0.=
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here, because it is not coupled to the equations for C(x)
and B(x) and does not contribute to the internal-mode
damping rate. Representation (19) means that C(x) and
B(x) are the amplitudes of time-periodic perturbations
with period π/p. However, they exhibit substantially
different behavior as functions of the coordinate.
Indeed, as |x |  ∞, Eqs. (20) subject to the condition

(21)

yield an exponentially decaying C(x) and a function
B(x) that tends to a plane-wave solution, B(x) ~

exp(±i x). Thus, B(x) describes the damping of
internal modes due to outward flow of atoms. Accord-
ing to [13–17], the time-dependent number of particles
involved in an internal-mode perturbation,

is governed by the equation

(22)

where the nonlinear-damping rate constant is expressed
as

(23)

The asymptotic value B(∞) is found by solving
Eqs. (20) numerically.

Figures 4a and 4b show the numerical results
obtained under condition (21) for even and odd modes,
respectively. The highest values of the nonlinear-damp-
ing rate constant are several times greater for odd
modes as compared to even ones. They are reached in
the vicinity of pb = κ. Since these values vary insignifi-
cantly between the internal-mode branches, several
internal modes corresponding to the regions of overlap-
ping curves in Fig. 4 may coexist over a relatively long
time interval, whereas continuous-spectrum perturba-
tions decay at higher rates. When relation (21) is vio-
lated, the internal modes are damped at much slower
rates, because the outward flow of atoms is described
by higher order perturbation theory.

4. INTERNAL MODES 
OF A TWO-DIMENSIONAL BOSE–EINSTEIN 

CONDENSATE
The two-dimensional modified Gross–Pitaevskii

equation is obtained by replacing ∂2/∂x2 in (1) with the
transverse Laplace operator ∆⊥  = ∂2/∂x2 + ∂2/∂y2. It was
shown in [10–12] that stable two-dimensional bright
BEC solitons with negative scattering lengths (indepen-
dent of z) can exist even in the case of a weakly nonlo-

2 p κ 0>–

2 p κ–

δN a2 ψ2 χ2+( ) xd

∞–

∞

∫ a2,= =

dδN
dt

---------- γδN2,–=

γ 2π 2 p κ– B ∞( ) 2.=
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cal interatomic interaction. Axially symmetric two-
dimensional BEC solitons were obtained in [11]. Fig-
ure 2 illustrates the relation between the spectral
parameter κ and the quantity

,

which is proportional to the number of particles. Fig-
ure 5a shows an example of radial profile of the soliton
amplitude. In the general case, the internal modes are
asymmetric and the following expansion of a particular
mode in terms of angular harmonics can be used instead
of (8):

(24)

where r and ϕ denote polar coordinates and the integer
m = 0, 1, 2, ... is an azimuthal index. The damping of
internal modes of a two-dimensional soliton subject to

N 2π A2 r( )r rd

0

∞

∫=

δΦ 1( ) r ϕ t, ,( ) a ψ r( ) imϕ ipt+( )exp[=

+ χ* r( ) imϕ– ipt–( ) ] ,exp
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Fig. 4. Nonlinear damping rate constant versus the spectral
parameter of a one-dimensional soliton for (a) even and
(b) odd modes. Numbers at curves are mode numbers.
SICS      Vol. 99      No. 2      2004



284 KREPOSTNOV et al.
condition (21) is also described by Eq. (22), with a
damping rate constant γ determined by the asymptotic
values of functions obtained in second-order perturba-
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Fig. 5. Two-dimensional soliton with κ = 300: (a) amplitude
A(r) and eigenfunctions ψ(r) and χ(r) of (a) the first and
(b) the fourth symmetric internal modes.
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tion theory [14–16]. Since the symmetric modes of
two-dimensional solitons are the closest analogs of the
even internal modes of one-dimensional solitons, the
discussion that follows is restricted to the case of m = 0.

Omitting an analysis very similar to that presented
above for one-dimensional solitons, we only illustrate
the final results by Figs. 5–7. Comparing them with
Figs. 1, 3, and 4, respectively, we find only a quantita-
tive difference. The largest difference is in the damping
rate constant: Figs. 4 and 7 demonstrate that it is sub-
stantially smaller in the two-dimensional case. The
internal modes of spherically symmetric three-dimen-
sional BEC solitons (which also exist when the inter-
atomic interaction is nonlocal [11, 12]) have a more com-
plicated angle-dependent structure than those described
by (24). However, analogous results were obtained for
spherically symmetric perturbations [14, 16].

Finally, recall that measurements of small-ampli-
tude oscillation frequencies for trapped BECs are
widely used to study the physics of interatomic interac-
tion in condensates [1–6, 19]. The spectrum of collec-
tive excitations depends both on the properties of BEC
atoms and on trap characteristics. Since the bright BEC
soliton considered here is localized without any trap
(along the “soliton coordinate”), we have a unique
opportunity to examine the nonlocality of interatomic
interaction in a condensate more directly by analyzing
the eigenfrequencies of low-frequency internal modes.
The strongest evidence of nonlocality was obtained for
internal modes of the one-dimensional solitons imple-
mented experimentally in [7, 8]. (Recall that no internal
modes exist for the one-dimensional solitons described
by the standard Gross–Pitaevskii equation; they exist
only when the interatomic interaction is nonlocal.)
Note that the soliton lifetime exceeds 3 s for lithium
BECs [7], while the corresponding frequencies p lie in
the kilohertz range. We believe that experimental stud-
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Fig. 7. Nonlinear damping rate constant versus the spectral
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ies of lithium BEC solitons can provide new informa-
tion about nonlocal interaction between atoms in BECs.
The internal-mode damping rate is determined by a
weak outward flow of condensate atoms. This nonlinear
mechanism does not work in the case of a trapped BEC.
The damping rate strongly depends on the initial ampli-
tude of atom-concentration perturbation, being very
slow for small amplitudes. It is obvious that internal-
mode damping can be ignored if the corresponding
time scale exceeds the soliton lifetime determined by
interatomic collisions.
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Abstract—The resonance internal conversion effect in hydrogen-like ions is considered. For the M1 transition
with an energy of 70.6 keV in 171Yb, the lifetime of this nucleus in the excited state decreases by five orders of
magnitude as a result of deexcitation via a new channel—the resonance conversion—provided that the nuclear
transition energy is equal to the energy of transition of a single 1s electron to a higher ns state. Observation of
the resonance conversion in hydrogen-like ions is a powerful method for investigating their nuclear structure.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The resonance of a nucleus with an electron shell
strongly influences the process of deexcitation of
nuclear states [1–5]. In cases when the energies of elec-
tron and nuclear transitions are close, the energy can be
transferred from nucleus to the electron shell. This phe-
nomenon, called resonance, subbarrier, or discrete con-
version, is rarely encountered in neutral atoms usually
involved in experiments, which is explained by an
extremely low probability of coincidence of the energies
of atomic and nuclear levels. Indeed, vacant atomic lev-
els in such atoms are concentrated in a very narrow (sev-
eral electronvolts wide) energy interval near the ioniza-
tion threshold and possess very small widths (~10–8 eV).
However, the situation dramatically changes in ions with
a single electron (hydrogen-like ions), where the interval
of vacant levels expands up to several dozens of kiloelec-
tronvolts and the level width may reach several electron-
volts. In this situation, the probability of resonance con-
version increases by many orders of magnitude.

The resonance conversion was experimentally dis-
covered and theoretically studied in highly charged
ions of 125Te with a charge of q ≥ 45 [6–8], where the
subbarrier conversion takes place for 1s-shell electrons
during the M1 nuclear transition with an energy of
35.492 keV. The 2p electrons produce damping of this
resonance interaction, which has a twofold effect. On
the one hand, this damping decreases the resonance
conversion in magnitude. On the other hand, it was a
rather strong damping that made the observation possi-
ble, since otherwise the probability of overlapping
between nuclear and electron levels would be close to
zero. The width of the level characterizing this damping
was approximately 10 eV.

From this standpoint, the resonance conversion in
hydrogen-like ions is of interest by providing a unique
1063-7761/04/9902- $26.00 © 20286
opportunity to observe this effect in the absence of
damping. This ensures a very large (by many orders of
magnitude) acceleration of deexcitation, since the
effect is proportional to (∆/Γa)2, where ∆ is the reso-
nance mismatch and Γa is the level width [1]. Indeed,
for ∆ ≈ 1 eV and Γa ≈ 10–3 eV, the gain reaches
5−6 orders of magnitude.

The resonance conversion can be observed in exter-
nal magnetic or electric fields. A relatively large shift in
the 1s level (on the order of several electronvolts)
achieved for fields accessible in modern experiments,
as well as the presence of a hyperfine structure, makes
it possible to control the atomic transition frequency
within an interval sufficiently broad for providing the
exact resonance. Previously [1–3], we suggested using
a laser tuned to the difference frequency for compensat-
ing the resonance mismatch.

Observation of the resonance conversion in hydro-
gen-like ions offers a powerful tool for investigating
their nuclear structure. Using this technique, it is possi-
ble to determine the nuclear transition frequency to
within the atomic level width (~10–3 eV) and to study
the magnetic and electric moments of nuclei in both
ground and excited states.

2. COMPUTATIONAL FORMULAS

The theory of resonance conversion has been devel-
oped in detail in [1–8]. The resonance conversion factor
is defined by analogy with the conventional internal
conversion coefficient, as the ratio of widths of the con-
version and radiative transitions,

(1)R
Γ c

Γγ
-----.=
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The R value can be calculated using the formula

(2)

where αd is the resonance analog of the internal conver-
sion coefficient. The latter quantity is calculated using
expressions analogous to those for the conventional
coefficient, but, in contrast to the latter, has the dimen-
sionality of energy. The resonance frequency mismatch
∆ = ωn – ωa is the difference between frequencies of the
nuclear and electron transitions; Γ is the total width of
the intermediate state, usually equal to the atomic level
width.1 

The standard situation is such that 

 @ 1. (3)

Relations (2) and (3) show that R ! 1. However, as was
noted above, the frequency of the electron transition
can be controlled within certain limits so as to ensure
exact resonance. In such cases (see below), R @ 1. As
suggested [1–3], this control can be provided by a laser.
In the case under consideration, optical shift of the 1s
electron level appearing in a constant external electric
or magnetic field can be used. This method allows the
transition energy to be controlled within several eV. In
addition, it is necessary to take into account the hyper-
fine splitting [9].

3. LEVEL ENERGIES AND WIDTHS
IN HYDROGEN-LIKE IONS

The energies of levels in hydrogen-like ions can be
determined by solving the Dirac equation for an elec-
tron moving in the Coulomb field of the nucleus. The
results of such calculations with allowance for the
Lamb shift and finite size of the nucleus were reported
in [10, 11]. Table 1 gives the energies of ns, np3/2 , nd5/2 ,
and nf7/2 for a hydrogen-like ion of 171Yb (Z = 70).

The existence of levels with angular momenta in a
broad range in hydrogen-like ions admits the appear-
ance of resonances for any multipolarity of nuclear
transitions. As can be seen from Table 1, the range of
transition energies featuring resonance is rather wide
(approximately 18 keV for the ion of 171Yb).

The widths of the levels under consideration are
determined by the probabilities of E1 radiative transi-
tions to lower states allowed by the selection rules. The
lifetimes (or reduced widths) of levels in a hydrogen
atom are presented in [12, 13]. In hydrogen-like ions,
these widths depend on the atomic number (as Z4) and
on the principal quantum number (as n–3). Examples of

1 We use the system of relativistic units in which " = c = me =1.

R
αdΓ /2π

∆2 Γ /2( )2+
----------------------------,=

∆ Γ⁄
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the level widths for the hydrogen-like ion of 171Yb are
presented in Table 2.

4. HYPERFINE SPLITTING OF ENERGY LEVELS

The hyperfine splitting of ns levels in hydrogen-like
ions is determined primarily by the magnetic moment
of the nucleus [14]:

(4)

Here, µ is the magnetic moment of the nucleus, I is the
nuclear spin, α is the constant of the fine structure, and
me and mp are the masses of electron and proton,
respectively. An example of the hyperfine splitting
parameters for the hydrogen-like ion of 171Yb are pre-
sented in Table 3. These data indicate that the hyperfine

∆WF
4
3
---α αZ

n
------- 

 
3 µ
µN

------
me

mp

------2I 1+
2I

-------------- 1
3
2
--- αZ( )2+ .=

Table 1.  The energies (keV) of electron levels in a hydro-
gen-like ion of 171Yb [10, 11]

n ns np3/2 nd5/2 nf7/2

1 0

2 53.441 54.751

3 63.738 64.125 64.237

4 67.281 67.444 67.492 67.515

5 69.006 69.018

10 71.025 71.028 71.029

Table 2.  The widths (eV) of electron levels in a hydrogen-
like ion of 171Yb [12, 13]

n ns np3/2 nd5/2 nf7/2

2 9.88

3 9.91 × 10–2 2.94 1.02

4 6.88 × 10–2 1.28 0.434 0.217

5 4.39 × 10–2 0.661 0.227 0.113

10 1.12 × 10–2 0.0825 0.0282 0.0141

50 4.35 × 10–5 0.00661 0.00227 0.00113

Table 3.  Hyperfine splitting parameters for the 171Yb nucleus

Nucleus Iπ µ/µN

∆WF, eV

1s 10s

171Yb 1/2 0.4397 0.569 5.69 × 10–4
SICS      Vol. 99      No. 2      2004
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splitting significantly influences the position of the res-
onance.

The Zeeman splitting of electron levels is much
smaller than the hyperfine splitting, since even the
strongest magnetic fields (~104 Oe) are much weaker
than internal atomic fields. For 171Yb, the Zeeman split-
ting for H = 104 Oe is as small as 10–8 eV.

f

1s ns 2p

i*

Fig. 1. The typical Feynman graph for the resonance inter-
nal conversion in a hydrogen-like ion. The double path cor-
responds to the nuclear transition from an excited state i* to
the ground state f.

Table 4.  The results of calculations of the electron transition
energies ε, radiative transition widths Γ, and discrete internal
conversion coefficients αd for the ns electron levels of a
hydrogen-like ion of 171Yb in the vicinity of the M1 nuclear
transition with ωn ≈ 70.6 keV

ns ε, keV Γ, eV αd, keV

6s 69.646 0.0445 5.39

7s 70.166 0.0299 3.30

8s 70.501 0.0209 2.17

9s 70.729 0.0150 1.50

10s 70.892 0.0112 1.08

14000

12000

10000

8000
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4000

2000

0

R

70400 70500 70600 70700 70800 70900
ωn, eV

Fig. 2. Plot of the calculated R value versus nuclear transi-
tion energy ωn in a hydrogen-like ion of 171Yb in the vicin-
ity of the M1 transition.
JOURNAL OF EXPERIMENTAL A
5. CALCULATIONS 
FOR THE M1 TRANSITION IN 171Yb

The M1 nuclear transition energy in 171Yb is
70.6 eV. The values of energies, radiative transition
widths, and discrete internal conversion coefficients
were calculated using the Dirac–Fock method with
allowance for the finite size of the nucleus and for the
higher QED corrections for the vacuum polarization,
self-energy, etc. [11]. The computations were per-
formed using the RAINE program package [15].

For the M1 transition, the main contribution to the
resonance amplitude (Fig. 1) is due to the conversion
electron transition to the ns state, for which the energy
is close to that of the nuclear transition. In the reso-
nance approximation, the contributions from other
atomic states can be ignored taking into account rela-
tion (3) (see Table 4). In turn, the radiative transition
widths are determined by the total probability of elec-
tric dipole transitions ns  2p, 3p, …, (n – 1)p.

The results of calculations of the electron transition
energies, radiative transition widths, and discrete inter-
nal conversion coefficients are presented in Table 4.
Figure 2 shows a plot of the calculated R value versus
nuclear transition energy in the 70.4–70.9 keV interval.
As can be seen from these data, the coincidence of fre-
quencies (ωn = ωa) provides for a discrete conversion
factor on the order of 105.

6. CONCLUSIONS

The results of analysis of the resonance internal con-
version for the M1 transition with an energy of
70.6 keV in 171Yb showed that the resonance conver-
sion factor R can reach several orders of magnitude (in
the given case, 105), provided that the energies of the
electron and nuclear transitions coincide. Under these
conditions, the resonance conversion becomes the main
deexcitation channel for the nucleus. The resonance
can be observed by applying a constant external electric
or magnetic field. The resonance mismatch can be also
compensated using the corresponding resonance laser
radiation field.
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Abstract—The relativistic quantum theory of cyclotron resonance in a medium with arbitrary dispersive prop-
erties is presented. The quantum equation of motion for a charged particle in the field of a plane electromagnetic
wave and in the uniform magnetic field in a medium is solved in the eikonal approximation. The probabilities
of induced multiphoton transitions between the Landau levels in a strong laser field are calculated. © 2004
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As is known, if a charged particle moves in the field
of a transverse electromagnetic (EM) wave in the pres-
ence of a uniform magnetic field parallel to the direc-
tion of wave propagation, a resonant effect of the wave
on the particle motion is possible. If the interaction
takes place in vacuum, this is the well-known phenom-
enon of autoresonance [1–3], when the ratio of the
Doppler-shifted wave frequency ω' to the cyclotron fre-
quency Ω of the particle is conserved, ω'/Ω = const, and
the resonance created at the initial moment automati-
cally holds in the course of interaction. However, if the
interaction takes place in a medium where the phase
velocity of an EM wave is larger (a plasmalike
medium) or smaller (a dielectric medium) than the
speed of light in vacuum, the picture of the wave-parti-
cle interaction is substantially changed. In particular,
the autoresonance phenomenon is violated in the
medium because of a nonequidistant Stark shift of mag-
netic sublevels of an electron (Landau levels) in the
electric field of an EM wave. As a result, the intensity
effect of the wave governs the resonance characteristics
and the particle state essentially depends on the initial
conditions and the wave field magnitude at which the
nonlinear resonance is achieved [4]. The cyclotron res-
onance (CR) in a medium was first investigated in the
scope of the classical theory in papers [3, 5], where
oscillating solutions for the particle energy were
obtained. However, such behavior is valid only for an
EM wave intensity less than a certain critical value. As
shown in [4], at intensities above that critical value, a
nonlinear resonance phenomenon of a threshold
nature—so-called “electron hysteresis”—occurs (the
EM wave is turned on adiabatically). If the intensity
peak of an actual wave pulse exceeds the mentioned

¶This article was submitted by the authors in English.
1063-7761/04/9902- $26.00 © 20290
critical value, then significant acceleration of charged
particles can be achieved (it is clear that the medium
must be plasmalike for this purpose) [6].

Below the threshold intensity of electron hysteresis,
when the linear CR occurs in a medium [3, 5], the free
electron laser version has been proposed, based on the
combined scheme of CR and Cherenkov radiation in a
dielectric–gaseous medium [7].

We note that classical equations of motion for this
process in a medium permit an exact solution only in a
particular case where the initial velocity of a particle is
parallel to the wave propagation direction and the wave
has a circular polarization (namely, the electron hyster-
esis phenomenon has been obtained in this case).

Concerning the quantum description of CR, the rel-
ativistic quantum equation of motion allows exact solu-
tion only for CR in vacuum [8] (see [9] and references
therein for a description of related quantum electrody-
namic processes, such as electron–positron pair pro-
duction, nonlinear Compton scattering in the presence
of uniform magnetic field, etc., by this wave function).
We note that the configuration of EM fields with a uni-
form magnetic field directed along the propagation of
the transverse wave is one of the exotic cases in which
the relativistic quantum equation of motion in vacuum
allows an exact solution. In a medium, even in the
absence of a uniform magnetic field, the relativistic
quantum equation of motion for the particle–monochro-
matic wave interaction reduces to the Mathieu type (in
general, Hill type) equation, the exact solution of which
is unknown. In this case, obtaining an approximate ana-
lytic solution describing the nonlinear process of parti-
cle–wave interaction is already problematic [10–12].

The purpose of this paper is to obtain a nonlinear (in
the field) approximate solution of the relativistic quan-
tum equation of motion for a charged particle in the
plane EM wave in a medium in the presence of a uni-
004 MAIK “Nauka/Interperiodica”
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form magnetic field, a solution that describes suffi-
ciently well the quantum picture of CR in a medium at
high intensities of the external radiation field, in partic-
ular, multiphoton-stimulated transitions between Lan-
dau levels.

In what follows, the wave function of a charged par-
ticle moving in a medium in the field of a transverse
EM wave in the presence of a uniform magnetic field
directed along the wave propagation direction is
obtained. Then the multiphoton CR in a medium is con-
sidered and the probabilities of induced multiphoton
transitions in a strong circularly polarized EM wave are
calculated.

2. WAVE FUNCTION OF A CHARGED PARTICLE 
IN THE PLANE ELECTROMAGNETIC WAVE

IN A MEDIUM IN THE PRESENCE 
OF A UNIFORM MAGNETIC FIELD

Let a charged particle move in a medium in the field
of a coherent EM wave and a uniform magnetic field
along the wave propagation direction (z axis). The four-
vector potential of this configuration of the EM field
can be represented as

(1)

where

(2)

is the four-vector potential of the uniform magnetic
field with a strength H0 and

(3)

is the four-vector potential of a plane transverse EM
wave, x is the four-component radius vector, and

is the plane wave coordinate. For four-component vec-
tors, we chose the metric a = (a, ia0). In (3), n = n(ω) is
the refractive index of the medium and c is the speed of
light in vacuum. Herein, we take the EM wave to be
laser radiation that is quasimonochromatic with high
accuracy (∆ω ! ω, where ω is the carrier frequency),

We assume that the EM wave is switched on/off adi-
abatically, and therefore, for the vector potential Aµ(τ),
we have

Aµ x( ) Aµ x1( ) Aµ τ( ),+=

Aµ x1( ) 0 x1H0 0 0, , ,( )=

Aµ τ( ) A1 t n
x3

c
-----– 

  A2 t n
x3

c
-----– 

  0 0, , ,
 
 
 

=

τ t nx3/c–=

n ω( ) n≈ const.=

Aµ τ( ) 0 at t ∞.+−= =
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Because we assume the coherent EM wave to be a
laser radiation one for which the photon energy is neg-
ligibly small compared to the relativistic electron
energy, we can neglect the spin interaction; the Dirac
equation in quadratic form therefore reduces to the
Klein–Gordon equation for a charged particle in (1),

(4)

where m and e are the particle mass and charge, respec-
tively (we assume e < 0, with the electron in mind), and

denotes the first derivative of a function over the four-
component radius vector x.

The particle quantum motion at t  –∞, when
Aµ(τ) = 0, is well known and has been the subject of
numerous studies (see, e.g., [13]). In a uniform mag-
netic field, the particle motion is separated into the
cyclotron (x1, x2) and the longitudinal (x3) degrees of
freedom. Because the coordinate x2 is cyclic in this case
(also in the presence of an EM wave; see (2) and (3)),
the cyclotron motion is described by the set of quantum
characteristics of the state {l, p2}, where the number l
denotes Landau levels (l = 0, 1, 2, …) and p2 is the x2
component of the generalized momentum. The longitu-
dinal motion at t  –∞ is then described by the p3
component of the particle initial momentum. Concern-
ing the particle transverse initial state, we assume that
at t  –∞, the particle is in the l = s Landau level.
Therefore, the wave function of the particle at t  −∞
is given by the known formula [13] (with the spin inter-
action neglected)

(5)

where N is the normalization constant, x⊥  = {x1, x2, 0,
0}, and

(6)

is the wave function corresponding to the cyclotron part
of motion. Here, Us are the Hermit functions, and the

i"∂µ
e
c
--Aµ x( )+ 

 
2

m
2
c2+

 
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dispersion law for the particle energy–momentum is

(7)

Because the EM wave field depends only on the
retarded coordinate τ, it is more convenient to pass
from the spacetime coordinates x3, t to the wave coor-
dinates

Then, due to the existence of a certain direction of the
wave propagation, the variable η becomes cyclic, and
hence the momentum conjugate to the coordinate η is
conserved,

(8)

This is the known integral of motion in this process
according to the classical electrodynamics [4].

The particle wave function can then be sought in the
form

(9)

where the unknown function f(x⊥ , τ) is a slowly varying
function of the variable τ compared with the exponen-
tial in (9). This approximation corresponds to the
known eikonal approximation for the particle wave
function, in which one can neglect the second deriva-
tive of f(x⊥ , τ) with respect to τ compared with the first-
order derivative in equation of motion (4), which for the
function f(x⊥ , τ) has the form

(10)

Here,

We note that Eq. (10) is already a Hill-type equation
even in the absence of a uniform magnetic field, and its
exact solution is unknown. We therefore apply the
eikonal approximation, considering f(x⊥ , τ) a slowly
varying function of τ in Eq. (10) (the term with the sec-
ond derivative of f(x⊥ , τ) describes the quantum recoil
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in the interaction of a particle with the EM wave),
which is valid under the condition

(11)

Such an approximate solution describes the mul-
tiphoton interaction of particles with EM fields suffi-
ciently well (for the electron–strong wave interaction in
a medium, see [14]). Under condition (11), Eq. (10)
implies the following equation for the function f(x⊥ , τ):

(12)

In Eq. (12), the transverse and longitudinal motions are
not separated. However, after a certain unitary transfor-
mation, the variables are separated [9]. The correspond-
ing unitary transformation operator is

(13)

where Kµ(τ) is chosen to separate the cyclotron and lon-
gitudinal motions and to satisfy initial condition (5),
which is equivalent to the condition
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where Fµv is the EM field tensor corresponding to the
uniform magnetic field H0. In Eq. (15), the variables
are separated; by means of the inverse transformation

f = (x⊥ , τ), we then obtain the solution of the initial
equation (4) (taking Eq. (9) into account),

(16)

where

(17)

The obtained wave function (16) is valid under con-
dition (11), which means that the particle total
energy/momentum exchange occurring as a result of
the multiphoton interaction with the strong EM wave at
CR in a medium is much smaller than the initial
energy/momentum of the particle. This energy/momen-
tum exchange is determined by the full phase of wave
function (16) with expressions (6), (14), and (17),
which are found and estimated in the next section.

3. PROBABILITIES 
OF MULTIPHOTON TRANSITIONS

BETWEEN LANDAU LEVELS

Although the particle motion in a uniform magnetic
field is separated into cyclotron (x1, x2) and longitudinal
(x3) degrees of freedom, Eq. (5), these motions are not
separated in the energy scale due to relativistic effects (7).
For not very strong magnetic fields, however, we can
separate the energies of longitudinal (E||) and cyclotron
motions,

(18)

We now consider the concrete case of a circularly
polarized quasimonochromatic EM wave with a main
frequency ω and an average value  of the slowly vary-
ing envelope,
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pler-shifted wave frequency is close to cyclotron,

(20)

where v 3 is the particle initial longitudinal velocity.
In (19), the respective values g = ±1 correspond to the
right- and left-hand circular polarizations of the wave.
After the interaction (t  +∞), under resonance con-
dition (20), we have from Eq. (14)

(21)

where T is the coherent interaction time (for a quasimo-
nochromatic wave, T  ∞, and for actual laser radia-
tion, T is the pulse duration).

The final state of the particle after the interaction is
described by the wave function

(22)

Expanding wave function (22) in terms of the complete
basis of particle eigenstates (5),

, (23)

we find the probabilities of multiphoton induced transi-
tions between Landau levels.

To calculate the expansion coefficients Css'( , ),
we use the result of the integration

(24)
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"Ẽ
------------- igωτ( ),exp–=

Ψs x( ) N
i
"
--- p3x3 p2x2 Es p3( )t–+( )exp=

× Us x1
eAcT

Ẽ
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We then obtain the transition amplitudes

(25)

where δ(p) is the Dirac δ-function expressing the
momentum conservation law and the argument of the
Lagger function is

(26)

According to (25), the transition of a particle from
an initial state {s, p2, p3} to a state {s, , } is
accompanied by emission or absorption of s – s' pho-
tons. Consequently, substituting Eq. (25) into Eq. (23)
and integrating over the momentum, we can rewrite the
particle wave function in another form,

(27)

The probability of the induced transition s  s'
between Landau levels is ultimately determined from
formula (27):

(28)

Matching resonance condition (20) with formula (27)
shows that in the field of a strong EM wave, the Landau
levels are excited at the absorption of the wave quanta
if 1 – nv 3/c > 0 and g = 1, corresponding to the normal
Doppler effect, while in the case where 1 – nv 3/c < 0
and g = – 1, which is possible in the refractive medium
(n > 1), the Landau levels are excited at the emission of
the wave quanta due to the anomalous Doppler effect.

We now estimate the average number of emitted
(absorbed) photons by the electron at CR in a medium
for highly excited Landau levels (s @ 1). In accordance
with the chosen approximation, the most probable
number of photons in the strong EM wave field corre-
sponds to the semiclassical limit (|s – s'| @ 1), in which
multiphoton processes dominate and the nature of the
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interaction process is very close to the classical one. In
this case, the argument of the Lagger function can be
represented as

(29)

Here, ∆Ecl is the amplitude of the energy change of the
particle according to the classical perturbation theory,
% is the amplitude of the electric field strength of the
EM wave, and

is the particle mean transverse velocity. The Lagger
function is maximal at

exponentially falling beyond ζ0. For the transition
s  s' with |s – s'| ! s, we have

Comparison of this expression with (28) and (29)
shows that the most probable transitions are

(30)

in accordance with the correspondence principle. Using
Eqs. (27) and (30), we can now represent the condition
for the eikonal approximation in Eq. (11) as 

This condition actually restricts the intensity of the EM
wave field in accordance with Eq. (29). However, the
above condition is practically very weak, and the wave
function obtained in (16) describes multiphoton transi-
tions at the CR in strong laser fields with great accu-
racy.

4. CONCLUSIONS

In the scope of relativistic quantum theory, a nonlin-
ear (in the field) wave function of the eikonal type of a
charged particle in the plane EM wave and a uniform
magnetic field in a medium has been obtained neglect-
ing spin interaction and, consequently, quantum recoil
of photons (in accordance with the eikonal approxima-
tion applied). The eikonal approximation does not
restrict hardly at all the applicability of such a wave
function in the actual cases of strong radiation fields
that are laser fields (with photon energy much smaller
than electron energy). This wave function describes
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sufficiently well the quantum picture of CR in a
medium at high intensities of the external radiation
field, in particular, multiphoton stimulated transitions
between Landau levels.

With this wave function, one can treat a large class
of nonlinear quantum electrodynamic processes in
strong EM fields with the modifications that a medium
offers (e.g., the anomalous Doppler effect), including
astrophysical applications, where CR plays a signifi-
cant role [15]. In addition, one of the advantages of CR
in a dielectric medium is that for a moderate relativistic
particle beam, one can achieve the CR in the optical
region (close to the Cherenkov resonance) by current
lasers and existing uniform magnetic fields (~104 Gs),
while in vacuum, CR with radio frequencies is possible
with the same parameters. Finally, the wave function
obtained is especially important for describing the radi-
ation process by a charged particle at CR in gaseous
media consisting of a superposition of Compton, Cher-
enkov, and synchrotron radiation.

We note that radiation of a particle undergoing laser-
assisted multiphoton transitions at CR between Landau
levels has already been investigated and will be pre-
sented elsewhere.
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Abstract—Relativistic generalization of the Landau criterion is obtained which, in contrast to the classical
Tamm–Frank and Ginzburg theories, determines the primary energy mechanism of emission of non-
bremsstrahlung Cherenkov radiation. It is shown that Cherenkov radiation may correspond to a threshold ener-
getically favorable conversion of the condensate (ultimately long-wavelength) elementary Bose perturbations
of a medium into transverse Cherenkov photons emitted by the medium proper during its interaction with a suf-
ficiently fast charged particle. The threshold conditions of emission are determined for a medium with an arbi-
trary refractive index n, including the case of isotropic plasma with n < 1 for which the classical theory of Cher-
enkov radiation prohibits such direct and effective nonbremsstrahlung emission of these particular transverse
high-frequency electromagnetic waves. It is established that these conditions of emission agree with the data of
well-known experiments on the threshold for observation of Cherenkov radiation, whereas the classical theory
only corresponds to the conditions of observation of the interference maximum of this radiation. The possibility
of direct effective emission of nonbremsstrahlung Cherenkov radiation, not taken into account in the classical
theory, is considered for many observed astrophysical phenomena (type III solar radio bursts, particle acceler-
ation by radiation, etc.). © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The possibility that a non bremsstrahlung mecha-
nism of emission can be operative in nature during uni-
form motion of a sufficiently fast charged particle in a
refractive medium had been theoretically predicted by
Heaviside [1, 2] half a century before Cherenkov radi-
ation was experimentally discovered [3, 4] and a mac-
roscopic theory of this radiation was created (indepen-
dently of [1]) by Tamm and Frank [5–9]. The phenom-
enological quantum theory of Cherenkov radiation
proposed by Ginzburg [10, 11] did not actually modify
the main conclusions of the Tamm–Frank theory.
According to the classical theory [5–11], anisotropic
Cherenkov radiation is emitted directly by an electron
moving in a medium at a velocity v 0 greater than the
phase velocity of light waves in this medium, that is, at
v 0 > c/n (where c is the speed of light in vacuum and n
is the refractive index of this medium) and only for
n > 1. However, the concept of photon emission
directly from the moving electron disagrees with the
essence of the mechanism of Cherenkov radiation, as
indicated by Tamm in [6] (see also [12]): “From the
standpoint of microscopic theory, this radiation is not
emitted directly by an electron, but arises due to the
coherent oscillations of molecules of the medium
excited by this electron. However, we will not dwell
1063-7761/04/9902- $26.00 © 20296
here on a microscopic consideration of the problem.”
This conceptual discrepancy, considered in more detail
below (see Sections 1.1 and 1.2), is responsible for the
fact that there is still no clear understanding of the prin-
ciples of the energy mechanism of Cherenkov photon
emission by a refractive medium interacting with a fast
charged particle.

1.1. Proceeding from Maxwell’s equations for a
refractive medium with n > 1, Tamm [6] showed that
the field generated by an electron moving uniformly in
the medium at a velocity of v 0 ceases to decay exponen-
tially with distance from the axis of the particle motion
only when v 0 > c/n. This result is not immediately
indicative of the possible appearance of a cone-shaped
anisotropic distribution of the electron-induced field,
which is characteristic of Cherenkov radiation. In mak-
ing a conclusion about this possibility, we implicitly
use [6] an additional a priori assumption that a coherent
radiation exists in the medium for v0 > c/n. Under this
assumption, the interference theory leads to anisotropic
distribution in the interference maximum of the field
determined by the relation cosθ0 = c/nv0 (see [6,
Eq. (2.1)]), where θ0 is the angle between vector v0 and
the direction from the electron to the interference max-
imum in the distribution of Cherenkov radiation inten-
sity. Without recourse to interference theory, an aniso-
004 MAIK “Nauka/Interperiodica”
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tropic cone-shaped distribution of the electron-induced
field (for the same θ0 and v 0 > c/n) coinciding with the
Heaviside solution [1, 2] was obtained in [6] only in
the case of n = const (i.e., in the absence of dispersion
determining the dependence of n on the wave fre-
quency ω). However, experiments [3, Ref. 2] showed
that the limiting opening angle θm of the anisotropic
cone of Cherenkov radiation corresponds to much
greater angles θ0. It is the θm (rather than θ0) value that
determines a threshold for the Cherenkov radiation
emission, which is therefore not established in the clas-
sical theory of this radiation [5–9]. In addition, it is
known [13] that neglect of the frequency dispersion of
medium is absolutely unacceptable near the threshold
of Cherenkov photon emission.

Therefore, the condition of Cherenkov radiation
emission formulated as v 0 > c/n for n > 1 in the Tamm–
Frank theory [5–9] does not in fact describe the neces-
sary threshold conditions. These conditions have to be
related to changes in the energy state of the medium
(not taken into account in [5–9]) for which the emission
of Cherenkov photons by the medium itself during
interaction with a sufficiently fast electron.

1.2. The quantum theory of Cherenkov radiation
proposed by Ginzburg [10, 11] also does not take into
account the aforementioned changes in the energy state
of the medium necessary for the emission of Cherenkov
photons. In the Ginzburg approach, in contrast to the
Tamm–Frank theory, the conclusion about the anisot-
ropy of Cherenkov radiation is obtained directly within
the framework of the phenomenological quantum the-
ory of this radiation [10, 11], without implicitly using
(as in [6]) additional considerations of the interference
theory. Moreover, the Ginzburg theory [10, 11] even
takes into account, although implicitly, a certain kind of
medium response to Cherenkov radiation. However,
this response is reflected only in the momentum bal-
ance equation [10, 11] and is not introduced into the
energy balance equation.

In the Ginzburg theory [10, 11], as well as in the
Tamm–Frank theory [5–9], Cherenkov photons are
actually emitted directly by a fast moving electron.
However, within the framework of relativistic theory, it
is impossible to simultaneously meet the laws of con-
servation of energy and momentum in description of
the process of photon emission (or absorption) directly
by a free electron moving in vacuum [14, 15] where a
real photon has zero rest mass. In the Ginzburg theory
[10–11], this restriction is removed by taking into
account the presence of a medium, which plays the role
of a third body accepting the excess momentum and/or
a factor providing for the appearance of a nonzero
effective rest mass of the Cherenkov photon (due to
refractive properties of the medium). According to this
theory, a photon in the medium with n > 1 is character-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ized by the Minkowski pseudomomentum

where εp and v p are the energy and velocity of the Cher-
enkov photon, respectively, and k = vp/v p is a unit vec-
tor whose direction in the isotropic medium coincides
with that of the wave vector of Cherenkov radiation.
Assuming that pm corresponds to the intrinsic momen-
tum p of a photon in the medium and using the well-
known relativistic relation between εp , p, and the rest
mass mp [16],

we can formally determine for p = pm a nonzero (but
complex) rest mass of the Cherenkov photon as mp  =

, where

The quantity  < 0 was considered, for example, in the
description of Cherenkov radiation in a strong electro-
magnetic field [17]. Such a field plays the role of a refrac-
tive medium [15] with n  1 at n > 1. Although the
complex mass was not explicitly introduced in [10, 11],
all conclusions of the phenomenological quantum Gin-
zburg theory are valid only under the condition that

 ≠ 0. Indeed, taking into account the above represen-

tation of  < 0, formula [11, Eq. (11)] describing the
condition of Cherenkov photon emission in a medium
with n > 1can be rewritten exactly as

(1)

where Γ0 = (1 – /c2)–1/2, me is the electron mass, and
θ is the angle between vectors v0 and k. Obviously, ine-

quality (1) is violated in the limit when   0 at
fixed εp and v 0.

As is known [10], the pseudomomentum pm is not
equal to the intrinsic momentum of a photon in a
medium, but can only be related to it as pm = pa + pc (see
also the discussion concerning this relation [18, 19]),
where pa is the true intrinsic photon momentum given
by the well-known Abragam formula,

(pa = εpk/nc for v p = c/n at n > 1; pa = εpnk/c for v p =
cn at n < 1), and pc is the Abragam force impulse trans-
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ferred by photon to the medium. For example, in a
medium with n > 1 [10]

For p = pa , the rest mass of a Cherenkov photon is not
only nonzero, but always a real quantity for any n ≠ 1
since

However, this circumstance was not taken into account
in [10, 11] and no correction was introduced into the
energy balance equation for Cherenkov radiation in
order to take into account the change in the energy state
of the medium (whose internal energy decreases, at
least by mpc2, upon emission of the Cherenkov photon).

Thus, the classical theory [5–11], considering Cher-
enkov radiation as emitted directly by a moving elec-
tron, does not take into account the necessary change in
the energy state of the medium emitting Cherenkov

photons with  > 0. Therefore, this theory cannot
determine the threshold conditions necessary for the
emission of Cherenkov photons and leaves questions
concerning the primary energy mechanism and the
physical nature of nonbremsstrahlung Cherenkov radi-
ation unanswered.

1.3. A theory proposed in this paper develops, in
contrast to the classical Tamm–Frank and Ginzburg
theories [5–11], the aforementioned concept, according

to which Cherenkov photons with  > 0 are emitted
by the medium itself, while a sufficiently fast charged
particle only initiates this emission by interacting with
the medium. Using this approach, the necessary thresh-
old conditions for the emission of Cherenkov radiation
are established based on the obtained relativistic gen-
eralization of the Landau criterion [20]. It will be
demonstrated that the phenomenon of nonbremsstrahl-
ung Cherenkov radiation offers an example of the
well-known mechanism of dissipative (secular) insta-
bility [21–24], whereby the emission of a “massive”
Cherenkov photon by a medium, accompanying the
absorption of a condensate (ultimately long-wave-
length) elementary Bose perturbation in the medium,
becomes energetically favorable at over-threshold elec-
tron velocities v 0 > c/n∗ (n), where n∗  > 1 and n∗  > n for
n > 1 and n∗  > 1 for n < 1. A change in the energy state
of the medium during Cherenkov radiation is deter-
mined by the absorbed energy quantum ε0 = "  of the

Bose excitation, which can be of thermal (for  ~

pc
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nc
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2 n2 1–( )

c4n
2

------------------------, n 1,>=

mp
2 εp

2

c4
----- 1 n2–( ), n 1.<=

mp
2
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kT/") or other physical nature (in plasma,  is equal
to the plasma frequency ω0).

If the energy εp of the emitted Cherenkov photon is
greater than the energy of absorbed excitation quantum,
then (e.g., for high-frequency Cherenkov radiation in
the plasma with n < 1) the energy of the absorbed long-

wavelength plasmon (   0, p0 = "  is the momen-
tum of the Bose excitation) may precisely determine
the aforementioned rest mass mp of the Cherenkov pho-
ton since mp = "ω0/c2. Indeed, this relation and the
above definition of mp for n < 1 gives the well-known
law of dispersion for transverse plasmons,

For these plasmons, the dispersion equation ω2 =  +
k2c2 coincides with the above relativistic relation
between εp , p, and mp for εp = "ω and p = pa = "k. In
the general case, mpc2 may differ from ε0. For example,
as will be shown below for ε0 > εp , it is possible that the
emission of a Cherenkov photon is even accompanied
by an additional increase in the kinetic energy of an
electron. Thus, as was already noted above and pointed
out by Zrelov [13], the threshold for the Cherenkov
radiation emission significantly depends on the disper-
sion properties of the refractive medium. The necessary
conditions established in this study for the emission of
Cherenkov photons show a better qualitative and quan-
titative agreement with available experimental data [3]
on the limiting opening angles θm of the Cherenkov
radiation cone as compared to the predictions of the
classical Tamm–Frank and Ginzburg theories.

Below, we interpret the known data obtained by
radio astronomy observations and the physics of cos-
mic rays in terms of the proposed theory of non-
bremsstrahlung Cherenkov radiation. We also compare
predictions of the new theory with the conclusions of
some other theoretical investigations in the direction
under consideration [25–27], which were inconsistent
in using only the vacuum representation of the photon
momentum (i.e., |p| = εp/c at mp = 0) in studying (apart
from the context of nonbremsstrahlung Cherenkov
radiation) phenomena involving the emission of high-
energy quanta under the conditions when fast particles
absorbed elementary excitations of a refractive medium
with n ≠ 1. In particular, it was concluded [26] that such
emission might represent a kind of bremsstrahlung
radiation emitted as a result of conversion of relatively
short-wavelength longitudinal plasmons (with a phase
velocity lower than c) into transverse plasmons during
the Compton effect on plasma waves for relativistic
electrons. However, no particular values of electron
velocities were indicated in [25, 26] as emission thresh-
olds, and the anisotropy of such radiation was even not
mentioned.

ω̃0

k̃ k̃

n2 1
ω0

2

ω2
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ω0
2

AND THEORETICAL PHYSICS      Vol. 99      No. 2      2004



A NEW APPROACH TO THE THEORY OF CHERENKOV RADIATION 299
As will be shown below, the aforementioned conclu-
sion [26] concerning the mechanism of emission is not
valid in the case of absorption of ultimately long-wave-
length (condensate) elementary Bose perturbations
(including longitudinal plasmons) considered in this
study (and in [25]), which corresponds exactly to a
threshold (with respect to the electron velocity) emis-
sion of anisotropic nonbremsstrahlung Cherenkov radi-
ation. Such radiation may also correspond to the Comp-
ton effect of a graviton on a fermion [28], whereby this
condensate graviton (representing a long-wavelength
elementary Bose perturbation of a medium) is con-
verted into a photon and the gravitational field serves as
the medium.

2. QUANTUM THEORY
OF CHERENKOV RADIATION

The physically consistent quantum theory of non-
bremsstrahlung Cherenkov radiation formulated below
establishes, in contrast to the classical theory [5–11],
threshold changes in the state of a refractive medium
interacting with a uniformly moving charged particle,
which are necessary for the emission of such radiation.
Together with the relativistic generalization of the Lan-
dau criterion [20] (obtained in Section 3), this theory elu-
cidates the primary physical mechanism of emission of
nonbremsstrahlung Cherenkov radiation by the refrac-
tive medium. The consideration below is performed
using the terms and notation as given in Section 1.

2.1. Consider a system comprising a medium of
mass M and a charged particle (e.g., electron) of mass
me . In the initial state, the medium is at rest while the
particle performs rectilinear uniform motion in the lab-
oratory frame at a velocity of v0. By analogy with [20],
it is assumed that dissipative factors (determined, e.g.,
by a polarization interaction between the moving elec-
tron and the medium) make possible the energetically
favorable threshold creation of an elementary excita-
tion in the medium, which has the form of a Cherenkov
photon propagating at a velocity of vp . Let the photon
have energy εp and momentum

where v p ≡ |vp| ≤ c. The electron, even moving outside
a medium (for Cherenkov radiation in this case,
see [11]) can play the same role as that of the walls of a
capillary with liquid helium, initiating the above-
threshold (with respect to the velocity of liquid relative
to the walls) creation of the vortex (“roton”) perturba-
tions breaking superfluidity in the helium flow as a
result of viscous interaction between the solid bound-
ary and the flow [20].

In order to determine the threshold velocity v0 at
which the emission of a Cherenkov photon becomes
energetically favorable, it is possible to restrict the con-

p
εpvp

c2
---------- pa,= =
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sideration (as in [20]) to the energy balance equation
(see Section 3). However, for convenience of compari-
son with the Ginzburg quantum theory [10, 11] and
with the theory of inverse Compton effect [25, 26], we
will retain the complete system, including the energy
and momentum equations describing Cherenkov radia-
tion with εp > 0 with allowance for possible changes in
the state of both the electron and the medium in the lab-
oratory reference frame:

(2)

(3)

Here, Γα = (1 – /c2)–1/2 (α = 0, 1, 2) and ∆Mc2 is a
change in the internal energy of the medium as a result
of emission of a Cherenkov photon with energy εp = "ω
and momentum p = pa (such that  > 0) by this
medium. In the general case, the quantity ∆U in Eq. (2)
may determine, for example, a possible relative change
in the energy of interaction between the electron and
the medium upon emission of the Cherenkov photon.
However, in this study, the term ∆U will be omitted.

Considering the phenomenon of Cherenkov radia-
tion, “we are dealing essentially with radiation emitted
by the medium under the action of the field of a moving
particle” [12] (see also the statement from [6] cited
above). Therefore, the corresponding Cherenkov pho-
ton possessing a finite mass mp can accept part of the
internal energy from the medium, as reflected in
Eqs. (2) and (3) by the term ∆M which may sometimes
(see Section 1) exactly coincide with mp:

(4)

This relation, where mp is a fixed characteristic of the
medium only in the given case of coincidence with ∆M,
determines the law of dispersion of the medium in the
form of a dependence of n on ω for n > 1 and n < 1.

In the case of mp ≠ ∆M (for both ∆U = 0 and ∆U ≠ 0
in Eq. (2)), the existence of a finite real mp correspond-
ing to the energy εp and the momentum pa in a medium
with n ≠ 1 is insufficient for establishing a definite law
of dispersion n(ω). Indeed, for this definition of mp , the
refractive index n can formally be even constant and
independent of ω, although all real media encountered
in the nature are, of course, dispersive, so that n = n(ω).
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If, on the contrary, a dispersion law n(ω) is given, the
mp value in the general case (for mp ≠ ∆M in Eq. (4)) can
also be a function of the frequency. In this case, mp

determines certain dispersion characteristics of the
refractive medium. This quantity (as well as the refrac-
tive index n(ω)) is not a relativistic invariant because it
depends on the noninvariant frequency ω. For example,
the observed optical frequencies of Cherenkov radia-
tion at n > 1 correspond to mp such that mp/me ~ 10–5.
Note that, for a medium with n ≠ 1, the frame related to
the resting medium is always special [23]. Therefore, it
is senseless to require the principle of equality of the
inertial systems and the relativistic invariance to be
observed in this system.

On the other hand, for mp = ∆M (e.g., at n < 1), when
mp = ∆M = "ω0/c2 (see Section 1), relation (4) may
exactly correspond to the law of dispersion n(ω) for the
transverse high-frequency electromagnetic waves in
the isotropic collisionless plasma. In this case, the nec-
essary change in the state of the medium upon emission
of the Cherenkov photon corresponds, according to
relation (4), to subtraction of a value equal to the plas-
mon energy from the total internal energy. Thus, emis-
sion of a “massive” Cherenkov photon by the medium
at n < 1 and the threshold conditions (determined
below) must be accompanied by the absorption of a
condensate plasmon with arbitrarily small momentum
p0, p0 corresponding, according to Eqs. (2) and (3) with
∆U = 0, to the regime of v2  0, Mv2  0 for
∆M ! M. In addition, relation (4) shows (exactly for
mp = ∆M) that ∆M  0 for εp  0 in Eq. (2) (with
∆U = 0 and Γ0  Γ1), which implies that the absence
of changes in the energy state of the medium is unam-
biguously related to the absence of Cherenkov radia-
tion. It is obvious that, for ∆M = mp , the value of ∆Mc2

determines according to relation (4) the lower boundary
of the Cherenkov radiation frequency. Thus, ∆Mc2 can
be considered as a part of the internal energy (in the
form of “standing” elementary perturbations) that is
potentially accessible for conversion into the energy of
a running wave corresponding to Cherenkov radiation
under over-threshold conditions determined below (see
relation (5)) based on Eqs. (2)–(4).

Ryazanov [25] considered (from the context of
Cherenkov radiation) an analogous possibility of emis-
sion of a high-frequency transverse quantum for the
inverse Compton effect, that is, for the scattering of a
high-energy electron on elementary Bose excitations in a
medium (including a longitudinal plasmon) whereby this
elementary excitation is absorbed by the electron [25], in
the case of n  1 and |p|  εp/c (like a photon in
vacuum). The conservation equations (2) and (3) corre-
spond to the case considered in [25], provided that we
formally use n = 1, ∆U = 0, and M = 0 and replace the
terms ∆Mc2Γ2 and ∆Mv2Γ2 (transferred to the left-hand
side of equations (2) and (3), respectively) by the
energy εp = "  and the momentum p0 = "k of the ele-ω̃0
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mentary excitation (in particular, longitudinal plasmon
at  = ω0) absorbed during the emission of Cherenkov
radiation. In the real case of M ≠ 0, but with v2  0,
we obtain the same equations assuming that Mv2  0
for all M. This limit corresponds (by virtue of ∆M ! M)
to the long-wavelength limit p0  0 describing the
condensate state of elementary Bose excitations of the
medium.

On the other hand, it should be noted that system of
equations (2), (3) differs from equations of the Gin-
zburg theory of Cherenkov radiation [10, 11] even by
using the finite value of ∆M ≠ 0. Indeed, the former sys-
tem coincides with the latter if we set ∆M = 0 (for

∆U = 0), reject all terms on the order of O( /c2) in the
limit of v2  0 in Eq. (2) (by putting Γ2  1), and
use in Eq. (3) the momentum pc (the Abragam force
impulse) instead of  = Mv2Γ2 ≈ Mv2 when the afore-
mentioned (see Section 1) relation between pm , pc , and
pa takes place:

However, it is obvious that the condition  = pc

(implicitly used in the theory [10, 11]) is by no means
valid in the general case, since even directions of the
vectors v2 and vp (or k) for the Cherenkov photon emis-
sion do not always coincide. For example, in the case
when the Cherenkov photon is emitted strictly in the
direction of electron motion (cosθ = 1), the direction of
recoil momentum  is opposite to the directions of
vectors k and pc (so that  ≠ pc).

In order to determine threshold conditions for the
emission of Cherenkov radiation, let us analyze the
relations (2)–(4), in particular, for v2  0 and  
0 (i.e., for the long-wavelength limit p0  0 of the
elementary Bose perturbation absorbed during Cheren-
kov radiation), when ∆M = mp in Eq. (4). If we divide
both sides of Eq. 2 (with ∆U = 0) by c, transferring all
terms not related to the electron to the left sides of
Eqs. (2) and (3), take the square of both sides of
Eqs. (2) and (3), and subtract the result for Eq. (3) from
that for Eq. (2) (this procedure is especially illustrative
if performed using the 4-vector algebra), we arrive at
the following condition for the emission of Cherenkov
radiation for n > 1 (in the case of n < 1, n has to be
everywhere replaced by 1/n):

(5)

where n∗  = n +  and ε = εp/mec2. In particular,
for ε ! 1, Cherenkov radiation is possible for v 0 > c/n∗ .
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The structure of condition (5) is close to that in [11,
Eq. (11)] (see also formula (1) in Section 1), but the two
expressions only asymptotically coincide in the limit as
n  1. On the other hand, relations (1) and (5) quali-
tatively differ in that, first, formula (1) contains the neg-

ative quantity  < 0, while condition (5) corresponds
to the emission of a Cherenkov photon with nonzero

and real effective mass (  > 0) and, second (but even
more significant), condition (5) contains information
about the condensate (p0  0) elementary Bose exci-
tation with the energy ε0 = ∆Mc2 ≠ 0 (coinciding with
mpc2 for (4) and (5)) absorbed in the medium during the
emission of Cherenkov radiation. As will be shown in
the next section based on the relativistic generalization
of the Landau criterion, it is the latter circumstance that
makes the emission of Cherenkov photons energeti-
cally favorable under condition (5).

The condition for the Cherenkov radiation emission
at n < 1 (e.g., in the case when isotropic plasma is the
refractive medium) can be obtained from Eq. (5) by
substituting 1/n for n (in this case, n∗  > 1). Indeed, for
n < 1

This is the basic difference between condition (5) and
conclusions of the classical theory [5–11] for the emis-
sion of Cherenkov photons, since the former condition
admits direct and effective nonbremsstrahlung Cheren-
kov radiation emission from collisionless isotropic
plasma in the form of transverse high-frequency elec-
tromagnetic waves. Tamm [8] believed that only longi-
tudinal plasma waves could be emitted for n < 1 in the
case when the electron velocity is greater then the phase
velocity of such waves.

2.2. Relation (5) and its analog for n < 1 determine
the possibility of Cherenkov photon emission only pro-
vided that mp = ∆M in formula (4). In the case of mp ≠
∆M and a medium with arbitrary dispersion (not deter-
mined from (4) at a fixed mp value), it is possible to
obtain from Eqs. (2) and (3) a more general condition
instead of (5) for the Cherenkov radiation emitted upon
absorption of an ultimately long-wavelength (p0  0)
elementary Bose excitation of a medium at an energy of
ε0 = " . For example, at n > 1, condition (5) is
replaced by

(6)

where y = 1 – ε0/εp . For ε0 = mpc2 (i.e., for mp = ∆M in
formula (4)), condition (6) completely coincides
with (5). In the case of n < 1, the desired condition is
obtained by substituting 1/n for n in relation (6).
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In contrast to threshold condition (5), whose validity
was related to the finiteness of mp (and ∆M, since this
relation was obtained for ∆M = mp), relation (6) at nn ≠ 1
admits the emission of Cherenkov photons even in the
limit of n  1 (when mp  0, but ∆M = ε0/c2 ≠ 0).
Note that this case also includes the conditions consid-
ered in [25] (although no threshold relations of the type
of (6) were reported in that paper). The emission in [25]
was studied, in fact, for n = 1 (in the description of the
photon momentum), which is inconsistent with the very
presence of the medium (nevertheless implied by
assuming the existence of elementary excitations).
Therefore, it would be more correct to consider the
limit as n  1, rather than the case when n = 1. Che-
renkov radiation was not even mentioned in [25], where
neither the possibility of anisotropic emission of a
transverse photon upon absorption of the elementary
excitation by the most energetic particle was consid-
ered, nor any thresholds of the particle velocity were
established in contrast to what is characteristic of non-
bremsstrahlung Cherenkov photon emission under con-
dition (6).

For example, in the case of ε ! 1 and y ≈ O(1), ine-
qualities (6) describing conditions for the possible
existence of Cherenkov radiation can take place only
for the following limitations imposed on the electron
velocity and the frequency of emitted radiation quanta:

(7)

(for n < 1, n has to be replaced by 1/n). In particular,
 = ω0 corresponds to the case when the emission of

Cherenkov radiation from an isotropic plasma for n < 1
requires absorption of the condensate (p0  0) plas-
mon. For "ω0 ≠ mpc2, relations (7) in contrast to condi-
tion (5), not only lead to different forms of the limita-
tions with respect to velocity v 0, but imply additional
limitations with respect to the radiation frequency ω
(which follows from the condition of consistency of
inequalities (7) for v0). In the limit of n  1, this addi-
tional condition takes the form of ω0/2 < ω. This limita-
tion with respect to ω following from inequalities (7)
will be used below for comparison with the results of
solar radio burst observations.

Conditions (7) imply that Cherenkov radiation can
be emitted not only for ω > , when the electron slows
down as a result of the Cherenkov photon emission.
Emission is also possible for ω < , when the energy
of absorbed elementary excitation is partly spent for
acceleration of the electron. This mechanism of the
charged particle acceleration at the expense of Cheren-
kov radiation can be realized in a turbulent plasma,
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were the values of  can be sufficiently large. In con-
trast to the well-known mechanisms [29–31] of particle
acceleration in cosmic rays, this self-acceleration of a
charged particle is due to the very possibility of Cher-
enkov radiation emission under the condition that the
initial velocity of the particle exceeds the threshold
determined by relations (7). This threshold velocity can
be rather small, provided that ω   (i.e., that the
Cherenkov radiation frequency is close to the intrinsic
frequency  of absorbed elementary excitation).

It is evident that condition (6) for the emission of
Cherenkov radiation is satisfied not only in the case
when limitations (7) are obeyed (which correspond to
ε ! 1, that is, to not very high frequencies of Cheren-
kov radiation quanta). This condition can be also valid
for a hard Cherenkov radiation in the γ and X-ray
ranges, where ε ≈ O(1) or even ε @ 1. This case obvi-
ously corresponds to n < 1 and, hence, condition (6) has
to be modified by substituting 1/n for n.

In the case of y < 0 (which corresponds to the accel-
eration of electron upon Cherenkov photon emission),
general conditions (6) are satisfied for |y| < n < 1 (that
is, for εp < ε0 < εp(n + 1)), while for n > 1 these condi-
tions are valid only when |y| < 1/n (or εp < ε0 < εp(n +
1)/n). Therefore, the acceleration is negligibly small for
n @ 1 and n ! 1, but for n  1 it can be finite and
increases with εp (since ε0 – εp ≤ εpn for n  1). The
corresponding limitation imposed on v0 (following
from condition (6) for y < 0 and n < 1) is presented in
the Appendix (see Eq. (A.1)).

On the other hand, for y > 0 we obtain a threshold
condition (which also follows from relations (6)) with
respect to v 0 for Cherenkov photon emission. For
example, in the case of n < 1 and y < n, this condition
appears as

(8)

where β1 < 1 for any ε.
It should be noted that, in the limit of ε0  0 (i.e.,

for y  1), condition (6) exactly coincides with rela-

tion (1) in which the negative quantity  is formally

replaced by  > 0 expressed via pa . In this case, for
mp not necessarily coinciding with ∆M = ε0/c2, we
obtain a condition under which the electron directly
(without absorption of an elementary excitation in the
medium) emits a photon with a nonzero real mass mp .1

1 If  in relation (1) is replaced by , this condition can be

satisfied for n > 1 only at ε > 2Γ0n/(n + 1)).
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As will be shown based on the relativistic generaliza-
tion of the Landau criterion obtained below, this pro-
cess of emission directly from the electron is not ener-
getically favorable, although conditions (6) are for-
mally satisfied for ε0 = 0. Moreover, the case of y > n at
n < 1 also does not correspond to energetically favor-
able emission despite the fact that conditions (6) are
met in the form of limitations (not much more compli-
cated than relation (8)) with respect to v0.

2.3. Now let us consider in more detail the threshold
conditions for Cherenkov photon emission by compar-
ing relation (6) for n  1 to the conditions established
in [25] for the emission of massless hard transverse
quanta by a high-energy particle upon absorption of an
ultimately long-wavelength elementary excitation of a
medium. With a view to the particular case (also studied
in [25]) when this excitation has the form of a longitu-
dinal plasmon, we can represent for n < 1 the following
limitation with respect to the frequency of emitted
quanta ensuring the validity of conditions (6) for the
emission of Cherenkov photons in the limit of n  1,
ε(1 – n2) ≈ o(1), and ε ≈ O(1):

(9)

where

A condition for photon emission that was implicitly
used (although not explicitly formulated) in [25] for
n = 1, corresponds to the following inequality, which
can be derived from Eqs. (2) and (3):

(10)

where εy ≡ ε –  and n < 1 (for n > 1, n has to be
replaced by 1/n).

Inequality (10) determines the condition for absorp-
tion of an elementary excitation of a medium with an
arbitrarily small momentum p0, taking into account
that a minimum momentum lost by a quasi-particle
upon absorption corresponds to the case when a photon
is emitted in the direction of motion of a high-energy
particle [25], that is, to θ = 0. For y > 0, inequality (10)
should be supplemented by the limitation γ0y < 1, fol-
lowing from the energy conservation law, and by the
condition εγ0y < 1 – γ0 expressing positive definiteness
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of the radicand in (10). Relation (10) has physical sense
only provided that all these conditions are satisfied.
However, these conditions were not considered at all
in [25]. Note that, for example, in the case of ε ≥ β/nγ0,
when inequality (10) is automatically satisfied, it is
especially important to observe the aforementioned
supplementary conditions. On the contrary, it is only
for ε < β/nγ0 that relation (10) at a fixed γ0 leads to a
stronger limitation (more restrictive than the two addi-
tional conditions),

from which we obtain the exact threshold (8) with
respect to v 0 (e.g., for 0 ≤ y < n ≤ 1).

A condition for the onset of emission presented
in [25] (see [25, Eq. (1.3)]) can be also obtained from
inequality (10) for n = 1 and in the limit of γ0 ! 1 under
the additional conditions that γ0yε ≈ O(1) and  ≤ O(γ0)
(not explicitly presented in [25]). The condition [25,
Eq. (1.3)] can be written as

(11)

which corresponds to the emission of radiation with a
frequency ω @ ω0 and agrees with the necessary
restrictions for ε and  indicated above, for which rela-
tion (11) is valid (i.e., ε ≈ O(1/γ0) and  ≤ O(γ0) for
γ0 ! 1. For these very limitations with respect to ε and

 (not indicated in [25]), inequality (11) asymptotically
coincides in the limit of γ0 ! 1 with the right-hand side
of inequality (9) determining the restrictions necessary
for the validity of threshold condition (6) for the emis-
sion of Cherenkov photons. For γ0 ! 1 and n = 1, the left-
hand side of inequality (9) corresponds to ω > ω0/2 and,
hence, is automatically satisfied under condition (11) for
which it is required that ω @ ω0.

Thus, the condition of hard photon emission formu-
lated in [25] asymptotically coincides (in the limit
considered in that study) only for n = 1 with the con-
ditions (9) necessary for obeying the threshold condi-
tion (6) for the emission of asymmetric non-
bremsstrahlung Cherenkov radiation. The asymmetric
character of radiation was not mentioned in [25], since
the scope of that study did not include the phenomenon
of Cherenkov radiation because of the high frequency
character of the transverse emission (traditionally
excluded for n < 1 from the consideration within the
framework of the classical theory of Cherenkov radia-
tion [5–11]). For this reason, the problem of determin-
ing the threshold velocity of a charged particle, above
which such nonbremsstrahlung emission of a hard trans-
verse quantum is possible upon absorption of an elemen-
tary excitation with even a relatively small energy, was

εγ0y 1 γ0
2 β nεγ0–( )2+ ,–<

ε̃

ω
ω0
------ 2

γ0
2 1 2ε̃/γ0+( )

--------------------------------,<

ε̃
ε̃

ε̃
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not considered in [25]. Using condition (11) with an
additional assumption that /γ0 is ultimately small
( /γ0 ! 1), it is easy to obtain a threshold condition for
the velocity v 0, which exactly coincides with inequali-
ties (7) for n  1 and  = ω0. The corresponding
condition for the ratio of frequencies ω and ω0 in (7) is
also observed, since condition (11) corresponds to the
limit of ω @ ω0 in which the left-hand side of inequal-
ity (7) for the frequencies is satisfied, while the right-
hand side is met exactly for n  1, when ω0/(1 – n) >
ω at n < 1.

It should be noted that Gailitis and Tsytovich [26]
considered (in contrast to [25]) the case of relatively
short-wavelength longitudinal plasmons transformed
as a result of the inverse Compton effect on a relativistic
electron into transverse electromagnetic waves. The
energy and momentum equations used in [26] can be
also obtained from Eqs. (2) and (3) by taking ∆U = 0,
n = 1 (i.e., |p| = εp/c), and M = 0, but (in contrast to [25])
for finite velocities v2 corresponding to the transverse
plasmon energy "ω0 = ∆Mc2Γ2 and a finite (rather

large) momentum p0 = ∆Mv2Γ2 = "  (for which the
corresponding phase velocity is small compared to c in

accordance with the limit of ω0/  ! c considered
in [26]). The conclusions obtained in [26], including
those concerning the mechanism of emission, are
related to the use of this short-wavelength limit with

respect to  (in contrast to [25] and this study).

3. GENERALIZATION OF THE LANDAU 
CRITERION

This section presents relativistic generalization of
the Landau criterion [20] used to establish conditions
under which the process of Cherenkov photon emission
in a system comprising a medium and a sufficiently fast
charged particle (electron) is an energetically favorable
process analogous to the anomalous Doppler effect or
dissipative instability [11, 22]. Similar to the preceding
section, we will first consider the case when the energy
ε0 = ∆Mc2 of the elementary excitation absorbed during
Cherenkov photon emission exactly coincides with
mpc2 according to (4) (e.g., for ε0 = "ω0) and then pro-
ceed to the case of arbitrary (not necessarily related to
mp) values of ∆M and ε0.

3.1. In order to obtain a relativistic generalization of
the Landau criterion combining the phenomenon of
Cherenkov radiation and anomalous Doppler effect, let
us follow Landau [20] and consider a representation of
the energy balance equation (2) (for ∆U = 0, v 2  0,
Γ2  1, and with allowance for relation (4)) using the
frame of reference moving at a constant velocity v0,

ε̃
ε̃

ω̃0

k̃

k̃

k̃
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where the electron was at rest before emission of the
Cherenkov photon. Using Eqs. (2) and (4), we obtain

(12)

where

Here, we use the formula ∆Mc2 = εp

obtained from relation (4) and corresponding to the
value mp fixed as mp = ∆M.

Since the left-hand side of Eq. (12) is negative for
any v1 ≠ v0 and is zero for v1 = v0, a condition of the
Cherenkov photon emission (with εp > 0) generalizing
the Landau criterion is Q < 0 in Eq. (12). The inequality
Q < 0 yields a condition for the energetically favorable
emission of Cherenkov photons (accompanied by a neg-
ative change in the energy of the medium, see [20, 32]):

(13)

where n∗  was determined above in relation to (5) for
both n > 1 and n < 1. Using condition (13) and taking
into account that |cosθ| ≤ 1, we obtain the inequality
determining a threshold velocity for the Cherenkov
photon emission:

(14)

Note that, in the nonrelativistic case (v0 ! c, vp ! c),
the condition Q < 0 in Eq. (12) for εp > 0 exactly coin-
cides with the well-known Landay criterion [20, 32],

(15)

determining the possibility of energetically favorable
creation of excitations with the energy E and a momen-
tum p, in a medium moving at a constant velocity of −v0
in the indicated system of frame. In relation (15), the
energy E and the momentum p are not mutually related
like εp and p, because E (in contrast to εp) is not equal
to the total excitation energy (that includes the internal
energy determined by the rest mass of a particle of the
medium carrying the excitation). In the limit of v p ! c
(where v p is the velocity of propagation of the excita-
tion energy flux), the energies E and εp are related as

mec
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Using criterion (15) and taking into account that |p| =
εpv p/c2 and E = v pp/2, we obtain a nonrelativistic ana-
log of the threshold condition (14):

where v p/2 ≡ ∂E/∂p = v g . For this definition of the
threshold velocity, we observe the equality (pointed out
in [20) of the group and phase velocities of elementary
excitations corresponding to their creation [20, 32].
According to the classical theory of Cherenkov radia-
tion [9], the phase and group velocities of light in a
transparent medium also coincide for the threshold
conditions of Cherenkov photon emission.

3.2. Now let us proceed to the relativistic generali-
zation of the Landau criterion in the general case, when
both ∆M ≠ mp and ∆M = mp is possible in relation (4).
In this case, the energy εp = "ω of the emitted Cheren-
kov photon is not always (only for ∆M = mp) uniquely
related via formula (4) to the energy ε0 = "  of the
Bose excitation absorbed during Cherenkov photon
emission. No such relation takes place even for  =
ω0, although (as was noted above) this case at n < 1 is
most adequate to the relation (4) with ∆M = mp . In the
right-hand side of Eq. (12), we obtain a different repre-
sentation for Q:

In the case of emission with εp > 0, we obtain the fol-
lowing condition necessary for the quantity Q to be
negative:

(16)

where n > 1 (for n < 1, n has to be replaced by 1/n).
Since |cosθ| ≤ 1 in relation (16), the case of y > 0
implies a threshold with respect to the velocity v 0. This
limitation, following from the inequality yn/β < 1, coin-
cides with condition (7) not only for ε ! 1 and y = O(1)
(as in the case when condition (7) was derived from
relation (6)). For y < 0, we obtain either limitation for
v 0 (this case, exactly corresponding to inequalities (7),
reveals the anisotropic cone of Cherenkov radiation
according to condition (16)) or the condition |y|n/β > 1.
In the latter case, condition (16) reduces to inequality
cosθ ≥ –1, not necessarily determining any anisotropy
in the emission. However, the anisotropy of Cherenkov
radiation can still be determined by condition (6) (see
Appendix, Eq. (A.1)). Thus, it is obvious that the theory
of Cherenkov radiation must take into account the finite
energy ε0 lost by the medium. This is necessary to pro-
vide for the energetically favorable emission of Cheren-

v 0
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------------,=
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Table

Medium n n* βA βB

H2O 1.3371 2.2247 0.6691 0.7431 0.6718 0.6049 1.1177 1.0064

C6H12 1.4367 2.4683 0.5 0.6428 0.8103 0.6303 1.392 1.083

C6H6 1.5133 2.6491 0.454 0.5736 0.8315 0.6581 1.4556 1.152

C11H12O2 1.5804 2.8049 0.3584 0.5 0.9519 0.6217 1.689 1.103

θm
Acos θm

Bcos β*
A β*

B

kov photons, since the right-hand part of inequality (16)
can be smaller than unity only provided that ε0 ≠ 0 (for
both n > 1 and n < 1). In this respect, a useful example
is offered by the case of ε0 = 0 considered above (with
the substitution   mp in Eq. (1)), in which the
necessary conditions of Cherenkov photon emission
are satisfied, but this process is not energetically favor-
able and, hence, not necessarily realized.

With respect to the conditions of emission following
from inequality (10), the obtained relativistic generali-
zation (16) of the Landau criterion too only refines lim-
itations necessary for the energetically favorable real-
ization of Cherenkov radiation (see Appendix). The
necessary conditions (10) actually coincide with the
limitation with respect to v0 following from (16) only in
the limit of z ! 1 (z = ε/n for n > 1; z = εn for n < 1) and
y ≈ O(1). In other cases, relation (10) leads to limita-
tions of the type of (8), which are stronger than condi-
tion (16). However, only condition (16) separates an
important subclass of limitations determined by inequal-
ity (10), which are necessary to ensure energetically
favorable realizations of Cherenkov radiation.

Thus, the threshold conditions for v 0 following from
the obtained relativistic generalization of the Landau
criterion determine the necessary (although not always
sufficient) conditions for energetically favorable real-
izations of Cherenkov radiation. However, based on an
analysis of the necessary threshold conditions estab-
lished using this approach, it is already possible to
understand the basic physical mechanism of non-
bremsstrahlung emission of Cherenkov radiation by the
medium, as energetically favorable production of a
Cherenkov photon with simultaneous absorption of a
condensate Bose excitation in the medium, caused by
its interaction with a sufficiently fast charged particle
(electron). In the frame of reference corresponding to
the energy equation representation in the form of (12)
(for Q = Q1 or Q = Q2), the emission of a Cherenkov
photon with energy εp > 0 under condition (13) or even
(16) for ε0 < εp at y > 0 leads to a simultaneous increase
in the kinetic energy of the charged particle (provided
that v0 ≠ v), which is analogous to the anomalous Dop-
pler effect or the realization of “negative energy” in var-
ious physical systems [11, 22, 24, 33]. This mechanism
of Cherenkov radiation emission in fact offers an exam-

m̃p
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ple of dissipative instability [21–24], whereby it is ener-
getically favorable for a system in the over-threshold
regime to create perturbations realized, in this case, in
the form of Cherenkov photons.

4. CHERENKOV RADIATION THEORY 
AND EXPERIMENTAL DATA

In this section, we will compare (Section 4.1) con-
clusions of the proposed theory of to some experimen-
tal data (see [3, Ref. 2]) and the classical Tamm–Frank–
Ginzburg theory [5–11]. Then, we will briefly consider
(Section 4.4) the possibility of applying the results to
interpretation of some radio astronomy data.

4.1. Experimental data on the angular distribution of
Cherenkov radiation intensity [3, Fig. 4] observed in
four liquid transparent media, treated in terms of condi-
tion (13) and the classical theory [5–11], yield the
results summarized in the table, where superscript A
refers to the data obtained using a ThC" γ-radiation
source and superscript B, to the results for Cherenkov
radiation excited by Compton electrons generated by γ
radiation from a Ra source. According to [3], the emis-
sion was observed in the entire range of angles 0 ≤ θ ≤

, with a maximum intensity at θ =  < , a

sharp threshold at θ = , and the absence of emis-

sion at θ > . The emission intensity at θ = 0 was

lower than that at the maximum (θ = ) only by a

factor of 1,5–3. The values of  were calculated
using relation (13) determining a necessary threshold
for the energetically favorable realization of Cherenkov
radiation,

The quantities βA, B were determined according to the
classical theory [5–11], where the threshold velocity v 0
corresponds to

θm
A B, θ0

A B, θm
A B,

θm
A B,

θm
A B,

θ0
A B,

β*
A B,

β*
A B, 1

n* θm
A B,cos

-------------------------.=

βA B, 1

n θm
A B,cos

----------------------.=
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The calculations were performed using experimental

data on the threshold angles  observed for Cheren-
kov radiation generated in various media (see table)
using the aforementioned excitation sources.

Note that the values of  and βA, B correspond to

the threshold values of v 0/c, which must be always
smaller than unity. Therefore, the values of βA, B deter-
mined using the classical theory [5–11] obviously fail
to meet this requirement of the relativistic theory, while

the values of  calculated according to the proposed

theory obey the condition. However, replacing the lim-

iting angles  by the values ( ) corresponding to
the observed interference maximum in the Cherenkov
radiation intensity distribution, we obtain βA, B values

satisfying the requirement of βA, B( ) < 1 for the data
from [3].

Thus, a comparative analysis of theoretical conclu-
sions and the experimental data for Cherenkov radia-
tion suggests that the necessary condition (13) (or (16))
allows us to determine whether an energetically favor-
able realization of Cherenkov radiation is possible in
the entire range of θ angles corresponding to this
threshold. At the same time, criteria based on the stron-
ger inequalities (5), (6), and (10) may also determine
the corresponding sufficient conditions for the emission
of Cherenkov photons, provided there is consistency
with conditions (13) or (16).

The classical theory of Cherenkov radiation [5–11]
also poses more rigid restrictions. A comparison to
experimental data shows that this theory does not eluci-
date the energy mechanism of the threshold emission of
nonbremsstrahlung Cherenkov radiation and corre-
sponds to description of a coherent radiation existing in
the medium, in good agreement with the observed inter-
ference maxima of the Cherenkov radiation intensity.

Of course, the above comparison to experimental
data [3] is by no means exhaustive. In particular, we did
not take into consideration scatter (always existing in a
real experiment) in the directions of motion of electrons
initiating the emission of Cherenkov photons by the
medium, which may result in broadening of the
observed intensity distributions I(θ), in particular, rela-
tive to the θ = θ0 direction. It should be noted that, using
a modified classical theory of Cherenkov radiation [6],
which takes into account a finite time τ during which an
electron radiates while moving at a sufficiently high
constant velocity, it is also possible to describe a finite
broadening of the intensity distributions I(θ) to within
∆θ near θ = θ0 (for cosθ0 = 1/βn, n > 1), where

θm
A B,

β*
A B,

β*
A B,

θm
A B, θ0

A B,

θ0
A B,

∆θ 1

ωτ β2n2 1–( )1/2
-------------------------------------.≈
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However, this ∆θ value decreases with increasing n,
which contradicts the observed [3] growth of ∆θ with n.
Moreover, an increase in ∆θ according to the modified
theory is symmetric relative to θ = θ0 and θ = –θ0,
which is also at variance with the results of observa-
tions [3]: the broadening of I(θ) in this angular region
exhibits a significant asymmetry, being much more pro-
nounced for θ < |θ0| than for θ > |θ0| (I(θ) = 0 for θ ≥ θm).
Indeed, symmetric (with respect to θ0) extrapolation to
∆θ = θm – θ0 must (according to the data for ∆θ [3]) give
I(θ) = 0 for θ = 0. However, this is not observed in [3],
where I(0) ≥ I(θ0)/3 and I(θ0) = maxI(θ) (the intensity
of Cherenkov radiation corresponding to the interfer-
ence maximum).

Thus, using conclusions based on the relativistic
generalization of the Landau criterion, it is possible to
determine the possibility of energetically favorable
realization of Cherenkov radiation in the entire range of
θ angles (determined from relation (13) for mp = ∆M or
from condition (16) for an arbitrary relation between
mp and ∆M), rather than in a direction fixed by condi-
tions (6) or (5), in which the emission is realized only
for v0 = v1 (when the left-hand side of Eq. (12) is zero).
The above interpretation of the mechanism of non-
bremsstrahlung Cherenkov photon emission is valid
(in the frame of reference for which the energy equa-
tion (12) was written) even without taking into account
the internal degrees of freedom of the charged particle.
The presence of such degrees of freedom, or explicit
allowance in relations (2) and (12) for the heat evolu-
tion or some other manifestations of the dissipative
interaction between the particle and medium during
Cherenkov photon emission implies the need for intro-
ducing the corresponding additional terms of the ∆U
type. This does not change the obtained necessary con-
ditions (13) and (16) for realization of the energetically
favorable Cherenkov radiation; on the other hand, this
cannot be adequately reflected in the momentum bal-
ance equation. For this reason, unambiguous determi-
nation of the angle of Cherenkov radiation emission
using conditions such as (5) or (6) becomes impossible.
In deriving the nonrelativistic Landau criterion deter-
mining creation of the vortex (“roton”) modes in super-
fluid helium, the analysis was also based on the energy
balance equation (without recourse to the momentum
balance equation) [20, 32].

4.2. It should be noted that the approach developed
in this study, which takes into account a finite rest mass
related to the created elementary excitation, may be use-
ful for refinement of the nonrelativistic theory [20, 32]
by including into consideration some factors determin-
ing the formation of this effective mass, such as the sys-
tem geometry and boundary conditions. Indeed, exper-
imentally observed values of the critical helium flow
velocity [34] have proved to be significantly lower than
theoretical predictions [20]. Note that the expression
obtained above for the critical velocity in the non-
relativistic limit is half as small as the excitation prop-
 AND THEORETICAL PHYSICS      Vol. 99      No. 2      2004
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agation velocity v p determining the flux of the total
energy εp .

4.3. Separate consideration is required for elucida-
tion of the specific physical mechanisms involved in the
formation of condensate elementary Bose excitations
of a given medium, which can be converted into Cher-
enkov photons in cases of realization of the energeti-
cally favorable threshold emission of nonbremsstrahl-
ung Cherenkov radiation by this medium. Here, it will
be only briefly mentioned that it is possible to deter-
mine ∆M (or ε0 = " ) via the effective electromag-
netic rest mass mem ≈ e2/n2c2R of an electron in a
medium with n ≠ 1, which accounts for the electromag-
netic impulse of an electron moving at a constant veloc-
ity (in [35, Eq. (28.7)], mem was introduced in the case
of vacuum with n = 1). In order to estimate the effective
polarization radius R of an electron, let us assume that
mem ≈ ∆M and use the above estimate ∆M = mp ~
10−5me . As a result, we obtain

which implies that the formation of an elementary Bose
excitation absorbed in a medium during Cherenkov
radiation emission may involve a volume of this
medium with the size comparable (for n ≈ O(1)) to
atomic dimensions: R ~ 10–8 cm. The finite electron
velocity v 0 determines the corresponding electromag-
netic impulse in the medium. However, for v 0 < v th , the
field cannot “break away” (in the form of a running
wave) from the corresponding volume of the medium
near which the electron moves at a given moment. For
v 0 > v th (when, according to conditions (13) and (16),
creation of a Cherenkov photon by the medium
becomes energetically favorable), a standing wave
(existing at v 0 < v th within certain effective resonator of
size R) is capable of transforming into a running wave
observed in the form of Cherenkov radiation. The min-
imum frequency of this running wave formed at v 0 > v th

is determined by the intrinsic frequency  (or by the

value of ∆M = " /c2) of this standing (at v0 < v th)
wave (see [35, p. 233]).

In particular, as was noted above, the elementary
excitation absorbed during Cherenkov photon emission
at  = ω0 and n < 1 represents the well-known con-
densate longitudinal plasmon. In other cases, for exam-
ple, in determining  from the energy of thermal exci-

tations of the medium (when  ≈ kT/"), it is more dif-
ficult to define physical conditions for the formation of
the corresponding quasi-particles of the medium capa-
ble of potentially transforming into Cherenkov pho-
tons. The above example of determining the effective
polarization radius of electron may serve as a guide in
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approaching such problems, especially for media with
n > 1.

4.4. The theory of nonbremsstrahlung Cherenkov
radiation developed in this study refines the physical
mechanism of this phenomenon and admits more
adequate and wider application than the classical the-
ory [5–11]. In particular, the proposed theory can be
used for the interpretation of many astrophysical phe-
nomena, only some of which are briefly mentioned
below.

At present, the origin of solar radio bursts of type III
is explained in [27] in terms of the classical theory of
Cherenkov radiation [5–11], according to which a
beam of sufficiently fast electrons can induce the emis-
sion of only longitudinal plasma waves, only a small
part of which are capable of converting into transverse
plasmons upon interaction with the beam. As was noted
above, this conversion was discussed, for example,
in [25, 26] where various (although formally similar)
mechanisms of emission of transverse quanta were con-
sidered. It was pointed out [25, 26] that such conversion
provides a more effective generation of the transverse
electromagnetic waves than, for example, the magnetic
bremsstrahlung mechanism of emission.

As was shown in this paper, the mechanism of emis-
sion considered in [25] is in fact a particular case of
nonbremsstrahlung Cherenkov photon emission,
whose energetically favorable realization is accompa-
nied by the absorption of a condensate (possessing arbi-
trarily small momentum) longitudinal plasmon. More-
over, the theory of Cherenkov radiation developed in
this study admits (in a medium with n < 1) direct (not
involving preliminary generation of longitudinal plas-
mons by an electron beam) threshold (with respect to
the electron velocity) generation of transverse electro-
magnetic waves by the medium, which can also provide
a more effective generation, for example, of type III
solar radio bursts.

There are also necessary (but not always sufficient)
grounds for a natural explanation of the observed
excess frequency of type III solar radio bursts as com-
pared to the plasma frequency in the region from which
radiation is outgoing. Various hypotheses have been
suggested for explaining this phenomenon, from
unconvincing assumptions of doubled plasma density
(as compared to that at the corresponding altitude in the
real corona) to more reasonable considerations involv-
ing refraction and scattering effects [27]. At the same
time, limiting condition (7) for the Cherenkov radiation
frequency ω (for n < 1 and  coinciding with the
plasma frequency ω0, that is, in the case of a condensate
longitudinal plasmon absorbed during Cherenkov pho-
ton emission) implies the possibility of radiating not only

at ω = ω0, but at ω ≈ ω0 as well. For example (7), in
the case of n ≈ 0.5 this limiting condition indicates that
2ω0/3 < ω < 2ω0. According to relation (7), at n < 1, the

ω̃0

2
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relative width of the Cherenkov radiation frequency
band

can be comparable to that observed for type III solar
radio bursts, where δ reaches 0.1–0.2 (for example, δ ≈
0.2 corresponds to n ≈ 0.1).

Using limiting condition (7) with respect to the
Cherenkov radiation frequency may probably provide
some explanation for both the existence of radiation at
a double frequency (ω ≈ 2ω0) and the observed misfit of
the visible positions of radiation at the main (ω ≈ ω0)
and doubled (ω ≈ 2ω0) frequency, since both ω0 and n
(determining δ) depend on the plasma density and,
hence, on altitude. In the limit n  1 corresponding
to the outer layers of solar corona, relation (7) gives
ω > ω0/2, which may account for type V solar radio
bursts observed in a broad frequency range, accompa-
nying with a small delay (in ~10% of cases) type III
bursts [27]. At present, type V bursts are explained (see,
e.g., [27]) using an additional assumption that suffi-
ciently strong magnetic fields exist in the correspond-
ing spatial region, which are capable of inducing syn-
chrotron radiation from relativistic particles. This radi-
ation exhibits, similar to Cherenkov radiation, a
characteristic anisotropy, but has a different nature like
a kind of bremsstrahlung radiation.

It should be noted that the phenomenon of reverse
frequency drift [27] and the corresponding increase in
the radio wave frequency with time observed for type U
solar radio bursts (also conventionally associated with
strong magnetic fields) permit an explanation (even for
retained direction of the electron beam) based on the
unlimited expansion (following from inequalities (7))
of the permissible Cherenkov radiation frequency
range for n  1, whereby the beam moves toward the
periphery of the solar corona.

The proposed theory of Cherenkov radiation, in
contrast to the classical theory [5–11], can be used for
independent consideration of many other problems in
astrophysics and solar physics (e.g., the formation of
energetics and structure of the solar chromosphere and
corona). As has already been noted above, the proposed
mechanism of Cherenkov radiation for n < 1 offers an
important (especially in the region of low densities and
weak fields) alternative to different variants of
bremsstrahlung radiation usually considered for expla-
nation of the observed generation of hard γ and RG
radiation by high-energy charged particles of cosmic
rays. Another interesting problem requiring separate
consideration is elucidation of the physical mecha-
nisms providing significant acceleration of such parti-
cles taking into account the limiting condition (16) (see
also Appendix, Eq. (A.1), which admits (for y < 0) the
possibility of such acceleration related to Cherenkov
photon emission. Indeed, the existing theory of particle

δ ∆ω
ω0
-------- 2n

1 n2–
--------------= =
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acceleration by radiation involves the possibility of
acceleration, but only in the course of Cherenkov
absorption of radiation [29, 36, 37]. For example, Tsy-
tovich [29] employed formula (1) (or [11, Eq. (11)]) for
determining the conditions under which Cherenkov
absorption is possible (i.e., εp < 0 and |cosθ| ≤ 1 in (1)),
while Cherenkov radiation is prohibited (for εp > 0 and
|cosθ| > 1 in (1)).2 Such interpretations do not take into
account the aforementioned possibility of particle
acceleration with simultaneous energetically favorable
nonbremsstrahlung emission of transverse Cherenkov
photons by the medium.
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APPENDIX

1. For y < 0 (i.e., for y = –|y|) at n < 1 and |y| < n, con-
dition (6) yields the following limitation with respect to
v 0 that is necessary for Cherenkov photon emission
with simultaneous acceleration of the electron:

(A.1)

where

Relations (A.1) admit realization of even hard Cheren-
kov radiation with ε @ 1 for |y|  n (that is, in the
limit of /ω  1 + n).

The obtained relativistic generalization of the Lan-
dau criterion in the form of conditions (16) for y < 0
leads to the possibility of energetically favorable

2 There is either a misprint or error in [29, Eq. (15)]: the denomina-
tor contains δω(0) instead of δω, which affects the result.
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realization of anisotropic Cherenkov radiation, replac-
ing (A.1) by the following conditions:

However, condition (16) is satisfied for any cosθ ≥ –1
(i.e., when this condition does not determine any
anisotropy of radiation) even for |y| > βn, which corre-
sponds to (A.1) and obeys the necessary condition (6)
for the realization of Cherenkov radiation.

2. For y > 0, inequality (16) corresponding to the
obtained relativistic generalization of the Landay crite-
rion may take place only when yε/z < 1 at an above-
threshold velocity v 0 > v e = cyε/z, where z = ε/n for
n > 1 and z = εn for n < 1. Let us compare this limitation
for v 0 to the conditions with respect to this velocity
following from inequality (10). For z > β/γ0, inequal-
ity (10) is always satisfied provided positive definite-
ness of the radicand. In this case, we obtain the follow-
ing limitations:

where

For v 0 > v 1, inequality (10) can in principle be satisfied
for both z > εy and z < εy. However, the condition v 0 >
v e separates only the variant of z > εy, which corre-
sponds to the energetically favorable realization of
Cherenkov radiation under conditions (10). In this case,
inequality (10) gives a threshold limit for the particle
velocity v0 necessary for Cherenkov photon emission,
which coincides with formula (8) and appears as v 0 >
v 3 = β1c, where v 3 > v e(for n > 1, substitute 1/n for n in
the expression for β1). In the case of v 3 > v 1, there are
two separate intervals of v 0 ensuring energetically
favorable realization of Cherenkov radiation: v 2 < v 0 <
v 1 and v 0 > v 3, since v 0 < v 1 always implies that v e <
v 2. At the same time, for v 3 < v 1, the only condition for
the energetically favorable realization of Cherenkov
radiation following from (10) is v 0 > v 2, because in
this case the threshold velocity obeys the condition
v e < v 2 . In particular, for mp = ∆M = ε0/c2, according
to formula (4), inequality (10) gives for n ! 1 and
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 the following conditions for the energetically
favorable realization of Cherenkov radiation:
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Diffraction Radiation from an Inhomogeneous Dielectric Film
on the Surface of a Perfect Conductor

M. I. Ryazanov, M. N. Strikhanov, and A. A. Tishchenko*
Moscow Institute of Engineering Physics (State University), 

Kashirskoe sh. 31, Moscow, 115409 Russia

*e-mail: altis2001@mail333.com

Received December 10, 2003

Abstract—Diffraction radiation generated by a charged particle moving uniformly parallel to the surface of a
perfect conductor coated with a dielectric film is considered; the thickness of the film is an arbitrary function
of coordinates. A particular case is considered when this function is periodic in one coordinate. The dependence
of radiation on the profile of an individual irregularity of the periodic film is analyzed in detail for an arbitrary
energy of the particle. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that a charged particle moving uni-
formly in vacuum parallel to the plane surface of a
homogeneous substance emits radiation only when the
Vavilov–Cherenkov radiation conditions are fulfilled.
If these conditions are not fulfilled, then there is no
radiation because the transfer of the longitudinal
(along the velocity vector) momentum is impossible.
In the case of an inhomogeneous surface, the transfer
of longitudinal momentum to the irregularities of the
substance becomes possible and radiation is emitted,
which is usually called diffraction radiation [1]. Vari-
ous special cases of such radiation have been consid-
ered by many authors [2–6]; however, diffraction radi-
ation that arises when a charged particle moves uni-
formly in vacuum parallel to the surface of a
homogeneous semi-infinite conductor coated with an
inhomogeneous dielectric film has not been consid-
ered. The aim of the present paper is to consider such
radiation in the case when there is no Vavilov–Cheren-
kov radiation.

This kind of radiation is associated with an inhomo-
geneous film because radiation is not emitted in the
absence of film. To satisfy the boundary conditions on
the surface of the conductor, one introduces an image
charge [7, 8]. The field outside the conductor coincides
with the total field induced by two charges that move
uniformly in vacuum: a real charge e and a fictitious
charge –e. This field polarizes the inhomogeneous film,
and the polarization currents induced in the film give
rise to diffraction radiation. It is of interest to evaluate
the intensity of the diffraction radiation as a function of
the character of irregularities in the film.
1063-7761/04/9902- $26.00 © 20311
2. POLARIZATION CURRENT
IN THE SURFACE AREA 
OF A DIELECTRIC FILM

Denote by E0(r, t) the electric field induced in the
half-space x > 0 by a uniformly moving particle with
charge e. The charged particle moves parallel to the sur-
face x = 0 of a perfect conductor according to the law
r = a + vt (the vector a is perpendicular to the surface
of the conductor). This field induces polarization cur-
rents in the inhomogeneous film, which give rise to dif-
fraction radiation. If we neglect the interaction between
the currents induced in the inhomogeneous film by the
field of the traveling charged particle, we can assume
that the field acting on a separate molecule in the film is
equal to E0(r, t). Then, in the dipole approximation, the
Fourier image of the polarization current is given by

(1)

where α(ω) is the polarizability of an individual mole-
cule and nmic(r) is the microscopic density of molecules
in the film.

The field E0 is determined by the method of images
as a sum of the field of the real charge e and the field of
the fictitious image-charge –e, which moves according
to the law r = –a + vt. Choosing axis z along v and axis
x along a, we can represent the Fourier image of the
total field of the real charge and the image charge as

(2)

j r ω,( ) iωnmic r( )α ω( )E0 r ω,( ),–=

E0 r ω,( ) i d3q iq r⋅{ }exp∫=

× E0 qx qy,( )δ ω qzν–( ) qxa( ),sin
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(3)

The substitution of (2) into (1) yields

(4)

where the summation is performed over all molecules
of the film. The field E0 does not contain the radiation
field, so that the diffraction radiation is generated by the
polarization current (4) in the inhomogeneous film. The
angular and frequency distribution of the energy emit-
ted by a given current in vacuum is given by

(5)

where k = nω/c. This distribution is valid for the waves
that reach a detector without reflection from the surface
of the medium. However, one should also take into con-
sideration the waves that reach the detector after reflec-
tion from the surface of the medium.

It is obvious that reflected waves are equivalent to
the waves emitted by the polarization current of image
molecules. Just as radiation in a real molecule is emit-
ted by bound electrons accelerated by an external field,
radiation in an image molecule is emitted by the images
of bound electrons. The Fourier image of the current
due to image molecules can be determined from (4) by
the substitutions Xa  –Xa , jx  jx , jy  –jy , and
jz  –jz . The first substitution yields a mirror-sym-
metric position of an image molecule with respect to
the surface of the conductor. The remaining substitu-
tions are associated with the application of the method
of images to the electrons bound in a molecule. They
correspond to a change in the sign of the velocity com-
ponent normal to the surface and the sign of the charges
bound in the image molecule. Hence, we obtain

(6)

where e is a unit vector normal to the surface, i.e.,
e ≡ ex . The total energy in frequency interval dω emit-

E0 qx qy,( ) ie

π2
-----

Q v
ω

ν2γ2
----------+

Q2 ω
νγ
------ 

 
2

+

---------------------------,=

1

γ2
----- 1

ν2

c2
-----, Q– qx qy,( ).= =

j0 k ω,( ) ωα ω( )
2π( )3

----------------- d3qE0 qx qy,( )δ ω qzν–( )∫=

× qxa( ) i q k–( ) Ra⋅{ }exp ,
a

∑sin

d
2
E n ω,( )
dωdΩ

------------------------- 2π( )61
c
--- k j0 k ω,( )× 2,=

j1 k ω,( ) ωα ω( )
2π( )3

-----------------=

× d3qE0 qx qy,( )δ ω qzν–( ) qxa( )sin∫
× i q k–( ) Ra 2i e k⋅( ) e Ra⋅( )+⋅{ } ,exp

a

∑
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ted into an tooth dΩ of solid angle, including the radiant
energy reflected from the conductor surface, coincides
with the distribution of radiant energy emitted in vac-
uum by two sources (4) and (6):

(7)

3. DIFFRACTION RADIATION 
FROM SEPARATE ADSORBED ATOMS

Consider a limiting case of a film consisting of two
adatoms situated at the points Ra = (d, 0, 0) and Rb =
(d, 0, L) at a distance of L from each other. Then, the
Fourier image of the density of the total polarization
current is given by a sum of two terms related to the first
and the second adatoms, and the spectral–angular dis-
tribution of the emitted energy has the form

(8)

where

(9)

One can see that the difference between the energies
radiated into the interval dωdΩ for one and two ada-
toms consists in the appearance of the additional factor
2{1 + cos[L(ω/ν – kz)]} in the case of two adatoms.

When |ω/ν – kz|L ! 1, the energy arriving at a given
observation point from two adatoms is greater by a fac-
tor of four than the energy from a single adatom. This
is associated with the fact that the waves emitted by
each adatom arrive at the observation point with equal
phases, so that the field is doubled and the energy is
quadrupled. Note that, when L = 2sl, where l = π/|ω/ν –
kz| and s is an integer, the energy of diffraction radiation
emitted by two adatoms is greater by a factor of four
than the energy emitted by a single adatom. However,
when L = (2s + 1)l, the energy of diffraction radiation
emitted in the same direction is equal to zero. This is
associated with the fact that the waves emitted by dif-
ferent adatoms arrive at the observation point with
opposite phases and cancel out. Hence, if N adatoms lie
on a line parallel to the velocity of the particle within
the interval of length l ~ π/|ω/ν – kz|, then the waves
emitted by each adatom arrive at the observation point
with equal phases, whereby the radiated energy proves
to be greater by a factor of N2 than that in the case of a
single adatom. In the limit of |ω/ν – kz|L @ 1, the energy

d2E n ω,( )
dωdΩ

------------------------ 2π( )61
c
--- k j0 k ω,( ) j1 k ω,( )+( )× 2.=

d2E n ω,( )
dωdΩ

------------------------
4ω2 α ω( ) 2

cν2
----------------------------=

× 2 1 L
ω
ν
---- kz– 

 cos+
 
 
 

kxd( ) k I× 2,cos
2

I qx qyE0 qx qy,( ) aqx( ) i qxd{ } .expsind

∞–

∞

∫d

∞–

∞

∫=
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emitted by two adatoms is greater by a factor of two
than that emitted by a single adatom because the func-
tion cos[L(ω/ν – kz)] rapidly oscillates in a frequency
interval and gives a negligible contribution to the total
radiation. The length l of a segment that corresponds to
the coherent radiation of all adatoms situated in this
segment is usually called coherence length. In the case
of ultrarelativistic particles, whose energy E ≡ γmc2 @
mc2, the radiation is concentrated in the region of small
angles θ between n and v, so that the coherence length
is

(10)

and may reach macroscopic values.
To determine an explicit expression for the fre-

quency and angular distribution of diffraction radiation
from two adatoms, we calculate integral (9). This inte-
gral can be expressed in terms of modified Bessel func-
tions of the zeroth (K0) and first (K1) orders:

(11)

In the case of an ultrarelativistic particle, the condition
Ix @ Iz is fulfilled. Therefore,

and the angular and frequency distribution of radiated
energy for γ @ 1 is given by

(12)

Here, h ≡ a – d is the impact parameter, i.e., the shortest
distance between the particle trajectory and the mole-
cules. Let us point out certain features of the distribu-
tion obtained.

l
π

ω/ν kz–
---------------------- 2πc

ω θ2 γ 2–+( )
---------------------------∼=

I Ix 0 Iz, ,( ),=

Ix i
e
π
--- ω

νγ
------=

× K1
ω
νγ
------ a d–( ) 

  K1
ω
νγ
------ a d+( ) 

 + ,

Iz
e
π
--- ω

νγ2
--------=

× K0
ω
νγ
------ a d–( ) 

  K0
ω
νγ
------ a d+( ) 

 – .

k I× 2 k2Ix
2 1 nx

2–( )=

d2E n ω,( )
dωdΩ

------------------------
8ω4 α ω( ) 2

cβ2
----------------------------=

× 1 L
ω
ν
---- kz– 

 cos+
 
 
 

kxd( )cos
2

× 1 nx
2–( ) 1

h2
----- ωh

νγ
-------K1

ωh
νγ
------- 

  ωh
νγ
-------K1

ω
νγ
------ h 2d+( ) 

 




2

.+




JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
First, the expression in braces is on the order of
unity when ωh < νγ and rapidly vanishes for ωh > νγ.
Therefore, the radiated energy is inversely proportional
to the square of the impact parameter h for h < νγ/ω and
exponentially tends to zero for h > νγ/ω.

Second, the forward radiation (nz = 1, nx = 0) does
not vanish. This is associated with the fact that the com-
ponent of the polarization current normal to the surface,
jx ∝  Ix , is different from zero.

Third, the amount of energy radiated at a certain
fixed angle at a fixed frequency oscillates as a function
of d, which is the distance from the molecules to the
surface of the conductor. These oscillations result from
the interference between the radiation fields of the real
and image molecules.

4. DIFFRACTION RADIATION 
FROM THE SURFACE LAYER

Now, consider the diffraction radiation from an
inhomogeneous film on the surface of a semi-infinite
conductor. Suppose that the mean density n(r) of con-
duction electrons in the film as a function of coordi-
nates is known. In macroscopic electrodynamics, the
Fourier images of currents j0(k, ω) and j1(k, ω) in (7)
can be replaced by their mean values 〈j0(k, ω)〉  and
〈j1(k, ω)〉:

(13)

Here,

is the Fourier image of the density of molecules. Thus,
the angular and frequency distribution of radiated
energy can be expressed as

(14)

where J(k, ω) is defined as

(15)

The radiation distribution (14) is valid for an arbitrary
dependence of the density of molecules in the film on
coordinates.

j0 k ω,( )〈 〉 α ω( ) d3qE0 qx qy,( )∫=

× δ ω qzν–( ) aqx( )n k q–( ),sin

j1 k ω,( )〈 〉 α ω( ) d3qE0 qx qy,( )∫=

× δ ω qzν–( ) aqx( )n k q 2e e k⋅( )––( ).sin

n k q–( ) d3r

2π( )3
-------------n r( ) ir– k q–( )⋅{ }exp∫=

d2E n ω,( )
dωdΩ

------------------------
ω2

c
------ α ω( ) 2 k J k ω,( )× 2,=

J k ω,( ) 2π( )3 d3qE0 qx qy,( ) aqx( )sin∫=

× δ ω qzν–( ) n k q–( ) n k q 2e e k⋅( )––( )+{ } .
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Let us consider, as an example, a film that is inho-
mogeneous along one coordinate. Suppose that the film
profile is given by a function g(z). The mean density of
molecules is obtained by averaging the microscopic
density over the coordinates of all molecules in the film
(n is the mean density of molecules in the film):

(16)

Taking the Fourier image of (16) and substituting the
result into (15), one can obtain

(17)

where

(18)

(19)

(20)

Here, G1 and G2 are factors defined by the surface pro-
file g(z) of the dielectric film.

Consider, for definiteness, the particular case of an
ultrarelativistic charged particle γ @ 1, moderately
small radiation angles nx @ γ–1, and a thin film of thick-
ness gmax(z) = b ! γc/ω. Note that the radiation is
mainly concentrated in the region ny ≤ γ–1 on the plane
ny = 0 in view of the factor

For simplicity, we further consider the radiation only in
the plane ny = 0. In this case, formula (17) is substan-
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.exp
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tially simplified:

(21)

The substitution of (21) into (14) yields the spectral–
angular distribution of energy radiated by an ultrarela-
tivistic charged particle traveling over a thin inhomoge-
neous dielectric film placed on a perfectly conducting
substrate:

(22)

Now, suppose that the film is periodic. Then, the
function g(z) describing the profile of the film can be
expanded into the Fourier series

(23)

where p is the period of the film and the coefficients gm

are defined by the shape of a separate irregularity. In
this case, the integral in (22) can be transformed into

(24)

The sum of delta functions in this formula indicates that
the spectrum contains sharp lines at the frequency
points satisfying the relation

. (25)

Physically, formula (25) has its roots in the fact that
the traveling particle can transfer only discrete momen-
tum to a periodically inhomogeneous medium. The dif-
fraction radiation associated with the periodicity of a
medium near which a fast charged particle passes by is
for brevity called resonance diffraction radiation [6].

For m = 1, formula (25) implies the well-known
Smith–Purcell relation. For a fixed period p and wave-
length λ, the diffraction order is bounded by the two-
sided inequality

(26)

J k ω,( ) i
4en

c
---------ex aη–{ }exp=

× z izϕ{ } g z( ).expd
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∞

∫
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---- 4nα ω( ) 2 1 nx

2–( ) 2aη–{ }exp=

× ω2

c2
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∞–
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∫
2

.

g z( ) gm iz
2π
p

------m
 
 
 

,exp
m

∑=

z izϕ{ }exp gm iz
2π
p

------m
 
 
 

exp
m

∑d

∞–

∞

∫

=  2π gmδ ω
ν
---- kz–

2π
p

------m+ 
  .

m

∑

mλ
p

------- β 1– nz, m– 1 2 …, ,= =

p
λ
--- β 1– 1–( ) m

p
λ
--- 1 β 1–+( ).≤ ≤
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For example, when p = 0.833 µm, λ = 0.360 µm, and
γ = 1673, one obtains m = 1, 2, 3 and θ = 55.4°, 82.2°,
107.3°, respectively. The Smith–Purcell radiation with
these parameters has recently been observed by a group
of German physicists with a MAMI microtron [9].
They used a periodically deformed surface (glass BK7)
spray-coated with a thin (~0.7 µm) metal film (alu-
minum).

One can see that, in general, the angles at which the
resonance radiation propagates are large. When γ @ 1
and p < λ/2, radiation at angles defined by formulas (25)
is suppressed because there is no m satisfying condi-
tion (26).

Inequalities (26) show that resonance radiation can
be generated by charged particles of any energy. For
example, diffraction radiation of nonrelativistic elec-
trons is widely used in microwave electronics [10]. The
spectrum of the resonance diffraction radiation of rela-
tivistic charged particles includes optical, millimeter-
wave, and submillimeter-wave bands [11, 12].

5. RADIATION FROM A DIFFRACTION GRATING 
OF ARBITRARY PROFILE

Now, let us consider a particular case of a surface
layer in the form of a finite diffraction grating on the
surface of a perfect conductor occupying the half-space
x < 0 (see figure). Suppose that the grating is uniform
along the y axis and its profile in the z direction consists
of N periodic teeth. The period of the grating is p, the
width of an tooth is w, and its height is given by a func-
tion f(z). The mean density of molecules is the same in
all teeth and equal to n.

The mean density of molecules is determined by
averaging the microscopic density over the coordinates
of all molecules of the film:

The vector Rs = {0, 0, sp} in the argument of the delta
function takes into account the periodicity of teeth; s is
the number of an tooth. Hence,

(27)

so that the Fourier image of the density of molecules in

n r( ) nmic r( )〈 〉 δ r Rs Rbs––( )
b

∑
s 0=

N 1–

∑= =

=  n Ybs Zbsd

0

w

∫ Xbsδ r Rs Rbs––( ).d

0

f Zbs( )

∫d

∞–

∞

∫
s 0=

N 1–

∑

n r( ) n ξ x z sp–,( ),
s 0=

N 1–

∑=

ξ x z sp–,( ) z'δ z sp– z'–( ) x' x x'–( ),d

0

f z'( )

∫d

0

w

∫=
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the film is given by

(28)

The substitution of (28) into (15) and integration with
respect to qz and qy yields

Introducing

(29)

where ϕ and η are defined by formulas (18) and (19),
respectively, we can reduce the expression for J to

(30)

Here, F1 and F2 are factors defined by the profile of an

n q( ) nδ qy( )ξ qx qz,( ) ispqz–{ } .exp
s 0=

N 1–

∑=

J k ω,( ) n
ν
--- ispϕ–{ } qxE0 qx ky,( )d

∞–

∞

∫exp
s 0=

N 1–

∑=

× aqx( ) ξ kx qx ϕ–,–( ) ξ kx– qx ϕ–,–( )+[ ] .sin

F1 z izϕ{ } η kx f z( )[ ] η f z( )[ ]sinhcos{expd

0

w

∫=

+ kx kx f z( )[ ] η f z( )[ ]cosh } ,sin

F2 z izϕ{ } η kx f z( )[ ] η f z( )[ ]coshcos{expd

0

w

∫=

– η kx kx f z( )[ ] η f z( )[ ]sinh } ,sin+

J k ω,( ) 4en
ν

--------- aη–{ }exp

η2 kx
2+

--------------------------=

× iF1ex

F2

η
----- kyey

ω
νγ2
--------ez+ 

 – 
  ispϕ{ }exp .

s 0=

N 1–

∑

–e
x

v n

z
pω

f(z)

1 2 3 N…

+ ∞– ∞

a

b

θ

conductor

Geometry of the problem. Diffraction grating consists of N
dielectric strips on a conducting substrate. The strips are
parallel to the y axis. The grating has the form of N teeth in
the cross section made by the plane xz. The profile of a sep-
arate tooth is described by the function f(z). A charged par-
ticle travels along the z axis.
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individual tooth. The substitution of (30) into (14)
yields

(31)

This formula describes the spectral–angular density of
radiated energy in the case when the surface of a perfect
conductor is coated with a periodically inhomogeneous
dielectric film. In this case, the particle energy may be
arbitrary. The properties of the medium are character-
ized by (1) the polarizability α(ω) of an individual mol-
ecule; (2) the parameters that define the geometry of a
separate irregularity (an tooth): the width w and the pro-
file f(z) of the tooth; and (3) the parameters that define
the structure of the whole grating: the grating period p
and the number of teeth N.

The spectral–angular characteristics of radiation
(31) are determined by two factors. The first factor is

(1 – β2 )–2, which gives a maximal forward radiation
at small angles on the order of γ–1. The second factor is
given by the function

This function attains its maxima at the points ϕp = 2πm,
m = 1, 2, 3, ...; this yields a condition that coincides
with the condition of resonance radiation (25). Intro-
ducing a polar angle θ by the relation nz = cosθ, we
obtain

. (32)

The angular width of separate peaks is ∆θ = λ/Np.
When N @ 1, the peaks become so sharp that the ratio
of the squares of sines can be replaced by a sum of delta
functions:

(33)

which corresponds to the transition to a semi-infinite
periodic film.

Now, let us analyze the nonrelativistic and ultrarela-
tivistic cases separately.

d2E n ω,( )
dωdΩ

------------------------
e2

c
----16β2n2 α ω( ) 2

1 β2nz
2–( )2

----------------------------------- ϕpN /2( )sin
2

ϕp/2( )sin
2

-------------------------------=

× n iF1ex F2

βγnyey γ 1– ez+

1 γ2β2ny
2

+
-----------------------------------–

 
 
 

×
2

× 2aω
cβγ
---------- 1 γ2β2ny

2+–
 
 
 

.exp

nz
2

ϕpN /2( )sin
2

ϕp/2( )sin
2
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m
λ
p
--- β 1– θ, mcos– 1 2 3 …, , ,= =

ϕpN /2( )sin
2

ϕp/2( )sin
2

------------------------------- 2πN δ ϕp 2πm–( ),
m

∑N @ 1
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6. NONRELATIVISTIC CASE

Consider a nonrelativistic particle with β ! 1. In
this case, the energy of the particle must be much
greater than the total radiation loss since, otherwise, the
assumption made above that the particle velocity is
constant is violated. Formula (19) shows that η =
ω/cβ @ kx in this case. Then, we have three parameters
with the dimension of length: λ, βλ, and b = fmax(z). Let
us write out possible inequalities:

(34a)

(34b)

(34c)

The corresponding expressions for F1 ad F2 in (29) are
given by

(35a)

(35b)

(35c)

In the last case (35c), the spectral–angular distribu-
tion of radiated energy is expressed as

(36)

Instead of separate cases (34a) or (34b), it is more con-
venient to analyze a more general inequality

(37)

without any assumptions about the magnitude of kxb.
Here, instead of (35a) and (35b), we have

(38)

βλ  ! λ  ! b kx f z( ) @ 1, η f z( ) @ 1,

βλ  ! b ! λ kx f z( ) ! 1, η f z( ) @ 1,

b ! βλ  ! λ kx f z( ) ! 1, η f z( ) ! 1.

F1 F2≈

≈ η
2
--- z izϕ η f z( )+{ } kx f z( )[ ] ,cosexpd

0

w

∫

F1 F2
η
2
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0
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0

w

∫≈
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Consider (38) in greater detail. For positive values of
the argument, the integrand exp{ηf(z)} increases with
increasing f(z); therefore, under condition (37), we have

≤ (39)

This formula shows that, for a given width w and height
b of an tooth, the radiation is maximal for rectangular
teeth, when f(z) = b. In this case, the radiation for (38)
is described by

(40)

where h ≡ a – b is the shortest distance between the
radiating substance and the charged particle traveling
over the substance, the so-called impact parameter.

We can evaluate integral (39) under fairly general
assumptions on the explicit form of f(z). To this end, we
apply the Laplace method. Suppose that the function
f(z) has one maximum at a certain internal point z0 of
the interval (0, w), so that f(z0) = fmax = b. In view of (37)
and the inequality η @ k, the main contribution to the
integral (38) is made by a narrow domain of z near the
point z0. The oscillating terms exhibit rather smooth
behavior near the point z = z0, so that they can be taken
outside the sign of integral. Expanding f(z) in a series
and retaining only the term quadratic in z, we obtain

(41)

The spectral–angular distribution of radiation is
expressed as

(42)

In the case (34a), we have to replace the square of the
cosine, cos2(kxb), by its mean value, 1/2, and, in the

F
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case (34b), by unity. Formula (42) describes the diffrac-
tion radiation from a grating with sufficiently high
teeth, so that the inequality b @ βλ (37) holds.

7. ULTRARELATIVISTIC CASE

Now, consider the case γ @ 1. It has been pointed out
above that the radiation is largely concentrated in the
domain ny ≤ γ–1 in the plane ny = 0. For simplicity, we
will take into account only the radiation in the plane
ny = 0.

Since iF1ex @ F2γ–1ez , the main role in the ultrarela-
tivistic case is played by the component of induced cur-
rents that is normal to the surface. For ny = 0 and γ @ 1,
from (31) we obtain

(43)

The factor F1 is determined by the first formula in (29)
and depends on the explicit form of the function f(z),
which defines the profile of an individual tooth. Sup-
pose that the profile of an tooth is given by a rectangle
of width w and height b. Then, f(z) = b, and one can
readily calculate |F1|2. For ny = 0 and γ @ 1, we have

(44)

Here, as before, h ≡ a – b is the impact parameter and
ϕ = (ω/c)(β–1 – nz).

Further, we will restrict the analysis to the resonance
case. As was pointed out above, the resonance radiation
propagates at sufficiently large angles (at any rate, it is
this case that is of experimental interest). This fact sug-
gests that kx ~ k @ η. Then, (29) implies that the factor
F1 for teeth of arbitrary shape can be expressed as

(45)
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For thin plates of thickness less than the wavelength,
b ! λ, the following inequality holds:

(46)

Hence, (45) can be rewritten as

(47)

For plates of thickness greater than the wavelength,
one can assume that the inequality kx f (z) @ 1 holds. In
view of the condition kx ~ k @ η, one cannot directly
apply the Laplace method because the integrand in (45)
rapidly oscillates near the maximum of the function
f(z). Let us represent the sine as a difference of expo-
nents and apply the saddle-point method, i.e., move the
integration contour to the complex plane so that it
passes through the point z+ (or z–), which is a saddle
point for the function izϕ + ikx f (z) (or, respectively, for
izϕ – ikx f (z)). In this case, the hyperbolic cosine can be
taken outside the sign of integral at the point z+ (or z–)
owing to the inequality kx @ η. From (45), one can eas-
ily derive

(48)

Here, the saddle points z+ and z– are given by the equa-
tion

(49)

The parameters g± and ξ± can be found from the equa-
tions

(50)

When deriving (49), we assumed that the function f(z)
attains its maximum at an internal point of the interval
(0, w) and that f ''(z±) ≠ 0.

Note that, since the saddle points z± differ from z0—
the maximum point of the function f(z) (i.e., the point
where f '(z0) = 0)—the factor F1, obtained by formula (49),
depends on f(z–) and f(z+) rather than on f(z0) = fmax = b.
Physically, this means that the maximal contribution to
the radiation is given by some other points rather than
by the vertices of the teeth. This fact may reduce the
radiation because any point of an tooth lies farther from
the trajectory of a traveling particle than the vertex.

b ! λ  ! γλ ηf z( ) ! kx f z( ) ! 1.

F1 kx
2 z izϕ{ } f z( ).expd
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∫≈
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JOURNAL OF EXPERIMENTAL 
This effect will manifest itself when the inequality |z± –
z0| ≥ γλ holds, where γλ is a characteristic scale at
which the proper field of the traveling particle
decreases.

As an illustration, consider the function

This function describes an tooth in the form of a parabola
with the vertex at the point (w/2, b). From (49), we
obtain the saddle points

(51)

and the corresponding values of the function f(z±):

(52)

From formulas (50), we obtain

(53)

Substituting (51)–(53) into (48), we obtain

(54)

Note that the applicability of (48) is restricted by the ine-
qualities bkx @ 1 and kx @ η ≈ (γλ)–1. It follows from (43),
(52), and (54) that the radiation depends on 

rather than on exp{−2hω/cγ} as in the case of rectangu-
lar teeth (see (44)). However, for the resonance radia-
tion, ϕp = 2πm, m = 1, 2, ..., and

by virtue of the condition bkx @ 1. Therefore, in the
case considered, the points z+ and z– are very close to z0,
and there is no appreciable attenuation of radiation.

Consider an explicit form of the coefficient F1 cor-
responding to triangular teeth for f(z) = zb/w. Neglect-
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ing the terms η = ω/cγ ! kx and calculating the integral
in (45), we obtain the following expression for |F1|2:

(55)

where

Substituting (55) into (43), we can obtain a spectral–
angular distribution for the diffraction radiation of an
ultrarelativistic particle in the case of triangular teeth.

8. DISCUSSION OF THE RESULTS

In this paper, we have investigated the diffraction
radiation from an inhomogeneous dielectric film on the
surface of a perfectly conducting substrate. To take into
account the effect of the substrate, we have applied the
method of images. Formulas (29) and (31) yield the
spectral–angular density of radiation for a diffraction
grating with an arbitrary profile f(z) and a uniformly
moving charged particle.

For a grating in which the height of an individual
tooth b is less than any other parameter of the problem,
the spectral–angular distribution of radiated energy as a
function of the shape of a separate irregularity—an
tooth—is determined by the factor

both in the nonrelativistic (b ! βλ) and ultrarelativistic
(b ! λ) cases (see (47) and (36)).

For sufficiently thick plates (with a thickness of b @
βλ), maximal radiation in the nonrelativistic case is
attained for rectangular teeth. In the ultrarelativistic
case, the dependence of f(z) on the shape of a separate
irregularity is more complicated, and it is difficult to
make an unambiguous conclusion about a preferred
shape of teeth. However, for rectangular teeth, the radi-
ation distribution (31) is calculated most easily. For
example, the radiation from rectangular plates is
described by formulas (44) and (40) for the ultrarelativ-
istic and nonrelativistic radiation cases, respectively.

These results have been obtained in the first order of
perturbation theory by replacing the effective field by
the sum of the fields of a traveling particle and its
image. Second-order corrections to perturbation theory

F1
2 w2kx
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1 a1 a2–( )cos a1 a2cos–cos–+

2a1a2
-------------------------------------------------------------------------------
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,
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---- w 1 βnz–( ) bnx+[ ] ,=
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c
---- w 1 βnz–( ) bnx+[ ] .=

z izϕ{ } f z( )expd

0

w

∫
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yield the following constraints on the applicability
domain of the results obtained:

(56)

Thus, in the transparency domain of the dielectric,
where |ε – 1| ! 1, the approximation used describes the
radiation to a good accuracy for any thickness of the
film. For a sufficiently thin film, when b ! γβλ, the
applicability domain increases as the film thickness b
decreases. The method applied has allowed us for the
first time to take into account the effect of a substrate
and analyze the dependence of diffraction radiation on
the shape of separate irregularities (the grating).

The macroscopic averaging when deriving (14) is
performed under the assumption that the number of
molecules in a separate irregularity of the film is much
greater than unity. This fact restricts from below the
size of an individual irregularity. The applicability
domain of the results obtained is also restricted by the
assumption that the metal substrate is perfectly con-
ducting. This fact restricts the range of frequencies
from above.
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in a Strong Electromagnetic Field

E. A. Volkova, V. V. Gridchin, A. M. Popov, and O. V. Tikhonova
Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, 119992 Russia

e-mail: popov@mics.msu.su
Received March 3, 2004

Abstract—Direct numerical simulations are performed to analyze stabilization of a two-electron model atom
in a strong electromagnetic field. The system is found to be stabilized with respect to both single and double
ionization. By comparing the present results with those concerning stability of one-electron atoms, it is shown
that stabilization is due to the formation of a Kramers–Henneberger two-electron atom. Ionization and stabili-
zation characteristics of excited singlet and triplet states of an atomic system are examined. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Ionization of atoms in strong electromagnetic fields
has been the subject of extensive theoretical and exper-
imental research over the last 20 years (e.g., see [1–3]).
One of the most interesting phenomena recently dis-
covered is direct double (multielectron) photoioniza-
tion, i.e., simultaneous release of two electrons from an
atom in a strong electromagnetic field [4]. The resulting
photoionization yield is substantially (sometimes, by
orders of magnitude) higher than that predicted by a
model that assumes that electrons are successively and
independently removed from an atom in a laser field. A
detailed survey of current studies of multielectron pho-
toionization can be found in [5]. However, it is also
known that an atomic system placed in a strong electro-
magnetic field is characterized by relatively higher sta-
bility. The basic mechanisms of this effect were origi-
nally considered in [6, 7] and discussed in detail in [8, 9].
Basically, it is attributed to a substantial change in the
energy spectrum of an atomic system placed in a strong
electromagnetic field and formation of a “dressed” atom.
In a high-frequency laser field, a dressed atom behaves
like a Kramers–Henneberger (KH) atom (see [9], where
both energy spectrum and steady-state wavefunctions
of the KH atom are discussed in detail).

It should be noted here that the stabilization effect in
question has so far been investigated, both theoretically
and experimentally, in the one-electron approximation.
The first attempts to analyze the stabilization of a mul-
tielectron atom were made in [10, 11]. Those studies
were focused on the KH potential of the hydrogen ion
H– placed in a strong high-frequency field. It was
shown that the binding energy for this system increases
with field intensity, and additional two-electron bound
states arise. Moreover, the doubly charged negative
hydrogen ion H2– can exist. A stabilization regime anal-
ogous to stabilization of an unexcited one-electron
1063-7761/04/9902- $26.00 © 20320
atom was also predicted for extremely strong fields that
give rise to a pronounced dichotomous structure of the
KH potential. Similar results were obtained in [12] for
the helium atom. In [13], stabilization was revealed by
analyzing ionization dynamics for a model two-elec-
tron negative hydrogen ion in a high-frequency field
(with photon energy "ω exceeding the energy required
to release both electrons), but the underlying physical
mechanism was not investigated.

Thus, both conditions leading to stabilization of a
multielectron atomic system and physical mechanisms
responsible for it remain unclear to this day. In particu-
lar, the following problems should be addressed:

I. Determine the frequency ranges and intensities of
stabilizing fields.

II. Explore the possibility of simultaneous decrease
in single- and double-ionization probabilities with
increasing field intensity.

III. Find and specify the difference (if any) in dou-
ble-ionization and stabilization characteristics between
singlet and triplet states.

These problems are analyzed in the present study.

2. MODEL

As a model atom, we consider a two-electron one-
dimensional quantum-mechanical system described by
the Hamiltonian (in atomic units)

(1)

where Ti is the kinetic energy of the ith electron,

H0 Ti V xi( )+( ) V12 x1 x2,( ),+
i 1=

2

∑=

V xi( ) Z

α2 xi
2+

---------------------–=
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is the energy of its interaction with the nucleus,

is the energy of interaction between the electrons, Z = 2
is the atomic number, and α = 0.92 Å is a smoothing
parameter. The energy of the ground state |1, 1〉  is E0 =
–37.3 eV, and the single-ionization potential is
12.95 eV. This system was considered as a two-electron
model of the xenon atom in an analysis of double-pho-
toionization mechanisms [14].

The table lists the energies of several low eigen-
states of the system. Figures 1 and 2 illustrate the elec-
tron density distributions in the ground state |1, 1〉  and
in the lowest singlet and triplet states, |1, 2〉 s and |1, 2〉 t ,
respectively.

Interaction between the system and an electromag-
netic wave is described in the dipole approximation:

(2)

where ω is the electric field frequency and ε(t) is the
pulse envelope.

The time-dependent Schrödinger equation with the
Hamiltonian

(3)

was computed by applying the technique developed
in [15] on a spatial grid in the coordinates

,

where

The coordinates ξ and η are equal (up to a numerical
factor), respectively, to the center-of-mass and relative-
position coordinates of the electrons, which are used
below. To preclude reflection of probability flux from
the domain boundaries, we added a complex-valued
potential to (3).

Computations were performed for "ω = 15.5 and
46.5 eV. These frequencies are currently of interest, in
particular, in view of rapid progress in free-electron
laser technology. We used a smoothed trapezoidal pulse
of electromagnetic field with rise time τf and “plateau”
duration τpl. In the “high-frequency” case, we set

the “low” frequency was combined with

V12
1

α2 x1 x2–( )2+
---------------------------------------=

W x1 x2 t, ,( ) x1 x2+( )ε t( ) ωt,cos=

H H0 x1 x2,( ) W x1 x2 t, ,( )+=

ξ
x1 x2+

2
----------------, η

x1 x2–

2
---------------= =

ξ 100 Å– 100 Å,( ), η 100 Å– 100 Å,( ).∈∈

τ f 60T , τpl 150T ;= =

τ f 20T , τpl 50T .= =
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Here, T = 2π/ω is the wave period. These parameter val-
ues correspond to pulses of equal duration. Note that
the energy of a high-frequency photon is sufficient to
remove two atomic electrons simultaneously, whereas
a low-frequency photon can remove only one electron
and two photons are required to remove both electrons.

3. RESULTS

First, we discuss the results of computations of ion-
ization dynamics for a ground-state two-electron atom
interacting with the high-frequency field ("ω =
46.5 eV). Figure 3 shows the single- and double-ioniza-
tion probabilities per pulse as functions of field inten-
sity. These curves demonstrate that stabilization takes
place when the field intensity P exceeds P* = 5 ×
1017 W/cm2. Since the field frequency is relatively high,
electron motion can be computed in nonrelativistic
approximation in this intensity range.1 Note that the

Energies of low singlet and triplet states

State
Energy, eV

singlet triplet

|1, 1〉 –37.3 –

|1, 2〉 –29.5 –31.5

|1, 3〉 –28.0 –28.3

|1, 4〉 –26.7 –27.0

|1, 5〉 –26.2 –26.3
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Fig. 1. Contour plot of electron density in the ground state
|1, 1〉: 0.1 (1); 0,01 (2); 0.001 (3).
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atomic system is stabilized with respect to both single
and double ionization (i.e., both probabilities reach
maximum values) at the same intensity. Additional evi-
dence of the system’s stability with respect to ioniza-
tion at high field intensities is provided by Fig. 4, which
shows the time dependence of the probability of finding
both electrons in the computational domain V = {ξ, η ∈
(–100 Å, 100 Å)},

1 For the frequency used in this example, relativistic effects are
important when the field intensity is at least 1020 W/cm2.

W t( ) ψ ξ η t, ,( ) 2 ξ η .dd

V

∫∫=
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Fig. 2. Contour plots of electron density in the lowest
excited states: singlet |1, 2〉s  and triplet |1, 2〉 t .
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When the field intensity is lower than the stabiliza-
tion threshold, the steepest decrease in W with time,
i.e., the highest ionization rate, corresponds to the “pla-
teau” portion of the pulse (curve 1). When the intensity
exceeds the stabilization threshold, the steepest
decrease in W corresponds to the rise and fall portions
of the pulse, whereas the atom is relatively stable with
respect to ionization within the plateau interval (curve 2).

The stabilization demonstrated above can be
explained by using the Kramers–Henneberger method.
However, it should be kept in mind that the amplitude
of free-electron oscillation in the field of an electro-
magnetic wave, ae = ε/ω2, is comparable to the size of
the ground-state wavefunction localization domain, a ≈
2 Å, under threshold conditions. Therefore, the dichot-
omous structure of the KH potential has no effect on
stabilization (the KH potential is similar to the unper-
turbed atomic potential). Note that a detailed analysis
of an analogous stabilization regime was performed
in [16] for a one-electron system in a high-frequency
field (with "ω > Ii , where Ii is ionization potential). In
particular, it was shown that the stabilization was due to
the nonlinearity of the matrix element corresponding to
the KH harmonics responsible for bound–free transi-
tions. Simple analytical estimates demonstrate a simi-
larity to the example considered here. Indeed, when the
field is relatively weak (ae ≤ a), the bound-state and
continuum wavefunctions for the KH potential are sim-
ilar to the corresponding wavefunctions of a free atom.
As an example, Fig. 5 shows the overlap integral
〈ψKH|ψat〉  for the ground-state wavefunctions corre-
sponding to the atomic and KH potentials as a function
of field intensity. When P < 1018 W/cm2 (which corre-
sponds to ae ≤ a), the value of 〈ψKH|ψat〉  is at least 0.9.
In this case, a qualitative estimate for ionization proba-
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Fig. 3. Probabilities of single (1) and double (2) ionization
per pulse versus field intensity for "ω = 46.5 eV.
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bility can be obtained by evaluating the matrix element
for the first KH harmonic,

(4)

between unperturbed atomic wavefunctions:2 

(5)

(Here, X = (x1 + x2)/2 and x = x1 – x2 are the center-of-
mass and relative-position coordinates of the electrons,
respectively, and V is the potential of interaction of the
electrons with the nucleus and with one another.)

Curve 1 in Fig. 6 represents the squared absolute
value of matrix element (5) calculated numerically as a
function of field intensity. When the field is relatively
weak, the ionization probability for a KH atom is a lin-
ear function of laser intensity corresponding to the first-
order perturbation in the atom–field interaction. The
absolute value of the matrix element reaches a maxi-
mum when the field intensity is such that ae ≈ a. With
further increase in intensity, the value of |〈1, 1|V1|1, E〉|2

decreases, i.e., stabilization with respect to single ion-
ization is observed. Curve 2 in Fig. 6 represents the
squared absolute value of the matrix element evaluated
by using the series expansion of V1(x, X) to the third
order in ae/x. A comparison of the curves demonstrates
that the stabilization of the system is due to the nonlin-
ear dependence of the bound–free transition matrix ele-

2 The one-electron continuum wavefunction |1, E〉  was prescribed
as the symmetrized product of the unperturbed one-electron
bound-state function with the one-electron continuum wavefunc-
tion approximated by a plane wave with the wave vector k =

.

V1 x X,( ) 1
2π
------ V x X ae ωtcos–,( ) iωt( ) t,dexp

0

2π

∫=

2mE/"
2

Wi 1 1,〈 |Vt 1 E,| 〉 2.∼
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Fig. 4. Probability of finding both electrons in the computa-
tional domain for fields with "ω = 46.5 eV and intensities
3 × 1017 W/cm2 (1) and 3 × 1018 W/cm2 (2).
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ment on intensity. Moreover, a qualitative description
of the phenomenon can be obtained by taking into
account only one nonlinear term. It was pointed out
in [17] that KH stabilization can be interpreted under
these conditions in the basis of an unperturbed quan-
tum-mechanical system as a result of interference
between direct one-photon bound–free transitions and
three–photon (multiphoton) transitions involving inter-
mediate continuum states.

Next, we discuss the results concerning the dynam-
ics of single and double ionization of the ground-state
atom by the “low-frequency” field ("ω = 15.5 eV). In
this case, single ionization is a one-photon process,
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Fig. 5. Overlap integral versus intensity for ground states in
atomic potential and corresponding KH potential.
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Fig. 6. Squared absolute value of matrix element for the first
KH harmonic describing one-photon ionization (in arbitrary
units): exact calculation (1) and expansion to the third order
in ae/x (2).
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whereas two electrons can be removed only by absorp-
tion of three photons. Accordingly, the system may
approximately be treated as a one-electron atom when
the field is relatively weak. This is confirmed by the sin-
gle- and double-ionization probabilities per pulse plot-
ted against field intensity in Fig. 7: double ionization
can be neglected for intensities below 1015 W/cm2.
When the field intensity is on the order of 1015 W/cm2,
the probability that the atom remains in a bound state,
presented in Fig. 7, corresponds to a stabilization
regime characteristic of one-electron systems [9].
When the intensity exceeds 3 × 1015 W/cm2, the contri-
bution due to double ionization is substantial, and the
stabilization regime breaks down. Note that the possi-
bility of stabilization breakdown due to double photo-
ionization was considered in [18]. According to our
computations, further increase in intensity (to P ≥
1017 W/cm2) enhances stability of the system with
respect to ionization. A detailed analysis of ionization
dynamics shows that stabilization with respect to dou-
ble ionization by high-intensity field is due to drastic
transformation of the potential of an atomic system
placed in a strong electromagnetic field and formation
of a Kramers–Henneberger atom. Indeed, the electron
density distributions |ψ(x1, x2)|2 computed at different
instants demonstrate the formation of a stable two-elec-
tron atom of diameter 2ae = 2ε0/ω2 ≈ 10 Å with a
dichotomous wavefunction structure. The dichotomous
structure is illustrated by the central portions of the dis-
tributions shown in Fig. 8. Under these conditions, the
singly charged ion is a Kramers–Henneberger ion
described by a polychotomous wavefunction (indicated
by arrows in Fig. 8b). The Kramers–Henneberger two-
electron atom is created when the barrier-suppression
double-ionization threshold, PBSI ≈ 1017 W/cm2, is
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Fig. 7. Probabilities of single ionization (1), double ioniza-
tion (2), and residual bound state (3) versus field intensity
for "ω = 15.5 eV.
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exceeded. As the field intensity in the pulse falls below
PBSI, the KH wavefunction structure breaks down, and
the ionization rate increases. Thus, a KH atom can be
created in an electromagnetic field with photon energy
lower than that required to remove both electrons only
when the field intensity exceeds the barrier-suppression
ionization threshold. This regime is analogous to the
stabilization conditions obtained in [19] for a one-elec-
tron system in a low-frequency field (with "ω < Ii ,

–40

–9
x1, Å

–6 –3 0 3 6 9

(b)

2

1

(a)

–30

–20

–10

0

10

20

30

40

–50

–40

–30

–20

–10

0

10

20

30

40

50
x2, Å

Fig. 8. Contour plots of electron density |ψ(x1, x2)|2
obtained by numerical integration of the Schrödinger equa-
tion for "ω = 15.5 eV and a field intensity of 1018 W/cm2 at
the instants corresponding to (a) the end of the rise time and
(b) the midpoint of the plateau portion of the pulse. The val-
ues of contour curves 1 and 2 differ by an order of magni-
tude. Arrows indicate the two-electron density correspond-
ing to a singly charged KH ion.
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where Ii is ionization potential). As in the case consid-
ered in [19], a low residual bound-state population is
obtained because electron density is “shaken off” the
atom as the KH potential rapidly transforms into the
potential of a free atom during the interaction with the
trailing front of the pulse. The most likely result is one-
electron continuum, which explains the increase in the
probability of single ionization for intensities above the
stabilization threshold (see Fig. 7).

Now, let us discuss the ionization and stabilization
characteristics of singlet and triplet states of a two-elec-
tron system. To be specific, we consider photoioniza-
tion of the |1, 2〉 s and |1, 2〉 t states, which are character-
ized by similar energies (see table) and the wavefunc-
tions depicted in Fig. 2. Figure 9 shows the
probabilities of single and double ionization by the
high-frequency field computed as functions of field
intensity for the singlet and triplet states. It is clear that
both states of the system are stabilized with respect to
single and double ionization. Moreover, the respective
stabilization thresholds are equal to that for the ground
state |1, 1〉 . Stabilization is also predicted for field inten-
sities that are not sufficiently high for the dichotomous
structure of KH two-electron atomic states to develop.

It should be noted that the single-ionization proba-
bilities are nearly equal for both states in the entire
intensity range, whereas the triplet state is character-
ized by a higher double-ionization probability as com-
pared to the singlet state, particularly at low intensities.
Since both single and double ionization are one-photon
processes at intensities up to 3 × 1017 W/cm2 (the corre-
sponding probabilities are linear functions of intensity),
double ionization can occur only as a result of redistri-
bution of the photon energy between the electrons. It is
well known that the distance between electrons is
greater in the triplet state as compared to the singlet
state because of the difference in symmetry with
respect to interchange of electrons between the singlet-
and triplet-state wavefunctions. This leads to a difference
in the rate of energy exchange between the electrons and,
therefore, in the double-ionization probability.

To support this explanation, we estimate the ioniza-
tion rates by applying perturbation theory and repre-
senting wavefunctions as combinations of one-electron
orbitals:

(6)

for bound states,

(7)

1 2,| 〉s t( ) ψ1 2,
s t( ) x1 x2,( )≡

=  
1

2
------- ψ1 x1( )ψ2 x2( ) ψ2 x1( )ψ1 x2( )±( )

1 E,| 〉s t( ) ψ1 E,
s t( ) x1 x2,( )≡

=  
1

2
------- ψ̃1 x1( )ψ̃E x2( ) ψ̃E x1( )ψ̃1 x2( )±( )
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for one-electron continuum, and

(8)

for the two-electron continuum.

The one-electron wavefunctions used in (6)–(8) can
be calculated in a self-consistent field approximation.
Note that ψ1(x) and (x) are distinct, because the elec-
trostatic potentials generated by the other electron in
the states described by ψ2(x) and (x) are different. A
similar distinction should be made between the one-
electron continuum wavefunctions contained in (7)
and (8).

The single-ionization probability amplitude is deter-
mined by the dipole matrix element

(9)

Substituting (9) into (6) and (7), we obtain

where

E1 E2,| 〉s t( ) ψE1 E2,
s t( ) x1 x2,( )≡

=  
1

2
------- ψ̃̃E1 x1( )ψ̃̃E2 x2( ) ψ̃̃E2 x1( )ψ̃̃E1 x2( )±( )

ψ̃1

ψ̃E

d12
1E ψ1 2,

s t( ) x1 x2,( ) x1 x2+( )ψ1 E, x1 x2,( )dx1dx2.∫∫=

d12
1E( )s t, dE 2, ψ̃1 ψ1〈 〉 d21 ψ̃E ψ1〈 〉 ,±∼

dE2 ψ̃E* x( )xψ1 x( ) x,d∫=

d21 ψ̃2* x( )xψ1 x( ) xd∫=
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Fig. 9. Probabilities of single (1, 3) and double (2, 4) ioniza-
tion of the |1, 2〉s (1, 2) and |1, 2〉 t (3, 4) states versus field
intensity for "ω = 46.5 eV.
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are one-electron dipole matrix elements and

are the overlap integrals for the ground-state and con-
tinuum wavefunctions contained in (6) and (7).

ψ̃1 ψ〈 〉 ψ̃ 1* x( )ψ1 x( ) x,d∫=

ψ̃E ψ〈 〉 ψ̃ E* x( )ψ1 x( ) xd∫=
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Fig. 10. Probabilities of single (1) and double (2) ionization
of the |1, 2〉s (closed circles) and |1, 2〉 t (open circles) states
versus photon energy "ω for a field intensity of 5 ×
1013 W/cm2. All pulse durations are equal, and their rise-
time and plateau durations are multiples of the optical
cycles.
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Fig. 11. Dynamics of decay of the |1, 2〉s (1, 2) and |1, 2〉 t
states in the field with "ω = 7.75 eV and a field intensity of
5 × 1013 W/cm2.
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For a weakly correlated system,

In this case, we have

and the single- ionization probabilities for the singlet
and triplet states are nearly equal, being determined by
the matrix element dE2.

To calculate the matrix element that determines the
double-ionization probability amplitude, we write

(10)

Assuming that E1 ≈ E2 = E for symmetrized functions,
we obtain

in the case of antisymmetrized functions,

Thus, the one-photon double ionization, as treated in
this approximation, is due to the fact that the ground-
state basis functions are not orthogonal to continuum
wavefunctions. This explains why the double-ioniza-
tion probability is lower for triplet states as compared
to singlet states.

Finally, we discuss ionization dynamics for the
|1, 2〉 s and |1, 2〉 t states interacting with “low-fre-
quency” fields ("ω = 7.75–30 eV). In this frequency
range, single ionization is a one-photon process for
both singlet and triplet states. However, a substantial
difference in both single- and double-ionization proba-
bilities between these states is predicted for "ω ≤ 25 eV.
Note also that a higher single-ionization probability is
obtained either for the singlet state or for the triplet one,
depending on field intensity (see Fig. 10). This is
explained by the influence of autoionizing states in the
energy range in question. Resonance between the initial
bound state and an autoionizing state manifests itself by
a nonmonotonic time dependence of the initial-state
population during the interaction with a laser pulse
(Rabi oscillation) and increases the rate of photoioniza-
tion. The effect of resonance on the singlet state is dem-
onstrated by comparing the dynamics of decay of the
|1, 2〉 s and |1, 2〉 t states in the field with "ω = 7.75 eV
illustrated by Fig. 11. It is clear that resonance leads to
a higher decay rate for the singlet state as compared to
the triplet one.3 Depending on the field frequency, both

3 The role played by autoionizing states in the double ionization of
a ground-state two-electron atom was emphasized in [20].

ψ̃1 x( ) ψ1 x( ).≈

ψ̃1 ψ〈 〉 1, ψ̃E ψ〈 〉  ! 1≈

d12
E1E2 ψE1 E2,

s t( ) x1 x2,( )( )*∫∫=

× x1 x2+( )ψ1 2, x1 x2,( ) x1 x2.dd

d12
EE( )s dE 1, ψ̃̃E ψ2〈 〉 ψ̃̃ E 2, ψ1| 〉;+∼

d12
EE( )t 0.≈
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singlet and triplet states may be in resonance with
autoionizing states. This explains the nonmonotonic
dependence of the ionization probabilities for the |1, 2〉 s

and |1, 2〉 t states shown in Fig. 10 on photon energy.
When "ω ≥ 25 eV, no resonance with autoionizing
states is observed and ionization characteristics are
analogous to those predicted in the “high-frequency”
case.

4. CONCLUSIONS

The present analysis of stabilization of a two-elec-
tron atom in a strong electromagnetic field shows that
stability with respect to single and double ionization is
enhanced as a certain threshold value of field intensity
is exceeded. It is shown that the stabilization can be
explained by using the Kramers–Henneberger method.
When the field frequency exceeds the double-ioniza-
tion threshold, the stabilization thresholds predicted for
single and double ionization are equal. When the pho-
ton energy is not sufficiently high to ensure one-photon
coupling between the ground state and two-electron
continuum, but is higher than the single-ionization
potential, different stabilization conditions are pre-
dicted with regard to single and double ionization. Sta-
bilization with respect to double ionization corresponds
to extremely high field intensities exceeding the bar-
rier-suppression double-ionization threshold. Forma-
tion of the dichotomous structure of the two-electron
wavefunction characteristic of a Kramers–Henneberger
atom is graphically demonstrated. The considerable
difference in double-ionization probability between
singlet and triplet excited states of a two-electron atom
is analyzed and explained. The important role played
by autoionizing states in photoionization of a two-elec-
tron atom is demonstrated.
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Abstract—The problem of determining the effective conductivity tensor of a magnetoactive turbulent plasma
is considered in the approximation of isolated particles. Additional gyrotropic terms are shown to appear in the
conductivity tensor in the presence of mean, nonzero magnetic helicity. The dispersion of propagating electro-
magnetic waves changes, additional modes and additional rotation of the polarization plane appear, and the
waves can be amplified. The properties acquired by a plasma with helicity are similar to those observed in chiral
and bianisotropic electrodynamic media. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

An effective description of the propagation of waves
and particles in fluctuational magnetic fields in a turbu-
lent conductive medium is of great importance in solv-
ing various problems in plasma physics and astrophys-
ics. The phenomena associated with the presence of
small-scale magnetic helicity 〈A · B〉  (B = curlA),
which manifest themselves virtually on all scales of
plasma systems, play a special role here. Whereas
large-scale helicity contributes to the stability of elec-
tromagnetic structures [1], its presence at the level of
fluctuations is a nonequilibrium phenomenon that is
accompanied by various large-scale instabilities [2].
Other effects produced by small-scale helicity, such as
an asymmetry in the particle distribution and accelera-
tion, are well known in the diffusion theory of cosmic-
ray propagation [3–6]. The gyrotropic acceleration
effects are also known in a laboratory plasma as helicity
input effects [7, 8]. The appearance of additional helic-
ity-related transport was also shown to be possible
in [9]. Changes in the transport properties are also
directly reflected in the dielectric (conductive) proper-
ties of a plasma medium. Thus, for example, it was
shown in [10] that in the presence of fluctuational mag-
netic helicity in the low-conductivity limit, the effective
current in an isotropic plasma proves to be dependent
on the curl of the electric field (j = σE + σκ curlE),
which causes the mean magnetic field to grow under
certain conditions. In [10], the external magnetic field
was disregarded. In natural and laboratory conditions, the
plasma is always under the influence of large-scale mag-
netic fields that significantly affect its properties [11].
Since magnetic helicity also emerges in plasma systems
in the presence of a large-scale magnetic field, a study
of its influence should take into account this factor.
In [12], it was shown for an exactly solvable model of a
nonlinear dynamo that the diffusion and generation rate
are strongly suppressed even in a relatively weak mag-
netic field, and the regime of a fast dynamo transforms
1063-7761/04/9902- $26.00 © 20328
into the regime of a slow dynamo with a linear growth
with time.

The goal of this work is to study the effective con-
ductivity of a turbulent magnetoactive plasma with
nonzero magnetic helicity. The kinetic approach is
commonly used for a thorough theoretical description
of plasma problems. However, allowance for the fluctu-
ational effects of gyrotropy is rather difficult and is pos-
sible in finished form only with an appreciable number
of assumptions and simplifications (see, e.g., [6, 9]). At
the same time, many basic plasma properties can be
determined in the approximation of isolated particles
[11, 13], which will be used below.

The statistical parameters of the electromagnetic
fluctuations are assumed to be stationary and uniform.
In Section 2, we consider the equations of motion for
particles and calculate the effective Lorentz force by
the functional method with allowance for the nonuni-
formity of the electromagnetic perturbations to within
the first order of perturbation theory. In Section 3, we
determine the effective conductivity tensor. Fluctua-
tional magnetic helicity gives rise to new gyrotropic
terms. Our analysis of the dispersion relation both in
the approximation of δ-correlated (in time) fluctuations
(Section 4) and in the opposite case of long correlation
times and high frequencies (Section 6) for electromag-
netic waves and the evolution of the magnetic field (in
the low-frequency limit) (Section 5) reveals changes in
the dispersion of propagating waves and the presence of
instabilities. The characteristic scales and growth rates of
the instabilities are determined by the relationship
between the fluctuational helicity and the energy and the
external magnetic field. A magnetoactive turbulent
plasma with helicity acquires properties similar to those
of chiral and bianisotropic electrodynamic media, which
have been extensively studied in recent years [14, 15]. In
the Conclusions, we discuss our results and implica-
tions of the detected effect.
004 MAIK “Nauka/Interperiodica”
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2. BASIC EQUATIONS

Let us consider the motion of a one-component, sin-
gly charged plasma in a fluctuating electromagnetic
field with given correlation properties. We will consider
a cold plasma where the approximation of isolated par-
ticles [11, 13] can be used. A regular large-scale non-
uniform perturbation of the electromagnetic field that is
too weak to significantly change the correlation proper-
ties of the electromagnetic fluctuations, which are sup-
posed to be given, stationary, and uniform, is assumed
to arise in the system. The expression for the electron
velocity v can be written as

(1)

where e and m are the electron charge and mass, respec-
tively. The electromagnetic field and the velocity can be
represented as the sum of the large-scale slow compo-
nent and the small-scale (with a zero mean) fast com-
ponent:

As was said above, the mean electric and magnetic
fields are assumed to be weak compared to the fluctua-

tional fields, i.e., 〈E〉  !  and 〈B〉  !  <
B0. Passing to the Fourier representation, F(x, t) =

exp[i(k · x – wt)]dkdw, we write

(2)

The equation of motion averaged over the electromag-
netic fluctuations takes the form

(3)

In view of the linear formulation of the problem, below
we disregard the term

.

dv
dt
------

e
m
---- E

1
c
--- v B×[ ]+ 

  ,=

E E〈 〉 Ẽ, B+ B0 B〈 〉 B̃,+ += =

v v〈 〉 ṽ.+=

Ẽ
2〈 〉

1/2
B̃

2〈 〉
1/2

F̂ k w,( )∫

iwv̂ k w,( )–
e

mc
------- v̂ k w,( ) B0×[ ]–

e
m
----Ê k w,( )=

+
e

mc
------- v̂ q s,( ) B̂ k q– w s–,( )×[ ] qd s.d∫

iw v̂ k w,( )〈 〉–
e

mc
------- v̂ k w,( )〈 〉 B0×[ ]–

e
m
---- Ê k w,( )〈 〉=

+
e

mc
------- v̂ q s,( ) B̂ k q– w s–,( )〈 〉+[ ] qd sd∫

ˆ ˆ
+

e
mc
------- ṽ q s,( ) B̃ k q– w s–,( )×〈 〉 qd s.d∫

e
mc
------- v̂ q s,( )〈 〉 B̂ k q– w s–,( )〈 〉×[ ] qd sd∫
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The correlation

can be expressed in terms of the cumulants of the fluctu-
ational magnetic field by using the Furutsu–Novikov the-
orem [16]:

(4)

where the variational derivative  satisfies

the equation

(5)

Here,

(6)

The second variational derivative depends on the third
derivative, etc. In general, the problem is not closed. In
the case of δ-correlated (in time) fluctuations, the first
term is retained in Eq. (4), which corresponds to the
Gaussian approximation. This is also a good approxi-
mation for short correlation times. To take into account
long correlation times, we can use, in particular, a con-
sistent procedure of allowance for the memory effects

ṽ̂ q s,( )〈 〉 B̃ k q– w s–,( )〈 〉ˆ×

ṽ q s,( )〈 〉 B̃ k q– w s–,( )〈 〉× i εijk

δṽ j q s,( )

δB̃m k' w',( )
--------------------------∫=ˆ ˆ

ˆ

ˆ

× B̃m k' w',( )B̃k k q– w s–,( )〈 〉 dk'dw'

+ εijk

δ2ṽ j q s,( )

δB̃m k' w',( )δB̃n k'' w'',( )
------------------------------------------------------ B̃m k' w',( )B̃n k'' w'',( )〈∫

ˆ ˆ

ˆ ˆ
ˆ ˆ

ˆ

× B̃k k q– w s–,( )〉 dk'dk''dw'dw'' …,+ˆ

δṽ j q s,( )

δB̃m k' w',( )
--------------------------

ˆ

ˆ

L̂ js s( )
δṽ s q s,( )

δB̃m k' w',( )
-------------------------- es

mc
-------ε jlm

ql

q2
-----δ s w'–( )δ q k'–( )–=

ˆ

ˆ

+
e

mc
-------ε jlm v̂ l q k'– s w'–,( )〈 〉

+
e

mc
-------ε jlr

δṽ l q' s',( )

δB̃m k' w',( )
-------------------------- B̂r q q'– s s'–,( )〈 〉 q'd s'd∫

ˆ

ˆ

+
e

mc
-------ε jlr

δ2ṽ l q' s',( )

δB̃m k' w',( )δB̃n q' q– s' s–,( )
--------------------------------------------------------------------∫
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ˆ ˆ
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similar to that suggested in [17]. Having obtained the
equation for the nth variational derivative, let us substi-
tute the emerging term with the (n + 1)th derivative with
an effective relaxation term, which reflects the mixing
role of the higher order moments. This, in turn, gives
rise to an effective collision frequency determined by
the pulsation amplitude of the magnetic field in the
equation for the (n – 1)th variational derivative, so the

frequency s in an operator of the type (s) changes to
s'  s + iw*. Here, we restrict our analysis to a sim-
pler approach and set the last term in Eq. (5), as for a
δ-correlated (in time) process, equal to zero. We can
verify by direct analysis that this is possible when the
characteristic frequencies of the electromagnetic fluc-
tuations are much higher than the stochastic Larmor
frequency determined from the mean amplitude of the

magnetic fluctuations, wfluct @ e /mc. This
approximation is similar to the “first post-Markovian”
approximation used in the statistical theory of wave
propagation in a turbulent medium [17]. Thus, for the
first variational derivative, we write

(7)

We take into account the nonuniformity of the mean
field by successive approximations:

(8)

(9)
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Retaining only the linear terms, we write

(10)

Here,  is the operator that is the inverse of :

(11)

In what follows, we use the relationship between the
fields B and E via Maxwell’s equation written in the
Fourier representation as

(12)

For uniform gyrotropic fluctuations with the anisot-
ropy introduced by a uniform magnetic field, the corre-

lation tensor  is [18–20]

(13)

Here, l is a unit vector parallel to the uniform magnetic
field, l || B0. All of the correlation functions, except for
C(q, l · q, s), are even in l · q. The symmetry properties
also admit combinations linear in components of the
vector l considered in [6, 9]. However, it was shown
in [18, 20] that when the anisotropy is attributable to a
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magnetic field, the only possible combinations are qua-
dratic ones.1 This is also confirmed by direct calcula-
tions of the magnetic field effect on the correlation
properties of turbulence [21]. For a weak anisotropy
(and for obtaining analytical results), we can use the
representation 

(14)

Assuming the decay of the correlations with time to
be exponential, ~(τ∗ /τ)exp(–|t – t' |/τ), we write for the
Fourier transform

(15)

Here, τ∗  is the time constant determined by the charac-
teristic frequencies and scales. Thus, for example, for
interplanetary plasma turbulence [22], τ∗  is assumed to
be

where λ is the characteristic fluctuational scale of the
magnetic nonuniformities. Clearly, this estimate may
also be valid for ionospheric plasma.

Let us expand the tensor (k – q, w – s) =

(q – k, s – w) as a series in k ! q,

(16)

and substitute this representation in (10), performing
the integration over the solid angles, the frequencies s.
We then find that, to within the first degree of the
expansion in terms of the correlation time τ and
neglecting the effects quadratic in wave vector (~k2),

1 Indeed, an arbitrary vortex field can be represented as a sum of its
toroidal and poloidal components with the basis defined for an
arbitrary direction of l:

Choosing the direction of the external stationary uniform mag-
netic field as this direction, we find that the dependence on the
components of this direction appears in the tensor of the pair cor-
relations between the magnetic fluctuations only quadratically.

hi x( ) lk
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the Lorentz force averaged over the uniform electro-
magnetic background fluctuations is

where

(17)

(18)

(19)

(20)

Here,

(21)

(22)

(23)

The subscript 0 corresponds to the isotropic case. As we
see, the effective transport coefficients are directly
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related to the mean energy and helicity of the fluctua-
tional magnetic field.

For the time being, let us restrict our analysis to the
approximation of a δ-correlated process, τ  0. The
effects of finite correlation times will be considered
below. For the average Lorentz force, we then obtain

(24)

The last term on the right-hand side of Eq. (24) has
the meaning of constant acceleration along the external
magnetic field. To all appearances, the possibility of
such acceleration was first pointed out in [5] (see
also [6]) and was also considered in detail in [7, 8]
when the helicity input was discussed. It was sug-
gested, as an explanation, that the acceleration is pro-
duced by the electric field generated by a fluctuational
dynamo effect. Attention to the relationship between
the acceleration effect and the transfer of electromag-

e
mc
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ˆ ˆ
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netic field momentum to particles of the medium was
drawn in [23]. Assuming that 〈E〉  and 〈B〉  are equal to
zero, we find that in the nonrelativistic collisionless
limit, a charged particle reaches a velocity

i.e., it does not depend on the correlation time and is
determined by the Larmor frequency in external
magnetic field and by the scale specified by the rela-
tionship between magnetic helicity and energy. In what
follows, we disregard this effect. This is possible for

|k · vmax|/ωe ! 1, where  = 4πne2/m, and n is the
electron density.

3. THE CONDUCTIVITY TENSOR

Given the fluctuational friction specified by the term

the inverse operator is
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Here,

Taking into account the explicit form of the tensor ,
let us write the electron velocity as

(26)
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iwe||' we⊥'
2 Ωe

2–( )
------------------------------------------------------------------------------

+
e
m
----
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where

The calculations for ions are similar, and the ion
velocity can be written as
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(27)

The subscript i refers to the ion analogs of the
parameters introduced for electrons:

As we see, averaging over the electromagnetic fluctua-
tions is equivalent, in particular, to an effective collision

with frequencies proportional to τ∗  and τ∗ .

For the conductivity tensor jk = (k, w)El(k, w)
(j = ne(〈v〉  – 〈v〉 i)), we obtain

(28)
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The coefficients h⊥ e(i) and h||e(i) have the dimensions
of velocity, and it is convenient to represent them as

(29)

where the scale λκ⊥ (||) is defined by the ratio of the helic-
ity and energy of the fluctuations:2 

(30)

Neglecting the fluctuational damping 

( ), we obtain

(31)

2 The characteristic scale of the fluctuational magnetic helicity is
known for solar-wind turbulence [24], where it lies within the
range 0.004–0.02 AU (~6 × 108–3 × 109 m).

h⊥ e i( ) Ω⊥ e i( )
2 τ*λ k⊥ α ⊥ e i( )

Ωe i( )

Ωκ⊥
----------c,= =

α⊥ e i( )

Ω⊥ e i( )
2 τ*
Ωe i( )

-------------------, Ωκ⊥
c

λκ⊥
--------,= =

h||e i( ) Ω||e i( )
2 τ*λ k || α ||e i( )

Ωe i( )

Ωκ||
----------c,= =

α||e i( )

Ω⊥ e i( )
2 τ*
Ωe i( )

-------------------, Ωκ||
c

λκ||
-------,= =

λκ⊥ ||( )
*0⊥ ||( )

%0⊥ ||( )
-------------- 1

2
--- A B⋅〈 〉

B2〈 〉
------------------.≈=

Ω||
2τ*

Ω⊥
2 τ*

4πσ̂kl k w,( ) iw
ωe

2

w2 Ωe
2–

------------------
ωi

2

w2 Ωi
2–

------------------+
 
 
 

δkl=

+
ωe

2Ωe
2

w2 Ωe
2–

------------------
ωi

2Ωi
2

w2 Ωi
2–

------------------+
 
 
  lkll

iw
------

+
ωe

2Ωe

w2 Ωe
2–

------------------
ωi

2Ωi

w2 Ωi
2–

------------------–
 
 
 

εkmllm

+
ωe

2Ωeh⊥ e

w w2 Ωe
2–( )

---------------------------
ωi

2Ωih⊥ i

w w2 Ωi
2–( )

---------------------------–
 
 
 

lmkmδkl llkk–( )

– i
ωe

2h||e

w2
-------------

ωi
2h||i

w2
------------+

 
 
 

lklmεmnlkn

– i
ωe

2h⊥ e

w2 Ωe
2–

------------------
ωi

2h⊥ i

w2 Ωi
2–

------------------+
 
 
 

εkmlkm lklmεlmnkn–( ).
SICS      Vol. 99      No. 2      2004



334 CHKHETIANI
Hence, the permittivity tensor is

(32)

where

(33)

(34)

(35)

As we see from (32), fluctuational helicity gives rise to
additional gyrotropic terms in the permittivity tensor.
To elucidate their role, let us analyze the dispersion
relation for electromagnetic waves.

4. THE DISPERSION RELATION

Denote the angle between the vectors n and B0 by θ.
The dispersion relation for the complex refractive index
n = ck/w is defined as [11]
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The dispersion relation is then
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Let us consider waves that propagate along the mag-
netic field, θ = 0. In this case, the dispersion relation (37)
has the solutions

(38)

Given that
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the wave vector is

whence the equation for frequency is
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At low frequencies with  !  and

 @ , the square of the frequency is

(41)

where  = /4πnM.

At low values of /c2k2 (for small scales),

(42)

In this case, the coefficient of the complex refractive
index does not depend on the wave vector. In contrast,

at high values of /c2k2 (for large scales),

(43)

As we see, in the presence of magnetic fluctuation
helicity, there is an instability and the amplitude of the
electromagnetic waves propagating in a plasma
increases. This demonstrates the nonequilibrium exist-
ence of reflectional symmetry breaking at the level of
fluctuations. Thus, for example, helicity also leads to an
instability, an inverse energy cascade, in magnetohy-
drodynamics [2]. Unstable waves have nonzero helic-
ity, i.e., a vortex component of the electric field. The
motion of charged particles in a magnetic field with
fluctuational helicity is equivalent to the motion in ran-
dom helical magnetic fields with preferred helix orien-
tation. The resonance condition during the motion of
particles in a helical magnetic field is satisfied for the
particles that move in a direction opposite to the field
(B · v < 0) [25]. After averaging, this resonance condi-
tion will correspond to the following: when the helici-
ties of the perturbations and fluctuations have opposite
signs, the perturbations will give up energy to particles
of the medium; in contrast, when the helicities of the
perturbations and fluctuations have the same signs, the
field will be amplified—taking away energy from par-
ticles of the medium. Indeed, the helicity of growing
waves coincides in sign with the small-scale fluctua-
tional helicity. In the opposite case, the perturbation is
damped. Note also that the dispersion of the propagat-
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ing waves changes as well. For large scales, w ~ k1/2, the
dispersion law is similar to that of gravity waves in deep
water whose phase velocity increases with scale. Such
long waves can be revealed in the spectrum of geoelec-
tromagnetic perturbations. Note that the fast large-
scale electric perturbations in the E region of the iono-
sphere that accompany such catastrophic events as
magnetic storms and substorms, earthquakes, and
man-made explosions are, to all appearances, of a vor-
tex nature [26].

Let us consider the range of helicon frequencies:

Ωi ! w ! Ωe ,  @ wΩe . In this case, the frequency
can be expressed as

(44)

The wave propagation is also accompanied by an insta-
bility with the growth rate .

Retaining the quadratic terms in the expansion of

the Lorentz force  in terms
of large scales (k ! q) yields a lower limit for such
instability [10], and the perturbations are damped at
k > kcrit .

Let us consider the waves that propagate perpendic-
ular to the magnetic field, θ = π/2. In this case, the
square of the complex refractive index is

(45)

In the absence of helicity, the first and second expres-
sions in (45) would correspond to the extraordinary and
ordinary waves, respectively. As we see, their propaga-
tion conditions change, and elliptical polarization
attributable to helicity appears in both types of waves.

5. THE OHM LAW FOR LOW FREQUENCIES

Let us consider the case of low frequencies where

w ! τ∗  ( τ∗ ) and take into account the colli-

sion frequency ν = 1/τc @ w (1/  for ions). To simplify
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our calculations, we also assume a weak anisotropy of

the fluctuations,  ≈  and  ≈
 = αe(i)λκ . The conductivity tensor (28) in this

limit will then appear as

(46)

Here, we introduced the following characteristic time
scales:
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Having defined the conductivities

the current after applying the inverse Fourier transform
can be written as

(48)

The influence of fluctuations and external magnetic
field primarily causes the conductivity to decrease,
while the presence of helicity leads to an additional
dependence of the current on the vortex component of
the electric field.

Let us consider the mean magnetic field in a
medium with the Ohm law (48). We will disregard the
ion component (the EMHD approximation). Neglect-
ing the displacement current, we obtain the following
expression for the growth rate γ of wave field perturba-
tions of the form
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---------------------------------------------------------------------------------------------->
the perturbations grow. For intense magnetic fluctua-

tions, τe ≈ 1/ τ∗  ! τc , and we obtain for the threshold
wave number

Ω||
2

α e κλ  * 
1

Ω||
2τ*τc

----------------- 1
Ωe

2

2 Ω||
2τ*( )

2
-----------------------+

 
 
 

.
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In the collisionless limit τc  0, the threshold wave
number is

i.e., the threshold instability scale also increases with
fluctuation amplitude (parameter αe). On this threshold
scale, the waves with the following frequency propa-
gate at τe ! τc:

Retaining the quadratic terms in the permittivity tensor
gives rise to dissipative terms of the form –σ∗ ∆〈E〉  +

∇ div 〈E〉  [10] in the Ohm law. Their influence
restricts the instability region, and the field perturba-
tions are damped on small scales.

6. FINITE CORRELATION TIMES

Consider the effects of finite correlation times for
high frequencies, wτ @ 1, with the anisotropy effects

α e kλ 1
2
---;>

w
c2

8πσ0e

-------------- 1

α e
2λ2Ω||

2τ*τc

-----------------------------
1 Ωe

2τc
2+

Ωeτc

--------------------- 1
Ωe

2

2 Ω||
2τ*τc( )

2
----------------------------+

 
 
 

.=

σ*
'
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disregarded. These also include the case of long corre-
lation times. In this limit, the effective Lorentz force is

The gyrotropic fluctuational acceleration will be
replaced with oscillations. The frequencies will acquire
a negative shift, and the permittivity tensor will take the
form

e
mc
------- v̂ q s,( ) B̂ k q– w s–,( )×〈 〉 qd sd∫

=  
4
3
---iwτ e

mc
------- 

 
2

%̂τ* v̂ k w,( )〈 〉–

–
2τ
3
----- e

m
---- e

mc
------- 

 
2

H0⊥ τ*i k Ê k w,( )〈 〉×[ ]

+
2
3
--- e

mc
------- 

 
2

E0τ*τ Ωe v̂ k w,( )〈 〉×[ ]

–
2
3
---iτw

e
mc
------- 

 
2

H0τ*Ωeδ k( )δ w( ).
(50)

Consider the waves propagating along the magnetic field, θ = 0. In this case, the dispersion relation (37) has
the solutions

(51)

ε̂
ε⊥ wτχ 0kz– ig iwτχ ⊥ kz+ wτχ 0kx iwτχ ⊥ ky–

ig– iwτχ ⊥ kz– ε⊥ wτχ 0kz– wτχ 0ky iwτχ ⊥ kx+

iwτχ ||ky iwτχ ||kx– ε|| 
 
 
 
 

.=

n1 2, ε⊥ g+( ) 1
2wτ χ 0 χ⊥–( )

4c2 ε⊥ g+( )2 χ0 χ⊥–( )2w4τ2+( )1/2 χ0 χ⊥–( )cw2τ+−
---------------------------------------------------------------------------------------------------------------------------±

 
 
 

,=

n3 4, ε⊥ g–( ) 1
2w2τ χ 0 χ⊥+( )

4c2 ε⊥ g–( )2 χ0 χ⊥–( )2w4τ2+( )1/2 χ0 χ⊥+( )cw2τ+−
---------------------------------------------------------------------------------------------------------------------------±

 
 
 

.=
Assuming the helical additions to be small, we can
write

(52)

n1 2, ε⊥ g
w2τ χ 0 χ⊥–( )

c
-------------------------------±+=

=  1
ωe

2

w w Ωe–( )
-------------------------

ωi
2

w w Ωi+( )
-------------------------––

−+ α⊥ e

ωe
2Ωeτ

w Ωe+( )Ωκ⊥
------------------------------- α⊥ i

ωi
2Ωiτ

w Ωi–( )Ωκ⊥
------------------------------+ 

  ,
S

(53)

It is easy to see that an additional rotation of the polar-
ization plane appears here.

n3 4, ε⊥ g–
w2τ χ 0 χ⊥+( )

c
--------------------------------±=

=  1
ωe

2

w w Ωe+( )
--------------------------

ωi
2

w w Ωi–( )
-------------------------––

α⊥ e

ωe
2Ωeτ
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2Ωiτ
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For the waves propagating perpendicular to the
magnetic field, θ = π/2, we obtain the following solu-
tions:

(54)

As in the approximation of a δ-correlated random pro-
cess (45) considered above, the propagation conditions
change, and elliptical polarization attributable to helic-
ity appears in both the ordinary and extraordinary
waves. Note that in the case of infinite correlation times
or high frequencies (frozen fluctuations), the properties
of a plasma medium with magnetic helicity are similar
to those of chiral and bianisotropic media [14, 15].

In actual systems, wτ is finite and the effects of both
instability considered in Section 4 and the appearance
of additional wave modes must simultaneously mani-
fest themselves.

7. CONCLUSIONS

The influence of magnetic fluctuations on the
motion of the particles of a cold magnetoactive plasma
primarily reduces to the appearance of an effective fluc-
tuational collision frequency determined by the statisti-
cal parameters and to a decrease in conductivity.
Reflectional symmetry breaking—nonzero mean mag-
netic helicity of the fluctuations—leads to a change in
the dispersion of the propagating waves and the appear-
ance of additional modes. The waves can be unstable,
reflecting both the nonequilibrium nature of the turbu-
lent magnetic helicity and the peculiarities of the parti-
cle motion in random helical magnetic fields. The insta-
bility growth rate is proportional to the helicity of the
fluctuational magnetic field and the amplitude of the
large scale uniform magnetic field. Allowance for the
finite correlation times and for the additional fluctua-
tional quadratic dispersion effects restricts the action of
this instability. In contrast to the turbulent dynamo
effects considered in the MHD and EMHD approxima-
tions [2], here there is a natural restriction on the insta-
bility region on large scales determined by the relation-

n1
2 1

2ε⊥
-------- ε⊥ ε⊥ ε||+( ) g2– κ '+{=

+ ε⊥ ε⊥ ε||–( ) g2–( )2[

– 2 ε⊥ ε⊥ ε||+( ) g2–( )κ ' κ '2+ ]1/2 } ,

n2
2 1

2ε⊥
-------- ε⊥ ε⊥ ε||+( ) g2– κ '+{=

– ε⊥ ε⊥ ε||–( ) g2–( )2[

– 2 ε⊥ ε⊥ ε||+( ) g2–( )κ ' κ '2+ ]1/2 } ,

κ '
w4τ2 gχ0 ε⊥ χ⊥+( )χ||

c2
------------------------------------------------.=
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ship between the fluctuational helicity and energy and
the large-scale magnetic field. The plasma acquires
properties similar to those observed in chiral and
bianisotropic media [14, 15]. Consequently, it can have
properties characteristic of these media, such as anom-
alous absorption [27, 28] and additional wave conver-
sion effects [29, 30]. In contrast to the artificial external
origin of the chirality in chiral media, this property is
natural in a turbulent magnetoactive plasma with helic-
ity. The deviations in the rotation of the polarization
plane attributable to fluctuational helicity can serve as a
tool for diagnosing it. The results were obtained in the
approximation of isolated particles, the advantages of
which and disadvantages are well known. It is easy to
see that the above effects are preserved when the ther-
mal and collisional effects are taken into account and
can be obtained in terms of the kinetic approach.
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Abstract—During current passage through an electrolyte solution, ions entrain their hydration shells, which
gives rise to the accompanying diffusion flow of water molecules and internal convection analogous to that
observed in superfluid He3 + He4 solutions. Hydrodynamic conditions are determined under which the total
water flux on a solid surface is zero. The convective boundary layer on a vertical plate is theoretically described
using the von Karman method. The diffusion–mechanical effect in thin capillaries is evaluated. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

As is known, the motion of an electron in an ionic
crystal may be accompanied by the phenomenon of
autolocalization of the charged particle in a polarization
well. The motion of this quasiparticle—a polaron—
involves the motion of the potential well together with
the electron. However, since dipoles are fixed at the lat-
tice sites, the potential well of a moving polaron disap-
pears upon its leaving one lattice site and appears again
as it passes by another site and so on.

In polar liquids, the motion of charged particles may
proceed according to an alternative mechanism.
According to this, a polarization well appears at an ion
(by analogy with the case of ionic crystals) since the
charged particle is surrounded by polarized water mol-
ecules forming the hydration shell. The hydration shell
is formed due to chemical bonds—quantum exchange
interactions between ions and water molecules, obey-
ing the Pauli principle of the wave function symmetry.
If the chemical bonds formed between an ion and the
surrounding water molecules are sufficiently strong, it
is energetically favorable for the charged particle to
move together with the hydration shell (retaining the
same water molecule in the surrounding), rather than to
periodically destruct and reconstruct this polarization
well. Thus, in an electrolyte solution, the diffusion flow
of ions is accompanied by the flow of bound water mol-
ecules. On a metal surface under the conditions of elec-
trolysis, ions pass from solution to the ion lattice,
whereas water molecules of their hydration shells accu-
mulate at the surface until the internal convection will
arise, representing a hydrodynamic flow of liquid gen-
erated at the metal surface. Naturally, the internal con-
vection in electrolyte solutions differs from that in
superfluid helium; nevertheless, an important similarity
still exists.

The phenomenon of internal convection is well
known in the physics of quantum fluids, where this term
refers to counterflowing normal and superfluid compo-
1063-7761/04/9902- $26.00 © 20340
nents arising in quantum solutions in the presence of a
temperature gradient. The flux of the superfluid compo-
nent is directed along the temperature gradient (from the
region of lower temperature toward heated fluid) [1]. The
two-fluid hydrodynamics (i.e., the hydrodynamics with
internal convection) predicts a number of special
effects. In particular, convective instability in the quan-
tum He3 + He4 solutions arises on heating from below,
rather from above as in the normal fluids [2]. On the
other hand, the analogs of the two-fluid effects, such as
thermomechanical effect, are also observed in normal
fluids [3]. We can expect that internal convection
caused by the diffusion transfer of water molecules by
ions in electrolyte solutions will also give rise to new
effects.

2. HYDRODYNAMIC BOUNDARY CONDITIONS

Let us find a relationship between the normal veloc-
ity component v n of a liquid flowing over a metal sur-
face and the flux I of ions to this surface. The number

 of water molecules generated on a unit electrode
surface area per unit time obeys the equation

(1)

where r is the coordination number (the number of
water molecules strongly bound to and moving with an
ion). According to this relation, the mass density 
of the diffusion flux of water on the electrode surface is

(2)

where  is the gram-molecular weight of water and
N is the Avogadro number. Equation (2) describes the
mass flow rate of water from the volume of the solution
to the cathode surface. Since the metal surface is imper-
meable to water molecules, the total flux on this surface

nH2O

nH2O Ir,=

QH2O

QH2O

MH2OrI

N
-----------------,=

MH2O
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must be zero. Therefore, the metal surface must obey
the following condition:

(3)

where ρ is the liquid density. Using formula (3), we
readily obtain an expression for the velocity of internal
convection on the metal surface:

(4)

Thus, the boundary conditions for the normal and tan-
gential velocity components on the metal surface can
be written as

(5)

where α = r/Nρ.

Note that the boundary conditions (5) have the same
form as those for the normal component of superfluid
HeII. Therefore, we may expect that electrolyte solu-
tions are featuring the effects similar to the two-fluid
effects in superfluid helium.

3. CONVECTIVE BOUNDARY EFFECTS
IN ELECTROLYTE SOLUTIONS

Consider a vertical metal plate (electrode) and let
ions of the same metal deposit from an electrolyte solu-
tion on the electrode surface. As a result of the ion dep-
osition, the concentration of ions near the electrode sur-
face decreases. This leads to a decrease in the electro-
lyte density and causes the appearance of buoyancy
forces, which set the solution in motion and gives rise
to the free concentration-induced convection. For suffi-
ciently large Rayleigh numbers (Ra > 104), the free
convection can be considered in the boundary layer
approximation.

Placing the origin of the coordinates on the lower
end of the metal plate and directing the x axis upward
and the y axis perpendicularly to the metal surface, we
can write the following system of equations for the con-
vective boundary layer in dimensionless coordinates [4]:

(6)

(7)

(8)

where D is the ion diffusion coefficient. Dimensionless
coordinates are introduced using the electrode height H
as the unit of length, the D/H ratio as the unit of veloc-
ity, and the Dc0/H as the unit of particle flux density.

System of equations (6)–(8) was solved using the
method of von Karman [5]. According to this method,

v nρ QH2O+ 0,=

v n

MH2Or

Nρ
---------------I .–=

v n s α I s, v t s– 0,= =

MH2O

D
v
---- V ∇⋅( )V x

∂2V x

∂y2
-----------

gH3c0

v Dρ
---------------∂ρ

∂c
------C,+=

∂V x

∂x
---------

∂Vy

∂y
---------+ 0,=

∂2C

∂y2
--------- V x

∂C
∂x
------- Vy+ +

∂C
∂y
-------– 0,=
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the boundary conditions for the particle velocity and
concentration are formulated on a finite interval (0, δ)
(where δ = δ(x) is the boundary layer thickness), rather
than on the semi-infinite interval (0, ∞)). In the von
Karman (boundary layer) approximation, the boundary
conditions corresponding to the complete absorption of
ions on the metal surface have the following form:

(9)

(10)

(11)

where

According to the von Karman method, we pass from
differential equations (6) and (8) to the corresponding
integral equations. Integrating Eqs. (6) and (8) with
respect to y from y = 0 to y = δ and taking into account
the boundary conditions (9) and (11), we arrive at the
system of equations

(12)

(13)

Equation (12) is written in the zero approximation with
respect to the small parameter D/v, and the nonlinear
term is omitted. Calculating the integral in Eq. (13) by
parts and using the boundary condition (10), Eq. (13)
can be transformed to

(14)

In the von Karman approach adopted, the unknown
quantities—the solution velocity and the ion concentra-
tion—are found in the form of polynomials satisfying
boundary conditions (9) and (11). The simplest polyno-
mials of this type are as follows:

(15)

(16)

where U and δ are functions of the variable x.
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Using expression (16), the ion flux to the metal sur-
face can be written as

(17)

Using this relation, we obtain the following system of
equations for the functions U and δ:

(18)

(19)

Integrating this system with the boundary conditions
δ|x = 0 = 0 and using relation (17), we obtain an expres-
sion for the current density,

(20)

where

is the Rayleigh concentration number.
Finally, integrating Eq. (20) over the entire surface

plate, was can determine the Sherwood number as

(21)

As can be seen, the internal convection in electrolyte
solutions leads to an increase in thickness of the con-
vective boundary layer and a decrease in the Sherwood
number.

4. CONCLUSIONS

It was established that the diffusion flow of ions,
which are strongly bound to their hydration shells, in
electrolyte solutions is accompanied by the diffusion
flow of water. If the ions reaching an electrode pass
from solution into metal and release their hydration
shells, internal convection appears exhibiting a certain
similarity with the internal convection known in super-
fluid solutions. Since the total flux of water molecules
on the metal surface must be zero, the system obeys
boundary condition (3), which implies that the solution
velocity meets boundary conditions (5). These equa-
tions have the same form as the boundary conditions for
the normal velocity component of superfluid helium (if
the particle flux I is replaced by the flux of the super-
fluid component). Therefore, we may expect that elec-
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trolyte solutions feature the effects analogous to the
two-fluid effects in superfluid helium.

For example, let us consider the diffusion-mechani-
cal effect in thin capillaries, which is an analog of the
thermomechanical effect in HeII. The difference in the
ion concentrations ∆c = c2 – c1 between the ends of a
thin capillary of length L and radius R gives rise to the
diffusion flux

The ion flow is accompanied by a diffusion flow of
water molecules with the mass flux density Q = αI.
Using the boundary conditions, according to which the
total flux of solvent through the capillary cross section
is zero, we obtain an expression for the corresponding
pressure difference between the ends of the capillary:

(22)

where η is the dynamic viscosity. Formula (22) ignores
the convective flow of ions and, hence, is valid for

As can be seen from formula (21), the manifestation
of internal convection and the two-fluid effects in elec-
trolyte solutions are determined by the dimensionless
parameter γ proportional to the concentration of parti-
cles (11). The value of this parameter for c0 = 6 ×
1020 cm–3 and r = 10 is γ = 1.8; therefore, for not very
strongly diluted solutions, the γ value is on the order of
unity.

In view of boundary conditions (5), we can ascertain
that the hydrodynamics of electrolyte solutions pre-
sents an intermediate case between the hydrodynamics
of normal fluids and superfluid systems.
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Abstract—A method is developed for analyzing the state of polarization of a plane wave transmitted through
a polymer-dispersed liquid-crystal (PDLC) film with nanosized liquid-crystal (LC) droplets. This method is
based on the anisotropic-dipole approximation for describing scattering by a separate droplet and on the Foldy–
Twersky approximation for describing propagation of light in a film. Equations are obtained that relate the ellip-
sometric parameters of coherent (direct) light transmitted through a PDLC film to the order parameters that
characterize the morphological and structural properties of the film. Elliptic and circular polarizations and the
rotation of the plane of polarization of a wave transmitted through a film are investigated under the normal illu-
mination of the PDLC film by a linearly polarized plane wave. The order parameters of the PDLC film are deter-
mined as a function of a control field under the transition from a partially ordered structure of optical axes of
LC droplets to a homeotropic structure. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Polymer-dispersed liquid-crystal (PDLC) films are
polymer films that contain embedded liquid-crystal
(LC) droplets enclosed between two transparent plates
with transparent electrodes [1–5]. These films are used
in display units and devices for controlling and modu-
lating light beams as diffraction gratings, lenses, polar-
izers, spectral filters, etc. [3–11]. They are character-
ized by higher light stability, mechanical strength, flex-
ibility, and resistance to external actions compared with
the devices based on homogeneous LC films. The
application of PDLC films allows one to enhance the
functional capabilities of optical LC elements.

Films with nanosized LC droplets [12–14] represent
a new type of PDLC films. These films are character-
ized by low scattering and high transmission. They can
be used for modulating the phase and the polarization
of light in telecommunication systems [15]. The devel-
opment of methods for describing light propagation
that allow one to relate the amplitude, phase, and polar-
ization of a transmitted wave to the morphological
parameters of a film is an important problem in investi-
gating PDLC films with nanosized LC droplets.

In this paper, we propose a method for analyzing the
polarization of a plane wave transmitted through a
PDLC film with nanosized droplets of a nematic LC
with axially symmetric distribution of molecules. We
investigate elliptically and circularly polarized waves
and the rotation of the polarization plane of the trans-
mitted wave under the normal illumination of the
PDLC film by a linearly polarized plane wave. First, we
solve the problem of scattering by a separate LC droplet
and then apply the Foldy–Twersky equation in the
1063-7761/04/9902- $26.00 © 20343
approximation of independent scatterers to determine
the coherent field transmitted through a plane-parallel
PDLC film. The specific feature of the approach pro-
posed in this paper is the application of order parame-
ters [16–18] that characterize the orientation ordering
of LC molecules inside the droplets and of the optical
axes (directors) of the droplets in the film. This
approach significantly simplifies solving the problem.

In Section 2, we determine the amplitude scattering
matrix averaged over the sizes of LC droplets and the
orientations of their optical axes in the anisotropic-
dipole approximation [19].

In Section 3, we apply the generalized Foldy–Twer-
sky integral equation [20] for the vector case to derive
formulas for the rotation angle of the polarization plane
and to derive conditions under which a transmitted
wave is circularly polarized.

In Section 4, we present the results of calculations
and the analysis of these results for the films in which a
transition from a partially ordered structure of directors
of nematic droplets to a homeotropic structure occurs.
We derive a formula for the order parameters of a film
under such an orientation rearrangement of droplet
directors as a function of a control field. The results
obtained allow one to evaluate a control voltage that
admits efficient transformation of polarization.

2. AMPLITUDE SCATTERING MATRIX 
AND ORDER PARAMETERS OF DROPLETS

Suppose that the amplitude of the field inside a
droplet is equal to that of the incident wave and that the
variation of the phase of the wave is insignificant. In this
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case, one can apply the Rayleigh approximation [19] to
describe the scattering by a separate droplet. Let us rep-
resent an LC droplet with a cylindrically symmetric
distribution of molecules as an anisotropic dipole. The
direction of the induced dipole moment P of such a
droplet does not coincide with the electric field vector
Ei of the incident wave; i.e.,

(1)

where εp is the dielectric permittivity of the polymer
matrix and  is the polarizability tensor of LC droplets
in the system of coordinates ee'ei fixed to the incident
wave (Fig. 1).

In Fig. 1, the unit vector ei defines the direction of
illumination in the laboratory system of coordinates
xyz, and ki = kei is the wave vector of the incident wave
(k = 2π/λp, λp is the wavelength of the incident wave in
the polymer matrix). The unit vector e defines the direc-
tion of polarization of the incident wave (Ei = Eie, Ei is
the amplitude of the incident wave). The unit vector e'
is orthogonal to the polarization plane eie of the incident
wave and is directed along the vector product ei × e. es is
the unit vector that defines the direction of scattering
(ks = kes is the wave vector of the scattered wave). The
unit vector ed defines the direction of the symmetry axis
of the distribution of LC molecules inside a droplet (the
optical axis, or the director of the droplet [3, 4, 21]).
The angles θi , θs , and θd define the orientations of the
vectors ei , es , and ed with respect to the z axis, and
angles ϕi , ϕs , and ϕd define the orientations of the pro-
jections of vectors ei , es , and ed onto the xy plane with
respect to the x axis. Recall that the directions +ed and
–ed are physically equivalent in the films considered.

P εpα̃Ei,=

α̃

x
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Fig. 1. Geometry of scattering by a separate droplet. Nota-
tion is explained in the text.
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Let us express the electric field of the scattered field
Es in the far-field zone in the direction of es as [22]

(2)

where r is the distance from the droplet center to the
observation point.

In a rectangular system of coordinates e||e⊥ ed, where
the unit vectors e⊥  and e|| are directed along ei × ed and
e⊥  × ed, the permittivity tensor  has a diagonal form:

(3)

where εdo and εde are the effective permittivities of the
LC droplet for the ordinary and extraordinary waves. To
determine the dielectric permittivities of the LC droplet,
we apply the effective-medium approximation [23].
Then,

(4)

(5)

Here,

εo and εe are the permittivities of the LC for ordinary
and extraordinary waves and S is the molecular order
parameter of the LC [3, 4, 21]. Sd is the order parameter
of the LC droplet that characterizes the orientation
ordering of the axes of LC molecules inside the droplet.
In the isotropic phase with a chaotic orientation of mol-
ecules in the LC droplet, Sd = 0; when all the molecules
are oriented along the same direction, Sd = 1.

Let us define the amplitude scattering matrix S with
elements Sj , j = 1, 2, 3, 4, as

(6)

Here,  and  are the components of the electric

vector of the transmitted wave along the unit vectors 

and  (  || [ei × es],  || [  × ei]) and  and 
are the components of the electric vector of the scat-

tered wave along the unit vectors  and  (  || [ei ×

es],  || [  × es]). Note that  = .

Es
ikr( )exp

–ikr
--------------------- ik3

4πεp
-----------es es P×[ ]× ,–=

ε

ε
εdo 0 0

0 εdo 0

0 0 εde 
 
 
 
 

,=

εdo εiso
1
3
---∆εSSd,–=

εde εiso
2
3
---∆εSSd.+=

εiso

2εo εe+
3

------------------, ∆ε εe εo,–= =

E||
s

E⊥
s

 
 
 
 

ikr( )exp
ikr

---------------------
S2 S3

S4 S1 
 
  E||

i

E⊥
i

 
 
 
 

.–=

E||
i E⊥

i

e||
i

e⊥
i e⊥

i e||
i e⊥

i E||
s E⊥

s

e||
s e⊥

s e⊥
s

e||
s e⊥

s e⊥
i e⊥

s

AND THEORETICAL PHYSICS      Vol. 99      No. 2      2004



POLARIZATION OF LIGHT TRANSMITTED THROUGH A POLYMER FILM 345
Using expressions (1), (2), and (6) for the elements
of the amplitude scattering matrix, we obtain

(7)

(8)

(9)

(10)

To determine the polarizability tensor  in the coor-
dinate system ee'ei , we write a transition matrix A from
basis ee'ei to basis e||e⊥ ed, in which the polarizability
tensor has a diagonal form:

(11)

In the Rayleigh approximation, the relation between
the polarizability tensor  and the permittivity tensor

 for an optically soft LC droplet in the coordinate sys-
tem e||e⊥ ed can be expressed as

(12)

where v  is the volume of the droplet and  is a 3 × 3
identity matrix.

Let us divide the permittivity tensor  given by (3)
into isotropic and anisotropic components [24]:

(13)

where  = (2εdo + εde)/3, ∆εd = εde – εdo is the optical
anisotropy of the LC droplet and

(14)

Then, in the coordinate system ee'ei , we have the fol-
lowing expression for the polarizability tensor  that
appears in formulas (7)–(10):

(15)
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In view of the orthogonality of the bases ee'ei  and
e||e⊥ ed, we used here the transposed matrix AT instead of
the inverse matrix A–1.

Let us express vectors , , and  in basis ee'ei .
Then, using formulas (7)–(15) for the elements of the
amplitude matrix, after relevant mathematical transfor-
mations, we obtain

(16)

(17)

(18)

(19)

Equations (16)–(19) are expressed in the laboratory
system of coordinates xyz without any assumption
about the direction of illumination and the orientation
of the droplet.

When the film is illuminated by a wave propagating
parallel to the z axis (θi = 0, ei || z), vectors e and e' lie
in the xy plane. In the laboratory system of coordinates
xyz, for a fixed orientation of director ed of a droplet, the
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elements of the amplitude scattering matrix of the drop-
let are expressed as

, (20)

(21)

(22)

(23)

Here, δ is the scattering angle determined by vectors ei
and es (Fig. 1), ϕs is the angle between scattering plane
eies and the zx plane, and angle ϕd defines the orienta-
tion of the principal plane eied with respect to the zx
plane.

As a rule, PDLC films consist of polydispersed
ensembles of LC droplets. Therefore, analysis of a
coherent field transmitted through a PDLC film
requires knowledge of the averaged elements of the
scattering matrix. Let us average elements (20)–(23) of
the scattering matrix over the sizes and orientations of
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Fig. 2. Schematic view of a PDLC film and the geometry of
its illumination; ei is the direction of the incident wave, e is
the direction of the polarization of the incident wave, α is
the angle of polarization, dj is the director of the jth droplet,
〈d〉  is the orientation of the droplet directors, and l is the
thickness of the film.

dj
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droplets. Assuming that the distribution of the droplet
directors is cylindrically symmetric, we obtain

(24)

(25)

(26)

Here, the angle brackets denote averaging over the sizes
of droplets and the orientations of their directors; 〈v 〉  is
the average volume of an LC droplet; and Sx , Sy , and Sz

are order parameters that characterize the orientation
ordering of the directors of LC droplets in the xyz coor-
dinate system [16, 17]:

(27)

(28)

(29)

The parameters Sx , Sy , and Sz are related by the equation

(30)

If Sx = Sy , then the elements (24) and (25) of the
averaged amplitude scattering matrix coincide with the
elements of the averaged amplitude scattering matrix
obtained in [25].

The formulas for the elements of the amplitude scat-
tering matrix that are derived in this section in the Ray-
leigh approximation can be used for analyzing the
transmission of light through films containing particles
such that the scattering by these particles is described in
the Raylegh–Gans approximation. To this end, one
should multiply each element (16)–(19) of the scatter-
ing matrix by an appropriate form factor [19, 22].

3. POLARIZATION TRANSFORMATION: 
BASIC RELATIONS

Consider a PDLC film under normal illumination by
a linearly polarized plane wave. The laboratory system
of xyz coordinates is shown in Fig. 2. The z axis defines
the direction of the normal vector to the film, and the xy
plane coincides with the lower boundary of the film.
The x axis is chosen so that the director of the droplets,
averaged over the volume of the film, 〈d〉 , lies in the zx
plane. Then, a wave polarized along the x axis is
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extraordinary, while a wave polarized along the y axis
is ordinary.

Using the Foldy–Twersky equation, we determine
the coherent field transmitted through the film [20, 22].
Let us write this equation for the vector case as

(31)

Here, 〈Eo〉  and 〈Ee〉  are the ordinary and extraordinary
components of the coherent field of a wave transmitted
through a PDLC film.

The functions ψe, o(z) are solutions to the integral
equations

(32)

where q = 2πk–2Nv, Nv is the number of LC droplets per
unit volume, and 〈Se, o(0)〉  are the amplitude scattering
functions, averaged over the droplet sizes and the orien-
tations of their directors, for the extraordinary and ordi-
nary waves for zero scattering angle (δ = 0).

The solution to Eq. (32) is given by

(33)

Here, ke and ko are the propagation constants of the
extraordinary and ordinary waves:

(34)

The amplitude scattering functions Se(0) and So(0)
are calculated with the use of formula (25):
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we obtain

(37)

(38)

(39)

where cv = Nv〈v 〉  is the volume concentration of LC
droplets in the film. The coefficients te and to are defined
by the relations

(40)

where γe and γo are the extinction indices of the extraor-
dinary and ordinary waves, respectively:

(41)

(42)

Note that, in the Rayleigh approximation, one can-
not use formulas (42) to determine the total scattering
cross sections σe and σo of nonabsorbing LC droplets
because the real parts of the amplitude scattering func-
tions 〈Se(0)〉  and 〈So(0)〉  vanish [19, 22]. Therefore, one
has to integrate the modules of the squares of the scat-
tering matrix amplitudes over the total solid angle Ω =
4π. Taking into account the fact that the amplitude scat-
tering matrix is diagonal and that

we can write the following expressions for the total
scattering cross sections:

(43)

(44)

Using (24), (25), and (41)–(44), we obtain the fol-
lowing formulas for the extinction indices γe and γo of
spherical LC droplets:
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〈d3〉/〈d〉3. In the case of the gamma distribution of LC
droplets with respect to their sizes [26, 27], f = (1 +
2/µ)(1 + 1/µ), where µ is the distribution parameter.

To analyze the state of polarization of the transmitted
wave, we determine the phase difference ∆Φ between
the ordinary and extraordinary waves. Using (4), (5),
(13), and (39), we obtain

(46)

Hence, a transformation of the state of polarization is
only possible in the case of partial orientation of the
droplet directors (Sx ≠ Sy). For a full orientation of the
droplet directors (along the x axis), Sx = 1, Sy = Sz =
−1/2, and the difference Sx – Sy = 3/2 becomes maximal.
If Sx = Sy (cylindrically symmetric distribution of drop-
let directors with respect to the z axis or a chaotic dis-
tribution of directors), then ∆Φ = 0; i.e., the original
state of polarization is preserved. In this case, the prob-
lem of wave propagation through a PDLC film under
normal illumination can be considered in the scalar
approximation [25].

In the system of coordinates chosen, we have Sx > Sy

(Fig. 2). The order parameters Sx and Sy can be deter-
mined from (27)–(30):

(47)

(48)

(49)

(50)

Suppose that we have a uniform angular distribution
of the probability density ϕd. Then,

(51)

where ϕdm is the angle of maximal deviation of the
droplet director from the x axis.

Formulas (47)–(51) allow one to analyze the state of
polarization as a function of the order parameters of the
PDLC film during the transition from a partially
ordered structure of droplet directors to a homeotropic
structure, where the directors of all droplets (with pos-
itive anisotropy of the LC, ∆ε > 0) are directed along
the control field (along axis z). The direction of the
averaged director of droplets 〈d〉  depends on the magni-
tude of the applied field. As the magnitude of the
applied field increases, the angle between the z axis and
vector 〈d〉  decreases. This angle vanishes in the limit of
infinite field. The transition from a partially ordered
structure of droplet directors to a homeotropic structure
differs from the transition from a chaotic to a homeotro-
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-----2∆ε
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----------SSd Sx Sy–( ).= =

Sx
1
2
--- 1 Sz–( )g Sz–( ),=

Sy
1
2
--- Sz 1–( )g Sz–( ),=

Sx Sy– g 1 Sz–( ),=

g ϕdcos
2〈 〉 ϕ dsin

2〈 〉 .–=

g sinc 2ϕdm( ),=
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pic structure, which occurs in most PDLC films, by the
range of variation of order parameter Sz. In the former
case, –1/2 ≤ Sz ≤ 1, whereas, in the latter, 0 ≤ Sz ≤ 1.

To analyze the polarization characteristics of the
transmitted light, let us write an equation for the polar-
ization ellipse using formulas (37) and (38):

(52)

where ae = tecosα and ao = tosinα. The semiaxes A and
B of the polarization ellipse and the rotation angle ξ of
the axes of the polarization ellipse with respect to the xy
axes of the laboratory system of coordinates are given
by

(53)

(54)

(55)

Formulas (53)–(55) allow one to analyze the ellipso-
metric parameters (azimuth and ellipticity) of the light
transmitted through a PDLC film during the transition
from a partially oriented structure of droplet directors to
a homeotropic structure and to determine the sign of
rotation of the polarization plane and the conditions
under which the transmitted wave is circularly polarized.

4. ANALYSIS OF THE RESULTS

Let us define the azimuth ξell of the polarization
ellipse as the angle between the major axis of the ellipse
and the positive direction of the x axis, measured coun-
terclockwise with respect to the positive direction of the
z axis. Define the ellipticity η as the ratio of the minor
and major axes of the polarization ellipse.

Consider films in which the phase difference ∆Φ of
the transmitted wave changes from π to zero under the
transition from a partially ordered structure of droplet
directors to a homeotropic structure.

It follows from (53)–(55) that, for ∆Φ = π, a wave
transmitted through a film at an angle of β (  =
(to/te) ) is linearly polarized (line 1 in Fig. 3). For
∆Φ = 0, the transmitted wave retains the linear polariza-
tion of the incident wave (line 5 in Fig. 3). When π >
∆Φ > 0, the transmitted wave is elliptically polarized.
The polarization ellipse rotates clockwise for an optical
anisotropy of ∆ε > 0 (ellipses 2, 3, and 4 in Fig. 3). The
maximal ellipticity is obtained for ∆Φ = π/2 (ellipse 3
in Fig. 3). When ∆Φ = π/2 and a wave is incident at an
angle of αo (  = te/to), then the transmitted wave is
circularly polarized (η = 1). Figure 3 illustrates the
rotation of the polarization ellipse and of the plane of
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polarization of the transmitted wave for polarization
angles α ≠ αo of the incident wave. The electric vector
rotates clockwise from the positive direction of the z
axis (right elliptic polarization [19]).

It follows from (46) and (49) that the phase differ-
ence ∆Φ is a function of the order parameter Sz . The
azimuth ξell of the polarization ellipse and the ellipticity
η are shown in Figs. 4 and 5 versus the order parameter
Sz (which determines the phase difference ∆Φ) for var-
ious polarization angles α of the incident wave. The
calculations are performed by formulas (46) and (53)–
(55) for refractive indices of an LC of no = 1.511 and

ne = 1.74 (  = εo and  = εe); a refractive index of the
polymer of np = 1.524; order parameters of S = 0.6 and
Sd = 0.7; a maximal deviation angle of the droplet direc-
tor from the x axis of ϕdm = 5°; a mean diameter of LC
droplets of 〈d〉  = 75 nm; a parameter of gamma distri-
bution of µ = 15; a volume concentration of LC droplets
of cv = 0.075; a film thickness of l = 41.3 µm; a wave-
length of the incident wave of λ = 0.6328 µm; and
polarization angles of the incident wave of α = 50°, 60°,
70°, and 80°.

The maximal rotation angle of the plane of polariza-
tion is defined as the difference of azimuths of the
polarization ellipse for the order parameters Sz = –1/2
and Sz = 1. In the case under consideration, these order
parameters correspond to a phase difference ∆Φ equal
to π and 0, respectively, for which the transmitted wave
retains its linear polarization (Fig. 5). A change in the
phase difference from π to zero can also be achieved for
a smaller range of variation of the order parameter Sz .

no
e ne

2

1

2

3

4

x

y

z

α ≠ α0

β

e

Fig. 3. Schematic view of the shape and orientation of the
polarization ellipse. The arrows indicate the sign of rotation
of the electric vector. Notations are explained in the text.
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This allows one to solve the optimization problem on
the rotation of the polarization plane under a change of
the structure of the droplet directors in a PDLC film.

Derivation of Expression
for the Order Parameter Sz 

In practical applications, one has to know the order
parameter Sz as a function of the control field. Such
functions are given in [4, 21] for films in which a cha-

0–0.5 0.5 1.0

Sz

40

60

80

100

120

140

ξell

1

2

3

4

Fig. 4. Azimuth of the polarization ellipse of the transmitted
light, ξell , as a function of order parameter Sz for different
polarization angles of the incident linearly polarized light:
(1) α = 50°, (2) 60°, (3) 70°, and (4) 80°. Parameters of the
film are given in the text.
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Sz
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Fig. 5. Ellipticity η as a function of order parameter Sz for
various polarization angles: (1) α = 50°, (2) 60°, (3) 70°,
and (4) 80°. Parameters of the film are given in the text.
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otic structure of droplet directors is transformed into a
homeotropic structure.

We investigate a transition of a partially oriented
structure of LC droplet directors in a PDLC film to a
homeotropic structure. Let us derive an expression for
the order parameter in such a system. Let us apply the
relations

(56)

(57)

Here, E is the control electric field normalized by a
threshold value, θ is the angle between the director of a
droplet and the z axis along which the control field is
applied, θ0 is the angle between the director of a droplet
and the z axis for E = 0, and angular brackets denote
averaging over the angle θ0.

Suppose that the angular distribution of the droplet
directors is uniform within a solid angle ∆Ω , –ϕdm ≤
ϕd ≤ ϕdm, π/2 – θm ≤ θ0 ≤ π/2 + θm, where ϕdm and θm
are the maximal deviation angles of the droplet direc-
tors from the x axis in the xy and xz planes, respectively.
Then,

(58)
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Sz

Fig. 6. Order parameter Sz as a function of normalized con-
trol field E. Transition from a partially ordered structure of
droplet directors in a PDLC film to a homeotropic structure
for (1) θm = 5°, (2) 10°, and (3) 20°. (4) Transition from a
chaotic structure of directors to a homeotropic structure for
θm = 90°.
JOURNAL OF EXPERIMENTAL 
After integrating, we obtain

(59)

(60)

(61)

(62)

(63)

If θm = π/2, then formulas (56) and (59)–(63) for
order parameter Sz are reduced to the well-known
relations [4, 21] that describe the transition from a cha-
otic structure of droplet directors to a homeotropic
structure.

Order parameter Sz as a function of control field E is
shown in Fig. 6 for different angles θm. One can see that
the transition from a partially ordered structure of drop-
let directors to a homeotropic structure is characterized
by stronger dependence of the order parameter on the
control field and offers more possibilities for modulat-
ing optical radiation than the transition from a chaotic
to a homeotropic structure.

5. CONCLUSIONS

The method proposed in this paper enables one to
analyze the polarization state of a wave transmitted
through composite LC systems in the case of normal
incidence of a linearly polarized wave. Examples of
these systems may be given by dispersed LC films with
nanosized nematic droplets, polymer networks, porous
glasses, and other structures with nanosized LC ele-
ments [5, 28–32]. This method is a development of the
method, accounted by the present authors in [25], for
describing a polarization-independent phase modula-
tion of light [12] transmitted through PDLC films.

The results obtained relate the morphological char-
acteristics of a film to its electro-optic response. They
are of interest in designing new types of electrically and
magnetically controlled polarizers based on composite
LC materials.
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Abstract—This work is aimed at creating a theoretical basis for analyzing and interpreting the results of µSR
experiments in doped nondegenerate semiconductors at temperatures below 50 K, when the influence of kinetic
processes at the endpoint of a muon stopping track on the behavior of its polarization is substantial. The effects
related to the formation of free electrons and holes in a solid-state plasma at a muon track endpoint are shown
to be responsible for the mere possibility of observing negative muon spin precession at the muon frequency in
doped nondegenerate semiconductors at low temperatures. The Vangsness–Bloch equations are generalized to
the case of parameters varying with time. A theory based on these generalized equations allowed us to interpret
more correctly the available experimental results of µSR studies of semiconductors with the use of negative
muons. We showed that the µSR method could be used to obtain information about the cross sections of
exchange scattering of electrons and holes by impurity centers in the region of energies inaccessible to the other
measurement techniques and to estimate the cross section of capture by a solitary charged Coulomb center at
virtually all charge carrier concentrations and temperatures. Under the conditions when the Debye radius is
larger than the mean distance between charged particles but smaller than the Thomson radius, the capture
(recombination) cross section is described by a temperature dependence qualitatively different from that pre-
dicted by current theory. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A negative muon stopped in silicon is captured by
an orbit close to the silicon nucleus, decreases the effec-
tive charge of the nucleus by one, and thereby forms the
so-called muonic aluminum atom µAl, which remains
in the lattice site and is an acceptor center in a silicon
semiconductor with diamond structure [1]. During
muon deceleration and capture, ions, electrons, and
holes are formed that produce a solid-state plasma
region at the muon track endpoint.

As in a pure semiconductor, there are acceptor cen-
ter states of two types in n-type silicon, neutral para-
magnetic µAl0 (p) and negatively charged diamagnetic

µAl– (d). The diamagnetic state is more favorable ener-
getically in n-type silicon and is largely formed from
the paramagnetic state as a result of electron capture. In
µSR studies, these two states or kinds of systems are
usually called fractions.

The electronic moment of the shell of an acceptor
center is zero in the diamagnetic state, and this is why
we observe nearly undamped precession at the free
muon frequency ωd = ωµ .

The electronic moment j of the shell of an acceptor
center is nonzero in the paramagnetic state (j = 3/2 for
1063-7761/04/9902- $26.00 © 20352
µAl0). Under the conditions of experiments performed
in [2–11], the electronic moment relaxation rate νe of
the acceptor center was much higher than the effective
hyperfine structure constant A. The hyperfine interac-
tion of the electronic moment with the muon spin
(acceptor center nucleus spin) therefore shifted the fre-
quency of muon spin precession ωp = ωµ + δω in an
external magnetic field with respect to the free muon
precession frequency ωµ .

Precession damping in the paramagnetic state is
caused by two processes. First, the electronic moment
of the acceptor center shell can relax in interactions
with lattice phonons as a result of the exchange interac-
tion between the acceptor center and neighboring non-
ionized impurities and exchange scattering of free car-
riers. The second reason for a decrease in the preces-
sion amplitude of muon polarization in the
paramagnetic state is the transition of the acceptor cen-
ter from the paramagnetic into diamagnetic state at a
rate of νtr .

The frequency shift of muon precession was mea-
sured by the µSR method in silicon samples with vari-
ous concentrations of dopants [2–11]. Simultaneously,
the rate of precession damping and the precession
amplitude were determined. All this information is con-
004 MAIK “Nauka/Interperiodica”
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tained in the time histogram of the number of muon
decays accumulated during measurements; this histo-
gram is called the µSR signal. It should be borne in
mind in analyzing experimental data that the character-
istic muon spin precession frequency in magnetic fields
on the order of 1kG is about 108 s–1; for this reason, the
“initial” time of µSR measurements is approximately
10–8 s after the formation of µAl.

Experimental data are usually processed using the
Vangsness–Bloch equations, which describe changes in
muon spin polarization, on the assumption that the rate
νe of electronic moment relaxation and the transition
rate νtr are constant in time [7]. In the solid-state plasma
formed in the region of muon localization, the νe and νtr
values depend on the nonstationary concentration of
electrons and holes. For this reason, the kinetic pro-
cesses at the muon track endpoint must be taken into
account to correctly interpret the totality of experimen-
tal results. This entails generalizing the Vangsness–
Bloch equations to the case when the rates of relaxation
and transition depend on time. This is the problem
addressed in the present work; we consider the condi-
tions of µ–SR experiments with nondegenerate doped
silicon samples.

2. A GENERALIZATION
OF THE VANGSNESS–BLOCH EQUATIONS

Let us make a terminological comment at the outset.
By the Vangsness–Bloch equations, we understand the
linear equations that describe the relaxation of a quan-
tum-mechanical system derived on the assumption that
back action of the system on the thermostat (lattice) is
absent. This derivation is based on the method of ran-
dom trajectories and goes beyond the scope of pertur-
bation theory. Generally, the behavior of the polariza-
tions Pi(a, t) that describe a system of kind a is deter-
mined by the Korst equations [12], with which one can
acquaint oneself the most simply in monograph [13].
These equations read

(1)

where

is the summed frequency of transitions from fraction a
into all other fractions, ν(a'  a, t) is the frequency of
transitions from fraction a' into fraction a, and γik(a, t)
is the tensor that determines the time behavior of polar-
ization in fraction a. In the particular case of precession
at the frequency ωp with respect to the magnetic field

d
dt
-----Pi a t,( ) γik a t,( )Pk a t,( ) ν a t,( )Pi a t,( )–=

+ ν a' a t,( )Pi a' t,( ),
a' a≠
∑

ν a t,( ) ν a a' t,( )
a' a≠
∑=
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direction given by the vector q and damping, whose
rate is different for different polarization components
and is determined by the tensor Λik , the γik(a, t) tensor
has the form

(2)

where δik is the Kronecker symbol and eilk is the third-
rank antisymmetric unit tensor.

Generally, index i may denote the number of the
orthogonal operator whose coefficient is Pi(a, t) in the
expansion of the density matrix of system a in such
operators.

If there are no transitions between the fractions and
ν(a'  a, t) = 0, it follows from (1) that the evolution
of the polarization Pi(a, t) in a fraction of kind a is
determined by the linear equation

(3)

whose general solution can be represented as

(4)

where the evolution tensor µik(a, t, t') is unambiguously
determined by the γik(a, t) tensor,

(5)

For time-dependent transition rates ν(a'  a, t)
from fraction a' to a, (1) can be written in the integral
form

(6)

The validity of this representation can be proved by
differentiating (6) with respect to time taking into
account (4) and (5).

Equations (5) and (6) are generalizations of the
well-known equations for positive muon spin depolar-
ization in the muonium atom (electronic moment 1/2)
with a constant “electronic spin flip frequency” νe . For
the first time, these equations were solved for several
limiting cases in [14]. A fairly complete theory of the
mechanism of muonium depolarization in matter was
developed in [15–18]. A detailed treatment of this prob-
lem and bibliography can be found in monograph [19].

Equations (1)–(5) describe muonium-like systems
with arbitrary electron shell moments. Relaxation

γik ωpeilkql Λ ik Λ llδik,–+=

dPi a t,( )
dt

--------------------- γik a t,( )Pk a t,( ),=

Pi a t,( ) µik a t t', ,( )Pk a t',( ),=

dµil a t t', ,( )
dt

---------------------------- γik a t,( )µkl a t t', ,( ).=

Pi a t,( ) ν a τ,( ) τd

0

t

∫–
 
 
 

µik a t 0, ,( )Pk a 0,( )exp=

+ ν a τ,( ) τd

t'

t

∫–
 
 
 

µik a t t', ,( )exp

0

t

∫
a' a≠
∑

× ν a' a t',( )Pk a' t',( ) t'.d
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equations for such systems in the absence of transitions
between fractions were considered in [20]. Two kinds
of fractions exist for the µAl acceptor center: diamag-
netic, in which the electron shell surrounding the muon
is completely filled, and paramagnetic with the total
effective moment j = 3/2 and the hyperfine interaction
constant A between the muon spin and electronic
moment. A description of the paramagnetic fraction at
electronic moment relaxation rates lower than or com-
parable to the hyperfine splitting constant must be
based on relaxation equations similar to those consid-
ered in [20]. Such a situation arises in silicon at temper-
atures of several K, when damping on the order of the
precession period is observed experimentally at the free
muon frequency. Currently, this situation is quite acces-
sible to measurements and theoretical analysis. How-
ever, traditionally, higher temperatures are studied,
when the electronic moment relaxation rate is much
higher than the hyperfine splitting constant. Hyperfine
fields are then averaged, and muon spin precession
occurs at a frequency shifted with respect to the preces-
sion frequency in the diamagnetic fraction because of
the magnetization of the electron shell by an external
field. Both diamagnetic and paramagnetic fractions can
then be characterized by a precessing vector of muon
spin polarization. In what follows, we consider pre-
cisely this situation. For this reason, all values with
indices (except index a, which specifies the kind of the
system) in the equations given above can be treated as
usual Cartesian vectors and tensors.

If the relaxation mechanism is isotropic, the relax-
ation tensor Λik(p, t) in Eq. (2) for the paramagnetic
fraction is given by two scalar functions (the relaxation
rates for the muon spin polarization components longi-
tudinal Λ1(t) and transverse Λ2(t) to the magnetic field)
and the unit vector qi aligned with the external magnetic
field,

(7)

Substituting (7) into (2) and solving (5) with the result-
ing γik tensor yields the µik tensor in the form

(8)

In the absence of transitions between the fractions
and when the relaxation rate of the electronic moment
of the acceptor center shell in the paramagnetic state is
independent of time and much larger than the effective
hyperfine interaction constant A (νe @ A), the shift δω
of the precession frequency and the Λ2 rate of preces-

Λ ik p t,( ) qiqkΛ1 t( ) δik qiqk–( )Λ2 t( ).+=

µik p t t', ,( ) qiqk Λ1 τ( ) τd

t'

t

∫–
 
 
 

exp=

+ δik qiqk–( ) ω t t'–( )cos eiklql ω t t'–( )sin+{ }

× Λ2 τ( ) τd

t'

t

∫–
 
 
 

.exp
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sion damping for the paramagnetic fraction are given
by the equations [21]

(9)

Here, µB and µµB are the Bohr magnetons for the elec-
tron and muon, respectively; T is the temperature; and
ωe = g1µBB/" is the electronic moment precession fre-
quency in magnetic field B. In this work, we used g1 =
–0.98 for µAl [22]. The effective hyperfine interaction
constant A is determined by a linear combination of the
spin Hamiltonian constants [23]. The currently avail-
able data of µ–SR experiments on the paramagnetic
shift in silicon give an estimate of A ≈ 25 MHz but can-
not be used to obtain unambiguous estimates for the
anisotropic and isotropic parts of the hyperfine interac-
tion constant thus far. Obtaining such data can be made
possible by studying the strain dependence of the para-
magnetic shift.

In the absence of transitions between the fractions
and if the rate νe of electronic moment relaxation is
independent of time, solution (4) predicts exponential
damping of paramagnetic fraction polarization Pi(p, t)
at a constant rate Λ2. Dependence of the concentration
of charge carriers on time can, however, result in a non-
exponential dependence of muon spin polarization
Pi(p, t) relaxation, because the tensor of relaxation
Λik(p, t) then becomes a function of time.

After electron capture by a neutral acceptor center in
the paramagnetic state and the formation of diamag-
netic µAl–, the reverse process accompanied by hole
capture does not occur (νd  p = 0), because the forbid-
den bandwidth (≈2 eV) in the temperature range under
consideration (below several dozen K) is much larger
than T and the concentration of holes is close to zero. In
the absence of reverse transitions, the relative popula-
tion of the paramagnetic fraction w(p, t) satisfies the
equation

(10)

whose solution is

(11)

As νd  p = 0, it follows from general equation (6)
for the paramagnetic fraction that

(12)

We assume for definiteness that the direction of the
z axis coincides with the external magnetic field direc-

dω
ωd

------- A
5g1µB"

4µµBT
------------------,–=
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5A2

4νe

--------- 1 1

1 ωe/νe( )2+
-----------------------------+ 

  .=

dw p t,( )
dt

-------------------- ν tr t( )w p t,( ),–=

w p t,( ) ν tr τ( ) τd

0

t

∫–
 
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.exp=

Pi p t,( ) w p t,( )µik p t,( )Pk p 0,( ).=
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tion and the initial polarization is perpendicular to z and
coincides with the direction of the x axis. Following tra-
dition, the projection of polarization onto the x axis will
be called transverse component P⊥ . Using (8) and (11)
in (12) yields the transverse polarization component in
the form

(13)

where

For the diamagnetic fraction, the general equation (6)
gives

(14)

The p  d transition contributes to both relaxing
P⊥ (p, t) and nonrelaxing P⊥ (d, t) polarization compo-
nents. Their precession amplitudes cannot therefore be
identified with the corresponding fraction populations.

The initial polarizations in (13) and (14) are deter-
mined by the concentration of donor impurities Nd . The
diamagnetic state µAl– with a captured electron is equi-
librium in n-type silicon. If a donor is situated in the
immediate vicinity of the µAl acceptor center, than the
transition of the donor–acceptor pair to the state in
which the donor loses its electron and the acceptor is
formed in the diamagnetic state µAl– can be favored.
The distance R between donor and acceptor at which a
donor–acceptor pair is formed is found from the condi-
tion that the interaction energy between an electron and
the acceptor center be comparable with the ionization
energy of the donor [24]. This distance estimated for
silicon is R ≈ 10–8/εd, where εd is the donor ionization
energy in eV. The probability for a donor to occur inside
a sphere of radius R and thereby form µAl– in the dia-
magnetic state, which corresponds to the initial polar-
ization P⊥ (d, 0), is

(15)

Accordingly,

(16)

3. THE BEHAVIOR OF TRANSVERSE MUON 
SPIN POLARIZATION 

AT A CONSTANT CONCENTRATION
OF CARRIERS

Consider the solution to the general equations
obtained in the preceding section for the particular case

P⊥ p t,( ) P⊥ p 0,( )w p t,( )F p t,( ) ωpt( ),cos=

F p t,( ) Λ2 τ( ) τd

0

t

∫–
 
 
 

.exp=

P⊥ d t,( ) P⊥ d 0,( ) ωdt( )cos=

+ ωd t t'–( )( )ν tr t'( )P⊥ p t',( ) t'.dcos

0

t

∫

P⊥ d 0,( ) 1
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  .exp–=
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of time-independent transition νtr and relaxation Λ2
rates and muon spin precession in a transverse field.
Precisely such precession has been studied experimen-
tally the most thoroughly [2–11].

For the first time, the equations that described the
behavior of transverse polarization P⊥ (t) were obtained
in [7],

(17)

The damped P1 and nonrelaxing P2 amplitude compo-
nents of the µSR signal are related to the initial polar-
ization in the diamagnetic fraction P0 ≡ P⊥ (d, 0), the
transition rate νtr , and the frequency difference δω =
ωp – ωd as

(18)

The phases of the corresponding components are deter-
mined by the equations

(19)

According to (9), the paramagnetic shift δω only
depends on temperature T and magnetic field B
(because the ωd frequency is proportional to the mag-
netic field). Equation (9) also shows that the relaxation
rate of the muon moment Λ2 is determined by the relax-
ation rate of the electron shell moment νe and the pre-
cession frequency of the electronic moment ωe . Elec-
tronic moment relaxation is caused by interaction with
phonons CTq and exchange interactions of two types,

(20)

The parameters of the first term, which describes the
phonon relaxation mechanism, C ≈ 7 × 106 s–1 and q ≈
3, follow from the experimental data obtained in [10].
The q ≈ 3 estimate given in [10] is only valid at temper-
atures below 30 K. Already at about 20 K, the electronic
moment relaxation rate becomes comparable to the
electron precession frequency ωe. It follows that, if the
law T3 holds, the paramagnetic shift at the higher temper-
atures is unobservable in principle because νe > ωe [1].

The second term ν0 describes the exchange interac-
tion of the acceptor center with neighboring nonionized
impurities. It is determined by the impurity concentra-

P⊥ t( ) P1 ν tr Λ2+( )t–( )exp=

× ωpt ϕ1+( )cos P2 ωdt ϕ2+( ).cos+

P1 1 P0–( )
Λ2

2 δω2+

ν tr Λ2+( )2 δω2+
-----------------------------------------,=

P2
P0Λ2 ν tr+( )2 P0

2δω2+

ν tr Λ2+( )2 δω2+
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ϕ1tan
ν trδω–

ν trΛ2 Λ2
2 δω2+ +
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ϕ2tan
1 P0–( )ν trδω
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tion and weakly depends on temperature, as was sub-
stantiated experimentally [8–11] in the temperature
range 5 < T < 20 K. At impurity concentrations below
1017 cm–3, a noticeable temperature dependence of the
rate of polarization damping is evidence that the contri-
bution of ν0 to electronic moment relaxation is small.
The ν0 value at a high impurity concentration can be
estimated from the experimental temperature depen-
dence of the rate of muon polarization damping [8–11].
The results obtained in [8–11] show that the rate ν0 of
the interaction of the muon acceptor center with an
impurity acceptor center is on the order of 1011 s–1, and
the rate of the interaction of the muon acceptor center
with an impurity donor center is two orders of magni-
tude lower. It follows that the rate of the exchange inter-
action of the muon acceptor center with a donor impu-
rity should be ν0 ~ 109 s–1 at Nd ~ 1018 cm–3.

The last term in (20) is responsible for the exchange
scattering of free carriers by the electron shell of the
acceptor center and is determined by the concentration
of free electrons n(T), the cross section of exchange
scattering σex , and the mean thermal velocity of carriers

vT(T) [cm/s] ≈ 105 . The cross section of
exchange scattering by the acceptor center at 4–10 K
can be estimated using phase theory. In the limit of low
collision energies kaB  0 for the model of a hydro-
gen-like atom, this theory gives [25]

where k = mvT/" is the wave vector modulus; δ0 and δ1
are the singlet and triplet scattering phases, respec-
tively; and aB is the characteristic size of the acceptor
center. The phases tend to π linearly in k as kaB  0;

therefore, δ1 – δ0 = 3.86kaB [25], and σex ≈ 15π . On
the assumption that aB ≈ a0εme/meff ≈ 30 Å [24] (here,
ε = 11 is the dielectric constant of silicon, a0 is the Bohr
radius, meff = 0.22me is the effective mass of the elec-
tron in silicon, and me is the mass of the free electron),
we obtain σex ≈ 4 × 10–12 cm2; this value was used in the
calculations. The above estimate is valid for the
exchange scattering of electrons by a donor center. The
σex value for the scattering of electrons by the acceptor
center calculated taking into account the complete
wavefunction of the acceptor center may, however, dif-
fer from this estimate by as much as an order of magni-
tude. However, importantly, σex is constant in the limit
of low temperatures, and this value should therefore be
adjusted for correctly analyzing experiments.

In pure samples and at low concentrations of doping
impurities, the contribution of the last two terms is zero.
The influence of exchange scattering was observed
experimentally in [11]; it manifested itself by a devia-

T  K[ ]

σex T( ) π
k

2
---- δ0 δ1–( ),sin

2
=

aB
2
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tion of the temperature dependence of muon moment
relaxation rate Λ2 from the predicted law.

The transition from the paramagnetic (µAl0) to dia-
magnetic (µAl–) acceptor center state involves conduc-
tion electron capture and is characterized by the transi-
tion rate

(21)

The κtr = σtrvT(T) value is called the capture coefficient;
it is virtually independent of temperature at T < 100 K
[26]. Unambiguous and noncontradictory experimental
data on this value for the Al impurity center in silicon
are lacking. It was estimated at 2 × 10–13 cm3 s–1 from
the µSR data obtained in [8] in the temperature range
4.5 < T < 10 K, which corresponded to capture cross
sections σtr < 10–20–10–19 cm2. The correctness of this
estimate is questionable, because the σtr value is then
substantially smaller than the atomic cross section. In
this work, we use an alternative estimate of κtr sug-
gested in [27], namely, κtr = 10–7 cm3/s at 5 < T < 50 K,
which corresponds to the cross section σtr ~ 10–14 cm2.

The equilibrium concentration of electrons n(T) =
nT(T) in nondegenerate n-type semiconductors can very
accurately be approximated as [27]

(22)

where

εd is the energy of impurity ionization (39 meV for
antimony and 45 meV for phosphorus), kB is the Boltz-
mann constant, and Nd is the concentration of the donor
impurity.

A nonrelaxing component was experimentally
observed in silicon in [6, 7] for a sample with the con-
centration of donors (antimony) Nd = 2 × 1018 cm–3. The
authors of [6, 7] analyzed their experimental data on the
assumption that P0 = 0. However, P0 = 0.1 corre-
sponded to this concentration of donors. This is in
agreement with the observation that the amplitudes of
the relaxing and nonrelaxing polarization components
(symbols in Fig. 1) asymptotically tend to 0.9 and 0.1,
respectively, at low temperatures. According to calcula-
tions, the incorrect assumption on P0 leads to errors of
about 10% in Λ2 and νtr. In addition, the authors of [6, 7]
analyzed the experimental P⊥ (t) curves using δω as an
adjustment parameter to determine the hyperfine inter-
action constant for Nd = 2 × 1018 cm–3. The accuracy of
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the determination was, however, low: δω/ωµ was of
(5−10) × 10–3 in the temperature range 4–20 K. Accord-
ing to (9), δω is independent of the impurity concentra-
tion Nd , and the A values estimated in [6, 7] are not at
variance with the more accurate data obtained at Nd <
1016 cm–3. It is therefore more reasonable to perform
data processing using the temperature dependence of
δω averaged over a large number of experiments in
pure and weakly doped silicon [28]. For this reason, we
performed calculations by (9) to estimate δω at A =
25 MHz [28].

The temperature dependences of the polarization
amplitudes P1 and P2 and precession phases ϕ1 and ϕ2
constructed according to (18) and (19) with the param-
eters were set equal to the values discussed above are
shown in Fig. 1. The ν0 value was set at 109 s–1. The
slopes of the P1(T) and P2(T) curves strongly depend on
νtr(T) at temperatures from 4 to 10 K. It follows from
Fig. 1 that, at T ≈ 4 K, when the concentration of equi-
librium electrons nT(T) is negligibly small, νtr(T) is nev-
ertheless not too small; otherwise, P1(T) and P2(T)
would weakly depend on temperature. It follows that
nonequilibrium electrons are present at the track end-
point and the concentration ne is therefore much higher
than the equilibrium value.

To fit the calculated curves to the experimental data
[6, 7] in the temperature range 4–10 K, we must put
neκtr ≈ 2 × 106 s–1, which, considering the κtr ≈
10−7 cm3/s value accepted above, gives ne ≈ 2 ×
1013 cm–3. The curve shapes at higher temperatures of
10 to 15 K are largely determined by changes in the
concentration of equilibrium carriers nT(T), the total
concentration of electrons being n(T) = ne + nT(T).

Experimental data processing was performed in [6, 7]
not quite correctly, even on the assumption that the νe

and νtr rates were constant in time. The condition P1 +
P2 = 1 used in [6, 7] holds to a high accuracy and does
not give a noticeable error (Fig. 1). However, the ignor-
ing of phase ϕ1 and ϕ2 changes at T > 15 K, where these
changes are substantial, leads to incorrect interpretation
of the temperature dependences of fraction amplitudes
and the rates νtr and Λ2. Treatment of the experimental
data from [6, 7] by (18) and (19) in the temperature
range 15–20 K should ensure coincidence with the the-
oretical curves shown in Fig. 1.

The νtr(T) and Λ2(T) dependences, calculated and
reproduced in [6, 7], are shown in Fig. 2. For Λ2, our
results qualitatively coincide with those obtained in [6, 7].
As to the rate of capture νtr , it was found to decrease at
high temperatures in [6, 7], which had no physical
interpretation. Conversely, the theoretical dependence
predicts a sharp increase in this value. To avoid such
inaccuracies in reproducing the νtr and Λ2 parameters
(in particular, at temperatures about 15 K, where νtr ~
Λ2 ~ δω), we must take into account the relation between
the adjustment parameters that follows from (9), (18),
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and (19) and use the A value obtained for pure or
weakly doped samples.

4. RECOMBINATION
AT THE TRACK ENDPOINT

Nonequilibrium electrons at the muon track end-
point in samples with a substantial concentration of
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Fig. 1. (a) Calculated temperature dependences of the
phases of the damped ϕ1 and unrelaxed ϕ2 components and
(b) calculated temperature dependences of the polarization
amplitudes of the damped P1 and nonrelaxed P2 compo-
nents. The calculations were performed for n-silicon with
antimony concentration [Sb] = 2 × 1018 cm–3 at B = 1 kG;
experimental data are shown by symbols [6, 7].
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Fig. 2. Temperature dependences of paramagnetic shift δω,
relaxation rate Λ2 (solid circles are experimental data
from [6, 7]), and the rate of transition to the diamagnetic
state νtr (rhombi are the experimental data from [6, 7]); con-

ditions are the same as in Fig. 1.
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impurities appear as a result of medium ionization by
the muon and impurity ionization by secondary and
cascade Auger electrons whose energy is much higher
than the impurity ionization potential. The cross sec-
tions of impurity ionization by electrons with energies
on the order of 1 eV may exceed 10–10 cm2 [27]. For this
reason, the initial concentration of electrons and ion-
ized impurities at the track endpoint can be on the order
of the impurity concentration [1].

The recombination of electrons with ionized impu-
rities rapidly decreases their concentration. This process
is characterized by the recombination constant [29]

(23)

Estimates show that, at such a recombination con-
stant value, the concentration of electrons should be
lower than the nc ≈ 2 × 1013 cm–3 concentration obtained
above by fitting the calculation results to experimental
data at times longer than 10–8 s, which are observed
with confidence in µSR experiments. This discrepancy
arises because (23) is valid for electron capture by a sol-
itary Coulomb center if the screening of the charge of
this center is insignificant; that is, if rT ! rD , where rD =

 is the Debye radius and rT is the Thom-
son radius. The Thomson radius is determined by the
condition U(rT) = kBT. For an unscreened Coulomb cen-
ter, the “classical” Thomson radius is rTc = e2/kBT.

At T = 6 K and nc ≈ 2 × 1013 cm–3, we have rD = 7 ×
10–6 cm, rTc = 3 × 10–4 cm, and rTc > rD . Accordingly,
Eq. (23) from [29] based on the Thomson model
requires refinement.

An electron produced during muon stopping loses

its initial energy in time τT [s] = 3.9 × 10–10  even
in one-phonon processes only [29]. For this reason, all
electrons are thermalized and a substantial fraction of
them are recombined with impurity ions at times t >
10−9 s. In the Thomson model, the capture (recombina-

tion) cross section is proportional to /lε , where lε =
7.5 × 10–4 cm is the energy loss length [29]. The capture
cross section can be corrected by describing the attrac-
tive potential as the screened Coulomb potential U(r) =
exp(–r/rs)e2/r, where rs is the screening radius. Accord-
ingly, the generally accepted recombination constant (23)
should be multiplied by the coefficient ζ(n(t, T), T),

(24)

The screening radius rs for finding rT is set equal to
the Debye radius, rs = rD , as long as rD(n, T) > n–1/3. If
the Debye radius is smaller than the distance between
charged particles, this description of interaction screen-
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ing becomes incorrect. There is no consistent recombi-
nation theory for this situation. For this reason, when
the condition of Debye theory applicability is violated
and e2n1/3 > T, estimative calculations are performed
with the screening radius set equal to half the mean dis-
tance between charged particles, rs = 0.5n–1/3, which
virtually coincides with the radius of the Seitz–Wigner
cell (4/3πn)–1/3.

Correction (24) qualitatively changes the tempera-
ture dependence of the recombination constant. If rTc >
rD , rT reaches the order of the screening radius rD ,

which is proportional to . Accordingly, in the
plasma temperature and concentration region where
rTc > rD, the recombination constant K(T) increases as
temperature grows. In the region where rT < rD, this
increase changes for habitual lowering, because rTc ∝  1/T.

Recombination is described by the equation

(25)

which can be solved with respect to the time variable,

(26)

The parametric representation t = t(n0, n) allows calcu-
lations to be reduced to the calculation of integrals and
all dependences to be obtained in the form of quadra-
tures.

The time dependences of the concentration of elec-
trons calculated in the approximation described above
at T = 6 K and various initial electron concentrations n0
are shown in Fig. 3. We see from this figure that the
concentration of electrons is almost independent of n0

in the range 1014–1018 cm–3 at times on the order of
10−7 s. For comparison, line 4 (Fig. 3) was calculated
ignoring screening; it corresponds to the asymptotic
behavior of the dependences obtained in more correct
calculations. The concentration of electrons cannot be
considered constant at 6 K at times of 10–8 to 10–6 s,
which are usual for µSR measurements.

In the calculations described in Section 3, the con-
centration of nonequilibrium electrons by a time of
10−8–10–7 s was set equal to nc ≈ 2 × 1013 cm–3. This
concentration was selected from the requirement on the
coincidence of the slopes of the calculated and experi-
mental temperature dependences of polarization at T <
10 K. As follows from Fig. 3, the nc ≈ 2 × 1013 cm–3

value falls within the range of concentrations that in
reality exist at times of 10–8–10–7 s. This explains the
qualitative agreement between the polarization curves
calculated on the assumption that n is constant and the
measurement results [7] (Fig. 1). The use of the model
with a constant concentration of electrons for con-
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structing the temperature dependences νtr(T) and Λ2(T)
in the temperature range 4–10 K, however, makes no
sense, because these values are more sensitive than
polarization to the time-dependent n value. At T > 10 K,
when the equilibrium concentration of electrons deter-
mined by (22) becomes predominant, n ceases to
depend on time, and the temperature dependences
shown in Figs. 1 and 2 should then correctly describe
the experimental results.

5. THE INFLUENCE 
OF THE NONSTATIONARY CONCENTRATION 

OF NONEQUILIBRIUM CARRIERS 
ON THE BEHAVIOR

OF MUON SPIN POLARIZATION

As previously, the total concentration of electrons is
represented as the sum of the concentrations of equilib-
rium and nonequilibrium electrons n(t, T) = nT(T) +
nc(t, T). As electrons are fairly rapidly thermalized and
their mean energy ceases to depend on time, the p–d
transition constant of the acceptor center κtr = vTσtr can
be considered time independent at t > 10–9 s. At ener-
gies higher than thermal, the cross section of electron
capture by a neutral center sharply decreases. For this
reason, the recombination of electrons at times shorter
than 10–9 s has low probability and can be ignored. The
time tpd = 10–9 s will be taken as the initial time for the
p−d transition. By this time, nonequilibrium carriers
are already thermalized, and their equilibrium concen-
tration is in the range 1013–1016 cm–3 no matter which
approximation of those described in the preceding sec-
tion is used (Fig. 3). Precisely this concentration n0 will
be considered “initial” for all processes that occur at
t > 10–9 s.

The probability w(p, t) that the acceptor center will
remain paramagnetic by time t can be obtained by sub-
stituting (21) into (11). According to (26), t can be rep-
resented in terms of n(t, T). Using this representation,
we obtain

(27)

Equation (27) is valid if n(t, T) > nT(T). At t >
t(n0, nT(T)), the concentration of free electrons reaches
its equilibrium thermal value and ceases to change. Fur-
ther polarization behavior is described by the equations
given in Section 3.

If screening is included, (27) requires numerical
integration. For comparison, we give an analytic equa-
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tion that can be obtained if screening is ignored and it
is assumed that n(t, T) @ nT(T),

(28)

The w(p, t, T) dependence should replace the exponen-
tial multiplier in (13) that takes into account the proba-
bility of transitions into the diamagnetic state.

The w(p, t, T) time dependences obtained by (27) at
T = 6 K for various initial concentrations n0 are shown
in Fig. 4. These curves are substantially different from
the exponential function used in [6, 7] to approximate
the experimental data.

These dependences can be used to obtain the upper
estimate for n0 under experimental conditions [6]. As
neither “lost” polarization nor substantial (in excess of
10%) changes in the amplitude of paramagnetic com-
ponent precession were observed at T = 6 K at times
shorter than 10–8 s, we obtain n0 < 1014 cm–3.

The Λ2(n) value only depends on time via the n(t, T)
variable concentration of nonequilibrium carriers. We
can therefore use (26) to write the corresponding mul-
tiplier in Eq. (13) for paramagnetic fraction polariza-
tion in the form convenient for calculations,

(29)
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Fig. 3. Time dependences of the concentration of non-
equilibrium charge carriers at the muon track endpoint:
(1)−(3) calculations by (26) for the initial electron concen-
trations n0 = 1014, 1015, and 1018 cm–3, respectively, and
(4) calculations without taking into account Debye screen-
ing with ζ ≡ 1; T = 6 K.
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According to (9), the dependence of Λ2 on n and,
accordingly, time is contained in the frequency νe(t, T)
described by (20).

The polarization “amplitudes” F(p, t) in the para-
magnetic fraction calculated by (29) using various n0

values are shown in Fig. 5 for B = 1 kG and T = 6 K.
The other parameters were the same as used in con-
structing the curves shown in Figs. 3 and 4. The differ-
ence in the behaviors of the curves that describe the
probability for the acceptor center to remain in the para-
magnetic state (Fig. 4) and the polarization “amplitude”

1.0

1

2

3

4

F(p, t)

t, µs

0.8

0.6

0.4

0.2

0 0.05 0.10 0.200.15

Fig. 5. Time behavior of the F(p, t) function in a neutral
acceptor center: (1)–(3) calculations by (29) including
screening at n0 = 1013, 1015, and 1018 cm–3, respectively,

and (4) exponential dependence with Λ2 = 7 × 106 s–1 [7];
T = 6 K and B = 1 kG.
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Fig. 4. Probability w(p, t) for an acceptor center to remain
neutral: (1)–(4) calculations by (27) including screening for
n0 = 1013, 1014, 1015, and 1016 cm–3, respectively, and
(5) exponential approximation [7]; T = 6 K and B = 1kG.
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in the paramagnetic fraction (Fig. 5) is noteworthy. This
difference can be used to separate the contributions of
the p–d transition and muon spin relaxation processes
to the time dependence of the transverse polarization
component, which precesses at frequency ωp .

To separate the electron capture and muon spin
relaxation contributions and thereby more accurately
reproduce cross sections from µSR experimental
results, we must perform measurements in substantially
different magnetic fields, because the rate of polariza-
tion relaxation Λ2 depends on B [see (9)]. At times of
10–7 s, the polarization amplitude in “zero” field differs
approximately twofold from its value at B = 1 kG. If
zero field is inconvenient for measurements, the results
obtained in 500 and 1500 G fields can be compared;
these results should differ by approximately 30%. This
accuracy of determining amplitudes is quite attainable
in modern µSR experiments.

The diamagnetic fraction contribution to the preces-
sion signal at the ωp frequency was found to be small.
For comparison, we give the results of calculations of
the behavior of polarization in the diamagnetic fraction
by the formula

(30)

where

This formula follows from (14) after the replacement of
cos(ωd(t – t')) by the product of cosines and sines. The time
behavior of the Re[J(n0, t(n0, n))] and Im[J(n0, t(n0, n))]
coefficients determined using (28) and (29) is shown in
Fig. 6. Note that, under the conditions specified, the
contribution of the second term in (30) is inessential at
concentrations n0 < 1014 cm–3 estimated above.

Comparison of the time behavior of the summed
polarization in a silicon sample with an antimony con-
centration Nd = 2 × 1018 cm–3 calculated by the equa-
tions given above at T = 6 K with the experimental val-
ues and the approximating curve from [7] shows that
the two curves coincide with each other and with exper-
imental data to within measurement errors. It has, how-
ever, been demonstrated above that neither an exponen-
tial time dependence of the probability of the occur-
rence of an acceptor center in the paramagnetic fraction
nor exponential relaxation (as suggested in [7] in con-
structing the approximating curve) are observed in the
sample under consideration. The coincidence of the

P⊥ d t n0 n,( ),( ) P⊥ d 0,( ) ωdt n0 n,( )( )cos=

+ P⊥ p 0,( ) Re J n0 n,( )[ ] ωdt n0 n,( )( )cos{

+ Im J n0 n,( )[ ] ωdt n0 n,( )( )sin } ,

J n0 n,( )
κ trn' iωdt n0 n',( )( )exp

n' nT T( )–( )2ζ n' T,( )K T( )
---------------------------------------------------------------

n

n0

∫=

× wp n0 n',( )Fp n0 n',( ) ωpt n0 n',( )( )cos n'.d
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approximating curve with experimental values in [7]
was obtained by using a large amount adjustment
parameters. The νtr(T) and Λ2(T) values then become
physically meaningful only at temperatures above 15 K,
when the equilibrium concentration of electrons nT(T) ~
1011 cm−3 is comparable to their nonequilibrium con-
centration (see Fig. 3) and the concentration of elec-
trons ceases to depend on time. In this respect, our
interpretation of experimental data based on a variable
concentration of nonequilibrium carriers appears to be
better grounded because all its elements have real phys-
ical meaning.

To summarize, including the concentration of non-
equilibrium carriers in a muon track plasma and its
changes in time makes it possible to approximate
experimental data on muon spin polarization in doped
silicon samples at low temperatures (below 15 K) and
use these data to obtain approximate estimates of the
κtr , σex , and n0 values.

6. CONCLUSIONS

The mere possibility of observing negative muon
spin precession at the muon frequency in doped nonde-
generate semiconductors at low temperatures can be
explained by the effects of track free carriers, which are
responsible for the transition from the paramagnetic
into diamagnetic fraction.

The generalization of the Vangsness–Bloch equa-
tions that we suggest allows the behavior of muon spin
polarization under the conditions of a variable density
of electrons at the muon track endpoint to be described.
An analysis based on these equations gives a more cor-
rect interpretation of the available experimental results
of µSR studies of semiconductors performed using
negative muons.

t, s

0.8
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0.4

0.2

0
10–9 10–8 10–7 10–6

Re J(n0, t), Im J(n0, t)

Re J

n0 = 1014 cm–3

Im J

Re J
Im J n0 = 1013 cm–3

Fig. 6. Time dependences of the real and imaginary parts of
J(n0, t) at n0 = 1013 and 1014 cm–3, T = 6 K, and B = 1 kG.
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In nondegenerate semiconductors, the µSR method
allows the cross section of electron capture by an
acceptor center and a solitary charged Coulomb center
to be reproduced in the order of magnitude and infor-
mation about the cross sections of exchange scattering
of electrons and holes by impurity centers at very low
energies inaccessible to direct measurements to be
obtained.

In order to obtain useful information on kinetic pro-
cesses in the region of muon localization by the µSR
method, the approximating function for polarization
should be constructed with the use of parameters that
are indeed constant in time. These are the constant of
electron capture by an acceptor center κtr and spin
exchange scattering cross sections σex rather than the
transition νtr and polarization relaxation Λ2 rates. The
relaxation rate of the electronic moment of an acceptor
center in interactions with phonons should be charac-
terized by parameters obtained from experiments with
samples containing lower impurity concentrations.

Nor does the use of the value of the paramagnetic
shift as an adjustment parameter for doped samples
make sense, because, at impurity concentrations on the
order of 1018 cm–3, we observe paramagnetic shifts
approximately equal to that in pure samples. There is
no sufficient reason to believe that the hyperfine inter-
action constant A and, accordingly, the paramagnetic
shift value strongly change in a nondegenerate semi-
conductor as the concentration of impurities increases.
The A value can change in a strongly internally strained
sample; the role played by internal strain requires addi-
tional inquiries.

If the Debye radius in a solid-state muon track
plasma is larger than the mean distance between
charged particles, measurements of amplitude damping
for muon spin polarization and the ratio between the
polarization amplitudes of different fractions can be
used to reproduce the concentration dependence of the
recombination “constant” on impurity centers in a
solid-state semiconductor plasma. If the Debye radius
in such a plasma is smaller than the Thomson radius,
we must construct a new theory of electron ion recom-
bination. In this work, we qualitatively estimated
changes in the recombination constant in such a situa-
tion. A consistent theory has not been suggested thus
far, but experimental studies of this problem by the
µ−SR method can be useful for its development.

In this work, we restricted consideration to the
results of µSR experiments for nondegenerate doped
silicon, because such samples have been studied the
most thoroughly by the µSR method. We must also gain
a deeper understanding of the first experiments with
heavily doped silicon samples in the region of the tran-
sition to metallic conductivity [10, 11] to correctly
interpret them.
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Abstract—Magnetic and neutron-diffraction studies of La2CoMnO6 doped with strontium and calcium ions
are carried out. Stoichiometric and calcium-containing samples are orthorhombically distorted, whereas the
oxidation and doping with strontium ions stabilizes a rhombohedral structure. Neutron-diffraction studies show
that La2CoMnO6 is a ferromagnet, whereas a Ca-substituted compound does not exhibit long-range magnetic
order. The whole set of data suggest that these compounds are inhomogeneous magnets that consist of clusters
in which Co2+ and Mn4+ ions are ordered similar to ions in NaCl and of regions in which there is no such order-
ing. These regions exhibit different magnetic properties. Phase separation is discussed in a model of solid solu-
tions with intrinsic chemical inhomogeneity on the nanometer scale. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Compounds based on lanthanum manganite show a
wide variety of interesting properties due to the interac-
tion between orbital, charge, and magnetic degrees of
freedom. In spite of a large number of studies, the
nature of many phenomena is still a matter of dispute.
Magnetic phase separation in lanthanum manganites is
one of such phenomena. This phenomenon was
observed at micro- and macroscopic levels in many
solid solutions of the types Ln1 – xCaxMnO3 and
Ln1 − xSrxMnO3 (Ln = La and Pr). An especially clear
example of this phenomenon was observed near anti-
ferromagnet–ferromagnet concentration phase transi-
tions, for example, in La0.95Sr0.05MnO3 [1] or
La0.5Ca0.5MnO3 [2] compounds. At present, it is
believed that magnetic inhomogeneity plays an impor-
tant role in the formation of the magnetoresistance
effect [3]. Note that magnetic inhomogeneity was also
observed in La1 – xSrxCoO3 cobaltites [4], as well as in
La2CoMnO6-type perovskites in which cobalt and man-
ganese ions are partially ordered [5]. In [6], the authors
observed a peak on the temperature dependence of the
dynamic magnetic susceptibility below the Curie tem-
perature (TC = 230 K) and interpreted it in terms of a
magnetic two-phase state. According to [7, 8], the mag-
netic two-phase state is associated with the coexistence
of phases of the types La2Co2+Mn4+O6 and
La2Co3+Mn3+O6, whereas, in [6], the anomalous behav-
ior in the dynamic susceptibility was interpreted within
1063-7761/04/9902- $26.00 © 20363
the model of separation into phases in which Co2+ and
Mn4+ ions are in ordered and disordered states. Like
classical manganites, these compounds can be doped
with alkaline-earth elements. For example, in [9], the
authors reported a synthesis of a LaSrCo3+Mn4+O6
compound whose magnetic properties were analyzed
within a model in which the moments of cobalt ions in
an intermediate spin state are antiparallel to those of
manganese ions.

In the present paper, we carry out X-ray, neutron-
diffraction, and magnetic investigations of the base
compound La2CoMnO6 + δ, as well as of compounds
doped with strontium and calcium ions. The doping
was performed in order to bring a part of Co2+ ions to a
trivalent state. We show that the properties of these
compounds should be described within an inhomoge-
neous model, based on the 2+ and 4+ valent states of
cobalt and manganese ions, respectively.

2. EXPERIMENT

Samples of La2CoMnO6 + δ, La1.4Ca0.6MnCoO6, and
La1.6Sr0.4CoMnO6 solid solutions were prepared by the
conventional ceramic technology in air at T = 1320°C
for a long period of time to improve the homogeneity of
the chemical composition and slowly cooled to room
temperature. By thermogravimetric analysis, it was
established that the parent compound La2CoMnO6 + δ
had an excess of oxygen. Its chemical formula was
004 MAIK “Nauka/Interperiodica”



 

364

        

TROYANCHUK 

 

et al

 

.

                                                                                            
La2CoMnO6.1. Therefore, this compound was reduced
in vacuum (1000°C, 24 hours) to a stoichiometric com-
pound of La2CoMnO6. An X-ray phase analysis carried
out on a DRON-3M diffractometer with the Kα radia-
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Fig. 1. ZFC- and FC-magnetizations of La2CoMnO6,
La1.4Ca0.6CoMnO6, and La1.6Sr0.4CoMnO6 samples as a
function of temperature in a field of H = 100 Oe.
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tion of Cu did not reveal any traces of extraneous
phases. The electric conductivity was measured by the
standard four-probe technique. The magnetization was
measured on a commercially available QI-3001 vibra-
tion magnetometer. Neutron-diffraction investigations
with a wavelength of λ = 1.7974 Å were carried out
with a FIREPOD diffractometer at the Berlin Neutron
Scattering Center (BENSC). The crystalline and mag-
netic structures were determined with the use of the
FullProf program.

3. RESULTS AND DISCUSSION

Figure 1 represents the temperature dependence of
the magnetization measured during heating in a mag-
netic field of 100 Oe after zero-field cooling (ZFC) and
after field cooling (FC) in the same field. The figure
shows that the FC magnetization is several times
greater than the ZFC magnetization, especially at low
temperatures. This feature is characteristic of cobaltites
and lightly doped manganites and is attributed to the
large magnetic anisotropy of these substances [10]. The
second characteristic feature manifests itself in the
anomalous behavior of magnetization below the Curie
temperature. However, compounds doped with Ca and
Sr ions show a rather sharp transition to a magnetically
ordered state at lower temperatures (TC ~ 160–170 K).
The measurements of magnetization as a function of
applied field have confirmed that these substances have
large magnetic anisotropy. The saturation of magneti-
zation at T = 7 K was not observed up to a field of
16 kOe, and the coercivity was as large as 10–15 kOe
(Fig. 2). These measurements do not allow one to eval-
uate the spontaneous magnetization of samples; how-
ever, it should be noted that the substitution of stron-
tium or calcium ions for lanthanum has led to a rather
sharp decrease in magnetization.

The measurements of electric conductivity have
shown that all compounds exhibit semiconductor-type
resistivity versus temperature. No pronounced anoma-
lies were observed near the magnetic ordering point.

The crystalline structure of a La2CoMnO6.1 sample
was determined using powder X-ray patterns obtained
at room temperature. Good values of the reliability fac-
tor were obtained in a model where a La2CoMnO6.1
sample was calculated as a mixture of two phases with
perovskite structures. In this model, the content of the
orthorhombic phase (Pbnm space group) amounts to

75%, whereas the rhombohedral phase (R c space
group) amounts to 25%.

The neutron-diffraction patterns of a La2CoMnO6
sample were obtained at room and liquid-helium tem-
peratures. A stoichiometric vacuum-annealed sample
contained only the orthorhombic phase. However, the
best agreement between calculated and experimental
data was again obtained in the two-phase model
(Fig. 3). In this model, a sample was considered as a

3
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mixture of two phases: one of the space group Pbnm
and the other of the space group P21/n. In the space
group Pbnm, cobalt and manganese ions occupy the
same positions, whereas in the space group P21/n, they
occupy different positions T(1) and T(2) in the crystal-
line structure.

The fraction of the phase in which cobalt and man-
ganese ions are ordered amounted to 27% at helium
temperature. The typical angles and lengths of bonds
for the two phases are shown in the table. Note that the
lengths of the T(2)–O bonds for the phase with ordered
cobalt and manganese ions are about 1.89 Å on aver-
age, which is characteristic of Mn4+ ions, whereas the
lengths of the T(1)–O bonds, whose mean value is
2.04 Å, are characteristic of cobalt ions in the bivalent
state. This sample was also calculated within a homo-
geneous model (the space group P21/n) with regard to
antisite defects. The calculation suggests that there are
about 30% of such defects; i.e., 70% of T(1) positions
are occupied by cobalt ions, and 30%, by manganese
ions. The converse is true for the T(2) positions as well.
If there were no antisite defects (the case of total order-
ing), then all Co ions would occupy the T(1) positions
and Mn ions would occupy the T(2) positions. How-
ever, the reliability factors in this model are somewhat
worse than those in the two-phase model. The mean
value of the magnetic moment per formula unit is
〈CoMn〉  = 5µB, which is in good agreement with the
expected value for cobalt and manganese ions in the 2+
and 4+ valent states, respectively.

The doping with strontium ions brought the whole
sample to the rhombohedral phase. The crystalline
structure was calculated in two models: in a single-

phase model (the space group R ) and a two-phase

model (one phase is of the space group R c and the

other, of the group R ). In the space group R , cobalt
and manganese ions occupy different positions,

whereas, in the space group R c, they occupy the same
position. In the two-phase model, we could not calcu-
late the coordinates of ions in the ordered phase
because the content of this phase was no greater than
5%. In the model with antisite defects, the ratio of the
occupation numbers of positions was 60 to 40%.

The calculated and measured neutron-diffraction
patterns for La1.6Sr0.4CoMnO6 are shown in Fig. 4. The
lengths of bonds in the model with antisite defects are
shown in the table. A decrease in the mean values of the
lengths of bonds in octahedra and increased disorder in
the arrangement of cobalt and manganese ions are
attributed to the increased number of trivalent ions of
cobalt due to the substitution of two-valent strontium
ions for lanthanum ions.

In this sample, the contribution of magnetic scatter-
ing of neutrons proved to be much less than that in the

3

3

3 3

3
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case of a stoichiometric compound and the calculated
magnetic moment per formula unit was about 1.2µB.

Conversely, the substitution of calcium ions for lan-
thanum stabilized the orthorhombic structure. The crys-
talline structure of La1.4Ca0.6CoMnO6 was calculated
both in the two-phase and single-phase models (Fig. 5).
Just as in the previous cases, the two-phase model gives
somewhat better reliability factors. However, the fea-
tures of the neutron-diffraction patterns associated with
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Fig. 3. Refinement of the La2CoMnO6 structure in the two-
phase model by the Rietveld method using the neutron-dif-
fraction patterns obtained at T = 1.5 K; (circles) experimen-
tal data, (solid line) computed curve, and (lower solid line)
their difference. Vertical segments indicate the computed
positions of 2θ reflexes; the upper row of segments corre-
sponds to the orthorhombic crystalline phase, the middle
row, to the monoclinic crystalline phase, and the lower row,
to the magnetic phase. The inset shows the magnetic contri-
bution to certain reflexes.

Fig. 4. Refinement of the La1.6Sr0.4CoMnO6 structure in
the two-phase model by the Rietveld method using the neu-
tron-diffraction patterns obtained at T = 298 K; (circles)
experimental data, (solid line) computed curve, and (lower
solid line) their difference. Vertical segments indicate the
computed positions of 2θ reflexes. The inset shows the mag-
netic contribution to certain reflexes.
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The results of calculation of the crystalline structure and the bond lengths for various compounds. T(1) is a position predom-
inantly occupied by cobalt ions and T(2) is a position predominantly occupied by manganese ions

Compound La2CoMnO6 La1.4Ca0.6CoMnO6 La1.6Sr0.4CoMnO6

Temperature 1.5 K 298 K 298 K

Space group Pbnm P21/n P21/n

a, Å 5.522921 5.513146 5.442330 5.475994

b, Å 5.484688 5.462361 5.410093 –

c, Å 7.777248 7.755850 7.656228 13.243181

β – 90.025146° 90.029251° –

x 0.99900 0.98951 0.99838 0

La/A: y 0.02197 0.02569 0.01791 0

z 1/4 0.23905 0.24955 0.25074

x 1/2 1/2 1/2 0

T(1): y 0 0 0 0

z 0 0 0 0

x – 0 0 0

T(2): y – 1/2 1/2 0

z – 0 0 1/2

x 0.06911 0.05530 0.06036 0.54445

O(1): y 0.49333 0.49376 0.49490 0.00093

z 1/4 0.25440 0.25311 0.24785

x 0.72138 0.71270 0.72922 –

O(2): y 0.27579 0.27088 0.27007 –

z 0.03794 0.02209 0.03113 –

x – 0.74421 0.72667 –

O(3): y – 0.28573 0.27642 –

z – 0.46603 0.47126 –

RBragg, % 2.98 4.19 5.02 5.45

χ2, % 1.94 1.94 1.93 2.01

RMagn, % 5.91 5.91 – –

T(1)–O(1), Å 1.983 × 2 2.078 × 2 1.965 × 2 1.956 × 6

T(1)–O(2), Å 1.978 × 2 2.026 × 2 1.950 × 2 –

T(1)–O(3), Å 1.969 × 2 1.997 × 2 1.943 × 2 –

〈T(1)–O〉 , Å 1.977 2.034 1.952 1.956

T(2)–O(1), Å – 1.929 × 2 1.935 × 2 1.930 × 6

T(2)–O(2), Å – 1.896 × 2 1.929 × 2 –

T(2)–O(3), Å – 1.851 × 2 1.918 × 2 –

〈T(2)–O〉 , Å – 1.892 1.927 1.930

R3
the ordering of Co2+ and Mn4+ ions are still less pro-
nounced than in the sample doped with strontium ions.
Therefore, the results of calculations are presented for
the model with antisite defects (see table). In the cal-
JOURNAL OF EXPERIMENTAL 
cium-containing sample, we could not distinguish a
coherent magnetic scattering of neutrons; however,
magnetic measurements show that magnetic ordering
in this sample occurs in a rather narrow range of tem-
AND THEORETICAL PHYSICS      Vol. 99      No. 2      2004
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peratures near T = 160 K, which is not characteristic of
spin glasses but is quite possible in a two-phase mag-
netic state when the content of ferromagnetic phase is
very small.

As we pointed out in the Introduction, valent states
of cobalt and manganese ions in La2CoMnO6 are
described in different models [6, 7]. According to [7], a
low-temperature ferromagnetic phase that is ordered at
T = 160 K corresponds to the ordering of Co2+ and Mn4+

magnetic ions, while a high-temperature phase that is
ordered at T = 230 K, corresponds to the distribution of
valences of Co3+ and Mn3+ ions. In this phase, cobalt
ions must occupy a low-spin state because, according to
magnetic measurements, the spontaneous magnetiza-
tion per formula unit is about 4µB. According to [7],
La2CoMnO6 samples consist of a mixture of these two
phases. Objections against this model arise from the
fact that cobalt ions in the low-spin state are diamag-
netic (S = 0) and therefore cannot take part in exchange
interactions. For example, Pb2MnNbO6-type perovs-
kites, in which manganese is trivalent and niobium ions
are pentavalent and are in the diamagnetic state, repre-
sent spin glasses with low freezing temperature (Tf =
40 K) of the spin moments of manganese ions [11].
However, according to our neutron-diffraction studies,
both phases—with ordered and disordered cobalt and
manganese ions—are ferromagnetic. Our neutron-dif-
fraction patterns are in agreement with the results of
electron-microscope studies of fine-dispersed
La2CoMnO6 [5], where the authors showed that only
5% of grains exhibit superstructural reflexes associated
with the ordering of cobalt and manganese ions. They
also made an assumption that the ordered phase has a
lower Curie temperature compared with the disordered
phase; however, this assumption is incorrect from the
viewpoint of the mechanism of exchange interaction
between cobalt and manganese ions. It is well known
that the Co2+–O–Co2+ and Mn4+–O–Mn4+ exchange
interactions are antiferromagnetic [12]; therefore, the
antisite defects in the ordered phase of La2CoMnO6
should reduce the Curie temperature or should even
give rise to an antiferromagnetic component. There-
fore, we assume that low-temperature anomalies in the
magnetic properties of La2CoMnO6-type compounds
are associated with a crystallographic phase that is dis-
ordered with respect to 3d ions.

A question arises as to what spin state the trivalent
cobalt ions are in that arise under the doping of
La2CoMnO6 with alkaline-earth ions or under the
excess of cobalt ions over manganese ions. Recall that,
in LnCoO3 (Ln is a lanthanide) perovskites, Co3+ ions
are in the low-spin diamagnetic state at low tempera-
tures and gradually go over to the intermediate-spin
state as temperature increases [13]. Judging by the
magnetic properties, the doping of LaCoO3 with man-
ganese ions gives rise to Co2+–Mn4+ pairs in the matrix
of Co3+ ions that are in the low-spin state [14]. The
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
magnetic properties of La2CoMnO6 doped with alka-
line-earth ions can also be consistently explained
within the model of an inhomogeneous magnet in
which Co3+ ions are in the low-spin state. In our opin-
ion, these solid solutions consist of clusters with differ-
ent concentrations of strontium: the ground state corre-
sponds to microscopic domains with the chemical com-
position close to that of La2CoMnO6, whereas clusters
with increased content of strontium correspond to the
spin-glass-type magnetic ground state. The clusters
must be sufficiently large since the transition to the
paramagnetic state may be sufficiently sharp and it
occurs at a sufficiently high temperature. The magnetic
behavior of La2CoMnO6 can also be accounted for
based on the assumption that a sample consists of
microscopic domains with different concentrations of
cobalt (manganese) ions.

The model explaining magnetic phase separation in
La1 – xSrxMnO3 manganites and La1 – xSrxCoO3 cobal-
tites via the intrinsic chemical inhomogeneity of solid
solutions is corroborated by X-ray absorption fine
structure (XAFS) measurements [15], by high-resolu-
tion electron-microscope data [16], as well as by other
spectroscopic investigations [17]. For instance, accord-
ing to [15], La1 – xSrxMnO3-type lightly doped mangan-
ites consist of strongly distorted domains with a struc-
ture close to that of LaMnO3 and of weakly distorted
domains that are doped with strontium ions. A similar
picture is observed in cobaltites. According to NMR
studies, the phase corresponding to the low-spin state of
Co3+ ions was observed even under a 50%-substitution
of strontium ions for lanthanum ions [4]. Recall that
a  transition to the ferromagnetic state in cobaltites
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Fig. 5. Refinement of the La1.4Ca0.6CoMnO6 structure in
the two-phase model by the Rietveld method using the neu-
tron-diffraction patterns obtained at T = 298 K; (circles)
experimental data, (solid line) computed curve, and (lower
solid line) their difference. Vertical segments indicate the
computed positions of 2θ reflexes. The magnetic contribu-
tion could not be distinguished (see the inset).
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occurs when the concentration of strontium ions
approaches 20%.

Investigations carried out with single crystals or
with samples prepared with the use of special chemical
techniques in which precursor atoms are mixed on the
nanometer scale do not significantly change the results
of [15]. Therefore, we are dealing with the intrinsic
structural and chemical inhomogeneity of solid solu-
tions, which, apparently, cannot not be removed in
principle.

Most likely, LaCo1 – xMnxO3 solid solutions are not
homogeneous objects either, but consist of two, or even
three, different magnetic phases. We assume that the
ordering of cobalt and manganese ions occurs only in a
rather narrow range of concentrations near x = 0.5. In
this case, the main part of a sample may consist of a
phase with disordered cobalt and manganese ions,
which contains clusters with a deficiency or an excess
of cobalt with respect to the value of x = 0.5. The disor-
dered phase with deficiency of cobalt is a ferromagnetic
phase with a characteristic Curie temperature of 160–
170 K. A significant contribution to the ferromagnetism
of this phase is made by the positive exchange interac-
tion between Mn3+ and Mn4+ ions. The magnetoresis-
tance effect observed in LaCo1 – xMnxO3 [6] is likely to
be primarily associated with this phase. The phase with
ordered arrangement of Co2+ and Mn4+ is characterized
by the highest TC, since the geometry of the Co2+–Mn4+

exchange bonds is optimal: according to the Blasse
model [18], each Co2+ ion positively interacts with six
Mn4+ ions and vice versa. However, the phase with an
increased concentration of cobalt ions is not ferromag-
netic; an interaction between this phase and the phases
with a deficiency in cobalt leads to frustration of
exchange bonds on the interface between phases, which
makes a significant contribution to magnetic anisot-
ropy. The coexistence of orthorhombic and rhombohe-
dral phases in nonstoichiometric La2CoMnO6 + δ is
most likely associated with the inhomogeneous distri-
bution of oxygen over a sample. The domains with
increased oxygen content are rhombohedral, whereas
the domains with decreased oxygen content are charac-
terized by orthorhombic distortions of a unit cell. This
situation is largely similar to that in stoichiometric lan-
thanum manganite. In LaMnO3 + δ, oxygen nonstoichio-
metry is due to the vacancies of lanthanum and manga-
nese cations; an increased oxygen content leads to a
transition from the orthorhombic to the rhombohedral
structure [19]. Like in the case of lanthanum mangan-
ite, the substitution of strontium for lanthanum in
La2CoMnO6 stabilizes the rhombohedral structure,
whereas the substitution of calcium for lanthanum sta-
bilizes the orthorhombic structure. However, the mech-
anisms of exchange interaction in LaMnO3 + δ and
La2CoMnO6 are completely different. In LaMnO3 + δ,
ferromagnetism is associated with the removal of static
orbital distortions due to doping with Mn4+ ions [20],
JOURNAL OF EXPERIMENTAL A
whereas La2CoMnO6 is not a Jahn–Teller magnet; its
ferromagnetic structure is attributed to the positive
exchange interaction between Co2+ and Mn4+ ions, and
doping with alkaline-earth metals leads to a gradual
destruction of ferromagnetism.

4. CONCLUSIONS

The X-ray, neutron-diffraction, and magnetic
measurements carried out on La2CoMnO6 + δ and
La2 − xAxCoMnO6 (A = Ca and Sr) systems have
revealed specific features of the magnetic state of these
systems and its relation to the crystalline structure. It
has been shown that the base compound La2CoMnO6
remains homogeneous in a rather wide range of oxygen
concentrations; the oxidation leads to a transition from
the orthorhombic to the rhombohedral structure. The
rhombohedral structure stabilizes under the doping
with strontium, whereas the orthorhombic structure sta-
bilizes under the doping with calcium as in lanthanum
manganite. The type of distortions of the crystalline
structure is attributed to the size effect, i.e., associated
with the variance of cation sizes at different positions.
The analysis of the crystalline structure shows that the
cobalt and manganese ions tend to ordering with the
ratio 1 : 1, and all samples consist of ordered and disor-
dered regions to a certain extent. The most probable
reason for the phase separation lies in local fluctuations
of the chemical composition.

According to analysis of bond lengths, cobalt and
manganese ions in the ordered phase have valences of
2+ and 4+, respectively. Doping with alkaline-earth
ions leads to a transition of cobalt ions from a bivalent
to a trivalent state, which is most likely a low-spin state
(S = 0). In this case, compounds are separated into
Co3+-rich and Co3+-poor regions in which spin-glass-
type and ferromagnetic states are realized, respectively.
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Abstract—Coherent interference effects of the following three types are experimentally discovered in disor-
dered (randomized) systems: (i) Josephson behavior of the HTSC polycrystal BaKBiO in the phase-separated
state; (ii) oscillations of bismuth film resistance, which are periodic in “direct” magnetic field; and (iii) meso-
scopic oscillations of the resistance in the course of film growth. In the first case, the method for detecting the
“latent” nonstationary Josephson effect is substantiated by the frequency modulation method for microwave
radiation, while in the other two cases, simple models are proposed to explain the nature of coherent oscillations
of the resistance. The analogy between the observed oscillations and the Josephson effect in randomized sys-
tems is discussed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the most convincing proofs of the Josephson
nature of an object under investigation is the observa-
tion of the nonstationary Josephson effect on this object
since the nonstationary effect is a direct consequence of
the coherent interaction of weakly coupled supercon-
ductors. To substantiate this, use is normally made of
external manifestations of the Josephson effect, e.g.,
the emergence of singularities on the current–voltage
(IV) characteristics of the sample or the suppression of
the critical current under the action of microwave radi-
ation or a weak magnetic field. However, as a rule all
this can be treated as an indirect and insufficient confir-
mation of the Josephson nature of the object. Indeed,
the critical current attributed to a weak Josephson cou-
pling might be just the small macroscopic critical cur-
rent of the sample. The variation of the IV characteristic
under the action of radiation is infrequency due to
microwave detection of nonohmicity in the sample
junctions. The suppression of the critical current by a
weak magnetic field also turns out to be a result of the
low value of the critical field of the superconductor;
similar step singularities in principle can appear on the
IV characteristic of the sample during vortex detach-
ment induced by microwave radiation. In contrast to the
external manifestation described above, the nonstation-
ary effect is a direct consequence of coherent properties
of weakly coupled superconductors; the observation of
this effect provides a reliable proof of the Josephson
nature of the system in question. However, the detec-
tion of the nonstationary Josephson effect from the
presence of Shapiro steps on the IV characteristics is
possible either for an individual junction or for a system
of identical tunnel junctions. A considerable spread in
1063-7761/04/9902- $26.00 © 20370
the values of the critical current, normal resistance, and
other parameters in a system of multiple Josephson
junctions smears the Shapiro steps and rules out obser-
vation of the nonstationary effect by a conventional
method in a sample containing such junctions. For this
reason, a strong broadening of the spectrum of self-
radiation generated by a junction in a system of this
kind complicates the detection of such a noiselike sig-
nal by a narrowband receiver. At the same time, knowl-
edge of the nature of weak bonds operating in random-
ized systems or in systems with a considerable spread
in parameters of such bonds is essential in a number
of cases.

In the present work, we propose a method for detect-
ing the “latent” nonstationary Josephson effect in ran-
domized systems and consider the experimental results
on observation of coherent interference effects in the
disordered superconducting system BaKBiO and
ultrathin bismuth films with random violations of uni-
formity of the parameters.

2. FREQUENCY MODULATION METHOD

In spite of a considerable spread in weak coupling
parameters, a manifestation of the nonstationary
Josephson effect in randomized superconducting sys-
tems can be observed by synchronizing the change in
the IV characteristics of an individual junction by exter-
nal action. If we periodically change the frequency of
the irradiating microwave field, the potential difference
across each junction will vary synchronously with the
variation of the frequency of incident radiation (natu-
rally, if the junctions indeed exhibit the Josephson
properties and the current passed through these junc-
004 MAIK “Nauka/Interperiodica”
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tion is strong enough, I > , where  is the Joseph-
son critical current). Thus, the Fourier component of
the voltage drop across the sample, detected by a nar-
rowband ac voltmeter or a synchronous detector and
having a frequency corresponding to the period of fre-
quency oscillations in microwave radiation, directly
indicates the presence of latent Josephson properties in
the given system.

In a practical realization of the proposed method,
one encounters a spurious amplitude modulation of the
supplied microwave radiation. Amplitude modulation
inevitably appears when a frequency-modulated micro-
wave signal passes through a waveguide tract with non-
ideal amplitude-frequency characteristics (AFCs) when
the signal is incident on a sample located at the antin-
ode of the electric field, which corresponds to a quite
definite wavelength, or simply due to nonuniformity of
the AFCs of a real microwave oscillator. The potential-
ities of the output power automated control system
(which is used, for example, in AFC panoramic dis-
plays) are limited by the amplitude-frequency proper-
ties of the tracking detector. For this reason, we take the
contribution of the spurious amplitude modulation to
the voltage drop detected on the sample and compare it
with the contribution from the frequency modulation.

Let us qualitatively consider the response of a mul-
tiple system of nonidentical junctions on the frequency
and amplitude modulation of incident microwave radi-
ation. Obviously, a multiple Josephson system can be
visualized as a 3D percolation network of tunnel junc-
tions with different critical currents. It is well known
that irradiation of an individual Josephson junction
leads to the formation of an equidistant (in voltage) ver-
tical segment (Shapiro steps) on the IV characteristic of
the junction.

In the simplest model, the Shapiro steps must pos-
sess an infinitely large differential conductivity; in
other words, Shapiro steps are a sort of superconduct-
ing segments of the IV characteristic [3]. In a 3D body,
in accordance with Ohm’s law, the transport current
passes along the trajectories corresponding to maximal
conductances. Thus, the current “tries to pass” via the
superconducting regions; i.e., it is concentrated by
“superconducting crosspieces.” An analogous require-
ment determining the choice of geometrical paths for
the current in the case of an infinitely large differential
conductivity (vertical segments of the IV characteristic)
can now be formulated for current increments. Any
increment smaller than the current interval correspond-
ing to a vertical segment of the IV curve is “short-cir-
cuited” by a junction of the circuit with an infinitely
large differential conductivity. As soon as this current
interval is exceeded, the system will try to find new
“superconducting” junctions. Consequently, with a
monotonic increase in the current, a randomized system
strives to pass any current increment via subcircuits
with an infinitely large differential conductivity, which
corresponds to Shapiro steps in the case when the sys-

Ic
J( ) Ic

J( )
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tem is exposed to microwave radiation. The increment
in the current density through the regions in which the
working point of the IV characteristic lies on the Sha-
piro steps will be maximal, which is analogous to
superconducting short-circuiting.

From the standpoint of the system’s stability to ran-
dom deviations, “superconducting regions for V ≠ 0”
are the most attractive (V is the potential difference
across a Josephson junction). If we characterize each
state of the system by a set of currents and voltages at
all junctions of the circuit, the statistical weight of the
states will be maximal when the working point of indi-
vidual elements of the circuit lie on the segment of the
IV characteristic with an infinitely large conductance.
This result is obtained since one value of voltage on a
“superconducting segment” of the IV characteristic
with V ≠ 0 corresponds to a set of current values (the
segment of the IV curve is degenerate in current). Con-
sequently, under the action of microwave radiation on a
percolation Josephson network, the transport current
chooses the paths crossing the Josephson junctions
whose working points under the given conditions lie on
the vertical segment of a Shapiro step. It is as if the mul-
tiple Josephson system as a whole tries to hold out on a
step in each of its junctions. If the frequency of micro-
wave radiation is varied, the voltage drop across all the
Josephson junctions for which the working point is on
the vertical segment of the IV curve (and, accordingly,
across parallel-connected subcircuits and, hence,
across potential contacts of a macroscopic sample)
changes synchronously. In addition, the change in the
voltage is a linear function of the change in frequency.

A change in the amplitude of microwave radiation
results in a change in the height of the Shapiro step, the
corresponding voltage remaining unchanged. Such an
effect on the multiple Josephson system causes either a
change in the position of the current through a Joseph-
son junction with the voltage of the step unchanged, or
a slippage of the working point from the step, and the
system on the whole will try to find an optimal path for
the current. In the latter case, the probability of slipping
from the lower and upper edges of the step are compen-
sated and the voltage drop on the average remains
unchanged. In this case, the voltage might change only
due to a change in the height of the zeroth step, which
is quadratic in the amplitude of microwave radiation. In
both cases, a considerable part of the junctions corre-
spond to vertical segments of the IV curve and the total
voltage across the potential contacts of the sample
remains unchanged.

The pattern of the “frequency” and “amplitude”
effects can be visualized as follows: a frequency varia-
tion causes a proportional change in the voltage across
most of the junctions; i.e., the response of the system is
considerable and linear. An amplitude variation does
not lead to a significant variation in the voltage distri-
bution in the system and causes a weak response qua-
dratic in the amplitude variation (mainly near the zeroth
SICS      Vol. 99      No. 2      2004
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step). When a Josephson junction is exposed to micro-
wave radiation, a change in the frequency affects the
voltage drop across the junction more strongly than an
amplitude variation (at least, as long as the voltage
monotonically depends on these effects). Indeed, other-
wise, an infinitely small alternating electromagnetic
field of a very low frequency (e.g., a noise signal of any
origin) could completely suppress the Josephson criti-
cal current, which would practically rule out the very
possibility of observing the Josephson effect. The

height  of the Josephson step is

where  is the Josephson critical current, J0 is the
zero-order Bessel function, U0 and ω = 2πf are the
amplitude and frequency of the microwave radiation,
2e is the charge of the Cooper pair, and " is the Planck
constant.

Thus, the strong response of a multiple Josephson
system to the frequency modulation of incident radia-
tion (as compared to the response to the amplitude
modulation) is a direct consequence of the Josephson
properties of the junctions forming the system. This
characteristic property can be used as direct evidence
for the Josephson nature of the object under investiga-
tion. To detect such properties in actual practice, one
should slowly scan the current through the sample to
record, using a selective narrow-band voltmeter or a
synchronous detector, the component of the voltage
drop across the sample with a frequency corresponding
to the period of frequency oscillations in the modulated
microwave field acting on the sample. It is not neces-
sary to take special measures to suppress spurious
amplitude modulation since the above qualitative anal-
ysis shows that, under the natural condition

,

the response of a multiple Josephson system to ampli-
tude modulation is smaller than the response to the fre-
quency modulation of the microwave signal (∆ is the
energy gap in the superconductor). Instead of suppress-
ing the spurious amplitude modulation, we must com-
pare the response of the system to frequency modula-
tion, obtained as a function of the current passing
through the sample, with an analogous function under
the action of amplitude modulation of microwave radi-
ation of a stable frequency. In both measurements, the
modulation depth must be the same (otherwise, the sig-
nals should be reduced to the same level). A consider-
able excess of the former response over the latter in a
wide range of currents directly indicates the Josephson
nature of the multiple system studied even if the Sha-
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piro steps on the static IV characteristic of the sample
are unstable or blurred in view of the difference in the
junctions.

3. EXPERIMENTAL RESULTS: 
HTSC BaKBiO

We used the above method for proving the Joseph-
son nature of the system under investigation in experi-
ments with polycrystals of the high-Tc superconductor
Ba0.6K0.4BiO3 (with a superconducting transition tem-
perature of Tc = 30 K). Earlier, we discovered a number
of anomalies in the behavior of this material at T < Tc [4].

(i) A return of the resistive state is detected at tem-
peratures below Tc , indicating the nonmonotonic tem-
perature dependence of the critical current.

(ii) A nonmonotonic dependence of the resistance
on the magnetic field was observed; the sample resis-
tance increases by several orders of magnitude as com-
pared to its value prior to the superconducting transi-
tion (RN), after which the resistance decreases to RN

upon a further increase in the field.
(iii) Low-frequency inductive measurements of the

susceptibility of the sample in a state with a finite con-
ductivity down to complete destruction of this state
indicate the presence of the superconducting phase in
the bulk [5].

These results indicate the possibility of self-consis-
tent coexistence of the superconducting and insulator
phases in the given system. The presence of the insula-
tor phase explains the increase in the resistance under
the action of the magnetic field at temperatures below
Tc . On the other hand, complete suppression of super-
conductivity by a magnetic field is accompanied by the
destruction of the insulator phase also, which reduces
the resistance. Gorbatsevich et al. [6] theoretically sub-
stantiated the above model, assuming that the current
transport via insulator regions is carried out via Joseph-
son tunneling, which necessitates searching for the
Josephson effect in Ba1 – xKxBiO3.

To prove the existence of the effect in this system,
we used frequency modulation of the microwave oscil-
lator X1-24 with a carcinotron operating in the fre-
quency range f = 8–10 GHz with automatic stabiliza-
tion of the output voltage (Fig. 1). Response VF of the
sample was detected by a selective voltmeter (Unipan
n-233) at a modulation frequency of F = 17 Hz as a
function of the current passed through the sample. The
frequency deviation δf amounted to 600 MHz and δf/f =
δω/ω = 6%. Since the sample was in an unstable state
and the noise level was rather high, we measured the

difference δVF between signal  in the presence
and VF in the absence of frequency modulation of

microwave radiation: δVF =  – VF. Signals 
and VF in a digital code were fed via an interface
directly to the temporary memory unit of a microcom-

VF
FM( )

VF
FM( ) VF

FM( )
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Fig. 1. Schematic diagram of the experiment with frequency modulation of the microwave oscillator: 1—frequency modulation
block of the microwave oscillator; 2—oscillator block with a 3-cm backward wave tube; 3—attenuator; 4—microwave isolator,
5—diaphragm with the sample at the joint between the waveguide and the tunable quarter-wave element; 6—tuning piston; 7—cryostat
with liquid 4He; 8—slow-linear-sweep current generator; 9—shunt for detecting the current introduced to the Ba1 – xKxBiO3 sam-
ple; 10—voltmeter for numbering the running values of the current in the sample; 11—voltmeter measuring the voltage drop for
recording the IV characteristic of the sample; 12—differential-input preamplifier for recording the ac voltage component across the
sample; 13—selective nanovoltmeter for separating the voltage component at the modulation frequency of the microwave radiation
frequency; 14—voltmeter for numbering the signal with the selective nanovoltmeter output; 15—multiplexer for data input from
three digital voltmeters to an ordinary 16-bit microcomputer bus; 16—computer with a parallel interface.
puter, where the signal was accumulated in memory
cells whose addresses were determined by the running
current value through the sample and then the differ-
ence between the contents of the corresponding cells
was calculated (symbols 〈 〉 will be used to denote aver-
aging of a signal accumulated in several paths). To
make sure that the observed signal appears due to fre-
quency modulation and not as a result of spurious
amplitude modulation (caused by nonuniformity of the
AFCs of the oscillator, waveguide, etc.), we compared

〈 〉  with an analogous signal V(AM) corresponding
to specially introduced 100% amplitude modulation of

the microwave radiation. Signal 〈 〉  was normal-
ized to 6%, which corresponds to the majorant estimate
of the depth of the spurious amplitude modulation in

experiments with frequency modulation, 〈 〉  =

0.06〈  – VF〉 . The value of 〈 〉  obtained in

this way was then compared with 〈 〉 . A compar-

ison of  and  makes it possible to dem-

onstrate that the signal  being measured is associ-
ated with frequency modulation alone and directly indi-
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cates the Josephson nature of the Ba1 – xKxBiO3 system
in the resistive state at T < Tc .

Figure 2 shows the results of measurements of the
response of a Ba1 – xKxBiO3 sample to modulation of
microwave radiation and the IV characteristics of the
sample recorded simultaneously with the measure-
ments. It can be seen from the curves that a nonzero
response of the sample was detected in the current
interval Ic < I < Ic1, where Ic1 [5] is the current corre-
sponding to the beginning of the linear segment of the
IV curve. It can be noted that the peak of the response
of the given system to amplitude modulation of radia-
tion lies in the range of small currents; this is in accor-

dance with the statement that the value of  should
be estimated taking into account only the contribution
from the zeroth step, assuming that the contributions of
the remaining steps are mutually compensated. A con-
siderable excess in the sample response to frequency
modulation (Fig. 2b) over the response to amplitude
modulation (Fig. 2c) in a wide range of currents (Ic <
I < Ic1) directly indicates the Josephson nature of the
multiple system studied here in spite of the absence of
stable Shapiro steps on the static IV characteristic of the
sample. The asymmetry in the dependences of the

VF
AM( )
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responses 〈 〉  and 〈 〉  on the current passed
through the sample is due to the fact that the microwave
response was averaged separately for two directions of
motion of the working point along the hysteresis IV
curve of the sample. Figure 2 shows responses corre-
sponding to increasing current passed through the
sample.

The IV characteristic recorded under microwave
irradiation at a stable frequency (without frequency and

δVF
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AM( )
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V

Fig. 2. (a) IV characteristic of the Ba1 – xKxBiO3 sample;
the inset shows the IV characteristic of a sample with a tra-
ditional arrangement of the axes; (b) averaged component

〈 〉  of the sample response to periodic variation of

the microwave radiation frequency, detected at modulation

frequency F; (c) averaged response 〈 〉  to amplitude

modulation with a depth reduced to the level at which fre-
quency modulation deviates (6%).
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FM( )

δVF
AM( )
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amplitude modulations) demonstrates the absence of
conventional phase synchronization in the entire sam-
ple. Such a synchronization of Josephson junctions
would lead in this case to the emergence of “giant”
steps on the IV curve, which was not observed in exper-
iment. The absence of such steps also rules out the
effects like those of synchronous motion of vortices in
the sample under the action of the microwave radiation.

4. AHARONOV–BOHM EFFECT 
AND RESISTANCE OSCILLATIONS

IN MESOSCOPIC OBJECTS

The observation of quantum interference in a mag-
netic field (i.e., the Aharonov–Bohm effect) provides
another opportunity for a direct substantiation of coher-
ent properties of a randomized system. Unfortunately,
such experiments in superconducting systems with a
weak coupling can be carried out only in special cases:
two tunnel junctions in a superconducting ring, an
extended homogeneous Josephson junction, a network
of identical DC-SQUIDs, etc.) In randomized Joseph-
son systems, interference in a magnetic field cannot be
observed since an appropriate synchronizing mecha-
nism is not available. However, there exists a mecha-
nism of self-consistent enhancement of the contribution
to the overall effect from individual elements in a ran-
domized ensemble of mesoscopic objects. Owing to
this mechanism, the contribution becomes macroscopi-
cally observable. Here, we apply the term mesoscopic
objects to objects of macroscopic size, which are in a
nonsuperconducting state at a low temperature, when
the mean free path of normal charge carriers and the
phase coherence length are commensurate to the size of
the object. It is well known [7, 8] that mesoscopic
objects can exhibit interference effects.

The mesoscopic objects in which quantum interfer-
ence is observed are microscopic structures based on
high-quality metal films (characterized by a large phase
coherence length) with a special geometry on the sub-
micrometer scale (e.g., a ring or a cylinder with a diam-
eter smaller than the coherence length of charge carri-
ers). The area bounded by the ring or the cylinder base
determines the period of resistance oscillations in a

magnetic field (∆B = /S = 2π"/neS, where  is
the magnetic flux quantum in a system with n-electron
correlations). However, we came across oscillations of
the Hall resistance Rxy(B) in Bi films [9] intended for
the observation of the quantum Hall effect, i.e., with a
geometry far from that of a solitary ring of submi-
crometer size. Obviously, in our experiments, a ring (or
a microscopic region possessing similar interference
properties) appeared in the film spontaneously (proba-
bly, during laser sputtering) [10]. The conductivity in
such a microscopic region is high since interference
effects require a large coherence length and, hence, the
mean free path must be sufficiently large; this, in turn,
leads to a high conductivity. The high local conductiv-

Φ0
ne( ) Φ0

ne( )
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Fig. 3. (a) Schematic diagram of concentration of current lines by the high conductivity of a microregion (dark ellipse); (b) geometry
of the first experiment in which mesoscopic resistance oscillations were observed [11]; contact areas are hatched.
ity of a microscopic region leads to a concentration of
the current, which ensures a large contribution of the
oscillating part of its resistance to the total signal at
potential contacts (Fig. 3a). The large conductivity of
the microscopic region in this case plays the same role
as the infinitely large differential conductivity of Sha-
piro steps in the zeroth approximation. In both cases,
the current concentration exceeds the contribution of
coherent effects to the signal being measured.

Beginning from the publication by Sharvin [11],
who was the first to observe the Aharonov–Bohm effect
in a metal film, three generations of interference mesos-
copic experiments have been carried out in the following
sequence: from a nontrivial experimental geometry [11]
to planar submicrometer Au rings [12] and then to
GaAs/AlxGa1 – xAs heterojunctions in the form of rings
[13] prepared strictly according to the rules of nano-
technology. The geometry of the Sharvin experiment
was indeed nontrivial: he observed resistance oscilla-
tions not on a metal ring, but on a metal film in the form
of a cylinder deposited on the lateral surface of a quartz
filament. The resistance was measured between points
at the vertices of the diagonal of cylinder cross section
(Fig. 3b). The total conductance is the sum of two parts:
the component oscillating in a magnetic field applied
along the cylinder axis and the field-independent com-
ponent:

It was shown [11] that the amplitude of resistance oscil-
lations in such a system must be on the order of the
quantum standard

(Klitzing constant). Consequently, the field-independent
part should be reduced to the maximal possible extent for

1
R
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R0
-----

1
Rosc B( )
------------------.+=

∆Rosc B( ) 2π"

e2
----------∼ 25813 Ω=
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the constant conductance not to suppress the interference
effect; for this reason, the resistance in the Sharvin
geometry is not measured along the shortest path.

5. RESISTANCE OSCILLATIONS
IN BISMUTH FILMS 

(EXPERIMENTAL RESULTS)

The resistance of Bi films in our experiments was
measured in fields up to 1 T at T = 4.2 K. To increase
the signal-to-noise ratio, data were accumulated in the
temporary memory of a computer and were averaged
over six paths to suppress 1/f noise. Figure 4 shows the
magnetic field dependence of the oscillating part of the
resistance; beats correspond to three sinusoids with

0 0.04 0.08 0.12 0.16 0.20
B, T

–20

0

20

40

60

Rxy, rel. units

S1

S2

S3 = S1 + S2

Fig. 4. Mesoscopic resistance oscillations as a function of
the applied magnetic field. The ring shown schematically on
top has a topology ensuring a ratio of periods ∆B1 =
0.30 T = Φ0/S1, ∆B2 = 0.27 T = Φ0/S2; ∆B3 = 0.11 T =

Φ0/S3, Φ0 = "/2e = 2.07 × 10–15 Wb, S1, S2, and S3 are the
effective areas of different parts of the ring.
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periods ∆B1/2π = 0.047 T, ∆B2/2π = 0.036 T, and
∆B3/2π = 0.017 T. The dependence simulating the data
(dashed curve) was chosen by the least-squares method
using 12 parameters:

(1)

Attempts at a standard expansion of experimental
dependences into a Fourier series did not allow us to
observe spectral peaks revealed by the above-men-
tioned variational procedure. This is due to the fact that
the phase of the oscillation drifts (see Fig. 4) and the
Fourier components calculated by the conventional
method do not exhibit the typical frequency depen-
dence. We proposed another algorithm allowing for the
smallness of the coherence interval in magnetic field.
This algorithm substantially simulates in digital form
the operation of a two-channel synchronous lock-in
detector in the selective mode. The Fourier integral of
the product of the function under investigation by
sin/cos is taken not over the entire range of the argu-
ment, but over the coherence interval. The integration
domain in this case gradually moves over the entire
range of the argument. Then the obtained dependence
of both Fourier coefficients is averaged over the norm.
Our algorithm has made it possible to reveal the spectral
peaks coinciding (to within 2%) with the periods
obtained from the variational procedure (Fig. 5, n = 101).
The computer time in this case was 10 h, while the time
required for obtaining an approximate Fourier expan-
sion was on the order of several minutes. If we take the
entire range of the argument as the coherence interval,
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 sin=

+ A2 2π B
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Fig. 5. Fourier spectra of mesoscopic resistance oscillations
of the Bi film: n is the number of “measuring points” used
for approximate calculation of the Fourier integral; n is pro-
portional to the coherence interval.
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the procedure described above is transformed into the
conventional (exact) Fourier expansion. In this limit,
the spectrum of our data becomes irregular and noise-
like (Fig. 5, n = 400).

The resistance oscillations in our experiment were
clearly observed on the Hall (transverse) contacts of the
samples. The smallness of the interference contribution
to the longitudinal resistance is apparently associated
with shunting of the oscillating part by the intrinsic
high conductivity of the microscopic region. The trans-
verse resistance of this region under the conditions of
the integer quantum Hall effect is high (on the order of
the quantum standard 2π"/e2 = 25813 Ω); for this rea-
son, the effect of self-shunting across the Hall contacts
is absent. This circumstance is equivalent to the gain
obtained in the geometry of the Sharvin experiment.
Self-shunting across transverse contacts is suppressed
in an increasing field since the transverse Hall resis-
tance of the samples increases in proportion to the field:
Rxy = Uy/Ix ∝  B. Consequently, we could expect that the
amplitude of oscillations would increase with the field.
However, no such increase is observed; a more ade-
quate model of the microscopic region is probably not
a ring as an analog of a DC-SQUID, but the micro-
scopic region as a whole as an analog of a solitary
Josephson junction with broad banks (a ring without a
hole). It is well known that the amplitude of oscillations
of the critical Josephson current through a 2D junction
of rectangular cross section behaves as

In this case, an analogous interference suppression of
the amplitude of resistance oscillations,

,

is probably compensated by the suppression of self-

shunting effect in an increasing field. Here,  is the
magnetic flux quantum for n-electron states.

6. JOSEPHSON EFFECT
AND QUANTIZATION OF THE RESISTANCE

OF MESOSCOPIC OBJECTS

The above-mentioned analogy of mesoscopic oscil-
lations in the microscopic region with oscillations of
the critical current in a DC-SQUID is considerably sim-
plified; however, this analogy correctly reflects, on the
whole, the interference origin of these oscillations (in
other words, the interference nature of the Aharonov–
Bohm effect and the stationary Josephson effect).
Expanding this analogy, we should seek an analog of
the nonstationary Josephson effect in the microscopic
region in question. This effect should be as follows: we
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expose a Bi film to microwave radiation and observe,
instead of Shapiro steps, periodic deviations from lin-
earity (nonohmicity) of the IV characteristic.

However, it was found in the course of preparation
of such an experiment that there exists a simpler exper-
iment revealing the Josephson nature of the micro-
scopic region. Let us consider an extended 1D region
(filament) with a phase coherence length exceeding its
geometrical length. Then the potential difference
applied at the ends of this filament will induce the oscil-
lation of the phase in time with the “Josephson” fre-
quency ωϕ = eU/". This gives a period Tϕ = 2π"/eU. On
the other hand, the time interval during which an elec-
tron traverses the filament is determined by the current,
T(1e) = e/I. In the case of the equality T(1e) = Tϕ , we
obtain a sort of parametric resonance corresponding to
the effect of trapping of the filament resistance at the
level of the quantum standard,

Consequently, we have

Being parametric, the resonance must be repeated for n
electrons (n = 1, 2, 3, …) passing over a period of phase
variation. Then, a smooth variation in the resistance of
the microscopic region upon film deposition would
give rise to the formation of recurring steps (“sealing”)
of conductivity with a period multiple of e2/2π". This
was precisely observed after a simple statistical pro-
cessing of the experimental results.

7. QUANTIZATION OF THE RESISTANCE 
OF BISMUTH FILMS

(EXPERIMENTAL RESULTS)

Figure 6 shows correction ∆σ(L) to the conductivity
of a Bi film as a function of conductivity, obtained by
subtracting the smoothed curve 〈σ(L)〉  from the experi-
mental dependence σ(L) (L is the film thickness). The
∆σ(σ0) curve displays oscillations with a period equal
on average to 2e2/2π".

According to Schwarzchild [12], the period of
mesoscopic resistance oscillations also corresponds to

a two-electron quantum,  = 2π"/2e, which corre-
sponds to a second-order magnetodependent contribu-
tion to backward scattering. This means that the quan-
tization of the resistance of the mesoscopic region in a
magnetic field is of the same origin as the quantization
of its conductivity during the film growth. Similar
effects of conductivity quantization were also observed
earlier for objects of completely different nature
(dependence of the resistance on the position of the pin

e
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in a tunnel microscope [14] or the behavior of the con-
ductivity of a AsGa channel in a high electron mobility
transistor (HEMT) as a function of the voltage across
its gate [13]). However, no clear unified conception that
would explain the physics of the observed effects was
proposed in these publications.

8. CONCLUSIONS

In three parts of this article, we considered coherent
effects discovered during electrophysical measure-
ments in disordered systems of three types: the Joseph-
son behavior of an HTSC polycrystal BaKBiO in the
phase-separation state (Sections 2 and 3), resistance
oscillations in a Bi film in a magnetic field (Sections 4
and 5), and mesoscopic resistance oscillations in the
coarse of film growth (Sections 6 and 7).

The general property of such dissimilar systems is
the existence of a “synchronizing mechanism” that
adjusts the disordered systems to macroscopic interfer-
ence phenomena.

It was shown in Section 2 that such a synchronizing
mechanism, which makes it possible to observe the
nonstationary Josephson effect in BaKBiO polycrystals
below the phase-separation temperature, can be
approximately described as follows. Shapiro steps on
their vertical segments possess a high differential con-
ductivity (infinitely high in the simplest model), i.e.,
a sort of superconducting segments of the IV character-
istic. Any current increment smaller than the step height
will be short-circuited by a Josephson junction in the
randomized 3D circuit, whose working point on the IV
curve lies on the vertical segment of a step. In this case,
the current increment is distributed over the trajectories
corresponding to the maximal differential conductivi-
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σ0, kΩ–1

–0.010

–0.005

0

0.005

0.010

∆σ, kΩ–1

1

2

Fig. 6. Conductivity deviation ∆σ(L) = σ(L) – σ0(L) from
the averaged linear dependence, where σ0(L) ∝  L. Curve 1
describes the dependence ∆σ = ∆σ(σ0). Curve 2 corre-
sponds to the exact formula of oscillations with a period
corresponding to two-electron quantum standard of conduc-
tivity sin(2π"σ0/2e2).
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ties, and the working point on the IV curve lies on the
vertical segments of the Shapiro steps for most junc-
tions irrespective of the spread in their critical current.
This makes it possible to observe the nonstationary
Josephson effect by the method of frequency modula-
tion, although this effect cannot be directly observed on
the IV curve of the entire sample due to a considerable
spread in the critical currents of Josephson junctions.

The high conductivity of the microscopic region
plays the role of an enhancing mechanism that ensures
the oscillating correction to the resistance of the Bi film
in a magnetic field. On the one hand, the high conduc-
tivity in this case causes the concentration of current,
which ensures the large contribution of the oscillating
part of the microscopic region resistance to the total
signal at potential contacts. On the other hand, the high
conductivity corresponds to the film region in which the
mean free path is large and where the interference
effects of the type of the Aharonov–Bohm effect can
only be observed. The high conductivity of the micro-
scopic region plays the same role as the infinitely large
(in the zeroth approximation) differential conductivity
of Shapiro steps. In both cases, the current concentra-
tion increases the contribution of coherent effects to the
signal being measured.

In the third case, the synchronizing mechanism for
the oscillating correction to the conductivity, whose
periodicity corresponds to resistance quantization, is
apparently the local nonuniformity in the rate of film
growth during laser sputtering. In the case of slow ther-
mal deposition or laser sputtering alternating with film
annealing, such an effect should not be observed. In our
experiments, this effect was observed only in some
series of laser sputtering. The effect is very sensitive to
the growth rate and depends on the laser pulse energy.
The quality of prepared substrate surface also plays a
certain role.

In the coarse of nonuniform growth, extended per-
colation channels are obviously formed in the film; the
resistance of these channels ensures a quantizing con-
tribution to the total conductivity of the sample. The
fact that the channels are threadlike, narrow, extended
objects is indirectly confirmed by the small amplitude
of the Hall resistance oscillations [9, 15] in quantizing
magnetic fields. Indeed, according to the semiclassical
theory [16], the Hall voltage turns out to be equal to the
potential difference across the open edge trajectories of
carriers. Thus, the larger the width of a percolation
channel, the higher the difference in the chemical
potentials across its ends and the higher the Hall emf.
Accordingly, the percolation in narrow channels corre-
sponds to a low Hall voltage and a low Hall resistance.
JOURNAL OF EXPERIMENTAL 
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Abstract—It is shown that intraband absorption of circularly polarized light leads to spin polarization of the
electron gas. A theory of this monopolar optical spin orientation is developed for indirect intraband transitions
in bulk semiconductors and for indirect intrasubband and direct intersubband transitions in quantum wells. ©
2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Spin-dependent phenomena in semiconductor struc-
tures are the subject of extensive ongoing research. The
most widespread method for creating spin polarization
and investigating kinetics of spin-polarized carriers is
optical orientation of electron spins [1]. In interband
excitation by circularly polarized light, direct transi-
tions from the valence band to the conduction band can
occur only with electron angular momentum changing
by ±1. This selection rule controls spin orientation of
photoexcited carriers. Both direction and degree of spin
orientation depend on the direction of light propagation
and the degree of circular polarization.

To date, optical orientation has been studied in detail
for interband optical absorption in bulk semiconductors
and nanostructures (see [1–4]) and, to some extent, for
direct intersubband transitions in the complex valence
bands Γ8 of semiconductors with zinc-blende-type lat-
tices [3, 5, 6]. Monopolar optical orientation of the
electron gas was not addressed until recently. However,
the circular photogalvanic and spin-galvanic effects
discovered in n-type InAs/AlGaAs and GaAs/AlGaAs
quantum wells in [7–12] indicate that intraband absorp-
tion of circularly polarized light results in redistribution
of electrons between spin states.

In this paper, we present a theory of monopolar opti-
cal orientation induced in the electron gas by circularly
polarized light with a photon energy much smaller than
the band gap. We consider indirect intraband optical
transitions in bulk semiconductors and both indirect
intrasubband and direct intersubband transitions in
quantum wells based on semiconductors with zinc-
blende-type lattices. Since only electrons are involved
in photoexcitation, monopolar orientation can be con-
sidered as an optical spin-generation method.

The paper is organized as follows. In Section 2, we
consider monopolar optical orientation of the electron
gas in bulk semiconductors. Section 3 presents a theory
1063-7761/04/9902- $26.00 © 20379
of optical spin orientation of electrons in quantum wells
under intra- and intersubband excitation. In Section 4,
we consider the short-range Elliott–Yafet spin relax-
ation mechanism, which is determined by the same
constants of interband scattering by phonons and
defects that determine electron spin orientation by indi-
rect optical transitions. In the Conclusions, calculated
results are compared with available experimental data.

2. OPTICAL ORIENTATION
IN BULK SEMICONDUCTORS

Intraband (Drude) absorption of light must involve
electron momentum transfer, because energy and
momentum must be conserved simultaneously. The
role of a third particle that transfers momentum to an
electron can be played by a static defect, an acoustic or
optical phonon, or another electron.

In perturbation theory, indirect optical transitions
are treated as second-order processes involving virtual
intermediate states. The composite matrix element for a
transition between states in the conduction band is writ-
ten in the following standard form [3]:

(1)

where k and k' are the wave vectors of an electron in the
initial and final states, respectively; s is the spin index;
ν refers to the band of an intermediate state; Eck , Eck' ,
and Eν are the electron energies in the initial, final, and
intermediate states, respectively; R is a matrix element
of the electron–electromagnetic-wave interaction oper-
ator; V is a matrix element of the operator of electron–
phonon interaction or electron scattering by an impu-
rity; "ω is a quantum of light; and "Ωk – k' is the phonon

Ms'k' sk←

=  
Vcs'k' νk, Rνk csk,

Eck Eνk– "ω+
------------------------------------

Rcs'k' , νk'Vνk' csk,

Eck Eνk'– "Ωk k'–+−
----------------------------------------------+ 

  ,
ν
∑

004 MAIK “Nauka/Interperiodica”
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energy ("Ω = 0 for elastic scattering by an impurity).
The minus and plus signs in  correspond to phonon
emission and absorption, respectively. The matrix ele-
ment R for the absorptive transition from |n, s, k〉 to |ν, k〉
is expressed in terms of the corresponding matrix ele-

+−

|s'k'〉

|sk〉

(a) (b)

|sk〉

|s'k'〉

E c

k k

Fig. 1. Indirect intraband optical transitions. Dashed and
dotted curves represent electron–electromagnetic-wave
interaction and electron scattering, respectively. Panels a
and b correspond to the first and second terms in composite
matrix element (1), respectively.

Fig. 2. Optical orientation by indirect optical transitions in
the conduction band with intermediate states in the valence
band.

E E

|–1/2, k〉

|+1/2〉

|+1/2, k'〉
|+1/2, k'〉

|–1/2〉

|–1/2, k〉

hh

lh

so

(‡) (b)

σ+ σ+
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ment of the momentum operator  as

(2)

where m0 is the free-electron mass, e is the elementary
charge, A = Ae is the complex amplitude of electromag-
netic vector potential (A = |A|), and e is the polarization
vector.

Intraband absorption is dominated by transitions via
intermediate states in the same band, as schematized in
Fig. 1. The corresponding transition matrix element can
readily be derived from (1) by assuming that the interme-
diate state is in the conduction band. When the photon
energy is substantially larger than the energy transferred
to the electron in a scattering event ("ω @ "Ωk – k'), the
matrix element can be written as

(3)

Processes of this kind determine the intraband absorp-
tion coefficient, but do not contribute to optical orienta-
tion, because the absolute value of (3) is independent of
the sign of circular polarization.

Spin orientation caused by intraband absorption of
circularly polarized light can be modeled by analyzing
virtual transitions via intermediate states in the com-
plex valence band and taking into account spin-orbit
splitting. Figure 2 is a schematic illustration of spin ori-
entation of the electron gas. Excitation by circularly
polarized light σ+ induces electron |–1/2〉   |+1/2〉
spin-flip transitions via intermediate states in the light-
hole and spin-orbit split-off subbands, whereas reverse
(|+1/2〉   |–1/2〉) transitions are forbidden. This pho-
toexcitation asymmetry is responsible for spin orienta-
tion of the electron gas.

Let us consider acoustic-phonon-assisted optical
orientation. The Hamiltonian term that represents the
interband mixing due to the acoustic-phonon deforma-
tion potential is a 2-by-6 matrix:

p̂

Rνk nsk,
e

cm0
---------A pνk nsk, ,⋅=

Mcs'k' csk←
0( ) eA

cω"
2

------------e
dEck

dk
-----------

dEck'

dk'
------------– 

  Vcs'k' csk, .=
(4)V̂ph Ξcv

εyz iεxz+

2
---------------------– 2

3
---εxy

εyz iεxz–

6
-------------------- 0

εxy

3
-------–

εyz iεxz–

3
--------------------–

0
εyz iεxz+

6
---------------------– 2

3
---εxy

εyz iεxz–

2
--------------------

εyz iεxz+

3
---------------------–

1

3
-------εxy

,=
where Ξcv denotes the interband deformation-potential
constant; εyz , εxz , and εxy are the off-diagonal compo-
nents of the strain tensor, which are transformed as a
vector under the Td group; and both the Γ6 conduction-
band Bloch functions and the Γ8 and Γ7 valence-band
Bloch functions are defined in the canonical basis [3].
Taking into account virtual intermediate states in the
valence band, we write the matrix element for an indi-
rect optical transition as

(5)

with !k', k ≡ M(0) and @@@@k', k representing the contribu-

Ms'k' sk, !k' k, δs's @@@@k' k, ss's,⋅+=
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tions of intermediate states in the conduction and
valence bands. Here,

(6)

Eg is the band gap; ∆so is the valence-band spin-orbit
splitting; Pcv = 〈S| |Z〉  is the interband momentum
matrix element; σx , σy , and σz are the Pauli matrices;
and the Uk', k vector components are the off-diagonal-
strain matrix elements

calculated in a plane-wave basis. According to (6), the
spin-dependent contribution to the intraband optical-
transition matrix element, @@@@k', k , is proportional to the
valence-band spin-orbit splitting. In mathematical
terms, this is explained by the opposite signs of the
matrix elements corresponding to virtual transitions via
the heavy- or light-hole Γ8 subbands and the spin-orbit
split-off Γ7 subband.

In the expression for spin generation rate,

(7)

the matrix (k) is expressed in the linear approxima-
tion with respect to light intensity as follows (see [13]):

(8)

@@@@k' k,
2
3
--- eA

cm0
---------

∆so

Eg Eg ∆so+( )
------------------------------iPcv Uk' k, e×[ ] ,=

p̂z

Uk' k, Ξcv

k' εyz k〈 〉
k' εxz k〈 〉
k' εxy k〈 〉 

 
 
 
 

=

Ṡ Tr
1
2
---ŝρ̇ k( ) ,

k

∑=

ρ̇

ρ̇ss' k( ) 2π
"

------ f k1

0 f k
0–( )

k1, s1

∑=

× Msk s1k1, Ms'k s1k1,* δ Ek1
Ek "ω+–( )[

+ Ms1k1 s'k, Ms1k1 sk,* δ Ek1
Ek "ω––( ) ] ,
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where  denotes the equilibrium carrier distribution
function. Performing summation over k and k1 and
using the approximate relation

for the effective electron mass, we obtain a final expres-
sion for the rate of spin generation by intraband absorp-
tion concurrent with acoustic-phonon-assisted electron
scattering:

(9)

Here, Ξc is the intraband deformation potential con-
stant; vL and vT denote the longitudinal and transverse
sound velocities, respectively; I = A2ω2nω/2πc is light
intensity; and Pcirc is the degree of circular polarization
related to the unit vector l in the direction of light prop-
agation as Pcircl = i[e × e*]. The optical absorption coef-
ficient Kph is

where α = e2/"c ≈ 1/137 is the fine-structure constant,
nω is refractive index, kB is the Boltzmann constant, T is
temperature, ρ is the crystal density, and Ne is the elec-
tron concentration.

At low temperatures, electron scattering by static
defects may predominate over electron–phonon inter-
action. Defect-assisted intrasubband absorption of cir-
cularly polarized light can result in spin orientation if
the scattering defects cause mixing of valence- and
conduction-band states. For example, the defects may
be deep impurities with p Bloch states. In the case of
short-range defects, the interband-scattering term of the
Hamiltonian has the form

f k
0

1
m*
------- 2

3
---

Pcv
2

m0
2

------------ 2
Eg
----- 1

Eg ∆so+
-------------------+ 

 ≈
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1
6
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2
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2
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2
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--------------------------------------------------------------=

× 2
5
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3
5
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2
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2

------+
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 

IKphPcircl.
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Ξc

"ω
------- 

 
2 kBT

ρv L
2

---------- 2m*ω
"

--------------- 
 

1/2

Ne,=
(10)V̂def

V x iVy+

2
--------------------– 2

3
---Vz

V x iVy–

6
------------------- 0

Vz

3
-------–

V x iVy–

3
-------------------–

0
V x iVy+

6
--------------------– 2

3
---Vz

V x iVy–

2
-------------------

V x iVy+

3
--------------------–

Vz

3
-------

δ r r j–( ),
j

∑=
where Vx , Vy , and Vz are the matrix elements associated
with defect-induced mixing of the conduction-band
Bloch function S with the valence-band functions X, Y,
and Z; rj is an impurity site. The spin-dependent contri-
bution to the photon absorption matrix element, which
is determined by virtual transitions via intermediate
ICS      Vol. 99      No. 2      2004
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states in the valence band and is responsible for spin
orientation, is given by (6) with

(11)

Averaging over rj and impurity wavefunctions (〈VαVα〉 ≡
 and 〈VαVβ〉  = 0 if α ≠ β), we obtain a final expres-

sion for the rate of spin generation due to static-defect-
assisted intraband optical transitions:

(12)

where Vc is the matrix element for intraband electron
scattering by defects. The optical absorption coefficient
Kdef is expressed as

where Ndef denotes the defect concentration.
Using (9) with the parameters and constants Eg ≈

1.5 eV, ∆so ≈ 0.34 eV, Ξc ≈ –8.3 eV, and Ξcv ≈ 3 eV char-
acteristic of GaAs (see [1, Ch. 3] and [14]), we estimate
the average spin generated by acoustic-phonon-assisted
intraband absorption of a circularly polarized photon of
energy "ω = 10 meV as 3 × 10–6. A higher value would
be obtained if other scattering mechanisms were taken
into account.

3. OPTICAL ORIENTATION
IN QUANTUM WELLS

In quantum-well structures, intraband absorption
can be attributed to both indirect intrasubband optical
transitions and direct intersubband transitions between
size-quantized subbands (if photon energy corresponds
to energy separation between subbands).

3.1. Intrasubband Transitions

As in the case of monopolar optical orientation by
intraband transitions in bulk semiconductors, indirect
intrasubband optical transitions resulting in monopolar
optical orientation in quantum wells involve virtual
intermediate states in the complex valence band.

We assume here that electrons occupy the ground
size-quantized subband (e1) in an infinitely deep rect-
angular quantum well and the size-quantization energy
is substantially larger than the mean kinetic energy in

Uk' k,

V x

Vy

Vz 
 
 
 
 
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∑=
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-------=
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--------------------------------------------------------------IKdefPcircl,

Kdef
4α
3nω
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V c
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"ω( )2
--------------- 2m*ω
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--------------- 

 
1/2

Ne,=
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the (x, y) plane. In this case, virtual transitions via the
valence band must involve intermediate states in the
ground heavy-hole, light-hole, and spin-orbit split-off
subbands.

In the case of intrasubband optical absorption con-
current with electron scattering by bulk acoustic
phonons, the spin generation rate is

(13)

where l = (l||, lz) is the unit vector in the direction of light
propagation (l|| and lz are its components parallel and
perpendicular to the boundary), the fraction of energy
flux ηph absorbed in the quantum well under normal
incidence is expressed as

a is the quantum-well width, and Ne is the two-dimen-
sional electron concentration.

For light absorption concurrent with elastic scatter-
ing by defects, the spin generation rate is

(14)

where V|| = Vx = Vy and Vz are the matrix elements for
defect-induced mixing of the conduction-band Bloch
function S with the valence-band wavefunctions X, Y,
and Z, the fraction of energy flux ηdef absorbed in the
quantum well under normal incidence is expressed as

with Ndef denoting the two-dimensional defect concen-
tration, and Vc is the matrix element for intraband elec-
tron scattering by defects.

3.2. Direct Intersubband Transitions 

Intersubband light absorption in quantum wells is a
resonant process that can occur if the photon energy
equals the energy separation between subbands. In the
single-band approximation, direct optical transitions
from the subband e1 to the subband e2 conserve spin
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orientation and occur only if the polarization vector e
has a nonzero normal component ez [3, 15–17].

Monopolar optical orientation of the electron gas by
direct intersubband optical transitions can be modeled
only if mixing of valence-band states with conduction-
band wavefunctions is allowed for. Under this condi-
tion, light polarized in the quantum-well plane can be
absorbed and intersubband transitions are made spin-
dependent by circularly polarized light.

We assume that electrons occupy the ground sub-
band (e1) and the size-quantization energy is substan-
tially larger than the mean kinetic energy in the (x, y)
plane. To allow for k · p mixing, we represent the opti-
cal-transition matrix elements as

(15)

where the spin-independent contribution is the matrix
element

(16)

calculated in the single-band approximation, and the
contribution due to k · p mixing is represented by

(17)

Here, E21 = E2 – E1 is the energy separation between the
subbands, nz is the unit vector along the z axis, and the
matrix element p21 of the momentum operator  =
−i"∂/∂z is calculated as

by using size-quantization wavefunctions.

Intersubband light absorption involves redistribu-
tion of carriers between subbands. The corresponding
spin density matrices are determined by the equations

(18)

Substituting (18) into (7), we obtain a final expres-
sion for the spin generation rate in the lower and upper
subbands due to absorption of circularly polarized
light:

(19)

where the fraction of energy flux absorbed in the quan-
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tum well for light polarized along the z axis is

and the fraction of absorbed energy flux due to k · p mix-
ing for light polarized in the quantum-well plane is [16]

Expression (19) describes optical orientation of a
two-dimensional electron gas by intersubband transi-
tions. Under normal incidence (l|| = 0), circularly polar-
ized light induces intersubband spin-flip transitions.
Therefore, the electron spins generated in both sub-
bands are parallel (see Fig. 3a). When circularly polar-
ized light is incident at an oblique angle, the polariza-
tion component ez induces fast spin-conserving inter-
subband transitions. However, their rates for spins
oriented parallel and antiparallel to l|| differ by the fac-
tor (ηzη||)1/2. As a result, the spin parallel to l|| is redis-
tributed between subbands, while the total spin in the
quantum-well plane is conserved in the photoexcitation
process (see Fig. 3b). The redistribution of the spin par-
allel to l|| between subbands gives rise to an average
spin orientation in the quantum-well plane if hot elec-
trons are spin-depolarized in the course of energy relax-
ation. In this case, the average spin generation rate in

the quantum-well plane is , where ξ is a dimen-
sionless factor introduced to take into account spin
depolarization.

4. SPIN RELAXATION
VIA INTERBAND SCATTERING

Virtual interband scattering can lead to both mono-
polar optical orientation and spin relaxation in the elec-
tron gas. At the microscopic level, this spin relaxation

η z
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Fig. 3. Intersubband optical orientation of electron spin via
(a) spin-flip transitions and (b) spin-conserving transitions.
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mechanism can be explained by k · p admixture of
valence-band states to the conduction-band wavefunc-
tion and virtual interband scattering by phonons or a
static defects. For bulk semiconductors, this short-
range Elliott–Yafet spin relaxation mechanism was dis-
cussed by Pikus and Titkov in [1, Ch. 3].

The spin relaxation time corresponding to this
mechanism can be calculated by using composite
matrix element (1) with the electron–electromagnetic-
wave interaction operator R replaced by the k · p-mix-
ing operator ("/m0)k · pνk, csk.

Let us consider electron spin relaxation in an infi-
nitely deep rectangular quantum well. When the transi-
tions via intermediate states in the subbands hh1, lh1,
and so1 are taken into account, the spin-flip matrix ele-
ment is given by expression (6) with (eA/c)e replaced
by "(k + k')/2, where k and k' are wave vectors in the
quantum-well plane.

If the two-dimensional electron gas is characterized
by the Boltzmann distribution, then the spin relaxation
times in the quantum-well plane and along the z axis
due to electron scattering by bulk acoustic phonons are

(20)

where the electron momentum relaxation time τph due
to electron scattering by acoustic phonons is defined by
the relation

The spin relaxation times due to interband scattering
by static short-range defects are

(21)

where the electron momentum relaxation time τdef due
to short-range defects is defined by the relation
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Note that spin relaxation of a two-dimensional elec-
tron gas controlled by the short-range Elliott–Yafet
mechanism can be strongly anisotropic.

5. CONCLUSIONS

Before comparing theory with experiment, we note
that monopolar optical orientation of electron spin was
detected experimentally by observing spin-galvanic
and circular photogalvanic effects in n-type quantum
wells [7–12]. In the spin-galvanic effect, electric current
is generated as a result of spin-flip relaxation of spin-
polarized electrons. This effect was observed under con-
ditions of monopolar optical orientation in quantum
wells based on GaAs and InGaAs semiconductors. The
nonequilibrium electron spin in the quantum-well plane
required to observe the spin-galvanic effect in [001]-
grown structures was generated either by circularly
polarized light under normal incidence and spin preces-
sion in external magnetic field [8, 9, 12] or under oblique
incidence in the absence of magnetic field [11].

The photocurrent due to direct optical transitions in
a GaAs-based structure with 30 8.2-nm-wide quantum
wells and a carrier concentration of Ne ~ 2 × 1011 cm–2

in each well was about 1 nA/W for light incident at an
angle of 20° at room temperature [11]. Estimating the

spin-galvanic current density as jSGE ∝  eτp(β/")
(see [11]), where tp ~ 10–13 s is the electron momentum
relaxation time at room temperature and β/" ~ 106 cm/s
is the constant parameter determining the linear-in-
momentum spin-orbit splitting of electron states, the
experimental rate of spin generation in the plane of each

quantum well can be estimated as /I ~ 107 erg–1.
According to the results obtained in Section 3.2, inter-
subband optical orientation in the quantum-well plane
should be attributed to spin-conserving intersubband
transitions followed by spin depolarization of hot carri-

ers. A theoretical estimate of /I obtained by using (19)
and taking into account an inhomogeneous broadening
of 10 meV also gives 107 erg–1. The rate of spin gener-
ation via intrasubband optical transitions determined in
experiment on the spin-galvanic effect is higher than
the corresponding theoretical value by an order of mag-
nitude. This may be explained by the fact that the optical
orientation caused by light absorption via indirect transi-
tions includes an additional contribution due to electron–
electron scattering, which does not affect electron–gas
mobility, but can strongly modify the absolute value of
the intrasubband optical absorption coefficient [18].
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Abstract—Investigation of the thermoluminescence (TL) properties depending on the temperature, UV irradi-
ation dose, and activator ion concentration in Lu2SiO5:Ce3+ (LSO:Ce) crystals and measurements of the decay
of recombination radiation during photostimulated release of the excitation energy accumulated in these crys-
tals showed that a part of Ce3+ impurity ions exhibit ionization leading to the injection of electrons into the con-
duction band. The conduction band of a LSO:Ce crystal is involved in two opposite processes: the charging of
electron traps and the recombination of electrons with Ce4+ ions. The transport of electrons to the traps has a dif-
fusion character: electrons possess a significant mobility [D(315 K) = 10–3 cm2/s] and can diffuse away from the
donor ions to distances exceeding the lattice parameter of the crystal. The results of experiments with controlled
atomic packing of LSO:Ce nanoclusters unambiguously demonstrated the key role of the structure of oxyortho-
silicates in the formation of electron traps. The existing two-center model does not provide adequate description
of the properties of electron traps and TL in LSO:Ce crystals. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, increasing attention has been
devoted to the properties of crystals activated by Ce3+

ions [1–11]. This interest is related to the search for fast
scintillators operating on the f–d electron transitions in
rare earth element (REE) ions [1–5]. The best scintilla-
tion characteristics (the conversion efficiency and the
luminescence time) among the materials doped with
Ce3+ ions were demonstrated by Lu2SiO5:Ce3+

(LSO:Ce) crystals belonging to oxyorthosilicates of the
M2SiO5 group (where M is a REE ion) [2, 3]. However,
it was also established that γ-irradiation of the LSO:Ce
crystals leads to effective accumulation of the energy,
which can be subsequently released in the form of after-
glow or (on heating the crystal) thermoluminescence
(TL) [3, 8, 10, 11]. Both these phenomena significantly
restrict the practical applications of LSO:Ce crystals in
image display devices [8]. In view of the high potential
of oxyorthosilicates activated with Ce3+ ions, it is
important to elucidate the mechanism of energy accu-
mulation in these materials and construct an adequate
physical model explaining the observed phenomena.
The existing two-center model, based on the notions
about Ce4+ ions and localized electrons e–, was pro-
posed by Dorenbos et al. [11]. However, this model has
recently met significant objections by Cooke et al. [8]
and will be the main object of discussion in our paper.
1063-7761/04/9902- $26.00 © 20386
In the two-center model [11], the localization of
electrons near excited Ce3+ ions was described in terms
of a multiwell adiabatic potential reflecting specific
features of relaxation processes in the system under
consideration: (i) oxygen ions in the vicinity of an
excited Ce3+ ion may change their equilibrium arrange-
ment and acquire an energetically more favorable con-
figuration with the formation of a potential well and
(ii) Ce3+ ion can lose one electron (Ce3+  Ce4+ + e–)
that is trapped by the formed potential well (dynamic
trap). The trapped electron forms a metastable state
responsible for both afterglow and TL: these processes
accompany the reverse process of electron recombina-
tion with Ce4+ ion [11]. Thus, the essence of the two-
center model [11] is that the same cerium ion is the
donor of an electron and the center of recombination. It
should be emphasized that, according to this model, the
excited Ce3+ ion is the center of the electron trap for-
mation.

Subsequently [8], it was established that the after-
glow and TL are inherent in several other crystals of
oxyorthosilicates of the M2SiO5 group (M = Lu, Y, Yb,
Er, and Gd) doped with Ce3+ ions, where the position of
the main TL peak was dependent on the type of the par-
ticular crystal lattice (M2SiO5). An additional, substan-
tially important, but contradictory result was that the
pure (undoped) LSO crystals also exhibited afterglow
and TL upon γ-irradiation [8]. The discrepancy with the
004 MAIK “Nauka/Interperiodica”
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existing model was that the TL spectrum of LSO free
of  Ce3+ ions coincided with the TL spectrum of a
LSO:Ce crystal. Nevertheless, it was ascertained [8]
that (i) an excited Ce3+ ion is not the center of electron
trap formation, (ii) such traps exist in LSO:Ce indepen-
dently of Ce3+ ions, and (iii) the traps can be filled with
electrons as a result of relaxation of the γ-irradiation-
induced electron–hole pairs, rather than only due to the
Ce3+  Ce4+ + e– process. Several configurations
involving REE ion surrounded by oxygen atoms sug-
gested as a possible model of the electron trap [8] were
rather close to the model considered in [11]. The con-
clusions derived in [8] were not convincing because
neither the nature of electron donors nor the mechanism
of electron transport to the traps were considered. Any-
how, the experimental results obtained in [8] cast doubt
with respect to adequacy of the two-center model [11].

In this paper, it will be shown that, during optical
excitation in the impurity absorption band of an
LSO:Ce crystal, a certain fraction of Ce3+ activator ions
exhibit ionization by the Ce3+  Ce4+ + e– scheme
leading to charging of the electron traps. The donated
electron can diffuse away from the ion donor to dis-
tances exceeding the lattice parameter of the crystal and
recombine with another Ce4+ ion, which implies that
the two-center model developed in [11] is inadequate.
The transport of electrons to the traps has a diffusion
character and is ensured by the conduction band of the
LSO:Ce crystal. The results of experiments with con-
trolled atomic packing of LSO:Ce nanoclusters unam-
biguously indicate that electron traps are related to the
structural features of oxyorthosilicates and confirm that
excited Ce3+ ion is not the center of electron trap for-
mation.

2. EXPERIMENTAL METHODS

The optical absorption and luminescence spectra of
crystals were measured on an automated spectrofluo-
rimeter based on an MDR-23 grating monochromator.
The measuring system was controlled by a personal
computer using an original software package. The elec-
tronic control unit of the monochromator step motor
drive, pulse counters, time-to-amplitude converter, and
analog-to-digital converter were implemented in the
CAMAC standard. The computer was linked to the
CAMAC crate via a specially designed controller
assuring high speed of the control signal and data trans-
mission.

The stationary luminescence spectra were measured
using a FÉU-100 photoelectron multiplier operating in
the photon counting mode [12]. The luminescence
decay curves were measured in the time-correlated
photon counting regime [12] using the scheme based on
a FEU-164 photomultiplier. Cerium impurity ions were
excited by second harmonic pulses of an organic dye
laser synchronously pumped by the second harmonic
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
radiation of a YAG:Nd laser operating in the regime of
active synchronization of longitudinal modes.

Spatially resolved measurements were performed
with an original microscope capable of providing the
required laser beam focusing and positioning in a sam-
ple crystal. LSO:Ce crystals were grown by
B.I. Minkov (Institute of Single Crystals, Kharkov).
LSO:Ce nanocrystals were obtained using sol-gel tech-
nology and examined by electron microscopy.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

As is known [13–16], impurity ions can occupy two
nonequivalent cationic sites in the crystal lattice of oxy-
orthosilicates. Accordingly, LSO:Ce crystals contain
optical centers of two types with Ce3+ ions [2, 9]. The
optical absorption spectrum of our LCO:Ce crystal
shown in Fig. 1 is identical with the spectra reported in
the literature [9]. The optical absorption of Ce3+ ions is
due to the f–d electron transitions [9]. The intensity of
absorption for one type of the Ce3+ optical centers is
significantly higher than that of the other type, and the
corresponding spectral bands are not resolved [2, 9].
Excitation at an energy corresponding to the maximum
of the long-wavelength absorption band (Fig. 1) leads
to predominant excitation of the Ce3+ optical centers of
the first type and is accompanied by intense emission
from these centers with a peak at 420 nm and a rela-
tively weak luminescence from Ce3+ optical centers of
the second type with a maximum at 500 nm (Fig. 1).

After a certain exposure of the LSO:Ce crystals to
radiation within the impurity absorption band (Fig. 1),
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Fig. 1. The spectra of (1) impurity absorption, (2) lumines-
cence at T = 300 K, and (3) TL of an LSO:Ce crystal.
Dashed curve shows the luminescence of Ce3+ centers of
the second type.
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it was possible to measure a TL spectrum with the main
peak at 375 K, analogous to the spectra observed upon
γ-irradiation [3, 11]. In the case of optical excitation,
only Ce3+ ions play the role of electron donors charging
the electron traps responsible for the TL. The optically
excited Ce3+ ion passes into a higher oxidation state
(Ce4+). The identity of thermo- and photoluminescence
spectra (Fig. 1) indicates that cerium ions also play the
role of recombination centers.

We have established that, under certain conditions,
optical excitation of the impurity ions leads to satura-
tion of the TL intensity in LSO:Ce crystals (Fig. 2). In
order to provide for a uniform distribution of charged
traps in the sample volume, we performed experiments
on LSO:Ce crystals with a thickness of about 1 mm.
The crystals were irradiated by an unfocused beam of a
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HeCd laser (λexc = 325 nm; power, 1 mW; spot diame-
ter, ~1 mm). The position of the laser excitation line is
indicated by the arrow in Fig. 1. Prior to irradiation,
LSO:Ce crystals were annealed at 500 K until complete
vanishing of the TL signal. Then, the samples were
cooled to room temperature and exposed to laser radia-
tion for a certain period of time. The TL intensity exhib-
ited saturation with increasing exposure, which was
more rapidly reached in LSO:Ce crystals with a greater
concentration of activator ions (Fig. 2a).

Since the density of electrons generated in the crys-
tal volume is proportional to the concentration of
excited Ce3+ ions, it is necessary to analyze variation of
the content of such ions and the degree of excitation
reached in the ensemble of Ce3+ impurity ions. Assum-
ing that the irradiated region is homogeneous in the lon-
gitudinal direction, the time evolution of the concentra-
tion of Ce3+ ions can be described by a simple kinetic
equation,

(1)

Here,  is the concentration of excited Ce3+ ions, nCe

is the concentration of Ce3+ ions, σ is the optical
absorption cross section for the f–d electron transition
in Ce3+ ion, F is the photon flux density per unit time,
and γ is a constant coefficient describing the decay of
the excited state of Ce3+ ions.

For the initial condition (0) = 0, Eq. (1) is satis-
fied by the solution

from which it follows that the concentration of excited
Ce3+ ions very rapidly (on the experimental time scale)
reaches a stationary value of  = nCeσF/γ (with the
constant γ ~ 107 corresponding to the radiative decay of
the excited state of Ce3+ ions). The level of excitation in
the system is maintained on a very low level, since
σF/γ ~ 1 (σ ~ 10–17 cm2, F ~ 1015 photons/(cm2 s)).
Therefore, the concentration of charged traps ntr in the
volume of the crystal varies with time according to the
linear law,

(2)

where µ is a coefficient taking into account the proba-
bility of formation of a charged electron trap.

According to the two-center model [11], the concen-
tration of charged electron traps is proportional to the
concentration of activator ions (Ce3+). Then, according
to Eq. (2), the ratio ntr/nCe is independent of the activa-
tor ion concentration and, hence, saturation of the TL
intensity should be observed after the same time for
LSO:Ce crystals with various concentrations of Ce3+

ions. The interaction between Ce3+ ions can be ignored

dnCe*

dt
---------- γnCe* nCeσF.+–=

nCe*

nCe*

nCe* t( )
nCeσF

γ
--------------- 1 e γt––( ),=

nCe*

ntr µnCeσFt,=
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Fig. 3. Luminescence spectra of (I) large and (II) small nanoclusters of (a) LSO:Ce3+ and (b) LSO:Pr3+.
since, for 0.023 at. % ≤ nCe ≤ 0.054 at. %, the distance
between neighboring ions is no less than 70 Å. The
electron trapped in a potential well is localized near the
corresponding impurity ion within a region on the order
of 10 Å. Thus, the two-center model cannot describe
the dependence of the rate of saturation of the TL inten-
sity on the concentration of activator ions. However, if
the electron traps in LSO:Ce crystals exist indepen-
dently of Ce3+ ions, the rate of filling of these traps with
electrons must depend on the concentration of these
ions (see formula (2)). This dependence is clearly pro-
nounced in Fig. 2a: the higher the concentration of Ce3+

ions, the greater the slope of the initial part of the exper-
imental TL intensity curves.

At a constant level of photons absorbed in the crys-
tal volume, a weak saturation of the TL intensity is also
observed with increasing concentration of Ce3+ ions
(Fig. 2b). For an LSO:Ce3+ crystal with an activator ion
concentration of 0.096 at.%, TL was not observed at all.
This fact implies that a distance between Ce3+ ions in
this case is shorter than the effective radius of electron
recombination with Ce4+ ion. According to the two-
center model [11], the recombination efficiency must
be independent of the activator ion concentration.

If the electron traps and Ce3+ ions form independent
subsystems in an LSO:Ce crystal, the question natu-
rally arises as to how electrons are transported to the
traps. At all probability, the distance between an ion
donor and the trap is greater than the crystal lattice
parameter and, hence, the electron can only surmount
this barrier via the conduction band of the LSO:Ce
crystal. This is possible only provided that the exited
state of Ce3+ ions is close to the conduction band bot-
tom and the ionization of this ion is followed by the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
electron injection into the conduction band. In order to
verify this assumption, we attempted to modify in a
controlled manner the mutual arrangement of the level
of excited Ce3+ ions and the conduction band bottom by
means of the dimensional quantization (quantum con-
finement) effect [17]. For this purpose, we have grown
LSO:Ce nanocrystals of controlled size. It was found
that the characteristics of luminescence of Ce3+ ions in
large LSO:Ce clusters with dimensions up to 20 nm are
identical with the characteristics of LSO:Ce crystals.
These large clusters also exhibited TL, which was not
observed for small clusters with a size of about 5 nm.
After annealing (leading to an increase in the cluster
size) the latter clusters also exhibited TL. This behavior
was not a direct manifestation of the quantum confine-
ment effect, as confirmed by the following experimen-
tal fact. In the small clusters, TL was not observed even
after the exposure to short-wavelength photons with λ
as small as 200 nm. Some additional experimental facts
(see below) also indicated that the mutual arrangement
of the bottom of the conduction band in LSO:Ce and
the excited level of Ce3+ ion is not a decisive factor for
the formation of electron traps in LSO:Ce crystals.

Small-size LSO:Ce clusters are simply free of elec-
tron traps, which is corroborated by the following
experimental data. The impurity luminescence spec-
trum of small LSO:Ce clusters has a special shape
(Fig. 3a), suggesting that such clusters contain Ce3+

centers of only one type and, hence, have special
atomic packing. Indeed, this was confirmed by probing
the cluster structure with Pr3+ ions (Fig. 3b). The optical
spectra of these ions (in contrast to those of Ce3+ ions) are
characterized by narrow spectral lines, which can be used
as sensitive indicators of the crystal (ligand) field struc-
ICS      Vol. 99      No. 2      2004
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ture in LSO nanoclusters. The TL spectra of LSO:Pr3+

clusters with characteristic dimensions up to 20 nm, as
well as the spectra of LSO:Pr3+ crystals [13–15],
revealed two types of Pr3+ centers, whereas the spectra
of small LSO:Pr3+ clusters with a characteristic size
of 5 nm showed the presence of Pr3+ centers of only one
type.

The impurity luminescence spectrum of small clus-
ters exhibited a clearly pronounced change in the split-
ting of terms of the Pr3+ ion. This is illustrated in
Fig. 3b, which shows the fragments corresponding to
3P0  3F2 transitions in the fluorescence of Pr3+ ions
in small and large LSO:Pr3+ clusters. The 3P0 term is
nondegenerate, while the fivefold-degenerate 3F2 term
exhibits splitting in the crystal field and each Stark
component can be manifested by a spectral component
in the luminescence spectrum. Indeed, because of a low
point symmetry of cationic sites in the LSO crystal lat-
tice, the 3F2 term of Pr3+ ions is split into five Stark
components and the spectrum of 3P0  3F2 fluores-
cence displays five spectral lines (Fig. 3b, peaks 1–5).
Thus, Fig. 3b shows a significant change in splitting of
the 3F2 term in small LSO:Pr3+ clusters, which is unam-
biguous evidence of modified atomic packing. More-
over, a decrease in the number of spectral lines indi-
cates that degeneracy of the 3F2 term in small clusters is
removed incompletely and, hence, the cationic sites
possess a higher point symmetry. We may conclude that
the absence of TL for small LSO:Ce3+ clusters is also
related to a change in their atomic packing, which hin-
ders the formation of electron traps. This is again con-
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vincing evidence of a key role of the crystal lattice
structure in the formation of electron traps in oxyortho-
silicates.

For LSO:Ce3+ crystals excited in the impurity
absorption band (Fig. 1), the efficiency of energy accu-
mulation exhibited significant changes within a narrow
temperature interval. We have measured the TL curves
in the samples excited by irradiation to the same dose
(Fig. 4). The observed decay of the TL intensity at tem-
peratures above 320 K correlates with a decrease in the
quantum yield of luminescence of Ce3+ ions and in the
lifetime of their 5d state (Fig. 4). Therefore, the integral
TL intensity decreases because of the luminescence
quenching for Ce3+ ions. At temperatures below 260 K,
metastable states are not formed (Fig. 4). However,
using radiation of a shorter wavelength (λexc = 265 nm),
such states can be created at temperatures as low as
80 K. Therefore, for Ce3+ ions excited in the long-
wavelength impurity absorption band (Fig. 1), the
mechanism of trap charging has an activation character.

The region of increase in the TL intensity (Fig. 4) is
described by exponential function exp(∆/kT) with ∆ ≈
0.5 eV. The temperature dependence of the efficiency of
energy accumulation in LSO:Ce crystals agrees with
the two-center model [11]. The activation energy ∆ ≈
0.5 eV can be interpreted as the height of a potential
barrier separating two states in a multiwell adiabatic
potential. According to an alternative interpretation,
this activation energy is equal to the energy between the
bottom of the conduction band and the level of excited
state of the Ce3+ activator ion. However, both these
assumptions require additional experiments for deter-
mining the mobility of electrons appearing as a result of
the photoionization of Ce3+ ions.

In order to evaluate the electron mobility, we used a
focused beam of laser radiation creating charged electron
traps within a limited volume of the LSO:Ce crystal.
These traps were detected by measuring the photostimu-
lated release of the accumulated excitation energy [10].
Using probing photon energies ranging from the UV to
IR spectral regions, it was possible to empty the traps
and observed radiation due to the recombination of
released electrons with Ce4+ ions. The extremely wide
energy spectrum of probing photons also confirms the
above assumption concerning a key role of the crystal
conduction band in the electron transport in LSO:Ce
crystals.

In our experiments, the energy accumulated in an
LSO:Ce crystal was released under the action of a
He−Ne laser (λexc = 628 nm; power, 1 mW) incapable
of producing charged traps. The charged traps were cre-
ated by preliminary local irradiation of the crystal by a
focused beam of a single-mode He−Cd laser (λexc =
325 nm; power, 1 mW; spot diameter, ~20 µm). Both
laser beams (focused in the same region of the sample)
were initially blocked for a period of time required to
anneal the crystal until complete vanishing of the TL
AND THEORETICAL PHYSICS      Vol. 99      No. 2      2004
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signal. Then, the He−Cd laser beam was unblocked and
the crystal was activated by 325-nm radiation for a cer-
tain time at room temperature. Finally, the He–Cd laser
beam was blocked and the probing He–Ne laser beam
was unblocked to induce emission as a result of the e− +
Ce4+  Ce3+ recombination process. The intensity of
this emission decreased with time, the character of this
decay being dependent on the character of laser beam
focusing. If the probing He–Ne laser beam diameter
was greater than the He–Cd laser beam spot size, the
emission intensity must decay to zero according to the
law exp(–δFt), where δ is the absorption cross section
of electron traps. The results of such measurements
confirmed the dependence of the rate of luminescence
intensity decay on the laser radiation power density. If
the probing He–Ne laser beam diameter (~10 µm) was
smaller than the size of the He–Cd laser beam spot, the
curve of the photostimulated emission intensity practi-
cally exhibited a plateau and did not fall to zero for a
rather long time.

The decay of the photostimulated emission intensity
was also affected by preliminary heat treatment of the
crystals. This is illustrated by the data in Fig. 5, where
each curve is satisfactorily described by the sum of two
exponents (see the legend to figure). For the LSO:Ce
crystal annealed in an oxygen-containing atmosphere
(and, hence, enriched with Ce4+ ions), the initial inten-
sity of emission was (under otherwise equal conditions)
lower and the decay rate was higher (Fig. 5, curve 2).
This behavior is explained by the fact that electrons
released from the initially charged traps more rapidly
find a recombination center (Ce4+ ion) in the annealed
crystal. The presence of a plateau in the emission decay
curves indicates that electron traps in the region of
focusing of the He–Ne laser beam are continuously
supplied by electrons from the surrounding region not
illuminated by the probing beam.

The process of electron diffusion is most convinc-
ingly demonstrated by the following experiment. The
beams of the exciting (He–Cd) and probing (He–Ne)
lasers were focused on the crystal surface at the points
situated at a distance of 400 µm from one another. Ini-
tially, both laser beams were blocked and the crystal
was annealed until complete vanishing of the TL signal.
Then, the crystal was activated at the first point by con-
stant focused 325-nm radiation so as to completely
exclude (using special diaphragms) irradiation of the
region of focusing of the probing He–Ne laser beam.
Finally, the gated He–Ne laser beam probed the crystal
at the second point. It is obvious that, from the stand-
point of the model assuming electron localization in the
vicinity of Ce3+ centers, no photostimulated emission
can be observed at a point remote from the region
enriched by the charged electron traps. However, the
intensity of photostimulated emission from the point
probed by the He–Ne laser gradually increases (Fig. 6)
and the rate of this growth increases with the sample
temperature.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The results of experiments illustrated in Fig. 6 indi-
cate that electrons are transferred from the region of
accumulation of the charged traps to the traps signifi-
cantly remote from the region of injection of free elec-
trons. In the absence of interaction between Ce3+ ions,
such transport can be explained only by recourse to the
band structure of an LSO:Ce crystal. The necessary
electron mobility can be provided by the conduction
band of the LSO:Ce3+ crystal. Judging by the position
of the main TL peak (375 K), we may conclude that the
electron traps are shallow and they are continuously
depopulated as a result of thermal activation. Electrons
occurring in the conduction band can be transferred
over considerable distances. This explains the recombi-
nation radiation observed in the region of illumination
by a He–Ne laser, which is not excited by He–Cd laser
radiation (Fig. 6).

Using the experimental data presented in Fig. 6, it is
possible to estimate the coefficient of diffusion for elec-
trons in LSO:Ce crystals. Let us assume that the electron
transport is described by the diffusion equation [18]

(3)

where ne is the density of trapped electrons and ρ(x, t) =
ρδ(x) is the rate of charging of the electron traps
(according to Eq. (1), ρ = µnCeσF. For the initial condi-

∂ne

∂t
-------- D∆ne– ρ x t,( ),=

1

2

1.0

0

0.1

10 30 40
t, s

logI [rel. units]

20

Fig. 5. Decay of the photostimulated luminescence inten-
sity I measured at T = 300 K in LSO:Ce crystals with differ-
ent thermal prehistories (points) and approximation of the
experimental data by the law a1exp(–t/τ1) + a2exp(–t/τ2):
(1) unannealed sample, τ1 = 2.5 s, τ2 = 9.3 s; (2) sample
annealed in an oxygen-containing atmosphere, τ1 = 1.5 s,
τ2 = 9.1 s.
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tion ne(x, 0) ≡ 0, a solution of Eq. (3) can be presented
in the following form [18]:

(4)

By substituting the new variable |x |2/4D(t – τ) = ξ in the
integral in expression (4), this solution can be rewritten
as

(5)

This form is convenient for approximation of the exper-
imental curves presented in Fig. 6. By varying the
parameter D in expression (5) for |x |2 = 400 µm2, we
obtain the best approximation of these curves for the
following values of the diffusion coefficient:

D = 6 × 10–4 cm2 s–1 (T = 280 K); (5.1)

D = 10–3 cm2 s–1 (T = 315 K). (5.2)

In the final interpretation, the activation energy ∆ ≈
0.5 eV should be identified with the energy gap
between the level of the excited state of Ce3+ ions and
the bottom of the conduction band of LSO:Ce. Based
on this assumption, we may reconstruct a scheme of the
mutual arrangement of energy levels in the ground and

ne x t,( ) ρ x 2/4D t τ–( )–[ ]exp
4Dπ t τ–( )

--------------------------------------------------- τ .d

0

t

∫=

ne x t,( ) ρ
4Dπ
----------- ξ–( )exp

ξ
-------------------- ξ .d

x
2/4Dt

∞

∫=

1.0

0.8

0.6

0.4

0.2

0 20 40 60 100
t, s

80

1

2

I, rel. units

Fig. 6. Buildup of the photostimulated luminescence inten-
sity I measured at T = 313 (1) and 288 K (2) at a point
spaced by 400 µm from the point of charged electron trap
formation in an LSO:Ce crystal.
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excited states of Ce3+ ions in LSO:Ce crystals (Fig. 7).
The bandgap width (dielectric gap) of LSO:Ce esti-
mated from the position of the UV absorption edge is
about 6.25 eV. Within the framework of the model of
energy states of the LSO:Ce crystal and impurity ions
depicted in Fig. 7, it is possible to provide adequate
description of all the experimental results presented
above.

4. CONCLUSIONS

During the photoexcitation of LSO:Ce crystals in
the impurity absorption band, a part of Ce3+ activator
ions exhibit ionization leading to the injection of elec-
trons into the conduction band. The activator ions play
the role of electron donors and recombination centers,
but are not the centers responsible for the formation of
electron traps. The two-center model developed in [11]
is fully rejected. The formation of charged metastable
states and the recombination of Ce4+ ions with electrons
are the opposite processes proceeding with participa-
tion of the conduction band of LSO:Ce crystals. The
transport of electrons to the traps has a diffusion char-
acter. Electrons can diffuse away from the ion donors to
distances exceeding the lattice parameter of the
LSO:Ce crystal.
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Abstract—The study of galvanomagnetic, magnetic, and magnetooptical characteristics of iron monosilicide
in a wide range of temperatures (1.8–40 K) and magnetic fields (up to 120 kOe) has revealed the origin of the
low-temperature sign reversal of the Hall coefficient in FeSi. It is shown that this effect is associated with an
increase in the amplitude of the anomalous component of the Hall resistance ρH (the amplitude increases by
more than five orders of magnitude with decreasing temperature in the range 1.8–20 K). The emergence of the
anomalous contribution to ρH is attributed to the transition from the spin-polaron to coherent regime of electron
density fluctuations in the vicinity of Fe centers and to the formation of nanosize ferromagnetic regions, i.e.,
ferrons (about 10 Å in diameter), in the FeSi matrix at T < TC = 15 K. An additional contribution to the Hall
effect, which is observed near the temperature of sign reversal of ρH and is manifested as the second harmonic
in the angular dependences ρH(ϕ), cannot be explained in the framework of traditional phenomenological mod-
els. Analysis of magnetoresistance of FeSi in the spin-polaron and coherent spin fluctuation modes shows that
the sign reversal of the ratio ∆ρ(H)/ρ accompanied by a transition from a positive (∆ρ/ρ > 0, T > Tm) to a neg-
ative (∆ρ/ρ < 0, T < Tm) magnetoresistance is observed in the immediate vicinity of the mictomagnetic phase
boundary at Tm = 7 K. The linear asymptotic form of the negative magnetoresistance ∆ρ/ρ ∝  –H in weak mag-
netic fields up to 10 kOe is explained by the formation of magnetic nanoclusters from interacting ferrons in the
mictomagnetic phase of FeSi at T < Tm. The results are used for constructing for the first time the low-temper-
ature magnetic phase diagram of FeSi. The effects of exchange enhancement are estimated quantitatively and
the effective parameters characterizing the electron subsystem in the paramagnetic (T > TC), ferromagnetic
(Tm < T < TC), and mictomagnetic (T < Tm) phases are determined. Analysis of anomalies in the aggregate of
transport, magnetic, and magnetooptical characteristics observed in the vicinity of Hm ≈ 35 kOe at T < Tm leads
to the conclusion that a new collinear magnetic phase with M || H exists on the low-temperature phase diagram
of iron monosilicide. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Peculiar electrophysical and magnetic properties of
the narrowband FeSi semiconductor determine its spe-
cial place among the objects studied by the physics of
magnetic phenomena. Iron monosilicide is one of the
most striking examples of the successful application of
the self-consistent renormalization theory of spin fluc-
tuations [1, 2] explaining the effect of formation and
enhancement of temperature-induced localized mag-
netic moments at Fe centers in the FeSi matrix at tem-
peratures above 100 K [1–4]. The results of band anal-
ysis [5–8] and experiments carried out in ultrastrong
magnetic fields [9, 10] indicate that FeSi is also a con-
venient model object for studying field-induced meta-
magnetism in a system of collectivized electrons. In
accordance with the conclusions drawn in [11, 12], iron
1063-7761/04/9902- $26.00 © 20394
monosilicide and solid solutions on its basis are of con-
siderable interest for studying the metal–insulator tran-
sitions in a system with heavy fermions. Finally, in
spite of the half-century history of experiments with
this compound with a simple cubic crystallographic
structure (of the B20 type) (see, for example, [13]), the
nature and the features of the formation of the ground
state and appropriate approaches to a theoretical
description of the low-temperature properties of FeSi
have been actively discussed in recent years [14–21].

It was shown on the basis of comparatively recent
results of measurements of magnetic, transport, and
thermoelectric characteristics [22, 23] that the most
adequate approach to the description of the low-
temperature ground state is apparently interpretation in
terms of the Mott–Hubbard model [24]. In this
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Various types of many-particle states in the FeSi matrix: (a) the paramagnetic phase with spin polarons as charge carriers
(phase P, 15 K < T < 100 K); (b) the phase of noninteracting ferromagnetic nanosize regions (phase F, 7 K < T < 15 K); (c) the
mictomagnetic state (spin glass phase) (SG, T ≤ 7 K, H < 35 kOe); and (d) the phase with magnetic moments oriented along the
external magnetic field (M || H, 35 kOe < H ≤ 350 kOe). The schematic diagrams on the left show the structure of a many-particle
resonance in the immediate vicinity of the Fermi level EF in the absence (structure I, panel (a)) and in the presence (structure II,
panels (b), (c), and (d)) exchange splitting.
approach, at T < 100 K, FeSi should be treated as a metal
with strong electron correlations and with the spin-
polaron regime of charge carrier transport [22, 23]. In
particular, the authors of this paper showed [23] that
many-particle (spin-polaron) states with a considerably
larger effective mass m* ~ 100m0 (m0 is the free elec-
tron mass) are formed around charge carriers in the
upper Hubbard (t2g) band of the narrow-band semicon-
ductor FeSi as its temperature decreases in the interval
T < 100 K. Such heavy fermions formed as a result of
fast electron density fluctuations determine to a consid-
erable extent the low-temperature transport and ther-
modynamic parameters of FeSi. Further cooling in the
system of spin polarons leads to a transition to the
coherent regime of spin fluctuations accompanied by
the formation of nanosize anisotropic ferromagnetic
regions (ferrons) at TC ≈ 15 K (TC is the Curie temper-
ature of the ferromagnetic “phase transition” in the sys-
tem of spin polarons) and then initiates the formation of
a mictomagnetic ground state at T < Tm ≈ 7 K (Tm is the
temperature of the transition of the ferron system to the
spin glass phase) [23]. This sequence of transforma-
tions of many-particle states in the FeSi matrix is
shown schematically in Fig. 1, which depicts the low-
temperature phases of iron monosilicide (noninteract-
ing spin polarons are denoted by circles in Fig. 1a; fer-
rons with uniaxial magnetic anisotropy are shown by
ellipses with the easy magnetization axis in Fig. 1b;
clusters of interacting ferrons are hatched in Fig. 1c).

In such a situation, the characteristics of the ground
state of FeSi are directly connected with the peculiari-
ties of renormalization of the band structure (formation
of the many-particle spin-polaron resonance) in the
vicinity of the Fermi energy EF as well as with a complex
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
rearrangement of the magnetic system in the regime of a
low density of charge carriers (1017–1018 cm–3). The
uniqueness of iron monosilicide is associated with the
fact that the measurement of galvanomagnetic proper-
ties of FeSi in the spin-polaron regime of the low-tem-
perature transport is the most sensitive method for
studying the features of stabilization of the coherent
regime of spin fluctuations and transformation of
many-particle states in nanosize ferromagnetic
regions and nanoclusters [23, 25]. At the same time,
reliable and authentic experimental data on the behav-
ior of the Hall coefficient RH(H, T) in this narrowband
FeSi semiconductor have not been obtained until
recently. As was noted earlier [25], previous measure-
ments of RH(H, T) pertained to different temperature
intervals (T ≥ 4.2 K [12], 0.05 K ≤ T ≤ 55 K [15], and
T ≥ 20 K [26]) and did not match even in the sign of the
Hall effect. In addition, the results obtained on the
behavior of the field dependences of the Hall resistance
were contradictory [12, 15, 26] and the approaches to
the interpretation of experimental results were notice-
ably different. In [25], it was shown for the first time
that a decrease in temperature leads to a change in the
regimes of charge transport, which in turn leads to dou-
ble sign inversion in the Hall coefficient of FeSi at

 ≈ 75 K and  ≈ 12–15 K. The results of recent
experiments [23] enabled us to attribute these anoma-
lies to the transition from the regime of intrinsic con-
ductivity to transport over spin-polaron states in the gap
and, further, to the transport of carriers under the con-
ditions of formation of a complex magnetic structure in
the FeSi matrix containing ferromagnetic nanoclusters.
Considerable advances have been made due to the
application of the method of rotation with step-by-step

T inv1
H T inv2

H
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fixation of the position of the sample in a magnetic field
for studying the Hall effect in FeSi [23]. This makes it
possible to single out the anomalous (magnetic) com-
ponent in the Hall resistance and to separate the contri-
butions from two groups of charge carriers to the Hall
coefficient at helium (T ≤ 4.2 K) temperatures. In addi-
tion, using this approach for the temperature interval
corresponding to the spin-polaron transport (T <
100 K), we estimated the value of the exchange field at
charge carriers in the upper Hubbard band as Hex =
350 ± 100 kOe [23]. At the same time, the behavior of
the field and temperature dependences of the Hall coeffi-
cient in FeSi in the region of intermediate temperatures
of 4.2–30 K, where, according to Pashen et al. [15], “the
Hall resistance changes chaotically,” could not been
investigated properly in view of methodical limitations.
In particular, the main difficulties in organization of
magnetic and galvanomagnetic cryogenic experiments
were associated with the insufficient accuracy (of about
0.05 K) in stabilization and control of temperature in
the volume with the sample, which did not allow the
authors [23] to study in detail the processes of charge
transfer and to determine the structure of the magnetic
phase diagram of FeSi.

In the present study, precision measurements of gal-
vanomagnetic and magnetic properties of FeSi single
crystals were studied in a wide range of temperatures
(1.6–40 K) and magnetic fields (up to 120 kOe) to
determine the nature of magnetic interactions and fea-
tures of the H–T magnetic phase diagram of FeSi
(including the genesis of the anomalous Hall effect);
the anomalies in the microwave magnetoabsorption are
also analyzed in the vicinity of low-temperatures mag-
netic phase transitions.

2. EXPERIMENTAL TECHNIQUE

The measurements of transport, magnetic, and mag-
netooptical characteristics reported here were made on
FeSi single crystals grown from melt in accordance
with the Czochralski method and used in our previous
experiments [22, 23, 25].

The resistivity and the Hall coefficient were mea-
sured on an original experimental setup whose block
diagram is described in detail in [27]. The angular
dependences of galvanomagnetic characteristics were
measured using a scheme with step-by-step rotation of
the sample in a magnetic field controlled by a drive
from a step motor and with a rotation discreteness of
1.8°–3.6°. After the rotation of the holder with the sam-
ple through a fixed angle, signals were measured from
the Hall contacts using the standard four-probe scheme.
The resistance and magnetoresistance of FeSi samples
were also measured using the standard dc four-probe
scheme, the behavior of the transverse magnetoresis-
tance being measured in a magnetic field perpendicular
to the direction of the current in the sample. Precision
measurements of the above resistive characteristics of
JOURNAL OF EXPERIMENTAL 
FeSi samples were carried out using a two-channel
nanovoltmeter Keithley 2182.

Experiments in a magnetic field in a wide tempera-
ture range (1.6–40 K) were carried out in a vacuum-seal
ampoule placed in the channel of a superconducting
magnet in a helium cryostat. The temperature in the
measuring cell containing the sample was stabilized (to
within ~0.01 K) using a digital temperature controller
of original construction, which was developed and con-
structed at the Institute of General Physics, Russian
Academy of Sciences. The standard resistance ther-
mometer CERNOX 1050 used as a temperature sensor
ensured the required precision of measurements (better
than 0.01 K) and minimized the thermometric error
associated with a change in the sensor resistance in a
magnetic field up to 70 kOe. Data collection and pro-
cessing and the control of parameters and working
regimes of devices and blocks constituting the experi-
mental setup were carried out by the recording and con-
trol system based on a microprocessor interfaced with
a PC. The magnetoresistance measurements in a mag-
netic field up to 400 kOe were made on a pulsed-field
setup at the Laboratory of Solid-State Physics and
Magnetism, Catholic University of Leuven.

The magnetization of FeSi samples was measured
on a vibrating-coil magnetometer Oxford Instruments
VSM12/V in a temperature range of 1.5–300 K in a
magnetic field up to 120 kOe.

The analysis of the microwave magnetoabsorption
at low temperatures (T < 6 K) in magnetic fields up to
70 kOe was aimed at obtaining additional information
on the structure of the magnetic phase H–T diagrams of
FeSi was carried out using an automated experimental
setup of the original design, described in [28]. This
technique was successfully used earlier for studying
magnetic phase transitions in compounds with strong
electron correlations (magnetic Kondo lattices of CeAl2
and CeB6 [28, 29] as well as the intermediate-valence
superconductor CeRu2 [30]). In the present study, the
microwave absorption was recorded using a bridge
bolometric circuit with a direct contact between the
FeSi sample and one of low-temperature bolometers.

3. EXPERIMENTAL RESULTS

3.1. Magnetoresistance 

The field dependences of the magnetoresistance of
FeSi measured in a magnetic field up to 70 kOe are
shown in Figs. 2 and 3. At T ≥ 30 K, FeSi is character-
ized by a positive magnetoresistance, which can be
described to a high degree of accuracy by a quadratic
functions of the form ∆ρ/ρ ≈ AH2 (Fig. 2) in magnetic
fields H ≤ 70 kOe used in our experiments. With
decreasing temperature, the amplitude of the positive
magnetoresistance of FeSi increases and attains its
maximal value ∆ρ/ρ ≈ 3% in a magnetic field of 70 kOe

in the vicinity of temperature T =  ≈ 11 K (seeTmax
∆ρ
AND THEORETICAL PHYSICS      Vol. 99      No. 2      2004
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Fig. 2. Field dependences of the magnetoresistance of FeSi
in the temperature range 11 K < T < 40 K. The linear
approximation corresponds to the quadratic dependence of
the magnetoresistance ∆ρ/ρ ∝  H2. The inset shows the fam-
ily of curves (∆ρ/ρ)tr determining the additional positive
contribution to the magnetoresistance (see text).
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Fig. 2). Further cooling suppresses the positive magne-
toresistance and leads to the emergence of a negative
contribution to the magnetoresistance at temperatures
T ≤ Tm ≈ 7 K (Fig. 3). The observed change in the
behavior of the magnetoresistance in FeSi (transition
from positive to negative magnetoresistance) is graphi-
cally illustrated in Fig. 4 showing the temperature
dependences of the amplitudes of the positive and neg-
ative contributions to the magnetoresistance of FeSi.

Analyzing the features of the magnetoresistive
effect in FeSi, we note that a decrease in temperature
from 20 to 11 K is not only accompanied by an increase
in the amplitude of the quadratic magnetoresistance
component, but also leads to noticeable deviations from
the quadratic law (see Fig. 2). Subtracting from the
experimental curves ∆ρ/ρ = f(H) of contributions ∆ρ ∝
H2 (solid lines in Fig. 2) makes it possible to single out
the additional positive contribution to the magnetore-
sistance (∆ρ/ρ)tr in the range of fields H ≤ 35 kOe. In
this case, the family of curves (∆ρ/ρ)tr = ∆ρ/ρ – AH2

(see the inset to Fig. 2) exhibits a structure in the form
of a step with an amplitude attaining its maximal value

in the vicinity of T =  ≈ 11 K as in the case of the
quadratic contribution (curve 2 in Fig. 4). It should also
be noted that the steepest segment on the curve describ-
ing the increase in the value of (∆ρ/ρ)tr in a magnetic
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Fig. 3. (a) Field dependences of the magnetoresistance of FeSi in the temperature range 5 K < T < 11 K (straight lines correspond
to the quadratic contribution of magnetoresistance ∆ρ/ρ ∝  H2). (b) Field dependences of the negative magnetoresistance of FeSi at
T < 5 K. The inset shows the temperature dependences of the magnetic field Hs corresponding to the point of inflection on the curve
∆ρ/ρ = f(H), obtained in experiments in an increasing (1) and decreasing (2) magnetic field.
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field corresponds to the interval 15–35 kOe (see the
inset to Fig. 2).

A decrease in the temperature in the interval of T ≤
11 K leads to simultaneous suppression of both above
contributions and subsequently to the magnetoresis-
tance sign inversion (see Figs. 3 and 4) in the vicinity of
the mictomagnetic transition temperature Tm ≈ 7 K in
the system of ferromagnetic nanoclusters in the FeSi
matrix [23]. It can be seen from Fig. 3b that the stron-
gest increase in the amplitude of the negative magne-
toresistance is observed in magnetic fields H ≤ 35 kOe
followed by a transition to a regime with a slower vari-
ation of ∆ρ/ρ in the field interval 35–70 kOe.

It is interesting to note that the negative magnetore-
sistance of FeSi in weak fields (H ≈ 10 kOe) at temper-
atures T < Tm ≈ 7 K turns out to be a linear function of
the magnetic field: ∆ρ/ρ ∝  H (see Fig. 3b). The maxi-
mum absolute value of the negative magnetoresistance
is observed at temperatures of 4–5 K (curve 3 in Fig. 4);
as the temperature decreases below the helium temper-
ature, the amplitude of the negative magnetoresistance
decreases substantially. It should also be noted that the
field dependences of the negative magnetoresistance in
FeSi at T ≤ 7 K in the field range under investigation
(H ≤ 70 kOe) are nonmonotonic; in the intermediate
range of fields, the experimental curves ∆ρ/ρ = f(H)
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Fig. 4. Temperature dependences of the quadratic contribu-
tion AH2 to the magnetoresistance (1), of the nonlinear
component ∆ρ/ρ – AH2 (2), the amplitude of the negative
contribution A0 to the magnetoresistance in a magnetic field
H = 60 kOe (3), and of the magnetoresistance in a pulsed
field H = 400 kOe (4).
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acquire a point of inflection Hs (Fig. 3b). The Hs(T)
dependence is shown in the inset to Fig. 3b.

3.2. Hall Coefficient 

As was noted in the previous section, a detailed
analysis of the Hall effect in FeSi was carried out using
the method of rotating a sample with step-by-stem fix-
ation of its position in a magnetic field (see the diagram
in Fig. 5a). The angular dependences of the Hall resis-
tance ρH(ϕ) obtained using this experimental procedure
for FeSi in a magnetic field of H ≈ 59.3 kOe for several
fixed values of temperature in the interval 1.6– 40 K are
shown in Fig. 5a. For better visualization, the curves are
displaced relative to one another by a constant value
(the factor on the left of each curve makes it possible to
compare the amplitudes of the effect). Figure 6 shows
families of experimental curves ρH(ϕ) for FeSi, mea-
sured at several fixed values of magnetic field H <
75 kOe for a number of temperatures in the intervals
T > TC (T = 20.3 K, Fig. 6a); Tm < T < TC (T = 13.5 K,
Fig. 6b), T < Tm (T = 2.5 K, Fig. 6c) and for a tempera-
ture in the immediate vicinity of the mictomagnetic
transition (T = 8.3 K ≈ Tm, Fig. 6d).

In the standard situation, the rotation of the sample
in a fixed magnetic field H follows the variation of the
projection H⊥  of the external magnetic field vector onto
the normal to the sample surface (see the diagram in
Fig. 5a) in accordance with the harmonic law H⊥  =
H0cosϕ and leads to a cosinusoidal dependence of the
Hall resistance of the type ρH ∝  RH(T, H)Hcosϕ at a
fixed temperature T. However, such a shape of the
ρH(ϕ, H0, T0) curves was observed in the Hall measure-
ments in FeSi only in a limited range of temperatures
and magnetic fields. In particular, at temperatures T ≤
5 K, a nearly cosinusoidal dependence of the Hall sig-
nal is observed in fields above 50 kOe (see the curves
for T = 2.5 K and T = 5.1 K in Fig. 5a). It should also
be noted that a Hall signal of the form ρH ∝  cosϕ is
detected only for temperatures above 35 K, when the
shape of the ρH(ϕ) curves becomes much more intricate
as the temperature decreases to T ≈ 30 K (see, for exam-
ple, the curves for T = 30.9 and 20.1 K in Fig. 5a). In
the latter case, the main component of the signal
ρH(ϕ) ∝  cosϕ is supplemented with the contribution
from the even harmonic ρH(ϕ) ∝  cos2ϕ (see Fig. 5a) in
the entire range of magnetic fields used in the present
study. The presence of the component from the even
harmonic, which considerably complicates the behav-
ior of the angular dependences and the analysis of the
Hall effect in FeSi can be traced most clearly in the
temperature range 10–20 K (see Fig. 5a), correspond-
ing to the close neighborhood of the sign-inversion

temperature  ≈ 12.5 K of the main component of
the Hall signal [25].

Concluding this subsection, we note that the emer-
gence of even harmonics in the angular dependences of

T inv
H
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the Hall resistance ρH(ϕ) ∝  cos2ϕ is connected in some
cases with the addition to quantity ρH(T, H, ϕ) of the
contribution from the even (in magnetic field) magne-
toresistance due to the asymmetric arrangement of the
Hall contacts on the sample. To estimate the effect of
the nonequipotential nature of the Hall contacts, the
angular dependences of the magnetoresistance
ρ(ϕ, H, T) of FeSi were analyzed simultaneously with
the Hall measurements. The results of measurements of
ρ(ϕ, H, T) proved that the amplitude of even harmonics
in the dependence ∆ρ/ρ = f(ϕ) does not exceed 0.5% in
the entire range of magnetic field under study up to
70 kOe. At temperatures above 7 K, the singularities on
the angular dependence of ∆ρ/ρ are suppressed com-
pletely (see also [23]). Thus, the results of our experi-
ments have made it possible to completely eliminate the
effect of the conventional resistive component emerg-
ing due to the nonequipotentiality in the arrangement of
the Hall contacts on the form and the variation of the
Hall resistance ρH(T, H, ϕ) for all FeSi samples studied
by us here.
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3.3. Magnetization and Microwave Magnetoabsorption 

In studying the Hall effect in a magnetically ordered
state of the substance, the spontaneous magnetization
of the magnetic subsystem leads to the emergence of an
additional (anomalous) component in the Hall resis-
tance, which is proportional to the intrinsic magnetic
field [31]. To obtain information required for separating
the normal and anomalous contributions to the Hall
effect and to refine the peculiarities in the magnetic
properties and phase transitions while constructing the
low-temperature magnetic H–T phase diagram of FeSi,
we measured the magnetization and the microwave
magnetoabsorption of the samples.

Using the results of precision measurements of
magnetization M(H, T) in FeSi made for magnetic
fields H ≤ 120 kOe at fixed temperatures 1.6 K ≤ T ≤
50 K, we calculated the dependences of the differential
magnetic susceptibility

shown in Fig. 7 with the help of the numerical differen-
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Fig. 5. (a) Angular dependences of the Hall resistance ρH(ϕ) for various temperatures in a magnetic field H = 59.3 kOe approxi-
mated by expression (1) taking into account the contribution from the first (ρH1 ∝  cosϕ) and second (ρH2 ∝  cos2ϕ) harmonics. For
convenience of comparing the amplitudes of the Hall effect, the factors for comparing the values of ρH on the absolute scale are
given on the left of the curves. The inset illustrates schematically the measurement of the Hall resistance ρH(ϕ) with the sample
rotated relative to the magnetic field H (n is the normal to the sample surface). (b) Separation of the contributions to ρH(ϕ) using
relation (1) (see text) for various temperatures at H = 59.3 kOe (ρH are experimental data, ρH1 is the contribution from the main
component, and ρH2 is the contribution from the second harmonic).
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Fig. 6. Angular dependences of the Hall resistance ρH(ϕ) of FeSi in magnetic fields up to 75 kOe for temperatures T = 20.3 K (a),
13.5 K (b), 2.5 K (c), and 8.3 K (d).
tiation method. It can be seen from the figure that the
magnetic susceptibility considerably decreases in abso-
lute value with increasing external magnetic field: the
value of χd at T0 = 1.5 K in field H = 110 kOe decreases
JOURNAL OF EXPERIMENTAL
approximately by a factor of 2.5 (see also the inset to
Fig. 7). In our earlier experiments [23, 32], it was
shown that, at low temperatures T ≤ 50 K, the decisive
contribution to χd comes from the Pauli paramagnetic
 AND THEORETICAL PHYSICS      Vol. 99      No. 2      2004
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susceptibility of the system of heavy fermions (spin
polarons). The decrease in the absolute values of χd cor-
responds to partial suppression of the singularity in the
electron density of states (many-particle resonance) at
the Fermi level in a strong magnetic field H ≤ 120 kOe.
Since the exchange field of spin-polaron states Hex ≈
350 ± 100 kOe determined in [23, 32] during measure-
ments of the anomalous Hall effect and magnetization
in FeSi is comparable to the limiting value of H ≈
120 kOe used in this study, the observed decrease in the
value of χd(T) with increasing H (Fig. 7) appears quite
substantiated.

Analysis of the family of the χd(T) curves (see
Fig. 7) shows that the form of the χd(T) dependence
changes in the temperature range T < Tm ≈ 7 K, corre-
sponding to the mictomagnetic state of FeSi in the field
H ≈ 35 kOe. The decrease in the differential suscepti-
bility observed upon an increase in temperature in the
range of weak fields (H < 35 kOe) is replaced by the
increase in χd with temperature for H > 35 kOe (see
Fig. 7). As a results, the χd(T) curves acquire a peak at

a temperature  in fields above 35 kOe, which is
displaced upwards along the temperature scale upon an

increase in the magnetic field up to values of  ≈
12 K at H = 120 kOe (see Fig. 7). The nonmonotonic
temperature dependence of the differential susceptibil-
ity is obviously responsible for the “intersection” of the
field dependences χd(H, T < Tm ≈ 7 K) in the vicinity of
H ≈ 35 ± 5 kOe (see the inset to Fig. 7). These anoma-
lies in the magnetic properties of FeSi, which are
observed near the temperatures Tm and TC, will be used
in Section 4 in analyzing the peculiarities of the low-
temperature magnetic H–T phase diagram of FeSi.

The results of investigation of the microwave mag-
netoabsorption at temperature T < 6 K corresponding to
the mictomagnetic state of FeSi (SG phase in Fig. 1c)
are presented in Fig. 8. It can be seen that the curves
describing magnetoabsorption of electromagnetic radi-
ation in the millimeter wavelength range exhibit a hys-
teresis in the vicinity of H ≈ 15 kOe (Fig. 8a) and H ≈
35 kOe (Fig. 8b). It is interesting to note that the values
of the fields corresponding to anomalies in the micro-
wave magnetoabsorption in FeSi correlate well with the
anisotropy field Han ≈ 12 ± 2 kOe of ferromagnetic nan-
oclusters [23] and with the field H ≈ 35 ± 5 kOe corre-
sponding to singularities on the differential susceptibil-
ity curves χd(H, T < Tm ≈ 7 K) (see the inset to Fig. 7).
In the latter case, the coincidence of the characteristic
magnetic fields and the presence of hysteretic anoma-
lies apparently indicate the field-induced magnetic
transition in the low-temperature phase of FeSi.

Concluding the section, we must emphasize that the
high precision of the microwave magnetoabsorption
method makes it possible to detect weak hysteretic
anomalies at a level of ∆P/P ≈ 0.2% (Fig. 8). The small
magnitude of the effect apparently indicates a relatively

Tmax
χ

Tmax
χ
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low concentration of magnetic microregions determin-
ing the hysteresis of microwave magnetoabsorption in
FeSi. In such a situation, the absence of hysteretic
anomalies in the field dependences of differential sus-
ceptibility in the field interval 15–35 kOe (see Fig. 7)
can be attributed to the insufficient accuracy of the
numerical differentiation method (1–5%), which prac-
tically rules out the possibility of quantitative analysis
of the magnetization reversal effects in a system of
magnetic microscopic regions in the FeSi matrix on the
basis of the results of magnetic measurements. At the
same time, simultaneous analysis of magnetic and mag-
netooptical properties makes it possible to establish
quite reliably the position of singularities associated
with low-temperature magnetic transitions in the FeSi
matrix in magnetic fields up to 70 kOe.

4. DISCUSSION

4.1. Separation of Contributions to the Hall Effect 

In analyzing the results of measurements of the
angular dependences of the Hall resistance of FeSi
samples in the temperature range 4.2–30 K (Figs. 5
and 6), we used the representation

(1)ρH ϕ T H, ,( ) = ρH0 ρH1 ϕ ρH2 2ϕ ∆ϕ–( ),cos+cos+
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Fig. 7. Temperature dependences of the differential suscep-
tibility χd(T) of FeSi in a magnetic field up to 120 kOe. The
inset shows the field dependences χd(H) in the temperature
range 1.5 K ≤ T ≤ 15 K corresponding to the formation of
ferromagnetic microregions in the FeSi matrix.
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which takes into account, in addition to the main com-
ponent ρH1 (odd in the magnetic field) and the constant
shift ρH0 emerging due to asymmetry of the Hall con-
tacts, the second harmonic contribution ρH2 with a shift
∆ϕ relative to the first harmonic. Figure 5b shows for
visualization several examples of separation of the con-
tributions to ρH(ϕ, T, H) for the experimental results
obtained from measurements in a magnetic field H =
59.3 kOe at different temperatures. The results shown
in Fig. 5b lead to the conclusion about the sign inver-
sion of the main component of the Hall resistance ρH1;
with decreasing ρH1, contributions ρH1 and ρH2 become
comparable in the order of magnitude in a large neigh-

borhood of the inversion temperature  and their
competition completely determines the behavior of the
Hall signal. In a small neighborhood of the sign-inver-
sion temperature for the main contribution ρH1, a con-

siderable dependence of  on the external magnetic
field is observed in the conditions when the component
from the even harmonic is predominant in ρH. It is this
circumstance that is apparently responsible for the dif-
ficulties in the measurements and interpretation of the
Hall effect in the temperature range 4.2–30 K, which

T inv
H

T inv
H
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were noted in [15]. Indeed, when the Hall measure-
ments are performed in FeSi using the conventional
scheme with recording of the Hall voltage for two
opposite (perpendicular to the plane of the sample)
directions of magnetic field H corresponding to ϕ = 0
and ϕ = 180° in Figs. 5 and 6, a complex nonmonotonic
(in magnetic field and temperature) behavior of the Hall
resistance in the temperature range 4.2–30 K can be
expected.

In such a situation, the most visual pattern of varia-
tion of the components in the Hall effect in FeSi can be
obtained from an analysis of the amplitudes of contri-
butions ρH1 and ρH2 as well as the phase shift ∆ϕ deter-
mined from the experimental data (see Figs. 5 and 6)
using relation (1). Figures 9 and 10 show the field
dependences of the main (ρH1) and field-even (ρH2) con-
tributions to the Hall resistance; the inset to Fig. 10
shows the variation of parameter ∆ϕ with temperature.
It can be seen from Fig. 9 that the main (positive in sign
and linear in the magnetic field) component ρH1 of the
Hall resistance increases in amplitude upon a decrease
in temperature at T < 40 K. In the vicinity of the Curie
temperature TC ≈ 15 K, in addition to the linear positive

component (H) corresponding to the transport inρH1
SP
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spin-polaron states [23], the quantity ρH1 acquires an

anomalous negative contribution  independent of H
(see Fig. 9). A further decrease in temperature leads to
a substantial increase in the absolute value of the anom-

alous component  of the Hall resistance (by more
than five orders of magnitude upon a decrease in tem-
perature from 20 to 1.8 K), this contribution becoming
predominant at temperatures T ≤ 11 K (see Fig. 9).
Thus, analysis of the available experimental data leads
to an unambiguous conclusion that the low-temperature
sign inversion of the main component in the Hall signal
in FeSi is determined by the condition of the equality of

the amplitudes of the anomalous negative ( ) and

the normal positive ( ) contributions to ρH1(H, T).

Under the conditions of the substantial increase in
the anomalous contribution to the Hall effect, we can
naturally expect a displacement of the sign-inversion

temperature  of the first harmonic ρH1 of the Hall
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resistance in a magnetic field. Figure 11 shows the tem-
perature dependences of quantities ρH1 and ρH2 for val-
ues of the external magnetic field at the beginning (H =
17.2 kOe) and at the end (H = 70.3 kOe) of the range of
variation of H used in this research. For the results pre-

sented in Fig. 11, the shift of the values of  with H
increasing from 17.2 to 70.3 kOe is approximately 3 K.
In turn, the absence of a noticeable dependence of the
main component ρH1 of the Hall resistance on the exter-
nal field H ≤ 70 kOe for temperatures below 10 K (see
Fig. 11) served, in our opinion, as an additional argu-
ment in favor of the decisive role of the anomalous con-
tribution to the Hall effect in this temperature range.

The field dependences of the second harmonic
ρH2(H) of the Hall resistance shown in Fig. 10 for the
paramagnetic phase at T > TC ≈ 15 K are characterized
by a nearly quadratic dependence ρH2(H) ∝  H2. In the
vicinity of the Curie temperature T ≈ TC, the ρH2(H)
curve acquires a segment with ρH2(H) = const in the
region of weak fields; above this segment, for a certain
critical value of the magnetic field Hc , this component
of the Hall resistance again exhibits a nearly quadratic
asymptotic behavior. With decreasing temperature, the
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shows the quadratic dependence of the form ρH2 ∝  H2. The
inset shows the temperature dependences of the phase shift
∆ϕ between the first and the second harmonics (see text) in
magnetic fields of 17.2 and 59.3 kOe.
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point on the ρH2(H) curves at which the regime changes
at Hc is displaced upwards on the H scale; at tempera-
tures T < Tm ≈ 7 K corresponding to the mictomagnetic
state in the FeSi matrix, field Hc attains a constant value
of Hc ≈ 35 kOe.

Another parameter that also experiences noticeable
changes upon a transition at T < Tm ≈ 7 K to the state
with magnetic moments of ferromagnetic nanoclusters
frozen in the FeSi matrix is the phase shift ∆ϕ between
the first and second harmonics; the temperature depen-
dence of this parameter is shown in the inset to Fig. 10.
The data in the inset show that the value of ∆ϕ at T >
Tm ≈ 7 K amounts approximately to 30°. As the temper-
ature decreases in the immediate vicinity of the transi-
tion to the mictomagnetic state at Tm ≈ 7 K, the phase
shift abruptly drops to zero. The temperature depen-
dence of the second harmonic of the Hall resistance
(see Fig. 11) indicates that the ρH2(H) curves repeat on
the whole the behavior of the main component of the
Hall signal. However, since ρH2(H) is an even compo-
nent of the Hall resistance RH(T) in magnetic field,
instead of the sign inversion in the vicinity of TC, the
ρH2(H, T) curves exhibit only a weak singularity in the
form of a point of inflection in the temperature range
Tm < T < TC (see Fig. 11).

It is interesting to note that a similar magnetic-field-
even contribution to the Hall effect (second harmonic in
the angular dependences) was observed while studying
the galvanomagnetic characteristics of the compound
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Fig. 11. Temperature dependences of the first ρH1(T) and
second ρH2(T) harmonics of the Hall resistance in magnetic
fields of 17.2 and 70.3 kOe.
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CeAl2 with heavy fermions [33]. In this compound, a
decrease in the temperature in the vicinity of the transi-
tion to the antiferromagnetic state (T < TN ≈ 3.85 K) was
accompanied by a substantial increase in the amplitude
of the anomalous component of ρH2(H, T); the emer-
gence of the corresponding magnetic component of the

Hall coefficient  = ρH2(H, T)/H was attributed by
the authors [33] to magnetization reversal processes in
magnetic domains and to the existence of short-range
ferromagnetic correlations in the CeAl2 matrix in the
close neighborhood of the antiferromagnetic phase. At
the same time, a monotonic variation of ρH2(H, T) in the
immediate vicinity of the temperature TC ≈ 15 K corre-
sponding to the formation of ferromagnetic microre-
gions along with the existence of magnetic-field-even
component in the Hall effect in FeSi at temperatures
substantially higher than TC (see Fig. 11) apparently
rules out the direct correlation of this component of the
Hall signal with the formation of ferrons in FeSi. Thus,
the origin of this even anomalous component in the
Hall signal remains unclear and further investigations
are required to clarify the origin of the second harmonic
ρH2(H, T) of the Hall resistance in FeSi and other com-
pounds with strong electron correlations.

Returning to the discussion of the main magnetic-
field-odd component ρH1 of the Hall resistance in FeSi,
it should be emphasized that the anomalous contribu-
tion ρH to the Hall effect is observed at temperatures
below TC ≈ 15 K, at which ferromagnetic nanoclusters
are formed [23]. In contrast to the behavior predicted
for traditional magnetic metals and semiconductors

(   0 as T  0 [34]), the absolute value of the
anomalous component of the Hall resistance in FeSi
increases with decreasing temperature by five orders of

magnitude, attaining values of  ≈ 1 Ω cm (see
Fig. 9) and does not exhibit a tendency to decrease even
at ultralow temperatures T ≈ 0.05 K [15]. In addition,
the difference in the signs of the spin-polaron

(H, T)) and anomalous ( (T)) contributions to the
Hall resistance of FeSi, which correspond to the hole

( (H, T) > 0) and the electron ( (T) < 0) types of
conduction, is not typical of traditional magnetic mate-
rials either. An analogous difference in the signs of the
anomalous and normal Hall coefficients was observed
in the study of galvanomagnetic characteristics of man-
ganites of the family La(Ca, Sr)MnO3 in a broad neigh-
borhood of the Curie temperature corresponding to the
regime of transport over spin-polaron states (see, for
example, [35, 36]). To interpret the nontrivial tempera-
ture dependence of the Hall coefficients in manganites, a
model was proposed on the basis of the assumption con-
cerning the phase change in the electron wavefunction
under the effect of the local magnetic surroundings [37].
In such a situation, the motion of a charge carrier in a
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system of noncomplanar spins is accompanied by the
emergence of an additional phase shift (Berry’s phase),
which is similar to the emergence of the effective intrin-
sic magnetic field for the charge carrier [38]. The allow-
ance for the additional geometrical phase under the
conditions of a strong spin–orbit interaction makes it
possible to qualitatively describe the difference in sign
and the temperature dependence of the anomalous Hall
coefficient in manganites [37]. At the same time, direct
application of the model [37] taking into account the
effect of the region polarized by the charge carrier on
the charge transfer processes in a magnetic field seems
hardly possible when the Hall effect is analyzed in the
regime of spin-polaron transport in FeSi.

Taking into account the above arguments, we
obtained a quantitative description of the Hall effect in
FeSi using the common procedure of separation of the
Hall resistance components in ferromagnets (see, for
example, [31]). We represented the set of experimental

data in terms of the “normal” (spin-polaron)  and

anomalous  Hall coefficients in the form

(2)

where

and Hex = 350 ± 100 kOe is the exchange field at the
charge carrier [23, 27]. It should be emphasized that, in
contrast to our earlier publication [23], instead of the

term (T)M(T) traditionally used for describing the
anomalous Hall effect [31], the right-hand side of for-

mula (2) contains the representation (T) =

(T)Hex , in which the temperature dependence of

magnetization, M(T), is directly contained in (T). In
our opinion, such an approach is justified since the
structure of the magnetically ordered phase (ferromag-
netic nanoclusters in a small concentration in the
weakly magnetic FeSi matrix) requires the replacement
of the volume magnetization M of the material in the

expression for  by its local value Mloc(T) determined
by the effective magnetic field at the charge carrier in
the upper (t2g) Hubbard band. An example of represen-
tation of the experimental data on ρH1(H, T) in terms of
model (2) is given in Fig. 9.

The approach described above was applied here to

calculate the Hall coefficients  and  for mag-
netic fields of 17.2 and 70.3 kOe (Fig. 12a). Using the

values of  and  (Fig. 12a), we can estimate the
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local magnetization Mloc(T) of ferromagnetic microre-
gions in FeSi at temperatures T ≤ 20 K using the rela-

tion Mloc = /4π  proposed in [23] and based on
application of the model of two groups of charge carri-
ers for describing the anomalous Hall effect. It should
be emphasized that an analogous approach is used in
the literature for determining the equivalent field HA =

/RH, for which the magnitude of the normal Hall
effect coincides in the linear approximation with the
anomalous Hall effect [34]. The temperature depen-
dence of the effective field 4πMloc (Fig. 13) shows that
a decrease in the temperature leads to a considerable
increase in the value of local magnetization. In this
case, the increase in the value of Mloc in the immediate
vicinity of TC ≈ 15 K turns out to be a much slower pro-
cess as compared to the case of “classical” band ferro-
magnets (in Fig. 13, the magnetization curves for ferro-
magnetic metals Fe and Ni, as well as the theoretical
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and anomalous (T) Hall coefficients (see formula (2))
as well as the concentration of charge carriers pS =
NFeexp(|e|S/kB) calculated from the thermo-emf coefficient
S in the regime of the spin-polaron transport [23]. The dot-
and-dash curve shows the activation asymptotic behavior of

the Hall coefficient (T) ∝  exp(Ep/kBT) with activation
energy Ep ≈ 6 meV at T > 15 K [23]. (b) Variation of the
effective mass of charge carriers in FeSi in magnetic fields
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dependence of spontaneous magnetization of a ferro-
magnet at T ≤ TC [39], are also shown for comparison).

Analysis of the results presented in Fig. 13 shows
that, instead of the critical behavior in the vicinity of the
Curie temperature, nearly activation-type dependences

Mloc(T) (Fig. 13) and (T) (inset to Fig. 13) are
observed for the system of ferromagnetic clusters in the
FeSi matrix. In spite of the approximate nature of
numerical estimates, the values of the activation energy
characterizing the temperature dependences of Mloc

(Ea ≈ 6.5 meV) and  (Ea1 ≈ 12 meV and Ea2 ≈
4 meV) are in fairly good agreement with the binding
energy of spin-polaron states in the FeSi matrix, Ep ≈
6 meV [23]. It should also be noted that the essentially

nonmonotonic behavior of the dependences (T)

(see Fig. 12a) and Mloc(T) = /4π  (see Fig. 13) in
the vicinity of Tm ≈ 7 K should be associated, in our
opinion, with the noticeable enhancement of carrier
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scattering by the inhomogeneities appearing in the FeSi
matrix in the vicinity of the transition to the mictomag-
netic state. In addition, the value of the magnetization
4πMloc ≈ 500 ± 200 kOe at T = 2.5 K coincided to
within the experimental error with the value of the
exchange field at a carrier in the upper Hubbard band,
Hex = 350 ± 100 kOe, determined in [23] for FeSi.

The temperature dependences of the normal ( )

and anomalous ( ) Hall coefficients obtained in this
study (see Fig. 12a) can also be analyzed in terms of the
effective concentration of charge carriers defined as p =
(RHe)–1 (see the ordinate axis on the right in Fig. 12a).
In our opinion, it would be most interesting to compare
the behavior of the effective Hall concentration pH(T) =

( e)–1 with the concentration of charge carriers esti-
mated from the measurements of the temperature
dependence of the thermo-emf coefficient [23]. It
should be recalled that the thermo-emf coefficient in
the regime of strong Coulomb correlations is deter-
mined by the reduced concentration of charge carriers
in the Hubbard band [40]. Thus, in the temperature
range TC < T < 100 K corresponding to the transport
over spin-polaron states at the Fermi level, the data on
thermo-emf in FeSi [23] enable us to directly estimate
the charge carrier concentration by the Hickes formula
pS = NFeexp(|e|S/kB) [40]. The obtained values of pS are
practically independent of temperature in the interval
15–50 K: pS ~ 1017–1018 cm–3 (see Fig. 12a). It should
also be noted that a similar estimate of the charge car-
rier concentration (p ~ 3 × 1018 cm–3) was obtained
while studying the low-temperature specific heat of
FeSi [41]. A comparison of the data presented in
Fig. 12a clearly demonstrates that the absolute value
and the activation nature of the dependence of the Hall

parameter pH(T) = ( e)–1 substantially differ from
the behavior of concentration pS estimated from the
results of thermo-emf measurements [23]. A natural
explanation of the noted difference in the parameters
pH(T) and pS(T) can be obtained in the model of carrier
transport over small-radius (~10 Å) spin-polaron states,
which is characterized by the activation dependence of

the Hall coefficient . The activation energy for the

dependence (T) is determined by the spin-polaron
potential Ep ≈ 6 meV [23] in contrast to the thermo-emf
coefficient that varies with temperature only slightly
and can be recalculated by the Hickes formulas to the
actual concentration of charge carriers in the Hubbard
bands (pS(T) ~ 1017–1018 cm–3; see Fig. 12a).

Another interesting (in our opinion) comparison of
the effective concentration parameters can be carried
out for temperatures T < Tm ≈ 7 K, at which the values

of pA = ( e)–1 and pH(T) = ( e)–1 are found to be
close. We believe that, in this temperature range corre-
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sponding to the formation of the mictomagnetic state in
FeSi, the data presented in Fig. 12a indicate that the
concentration of heavy fermions and nanosize ferro-
magnetic regions in the FeSi matrix are comparable.
The decrease in the values of effective concentration of
charge carriers as compared to the concentration pS =
5.8 × 1017 cm–3 of spin-polaron states in FeSi in the
paramagnetic state (T < TC) should apparently be attrib-
uted to the “actuation” of the interaction between ferro-
magnetic nanosize regions, which leads to their amal-
gamation into clusters accompanied by the transition to
a state with frozen spins (SG state in Fig. 1c).

Thus, the separation of the channels forming the

main component of the Hall signal ( (H, T) and

(T) in Figs. 9 and 12) enables us to draw the follow-
ing conclusions. The positive Hall coefficient

(H, T) in FeSi is apparently associated with the
contribution from spin-polaron states forming a many-
particle resonance at the Fermi level (structure I in
Fig. 1). This “resonant component” is analogous to the
well-known anomalous positive Hall effect observed in
heavy-fermion systems based on rare-earth elements
(see, for example, 42, 43]. In our opinion. it is the for-
mation of a many-particle resonance in the density of
states in the vicinity of the Fermi energy EF in FeSi that
leads to the formation of a positive spin-polaron com-
ponent of the Hall coefficient at temperatures T <
100 K. The activation-induced increase in the value of

(T) ∝  exp(Ep/kBT) with decreasing temperature
(see Fig. 12a and [23, 25]) makes it possible to estimate
the binding energy Ep ≈ 6 meV of spin-polaron states in
the FeSi matrix (structure I in Fig. 1). As the density of
states for the many-particle resonance increases at T <
20 K, a transition to the coherent mode of Hubbard fluc-
tuations occurs between the eg and t2g states of the 3d
band of iron and to the formation (at T = TC ≈ 15 K) of
ferromagnetic nanosize regions (ferrons) from spin
polarons. Taking into account the estimates of the
energy U ≈ 270 meV of Hubbard correlations and the
electron density of states N ≥ 20 states/(eV unit cell)
obtained in our previous publication [23], we have
UN > 1 for a ferromagnetism criterion similar to the
Stoner criterion; for FeSi, we obtain UN ≥ 5. Appar-
ently, the fulfillment of the condition UN ≥ 5 enables us
to explain the emergence of spontaneous magnetization
and, as a result, the emergence of the anomalous ferro-

magnetic component (T) of the Hall effect in FeSi
at low temperatures. The observation of the local mag-
netization and, accordingly, the anomalous component

of the Hall coefficient, (T), in a temperature range
slightly higher than the Curie temperature TC ≈ 15 K

(see Fig. 12a; (20 K) ≠ 0) should probably be attrib-
uted to a random distribution of many-particle com-
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plexes with a low concentration (of approximately
1018 cm–3) in the bulk of a FeSi sample.

4.2. Separation of Contributions
to Magnetoresistance 

The behavior of the magnetoresistance of FeSi in
the temperature range 1.6–30 K turns out to be quite
complex and sign-alternating (see Figs. 2–4). In con-
trast to the main component ρH1 of the Hall resistance,
whose sign inversion occurs at temperatures near TC =
15 K, the sign inversion of the ratio ∆ρ/ρ (transition
from a positive magnetoresistance ∆ρ/ρ > 0 to a nega-
tive magnetoresistance ∆ρ/ρ < 0) is observed upon a
decrease in temperature in the immediate vicinity of
Tm = 7 K (Fig. 4). It was noted above that the field
dependences of magnetoresistance ∆ρ/ρ = f(H) at T >
Tm exhibit a noticeable deviation from the quadratic
dependence ∆ρ/ρ ∝  H2 (see the inset to Fig. 2). It
should also be noted that the peak of the positive con-
tribution to the magnetoresistance of FeSi is observed
at T ≈ 11 K, which is substantially lower than the Curie
temperature TC ≈ 15 K (see Fig. 4).

In our opinion, the most plausible explanation of the
effect of positive magnetoresistance at T > Tm ≈ 7 K can
be formulated as follows. Under the conditions of rapid
electron density fluctuations (Hubbard correlations at
Fe centers), the formation of spin-polaron states at
charge carriers occurs due to polarization of the mag-
netic moments from the nearest neighborhood, which
determines the amplitude of the corresponding polaron
potential (the depth of the spin-polaron well). In such a
situation, additional polarization of nearest neighbors
of a charge carrier under the effect of an external mag-
netic field leads to an increase the depth of the polaron
potential and, as a consequence, to a positive contribu-
tion to the magnetoresistance of FeSi. In the simplest
approximation, an increase in the binding energy of the
spin-polaron complex in the paramagnetic FeSi matrix
can be taken into account in terms of the change in the
magnetostatic energy of the polarized region in a mag-
netic field [44]:

(3)

where M = χlocVSPρdH is the magnetization of the sur-
roundings polarized by the charge carrier, χloc and VSP
are the local susceptibility and the volume of the polar-
ized region, and ρd = 6.1 g/cm3 is the density of FeSi
[15]. Using the value of localization radius rSP ≈ 5 Å of
the spin-polaron state [23], we obtain the following
expression for the volume of a spin polaron:

The change in the binding energy of many-particle
states in the activation dependence of resistivity

∆E MH/2,–=

VSP 4πrSP
3 /3= 5.2 10 22–  cm3.×≈
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ρ(H, T) = ρ0(T)exp[Ep(H)/kBT] [23, 25] in a magnetic
field can be written in the form

(4)

Under the condition of smallness of parameter
∆E/kBT < 0.03 ! 1 (see Figs. 2 and 7), we obtain the
following expression for the field dependence of posi-
tive magnetoresistance at a fixed temperature:

(5)

Thus, in the framework of model (3)–(5), the quadratic
term in expression (5) can be used to estimate the local
magnetic susceptibility

in the volume VSP occupied by many-particle states of
the spin-polaron type in the FeSi matrix.

The results of calculation of the local susceptibility
χloc(H, T) for the range of temperatures and magnetic
fields studied here are shown in Fig. 14. It can be seen
that the behavior of field dependences of parameter χloc
correlate well with the variation of the differential mag-
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netic susceptibility χd(H, T) in a magnetic field (see the
inset to Fig. 7). For example, as the external magnetic
field strength increases, the absolute value of χloc sub-
stantially decreases, the strongest variation of the local
magnetic susceptibility in a magnetic field correspond-
ing to temperatures in the immediate vicinity of TC =
15 K (Fig. 14). At the same time, we must emphasize
the difference in the behavior of the differential mag-
netic susceptibility χd(H, T) averaged over the sample
volume and the local susceptibility χloc(H, T), which is
seen most clearly from a comparison of the temperature
dependences of these parameters at fixed values of the
magnetic field. The dependences χloc(H, T) shown in
the inset to Fig. 14 exhibit a peak at T ~ TC = 15 K,
which corresponds to the formation of nanosize ferro-
magnetic regions in the FeSi matrix. An increase in the
magnetic field leads to a considerable suppression of
the peak amplitude of χloc , which is accompanied by
blurring of the singularity near TC = 15 K (see the inset
to Fig. 14). It should also be noted that the field depen-
dence of χloc calculated from the results of measure-
ments of positive magnetoresistance in the temperature
range 10–20 K coincide to within the experimental
error with those obtained in a magnetic field above
35 kOe (see Fig. 14).

The observed difference in the behavior of χd(H, T)
and χloc(H, T) can be naturally associated with peculiar-
ities in the formation of the ground magnetic state in
FeSi. For example, the bulk magnetic properties of FeSi
at T < 100 K are determined by the Pauli paramagnetic
contribution from many-particle (spin-polaron) reso-
nance emerging in the regime of rapid spin fluctuations
at Fe centers, which are accompanied by transitions
between Hubbard bands [32]. In turn, parameter
χloc(H, T) turns out to be connected with the exchange
enhancement of magnetization due to polarization of
Fe centers in the immediate vicinity of a change carrier
and with the formation of ferrons in the FeSi matrix at
T < TC = 15 K. A comparison of the parameters χd(H, T)
and χloc(H, T) shows that the estimated value of
χloc(15 K) ≈ 1.5 × 10–5 cm3/g (see Fig. 14) is almost an
order of magnitude higher than the measured value of
the volume-averaged susceptibility of FeSi, χd(15 K) ≈
2 × 10–6 cm3/g (see Fig. 7): χloc(15 K)/ χd(15 K) ≈ 8. At
the same time, to estimate the exchange enhancement
factor reflecting the renormalization of the electron
density of states N*(EF)/N0(EF), it is obviously more
appropriate to use the ratio of χloc(15 K) to the value of
magnetic susceptibility χd(Tmin ≈ 80 K) corresponding
to the transition to the regime of formation of a many-
particle resonance in the vicinity of EF [32]]. The
exchange enhancement factor estimated in this way is

N* EF( )
N0 EF( )
-------------------

χ loc 15K( )
χd Tmin 80 K≈( )
-------------------------------------- 20.≈ ≈
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A close value of the exchange enhancement of the den-
sity of states, N*(EF)/N0(EF) ≥ 20, was obtained in [22],
where the Pauli paramagnetic contribution to χd(T) in
FeSi was analyzed in the simple model of a narrow rect-
angular band (δ ≈ 6 meV) at the Fermi level. In our
opinion, the estimates obtained for the local suscepti-
bility substantiate the correctness of application of the
spin-polaron approach to the description of the ground
state of FeSi.

Concluding the analysis of the effect of positive
magnetoresistance in FeSi, we consider the results of
investigation of the magnetoresistance of FeSi in
pulsed magnetic fields up to 400 kOe, which demon-
strate a considerable positive magnetoresistance ∆ρ/ρ ≈
30% (curve 4 in Fig. 4). In our opinion, this effect of
positive magnetoresistance, which is observed for a low
mobility of charge carriers (µ ≤ 10 cm2/V s), can be
explained by suppression of the many-particle reso-
nance at the Fermi level, leading to the magnetic-field-
induced metal–insulator transition under strong Hub-
bard correlations [45, 46]. In such a situation, the
destruction of the spin-polaron resonance in a magnetic
field must be accompanied by a considerable decrease
in the Pauli susceptibility, which was indeed observed
in the analysis of field dependences of parameters
χd(H, T) and χloc(H, T) (see Figs. 7 and 14). Thus, the
results of magnetoresistance measurements in a pulsed
magnetic field may also serve as an additional confir-
mation of the applicability of the spin-polaron
approach to the description of the ground state of FeSi.

Proceeding to analysis of the magnetoresistance of
FeSi at temperatures T < Tm ≈ 7 K, we emphasize that
the sign inversion of magnetoresistance ∆ρ/ρ is
observed in the immediate vicinity of the temperature
corresponding to the transition to the mictomagnetic
state, Tm ≈ 7 K (see Fig. 4), and is accompanied by a
change in the form of the field dependence of ∆ρ/ρ in
weak magnetic fields (about 10 kOe) with a transition
from the quadratic (∆ρ/ρ ∝  H2) to the linear (∆ρ/ρ ∝  H)
asymptotic behavior (see Figs. 2 and 3). The emergence
of the linear field dependence of the magnetoresistance
appears as rather nontrivial since the negative contribu-
tion to the magnetoresistance in magnetic materials in
the general case is determined by the mutual orientation
of the spins of charge carriers and scattering magnetic
centers and is proportional to the square of magnetiza-
tion; as a result, a negative magnetoresistance of the
form ∆ρ/ρ ∝  –M2 ∝  –H2 should be expected [47].

To explain the peculiar form of the field dependence
of the negative magnetoresistance of FeSi at tempera-
tures T < Tm ≈ 7 K (see Fig. 3), we recall that the forma-
tion of the magnetic ground state in FeSi in the frame-
work of the approach developed here is associated with
the emergence of spontaneous polarization of spin–
polaron surroundings; in this case, the local magnetiza-
tion M of ferromagnetic regions is mainly determined
by the exchange field at a charge carrier, Hex ≈ 350 kOe,
and weakly depends on the external magnetic field in
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the limit H ! Hex. In such a situation, the total magne-
tization of the system can be represented as the sum of
the field-independent spontaneous magnetization M0 =
4πHex of nanosize ferromagnetic regions and the addi-
tional contribution δM(H) ∝  χloc , which is determined
by the polarization of a wide neighborhood of ferrons
by the external magnetic field (δM ! M0). In this case,
for the negative magnetoresistance of the paramagnetic
matrix containing magnetic impurities, we will use the
result obtained in [47], according to which

(6)

The, rewriting relation (6) in the form

(7)

and disregarding a small correction on the order of
(δM(H))2, we obtain

(8)

Thus, the variation of ∆ρ/ρ in a magnetic field is
mainly determined by the field dependence δM(H).
Since the field dependence of the additional contribu-
tion δM(H) to the magnetization for the system of fer-
romagnetic nanosize regions of small concentration can
be approximated in the first approximation by the Bril-
louin function [39], for the negative magnetoresistance
in FeSi we have

(9)

where α = µeffH/kBT, J is the total magnetic moment,
and µeff = gµBJ is the effective magnetic moment of fer-
romagnetic nanoclusters. As we proceed to the classical
limit J  ∞, the Brillouin function BJ(α) is trans-
formed into the Langevin function L(α); as a result, the
negative magnetoresistance in FeSi is defined as

(10)

In the limit of a weak magnetic field α ! 1, expres-
sion (9) (as well as its classical analogue (10)) obvi-
ously leads to a linear field dependence –dρ/ρ ∝  α ∝  H
for the negative magnetoresistance.

Figure 15 presents the results of quantitative analy-
sis of the negative magnetoresistance in FeSi. To elim-
inate the additional contribution from the positive mag-
netoresistance, which is observed in the immediate
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vicinity of the transition to the mictomagnetic state, T ~
Tm ≈ 7 K (see the curves of ∆ρ/ρ in the temperature
range 6–8 K in Fig. 3a), we subtracted from the exper-
imental dependences of ∆ρ/ρ the quadratic asymptotic
form ∆ρ/ρ ∝  H2 in magnetic fields stronger than
40 kOe. The results presented in Fig. 15 show that
approximation (6)–(10) makes it possible to describe
the field dependence of the negative magnetoresistance
to a high degree of accuracy in the entire range of mag-
netic fields used in the present study. It should also be
noted that a comparison of the results of approximation
of the ∆ρ/ρ curves in the quantum (J = 1) (9) and clas-
sical (10) cases does not permit an unambiguous choice
between these two cases (see the ∆ρ/ρ dependence sim-
ulated in Fig. 15 for T = 5.1 K). At the same time, the
temperature dependences of the effective magnetic
moment µeff estimated from the results of numerical fit-
ting of the parameters given by expressions (9) and (10)
(see the inset to Fig. 15) demonstrate a decrease in the
effective magnetic moment with decreasing tempera-
ture from µeff ≈ 12µB (20µB) at T ~ Tm ≈ 7 K to µeff ≈
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Fig. 15. Field dependence of the negative contribution to the
magnetoresistance ∆ρ/ρ = (∆ρ/ρ)exp – AH2 in the tempera-
ture range above the helium temperature. Solid curves show
the results of approximation of the experimental data by the
Brillouin function BJ(α) with J = 1 (formula (8)). The dot-
ted curve shows the result of simulation of the Langevin
function L(α) for the field dependence of ∆ρ/ρ measured at
T = 5.1 K (formula (9)). The inset shows the temperature
dependences of the effective magnetic moment µeff(T) esti-
mated in the framework of model (6)–(9) at T < Tm ≈ 7 K
for BJ(α) (1) and L(α) (2).
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4µB (7µB) at T = 1.8 K (the values of µeff for calculations
using expression (10) are given in parentheses). The
observed qualitative agreement in the behavior of the
effective magnetic moment µeff calculated using rela-
tions (9) and (10) indicates a substantial decrease in the
effective magnetic moment, which is obviously due to
the “actuation” of the interaction between nanosize fer-
romagnetic regions and, as a consequence, due to
“freezing” of the magnetic moments of nanoclusters
during the formation of the mictomagnetic ground state
in the FeSi matrix at T < Tm ≈ 7 K (SG phase in Fig. 1c).

4.3. Low-Temperature Magnetic Phase Diagram
and Parameters of Charge Carriers in FeSi 

To construct the low-temperature magnetic phase
diagram of FeSi, we generalize the results of the present
analysis of transport, magnetic, and magnetooptical
characteristics of this compound as well as the experi-
mental results known from the literature [22, 23, 32].

The temperature range 15 K < T < 100 K corre-
sponds to the paramagnetic phase (region P in Fig. 16)
of FeSi, in which strong Hubbard correlations lead to a
substantial renormalization of the density of states,
accompanied by the formation of a many-particle reso-
nance in the vicinity of the Fermi energy (structure I in
Fig. 1), which determines physical properties of FeSi at
low temperatures. Analysis of transport characteristics
[22, 23] shows that many-particle states within the res-
onance should be juxtaposed to a system of spin
polarons having a small radius rSP ≈ 5 Å and a concen-
tration n ~ 1017–1018 cm–3 with the characteristic bind-
ing energy Ep ≈ 6 meV and with a noticeably increased
effective mass m* ~ 100m0. The substantial increase in
the Pauli susceptibility observed upon a decrease in
temperature in the interval 15 K < T < 100 K [32]
enables us to directly estimate the increase in the
electron density of states at the Fermi level due to the
emergence of the many-particle resonance for N ≥
20 states/(eV unit cell).

It has been established in this study that a decrease
in temperature in the vicinity of TC = 15 K in FeSi is

accompanied by anomalous Hall effect (T) corre-

sponding to the electron type of conduction,  < 0
(see Figs. 9 and 12a). Taking into account the increase
in the local susceptibility χloc observed near TC (see the
inset to Fig. 14) and in the local magnetization Mloc (see
Fig. 13), the emergence of anomalies in the transport
characteristics of FeSi in the temperature range 7 K <
T < 15 K should be attributed to the emergence of the
coherent regime of spin fluctuations and to the transfor-
mation of spin polarons into nanosize ferromagnetic
regions (ferrons) (phase F in Fig. 1b and in Fig. 16).
This conclusion is confirmed by the emergence of hys-
teresis in the angular dependences of the Hall resistance
in a magnetic field H < 3.6 kOe at temperatures below
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A

RH
A

 AND THEORETICAL PHYSICS      Vol. 99      No. 2      2004



SPIN-POLARON TRANSPORT AND MAGNETIC PHASE DIAGRAM 411
TC = 15 K [23] (symbols 1 in Fig. 16). Our analysis of
the angular dependences of the Hall resistance shows
that the ferrons formed in the above-mentioned temper-
ature range are characterized by uniaxial magnetic
anisotropy with a field of Han = 3 ± 1 kOe (symbols 2
and phase F in Fig. 16). It should be emphasized that
the emergence of spontaneous magnetization in FeSi at
T < 15 K correlates with the fulfillment of the ferromag-
netism criterion similar to the Stoner criterion (UN > 1),
which has the form UN ≥ 5 for a Hubbard correlation
energy of U ≈ 270 meV in FeSi [23]. At the same time,
the low concentration of ferrons (1017–1018 cm–3) is
responsible only for weak singularities of the “inte-
grated” magnetic characteristics (symbols 3 in Fig. 16)
since the magnetization and susceptibility of FeSi in
this temperature range are mainly determined by the
paramagnetic contribution of the FeSi matrix [23, 32].

Additional estimates of the charge carrier parame-
ters in the ferromagnetic (F) state of FeSi can be
obtained from the temperature dependences of effective
charge carrier concentrations (see Fig. 12a). Under the
conditions of a strong electron–phonon interaction, the
linewidth of optical phonons in the frequency range

180–400 cm–1,  (198 cm–1, 318 cm–1, 338 cm–1) ≈
10 cm–1 [48], can be used for estimating the relaxation
time for charge carriers in FeSi:

Analogous values of  can be obtained from the
reciprocal linewidth of magnetic scattering of polarized
neutrons Γ = 3–4 meV [49]. Using the expression for
the Hall mobility µ = RH/ρ = eτ/m*, we can estimate the
effective mass of charge carriers in FeSi. The obtained
values of m*/m0 calculated for magnetic fields of 17.2
and 70.3 kOe are shown in Fig. 12b. It should be noted
that the values m*/m0 = 80 ± 20 corresponding to many-
particle states in the FeSi matrix at T > 10 K (see
Fig. 12b) correlate well (to within the experimental
error) with the estimate m*/m0 ≈ 50 obtained from the
results of measurements of optical conductivity σ(ω) in
the frequency range 50–25000 cm–1 [50]. The coinci-
dence of the values of effective mass of charge carri-
ers—spin polarons in the paramagnetic phase (T > TC ≈
15 K) and ferrons in the ferromagnetic phase (T < TC ≈
15 K) (see Fig. 12b)—can be regarded as an additional
argument in favor of the proposed many-particle
description of the low-temperature transport and gene-
sis of anomalies in the Hall effect in FeSi.

Analyzing the characteristics of the ferromagnetic
phase (F in Fig. 16) at T < TC ≈ 15 K, we must take into
account the results of measurements of the low-temper-
ature heat capacity C(T) of monocrystalline FeSi sam-
ples [14], according to which a broad peak is present on
the C(T) curves in the vicinity of temperature T ≈ 8.5 K.
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3γi
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Analysis of this singularity in the framework of a sim-
ple two-level model (Schottky anomaly) makes it pos-
sible to estimate the characteristic energy of splitting of
the narrow band of many-particle states in the vicinity
of EF: ∆ = 2 meV [14]. Assuming that the emergence of
ferromagnetism at temperatures T < TC ≈ 15 K under
the conditions of the strong (UN ≥ 5) interaction is
accompanied by exchange-induced splitting of the
many-particle resonance of width δ ≈ 6 meV at the
Fermi level (structure II in Fig. 1), we can directly esti-
mate the exchange field at a carrier in FeSi from the
results of thermal measurements [14]: Hex = ∆/µB ≈
350 kOe. In our opinion, the good coincidence of the

Fig. 16. Low-temperature magnetic phase diagram of FeSi.
The symbols used in the diagram correspond to the emer-
gence of hysteresis ∆Rhyst on the angular dependences of
the Hall resistance [23] (1); the temperature dependence of
anisotropy field Han of nanosize ferromagnetic regions (2);
peculiarities in the temperature dependences of magnetiza-
tion M(T), measured in fields up to 12.5 kOe [23] (3); the
peak on the temperature dependence of local susceptibility
χloc (see text and Fig. 14) (4); the peculiarity on the temper-

ature dependence of the spin-polar component  of the

Hall effect (Fig. 12a) (5); the anomalies (hysteresis) of the
microwave magnetooptical absorption in the vicinity of
fields Han ≈ 15 kOe and Hm ≈ 35 kOe (Fig. 8) (6); the mag-
netic field determining the emergence of the anisotropic
contribution to magnetoresistance ∆ρ/ρ [23] (7); the mag-
netic field corresponding to the point of inflection Hs on the
field dependences of magnetoresistance ∆ρ/ρ (Fig. 3b) (8);
the change in the asymptotic behavior of the second har-
monic ρH2 of the Hall resistance (Fig. 10) (9), and the peak
of differential susceptibility χd(T) (Fig. 7) (10). Phase nota-
tion is the same as in Fig. 1.
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obtained result and the value of Hex ≈ 350 ± 100 kOe
obtained from simultaneous analysis of the transport
and magnetic parameters of FeSi [23, 32] is a sound
argument in favor of the spin-polaron approach used
here for describing the low-temperature properties
of FeSi.

Passing to the region of T < Tm = 7 K, H < Hm ≈
35 kOe on the H–T phase diagram of FeSi, we note that

anomaly of the spin-polaron component ( ) of the
Hall effect is observed upon a decrease in temperature
in the vicinity of Tm = 7 K in a weak magnetic field (see
Fig. 12a and symbols 5 in Fig. 16). In addition at Tm ≤
7 K, the dependences ∆ρ/ρ = f(T, H) acquire a negative
contribution to the magnetoresistance (see curve 3 in
Fig. 4). The effects listed above apparently reflect the
renormalizaion of parameters of ferromagnetic regions.
The considerable increase in the anisotropy field of
nanoclusters to values of Han ≈ 12 ± 2 kOe (symbols 2
and region SG in Fig 16) and the sharp change in the
phase of the second harmonic of the Hall signal (see the
inset to Fig. 10) also speak in favor of such an interpre-
tation. In addition, our analysis of galvanomagnetic
data shows that the transition at T < Tm = 7 K is accom-
panied by a considerable decrease in the Hall concen-
tration and the effective mass of charge carriers to val-
ues of p ~ 1016–1017 cm–3 and m* ≈ (20 ± 5)m0, respec-
tively (see Fig. 12). Taking into account the substantial
decrease in the effective magnetic moment µeff of ferro-
magnetic regions from (10–20)µB at T ~ Tm ≈ 7 K to
(4−6)µB at T = 1.8 K (see the inset to Fig. 15), we con-
clude that the observed changes in the above parame-
ters obviously indicate the formation of ferromagnetic
microregions from interacting ferrons upon a transition
to the mictomagnetic state at T ≈ Tm = 7 K (phase SG in
Fig. 1c and Fig. 16). In our opinion, the anomalies on
the temperature dependences of the above parameters
near Tm ≈ 7 K (see Fig. 12) should be attributed to the
enhancement of scattering by inhomogeneities in the
immediate vicinity of the transition to the mictomag-
netic state and, as a consequence, to a sharp decrease in
the mobility of charge carriers.

Comparing FeSi with a classical band ferromag-
netic, it should be emphasized that the behavior of
physical parameters of FeSi is determined by the direct
participation of nanosize magnetic regions in the
charge-transfer processes at low temperatures. In such
a situation, along with the emergence of anomalies in
the physical properties typical of mictomagnetic sys-
tems in FeSi, the possibility of formation of new spa-
tially organized magnetic structures, the realization of
magnetic orientational transitions, etc., cannot be ruled
out either. In our opinion, it is the magnetic transition in
the structure of nanosize ferromagnetic regions that is
responsible for the peculiarities in the physical param-
eters of FeSi observed in a magnetic field of Hm ≈
35 kOe at T < Tm ≈ 7 K. The most noticeable anomalies
(hysteresis) in these ranges of temperatures and mag-
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netic fields are observed in the field dependences of
magnetooptical absorption (see Fig. 8 and symbols 6 in
Fig. 16). In addition, in a magnetic field of H ≈ 35 kOe,
an anisotropic contribution to the magnetoresistance is
observed [23] (symbols 7 in Fig. 16) and the ∆ρ/ρ
curves acquire a point of inflection Hs(symbols 8 in
Fig. 16). For H ≤ 35 kOe, the asymptotic behavior of
the field dependences of the second harmonic ampli-
tude in the Hall resistance also changes (see Fig. 10 and
symbols 9 in Fig. 16). In our opinion, these peculiarities
indicate the change in the magnetic structure of FeSi,
which is accompanied by the rupture of bonds between
ferromagnetic nanoclusters (phase SG in Fig. 1c), fol-
lowed by the reorientation of the magnetic moments of
ferrons parallel to the applied magnetic field (region
M || H in Fig. 1d and in Fig. 16).

An additional argument in favor of realization of the
magnetic orientational transition at T < Tm ≈ 7 K
accompanied by the destruction of the mictomagnetic
ground state of FeSi in magnetic fields above Hm ≈
35 kOe can be the increase in the effective mass of
charge carriers to values of m* ≈ (70 ± 20)m0 in the field
H = 70.3 kOe (see Fig. 12b). The observed “increase”
in the mass of charge carriers in FeSi with increasing
m* to values of the effective mass of spin polarons in
the paramagnetic (P) phase and ferrons in the ferromag-
netic (F) phase can be naturally attributed to the
destruction of intracluster bonds in the mictomagnetic
(SG) phase by an external electric field. The polariza-
tion of magnetic moments of nanosize ferromagnetic
regions induced by an external field leads to a transition
to a state with ferrons oriented along the magnetic field
upon an increase in H in the vicinity of Hm ≈ 35 kOe

(state M || H in Fig. 1d). In addition, the peak 
observed on the temperature dependences of the differ-
ential susceptibility during the measurement of mag-
netic characteristics (see Fig. 7 and symbols 10 in
Fig. 16) as well as the singularity on the temperature

dependence of the spin-polaron component  of the
Hall effect in a magnetic field H > Hm (see Fig. 12a and
symbols 5 in Fig. 16) should apparently be also inter-
preted in terms of the phase boundary and, accordingly,
the new phase M || H on the low-temperature phase dia-
gram of FeSi. Additional experiments including the
measurement of transport and magnetic characteristics
of FeSi in the range of magnetic fields corresponding to
the values of the exchange field of spin-polaron states
are required to determine the structure of the low-tem-
perature phase diagram and, in particular, the peculiar-
ities of the phase transition between the collinear mag-
netic (M || H) and paramagnetic (P) phase in FeSi.

5. CONCLUSIONS

The above analysis of galvanomagnetic characteris-
tics of FeSi has made it possible for the first time to
study in detail the features of low-temperature transport
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and to determine the characteristics of charge carriers
in wide ranges of temperatures (1.8–40 K) and mag-
netic fields (up to 120 kOe), corresponding to the for-
mation of a magnetic state in this narrowband semicon-
ductor with strong quasiparticle interactions. It is
shown that low-temperature anomalies of the Hall
resistance in FeSi, including the sign inversion in the
Hall coefficient at T ≈ 12–15 K, are caused by a com-

plex competition between the spin-polaron (  > 0)

and the anomalous magnetic (  < 0) contributions to
the Hall coefficient. At T < 10 K, the Hall signal is

determined by the anomalous component  of the
Hall resistance, whose absolute value increases by
more than five orders of magnitude in the temperature
interval 1.8–20 K and attains values of about 1 Ω cm at
T = 1.8 K.

The above analysis of experimental data shows that
the anomalous Hall effect in FeSi can apparently be
associated with stabilization of the coherent mode of
spin fluctuations in the formation of nanosize ferro-
magnetic regions (ferrons) (of approximately 10 Å in
diameter) near TC = 15 K. For a quantitative description
of the Hall effect in FeSi, we propose a procedure for
separating the Hall resistance components, in which the
set of experimental data is represented in terms of the

“normal” (spin-polaron)  and anomalous  Hall
coefficients, with a subsequent estimation of the effec-
tive parameters of charge carriers in low-temperature
magnetic phases of FeSi.

Analysis of the angular dependences of the Hall
resistance ρH in FeSi revealed the presence of the addi-
tional harmonic ρH2(ϕ) ∝  cos2ϕ leading to substantial
deviations of the experimental curves from the standard
cosinusoidal signal. It is found that this second har-
monic, which dominates in the immediate vicinity of
the temperature corresponding to the sign inversion in
the Hall coefficient at T ≈ 12–15 K is associated with
the emergence with a magnetic-field-even contribution
to the Hall effect that cannot be explained in the frame-
work of traditional phenomenological models.

Analysis of the temperature dependences of the
magnetoresistance of FeSi enabled us to estimate some
characteristics of many-particle states realized under
rapid spin fluctuations at Fe centers. It was shown that
the positive magnetic contribution to the magnetoresis-
tance ∆ρ/ρ observed in the vicinity of the Curie temper-
ature TC = 15 K emerges as a result of polarization of
the local surroundings of a charge carrier upon a transi-
tion to the coherent mode of spin fluctuations in FeSi.
It is interesting to note that the sign inversion of ∆ρ/ρ
observed upon a decrease in temperature in the imme-
diate vicinity of the mictomagnetic phase boundary at
Tm = 7 K is accompanied by a transition from a positive
(∆ρ/ρ > 0, T > Tm) to a negative (∆ρ/ρ < 0, T < Tm) mag-
netoresistance. The model proposed here for describing
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the anomalous linear asymptotic behavior of ∆ρ/ρ ∝
−H, which is observed in weak magnetic fields (around
10 kOe) in the negative magnetoresistance mode,
makes it possible to associate the observed effect with
peculiarities in the formation of a magnetic state in a
system of interacting ferrons in the mictomagnetic
phase of FeSi.

The analysis of the field and temperature depen-
dences of transport characteristics enables us to obtain
quantitative estimates for the effects of exchange
enhancement as well as microscopic parameters of
many-particle complexes determining the regimes of
charge transfer under rapid (on the order of 10–13 s)
electron density fluctuations at Fe centers. On the basis
of the results obtained in this study and indicating the
realization of a sequence of transformations of many-
particle states (spin polarons  ferrons  magnetic
nanoclusters) during the formation of the ferromagnetic
and mictomagnetic phases of FeSi, we constructed for
the first time the low-temperature magnetic phase dia-
gram of this compound. The aggregate of anomalies in
the transport and magnetic characteristics discovered in
the vicinity of Hm ≈ 35 kOe in the mictomagnetic state
of FeSi at T ≤ Tm = 7 K leads to the conclusion concern-
ing the magnetic-field-induced transition to a new col-
linear phase M || H on the phase diagram of FeSi. At the
same time, additional investigations of the transport
and magnetic parameters of FeSi with strong electron
correlations are required to clarify the structure and
parameters of the low-temperature state of this com-
pound in the range of magnetic fields corresponding to
the exchange fields Hex ≈ 350 kOe of spin-polaron
states.
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Abstract—The emission spectrum of an injection GaAs laser having a quadrilateral cavity with a 13 × 13 µm
square cross section and with a high pumping level is considered. Anomalously high dispersion revealed for the
refractive index for the short-wave mode (  > 7) and disappearance of dispersion for the long-wave (  = 3.4)
mode indicate in all probability the emergence of a gap in the electron energy spectrum at the wavelength of
the fundamental lasing mode. In contrast to [1], the entire long-wave part of the spectrum is emitted coherently
at the same frequency and probably without absorption. © 2004 MAIK “Nauka/Interperiodica”.

ñ ñ
We analyze here injection GaAs lasers with a quad-
rilateral cavity with a 13 × 13 µm square cross section,
obtained by chipping along the cleavage planes from
the initial 80-µm-thick plate with a p–n junction, which
was grown by liquid-phase epitaxy. For better visual-
ization, we can imagine that about 30 such lasers can be
accommodated on a cross section of human hair. This
is the smallest known laser in the world.

It is important to note that the optical length of such
a resonator is L < 37 µm, and the photon transit time in
such a resonator is t < 5 × 10–13 s, which is shorter than
the characteristic thermal relaxation time T2 in the
semiconductor at 77 K. This makes it possible to learn
about absolutely new features of operation of injection
lasers.

Figure 1a shows the emission spectrum of such a
laser at the lasing threshold Ith = 0.7 mA. Lasing begins
at the threshold simultaneously for all equidistant axial
modes on the entire long-wave part of the laser ampli-
fication band. The separation ∆λ ≈ 21 Å between the
modes corresponds to the resonator length L = 37 µm
and is defined by the relation

(1)

where

is the effective refractive index taking dispersion into
account (n0 is the refractive index of pure material).
Estimates of the spectrum give the value  = 5.156,
which matches the results obtained by other authors for
various materials [2–4].

It was mentioned in the previous publication [1] that
the effect is preserved for intensities two or three times
higher than the threshold Ith , after which the breakdown

∆λ
λ1λ2

2Lñ
-----------,=

ñ n0 λ dn
dλ
------–=

ñ

1063-7761/04/9902- $26.00 © 20415
occurs as a rule. Neither the thermal nor the optical
breakdown mechanism operates in this case. In recent
years, laser-based optoacoustics is being actively devel-
oped. Photoexcitation of hypersound pulses in semi-
conductors and waveguides is studied extensively by
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various groups of researchers [5–8]. Excess voltage
was detected by the author more than three decades
ago [9, 10] in powerful injection-type cw parametric
quantum oscillators [11]. The possibility of hypersound
generation leading to a gradual degradation of such
lasers at high pumping densities was considered. The
difficulties encountered in assembling ultrasmall lasers
are apparent. We used a holder with a spring-loaded
contact. It is very difficult to arrange the crystal strictly
coaxially. For an area S ≈ 10–6 cm2, a force of 1 gf leads
to pressures of 1000 atm on the crystal. For this reason,
acoustic perturbations emerging during laser operation
above the threshold just expel the crystal from the
spring-loaded holder or crush it.

However, the most successfully assembled crystals
operated at intensities an order of magnitude higher
than Ith .

The spectrum of such a laser with an intensity seven
times higher than Ith is shown in Fig. 1b. The predomi-
nant mode λ = 8662 Å is present in the spectra for all
currents, indicating the absence of heating. At the same
time, the spectra are obviously quite different.

It is hardly appropriate to speak here about uniform
broadening of the amplification band. It was shown
in [12] that if electron transition between energy bands
occur over time periods shorter than the time of interac-
tion with phonons, the kinetic equations for electrons
should be replaced by the kinetic equations for quasi-
particles. The physical meaning corresponding to this
diagram is that direct transitions are saturated and the
processes of emission and absorption of electromag-
netic field quanta occur due to indirect transitions
accompanied with the emission of acoustic phonons.

In the field of an intense electromagnetic wave [13,
14], this leads to the emergence of a new steady state in
which the wave absorption substantially decreases on
account of reverse transitions of electrons under the
action of the field.

Using Fig. 1b and formula (1), we find that the fol-
lowing expression holds for the central mode:

(the error in the measurements of the line is about 5%).
For the short-wave mode, the effective refractive index
abruptly increases to > 7, indicating the intensifica-
tion of dispersion and absorption.

For the long-wave mode,  ≈ 3.4; i.e., the dispersion
in the refractive index disappears completely,

and radiation propagates without losses. In this case,
the entire long-wave radiation in Fig. 1a is strictly

ñ n0 λ dn
dλ
------– 5.15≈=

ñ

ñ

λ dn
dλ
------ 0,=
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phased and coherent and is emitted at the same fre-
quency.

Such an anomalous behavior of dispersion in all
probability indicates the formation of a gap in the elec-
tron energy spectrum at the wavelength of the dominant
mode.

Figure 1c shows the spectrum of a similar laser
made of another weakly doped material. The spectrum
is shifted by almost 100 Å to the short-wave part. It can
be seen that the spectrum is completely identical to that
in Fig. 1b: it contains the same mode and exhibits the
same behavior of dispersion. This indicates the funda-
mental behavior of such lasers.
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Abstract—The effect of diamagnetic impurities on the stability of the homogeneous magnetic state of rhom-
bohedral antiferromagnets with weak ferromagnetism (α-Fe2O3:Ga and FeBO3:Mg) is studied experimentally.
It is shown that the application of an external magnetic field in the basal plane in the crystals under study in a
certain temperature range induces a magnetic superstructure along the hard magnetization axis, which can be
presented in the form of a ripplon phase with the azimuth of the local ferromagnetism vector oscillating about
the direction of the field. The preferred orientation of the discovered modulated structures relative to crystallo-
graphic directions in the basal plane of α-Fe2O3:Ga and FeBO3:Mg is studied, and the dependence of the spatial
period of the superstructure on the applied magnetic field and temperature is analyzed. The magnetic-field-
induced transition of the studied crystals from a homogeneous to an inhomogeneous magnetic state is described
phenomenologically on the basis of the thermodynamic potential with gradient terms. In the discussion of phys-
ical reasons for magnetic order parameter modulation in weak ferromagnetic doped with diamagnetic ions,
preference is given to the mechanism associated with the emergence of uniaxial magnetic centers with a random
distribution of azimuths of easy axes in the basal plane of the crystal in the vicinity of impurities. A model
describing the formation of a modulated magnetic state in α-Fe2O3:Ga and FeBO3:Mg is proposed, according
to which the competition between magnetoanisotropic and Zeeman interactions in the inhomogeneous mag-
netic phase of these crystals leads to periodic deviations in the direction of the local ferromagnetism vector from
the direction of magnetization. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Intense studies of modulated structures with various
order parameters in solid media are associated with the
analysis of the mechanisms of formation of such struc-
tures and with the search for nontraditional phenomena
important for practical applications (e.g., in devices for
data recording, processing and storage). This also
applies, for example, to dielectrics with dipole and qua-
drupole order parameters, in which hysteretic optical
and acoustic effects attract special attention, and to one-
dimensional conductors, in which a pronounced anom-
aly in the electrical conductivity is observed after the
formation of a charge density wave. From this point of
view, the magnets with traditionally studied magnetic
structures are of considerable interest; for this reason,
the main mechanisms leading to modulation of the
magnetic order parameter have been studied compre-
hensively.

It has been established that the main reasons for the
instability of a homogeneous magnetic state of magnet-
ically ordered dielectrics are either exchange interac-
tions of various signs between the nearest and next-to-
nearest atomic neighbors or the Dzyaloshinskii–Moriya
relativistic interaction. The long-period (incommensu-
rate) modulated magnetic structures emerging in this
1063-7761/04/9902- $26.00 © 20417
case have been thoroughly studied both theoretically and
experimentally (see, for example, [1]). In addition, the
presence of a random field may also lead to modulation
of the magnetic order parameter of the medium under
certain conditions. Such a possibility was obviously
indicated was the first time by Imry and Ma [2], who
studied theoretically the instability of a homogeneous
magnetic state of a ferromagnet induced by an insignif-
icant random field, which makes the state with a non-
uniform magnetization advantageous from the energy
point of view. The fact that a random magnetic field
facilitates the formation of long-period magnetic struc-
ture was unexpected. Communication [2] gave rise to a
series of publications devoted to random field effects
with the model medium in the form of an axial Ising
antiferromagnet with random bonds between magneti-
cally active ions. In general, the experimental results
confirmed the theoretical concepts and made it possible
to determine the critical dimensionality below which the
long-range magnetic order is absent in the medium [3],
to establish a peculiar effect of the external magnetic
field on the critical parameters in the vicinity of phase-
transition points [4], and to observe the presence of a
micromagnetic structure in the uniaxial doped antifer-
romagnet MnF2:Zn [3, 5].
004 MAIK “Nauka/Interperiodica”
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The emergence of a heterogeneous magnetic struc-
ture was also predicted for easy-plane antiferromag-
nets. For example, it was proved theoretically [6] that
the conventional domain structure with a uniform anti-
ferromagnetism vector—as well as a structure in which
the antiferromagnetism vector continuously changes its
orientation, remaining in the basal plane—can be real-
ized in an easy-plane antiferromagnet (depending on the
correlation radius of random anisotropic fields) with bulk
or point crystal lattice defects. The magnetic structures
formed in this class of magnetic dielectrics have not been
studied experimentally to our knowledge.

We describe here the results of analysis of the effect
of diamagnetic impurity ions on the magnetic state of
easy-plane antiferromagnets with weak ferromag-
netism as well as the conditions of excitation and exist-
ence of modulated magnetic structures in these crystals.
The observed magnetic superstructures are described
phenomenologically on the basis of the thermodynamic
potential with gradient terms; physical mechanisms of
the formation of such structures are considered.

2. SAMPLES AND MEASURING TECHNIQUE

Weak ferromagnets occupy a special place among
easy-plane antiferromagnets. The existence of the fer-
romagnetic moment in such materials makes it possible
to control their magnetic structure with the help of a
weak magnetic field, which makes it possible in princi-
ple to easily trace the effects associated with the pres-
ence of a random field (associated, for example, with
the random nature of exchange or with local fluctua-
tions in the values of the competing anisotropic interac-
tions responsible for the magnetic state of the medium).
We chose as objects of investigation the rhombohedral
antiferromagnets with weak ferromagnetism (space

group ), viz., hematite α-Fe2O3 and iron borate
FeBO3 doped with diamagnetic impurities to create
crystal lattice defects. We used the magnetooptical
method for visualization of the domain structure as the
experimental technique for studying the magnetic state
of these weak ferromagnets.

The choice of the objects and method of investigation
was mainly dictated by the following circumstances: the
magnetic, optical, and magnetooptical properties of
hematite and iron borate are well known [7] and the
behavior of their domain structures in an external mag-
netic field has been intensely studied [8–10]. This
enables us to thoroughly analyze the difference in the
magnetic response of nominally pure (undoped) crys-
tals and crystals diluted with a diamagnetic impurity. In
addition, weak ferromagnets with a high Néel tempera-
ture TN are promising media as an elemental basis of
various rf devices; the stringent technological criteria
of homogeneity of macroscopic magnetic parameters
of the medium existing in this field necessitate deter-
mining the possible reasons for the magnetic inhomo-
geneity of the medium.

D3d
6

JOURNAL OF EXPERIMENTAL
During the synthesis of hematite and iron borate,
gallium and manganese oxides were added, respec-
tively, to the furnace charge in an amount constituting
about 0.5% by weight of iron oxide. Synthesized
FeBO3:Mg crystals were in the form of 3 × 3 mm2

plane-parallel plates 50–60 µm in thickness. The prin-
cipal symmetry axis of the crystal (C3 axis) coincided
with the normal to the developed plane of the plate. The
crystal surface had a high optical quality and was not
subjected to any additional treatment. In the case of
α-Fe2O3:Ga single crystals, 200–300-µm thick plates
were cut so that the C3 axis coincided with the normal
to the sample plane. The developed surfaces of the
plates were polished with diamond pastes to obtain an
optical quality. For our experiments, we chose crystals
with a shape close to a regular hexagon in the basal
plane. The samples were oriented in the basal plane (by
determining the direction of the C2 axis) from the natu-
ral faceting of the synthesized crystals. The samples
were annealed in air to remove mechanical stresses and
obtain a more uniform distribution of impurity over
volume. Diamagnetic measurements proved that dia-
magnetic impurities virtually did not change the Néel
temperature of the synthesized samples as compared to
undoped α-Fe2O3 (TN ≈ 950 K) and FeBO3 (TN ≈
350 K), while doping of hematite with gallium ions
shifted its Morin temperature to below the boiling point
of liquid nitrogen.

Domain structures were observed in α-Fe2O3:Ga
and FeBO3:Mg through a polarization microscope
equipped with an image converter and a TV camera
interfaced with a computer. Experiments were made in
the range of the maximal optical transparency of hema-
tite and iron borate (at a wavelength of λ ≈ 1 and
0.5 µm, respectively) in transmitted light with a normal
incidence on the sample surface in the crossed geome-
try of the axes in the polarizer–analyzer system.

The external magnetic field used for studying the
evolution of domain structures of the samples was pro-
duced by two pairs of Helmholtz coils and was applied
in the basal plane of the crystals. The magnetization
system enabled us to orient the field vector H along any
direction in the basal plane of the sample for |H| =
const. The samples were placed in an optical cryostat
that made it possible to carry out measurements in the
temperature range 80–290 K. In all experiments, the
sample plane was oriented at right angles to the mag-
netic field of the Earth.

When the spatial distribution of the magnetic order
parameter is studied in an easy-plane weak ferromagnet
using the magnetooptical method, it becomes necessary
to establish the relation between the intensity I of light
transmitted through the polarizer–sample–analyzer
system and the orientation of the ferromagnetism vec-
tor m (or antiferromagnetism vector l) in the basal plane
of the crystal. This can be done most conveniently from
an analysis of the dependence of intensity I on the orien-
tation of the external magnetic field applied in the plane
 AND THEORETICAL PHYSICS      Vol. 99      No. 2      2004
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(a) (b)

(d)(c)

0.2 mm

Fig. 1. Images of the FeBO3:Mg sample obtained in polarized light for different values of magnetic field H: (a) 0, (b) 4.5 Oe,
(c) 5 Oe, and (d) 10 Oe (T = 80 K, field H is perpendicular to the C2 axis).
of the sample. The magnitude of the applied magnetic
field must ensure the homogeneous (monodomain)
magnetic state of the samples; i.e., the condition m || H
must be satisfied. It was found from the measurement
of the field dependences of the magnetooptical signal I
that the latter condition was satisfied for H > 30 Oe.

Considering that the main magnetooptical effect in
iron borate and hematite is the linear magnetic dichro-
ism [11] and linear magnetic birefringence [8, 12],
respectively, in the spectral range with the maximal
optical transparency for light propagating along the
optical axis (C3), in the crossed geometry of the polar-
izer and analyzer transmission axes, the light intensity
at the exit of the polarizer–sample–analyzer system in
the case of FeBO3:Mg can be represented in the form

(1)

in the case of a α-Fe2O3:Ga sample, the corresponding
expression has the form [12]

(2)

where I0 is the intensity of incident light, Ψ is the azi-
muth of the transmission axis of the polarizer relative to
the x axis of the laboratory system of coordinates (in
which the z axis is parallel to C3), ϕ is the azimuth of

I ϕ( ) I0S 2 ϕ Ψ–( );sin≈

I ϕ( ) I0P 1 4 ϕ Ψ+( )cos–[ ] ,≈
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the ferromagnetism vector relative to the same axis in
the plane perpendicular to the direction of light propa-
gation (we assume that m(Z) = const in this case), S is
the magnetooptical coefficient characterizing linear
magnetic dichroism, and P is the linear magnetic bire-
fringence (Cotton–Mouton effect).

The results of our measurements proved that the
light intensity I varies with the orientation of vector H
(H > 30 Oe) in the basal plane of the crystal samples
virtually in accordance with formulas (1) and 2 (the
I(ϕ) dependence for α-Fe2O3:Ga is similar to that
in [13]).

Thus, an analysis of the local characteristic of lumi-
nous flux at the sample exit based on formulas (1) and
(2) gives the idea of spatial variations of the magnetic
order parameter in FeBO3:Mg and α-Fe2O3:Ga if we
assume that angle ϕ is a function of spatial coordinates.

3. EXPERIMENTAL RESULTS

To study the magnetic state of FeBO3:Mg and
α-Fe2O3:Ga crystals in the course of magnetization, we
visualized the evolution of their domain structures. In
the demagnetized state, the samples had a domain
structure typical of iron borate and hematite crystals
(see, for example, [8–10]) with domain walls orienta-
SICS      Vol. 99      No. 2      2004
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(a) (b)

(d)(c)

120 µm

Fig. 2. Images of the α-Fe2O3:Ga sample obtained in polarized light at T = 290 K in fields H = 0 (a) and 7 Oe (b–d) (the direction
of vector H in each frame is perpendicular to one of the C2 axes).
tion in directions close to C2 axes (Figs. 1a and 2a show
the images of the crystal samples obtained in polarized
light for H = 0). The process of technical magnetization
of FeBO3:Mg and α-Fe2O3:Ga samples was traditional:
the area of domains in which vector m forms an acute
angle with vector H increased with the field at the
expense of domains with the opposite orientation of m
until the crystal passed to the monodomain (homoge-
neous) state. However, in a certain temperature range,
the application of a magnetic field in the plane of the
sample in directions perpendicular to C2 axes (i.e.,
along hard axes of intraplanar crystallographic anisot-
ropy [8–10]) first imparts a monodomain structure to
the crystals (Fig. 1b). Upon a further increase in the
field, the domain image acquires fringes with blurred
boundaries (Figs. 1c, d and 2b–d). It was found that the
observed system of fringes with various magnetoopti-
cal contrast in α-Fe2O3:Ga appeared in the field interval
6 Oe < H < 16 Oe and abruptly disappeared as the tem-
perature is lowered from room temperature to Tk ≈
260 K. In FeBO3:Mg, the system of fringes existed
JOURNAL OF EXPERIMENTAL 
below Tk ≈ 135 K in a certain field interval depending
on T and visually disappeared when the magnetooptical
contrast between bright and dark fringes was gradually
reduced.1 It should be noted that domain structures
observed in both crystals for H = 0 in the temperature
range where system of fringes exists are virtually inde-
pendent of T.

Figure 3 shows the experimentally obtained dia-
gram containing the regions of observation of a quasip-
eriodic system of fringes with different magnetooptical
contrasts as a function of the applied field and its direc-
tion in the basal plane of the FeBO3:Mg sample (for
α-Fe2O3:Ga, the directional diagram for the emergence
of fringes is analogous, the only difference being the

1 Analogous experiments performed on nominally pure (undoped)
crystals of hematite and iron borate showed that, under the condi-
tions of technical saturation of magnetization (H > 5 Oe), manip-
ulations with the magnitude and direction of the external mag-
netic field did not lead to the formation of a periodic modulation
in the contrast of the images of these crystals obtained in polar-
ized light.
AND THEORETICAL PHYSICS      Vol. 99      No. 2      2004
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ranges of fields and temperatures in which the diagram
is realized [14]). Hatched regions of the diagram corre-
spond to field values and azimuth for which the modu-
lation of the sample image contrast is observed in polar-
ized light. The direction of hatching corresponds to the
direction of fringes with various magnetooptical con-
trasts.

It was found that the mean spatial period d of the
system of fringes formed in the sample image depends
on the magnitude of the applied field and (for
FeBO3:Mg) on temperature. Figures 4 and 5 show the
dependences of the period d of the system of fringes
observed for FeBO3:Mg on the temperature and the
magnetic field applied along the normal to its wave-
front. The variation of d as a function of H and T occurs
jumpwise due to a change in the number of fringes per
unit length (this is shown by steps in Figs. 4 and 5). It
should be noted that, in addition of this pinning effect,
the field dependence of the period of the system of
fringes displays hysteresis in the values of d: with
decreasing H, the mean period of the system of fringes
changes to a lesser extent than upon an increase in the
field from zero (the d(H) dependence obtained for
α-Fe2O3:Ga in [14] resembles qualitatively the depen-
dence in Fig. 5).

Let us consider physical reasons for the emergence
of a system of fringes with various magnetooptical con-
trast, which are observed in FeBO3:Mg and
α-Fe2O3:Ga in polarized light. These fringes may be
(i) the interference fringes appearing as a result of
superposition of the Faraday effect and natural birefrin-
gence in Bloch domain walls separating domains over
the sample thickness [15, 16]; (ii) the images of
domains with Néel-type domain walls inclined to the
basal plane [8]; (iii) the image of strip domain structure;
and (iv) the fringes may reflect the presence of a spa-
tially modulated (inhomogeneous) magnetic state.

It follows from the results described in [15, 16] that
interference fringes on the surface of a FeBO3 crystal
are observed only for quite large angles of incidence
(about 45°) of light on the sample surface and disappear
when light propagates along the C3 axis (i.e., in the
geometry used in our experiments). In addition, no sys-
tem of fringes similar to those shown in Figs. 1 and 2
emerged under the same conditions of magnetization in
nominally pure crystals of hematite and iron borate.

The presence of Néel domain walls inclined to the
basal plane of the crystals is visualized as fringes with
blurred boundaries [8]. However, when the sample is
rotated around the axis lying in the basal plane along
the direction of the fringes, the areas of bright and dark
fringes must change (due to a change in the projection
of domain walls onto the plane of the sample), which is
not observed in experiments.

As regards the possibility of existence of a strip
structure, we must assume that impurities in
α-Fe2O3:Ga and FeBO3:Mg considerably alter the hexa-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
gonal anisotropy constant, ensuring the emergence of
vector m from the basal plane (in this case, the sample
must be split into strip domains to decrease the magne-
tostatic energy). For this purpose, the sixth-order
anisotropy constant in doped crystals (in contrast to
nominally pure crystals) must have an appreciable
value as compared to the second-order anisotropy con-
stant, which is hardly probable since the crystals are
doped with diamagnetic ions. 

H, Oe

EMA

60°

20

10

20

10

60° H, Oe

Fig. 3. Diagram for the existence of structure of fringes with
different magnetooptical contrasts in FeBO3:Mg on the
plane specified by the azimuth of vector H and the applied
field (T = 80 K). Hatched regions correspond to the values
of the field and its azimuth, for which the emergence of the
structure is observed; the orientation of hatching corre-
sponds to the orientation of the wavefronts of the structure.
The easy magnetization axis (EMA) coincides with the
direction of one of the C2 axes.

150

100

50
80 100 120 T, K

d, µm

Fig. 4. Temperature dependence of the spatial period of the
system of fringes observed in FeBO3:Mg during sample
heating (solid line) and cooling (dashed line) (H = 6 Oe,
field H is perpendicular to the C2 axis).
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Thus, it remains for us to assume that weak ferro-
magnets in fields H exceeding the saturation field
exhibit a transition from a state with uniform magneti-
zation to a modulated magnetic state. The absence of
sharp boundaries in the image of fringes with various
magnetooptical contrast indicates that, unlike the ordi-
nary domain structure for which the azimuth of the
magnetization vector is constant within an individual
domain, the ferromagnetism (antiferromagnetism) vec-
tor in the magnetic states realized in our experiments
changes its azimuth continuously and smoothly along
the direction of magnetization. Computer digitization
of the images of the observed systems of fringes

0 0.5 1.0
x, mm

1

2

~~~~

Fig. 6. Dependence of the magnetooptical signal I on the
spatial coordinate along the direction of the wave vector of
a modulated magnetic structure, observed in α-Fe2O3:Ga
(1) and FeBO3:Mg (2).

150

100

50
5 10 15

H

H, Oe

d, µm

H

Fig. 5. Field dependence of the spatial period of the system
of fringes with different magnetooptical contrasts, observed
in FeBO3:Mg at T = 80 K.
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showed that modulation of intensity I along the direc-
tion perpendicular to the direction of the fringes is cor-
rectly described by a harmonic function of a coordinate
(the I(x) dependences obtained in this way with field H
parallel to the x axis and perpendicular to the C2 axis)
for α-Fe2O3:Ga and FeBO3:Mg are shown in Fig. 6). If
we assume that vector m in modulated magnetic struc-
tures does not emerge from the basal plane of the crys-
tal, we can determine local variations of its azimuth in
the observed system of fringes using Eqs. (1) and (2).
This can be done experimentally by rotating the polar-
ization plane of light incident on the sample relative to
the direction of the fringes in the structure and deter-
mining the position of the polarizer, for which the
images of bright and dark fringes are inverted. Accord-
ing to the results of our measurements, the latter effect
was obtained for α-Fe2O3:Ga in the field H = 6 Oe by
rotating the polarizer through an angle of about 30° rel-
ative to the position in which the fringes shown in
Figs. 2b–d are observed. To within the experimental
error, the magnitude of the angle is independent of T in
the entire temperature range of modulated magnetic
structures. In accordance with expression (2), this
means that the amplitude ϕA of modulation of the direc-
tion of vector m in such structures in α-Fe2O3:Ga for
H = 6 Oe amounts approximately to 15° and is temper-
ature-independent in the region from Tk to T = 290 K.
Analogously, it was found that the maximal amplitude
ϕA of modulation of the azimuth of vector m in the
structure for FeBO3:Mg at T = 80 K amounts to approx-
imately 12° and decreases upon heating (Fig. 7). The
field dependences of angle ϕA for both investigated
crystals are shown in Fig. 7.2 

On the basis of the obtained results, the modulated
magnetic state of α-Fe2O3:Ga and FeBO3:Mg can be
visualized in the form of a 1D dependence of azimuthal
angle ϕ characterizing the orientation of vector m in the
basal plane on the spatial coordinate along the direction
of magnetization (field H is perpendicular to the C2

axis). The components of vectors m and l in modulated
magnetic structures in a coordinate system in which the
z axis coincides with the direction of light propagation
and the x axis coincides with the direction of the
applied field can be defined as

(3)

where k is the wave vector of the structure.

2 Judging from the obtained dependences ϕA(T), the transition
from a homogeneous to a modulated magnetic state is a first-
order transition in α-Fe2O3:Ga and a second-order transition in
FeBO3:Mg; the transition in modulated magnetic structures
occurs above the boundary temperature Tk in the former case and
below this temperature in the latter case.

lx l ϕA ky, mx m ,≈coscos=

ly l , my≈ m ϕA kx,coscos=
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According to visual perception and the behavior in
a magnetic field, the modulated structures studied here
resemble the magnetic superstructure formed under the
action of light in iron borate doped with nickel ions [17].
It follows from the theory of a photoinduced modulated
magnetic structure proposed in [17] that the exchange
interaction between the complexes formed by the
matrix and impurity ions in the FeBO3:Ni crystal leads
to excitation of the structure; in the absence of photoex-
citation, this excitation is small and is enhanced under
the action of light. This theory permits in principle the
emergence of a modulated magnetic structure even
without the participation of light; however, illumination
must affect the parameters of the modulated magnetic
state formed in the crystal. Since the effect of light on
the sample always took place in our experiments, we
studied the effect of illumination on the magnetic struc-
ture of α-Fe2O3:Ga and FeBO3:Mg samples. In our
experiments, we varied the power and spectral compo-
sition of luminous flux incident on the crystals: intro-
ducing one-by-one light filters into the optical channel
of the microscope, we cut off various parts of the probe
light spectrum (the source of radiation was a 100-W
incandescent lamp). However, the variation of the lumi-
nous flux density and light spectrum affected neither
the excitation conditions nor the period and direction of
the system of fringes; the motion of modulated mag-
netic structures of the investigated crystals as a whole
was not observed either (in contrast to that observed in
FeBO3:Ni). Scanning of the sample surface by a laser
beam (λ = 0.63 µm, a power on the order of 10 mW)
focused into a spot with a diameter of ~20 µm also did
not noticeably affect such structures. This means that
the excitation of modulation of the azimuth of vector m
in α-Fe2O3:Ga and FeBO3:Mg occurs without the par-
ticipation of light; in other words, modulated magnetic
structures appear in our case for reasons that are not
associated with local variations of the exchange inter-
action, caused by the presence of impurity ions in the
composition of the crystals.

4. DISCUSSION

To describe the modulated magnetic structure
formed in the crystals, we consider the theory of transi-
tion of a magnetically ordered medium from a homoge-
neous to an inhomogeneous magnetic state under the
action of a magnetic field [18, 19]. On the basis of
experimental facts, we assume that the state in which
the local ferromagnetism vector m is deflected from the
direction of H through a certain angle may be stable in
an external magnetic field. Since the basal plane of the
crystals in question has three directions near which a
modulated magnetic structure is formed, we direct the
external field H for definiteness along one of such
directions, which will be treated as the x axis. Follow-
ing [18, 19], we assume that the contributions to the
thermodynamic potential density of the crystal from the
weakly ferromagnetic moment are insignificant and the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
potential is determined only by the antiferromagnetism
vector components. Then, choosing a small angle β as
a formal order parameter characterizing the deviation
of the local antiferromagnetism vector l from the y axis
(the y axis is parallel to the C2 axis and the z axis is par-
allel to the C3 axis), we represent the thermodynamic
potential of the crystal, following [18, 19], in the form
of the following invariant expansion into a power series
in the order parameter:

(4)

Here, A, B, α, γ, and µ are parameters independent of H
and the primes on β indicate the corresponding deriva-
tive with respect to the argument.

The external magnetic field is taken into account in
expression (4) by two terms allowed by symmetry. The
first term, mhβ = mMHβ, where M is the sublattice
moment, is the Zeeman contribution to the crystal
energy; the second term, µlhβ'2/2, is invariant to space
and time inversion. Functional Φ constructed in this
way differs from that used in [19] only in the presence
of this additional term, which takes into account the
magnetic inhomogeneity of the medium (the presence
of a random field) and renormalizes the coefficient of
the square of the first derivative, converting it into a
function of H.

A phase transition from the homogeneous magnetic
state to a modulated state occurs when the coefficient of
the squared derivative in formula (4) becomes smaller
than zero. In other words, for µ > 0, in a field h > α/µl

Φ β( ) 1
2
---Aβ2–

1
4
---Bβ4 1

2
---αβ'2+ +∫=

+
1
4
---γβ''2 mhβ 1

2
---µlhβ'2 …+ + + y.d

15°

5 10 15 20

H, Oe

T, K

1

2

80 100 120

10°

5°

10°

5°

ϕA

ϕA

Fig. 7. Field dependence of the amplitude of modulation of
the azimuth of the local ferromagnetism vector in a modu-
lated magnetic structure for α-Fe2O3:Ga (1) at T = 290 K
and FeBO3:Mg (2) at T = 80 K. The inset shows the temper-
ature dependence of the amplitude of modulation of the azi-
muth of the local ferromagnetism vector in a modulated
magnetic structure observed in FeBO3:Mg (H = 6 Oe).
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a modulated magnetic state of the crystal will be
induced; in this case, functional (4) is minimized by a
function of the form [19]

Thus, in accordance with the model considered
here, the application of an external magnetic field in the
basal plane of a rhombohedral weak ferromagnet along
its hard magnetization axis in a field with the critical
value H0 = α/Mµl induces a phase transition from the
homogeneous magnetic state to a modulated state. The
axis along which the modulation emerges in the crystal
is oriented along field H. The magnetic superstructure
can be presented in the form of a ripplon phase in which
the azimuth of the local antiferromagnetism (ferromag-
netism) vector experiences oscillations with a period
d = 2π/k against the background of a constant deflec-
tion from the given axis. This agrees in principle with
the results of measurements (see relations (3)) of the
spatial variation of the azimuth of vector m in the
observed structure if we set η = ϕA + π/2 (deviation
constant β0 was not observed experimentally probably
because of the error in measuring angle ϕA , which
amounted to ~1°).

We can prove that in fields close to the critical value,
the characteristics of the emerging inhomogeneous
magnetic state behaves as follows:

Let us consider the physical meaning of the relations
derived on the basis of potential (4). Since the forma-
tion of a modulated magnetic state was not observed in
nominally pure hematite and iron borate under the same
conditions of magnetization, this indicates a direct
influence of the impurity on the process of rotation of
the sublattice moments in crystals doped with diamag-
netic ions during their magnetization in the basal plane.
This suggests the presence of anisotropic magnetic cen-
ters in α-Fe2O3:Ga and FeBO3:Mg in the vicinity of
impurity ions; the magnetic moments Mc of these cen-
ters are deflected from the directions specified by the
intraplanar hexagonal anisotropy of the matrix. In par-
ticular, the role of such centers can be played by com-
plexes containing a diamagnetic impurity ion and iron
ions located in the coordination sphere closest to it. We
can expect that the substitution of diamagnetic impuri-
ties for matrix iron ions does not lead to crystallo-

β y( ) β0 η ky.cos+≈

d 2π 2γ
|α µlh+
----------------------,=

β0
4γh

M α µ lh+( )2
-------------------------------,=

η2 1
3B
------- A

α µ lh+
4γ

------------------ 48γ2h2B

M2 α µ lh+( )4
---------------------------------–+ .=
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graphic symmetry of such magnetic centers that differ
from the hexagonal symmetry; however, local distor-
tions of the crystal lattice associated with the difference
in the sizes of the main matrix iron ion and magnesium
and gallium ions cause considerable changes in the
intraplanar anisotropy constant in a certain region in the
crystal near impurities. As a result of the presence of
this random anisotropy, the orientation of vector Mc of
an individual center in the general case does not coin-
cide with the direction of the resultant spontaneous
magnetic moment of the entire crystal. Taking into
account the fact that the impurity concentration is small
and, hence, the magnetic moments of the centers are not
ordered cooperatively, we can assume that vectors Mc
are oriented along the easy axes of the centers (along
three crystallographically equivalent directions in
accordance with the chosen model of a center), which
are fixed relative to the symmetry axes of the matrix,
with statistically equal probabilities. Obviously, after
the application of an external magnetic field, the equi-
librium magnetic structure of the crystal is determined
by the result of the competition between the contribu-
tions from random anisotropy, crystallographic anisot-
ropy, and field H to the thermodynamic potential. A
similar situation was analyzed in [20] for polycrystal-
line permalloy films, where the role of random anisot-
ropy was played by crystallographic anisotropy in crys-
tallites oriented at random relative to one another, while
the orienting factors were the induced anisotropy (tex-
ture) and an external magnetic field. Using the results
obtained in [20], we can write the expression for the
modulation period in the form

(5)

where J is the exchange constant, Ms is the spontaneous
magnetization, and K is the intraplanar hexagonal
anisotropy constant (in [20], the constant of induced
uniaxial anisotropy was taken for K). It follows hence
that a modulated magnetic state can exist in the field
region

(6)

It is important to note that relations (5) and (6) coincide
with the expressions for d and H0 derived above from
analysis of potential (4) if we set J = γ, 2K = –α, and
Ms = –µlM.

The structure of formula (5) shows that first, for H ≥
H0, dependence d(H) decreases sharply; then, for H >
2H0, the modulation period changes insignificantly,
which correlates with the experimental data presented
in Fig. 5 (for H0, we assume the minimal field for which
a modulated magnetic state is formed). It should be

d 2π 2J
MsH 2K–
-------------------------,=

H H0> 2K /Ms.=
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noted that the periods d calculated by formula (5) using
the experimentally obtained values of H0, as well as the
known values of Ms and constant J for both crystals,
agree in order of magnitude with the experimentally
measured periods (the results of calculation for hema-
tite are given in [13]).

It follows from relation (5) that the temperature
dependence of the modulation period is determined by
the temperature variation of constant K.3 We are not
aware of the form of dependences K(T) in the crystals
studied here. However, if we assume that these depen-
dences are close to the corresponding dependences of
the hexagonal anisotropy constant in nominally pure
iron borate (where the value of K decreases with
increasing T [21]) and hematite (K ≈ const for 260 K <
T < 300 K [22]), the period of the structure, in accor-
dance with relation (5), should remain unchanged in the
entire temperature range of its existence in α-Fe2O3:Ga,
while the value of d in FeBO3:Mg should decrease as
T  Tk , which corresponds to the experimental
results.

The assumption concerning the presence of uniaxial
magnetic centers in the crystals studied here makes it
possible to explain the stepwise variation of the spatial
period of a modulated magnetic structure as a function
of magnetic field and temperature (this concerns only
FeBO3:Mg): upon a variation of H and/or T, the number
of centers for which the direction of vector Mc differs
from the direction of H changes discretely in view of
discreteness of the azimuths of the easy axes of the cen-
ters. This in turn leads to stepwise variation of the ratio
between the energies of the competing interactions
responsible for the equilibrium magnetic state of the
crystal. The difference in the behavior of the depen-
dences d(H) and d(T) observed in FeBO3:Mg (see Sec-
tion 3) is determined by the difference in the corre-
sponding dependences of concentrations of centers
with Mc || H. At T = const, the difference in the number
of centers with Mc || H for the direct (upon an increase
in the field from zero) and reverse course of magnetiza-
tion causes a noticeable hysteresis in the dependence
d(H) (see Fig. 5). At the same time, the variation of d as
a function of T is determined by the temperature depen-
dence of the anisotropy constant specifying the direc-
tion of vector Mc of a center. As a consequence, the val-
ues of d measured during heating and cooling of the
sample do not differ substantially (the discrepancies in
the values of temperature corresponding to jumps in the
value of d observed in Fig. 4 are apparently due to error
in measuring T, which emerges when the regime of
heating is replaced by cooling due to the inertia of the

3 According to the results of measurements, in the temperature
range of the modulated magnetic state, I/I0 = const for both crys-
tals under investigation to within the experimental error; conse-
quently, dependence Ms(T) in relation (5) can be disregarded.
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process of stabilization of thermodynamic equilibrium
in the crystal).

Thus, the proposed model for the emergence of an
inhomogeneous magnetic state makes it possible to
explain, at least qualitatively, the experimentally
observed behavior of the period of a modulated mag-
netic structure in α-Fe2O3:Ga and FeBO3:Mg depend-
ing on temperature and the applied magnetic field
(except at boundary values of temperature Tk). Accord-
ing to Hoffmann [20], an inhomogeneous magnetic
state of the medium emerges for Ka > K @ KaN−1/2,
where N is the number of anisotropic magnetic centers
per unit volume and Ka is the anisotropy constant defin-
ing the direction of the easy axis of the center. This sug-
gests that the temperature range where modulated mag-
netic structures exist in the crystals considered here is
determined by the relation between the competing
magnetoanisotropic interactions, which depends on T.

5. CONCLUSIONS

It has been found that magnetic inhomogeneities
associated with quasiperiodic deviations of the ferro-
magnetism vector from the direction of magnetization
appear in easy-plane weak ferromagnets doped with
diamagnetic ions in a magnetic field exceeding the sat-
uration field for nominally pure crystals. The mecha-
nism of formation of a modulated magnetic state in this
class of magnets presumes the emergence of aniso-
tropic magnetic centers with a random distribution of
azimuths of easy axes in the basal plane of the crystal
in the vicinity of diamagnetic impurities. The direction
of the induced magnetic superstructure, as well as the
spatial period, varies depending on the orientation and
magnitude of the external magnetic field; this may be of
interest for possible practical applications of this effect.
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Abstract—The generalized moment method is applied to average the Ginzburg–Landau equation with quintic
nonlinearity in the neighborhood of a soliton solution to the nonlinear Schrödinger equation. A qualitative anal-
ysis of the resulting dynamical system is presented. New soliton solutions bifurcating from a known exact soli-
ton solution are obtained. The results of the qualitative analysis are compared with those obtained by direct
numerical solution of the Ginzburg–Landau equation. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Equations similar to the Ginzburg–Landau equation

, (1)

where t and x are independent variables, ψ(x, t) is a
complex-valued function, σ is a real parameter, and
N[|ψ|] is a polynomial operator of the form c1 + c2|ψ|2 +
c3|ψ|4 (c1, c2, and c3 are complex parameters), arise in
analyses of various phenomena in nonlinear optics,
plasma physics, superconductivity theory, and fluid
mechanics. When σ = 1/2 and N = |ψ|2, the Ginzburg–
Landau equation (GLE) reduces to the nonlinear
Schrödinger (NLS) equation with cubic nonlinearity.
The latter is a completely integrable equation having
soliton particular solutions.

To date, several families of analytical solutions to
GLE (1) have been found (e.g., see [1, 2]). They include
families of localized solutions with fixed and arbitrary
amplitudes, also called dissipative solitons. Further-
more, some soliton-like numerical solutions to GLE
have been reported that fall outside the aforementioned
classes and have very special properties (e.g., see [3]).
These solutions are special in that they have certain
periodic characteristics, such as width, amplitude, or
center-of-mass location. One would naturally try to
standardize the procedure of finding them by perform-
ing a qualitative analysis of some dynamical system
obtained by averaging the original equation. All averag-
ing methods are both advantageous and disadvanta-
geous in that they reduce the dynamics determined by
the initial distribution to the dynamics of a limited num-
ber of parameters of the initial condition. In this paper,
we make use of the generalized moment method [4],
which is undoubtedly advantageous in that it can be
used to perform a separate analysis of the dynamics of
both amplitude and width of a soliton solution to the
unperturbed problem.

iψt σψxx N ψ[ ]ψ+ + 0=
1063-7761/04/9902- $26.00 © 200427
2. BASIC EQUATIONS

The GLE with quintic nonlinearity used in nonlinear
optics has the form

(2)

where δ, β, e, µ, and ν are real constants (which may
not be small) and ψ is a complex field. In the special
case of an optical fiber, these quantities are interpreted
as follows: ψ is the complex envelope of an electromag-
netic field; the parameters δ, e, and µ characterize
pumping or energy dissipation (depending on their
signs); β is a filtering coefficient; and ν is the coefficient
of a quadratic correction to a nonlinear refractive index.
The parameter σ characterizes second-order dispersion
(σ = +1/2 and σ = –1/2 correspond to anomalous and
normal dispersion, respectively), and η = 1.

We rewrite the original equation as

(3)

where

If the right-hand side is zero, then we have the conven-
tional nonlinear Schrödinger equation with cubic non-
linearity. The first two integrals of the NLS equation
(energy and momentum) are

(4)

Following [4], we define the first two moments of ψ:

(5)

iψt σψxx η ψ 2ψ+ + iδψ ie ψ 2ψ+=

+ iβψxx iµ ψ 4ψ ν ψ 4ψ,–+

iψt σψxx η ψ 2ψ+ + R ψ[ ] ,=

R iδψ ie ψ 2ψ iβψxx iµ ψ 4ψ ν ψ 4ψ.–+ + +=

I1 ψ 2 x, I2d

∞–

∞

∫ 1
2
--- ψψx* ψ*ψx–( ) x.d

∞–

∞

∫= =

D1 x ψ 2 x, D2d

∞–

∞

∫ x xc–( )2 ψ 2 x,d

∞–

∞

∫= =
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where xc is the center-of-mass coordinate of ψ:

The evolution of these four characteristics as functions
of t is described by the equations

(6)

where

System (6) is supplemented with the identity

(7)

Equations (6) and (7) can be used to derive the equa-
tions of evolution for an arbitrary set of five parameters
of the exact solution to the NLS equation.

As a trial solution to the NLS equation, we take the
soliton solution

(8)

where A is the soliton amplitude, B is the soliton width,
xc is the center-of-mass coordinate, and C is the wave-
number. When R ≡ 0, the parameter A in (8) has an arbi-
trary value, and the other two are related to it as fol-
lows:

For the stationary NLS soliton with center of mass
lying on the axis passing through the origin, it holds
that C = 0 and xc = 0.

xc D1/I1.=

dI1

dt
------- i ψR* ψ*R–( ) x,d

∞–

∞

∫=

dI2

dt
------- i ψxR* ψx*R+( ) x,d

∞–

∞

∫–=

dD1

dt
---------- 2iσI2 i x ψR* ψ*R–( ) x,d

∞–

∞

∫–=

dD2

dt
---------- 2iσM1 i x xc–( )2 ψR* ψ*R–( ) x,d

∞–

∞

∫––=

M1 x xc–( ) ψ*ψx ψψx*–( ) x.d

∞–

∞

∫=

ψψt* ψtψ*–( ) xd

∞–

∞

∫ 2i σ ψx
2 µ ψ 4–( ) xd

∞–

∞

∫=

+ i ψR* ψ*R+( ) x.d

∞–

∞

∫

ψ x t,( ) = 
A

B 1– x xc–( )[ ]cosh
------------------------------------------ i ϕ t( ) C x xc–( )+[ ] ,exp

A B 1– , ϕ t( ) A2t/2.= =
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For distribution (8),

(9)

If the parameters are continuous functions of t in the
neighborhood of the solution, then it follows from (9)
that

(10)

We find , , , and  by direct calculation of the
integrals in (6). For ψ(x, t) given by (8), the results are

Substituting these expressions into (10), we obtain the
following equations for the parameters A, B, C, and xc
of function (8):

(11)

I1 2A2B, I2 –2iA2BC,==

D1 2xcA2B, D2
1
6
---π2A2B3,= =

M1 0.=

C' I2'
i

2A2B
------------- I1'

C

2A2B
-------------,–=

xc' D1'
1

2A2B
------------- I1'

xc

2A2B
-------------,–=

A' I1'
3

8AB
----------- D2'

3

2π2AB3
-------------------,–=

B' D2'
3

π2A2B2
------------------ I1'

1

4A2
---------.–=

I1' I2' D1' D2'

I1' 4B δA2 2
3
---eA4 8

15
------µA6+ + 

  4βA2 1
3B
------- BC2+ 

  ,–=

I2' 4iA2B Cδ 1

B2
-----βC– βC3– 

 –=

+
2
3
---eCA2 8

15
------µCA4 π2βCB2–+ ,

D1' A2 4σBC 4δxcB
4βxc

3B
-----------– 4βxcBC2–+ 

 =

+
8
3
---excA4B

32
15
------µxcA6B,+

D2'
1
3
---A2B3 δπ2 2e

1
3
---π2 2– 

  A2+=

+ 2µA4 4
15
------π2 2– 

  β 1

B2
----- 1

3
---π2 8– 

 – βπ2C2– .

A' –Aβ 1

3B2
--------- 4

π2B2
----------- C2+ + 

  Aδ+=

+ 2eA3 1
3
--- 1

π2
-----+ 

  2µA5 4
15
------ 1

π2
-----+ 

  ,+
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(12)

(13)

(14)

The equation for the phase function ϕ is used to
obtain a closed system for the five parameters of the
perturbed equation. It is derived separately from iden-
tity (7):

(15)

Equations (11)–(14) do not contain ϕ. Therefore, the
system can be analyzed without taking into account
Eq. (15), and then this equation can be solved sepa-
rately. Note also that the parameter ν is not contained in
the first four equations. For this reason, the numerical
analysis of the original equation presented below was
performed for a zero value of this parameter.

3. ANALYSIS OF THE DYNAMICAL SYSTEM

The equilibria of system (11)–(14) are obtained by
setting the right-hand sides of these equations to zero
simultaneously. It follows directly from Eqs. (13) and
(14) that the equilibria exist only if C = 0 and xc = const.
This implies that only symmetry-preserving stationary
soliton-like solutions to GLE can exist in the neighbor-
hood of the solution to the NLS equation for trial func-
tion (8). Thus, it is sufficient to analyze only the equa-
tions for the soliton amplitude A and width B:

(16)

(17)

To simplify the polynomials on the right-hand sides of
these equations, we multiply Eq. (16) by 2A and
Eq. (17) by 2B. Introducing the new variables u = A2

and v  = B2, we obtain

(18)

(19)

B'
4

π2
-----B 2β 1

B2
----- eA2– µA4– 

  ,=

C'
4
3
--- 1

B2
-----βC,–=

xc' 2σC.=

ϕ' σC2 σ 1

3B2
---------–

2
3
---η A2 8

15
------νA4 βC

B
----.–++=

A' A
1

B2
-----β 1

3
--- 4

π2
-----+ 

 – Aδ+=

+ 2eA3 1
3
--- 1

π2
-----+ 

  2µA5 4
15
------ 1

π2
-----+ 

  ,+

B'
4

π2
-----B 2β 1

B2
----- eA2– µA4– 

  .=

u' 2βa0
u
v
----– 2u δ 2ea1u µa2u2+ +( ),+=

v ' 4βb 2buv e µu+( ),–=
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where

3.1. Unfiltered Problem (β = 0) 

When β = 0, the dynamical system reduces to

(20)

(21)

The system is easily solved. It has the particular solu-
tion

and the integral

(22)

where

and c is an integration constant. The final solution
depends on the specific values of the parameters:

(23)

(24)

(25)
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3
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The last equation splits into two:

(26)

(27)

The solutions u± are the separatrices between these
families.

When µ = 0, the solution is

(28)

or

(28a)

It defines a one-parameter family of power functions
with a negative exponent. The family has two asymp-
totes:

Now, let us discuss some properties of the phase
portrait of system (20), (21). First of all, it occupies the
domain u ≥ 0, v  > 0 in the uv  plane. Hereinafter, this
domain is referred to as the domain of the phase por-
trait. The phase portrait always contains the singular
line u = 0, which represents the “background” solution
to Eq. (2) (zero-amplitude soliton of arbitrary width).
The points of the singular line are called trivial singular
points. Note also that the initial conditions of the prob-
lem must lie on the curve uv  = 1 (NLS soliton curve),
because the equations were derived by using the fact
that the trial function is an exact solution to the NLS
equation. This means that only those orbits are admis-
sible that have common points with the NLS soliton
curve.

3.1.1. The case of µ = 0

When µ = 0, there is a saddle point u0 = –δ/2ea1 on
the axis v  = 0 (see solution (28a)). If δ = 0 and e ≠ 0, then
it lies at the origin. If δ ≠ 0 and e = 0, then there is no
singular point. Saddle points of this kind correspond to
finite-amplitude zero-width solitons. We call them
degenerate. Even though they do not belong to the
range of the functions u and v  and have no physical
meaning (represent collapsing solitons), they are
important for understanding the topology of the phase
portrait and interpreting the results obtained by direct
numerical computation of Eq. (2). The corresponding
phase portraits are shown in Fig. 1. When the parame-

1
b
---– vln c+

1
2a2
-------- P1ln

e a2 a1–( )

µa2
2∆1

1/2
------------------------artanh

u u1–

∆1
1/2

--------------,+=

u u1–( )2 ∆1,<

1
b
---– vln c+

1
2a2
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e a2 a1–( )

µa2
2∆1

1/2
------------------------arcoth

u u1–

∆1
1/2

--------------,+=

u u1–( )2 ∆1.>

1
b
--- vln– c+

1
2a2
-------- P1ln=

v c 2ea1u δ+( )
b/2a2–

.=

u δ/2ea1, v– 0.= =
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ters e and µ have opposite signs, the saddle point is in
the upper half-plane and the separatrix lies in the
domain of the phase portrait (the first quadrant of the
phase plane). When δ < 0 and e > 0, the separatrix is
incident to the singular point; when δ > 0 and e < 0, it
originates from the singular point. In the former case,
the direction of a trajectory above the separatrix corre-
sponds to growth of pulse amplitude and self-compres-
sion (antidissipative compressive dynamics). Below the
separatrix, the trajectories terminate on the singular line
u = 0 (dissipative compressive pulse dynamics against
a stable background) (see Fig. 1a). When δ> 0 and e <
0, the phase-portrait topology remains invariant, but the
trajectories reverse direction, which reflects the invari-
ance of system (20), (21) under inversion:

Furthermore, the trajectories originating from the sin-
gular line u = 0 asymptotically approach the separatrix
u = u0 from below (the background is unstable), while
the trajectories lying above the separatrix asymptoti-
cally approach it from above. In both cases, the variable
v  increases indefinitely (antidissipative dispersive and
dissipative dispersive dynamics, respectively) (see
Fig. 1b). In this system, dissipative and pumping pro-
cesses cannot balance out if µ = 0.

When δ and e have similar signs, the saddle point is
located in the lower half-plane, i.e., outside the domain
of the phase portrait. When δ and e are positive, all tra-
jectories lying in the first quadrant approach a vertical
separatrix (antidissipative compressive pulse dynam-
ics). When δ and e are negative, all trajectories termi-
nate on the singular line (dissipative dynamics) (see
Fig. 1c). In the former case, energy is only pumped into
the system and the initial disturbance grows indefi-
nitely. In the latter case, energy is only dissipated and
the pulse disappears completely.

When δ = 0, the saddle point is at the origin and the
singular line separates two families of similarly
directed hyperbolic trajectories. When e < 0, the system
exhibits dissipative dispersive dynamics (see phase
portrait in Fig. 1d). When e > 0, antidissipative com-
pressive dynamics are observed.

When δ ≠ 0 and e = 0, the trajectories are vertical
lines that are either incident on or originate from the
singular line u = 0, depending on the sign of δ (see
Fig. 1e).

When both δ = 0 and e = 0, the domain of the phase
portrait is a plane consisting of singular points, except
for the points not belonging to the NLS soliton curve.
Thus, the phase portrait reduces to the singular curve
uv  = 1 and the isolated singular point (0, 0) (see Fig. 1f).

3.1.2. The case of µ ≠ 0

In this case, the system has equilibria other than triv-
ial or degenerate ones. They are found by setting to zero

δ δ, e e,––

µ µ, t t,––
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δ = –0.1, ε = 0.1 δ = 0.1, ε = –0.1

(a) (b)u u

0 0v v

u0 u0

δ = –0.1, ε = –0.1 δ = 0, ε = –0.1

(c) (d)u u

0 0v
v

u0

δ = –0.1, ε = 0 δ = 0, ε = 0

(e) (f)u u

0 0v
v

Fig. 1. Phase portraits of the dynamical system for µ = 0 and β = 0 (cubic GLE).
the functions

(29)

and

(30)

simultaneously. It is obvious that such equilibria exist
only when e and µ have opposite signs. An analysis of

P1 u( ) µa2u2 2ea1u δ+ +=

Q1 u( ) e µu+=
EXPERIMENTAL AND THEORETICAL PHY
the system reveals the following possible types of phase
portraits.

I. If ∆1 < 0, then P1(u) does not vanish for any δ, e,
or µ. There are no nontrivial or degenerate singular
points. The only singular line is u = 0. Orbits are
described by Eq. (23). Pumping, losses, and dispersion
cannot balance out.

II. If ∆1 = 0, then trivial singular points coexist with
the saddle-node bifurcation at (0, u0) (see Fig. 3d
SICS      Vol. 99      No. 2      2004
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below), and there are no singular points of other types.
Orbits are described by Eq. (24).

III. If ∆1 > 0, then the phase portrait is qualitatively
different. If one of the roots of the function in (29),

equals the single root of Eq. (30),

then the phase plane contains a singular line,

Moreover, there also exists a singular point correspond-
ing to the other root. The roots may or may not belong
to the domain of admissible u and v. This depends on
the specific values of physical parameters. Orbits are
described by Eq. (25). When the roots are not equal,
there exist the degenerate singular points (0, u+) and (0,
u–), where u+ and u– are the roots of (29). These points
may or may not lie in the upper half-plane. This
depends on the signs of the roots, i.e., on the physical
parameters contained in the equation. The nontrivial
singular points exist if

(31)

Under the latter condition, the singular line lies in the
domain of the phase portrait.

The invariance of system (20), (21) implies that any
point A(e0, µ0) in the eµ plane corresponding to δ < 0 is

u± u1– ∆1
1/2

,±=

u0 e/µ,–=

u e/µ.–=

µ 2e
2

15δ
---------, eµ 0.<=

u+ > 0, u– < 0

u+ < 0, u– < 0 u+ > 0, u– > 0

u+ > 0, u– < 0

1

µ

ε

∆1 < 0

III

S

∆1 < 0

2

3 4 5 6 7 8

Fig. 2. Bifurcation diagram in the eµ plane for β = 0 and
δ < 0: u± denotes the roots of the quadratic trinomial P1; I is
the line where a degenerate singular point originates (µ =

e2/a2δ); II is the line where nontrivial singular points

exist (µ = 2e2/15δ); points 1–7 are examples of typical
phase-portrait topology; S represents a soliton.

a1
2
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associated with a point A'(–e0, –µ0) corresponding to
δ > 0. The phase portraits in the neighborhoods of
mutually associated points are geometrically identical,
differing only by orbit direction. Figure 2 shows the
bifurcation diagram for dynamical system (20), (21)
with δ < 0. The hatched quadrants may contain nontriv-

ial singular points. The curves µ = e2/a2δ (where a
singular point originates) and µ = 2e2/15δ (where non-
trivial singular points exist) divide the eµ plane into
domains of typical phase-portrait topology.

Figure 3 illustrates the phase-portrait topology near
the characteristic points of the bifurcation diagram
shown in Fig. 2. Since ∆1 > 0 at points 1 and 2 (in the
first and second quadrants), there exist roots of P1(u)
having opposite signs. Of the degenerate saddle points
(0, u–) and (0, u+), only (0, u+) lies in the domain of the
phase portrait (see Figs. 3a and 3b). The domains above
and below the line u = u+ correspond to antidissipative
compressive and dissipative compressive pulse dynam-
ics (cf. Fig. 1a), whereas the dynamics at the associated
points 1' and 2' are antidissipative dispersive and dissi-
pative dispersive, respectively, as in Fig. 1b. In the third
quadrant, u– < 0 and u+ < 0 to the left of curve I (where
∆1 = 0); i.e., the domain of the phase portrait does not
contain any degenerate singular points. To the right of
curve I, ∆1 < 0 and there are no degenerate singular
points. The corresponding phase portraits are illustrated
by Figs. 3c and 3d, respectively (cf. Fig. 1c).

The transformation of the phase portrait is more
complicated when the parameters lie in the fourth quad-
rant of the bifurcation diagram. Since ∆1 < 0 to the left
of curve I (point 5), the trinomial P1(u) has no roots
and, therefore, there are no degenerate singular points
(see Fig. 3e). At point 6 (on curve ∆1 = 0), there is a sad-
dle-node bifurcation (Fig. 3g) [5]. To the right of the
curve, P1(u) has two positive roots and the saddle-node
bifurcation yields a saddle point and a node (see
Fig. 3h). At point 7 (on curve II), the singular line u =
u+ originates. If δ < 0, then every trajectory passing
through a point above this line and a point between the
lines u = u– and u = u+ terminates at a point on this line
(see Fig. 3j). When the combination of parameters in
Eq. (2) corresponds to this last case, we should expect
a stable soliton solution to exist.

Note that the singular line is a structurally unstable
(nonrobust) set; i.e., it is destroyed by a small change in
parameters. This is important because the constants a0,
a1, a2, and b contain summands proportional to 1/π2;
i.e., solitons seem unlikely to exist in this case at first
glance. Figures 3i and 3k show the phase portraits cor-
responding to the left and right neighborhoods of
point 7, where (0, u+) is a node and a saddle point,
respectively. Both phase portraits are characterized by
extremely slow dynamics near the separatrix u = u+ and
extremely narrow (numerically irresolvable) gaps
between the upper and lower values of u in its neighbor-

a1
2
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Fig. 3. Phase portraits of dynamical system (20), (21) with δ = –0.1 at the typical points of the bifurcation diagram shown in Fig. 2.
The singular line in (k) and the horizontal separatrices associated with the degenerate singular points (0, u+) and (0, u–) are repre-
sented by dashed lines. Vertical separatrices are ordinate axes. (a) µ = 0.2, e = 0.1 (point 1); (b) µ = 0.2, e = –0.1 (point 2); (c) µ =
–0.2, e = –0.387 (point 3); (d) µ = –0.2, e = –0.1 (point 4); (e) µ = –0.2, e = 0.1 (point 5); (f) µ = –0.2, e = 0.274 (left neighborhood
of point 6); (g) µ = –0.2, e = 0.277 (point 6); (h) µ = –0.2, e = 0.3 (right neighborhood of point 6); (i) µ = –0.2, e = 0.380 (left
neighborhood of point 7); (j) µ = –0.2, e = 0.38722 (point 7); (k) µ = –0.2, e = 0.388 (right neighborhood of point 7); (l) µ = –0.2,
e = 0.6 (point 8).
hoods. In fact, one can say that orbits approach some
limit values when the parameters δ, e, and µ belong to
a certain set rather than obey a strict relation. The
behavior of orbits outside this set agrees with that pre-
dicted theoretically for the neighborhood of a separa-
trix (see Fig. 3l).

3.2. Filtered Problem (β ≠ 0) 

In this case, the common feature of the phase por-
trait of system (18), (19) is that the line v  = 0, including
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the origin, does not belong to the domain of the phase
portrait (since the right-hand side of Eq. (18) contains a
term proportional to v –1). However, the equation

has the saddle point O(v  = 0, u = 0) with the separa-
trices u = 0 and v  = 0. Thus, the lines u = 0 and v  = 0
also are limit sets of system (18), (19).

du
dv
-------

βa0u– uv δ 2ea1u µa2u2+ +( )+
v 2βb buv e µu+( )–[ ]

--------------------------------------------------------------------------------=
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3.2.1. The case of µ = 0

In this case, system (18), (19) reduces to

(32)

(33)

Unlike system (20), (21), it has neither singular lines
nor degenerate singular points on the axes. When either
δ > 0, e < 0, and β < 0 or δ < 0, e > 0, and β > 0, there
exists a singular point (–2δ/e, –β/δ) in the first quad-
rant. When the combination of signs of these parame-
ters is different, the singular point lies outside the
domain of the phase portrait and the dynamics of a
localized distribution should be classified as either dis-
sipative dispersive (the amplitude tends to zero) or
antidissipative compressive (the distribution tends to
collapse).

Figure 4 illustrates the dynamics of a system with a
saddle point. The quadrant is divided by separatrices
into four regions. When δ > 0, the system exhibits
antidissipative dynamics in regions I (between the
coordinate axes and the separatrices) and II (between
the separatrices above the singular point) and dispersive
dynamics in regions III (between the separatrices below
the singular point) and IV (on the right and above the
separatrices).

Note that relatively wide and narrow pulses having
equal amplitudes exceeding a certain threshold value
exhibit dispersive and antidissipative dynamics, respec-
tively. Pulses with amplitudes below the threshold are
always characterized by antidispersive dynamics. The
existence of a gap between the lower branch of a sepa-
ratrix and the axis u = 0 means antidispersive instability

u' 2βa0
u
v
----– 2u δ 2ea1u+( ),+=

v ' 4βb 2buv e.–=
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of the background. When δ < 0, the separatrices and
orbits have opposite directions.

As above, the actual dynamics depend on the rela-
tive position of the NLS soliton curve and the saddle
separatrix, which is determined by the values of δ, β,
and e.

3.2.2. The case of µ ≠ 0

When dynamical system (18), (19) is a complete one,
the singular points are the roots of the expressions

(34)

(35)

on the right-hand sides. Solving (35) for v  and substi-
tuting the result into (34), we obtain

, (36)

which yields the following expressions for the coordi-
nates of singular points:

(37)

where

Therefore, singular points exist if

These conditions should be supplemented with

P2 2βa0
u
v
----– 2u δ 2ea1u µa2u2+ +( ),+=

Q2 4βb 2buv e µu+( )–=

11µu2 15eu 30δ+ + 0=

u±
15e– ∆2

1/2±
22µ

-----------------------------, v ±
2β

u± e µu±+( )
----------------------------,= =

∆2 15e( )2 1320µδ.–=

u± 0, u± –e/µ, ∆2 0.>≠≠
u
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Fig. 4. Phase portraits of the dynamical system for β ≠ 0 and µ = 0: (a) δ = 0.1, e = –0.2, β = –0.1; (b) δ = –0.1, e = 0.1, β = 0.1.
Dashed curve S is the NLS soliton curve (initial conditions).
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By the condition ∆2 > 0, the elliptic cone 15e2 – 88δµ =
0 divides the three-dimensional space (δ, e, µ) into an
exterior set, which contains singular points, and an inte-
rior one, which does not. For any particular δ ≠ 0, the
distributions of singular points in the eµ plane (inter-
secting the cone) that correspond to all possible combi-
nations of signs of δ and β can be represented by the
four diagrams shown in Fig. 5. Here, curve I (parabola
µ = 15e2/88δ) is the intersection of the conic surface
and the plane δ = const, and curve II (parabola µ =
2e2/15δ) is the locus of points where either v+ or v –
changes sign. The equation for this curve is obtained by
setting to zero the denominator of the expression for v±
in (37). Note that this equation is identical to the condi-

u± 0, v ± 0.>>
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tion for existence of a singular line in the case of β = 0
(see Section 3.1). If δµ < 0, then the system has two sin-
gular points, T+ and T–, which lie between parabolas I
and II.

It can readily be shown (see Appendix B) that the
singular points of system (18), (19) that exist for any
combination of parameters are saddle points. More-
over, the gap between parabolas I and II contains a
node, which is stable if δ < 0 and β > 0 and unstable if
δ > 0 and β < 0. By the index theorem, these singular
points are incompatible with limit cycles. In terms of
the original problem formulation, this means that there
are no monophase t-periodic (unchirped) solutions to
GLE bifurcating from the NLS soliton.

Figure 6 shows the phase portraits with two singular
points corresponding to two specific sets of parameter
µ

ε

δ < 0, β > 0

I

II

T±

T+ T+

T+

µ

ε

δ < 0, β < 0

I

II

T–

µ

ε

δ > 0, β < 0

I

II
T±

T–

T– T–

T+

ε

II

I
µ

δ > 0, β > 0

(a)

(c) (d)

(b)

Fig. 5. Bifurcation diagrams for β ≠ 0 for different signs of β and δ: hatched areas contain saddle points T+ or T–; the gap between
parabolas I and II contains two singular points; unhatched areas contain no singular points.
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Fig. 6. Phase portraits of the system with a saddle point and a node, T+ and T–, for β ≠ 0: dashed curve S is the NLS soliton curve;
asterisks represent the limit values of initial conditions that lead to the formation of a soliton. (a) δ = –0.1, e = 0.36, µ = –0.2,
β = 0.05; (b) δ = –0.1, e = 0.36, µ = –0.2, β = 0.18.
values (cf. Fig. 3i, with a saddle point and a stable node
on the line v  = 0). Note that the saddle-node point cor-
responding to a specific µ and e lying on curve I splits
into a saddle point and a node as e increases. The stable
node T(v –, u–) corresponds to a stable soliton solution
to the original problem (see Fig. 11a). Its basin of
attraction contains only trajectories that originate from
the NLS soliton curve (dashed curve S in Fig. 6a) and
lie above the saddle separatrix T+. The relative posi-
tions of the NLS soliton curve and point T+ depend not
only on the values of δ, e, and µ, but also on β. When β
(i.e., the coordinate v+) is varied while the pump-
ing/loss parameters δ, e, and µ are held constant, the
curve S may lie outside the basin of attraction of the
node. Since the equation for the NLS soliton curve is

the curve S lies (at least, partially) in the basin of attrac-
tion of the node if

which implies that the parameters satisfy the relation

(38)

When δµ ≠ 0, the upper boundary of the set of admissi-
ble e and β is the upper half of the right-hand branch of
the hyperbola

uv 1,=

u+ 1/v +,<

β
7e ∆2

1/2+
44

---------------------.<

e'( )2

a
2

---------- β'( )2

b
2

-----------– 1,=
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where

and the canonical coordinate system (e', β') makes the
angle

with (e, β). The left and right boundaries of the set are

where

Both the angle between the asymptotes of the hyper-
bola,

and the angle φ are independent of the parameters,
unlike the apex coordinates

When δµ = 0, the hyperbola collapses into the line β =
(1/2)e (one of the asymptotes) and the domain in e

a2 6δµ, b
2

2δµ/3,= =

φ 1/ 50arcsin=

e eI, e eII,= =

eI
88
15
------δµ, eII

15
2
------δµ.= =

α 2a/b 2 3,arctan= =

x0
7
75
------δµ, y0

1
75
------δµ.= =
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shrinks to a point (origin). Figure 7 shows the basin of
attraction of the node T– in the parameter plane (e, β)
for δ = –0.1 and µ = –0.2. Here,

It follows from the analysis presented above that βmax
cannot reach the asymptote β = (1/2)e for any set of
parameter values. In terms of the original problem for-
mulation, this means that, even though there exists a
monophase stationary solution for β > βmax, it cannot be
reached if the initial conditions correspond to an NLS
soliton. This is also true for the exact monophase solu-
tion reported in [6] (see Fig. 6b). Since the NLS soliton
curve S lies below the separatrices of the saddle point
T+, the amplitude of a localized solution tends to zero
for any set of initial conditions.

4. NUMERICAL SOLUTIONS 
OF THE GINZBURG–LANDAU EQUATION

To verify the results of our qualitative analysis of the
dynamical system, we computed the evolution of the
field initially corresponding to an exact solution to the
NLS equation with cubic nonlinearity,

where q = const and xc = (xN – x0)/2 is the center-of-
mass coordinate. Equation (2) was solved by a finite-
difference method. The numerical technique is
described in Appendix B. The computations were per-
formed for the following parameter values:

The results obtained are presented below.
Case 1: b = 0, m = 0, e ≠ 0, d ≠ 0 n = 0. As shown

above, dynamical system (20), (21) has only the singu-
lar line u = 0 and a saddle point (0, u0), where u0 =
−δ/2ea1. This result is corroborated by numerical solu-
tion of the original GLE. When δ < 0 and q < u0, the
amplitude of a localized initial disturbance tends to
zero with increasing t, i.e., the pulse decays (damped by
predominant dissipation). When q > u0, the pulse
amplitude rapidly increases over the run time (due to
predominant pumping, cf. Fig. 1a).

When δ > 0, dynamical system (20), (21) exhibits
dispersive dynamics: the pulse width grows indefi-
nitely, while its amplitude is bounded (cf. Fig. 1b). Fig-
ure 8 shows the numerical results obtained by solving
the GLE for the parameter values corresponding to
Fig. 1b. The trends illustrated by these figures obvi-
ously correlate: the pulse width increases while the
peak amplitude does not exceed a certain threshold
value. It is obvious that the complicated structure of the

eI = 0.34254…, eII = 0.38730…, βmax = 0.1229.

ψ t 0 x,=( ) q
q x xc–( )[ ]cosh

--------------------------------------,=

δ 0.1, µ– 0.1,  0.2,  – 0.5, ν –– 0.= = =                                 
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excited region cannot be resolved in a phase portrait
obtained by numerical approximation. Figure 8b shows
a “photographic” image of |ψ(x, t)|, where the grayscale
value is inversely proportional to the amplitude of the
function. The image clearly demonstrates the regular
spatiotemporal structure of the solution. Ripples at
large t are due to boundary effects. Figure 9 shows the
amplitude and phase of the solution at t = 30.

Case 2: b = 0, m ≠ 0, e ≠ 0, d ≠ 0, n = 0. When δ >
0, the numerical solution of GLE are fully consistent
with our qualitative analysis of dynamical system (20),
(21). The dynamics corresponding to 

 
δ

 
 < 0 and 

 
µ

 
 > 0

(i.e., first and second quadrants of the parameter plane
(

 

e

 

, 

 

µ

 

), see Fig. 2) also agree with the qualitative theory,
and so do the dynamics associated with parameter val-

ues in the third quadrant. For 

 

e

 

 = /

 

a

 

1

 

 in the
fourth quadrant, we observed a localized soliton solu-
tion that did not break down over the run time, in com-
plete agreement with the qualitative theory. Figure 10
shows the amplitude and phase of this soliton. When
the amplitude is large, the almost linear behavior of the
phase function is close to unchirped trial function (8).
The peak amplitude of the soliton is approximately
1.39 (cf. 

 

u

 

+

 

(=

 

A

 

2

 

) 

 

≈

 

 1.93 for the dynamical system).
Note that solitons of this kind are obtained by solving
GLE for 

 

e

 

 in a relatively wide interval (from 0.31 to
1.79 when 

 

δ

 

 = –0.1 and 

 

µ

 

 = –0.2) and the squared soli-
ton amplitude is close to 

 

u

 

+

 

 (saddle-point coordinate).
When both 

 

δ

 

 and 

 

µ

 

 are held constant, the soliton ampli-
tude and width increase with 

 

e

 

. Note that the character-
istics of these solitons correlate with the phase portrait
described above.

a2δµ

 

β

 

e

 

II

 

β

 

max

 

0.4

0.2

0

0.4

0.8

 

A

 

e

e

 

I

 

Fig. 7. 

 

Basin of attraction of a stable soliton solution in the
parameter plane (

 

e

 

, 

 

β

 

) (hatched): 

 

e

 

I

 

 and 

 

e

 

II

 

 are, respectively,
the extreme left and right values of 

 

e

 

 for which a stable node
exists; the parameters 

 

δ

 

 and 

 

µ

 

 are held constant.
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Fig. 8. 

 

Antidissipative dispersive dynamics for 

 

δ

 

 = 0.1, 

 

e

 

I

 

 = –0.1, 

 

µ

 

 = 0, 

 

β

 

 = 0, and ν = 0 for the initial amplitude |ψ(0, xc)| = 0.5 at
the center of symmetry: (a) contour map of |ψ(t, x)|; (b) “photographic” image with grayscale value is inversely proportional to
|ψ(t, x)|; (c) three-dimensional map of |ψ(t, x)|.
Beyond e = 1.79, the dynamics are as predicted by
the qualitative theory (dissipative and dispersive for
small and large amplitudes, respectively, similar to
Fig. 8).

According to the classification proposed in [6], the
computed solitons are fixed-amplitude solitons,
because their amplitudes are uniquely determined by
the parameters of the original equation. However, the
domain of existence of these solitons is different from
the domain of fixed-amplitude solitons obtained in [6]
as analytical solutions to the quintic GLE. When β = 0

and ν = 0, the latter solitons exist for e = ±3  and an
arbitrary µ. One obvious conclusion is that neither
fixed-amplitude solitons found in [6] nor solitons with
arbitrary amplitudes can be obtained under the assump-
tions made about the form of trial function (8). This is
an expected result because the solitons are chirped
(their phase functions depend on x).

3
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δ = 0.1, e = –0.1, µ = 0, and β = 0.
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Case 3: b ≠ 0, m = 0, e ≠ 0, d ≠ 0, n = 0. In this case,
the results of direct numerical solution of GLE agree
with our qualitative analysis as well: no new
monophase localized solutions to GLE bifurcate from
the NLS soliton. The dynamics observed when δ < 0 are
either dissipative or antidissipative. When δ > 0, the
dynamics are either dispersive or antidissipative,
depending on β and initial amplitude according to the
relative positions of the NLS soliton curve and the sad-
dle point.

Case 4: b ≠ 0, m ≠ 0, e ≠ 0, d ≠ 0, n = 0. In this case,
the conclusions based on our qualitative analysis are
also in good agreement with the results obtained by
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Fig. 10. Amplitude and phase of a soliton at several instants
for β = 0, δ = –0.1, e = 0.38722, µ = –0.2, and ν = 0.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
numerical solution of GLE. Soliton solutions were
obtained in the interval between eI and eII for δ = –0.1
and µ = –0.1, –0.2, and –0.5. Figure 11a shows the
amplitude and phase of the soliton obtained by solving
GLE with δ = –0.1, e = 0.36, µ = –0.2, and β = 0.08.
These parameter values correspond to a point between
parabolas I and II, where a stable node and a saddle
point exist according to the qualitative theory. However
(as in Case 2, when β = 0 and µ ≠ 0), the right boundary
of the domain of existence of the soliton solution is
located at a considerable distance to the right of the
value of eII predicted by the qualitative theory. In our
computations, this value reached 1 for µ = –0.2 and 1.5
for µ = –0.5. It should be noted that the phase diagrams
corresponding to e > eII in the neighborhood of curve II
are similar to those corresponding to β = 0 in that the
orbits approaching the saddle separatrix are character-
ized by slow dynamics. However, the results obtained
by direct numerical solution of GLE for eII < e < emax

clearly demonstrate that the phase function substan-
tially deviates from linear behavior even in the central
region (see Fig. 11b). Beyond emax, our computations
revealed complex irregular dynamics involving expan-
sion of the excited region, with bounded amplitude. The
example shown in Fig. 12 corresponds to δ = –0.1, e =
1.01, µ = –0.2, and β = 0.015. Dispersive instability
develops rapidly, and it may be difficult to isolate the
effects due to the computational-domain boundary.
However, the initial stage of the instability can be
referred to the dispersive type that is characteristic of a
dynamical system with a saddle point.

With further increase in e, the dynamics of the local-
ized solution goes through a number of intricate
changes. Ultimately (for e > 1.8), we obtained two
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Fig. 11. Amplitude and phase of a stable soliton for β ≠ 0: (a) δ = –0.1, e = 0.36, µ = –0.2, β = 0.08 (below curve II); (b) δ = –0.1,
e = 0.99, µ = –0.2, β = 0.08 (above curve II).
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Fig. 12. Chaotic dynamics of a solution to GLE for δ = –0.1, e = 1.01, µ = –0.2, and β = 0.015: (a) contour map of |ψ(x, t)|;
(b) “photographic” image; (c) three-dimensional map.
diverging fronts, i.e., dynamics that can be classified as
dispersive.

5. CONCLUSIONS

1. The generalized moment method is used to con-
struct a dynamical system describing the dynamics of
amplitude, width, center-of-mass coordinate, phase
function, and wave number of solutions to the Gin-
zburg–Landau equation.

2. A qualitative analysis of the dynamical system is
performed for symmetric field distributions. Singular
points and singular lines are found. It is shown that the
dynamical system does not have periodic solutions.
Bifurcation diagrams are presented, and domains
where stable stationary soliton solutions exist are deter-
mined. Typical phase portraits are depicted.

3. Good agreement is established between results of
the qualitative analysis and solutions obtained by direct
JOURNAL OF EXPERIMENTAL A
computation of GLE for the same values of physical
parameters.

4. The numerical analysis has revealed a new branch
of soliton solutions of the original GLE that are differ-
ent from the known monophase fixed-amplitude soli-
tons found analytically in [6].

APPENDIX A

Analysis of Stability of Singular Points
in the First Approximation 

The characteristic equation for dynamical system (18),
(19) is

(39)λ2 C±λ– D±+ 0,=
ND THEORETICAL PHYSICS      Vol. 99      No. 2      2004
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where

Calculating the derivatives of the expressions for P2 and
Q2 given by (34) and (35) and using the equations

we obtain

(40)

(41)

To determine the sign of the discriminant Ω =  –
4D± of Eq. (39), we substitute C± and D± and isolate the
quadratic part of (36) equal to zero. The result is

(42)

where

To determine if Ω can vanish, we substitute u±
into (42) and get rid of irrational terms. As a result, we
find that the discriminant vanishes if

(43)

where z = 15e2/11δµ. The discriminant of the last equa-
tion is negative. Since the coefficient of z2 is positive,
the quadratic trinomial on the left-hand side can only be
positive. Therefore, the discriminant Ω of characteristic

C±
∂P2

∂u
---------

∂Q2

∂v
---------+ 

 
T± u± v ±,( )

= ,

D±
∂P2

∂u
---------

∂Q2

∂v
---------

∂P2

∂v
---------

∂Q2

∂u
---------– 

 
T± u± v ±,( )

.=

11µu±
2 15eu± 30δ+ + 0, v ±

2β
u± e µu±+( )
----------------------------,= =

C±
60
11
------ deu± 16δ+( ),–=

D±
4b

11µ2
-----------–=

× 253δµ 30e
2–( )eu± 60 11δµ e

2–( )δ )+[ ] .

C±
2

Ω 16

113µ
----------- Geu± Hδ+[ ] ,=

G 11d1δµ 15d2e
2, H– 11d0δµ 30d2e

2,–= =

d0 = 152 162 60 11× b,+×

d1 = 152 32d 23 11b,×+×

d2 152d2 2 11× b, d+ 13
3
------

11

π2
------, b+

4

π2
-----.= = =

d0
2

z 2d1
2

4d0d2– d0d1–( )+

+ z2 4d2
2 d0d1 2d1d2–+( ) 0,=
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equation (39), being a continuous function, does not
change its sign at any admissible value of δ, e, or µ; i.e.,
it is sufficient to determine the sign at an arbitrary point.
Finding that the discriminant is positive, we conclude
that the Lyapunov characteristic numbers λ associated
with the singular points T± are real. Therefore, the sin-
gular points of dynamical system (18), (19) can be only
saddles or nodes.

To determine the signs of λ, we find the sign of the
term D± in (39). Omitting some algebra, we represent it
as

(44)

Since b is a positive constant and v± is strictly positive,
the sign of D± corresponding to a particular β is deter-
mined by the sign of the expression in brackets. Substi-
tuting the expression for u±, we find that the sign of D±
reverses on the surface

which separates the domain that contains equilibria
from the domain that does not (see Section 3.2). Thus,
D± has a constant sign in the entire domain of existence
of the roots u± . Again, it can be determined at an arbi-
trary point in the domain of admissible parameters. The
sign is minus everywhere on the entire eµ plane except
for a narrow gap between parabolas I and II (see Fig. 5),
where a positive D± also exists. This implies that the
domain of existence contains saddle points and there
exists a node in the gap between the conic surfaces
when δµ < 0. Note that T+(v+, u+) is a saddle point
(D+ < 0) and T–(v –, u–) is a node (D– > 0) if δ < 0 and
β > 0. When δ > 0 and β < 0, T–(v –, u–) is a saddle point
(D– < 0) and T+(v+, u+) is a node (D+ > 0).

The type of stability is determined by the sign of C±
as given by (40):

By simple transformations, its analysis is reduced to
finding the sign of

When δµ > 0, this expression is obviously negative.
Therefore, C– is negative if µ < 0, δ < 0, and β > 0, and
C+ is positive if µ > 0, δ > 0, and β < 0. This means that
the node is stable in the former case and unstable in the
latter.

As noted above, D± = 0 on the bifurcation surface I,
where equilibria originate; i.e., one of the eigenvalues λ

D±
4bβ
v ±

--------- eu± 4δ+( ).=

15e
2 88δµ– 0,=

30

112µ
----------- de –15e ∆2

1/2±( ) 16δµ+[ ] 0.∨–

15de
2 4 11d–( ) 32δµ.–
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is zero. It can be shown that the degenerate equilibrium
corresponds to a saddle-node bifurcation in this case.

APPENDIX B

Numerical Algorithm 
for Solving the Ginzburg–Landau Equation 

We rewrite GLE as

(45)

where ψ is a complex-valued function; x and t are inde-
pendent variables; and s0, s1, s2, s3 are complex param-
eters related to those in Eq. (2) as

The problem was computed by using a four-point
implicit finite-difference scheme on the uniform grid

where ht is the step in t, hx is the step in x, j denotes a
time layer, and i is the index of a point on the layer.

The scheme was constructed so as to take into
account the fact that the equation is quasilinear. Succes-
sive approximations were used in proceeding from
layer to layer. Equation (45) was approximated by the
finite-difference equation

where

k is the index of an iteration step in computing the solu-

tion on the (j + 1)th layer (0 ≤ k ≤ K), and ( )0 is set

equal to ( )K .

Since the original statement of the problem involves
boundary conditions set at infinity, approximation on
the boundaries of the computational domain presents a
certain difficulty. The standard way of dealing with it
would be to use the asymptotic form of the solution at
the boundary points. However, this approach could not
be applied since the solution is not unique. In prelimi-
nary computations, we used “hard,” “soft,” and periodic
boundary conditions. The results obtained for a suffi-
ciently large computational domain differed insignifi-
cantly. In this paper, we present the results obtained

ψt s0ψxx s1 s2 ψ 2 s3 ψ 4
+ +( )ψ,+=

s0 β iσ, s1+ δ, s2 e iη , s3+ µ iν .+= = = =

Ωht hx, t j xi,( ) t j jht j 0; xi ihx 0 i N≤ ≤,=≥,={ } ,=

ψi
j 1+( )k 1+ ψi

j( )k–
ht

-------------------------------------------

=  s0

ψi 1–
j 1+( )k 1+ 2 ψi

j 1+( )k 1+– ψi 1+
j 1+( )k 1++

hx
2

----------------------------------------------------------------------------------------- Si
j 1+( )k,+

Si
j 1+( )k s1 s2 ψi

j 1+
k
2

s3 ψi
j 1+

k
4

++( ) ψi
j 1+( )k,=

ψi
j 1+

ψi
j
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with the use of periodic boundary conditions, as in [7].
The resulting system of linear algebraic equations is

where

The system was solved by using a cyclic tridiagonal
algorithm [8]. The scheme employed in the computa-

tions is accurate to O(ht + ). The program was
debugged by computing well-known exact solutions to
the GLE: NLS solitons (R ≡ 0) and GLE solitons of
constant and arbitrary amplitude [2]. The algorithm has
proved effective and reliable. Using this numerical
technique, we reproduced the results reported in [3],
where a split-step method was applied in combination
with fast Fourier transform. The results presented in
this paper were obtained for ht = 0.001 and hx = 0.05.
The number of iteration steps performed in proceeding
from layer to layer was K = 3.
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Abstract—“Quasi-anomalous” random walks are considered that have linear-diffusion asymptotics at long
times and obey anomalous-diffusion laws at intermediate times (which are also long as compared to micro-
scopic time scales). A generalized fractional-exponential distribution with bounded moments is introduced. It
is shown that random walks characterized by waiting-time distributions of this kind exhibit both normal and
anomalous diffusion asymptotics. The correctness of analytical calculations is confirmed by numerical compu-
tations. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, numerous studies have been devoted
to analysis of anomalous diffusion (e.g., see [1] for
review and [2, 3]). Unlike linear diffusion, it is charac-
terized by nonlinear growth of the mean square of a dif-
fusion process with time, generally obeying the law

which reflects a violation of the law of large numbers
and/or the central limit theorem. Anomalous diffusion
phenomena are encountered in various physical prob-
lems, such as charge transfer in amorphous semiconduc-
tors [4–9], fractal geometry [10], quantum optics [11, 12],
Richardson’s law of turbulent diffusion [13–15], and
chaotic dynamics of Hamiltonian systems [16]. The
long-time and long-distance asymptotic behavior of
such stochastic processes is adequately described by
fractional partial differential equations. For this reason,
one objective of this study is to construct random pro-
cesses that provide adequate models of physical anom-
alous diffusion processes characterized by probability
distributions that are exact solutions to the aforemen-
tioned fractional differential equations.

In addition to anomalous diffusion, of interest for
various applications are “quasi-anomalous” random
processes. They obey the law of large numbers and the
central limit theorem at extremely long times and
exhibit universal asymptotic behavior characteristic of
anomalous diffusion at intermediate long times. In this
study, we consider quasi-anomalous random walks of
this kind exhibiting intermediate-time behavior of
anomalous-diffusion type and obeying the linear law of
diffusion as t  ∞.

X2 t( )〈 〉 tγ,∝
1063-7761/04/9902- $26.00 © 20443
2. MODEL OF RANDOM WALKS

Consider a typical random walk described by the
stochastic equation

The process X(t) is interpreted as the coordinate of a
particle that jumps to distances hk at random times tk .
Assume that the random variables hk and τk = tk – tk – 1
are mutually independent and are characterized by dis-
tributions w(x) and f(τ), respectively. It is obvious that

where N(t) is the number of jumps executed by the time
t. The function N(t) is the inverse of the nth-jump
time T(n):

In other words, N(t) and T(t) obey an equivalence rela-
tion:

(1)

To derive an equation for the probability density
W(x, t) of the process X(t), we begin with defining the

dX t( )
dt

-------------- hkδ t tk–( ).
k

∑=

X t( ) hk,
k 1=

N t( )

∑=

t T n( )

0, n 0,=

τk, n 1.≥
k 1=

N

∑






= =

N t( ) n T n( ) t.<≥
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characteristic function

The last mean value is difficult to calculate, because the
sum to be averaged contains a random number N(t) of
summands. To change from n = N(t) to the better stud-
ied function t = T(n), we make use of the following par-
tition of unity:

where χ(x) is the Heaviside unit step function. Accord-
ingly, the desired characteristic function takes the form

Using (1) to express Πn(N(t)) in terms of T(n), we
obtain

The sum of the geometric progression obtained as the
Laplace transform of this expression is the Montroll–
Weiss equation [17]:

(2)

Here, (s) is the Laplace transform of the waiting-time
distribution and (u) is the jump-size characteristic
function. This equation is equivalent to

(3)

In what follows, this equation is used to derive both the
classical Kolmogorov–Feller kinetic equation and
kinetic equations describing anomalous diffusion for
different distributions f(τ) and w(x). This equation is
also used to analyze the transition from anomalous to
linear diffusion for quasi-anomalous random walks.

3. FRACTIONAL-EXPONENTIAL DISTRIBUTION

Anomalous random walks are conveniently mod-
eled by using a fractional-exponential distribution ϕβ(τ)

Θ u; t( ) iuX t( )( )exp〈 〉 iu hk

k 1=

N t( )

∑ 
 
 

exp .= =

1 = Πn z( )
n 0=

∞

∑  = χ z n–( ) χ z n– 1–( )–[ ] , z 0,>
n 0=

∞

∑

Θ u; t( ) iu hk

k 1=

n

∑ 
 
 

Πn N t( )( )exp .
n 0=

∞

∑=

Θ u; t( )

=  iu hk

k 1=

n

∑ 
 
 

χ t T n( )–( ) χ t T n 1+( )–( )–[ ]exp .
n 0=

∞

∑

Θ̂ u; s( ) 1 f̂ s( )–

s 1 w̃ u( ) f̂ s( )–[ ]
---------------------------------------.=

f̂
w̃

1

f̂ s( )
----------Θ̂ u; s( ) w̃ u( )Θ̂ u; s( )–

1 f̂ s( )–

s f̂ s( )
-------------------.=
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of intervals τk , which is represented in integral form
below. Its Laplace transform is

(4)

The corresponding distribution can be expressed in
terms of the Mittag–Leffler function

where the integral is calculated over the Hankel loop *
encompassing the negative real axis [18, 19]. As a
result, we have

One can readily find the following integral representa-
tion of this distribution:

which behaves as τβ – 1 as τ  0 and τ–β – 1 as τ  ∞
[19]. The latter asymptotic of the fractional-exponential
distribution implies that its mean value is infinitely
large (〈τ〉  = ∞). Furthermore, the conditions of the law
of large numbers are violated for the function T(N), and
the probability density of X(t) obeys a fractional partial
differential equation. Indeed, substituting (4) into (3),
we obtain the generalized Kolmogorov–Feller equation

which contains a fractional time derivative. Note also
that the integral operator in x can be replaced by a dif-
ferential one at long times, and the Kolmogorov–Feller
equation reduces to an anomalous diffusion equation
[17, 19]:

where

is the jump-size variance.

ϕ̂β s( ) 1

1 sβ+
-------------, 0 β 1.< <=

Eβ z( ) 1
2πi
-------- eyyβ 1–

yβ z–
--------------- y,d

*

∫=

ϕβ τ( ) 1
τ
---D τβ–( )χ τ( ), Dβ z( )– βz

dEβ z( )
dz

-----------------.= =

ϕβ τ( ) πβ( )sin
π

-------------------τβ 1– xβe x– xd

x2β τ2β 2xβτβ πβ( )cos+ +
--------------------------------------------------------------,

0

∞

∫=

0 β 1,< <

∂βW x; t( )
∂tβ------------------------ W x; t( ) W x; t( ) * w x( )–[ ]+

=  
t β–

Γ 1 β–( )
---------------------χ t( )δ x( ),

∂βW x; t( )
∂tβ------------------------

σ2

2
-----∂2W x; t( )

∂x2
------------------------ τ β–

Γ 1 β–( )
---------------------χ t( )δ x( ),+=

σ2 h2〈 〉 x2w x( ) xd

∞–

∞

∫= =
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4. GENERALIZED FRACTIONAL-EXPONENTIAL 
DISTRIBUTION

From a physical perspective, the infinitely large
mean waiting time for the process X(t) is a disadvantage
of the fractional-exponential distribution, because the
observed random intervals τk are characterized by a
finite mean value. Moreover, an infinite mean implies
that the law of large numbers is violated and anomalous
diffusion must be observed. It is shown below that
physical systems may exhibit anomalous diffusive
regimes even in the case of a bounded mean value. To
do this, we make use of the distribution ϕ(τ) whose
Laplace transform is

(5)

It can readily be shown that the distribution with
Laplace transform (5) is expressed in terms of a frac-
tional-exponential distribution as

The distribution (ϕ(τ)) has bounded moments and
reduces to fractional-exponential distribution (4) as
δ  0. Note that distributions of this kind have never
been considered in studies of anomalous diffusion. It
can only be recalled that, considering the case of diver-
gent moments of displacement and waiting time, the
authors of [2, 3] remarked that “if they are finite, then
the effective transport equation asymptotically trans-
forms into the classical diffusion equation (i.e., at mac-

roscopic times t @ 〈t〉  and distances |x| @ ).”
Note that (5) is the Laplace transform

reduced to dimensionless form, where both 1/w and 1/δ
have the dimensionality of time. Behavior of the system
at times shorter than 1/w depends on the fine structure
of the distributions ϕ(τ) and w(x) and does not obey any
universal diffusion law. On the other hand, if δ is so
small that the interval between 1/w and 1/δ is suffi-
ciently long, then two variants of asymptotic behavior
of a random process are possible.

In the case of s ! w considered in detail below, cor-
ollaries to general equation (3) can be analyzed by
using Taylor series expansion in terms of s. Since δ is a
small parameter, either s ! δ ! w or δ ! s ! w. Both
cases are considered on a macroscopic time scale much
greater than the “microscopic” time 1/w.

5. DIFFUSION EQUATIONS

To derive equations for the probability density of
X(t), we substitute the Laplace transform (s) given
by (5) into Eq. (3) and consider the asymptotic behav-

ϕ̂β δ, s( ) 1 δβ+

1 s δ+( )β+
----------------------------.=

ϕβ δ, τ( ) 1 δβ+( )e δτ– ϕβ τ( ).=

x2〈 〉

ϕ̂ s( ) wβ δβ+

wβ s δ+( )β+
-------------------------------=

ϕ̂
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ior as s  0, i.e., long-time asymptotics, in which
case the Laplace transforms of distributions can be rep-
resented as Taylor series. We analyze in detail the case
of δ ! 1, which is of primary importance for theory of
anomalous diffusion. In this case, the random walk X(t)
exhibits properties characteristic of both anomalous
and linear diffusion.

Two cases are considered here regarding the distri-
bution ϕ(τ) and its Laplace transform (5): s ! δ ! 1,
which corresponds to t  ∞, and δ ! s ! 1 (i.e., 1 !
t ! 1/δ), which corresponds to an intermediate regime.
In the former case, (s) ~ 1 – Ds, where D = βδβ – 1/(1 +
δβ), and (3) becomes

In the latter case, (s) ~ 1 – D'sβ, where D' = (1 + δβ)−1,
and we have

Applying the inverse Fourier and Laplace transforms to
these equations, we obtain the Kolmogorov–Feller
equation

or the generalized Kolmogorov–Feller equation

To be specific, we substitute the jump-size distribu-
tion w(x) whose Fourier transform is

(as in the case of the Gaussian distribution) into these
equations. Then, we obtain linear and anomalous diffu-
sion equations describing different time-asymptotic

ϕ̂

sΘ̂ u; s( ) 1
D
---- 1 w̃ u( )–[ ]Θ̂ u; s( )+ 1.=

ϕ̂

sβΘ̂ u; s( ) 1
D'
----- 1 ŵ u( )–[ ]Θ̂ u; s( )+ sβ 1– .=

∂W x; t( )
∂t

---------------------
1
D
---- W x; t( ) W x; t( ) * w x( )–[ ]+ δ t( )δ x( ),=

t ∞,

∂βW x; t( )
∂tβ------------------------

1
D'
----- W x; t( ) W x; t( ) * w x( )–[ ]+

=  
t β–

Γ 1 β–( )
---------------------χ t( )δ x( ),

1 ! t ! 
1
δ
---.

w̃ u( ) 1
σ2u2

2
-----------, u 0–∼
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regimes:

The former equation has the well-known solution

The latter can be solved by using the model process of
“fractional advection” described in [19]. The result is

∂W x; t( )
∂t

----------------------
σ2

2D
-------∂2W x; t( )

∂x2
------------------------ δ t( )δ x( ), t ∞,+=

∂βW x; t( )
∂tβ------------------------

σ2

2D'
--------∂2W x; t( )

∂x2
------------------------ t β–

Γ 1 β–( )
---------------------χ t( )δ x( ),+=

1 ! t ! 
1
δ
---.

W x; t( ) 1

2πσ2t/D
------------------------- x2

2σ2t/D
------------------– 

  .exp=

W x; t( ) 1

2σ2tβ/D'
-------------------------Qβ/2

2 x

2σ2tβ/D'
------------------------- 

  ,=

0.4

0.3

0.2

0.1

0

W(x; t = 5)

(a)

0.4

0.3

0.2

0.1

0 1 2 3 4 5
x

W(x; t = 1)

(b)
0.5

Fig. 1. Probability distributions at t = 5 (a) and 1 (b) (!1/δ)
for δ = 0.01, β = 0.3, and σ = 1. The dashed curve is the
asymptotic solution expressed in terms of the Mittag–Lef-
fler function; the solid curve is the exact solution.
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where the function Qγ(τ) is found by applying the
inverse Fourier transform to the Mittag–Leffler func-
tion Eγ(iu).

6. COMPARISON OF EXACT 
AND ASYMPTOTIC SOLUTIONS

TO THE MONTROLL–WEISS EQUATION

The asymptotic distributions obtained above for a
quasi-anomalous random walk X(t) correspond to dif-
ferent time intervals. Now, we should question the con-
sistency of asymptotic solutions with the actual behav-
ior of the process and determine the time intervals on
which the analytical results obtained above are valid.
This can be done by performing an accurate numerical
analysis of the Montroll–Weiss equation (2).

Substituting Laplace transform (5) of the general-
ized fractional-exponential distribution into Eq. (2), we
obtain the Laplace transform of the characteristic func-
tion in explicit form:

(6)

To find an expression for the probability density W(x, t)
of the process X(t), we apply the inverse Fourier trans-

form to (u; s) to obtain

we then apply the inverse Laplace transform in s. In the
case under analysis, the Mellin integral can be reduced
to an integral over the negative real axis. The result is

This exact formula is valid at any time. By analogy, we
can use the integral representation of the Mittag–Leffler
function to express W(x, t) in an asymptotic integral
form at “intermediate” times 1 ! t ! 1/δ:

Θ̂ u; s( ) 1
s
--- 1

1 δβ+

s δ+( )β δβ–
-----------------------------σ2u2

2
-----------

------------------------------------------.=

Θ̂

Ŵ x; s( ) 1

2σs
------------- s δ+( )β δβ–

1 δβ+
-----------------------------=

× x 2
σ

---------- s δ+( )β δβ–

1 δβ+
-----------------------------–

 
 
 

;exp

W x; t( ) 1

πσ 2 1 δβ+( )
----------------------------------=

× Im e iπ– yeiπ δ+( )β δβ–
y

-----------------------------------------

0

∞

∫



× yt–
x 2

σ 1 δβ+
---------------------- yeiπ δ+( )β δβ––

 
 
 

yd




.exp
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W x; t( ) 1

πσ 2 1 δβ+( )
----------------------------------= Im exp

iπβ
2

-------- 
  yt–

x 2

σ 1 δβ+
----------------------y

β
2
--- iπβ

2
-------- 

 exp–
 
 
  yd

y1 β/2–
--------------exp

0

∞

∫ 
 
 

.

These formulas were used to calculate the asymp-
totic and exact probability densities at long times (t 
∞, Fig. 1) and intermediate times (1 ! t ! 1/δ, Fig. 2)
for the same values of β, δ, and σ. Figure 1 demon-
strates that the exact solution tends to the asymptotic
distribution for anomalous diffusion with decreasing
time. The long-time behavior exhibits an analogous
trend (see Fig. 2): the exact solution approaches the
asymptotic Gaussian distribution with increasing time.

It is also interesting to examine asymptotic behavior
of the mean square 〈X2(t)〉 . First, we find its Laplace
transform:

(7)

Substituting the solution to the Montroll–Weiss equa-

tion (2) with (u) ~ 1 – σ2u2/2 and either (s) ~ 1 – Ds

(if s ! δ ! 1) or (s) ~ 1 – D'sβ (if δ ! s ! 1) into this
expression, we obtain

Accordingly, the behavior of the mean square at long
and intermediate times is as follows:

To examine the exact behavior of 〈X2(t)〉 , we substi-

tute (u; s) given by (6) into (7):

An exact expression for the mean square can be found
for β = 1/2:

g s( ) X2 t( )〈 〉 est td∫ ∂2Θ̂ u; s( )
∂u2

------------------------
u 0=

.= =

w̃ f̂

f̂

g s( ) σ2

Ds2
---------, s ! δ ! 1,∼

g s( ) σ2

D's1 β+
----------------, δ ! s ! 1.∼

X2 t( )〈 〉 σ2

D
-----t, t ∞,∼

X2 t( )〈 〉 σ2

D'Γ 1 β+( )
---------------------------tβ, 1 ! t ! 

1
δ
---.∼

Θ̂

g s( ) σ2 1 δβ+( )
s s δ+( )β δβ–[ ]
-------------------------------------.=

X2 t( )〈 〉 1 δ+

δ
----------------=

× δt
π
-----e δt– δt δt

1
2
---+ 

  erf δt( )+ + .
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Fig. 2. Probability distributions at t = 200 (a) and 500 (b)
(@1/δ) for δ = 0.01, β = 0.3, and σ = 1. The dashed curve is
the asymptotic solution expressed in terms of the Mittag–
Leffler function; the solid curve is the exact numerical solu-
tion.

100

t

〈X2〉

101

10–1

10–1 100 101 102

Fig. 3. Asymptotic behavior of the mean square of the
quasi-anomalous diffusion process at long times (dashed
curve) and intermediate times (dotted curve) and the exact
〈X2(t)〉  curve for β = 1/2 (solid curve).
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Figure 3 compares this function with the corresponding
intermediate- and long-time asymptotics (correspond-

ing to times on the order of (~ ) and (~t), respec-
tively). It is clear that the graph of the exact solution
agrees with the respective asymptotic curves at long
and intermediate times.

Thus, we have shown that anomalous diffusion can
take place in the case of a finite mean waiting time 〈τ k〉 .
However, anomalous diffusion of this kind corresponds
to an intermediate asymptotic regime followed by nor-
mal linear diffusion.
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