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Abstract—Based on principles of classical hydrodynamics and Newtonian gravity, the theory of hydrogravity,
formulated in the manner of hydromagnetic theory, is developed to account for the gravitational effect of global
pulsations of a star on the motions of the ambient gas–dust interstellar medium. Analytic derivation of the dis-
persion relation for canonical gravity waves at the free surface of an incompressible in viscid liquid is presented,
illustrating practical usefulness of the proposed approach, heavily relying on the concept of classical gravita-
tional stress introduced long ago by Fock and Chandrasekhar, and accentuating the shear character of this mode.
Particular attention is given to gas-dynamical oscillations of a similar physical nature generated by a pulsating
neutron star in an unbounded spherical shell of gas and dust promoted by circumstellar gravitational stresses
and damped by viscosity of the interstellar matter. Computed in the long-wavelength approximation, the peri-
ods of these gravity-driven shear modes, referred to as quasistatic modes of hydrogravity, are found to be pro-
portional to periods of the gravity modes in the neutron star bulk. Given that collective oscillations of cosmic
plasma in the wave under consideration should be accompanied by electromagnetic radiation and taking into
account that only the radio waves of this radiation can freely travel through the galactic gas–dust clouds, it is
conjectured that the considered effect of gravitational coupling between seismic vibrations of a neutron star and
fluctuations of the galactic interstellar medium should manifest itself in the radio range of pulsar spectra. Some
useful implications of the theory developed here to a number of current problems of asteroseismology are
briefly discussed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It was realized long ago that the restless behavior of
neutron stars, exhibited in pulsar spectra by millisecond
micropulses, owes its origin to seismic vibrations trig-
gered either by implosion effects of supernova events or
by starquakes [1–3], which may be connected with
some short gamma-ray bursts [4, 5]. At present, there
are tolerably coherent arguments showing that neutron
stars (both pulsars and magnetars) can support long-
lasting pulsations driven by bulk forces of elasticity,
gravity, and magnetism of neutron star matter [6–10].
At the same time, the influence of neutron star pulsa-
tions on a gas–dust interstellar medium (ISM), which
serves as a fluid matrix mediating a vast variety of gas-
dynamical processes (e.g., [11]), remains less studied.
This work discusses the hydrodynamic mechanism of
gravitational coupling between seismic vibrations of a
neutron star and fluctuations of gas–dust flows in the

¶This article was submitted by the authors in English.
1063-7761/04/9903- $26.00 © 20449
ambient envelope. Specifically, we consider a model in
which a pulsating neutron star embedded in a gas–dust
spherical shell is regarded as a source of large-scale
hydrodynamical wave motions promoted by circums-
tellar gravitational stresses and damped by viscous
stresses. The oscillatory motions in question have the
same physical nature as the gravity waves at the free
surface of an incompressible viscous fluid caused by
the presence of a constant field of Newtonian gravity
(e.g., [12–14]), the wave process being well known in
the physics of planetary atmospheres [15].

This paper presents arguments that proper mathe-
matical treatment of these gravity-driven wave motions
of the interstellar medium can be developed on the
basis of self-consistent equations for variables of clas-
sical hydrodynamics and Newtonian gravity, which are
formulated in a manner of equations that govern the
hydromagnetic theory. In pursuit of this aim, we follow
two different approaches, both relying on the key con-
cept of Newtonian gravitational stress. The underlying
004 MAIK “Nauka/Interperiodica”
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idea of the first method, constituting the content of Sec-
tions 2 and 3, is to include the Newtonian gravitational
field in a set of gas-dynamical variables of circumstellar
motions by considering this field on an equal footing
with the standard hydrodynamical variables such as
density and velocity. The second method, formulated in
the Appendix, is based on coupled equations involving
density, the velocity, and the gravitational stress tensor.
Particular attention is drawn to the fact that both these
methods yield analytically identical estimates for the
frequency and lifetime of the gravity modes owing their
existence to fluctuations in circumstellar gravitational
stresses caused by pulsations of a neutron star. In the
discussion, we point out some useful applications of the
theory developed here.

2. GOVERNING EQUATIONS
OF HYDROGRAVITY

The point of departure in our considerations is the
representation of the body force of gravity

(1)

via the tensor of gravitational stresses Gik:

(2)

To the best of our knowledge, this form of the gravita-
tional force in the stationary material continuum of
density ρ was first discussed long ago by Fock [17] and
justified by Chandrasekhar [18]. Such a possibility is
apparent from the identity

(3)

Also, the discussion of Newtonian gravitational
stresses can be found in [19, 20]. A matter of particular
interest for our present discussion is Chandrasekhar’s
suggestion [18] that the above tensor representation for
the static force of Newtonian gravity be incorporated in
the dynamical description of the gravity-driven motions
of an inviscid fluid. Specifically, it is shown in [18] that
replacement of the standard expression for the gravita-
tional force,

in the Euler equation for an ideal fluid

(4)
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by the above tensor representation

allows one to rewrite (4) in the form of a conservation
law for the density of linear momentum ρVi ,

, (5)

where 3ik is the total flux density.

We recall at this point that the key statement in the
MHD theory is that the state of motion of a magnetoac-
tive fluid can be uniquely specified by the density
ρ(r, t), the flow velocity V(r, t), and the magnetic flux
density B(r, t), which are regarded on an equal footing
as independent dynamical variables (see, e.g., [21–23]).
The equations of dissipation-free MHD theory

describe the fluid mechanics of a highly ionized (per-
fectly conducting) ISM threaded by a galactic magnetic
field B.

Remarkably, Eq. (5) permits the equivalent repre-
sentation

(6)

which in appearance is similar to the Euler equation of
the hydromagnetic model for interstellar gas dynamics.
This then indicates that the constructive treatment of
the gravity-driven gas dynamics of the interstellar
medium can be developed on a methodological footing
similar to that lying at the base of magnetohydrody-
namics. In particular, this suggests that the gravitational
field g(r, t) can be regarded as an independent variable
of the ISM motion on an equal footing with basic vari-
ables of interstellar gas dynamics, the density ρ(r, t)
and the flow velocity V(r, t). Then, adhering to this
point of view, our next goal is to specify the form of the
constitutive equation for the gravity-flow coupling, that
is, an equation describing the kinematic relation
between the vector field of classical gravity g(r, t) and
the density of linear momentum ρ(r, t)V(r, t).
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It is customarily taken for granted that the time
evolution of the density governed by the continuity
equation

(7)

does not affect the analytic form of the equation for the
static gravitational field,

(8)

The partial time derivative of the left-hand side of the
last equation in (8) should therefore be equal to the left-
hand side of continuity equation (7),

(9)

It follows that the equation

(10)

resulting from the last identity is in agreement with
both the equation of static gravity and the continuity
equation. As postulated by the above arguments,
Eq. (10) should be regarded as the constitutive equation
for kinematic gravity-flow coupling. This shows that
the standard equation for static Newtonian gravity,

preserves its validity at all times, if valid initially. With
all the above reservations in mind, we arrive at self-con-
sistent equations of hydrodynamics and gravity-flow
coupling,

(11)

(12)

(13)

which in what follows are for brevity called the equa-
tions of hydrogravity.
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The extension of these equations to the case of a vis-
cous fluid is straightforward,

(14)

(15)

where W is the total pressure and Pik is the anisotropic
gravitational stress tensor. We use Πik to denote the vis-
cous stress tensor; Vik , the rate-of-strain tensor; and ν,
the kinematic viscosity of the gas–dust circumstellar
medium.

3. HYDROGRAVITY MODES
IN THE STELLAR COCOON MODEL

In the stellar cocoon model under consideration, a
neutron star, embedded in a thick dusty shell of super-
nova debris, is regarded as a solid globe immersed in a
spherical fluid matrix. To make the problem analyti-
cally tractable, we adopt the uniform density approxi-
mation for both the stellar matter ρs and the gas–dust
medium ρ. It is presumed that the star and spherical
dusty envelope are in hydrostatic equilibrium. This
means that the characteristic times of the accretion pro-
cesses are compared for a long time to the times of
hydrodynamical fluctuations of gas–dust flow in the
circumstellar shell. The purpose of this section is to
delineate the equilibrium parameters of such an object,
to wit, the spatial distribution of the static gravitational
field g(r) and the hydrostatic pressure P(r) in the
regions of space relevant to the problem in question. In
the absence of accretion processes, the above character-
istics are determined by the equations

(16)

(17)

Equations (16) describe the static gravitational field gs

and hydrostatic pressure Ps in the star bulk, Rs is the star
radius, and

is the star mass. Equations (17) determine the static
gravitational field g0 and hydrostatic pressure P0 in the

ρ
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dusty cocoon of radius R. In the star’s interior, the solu-
tions of (16) are given by

(18)

In the stellar envelope, the static gravitational field g0(r)
and hydrostatic pressure P0(r) are given by the follow-
ing solutions of Eqs. (17):

(19)

(20)

The detailed derivation of this latter equation, in a
somewhat different context, can be found in [16]. From
this point on, superscript zero labels the static gravity
field in the ambient gas–dust envelope.

3.1. Shear Oscillations Driven 
by Gravitational Stresses 

In what follows, we consider small-amplitude dis-
turbances in the dense gas–dust shell of a stellar enve-
lope, generated by seismic vibrations of the central
neutron star. We assume that these are not accompanied
by fluctuations in density. While the model of incom-
pressible viscous fluid is admittedly a highly idealized
approximation, nevertheless we do not expect to lose
any essential gas-dynamical features of gravity waves
in the interstellar medium on this account. Under such
disturbances, the quantities entering the equations of
hydrogravity are infinitesimally perturbed as

(21)

(22)
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(24)

where  and P0 are determined by Eqs. (19) and (20),
respectively. Inserting (21)–(24) into (11)–(13), we
arrive at the linearized equations of hydrogravity for
heavy incompressible viscous fluid,

(25)

(26)

Scalar multiplication of (25) with v i and integration
over the cocoon volume (ignoring the effects of surface
stresses) yields

(27)

This equation gives the rate at which the kinetic energy
of the gas-dynamical motions changes. The most
important point for our present discussion is that gravi-
tational forces in the volume of the dusty shell do work,
which is characterized by the inseparable link between
anisotropic gravitational stresses and shear fluctuations
of material flow, tikv ik . This suggests that gravitational
stresses impart to the ambient gas–dust matter a portion
of mechanical rigidity generic to viscoelastic materials
whose response to an external disturbance is accompa-
nied by shear fluctuations.

In appearance, Eq. (27) is similar to the equation of
energy balance for shear response of an isotropic vis-
coelastic material continuum,

where ui is the material displacement field (related to
the velocity as v i = , which implies v ik =  for the
rate of strains), σik is the Hookean shear stress, uik is the
shear strain tensor, and µ is the shear modulus. This last
equation is obtained by scalar multiplication with  of
the basic equation of continuum mechanics of vis-
coelastic incompressible matter,

followed by integration over the volume.
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It is expected, therefore, that a pulsating neutron star
should generate shear oscillations of gas–dust matter in
the circumstellar envelope. Clearly, the only way of
exploring this statement is to evaluate the frequency
and lifetime of the mode promoted by gravitational
stresses. In doing this, we use the energy variational
principle. The procedure is as follows. The first step is
to use the separable representation for fluctuating vari-
ables

(28)

Substituting this form for v i in (26) and eliminating the
time derivative, we obtain

(29)

The analogous separable forms for tensors of gravita-
tional tik and viscous πik stresses are

(30)

Hereafter, ai(r) is the instantaneous displacement field
and α(t) is the temporal amplitude of the oscillations.

Inserting (28) and (30) in (27), we arrive at the equa-
tion governing the time evolution of α(t) having the
form of the standard equation for a damped harmonic
oscillator,

(31)

where the parameters (inertia M, stiffness K, and vis-
cous friction D) are given by

(32)

(33)

The well-known solution of (31) is

where

(34)

Here, ω0 stands for the frequency of nondissipative free
oscillations and τ is the viscous damping time. Long-
lasting oscillations exist if ω0τ @ 1. Thus, to evaluate
the frequency and lifetime of the gravity modes in the
spherical gas–dust nebula surrounding a pulsating neu-
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JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tron star, we must specify the form of the instantaneous
displacement a(r), which is solenoidal in view of our
adopted approximation of incompressible fluid. In
doing this, we consider the quasistatic regime of wave
motions of a spherical envelope generated by seismic
vibrations of a neutron star. In the case of quasistatic
waves, the velocity field v(r, t) is determined by the
solutions of the Laplace equation

which is regarded as the long-wavelength limit of the
Helmholtz equation of standing waves

since in the limit of extremely long wavelengths (λ 
∞), the wave vector k = 2π/λ  0. In view of the
relation

the instantaneous displacement field a(r) satisfies the
equations

(35)

The poloidal solution of (35),

(36)

describes a spheroidal quasistatic wave (the long-wave-
length limit of a standing wave) in the circumstellar
envelope. Here, Pl(µ) is the Legendre polynomial of
degree l; the spherical polar coordinate system with
fixed polar axis is used. This irrotational (∇  × as = 0)
field of displacement is generated by a spheroidally
pulsating neutron star.

A neutron star executing global torsional vibrations
produces fluctuations of gas–dust flows of substantially
differentially-rotational character. The field of material
displacements in this kind of oscillatory motions of the
circumstellar shell is given by the toroidal vector field

(37)

This field is also the general solution of (35). It is note-
worthy that the parameters M, K, and D depend on arbi-
trary constant N as N2, and hence, ω0 and τ are indepen-
dent of the specific form of N.

3.2. Spheroidal Hydrogravity Mode 

We assume that R, the radius of the circumstellar
cloud, is much larger than the star’s radius Rs:

Therefore, the limits of integration along the radial
variable r can be taken from the surface of the star, r =
Rs , to the outer surface of the gas–dust shell removed to
infinity, r = R  ∞; a neutron star looks like an oscil-

∇ 2v r t,( ) 0,=

∇ 2v r t,( ) k2v r t,( )+ 0,=

v a r( )α̇ t( ),=

∇ 2a r( ) 0, ∇ a r( ) 0.= =

as r( ) N /l( ) ∇ ∇ rr l– 1– Pl µ( )×[ ]×[ ]=

=  N∇ r l 1+( )– Pl µ( ), µ– θ,cos=

at r( ) φ r( ) r×[ ] , f N∇ r l 1+( )– Pl µ( )( ).= =

Rs/R ! 1.
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Fig. 1. Geometric illustration of material displacements in circumstellar hydrogravity waves generated by a spheroidally (top pic-
ture) and torsionally (bottom picture) oscillating neutron star.
lating blob immersed in a spherical gas–dust matrix of
infinitely large radius. For the parameters of inertia
Ms(l), internal friction Ds(l), and the lifetime τs(l) of a
spheroidal g-mode, computed as a function of the mul-
tipole degree of oscillations (l), we obtain

(38)

(39)

Ms l( ) 4πρ N2

Rs
2l 1+

------------- l 1+
2l 1+
--------------,=

Ds l( ) 8πη N2
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2l 3+
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τ
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2

ν
-----, ν η

ρ
---,= =
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where η is the dynamical viscosity of the interstellar
medium and τ is the time constant of exponential time
decay due to viscous dissipation of the oscillatory
motions. In somewhat different context, this last expres-
sion for τs(l) has first been established by Lamb [12].
More laborious are calculations of the restoring force
parameter K of hydrogravity, whose analytic form is
given by expression (33). We omit discussion of the
tedious integration procedure and only note that these
calculations are appreciably facilitated by the use of
Maple symbolic algebra software. As a result, we
obtain

(40)Ks l( )
16π2

3
-----------N2 Gρ2

Rs
2l 1+

------------- l 1+( ) 2 l 2+( )
2l 1+

-------------------
ρs ρ–

ρ
--------------+ .=
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Figure 1 illustrates circumstellar gravitational stresses
generated by spheroidal quadrupole vibrations of a
neutron star. The frequency of undamped spheroidal
modes of hydrogravity in the galactic ISM is given by

(41)

Because the density of the star ρs is much greater than
that of the ambient interstellar medium ρ, that is,
ρ/ρs ! 1, the last formula (41) can be replaced by

(42)

where Ms and Rs are the mass and radius of the neutron
star and ωG is the natural unit of frequency of g-modes
in the star bulk. This result is perhaps the most striking
outcome of the considered models, which shows that
the frequency of the hydrogravity mode in the ISM is
independent of the density of the galactic interstellar
matter. Formula (42) can be compared with that for the
frequency of nonradial spheroidal g-modes in the neu-
tron star bulk computed in [24] as a function of the mul-
tipole degree l,

(43)

We see that in the limit of very high overtones, l @ 1,
the frequency of spheroidal g-modes in the ISM coin-
cides with that for g-modes in the neutron star bulk,

3.3. Toroidal Hydrogravity Mode 

The inertia Mt(l), internal friction Dt(l), and lifetime
τt(l) as functions of the multipole degree l of the toroi-
dal hydrogravity mode are given by

(44)

(45)

The obtained analytic estimate (45) for the time of vis-
cous relaxation of rotational oscillations in the circum-
stellar envelope (pictured in the lower part of Fig. 1) has
the same practical usefulness as Lamb’s formula (39).
It follows that high-multipole gravity modes decay
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faster then low-multipole ones, and this conclusion is
independent of the adopted approximation of incom-
pressible matter. An analogous conclusion was derived
in [26] for the decay time of the toroidal mode in the
neutron star bulk. In a cosmic hydrogen plasma,

The numerical value of the factor Λ ≈ 10–15 and ρ ≈
10–24 g cm–3 [15]. For ρν ≈ 10–15 cm2 s, the time of vis-
cous relaxation τν ≈ 103 s; for ρν = 10–20 cm2 s, the life-
time of interstellar mode of hydrogravity is on the order
of 10 years. Another way of computing the time of vis-
cous dissipation is based on the formula

(where ν is the collision frequency in the gas–dust
interstellar matter, n is the particle density, and T is the
temperature), which leads to lifetimes from 102 to
106 years. All this leaves no doubt about the existence
of the hydrogravity mode in the galactic interstellar
medium.

The restoring force parameter Kt(l) is given by

(46)

The frequency of dissipationless toroidal hydrogravity
mode in the ambient ISM is given by

(47)

In the natural limit ρ/ρs ! 1, the latter formula is
replaced by

(48)

where ωG stands for the frequency of g-modes in the
neutron star bulk. This equation again highlights the
fact that the frequency of the hydrogravity mode is
independent of the material properties of galactic inter-
stellar matter. For the sake of comparison, the fre-
quency of the torsional g modes in the neutron star is
given by [25]

(49)

We see that in the limit l @ 1, we have ω0t(l) = ωt(0Gl).
The difference between periods of hydrogravity modes
in the ISM and g modes in the neutron star bulk is illus-
trated in Fig. 2. Our expectation that the kind of inter-

ρν 2.2 10 15– T5/2/ Λ .ln×=

η nkBT /ν=

Kt l( )
8π2

3
--------N2 Gρ2

Rs
2l 1–

------------- l l 2+( )
2l 1+

----------------- 2 l 1+( )
2l 1–

-------------------
ρs ρ–

ρ
--------------+ .=

ω0t
2 l( ) = 

2π
3

------Gρ 2l 1–( ) l 2+( )
l 1+

--------------------------------- 2 l 1+( )
2l 1–

-------------------
ρs ρ–

ρ
--------------+ .

ω0t
2 l( ) ωG

2 2l 1–( ) l 2+( )
2 l 1+( )

---------------------------------,=

ωt
2 G0 l( ) ωG

2 l 1–( ).=
SICS      Vol. 99      No. 3      2004



456 BASTRUKOV et al.
stellar motions considered can be detected in an elec-
tromagnetic signal from a pulsating neutron star rests
on the plausible assumption that collective oscillations
of charged species in interstellar gravity waves should
be accompanied by emission of electromagnetic waves.
Since the radio range of such an emission is not extin-
guished by the gas–dust cloud of the ISM, the interstel-
lar gravity waves could manifest themselves by a peri-
odic radio signal whose timing is determined by the fre-
quency of the gravity mode in the central star. Also, it
is noteworthy that in [27], it is shown that taking into
account electromagnetic processes around a torsionally
oscillating neutron star can lead to a better understand-
ing of the behavior of gamma-ray bursts.

3.4. Canonical Gravity Waves 
from Equations of Hydrogravity 

In this subsection, we show that the approach sug-
gested above regains the well-known results of the clas-
sical fluid-dynamic theory regarding the dispersion
relation for the free surface gravity waves in an incom-
pressible inviscid liquid caused by the presence of a
constant gravitational field (see, e.g., [12–14]). This is
interesting in its own right because the developed treat-
ment discloses the fact that the classical gravity waves
are of a substantially shear character. From the energy
balance equation (27) obtained above, it follows that
the dissipative free fluctuations of an incompressible

1

2

2

1

0.003

0.002

0.001

0

0.003

0.002

0.001

0 10 20 30 40 50
l

Pl, s

(a)

(b)

Fig. 2. Period Pl , in seconds, as a function of multipole
degree l of spheroidal (a) and torsional (b) hydrogravity
modes in the circumstellar envelope (solid line) and the cor-
responding g modes in the bulk of a neutron star (dashed
line) computed for two models of neutron stars. 1—Ms =
1.3M(, Rs = 13 km; 2—Ms = 0.1M(, Rs = 18 km.
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liquid promoted by anisotropic Newtonian gravita-
tional stresses are governed by equations of the form

(50)

These equations should be supplemented by the incom-
pressibility condition

which implies that

Adhering to the treatment of hydrodynamic gravity
waves in an incompressible fluid of infinite depth, given
in [14], we assume that the plane z = 0 corresponds to
the equilibrium fluid surface. In this case, the constant
gravitational field g0 has the components

(51)

The motions are restricted to the xz plane, which means
that the fluctuating field of the velocity is a function of
x and z and therefore has just two nonzero components

(52)

Given (51) and (52), in Cartesian coordinates, Eqs. (50)
break up into the set of noncombining equations

(53)

(54)

exhibiting strong coupling between fluctuations in the
velocity of hydrodynamical flow and gravitational
field. Taking the time derivative in Eqs. (53) and (54),
we find that the resultant equations can easily be com-
bined to give identical equations for each fluctuating
variable,

(55)

(56)

We consider an incompressible liquid with a free sur-
face. A free gravity wave is interpreted as a disturbance
traveling in this liquid whose amplitude is exponen-
tially decreasing toward the depth, i.e., as z  –∞,
and for which the velocity components are described by

(57)

The components of the fluctuating gravity field in this

ρv̇ i 4πG( ) 1– ∇ k gi
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wave have the form

where v x and v z are given by expressions (57). Substi-
tuting (57) in (55), we arrive at the well-known disper-
sion relation of a classical free surface gravity wave in
an incompressible liquid of infinite depth [14, 15],

(58)

where VG is the group velocity of the gravity wave. In
this wave, the velocity vector v, at any fixed value of the
depth coordinate z in the xz plane, undergoes a uniform
rotation in this plane preserving its magnitude. This is
clearly seen by representing the flow velocity as

(59)

where ey is the unit vector in the positive direction of the
y axis around which, at a fixed value of z, the velocity
vector v executes uniform rotation. However, it should
be clearly realized that this rotation has nothing to do
with vorticity of the fluid flow, since the vector field of
vorticity

On the other hand, the requirements

(60)

imply that v can be represented as gradient of a scalar
function φ

(61)

It can be verified that the velocity field in the surface
gravity wave v, Eq. (57), obeys the equation

as well. It is this fact that has been used as a guide in the
above adopted classification of the gravity modes in a
spherical circumstellar shell as spheroidal and toroidal
modes in which the fields of displacements are
described by two general solutions to the vector
Laplace equation. Thus, the proposed equations of
hydrogravity provide a proper account of the canonical
gravity waves by accentuating the shear character of
this mode. Essentially, this means that gravitational
stress endows an incompressible fluid with the mechan-
ical properties typical of viscoelastic materials capable
of transmitting shear waves.

4. DISCUSSION

An understanding of physical mechanisms govern-
ing the large-scale motions of galactic interstellar
medium brought about by seismic vibrations of stars is
important in two areas of current astrophysics: aste-

δgx
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ω

----------v z, δgy 0, δgz
4πρ
ω

----------v x,–= = =

ω gk, VG
∂ω
∂k
-------

1
2
--- g

k
---,= = =

v ∇ ey f( )×[ ] ∇ f ey×[ ] ,= =

f Aekz kx ωt–( ),sin=

W ∇ v× 0.= =
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roseismology and interstellar gas dynamics. In this
work, we have investigated the wave motions of the
galactic interstellar medium promoted by circumstellar
gravitational fields of pulsating stars. In doing this, we
have set up self-consistent equations of hydrogravity
having in appearance some features in common with
those lying at the base of hydromagnetic theory. By
examining the potential of such an approach, heavily
relying on the concept of Newtonian gravitational
stresses, we have shown that the proposed theory
regains the dispersion equation for the canonical grav-
ity waves traveling near the surface of an incompress-
ible inviscid liquid of infinite depth, the wave process
being well known in the theoretical oceanology and
physics of planetary atmospheres. Newly highlighted
here is the shear character of oscillating flows in this
wave, owing its origin to fluctuations of Newtonian
gravitational stresses.

Based on this and working from the homogeneous
model of a spherical stellar cocoon (a star surrounded
by an extended spherical shell of a gas–dust medium),
we apply the proposed theory of hydrogravity to analy-
sis of the small-amplitude gravity modes generated in
the interstellar medium by a neutron star executing
spheroidal and torsional vibrations in a quiescent, pre-
sumably poststarquake, regime. In the calculations pre-
sented (carried out by two constructively different oper-
ational tools), the approximation of incompressible vis-
cous fluid has been adopted. This implies that
disturbances coming from a pulsating neutron star lead
to weak perturbations accompanied by coupled fluctu-
ations of the velocity and gravitational field, whereas
the equilibrium density and hydrostatic pressure in the
ambient gas–dust shell remain unaffected. Clearly,
such an approximation is unwarranted for violent star-
quakes generating shock and compressional waves. The
extension of the proposed theory to the case of these
latter waves requires special investigation, which is out-
side the scope of our present discussion. The practical
usefulness of the considered, admittedly idealized,
model is that it allows one to attain conclusive infer-
ences regarding the dependence of period and lifetime
of considered modes upon characteristic parameters of
both a pulsating star and surrounding gas–dust inter-
stellar matter and the multipole degree of oscillations as
well. From the physical side, a finding of particular
interest is that the frequency of these weakly attenuated
modes of hydrogravity in an unbounded dusty envelope
is proportional to the frequency of the g mode in the
bulk of a neutron star. The corresponding period falls in
the interval from 0.1 to 20 milliseconds. This inference
is in agreement with the Boriakoff–Van Horn conjec-
ture [2, 3] that micropulses of millisecond duration
clearly discernible in the windows of the main pulse
train owe their existence to pulsations of neutron stars.
Together with this, it seems fairly plausible that unpre-
dictable irregularities and perturbations in the ISM
mediating the waves of hydrogravity under consider-
SICS      Vol. 99      No. 3      2004
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ation should substantially affect the coherency of these
micropulses, as has been extensively discussed in [28].

While the developed theory is presented in the con-
text of neutron star pulsations, it is hoped that the theo-
retical predictions inferred here can find useful applica-
tions in the area of asteroseismology. In this connec-
tion, it is important that the considered mechanisms of
gravitational coupling between small-amplitude vibra-
tions of a star and a stellar envelope presume that col-
lective oscillations of charged particles (forming cir-
cumstellar plasma) in the quasistatic wave of hydro-
gravity are accompanied by electromagnetic radiation
whose frequency coincides with that for the gravity
mode in the star bulk. It is expected, therefore, that such
radiation can be observed in the vicinity of any star sur-
rounded by interstellar plasma and executing small-
amplitude nonradial vibrations driven by self-gravity.
In this case, the considered quasistatic waves of hydro-
gravity can exist in the solar envelope, provided the Sun
undergoes global nonradial gravity-driven vibrations of
small amplitude with frequencies proportional to the
basic frequency of g mode ωG . Such an attitude sheds
some new light on the known problem of helioseismol-
ogy [29] regarding 160-min variability discovered long
ago in solar observations [30, 31], which has been inter-
preted as a manifestation of the gravity-driven vibra-
tions of the Sun (see also [32]). However, in subsequent
years, the authenticity of the solar origin of this signal
has been the subject of controversy (e.g., [33]). In
recent work [34], advocating the solar origin of this sig-
nal, it is argued that this variability cannot be ascribed
to some terrestrial cause or to an artifact of the data
reduction procedure. Notwithstanding the fact that fur-
ther measurements (preferably with the use of satellite-
based telescopes) are needed to attain more definite
statements regarding the very source and physical
nature of this intriguing signal, we conclude that pre-
dictions of the theory developed in this work are in line
with the hypothesis on the helioseismic origin of this
phenomenon.
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APPENDIX

We show that the results obtained above can be
derived on a different mathematical footing. The basic
idea of this method is to use the gravitational stress ten-
sor Gik as the dynamical variable of motions together
with the density ρ and the velocity field Vi , the evolu-
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tion of which is governed by coupled equations of the
form

(62)

(63)

(64)

Such an approach has been used in [8, 9] to compute the
gravity modes in the bulk of a neutron star.

As in the previous section, we focus on disturbances
of the gas–dust cocoon triggered by seismic vibrations
of a neutron star that are not accompanied by fluctua-
tions in density but solely in velocity, pressure, and
gravitational stresses,

(65)

We note that in this model, the static gravitational
stresses in the stationary cloud surrounding the neutron
star are determined by the hydrostatic pressure
(Eq. (20)) as

(66)

Inserting (65) in (62)–(64), we arrive at linearized
equations of gravity-driven fluctuations,

(67)

(68)

(69)

The energy balance equation is

(70)

This equation is obtained by scalar multiplication
of (67) with v i and integration over the cloud volume,
provided that surface stresses are negligible. The next
step is to use a separable r and t representation for both
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the kinematic characteristics of motion like the field of
material displacements and the rate-of-strain tensor,

(71)

and for the strength characteristics of motion such as
the stress tensors of gravity and viscosity,

(72)

Substituting (71) and (72) in (70), we obtain the equa-
tion of damped harmonic oscillations

(73)

in which the parameters of inertia M, stiffness K, and
viscous friction D are given by the integrals

(74)

(75)

These equations show that the frequency and lifetime of
quasistatic modes of hydrogravity can be computed
using the above specified fields of spheroidal and toroi-
dal instantaneous displacements. Also, it is noteworthy
that the last expression for K is similar to the equation
for the rigidity coefficient of a viscoelastic material
whose oscillatory response is controlled by Hooke’s
restoring force. This again lead us to conclude that the
gravitational stresses imparts to the gas–dust circums-
tellar material a portion of shear mechanical rigidity
typical of viscoelastic soft matter. Deserving particular
emphasis is the fact that the parameter of rigidity (75)
computed for both the spheroidal hydrogravity mode
(with field of displacement (36)) and toroidal hydro-
gravity mode (with fields of displacement (37)) is ana-
lytically identical with that given by Eqs. (40) and (46).
Therefore, all physically significant results inferred in
the body of this paper can be recovered within the
approach outlined in this appendix.
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Abstract—An equidistant spectrum of the horizon area of a quantized black hole does not follow from the cor-
respondence principle or from general statistical arguments. On the other hand, such a spectrum obtained in
loop quantum gravity (LQG) either does not comply with the holographic bound or requires a special choice of
the Barbero–Immirzi parameter for the horizon surface, distinct from its value for other quantized surfaces.
The problem of distinguishability of the edges in LQG is discussed, with the following conclusion: Only under
the assumption of partial distinguishability of the edges can the microcanonical entropy of a black hole be
made both proportional to the horizon area and satisfying the holographic bound. © 2004 MAIK “Nauka/Inter-
periodica”.
1. The idea of quantizing the horizon area of black
holes was put forward many years ago by Bekenstein in
the pioneering article [1]. It was based on an intriguing
observation made by Christodoulou and Ruffini [2, 3]:
the horizon area of a nonextremal black hole behaves,
in a sense, like an adiabatic invariant. Of course, the
quantization of an adiabatic invariant is perfectly natu-
ral, in accordance with the correspondence principle.

One more conjecture made in [1] is that the spec-
trum of a quantized horizon area is equidistant. The
argument therein was that a periodic system is quan-
tized by equating its adiabatic invariant to 2π"n, n = 0,
1, 2, ….

Later, it was pointed out by Bekenstein [4] that the
classical adiabatic invariance does not by itself guaran-
tee the equidistance of the spectrum, at least because
any function of an adiabatic invariant is itself an adia-
batic invariant. However, up to now, articles on the sub-
ject abound in assertions that the form

(1)

for the horizon area spectrum1 is dictated by the
respectable correspondence principle. The list of these
references is too long to be presented here.

We consider an instructive example of the situation
where a nonequidistant spectrum arises in spite of the

A βlp
2
n, n 1 2 …,, ,= =

¶ This article was submitted by the author in English.
1 Here and below,  = "k/c3 is the Planck length squared, lp =

1.6 × 10–33 cm, and k is the Newton gravitational constant; β is
here some numerical factor.

lp
2

1063-7761/04/9903- $26.00 © 20460
classical adiabatic invariance. We start with a classical
spherical top of an angular momentum J. Of course, the
z projection Jz of J is an adiabatic invariant. If the z axis
is chosen along J, the value of Jz is J, or "j in the quan-
tum case. The classical angular momentum squared J2

is also an adiabatic invariant, with the eigenvalues
"2j( j + 1) when quantized. We now try to use the oper-

ator  for the area quantization in quite natural units

of . For the horizon area A to be finite in the classical
limit, the power of the quantum number j in the result

for j @ 1 should be the same as that of " in  [5]. With

 ~ ", we thus arrive at

Because

we have returned to the equidistant spectrum in the
classical limit. However, the equidistant spectrum can
be avoided as follows. We assume that the horizon area

consists of sites with area of the order , and to each
site i we ascribe its own quantum number ji and the con-

tribution  to the area. Then the above for-
mula changes to

(2)

(in fact, this formula for a quantized area arises as a spe-
cial case in loop quantum gravity, see below). Of

Ĵ
2

lp
2

lp
2

lp
2

A lp
2 j j 1+( ).∼

j j 1+( ) j 1/2 for j @ 1,+

lp
2

ji ji 1+( )

A lp
2 ji ji 1+( )

i

∑∼
004 MAIK “Nauka/Interperiodica”



        

SPECTRUM OF A QUANTIZED BLACK HOLE, CORRESPONDENCE PRINCIPLE 461

                                                              
course, to retain a finite classical limit for A, we should
require that

However, any of the ji can be comparable to unity.
Therefore, in spite of the adiabatic invariance of A, its
quantum spectrum (2) is not equidistant, although it is,
of course, discrete.

One more, quite popular argument in favor of equi-
distant spectrum (1) is as follows [4, 6, 7]. On the one
hand, the entropy S of a horizon is related to its area A
by the Bekenstein–Hawking formula

(3)

On the other hand, the entropy is nothing else but
lng(n), where the statistical weight g(n) of any quantum
state n is an integer. In [4, 6, 7], the requirement of inte-
ger g(n) is taken literally and results after simple rea-
soning not only in equidistant spectrum (1), but also in
the following allowed values for the numerical factor β
in this spectrum:

We can imagine, however, that with some model for
S, g(n) is given by a noninteger value of K + δ, 0 < δ <
1, instead of an integer value K. Then, the entropy is

Now, the typical value of the black hole’s entropy

is huge, roughly 1076. Therefore, the correction δ/K is
absolutely negligible compared to S = lnK. Moreover,
it is far below any conceivable accuracy in a description
of entropy and can therefore be safely omitted and for-
gotten. As usual for macroscopic objects, the fact that
the statistical weight is an integer has no consequences
for the entropy.

Thus, contrary to popular belief, the equidistance of
the spectrum for the horizon area does not follow from
the correspondence principle and/or from general sta-
tistical arguments.

2. This does not mean, however, that any model
leading to an equidistant spectrum for the quantized
horizon area should be automatically rejected. A quite
simple and elegant version of such a model, so-called
“it from bit,” was formulated for a Schwarzschild black
hole by Wheeler [8]. The assumption is that the horizon
surface consists of ν patches, each of them supplied
with an “angular momentum” quantum number j with
two possible projections ±1/2. The total number K of
degenerate quantum states of this system is

(4)

ji ji 1+( ) @ 1.
i

∑

A 4lp
2 S.=

β 4 k, kln 2 3 …., ,= =

S K δ+( )ln K δ/K .+ln= =

S Kln A

4lp
2

-------= =

K 2ν.=
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Then the entropy of the black hole is

(5)

Finally, with Bekenstein–Hawking relation (3), one
obtains the following equidistant formula for the area
spectrum:

(6)

This model of a quantized Schwarzschild black hole by
itself looks flawless.

This result was later derived in [9] in the framework
of LQG [10–14]. We discuss below whether the “it
from bit” picture, if considered as a special case of the
area quantization in LQG, can be reconciled with the
holographic bound [15–17].

More generally, a quantized surface in LQG is
described as follows. One ascribes a set of punctures to
the surface. Each puncture is supplied with two integer
or half-integer angular momenta ju and jd,

(7)

ju and jd are related to edges directed up and down the
normal to the surface, respectively, and add up to an
angular momentum jud,

(8)

The area of the surface is

(9)

The overall numerical factor β in (9) cannot be deter-
mined without an additional physical input. This ambi-
guity originates from a free (so-called Barbero–
Immirzi) parameter [18, 19] that corresponds to a fam-
ily of inequivalent quantum theories, all of them being
viable without such an input.

The result (6) was obtained in [9] under the addi-
tional condition that the gravitational field on the hori-
zon is described by the U(1) Chern–Simons theory.
Formula (6) is a special case of general formula (9) with
all jd vanishing and all ju equal to 1/2 (or vice versa). As
regards the overall factor β, its value here is2 

(10)

We now turn to the holographic bound [15–17].
According to it, the entropy S of any spherically sym-

2 The common convention for the numerical factor in formula (9)
is 8πβ; with it, the parameter β is smaller than ours by the factor
of 8π.

S1/2 Kln ν 2.ln= =

A1/2 4 2lp
2 ν .ln=

ju jd, 1/2 1 3/2 ….,, ,=

jud ju jd, ju jd– jud ju jd.+≤ ≤+=

A

=  βlp
2 2 ji

u ji
u 1+( ) 2 ji

d ji
d 1+( ) ji

ud ji
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i
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β 8 2ln

3
-----------.=
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metric system confined inside a sphere of area A is
bounded as

(11)

with the equality attained only for a black hole.
A simple intuitive argument confirming this bound

is as follows [17]. We consider the discussed system
collapsing into a black hole. During the collapse, the
entropy increases from S to Sbh and the resulting hori-
zon area Abh is certainly smaller than the initial confin-
ing area A. Now, with Bekenstein–Hawking relation (3)
for a black hole taken into account, we arrive, via the
obvious chain of (in)equalities

at the discussed bound (11).
The result (11) can be formulated in a different man-

ner. Among the spherical surfaces of a given area, the
surface of a black hole horizon has the largest entropy.

On the other hand, it is only natural that the entropy
of an eternal black hole in equilibrium is maximum.
This was used by Vaz and Witten [20] in a model of a
quantum black hole originating from a dust collapse.
The idea was then employed by us [21, 22] in the prob-
lem of quantizing the horizon of a black hole in LQG.
In particular, the coefficient β was calculated in [22] in
the case where the area of a black hole horizon is given
by the general formula (9) of LQG, as well as under
some more special assumptions on the values of ju, jd,
and jud. Moreover, it was demonstrated in [22] for a
rather general class of horizon quantization schemes
that the maximum entropy of a quantized surface is pro-
portional to its area.

We sketch the proof of this result (for more technical
details, see [22]). Here and below, we consider the
microcanonical entropy S of a surface (although with
fixed area instead of fixed energy). It is defined as the
logarithm of the number of states of this surface with a
fixed area A, i.e., with a fixed sum

(12)

Let νim be the number of punctures with a given set of

momenta , , , and a given projection m of .
The total number of punctures is

We assume that the edges with the same set of the quan-

tum numbers i and m (i.e., with the same , , ,
and m) are indistinguishable, and therefore interchang-

S
A

4lp
2

-------,≤
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4lp
2

-------- A
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-------,≤=
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ji
u ji

d ji
ud
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ing them does not result in new states. All other permu-
tations, those among the edges with differing i and m,
do create new states, and hence such edges, with differ-
ing i, m, are distinguishable,

We note that the “it from bit” values (4) and (5) for
the number of states and entropy also follow from this
assumption. Indeed, let ν be the total number of patches
with j = 1/2 and let ν+ and ν– = ν – ν+ patches have the
respective projections +1/2 and –1/2. Then the number
of the corresponding states is obviously given by

and the total number of states is

in agreement with (4).

Thus, the entropy is

(13)

The structure of expressions (9) and (13) is so different
that the entropy certainly cannot be proportional to the
area in the general case. However, this is the case for the
maximum entropy in the classical limit.

For combinatorial reasons, it is natural to expect that
the absolute maximum of entropy is reached when all

values of quantum numbers  are present. We also
assume that in the classical limit, the typical values of
puncture numbers νim are large. Then, with the Stirling
formula for factorials, expression (13) becomes

(14)

We seek the extremum of expression (14) under the
condition

(15)

where each partial contribution

is independent of m. The problem reduces to solving
the system of equations

(16)

ν!
ν+! ν ν+–( )!
------------------------------,

K
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ν+! ν ν+–( )!
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or

(17)

Here, µ is the Lagrange multiplier for constraint (15).
Summing expressions (17) over i and m, we arrive at
the equation for µ,

(18)

the statistical weight

of a puncture arises here because ri are independent of
m. On the other hand, multiplying Eq, (16) by νim and
summing over i and m, with constraint (15), we arrive
at the following result for the maximum entropy for a
given value of the sum N, or the black hole area A:

(19)

One more curious feature of the picture obtained is
worth noting: it gives a sort of Boltzmann distribution
for occupation numbers (17). In this distribution, the
partial contributions ri to the area are analogs of ener-
gies and the Lagrange multiplier µ corresponds (up to a
factor) to inverse temperature.

It should be emphasized that relation (19) is true not
only in LQG, but applies to a more general class of
approaches to quantization of surfaces. The following
assumption is necessary here: the surface should con-
sist of patches of different sorts, such that there are νim

patches of each sort i, m, with a generalized effective
quantum number ri and a statistical weight gi . Equally
necessary is the above assumption on the distinguish-
ability of the patches.

Thus, the maximum entropy of a surface is propor-
tional to its area in the classical limit. This proportion-
ality certainly occurs for a classical black hole. This is
one more strong argument in favor of the assumption
that the black hole entropy is maximum.

We now return to the result in [9]. If we assume that
the value (10) of the parameter β is universal (i.e., it is
not special to black holes, but refers to any quantized
spherical surface), then the value in (5) is not the max-
imum one in LQG for a surface of area (6). This looks
quite natural: with the transition from the unique choice
made in [9],

to a more extended and richer one, the number of
degenerate quantum states should, generally speaking,
increase. Together with this number, its logarithm,
which is the entropy of a quantized surface, increases
as well.

ν im e
µri–

ν i'm'
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∑ νe
µri–
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e
µri–
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∑ gie
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We begin the proof of the above statement by rewrit-
ing formula (5) as

(20)

From now on, we consider this value of N fixed. We
start with a relatively simple example where

and hence the general formula (9) for a surface area
reduces to

(21)

(and coincides with our naive model (2)). We find the
maximum entropy of such a surface for the fixed value
of

(22)

which should be equal to the “it from bit” one, ν .
Here, the statistical weight of a puncture with quantum
number j is

and Eq. (18) can be rewritten as

(23)

Its solution is

(see [22]), and the maximum entropy

(24)

then exceeds the result in (20).
As expected, in the general case, with N given by

formula (12) with all the values of , ,  allowed
and

the maximum entropy is even larger [22],

(25)

Thus, the conflict is obvious between the holo-
graphic bound and the result (20) found within the LQG
approach in [9].

One might try to avoid the conflict by assuming that
value (10) of the Barbero–Immirzi parameter β is spe-
cial for black holes only, while for other quantized sur-
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faces, β is smaller. However, such a way out would be
unattractive and unnatural.

3. We now return to the essential assumption made
in the previous section: the edges with the same set of
the quantum numbers i, m are identical, and the edges
with differing i, m are distinguishable. In principle, one
might try to modify this assumption of partial distin-
guishability of edges in two opposite ways.

One possibility that might look quite appealing is that
of complete indistinguishability of edges. It means that
no permutation of any edges results in new states. To
simplify the discussion, we consider to expression (21)
for the horizon area instead of the most general one (9).

Then, the total number of angular momentum states
created by

indistinguishable edges of a given j with all 2j + 1 pro-
jections allowed, from –j to j, is3

(26)

Those partial contributions

to the black hole’s entropy

,

which can potentially dominate the numerically large
entropy, may correspond to three cases: j ! νj , j @ νj ,
and j ~ νj @ 1. These contributions are as follows:

In all three cases, the partial contributions to the
entropy S are much smaller parametrically than the cor-
responding contributions

to the area

Therefore, S ! A in all these cases, and hence, with
indistinguishable edges of the same j, one cannot make

3 Perhaps, the simplest derivation of this formula is as follows.
Effectively, we here seek the number of ways of distributing νj
identical balls into 2j + 1 boxes. Then, the line of reasoning pre-
sented in [27, Section 54] results in formula (26). I am grateful to
V.F. Dmitriev for bringing to my attention that formula (26) can
be derived in this simple way.
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the entropy of a black hole proportional to its area. This
was pointed out earlier in [23, 24].

We now consider the last conceivable option, that of
completely distinguishable edges. In this case, the total
number of states is just K = ν!, instead of (13), with the
microcanonical entropy

In principle, this entropy can be made proportional
to the black hole’s area A. The model (which does not
look natural, however) could be as follows. We choose
a large quantum number J @ 1 and assume that the hori-
zon area A is saturated by the edges with j in the interval
J < j < 2J and with “occupation numbers” νj ~ lnJ. Then
the estimates for both S and A are of the order of JlnJ,
and the proportionality between the entropy and the
area can be attained.

However, although the entropy can be proportional
to the area under the assumption of complete distin-
guishability, the maximum entropy for a given area is
much larger than the area itself. Obviously, the maxi-
mum entropy for fixed

is here attained with all j’s being as small as possible,
e.g., 1/2 or 1. In the classical limit ν @ 1, the entropy of
a black hole then grows faster than its area, A ~ ν, while

Thus, the assumption of complete distinguishability is
in conflict with the holographic bound and therefore
should be discarded.

There is no disagreement between this conclusion
and that made in [23, 25, 26]: what is called complete
distinguishability therein corresponds to our partial dis-
tinguishability.
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Abstract—A classical fluid description is used to investigate nonlinear interactions between an electron-type
neutrino burst and a collisionless magnetized electron–positron plasma. It is found that the symmetry between
the electron and positron dynamics is broken due to the presence of intense neutrino bursts. The latter can excite
strong upper-hybrid wakefields, which can produce unlimited acceleration of pairs across the external magnetic
field direction via a surfatron mechanism. Implications of our results to the production of high-energy electrons
and positrons in astrophysical environments are discussed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well established that processes involving elec-
tron–positron plasmas are of significant importance in
a variety of astrophysical phenomena [1–4] that pre-
sumably took place in the early Universe, during the
period 10–4 < t < 1 s after the Big Bang, and in ultrarel-
ativistic pair plasma jets. Electron–positron plasmas are
also found in active galactic nuclei [5, 6] and in the pul-
sar magnetosphere [7, 8]. Another important phenome-
non is the γ-ray burst [9, 10], where many of its charac-
teristics are explained via the relativistic expansion of the
electron–positron plasma (“the fireball model”) [10]. It
is well known that such a plasma has a very peculiar
nature compared with the traditional electron–ion
plasma, because electrons and positrons have the same
mass and represent a symmetry due to their opposite
electric charges. These unique properties are responsi-
ble for many linear and nonlinear wave phenomena that
are different from those occurring in an electron–ion
plasma. This difference is due to the electron–ion mass
ratio, which gives rise to different timescales associated
with the electron and ion dynamics in the plasma. A
systematic study (see, e.g., [11] and references therein)
of nonlinear interactions between intense electromag-
netic waves and relativistic electron–positron plasmas
has been carried out, especially in the pulsar pair
plasma environment for understanding the origin of the
pulsar radio emission.

Other very important material elements in astro-
physical settings are neutrinos. They are produced by
the core of stars and in very high-explosive astrophysi-
cal situations such as those in supernova explosions and
in ultrarelativistic pair plasma jets producing γ-ray

¶This article was submitted by the authors in English.
1063-7761/04/9903- $26.00 © 20466
bursts. Recently, many authors [12–15] have proposed
that the shock expansion mechanism in the supernova
could be due to the energy-momentum transfer from
the neutrino bursts to the magnetized plasma cloud that
surrounds the core of stars. Here, we are interested in
nonlinear interactions of intense neutrino bursts with a
relativistic magnetized pair plasma. It is well known
[16–19] that neutrinos propagating through the plasma
can acquire an effective (induced) electric charge due to
charged and neutral currents associated with the weak
nuclear force causing exchange of W± and Z0 bosons.
There also appears a nonlinear coupling between the
neutrinos and the plasma via the weak Fermi nuclear
interaction and the ponderomotive force of the neutrino
beam [20–25].

In this paper, we study the generation of large-
amplitude upper-hybrid waves in a magnetized elec-
tron–positron plasma interacting with an electron-type
neutrino burst. The neutrino dynamics can be consid-
ered semiclassical by assuming that the neutrino de
Broglie wavelength is much shorter than the typical
scalelength of the perturbation in the effective neutrino
weak interaction potential. We ignore all quantum-
mechanical effects (e.g., the neutrino magnetic
moment) caused by external magnetic fields, because

where " is the Planck constant divided by 2π,

is the electron gyrofrequency, e is the magnitude of the
electron charge, me is the electron mass, c is the speed
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of light in vacuum, and BQM ≈ 4 × 1013 Gs is the Lan-
dau–Schwinger critical field. Neutral current forward
scattering of neutrinos off neutrinos in the background
makes a contribution proportional to the density matrix,
which has no effect on flavor evolution [26].

This paper is organized as follows. In Section 2, we
present the governing equations for neutrinos and elec-
trostatic waves. Section 3 contains an analytic descrip-
tion for the upper-hybrid wakefield in the presence of
neutrino fluxes. Numerical results for the wakefield are
presented in Section 4. Finally, Section 5 highlights our
results and contains possible applications of our work
to acceleration of pairs by large-amplitude upper-
hybrid waves in astrophysical environments.

2. GOVERNING EQUATIONS

We consider an electron-type neutrino burst in a
magnetized electron–positron plasma. The external
magnetic field B0  is along the z direction. The dynam-
ics of an ensemble of the neutrinos can be described by
the equations [22]

(1a)

and

(1b)

which couple the neutrino density Nν and the neutrino
momentum pν . Here,

is the “bare” charge, with Gσν = – , which allows the
neutrinos to couple to the plasma fluid. Furthermore, σ
denotes the electron (e–) and positron (e+) species of the
plasma, GF (≈9 × 10–30 eV cm–3) is the Fermi weak-
interaction coupling constant, θW is the Weinberg mix-
ing angle (sin2θW ≈ 0.23), Iσ is the weak isotopic spin of
the particle of the species σ (equal to –1/2 and 1/2 for
the electrons and positrons, respectively), and Qσ = qσ/e
is the particle normalized electric charge. It should be
noted that the first term in the neutrino “bare” charge is
due to charged currents, which is valid only for elec-
trons (positrons) and the electron-type neutrinos, and
other terms come from the neutral currents and are
valid for all particle species.

In Eq. (1b), Pν = NνTν is the neutrino kinetic pres-
sure and the second term in Eq. (1b) is the weak force,

ẑ
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Fν , on a single neutrino due to the plasma. Further-
more,

are the effective electric and magnetic fields [22],
respectively, and

are the neutrino and σ species currents, respectively.
The linear momentum of the neutrino is

with Eν being the neutrino total energy. The term ∂Jσ/∂t
is the neutrino-plasma (treated covariantly) analog of
the electromagnetic-plasma energy transfer, as
described in [22]. Furthermore, strong dc magnetic
fields can create magnetic-field-aligned motion of the
neutrinos and plasma particles.

The plasma particle dynamics is governed by the
continuity and momentum equations, which are,
respectively,

(2a)

and

(2b)

where

is the momentum of the particle species σ (electrons
and positrons),

is the gamma factor, and B = B0  is the external uni-
form magnetic field in the z direction. The right-hand
side in Eq. (2b) is the total force acting on the plasma
due to all types of the neutrinos, and

are “weak-electromagnetic” fields. Furthermore, Nσ is
the number density of the species σ. Because we focus

Eσ ∇ Nσ
1

c2
----

∂Jσ

∂t
--------,––=

Bσ c 1– ∇ Jσ×=

Jν vνNν, Jσ vσNσ= =

pν
vν

c2
-----Eν,=

∂Nσ

∂t
---------- ∇ Jσ+ 0=

∂Pσ

∂t
--------- vσ∇( )Pσ+ qσE qσ

vσ

c
----- B×+=

+ Gσν Eν
vσ

c
----- Bν×+ 

  ,
ν
∑

Pσ γσmσvσ=

γσ
1

1 v σ
2 /c2–

--------------------------=

ẑ

Eν ∇ Nν c 2– ∂Jν

∂t
--------,––=

Bν c 1– ∇ Jν×=
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on the wakefield generation on timescales that are either
comparable to or shorter than the electron plasma period,
collisions between pairs do not play an essential role, for
instance, in supernova and pair plasma jets [24, 25],
where the plasma number density and the pair temper-
ature are 1030 cm–3 and 105–106 eV, respectively.

To simplify our model, we consider only a cold elec-
tron-type neutrino streaming along the x direction with
a velocity vν close to c, interacting nonlinearly with a
collisionless cold magnetized electron–positron plasma.
Hence, antineutrinos are neglected. It is well known
that the interactions of electron neutrinos with the
plasma do not change their local energy and density
significantly. For instance, in type-II supernova explo-
sions, only 1% of the neutrino energy [14] is supposed
to be transferred to the plasma that surrounds the core
of the star. Hence, without loss of generality, we can
assume that the electron-type neutrino flux only trans-
fers a very small part of its energy Eν to the plasma and
keeps its density Nν nearly constant. Accordingly, the
electron-type neutrino fluid dynamical equations can be
rewritten as

(3a)

and

(3b)

With the longitudinal plasma waves propagating
across the external magnetic field direction, with an
associated electric field E = E  and wavenumber k =
k , the electron–positron plasma fluid equations are

(4a)

(4b)

(4c)

∂Eν

∂t
--------- c

∂Eν

∂x
---------+

≈ 2GFc
∂
∂x
------ Ne Ne–( ) 1

c2
---- ∂

∂t
----- Je Je–( )+ 

 –

∂Nν

∂t
--------- c

∂Nν

∂x
--------- 0.≈+

x̂
x̂

∂Ne

∂t
---------

∂Je

∂x
--------+ 0,=

∂Pex

∂t
-----------

cPex

1 Pe
2+

-------------------
∂Pex

∂x
-----------+ eE

mec
---------–

ωcPey

1 Pe
2+

-------------------–=

– 2GF

∂Nν

∂x
---------

1

c2
----

∂Jν

∂t
--------+ 

  ,

∂Pey

∂t
----------

cPey

1 Pe
2+

-------------------
∂Pey

∂x
----------+

ωcPex

1 Pe
2+

-------------------,=
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and

(5a)

(5b)

(5c)

for the electron and positron plasma species, with Pex ,
, Pey , and  being the x and y components of the

electron and positron momenta, respectively.
Equations (3), (4), and (5) form a set for studying

the generation of large-amplitude plasma waves. To
eliminate the electron and positron fluid currents in
Eq. (3a), we supplement our system of equations with

(6)

because we consider the generation of longitudinal
(electrostatic) waves.

3. UPPER-HYBRID WAKEFIELD

It is convenient to introduce a new independent vari-
able ξ = (x – vφt), where vφ is the plasma wave phase
speed. Hence, Eq. (3a) can be rewritten as

(7)

where E0 is the neutrino initial energy. Using the defini-
tion E = –dΦ/dξ, where Φ is the electric potential asso-
ciated with the wakefield, we obtain from Eq. (7)

(8)

where

is the normalized plasma potential,

is the normalized phase speed,

∂Ne

∂t
---------

∂Je

∂x
--------+ 0,=

∂Pex

∂t
-----------

cPex

1 Pe
2+

-------------------
∂Pex

∂x
-----------+ eE

mec
---------

ωcPex

1 Pe
2+

-------------------+=

+ 2GF

∂Nν

∂x
---------

1

c2
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∂Jν

∂t
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  ,

∂Pey
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cPey

1 Pe
2

+
-------------------

∂Pey

∂x
-----------+

ωcPex

1 Pe
2+

-------------------–=

Pex Pey

Je Je–
1

4πe
---------∂E
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-------,=

dE
dξ
------- 4πe

c
2

v φ
2

------ Ne Ne–( )
1 βφ–

2GF

-------------- E0 Eν ξ( )–( )+ 
  ,=

d2Ψ
dξ2
----------

ωp
2

v φ
2

------
Ne

N0
------

Ne

N0
------ Sν+– 

  ,–=

Ψ eΦ
mec

2
-----------=

βφ
v φ

c
------=

ωp
2 4πe2N0
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------------------=
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is the squared electron plasma frequency, and N0 is the
equilibrium electron (positron) number density. Fur-
thermore,

represents the neutrino-driven term, with

being considered the amount of neutrino energy trans-
ferred to the plasma. Here, ∆ων is the spectral width of
the neutrino spectrum. Assuming that the magnitude

(actually, from the observational fact in the supernova
SN1987A, the “visible” energy of the supernova is a
very small part of the neutrino energy [14]), we can
consider the neutrino flux as an external action into the
plasma such that the amount of the neutrino energy
deposited in the plasma can be taken as a constant input
in Eq. (8). We note that the latter is the Poisson equation
written in a moving frame, where the total charge den-
sity includes the neutrino effective charge density rep-
resented by the term Sν . Transforming Eqs. (4) and (5)
and substituting the electron (positron) density
response into Eq. (8), we obtain

(9)

(10)

(11)

(12)

and

(13)

where

is the normalized electron (positron) momentum,

Sν
E0 1 βφ–( )

2GFN0

-------------------------
∆Eν

E0
----------=

∆Eν

E0
----------

∆ων

ων
----------=

∆Eν

E0
----------

∆ων

ων
---------- ! 1=

d2Ψ
dχ2
----------

Γ e 1 Pe
2+

Pex βφ 1 Pe
2+–

--------------------------------------
Γ e 1 Pe

2+

Pex βφ 1 Pe
2+–

--------------------------------------– Sν,–=

dPex

dχ
-----------

1 Pe
2+

Pex βφ 1 Pe
2+–

-------------------------------------- dΨ
dχ
-------- βφΩc

Pey

1 Pe
2+

-------------------–
 
 
 

,=

dPey

dχ
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Pex

Pex βφ 1 Pe
2+–( )

-------------------------------------------,=

dPex

dχ
-----------

1 Pe
2+

Pex βφ 1 Pe
2+–

-------------------------------------- dΨ
dχ
-------- βφΩc

Pey
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2+

-------------------+–
 
 
 

,=

dPey

dχ
----------- β– φΩc

Pex

Pex βφ 1 Pe
2+–( )

-------------------------------------------,=

Pe e, pe e, /mec=

χ ωp/v φ x v φt–( )=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
is the normalized distance (phase), and

is the normalized electron (positron) gyrofrequency.
Here,

is a constant that depends on the initial value of the
electron and positron momenta, P0. We note that the
coupled equations (9)–(13) depend on the sign of the
linear momentum of the plasma; i.e., the plasma can
move either in the positive or in the negative χ direc-
tion. It should be stressed that these equations describe
the excitation of nonlinear relativistic upper-hybrid
waves by neutrino beams in a magnetized plasma.

The nonrelativistic linear dynamics occurs for
 ! 1, Ψ ! 1, and Sν ! 1. Subsequently, Eqs. (9)–

(13) yield

(14)

(15)

(16)

(17)

(18)

where

is the normalized squared upper-hybrid wave fre-
quency. Equations (13)–(16) have been used to derive
the coupled equations (17) and (18) for the x compo-
nents of the pair-plasma momentum. These linear equa-
tions show that the pair-plasma dynamics is directly
forced by the presence of the neutrino fluxes, which can
generate strong electrostatic waves with an oscillating
frequency ω, propagating perpendicularly to the exter-
nal magnetic field direction.

Solving Eqs. (17) and (18) and substituting the
results in Eq. (14), we obtain the following normalized

Ωc ωc/ωp=

Γ e e,
P0 βφ 1 P0

2
+–

1 P0
2

+
-------------------------------------=

Pe e,

d2Ψ
dχ2
---------- Pex Pex– Sν,–=

dPey

dχ
----------- ΩcPex,–=

dPey

dχ
----------- ΩcPex,=

d2Pex

dχ2
------------- Ωuh

2
Pex+ Pex Sν,+=

d2Pex

dχ2
------------- Ωuh

2
Pex+ Pex Sν,–=

Ωuh
2 ω2/ωp

2
1 Ωc

2
+= =
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Fig. 1. Normalized electric field E (a) and normalized energy γ =  for pair plasmas (b) versus the normalized distance

(phase) χ for the normalized gyrofrequency Ωc = 0.1 and the neutrino-driven term Sν = 0.003.

1 Px
2

Py
2

+ +
electric field (E = –dΨ/dχ) associated with the upper-
hybrid wakefield:

(19)

Here, the driven term Sν is assumed constant according
to our initial assumption, and the initial conditions

 = 0, Ψ = 0, and E = 0 for χ = 0, are imposed. As we
can see, this field has a large amplitude, clearly depen-
dent on the amount of neutrino energy deposited into
the plasma, and is independent of the neutrino density;
i.e., the plasma dynamics is triggered by the neutrino
energy depositing into the plasma cloud. This strong
electric field can accelerate plasma particles in the
transverse direction, similarly to the surfatron accelera-

E x t,( )
2ωp

3

ω3
---------Sν

Ωc
2

2
------ kx ωt–( ) kx ωt–( )sin+ 

  .=

Pee
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tion mechanism [28], leading to the formation of a
transverse pair-plasma jet.

4. NUMERICAL RESULTS

Figures 1a and 1b show the numerical solutions of
Eqs. (9)–(13) for the neutrino-driven term Sν = 3 × 10−3,
Ωc = 0.1, and γφ = 350. In Fig. 1a, we display the nor-
malized electric field associated with the excited upper-
hybrid waves. This field reaches a maximum whose
value is close to the normalized gyrofrequency, Ωc .
This occurs because the plasma particle momentum in
the y direction is much larger than the momentum in the
x direction due to the weakness of the neutrino term Sν .
We can also see that the nonlinear regime only starts for
large phase numbers (χ > 750). During the linear
 AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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Fig. 2. Normalized electric field E (a) and normalized energy γ =  for a pair plasma (b) versus the normalized distance

(phase) χ for the normalized gyrofrequency Ωc = 0.1 and the neutrino-driven term Sν = 20.

1 Px
2

Py
2

+ +
regime, the dynamics of the electron and positron par-
ticles of the plasma is symmetric, as expected. We note
that this linear regime corresponds to the analytic solu-
tion given by Eq. (19). However, for long neutrino–
plasma interactions, this symmetry is broken owing to
the presence of the neutrino flux, see Fig. 1b.

Figure 2a shows the normalized wake electric field
for Ωc = 0.1, as in Fig. 1a but with a more intense neu-
trino-driven term, Sν = 20. We observe that as the neu-
trino-driven term increases, the x component of the par-
ticle momentum becomes much larger than the y com-
ponent, which brings the electric field to a saturation
level much larger than the value shown in Fig. 1a. We
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
also note that in this case, the electric field presents a
high intensity at the beginning of the neutrino–plasma
interaction, and after a while starts to decay and to
transfer its energy to the plasma particles. After that, the
field reaches a saturation value E ≈ 0.5, which is main-
tained during the interaction. Therefore, the plasma
particles feel a constant electric force, which leads to an
unlimited transverse acceleration, as we can see from
Fig. 2b. It should also be pointed out that in this case,
the asymmetry between the electron and positron
dynamics is very intense, due to the high value of the
induced negative charge that the neutrinos acquire dur-
ing the interaction with the pair plasma. This process
SICS      Vol. 99      No. 3      2004
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leads to a charge separation, which in turn creates the
finite wakefields.

Until now, we have assumed that the gyrofrequency
ωc is smaller than the plasma frequency ωp , which can
occur in many astrophysical scenarios. Because our
basic equations are normalized, we can also assume
some astrophysical scenarios in which ωc @ ωp , for
example, a neutron star whose pair-plasma cloud sur-
rounding the core of the star has a mean plasma number
density close to N0 = 1030 cm–3 at 300 km away from the
center of the star. This plasma density corresponds to
the plasma frequency ωp ≈ 5.64 × 1019 s–1, which can be
smaller than the gyrofrequency in some regions of the
magnetized star.

Considering this scenario, we can assume the nor-
malized gyrofrequency Ωc = 10, for instance. Figure 3a
gives the normalized electric field associated with the
upper-hybrid wakefield for the neutrino-driven term
Sν = 20. We can see in this case that the electric field
quickly reaches a huge saturation value, E ≈ 35 (in
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Fig. 3. Normalized electric field E (a) and normalized

energy γ =  for a pair plasma (b) versus the

normalized distance (phase) χ for the normalized gyrofre-
quency Ωc = 10 and the neutrino-driven term Sν = 20.
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terms of physical quantities, E ≈ 3.4 × 1022 V/cm; we
note that this value of the electric field is larger than the
Schwinger limit for pair creation in vacuum) for a small
value of the phase χ showing how intense the nonlinear
behavior of the neutrino–plasma interaction is. In this
extreme situation, plasma particles are unlimitedly
accelerated to very high energy, as we can see from
Fig. 3b. Of course, the symmetry between the electron
and positron dynamics is completely destroyed (see,
e.g., Fig. 3b) in the presence of these intense neutrino
bursts, which means that the electron–plasmon cross sec-
tion is now much larger than the positron–plasmon one.

5. CONCLUSIONS

In conclusion, we have presented a hydrodynamic
description of large-amplitude upper-hybrid waves
excited by intense neutrino beams in a dense magne-
tized pair plasma. The excitation of wakefields in a pair
plasma is possible because of the spontaneous break-
down in symmetry between the electron and positron
dynamics due to the driving force of intense neutrino
bursts. Physically, the symmetry breaking is attributed
to the induced negative charge that neutrinos acquire as
they travel through the plasma. The induced negative
charge pushes the electrons in such a way that the elec-
tron momentum increases and the positrons are
attracted by the effectively charged neutrinos. The
resulting charge imbalance due to the charge separa-
tion, in turn, creates finite-amplitude wakefields. Our
results, which are independent of the neutrino density
but dependent on the neutrino energy deposited into the
plasma, are valid for any astrophysical scenarios. They
should be applied to understand the acceleration of
pairs in stars as well as in ultrarelativistic pair-plasma
jets that produce γ-ray bursts. Furthermore, the pres-
ence of an external magnetic field shows that we have the
possibility of generating upper-hybrid wakefields that
can transversely accelerate the pair plasma to ultrarela-
tivistic energies by the surfatron mechanism [28].

By means of numerical computation, we have
observed that the effects of the finite plasma and neu-
trino temperatures do not significantly affect the pair-
plasma dynamics and the amplitude intensity of the
electric field generated by the neutrino bursts. It should
be pointed out that any amount of neutrino energy
transferred to the plasma suffices to drive the wake-
fields. Of course, the amplitude of the wakefield
depends on the amount of neutrino energy deposited
into the plasma. Hence, the intensity of the generated
electric field can reach values that allow generating-
pair creation by the wakefields. We are presently inves-
tigating pair creation in magnetized plasmas.
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Abstract—The presence or absence of renormalon singularities in the Borel plane is shown to be determined
by the analytic properties of the Gell-Mann–Low function β(g) and some other functions. A constructive crite-
rion for the absence of singularities consists in the proper behavior of the β function and its Borel image at infin-
ity, β(g) ∝  gα and B(z) ∝  zα with α ≤ 1. This criterion is probably fulfilled for the ϕ4 theory, quantum electro-
dynamics, and quantum chromodynamics, but is violated in the O(n)-symmetric sigma model with n  ∞.
© 2004 MAIK “Nauka/Interperiodica”.
(1) More than twenty years ago, Lipatov [1] sug-
gested a method for calculating the high orders of per-
turbation theory according to which these are determined
by the saddle-point configurations (instantons) of the cor-
responding functional integrals. The method proved to be
applicable to a wide range of problems [2, 3], but it was
soon questioned in connection with the detection of
factorially large contributions from the individual dia-
grams, renormalons [4]. In the opinion of ’t Hooft [5],
the latter are not contained in the instanton contribu-
tion. Formally, the asymptotics of perturbation theory is
determined by the singularity in the Borel plane closest
to the coordinate origin. Whereas the presence of
instanton singularities is beyond doubt, the existence of
renormalon singularities has never been proven, which
is recognized by the most active proponents of this
trend [6]: such singularities can be easily obtained by
the summation of individual sequences of diagrams, but
it cannot be made sure that these are preserved when all
diagrams are taken into account. Previously [7], we
proposed a proof of the absence of renormalon singu-
larities in the ϕ4 theory, which calls into question the
idea of renormalons as a whole; however, there is no
similar proof for other field theories. The analysis per-
formed below clarifies the situation with renormalon
singularities in an arbitrary field theory: in general,
their presence or absence is determined by the analytic
properties of the Gell-Mann–Low function and some
other functions.

The simplest class of renormalon diagrams arises in
quantum electrodynamics after the separation of an
internal photon line in an arbitrary diagram (Fig. 1a)
and the insertion of a chain of electron loops into it
(Fig. 1b). In the original diagram, the integration

kk–2n over the range of large momenta (n = 3, 4, …)

corresponded to the separated photon line with momen-
tum k. When N electron loops are inserted into the pho-
ton line, the additional factor lnN(k2/m2) (m is the elec-

d4∫
1063-7761/04/9903- $26.00 © 0474
tron mass) emerges in the integrand; the integration
yields a quantity on the order of N!. Arbitrary insertions
into the photon line lead to the substitution of the run-
ning coupling constant g(k2) for the interaction constant

g0 (Fig. 1c) and give rise to the integral kk–2ng(k2).

The summation of the chains of loops corresponds to
using the single-loop approximation β(g) = β2g2 for the
Gell-Mann–Low function and yields the well-known
result

(1)

After the integration over k2 * m2, we obtain

(2)

After the Borel summation, this yields renormalon sin-

d4∫

g k2( )
g0

1 β2g0 k2/m2( )ln–
--------------------------------------------.=

d
4
kk 2n– g k2( )∫ g0 d4kk 2n– β2g0

k2

m2
------ln 

 
N

∫
N

∑=

∼ g0 N!
β2

n 2–
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∑
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gularities at the points1 

(3)

in the Borel z plane.
The analysis performed below is based on the fact

that for a given β function, the summation of the entire
class of diagrams obtained by all the possible insertions
into the photon line presents no problem: it will suffice
to solve the Gell-Mann–Low equation

(4)

with the initial condition g(k2) = g0 at k2 = m2 and to
analyze the expansion in terms of g0 for an integral of
type (2). The more complex classes of renormalon dia-
grams can be studied by using the general renormaliza-
tion group equation in Callan–Symanzik form.

(2) As an illustration, let us consider the model β
function

(5)

for which Eq. (4) can be easily solved:

(6)

where x = β2ln(k2/m2). The right-hand side is regular at
g0 = 0 and can be expanded into a power series of g0.
The structure of this series is

(7)

where r(x) is the radius of convergence and the coeffi-
cients AN depend on N as a power law. The radius of
convergence is determined by the distance to the singu-
larity closest to the coordinate origin. The singularities
gc on the right-hand side of Eq. (6) correspond to zeros
of the radicand and are defined by the equation

(8)

and its complex conjugate equation. At large x, the min-
imum (in absolute value) root is gc ≈ 1/x and series (7)
takes the form

(9)

Substituting it into integral (2) yields singularities at
points (3) (at large N, the integral is determined by large
k that correspond to large x). Thus, Parisi’s reasoning [8]

1 Similar singularities with n = 0, –1, –2, … arise from the integra-
tion over the range of small momenta (infrared renormalons).
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that renormalon singularities can exist in internally
consistent theories is confirmed.

(3) The overall picture is determined by the fate of
the Landau pole in the single-loop result (1). This pole
can remain on the real axis, shift into the complex
plane, or go to infinity. The right-hand side of Eq. (1) as
a function of g0 changes on the characteristic scale
(ln(k2/m2))–1; this property does not change when the
higher loops are taken into account, because result (1)
is always valid at small g0. If g(k2) as a function of g0
has singularities in a finite part of the complex plane,
then the characteristic scale of its change is naturally
determined by the distance to the closest singularity,
which thus proves to be on the order of (ln(k2/m2))–1,
generating a series of type (9) and renormalon singular-
ities. However, this is not always the case: for example,
the characteristic scale of the change for integer func-
tions is determined by other factors, and the above con-
clusion ceases to be valid.

The general solution of the Gell-Mann–Low equa-
tion is

(10)

where

Taking into account the behavior of the function F(g) at
small g, we can write

(11)

and, formally resolving (10) for g, obtain

(12)

If the function z = F(g) is regular at g0 and F '(g0) ≠ 0,
then the inverse function g = F–1(z) that is also regular
exists in some neighborhood of the point g0. Therefore,
the singularities of the function F–1(z) are zc = F(gc),
where all the possible gc are defined by the condition

(13)

The singularities in variable g0 in (12) are defined by
the equation

(14)

or

(15)

If zc is finite, then Eq. (15) at large x has a root g0 ≈ 1/x
in the range of small g0, where the right-hand side of

F g( ) F g0( ) k2
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------,ln+=

F g( ) gd
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-----------.∫=

F g( ) 1
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--------– f g( ), where gf g( )
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Eq. (15) is insignificant in view of (11). Thus, there is a
singularity at gc ≈ 1/x that generates series (9) leading
to the renormalon singularities (3). If, alternatively,
zc = ∞, then Eq. (14) has no solutions for g0 ~ 1/x, and
an expansion of type (9) is possible only with the coef-
ficients AN that decrease faster than any exponential: the
renormalon contribution is definitely much smaller
than the instanton contribution, and no singularities
emerge in the Borel plane. The solutions with g0 ~ 1
(which are possible due to the singularities of the func-
tion f(g0)) are definitely unrelated to the renormalon
mechanism: their contribution is determined by a series

in which  is not accompanied by a factor of the type
(ln(k2/m2))N. To summarize, we have reached the fol-
lowing conclusion. Renormalon singularities take place
if there exists at least one point gc (including gc = ∞) for
which condition (13) is satisfied and zc = F(gc) < ∞; oth-
erwise, no renormalon singularities exist.

It remains to reformulate the results in terms of the
β function itself. First, note that a regular root of the
form

does not lead to renormalons: in this case, the derivative
F '(gc) does not exist, but F(gc) = ∞; in particular, this is
true for the root at g = 0. A power-law behavior at infin-
ity, β(g) ∝  gα, generates renormalons only at α > 1
(which corresponds to the existence condition for the
Landau pole of a nonalternating function β(g)). All of the
other possibilities for the satisfaction of condition (13)
are related to the singularities of the function β(g) at
finite points gc: for renormalons to exist, these must be
strong enough for the function 1/β(g) to be integrable at
gc (e.g., β(g) ∝  (g – gc)γ with γ < 1). A sufficient condi-

g0
N

β g( ) g gc–( )n, n∝ 1 2 3 …, , ,=

B(z) β(g)z

z

g

S0

Instantons Renormalons

1/β2

(a) (b)

(c)

Fig. 2. It follows from the analyticity of the function B(z) at
| | < π/2 + δ (a) that β(g) is analytic at | | < π + δ
(b), i.e., on the entire physical sheet of the Riemann surface;
(c) the picture of singularities in the Borel plane for the ϕ4

theory and quantum electrodynamics suggested by ’t Hooft
(S0 is the minimum instanton action, β2 is the first nonvan-
ishing expansion coefficient of the β function).

zarg zarg
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tion for the absence of renormalons is the regularity of
the function β(g) at finite g and its power-law behavior,
β(g) ∝  gα with α ≤ 1, at infinity; in fact, weak singular-
ities of the type β(g) ∝  (g – gc)γ with γ > 1 are admissi-
ble at finite g.

(4) If all of the singularities in the Borel plane are
assumed to be of instanton or renormalon origin,2 then
a constructive criterion for the absence of renormalon
singularities can be formulated.

The perturbative series for the β function is fractori-
ally divergent [1–3], because there is a cut in the com-
plex g plane that emerges from the coordinate origin.
Therefore, g = 0 is the branching point, as is generally
g = ∞. The function β(g) is represented by the Borel
integral

(16)

where B(z) is the Borel image of the function β(g). Let
us assume that it has a power-law behavior at infinity,
B(z) ∝  zα (then β(g) ∝  gα), and is regular for | | <
π/2 + δ, δ > 0 (Fig. 2a). Directing the contour of inte-

gration along the ray z = |z| , we can easily verify

that integral (16) converges for g = |z|  with |φ – φ0| <
π/2. Since the contour can turn through angles |φ0| <
π/2 + δ, the function β(g) is regular for | | < π + δ
(Fig. 2b), implying that there are no singularities at
finite points on the physical sheet of the Riemann sur-
face. In this case, the behavior of the β function at infin-
ity (β(g) ∝  gα with α ≤ 1) yields the condition for the
absence of renormalon singularities.

The derived criterion can be constructively used as
follows. Consider the ϕ4 theory or quantum electrody-
namics; in this case, there are instanton singularities on
the negative semiaxis and, possibly [5], renormalon
singularities on the positive semiaxis (Fig. 2c). Let us
assume that there are no renormalon singularities. In
this case, (i) the regularity condition for the function
β(g) at finite g (Figs. 2a and 2b) is satisfied; (ii) the
asymptotic form of the expansion coefficient βN is
determined by the nearest instanton singularity and can
be found by Lipatov’s method; (iii) the Borel integral is
well defined, and the perturbative series for the function
β(g) admits an unambiguous summation, which allows
its behavior at infinity to be determined. If the β func-
tion increases faster than gα with α > 1, then the initial
assumption is invalid, and the existence of renormalon

2 This assumption has not been rigorously proven, but nobody has
proposed a viable alternative to it. It can be justified by the fact
that all of the singularities in the Borel plane for finite-dimen-
sional integrals are related to the extrema of the action (in this
case, the reasoning of ’t Hooft in [5] is necessary and sufficient),
while the renormalon singularities are explicitly related to the
passage to an infinite number of integrations.

β g( ) ze z– B gz( )d

0

∞

∫ g 1– ze z/g– B z( ),d
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singularities has been proven by contradiction. If, alter-
natively, β(g) ∝  gα with α ≤ 1, then the assumption
about the absence of renormalon singularities is self-
consistent.

The outlined program for the above theories was
carried out previously [9, 10] by interpolating Lipatov’s
asymptotics with known values of the first expansion
coefficients and yielded α = 0.96 ± 0.01 for the ϕ4 the-
ory [9] and α = 1.0 ± 0.1 for quantum electrodynamics
[10]. Thus (within the uncertainty of the results), the
self-consistent exclusion of renormalon singularities
proves to be possible. Moreover, a comparison with
existing analytic estimates is indicative of the exact
equality α = 1 in both cases [9, 10]. In any case, the β
functions in these theories are nonalternating ones3 and
the condition for the absence of renormalon singulari-
ties in them is identical to the condition for their inter-
nal consistency.

For quantum chromodynamics, α = –12 ± 3 [11] and
the instanton singularities lie on the positive semiaxis.
The assumption about the absence of renormalon sin-
gularities is self-consistent for the sheet of the Riemann
surface obtained by the analytic continuation from neg-
ative g (the sign of the Borel image changes as the sign
of g changes, and the singularities pass to the negative
semiaxis); this is enough to justify the procedure for
determining4 the index α used in [11]. The Borel inte-
gral at positive g must be properly interpreted to estab-
lish a connection with the physical sheet (its principal-
value interpretation is not always correct [12]).

The only field theory in which the existence of
renormalon singularities is deemed to have been firmly
established is the O(n)-symmetric sigma model in the
limit n  ∞ [6]. In this case, the single-loop β func-
tion is exact and β(g) ∝  g2 for g  ∞; consequently,
α = 2 and the self-consistent exclusion of renormalons
proves to be impossible. However, this theory is inter-
nally inconsistent in the four-dimensional case.

Curiously, according to the formulated criterion, the
truncation of the series for the β function at any finite
number of terms immediately creates renormalon sin-
gularities. This shows that the problem of renormalons
cannot be solved in terms of the loop expansion [13].

Note that the possibility of the existence of renorma-
lon singularities makes the functional integrals ill-
defined. The classical definition of the functional inte-
gral via the perturbation theory is defective, because the
expansion in terms of the coupling constant is diver-

3 For the ϕ4 theory, we have in mind the four-dimensional case in
which the problem of renormalons is of current interest.

4 Note that the asymptotics β(g) ∝  gα does not guarantee a power-
law behavior of the Borel image, B(z) ∝  zα, in all directions in
the complex plane (e.g., B(z) = β2(1 – cosz) for the model β
function (5)). Therefore, we emphasize that the index α in [9–11]
was determined directly from the asymptotics of the Borel image,
and the assumption about its power-law behavior was subjected
to a special test.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
gent: its constructive summation requires knowing the
analytic properties in the Borel plane that are uncertain
until it is established whether the renormalon singular-
ities exist. It is also doubtful that the definition of the
functional integral as a multidimensional integral on a
lattice is correct: the lattice theory can differ fundamen-
tally from the continuum theory, because the renorma-
lon contributions are determined by the range of arbi-
trarily large momenta. An impasse is reached: the solu-
tion of the problem of renormalons requires studying
the functional integrals, while the latter are ill-defined
because the problem of renormalons is unsolved. The
proposed scheme for the self-consistent exclusion of
renormalon singularities is probably the only possible
way out of the situation. In this case, the continuum the-
ory, by definition, is understood to be the limit of the
lattice theories.

(5) In general, a certain class of renormalon dia-
grams is singled out by the condition that new vertices
are inserted into the same element (a line or a vertex) of
the original skeleton diagram. This definition allows the
existence conditions for the main renormalon contribu-
tion to be analyzed: if new vertices are inserted with an
equal probability into m different elements, then the
corresponding contribution is on the order of
[(N/m)!]m ~ N!m–N and contains the redundant small-
ness m–N.5 For electrodynamics, integral (2) considered
above corresponds to the summation of the class of dia-
grams obtained by all the possible insertions into the
same photon line. A similar integral for the ϕ4 theory
corresponds to all the possible loop insertions to the
same vertex; the domain of integration in which all
momenta of the derived four-leg vertex are of the same
order of magnitude is considered. In general, the renor-
malon integral is

(17)

where Γ(g0, k) is the vertex with M external lines from
which M ' lines carry a large momentum, on the order of
k. The dependence on k is defined by the Callan–
Simanchik equation

(18)

where γ(g0) depends on M and M '. The general solution
of Eq. (18) is

(19)

5 In fact, in this case, there are m independent integrations of
type (17) for each of which the condition for the absence of
renormalon contributions is identical to that established below.
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where Φ(z) is an arbitrary function. If zc is a singularity
of the function Φ(z), then the singularities in variable g0
are defined by Eq. (14). The function Φ(z) can be
expressed in terms of R(g0) ≡ Γ(g0, m),

(20)

and the singularities of the function F–1(z) are those of
the function Φ(z). Therefore, the condition for the exist-
ence of renormalons found above is also sufficient in
the general case. Additional possibilities for their emer-
gence are associated with the singularities of the func-
tions F1(g) and R(g). If one of them is singular at gc ,
then zc = F(gc) is a singularity of the function Φ(z). The
functions F1(g) and R(g) are represented by Borel inte-
grals of type (16) and have g = 0 and ∞ as the branching
points. However, this does not lead to singularities of
the function Φ(z) at finite points, because

At the same time, the singularities at finite g can be self-
consistently excluded for the functions F1(g) and R(g),
as was done above for the β function. As a result, the
behavior of the function β(g) at infinity also determines
the presence or absence of renormalons in the general
case.

(6) It is clear from the above discussion that using
information only from the renormalization group, we
can establish the necessary and sufficient conditions for
the existence of renormalons, but cannot reach any def-
inite conclusions. Let us compare this with Parisi’s
renormalization-group analysis [8] that underlies all of
the recent studies devoted to renormalons [6]. If, fol-
lowing [8], the momentum dependence of the Borel
images is assumed to differ from the single-loop result
only by a slowly changing factor, then this ansatz for-
mally satisfies the equations if we expand the slowly
changing function in terms of gradients and restrict our
analysis to the local approximation. However, to study
the stability of the solution, we must continue the
expansion in terms of gradients and obtain a diffusion-
type equation. The solution is stable if the correspond-
ing diffusion coefficient is positive, which, in general,
is not the case. The extent to which Parisi’s solution
breaks down is determined by the rather subtle proper-
ties of the β function, which correlates with the asser-
tions of this work.

In conclusion, let us discuss the subtle point in the
proof of the ϕ4 theory that was inadequately covered
in [7]. Any quantity defined by the perturbative series is
a function of the bare charge gB and the cutoff parame-
ter Λ. Passing to the renormalized charge g gives rise to
the function F(g, Λ) that contains the residual depen-
dence on Λ, but has the following finite limit in view of
the renormalizability:

(21)

Φ z( ) R F 1– z( )( ) F1 F 1– z( )( )–{ } ,exp=

F 0( ) ∞, F ∞( ) ∞ for α 1≤( ).= =

F g Λ,( )
Λ ∞→
lim F g( ).=
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A similar property is expected for the corresponding
Borel images:

(22)

The analyticity of the function B(z, Λ) at finite Λ in the
complex z plane with a cut from the first instanton sin-
gularity to infinity was rigorously proven previously
[7]. The function B(z) is analytic in the same domain on
the condition of uniform convergence in (22) (the
Weierstrass theorem [14]); the latter takes place if the
function B(z, Λ) is bounded (the compactness principle
for regular functions [15]). Therefore, the finiteness of
the limit in (22) is enough to prove6 the regularity of the
function B(z).

Unfortunately, the finiteness of the limits in (21) and
(22) has been rigorously proven only in the framework
of the perturbation theory, i.e., not for the functions
F(g, Λ) and B(z, Λ) themselves, but for the coefficients
of their expansion in powers of g and z. The proof in [7]
suggests that the limits are finite at the level of the func-
tions, and, in this sense, it is incomplete. However, the
finiteness of the limits in (21) and (22) is required for
the existence of renormalizability and must be consid-
ered as a necessary physical condition for it. The latter
is closely related to the necessity of redefining the func-
tional integrals noted above.
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Abstract—Thin films of J-aggregates of a new amphiphilic thiacarbocyanine dye of the benthiazole series are
prepared and the nonlinear optical response of molecular J-aggregates is studied for femto- and nanosecond
exciting radiation pulses. It is found that the nonlinear optical response of J-aggregates exhibits substantial
enhancement upon an increase in the pulse duration, which cannot be described by the saturation effect in the
model of a two-level system. This effect is considered using a three-level model taking into account the forma-
tion of self-trapped exciton states in molecular J-aggregates. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Ultrafast nonlinear optical transformation of signals
is based on third-order nonlinear optical effects, for
which the absorption coefficient and the refractive
index of the medium are functions of the radiation
intensity. The effective transformation of signals
requires media with high and rapidly varying nonlin-
ear-optical coefficients (with a response time shorter
than 1 ps) as well as high thermal and photochemical
stability. In this connection, nanostructural materials
(such as semiconductor quantum wells and dots, poly-
conjugate polymers, fullerenes, and metallic clusters)
in which the combination of required properties is
ensured by their dimension and discreteness, have
become the objects of intense studies in recent years.

Among promising materials, the class of molecular
aggregates or J-aggregates of organic dye molecules
deserves special attention [1]. A distinguishing feature
of J-aggregates is that aggregation leads to the emer-
gence of a narrow absorption band displaced towards
low frequencies relative to the absorption band of non-
aggregated molecules (monomers). The optical proper-
ties of J-aggregates are successfully described by the
Frenkel model of excitons (see, for example, [2, 3]).
Recent theoretical and experimental studies revealed
that molecular J-aggregates exhibit a high third-order
resonant nonlinear-optical susceptibility [4–7].

J-aggregates are self-organized quasi-one-dimen-
sional ordered structures consisting of dye molecules.
Translational symmetry and the interaction between
molecules delocalize the excitation of an individual
molecule over several coherently coupled molecules.
Delocalization of excitation in turn leads to a unique
combination of optical properties of J-aggregates: an
1063-7761/04/9903- $26.00 © 20480
intense and narrow absorption line [2, 3]; effective
transmission of the absorbed energy to various accep-
tors (see [1], pp. 1–40 and 199–208); giant optical non-
linearity [8, 9]; and ultrashort relaxation time for the
excited state [10]. The existence of these properties
opens broad prospects for a number of practical appli-
cations of molecular J-aggregates, including the terra-
hertz demultiplexing of optical signals [11], passive
mode locking for obtaining ultrashort laser pulses [12,
13], spectral sensibilization in photography (see [1],
pp. 209–228), energy transfer from a light-harvesting
antenna in systems of artificial photosynthesis [14, 15],
the development of logic elements on the basis of mir-
rorless optical bistability [16]; and the formation of nar-
row-band luminescent organic composites with electro-
conducting polymers [17].

The nonlinear optical response of molecular
J-aggregates of various organic dyes was investigated
with the help of femto- [1, 18, 19], pico- [20, 21], and
nanosecond [5, 22, 23] laser pulses. However, the
investigations devoted to comparison of the nonlinear
optical response of molecular J-aggregates under the
action of laser pulses of various duration have not been
carried out as yet.

This study is devoted to analysis of the optical non-
linearity of molecular J-aggregates of a new
amphiphilic thiacarbocyanine dye under the action of
femtosecond as well as nanosecond laser pulses.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL CONDITIONS

To obtain J-aggregates in thin films, we used
amphiphilic thiacarbocyanine dye with the structural
004 MAIK “Nauka/Interperiodica”
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formula shown in Fig. 1. The synthesis of this dye is
described in [24].

Films of J-aggregates were prepared on glass sub-
strates by spin-coating of a solution of thiacarbocya-
nine dye or a dye–polymer (polymethyl metacrylate)
mixture in the weight ratio 1 : 10 and concentration c =
5 × 10–3 mole/l at a speed of rotation from 1000 to
3000 rpm. A mixture of acetonitryl, dichlorethane, and
chloroform in the volume ratio 2 : 2 : 1 was used as a
solvent. The thickness of the dye film deposited on the
substrate was about 30 nm. The thickness of the poly-
mer film containing J-aggregates was 1100 nm. The
thickness and optical constants n0 and k of the complex
refractive index of thin films were measured with the
help of the LEF-752 ellipsometer manufactured at the
Institute of Semiconductor Physics, Siberian Division,

Fig. 1. Structural formula of thiacarbocyanine dye.

N N

F

C18H37 C18H37

+

SSCl Cl
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Russian Academy of Sciences. The error of ellipsomet-
ric measurements of the film thickness was not larger
than 0.5 nm. The thickness of films with a polymer
matrix was measured using an interference microscope
MII-4 to within 10 nm.

Figure 2 shows the characteristic absorption spectra
of the films obtained from a dye solution and a solution
of the dye–polymer mixture. The sharp peak near
630 nm corresponds to exciton absorption of J-aggre-
gates (J peak). The high-frequency wing (in Fig. 2a)
and peaks (in Fig. 2b) in the region of 585 nm are due
to absorption of dye monomers. Solid curves in Fig. 2
correspond to the spectra measured for freshly prepared
samples, while dashed curves correspond to the spectra
measured after eight months. It can be seen that the pre-
pared films hardly change their properties in the region
of the J peak over a long time.

The ellipsometric measurements of the complex
refractive index n = n0 – ik were carried out at the wave-
length λ = 632.8 nm of a He–Ne laser. For dye films
deposited on a glass substrate, these values were n0 =
2.69 ± 0.02 and k = 1.8 ± 0.1, which corresponds to the
absorption coefficient α0 = 4πk/λ = 3.6 × 105 cm–1.

The main characteristic of the resonant nonlinear
optical response studied in our experiments is the non-
linear absorption coefficient β. The value of this coeffi-
cient is proportional to the imaginary part of the third-
order nonlinear optical susceptibility and can be deter-
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Fig. 2. Absorption spectra of films of J-aggregates of thiacarbocyanine: (a) dye film of thickness L = 30 nm, deposited on a glass
substrate; (b) polymer film containing a dye, L = 1100 nm, the dye : polymer weight ratio is 1 : 10. The dashed curves correspond
to the spectra of freshly prepared samples and the solid curves are the spectra of the same samples recorded after 8 months. The dot-
and-dash curves correspond to fluorescence spectra of polymer films containing J-aggregates of thiacarbocyanine at room temper-
ature. The wavelength of exciting radiation is 580 nm.
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mined from the expression for the total absorption coef-
ficient α:

(1)

where α0 is the linear absorption coefficient and I is the
radiation intensity. The nonlinear absorption coefficient
β was measured by the longitudinal scanning method
[22, 23, 25, 26]. The essence of this method is that
transmission T(z) is measured for the total luminous
flux passing through the sample when it is displaced
along the z axis of the focused laser beam (Fig. 3). In
the vicinity of the focus (z = 0), the change in T(z) asso-
ciated with the nonlinear contribution to absorption is
maximal; on the other hand, at a large distance from the
focus, where the beam intensity is small, the medium
behaves as a linear medium. The T(z) dependence nor-
malized to the transmission T0 in the linear regime is
defined by the relation [25, 26]

(2)

Here,

L is the film thickness, z0 = π /λ is the confocal
parameter, ω0 is the radius of the laser beam waist, and
λ is the wavelength.

α α 0 βI ,+=

T z( )
T0

-----------
βILeff–( )m

m 1+( )3/2 1 z/z0( )2+[ ] m
---------------------------------------------------------.

m 0=

∞

∑=

Leff

1 α0L–( )exp–
α0

------------------------------------,=

ω0
2

L

Sample
L

D

z

D

L

Fig. 3. Schematic diagram illustrating the longitudinal
scanning method: L denotes lenses, D denotes photodetec-
tors, and z is the scanning axis.

Nd : YAG
Cr4+ forsterite 

oscillator Stretcher

FI
Regenerative

amplifier FI

Compressor LBO

Fig. 4. Block diagram of a forsterite laser system for obtain-
ing femtosecond radiation pulses.
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To measure the nonlinear optical response of
J-aggregates in the femtosecond range of pulse dura-
tion, we used second-harmonic generation of the for-
sterite laser as a source of exciting radiation since its
wavelength coincides with the absorption peak of the
films of J-aggregated under investigation. The block
diagram of the femtosecond forsterite laser system is
shown in Fig. 4. The setup included a master oscillator
(pumped by a cw Nd : YAG laser manufactured by
Spectra Physics Millennia IR), a stretcher, Faraday
insulators (FI), a regenerative amplifier (pumped by a
pulsed Nd : YAG Spectra Physics MERLIN laser), and
a compressor. The main parameter of laser radiation at
the computer exit were as follows: the pulse duration
measured with the help of an autocorrelator was 75 fs
at a pulse repetition rate f = 1 kHz and the central wave-
length of generated pulses was 1250 nm for a spectral
width of 26 nm. The radiation of the forsterite laser was
doubled in the LBO crystal; as a result, we obtained
radiation pulses with a wavelength of 625 nm for a
pulse duration tp = 50 fs. The waist diameter of the
focused laser beam was 140 µm. In each position z,
averaging was carried out over 75 pulses and the error
in the measurement of T(z) did not exceed 1–2%.

To study the nonlinear optical response of J-aggre-
gates in the nanosecond range of pulse durations, we
used a DCM dye laser pumped by the second harmonic
of the Nd : YAG laser LTI-411 (pulse duration 5 ns, f =
10 Hz, and the wavelength was tuned in the range 610–
645 nm). The waist diameter of the focused laser beam
was 100 µm. In each position z, averaging was carried
out over 30 pulses and the error in the measurement of
T(z) at the chosen point on the film did not exceed
3−5%.

The absolute error in the measurement of the nonlin-
ear response coefficient β, which is mainly determined
by the error of measurements of the incident radiation
intensity and the film thickness, was 25% both for fem-
tosecond and for nanosecond pulse durations. The devi-
ation in the values of β measured in different regions of
the film was 20–30%. With increasing intensity of inci-
dent radiation, the change in the transmission ∆T =
T(z) – T0 increased in the same proportion, indicating
the correctness of measurements of the third-order non-
linear optical quantity. During the time of measure-
ments of the T(z) curve, a noticeable degradation in the
film of J-aggregates as a result of laser radiation was
not observed. All optical and nonlinear optical mea-
surements were made at room temperature.

3. EXPERIMENTAL RESULTS 
AND DISCUSSION

Figure 5 shows typical longitudinal scanning curves
obtained for different samples and for various pulse
durations of exciting radiation. The curves in Fig. 5a for
the normalized transmission T/T0 of the dye film depos-
ited on a substrate as a function of the sample position
AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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Fig. 5. Normalized transmission of the films of J-aggregates of thiacarbocyanine, measured at a wavelength λ = 625 nm. The radi-
ation pulse duration is 5 ns (squares) and 50 fs (circles); solid curves correspond to fitting by the least squares method with the help
of formula (2). (a) Film of J-aggregates with a dye : polymer weight ratio of 1 : 0, Leff = 18 nm; fitting of circles gives β = –1.5 ×
10–5 cm/W for I = 6.2 GW/cm2; fitting of squares gives β = –1 cm/W for I = 0.3 MW/cm2. (b) Polymer film containing J-aggregates
with the dye : polymer weight ratio of 1 : 10, Leff = 466 nm; fitting of circles gives β = –7.5 × 10–7 cm/W for I = 3.5 GW/cm2; fitting

of squares gives β = –0.055 cm/W for I = 0.36 MW/cm2.
relative to the focal plane were measured under nano-
second excitation with a radiation wavelength λ =
625 nm (squares) and under femtosecond excitation by
the second harmonic radiation from a forsterite laser
(circles). The form of the measured T(z)/T0 depen-
dences corresponds to the bleaching of the exciton
absorption peak of J-aggregates both for nanosecond
and femtosecond pulse duration. It can be seen from
Fig. 5a that the maximal bleaching of the film of
J-aggregates at z = 0 under the action of nanosecond
pulses corresponds to ∆T = 20% for a radiation inten-
sity I = 0.3 MW/cm2 at the lens focus; at the same time,
the value of ∆T for the same sample subjected to the
action of femtosecond pulses with a radiation intensity
I = 6.2 GW/cm2 does not exceed 7–8%. The results of
fitting (solid curves in Fig. 5a) the measured T(z)/T0

dependences by the least squares technique with the
help of formula (2) taking into account only the first
two terms (m ≤ 1) with preset I and Leff were used to
determine the values of the nonlinear absorption coeffi-
cients β.

The typical value of β averaged over the measure-
ments in various regions of the dye film deposited on
a substrate was –(1.8 ± 0.3) × 10–5 cm/W for femtosec-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ond pulses and –1.3 ± 0.3 cm/W for nanosecond
pulses. Thus, the values of β differ by a factor of (7.2 ±
2.0) × 104.

Analogous measurements for femto- and nanosec-
ond pulses were made for a polymer film containing
J-aggregates of thiacarbocyanine (see Fig. 5b). In this
case, the nonlinear absorption coefficient was β = –(1 ±
0.2) × 10–6 cm/W for femtosecond pulses and β =
−0.05 ± 0.015 cm/W for nanosecond pulses, which also
leads to a difference in the measured values by a factor
of (5.0 ± 1.8) × 104.

To analyze the observed difference in the absolute
values of the nonlinear absorption coefficients for
femto- and nanosecond pulses, we consider the time
dependence of the saturation effect in the model of a
two-level system interacting with resonance radiation.
It should be noted that the reciprocal pulse duration 1/tp
for 50-fs pulses under our experimental conditions is
substantially smaller (by a factor of 6–8) than the
absorption line width of the molecular J-aggregates
under investigation, so that the system dephasing over
a pulse duration occurs quite rapidly and the popula-
tions change insignificantly. In such a case, we can dis-
regard the evolution of the offdiagonal element in the
density matrix (see, for example, [27]) and write the
SICS      Vol. 99      No. 3      2004
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balance of the populations for the ground (g) and the
excited (e) states in the form

(3)

(4)

Here, Ng and Ne are the populations of the correspond-
ing states, ∆N = Ng – Ne is the difference in the popula-
tions, N ≡ Ng + Ne is the concentration of particles, Aeg

is the population relaxation constant for the upper level,
I is the radiation intensity, and b is the probability of
optical transitions in our system (the second Einstein
coefficient). Over time intervals much smaller than the
lifetime τ = 1/Aeg , the rates of variation of the popula-
tions can be assumed to be constant and specified by the
initial conditions ∆N(0) = N. Then, the difference in the
populations has the form

(5)

The nonlinear absorption coefficient βp, which is a non-
linear response of the medium to the action of pulses of
duration tp, is proportional to the change in the popula-
tion under the action of radiation:

(6)

In the case when the pulse duration is substantially
larger than lifetime τ, we can assume that the problem
is stationary. In this case, for the difference in the pop-
ulations, we have

(7)

Expanding this expression into a series in the intensity
and retaining only the principal terms, we obtain

(8)

As a result, we arrive at the stationary nonlinear absorp-
tion coefficient,

(9)

For nonlinear absorption coefficients measured for
short pulses under steady-state conditions, we obtain
the relation

(10)

Using this relation and knowing the experimental data
for βst , βp, and tp, we can derive the value of τ.

The experimental results obtained by different
research groups for various types of J-aggregates lead

dNe

dt
--------- AegNe– Ib∆N ,+=

dNg

dt
---------- AegNe Ib∆N .–=

∆N t( ) N 1 2Ibt–( ).=

βp 2Ibtp.–∝

∆N
N

1 2Ibτ+
---------------------.=

∆N N 1 2Ibτ–( ).≈

βst 2Ibτ .–∝

βst

βp
------

τ
tp
---.=
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to lifetime τ ~10–103 ps [6, 11, 19–21]. As compared to
our experimental conditions, this value, on the one
hand, substantially exceeds the pulse duration of 50 fs,
which allows us to use for βp and tp the values corre-
sponding to this regime of measurements. On the other,
the value of the lifetime is much smaller than the pulse
duration of 5 ns; consequently, the results of measure-
ments under such conditions can be used as the value of
βst . As a result, for the experimentally measured values
of βst , βp, and tp = 50 fs, formula (10) gives the values
of τ ≈ 3.7 ± 0.9 ns for films without a polymeric matrix
and τ ≈ 2.9 ± 0.5 ns for films with a polymeric matrix,
which contradict the available experimental data. Thus,
the above analysis of the temporal nonlinear response
of a simple two-level system shows that this system
cannot be used for an adequate description of the
observed nonlinear optical response of molecular
J-aggregates and that additional relaxation processes
should be taken into account.

Exciton–exciton annihilation is a well-known addi-
tional relaxation process. It should be noted, however,
that, under our experimental conditions, the pulse dura-
tion of 50 fs is substantially smaller than the character-
istic time constants for exciton–exciton annihilation
processes, which are on the order of 1 ps [18, 21, 28,
29]; consequently, the influence of this effect is weak
for the given regime of measurements. For measure-
ments in the nanosecond range of pulse duration, allow-
ance for the exciton–exciton annihilation would result
in a decrease in the exciton lifetime and in the value of
the nonlinear optical response [18, 21, 28, 29]; how-
ever, the effect observed by us here on the contrary
leads to an increase in the nonlinear optical response for
nanosecond pulses. Thus, the effect of exciton–exciton
annihilation cannot provide a correct description of the
observed behavior of the nonlinear optical response of
molecular J-aggregates.

One of the most probable additional relaxation
channels, which may lead to the observed behavior of
the nonlinear optical response, is the formation of self-
trapped exciton states [30]. The emergence of exciton
self-trapping at low temperatures was observed in
molecular J-aggregates of pseudoisocyanine [31–33]
and in aggregates of TDC dyes [34] in the form of a flu-
orescence peak displaced towards the low-frequency
spectral region. The dynamics of self-trapped states
was studied in [31, 32], where it was found that the
Stokes shift of the fluorescence peak increases with
time and the decay of fluorescence in the vicinity of the
J peak is nonmonoexponential. An analogous fluores-
cence peak was also observed for J-aggregates of
pseudoisocyanine at room temperatures [22], Finally,
fluorescence in the range of 650–700 nm was observed
under our experimental conditions during the excitation
of films of J-aggregates of thiacarbocyanine dye at a
wavelength λ = 580 nm. The dot-and-dash curves in
Fig. 2 show the fluorescence spectra of films containing
J-aggregates of thiacarbocyanine at room temperature.
AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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It should be noted that, in these measurements, the
same films as in the nonlinear optical measurements
were used (the optical density of these films attained
almost 1.0 optical unit). Consequently, fluorescence of
free excitons in J-aggregates, which is characterized by
a Stokes shift on the order of several nanometers, was
strongly suppressed due to reabsorption. For this rea-
son, we could apparently observe only the far fluores-
cence wing associated with exciton emissions from
self-trapped states.

The exciton localization mechanism in molecular
J-aggregates is the change in the local structure of a
molecular aggregate upon the formation of an exciton,
e.g., as a result of a change in the constant dipole
moment of dye molecules forming the aggregate, under
the action of optical excitation [23, 35]. In this case, the
translational symmetry of the aggregate is broken and,
hence, an exciton cannot propagate along the aggre-
gate. Thus, the exciton is self-trapped in a certain region
of the molecular aggregate. Since the energy of the
exciton state is mainly determined by the energy of
interaction of neighboring molecules in the aggregate,
the energy of interaction will also change as a result of
the change in the structure, which shifts the self-
trapped exciton state to a position below the bottom of
the exciton band. In addition, it is important that the
lifetime of the localized exciton state is longer than that
of a delocalized state (this was observed in [31, 32]).
The increase in the lifetime is a consequence of its pro-
portionality to the length of the ordered segment of the
aggregate, on which the exciton is localized [10]. In the
experiments [31, 32], the lifetime of a localized exciton
was estimated at 1–10 ns.

Let us construct a three-level model to analyze the
nonlinear optical response of molecular J-aggregates
taking into account the additional relaxation channel
(Fig. 6). Here, g is the ground level, e is the excited
level of free excitons, a is the level of self-trapped exci-
tons, and A are the relaxation constants for the corre-
sponding decay channels; the Aea relaxation is nonradi-
ative and radiation at frequency ω is in resonance with
the e–g transition.

The system of balance equations for this model has
the form

(11)

(12)

(13)

where ∆N = Ng – Ne is the difference in the populations
and N ≡ Ng + Ne + Na is the concentration of particles.
Analogously to the case of a two-level system, we

dNe

dt
--------- Aeg Aea+( )Ne– Ib∆N ,+=

dNg

dt
---------- AagNa AegNe Ib∆N ,–+=

dNa

dt
---------- A– agNa AegNe,+=
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find the difference in the populations for short time
intervals:

(14)

In this case, the evolution of the system is deter-
mined by the initial conditions under which only the
ground state is populated and radiation-induced transi-
tions to additional level a are absent; consequently, the
solution coincides with that for the two-level system.
For long pulses, we solve the stationary problem, which
leads to the following expression for the difference in
the populations in the three-level system: 

(15)

in this case, the relation for the nonlinear absorption
coefficients for short and long pulses assumes the form

(16)

Here, τt = 1/At , where At is defined as

(17)

If the excited level e does not decay to the additional
level a (Aea = 0), we have At = Aeg , and the system
behaves as a two-level system with the corresponding
relaxation rate. Otherwise, when relaxation from level
e to level a is rapid as compared to the remaining decay
channels (Aea @ Aeg, Aag), the nonlinear optical response
of the system is completely determined by the relax-
ation constant of the additional level At = 2Aag . As was
mentioned above, the relaxation of the self-trapped
state (additional level) for molecular aggregates is
slower than the relaxation of the free exciton level
(excited level). In this case, the behavior of the system
reflects the well-known optical pumping effect. As a
result of accumulation of population on the additional
level, this effect leads to a substantial enhancement of
bleaching of the medium for long pulses or cw radia-
tion, which is precisely observed in our experiments.
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Fig. 6. Three-level model constructed for describing the
nonlinear optical response of molecular J-aggregates.
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Thus, the value of τt ~ 3.5 ns obtained above from a
comparison of our experimental data for the nonlinear
absorption coefficients of J-aggregates for short (50 fs)
and long (5 ns) pulses is characterized not by the life-
time τ of the free exciton state, which is substantially
smaller than this value, but by a certain “effective” life-
time of an self-trapped exciton (see formula (17)). A
more detailed description of the observed effect
requires experimental data on the quantities Aeg , Aea ,
and Aag , which is the subject of our subsequent studies.

4. CONCLUSIONS

J-aggregates of thiacarbocyanine dye with the exci-
ton absorption peak in the region of 630 nm, which
coincides with the wavelength of second harmonic gen-
eration of a femtosecond forsterite laser, have been
obtained. The measurements of the nonlinear absorp-
tion coefficient performed by longitudinal scanning
using femtosecond and nanosecond pulses of exciting
radiation revealed an increase in the nonlinear absorp-
tion coefficient with increasing pulse duration. The
analysis of the results on the basis of two- and three-
level models indicates that allowance for an additional
level emerging due to the formation of self-trapped
exciton states leads to good qualitative agreement with
the observed effect. Accumulation of excitons in self-
trapped states leads to a substantial enhancement of
bleaching of the medium under the action of nanosec-
ond laser pulses.
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Abstract—Generation of even and odd harmonics in the skin layer formed during the interaction of a short rel-
ativistic laser pulse with solid targets is considered. The complex motion of free electrons in the skin layer along
the electric field vector and along the direction of propagation of a laser wave is analyzed. The Fourier expan-
sion of the trajectory of this motion is used to obtain the components of the conductivity tensor and of the ampli-
tude of the transverse electromagnetic field of harmonics propagating along the electric field. Even harmonics
appear due to relativistic effects. The efficiency of generation of even and odd harmonics at the leading front of
a laser pulse is calculated. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The action of strong laser fields on a dense or a rar-
efied medium induces a fundamental nonlinear process:
generation of higher harmonics of the laser field. In par-
ticular, when laser radiation interacts with solid targets,
a preplasma and a overdense plasma consisting of mul-
tiply charged atomic ions and electrons are formed. Our
task is to study induced emission of free electrons from
solid targets in extremely strong laser fields. Two mech-
anisms of harmonic generation can be singled out,
namely, the emission from bound and free electrons.
These two possibilities are analyzed, for example,
in [1] in the case of harmonic generation by gases
(underdense plasma) for various substances. The effi-
ciency of even harmonic generation is much lower than
for odd harmonics in gaseous He, while these efficien-
cies are comparable in gaseous N2 and Ar. Harmonic
generation in a rarefied (subcritical plasma) was also
studied theoretically in [2, 3].

The interaction of laser radiation with a dense
medium should be considered separately. It is well
known that a high efficiency of transformation of the
laser energy into higher harmonic generation can be
attained when a laser pulse propagates in a hollow
plasma channel. Even and odd harmonics are then gen-
erated when radiation is reflected by channel walls. The
corresponding 2D problem was considered in [4]. A
similar 1D problem was analyzed theoretically in [5],
where the possibility of harmonic generation was dem-
onstrated. In the context of these problems, we pro-
posed the solution to the problem of the behavior of an
electron in a overdense plasma in the field of a relativ-
istic laser pulse [6]. In the present paper, the results
obtained in [6] are used to consider generation of (pri-
marily even) harmonics in a overdense plasma.
1063-7761/04/9903- $26.00 © 20487
When ultrastrong laser fields act on a solid target, a
skin layer formed near the surface prevents the penetra-
tion of the electric field in the substance to a consider-
able extent. Here, we do not consider the ionization
mechanism (tunnelling, above-the-barrier, or colli-
sional) of formation of free electrons and atomic ions.
It will be shown below that allowance for even a weak
electric field in the skin layer plays a significant role.
The motion of charges becomes nonlinear, which leads
to harmonic generation in the skin layer. Naturally, with
such a formulation of the problem we consider only
bulk effects (pertaining to thickness of the substance on
the order of the skin depth). Moreover, we consider har-
monic generation by free electrons only during their
collisions with atomic ions.

The problem is solved according to the procedure
used earlier in [2, 3]. In Section 2, the equations of
motion of an electron in a substance are analyzed ana-
lytically and numerically. For convenience of subse-
quent integration, the numerical results are approxi-
mated by analytic dependences with parameters deter-
mined from numerical calculations. The results are
compared to those obtained using an analytic approach,
which gives an asymptotic behavior of momenta for
moving particles. In Section 3, using the momenta as
functions of time, we derive an expression for the elec-
tric current component along the polarization of the
laser field. We do not consider longitudinal generated
electric fields since these fields do not leave the plasma
volume [3]. Expanding the expression for the current
density into a Fourier series, we obtain the conductivity
tensor components. In Section 4, the electric field com-
ponents at frequencies of harmonics are analyzed and
an expression for the generation efficiency is obtained.

As was shown in [6], electrons leaving the field
region possess a drift momentum along the direction of
004 MAIK “Nauka/Interperiodica”
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propagation of the external field. An electron emitted
from the skin layer has a nonzero drift momentum. This
is mainly due to the fact that the electric and magnetic
components in the skin layer are shifted in phase by π/2
relative to one another. The electron velocity is quite
high, though not relativistic. An electron beam moving
with this velocity induces annular magnetic field of a
huge intensity [7]. According to the results of our pre-
liminary calculations, the magnetic pressure produced
by such fields cannot ensure the electron beam stability.

2. NONLINEAR MOTION OF AN ELECTRON
IN THE SKIN LAYER UNDER THE ACTION 

OF THE LASER PULSE FIELD

We assume for simplicity that a linearly polarized
laser beam propagates at right angles to the surface of a
dense medium. We direct the x axis along the direction
of propagation of the laser pulse, the y axis, along the
electric field vector, and the z axis, along the magnetic
field. The relativistic plasma frequency is given by [8]

where ne is the electron concentration in the skin layer
(here and below, we use the relativistic system of units,
in which c = e = m = 1); γ is the relativistic factor,

and Fin is the amplitude of the electric field in the
plasma. We assume that ωp @ ω (this condition is usu-
ally satisfied when solids are irradiated by ultrastrong
laser pulses on account of multiple ionization of
atoms). Since the electric field in the skin layer is weak
as compared to the electric field of the incident wave,
we can use the nonrelativistic value of the plasma fre-
quency (γ ≈ 1) up to an incident radiation intensity on
the order of 1021 W/cm2.

The boundary conditions at the vacuum-overdense
plasma interface have the familiar form

Here, F(t) is the amplitude of the electric field of the
electromagnetic wave in vacuum, ω is its frequency,
Bin is the amplitude of the magnetic field strength in the
plasma,

is the dielectric constant of the overdense plasma (|ε| @ 1)
produced by free electrons. The laser pulse is turned on
and off adiabatically and is approximated by the Gaus-
sian envelope

ωp 4πne/γ,=

γ 1 Fin/ω( )2
+ 1,>=

Fin 2

1 ε+
----------------F t( ), Bin 2 ε

1 ε+
----------------F t( ).= =

ε 1
ωp

2

ω2
------–=

F t( ) F t2/τ2–( ),exp=
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where τ is the laser pulse duration and the condition
ωτ @ 1 is satisfied.

The classical Newton equations for relativistic
pulses px and py within the skin layer (x > 0) have the
form (the x axis is directed along the normal to the tar-
get surface, while the y axis is directed along the elec-
tric field of a linearly polarized laser pulse)

(1)

(2)

where δ = 1/ωp is the skin depth and v x and v y are the
electron velocity components, i.e.,

(3)

The value of x = 0 corresponds to the target surface. We
disregard the motion of the electron along the z axis.
The results are virtually independent of the initial phase
of the laser wave since the laser pulse is actuated adia-
batically.

It will be shown below that an electron in the skin
layer possesses a relatively high drift velocity along the
x axis and a comparable vibrational velocity along the
y axis. Consequently, the disregard of electron colli-
sions with atomic ions is justified. Equations (1)–(3)
can be solved with the following initial conditions: in
the limit t = –∞, an electron is at rest at point x = y = 0.

We will first find the solution in the approximation
of weak relativism for the time interval t ∈  (–∞, t0),
where |t0| @ τ. Under these assumptions, we can set for
simplicity exp(–x/δ) ≈ 1. In addition, we can disregard
the second term in Eq. (2), corresponding to the mag-
netic component of the Lorentz force as compared to
the first term corresponding to the electric component.
We can now integrate Eq. (2) approximately, bearing in
mind that F(t) is a more slowly varying function as
compared to cos(ωt). Thus, we obtain

(4)

Substituting this result into Eq. (1), we find that

(5)

This expression represents the relation between the
final velocity and the sought time during which the

d px

dt
-------- 2v yF t( ) x/δ–( ) ωt( ),sinexp=

d py

dt
-------- 2

ω
ωp
------F t( ) x/δ–( )cos ωt( )exp=

– 2v xF t( ) x/δ–( ) ωt( ),sinexp

v x

px

1 px
2 py

2+ +
------------------------------, v y

py

1 px
2 py

2+ +
------------------------------.= =

v y t( ) 2
ωp
------F t( ) ωt( ).sin≈

v x

F0
2τ2

2ωpt
----------- 2t2

τ2
-------– 

  .exp–≈
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Fig. 1. Typical 2D trajectory of an electron in the skin layer along the direction of the electric field of a laser wave (y axis) and along
the direction of propagation of the laser wave (x axis) at the leading front of the laser pulse. Both electron coordinates are given in
units of the skin depth as functions of the field phase ωt.
electron is in the field region (within the skin layer). Let
us estimate this time. We have

(6)

Taking into account the fact that the skin depth δ =
1/ωp, we obtain the estimate

(7)

If the intensity of incident radiation is I = 5 ×
1019 W/cm2, the amplitude of the electric field is F0 ≈
1.91 × 1011 V/cm. We assume that the pulse duration τ
is 83 fs. For the required time, we obtain |ωt| ≈ 412.
This leads to the conclusion that an electron escapes
from the skin layer with a nonzero drift momentum
along the x axis. This is mainly due to the fact that the
electric and magnetic field components in the skin layer
are shifted in phase by π/2 relative to each other (this is
so if ωp > ω).

The motion of an electron is determined by two
dimensionless parameters f = 2F/ω and ωp/ω, we
choose the characteristic values of these parameters:
the photon energy "ω = 1.5 eV, the frequency ratio

δ v x t d ≈  
F0

2τ2

2ωpt
----------- τ2

4t
----- 2t2

τ2
-------– 

  .exp

∞–

t

∫=
|t| @ τ

t τ
F0τ
8

-------- 
 ln .≈
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ωp/ω = 7, and f = 10 for an amplitude value of intensity
of 5 × 1019 W/cm2.

The results of numerical calculations for these
parameters are given in our previous publication [6].
Figure 1 shows the 2D trajectory of an electron. This
solution and be approximated analytically as follows:

(8)

The parameters have the following numerical values:

Figure 2 shows for comparison the results of numer-
ical and analytical calculations. The discrepancy is for
the following two reasons. First, the particle velocity
becomes quite large and the weak relativistic approxi-
mation cannot be used. Second, the particle penetrates
the unperturbed region of the plasma under the skin
layer and, hence, the factor exp(–x/δ) in Eqs. (1) and (2)
cannot be neglected.

It should be emphasized that, in the case a under-
dense plasma (or vacuum), the electron drift along the

px t( )
a1

1 a2 ωt a3–( )–( )exp+
------------------------------------------------------,=

py t( ) a4

ωt a5–
a6

----------------- 
 –

2

 
  ωt( ).sinexp=

a1 0.0068, a2 0.0538, a3 422.640,–= = =

a4 0.00486, a5 422.640– , a6 65.4.= = =
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direction of propagation of a femtosecond laser pulse is
determined exclusively by the laser pulse envelope. The
relativistic motion of the an electron along a trajectory
resembling Fig. 8 becomes unclosed due to an increase
or decrease in the wave amplitude during the laser pulse
action. On the contrary, the electron drift in a overdense
plasma is not directly connected with the laser pulse
envelope.

3. CONDUCTIVITY OF THE MEDIUM
AT THE FREQUENCY OF HARMONICS

When an electrons collides with an atomic ion hav-
ing a charge Z, the transport cross section of elastic rel-
ativistic scattering through small angles is defined by
the Mott formula [9] (in relativistic units)

(9)

Here, Λ is the Coulomb logarithm and p(t) and v(t) are
the electron momentum and velocity. In the high-veloc-
ity limit, the Coulomb logarithm is quantum-mechani-
cal [10].

The frequency of elastic electron-ion collisions is
given by

(10)

σM
4πZ2Λ

p2 t( )v 2 t( )
-------------------------.=

νei σMNiv
4πZ2NiΛ
p2 t( )v t( )
-----------------------.= =
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Fig. 2. Electron momenta along the direction of the electric
field of a laser wave (y axis) and along the direction of prop-
agation of the laser wave (x axis) during the motion of the
electron in the skin layer, shown in Fig. 1. The values of
momenta are given in units of mc (solid curves correspond
to the results of numerical calculations and dashed curves
are calculated analytically).
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Here, Ni is the concentration of atomic ions. Multiply-
ing this expression by the electron velocity vector v, the
electron concentration Ne , and the time interval dt, we
obtain the following expression for the electron current
density [11–13]:

(11)

This quantity has components along the x and y axes. It
should be noted that this relation is also valid in the rel-
ativistic case (the so-called Pauli formula [14]).

The x component of current (11) along the x axis is
responsible for the longitudinal electric field, which is
absent outside the plasma [13]. For this reason, we will
henceforth concentrate our attention only at the y com-
ponent of the current density. Substituting the expres-
sions obtained above for the total electron velocity and
momentum into Eq. (11), we obtain

(12)

Here, the notation

(13)

is introduced and the function

(14)

is defined.

Integrating Eq. (12) and expanding function f(t) into
a Fourier series, we obtain the current density compo-
nent along the y axis:

.

Here, a0, ak, and bk are the Fourier coefficients. This
leads to the following expression for the conductivity
tensor:

(15)

Function (14) is not periodic; consequently, we must
analyze expansion (15) for various values of phase πs.
Figure 3 shows four graphs representing the values of
the relative amplitudes of the conductivity tensor of
harmonics at different instants at the leading front of a
laser pulse. The relative value of harmonics decreases
with time during the buildup of the laser pulse. This is
explained by the escape of an electron from the skin
region to the unperturbed region of the substance. The

dj Nevνeidt.–=

d jy AFf t( )dt.–=

A
4πZ2NeNiΛ

F
-----------------------------=

f t( )
py t( )
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2 t( ) py

2 t( )+( )3/2
-----------------------------------------=

jy AFa0ωt– AF
ak

k
---- kωt( )sin
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Fig. 3. Relative amplitudes of the conductivity tensor of harmonics at the instants characterized by phase ωt at the leading front of
a laser pulse as function of the harmonic number k; ωt = –160π (a), –150π (b), –140π (c), and –130π (d).
efficiency of even harmonic generation is much lower
than the efficiency of generation of odd harmonics.

4. INTENSITY 
OF RELATIVISTIC HARMONICS

Proceeding in the same way as in [3], we can write
the equation for the electric field strength at the fre-
quency of the nth harmonic:

(16)

The solution to this equation has the form

(17)

∂2Fy
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ω n2 ωp
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where ωp = . For the ratio of intensity of the har-
monic to the intensity of the external magnetic field, we
obtain from Eq. (17) the analytic expression

(18)

It should be noted that the relative efficiency of har-
monic generation (18) decreases both with increasing
number of harmonic and with increasing external field
intensity. It was shown above that the efficiency also
decreases with time (coefficients an and bn decrease).

5. PROPAGATION OF AN ELECTRON BEAM
IN A OVERDENSE PLASMA

For the electron beam radius, we take the typical
value r = 5–10 µm, while for the free electron number
density, we obtain ne = 5 × 1022 cm–3. It is well known

4πNe

η n( ) Fy
n( ) 2

F ωt( )cos 2
----------------------------- 4πZ2NeNiΛc an

2 bn
2+

Fω n2 ωp
2 /ω2– 

 
------------------------------------------------------

2

.= =
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that the expression for the magnetic pressure can be
written in the form

The azimuthal magnetic field at distance r from the
pulse axis is given by

To obtain estimates, we consider the limiting case of an
ideal gas with the equation of state p = nekBT. Let us
estimate the temperature at which the z-pinch effect is
in equilibrium,

whence

The numerical value of Hφ is approximately 7500 T. We
have

which gives

Let us estimate the temperature proceeding from the
value of the mean energy of the gas. For the tempera-
ture corresponding to the drift motion along the x axis,
we obtain the estimate

while for the temperature corresponding to the vibra-
tions (quiver motion) along the y axis, we obtain

The following expression could serve as a natural esti-
mate for the quiver pulse:

However, in view of the weakness of the electric field
in the skin layer, such an estimate will be substantially
exaggerated. We will use the characteristic value of this
momentum obtained in numerical experiment, which
gives

Comparing the temperatures corresponding to the
translational and quiver motion of an electron with the
temperature at which the z pinch is in equilibrium, we

pM
H2

8π
------.=

Hφ
2J r( )

cr
-------------.=

J neeuπr2,∼

Hφ
2neeuπr

c
--------------------.=

Hφ
2

8π
------ nekBT ,=

T
1

nekB
----------

Hφ
2

8π
------- 2.8 103 eV.×≈=

T
meu

2

kB
----------- 0.51 eV,≈=

T
mev quiver

2

kB
--------------------.=

pF pquiver≡ eF/ω.=

T 12.8 eV.=
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could apparently conclude that the beam should con-
tract. However, the requirement on plasma quasi-neu-
trality is important; if this requirement is violated, the
electrons fly apart under the action of Coulomb forces.
Let us estimate the velocity of atomic ions. Since

we obtain

It can be seen that in the general case the velocity of
ions is approximately two orders of magnitude lower
than the electron velocity. When the regime of ambipo-
lar diffusion is realized, both types of charged particles
move with close velocities (provided that the electron
mobility is much higher than the ion mobility). Let us
estimate the characteristic time of ion emission from
the skin layer:

This time is two orders of magnitude larger than the
corresponding value for electrons,

It is well known [15] that the quasi-neutrality transient
time is

(19)

Here, Ke is the electron mobility. Assuming for esti-
mates that Ke ~ 105 cm2/(V s) (although this value is
exaggerated), we obtain τ0 ~ 10–7 s. According to this
estimate, beam pinching cannot be observed in this
case, and faster electrons leave the field region and fly
apart, losing their energy as a result of collisions (out-
side the field region, the vibrational velocity is zero and
collisions cannot be discarded). This is due to the rela-
tively long quasi-neutrality transient time and the small
skin depth.

Electron beam pinching was recently observed in
the experiments [16] on the Vulcan laser facility for an
intensity of 5 × 1019 W/cm2 of a laser beam interacting
with thin wires. Beg et al. [16] noted an interesting
effect, i.e., the existence of returned electron current in
the cold plasma surrounding the electron beam. The
physical reason for this phenomenon is as follows. If an
electron beam propagates in vacuum, the ring-shaped
magnetic field slowly decreases with increasing dis-
tance for the beam axis. If, however, a cold plasma
exists around the electron beam, the magnetic field pen-
etrates only in a small region outside the beam (skin
layer). It is the electron returned current emerging in

v e
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the cold plasma that is responsible for such a behavior
of the magnetic field (by analogy with the Lenz law),
additionally complicating the pinch effect.

6. CONCLUSIONS

Thus, we have obtained the following results. It is
found that even and odd harmonics are generated dur-
ing the motion of an electron in the skin layer produced
by a relativistic laser pulse, the efficiency of generation
of even harmonics being lower than the corresponding
efficiency for odd harmonics. All harmonics are gener-
ated at the leading front of a laser pulse, the intensity of
generation decreasing with increasing intensity of the
laser pulse since electrons leave the skin layer. The gen-
eration efficiency decreases with increasing harmonic
number. It should be noted that the harmonic genera-
tion efficiency also depends on the multiplicity of ion-
ization of atomic ions.

The dynamics of electrons in the skin layer can also
be analyzed using the equations of motion averaged
over a laser period [17]. On the right-hand sides of
these equations, ponderomotive forces appear on
account of the coordinate dependence of the Hamilton
function. Here, we are speaking of the dependence of
the relativistic kinetic energy of an electron on the coor-
dinate x along the direction of propagation of the laser
beam in terms of the electric field amplitude Fin(x),
which decreases in the skin layer with increasing coor-
dinate x. This dependence is the physical reason for the
drift along the direction of propagation of a laser beam
in the skin layer, which was considered above (see
also [18]). However, harmonics should naturally be
described using the equations of motion not averaged
over a laser period.

In our calculations, we disregarded the decrease in
the thickness of the skin layer due to relativistic effects
(and the corresponding increase in the plasma fre-
quency) [17]. The relativistic γ factor reduces the
plasma frequency (see the Introduction), while the rel-
ativistic ponderomotive force increases this frequency.
As a result, the plasma frequency increases as com-
pared to the nonrelativistic value [17]. However, this
increase is determined by electric field Fin in the skin
layer rather than by electric field F in vacuum. When
the condition Fin/ωc < 1 is satisfied, this effect can be
neglected, although F/ωc @ 1 for relativistic laser
pulses.
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Abstract—Energy and charge distributions of ions are calculated for a cluster beam irradiated by a high-power
ultrashort laser pulse. It is shown that the self-consistent field of a cluster ionized by the laser beam strongly
affects the characteristics of the ion distributions obtained after the cluster explodes. The mean concentration
of atoms bound into clusters in a beam, the cluster size distribution, and the focal-spot diameter are found to
have a weak effect on both energy and charge distributions of the ions, whereas the energy spectrum of the pro-
duced ions is determined by the mean cluster size. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The plasma created by irradiating a cluster beam
with a high-power ultrashort laser pulse with a field
strength higher than that characteristic of an atom (with
pulse intensity I ~ 1016–1020 W/cm2 and pulse duration
τ ~ 30–300 fs) is a physical system whose evolution is
determined by its inhomogeneity [1–3]. Under typical
experimental conditions, the irradiated beam consists
of clusters containing several thousand to several mil-
lion atoms and is characterized by an average concen-
tration of atoms varying between 1016 and 1019 cm–3,
which corresponds to a typical gas target. However,
since the concentration of atoms in a cluster is high
(~1022 cm–3) [4], the density of the plasma of multi-
charged ions and electrons with energies on the order of
several keV created inside the cluster substantially
exceeds the cut-off electron density [5–7]. On the other
hand, the electromagnetic wave freely propagates in
this inhomogeneous medium and interacts with all tar-
get atoms, because the average electron density in the
medium is lower than the cut-off density and the size of
individual clusters is much smaller than the wave-
length. Therefore, the laser pulse freely penetrates the
regions where the electron density is higher than the
cut-off density, whereas it is reflected from the dense
homogeneous materials of solid-state targets [8]. Thus,
a cluster beam can be used to reach high absorption effi-
ciency, i.e., more efficient utilization of the target as
compared to targets of other types.

For this reason, a cluster beam is advantageous as
compared to gas and solid targets. First, the interaction
of a laser pulse with a cluster beam results in almost
complete (up to 95%) absorption of the pulse [9]. Sec-
ond, the average ion charge exceeds the ion charge
observed when either solid-state target or atomic beam
is irradiated with a laser pulse characterized by similar
1063-7761/04/9903- $26.00 © 20494
parameters [10, 11]. To obtain an average ion charge
comparable to that obtained by irradiating a cluster
beam, the intensity of the laser pulse incident on a gas
or solid target must increase by about an order of mag-
nitude. Moreover, the pulse-energy fraction converted
into x-rays can be as high as 10–15% and has a nonther-
mal nature [12–14]. The use of a deuterium molecular
cluster beam as a target for the laser pulse provides a
key neutron source where fusion involving deuterium
ions takes place [15].

In this study, we calculate the charge and energy dis-
tributions for the multicharged ions created in the
course of the cluster plasma decay resulting from the
interaction between a cluster-ion beam and a laser
pulse. This problem was computed in [16, 17] for an
isolated cluster. In contrast, the present analysis takes
into account the self-consistent field of a cluster ionized
by a laser pulse, which is important for the process in
question. Furthermore, with a view to simulating real
experimental conditions, we allow for some additional
factors that affect the process, including cluster size
distribution and wave attenuation in the course of laser-
pulse propagation across the cluster beam. A more real-
istic treatment of the problem makes it possible to
achieve agreement between theoretical and experimen-
tal spectra of the ions produced.

2. MECHANISMS OF IONIZATION CAUSED
BY INTERACTION BETWEEN A LASER PULSE

AND A CLUSTER BEAM

Let us consider ionization and related processes
caused by interaction between a laser pulse and a clus-
ter beam. The ions created in solid-state and gas targets
are accelerated by gradient forces, and their energy
increases [18]. The mechanism of heating of the ions
004 MAIK “Nauka/Interperiodica”
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created in a cluster beam is different. Each cluster in the
beam interacts independently with the laser pulse,
which leads to ionization of atoms in the cluster and
ionization of the cluster as a whole. The resulting clus-
ter has a positive charge and a sharp boundary. The
cluster charge, as well as the charges of ions contained
in the cluster, depends on the laser intensity, which
decreases as the electromagnetic wave propagates
across the cluster beam. Accordingly, the multicharged
ions created by the laser pulse at the cluster boundary
have the highest potential energy. The self-consistent
electric field of the cluster accelerates the ions inside
the cluster, which leads to its explosion. This leads to
conversion of the potential energy of ions into kinetic
energy, and the distribution of the resulting ions is
almost isotropic in space and is an exponentially
decreasing function of ion energy [19–21].

Ionization of atoms in a cluster interacting with a
laser pulse leads to production of multicharged ions via
two mechanisms: electron scattering by ions and direct
ionization of atoms and ions by the electric field of the
pulse. Depending on the cluster-beam and laser-pulse
parameters, one of these mechanisms plays a dominant
role. Ionization by electron impact dominates when the
laser intensity is relatively low, not higher than
1016 W/cm2 (i.e., when the electric-field strength is
lower than that characteristic of an atom). As the charge
of an ion increases, the contribution of this mechanism
decreases. When the laser-pulse intensity is high and
the ion charge reaches 8 to 10, the rate of electron
impact ionization of atoms and ions virtually reduces to
zero. In what follows, we focus on high-intensity laser
pulses and ignore this mechanism of ionization of
atoms and ions.

When the laser-pulse intensity is high, ions are pro-
duced as a result of ionization of cluster atoms and ions
by the electric field of the electromagnetic wave,
mainly via barrier-suppression ionization, because the
tunneling of valence electrons takes a long time and can
therefore be neglected. The electric-field strength G at
which the potential barrier in the effective electron
potential created by the Coulomb field of the core and
the external electric field vanishes characterizes the
binding energy of the valence electrons that can be
released in this process. This field strength is given by
Bethe’s rule [22]:

(1)

where JZ is the ionization potential for an ion with
charge Z – 1 and k is a dimensionless factor, which is
set equal to 4 as in [22]. Even though Bethe’s rule is
valid for quasi-electrostatic field, it holds for a varying
field with a strength amplitude F if ionization can be
considered instant, i.e., when the time required to

G
JZ

2

kZ
------,=
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release an electron is much shorter than the laser wave
period ω–1. This is true for barrier-suppression ioniza-
tion if the Keldysh parameter γ is small,

(2)

Using Bethe’s rule (1), we rewrite (2) as follows:

(3)

According to (3), the assumption of instant ionization is
more reliable for stronger electric fields. For example,
if the ion charge is Z = 20 atomic units (au), the electric-
field strength is 5 au, and the electromagnetic-field fre-
quency is 0.05 au, then the value of γ does not exceed
0.1. Under typical conditions of ionization of atoms and
ions in a cluster, valence electrons are driven by both
pulse electromagnetic field and self-consistent electric
field of the charged cluster, whose strength is compara-
ble to that of the laser field [23]. As a result, a stronger
field acts on atoms and ions inside the cluster [11], and
this effect is taken into consideration below.

In a cluster beam irradiated by a high-power laser,
both individual ions and whole clusters are ionized con-
currently. The mechanism of cluster ionization has
much in common with ionization by electric field.
Some of the electrons confined in the potential well cre-
ated by the cluster field can break free by passing over
the potential barrier when it is lowered by an external
electromagnetic field. Treating the cluster as an ion, we
can apply Bethe’s rule (1) for ionization of an ion in
electric field. Then, the cluster charge Q can be
expressed in terms of F and cluster ionization potential
JQ as

(4)

Assuming that the ionization potential for a cluster of
radius R is JQ = Q/R, we obtain

(5)

As in the case of an isolated atom, Bethe’s rule holds
for cluster ionization if it can be considered as instant.

Since the electron velocity can be estimated as ,
and the time required for an electron to travel a distance
comparable to R is

(6)

the condition t ! 1/ω for the field to be treated as quasi-

γ
ω 2JZ

F
----------------- ! 1.=

γ 2ωZ1/4

F3/4
----------------- ! 1.≤

Q
JQ

2

kF
------.=

Q kFR2.=

Q/R

tdis
R3

Q
-----,∼
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electrostatic becomes

(7)

Using expression (5) for the cluster charge, we rewrite
criterion (7) as

(8)

In particular, criterion (7) is satisfied for a laser field
strength of 5 au, a pulse wave frequency of 0.05 au, and
a cluster radius of 500 au:

Therefore, expression (5) for the charge of an ionized
cluster holds in a wide range of cluster-beam and laser-
pulse parameters.

Thus, irradiation of a cluster with a high-power
ultrashort laser pulse results in its excitation and partial
ionization. An excited cluster consists of multicharged
ions and electrons confined in the self-consistent clus-
ter field. This unstable system explodes in several tens
of picoseconds. The explosion of a cluster is caused
either by the action of the self-consistent cluster field on
the cluster ions or by the pressure exerted by the elec-
tron gas on the ions. The latter scenario is possible only
under special conditions [23] and is neglected here. In
the former explosion scenario, the potential energy of
an ion with charge Z in the self-consistent cluster field,

(9)

is completely converted into kinetic energy after inter-
action with a laser pulse. The resulting kinetic energy of
an ion depends on its charge, distance r from the center
of the cluster, and cluster size R. Expression (9) holds
when ions of mass M remain at rest during the interac-
tion with the laser pulse, i.e., if the displacements of
ions on the cluster surface are small as compared to the
cluster size. This is true for pulses having durations
such as

(10)

In particular, for a laser pulse of intensity 1018 to
1019 W/cm2 interacting with a xenon beam, the crite-
rion is satisfied if the pulse duration does not exceed 10
to 20 laser cycle periods (30 to 100 fs).

R3ω2
 ! Q.

Rω2

4F
---------- ! 1.

4F

Rω2
---------- 80 @ 1.=

E Z
Qr2

R3
---------,=

ωτ ! 
Rω2

F
---------- Z

M
-----.
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3. CALCULATION 
OF ION DISTRIBUTIONS

To find the energy and charge distributions of ions
produced when a high-power ultrashort laser pulse is
absorbed by a cluster beam, we analyze the first stage
of the process, when the electromagnetic interacts with
each cluster independently. Since the density of the
plasma obtained as a result of cluster explosions is suf-
ficiently low for ion–ion collisions to be negligible on a
relatively large time scale, we assume that the ion dis-
tribution after the explosions of individual clusters is
similar to that observed in the resulting homogeneous
plasma. At the initial stage of ion production under
these conditions, bound electrons are released via bar-
rier-suppression ionization caused by the combined
effect of the pulse field and the self-consistent cluster
field. Some electrons escape to infinity, and the cluster
acquires a positive charge. The remainder of the
released electrons is confined in the self-consistent
cluster field. Both the cluster charge and the charges of
ions in the cluster after the interaction with the laser
pulse determine the energy and charge distributions of
the ions after the cluster explosions, depending on the
cluster size and the laser-pulse intensity. The model
proposed here to describe the interaction between a
laser pulse and a cluster beam makes use of both cluster
size distribution and variation of laser intensity in space
and time.

It is important for the present analysis that the cluster
beam contains clusters of different size. Relying on exper-
imental results, we use here both lognormal and exponen-
tial cluster size distributions in a cluster beam [4],

(11)

and

, (12)

where  is the mean cluster size in the beam and δ
denotes the width of a lognormal distribution.

The pulse field strength determining the cluster and
ion charges depends both on the location of the cluster
in the focal spot and on the time when the pulse begins
to interact with a particular cluster. As the electric field
penetrates to a distance l in a cluster beam, its strength
exponentially decreases, with a decay rate constant β
depending on the cluster density:

(13)

The laser-pulse intensity decreases with increasing dis-
tance from the laser axis. From here on, we use a Gaus-

f R( ) c1
1

δ2
----- R

R
---ln

2
– 

 exp=

f R( ) c2R5 R3

R
3

-----– 
 exp=

R

F F0 βl–( ).exp=
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sian field-strength distribution along the distance from
the axis:

(14)

where ρ0 is the radius of the focal spot. Combining
these expressions, we find the field strength at a point
X = {l, ρ, φ} in the laser pulse (φ is an arbitrary azi-
muthal angle):

(15)

where F0 is the highest field strength and the function
Φ(X) varies from 0 to 1. Note also that, by definition,
the function Φ(X) has an important property character-
izing the spatial distribution of the field strength:

(16)

where dX denotes a volume element in the cluster
beam.

Let us find the energy and charge distributions for
ions produced after the cluster explodes at the first stage
of the formation of a homogeneous plasma. Ion–ion
collisions in the resulting plasma are neglected because
its density is relatively low (the mean free paths of ions
are large). The charges of the ions created in the cluster
are also uniquely determined, because the ionization
potential for electrons to be released by barrier suppres-
sion is related to the field strength in a laser pulse prop-
agating in the region where the cluster is located by
Bethe’s rule. The energy of an ion located at a certain
distance r from the cluster’s center is also determined
by (9) as a function of r and Q if the charge distribution
in the cluster is uniform. Therefore, both energy and
charge distributions of the ions produced in a cluster
explosion are determined by the intensity of the electro-

F
ρ
ρ0
----- 

  2

– ,exp∼

F F0 βl–
ρ
ρ0
----- 

  2

–exp F0Φ X( ),= =

dΦ βdl2πρdρ 1

ρ0
2

-----Φ X{ }– αΦ X{ } dX,–= =

α 2πβ
ρ0

2
----------,=
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magnetic wave incident on a cluster and the cluster
radius.

Thus, the determination of the energy and charge
distributions for ions produced after the cluster explo-
sions caused by interaction with a laser pulse is a
readily solvable, but tedious task, because both charge
and energy of an ion depend on five variables: the three
coordinates of the exploding cluster, the cluster size,
and the distance from the ion to the cluster’s center. The
desired result must be averaged over these five vari-
ables by using the distributions specified above. The
averaging procedure makes use of a simplified average-
ion model in which both the highest ionization potential
for electrons released via barrier suppression and the
charge of the resulting ions are continuous functions of
laser-pulse intensity [24, 25].

To perform the averaging, we represent the number
of ions in a cluster of radius R ∈  [R, R + dR] located at
a distance r ∈  [r, r + dr] from the center of the cluster
in a volume element X ∈  [X, X + dX] of the cluster
beam as

(17)

Here, ni is the concentration of ions in a cluster, Ncl is
the concentration of clusters in the beam (assumed to be
spatially uniform within the beam), and f(R) is the clus-
ter size distribution. Actually, the problem reduces to
representation of dN in (17) as a function of ion energy
and charge. We use (1), (9), and (15) to express r and Φ
in terms of the charge and potential energy of an ion:

(18)

In the new variables, the required ion concentration is
written as

(19)

The differentials dr and dΦ are expressed in terms of dZ
and dE to obtain

dN ni4πr2drNcl f R( )dRdX.=

r
4ER

kJZ
2

----------- 
  1/2

, Φ
JZ

2

kZF0
------------.= =

dN 4πni
4ER

kJZ
2

-----------Ncl f R( )αdR
dΦ Z E,( )
Φ Z E,( )

-----------------------dr Z E,( ).=
(20)d2N
dEdZ
--------------

A
E

JZ
3

-------
2JZ'

JZ

-------- 1
Z
---– 

  R3/2 f R( ) R, Z Zmax,<d

Rmin

∞

∫
0, Z Zmax,>






=

where

(21)A
16πniNclα

k3/2
--------------------------=
is a constant that determines the absolute ion yield and
Zmax is the largest ion charge corresponding to a partic-
ular intensity, which can be found by using Bethe’s
rule (1).
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Note that the integral with respect to cluster size
in (20) is performed over the interval

Even though this follows from mathematical calcula-
tions, the contribution of small clusters to the distribu-

R Rmin
4E

kJZ
2

--------- ∞,= .∈
JOURNAL OF EXPERIMENTAL
tion of ions is limited for physical reasons. Indeed,
using (9) and (4), we find that an energy larger than

k Rmin/4 cannot be transferred from a cluster of radius
smaller than Rmin to an ion. Calculating the integral
in (20), we obtain expressions corresponding to the log-
normal and exponential cluster size distributions,
respectively:

JZ
2

(22)

(23)

d2N
dEdZ
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JZ
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-------
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--------- 2
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  e γ– γ
π
--- 2 γ

3
---+ 

  1 erf γ( )–+ , Z Zmax,<

0, Z Zmax,>





∼

where

The self-consistent field of a charged cluster
increases the ion charge, modifying the ion distribution.
Taking into account the contribution of the self-consis-
tent cluster field to the total strength of the field that
ensures barrier-suppression ionization of atoms in the
cluster, we rewrite Bethe’s rule as

(24)

Again, the field strength F in the electromagnetic
wave depends on the location of cluster in the focal spot
of the laser pulse according to (16). To simplify calcu-
lations, we change from R and r to the dimensionless
coordinates x and y normalized to the mean cluster
radius in the beam,

(25)

γ 4E

kJZ
2 R

------------ 
  3

.=

F
Qr

R3
-------+ F 1 kr

R
-----+ 

  JZ
2

4Z
------.= =

x
r

R
---, y

R

R
---.= =
 

Then, expression (9) for energy and Bethe’s rule (24)
become

(26)

(27)

Using the parametrization

(28)

in (26) and (27), we obtain

(29)

According to (17), the number of ions with energy E
and charge Z is
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Using the definition of C and Eq. (24), we obtain

(31)

which makes it possible to rewrite (30) as

(32)

By virtue of (31) and the properties of the function Φ introduced in (15), it holds that C ∈  [0, 1]. Changing from
C to variable y related to cluster size and discarding a numerical factor independent of ion energy and charge, we
obtain

(33)
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----------.= =
Note that Zmax is given by Eq. (24), where the self-con-
sistent cluster field is taken into account. Thus, real dis-
tributions of laser-pulse intensity and relations for the
charge and energy of an ion can be used as analytical
expressions to reduce the number of parameters in the
averaging procedure from five to one. This simplifies
mathematical treatment, while a more or less realistic
model is retained.

4. NUMERICAL RESULTS 
AND DISCUSSION

Let us analyze the numerical results obtained by
implementing the program presented above. Note that
the highest ion energies correspond to the focal spot and
the ions created on the cluster surface. Figure 1 shows
the largest ion charge calculated as a function of laser-
pulse intensity for a cluster radius of 500 au by taking
into account the self-consistent cluster field. In what
follows, we discuss ion distributions computed for typ-
ical experimental values of parameters: for a xenon
cluster beam with  = 500 au, δ = 0.2 (see (11)), and
k = 4 and a laser-pulse intensity of 8 × 1017 W/cm2 (F =
5 au). These parameters correspond to the largest ion

R
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charge Z = 18 when the self-consistent field in a
charged cluster is neglected and Z = 26 under real con-
ditions when the field is taken into account. The highest
ion energy corresponding to a cluster of radius R =
26.5 nm and the laser-pulse intensity indicated above is
several MeV.

25

20

15

10

5

0 20 40 60 80 100

I0, 1016 W/cm2

Zmax

Fig. 1. Largest xenon ion charge versus laser-pulse
intensity.
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Fig. 2. Xenon ion charge–energy distributions corresponding to lognormal (a) and exponential (b) cluster size distributions for
 = 26.5 nm and a laser intensity of 8 × 1017 W/cm2.R
Figure 2 shows the ion distributions obtained under
the conditions specified above for lognormal and expo-
nential cluster size distributions. The areas correspond-
ing to charges and energies characterized by probabili-
ties differing by an order of magnitude are separated by
curves. Lighter areas correspond to higher values of ion
distribution functions. Comparing the ion distributions,
one finds that they are qualitatively similar: both distri-
butions of ions reach maxima and minima at the same
values of charge and energy. The distributions are iden-
tical almost in the entire domain. However, the ion and
energy distributions have sharper boundaries for the
exponential cluster size distribution as compared to the
lognormal one. This is demonstrated by Fig. 3 for the
ion energy and charge distribution function correspond-
ing to Z = 12. Note that allowance for the self-consis-
tent cluster field during ionization is essential for both
charge and energy distributions of ions. In particular,
when the laser-pulse intensity is 8 × 1017 W/cm2 as
indicated above, the largest ion charge is 18 instead of
26 if the self-consistent field is neglected, while the
highest ion energies calculated with and without allow-
ance for the self-consistent field differ by a factor of
1.3. Note that the largest charge of the created ions is
independent of the cluster size and is determined solely
by the laser-pulse intensity [11].

Figure 4 shows an ion distribution function repre-
sented by a three-dimensional graph. The function is
localized in a narrow charge–energy area with sharp
boundaries. For a constant charge, this corresponds to
an exponentially decreasing ion distribution function at
low energies and nearly zero values of the function at
JOURNAL OF EXPERIMENTAL 
high energies. With increasing ion charge, the peak
value decreases everywhere except for Z = 8, 18, and
26, which correspond to closed-shell ions. In these spe-
cial cases, the ionization potential has sharp peaks as a
function of ion charge, and production of ions with
large charges requires a high-intensity laser pulse. This
behavior of distributions was observed experimentally
in [10], but the peaks obtained in the present study are
sharper. Thus, there exists an area in the plane of Z and

dEdZ
–––––

–3.25

–3.50

–3.75

–4.00

–4.25

–4.50

–4.75

4.0 4.2 4.4 4.6 4.8 5.0

Fig. 3. Xenon ion energy distributions for  = 26.5 nm and

a laser intensity of 8 × 1017 W/cm2 at Z = 12. Solid and
dashed curves correspond to lognormal and exponential
cluster size distributions, respectively.
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Fig. 4. Ion charge–energy distribution corresponding to a lognormal xenon-cluster size distribution for  = 26.5 nm and a laser

intensity of 8 × 1017 W/cm2.

R

E where the ion distribution function substantially dif-
fers from zero.

Let us consider the area where the ion charge–
energy distribution function rapidly decreases with
increasing energy. In Fig. 2, this area is characterized
by the highest density of isopleths. It is obvious that
there exist extreme values of energy and charge corre-
sponding to a specific cluster size. However, if the clus-
ter size distribution includes clusters of different size,
then these extreme values should not be well defined.
Nevertheless, computations reveal a sharp boundary of
the distribution function at high values of energy and
charge, as illustrated by Fig. 2. Note that this boundary
is independent of the laser-pulse intensity that corre-
sponds to the largest possible charge. The boundary is
given by the relation

(34)

This behavior is explained by the exponential form of
the cluster size distribution in the large-size limit.
According to our calculations, the numerical factor
in (34) is C ' = 9/20.

Figure 5 shows the ion energy spectra obtained by
integrating the charge–energy distributions with
respect to charge. It demonstrates that the spectra cor-
responding to lognormal and exponential cluster size
distributions are similar. Furthermore, these spectra
agree with those found experimentally in [19–21] in the

RC 'JZ
2 E.log=
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interval of ion energy between ~1 keV and ~1 MeV.
The results predicted by the present theory for ion ener-
gies below 1 keV differ from experiment, because we
ignore collisions.

Note that the ion energy spectrum corresponds to
the peak values of the charge–energy distribution func-
tion. This is illustrated by Fig. 6, where dashed curves
represent the ion energy spectra corresponding to the
specified values of cluster-beam and laser-pulse param-

2

1

0

–1

–2

–3

–4
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logE
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Fig. 5. Xenon ion energy spectra for lognormal (solid
curve) and exponential (dashed curve) cluster size distri-
butions for  = 26.5 nm and a laser intensity of 8 ×
1017 W/cm2.
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Fig. 6. Ion energy spectra for  = 26.5 nm and a laser intensity of 8 × 1017 W/cm2 (dashed curve) and peak of charge–energy dis-
tribution function multiplied by the characteristic width (solid curve) corresponding to lognormal (a) and exponential (b) cluster
size distributions.

R

eters. It is clear that the ion energy spectrum is close to
the peak values of the charge–energy distribution func-
tion if this function is multiplied by the characteristic
width of the ion charge distribution function.

5. CONCLUSIONS

Our computations of energy and charge–energy dis-
tributions for ions created by irradiating a cluster beam
with a high-power ultrashort laser pulse demonstrate
the important role played by the self-consistent field of
an exploding cluster in the formation of the ion spec-
trum. According to the computations, the distributions
are similar in shape, and their characteristics are prima-
rily determined by the mean cluster size and the largest
ion charge, which depend on the laser-pulse intensity in
the focal spot at the cluster-beam boundary, where the
laser-pulse intensity is the highest. The ion distributions
computed for exponential and lognormal cluster size
distributions differ only for charge and energy values
characterized by low probabilities. The computations
demonstrate that the dominant components of the
resulting plasma are closed-shell ions. When the self-
consistent cluster field is taken into account, the shapes
of the ion distributions do not change, but the ionization
efficiency increases, and so does the largest charge. It
can be expected that any model ignoring the effect of
the self-consistent field will lead to qualitatively correct
results that are quantitatively inconsistent with expe-
riment.
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Abstract—A physical model of the development of turbulence in free shear flows is proposed. The model is
based on the results of numerical simulations of turbulent flow development. The main ideas of the proposed
theory of turbulence are stated as follows: the onset of turbulence begins with the formation of large vortices;
spectral energy transfer involves both direct and inverse cascades; and the inertial range of the energy spectrum
develops as a result of concurrent direct and inverse cascades. The dominant physical factors that determine the
spectrum include Joukowski forces. © 2004 MAIK “Nauka/Interperiodica”.
1. BACKGROUND

The problem of turbulence has challenged scientists
for over a century. However, no comprehensive turbu-
lence theory has been developed to this day. Let us reit-
erate the basic ideas that have been considered.

Starting from the work of O. Reynolds, the theory of
fully developed turbulence relies on the assumption
that flow velocity is a Gaussian random variable fluctu-
ating about a mean value at any point. This implies that
the velocity length-scale (wavenumber) distribution is
consistent with an appropriate mathematical expecta-
tion. This hypothesis constitutes the basis for the statis-
tical theory of turbulent flows. In 1925, Keller and
Friedmann introduced a general definition of Eulerian
space-time correlation functions for turbulent flow
fields and suggested a method for deriving time-depen-
dent equations for correlation functions from the
Navier–Stokes equations. These equations play a fun-
damental role in the statistical turbulence theory. The
most comprehensive presentations of the theory can be
found in [1, 2].

The equations for correlation functions are used to
average flow characteristics, such as velocity or vortex
size. The mathematical model assumes that flow pertur-
bations are random and can be described by probabilis-
tic methods extended to function spaces. In fact, this
assumption underlies the derivations of simplified
equations and estimates for the growth exponents of the
instabilities leading to the onset of turbulence.

However, the velocity measured at a particular point
in a turbulent flow mostly remains within the limits cor-
responding to large-scale vortices, because these vorti-
ces are the major elements of flow structure. Fast fluc-
tuations can be observed when the small eddies sur-
1063-7761/04/9903- $26.00 © 20504
rounding large-scale vortices move past the velocity
sensor.

A variety of subgrid-scale models have been devel-
oped for applied simulations of turbulent flows, includ-
ing the k–ε model, Reynolds stress models, and large-
eddy simulation (LES) models. All of these models
contain semiempirical constants that can be adjusted to
compute particular flows.

In 1985, O.M. Belotserkovskiœ showed that fully-
developed free turbulence could be simulated without
using any subgrid-scale model and adjusting any
semiempirical constants [3]. The starting point of this
line of research was a von Kármán lecture published
in [4]. The most systematic presentations of this
approach can be found in [5, 6], where it was applied to
free turbulent flows behind moving bodies (including
both near- and far-wake flow structures), oceanic flows,
Taylor–Couette flow, evolution of turbulent mixing
zones, and other important problems concerning the
onset of turbulence. The approach reflects the multidi-
mensional and unsteady nature of the flows in question
and takes into account phenomena related to compress-
ibility, as well as effects due to viscosity (dominated by
molecular mechanism). In those studies, it was also
shown that large-scale vortices play a dominant role in
turbulent flow structure. It should also be noted that this
idea was supported by A.S. Monin [7].

Much later, Western specialists proposed the Mono-
tonically Integrated Large Eddy Simulation approach
(known as the MILES model) [8]. As in [3], the Euler
or Navier–Stokes equations were solved by using
upwind monotone finite-difference schemes without
any subgrid-scale modeling. Monotone differencing
introduces a dissipative mechanism (different from
physical viscosity) that implicitly plays the role of a
004 MAIK “Nauka/Interperiodica”



        

PHYSICAL PROCESSES UNDERLYING THE DEVELOPMENT OF SHEAR TURBULENCE 505

 

subgrid-scale model, while the large-scale motion
resolved on the grid is assumed to be independent of the
actual mechanism of small-scale dissipation.

2. BASIC IDEAS

The understanding of the onset of turbulence was
greatly improved by recognizing the key role played by
large-scale coherent structures. In this context, the sta-
tistical treatment of turbulence based on a probabilistic
description must be combined with deterministic mod-
eling of evolution of large-scale vortices. Physical
models of this kind can be implemented in direct
numerical simulations [3], where the development of
flow disturbances on progressively smaller scales is due
to interactions of large-scale vortices with the back-
ground flow and with one another, rather than to bifur-
cations of trajectories in the phase space [9].

The basic ideas of direct numerical simulation of
turbulence rely on the following two hypotheses sup-
ported by experimental evidence:

(1) large-scale coherent vortices and small-scale
stochastic turbulence are statistically independent at
high Reynolds numbers;

(2) molecular viscosity (more generally, the mecha-
nism of energy dissipation) plays a minor role in the
analysis of large-scale vortex dynamics.

Large vortices carry the greater part of the energy of
turbulent motion and determine the flow structure. The
dynamics of large vortices does not reflect the structure
of random fluctuations, being governed by the Navier–
Stokes equations in which the inertial terms dominate
over the viscous terms. Accordingly, the structure of a
vortex develops as a result of combined action of pres-
sure gradients and transient forces arising from velocity
fields. Therefore, both formation of large-scale vortices
and ensuing flow structure must be described by the
Euler equations.

Molecular viscosity is taken into account only in
analyzing small-scale turbulent motion and dissipation
of kinetic energy into heat. However, energy is dissi-
pated only in small eddies with length scales close to
the spectral boundary. Therefore, the distribution of
thermal-energy production rate over wave numbers is
not isotropic. Further evolution of a large-scale vortex
leads to generation of small-scale eddies at the bound-
ary between the vortex and the background flow, i.e., to
intermittent behavior of turbulence. We conclude that
local flow patterns in well-developed turbulence are
unsteady and small-scale components of turbulent
spectra must depend on the mechanism of vorticity
generation in the neighborhoods of large-scale vortices.

To examine physical scenarios of the onset of turbu-
lence, we performed an extensive series of numerical
simulations of free shear flows of an inviscid perfect
gas. We used monotone dissipative stable finite-differ-
ence schemes with positive operators [3–6]. This tech-
nique requires neither special filtering nor semiempiri-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
cal modeling to approximate subgrid turbulence. (It
should be noted here that the inertial-range spectrum
was obtained by Kolmogorov without assuming any
specific form of dissipative terms.) The schemes auto-
matically introduce a dissipative mechanism playing
the role of a subgrid turbulence model.

We analyzed the evolution of a shear layer with a
uniform velocity gradient. Figure 1 demonstrates that
large vortices of diameter comparable to the shear-layer
thickness develop first. The vortex motion in a finite
volume is generated by a pressure gradient. The shear
layer breaks up into large vortices, and smaller eddies
develop in their wakes. At the final instant of the simu-
lation, the flow consists of a single vortex occupying
the computational domain. This effect is explained by
the attraction of vortices with similar vorticity signs due
to the Joukowski force (see Fig. 2). The computation
was performed with free-flow conditions set on the
upper and lower boundaries combined with periodic
conditions at the upstream and downstream boundaries.

Note that a single large-scale vortex (Great Red
Spot) persists in the Jovian atmosphere, as illustrated
by Fig. 3.

Figure 4 shows the results obtained by computing
the evolution of turbulence in a similar shear layer, but
with impermeability conditions set on the upper and
lower boundaries. Here, the onset of turbulence follows
the scenario observed in the preceding simulation. How-
ever, the final turbulent flow has a complicated pattern
involving both large-scale vortices and smaller structural
elements. This result is due to interactions of the back-
ground flow with walls and large-scale vortices.

In 1920, L.F. Richardson pointed to the key role
played by an energy cascade in turbulence structure.
Indeed, different turbulent energy spectra can be
obtained, depending on the mechanism of the cascade.
The classical Kolmogorov–Obukhov spectrum was
obtained by Kolmogorov by assuming that the rate of
spectral energy transfer is constant and the process of
eddy breakup is self-similar, while viscous dissipation
of kinetic energy into heat occurs only in small-scale
eddies. Note that it has long since been understood that
only small-scale components of turbulent motion are
fully stochastic. Large vortices are coherent and cannot
be described in terms of random fields. While it is clear
that the conversion of kinetic energy into heat is due to
viscosity, it is important to find out whether the energy
of large vortices or the energy of vortex–flow interac-
tion is responsible for the generation of smaller vorti-
ces. The flow energy may play an important role since
large vortices are relatively stable.

Analysis of the processes contributing to the devel-
opment of the turbulent energy spectrum is the pivotal
element of turbulence theory. It is generally believed
that the spectrum develops as a result of energy transfer
from large-scale vortices (as in the Kolmogorov–
Obukhov turbulence theory). However, it was shown
in a recent analysis that an important role is played by
SICS      Vol. 99      No. 3      2004
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Fig. 1. Development of large-scale vortices in a free turbulent shear layer. Streamlines are shown at instants separated by equal time
intervals, including the starting moment. The grayscale value represents the concentration of particles initially localized in the shear
layer.
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Fig. 2. Attraction of vortices with similar vorticity signs.

Fig. 3. The Great Red Spot in the Jovian atmosphere.
the coalescence of vortices driven by the Joukowski
force [6]. Figure 5 illustrates the evolution of a Taylor–
Couette flow from an initial state in which the “white”
fluid (with zero “marker” concentration) in the annular
JOURNAL OF EXPERIMENTAL
half-gap adjoining the inner cylinder is at rest and the
“black” fluid (with unit “marker” concentration) in the
outer half-gap rotates as a solid body having the angular
velocity of the outer cylinder. Here, the development of
 AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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Fig. 4. Flow analogous to that shown in Fig. 1, but confined between walls.
the Kelvin–Helmholtz instability is followed by the
survival of a few large vortices. Thus, the development
of the intermediate spectral range can involve energy
transfer from small scales as well.

Another important issue is local heat balance and
the rate of energy redistribution in a local volume. The
assumption of balanced energy transfer at every point of
the flow is a very strong hypothesis that requires a special
proof. When it is discarded, the turbulent energy spec-
trum must be computed by direct numerical simulation.

The results of time-dependent two-dimensional
computations presented above provide evidence of both
inverse energy transfer (as in two-dimensional turbu-
lent flows) and energy transfer from large-scale vortices
to small scales (as in Kolmogorov turbulence).

In [10], the linear stability problem was analyzed for
the incompressible plane Couette flow with a free
boundary. The free-boundary condition was set by pre-
scribing a constant external pressure. It was found that
the highest growth exponent is determined by the layer
thickness, which agrees with the scenario of large-vor-
tex formation simulated in our computations.

3. OUTLOOK
To summarize the foregoing discussion, we state

two major problems that must be solved in order to
develop a physical model of turbulence:

(1) generation of large-scale vortices by the pressure
field in a shear flow at Re > Recr;

(2) development of a cascade of flow structures due to
interaction between a shear flow and large-scale vortices.
AL OF EXPERIMENTAL AND THEORETICAL PHY
Many open questions in turbulence theory will be
answered after these problems are solved by direct
numerical simulation.

One important issue is the scope of the Navier–
Stokes equations. These equations, in particular, are
known to describe the Couette flow of a viscous fluid.
At present, it can be argued that the Navier–Stokes
equations correctly describe viscous flows with Rey-
nolds numbers below critical values. The reference
length scale used in calculating the Reynolds number is
determined by the characteristic length over which the
Reynolds stress is comparable to the viscous stress in a
shear flow. This length characterizes the large-scale
structure of turbulent flow. Viscosity plays a key role in
the conversion of kinetic energy into heat in small-scale
turbulence and in the quasilaminar small-scale flow
structure. (Note also that applied turbulence studies
suggest that flows tend to quasilaminar regimes with
increasing Reynolds number.) The minor role played
by large-scale perturbation modes may be explained by
strong interaction between vortices and the background
flow. A more detailed explanation will possibly be
inferred from direct numerical simulations to be per-
formed in future. In recent studies of the behavior of
viscosity coefficient in the Navier–Stokes equations, its
complicated dependence on the velocity field was
revealed (e.g., see [11]).

In [12], Troshkin introduced an infinite set of terms
expressed in terms of higher order Lie derivatives of
viscous terms into the Navier–Stokes equations, thus
changing from linear to nonlinear viscosity. The new
equations retain classical solutions (it was rigorously
SICS      Vol. 99      No. 3      2004
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Fig. 5. “Marker” concentration (left) and vorticity (right) in the Taylor–Couette flow at t = 0.05, 0.1, and 0.2. The outer cylinder is
rotating counterclockwise; the inner one is at rest.
proved that the Poiseuille flow structure remains invari-
ant) and have new solutions, which may be of interest
for turbulence theory. Physical reasons were put for-
ward to explain why the analysis of turbulence based on
linear viscosity (i.e., the classical Navier–Stokes equa-
tions) is inadequate. Thus, the analysis presented
in [12] can be viewed as an attempt to expand the scope
of conventional turbulence theories relying on numerical
experiment, statistical methods, and averaged models by
introducing generalized Navier–Stokes equations.

In [13], it was argued that energy input into a system
at high Reynolds numbers [14] combined with the Kol-
mogorov law

implies that

In other words, turbulent viscosity is a varying param-
eter (and so is the Reynolds number). Here, V is inter-
preted as the velocity difference over a distance l.
Therefore, turbulence will develop when the same
value of V corresponds to a larger length scale (say,
associated with pipe radius). In terms of energy, this
means that the kinetic energy associated with a large

ε V3l 1–  and v t ε1/3l4/3∼∼

Re
Vl
v
----- Vl

v v t+
--------------- O 1( ).∼=
JOURNAL OF EXPERIMENTAL 
length scale exceeds the work done by viscous forces
on the corresponding volume. Similar reasoning can be
used regarding the growth of velocity difference in a
shear flow. These considerations suggest that the
Navier–Stokes equations can be used to describe a vis-
cous flow only when the Reynolds number is lower than
a certain critical value. Analysis of compressible flows
with higher velocities and greater length scales must
rely on the Euler equations [3].

In view of the argumentation developed above, anal-
ysis of the onset of turbulence based on expansion in
terms of small velocity perturbations does not seem to
be well founded. It may be necessary to analyze devel-
oping turbulence by direct numerical simulation, since
the problem is nonlinear and turbulence develops in a
finite volume. Therefore, decomposition of flow veloc-
ity into an unperturbed mean component and a small
disturbance is not valid since the velocity satisfies the
equations of fluid dynamics at every point of the flow.

4. CONCLUSIONS

The numerical results presented in Figs. 1, 4, and 5
lead to the following conclusions about the processes
underlying the onset of turbulence in a flow. The devel-
opment of turbulence begins with formation of large
vortices. The vortex size is determined by the length
AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004



        

PHYSICAL PROCESSES UNDERLYING THE DEVELOPMENT OF SHEAR TURBULENCE 509

                                                     
scale on which the inertial term v∆v is comparable to
the viscous tensor. As a result, a vortex is created by a
pressure gradient. We believe that representation of
incipient turbulence in terms of small perturbations
developing against the background velocity field is
incorrect. The onset of turbulence is due to finite distur-
bances. Well-developed turbulence should be modeled in
the framework of the Euler equations, which correctly
describe the distribution of basic length scales [3]. This
conclusion relies on the fact that the viscous term is
small when the Reynolds number is high. When solving
the Navier–Stokes equations, one must take into
account the heating of the fluid due to kinetic-energy
dissipation in small-scale turbulence.

The relationship between stochasticity and exist-
ence of large-scale structures in turbulent flows was
discussed in [5]. In particular, it was emphasized that
development of turbulence depends on imbalance
between the inertial mechanism (responsible for grow-
ing flow instability) and viscous dissipation (which sta-
bilizes the flow). We can introduce the concept of
intrinsic inertial mechanism of a dynamical system, due
to the nonlinear inertial terms in the governing equa-
tions and external perturbing forces (forces arising
from the pressure field are also treated as external per-
turbations). Instability (“transition to chaos”) can rap-
idly grow when the inertial mechanism dominates over
dissipation. As noted in [5], the intrinsic inertial mech-
anism of a dynamical system may not be sufficient to
initiate a stochastic process in a system.

Another important issue in turbulence theory is evo-
lution of the energy spectrum. It is commonly believed
that energy is transferred from large to small scales via
eddy breakup (direct cascade). This assumption leads
to the Kolmogorov–Obukhov spectrum of well-devel-
oped turbulence when the rate of spectral energy trans-
fer is constant. According to our simulations of direct
cascading, small- and intermediate-scale eddies appear
as a result of interaction between the background flow
and the very first large vortex generated in its wake.

Support for the proposed model can be found
in [15], where the dominant role played by large-scale
vortices was demonstrated by three-dimensional com-
putations of shear flows.

Important results concerning the evolution of small-
scale turbulence have been obtained. Entropy computa-
tions have shown that only a small fraction of the
energy contained in small-scale eddies dissipates into
heat [16]. Multiple small eddies merge under the action
of the Joukowski force, and the resulting inverse cas-
cade determines the inertial range spectrum.

Thus, the onset of turbulence includes the following
stages. Large vortices develop at random locations in a
free shear flow, with length scales as described above.
Subsequently, interaction between the large vortices
and the background flow gives rise to the generation of
small-scale components of turbulence and determines
its inertial-range spectrum. Thus, the onset of turbu-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
lence has a deterministic rather than stochastic nature.
Only vortex locations are random, whereas the spec-
trum is controlled by interaction between the stream
and large vortices.

Well-developed turbulence in a free shear flow
involves both direct and inverse cascades, i.e., spectral
energy transfer in both directions.
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Abstract—Results of a numerical analysis of mass transfer in systems of macroscopic particles with various
isotropic interaction potentials are presented. Parameters that determine transport properties of nonideal dissi-
pative systems are obtained for a broad class of model potentials. An approximate expression for the diffusivity
of interacting particles is proposed. The relationship between diffusivity and viscosity is analyzed for strongly
nonideal systems. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Problems concerning mass transfer in dissipative
systems of interacting particles are of great interest for
various branches of science and engineering (fluid
dynamics, plasma physics, pharmaceutical industry,
polymer physics and chemistry, etc.) [1–12]. Most dif-
ficulties in studies of physical properties of these sys-
tems arise from the fact that no analytical theory of liq-
uids is available that can explain their thermodynamic
properties, predict equations of state, describe heat and
mass transfer, etc. [9–12]. Another problem is that real
interparticle interaction potentials are not known in
most cases, and the energy of interparticle interaction
cannot be calculated exactly for real physical systems
[11–17]. Currently, this problem is commonly consid-
ered to be unsolvable within the framework of molecu-
lar physics. For this reason, the standard approach used
in modeling potential energy of particles relies on
effective semiempirical potentials Ueff . These poten-
tials are widely used in theoretical analyses of transport
in real systems and studies of their physical properties
by means of computer simulation. The most popular
functions have the form

introduced by G. Mie about 100 years ago (a, b, n, and
m are constants and r is the interparticle distance). The
form of a model potential is almost always prescribed a
priori, and the parameters of the chosen model function
are adjusted by comparison with measured characteris-
tics of the medium under analysis [15–17].

Modern theories of strongly nonideal systems and
models describing the liquid state of matter are gener-
ally based on two approaches. In one approach, rela-
tions between different parameters of a liquid and their
relations to the properties of corresponding crystals are
determined by semiempirical methods based on ana-

Ueff a/rm b/rn+–=
1063-7761/04/9903- $26.00 © 20510
logies between the crystalline and liquid states of mat-
ter [9–12]. This approach was successfully applied
in [18] to develop a hypothetical model of liquid struc-
ture at a temperature close to the melting point. Alter-
natively, the properties of a nonideal system are com-
puted by the molecular dynamics method with the use
of model data concerning the energy of interparticle
interaction [16, 17].

Laboratory dusty plasmas provide good experimen-
tal models for studying properties of nonideal systems.
A dusty plasma is a partially ionized gas containing
micrometer-sized dust particles [19–23]. Analysis of
the properties of dusty plasmas is also of interest
because they are widespread in nature, on the one hand,
and are frequently obtained in various technological
processes, on the other. The micrometer-sized dust par-
ticles contained in these plasmas can acquire large elec-
tric charges and make up quasi-steady liquid- or solid-
like dust structures. In contrast to real liquids, the mac-
roscopic particles are sufficiently large to be imaged,
which facilitates application of direct nonintrusive
diagnostic methods and makes it possible to study
kinetics of nonideal systems. The difference between
dust-grain kinetics in a nonideal dusty plasma and
kinetics of atoms (or molecules) in real molecular liq-
uids is primarily due to difference in the interparticle
interaction potential and strong influence of neutrals in
the ambient gas on the motion of dust grains in a labo-
ratory plasma.

However, the real potentials of interaction between
dust particles in plasmas are not known either [24–27].
Therefore, determination of the parameters characteriz-
ing the state of a system of interacting particles is as
important for the physics of nonideal dusty plasmas as
it is for other natural sciences. In [28, 29], two dimen-
sionless parameters were found to determine mass
transfer and phase state for systems with Yukawa-type
004 MAIK “Nauka/Interperiodica”
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screened Coulomb potentials (Yukawa systems with
κ = rp/λ < 6–7, where λ is the screening radius, rp =

 is the mean distance between particles, and np is
the particle concentration): the effective nonideality
parameter

and the scaling parameter

Here, Zp is the charge of a dust particle, mp is its mass,

is the Coulomb coupling parameter, T is temperature,
and νfr is the friction coefficient associated with colli-
sions between dust particles and ambient-gas neutrals
[30, 31]. Consistency of this numerical model
(extended homogeneous system with a screened isotro-
pic interaction between particles) with the conditions of
laboratory experiments on gas-discharge dusty plasmas
was verified in [32–34]. Experimental studies have
shown that the dust-particle dynamics in these plasmas
can be described in terms of the parameters Γ* and ξ.
However, the parameters of the interparticle interaction
potential can be determined only if additional informa-
tion about its form is available.

Thus, it was noted that mass transfer and spatial cor-
relation of particles in Yukawa systems with κ < 6
depends only on the ratio of the second derivative U '' of
the pair interaction potential U(r) at rp to the particle
temperature T. Moreover, both melting/crystallization
processes (at Γ* ~ 102–106) and formation of well-
ordered clusters of dust grains (at Γ* ~ 22–25) occur at
nearly constant values of Γ* [28, 29]. One can reason-
ably assume that this property holds under certain con-
ditions for potentials of more general form describing
pair interactions. In the present study, we examine this
hypothesis by computing transport coefficients and pair
correlation functions for several models of radial repul-
sive potentials. The results obtained are compared with
the diffusivities and pair correlation functions calcu-
lated for systems with attractive pair interaction poten-
tials. We analyze available numerical data and measure-
ment results concerning transport coefficients for ele-
mentary liquids (such as metals and inert gases).

2. PARAMETERS 
USED IN NUMERICAL ANALYSIS

Correct simulation of plasma-dust particle transport
must rely on a molecular-dynamics method, in which a
system of ordinary differential equations containing a
Langevin force Fbr is solved. This force represents ran-
dom impacts by molecules of the ambient gas or other
random processes that underlie the relaxation of the

np
1/3–

Γ* Γ 1 κ κ 2/2+ +( ) κ–( )exp{ } 1/2
=

ξ ν fr
1– eZp 1 κ κ 2/2+ +( ) κ–( )np/πmpexp{ } 1/2

.=

Γ
Zpe( )2

Trp
---------------=
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kinetic temperature T of dust grains to the equilibrium
value characterizing the energy of their stochastic
motion [7, 35, 36]. Microscopic processes in homoge-
neous extended clouds of interacting macroscopic par-
ticles are generally simulated by setting periodic
boundary conditions and taking into account not only
the random force Fbr , but also the forces Fint acting
between pairs of particles [28, 32–36]:

(1)

where l = |lk – lj| is the separation between particles, and
Fint = –∂U/∂l. Interaction between dust particles in plas-
mas is commonly described by the Yukawa-type
screened Coulomb potential

(2)

where r is distance and a0 is a parameter equal to (eZp)2

for two identical particles with charge eZp (e is the ele-
mentary charge). This assumption is consistent both
with measurements of forces acting between two dust
particles [24] and with the computed structure of a
screening cloud [25] only at relatively short distances
from the particle (r < 5λD, where λD is the Debye
radius). The screening weakens with increasing r, and
the asymptotic behavior of U at r @ λD is governed by
a power law: U ∝  r–2 [26] or U ∝  r–3 [27].

The results reported in [24–27] were obtained for
isolated dust particles in plasmas. However, it remains
unclear how the potential of interaction between two
particles is modified by influence of other particles in a
dust cloud, ionization of gas, collisions of electrons or
ions with neutrals in the ambient gas, and other factors.
Therefore, transport properties of nonideal systems were
analyzed by using various combinations of power and
exponential laws frequently employed in simulations of
repulsion in kinetics of interacting particles [3–7]:

(3)

(4)

(5)

where a1, a2, κ1, κ2, and n are parameters varied in our
computations and Uc = a0/r is the Coulomb potential.
Both potential (2) and models (4) and (5) (with n = 1
and 2 in the latter) are of special interest in the physics
of dusty plasmas. They can be used to allow for weaker
screening at relatively large distances between dust
grains [24–27].

To analyze transport properties of systems of parti-
cles with various interaction potentials (2)–(5), three-

mp

d2lk

dt2
--------- Fint

j

∑ l( ) l lk l j–=

lk l j–
lk l j–
---------------=

– mpνfr

dlk

dt
------- Fbr,+

U a0
r/λ–( )exp

r
-------------------------,=

U Uca1 rp/r( )n,=

U Uc a1 κ1r/rp–( )exp a2 κ2r/rp–( )exp+[ ] ,=

U Uc a1 κ1r/rp–( )exp a2 rp/r( )n+[ ] ,=
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dimensional equations of motion (1) were solved for
specific values of parameters defined by analogy with
those characterizing Yukawa systems: the effective
nonideality parameter

(6)

and the scaling parameter

(7)

where the frequency of collisions between macroscopic
particles is calculated as

(8)

and the effective particle charge is

(9)

Note that the effective particle charge does not have any
particular physical meaning here. However, the use
of (9) makes it possible to retain Γ*, ξ, and ω* as uni-
versally applicable parameters in models with interac-
tion potentials of any type (2)–(5). In the case of
Yukawa potential (2), the effective charge can be
expressed as

Most computations were performed for 125 inde-
pendent particles in the central cell, while the number
of particles taken into account in computing pair inter-
actions reached approximately 3000. Yukawa potentials
with κ = 2.4 and 4.8 were employed. Correct simulation

Γ* Qp*( )2
/Trp=

ξ ω*/νfr,=

ω* Qp* np/πmp( )1/2,=

Qp* U''/2np[ ] 1/2.=

Qp* eZp 1 κ κ 2/2+ +( )1/2 κ /2–( ).exp=

10 2
r/rp

1

2

g(r/rp)

Γ∗  = 17.5

Γ∗  = 77

Fig. 1. Pair correlation functions g(r/rp) for several model
potentials and several values of ξ and Γ*. For Γ* = 77, the
solid curve, triangles, and circles correspond to ξ = 0.14 and
U/Uc = exp(–4.8r/rp), ξ = 0.14 and U/Uc =
0.1exp(−2.4r/rp) + exp(–4.8r/rp), and ξ = 1.22 and U/Uc =
exp(–4.8r/rp) + 0.05rp/r, respectively. For Γ* = 17.5, the
solid curve, triangles, and circles correspond to ξ = 1.22 and
U/Uc = exp(–2.4r/rp), ξ = 1.22 and U/Uc =
0.1exp(−2.4r/rp) + exp(–4.8r/rp), and ξ = 0.14 and U/Uc =

0.05(rp/r)3, respectively.
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of molecular dynamics was ensured by using discreti-
zation cells of size R @ λ [37]. The pair interaction
potential was cut off at the distance Lcut = 4rp. To ensure
that numerical results are independent of number of
particles and cut-off distance, we performed additional
computations for 512 actual particles for Lcut = 7rp with
Γ* = 1.5, 17.5, 25, 49, and 92. The discrepancy between
computed results did not exceed numerical error and
remained within ±(1–3)%. A detailed description of the
numerical procedure can be found in [28, 33, 34]. The
value of ξ was varied between 0.04 and 3.6, i.e., within
limits characteristic of experimental conditions in gas-
discharge plasmas. The value of Γ* was varied between
1 and 110.

Our computations showed that the effective param-
eter Γ* completely characterizes mass transfer in the
simulated systems, as well as their ordering and phase
states, if the following empirical condition for long-
range interaction is satisfied:

(10)

In the first (linear) approximation, this criterion speci-
fies conditions under which the force acting between
two particles separated by the mean interparticle dis-
tance is greater than the force typically arising in colli-
sions of macroscopic particles (calculated by taking
into account the probability of such collisions).

3. FORMATION OF ORDERED STRUCTURES
Ordering in the simulated systems was analyzed by

using the pair correlation function g(r) and the structure
factor S(q). Figure 1 compares these functions with the
functions g(r) computed by using various potentials
subject to empirical condition (10) for two values of Γ*
and several values of ξ. Figure 2 illustrates the depen-
dence of the first maxima g1 and S1 of the functions g(r)
and S(q) on Γ*. Here, vertical bars represent the abso-
lute deviations of these quantities for ξ ≈ 0.04–3.6 and
potentials (2)–(5). To compare the pair correlation of
particles computed for dissipative systems (νfr ≠ 0) with
solutions to reversible equations of motion for nondis-
sipative Yukawa systems (νfr = 0, ξ  ∞) and with
results obtained for a one-component plasma (OCP)
model, Fig. 2 also shows the maximum values of g(r)
and S(q) found in [38, 39].

Our numerical study shows that spatial correlation
of dust grains in the simulated systems is independent
of friction (νfr) and is completely determined by the
value of Γ* under conditions ranging from a gaseous
state (at Γ* ≈ 1) to the point of crystallization into a BCC
lattice (at Γ* ≈ 102–104). The first maximum points of
the functions g(r) and S(q) corresponding to crystalline
structure are characteristic of the BCC lattice:

Jumps in the values of the first maxima of g(r) and S(q)
from 2.65 to 3.1 are observed as the normalized param-

2π U' rp( ) U'' rp( ) rp.>

dg1 3 3/4np( )1/3
, dS1 2π 2np( )1/3

.≈≈
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eter Γ* varies from the crystallization point  ≈ 102–

104 to the melting point  ≈ 106–107 (see Fig. 2).

Thus,  ≈ 104.5(±2) can be interpreted as the point
of phase transition between a liquid-like state and a
body-centered cubic lattice.

Since  ≈ 104.5 (±2%) is independent of the
ambient viscosity, this result is consistent with molecu-
lar-dynamics simulations of crystallization in Yukawa
systems with zero friction [38–41]. The deviations of
their results from  ≈ 104.5 vary within ±5% and can
be attributed to difference in numerical procedures
(number of particles, integration step, etc.) and to
choice of Γ* associated with either melting or crystalli-
zation point of the system. It should be noted that

 ≈ 104.5 (±2%) agrees with the theoretical results
obtained in [42], where the value of the nonideality
parameter on the phase-transition line in the OCP
model was 105(±3%). (The latter value is consistent
with numerical results based on various criteria for
crystallization [43] and melting [44].)

Note also that the form of a correlation function g(r)
satisfying condition (10) is determined by the value of
Γ*. Therefore, the methods for determining the poten-
tial of interaction between two particles from measure-
ments of the structure factor based on the hypernetted
chain approximation [5, 6, 39] cannot be applied to the
systems in question. Furthermore, the result obtained
here can explain the widespread use of various phe-
nomenological melting/crystallization criteria specify-
ing the maximum values of correlation functions or the
ratios of their maximum and minimum values on
phase-transition lines (when r ≠ 0) irrespective of the
interparticle interaction potential.

4. TIME-DEPENDENT MASS TRANSFER

Unlike phase state, mass transfer in the simulated
systems is determined by two parameters: Γ* and ξ (see
Figs. 3–5). To analyze the dust-grain diffusivity D =

(t) and its time dependence D(t), we used the

expression

(11)

where ∆l = ∆l(t) is a particle displacement and angle
brackets with subscripts N and t denote a quantity aver-
aged over the ensemble of N particles and over all time
intervals of duration t within the measurement time.

Figure 3 shows the ratio of diffusivity D(t) of
charged particles to the diffusivity D0 = T/νfrmp of non-
interacting “Brownian” particles as a function of time

(measured in units of ) for several combinations of
pair interaction potentials and values of ξ. Curve 6 is

Γ c*

Γm*

Γ cm*

Γ cm*

Γ cm*

Γ cm*

D
t ∞→
lim

D t( ) ∆l t( )2〈 〉 N〈 〉 t/6t,=

νfr
1–
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the exact solution to the Langevin equation in the
absence of interaction between particles [7]:

(12)

Thus, D(t) = D0 for noninteracting particles at relatively

D t( )/D0 1
1 νfrt–( )exp–

νfrt
----------------------------------.–=

Fig. 2. First maxima S1 of structure factor (thick curve) and
g1 of pair correlation function (thin curve) versus Γ*: closed
triangles represent g1 in the nondissipative Yukawa model
(νfr = 0) [38]; open triangles, g1 in the OCP model [39];
open circles, S1 in the OCP model [39]. Vertical bars are the
absolute deviations for ξ = 0.04–3.6 and for various poten-
tials satisfying (10).

0.9
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1

Fig. 3. Ratio D(t)/D0 versus tνfr for the Yukawa potentials
with κ = 2.4 for ξ = 1.2 and Γ* = 80 (1), ξ = 0.14 and Γ* =
80 (2), ξ = 0.14 and Γ* = 60 (3), ξ = 0.14 and Γ* = 30 (4),
and ξ = 0.04 and Γ* = 80 (5); curve 6 corresponds to
Eq. (12). Triangles represent the data points obtained in
computations with ξ = 0.14, U/Uc = exp(–4.8r/rp) +
0.05rp/r, and Γ* = 60 and 80 corresponding to curves 3 and
2, respectively.
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long times (νfrt @ 1), whereas ballistic motion of parti-
cles manifests itself at short times (νfrt ! 1): 〈∆l(t)2〉  ≈
3Tt2/mp and D(t) ∝  t.

For interacting particles, similar short-time behavior
of D(t) is obtained and the ratio D(t)/D0 is consistent
with (12) at t < tmax/2 (see Fig. 3). The maximum value
Dmax reached by the function D(t) can be used to ana-
lyze mass transfer at short times. Note that Dmax

approaches D0 from below as the ambient viscosity is
increased. Furthermore, both Dmax/D0 and tmaxνfr are
independent of Γ*. An empirical approximation of the
numerical results corresponding to the curves D(t) that
monotonically decrease to the left of their maxima
gives the following expression for the function Dmax(ξ):

(13)

For weakly dissipative systems with ξ > 1, the maxi-
mum point tmax of D(t) is determined by the relation

(14)

where b = 4. Formulas (13) and (14) agree with numer-
ical results within 5%. They are obtained by solving the

Dmax

D0

1 bξ+
---------------.≈

tmaxνfr
π

bξ( )2 1–( )1/2
--------------------------------,=

0.6

0.4

0.2

0 25 50 75 100

3

4

2

1

k = 2.4
k = 4.8

D/D0

Γ∗  

Fig. 4. Ratio D/D0 versus Γ* for dissipative Yukawa sys-
tems with different κ (j; h) [28] and for systems with
potentials (2)–(4) specified in the caption to Fig. 1 (n) at ξ =
0.14 (1), 0.41 (2), 1.22 (3), and 3.65 (4).
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problem of one-dimensional oscillator with the fre-
quency defined as

. (15)

This frequency characterizes particle oscillation in a
BCC lattice [28], and its value is close to the frequency
of the average mode of particle oscillation for a liquid-like
Yukawa system obtained by analyzing the corresponding
particle-velocity autocorrelation functions [45]:

where ω⊥  and ω|| correspond to the transverse and lon-
gitudinal oscillation modes.

The variation of D(t) simulated here illustrates
relaxation of the simulated system for small deviations
from an equilibrium state. Our computations suggest
that a system of interacting particles can be charac-
terized by equilibrium values of diffusivity only at
t @ tmax, whereas D(t) = D0 for a system of “Brownian”

particles at t @ . Analysis of the short-time behavior
of D(t) can be used both to estimate the parameter ξ as
a source of information about the interparticle interac-
tion potential and to determine the temperature T of
dust grains if their velocity distribution cannot be mea-
sured with required accuracy.

ωc
2 2 U'' rp( )

πmp
---------------------- 4ω*2≡=

ωc
2 2ω⊥

2 ω||
2+

4π
----------------------,≈

νfr
1–

1.0

0.1
0 25 50 75 100

Γ∗  

2

1

D*

Fig. 5. Normalized function D* averaged over numerical
results versus Γ* (thick curves); its approximation given by
(16) for ξ ≥ 0.41 (1) and ξ ≤ 0.14 (2); and D* for nondissi-
pative Yukawa systems (ξ  ∞) [45] with κ = 0.16 (s),
0.48 (d), 0.97 (h), 1.61 (e), 2.26 (j), 3.2 (n), 4.8 (m),
and 8 (dotted curve).
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5. TEMPERATURE-DEPENDENT DIFFUSIVITY

With time elapsed (t  ∞), the function D(t)
defined by (11) tends to its constant value D = (t)

corresponding to the standard definition of diffusivity
as a basic transport coefficient. Figure 4 shows the
results of numerical simulations of dust-grain particles
represented as the ratios of the diffusivity D of charged
particles to the diffusivity D0 of Brownian particles for
different values of ξ and types of model potentials. It
demonstrates that the diffusivities of particles with
interaction potentials (2)–(5) are determined by two
parameters: Γ* and ξ. As the nonideality parameter
approaches Γ* ≈ 106 and the system crystallizes into a
BCC lattice (see above), the dust-grain diffusivity
drops to zero (see Fig. 4).

The normalized function

(averaged over ξ ≈ 0.045–3.65 and potentials (2)–(5)
used in the computations) is shown in Fig. 5. The devi-
ations of this function calculated for different values of
U and ξ do not exceed ±5% for all values of Γ* except
for the interval between 22 and 30, where the scatter of
computed D* is ±10% and D is a nonmonotonic func-
tion of Γ* (see Figs. 4 and 5). The increase in scatter
can be explained by formation of well-ordered clusters
of dust grains at Γ* < 22–25. This observation suggests
that the type of interparticle interaction may affect the
phase-transition dynamics. Formation of clusters of
this type revealed in numerical studies of Yukawa sys-
tems [28, 46] supports the topological scenario of melt-
ing observed in some experiments [46–48].

Thus, we have found that the normalized function
D* is determined by Γ* for both weakly nonideal and
strongly correlated systems. In the latter case, the diffu-
sivity for Γ* > 40 can be represented by analogy with
the diffusivity of macroscopic particles in Yukawa sys-
tems [28]:

(16)

where  = 102 is the crystallization point, c = 2.9 for
ξ ≥ 0.41, and c = 3.15 for ξ ≤ 0.14. The error of the
approximation of computed D with the use of (16) does
not exceed 3% for Γ* between 50 and 102. The error
increases to 7–13% as Γ* decreases to 40 and reaches
25–30% for Γ* ≈ 30. Formula (16) agrees with the
jump model developed for molecular liquids [1, 12] and
can be used to calculate Γ* by using the mean interpar-
ticle distances, temperatures, and particle diffusivities
measured for liquid-like systems without introducing
additional hypotheses about the pair interaction poten-
tial. Diagnostics of weakly correlated systems with
Γ* < 50 can rely on the numerically calculated D* pre-
sented in Fig. 5. Previously, the influence of interparti-

D
t ∞→
lim

D*
D 1 ξ+( )

D0
---------------------

D νfr ω*+( )mp

Tp
------------------------------------≡=

D
TΓ*

12π ω* νfr+( )mp
----------------------------------------- c

Γ*
Γ c*
-------– 

  ,exp≈

Γ c*
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cle interaction forces on temperature-dependent diffu-
sion was described by using either virial expansions or
relations based on analogies with critical phenomena in
liquids [2, 45, 49]. Both schemes required additional
calculations of coefficients in these approximations
when the system’s parameters were varied.

To compare these results with diffusivities calcu-
lated for nondissipative Yukawa systems (νfr ≡ 0, ξ 
∞), Fig. 5 shows the numerical results obtained in [45]
for κ ≈ 0.15–4.85 and Np = 600–1000. It is clear that the
normalized diffusivity D* predicted for nondissipative
systems agrees (within ±3%) with the results of simula-
tions of weakly dissipative systems for ξ ≥ 0.41 and Γ*
between 15 and 100. Unlike the present computational
method (Brownian molecular dynamics under periodic
boundary conditions), the approach used in [45] was
based on solution of reversible equations of motion,
which required renormalization of computed results to
maintain thermodynamic equilibrium in the system,
and an infinite system of particles was modeled by
applying special tensor transformations. The latter
approximation could lead to influence of different
boundary conditions on the calculated diffusion coeffi-
cient and, therefore, certain disagreement (up to 10 to
15% for Γ* < 15) between the numerical results shown
in Fig. 5.

Finally, we note that increase in the screening
parameter κ leads to failure of criterion (10) as applied
to potential (2) at κ > 5.1. However, since this condition
is empirical and sets a lower limit (π can be replaced
with 4 in (10) for most potentials), the transport proper-
ties of Yukawa systems are determined by Γ* and ξ for
κ up to about 7. Figure 5 compares the value of D* cor-
responding to κ ≈ 8 [45] with the results obtained for
κ < 5 and demonstrates an increasing difference in the
behavior of diffusivity for Yukawa systems as the
screening parameter is increased.

6. TRANSPORT PROPERTIES OF SYSTEMS
WITH ATTRACTIVE PAIR INTERACTION 

POTENTIALS

Condition (10) for scaling of transport properties of
nonideal systems with different interparticle interac-
tions was obtained for isotropic repulsive potentials.
Let us now analyze the transport properties of systems
with effective potentials Ueff(r) ≡ U(r) allowing for
attraction between particles. As an example, we con-
sider the pair correlation functions g(r) and diffusivities
D computed in [50] for the two potentials of this kind
shown in Fig. 6. The potential represented by curve 1 is
consistent with the results of measurements of g(r) and
diffusivity of sodium atoms at a temperature about
100°C. The potential represented by curve 2 agrees
with the results computed for sodium by using the
Born–Green theory [51]. Both potentials satisfy condi-
tion (10). In [50], the transport properties of sodium
were computed by a molecular-dynamics method
SICS      Vol. 99      No. 3      2004
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(based on reversible equations of motion) for about
600 particles. Both potentials were cut off at distances
of about 8.2 Å and the mean interparticle distance was
about 3.4 Å. Figures 7 and 8 show the results of com-
putations of pair correlation functions and D(t), respec-
tively. For the potentials represented by curves 1 and 2
in Fig. 6, the values of D = (t) are approximately

5.8 × 10–5 and 1.9 × 10–5 cm2/s.
For liquid sodium (νfr ≡ 0), the diffusivity given

by (16) can be expressed as

(17)

where the crystallization point Tc almost coincides with
the melting point Tm for the system. Since the pair cor-
relation function computed for potential 1 in Fig. 6 is
similar to our numerical results for Γ* ≈ 77, we used
this value to determine the diffusivity D given by (17)
for sodium atoms. The calculated result is D ≈ 5.77 ×
10–5 cm2/s and is consistent with the numerical result
reported in [50]. In view of the maximum g1 ≈ 2.9 of the
correlation function obtained for potential 2 (see
Fig. 7), it can be concluded that the state of the simu-
lated system corresponds to the metastable interval
between the melting and crystallization lines, Γ* ≈
104 ± 2 (see Fig. 2). Calculation of the diffusivity as
given by (17) is not valid in this interval (see Fig. 4),
and the predicted D ≈ 3 × 10–5 cm2/s is greater than D ≈
1.9 × 10–5 cm2/s obtained in [50].

It should be noted that the maximum points tmax of
the function D(t) corresponding to the two potentials
are consistent with the values of Γ* found by analyzing
pair correlation functions. In particular, relation (14)
predicts Γ* ≈ 76.5 (tmax ≈ 1.44 × 10–13 s) and 106.5

D
t ∞→
lim

D
rp

12
------

TcΓ c*

πmp
------------ 2.9

Γ*
Γ c*
-------– 

  ,exp≈

0.04

0.02

0

–0.02

–0.04

–0.06
0.5 1.0 1.5 2.0 2.5
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U, eV

1

2

Fig. 6. Pair interaction potentials for sodium [50].
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(tmax ≈ 1.22 × 10–13 s) for potentials 1 and 2, respec-
tively. However, lower values of the nonideality param-
eter were obtained by using expression (13) for Dmax in
both cases: Γ* . 53.5 (Dmax . 7.4 × 10–5 cm2/s) and
Γ* . 84 (Dmax . 5.9 × 10–5 cm2/s), respectively. This
may be explained by cutoff of pair interactions at short

3

2

1

0 1 2
r/rp

g(r/rp)

Fig. 7. Pair correlation functions g(r/rp) obtained for poten-
tials 1 (n) and 2 (s) in Fig. 6 and pair correlation functions
for a simulated system with Γ* = 77 (bold curve).

8
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4

2

0 2 4 6 8

t × 1013, s

1

2

D × 105, cm2/s

Fig. 8. Diffusivities D(t) obtained for potentials 1 (n) and
2 (s) in Fig. 6.
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distances (about 2.5rp) or an insufficiently large number
of particles used in averaging the rms deviation ∆l2 [33].

It should also be noted that most available experi-
mental results concerning the diffusivities for liquid
metals near the corresponding melting lines agree with
those given by (17) within measurement error. In par-
ticular, the diffusivity estimated for liquid sodium at
T ~ 100°C by using available experimental data is
D ≈ (3.8 ± 0.6) × 10–5 cm2/s [18, 51–53], while expres-
sion (17) predicts D(T = 100°C) ≈ 3.3 × 10–5 cm2/s and
D(T = 125°C) ≈ 4 × 10–5 cm2/s.

7. VISCOSITY 
OF WEAKLY DISSIPATIVE NONIDEAL 

SYSTEMS

An analysis of simulations performed for liquid
sodium suggests that the numerical model considered
here can be used to describe transport properties of real
monatomic liquids that crystallize into BCC lattices (at
least, liquid alkali metals). However, this hypothesis
must be verified by invoking additional data on diffu-
sivities (or correlation functions) in a sufficiently wide
temperature range, which can hardly be found in refer-
ence books. Most available results of measurements of
diffusivities for atoms or molecules in liquids are char-
acterized by scatter comparable to the measured values,
and the resulting correlation functions may strongly
depend on the method employed [2, 51–54]. This is
explained both by the systematic errors inherent in the
techniques used to measure the transport properties for
strongly nonideal systems (typically, x-ray or neutron
scattering) and by the high sensitivity of the measured
results to the purity of a sample, the method of its prep-
aration, and temperature variations [2, 53]. A larger
body of experimental data on viscosity of liquids is
available, and the error of their measurements generally
does not exceed 5% [53, 54]. However, viscosity is very
difficult to evaluate theoretically, because of the lack of
analytical models. Moreover, no analytical relation
between the diffusivity and viscosity has been estab-
lished even for a liquid consisting of nonrotating spher-
ically symmetric molecules [1, 2, 7, 30]. Finding a rela-
tion between diffusivity and viscosity valid in a wide
range of nonideality parameters is a challenging task in
diagnostics of dusty plasmas as well. Data on the diffu-
sivity of dust grains in such plasmas can be obtained by
nonintrusive diagnostic methods, such as processing of
experimental video images and analysis of rms dis-
placements of dust grains as functions of time [32–34].
Available methods for measuring viscosity involve
dynamic perturbation of the system under study, which
may affect the properties of a self-consistent plasma-
dust system.

In the present study, we sought an empirical approx-
imation of the shear viscosity η by using the numerical
values of η calculated on the basis of the Yukawa model
(with κ varying between 0.16 and 4.8) [55] and the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
OCP-lattice model [56, 57] by various authors in the
limit of vanishing viscosity (ξ  ∞, νfr  0). A
relation between the dust-grain diffusivity D and η was
determined by invoking the well-known Stokes–Ein-
stein formula (valid at low Reynolds numbers, Re ! 1),
which is usually applied to describe diffusion of large
molecules in a solvent with low molecular mass when
a relation between transport coefficients is sought for a
metal in the vicinity of the melting line [10, 18]:

(18)

Here, the effective radius aeff of a spherical molecule is
known up to a factor of 2 even in the case of large mol-
ecules [53].

The numerical data were approximated by using
two procedures. One of them is based on the assump-
tion that

,

where aWS is the Wigner–Seitz radius. Combined
with (18), it yields the following relation between
transport coefficients:

(19)

The other approximation relies on the following
temperature dependence of the effective particle radius:

which reflects the increase in the effective radius with T
and leads to

(20)

Taking into account the numerical results concern-
ing D and proposed temperature dependence (17), we
find that both (19) and (20) evaluated for Γ* > 40 agree
with Andrade’s semiempirical formula

where W is the activation energy for self-diffusion and
f(T) is a weaker function of temperature as compared to
exponential. This formula, based on the aforemen-
tioned jump model, provides a key analytical relation
used to approximate the temperature dependence of
viscosity for a liquid only within relatively narrow
intervals of temperature variation.

To illustrate the discrepancy between proposed
approximations (19) and (20) and the simulation results
of [55–57], we normalized the viscosity η to

η T
6πDaeff
-------------------.≈

aeff T( ) rp aWS const≡–≈

η T
7.5Drp
-----------------.≈

aeff T( ) T /Tc( )1/2rp/π,=

η
TTc

6Drp
-------------.≈

η f T( ) W
T
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  ,exp∝

η0
Γ*
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Fig. 9. Normalized viscosity η* versus Γ* predicted by
(19) (1); (20) (2); BCC model for nondissipative systems
in [56] (j) and [57] (h); and Yukawa model (ξ  ∞) [55]
with κ = 0.16, (s), 0.81 (e), 1.61 (d), 3.2 (n), and 4.8 (m).
Vertical bars represent confidence intervals corresponding
to relative numerical errors of 20%.
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Fig. 10. Normalized viscosity η* versus Γ* predicted by
(19) (1), (20) (2), and (21) (3). The function η*(Γ* =

Tc/T) is shown for several liquid metals [53]: potassium,

BCC (j); sodium, BCC (h); ruthenium, BCC (d); cesium,
BCC (s); lead, FCC (m); tin, TET (n). Vertical bars repre-
sent confidence intervals corresponding to relative numeri-
cal errors of 5% in (20).

Γc*
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This was done to improve graphic presentation of
results and numerical errors, because the values of vis-
cosity obtained for Γ* ≈ 0.5–100 varied by about an
order of magnitude. Figure 9 shows the normalized vis-
cosities η* = η/η0 obtained in all cases under analysis.
It is clear that (19) (based on the assumption of constant
effective particle radius) provides the best approxima-
tion of all available numerical data in the entire interval
Γ* ≈ 1 and 100. However, since the results under anal-
ysis are characterized by large errors, both approxima-
tions lead to rms deviations within “numerical noise”
for strongly correlated systems with Γ* between 20 and
100 (the rms errors of viscosity computations men-
tioned by the authors are at least 20%).

Figure 10 shows the experimental values of viscosi-
ties for various liquid metals borrowed from [53] and
normalized to η0. We used the mean interparticle dis-
tances rp corresponding to the solid-phase densities,

and defined the nonideality parameter as

It is clear that approximation (20) allowing for temper-
ature dependence of the effective particle size leads to
very good agreement between measured viscosities and
calculated particle diffusivities. The discrepancy
between the experimental results and the predictions
based on (20) does not exceed 3% for alkali metals
(which crystallize into BCC lattices) and 10% for tin
and lead, which have tetragonal (TET) and face-cen-
tered (FCC) lattices, respectively. Since the diffusivi-
ties for strongly correlated liquids with Γ* > 40 can be
represented by (17), the shear viscosity of the liquid
metals considered here can be expressed analytically as
follows in the temperature interval between Tc and 2Tc:

(21)

This approximation agrees with experimental data
within the error of viscosity measurements. The results
obtained demonstrate the high accuracy of approxima-
tions (20) and (21) of viscosity for the liquid metals
considered here. Therefore, the corresponding diffusiv-
ities can be determined much more accurately than
before both from available experimental data on η (by
using (20)) and directly from numerical results (see
Fig. 5 and formula (17)). Note also that (20), unlike the
approximation based on aeff(T) = const proposed
in [18], is valid not only on the melting line.

For comparison, let us consider the viscosities of
liquid dielectrics crystallizing into FCC lattices (such
as liquefied inert gases). An analysis of the viscosities
of neon and argon measured on the corresponding sat-
uration lines [53, 54] taking into account the density

rp rpc, η0
Γ*

rpc
2

-------
πTmp

Γ c*
--------------,= =

Γ* Γ c*Tc/T .=

η 2

rpc
2

------
πTmp
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-------------- 2.9

Tc

T
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variation with temperature and pressure, ρ = mpnp,
shows that the relations

where ρc and ρ denote the solid- and liquid-phase den-
sities, can be used in (20) to calculate the viscosities of
these liquids up to an error of 5 to 7% in the entire tem-
perature interval between the melting point and the crit-
ical point shown by the dashed line in Fig. 11. The nor-
malized viscosities η* of liquid neon and argon are also
plotted as functions of

in Fig. 11. Using expression (17) for diffusivity with
rp = rpc, the viscosity of a liquefied inert gas in the tem-
perature interval between Tc and 2ρTc/ρc can be repre-
sented as

(22)

However, the good approximation of viscosity obtained
here is not sufficient to conclude that model (20) is cor-
rect and the numerical results can be used to analyze the
diffusivity of atoms in liquefied inert gases. Such a con-
clusion can rely only on experimental data concerning
the value of the diffusivity or the qualitative behavior of
D(T).

Two remarkable facts should also be mentioned
here. First, the behavior of the viscosities of liquefied
inert gases and metals characterized by different lattice
types in their solid states is in good agreement with the
behavior of the transport coefficients obtained in simu-
lations of nonideal systems crystallizing into BCC lat-
tices, which are characterized by lower density. In the
case of an inert gas, this can be explained by the fact
that the coordination number Z changes in the transition
from crystalline to liquid state from Z = 12 to Z = 8.5,
which is close to the values of Z for metals with BCC
lattices. However, the reduction of coordination num-
ber on the melting line cannot explain analogous behav-
ior of transport coefficients for tin and lead, because it
is believed that both packing of atoms and atomic
bonds are preserved in solid–liquid phase transitions.
Second, both the critical nonideality parameter

for alkali metals and the critical parameter

are close to Γ* ≈ 22.5 (see Figs. 4 and 5), which corre-
sponds to formation of well-ordered clusters of dust
grains [27, 46].

Correlation of the critical parameters and solid-
phase parameters for materials having similar chemical

rp rpc,
Γ*
Γ c*
-------

ρTc

ρcT
---------,= =

Γ* Γ c*
ρTc

ρcT
---------=

η 2

rpc
2
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πTmp

102
-------------- 2.9

Tcρ
Tρc
--------- 

  .exp≈

Γ cr* 102Tc/Tcr 15≈=

Γ cr* 102 ρcrTc( )/ ρcTcr( ) 18≈=
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properties is one of the methods used to determine their
characteristics or physical properties in the vicinity of
phase-transition lines when experimental data are not
available [15, 17, 58]. Such materials are frequently
considered as thermodynamically similar, and the sim-
ilarity is attributed to similarity of effective potentials.
For monatomic substances, the correlation of critical
and solid-phase parameters manifests itself in similar
ratios of Tcr and Tm, as well as those of the critical-state
density ρcr and the solid-phase density ρc , depending
on the position of the element in the periodic table. In
particular, Tcr /Tm = 6.755 ± 0.015 and ρc /ρcr = 4.44 ±
0.03 for alkali metals [53, 54]. For inert gases, Tcr /Tm =
1.81 ± 0.01 and ρc /ρcr = 3.115 ± 0.005; for elements in
the sixth group (e.g., Se or S), Tcr /Tm = 3.30 ± 0.05 and
ρc /ρcr = 3.904 ± 0.001 [53, 54]. A correlation of the
melting point, valence, and Fermi energy for simple
densely packed metals was noted in [51], where it was
shown that there is no simple relation between the sub-
limation (vaporization) temperature of the substance
and the valence of the element. However, the critical
point correlates with valence, because phase transition
at this point is global, and the buildup of a new phase is
not related to surface energy, being completely deter-
mined by interparticle interaction characteristic of the
entire system. This suggests that the mean interatomic
forces F in liquid metals are virtually independent of
temperature. In view of the behavior of viscosity, it fol-
lows that F(T, ρ) ≈ const for alkali metals and F(T, ρ) ∝
ρ for liquefied inert gases. This observation can be used
to construct model equations of state for such liquids.

0.25
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0.05
0 20 40 60 80 100

η*

2

1

Γ*

Fig. 11. Normalized viscosity η* versus Γ* predicted by
(20) (1) and (22) (2). The function η*(Γ* = ρTc/(ρT)) is

shown for liquid dielectrics [53, 54]: neon (j) and argon (s).

Γc*
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8. CONCLUSIONS

We have performed a numerical analysis of spatial
correlation, mass transfer, and diffusion of dust grains
with interparticle interaction potentials of different
types for a wide range of phase states of nonideal sys-
tems (Γ* ≈ 1–110). We have found dimensionless
parameters that determine the phase state and transport
properties of dissipative systems with long-range
potentials satisfying empirical condition (10): the
effective nonideality parameter Γ* and the scaling
parameter ξ. In combination with temperature, these
parameters determine the transport properties of the
systems in question. It has been shown that the pair cor-
relation function g(r) depends on Γ*, being virtually
independent of friction forces (represented by ξ) for a
broad class of isotropic potentials. This finding rules
out any possibility of determination of these potentials
by inverting g(r).

Furthermore, we have found an analytical approxi-
mation of the diffusivity D of particles in strongly non-
ideal systems as a function of particle temperature T
and the dimensionless parameters Γ* and ξ. We pro-
pose a formula relating diffusivity to viscosity for ele-
mentary liquids (such as liquid metals and monatomic
gases), which makes it possible to determine the corre-
sponding diffusivities much more accurately than
before. For dusty plasmas, the diffusivity of dust grains
should be related to the dust-subsystem viscosity by
conducting appropriate experiments. Moreover, these
experiments could provide an answer to a fundamental
question: are dusty plasmas analogs of real liquids
(such as liquid metals) or systems having unique trans-
port properties? Currently available experimental data
on rotation velocities of dust grains in vortices suggest
that the approximate relation between transport coeffi-
cients based on the assumption of independence of the
effective particle radius of particle temperature should
be preferred [59].

Data on diffusivity and viscosity are required to ana-
lyze the onset of various instabilities and dynamics of
large-scale transport processes, such as formation of
vortices or shock waves. The results presented here can
be used to develop new nonintrusive diagnostic meth-
ods and examine the influence of interparticle interac-
tion on transport properties under actual experimental
conditions.
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Abstract—It is shown on the basis of the model of iron with the Pak–Doyama paired potential of interatomic
interaction in the framework of the molecular dynamics method that structural stabilization of the amorphous
phase of pure iron during hardening from melt is ensured by the formation of a percolation cluster from mutu-
ally penetrating and contacting icosahedrons with atoms at vertices and centers. © 2004 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The establishment of basic differences between the
atomic structures of melt and metallic glass is one of
the most urgent and unsolved problems in the physics
of the amorphous state. This is due to the fact that avail-
able diffraction methods for studying the structure of
disordered materials provide only a one-dimensional
averaged pattern of atomic distribution in the form of
structural functions [1], while the proposed models of
short-range order on the basis of a random packing of
atoms (e.g., the Bernal model) or coordination polyhe-
drons (e.g., the model based on Frank–Casper polyhe-
drons) can be applied equally successfully for describ-
ing the mutual arrangement of atoms in liquid as well
as amorphous metals [2–5], but individual features of
their structural organization remain unclear.

Considerable progress in the formation of model
concepts concerning the structure of liquid and amor-
phous states of metallic systems, as well as atomic
mechanisms of their mutual transformations, can be
achieved by carrying out computer experiments in the
framework of the molecular dynamics method using
highly effective well-optimized algorithms and appro-
priate atomic interaction potentials.

A detailed study of the structure of condensed media
requires analysis of coordination polyhedrons formed
by the atoms of the system and formulation of geomet-
rical laws underlying their mutual spatial arrangement.
In the case of crystals, this problem is substantially sim-
plified since translation invariance reduces the volume
under investigation to a unit cell in which atoms occupy
fixed positions, being located at certain distances from
one another. For structurally disordered condensed
media, such as melts and amorphous solids, the absence
of translation invariance creates a complex mosaic of
local atomic configurations, which can be studied cor-
rectly and systematically only by constructing a com-
puter model of the structure of the object under investi-
gation and analyzing coordination polyhedrons formed
by all atoms of the structure.
1063-7761/04/9903- $26.00 © 20522
The results of statistical-geometrical and cluster
analysis of the structure of the molecular dynamic
model of iron with the Pak–Doyama paired interatomic
potential [6] in the course of hardening from melt,
which will be considered below, are a continuation of
the model concepts formulated in [7] and concerning
the structure of pure amorphous metals and the atomic
mechanisms of its formation.

2. DESCRIPTION OF THE MODEL

First, a molecular-dynamic model of liquid iron at
T = 2300 K with a density of 7800 kg/m3 was con-
structed (the density was specified in accordance with
the data obtained for α-Fe [8] taking into account a cor-
rection of ~1% for amorphization). For the initial struc-
ture, we used a random dense packing of atoms. The
interatomic interaction was described with the help of
the empirical Pak–Doyama paired potential, which has
the form [6]

(1)

where r is expressed in angstroms. The potential cutoff
radius (the distance at which the potential and its first
derivative smoothly vanish) is rc = 3.44 Å. The param-
eters of this potential are determined from the data on
elastic properties of α-Fe. The application of this poten-
tial in simulating liquid and amorphous iron [9−11] and
its alloys with metalloids [12, 13] ensures good agree-
ment between the calculated and experimental struc-
tural characteristics. The model contained 100000 atoms
in the main cube with periodic boundary conditions. At
the initial instant, the velocities corresponding to the
Maxwell distribution were imparted to atoms. The
method of calculations based on the molecular dynam-
ics method involved numerical integration of the equa-
tion of motion with a time step of ∆t = 1.523 × 10–15 s in

φ r( ) 0.188917 r 1.82709–( )4–=

+ 1.70192 r 2.50849–( )2 0.198294 eV,–
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accordance with the Verlet algorithm [14]. The system
was held at the above temperature for 3000 time steps
(isothermal conditions). The temperature constraint
was suspended and thermal equilibrium stabilized in
the system over 3000 time steps at a constant internal
energy (adiabatic conditions).

Then the system was isochorically cooled at a rate of
4.4 × 1012 K/s. The cyclic procedure of hardening was
reduced to a stepwise decrease in temperature by ∆T =
20 K (Ti = (115 – i)∆T, where Ti is the temperature of
the “surrounding medium” in the ith cycle), maintain-
ing this temperature in the system over 1000∆t, fol-
lowed by annealing under adiabatic conditions for
2000∆t. Thus, the duration of a cycle was 3000∆t or
4.569 × 10–12 s. Averaging of the thermodynamic
parameters of the system (temperature T, potential
energy U, and the product of pressure and volume PV)
was carried out during the last 1000∆t of each cycle. It
should be noted that the temperature T of the system
under adiabatic conditions and the temperature Ti of the
surrounding medium are not strictly identical. After
each cycle, the system was transformed to a state with
T = 0 by the static relaxation method, allowing the
atoms to occupy the equilibrium positions in local
potential wells. For statically relaxed models, the
potential energy U0 and the product of pressure by vol-
ume P0V were calculated and the structural analysis
was carried out. Such a procedure made it possible to
determine the extent of structural relaxation of the
model upon cooling.

3. RESULTS AND DISCUSSION

Figure 1 shows that the potential energy and the
product of pressure by volume change continuously
upon cooling, but the derivatives of these quantities at
temperature Ti ~ 1180 K of the surrounding medium
decrease sharply. The temperature dependences of the
potential energy and the product of pressure and vol-
ume exhibit after static relaxation a point of inflection
at the same temperature, which also follows from the
peak on the derivatives of these dependences (Fig. 1). It
was also found that the mean total displacement of
atoms decreases sharply at Ti < 1180 K, which is char-
acteristic of the change in the mechanism of atomic dis-
placement from the activationless (for diffusion of
atoms in a liquid) to the activation mechanism (for dif-
fusion of atoms in a solid) [15].

The statistical-geometrical analysis of the structure
of molecular-dynamic models of liquid and amorphous
iron on the basis of Voronoi polyhedrons [2–5] proved
that 70 and 80% of all atomic configurations, respec-
tively, can be described by Voronoi polyhedrons with
different combinations of tetra-, penta-, and hexagonal
faces only. More than 90% of all atoms in the models of
both liquid and amorphous iron have a geometrical
coordination number from 12 to 15. It should be
recalled that an individual Voronoi polyhedron can be
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
described by a set of nq numbers equal to the number of
faces with q sides (n3–n4–n5–…) [2–5]. This set of num-
bers can also be used for describing the coordination
polyhedrons. In this case, nq indicates the number of
vertices at which q edges converge. The results led to
28 topologically allowed coordination polyhedrons of
the type (0–n4–n5–n6) with coordination numbers from
12 to 15.

If we denote the numbers of vertices, edges, and
faces in a Voronoi polyhedron by VV, EV, and FV,
respectively, these quantities satisfy, in accordance with
the Euler theorem, the following relation:

(2)

Since the intersection of three planes is sufficient for
the formation of a vertex of a Voronoi polyhedron, and
the probability of the formation of a vertex at the inter-
section of four and more planes is too low in view of
geometrical distortions in the amorphous structure, the
following equality holds for a Voronoi polyhedron of
atoms in the amorphous structure:

(3)

This equality indicates that each edge connects two ver-
tices and three edges meet at each vertex. For a coordi-
nation polyhedron, the numbers of vertices, edges, and
faces are VC = FV, EC = EV, and FC = VV, respectively;
hence, it follows from relation (3) that coordination
polyhedrons constructed for atoms of an amorphous
structure can have only triangular faces.

Taking into account relation (3), we can write the
Euler equation (2) in the form

(4)

For a Voronoi polyhedron of the type (0–n4–n5–n6),
using Eq. (4) with allowance for

(5)

, (6)

we obtain the relation

(7)

Since n4 and n5 must be positive integers, expression (7)
indicates that their values are bounded and connected
pairwise. The numerical value of n6 for each such pair
and for a preset coordination number from the interval
12 ≤ FV ≤ 15 can be determined using relation (5).

The table contains 28 topologically allowed coordi-
nation polyhedrons of the type (0–n4–n5–n6) satisfying
the condition 12 ≤ n4 + n5 + n6 ≤ 15 as well as their

VV EV FV+– 2.=

2EV 3VV.=

3FV EV– 6.=

FV n4 n5 n6,+ +=

EV
1
2
--- 4n4 5n5 6N6+ +( )=

n5 2 6 n4–( ).=
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Fig. 1. Dependence of the thermodynamic function in the model of iron and their derivatives on the temperature Ti of the surround-

ing medium under cooling from the melt at a rate of 4.4 × 1012 K/s: (a) potential energy U; (b) product of pressure by volume, PV;
(c) potential energy after static relaxation, U0; (d) product of pressure by volume after static relaxation, P0V.
molar fraction in the models of liquid and amorphous
iron at the “ambient” temperatures of 2300 and 0 K.
Fourteen main types of coordination polyhedrons (their
fraction is greater than 1%) for the liquid and amorphous
states are shown by bold face. The remaining coordina-
tion polyhedrons are thermodynamically unstable.

It can be seen from the table that, in the process of
hardening from melt, the most intense increase (~4%)
JOURNAL OF EXPERIMENTAL
is observed in the fraction of atoms for which the coor-
dination polyhedron (0–0–12–0) is an icosahedron and
the Voronoi polyhedron is a dodecahedron (Fig. 2). It
should be noted that icosahedron is the most compact
and stable from the energy point of view among all
coordination polyhedrons encountered in densely
packed structures (both ordered and disordered). For
example, the energy of an isolated icosahedron (coordi-
 AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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(a) (b)

Fig. 2. (a) Coordination polyhedron (icosahedron) and (b) its Voronoi polyhedron (dodecahedron).
nation number 12) calculated using the Pak–Doyama
paired potential amounts to –0.79 eV/at. For compari-
son, the energies of isolated coordination polyhedrons
in hcp and bcc lattices (cubooctahedron with a coordi-
nation number of 12 and a rhombododecahedron with a
coordination number of 14) amount respectively to
−0.69 and –0.73 eV/at. However, the existence of pen-
tad axes in an icosahedron makes it incompatible with
L OF EXPERIMENTAL AND THEORETICAL PHY
translational symmetry; consequently, the formation of
an amorphous structure of pure metals on the basis of
such coordination polyhedrons hampers the process of
atomic rearrangement during crystallization, creating
prerequisites for stabilization of the amorphous state.
For this reason, we mainly studied regularities in the
evolution of structural elements with icosahedral sym-
metry during hardening.
Distribution of topologically allowed coordination polyhedrons of the type (0–n4–n5–n6) with coordination numbers satisfy-
ing the condition 12 ≤ VC ≤ 15 in the model of iron in the liquid and amorphous states. The first number indicates the fraction
of coordination polyhedrons in the melt at Ti = 2300 K, the second, in the amorphous state after hardening at Ti = 0. Bold face
indicates coordination polyhedrons whose fraction is greater than 1% both in the melt and in the amorphous state

VC 12 13 14 15

(0–0–12–n6) (0–0–12–0) (0–0–12–1) (0–0–12–2) (0–0–12–3)

Fraction, % 4.315  8.033 0 2.180  4.933 1.218  2.589

(0–1–10–n6) (0–1–10–1) (0–1–10–2) (0–1–10–3) (0–1–10–4)

Fraction, % 0 10.144  13.183 4.882  7.105 3.569  4.820

(0–2–8–n6) (0–2–8–2) (0–2–8–3) (0–2–8–4) (0–2–8–5)

Fraction, % 3.001  1.961 2.521  1.620 9.783  10.981 3.962  4.432

(0–3–6–n6) (0–3–6–3) (0–3–6–4) (0–3–6–5) (0–3–6–6)

Fraction, % 1.137  0.391 9.867  9.215 5.337  4.284 2.617  2.076

(0–4–4–n6) (0–4–4–4) (0–4–4–5) (0–4–4–6) (0–4–4–7)

Fraction, % 0.433  0.131 1.108  0.548 3.940  3.068 1.149  0.796

(0–5–2–n6) (0–5–2–5) (0–5–2–6) (0–5–2–7) (0–5–2–8)

Fraction, % 0.044  0.003 0.469  0.259 0.006  0 0.159  0.088

(0–6–0–n6) (0–6–0–6) (0–6–0–7) (0–6–0–8) (0–6–0–9)

Fraction, % 0.001  0 0.002  0 0.158  0.252 0.001  0

Total, % 8.754  10.519 24.111  24.825 26.286  30.623 12.675  14.801
SICS      Vol. 99      No. 3      2004
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As follows from Fig. 3, the fraction of atoms located
at the centers of icosahedrons in the initial model of the
liquid is 4.315%, while the total fraction of atoms par-
ticipating in the construction of icosahedrons is
~38.813%. Each icosahedron contains on the average
~9 atoms. As the temperature decreases during harden-
ing, the number of icosahedrons increases, and the
above fractions in the most structurally relaxed model
at 0 K attain values of 8.033% and 59.024%, respec-
tively. Each icosahedron contains on the average
~7 atoms belonging simultaneously to several icosahe-
drons; in other words, the fraction of mutually penetrat-
ing icosahedrons contacting with one another
increases. The points of inflection on these curves,
which correspond to the maximal rate of increase in the
number of icosahedrons, correspond to Ti ~ 1180 K, as
on the curves describing the temperature dependences
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Fig. 3. Dependence of the number of atoms NI located at the
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involved in the construction of icosahedrons on the temper-
ature Ti of the surrounding medium. The cooling rate is

4.4 × 1012 K/s.

NI'
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of the potential energy and the product of pressure by
volume after static relaxation.

It is interesting to note that the number of atoms
located at the centers of icosahedrons free of mutually
penetrating contacts remains virtually unchanged dur-
ing hardening, while the number of pairs of mutually
penetrating icosahedrons substantially increases.

Figure 4a shows paired functions gII(r) of the radial
distribution of atoms located at the centers of icosahe-
drons, which were calculated at temperatures of 2300,
1500, 1300, 1200, 1100, and 0 K of the surrounding
medium. It should be noted that the form of these func-
tions is virtually independent of temperature. The first
peak on the gII(r) curve corresponds to the contact of
mutually penetrating icosahedrons, the second peak, to
the contact of icosahedrons at faces and edges, and the
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tances between neighbors smaller than or equal to r. The
dashed vertical line separates the regions of mutually pene-
trating and contacting (left) and isolated (right) icosahe-
drons. Figures 1, 2, 3, 4, 5, and 6 correspond to temperatures
of 2300, 1500, 1300, 1200, 1100, and 0 K of the surround-
ing medium. The cooling rate is 4.4 × 1012 K/s.

NI
max
 AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004



ATOMIC MECHANISMS OF PURE IRON VITRIFICATION 527
third (split) peak, to the contact of icosahedrons at ver-
tices.

To study the regularities in the structural organiza-
tion of icosahedral coordination polyhedrons upon
cooling of the model of iron in the framework of the
percolation theory, we carried out cluster analysis. Fig-

ure 4b shows the number  of icosahedrons in the
largest cluster with distances between neighboring
atoms smaller than or equal to r as a function of r for
temperatures of 2300, 1500, 1300, 1200, 1100, and 0 K
of the surrounding medium. It can be seen from the fig-
ure that, at Ti > 1200 K, the percolation threshold is
observed to the right of the dashed vertical line separat-
ing the region of mutually penetrating icosahedrons
contacting one another from the region of isolated
icosahedrons. Consequently, at Ti > 1200 K, a percola-
tion cluster of mutually penetrating and contacting
clusters is not formed. Direct observations of the
behavior of atoms located at the centers of icosahe-
drons revealed that isolated finite clusters of mutually
penetrating icosahedrons contacting with one another is
formed in this case; these icosahedrons continually
change their shape and size with decreasing tempera-
ture. As the temperature decreases in the course of
hardening below 1200 K, the percolation threshold is
shifted to the left of the dashed vertical line (see
Fig. 4b) to the region of mutually penetrating and con-
tacting icosahedrons. In this case, a percolation cluster
consisting only of mutually penetrating and contacting
icosahedrons is formed; the cluster subsequently grows
and pierces the entire structure.

Figure 5 shows the change in the size of the largest
cluster of mutually penetrating icosahedrons contacting
with one another upon cooling during hardening. The
distances between neighboring atoms in the icosahe-
drons are smaller than or equal to r = 5.46 Å (position
of the vertical dashed line in Fig. 4b). Figure 6 shows
the projections of such a cluster onto a face of the com-
putational cell at temperatures of 1460, 1300, 1260,
1200, 1180, and 0 K of the surrounding medium. It can
be seen from Figs. 5 and 6 that, at Ti < 1460 K, fluctua-
tions of the size of the largest cluster of mutually pene-
trating and contacting icosahedrons sharply increase; at
Ti < 1180 K, the maximal growth of the cluster is
observed (due to merging of coarse clusters), while at
Ti > 1180 K, a monotonic increase takes place due to
joining of small-size clusters and single icosahedrons.

These regularities in the self-organization of the
icosahedral substructure during vitrification correlate
well with the temperature dependences of the basic
thermodynamic parameters (see Fig. 1), which exhibit
some features of a second-order phase transition [16]
and explain their behavior on microscopic level. Peri-
odic boundary conditions do not allow us to exactly
determine the glass formation temperature Tg (the tem-
perature at which a percolation cluster is formed from
mutually penetrating and contacting icosahedrons) of

N I
max
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the model since the percolation cluster is essentially an
infinitely large structure incommensurate with the com-
putational cell. We can only speak of a certain interval
in which the glass formation temperature lies. For
example, for the model of iron under consideration, the
glass formation temperature lies in the interval Tg =
1180 ± 80 K (see Fig. 5). However, we can intuitively
expect that an increase in the size of the computational
cell will hamper the formation of a percolation cluster
and, hence, the glass formation point will be shifter
towards lower temperatures. In the model of iron at
0 K, the largest cluster has a fractal dimension of D =
2.99 and consists of 7559 mutually penetrating and
contacting icosahedrons, whose construction involves
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54.485% of all atoms in the model. When recalculated
to 1 mm3, this value decreases to approximately 52.5%.

A decrease in the cooling rate in the model of iron
melt to 6.6 × 1011 K/s leads to crystallization [17, 18].
JOURNAL OF EXPERIMENTAL
4. CONCLUSIONS

The results considered above can be formulated in
the following basic concept clarifying the physical
nature of vitrification of pure iron.
 AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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Structural organization of the amorphous phase of
pure iron is based on the formation (at the glass forma-
tion point) and subsequent growth of a percolation clus-
ter of mutually penetrating icosahedrons coming in
contact with one another, which contain atoms at the
vertices and at the centers. A fractal cluster of icosahe-
drons incompatible with translational symmetry (the
formation of these icosahedrons involves more than
half of all the atoms in the system) plays the role of
binding carcass hampering crystallization and serves as
the fundamental basis of structural organization of the
solid amorphous state of iron, which basically distin-
guishes it from the melt.

This statement introduces for the first time the con-
cept of the substructure of amorphous metals.
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Abstract—The paper is devoted to analysis of the electron transport through one-barrier GaAs/AlAs/GaAs
heterostructures. The oscillating component of transport characteristics of symmetric one-barrier
GaAs/AlAs/GaAs heterostructures with spacers, which is associated with resonance tunneling of electrons via
virtual states formed in the spacer region of the structures due to reflection of electrons from the n–-GaAs/n+-
GaAs interface and their subsequent interference. It is shown that electrons are predominantly reflected coher-
ently from the boundary of the strongly doped region as in the case of one-dimensional averaged potential of
randomly arranged (beginning from this boundary) impurities. It is shown that low-energy virtual resonances
are suppressed due to electron scattering as a result of their interaction with longitudinal optical (LO) phonons
in the spacer region. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In this paper, we analyze the vertical transport of
electrons in symmetric and asymmetric one-barrier
GaAs/AlAs heterostructures with spacers (weakly
doped near-barrier layers), associated with resonance
tunneling via virtual states formed in the spacer region
of the structure as a result of above-the-barrier reflec-
tion of electrons from a smooth potential drop at the
spacer interface with a strongly doped contact region
(n–-GaAs/n+-GaAs interface) and their subsequent
interference with electrons moving towards this inter-
face from the side of the AlAs barrier. In other words,
we will consider resonant tunneling via the interference
electronic states bounded by the real potential barrier
(AlAs layer in the present case), on the one hand, and
by the above-the-barrier reflection, on the other, i.e.,
through the states associated with quantization of lon-
gitudinal (coinciding with the growth direction z)
motion of electrons in the spacer region (states in a
quantum pseudowell). The observation of this effect
was briefly reported earlier [1]. In addition, the obser-
vation of manifestations of virtual states bounded by
the above-the-barrier reflection from sharp (step) and
large potential discontinuities (1–10 eV) at heter-
oboundaries [2, 3] and at the semiconductor– metal
interfaces [4, 5] in the transport characteristics of tunnel
heterostructures was reported in several experimental
works. In the latter of the cited publications, in which
electron tunneling in a GaAs/AlAs resonant tunnel
diode with an Al Schottky collector were studied and
1063-7761/04/9903- $26.00 © 20530
virtual states were formed in the spacer region due to
reflection at the boundary between the spacer and the Al
collector, the substantial effect of the virtual states on
the transport and frequency parameters (above all, the
limiting frequency) of a resonant tunneling diode was
demonstrated in the temperature range 1.5–300 K. In
addition, analysis of the temperature and energy depen-
dences of the number and magnitude of resonant singu-
larities in the transport characteristics, which are asso-
ciated with resonant tunneling via virtual states (ampli-
tudes of virtual resonances) provided valuable
information on the electron distribution in the emitter
of a resonant tunneling diode, the mechanisms and
rates of scattering in the spacer region, and the reflec-
tion properties of the semiconductor–metal (GaAs–Al)
interface. Unsuccessful attempts at discovering such
resonances undertaken in [6], where resonant tunnel
diodes differing from those in [4] only in the method of
obtaining the layer of Al collector point towards the
strong dependence of the amplitudes of virtual reso-
nances on the properties of reflecting boundary. In the
former case [4], the layer was grown directly in the
course of molecular beam epitaxy (MBE), while in the
latter case [6], the layer was grown in the process fol-
lowing the heterostructure growth. The absence of vir-
tual resonances [6] was attributed to substantial elec-
tron scattering by imperfections of the GaAs/Al inter-
face or, according to an alternative opinion, to the fact
that the boundary with the Al layer is spatially inhomo-
004 MAIK “Nauka/Interperiodica”
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geneous and fails to ensure the mirror reflection
required for the formation of virtual states.

In light of the above arguments, the observation of
virtual states associated with the reflection from the
apparently relatively weak and broad potential drop
across the blurred n–-GaAs/n+-GaAs interface is rather
unexpected and points to the importance of analyzing
the influence on the transport of electron reflection
from such interfaces, which are inevitably present in a
large number of various heterostructures.

The most important of our results pertaining to the
above scope of problems form the basis of this publica-
tion and can be preliminarily and briefly formulated as
follows.

1. We discovered the oscillating component of the
transport characteristics of symmetric one-barrier
GaAs/AlAs/GaAs heterostructures with spacers, which
is associated with resonant tunneling of electrons via
virtual states formed in the spacer region of the struc-
tures due to reflection of electrons from the
n−-GaAs/n+-GaAs interface. Experimental singularities
were identified from a comparison with the calculated
values of resonant voltages corresponding to alternate
opening of the resonant tunneling channels via the
states in a model quantum well and, hence, indicating
the position on the transport characteristics of resonant
singularities corresponding to these processes.

2. The analysis of the dependence of the virtual res-
onance amplitude on the bias voltage, which was based
on a comparison with the calculated dependence, pro-
vided information on the mechanism of reflection from
the n−-GaAs/n+-GaAs interface and on the processes of
electron scattering in the spacer region (pseudowells).
It was shown that electrons are predominantly reflected
from the boundary of the strongly doped region as from
a one-dimensional (along the transport direction z)
averaged potential of randomly distributed (beginning
from this boundary) impurities without being affected
by fluctuations and nonuniformities of the potential in
the xy plane, which can be expected in actual practice.
Analogously to the roughnesses and inhomogeneities
of the interfaces in traditional resonant tunnel diodes,
such fluctuations are possible and may lead to electron
scattering and to blurring (suppression and broadening)
of tunnel resonances caused by electron scattering
(see [7], pp. 44 and 55). In other words, it was proved
that reflection from the boundary of the strongly doped
region predominantly occurs coherently. In addition it
was shown that the suppression of low-energy virtual
resonances is due to scattering of electrons as a result of
their interaction with LO phonons in the spacer region.

3. We studied magnetically induced tunneling of
electrons in symmetric one-barrier GaAs/AlAs hetero-
structures with a spacer in a magnetic field perpendicu-
lar to the transport direction (B ⊥  I) up to 8 T. Analysis
of the evolution of the resonant structure with a mag-
netic field revealed complete analogy with the situation
observed in experiments on electron tunneling via
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
states in wide quantum wells of traditional two-barrier
resonant tunnel GaAs/AlAs heterostructures [8] and
provided additional confirmation of the correctness of
identification of peculiarities in the transport character-
istics observed by us as a consequence of the manifes-
tation of resonant tunneling via virtual states in the
spacer region.

4. We studied the electron transport in asymmetric
GaAs/AlAs heterostructures with a two-step barrier
and spacers. It was found that the peculiarities in the
transport properties observed for opposite directions of
the bias voltage are associated with resonant tunneling
via virtual states, which are bounded in the regions of
the spacer and the lower barrier step with different
widths (via virtual states in pseudowells with different
widths). Thus, we experimentally demonstrated the
dependence of the “period” of the observed experimen-
tal structures (resonance staircase) on the width of the
quantum pseudowell; this completely eliminated a cer-
tain indeterminacy in the results of identification of
peculiarities in the transport characteristics of symmet-
ric heterostructures, which appears due to insufficient
knowledge of the parameters of the structures (exact
position of the n–/n+ interface) as well as physical fac-
tors (e.g., the extent of conservation of the wave vector
component k|| = (kx , ky) perpendicular to the transport
direction).

We will now consider each of these results in greater
detail, after describing the samples and the measuring
technique used in our experiments.

2. SAMPLES AND MEASURING TECHNIQUE

The samples studied here were one-barrier het-
erodiodes of two types, manufactures on the basis of
symmetric GaAs/AlAs/GaAs heterostructures (with
different thicknesses of the barrier AlAs layers) and
asymmetric GaAs/Al0.4Ga0.6As/Al0.03Ga0.97As/GaAs
heterostructures (with a two-step barrier) grown using
molecular-beam epitaxy on highly doped n+-GaAs sub-
strates with the (100) orientation at 570°C. As a doping
impurity, we used silicon with a concentration of 2 ×
1018 cm–3 in the substrates.

The following description will mainly concern sym-
metric samples; samples of the second type together
with the corresponding experimental results will be
described at a later stage. Thus, symmetric heterostruc-
tures consisted of the following sequence of layers: 2 ×
1018 cm–3 n+-GaAs buffer of thickness 0.4 µm; 2 ×
1016 cm–3 n−-GaAs spacer of thickness 50 nm; undoped
GaAs spacer of thickness 10 nm; undoped AlAs barrier
of thickness 2.5, 3.5 or 5.0 nm; undoped GaAs spacer
of thickness 10 nm; 2 × 1016 cm–3 n−-GaAs spacer of
thickness 50 nm; and 2 × 1018 cm–3 n+-GaAs contact
layer of thickness 0.4 µm. Ohmic contacts were pre-
pared by consecutive deposition of AuGe/Ni/Au layers
and annealing at T = 400°C. To create a mesostructure
SICS      Vol. 99      No. 3      2004
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100 µm in diameter, we used the standard chemical
etching technique.

The schematic profile of the conduction band of a
symmetric experimental structure under a bias voltage
is shown in Fig. 1. The vertical dashed line in the figure
shows the “wall” of the quantum pseudowell, while
horizontal dashed line show the states (energy levels) in
this pseudowell. The experimental samples were pre-
pared in such a way that the application of an external
voltage Vb leads to the formation of the so-called accu-
mulation layer in the vicinity of the AlAs barrier (see
Fig. 1); this layer has the form of a pseudo-triangular
quantum well with two-dimensional states filled with
electrons, which form a two-dimensional electron gas.
We confirmed the presence of the accumulation layer in
the samples by analyzing magnetoscillations of the
Shubnikov–de Haas type [9]. In such a situation, reso-
nant tunneling via two-dimensional states in a quantum
pseudowell is associated with tunnel transitions of elec-
trons from two-dimensional states of the accumulation
layer via these states. An increase in voltage Vb lowers
the energies of the states in the pseudowell relative to
the states in the accumulation layer and successively
opens resonant tunneling channels at instants of coinci-
dence of the energies of resonances in the correspond-
ing subbands, which is manifested in the form of a
sequence of singularities (resonance staircase) in the
transport characteristics. It should be noted that, in the
case of tunneling with the conservation of the trans-
verse wave vector component kxy considered here, the
resonance singularity of the current–voltage character-
istic (current resonance) must have Lorentzian or cosi-
nusoidal shape (depending on the broadening of the
resonance states) and the corresponding derivatives.

EF

EF

ε

z

Fig. 1. Schematic band diagram of the experimental one-
barrier heterostructure under a positive bias voltage.
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The results described here were based on our mea-
surements of the dependence of the differential conduc-
tivity and second derivative of current with respect to
voltage across the experimental samples on the applied
voltage in the temperature range 4.2–150 K in a mag-
netic field up to 8 T. These dependences were measured
using the standard modulation technique.

2.1. Transport Characteristics of Symmetric 
GaAs/AlAs/GaAs Samples and Identification

of the Observed Resonant Structure 

Figure 2 shows the dependences of dI/dV and
d2I/dV2 on the voltage applied to symmetric
GaAs/AlAs/GaAs samples with 3.5-nm-wide Al barri-
ers, which were measured at T = 4.2 K in zero magnetic
field. These parameters demonstrate the presence of a
substantial oscillating component associated (see
below) with resonant tunneling of electrons from 2D
states of the accumulation layer via 2D virtual states
formed in the spacer region of the structures as a result
of reflection of electrons from the n–-GaAs/n+-GaAs
interface and their subsequent interference (via 2D
states in the quantum pseudowell). Samples with 2.5-
and 5-nm-wide AlAs barriers possessed analogous
transport properties, the only difference being that res-
onant oscillations in 5-nm-wide barriers were consider-
ably suppressed under negative bias voltages. It should
be noted that the amplitudes of oscillations observed in
samples with 3.5-nm-wide barriers on the negative
branch of the dI/dV dependence on V are slightly
smaller than on the positive branch. This is apparently
due to the difference in the sharpnesses of the concen-
tration fronts at the n+-GaAs/n−-GaAs and the n−-
GaAs/n+-GaAs interfaces (lower and upper reflecting
boundaries in the order of layer growth) due to addi-
tional blurring of the n+/n− interface associated with dif-
fusion during the growth, which is responsible for the
corresponding difference in the reflectivities of these
interfaces. The decrease in the amplitudes of resonance
oscillations with increasing bias voltage is primarily
associated with a decrease in the lifetime (an increase
in the energy broadening) of the corresponding virtual
states due to a decrease in the coefficient of the above-
the-barrier reflection at the n−/n+ interface with increas-
ing energy.

The identification of experimental peculiarities as a
manifestation of resonant tunnelling via virtual states in
the spacer region (virtual resonances) was carried out
by comparing the experimental characteristics with the
calculated resonant voltages, indicating the expected
position of resonance singularities of a certain type on
the transport characteristics, which correspond to coin-
cidences of energies (resonances) of subbands of the
accumulation layer and (actual) quantum well in the
model tunnel structures. The model structure differed
from the experimental one only in the presence of an
additional thin barrier at the n+/n− interface. The pro-
AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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files of the bottom of the conduction band, the energy
levels corresponding to the states in the quantum well,
and the characteristics (energy level and the electron
concentration specified by it) of the accumulation layer
as functions of the applied voltage were determined
from the self-consistent solution of the Poisson and
Schrödinger equations. In this case, the correctness of
the calculation of accumulation layer parameters was
verified by comparison with the experimental voltage
dependence of the electron concentration in the accu-
mulation layer, which was derived from an analysis of
the Shubnikov–de Haas oscillations in a magnetic field
parallel to the current (B || I) [9].

It should be noted that the above condition of the
coincidence of the energies of the subbands in the accu-
mulation layer and the quantum well is convenient for
describing resonant tunneling with conservation of the
transverse (relative to the current) wave vector compo-
nent kxy and corresponds to maxima on the current–
voltage (I–V) characteristic (minima on the d 2I/dV 2–V
characteristics). The results of calculating resonance
voltages of the model structure with a 60.5-nm-wide
quantum well are shown by triangles in Fig. 2b. The
calculated voltages corresponded to tunneling via eight
states in the quantum well, starting from the third one.
Tunneling via two lower states is not observed due to
the presence of electron-enriched layers in our struc-
tures on both sides of the barriers for zero bias voltage
(it is the tunneling between these layers that determines
the transport characteristics for low bias voltages). This
was described in detail in our previous publication [10].
The identification carried out in this way is not rigorous
in view of the dependence on technological parameters
used in simulation (e.g., the position of the reflecting
n−/n+ interface) and a tunneling parameter such as the
degree of conservation of kxy , which are not known
exactly. A proof of the correctness of the identification
was obtained with the help of additional study of tun-
neling in a magnetic field in symmetric structures and
tunneling in asymmetric structures with a two-step bar-
rier; these structures will be described in Sections 5 and
6 of this article.

3. ANALYSIS OF AMPLITUDES 
OF VIRTUAL RESONANCES AND MECHANISMS 
OF ELECTRON REFLECTION AND SCATTERING

We determined the predominant mechanism of
reflection of electrons from the n−-GaAs/n+-GaAs inter-
face and the mechanism of electron scattering leading
to the suppression of low-energy virtual resonances
from comparison of relative amplitudes (∆I/I) of exper-
imentally observed resonance singularities with the
values calculated in the following manner.

It follows from the general theory of resonant tun-
neling that the relative amplitude of the current reso-
nance (resonant singularity on the I–V curve) in the
case of a quantum well bounded by barriers with
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
strongly differing transparency (this also applies to our
experimental situation with a pseudowell [11]) is deter-
mined by the reflection coefficient R of the most trans-
parent barrier [11–14]:

(1)

In the present case, the role of this barrier is played by
the above-the-barrier reflection at the n−/n+ interface.
The reflecting contact layer n+ was simulated in the
form of the half-space z ≥ W, where W is the length of
the spacer region, with randomly distributed impurities

∆I
I

------ R1/2.=
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Fig. 2. (a) Experimental dependence of dI/dV on V for a
symmetric one-barrier heterostructure with a 3.5-nm-thick
barrier, measured at T = 4.2 K in zero magnetic field and
(b) the positive branch of the d2I/dV2 dependence on V. Tri-
angles indicate the calculated values of threshold voltages.
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with an average volume concentration of ND = 2 ×
1018 cm–3. We assume that the other half-space (z < W)
is free of impurities. The amplitude of the wave R1/2

reflected from such a layer is calculated here in the
framework of the Born approximation [15],

(2)

(m* and k are the effective mass and the wave vector of
an electron arriving at the reflecting boundary and " is
the Planck constant), using as the scattering potential
the one-dimensional averaged potential of the half-
space with randomly distributed impurities,

(3)

where ε is the permittivity. As a result of substitutions
and integration, we obtained the following expression
for the relative amplitude of the current resonance:

(4)

The choice of candidates to play the role of mecha-
nisms of electron scattering in the spacer region was
made from comparison of electron lifetimes in virtual

R1/2 im*

"
2kz

---------- u z( )e 2ikz– zd
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Fig. 3. Experimental (stars) and calculated (solid curve) val-
ues of the relative amplitudes of the first eight virtual reso-
nances. The details of calculation are described in text.
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states with characteristic times of various scattering
processes. In view of the short lifetime of electrons in
virtual states (τ ≤ 0.2 ps), the only real candidate was
electron scattering as a result of interaction with LO
phonons in GaAs with the characteristic time τLO ≈
0.18 ps [5, 7, 16, 17]. A similar procedure was carried
out in other experimental works, in which tunneling via
short-lived states in quantum wells of GaAs was stud-
ied [5, 16]. We took into account the scattering from
optical phonons by introducing factor exp(–τ/τLO) into
Eq. (4) analogously to [16]. We assumed that the life-
time τ was equal to the time of electron passage through
the spacer region; according to [5], this is valid for
states bounded on one side by a barrier with a small
reflectance R ! 1. Thus, allowance for the electron–
phonon interaction led to the expression

(5)

which was used for calculating the voltage dependence
of relative amplitudes.

Before comparing the theory and experiments, it
should be noted that, as a result of application of one-
dimensional averaged potential (3) in calculations, final
expression (5) outside the narrow (see below) energy
range of the exponential factor (in which the electron–
phonon scattering is taken into account), describes the
upper boundary of the relative amplitude of virtual res-
onances. This is due to the fact that we disregard possi-
ble fluctuations of reflecting potential in the xy plane
and the presence of a transient layer with a variable
impurity concentration, which may lead to electron
scattering and resonance blurring associated with it.
Thus, considering that ∆I/I is a measure of participation
of scattering in resonance tunneling processes [5, 7, 18],
we can conclude that a comparison of the dependence
of ∆I/I on V constructed in accordance with relation (5)
with experimental values of relative amplitudes of res-
onances will make it possible to determine the extent of
integrated effect of electron scattering in the region of
the reflecting boundary on the process of reflection
from the real n–/n+ interface. It should be remarked for
clarity that although ∆I/I is not an exact quantitative
measure of the effect of scattering on the tunnel trans-
port (measure of coherence), it was demonstrated theo-
retically (using, for example, the Breit–Wigner formal-
ism) that the attainment of the equality of broadenings
Γs and Γi associated with scattering and lifetime of the
state corresponding to the boundary between the coher-
ent and predominantly incoherent transport is accom-
panied with more than twofold reduction of the value of
∆I/I (see [7], p. 46).

The calculated dependence of ∆I/I on V and aver-
aged values of relative amplitudes are shown in Fig. 3
for seven experimental samples. The deviation from the
experimental values does not exceed 5%. It can be seen
from the figure that the suppression of the amplitudes of
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the first two experimental resonances (predominantly
the first resonance corresponding to τ ≤ τLO) is satisfac-
torily described by the theoretical curve. The behavior
of this curve in the given energy range (where τ ≤ τLO)
is determined to a considerable extent by the exponen-
tial factor, allowing for the effect of the electron–
phonon scattering. Such a suppression of the low-
energy resonances as a result of the electron–phonon
scattering was observed earlier when tunneling in a
GaAs/AlAs resonant-tunnel diode with broad quantum
wells was studied [16]. In this work, the increase in the
amplitudes of “suppressed” resonances in a field paral-
lel to current (B || I) was reported. This effect was
explained (on the basis of numerical calculations) by a
decrease in the rate of scattering "/τB as a result of lim-
itation imposed on the number of final states to which
electrons can be scattered. We also observed an
increase in the amplitudes of the first two experimental
resonances (predominantly the first) in field B || I (the
corresponding figure is not given here), which serves as
an additional proof of the assumption that the electron–
phonon scattering is responsible for the suppression of
low-energy resonances.

It can also be seen from Fig. 3 that the difference
between the relative amplitudes of the next four reso-
nances and the calculated values does not exceed 25%
and increases with voltage. These resonances lie in the
energy interval where τ ! τLO and the exponential fac-
tor, taking into account scattering, does not noticeably
affect the dependence of ∆I/I on V. Consequently, tak-
ing into account the above arguments about the
approaches to comparison of theory with experiment,
we can conclude that the observed scale of the differ-
ence between the theoretical and experimental ampli-
tudes of resonances indicates that the reflection of elec-
trons from the boundary n+ of the strongly doped region
is predominantly nondissipative (coherent). To be more
specific, we conclude that electrons are reflected from
this boundary predominantly as from the averaged one-
dimensional potential of the half-space with randomly
distributed impurities, without experiencing strong
scattering at inhomogeneities of the reflecting potential
in the xy plane and in the transient layer having a vari-
able concentration of donors.

Finally, it should be noted that a stronger (~50%)
difference from the calculated values of the amplitudes
of two high-energy resonances can be due to strong
suppression of experimental resonances because of
stronger involvement of scattering from the above-
mentioned fluctuations of the reflecting potential and in
the transient layer during reflection upon a decrease in
the electron wavelength. Another reason for the dis-
crepancy is incorrect application of the averaged poten-
tial of impurities in the given energy range, when the
electron wavelength becomes smaller than the mean

distance between impurities (λ < ), which leads to
exaggerated values of the amplitudes. The removal of
this indeterminacy requires that calculations be made at

ND
1/3–
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least by using more complicated model potentials tak-
ing into account the microscopic structure of the
reflecting boundary. However, this is beyond the scope
of the problems considered here and is not reflected in
our conclusions.

4. MAGNETOTUNNELING
IN SYMMETRIC GaAs/AlAs/GaAs SAMPLES

IN A MAGNETIC FIELD TRANSVERSE 
TO CURRENT

Figure 4 shows a family of dependences of d2I/dV2

on V for a symmetric sample with a 3.5-nm-wide bar-
rier, which were measured at 4.2 K in a magnetic field
transverse to the current (B ⊥  I) up to 7 T. It can be seen
that the increase in the magnetic field first leads to a dis-
placement of the oscillatory structure towards higher
voltages and to its attenuation down to complete sup-
pression at B ≈ 2.5 T. Such a behavior of the resonance
structure can be explained by the change in the reso-
nance conditions for tunneling between 2D states with
conservation of kxy in the magnetic field [19]. The
change in the resonance conditions ∆E = (eBd)2/2m* is
a consequence of the change in the transverse compo-
nent of the wave vector of a tunneling electron under
the effect of the Lorentz force by ∆k = eBd/", where
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Fig. 4. Experimental dependences of d2I/dV2 on V for a one-
barrier structure with a 3.5-nm barrier in a transverse mag-
netic field in the range from 0 to 7 T.
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d is the tunneling length; in the first approximation, we
assume that d is equal to the distance between the cen-
ters of the quantum wells whose 2D states participate in
the tunneling process under investigation. The velocity
∆V/∆B of the resonance structure in a magnetic field
calculated in accordance with the above arguments
amounts to 6 mV/T under the assumption that d ≈
40 nm and is in good agreement with the experimental
value. When the magnetic field attains a value of B ≈
3 T, the d2I/dV2 vs. V characteristic acquires a new
oscillatory structure in which two components can sub-
sequently be singled out at B = 7 T, viz., the strong
“low-energy” component (up to V ≈ 120 mV) and the
weak “high-energy” component (behind V ≈ 120 mV)
oscillatory structures. A similar evolution of the reso-
nance structure with B ⊥  I, including the low-field dis-
placement and suppression of the initial resonances (at
B = 0) associated with a change in the resonance condi-
tions for tunneling between 2D states due to the Lorentz
force and the formation of a new resonance structure
upon a further increase in the magnetic field was
observed earlier while studying tunneling in two-bar-
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Fig. 5. Schematic band diagram of a heterostructure with a
step barrier (a) for a negative and (b) for a positive bias volt-
age; EF are the Fermi levels in 3D contacts; %0 is the size
quantization level in the triangular well induced by an elec-
tric field; %iR and %iL are size quantization levels in
pseudowells. Figures 1–6 denote various layers of the struc-
ture, described in text.
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rier structures with broad quantum wells [8]. The emer-
gence of the new resonance structure was associated
with resonant tunneling via hybrid magnetoelectric
states in a quantum well; a semiclassical analog of one
type of such states (corresponding to low-energy reso-
nances) are electron orbits hopping along the intrawell
boundary of the emitter barrier. However, we will not
consider here the classification of magnetoelectric res-
onances.

Thus, the modification of the oscillatory structure of
(d2I/dV2–V) characteristics with B ⊥  I considered here
and its analogy with that observed in magnetotunneling
via 2D states of broad quantum wells confirm the valid-
ity of using the resonance conditions for tunneling
between states of 2D subbands with conservation of kxy

for identifying singularities in the oscillatory structure
at B = 0, as well as the results of identifying such sin-
gularities as a manifestation of resonant tunneling via
virtual 2D states in a quantum pseudowell.

5. TUNNEL RESONANCES
IN ASYMMETRIC STRUCTURES 

WITH A TWO-STEP BARRIER

In this section, we present the results of experimental
investigation of electron transport through the asymmetric
GaAs/Al0.4Ga0.6As/Al0.03Ga0.97As/GaAs heterostructure
with a two-step barrier and spacers (see Fig. 5). As a
result of experiments, singularities in the transport
characteristics associated with resonant tunneling via
virtual states (%iL and %iR in Fig. 5) in two quantum
pseudowells of different thickness were detected. One
of the pseudowells was bounded by the upper step of
the barrier and the reflection from the n+-GaAs/n–-
GaAs interface, while the other was bounded by the
upper step of the barrier and the reflection from the
Al0.03Ga0.97As/n–-GaAs heteroboundary. In addition,
resonant tunneling via the states of the lower subband
in the induced triangular quantum well was detected
(the bottom of the subband is denoted by %0 in Fig. 5);
this tunneling will not be described here in detail. As in
the case of symmetric samples, tunneling via resonance
states occurred from two-dimensional states of the
accumulation layers formed with opposite voltages at
the opposite sides of the two-step barrier. Note that the
Al0.4Ga0.6As barrier layer used in the given structures
made it possible to eliminate the effect of the X valley
on the electron transport.

The samples used in these experiments were pre-
pared on the basis of heterostructures grown by the
molecular beam epitaxy method on a highly doped
n+-GaAs substrate and having the following sequence
of the layers: 2 × 1018 cm–3 n+-GaAs buffer layer of
thickness 0.5 µm (region 1 in Fig. 5); 2 × 1016 cm–3

n−-GaAs spacer of thickness 50 nm; undoped GaAs
spacer of thickness 10 nm (the two latter layers form
region 2 in Fig. 5); undoped barrier layer of
ND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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Al0.4Ga0.6As of thickness 5 nm (region 3 in Fig. 5);
undoped barrier layer of Al0.03Ga0.97As of thickness
30 nm (region 4 in Fig. 5); 2 × 1016 cm–3 n–-GaAs
spacer of thickness 30 nm (region 5 in Fig. 5); and 2 ×
1018 cm–3 n+-GaAs contact layer of thickness 0.2 µm
(region 6 in Fig. 5). Silicon was used as the doping
impurity. The sample preparation technique was the
same as that described in Section 2.

Figure 6 shows the oscillating component of the
experimental (d2V/dI2–V) characteristic of an asym-
metric sample in zero magnetic field at T = 4.2 K.
Large-scale components of the characteristic, which are
due to considerable zero-point anomaly and resonance
singularity associated with tunneling via states of the
two-dimensional subband in the triangular quantum
well (disregarded here) are subtracted for better visual-
ization when oscillatory structures for opposite volt-
ages are compared. The observed oscillatory structures
are due to resonant tunneling of electrons via virtual
states in quantum pseudowells of different thicknesses
(60 and 30 nm; see Fig. 5). This immediately follows
from the substantial difference in the “frequencies” of
experimental oscillations (heights of the steps in stair-
cases of resonances) on the negative and positive
branches of the characteristics. The predicted values of
resonance voltages calculated in the same way as in
Section 3 are shown in Fig. 6 by triangles and demon-
strate satisfactory agreement with experiment.

The absence of resonances corresponding to inter-
ference states emerging due to reflection from the n–/n+

interface in the region of negative bias voltages is worth
noting. This can be associated with a decrease in the
probability of constructive interference of electrons due
to the presence of additional scattering interfaces on
their path (Al0.03Ga0.97As/n–-GaAs in the present case).

For both bias voltages, the values of relative ampli-
tudes ∆I/I of the resonances do not exceed 1%, which is
slightly smaller than the value observed for symmetric
structures. Analysis of the dependences of ∆I/I on V for
asymmetric structures was complicated to a consider-
able extent by the presence of the lower step of the bar-
rier, which led to a strong voltage dependence of the
integral barrier transparency (a description of this
dependence involves considerable difficulties) and was
not fruitful.

Concluding the section, we note that the behavior of
the oscillatory structure in a magnetic field B ⊥  I was
similar to that observed for symmetric samples, which
additionally confirmed the assumption about the two-
dimensional nature of the states via which the tunneling
takes place.

Thus, the analysis of the electron transport in asym-
metric structures with a two-step barrier revealed oscil-
latory components of the transport characteristics with
strongly differing “frequencies.” These frequencies are
associated with resonant tunneling of electrons through
quantum pseudowells of various width, thus demon-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
strating the dependence of the heights of the steps in the
staircase of virtual states on the width of the quantum
pseudowell bounding these states. This completely
eliminated a certain ambiguity in the results of identifi-
cation of the resonance structure of transport character-
istics for symmetric samples.

6. CONCLUSIONS
Thus, as a result of investigations described in this

paper, we observed predominantly coherent reflection
of electrons from the n–-GaAs/n+-GaAs interface, lead-
ing to the formation of interference electron states in
weakly doped spacer regions of heterostructures. Reso-
nant tunneling via such states was manifested in the
form of the oscillating component of transport charac-
teristics up to T ≈ 150 K.
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Abstract—Using transfer-matrix extended phenomenological renormalization-group methods, we study the
critical properties of the spin-1/2 Ising model on a simple-cubic lattice with partly anisotropic coupling

strengths  = (J ', J ', J). The universality of both fundamental critical exponents yt and yh is confirmed. It is

shown that the critical finite-size scaling amplitude ratios U = Aκ/ , Y1 = Aκ''/Aχ , and Y2 = /

are independent of the lattice anisotropy parameter ∆ = J '/J. For the Y2 invariant of the three-dimensional Ising
universality class, we give the first quantitative estimate Y2 ≈ 2.013 (shape L × L × ∞, periodic boundary con-
ditions in both transverse directions). © 2004 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The phenomenological renormalization-group (RG)
method in which the transfer-matrix technique and
finite-size scaling (FSS) ideas are combined is a power-
ful tool for investigation of critical properties in differ-
ent two-dimensional systems [1, 2]. Unfortunately, its
application in three or more dimensions is sharply
retarded due to huge sizes of the transfer matrices aris-
ing in approximations of d-dimensional lattices by
Ld − 1 × ∞ subsystems.

Indeed, even in the simplest case of systems with
only two states of a site (the spin-1/2 Ising model), the
size of the transfer matrix in three dimensions (d = 3)

increases as  (instead of the significantly more spar-
ing law 2L in two dimensions). Hence, for the 3 × 3 × ∞
cluster, the eigenproblem of the 512 × 512 transfer
matrix must be solved; for the 4 × 4 × ∞ subsystem, the
problem is for the 65536 × 65536 matrix; and for the
5 × 5 × ∞ cluster, it is required to find the eigenvalues
and eigenvectors of dense matrices with huge sizes of
33554432 by 33554432.

One can solve the full eigenproblem for the transfer
matrices of Ising parallelepipeds L × L × ∞ with the side
length L ≤ 4. Our aim in this paper is to use such solu-
tions with the maximum effect and extract as much
accurate information as possible about the physical
properties of the bulk system.

The ordinary phenomenological RG is based on the
FSS equations for correlation lengths [1, 2]. However,
it is known [3–5] that the phenomenological RG can be

2L
2

¶ This article was submitted by the author in English.
1063-7761/04/9903- $26.00 © 20539
built up using other quantities with a power divergence
at the phase transition point. It is remarkable that such
modified renormalizations can provide more precise
results with the same sizes of subsystems [6].

In this paper, we calculate the values of different
invariants of the 3D Ising universality class and discuss
their universal and extrauniversal properties.

2. BASIC EQUATIONS

We start from the ordinary FSS equations [1, 2] for
the inverse correlation length κL(t, h) and the singular

part of the dimensionless free-energy density (t, h),
but we write them for the derivatives with respect to a
reduced temperature t = (T – Tc)/Tc and external field h,

(1)

and

(2)

Here,

and similarly for ; yt and yh are the thermal and
magnetic critical exponents of the system, respectively;
and b = L/L' is the rescaling factor. In deriving Eqs. (1)
and (2), we used a linearized form of the RG equations

t' ≈ t and h' ≈ h.

f L
s

κ L
m n,( ) t h,( ) b

myt nyh 1–+
κ L/b

m n,( ) t' h',( )=

f L
s m n,( ) t h,( ) b

myt nyh d–+
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In the traditional phenomenological RG theory [1, 2],
Eq. (1) with m = n = 0 is considered as an RG mapping
(t, h)  (t ', h') for a cluster pair (L, L'). The critical
temperature Tc is then estimated from the equation

(3)

The phenomenological renormalization (t, h) 
(t ', h') can also be realized by using any of relations (1)
and (2) or a combination of them. The author has
shown [6] that some of such extended renormalizations
lead to more rapid convergence in L than the standard
phenomenological RG transformation. In particular,
test examples on fully isotropic systems [6] have shown
that the relations

(4)

(5)

locate Tc more accurately in comparison with the ordi-
nary RG equation (3). In relations (4) and (5), the deriv-
ative  = ∂2κL/∂h2, the zero-field susceptibilityχL =

 and the nonlinear susceptibility  =  can
be evaluated by standard formulas via the eigenvalues
and eigenvectors of transfer matrices (see, e.g., [7–9]).

To find the thermal critical exponent yt , we applied
two approaches. First, we again used the standard
finite-size expression

(6)

which follows from Eq. (1) with m = 1, n = 0;  =
∂κL/∂t. Second, we took the formula

(7)

This expression is a direct consequence of the well-
known Roomany–Wyld approximant to the Callan–
Symanzik β-function [2].

To calculate the magnetic critical exponent yh , we
also used two methods,

(8)

and

(9)

(these finite-size relations follow from Eqs. (1) and (2)). 
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In addition, we calculated the universal ratios of the
critical FSS amplitudes. Ratios of this type can be
identified from the Privman–Fisher functional expres-
sions [10]. For the anisotropic systems discussed, they
are given by [8]

(10)

(11)

The scaling functions _(x1, x2) and ^(x1, x2) are the
same within the limits of a given universality class, but
they may depend on the boundary conditions and the
shape of the subsystem (a cube, infinitely long parallel-
epipeds, etc.). Thus, all nonuniversality, including the
lattice anisotropy parameter ∆, is absorbed in the geom-
etry prefactor G0 and metric coefficients C1 and C2. The
critical amplitude ratios from which the parameters G0,
C1, and C2 drop out should be extrauniversal. In partic-
ular, the amplitude combinations

(12)

(a Binder-like ratio for the spatially anisotropic systems),

(13)

(14)

are expected to be independent of the lattice anisotropy
parameter ∆ = J '/J.

3. RESULTS AND DISCUSSION

We have carried out calculations for the subsystems
L × L × ∞ with L = 3 and 4. To avoid undesirable surface
effects, the periodic boundary conditions were imposed
in both transverse directions of parallelepipeds L × L × ∞.
Thus, the transfer matrices for which the eigenproblem
was solved were dense matrices of sizes up to 65536 ×
65536. To solve the eigenproblem, we took the internal
and lattice symmetries of subsystems into account and
used the block-diagonalization method (see, e.g., [7, 9]).
Calculations were performed on an 800 MHz Pentium
III PC running the FreeBSD operating system.

3.1. Critical Temperature 

The critical temperature estimates coming from
solutions of transcendental equations (4) and (5) are
shown in Table 1.

In the purely isotropic case (J' = J), there are high-
precision numerical estimates for the critical point of
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the three-dimensional Ising model. The most precise
values for it have been obtained by Monte Carlo simu-
lations [11, 12]: Kc = 0.22165459(10), i.e., kBTc/J =
1/Kc = 4.5115240(21).

One can see from Table 1 that the estimates for J' =
J that follow from Eqs. (4) and (5) are the lower and
upper bounds, respectively. Therefore, their mean value
has an accuracy of 0.01%. We also note that our mean
estimate is better than the value kBTc/J = 4.53371
obtained in [13] (see also [14]) for the fully isotropic
lattice using the ordinary phenomenological renormal-
ization of the bars with L = 4, 5.

We now discuss the anisotropic case. Here, there is
the well-known exact asymptotic formula for the criti-
cal temperature [15],

(15)

as J '/J  0. This is a direct consequence of the molec-
ular-field approximation, in which the linear Ising
chain is taken as a cluster.

Unfortunately, simple formula (15) yields consider-
able errors in the region 10–3 ≤ J'/J ≤ 1. Its modifications
in the spirit of [16],

lead to a loss of monotonic convergence as J '/J varies
from unity to zero.

We choose infinitely long clusters L × L × ∞
stretched in the lattice direction with the dominant
interaction J. Such a cluster geometry reflects the phys-
ical situation in the system. We may therefore expect
more precise results for the critical temperature as the
anisotropy of the quasi-one-dimensional lattice
increases. We may also expect monotonic convergence
for the estimates in Eqs. (4) and (5) because there must
be physical reasons (finite length of clusters in the lon-
gitudinal direction, etc.) for nonmonotonic or oscilla-
tory behavior; they are absent in our approximations.
That is, if Eq. (4) yields the lower bound in the most
unfavorable case J ' = J, then it should preserve such
behavior for all J ' < J. Similar arguments are valid for
the estimates following from Eq. (5); these are upper
estimates.

We note that the mean values in Table 1 are not only
better than the estimates of kBTc/J calculated with the
(3, 4) cluster pair by the standard phenomenological
RG method, but also better than their improvements
found by means of three-point extrapolations from the
sizes L = 2, 3, and 4 to the bulk limit [17].

In the range 10–2 ≤ J '/J ≤ 1, there are also data for the
critical temperature of a simple-cubic Ising lattice that
were extracted from the Padé-approximant analysis of
the high-temperature series [18]. For J ' = J, according

kBTc

J
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J /2J'( )ln J /2J'( )lnln– O 1( )+
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to these data, kBTc/J = 4.5106, which is lower by
0.014% in comparison with the results in [12]. For
J '/J = 0.1, the authors of [18] found the value kBTc/J =
1.343. This quantity somewhat overestimates the mean
value in Table 1. Finally, for J '/J = 0.01, the series
method [18] yields kBTc/J = 0.65, which exceeds our
lower bound. This is not surprising because the calcula-
tions based on the high-temperature series rapidly dete-
riorate owing to the very limited number (≤11) of terms
available in such series for the anisotropic lattices.

Therefore, we may treat the values found from
Eqs. (4) and (5) as lower and upper bounds on the real
critical temperature. Their mean value for each J '/J
yields the best estimate achieved by us in this paper for
the reduced critical temperature kBTc/J (the last column
in Table 1). Hence, its absolute error is not larger in any
case than half the difference of the corresponding upper
and lower bounds. Using the data in Table 1, we estab-
lish that the relative errors for kBTc/J monotonically
decrease from 0.72% to 0.14% as J '/J goes from 1
to 10–3.

3.2. Invariants of the 3D Ising Universality Class 

With the improved estimates for the critical temper-
ature of anisotropic simple-cubic lattice, we now calcu-
late some invariants of the three-dimensional Ising
model universality class.

3.2.1. Critical Exponents 

According to the RG theory, critical exponents are
determined entirely by a fixed point and do not depend
on the lattice anisotropy. For a three-dimensional Ising
model, the universality of critical exponents has been
confirmed for ∆ ∈  [0.2, 5] by the high-temperature
series calculations [19].

At present, the most precise estimates of critical
exponents are provided by the high-temperature expan-
sions for ordinary models [20] and for models with

Table 1.  Lower and upper bounds on the critical temperature
and their mean values (improved estimates of kBTc/J) in the
three-dimensional simple-cubic spin-1/2 Ising lattice vs. ∆ =
J'/J. Calculations with a cluster pair (3, 4)

∆ Eq. (4) Eq. (5) mean

1.0 4.47965814 4.54424309 4.51195062

0.5 2.91008665 2.94295713 2.92652189

0.1 1.33649605 1.34570054 1.34109829

0.05 1.03544938 1.04144927 1.03844933

0.01 0.65054054 0.65323146 0.65188600

0.005 0.55440490 0.55643112 0.55541801

0.001 0.40743000 0.40859011 0.40801006
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Table 2.  Estimates of the thermal and magnetic critical exponents for different values of ∆ = J'/J. Calculations with a cluster
pair (3, 4)

∆ kBTc/J
yt yh

Eq. (6) Eq. (7) Eq. (8) Eq. (9)

1.0 4.51195062 1.5760695 1.7246286 2.5971647 2.5886128

0.5 2.92652189 1.5256373 1.6636718 2.5902006 2.5819462

0.1 1.34109829 1.4700811 1.5972576 2.5843305 2.5766511

0.05 1.03844933 1.4533899 1.5791439 2.5836720 2.5761101

0.01 0.65188600 1.4236178 1.5480583 2.5832982 2.5758028

0.005 0.55541801 1.4141719 1.5383503 2.5832029 2.5757888

0.001 0.40801006 1.3984754 1.5222765 2.5834573 2.5757953

1.47{6} 1.60{7} 2.586{5} 2.579{5}
improved potentials characterized by suppressed lead-
ing scaling corrections [21]. For the three-dimensional
(fully isotropic) Ising lattice, these methods yield ν =
0.63012(16) and γ = 1.2373(2). Hence, yt = 1/ν =
1.5870(4) and yh = (d + γ/ν)/2 = 2.48180(18).

In Table 2, we report our estimates for the critical
exponents yt and yh . It follows from those data that as
the lattice anisotropy parameter ∆ varies by three orders
(from unity to 10–3), the estimates of critical exponents
are changed only by a few percent or less. In particular,
calculations via Eqs. (6) and (7) with the cluster
pair (3, 4) yield yt = 1.47{6} and yt = 1.60{7}, respec-
tively. (Here and below, the numbers in braces are dis-
persions of averages over the lattice anisotropy param-
eter ∆.) Their variations lie in the range 4–4.4%. Similar
calculations of the magnetic critical exponent performed
with Eqs. (8) and (9), also with the pair (3, 4), lead to
yh = 2.586{5} and yh = 2.579{5}, respectively. Relative
dispersions of these estimates are about 0.2%.

Thus, our calculations confirm the universality of
both critical exponents in an essentially wider range of
∆ than in earlier investigations. Systematic errors of the
estimates achieved arise due to small sizes L of the sub-
systems used.

3.2.2. Critical FSS Amplitude Ratios 

Critical amplitudes are determined by scaling func-
tions. As a result, their “universal ratios” like

depend, generally speaking, on the lattice anisotropy
because it can change the shape of subsystems. How-
ever, in the case of parallelepipeds Ld – 1 × ∞ with
unchanged (between themselves) transverse coupling
constants, the shape of a sample (all its aspect ratios) is

A
κ 4( )

A
χ 4( )

---------
_ 0 4,( )

0 0,( )
^ 0 4,( )

0 0,( )
----------------------------=
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independent of the interaction in the longitudinal direc-
tion. Such a universality is studied here.

Table 3 contains results of our calculations for the

critical FSS amplitude ratios U = Aκ/ , Y1 =

Aκ''/Aχ, and Y2 = / . Calculations have been per-

formed for ∆ ∈ [10–3, 1] using a cyclic cluster 4 × 4 × ∞.
In accordance with the data in Table 3, the average

ratio U = 4.900{3}. Hence, as the anisotropy parameter
∆ varies by three orders, this quantity changes only by
0.06%. With such accuracy, we may consider the given
ratio a constant. In the case of a fully isotropic lattice,

Aκ = 1.26(5) and /  = 3.9(2) [8], and therefore

Aκ/  = 4.9(5). Our values of U in Table 3 are in

good agreement with this estimate.
It follows from Table 3 that Y1 = Aκ''/Aχ = 1.759(2).

Hence, the constancy of this universal amplitude ratio

A
χ 4( ) Aχ

2

A
κ 4( ) A

χ 4( )

A
χ 4( ) Aχ

2

A
χ 4( ) Aχ

2

Table 3.  Estimates of the universal critical FSS amplitude

ratios U = Aχ(4)Aκ/ , Y1 = Aκ(2)/Aχ, and Y2 = Aκ(4)/Aχ(4) for
the Ising system with the cylindrical geometry L × L × ∞ and
periodic boundary conditions. Data for L = 4

∆ kBTc/J U Y1 Y2

1.0 4.51195062 4.8956599 1.7550004 2.0146443

0.5 2.92652189 4.8967625 1.7572512 2.0136519

0.1 1.34109829 4.9011909 1.7596003 2.0129829

0.05 1.03844933 4.9014406 1.7597697 2.0129285

0.01 0.65188600 4.9015375 1.7598563 2.0128977

0.005 0.55541801 4.9015529 1.7598646 2.0128953

0.001 0.40801006 4.9015782 1.7598732 2.0128938

4.900{3} 1.759{2} 2.0133{6}

Aχ
2
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is estimated at least a few times 10–3. Our average value
for Y1 agrees well with the estimate for the isotropic lat-
tice, Aκ''/Aχ = 1.749(6) [8].

According to the data in Table 3, the amplitude ratio
Y2 = /  = 2.0133{6}. This quantity is therefore

the most stable of all the invariants of the three-dimen-
sional Ising universality class investigated in this paper.
We note that we are not aware of any quantitative esti-
mates for / .

4. CONCLUSIONS
In this paper, large-scale transfer-matrix computa-

tions have been performed. Application of the extended
phenomenological RG schemes has made it possible to
find tight bounds on the critical temperature in the
anisotropic simple-cubic Ising lattice and to improve
the available estimates for it.

We calculated the thermal and magnetic critical
exponents. Our results confirm the universality of yt

within 4–4.4% and of yh within 0.2% over a remarkably
wider range of ∆ (10–3 ≤ ∆ ≤ 1) than in [19].

Finally, the results give clear evidence that the criti-

cal FSS amplitude ratios U = Aκ/ , Y1 = Aκ''/Aχ,

and Y2 = /  are independent of the lattice

anisotropy parameter ∆ = J '/J with accuracies of at least
0.1%. Probably for the first time in the literature, we
give an estimate for the universal quantity Y2.
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Abstract—Inverted hysteresis loops were observed for the first time in the near-surface layers of heterogeneous
(nanocrystalline/amorphous) Fe81Nb7B12 alloys. In particular, a negative residual magnetization is observed
when a positive magnetic field applied in the sample plane is decreased to zero. The inverted hysteresis is qual-
itatively explained within the framework of a two-phase model, according to which the heterogeneous alloys
contain two dissimilar phases exhibiting uniaxial magnetic anisotropy and featuring antiferromagnetic
exchange interaction. © 2004 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

In recent years, nanocrystalline materials of a new
type were obtained by means of controlled crystalliza-
tion of amorphous alloys [1, 2]. The new materials have
attracted much interest because of their unique
magnetic, mechanical, and kinetic properties. Iron-
based Fe–M–B (M = Zr, Ta, Mo and Nb) alloys
(NANOPERM) have proved to be most promising due
to relatively simple composition and unique soft mag-
netic properties [2, 3], even in comparison with cur-
rently popular FeCuNbSiB alloys (FINEMET) [1]. The
magnetic properties of Fe–M–B alloys (in particular, of
the FeNbB system) have been studied by various exper-
imental techniques (see, e.g., [2–10]). It was estab-
lished that (i) FeNbB alloys annealed in the range from
200 to 800°C behave as materials containing two ferro-
magnetic phases (amorphous and nanocrystalline),
(ii) the volume of the nanocrystalline phase (appearing
upon annealing) depends on the method and tempera-
ture of treatment of the initial alloy, and (iii) the relative
content of amorphous and nanocrystalline phases sig-
nificantly influences the magnetic properties of the
annealed material. For example, it was found [6] that
the volume of a nanocrystalline phase in the
Fe80.5Nb7B12.5 annealed at Tann = 490–550°C is small
and the coercive force (Hc ≈ 2.6 Oe) is almost two
orders of magnitude higher as compared to that in the
initial (unannealed) alloy; in the samples annealed at
Tann ≈ 600°C, the volume of the nanocrystalline phase
increases, and the Hc value decreases to 0.15 Oe. This
change in the coercive force is caused by the appearance
of a nanocrystalline phase in the annealed material.
1063-7761/04/9903- $26.00 © 20544
Generally speaking, the excellent magnetic soft-
ness of nanocrystalline materials were explained by
Herzer [11] within the framework of a model with ran-
dom magnetic anisotropy. According to this model,
nanocrystalline bcc Fe grains with a characteristic size
smaller than the exchange length are strongly
exchange-coupled via the amorphous matrix, which
results in effective averaging of the magnetic anisot-
ropy of individual nanocrystalline grains and in a sig-
nificant decrease in magnetostriction which, in turn,
leads to a considerable decrease in the magnetoelastic
anisotropy and coercive force. Within the framework of
this model, it is also possible to explain the above
results. Indeed, in the FeNbB alloy annealed at ~490–
550°C, the volume of a nanocrystalline phase is small
and the nanocrystalline bcc Fe grains are separated by
relatively thick layers of the amorphous magnetic
matrix. As a result, the exchange interaction between
nearest-neighbor bcc Fe grains is weak and the Hc is
large. In the second case (Tann ≈ 600°C), the volume of
the nanocrystalline phase is increased, the interaction
between grains is enhanced and the coercive force is
reduced.

An important role in the formation of magnetic
properties of such materials is played by the surface. As
is known, inhomogeneities in the microstructure and
chemical composition of amorphous materials account
for a significant (up to tenfold) increase in the surface
coercive force Hc and the saturation field Hs as com-
pared to the corresponding volume values [12, 13].
Moreover, these inhomogeneities significantly influ-
ence the course of crystallization in amorphous materi-
als during their heat treatments used for the obtaining of
004 MAIK “Nauka/Interperiodica”
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heterogeneous alloys containing two or more ferromag-
netic phases.

The theory developed by Arrot [14] predicted the
existence of inverted hysteresis loops in heterogeneous
magnetic structures. A peculiarity of these loops con-
sists in that a negative residual magnetization is
observed a sample upon switching off the magnetic
field applied to this sample in the positive direction. As
the positive magnetic field decreases, the magnetization
reversal in the sample in fact takes place under condi-
tions of a positive coercive force Hc. It should be noted
that the negative residual magnetization upon switching
off the positive magnetic field is impossible (forbidden)
in homogeneous magnetic materials, where the magne-
tization is the order parameter in description of their
thermodynamic state. According to Arrot [14], this
effect can take place only in heterogeneous magnetic
systems.

Previously, inverted hysteresis loops have been
experimentally observed in various inhomogeneous
magnetic structures. In particular, this phenomenon
takes place (i) in the Co–CoO system [15] and in cobalt
films with a thickness of under 60 nm [16], where the
inverted hysteresis loops were explained by the
exchange anisotropy [17]; (ii) in multilayer Ag/Ni
structures [18] and granular (Ni, Fe)–SiO2 films [19],
where the existence of such hysteresis loops was attrib-
uted to a magnetostatic interaction between magnetic
layers and nanocrystalline grains [19, 20]; (iii) in epi-
taxial iron films, where the inverted hysteresis was
related to the existence of a magnetization component
perpendicular to the film plane [21]; (iv) in Co/Pt/Gd/Pt
[22] and Fe/Au [23] superlattices, where the appear-
ance of inverted hysteresis loops was explained in
terms of the antiferromagnetic exchange interaction
between Co and Cd (or Fe) layers through Pt (or Au)
spacers; (v) and in CoNbZr and CoFeMoSiB films,
YCo2/YCo2 bilayers, and FeNi/FeNi polycrystal sam-
ples [24, 25], where the inverted hysteresis loops were
explained by simultaneous action of two noncollinear
magnetic anisotropy fields on the average magnetiza-
tion. These magnetic systems predominantly possess
inhomogeneous layered structures with clear interfaces
between layers. The interaction (magnetostatic [18–20]
or exchange [15–17, 22, 23]) between layers in such
systems accounts for the appearance of inverted hyster-
esis loops.

This paper reports the results of a comparative study
of the surface and volume magnetic properties of heter-
ogeneous Fe81Nb7B12 alloys containing two (amor-
phous and nanocrystalline) magnetic phases. Taking
into account that most significant difference in mag-
netic properties was observed for the samples of this
FeNbB alloy annealed at 550 and 600°C, we restrict our
consideration to the samples heat-treated at these tem-
peratures. We will analyze how changes in the micro-
structure appearing upon heat treatment of the initial
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(unannealed) alloy affect the behavior of samples in the
magnetic field.

2. SAMPLES 
AND EXPERIMENTAL METHODS

Amorphous Fe81Nb7B12 ribbons with a width of
6 mm and a thickness of 30 µm were obtained by rapid
solidification via melt spinning. The Ar-quenched rib-
bons were annealed in an argon atmosphere for 1 h at
550 or 600°C (referred to below as samples N1 and N2,
respectively).

The crystal structure of samples was studied by
X-ray diffraction. The measurements were performed
using CuKα radiation in the Bragg–Brentano geometry
with a graphite monochromator in the reflected beam.
The X-ray diffraction patterns were recorded at an
angular step of 2θ = 0.1°; the parameters of a crystalline
phase appearing upon annealing were determined using
the results of scanning in the vicinity of the diffraction
peaks at a step of 0.02°.

The near-surface magnetic properties of heteroge-
neous alloys were studied using a magnetooptical
micromagnetometer described in detail elsewhere [26].
As is known, the magnetooptical Kerr effect is sensitive
with respect to magnetization of the near-surface layer
of a definite thickness corresponding to the light pene-
tration depth tpen. This layer thickness is determined by
the formula tpen = λ/4πk, where λ is the wavelength of
the incident light and k is the absorption coefficient of
the medium. According to the available experimental
data [27], tpen in ferromagnetic materials does not
exceed 10–30 nm in the range of photon energies from
0.5 to 6 eV. In our case, the thickness of a probed near-
surface layer was on the order of 20 nm.

The near-surface hysteresis loops were measured
using equatorial (transverse) Kerr effect. The magni-
tude of this effect is determined as δ = (I – I0)/I0, where
I and I0 are the intensities of light reflected from the
magnetized and nonmagnetized sample, respectively.
In fact, we studied the behavior of δ(H)/δs ~ M(H)/Ms
ratio (where δs is the value of the Kerr effect in the state
of saturated magnetization and Ms is the saturation
magnetization) in the course of cyclic variation of the
magnetic field (from +H to –H and vice versa) applied
parallel to the sample surface and perpendicular to the
plane of light incidence. The anisotropy of magnetic
properties was studied by rotating a sample around the
normal to its surface. The angle between the direction
along the ribbon length (the direction of spinning) and
the orientation of magnetic field H is denoted by φ. The
measurements were performed both on the free side of
the ribbon and on the side contacting with the spinning
wheel (commonly referred to as the wheel or contact
side). The volume magnetic properties of samples were
measured using a vibrating-sample magnetometer. All
data presented below were obtained on round samples
with a diameter of 6 mm cut from annealed ribbons,
SICS      Vol. 99      No. 3      2004
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Fig. 1. The volume hysteresis loops observed in samples of (a) N1 (annealed at Tann = 550°C) and (b) N2 (Tann = 600°C) in the
magnetic field applied in the sample plane and oriented at an angle φ = 0 relative to the sample axis coinciding with the direction
of melt spinning.
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which eliminated the effect of shape anisotropy on the
magnetic properties of samples.

3. RESULTS AND DISCUSSION

An analysis of the X-ray diffraction patterns showed
that the initial (unannealed) Fe81Nb7B12 alloy ribbon is
amorphous, while the annealed samples of both types
contain amorphous and nanocrystalline phases. The
size of nanocrystalline bcc Fe grains formed in the sam-
ples annealed at Tann = 550 and 600°C was 7–10 and
10–15 nm, respectively. It was found that the volumes
of amorphous and nanocrystalline phases were 66.5
and 24.1% in the sample N1 and 53.9 and 38.6% in the
sample N2, respectively. The volume of iron and nio-
bium borides was 9.4% (type 1) and 7.5% (type 2).
Thus, the volume of the nanocrystalline phase in the
sample N2 was about one and half times that in type 1.

It was found that the aforementioned difference in
the microstructure of samples annealed at the two tem-
peratures was accompanied by significant differences
in their magnetic behavior. Data obtained using the
vibrating-sample magnetometer showed that the studied
samples possess a slight in-plane magnetic anisotropy
and magnetically soft properties. As is known [28], the
magnetic behavior of amorphous alloys obtained by
rapid solidification on a rotating wheel is determined by
magnetoelastic anisotropy, which depends on the mag-
netostriction constant λs and the residual mechanical
stresses σ induced along the ribbon in the course of
melt spinning. The effective uniaxial magnetic anisot-
ropy constant is defined by the relation K ∝  λsσ,
whereby the coercive force is Hc ∝  K/Ms . Our samples
JOURNAL OF EXPERIMENTAL
were characterized by λs ~ 10–6, which accounted for a
weak magnetic anisotropy in the plane of the ribbon.

Figure 1 shows the volume hysteresis loops
observed for annealed samples in the field H oriented at
φ = 0°. The loops exhibited the usual shape, and the val-

ues of the coercive force  for the samples annealed
at 550°C (type 1) and 600°C (type 2) were 4.3 and
0.1 Oe, respectively. According to the random magnetic
anisotropy model generalized to the case of two-phase
systems [13], an increase in the volume of bcc Fe grains
in sample N2 leads to a more effective intergranular
interaction, which accounts for a decrease in the coer-
cive force.

It was established that the near-surface magnetic
properties substantially differ from the volume charac-
teristics. Figures 2 and 3 present the near-surface hys-
teresis loops measured in the magnetic fields oriented at
φ = 0° and 90° for the samples N1 and N2, respectively.
As can be seen, the shapes of the hysteresis loops
observed for φ = 0° and 90° are significantly different
for both samples, which is evidence of their strong sur-
face magnetic anisotropy. No such anisotropy was
observed in the as-cast sample (this case is illustrated in
Fig. 4).

The surface coercive force  is significantly

higher than the volume value. For example,  in
sample N2 was almost two orders of magnitude higher

than . This fact can be explained as follows. The
results of examination of the cross sections of
Fe81Nb7B12 alloy ribbons in a transmission electron
microscope using a technique described in [7] revealed
a significant difference in microstructure of the volume
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Hc
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Hc
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Fig. 2. The near-surface hysteresis loops observed for the (a, b) wheel and (c, d) free side of a sample N1 (Tann = 550°C) in the
magnetic field oriented at an angle of φ = 0° (a, c) and 90°(b, d). For the sake of clarity, the inset shows the forward branches of
the loop. 
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and near-surface regions. In particular, it was found that
the size of nanocrystalline bcc Fe grains varies from 50
to 120 and the concentration of nonmagnetic ions
increases within an 0.4-µm-thick surface layer. These
data are indicative of the presence of significant inho-
mogeneities in the microstructure and chemical compo-
sition in the surface layers of samples, which is just

what accounts for a considerable increase in  com-

pared to . The large difference between  and

 was observed virtually for all materials obtained
by melt spinning [12, 13, 26].

It was also found that  on the free side of rib-
bons is smaller than that on the wheel side. For exam-

Hc
surf

Hc
vol Hc

surf

Hc
vol

Hc
surf
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ple, on the free side of sample N2,  = 12 and 46 Oe
for φ = 0° and 90°, respectively, while the correspond-

ing values on the wheel side are  = 54 and 76 Oe.
An important peculiarity of the method of manufactur-
ing amorphous alloy ribbons by melt spinning consists
in that the level of residual stresses developed on the
wheel side of the ribbon is higher than on the free side;
this difference is retained upon annealing (σwheel > σfree.
In addition, the wheel and free sides of amorphous
alloy ribbons possess different surface morphologies.
For example, according to atomic force microscopy
data, the size of surface roughnesses on the free side
does not exceed 2 nm, while that on the wheel surface
reaches 10 nm. Thus, the differences in residual stresses
developed on the wheel and free sides of the ribbon dur-
ing manufacture, as well as in the surface morphology

Hc
surf

Hc
surf
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Fig. 3. The near-surface hysteresis loops observed for the (a, b) wheel and (c, d) free side of a sample N2 (Tann = 600°C) in the
magnetic field oriented at an angle of φ = 0° (a, c) and 90° (b, d). For the sake of clarity, the insets show the forward branches of
the loop. 
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on the two sides, are factors accounting for the

observed difference in the values of .

Of special importance is a rather complicated shape
of the near-surface hysteresis loops observed in the
annealed samples, which can be explained by their
inhomogeneous magnetic structure, in particular, by
the coexistence of amorphous and nanocrystalline
phases characterized by different values of the magnetic
anisotropy constants (K1, K2), saturation magnetizations
(Ms1, Ms2), and coercive forces (Hc1, 2 ∝  K1, 2/Ms1, 2). As a
result, the process of magnetization reversal in the two
phases takes place in different magnetic fields, which
accounts for the unusual behavior.

It is important to note that the two-phase character
of annealed Fe81Nb7B12 alloy samples is manifested

Hc
surf
JOURNAL OF EXPERIMENTAL 
only in the behavior of their near-surface layers featur-
ing most significant changes in microstructure as a
result of annealing. The volume magnetic characteris-
tics of both samples also change in accordance with
their microstructure, but the shape of the hysteresis
loop exhibits no significant variations.

A more detailed analysis of the experimental data
presented in Figs. 2c and 3c showed that the forward
and reverse branches of the near-surface hysteresis
loops measured for φ = 0 exhibit unusual behavior in
response to the field variation. In particular, a negative
residual magnetization is observed when the positive
magnetic field decreases to zero and the magnetization
reversal takes place at a positive value of the coercive
force (that is, the hysteresis loop are inverted). This fact
is clearly illustrated in the insets to Figs. 2c and 3c
AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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Fig. 4. The near-surface hysteresis loops observed for the wheel side of an as-cast sample in the magnetic field oriented at an angle
of φ = 0° (a) and 90° (b). The surface coercive force is about 26 times the volume value.

Fig. 5. The near-surface hysteresis loops observed for the free side of a sample N2 (Tann = 600°C) in the magnetic field oriented at
an angle φ = 2° (a), 105° (b), 135° (c), and 150° (d).
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showing only one branch of the hysteresis loop
(observed for the field varied from +H to −H).

In order to elucidate this phenomenon, we measured
the near-surface hysteresis loops for various direction
of the external magnetic field, whereby the angle φ was
varied from 0° to 360° at a 5° step. The results of these
measurements showed that the shape of the near-sur-
face hysteresis loops strongly depends on the orienta-
tion of magnetic field in the sample plane. This is illus-
trated in Fig. 5, which shows the most significantly dif-
ferent shapes of the hysteresis loop observed on the free
side of the sample N2. An analysis of these data
revealed unusual behavior of the residual magnetization
as a function of the field orientation angle φ. Figure 6
shows the dependence of the reduced residual magne-
tization Mr/Ms on the φ value for the free side of sam-
ple N2. As can be seen, there is an interval of angles

0 60° 120° 180° 240° 300° 360°
φ

–0.2

–0.1

0

0.1

0.2

0.3

0.4

Mr/Ms

Fig. 6. A plot of the reduced residual magnetization versus
angle φ for the free side of a sample N2 (Tann = 600°C).

(ϕ1 = ϕ2 = 0)M1 + M2

(ϕ1 = 0, ϕ2 = π)M1 – M2

–Hc Hc H

–(M1 – M2)(ϕ1 = π,  ϕ2 = 0)

–(M1 + M2)(ϕ1 = ϕ2 = π)

M

Fig. 7. A hysteresis loop calculated using a model of two
nonidentical phases with uniaxial magnetic anisotropy and
antiferromagnetic exchange.
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where Mr/Ms is negative. It was established that the
near-surface hysteresis loops measured for such φ val-
ues are completely (see Figs. 2c, 3c) or partly (see
Fig. 5) inverted. Analogous dependences of Mr/Ms on
the angle φ were observed for sample N2. It should be
noted that the initial amorphous Fe81Nb7B12 alloy also
exhibited a certain difference between the volume and

near-surface hysteresis loops (e.g.,  ≈ 5 Oe against

 ≈ 0.2 Oe on the wheel side at φ = 0), but the shapes
of the bulk and near-surface hysteresis loops were vir-
tually identical and the inverted loops were not
observed.

The above experimental data can be qualitatively
explained within the framework of a two-phase model
according to which the heterogeneous alloys under
consideration contain two dissimilar phases exhibiting
uniaxial magnetic anisotropy and featuring antiferro-
magnetic exchange interaction. The total free energy of
this system can be expressed as

(1)

where the first two terms represent the Zeeman mag-
netic energies of two phases with magnetizations M1
and M2; the third, fourth, and fifth terms describe the
anisotropic energies of these phases and the exchange
interaction between them (K1 and K2 are the constants
of uniaxial magnetic anisotropy and J12 is the constant
of antiferromagnetic exchange interaction); ϕ1 and ϕ2
are the angles between magnetization vectors M1 and
M2 are the field direction; and β1 and β2 are the angles
between the magnetic anisotropy axes of the corre-
sponding phases and the field direction (the magnetic
field H is oriented in the sample plane). The magnetiza-
tion of this system is given by the formula

(2)

The values of angles ϕ1 and ϕ2 as functions of the mag-
netic field H can be determined from the system of
equations

(3)

Assuming that the anisotropic energies are much
greater than the exchange interaction energy, β1 = β2 =
0, and M1 > M2 and taking into account the condition

∂2E/∂  = ∂2E/∂  > 0 determining stable solutions of
Eqs. (3), we calculated the hysteresis loop (Fig. 7). As
can be seen, the simplified two-phase model explains
only the partly inverted hysteresis loops. In order to
obtain the completely inverted hysteresis, it is neces-

Hc
surf

Hc
vol

E M1H ϕ1cos– M2H ϕ2cos– K1 ϕ1 β1–( )sin
2

+=

+ K2 ϕ2 β2–( )sin
2

2J12M1M2 ϕ1 ϕ2–( ),cos+

M M1 ϕ1cos M2 ϕ2.cos+=

∂E
∂ϕ1
--------- ∂E

∂ϕ2
--------- 0.= =

ϕ1
2 ϕ2

2
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sary to perform the calculations without any simplify-
ing assumptions, which is a rather difficult task for the
system under consideration.

4. CONCLUSIONS

We have studied the surface and volume magnetic
properties of heterogeneous (nanocrystalline/amor-
phous) Fe81Nb7B12 alloys and revealed a strong influ-
ence of structural changes in annealed samples on their
surface magnetic characteristics. Completely and partly
inverted hysteresis loops in these materials were
observed for the first time. A positive coercive force and
a negative residual magnetization were observed when
the positive magnetic field was decreased to zero. The
experimental results were qualitatively explained
within the framework of a two-phase model, according
to which the heterogeneous alloys contain two dissimi-
lar phases characterized by uniaxial magnetic anisot-
ropy and antiferromagnetic exchange interaction.
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Abstract—The conversion of the carrier frequency of electromagnetic pulses in lateral semiconductor super-
lattices, associated with the excitation of Bloch oscillations in the superlattice, is studied theoretically. Condi-
tions are found that are necessary for the observation of the radiation of a Bloch oscillator. The energy charac-
teristics of the efficiency of frequency multiplication and the spectral distribution of the radiation transmitted
through the superlattice are calculated. It is shown that low-frequency collisions of electrons do not suppress
the excitation of Bloch oscillations, which can be observed under the interaction of the superlattice not only
with a pulsed, but also with a continuous-wave signal. © 2004 MAIK “Nauka/Interperiodica”.
1. One of the main factors that hampers the practical
implementation of terahertz sources of electromagnetic
radiation that are based on the resonance properties of
a Bloch oscillator is the low-frequency instability of
space-charge waves. This instability stems from the
fact that the real part of the small-signal differential
conductivity of a semiconductor superlattice is negative
even at zero frequency [1]. As a result, the total electric
field in the superlattice is decomposed into small-scale
drifting domains, giving rise to Gunn-type oscillations
of relatively low frequency. This leads to the suppres-
sion of the total negative conductivity of the superlat-
tice placed in a dc electric field, near the Bloch fre-
quency ωB = eEd/", where E is the intensity of the
applied electric field, e is the electron charge, and d is
the period of the superlattice potential, due to the
bunching of electrons in the momentum space [2].
There are a number of theoretical studies in which the
authors discuss various methods for suppressing the
domain instability. Among these methods are those that
are associated, in particular, with the attainment of a
strongly nonlinear stage of high-frequency instability
near the Bloch resonance [3, 4], where the dc differen-
tial conductivity of the superlattice becomes positive,
or with the injection of hot electrons into the upper part
of the miniband [5], which shifts the excitation band to
frequencies slightly greater than the Bloch frequency,
where the domain instability is suppressed. However,
the implementation of these ideas is highly complicated
by a number of factors both of technical and fundamen-
tal natures.

It was established about ten years ago [6, 7] that
semiconductor superlattices are characterized by a
superfast response to external electric fields. The char-
1063-7761/04/9903- $26.00 © 20552
acter of this response depends on the intensity of the
electric field applied to a superlattice and represents
either an aperiodic relaxation to the ascending (stable)
branch of the Esaki–Tsu current–voltage characteristic
[8] for an electric-field intensity less than a certain crit-
ical value corresponding to the Bloch frequency, which
is equal to the scattering frequency of electrons, or a
quasi-periodic process with a frequency close to the
frequency of Bloch oscillations of electrons in the case
of supercritical fields. The relaxation time of the
response is largely determined by the inverse of the col-
lision frequency of electrons and, depending on the reg-
ularity of the structure and the operating temperature,
amounts to several tens of picoseconds in real superlat-
tices. Thus, one can expect that the irradiation of a
superlattice by short electromagnetic pulses of length
comparable with the inverse collision frequency of
electrons, which guarantees a coherent motion of
charge carriers during the whole period of interaction,
leads to the excitation of Bloch oscillations. It should
be emphasized that domains are not generated in the
absence of a dc bias field because we deal with frequen-
cies of terahertz and subterahertz bands, which, as a
rule, are greater than the increment of the domain insta-
bility. The frequency of Bloch oscillations depends on
the intensity of the instantaneous self-consistent elec-
tric field in the superlattice and may be much greater
than the frequency of the incident wave. This fact opens
up possibilities not only for the direct observation of
Bloch oscillations but also for the multiplication of the
carrier frequency of the incident pulse. It is the determi-
nation of conditions under which Bloch oscillations
arise in the superlattice under the irradiation by an elec-
tromagnetic pulse and of the spectral distribution of the
004 MAIK “Nauka/Interperiodica”
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radiation transmitted through the superlattice that is the
subject of the present study. In recent works [9–11], it
was shown that lateral semiconductor superlattices in
which a two-dimensional electron gas is localized near
the surface of a substrate and the miniband energy spec-
trum is formed under the motion of electrons along this
surface represent the most suitable objects that have a
highly regular structure [12, 13] and allow the observa-
tion of Bloch oscillations and frequency multiplication.

2. Consider a lateral superlattice of thickness h
placed on a dielectric substrate of permittivity εs
(Fig. 1). The interaction between the superlattice and
an electromagnetic wave that is normally incident to the
superlattice and is polarized so that the electric field is
perpendicular to the layers that form the superlattice is
described by the following system of equations, which
was first derived in [9] (see also [10, 11]):

(1a)

(1b)

(1c)

Here, V and W are the average (hydrodynamic) values
of the velocity and energy of electrons, νW is the fre-
quency of inelastic collisions, νV = νW + νel is the relax-
ation frequency of velocity (νel is the frequency of elas-
tic collisions), WT = (∆/2)(1 – µ0) is the mean thermal
energy of electrons in the absence of electric field, µ0 =
I1(∆/2kT)/I0(∆/2kT), T is temperature, k is the Boltz-
mann constant, I0, 1(x) are the modified Bessel func-
tions, ∆ is the miniband width, m(W) = (2"2/∆d2)(1 –
2W/∆)–1 is the electron effective mass, d is the period of
the lateral superlattice, E is the intensity of the electric
field in the superlattice, Einc(t) is the intensity of the
electric field incident on the surface of the superlattice,

 = 4πe2ne/m(W = 0) is the plasma frequency of elec-
trons at the bottom of the miniband, and ne is the elec-
tron concentration. The constitutive equations (1a) and
(1b) describe electron transport in the lateral superlat-
tice in a one-miniband quasi-classical approximation
[6, 14]. Equation (1c) determines a relation between the
intensity of the self-consistent electric field in the
superlattice and the intensity of the field in the incident
electromagnetic wave (a detailed derivation is given
in [9, 11]) for a thin (compared with the wavelength)
superlattice (simple calculations show that this condi-
tion is certainly fulfilled in real structures in the tera-
hertz band). In this case, the electric field is uniform
along the thickness of the superlattice. This allows one
to replace the volume currents through the superlattice

dV
dt
-------

e
m W( )
--------------E νVV ,–=

dW
dt

-------- eEV νW W WT–( ),–=

Einc t( ) E t( )
2ωp

2
"

2µ0h

e∆d2c 1 εs+( )
--------------------------------------V t( ).+=

ωp
2
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by an equivalent surface current that determines the dis-
continuity of the tangential component of the magnetic
field. One should also note that, within the approxima-
tions used, the intensity of the electric field in the lateral
superlattice coincides with the intensity of the electric
field in the wave transmitted through the superlattice.

Under the conditions of quasi-ballistic transport of
electrons in a lateral superlattice, which may occur
either in the absence of collisions for νW = νV = 0 or, as
was pointed out above, under high-frequency pumping
by sufficiently short electromagnetic pulses of about
τ ~ 1/νV, W, the system of equations (1a), (1b) has the
following integral of motion:

Assuming that V(t0) = 0 and W(t0) = WT at a certain
moment t0 (and thus choosing a phase trajectory corre-
sponding to zero initial conditions for the velocity of
electrons and the deviation of their energy from the
equilibrium value), we find that const = 1. As a result,
the expressions for the velocity and energy of electrons
can be rewritten as

(2)

Substitution of (2) into (1a) yields

(3)

where A(t) has the meaning of the dimensionless vector
potential. Combining Eqs. (1c), (2), and (3), we can
reduce the system of equations (1) with the initial con-
ditions given above to a single equation

(4)

2"
µ0d∆
------------ 

  2

V2 t( ) 1
2 W t( ) WT–[ ]

µ0∆
----------------------------------–

2

+ const.=

V t( )
µ0d∆

2"
------------ A t( ),sin=

W t( ) WT

µ0∆
2

--------- 1 A t( )cos–[ ] .+=

E t( ) "
ed
------dA t( )

dt
-------------,=

dA
dτ
------- θ Asin+ ui τ( )=

Vacuum

B E

k
x

z

Superlattice

Substrate

Fig. 1. Geometry of the problem.
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with the initial condition A(t = t0) = 0. Here,

and ω is the circular frequency of the wave incident to
the lateral superlattice. Equation (4) coincides with the
equation of motion of an overdamped pendulum (in this
case, the role of the deviation angle is played by the
vector potential A) under the action of an alternating
moment of forces.1 Thus, one may expect that the cha-
racter of interaction between the electromagnetic wave
and the lateral superlattice described by Eq. (4) essen-
tially depends on the peak intensity of the incident
pulse, which corresponds (by a mechanical analogy) to
two types of dynamic behavior of the pendulum, with-
out and with rotation. In this case, the rotation of the
pendulum is associated with the excitation of Bloch
oscillations in the superlattice. Indeed, consider a solu-
tion to Eq. (4) with the time-independent right-hand
side ui(τ) = u0 = const > θ, which can be expressed as

(5)

(6)

where

and u(τ) is a dimensionless electric field in the superlat-
tice. Solution (5), (6) describes anharmonic periodic
oscillations of the electric field in the lateral superlat-

tice2 at the fundamental frequency Ω = ,
which coincides with the eigenfrequency of a radia-
tively damped Bloch oscillator. In contrast to the colli-
sion mechanism of attenuation, which leads to the
phase mixing of electrons that oscillate at the Bloch fre-
quency and, as a consequence, to the attenuation of the
macroscopic oscillatory response, the radiation mecha-
nism of dissipation does not break the phase coherence
of electron oscillations and does not lead to the attenu-
ation of Bloch oscillations in the superlattice in a dc

1 It should be noted that Eq. (4) also describes the dynamics of the
phase difference of the order parameter in a Josephson junction
with small capacitance [15].

2 When u0 < θ, there are no periodic solutions.
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electric field. At the same time, any energy-dissipation
mechanism leads to the shift of the oscillator eigenfre-
quency, which is determined in this case by the flux of
electromagnetic energy, emitted into the surrounding
medium, which is proportional to the surface concen-
tration of electrons, i.e., to the parameter θ.

3. It is fairly obvious that the generation of high-fre-
quency oscillations also occurs in the case of an ac inci-
dent field. The interaction between short pulses and a
lateral superlattice, which leads to the excitation of
Bloch oscillations, can be qualitatively represented as
follows. As long as the instantaneous intensity of the
electric field in the incident wave is less than the critical
value, ui(τ) < uc = θ, the magnitude of the self-consis-
tent field in the superlattice is small (the superlattice is
in the shielding state), and the generation of harmonics
is insignificant. At the moments when ui(τ) > uc , the
superlattice becomes transparent and Bloch oscillations

of current frequency Ω =  are generated
due to the increase in the intensity of the self-consistent
electric field in the superlattice. Since the frequency of
Bloch oscillations is determined by the amplitude of the
incident field, it may be substantially greater than the
frequency of the pumping wave. Thus, one may expect
that the spectrum of the wave transmitted through the
lateral superlattice, which arises due to multiplication
of the incident-wave frequency as a result of excitation
of Bloch oscillations, should become noticeably richer.

This interaction scenario is illustrated in Fig. 2,
which presents the results of the numerical integration
of Eq. (4) for an incident pulse with a Gaussian envelope,

(7)

where T0 is the characteristic length of the pulse. Notice
the slightly “above-threshold” regime um – θ ! θ
(Fig. 2d) under which, according to calculations, a sit-
uation can be realized when only one half-period of
Bloch oscillations is generated during one half-period
of the incident field. This regime can be used for gener-
ating ultrashort electromagnetic pulses of length τp ! 1.
Figure 3 shows the numerically calculated characteris-
tic spectra of the radiation transmitted through the
superlattice under conditions when the peak values of
the intensity of the incident pulse are greater than the
critical value. One can see a group of higher order har-
monics in the spectra that correspond to the excitation
of Bloch oscillations in the superlattice. At the same
time, the higher order harmonics in appropriate spectra
provide evidence for the multiplication of the radiation
frequency.

4. In some special cases, the energy efficiency of the
frequency conversion can be evaluated analytically.
Consider incident pulses with a rectangular envelope
function: ui(τ) = umsinτ for 0 < τ < T0 and ui(τ) = 0 oth-

ui
2 τ( ) θ2–

ui τ( ) u0 τ( ) τ ,sin=

u0 τ( ) um τ T0–( )2/T0
2

–{ } ,exp=
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Fig. 2. (a) Oscillogram of the electric-field intensity in a pulse with a Gaussian envelope incident to the lateral superlattice. (b) Oscil-
logram of the electric field intensity in the pulse transmitted through the superlattice. (c) The fine structure of one period of the field
transmitted through the superlattice. (d) Oscillogram of the field transmitted through the superlattice: an example of the situation
when only one half-period of Bloch oscillations is generated within one half-period of the incident field.
erwise. As a rough estimate, assume that, when |ui(τ)| <
θ, the lateral superlattice completely shields the radia-
tion (the electric-field intensity in the superlattice is
equal to zero), whereas, when the inverse inequality
holds, the solution can be represented as (6), which
actually corresponds to a model in which the incident
field (above a certain threshold) is constant and equal to
its amplitude value um.

Calculating the amplitude of the electric field at the
fundamental frequency by the Fourier transform tech-
nique, we obtain

(8)

where M = um/θ. Next, calculating the ratio of the
energy irradiated from the lateral superlattice at fre-

uΩ 2θ M2 1–

M M2 1–+
--------------------------------,–=
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quency Ω during a half period of the incident field (per
unit surface of the superlattice) to the amount of energy
incoming to the superlattice by the incident electro-
magnetic wave, we arrive at the following expression
for the energy efficiency of frequency conversion in the
lateral superlattice:

(9)

Function (9) is plotted in Fig. 4. One can see that the
efficiency of frequency multiplication attains its maxi-
mum of K = 0.175 at M ≈ 1.5. In this case, the charac-
teristic frequency of Bloch oscillations is Ω ≈ 1.25θ.
Thus, for sufficiently large θ, not only the frequency
multiplication ratio but also the efficiency of frequency
conversion may reach large values.

K
8
π
---M2 1–

M2
---------------- 1

M M2 1–+( )
------------------------------------ 1

M
-----.arccos=
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Fig. 3. Spectra of the radiation transmitted through the lateral superlattice; (a) θ = 30 and um = 44 and (b) θ = 30 and um = 54.
5. The effect of low-frequency collisions of elec-
trons can be evaluated by perturbation theory. To this
end, we write the system of equations (1) in dimension-
less variables as follows:

(10a)

(10b)

(10c)

where

The other dimensionless parameters entering (10) have
been introduced above. Without detriment to the phys-
ical content, we neglect elastic collisions, so that ν1 =
ν2 = ν. We also assume that the collision frequency is
much less than the carrier frequency of the electromag-
netic pulse incident to the superlattice (ν ! 1). Before
applying perturbation theory, it is convenient to rewrite
system of equations (10) in the complex variable Z =
ζ + iw represented as Z = Bexp(iϕ), where B and ϕ are
the amplitude and the phase of Z, respectively. In these
variables, the system of equations (10) is expressed as

(11a)

(11b)

(11c)

The dots in Eqs. (11) denote time derivatives. In the
zero order of perturbation theory in the parameter ν, the

dw
dτ
------- u 1 ζ–( ) ν1w,–=

dζ
dτ
------ wu ν2ζ ,–=

ui τ( ) u θw,+=

w
2"V
dµ0∆
-------------, ζ

2 W WT–( )µ0
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---------------------------------, ν1 2,

νV W,

ω
-----------.= = =

Ḃ ν B ϕcos–( ),–=
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ν
B
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u θB ϕsin+ ui τ( ).=
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phase ϕ coincides with the vector potential A (ϕ = A)
and B is constant. When ν ! 1, B varies slowly, and,
following the Volosov method [16], one can distinguish
fast, ϕ(τ), and slow, B(τ), motions in Eqs. (11b) and
(11c), setting B = const in these equations. Then, the
equation for the phase reduces to

(12)

where  = θB + ν/B. The general scheme of the method

ϕ̇ θ ϕsin+ ui τ( ),=

θ

0.2

0.1

K

0 2 4 6 8 10 12

M

Fig. 4. Energy efficiency of generating the fundamental har-
monic of a Bloch frequency as a function of the above-
threshold parameter.
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consists in substituting the solution to Eq. (12) for the
phase, which depends on B, into Eq. (11a) and averag-
ing the result obtained with respect to time, thus obtain-
ing the self-consistency condition. For a stationary pro-

cess (  = 0), this condition is expressed as

(13)

where the angular brackets denote time averaging.
Thus, when small attenuation is taken into account,
Eqs. (11) reduce to an equation similar to (4) in which
the coefficient multiplying the sine is renormalized.

Unlike the expression  = u, the relation between the
intensity of the electric field in the superlattice and the
phase ϕ becomes more general,

(14)

and, in the limit of ν  0, reduces to an ordinary rela-
tion between the field and the vector potential. As a
result, one may expect that low-frequency collisions in
the superlattice do not destroy the above-described
excitation of Bloch oscillations and multiplication of
the radiation frequency. Only the values of parameters
at which these effects occur are varied. Consider, as an
example, a stationary process of interaction between a
lateral superlattice and a harmonic pumping field
ui(τ) = umsinτ in the limit case when um @ θ. Simple but
rather tedious calculations yield

where J0(um) are the Bessel functions. Hence,  =

θJ0(um) + ν/J0(um). Note that  = θJ0(um) ≠ 0 for ν = 0,
as should be expected. Nevertheless, this fact does not
contradict the theory presented above on the interaction
between short electromagnetic pulses and a superlattice
in the absence of attenuation since this solution corre-
sponds to a stationary process with the relaxation time
on the order of 1/ν. The generation of Bloch oscilla-
tions and the frequency multiplication occur only when
the inequality um >  holds. The solution to this ine-
quality and the corresponding excitation bands of
Bloch oscillations are shown in Fig. 5 for ν = 0.1.

Another interesting feature of the solution obtained
for ν = 0 is the vanishing of the parameter  for the
amplitudes of the external field that correspond to the
zeros of the Bessel function, J0(um) = 0. This is a direct
consequence of the dynamic localization of an electron
in a miniband in an ac electric field [17, 18]. However,
even for arbitrarily small but finite ν, the quantity 
diverges when the Bessel function tends to zero. This

Ḃ
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θ
θ

θ

θ

θ
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suggests that, under conditions of dynamic localization,
the consideration of electron collisions is essential.

In addition, we note that, when the attenuation is
taken into account, the inequality for the pulse length,
νT0 ! 1, is reversed, so that the relaxation processes of
the solutions obtained cannot be considered within the
approach described in this paper.

6. In conclusion, note that the possibilities consid-
ered above open up new prospects for the direct obser-
vation of Bloch oscillations and the development of
highly efficient frequency multipliers for electromag-
netic radiation. First, this is associated with the absence
of domain instability in lateral superlattices irradiated
by electromagnetic fields, which is a fundamental
obstacle to the development of a Bloch oscillator based
on the high-frequency instability of superlattices in dc
electric fields. Second, the development of frequency
multipliers based on Bloch oscillations does not require
extreme conditions and may occur at room tempera-
tures. Indeed, simple estimates show that, for a lateral
superlattice of thickness h = 100 nm, a lateral period of
d = 20 nm, surface concentration of carriers of ns =
neh = 1013 cm–2, and a parameter θ of 5, which corre-
sponds to the carrier frequency of the incident radiation
of f ≈ 0.2 THz, the threshold value of the energy flux
density of the incident wave starting from which one
can observe Bloch oscillations is approximately equal
to 104 W/cm2. In the optimal regime, which corre-
sponds to the maximal energy efficiency of frequency
conversion, the fundamental frequency of Bloch oscil-
lations is about 1.35 THz.

800

600

400

200

0 10 20

θ

um

Fig. 5. Excitation bands of Bloch oscillations (dashed areas)
under conditions of low-frequency collisions (ν = 0.1).
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Abstract—We consider the problem of determining the parameters for high-Tc superconducting copper oxides.
Alternative approaches, the ab initio LDA and LDA + U calculations and the generalized tight-binding (GTB)
method for strongly correlated electron systems, are used to calculate hopping and exchange parameters of the
effective singlet–triplet model for the CuO2 layer. The resulting parameters are in remarkably good agree-
ment with each other and with parameters extracted from experiment. This set of parameters is proposed for
proper quantitative description of the physics of hole-doped high-Tc cuprates in the framework of effective mod-
els. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

High-Tc superconducting cuprates (HTSCs) belong
to the class of substances where strong electron corre-
lations are important. This circumstance and also the
fact that these substances have nontrivial phase dia-
grams (see, e.g., reviews in [1]) complicate the descrip-
tion of HTSCs in the framework of first-principle (ab
initio) methods, especially in the low-doping region.
Therefore, the most adequate method for theoretical
investigations of HTSCs is currently the model
approach. Effective models of HTSCs (e.g., the t–J
model) usually contain free parameters that can be fit-
ted to experimental data (comparison of the calculated
and experimental Fermi surfaces, dispersion curves,
etc.), but the question concerning correctness of these
parameters arises in the model approach. One possible
way to answer this question is to obtain relations
between the parameters of some effective model and
the microscopic parameters of the underlying crystal
structure. The underlying crystal structure of HTSCs
can be described either by the three-band Emery model
[2, 3] or by the multiband p–d model [4]. One can com-
pare the parameters in these models with the parame-
ters obtained by a very different approach, e.g., with ab
initio calculated parameters. This does not mean that
the ab initio band structure is correct. Due to strong
electron correlations, it is certainly incorrect in the low-
doping region, where these correlations are most signif-

¶This article was submitted by the authors in English.
1063-7761/04/9903- $26.00 © 20559
icant. Nevertheless, single electron parameters are of
interest and may be compared with the appropriate
parameters obtained by fitting to experimental ARPES
data.

In the present paper, we obtain relations between
microscopic parameters of the multiband p–d model
and parameters of the effective singlet–triplet t–J model
for hole-doped HTSCs. We then compare these param-
eters and the t–J model parameters obtained in the ab
initio calculations. In Section 2, the details of ab initio
calculations within the density functional theory are
presented. In Section 3, the effective singlet–triplet
model is formulated as the low-energy Hamiltonian for
the multiband p–d model with the generalized tight-
binding (GTB) method applied. In both methods, the
parent insulating compound La2CuO4 is investigated.
The parameters are obtained at zero doping because,
within the GTB method, the evolution of the band
structure with doping is described only by changes in
the occupation numbers of zero-hole, single-hole, and
two-hole local terms, while all the parameters are fitted
in the undoped case and are therefore fixed for all dop-
ing levels. The resulting parameters of both approaches
(GTB and ab initio) are in very good qualitative and
quantitative agreement with each other and with the
parameters extracted from experiment. Also, these
parameters are in reasonable agreement with the t–J
model parameters used in the literature. We conclude
that the obtained set of model parameters should be
used in effective models for proper quantitative
description of HTSCs in the whole doping region.
004 MAIK “Nauka/Interperiodica”
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2. AB INITIO CALCULATION
OF PARAMETERS

The band structure of La2CuO4 was obtained in the
framework of the linear muffin-tin orbital method [5] in
the tight-binding approach [6] (TB-LMTO) within the
local density approximation (LDA). The crystal struc-
ture data [7] corresponds to tetragonal La2CuO4. The
effective hopping parameters tρ were calculated by the
least-squares fit procedure to the bands obtained in the
LDA calculation [8]. The effective exchange interac-
tion parameters Jρ were calculated using the formula
derived in [9], where the Green function method was
used to calculate Jρ as the second derivative of the
ground-state energy with respect to the magnetic
moment rotation angle via eigenvalues and eigenfunc-
tions obtained in the LDA + U calculation [10]. The
LDA + U approach makes it possible to obtain the
experimental antiferromagnetic insulating ground state
for the undoped cuprate: in contrast, the LDA approach
gives a nonmagnetic metallic ground state [10]. The
Coulomb parameters U = 10 eV and J = 1 eV used in
the LDA + U calculation were obtained in constrained
LSDA supercell calculations [11].

3. GTB METHOD AND FORMULATION
OF THE EFFECTIVE SINGLET–TRIPLET MODEL

The t–J [12] and Hubbard [13] models are widely
used to investigate HTSCs compounds. In using these
models, one can in principle describe qualitatively
essential physics. The parameters in these models (i.e.,
the hopping integral t, antiferromagnetic exchange J,
and Hubbard repulsion U) are typically extracted from
experimental data. Therefore, these parameters do not
have a direct microscopical meaning. A more system-
atic approach is to write the multiband Hamiltonian for
the real crystal structure (which now includes parame-
ters of this real structure) and map this Hamiltonian
onto some low-energy model (like the t–J model). In
this case, parameters of the real structure could be taken
from the ab initio calculations or fitted to experimental
data.

It is convenient to use the three-band Emery p–d
model [2, 3] or the multiband p–d model [4] as the start-
ing model that properly describes crystal structure of
the cuprates. The set of microscopic parameters for the
first model was calculated in [14, 15]. While this model
is simpler than the multiband p–d model, it lacks some
significant features, namely, the importance of 

orbitals on copper and pz orbitals on apical oxygen.
Nonzero occupancy of  orbitals was demonstrated in

XAS and EELS experiments, which shows 2–10%
occupancy of  orbitals [16, 17] and 15% doping-

dependent occupancy of pz orbitals [18] in all p-type

d
z

2

d
z

2

d
z

2
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(hole-doped) HTSCs. In order to take these facts into
account, the multiband p–d model should be used,

(1)

where cfλσ is the annihilation operator in the Wannier
representation of the hole at site f (copper or oxygen) at

orbital λ with spin σ, and nfλσ = cfλσ . The indices λ
run through  ≡ dx and  ≡ dz orbitals on cop-

per, px and py atomic orbitals on plane oxygen sites, and
pz orbital on apical oxygen; eλ is the single-electron

energy of the atomic orbital λ;  includes hopping
matrix elements between copper and oxygen (tpd for

hopping dx  px, py; /  for dz  px, py;  for
dz  pz) and between oxygen and oxygen (tpp for
hopping px  py;  for hopping px, py  pz). The

Coulomb matrix elements  include intraatomic
Hubbard repulsions of two holes with opposite spins on
one copper and oxygen orbital (Ud, Up), between differ-
ent orbitals of copper and oxygen (Vd, Vp), the Hund
exchange on copper and oxygen (Jd, Jp), and nearest
neighbor copper–oxygen Coulomb repulsion Vpd .

The GTB method [19] consists in exact diagonaliza-
tion of the intracell part of p–d Hamiltonian (1) and per-
turbative account for the intercell part. For
La2 − xSrxCuO4, the unit cell is the CuO6 cluster, and the
problem of nonorthogonality of the molecular orbitals
of adjacent cells is solved explicitly, by constructing the
relevant Wannier functions on a five-orbital initial basis
of atomic states [20, 21]. In the new symmetric basis,
the intracell part of the total Hamiltonian is diagonal-
ized, allowing one to classify all possible effective qua-
siparticle excitations in the CuO2-plane according to
symmetry.

Calculations [20, 21] of the quasiparticle dispersion
and spectral intensities in the framework of the multi-
band p–d model using the GTB method are in very
good agreement with the ARPES data on insulating
compound Sr2CuO2Cl2 [22, 23] (see Fig. 1).

Other significant results of this method are as fol-
lows [24, 25].

(i) Pinning of the Fermi level in La2 – xSrxCuO4 at
low concentrations was obtained in agreement with
experiments [26, 27]. This pinning appears due to the
in-gap state; the spectral weight of this state is propor-
tional to the doping concentration x, and when the
Fermi level reaches this in-gap band, it “stacks” there.
In Fig. 2, the doping dependence of the chemical poten-
tial shift ∆µ for n-type high-Tc Nd2 – xSrxCuO4 (NCCO)
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and p-type high-Tc La2 – xSrxCuO4 (LSCO) is shown.
The localized in-gap state also exists in NCCO for the
same reason as in LSCO, but its energy is determined
by the extremum of the band at the point (π/2, π/2) and
appears to be above the bottom of the conductivity
band. Therefore, the first doped electron enters the band
state at (π, 0), and the chemical potential merges into
the band for a very small concentration. At higher x, it
reaches the in-gap state with pinning at 0.08 < x < 0.18
and then µ again moves into the band. The dependence
µ(x) for NCCO is quite asymmetric to the LSCO and
also agrees with experimental data [26].

(ii) The experimentally observed [28] evolution of
the Fermi surface with doping from the hole type (cen-
tered at (π, π)) in the underdoped region to the electron
type (centered at (0, 0)) in the overdoped region is qual-
itatively reproduced in this method.

(iii) The pseudogap feature for La2 – xSrxCuO4 is
obtained as a lowering of the density of states between
the in-gap state and the states at the top of the valence
band.

The above results were obtained with the following
set of the microscopic parameters:

(2)

.

As the next step, we formulate the effective model.
The simplest way to do this is to completely neglect the
contribution of the two-particle triplet state 3B1g . Then,
there is only one low-energy two-particle state, the
Zhang–Rice-type singlet 1A1g , and the effective model
is the usual t–J model. However, in the multiband p–d
model, the difference eT – eS between the energies of the
two-particle singlet and the two-particle triplet depends
strongly on various model parameters, particularly on
the distance of apical oxygen from planar oxygen, the
energy of apical oxygen, and the difference between
the - and -orbital energies. For realistic

values of the model parameters, εT – εS is close to
0.5 eV [21, 32], in contrast to the three-band model,
where this value is about 2 eV (this case was considered
in [29, 30]). To take the triplet states into account, we
derive the effective Hamiltonian for the multiband p–d
model by exclusion of the intersubband hopping
between lower (LHB) and upper (UHB) Hubbard sub-
bands, similarly to [12].

The Hubbard X-operator  ≡ |p〉〈 q| on site f repre-
sents a natural language to describe strongly correlated
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electron systems, and we therefore use these operators
in the rest of the paper. The X-operators are constructed
in the Hilbert space, which consists of the vacuum nh = 0
state |0〉 , the single-hole |σ〉 = {|↑〉 , |↓〉} state of b1g sym-
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Fig. 1. The GTB method dispersion (doping concentration
x = 0) of the top of the valence band and the bottom of the
conduction band divided by the insulating gap. Horizontal
dashed lines mark the in-gap states whose spectral weight is
proportional to x. Points with error bars represent experi-
mental ARPES data for Sr2CuO2Cl2 [22].
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Fig. 2. Dependence of the chemical potential shift ∆µ on the
concentration of doping x for Nd2 – xSrxCuO4 and
La2 − xSrxCuO4. Straight lines are results of the GTB cal-
culations; filled circles with error bars are experimental
points [26].
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metry, the two-hole singlet state |S〉  of 1A1g symmetry,
and the two-hole triplet state |TM〉  (where M = +1, 0,
−1) of 3B1g symmetry.

We write the Hamiltonian as H = H0 + H1, where
the excitations via the charge transfer gap Ect are
included in H1 . We then define the operator H(e) =
H0 + eH1 and perform the unitary transformation

(e) = exp(–ie )H(e)exp(ie ). The vanishing of the

term linear in e in (e) gives the equation for the

matrix , H1 + i[H0, ] = 0. The effective Hamilto-
nian is obtained in the second order in e; at e = 1, it is
given by

(3)

Thus, for the multiband p–d model (1) in the case of
electron doping (n-type systems), we obtain the usual
t–J model,

(4)

where Sf are spin operators and nf are the particle num-

ber operators. The term Jfg = 2( )2/Ect is the exchange
integral, and Ect is the energy of the charge-transfer gap
(similar to U in the Hubbard model, Ect ≈ 2 eV for
cuprates). The chemical potential µ is included in ε1.

For p-type systems, the effective Hamiltonian has
the form of a singlet–triplet t–J model [31],

(5)

where H0 (the unperturbed part of the Hamiltonian) and
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Table 1.  Parameters of the effective singlet–triplet model
for p-type cuprates obtained in the framework of the GTB
method (all values in eV)

ρ Jρ

(0, 1) 0.373 0.587 –0.479 0.034 0.156 0.115

(1, 1) 0.002 –0.050 0.015 –0.011 0 0.0001

(0, 2) 0.050 0.090 –0.068 0.015 0.033 0.0023

(2, 1) 0.007 0.001 –0.006 –0.004 0.001 0

tρ
00 tρ

SS tρ
0S tρ

TT tρ
ST
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Ht (the kinetic part of H) are given by

The superscripts of hopping integrals (0, S, T) corre-
spond to excitations that are accompanied by hopping
from site f to g, i.e., the Hamiltonian involves the terms

. The relation between these effec-

tive hoppings and microscopic parameters of the multi-
band p–d model is as follows:

(6)

The factors µ, ν, λ, ξ, χ are the coefficients of the Wan-
nier transformation performed in the GTB method and
u, v, γa , γb , γz , γp are the matrix elements of the annihi-
lation and creation operators in the Hubbard X-operator
representation.

The resulting Hamiltonian (5) is the generalization
of the t–J model to account for the two-particle triplet
state. A significant feature of the effective singlet–trip-
let model is the asymmetry of n- and p-type systems,
which is known experimentally. We can therefore con-
clude that, for n-type systems, the usual t–J model is
applicable, while for p-type superconductors with com-
plicated structure at the top of the valence band, the sin-
glet–triplet transitions play an important role.

Using the set of microscopic parameters (2) in
Table 1, we present numerical values of the hopping
and exchange parameters calculated in accordance
with (6).

4. COMPARISON OF PARAMETERS

The resulting parameters from ab initio [8] and GTB
calculations are presented in Table 2. Here, ρ is the con-
necting vector between two copper centers, tρ is the
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hopping parameter (equal to , see (5) and (6), in the
effective singlet–triplet model), and Jρ is the antiferro-
magnetic exchange integral.

As one can see, despite slight differences, the
parameters in both methods are very close and show
similar dependence on distance. It is worth mentioning

that both methods give a disproportionality between 
and Jρ. In the usual t–J model, the proportionality Jρ =

2 /U occurs as soon as this t–J model is obtained from
the Hubbard model with the Hubbard repulsion U. In

the singlet–triplet model, the intersubband hopping 
that determines the value of Jρ is different from the

intrasubband hopping  that determines tρ. This leads
to a more complicated relation between tρ and Jρ.

In the framework of the LDA band structure of
YBa2CuO7 + x and within the orbital projection
approach, it was shown [33] that the one-band Hamil-
tonian reduced from the eight-band Hamiltonian should
include not only the nearest neighbor hopping terms (t),

tρ
SS

tρ
2

tρ
2

tρ
0S

tρ
SS

Table 2.  Comparison of ab initio parameters [8] and parame-
ters obtained in the framework of the GTB method (all values
in eV)

ab initio GTB method

ρ tρ Jρ tρ Jρ

(0, 1) 0.486 0.109 0.587 0.115

(1, 1) –0.086 0.016 –0.050 0.0001

(0, 2) –0.006 0 0.090 0.0023

(2, 1) 0 0 0.001 0
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but also second (t ') and third (t '') nearest neighbor hop-
pings. In the GTB method, the dependence of the hop-
pings tρ on distance automatically results from the dis-
tance dependence of the coefficients of the Wannier
transformation performed in this method (see Eq. (6)).
To show the correspondence between the results of dif-
ferent authors, we compare our parameters and the
parameters widely used by different groups in Table 3.

The parameters extracted from experimental data
are listed in columns I–VI of Table 3. The LDA calcu-
lated parameters are presented in columns VII and VIII.
Our results for hoppings agree best with columns III,
VII, and VIII. This similarity is not surprising. In the
LDA calculations, the bandwidth of strongly correlated
electron systems is usually overestimated because the
strong Coulomb repulsion of electrons is not taken into
account properly. However, it is well known that the
Fermi surface obtained by this method is in very good
agreement with experiments. The main contribution to
the shape of the Fermi surface comes from the kinetic
energy of the electrons (hopping parameters), and there-
fore the values of hoppings should be properly estimated
by the LDA calculations (columns VII, VIII). In [37, 38]
(column III), the parameters were obtained by fitting the
LSCO tight-binding Fermi surface to the experimental
one. This procedure gives the same values as the LDA
calculation. By the same technique, the parameters for
Bi2Sr2CaCu2O8 + x (Bi2212, column IV) were obtained
[37, 38]. These parameters are different from those in
the LSCO case and in the present paper; the most
straightforward explanation is a more complicated
structure of the Fermi surface of compound Bi2212. In
the present paper, single-layer (LSCO-like) compounds
are considered and the effects of multiple CuO2 planes
(i.e., bilayer splitting) are neglected. The difference
between our hoppings and hoppings in column V
Table 3.  Comparison of the calculated parameters and parameters used in the literature

Quan-
tity

0* 0** I*** II*** III*** IV*** V*** VI*** VII**** VIII**** IX***** X*****

LSCO LSCO LSCO LSCO LSCO Bi2212 YBCO SCOC YBCO LSCO LSCO YBCO

this 
work

this 
work [34] [35, 36] [37, 38]

SCOC
[37, 38,

39]
[40] [41] [33] [42] [43] [43]

t, eV 0.587 0.486 0.416 0.35 0.35 0.35 0.40 0.40 0.349 0.43 – –

t'/t –0.085 –0.18 –0.350 –0.20 –0.12 –0.34 –0.42 –0.35 –0.028 –0.17 – –

t''/t 0.154 0.012 – 0.15 0.08 0.23 –0.25 0.25 0.178 – – –

J, eV 0.115 0.109 0.125 0.14 0.14 0.14 0.17 0.12 – – 0.126 0.125, 
0.150

J/|t| 0.196 0.224 0.300 0.40 0.40 0.40 0.43 0.30 – – – –

* GTB method parameters.
** Ab initio parameters obtained in the present paper.

*** Parameters obtained by fitting to experimental data.
**** Ab initio parameters.

***** Parameters obtained from two-magnon Raman scattering.
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appears due to the same reason (in [40], the YBa2Cu3O6
insulating compound was investigated).

In the last two columns of Table 3, the antiferromag-
netic exchange parameters J obtained from the two-
magnon Raman scattering analysis by momentum
expansion (LSCO, column IX) and spin-wave theory
(YBCO, column X) are presented (for details, see
review [43] and references therein). Our values of J
(column 0) are in good agreement with the values
extracted from experiments and similar to those listed
in columns I–VI.

In [44], the Heisenberg Hamiltonian on the square
lattice with plaquette ring exchange was investigated.
The fitted exchange interactions J = 0.151 eV, J ' = J '' =
0.025J give the values for the spin stiffness and the
Néel temperature in excellent agreement with experi-
mental data for insulating compound La2CuO4. In the
GTB calculations, J = 0.115 eV, J ' = 0.0009J, and J '' =
0.034J. The values of J are close to each other but dif-
ferent. This difference could be explained by the fact
that authors of [44] used the Heisenberg Hamiltonian
and inclusion of the hopping term should renormalize
the presented exchange interaction values. Agreement
between J '' in the GTB calculations and in [44] is good
but the values of J ' are completely different. The latter
could be attributed to oversimplification of calculations
in [44], where the authors set J ' = J '' by hand to restrict
the number of fitting parameters.

We now discuss the difference between our parame-
ters and the parameters in columns I, II, VI, and column
IV (SCOC). The hoppings in the papers cited above
were obtained by fitting the t–t '–t ''–J model dispersion
to the experimental ARPES spectra [22, 39] for insulat-
ing Sr2CuO2Cl2. We claim that the discrepancy

0

–0.5

–1.0

E
ne

rg
y,

 e
V

(0, 0) (0, π)

k

(π, π) (π, 0)

–1.5

–2.0

–2.5
(π, 0)(0, 0)

Fig. 3. Dispersion curves on top of the valence band for the
effective singlet–triplet model (singlet subband is shown
with solid line, triplet subbands with dotted lines) and the t–
t '–J model (dash-dotted line) at the optimal doping x = 0.15;
the dashed line represents the self-consistently obtained
chemical potential µ.
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between the GTB method results and the t–t '–t ''–J
model results stems from the absence of singlet–triplet
hybridization in the latter model. This statement can be
proved by comparing the dispersion in the “bare” t–t '–J
model (4) and in the singlet–triplet t–t '–J model (5).
The paramagnetic nonsuperconducting phase was
investigated in the Hubbard-I approximation in both the
singlet–triplet and t–t '–J models. The results for opti-
mal doping (with the concentration of holes x = 0.15)
are presented in Fig. 3.

There is a strong mixing of singlet and triplet bands
along the (0, 0)–(π, π) and (π, 0)–(0, 0) directions due
to the tST matrix element (see (6)) in both paramagnetic
(Fig. 3) and antiferromagnetic phases (Fig. 1). It is
exactly the admixture of the triplet states that deter-
mines coincidence of the dispersion in our approach
and the ARPES data in the undoped SCOC at the ener-
gies 0.3–0.4 eV below the top of the valence band,
where the t–t '–J model [34] fails and the t–t '–t ''–J
model involves the additional parameter t '' [35, 37]. In
our approach, this parameter is not as necessary as in
the “bare” t–t '–J model, because the singlet–triplet
hybridization is included explicitly.

In [45], the t–t '–t ''–J model was also used to
describe the dispersion of insulating Sr2CuO2Cl2, with
the same set of parameters as in [37, 38]. However, the
authors of [45] used a totally different definition of hop-
ping parameters: in their paper, the t ' stands for hopping
between two nearest neighbor oxygens and the t ''
stands for the hopping between two oxygens on the two
sides of Cu. Such a definition is completely different
from that used in other papers cited, where t, t ', t '' stand
for hoppings between plaquettes centered on copper
sides, and we cannot therefore compare our results with
theirs.

The analysis of the data in Table 3 gives the follow-
ing ranges for parameters: 0.350–0.587 for t, (−0.420)–
(–0.028) for t '/t, 0.012–0.250 for t ''/t with the exception
of the value in [40], and 0.115–0.150 eV for J. In gen-
eral, we see a close similarity in the first-neighbor hop-
ping t and the interaction J for the different methods
and materials, and greater discrepancy in subtle param-
eters such as t ' and t ''.

5. CONCLUSIONS

One of the significant results in this paper is the rela-
tion (6) between microscopic parameters and parame-
ters of the effective singlet–triplet model. The effective
model parameters are therefore no longer free and have
a direct physical meaning coming from the dependence
on microscopic parameters. The parameters of the
effective singlet–triplet model were obtained from both
ab initio and model calculations. Model calculations
were performed in the framework of the GTB method
for insulating single-layer copper oxide superconduc-
tor. The ab initio calculations for La2CuO4 were per-
formed by the conventional LDA TB-LMTO method.
AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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The agreement between the parameters is remarkably
good. The parameters obtained also agree well with
widely used parameters of the t–t '–t ''–J model,
although a certain difference exists. This difference is
attributed to disregard of triplet excitations in the sim-
ple t–t '–t ''–J model. After careful analysis, we proposed
the set of parameters for effective models (e.g., the t–t '–
t ''–J model or the effective singlet–triplet model) for
proper quantitative description of physics of hole-
doped high-Tc cuprates.
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Abstract—The optical absorption spectra of iron borate (FeBO3) are measured at high pressures up to P =
82 GPa. A mechanism of suppression of strong electron correlations is proposed within the framework of the
generalized tight binding method, which leads to the experimentally observed magnetic, electronic, and struc-
tural phase transitions. Taking into account peculiarities of the crystal structure of FeBO3 and the strong s–p
hybridization of boron and oxygen, it is established that, as the distance between ions varies with increasing
pressure, the crystal field parameter begins to play a decisive role in the electron transitions, while the influence
of the d band broadening is negligibly small. Parameters of the theory are calculated as functions of the pres-
sure. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently [1–4], we have reported on a number of
phase transitions induced by high pressure in iron
borate (FeBO3). In particular, it was established that a
transition of the magnet–nonmagnet type with collapse
of the localized magnetic moment takes place at a pres-
sure of about 47 GPa [1, 2]. An insulator–semiconduc-
tor type transition is observed at approximately the
same pressure [3], and a structural phase transition with

symmetry conservation (   ) and a 9% jump
in the unit cell volume takes place at about 53 GPa [4]. A
model describing the electron structure of FeBO3 and
its variation at high pressures [5] was developed within
the framework of the generalized tight binding method
for systems with strong electron correlations. However,
several experimentally observed effects and some prin-
cipal questions concerning the physical nature of phase
transitions still remain unclear. These questions are
related to factors leading to the magnetic collapse and
to the fact that the electron system exhibits the transi-
tion to a semiconducting state rather than to the metallic
state. It is also unclear why the magnetic and electronic
transitions occur at the same pressure, while the struc-
tural transition takes place at a different pressure.

In this paper, we report on the results of experimen-
tal investigation of the optical absorption spectra of sin-
gle crystal FeBO3 in a range of pressures up to 82 GPa.
The dependences of the absorption spectra and the elec-

R3c R3c
1063-7761/04/9903- $26.00 © 20566
tron structure of FeBO3 on the pressure have been the-
oretically studied in both low- and high-pressure
phases. The theory employs the generalized tight bind-
ing method for a multiband p–d model [5] and com-
bines the concepts of quasi-particles from the Landau
theory of a Fermi liquid with Hubbard’s notions of the
predominant role of intraatomic Coulomb interactions
in systems with strong electron correlations. Parame-
ters of the theory calculated using the experimental data
are consistent with the results of observations. The pro-
posed theory qualitatively explains many of the effects
experimentally observed in FeBO3 crystals—in partic-
ular, the transition to a semiconducting (rather than
metallic) state—and predicts a transition to the metallic
state with further increase in pressure.

2. EXPERIMENTAL

High-quality, optically transparent FeBO3 single
crystals of light-green color were grown from by the
flux method. The optical absorption spectra were mea-
sured at room temperature in a range of pressures up to
82 GPa in a cell with diamond anvils. The diamond anvil
culets were about 400 µm in diameter, and a hole at the
center of a rhenium gasket had a diameter of ~120 µm.
The measurements were performed on ~50 × 50 µm2

plates of various thicknesses from ~2 to ~15 µm. The
plates were cut from a massive FeBO3 single crystal so
that their large faces coincided with the (111) basal plane.
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Evolution of the room-temperature absorption spectra (A, B, C are absorption bands) measured at various pressures for
(a) thin (d = 2–3 µm) and (b) thick (d = 10–15 µm) single crystal FeBO3 samples (figures at the curves indicate pressure in GPa;
the bottom curve shows the spectrum measured at 83 K [6]).
During the spectral measurements, the light beam in
the high-pressure cell was directed perpendicular to the
basal plane of the crystal and focused into a 20-µm-
diameter spot on the sample surface. Polyethyl siloxane
(PES-5) was used as a pressure-transmitting medium
providing quasi-hydrostatic conditions. After pressure
release, the single crystal samples remained intact.

The absorption spectra at high pressure were mea-
sured in the visible and near-IR regions in the wave-
length range from 0.3 to 5 µm. The optical setup and the
experimental procedure were described in detail else-
where [3]. The absorption spectrum was calculated by
the standard method using the formula

where I0 is the reference beam intensity, d is the sample
thickness, and α is the optical absorption coefficient.

3. EXPERIMENTAL RESULTS: 
EFFECT OF PRESSURE ON THE POSITIONS 

OF OPTICAL ABSORPTION BANDS

Figure 1a shows evolution of the optical absorption
spectra of single crystal FeBO3 with increasing pres-

I I0 αd–( ),exp=
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sure P at room temperature. These measurements were
performed on samples with a thickness of 2–3 µm. As
the pressure grows to 46 GPa, the energy of the optical
absorption edge slowly increases. At P ≈ 46 GPa, the
absorption edge energy drops abruptly from ~3 to
~0.8 eV and then virtually does not change as the pres-
sure is further increased up to 82 GPa (Fig. 2). The
jump in the optical gap at 46 GPa correlates with the
magnetic moment collapse observed previously [1, 2]
at the same pressure.

The room-temperature spectra of “thick” samples
(d = 10–15 µm) also clearly reveal the evolution of the
absorption bands related to various excitation processes
in the electron system of FeBO3 (Fig. 1b). The positions
of maxima of the absorption bands denoted by capital
letters A, B and C at a zero applied pressure correspond
to the energies 1.395 ± 0.006, 2.029 ± 0.022, and
2.803 ± 0.005 eV, respectively. For the comparison,
Fig. 1 also shows the absorption spectrum of FeBO3
measured at 83 K [6].

According to our experimental results, band C
exhibits splitting into two signals (C and C1) with
increasing pressure. The absorption band C has the
shape of a narrow peak (Fig. 1a) and its position can be
SICS      Vol. 99      No. 3      2004
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determined with a much better accuracy than positions
of the other absorption bands. The energy of peak C
weakly varies with increasing pressure as described by
a quadratic law and exhibits a maximum in the region
of 25 GPa.

Figure 2 shows the pressure dependence of the posi-
tions of various absorption bands and the optical
absorption edge. Parameters of the electron transitions
corresponding to these bands are given in the table.
These parameters and related errors were calculated
from experimental data using a linear approximation.
For bands A and C, the experimental data were approx-
imated using a second-degree polynomial.

E, eV
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Fig. 2. Plots of the energy positions of the optical absorption
edge and absorption peaks A, B, C, and C1 versus pressure
for single crystal FeBO3 measured at room temperature in
several series of experiments (different symbols refer to
samples of various thicknesses).
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4. ELECTRON STRUCTURE OF FeBO3
AND ITS PRESSURE DEPENDENCE

IN MANY-ELECTRON MODEL

In the absence of applied pressure, the optical
absorption spectrum of FeBO3 exhibits three main
bands (A, B, and C) occurring below 2.9 eV inside the
bandgap. According to the traditional interpretation,
these bands are due to the following exciton transitions
in the d5 configuration [7–10]:

(1)

However, the temperature dependences of the energies
of bands A, B, and C, as well as the circular dichroism
spectra [11, 12], are significantly different. This poses
questions concerning adequacy of the aforementioned
interpretation. In particular, the intensity of peak C is
much greater than the intensities of bands A and B,
which suggests that an additional allowed optical tran-
sition may exist in the vicinity of ωC. Such a transition
can be related to the electron excitation with charge
transfer p6d5  p5d6. Both d–d excitations from the
ground state to the upper d5 terms and the d5  d6

transitions in many-electron dn configurations take
place under conditions of strong electron correlations.
These effects cannot be adequately described using
one-electron methods of the band theory.

Recently [5], a many-electron model of the electron
structure of FeBO3 has been developed with allowance
for strong electron correlations. The absorption spec-
trum calculated within the framework of this model
exhibits additional excitations with charge transfer [6].
The model has been described in detail in [6], but the
effect of pressure on the electron structure was not con-
sidered. For this reason, we present a brief outline of
this model and consider the pressure-induced changes
in the electron structure of FeBO3.

The model is based on ab initio one-electron band
calculations of the electron structure of FeBO3 using
the density functional method in the local spin density
approximation [13] and on calculations of the molecu-

ωA E T4
1( ) E A6

1( ),–=

ωB E T4
2( ) E A6

1( ),–=

ωC E A4
1( ) E A6

1( ).–=
The energies E0 of optical transitions at zero applied pressure and their baric derivatives at high pressures in single crystal
FeBO3 at room temperature. The last column presents theoretical dE/dP values (see Section 5)

Optical transition E0, eV dE/dP, eV/GPa d2E/dP2, eV/(GPa)2 (dE/dP)theor, eV/GPa

A 1.395 ± 0.006 –0.0115 ± 0.0007 (5.69 ± 1.56) × 10–5 –0.0156

B 2.029 ± 0.022 –0.0125 ± 0.0009 – –0.0158

C 2.803 ± 0.005 +0.0051 ± 0.0006 (–1.02 ± 0.13) × 10–4 0

C1 2.749 ± 0.017 –0.0199 ± 0.0006 – –0.0174
AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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lar orbitals of a FeB6O6 cluster [14]. Both these calcu-
lations revealed a very strong s–p hybridization inside
the BO3 group. The top of the filled valence band (εv) is
formed predominantly by the s- and p states of oxygen,
while the bottom of the empty conduction band (εc) is
formed primarily by the s- and p states of boron. The
bandgap Eg0 = εc – εv was estimated at 2.5 eV [13],
which is close to the optical absorption edge (2.9 eV
[9]). According to the band calculation, the d band
occurs near the top of the valence band and is partly
filled, which corresponds to the metallic state. This
drawback of the band theory is related to underestima-
tion of the role of strong electron correlations.

The existing ab initio methods do not allow the
effects of strong electron correlations to be adequately
described. For this reason, we have calculated the struc-
ture of d bands using the generalized tight binding
method [15], in which the addition of electron is related
to d5  d6 excitation. The energies of d4, d5, and d6

terms are calculated taking into account strong intra-
atomic Coulomb interactions and are expressed in
terms of the Racah parameters A, B, C and the crystal
field parameter ∆ determined as a difference of the
energies of d levels (t2g and eg) in the cubic environ-
ment. The energies of the lower terms (corresponding
to the high-spin states at normal pressure) are

(2)

where εd is the energy of d electrons in a given atom in
the one-electron approximation. In the general case, the
Racah parameters corresponding to different n can vary
within approximately 10%. Since our aim here is to
understand qualitatively the nature of pressure-induced
changes in the spectra and the electron structure, this
variation of the Racah parameters can be ignored. The
energy of electron addition (analogous to the upper
Hubbard band) is

(3)

and the energy of electron annihilation (or hole cre-
ation) is

(4)

The Mott–Hubbard gap Ωc – Ωv ∝  Ueff = A + 28B –
∆ has the meaning of an effective Coulomb parameter
determining the magnitude of strong electron correla-
tions.

In this theory, the parameters are A, B, C, ∆, and εd –
εv. The values of B = 0.084, C = 0.39, ∆ = 1.57 eV were
determined from the optical absorption spectra [6, 7]

E0 d4( ) E E5 d4,( )≡ 4εd 6A4 21B4 0.6∆4,––+=

E0 d5( ) E A6
1 d5,( )≡ 5εd 10A5 35B5,–+=

E0 d6( ) E T5
2 d6,( )≡ 6εd 15A6 21B6 0.4∆6,––+=

Ωc E0 d6( ) E0 d5( )– εd 5A 14B 0.4∆,–++= =

Ωv E0 d5( ) E0 d4( )– εd 4A 14B 0.6∆.+–+= =
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with the aid of the Tanabe–Sugano diagram [16]. As
can be seen from Fig. 3, the exciton transition energies
(corresponding to peaks A, B, and C in the experimen-
tal spectrum) for these parameters are ωA = 1.39 eV,
ωB = 2.03 eV, and ωC = 2.80 eV. The Racah parameter
A was determined in [6] from the conditions of coinci-
dence of the energy of excitation with charge transfer
Ωc – εv with the energy of peak C: Ωc – εv = ωC; the
parameter εd – εv was found from the conditions of
coincidence of the energy Ωv – εv with the energy of the
d peak in the X-ray spectrum: Ωv – εv = –1.4 eV [13].
These conditions yield A = 3.42 eV and εd – εv =
−14.84 eV. In what follows, the one-particle energies
are measured from the top of the valence band of oxy-
gen states (i.e., εv = 0), so that εd = –14.84 eV.

Thus, at normal pressure, Ueff = 4.2 eV and the elec-
tron structure of FeBO3 is characteristic of a charge
transfer insulator (see the diagram for P < Pcr in Fig. 4).

Other parameters in the theory under consideration
is the interatomic hopping parameter t, determining the
d-band halfwidth W = Zt (where Z = 6 is the number of
nearest neighbors), and the integral of the Fe–Fe
exchange interaction J = 2t2/Ueff . The latter quantity, in
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Fig. 3. Tanabe–Sugano diagrams for Fe3+ ion. Solid curves
show various terms versus the crystal field parameter;
dashed lines correspond to the set of parameters B, C, and
∆ for single crystal FeBO3.
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turn, determines the Néel temperature in the mean field
approximation: TN = ZJS(S + 1)/3. Using these relations
and the experimental value of TN = 348 K, we obtain
(for S = 5/2) t(P = 0) ≡ t0 = 0.076 eV. The interatomic
d–d hopping smears the contributions due to atomlike
states (3) and (4) to the total density of states (Fig. 4),
so that these contributions change from δ-like to narrow
d bands.

Now let us consider the pressure-induced changes in
the electron structure of FeBO3. The intraatomic Racah
parameters A, B, and C can be considered independent
of the pressure, whereas the quantities ∆, t, and Eg0 =
εc – εv may depend on the interatomic distances. In
view of tight binding inside the BO3 group, we assume
that this group is rigid (i.e., insignificantly deformed by
increasing pressure). Then, the energy of the top of the
valence band and the bandgap Eg0 between the conduc-
tion and valence bands can be considered constant.
Assuming also that the parameters t and ∆ linearly
increase with the pressure,

(5)

we infer that Ueff linearly decreases as

The coefficient α∆ can be determined from the condi-
tion of crossover of the high-spin (6A1) and low-spin
(2T2) terms of the Fe3+ ion at a critical value (Pcr) of the
pressure. According to the Tanabe–Sugano diagram
(Fig. 3), the critical value of the crystal field parameter
is ∆cr ≈ 28.5B = 2.4 eV, from which it follows that α∆ =

t P( ) t0 α tP,+=

∆ P( ) ∆0 α∆P,+=

Ueff ∆( ) U0 α∆P.–=

N

Ωv εF

εv

Ωv
∼

Ωc
∼

εc
P > Pcr

εcεv E

P< Pcr

Ωc

Fig. 4. Density of states in low- and high-pressure phases of
single crystal FeBO3 according to the many-electron p–d
model.
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(∆cr – ∆0)/Pcr = 0.018 eV/GPa. The coefficient αt can be
determined from the experimentally observed increase
in TN with the pressure [2]. Both the buildup of t(P) and
the decrease in Ueff(P) lead to the linear increase of the
exchange integral J(P), so that TN(P) can be expressed
as

(6)

According to the experimental data [2], TN(0) = 348 K
and TN(Pcr) ≈ 600 K, this yields αt = 0.00046 eV/GPa.
Taking into account the above estimates of U0 = 4.2 eV
and α∆ = 0.018 eV/GPa, we can evaluate the contribu-
tions to TN due to the band broadening (192 K) and due
to the decrease in Ueff (64 K). Thus, the contribution
due to the band broadening is three times that due to the
decrease in electron correlations. Nevertheless, the
d-band halfwidth W = Zt increases rather slightly with
pressure: from 0.46 eV at P = 0 to 0.58 eV at P = Pcr .

As a result of the crossover of the ground-state terms
of the d5 and d4 electron configurations in the high-pres-
sure phase at P = Pcr , the energies of the lower and
upper Hubbard bands exhibit a change. Denoting these

energies by  and ,

(7)

we obtain an expression for the effective Hubbard

parameter :

(8)

Thus, the parameter  exhibits a jumplike change at
the point of transition, whereby the value at P > Pcr

(  = 1.45 eV) is almost one-third of that at P = 0.

Note that the jump in  is only due to the crossover
of levels and is not related to the structural transition in
FeBO3 [4].

Figure 4 shows the one-electron density of states for
both low- and high-pressure phases. As was indicated
above, the energies are measured from the top of the
valence band of oxygen states (i.e., εv = 0). Then, the
bottom of the conduction band corresponds to εc =
2.9 eV. At a zero applied pressure, we have Ωv =
−1.4 eV and Ωc = 2.8 eV. Figure 5 shows the pressure
dependence of the energies εv, εc , Ωv, and Ωc in the
case of pressure-independent Racah parameters and the
crystal field parameter ∆ linearly increasing with the
pressure. Here, we also ignore the possible discontinu-
ity in ∆ at the point of the structural phase transition.
This jump may produce an additional small shift of the

 and  bands downward, but  in the high-pres-

TN P( )/TN 0( ) 1 2α t/t0 α∆/U0+( )P.+=

Ω̃v Ω̃c

Ω̃v E T2
2 d5,( ) E T3

1 d4,( ),–=

Ω̃c E A1
1 d6,( ) E T2

2 d5,( ),–=

Ũeff

Ũeff Ω̃c Ω̃v– A 9B 7C.–+= =
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Ũeff

Ω̃c Ω̃v Ũeff
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sure phase is independent of P. The smallness of the
jump in ∆ follows from the experimental fact that the
lattice parameter c changes for the most part gradually
in the entire interval 0 < P < Pcr rather than by a jump
at Pcr [4].

According to Fig. 4, single crystal FeBO3 in the
range of P < Pcr belongs to the insulators with charge
transfer. At P > Pcr , the insulator character is retained,

but the dielectric gap decreases to Eg =  – Wd – εv.
For P ≥ Pcr , this leads to Eg ≈ 0.56 eV, which allows the
material to be considered as a semiconductor. This
energy must also determine the edge of optical absorp-
tion related to the charge transfer processes. The maxi-

mum of absorption is expected at  – εv ≈ 0.85 eV. A
sharp decrease in the absorption edge at pressures
above Pcr is confirmed by the experimental data in
Figs. 1 and 2. This drop in the dielectric gap at P = Pcr
indicates that the electronic transition at this pressure is
accompanied by the insulator–semiconductor transition.

5. EFFECT OF PRESSURE 
ON THE OPTICAL ABSORPTION SPECTRUM

Since the pressure dependence of parameters ∆(P)
and t(P) was determined above from independent (non-
optical) data, calculations of the energies of peaks A, B,
and C in the optical spectra as functions of the pressure
contain no fitting parameters. This provides for the pos-
sibility of independent verification of correctness of the
proposed model of the electron structure of FeBO3 and
the effects of pressure predicted by this model.

According to the Tanabe–Sugano diagram, the ener-
gies of 4T1 and 4T2 terms decrease almost linearly with
increasing crystal field parameter ∆ and, at the critical
point, E(4T1, Pcr) = 8B ≈ 0.67 eV and E(4T2, Pcr) =
15.5B ≈ 1.30 eV. As a result, band A shifts with increas-
ing pressure as dωA/dP = –0.0156 eV/GPa. This can be
compared to the experimental pressure-induced decrease
in the energy of peak A (Fig. 1b): (dωA/dP)exp =
−0.0156 eV/GPa (see table). For band B, we obtain
(dωB/dP)theor = –0.0158 eV/GPa.

The energy of 4A1 term for Fe3+, determining the d−d
exciton energy ωC, is independent of the parameter ∆.
This agrees well with a weak pressure dependence of
the energy of band C observed in experiment (Fig. 1).
The energy of excitations with charge transfer, ΩC,
slightly decreases with increasing pressure as
dΩC/dP = –0.4(d∆/dP) = –0.0072 eV/GPa. At P = Pcr
this yields ∆ΩC = –0.33 eV. Probably, it is this small
shift that is manifested by a low-energy shoulder
observed on band C at high pressures. The most pro-
nounced pressure-induced change in the spectra of a
low-pressure phase is the separation of peak C1 from
band C. The energy of peak C1 varies most signifi-
cantly with pressure (Fig. 2). Indeed, according to the
Tanabe–Sugano diagram, an increase in pressure in the

Ω̃c

Ω̃c
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
region of P = 0 is accompanied by the crossover of
excited terms 4A1 and 2A2 in FeBO3, which is mani-
fested by a new exciton band at ωC1 = E(2A2) – E(6A1).
Since this d–d transition involves a change in the spin
(∆S = 2), the corresponding intensity is small. At P =
Pcr , experiment (Fig. 2) shows ωC1(Pcr) = 2.0 eV and,
hence, dωC1/dP = –0.0174 eV/GPa. This is close to the
experimental value –0.0199 eV/GPa (see table).

An analogous crossover of terms 4T1 and 2T2 with
increasing pressure must lead to an exciton with ω0 =
E(2T2) – E(6A1). This exciton must rapidly shift toward
infrared region as dω0/dP = –0.030 eV/GPa, so that
ω0 ≈ 0.6 eV at P = 20 GPa. Being doubly forbidden
with respect to spin, a ω0 exciton, as well as ωC1, is
expected to possess a low intensity. At P = Pcr, the
energy ω0 tends to zero. In other words, this exciton
plays the role of a “soft” mode for the pressure-induced
electronic phase transition.

6. PRESSURE-INDUCED TRANSITION:
DISCUSSION OF THE MECHANISM

The observed suppression of magnetic properties at
high pressures can be explained a priori using various
mechanisms. For example, pressure-induced violation
of the local symmetry might lead to the rotation of elec-
tron orbitals responsible for the indirect exchange, with
the resulting decrease in the indirect exchange interac-
tion. However, as was pointed out in Section 2, in our
case the pressure is quasi-hydrostatic and the local
symmetry of Fe3+ can be considered unchanged. In
addition, the observed increase in the Néel temperature
with increasing pressure is indicative of enhanced
(rather than reduced) exchange interaction.
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Ωv Ωv
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Fig. 5. Shifts of the lower and upper Hubbard bands
depending on the pressure in low- and high-pressure phases
of single crystal FeBO3.
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An alternative approach to explanation of the mag-
netic collapse in monoxides (FeO, MnO, CoO, and
NiO) was suggested by Cohen et al. [17] within the
framework of ab initio calculations performed in the
local density and generalized gradient approximations
using the generalized Stoner model. It was concluded
that the dominating role is played by the d-band broad-
ening, which leads to the magnetic collapse and the
insulator–metal transition. Indeed, a decrease in the
interatomic distances leads to an increase in the d–d
hopping parameter t, so that the Mott–Hubbard insula-
tor with U @ W = Zt at P = 0 may pass to the metallic
state with increasing pressure when W ≥ U. It should be
noted that this conclusion is based on the Hubbard model
in which d electrons exhibit no orbital degeneracy.

The model proposed in [5] is essentially a generali-
zation of the Hubbard model with allowance of the real
orbital structure of Fe3+, which leads to the possible
coexistence of various spin and orbital multiplets. Since
the energies of these multiplets depend on the crystal
field parameter ∆, a new mechanism appears for the
crossover of optical terms as described by the Tanabe–
Sugano diagrams. Of course, the d-band broadening
still influences the electron structure. Estimations pre-
sented in Section 4 showed that the d bandwidth in
FeBO3 rather insignificantly increases with the pres-
sure, and the main mechanism of magnetic collapse is
the crossover from high- to low-spin state. As a result,
the effective Hubbard parameter Ueff decreases, as can
be seen from Fig. 5 and formulas (3) and (4), with
increasing ∆ and P. This implies that an increase in the
pressure decreases the role of correlations. The d-band
broadening also contributes to a decrease in the dielec-
tric gap, but this effect is small as compared to the influ-
ence of decreasing Ueff .

At pressures above Pcr, the ground-state terms of d4,
d5, and d6 ions are altered, which leads to a jumplike
change in the values of Ueff and the dielectric gap, that
is, to the transition of FeBO3 crystal to a semiconduct-
ing state. As the pressure P grows further, we may
expect a transition to the metallic state to take place.
Since the Ueff value at P > Pcr no longer depends on the
pressure, while the d bandwidth linearly increases with
P, an insulator–metal transition of the Mott–Hubbard
type becomes possible. Once the baric derivative of αt

is known, we can readily evaluate the critical Mott–
Hubbard pressure PMH at which the complete metalliza-

tion takes place and W(PMH) =  = 1.45 eV, which
yields PMH = 360 GPa. On the other hand, it is interest-

ing to note that extrapolation of the (P) plot in Fig. 5
to the intersection with the top (εv) of the valence band
yields Pmet = 200 GPa. This value virtually coincides
with the experimental estimate of the pressure Pmet =
210 GPa for the complete metallization, obtained by
extrapolating the thermoactivation gap to zero [3].
However, the transition to the metallic state in this

Ũeff

Ω̃c
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model should be expected at lower pressures, since the

Eg value tends to zero not only due to a decrease in ,
but also due to an increase in the d bandwidth Wd (addi-
tionally decreasing the gap). In such cases, a transition
to the metallic state is caused merely by the crossover
of bands due to an increase in the pressure, since the
Fermi level must occur below the top of the valence
band and the Fermi surface will open. According to Lif-
shits et al. [18], this process is classified as the
2.5-order transition. Taking into account the baric
derivatives of αt and α∆ determined from the optical
and magnetic data for the low-pressure phase, we can
estimate the metallization pressure as Pmet ≈ 73 GPa.
However, experiments [3] show that FeBO3 at this pres-
sure still occurs in a semiconducting state. Apparently,
extrapolation of the baric derivatives of αt and α∆ deter-
mined for the low-pressure phase to the region of high
pressures does not provide for sufficiently accurate
evaluation.

7. CONCLUSIONS

The band structure and optical spectra of the Mott–
Hubbard insulators (including FeBO3) must depend on
the pressure mostly for two reasons: (i) a growth in the
pressure may give rise to the d bandwidth due to an
increase in the integral of interatomic electron hopping
and (ii) pressure variations alter the crystal field. The
results of our calculations taking into account peculiar-
ities of the crystal structure of FebO3 lead to a conclu-
sion that a determining role is played by the pressure-
induced change in the crystal field parameter ∆. The
main peculiarity in the crystal structure of FebO3 is
very strong s–p hybridization inside the BO3 group,
which leads to a very weak p–d hybridization between
oxygen and iron ions and to a small width of the d band.
The d band exhibits additional narrowing in the antifer-
romagnetic phase due to the spin–polaron interaction.

The increase in ∆ not only leads to the crossover of
high- and low-spin states of Fe3+ ion, explaining the
collapse of the magnetic moment, but also causes an
analogous crossover of the Fe2+ and Fe4+ configura-
tions. As a result, the effective Hubbard parameter

which is a measure of the Coulomb correlations, is
determined in the low-pressure phase by the high-spin
terms of the ground states of d4, d5, and d6 configura-
tions, and in the high-pressure phase, by the corre-
sponding low-spin terms, which accounts for a jump-
like decrease in Ueff at the point of transition. Although
Ueff decreases by a factor of almost three, the metalliza-
tion does not take place because of a small d bandwidth.
As the pressure grows further, a transition of FeBO3 to
the metallic state unavoidably takes place. It is interest-

ing to note that extrapolation of the  level to inter-

Ω̃c

Ueff E0 d4( ) E0 d6( ) 2E0 d5( ),–+=

Ω̃c
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section with the top of the valence band allows the pres-
sure required for a transition to the metallic state to be
estimated as Pmet = 200 GPa. This estimate nearly coin-
cides with the experimental value evaluated from the
condition of zero thermoactivation gap [3]. However,
such extrapolation fully ignores the contribution of the
d-band broadening to a decrease in the dielectric gap.
On the other hand, extrapolation of the pressure-
induced band broadening determined for the low-pres-
sure phase to the region of high pressures gives an obvi-
ously understated value of Pmet = 73 GPa. Apparently,
the d bandwidth in the high-pressure phase grows with
the pressure slower than in the low-pressure phase. It is
also possible that the top of the valence band slightly
decreases with increasing pressure, which leads to an
increase in Pmet .

Within the framework of our analysis of the pressure
dependence of the positions of optical absorption bands
(in the low-pressure phase), let us compare the experi-
mental and theoretical data presented in the third and
fifth columns of the table, respectively. As can be seen,
there is qualitative agreement for all bands in the
absorption spectrum of FeBO3. The linear variation of
the energies of bands A and B with the pressure con-
firms the hypothesis of a linear pressure dependence of
the crystal field (formula (1)). At the same time, we
would like to point out that there is no quantitative
agreement between theory and experiment for bands A
and B, and the reasons for this discrepancy are unclear.
The most unusual feature in the behavior of experimen-
tal optical spectra is the separation of peak C1 (most
significantly changing with the pressure) from band C.
For this peak, found to be related to the 6A1  2A2
exciton, we observed the best agreement between the-
ory and experiment. On the other hand, it is unclear
why the expected exciton 6A1  2T2 with an energy
below that of band A is not observed. This very exciton
must play the role of a soft mode for the pressure-
induced electronic phase transition, since the transition
is due to the crossover of 6A1 and 2T2 terms of Fe3+ ion.

In conclusion, it should be noted that the proposed
many-electron model of the electron structure of FeBO3
taking into account strong electron correlations not
only qualitatively describes the very fact of the pres-
sure-induced electronic and magnetic transitions, but
also explains fine experimental details such as varia-
tions in the optical spectra that depend on the pressure.
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Abstract—The kinetics of current decay and partial restoration in planar doped GaAs:Si due to the formation
of DX– centers in strong electric fields has been experimentally studied. The existence of thresholds with
respect to the field strength and donor concentration is explained. A model of the DX– center formation is pro-
posed, which is based on the notions about variation of the depth and width of a potential well created by planar
doping, caused by the redistribution of hot electrons between quantum confinement subbands. As a result, the
energy level of DX– centers, which is situated above the potential well depth in the absence of strong field,
decreases and falls within the potential well. This makes possible the DX– center formation, provided that hot
electrons, occupying the resonance electron levels in the conduction band, simultaneously excite local vibra-
tional modes. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Most experimental and theoretical investigations of
the DX– centers performed up to now have been related
to homogeneously doped materials (three-dimensional
layers or massive samples), but some experimental
(see, e.g., [1–5]) and recent theoretical studies [6–8]
were devoted to two-dimensional structures in gallium
arsenide (GaAs). From the experimental standpoint,
planar doped structures, where very high dopant con-
centrations can be obtained and very strong electric
fields can be simultaneously created without heating
the lattice and modifying the sample properties, are
very convenient objects for investigating the effect of
strong electric fields on the kinetics of DX– center for-
mation.

Using short-pulse probing techniques, we studied the
current as a function of the electric field strength [4, 5]
and peculiarities of the phonon time-of-flight spectra [9]
in δ-doped GaAs:Si structures. The observed current
decay kinetics at a fixed field and features of the time-
of-flight spectra were interpreted as manifestations of
the appearance of metastable centers formed in the
heating electric field.

Previously [10], we attempted to determine some
characteristics of the DX– center formation and ioniza-
tion in an electric field heating the charge carriers.
However, to our knowledge, no clear physical model
explaining the effect of such fields on the observed tran-
sition from band states to a resonance level has been
proposed in the literature. Recently [11], we showed
that the heating of electrons in a δ-doped GaAs:Si
1063-7761/04/9903- $26.00 © 20574
structure is accompanied by a change in the depth and
shape of the potential well. We believe that this effect
must play a significant role in the formation of DX–

centers in strong electric fields. Indeed, DX– center for-
mation requires the electron density near Si atoms to be
sufficiently high at energies corresponding to the
energy level of these centers. For this purpose, the
energy levels of DX– centers must lie below the energy
corresponding to the edge of the well. However, analy-
sis of published data shows that, for average levels of
doping and low temperatures at which the formation of
DX– centers in electric fields heating the electrons is
observed, this condition is not satisfied.

This study was aimed at obtaining new experimental
data through the investigation of current transients in
planar-doped GaAs:Si with various concentrations of
silicon at liquid nitrogen and liquid helium tempera-
tures. We will also propose and discuss a physical
model of the formation of DX– centers under the action
of a strong electric field.

2. EXPERIMENTAL METHODS AND RESULTS

2.1. Sample Preparation 
and Experimental Procedures 

The experiments were performed on GaAs:Si struc-
tures grown by molecular beam epitaxy (MBE). In
order to determine how can the structural features influ-
ence DX– center formation, we used samples grown
using different MBE procedures.
004 MAIK “Nauka/Interperiodica”
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The structure of type 1 was obtained on a
GaAs(001) single crystal surface at a constant substrate
temperature of 550°C. The δ-layer was grown by contin-
uously supplying silicon atoms at an equivalent partial
pressure of arsenic p = 7.1 × 10–6 mbar [4]. The concen-
tration of silicon atoms in this structure was NSi = 7 ×
1012 cm–2. The δ-layer featured a 2 × 3 reconstruction.

The structure of type 2 was grown on a vicinal GaAs
substrate with a 2° misorientation from (001) toward
(111) gallium plane. In this case, a silicon layer with
NSi = 1.4 × 1014 cm–2 was deposited in a pulsed regime
[12] at 610°C and an equivalent partial pressure of
arsenic p = 6 × 10–6 mbar, after which the temperature
was reduced to 580°C and a cap layer of GaAs was
deposited. For the given concentration of silicon and
the substrate orientation, the samples of type 2 are char-
acterized by a 3 × 2 silicon structure grown on a (2 × 4)
α-reconstructed GaAs surface [12–14].

In the typical mesostructures obtained by photoli-
thography on the samples of types 1 and 2 (see the inset
to Fig. 1), the distance between current-carrying con-
tacts was W = 8.3 or 19.1 µm and the contact widths
was 120 or 180 µm, respectively. The contacts prepared
from Au:Ge alloy were burned in at T = 430°C and the
surface layer was partly scoured by etching prior to
metallization [4].

The current–voltage characteristics (I–U curves)
and the current kinetics at various applied fields were
measured in the dark at liquid nitrogen or liquid helium
temperature. The voltage was applied in the form of
single rectangular pulses with a length of 240 ns (for
the I–U measurements) or shorter (for the kinetic mea-
surements), or in the form of repeated pulses with the
repetition rate gradually increased up to 200 Hz.

The amplitudes of current and voltage pulses were
measured with an oscillograph with a high-voltage
high-frequency voltage divider. Since resistance of
many samples was in the region of 20–40 Ω , the load
was matched to the oscillator output by a 50 Ω resistor.

In order to provide for reproducible initial condi-
tions during the investigation of transient kinetics, the
samples were heated to room temperature under illumi-
nation after each measurement and then slowly cooled
in the dark prior to the next run.

2.2. Experimental Results

The electron density n and mobility µ were deter-
mined from the Hall effect and conductivity measure-
ments at T = 77 K in a magnetic field of about 1 kG. For
the structures of types 1 and 2, these values were n =
3.5 × 1012 cm–2, µ = 3300 cm2/(V s) and n = 1.5 ×
1013 cm–2, µ = 1240 cm2/(V s), respectively. Using the
structures of type 1, it was possible to measure the
Shubnikov–de Haas effect [4] and determine the elec-
tron densities in the first three quantum confinement
subbands: 3.3 × 1012, 1.3 × 1012, and 0.4 × 1012 cm–2.
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In high electric fields, the current decreased with the
time t of voltage application (i.e., with the number of
pulses) in the structures of both types. However, one
sample of type 1 with a significantly lower silicon con-
centration (NSi = 4 × 1012 cm–2) exhibited no variation
of the current with time [15]. This fact indicates that
there exists a minimum threshold electron density
above which the formation of DX– centers is possible.

Figure 1 shows typical curves of the current change
δj(t) = j(0) – j(t) normalized to the initial value j(0) at
t = 0 as a function of the number N of voltage pulses,
plotted in the double logarithmic scale. In the region of
small N, the plots are linear and have a characteristic
slope of 0.5, which indicates that the relative change of
the current in this region is proportional to the square
root of time.1 This scale will be used for plotting the
kinetic curves below.

Before proceeding with the presentation of experi-
mental data, it is necessary to mention one peculiarity
of our experimental procedure. It is obvious that, at a
fixed output voltage of the voltage generator, a decrease
in the current leads to a decreased voltage drop on the
matching resistor and, hence, to an increase in the field

1 It should be noted that this behavior was observed in most cases
for the structures of both types. However, a large scatter of exper-
imental points in some cases did not allow the slope of the loga-
rithmic plots to be unambiguously determined, the possible value
ranging between 0.5 and 1.0.

–2.0

0 1

log[δj/j(0)]

logN

2 3 4 5 6

–1.6

–1.2

–0.8

–2.4

Si δ-layer
Contact

Au:Ge

Contact

Au:Ge

W
GaAs structures

30
–2

00
 n

m

Buffer layer

Semiinsulating GaAs substrate

80
0 

nm

1

2

Fig. 1. Double logarithmic plots of the normalized current
change versus number of field pulses (proportional to the
duration of field action) for planar-doped GaAs:Si struc-
tures with NSi = 7 × 1012 (1) and 1.4 × 1014 cm–2 (2) and the

initial Hall electron densities n = 3.5 × 1012 (1) and 1.5 ×
1013 cm–2 (2). The kinetic curves were measured at T =
77 K and a field strength of (1) 17.7 and (2) 18.8 kV/cm.
Symbols represent the experimental data; lines show linear
approximation of the initial stage. The inset shows a sche-
matic diagram of the sample.
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Fig. 2. Plots of the normalized current change versus square root of the duration of field action for a planar-doped GaAs:Si structure
of type 2 with NSi = 1.4 × 1014 cm–2 and the initial Hall electron density n = 1.5 × 1013 cm–2. The kinetic measurements were per-
formed at T = 77 (a) and 4.2 K (b) and various field strength (indicated at the curves). Symbols represent the experimental data;
curves show the results of approximation using Eq. (1) for the same field strength as the parameter. Crosses show the results of
measurements at a field strength of 7.4 kV/cm plotted without current correction.
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strength in the sample. Therefore, the measured current
change is related both to the expected decrease in the
conductivity and to an increase in the field strength. In
order to exclude the second factor, we introduced a cor-
rection to the current measured at each given time t. The
correction was determined using the current–voltage
characteristic and the value of voltage at this time.

The results of such correction are illustrated in
Fig. 2, presenting the kinetic curves δj(t)/j(0) (t is the
total time of field action) measured in various fields at
77 and 4.2 K for a sample doped to 1.4 × 1014 cm–2. In
agreement with the data in Fig. 1, an increase in the
duration of field action leads to deviation of the current
change from proportionality to the square root of time
and reveals a clear tendency to saturation. It should be
noted that the current change in this sample observed in
a field of 6.3 kV/cm were as small as about 1%.

A significant decrease in the maximum change of
current (for a large number of pulses N ~ 106) at certain
field strengths was observed in all samples. This result
suggests that the phenomenon under consideration is
characterized by a minimum threshold with respect to
the field strength.

To the best of our knowledge, there is no theory to
which the obtained could be compared. In order to pro-
vide for a quantitative description of data, we have
approximated the experimental points using an expres-
sion taking into account both characteristic features of
the observed behavior: (i) proportionality to the square
root of time in the initial region and (ii) saturation for
large times at a level dependent on the field strength.
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For fixed field strength, a simple expression meeting
both conditions is the two-parametric formula [16]

(1)

where δjs is the value of δj in the region of saturation and

δj t( )
j 0( )
-----------

δ js t( )
j 0( )

-------------- 1 t
τ
--– 

 exp– ,=
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Fig. 3. Plots of the normalized current change at saturation
versus field strength F for GaAs:Si structures of (1, 2) type
2 with NSi = 1.4 × 1014 cm–2 measured at (1) 77 and (2, data
for two samples) 4.2 K and for a sample of (3) type 1 with
NSi = 7 × 1012 cm–2 at 77 K. Symbols represent the experi-
mental data; curves show the results of approximation using
Eq. (2) with the parameters indicated in the table.
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τ is the characteristic time of current decay. Depending
on the particular sample and the applied field strength,
the experimental points could be more or less satisfacto-
rily described in terms of this expression. The corre-
sponding curves are depicted in Fig. 2 by solid curves.

Figure 3 presents the curves of δjs/j(0) versus field
strength measured at 77 and 4.2 K for the same sample
of type 2 (NSi = 1.4 × 1014 cm–2) as in Fig. 2 and the
curve measured at 77 K for a sample of type 1 (NSi = 7 ×
1012 cm–2). In order to demonstrate the reproducibility
of results, we also present the data for another samples
of type 2 measured at 4.2 K. The curves in Fig. 3 clearly
reveal the presence of thresholds and show saturation of
the δjs/j(0) value at large field strengths. It should be
emphasized that the level of saturation, although mark-
edly below unity, is nevertheless relatively large.

Proceeding from considerations analogous to those
used in obtaining formula (1), we have approximated
the experimental data in Fig. 3 using a three-parametric
formula

(2)

where F0 is the threshold field strength, δjss is the value
of δjs for F  ∞, and Fj characterizes the rate of sat-
uration current increase with the field strength. The
curves calculated using formula (2) are depicted by solid
lines in Fig. 3; the parameters of approximating curves
are listed in the table. A comparison of these parameters
shows that the maximum current change decreases with
increasing silicon content and temperature. The thresh-
old field increases with the doping level and rather
weakly depends on the temperature (at least, in the tem-
perature range studied). It is noteworthy that all data pre-
sented in Fig. 3 can be described by formula (2) with the
same Fj (to within the given approximation accuracy).

A considerable scatter of τ values for various field
strength usually hinders unambiguous interpretation of
this dependence. Nevertheless, it was possible to esti-
mate the characteristic time, which ranges from several
milliseconds to several tenths of a millisecond and
sharply drops when the field strength increases from the
threshold to 8–10 kV/cm. It is also possible to ascertain
that the current varies with time more rapidly at lower
temperatures and higher doping levels.

Some of the samples exhibited an interesting pecu-
liarity, which was manifested at the maximum field
strengths used in our experiments. In these cases, the
current changed in a stepwise manner and the expe-
rimental data could not be described by simple for-
mula (1). However, a description could be provided by
using two or three such expressions with different val-
ues of δjs/j(0) and τ for various time intervals. This sit-
uation is illustrated in Fig. 4. We believe that this
behavior is related to the well-known phenomenon of
so-called high-field domain formation in GaAs exposed
to high electric fields.

δ js t( )
j 0( )

--------------
δ jss t( )

j 0( )
---------------- 1
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F j

---------------– 
 exp– ,=
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As indicated previously [4], the conductivity of a
GaAs:Si structure remains unchanged for several days
after switching off the electric field, provided that the
samples are kept at low temperature in the dark. If a
sample is exposed to a strong electric field until the cur-
rent change exhibits saturation and then the field
strength is decreased, then the current increases to
reach a value corresponding to the new field. Figure 5
shows how a change in the current saturated as a result
of exposure in a strong electric field depends on a
weaker “destructing” field. This partial restoration
effect suggests that the saturation current and the field
strength are uniquely interrelated and that the former
value depends only on the experimental conditions and
the field strength rather than on the sample prehistory.

3. DISCUSSION

3.1. Dopant Layer Structure 

For the correct interpretation of experimental data, it
is necessary to answer the question as to whether our
structures can be considered as Si–δ-doped. In order to
answer this question, let us consider the distribution of

Table

n, 1012, cm–2 T, K /j(0) F0, kV/cm Fj, kV/cm

3.5 77 0.295 3.60 3.9

15 77 0.230 6.15 3.9

15 4.2 0.350 6.20 3.9

δ js

0 0.1 0.2

0.1

0.2

δj/j(0)

Fig. 4. Plot of the normalized current change versus square
root of the duration of field action for a planar-doped
GaAs:Si structure of type 2 with NSi = 1.4 × 1014 cm–2 in
the presence of a high-field domain. The kinetic measure-
ments were performed at T = 77 K and a field strength of
F = 12.7 kV/cm.

t s1/2,
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Si atoms in the vicinity of the plane of doping. This dis-
tribution strongly depends on the temperature and other
growth conditions and significantly varies in various
investigations. However, an analysis of the published
data [1, 2, 17–20] allowed us to conclude that “smear-
ing” of the doped layer in the structures of type 1 should
be small (FWHM within 4 nm) as compared to the
width of the electron distribution (above 10 nm).

The situation with the GaAS:Si structures of type 2
is not as clear. In this case, the crystallographic struc-
ture of the growth surface and the growth temperature
allow Si atoms to migrate toward the edges of terraces
and exhibit predominant ordering in the form of dim-
mers (see [12–14]). Apparently, this order only slightly
degrades in the course of subsequent growth [21]. For
this reason, we may suggest that, despite relatively high
growth temperature, the narrow distribution of silicon
is retained, provided that the temperature is decreased
immediately after formation of the doped layer. At the
same time, a small fraction of Si atoms, which do not
form dimers, can diffuse at the growth temperature
through a depth of up to 20 nm.

Another important fact is that the concentration of
silicon atoms and the electron density determined from
the Hall effect measurements usually [1, 19, 22] differ
by a factor of two in the structures of type 1 and by a
factor of ten or above in highly doped structures of
type 2. As is known, the Hall measurements fail to give
correct values of the total carrier density because of dif-
ferent electron mobilities in various subbands of the
Si−δ-doped structure. The results of measurements of
the Shubnikov–de Haas effect in the samples of type 1
mentioned above showed that the uncertainty falls
within 30%. However, even this correction does not
eliminate the discrepancy, which is especially pro-

6 10 12

0

5

δjs/j(0), %

8 14

10

F, kV/cm

Fig. 5. Plot of the normalized current change at saturation
versus field strength F after preliminary decrease of the cur-
rent at Fs = 13.8 kV/cm and T = 77 K.
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nounced in the structures with greater concentrations of
silicon atoms.

For considering this problem, it is necessary to
know the distribution of silicon atoms in the matrix lat-
tice. The results of various investigations of the homo-
geneously doped GaAs indicate that Si atoms may be
incorporated into the lattice not only at cation sites (to
form shallow-donor SiGa levels), but also at anion sites

(with the formation of  acceptors) and as compo-

nents of the –  and Si–VGa complexes. In the

latter case, the VGa defect can exist in the form of ,

, , or Si–X complex assigned to a flat VGa–SiAs–
AsGa complex but probably representing a disturbed
variant of the vacancy complex [23, 24]. The Raman
spectra of local vibrational modes show that such
defects are also present in our samples [4, 13].

Assuming that the scattering cross sections of these
defects are on the same order as in [25], it is possible to
eliminate the discrepancy between the Hall effect data
and the dopant concentration only for the samples of
type 1 (doped to a lower level).

In the case of GaAs homogeneously doped to a high
level (>1019 cm–3), the formation of DX– centers may
become a significant factor, leading to a decrease in the
density of free carriers relative to the concentration of
donors [26]. It was suggested that the discrepancy
observed in planar-doped structures can be also related
to the presence of DX– centers [1,22, 23, 27]; Arscott
et al. [28] claimed to have found direct evidence for this
effect in a sample with NSi = 1013 cm–2.

This situation requires certain comments. In hydro-
statically compressed homogeneously doped GaAs
samples with NSi = 6.3 × 1017 cm–3, the absorption spec-
trum of local vibrational modes exhibited a peak at λ =
395 cm–1 [29]. This signal was assigned to DX– centers
and theoretically considered in [30, 31]. However, such
peaks (extrapolated approximately to λ = 376 cm–1 at
atmospheric pressure) were not observed in the IR
absorption spectra of local vibrational modes for
Si-δ-doped structures [22] or in the Raman spectra of
our structures [4, 13] to within the sensitivity of the meth-
ods employed. Moreover, the main feature of DX– cen-
ters manifested by the existence of frozen photoconduc-
tivity at low temperatures was not unambiguously estab-
lished in [1, 2, 32]. For these reasons, we believe that the
concentration of DX– centers in our structures in the ini-
tial state is negligibly small (or such centers are absent).

In order to explain a large difference between the
free carrier density and the dopant concentration in the
structures of type 2, we assume that electrons are bound
on silicon atoms ordered in pairs occupying the neigh-
boring gallium sites. It is still unclear whether these
pairs are like dimers present on a growth surface with
partial charge transfer [33–36] or represent complexes

SiAs
–

SiGa
+ SiAs

–

VGa
–

VGa
–2 VGa

–3
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of covalently bound silicon atoms of the SiGa–SiGa type
suggested and theoretically studied in [37]. It should be
noted that an electrically neutral doped surface was
actually observed in [38]. If this is true, then only sep-
arate Si atoms situated in the vicinity of the doping
plane can supply electrons to the conduction band.

3.2. Calculation of the Energy Spectrum 

In order to interpret the experimental data, we calcu-
lated the energy spectrum of the Si-δ–doped layer at
various temperatures using the method described
in [39]. The calculation was performed for a model
comprising the ideal chain of independent quantum
wells. For this model to be applicable, it was necessary
that, on the one hand, the distance between quantum
wells would be sufficiently large and the overlap
between electron work functions even for high levels in
the quantum well could be ignored. On the other hand,
this distance must be not too large, so that one doped
plane would account for a small number of states with
the energies greater than that of the well edge. Under
this condition, the occupancy of these states can be
ignored. For the electron densities and temperatures
used in our experiments, both conditions can be satis-
fied if the distance between δ-layers falls within 150–
200 nm. We ignore nonparabolic shape of the conduc-
tion band. The influence of this factor on the positions
of energy levels and the occupancy of states does not
exceed 10% for the maximum electron density (n =
1.5 × 1013 cm–2) used in the calculations [40]. The pos-
itive charge of silicon ions is assumed to be homoge-
neously distributed in the plane (jelly model). This
approximation is valid for silicon ion concentration

 > 1012 cm–2. In this case, the average distance

between ions is smaller than the characteristic spatial size
of the electron wave function even in the ground state.

The system of equations to be solved comprises
one-dimensional Schrödinger and Poisson equations
supplemented by the condition of quasineutrality [11].
In terms of the dimensionless variables L0 = "2ε/me2,

E0 = me4/ε2"2, N0 = 1/ , where ε is the permittivity,
these equations are as follows:

(3)
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Here, V(x) is the self-consistent energy of the electron
cloud in the field of silicon ions with neglect of the
exchange-correlation contribution, Vex is the exchange-
correlation energy, ζ is the Fermi level, En0 is the energy
of the nth subband bottom, T is the temperature (in
dimensionless energy units), f(x) is the distribution
function of positive ions (assumed to be δ-shaped or
Gaussian), and Ns is the ion density related to the plane.
We used the exchange-correlation energy in the local
density approximation [41]

(6)

(7)

where

,

and βi , A, B, C, and D are constants given in [41]. In
these expressions, the exchange-correlation energy
does not explicitly depend on the temperature. As dem-
onstrated in [42], this dependence is insignificant in the
concentration range of interest and, hence, can be
ignored.

The corresponding boundary conditions are as
follows:

The system of equations (3)–(5) with the boundary
conditions was numerically solved by the iteration
method foe various temperatures and dopant concentra-
tions. In the zero approximation, the potential was cal-
culated as a linear combination of two parts. The first
part was determined by the electron charge and analyt-
ically calculated using the Poisson equation in the Tho-
mas–Fermi approximation and the second part was due
to positive ions. The exchange-correlation energy was
included into all subsequent approximations.

The calculations were performed for various dis-
tances within 150 nm from the plane of doping. The
interval between neighboring points was 0.1 nm for the
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Fig. 6. The results of self-consistent calculations of the potential profiles (curves with minima), Fermi levels (dashed lines) and bot-
tom of the lowest subband (dot-dash lines) for the electron temperatures 5 (1), 300 (2), and 700 K (3) in planar-doped GaAs:Si struc-

tures (a) with a donor concentration of  = 5 × 1012 cm–2 and the Gaussian distribution of donors with a halfwidth of d = 2 nm

and (b) with  = 1.5 × 1013 cm–2 and d = 20 nm or (dashed profile) with the true δ-like distribution (d = 0), T = 77 K.

NSi
+

NSi
+

distances below 30 nm and 0.4 nm for the greater dis-
tances. The self-consistent calculations were continued
until the potential at each of 600 points ceased to
change to within 0.1% accuracy. The number of energy
levels in the potential well was determined automati-
cally from the condition that the maximum energy level
differed from the zero-level energy only to within sev-
eral percent of a preset electron temperature. The num-
ber of iterations necessary to achieve this accuracy var-
ied from 30 to 150, depending on the temperature and
electron density.

Figure 6 shows the results of our calculations for the
Gaussian distributions with the halfwidths d = 2 nm (a)

and 20 nm (b) and the donor concentrations  = 5 ×
1012 cm–2 (a) and 1.5 × 1013 cm-2 (b) and for the true
δ-like distribution (dashed curve in Fig. 6b) for various
temperatures. These results clearly demonstrate strong
temperature dependence of the shape and depth of the
potential well, which was reported in [11, 16]. This
behavior of the potential has clear physical meaning: as
the temperature increases, occupation of the higher
sublevels and the corresponding increase in the average
distance of the electron cloud from the center of posi-
tively charged layer unavoidably lead to an increase in
the potential well depth. According to the results of our
calculations, the depth increases almost linearly when
the temperature increases from 5 to 700 K, at the same
rate of 0.38 meV/K for both dopant concentrations.

A comparison of the shapes of the potential well for
the δ-like and Gaussian distributions (Fig. 6b) shows
that expansion of the doped region at a given dopant
concentration leads to a decrease in the well depth, but

NSi
+
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only slightly (especially at high temperatures) changes
is shape. It should be noted that our results obtained for
low temperatures show very good agreement with pub-
lished data [1, 22, 43].

3.3. Review and Analysis of Experimental Data 

We believe [4, 16] that the observed decrease in the
current is related to the electron trapping at metastable
DX– centers formed in strong electric fields in planar-
doped GaAs:Si structures.2 In order to estimate the con-
centration of DX– centers formed in these structures, it is
necessary to find a quantitative relationship between this
decrease in the current and a change in the density of free
electrons. Previously, it was established that the forma-
tion of trapping centers in homogeneously doped regions
at weak electric fields is accompanied by an increase in
the electron mobility. This increase was explained by a
decrease in the number of scattering events due to the
formation of neutral centers [47] or due to the correlation
of positive and negative ions [48–53], which also leads to
a decrease in the scattering probability.

In our control measurements with weak (several volt
per centimeter) electric fields, a change in the current
during the formation of trapping centers was signifi-
cantly lower as compared to that observed in strong
fields. We explain this behavior by an increase in the
electron mobility in weak fields, which compensates a

2 A decrease in the current in strong electric fields was previously
observed in field-effect transistors, where the trapping centers
were formed in AlGa–AlGaAs barriers [44–46], and also attrib-
uted to the DX– centers.
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change in the current related to a decrease in the num-
ber of electrons (in agreement with the results for
homogeneously doped layers). However, the scattering
on impurities in strong fields plays a rather insignificant
role [54] and it is reasonable to suggest that a change in
the current observed in our measurements involving hot
electrons is determined primarily by changes in the
density of free electrons.

Now we will separately consider the most important
features of the phenomenon under consideration and
compare the behavior observed with the results for
homogeneously doped layers.

1. A decrease in the current in a strong electric field
was observed only at low temperatures. The effect is
qualitatively the same in the temperature range from 77
to 4.2 K.

2. It was established previously [4] and confirmed in
this study that the new value of conductivity of a
GaAs:Si structure remains unchanged for several days
after switching off the electric field. However, heating
the sample to a temperature above 120–140 K or expo-
sure to a light with a wavelength below 0.9 µm restores
the current on the initial level. It was found that such
cycles (decreasing the current in a strong field at a low
temperature followed by restoration on heating or illu-
mination) could be multiply repeated without visible
changes.

This behavior is similar to that observed for homo-
geneously doped AlxGa1 – xAs:Si layers with x > 0.23
(or with lower x and undoped GaAs at elevated pres-
sures) under the conditions of DX– center formation
[26, 50, 55–59]. It is this analogy that allows us to iden-
tify the trapping centers formed in strong electric field
with the DX– centers [4].

3. A remarkable peculiarity of the observed effect is
the partial restoration of current in the field lower than
that used for the formation of trapping centers. The rel-
ative increase in the current depends on the applied
voltage.

There are two basic differences between the trap-
ping centers in homogeneously doped and planar-
doped structures.

4. An important experimental fact is the existence of
a well-defined threshold with respect to the donor con-
centration for the field-induced decrease in the current.
No changes in the current were observed in a field of
about 10 kV/cm in samples with a silicon concentration
of 4 × 1012 cm–2. This planar concentration corresponds
to a bulk value of 8 × 1018 cm–3. In homogeneously
doped layers, metastable centers were observed at least
for 2 × 1017 cm–3 [55, 60, 61]. To our knowledge, no
data on such thresholds were reported for homoge-
neously doped AIIIBV compounds or their alloys.

5. Another remarkable feature of the GaAs:Si struc-
tures studied is that a decrease in the current is propor-
tional to the square root of time in the initial stage and
can be described by a simple function (1) for large times.
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Most of the previous investigations of DX– centers
in homogeneously doped AIIIBV compounds were per-
formed under the conditions (hydrostatic pressure,
alloys with large x) where the main state of silicon cor-
responded to DX– centers with an energy level in the
forbidden band. In this case, the energy barrier for the
electron emission from DX– centers is higher than the
barrier for electron trapping. Therefore, the occupancy
of DX– centers in the state corresponding to thermal
equilibrium (the degree of which depends on x or the
pressure) becomes measurable only upon cooling the
sample below a certain temperature (120–140 K). At
this temperature, on the one hand, a time for the over-
barrier trapping of free electrons from the Γ band is
small as compared to the time of measurements and, on
the other hand, the probability of ejection of the trapped
electron is negligibly small. However, the results of the-
oretical calculations [62–65] show that the DX– center
in GaAs at atmospheric pressure corresponds to a high
resonance metastable state in the conduction band, hav-
ing an effective energy of about 0.230–0.295 eV rela-
tive to the Γ band edge, which increases with the dopant
concentration [26, 47, 66]. The barrier for the electron
ejection from this state is about 0.30–0.33 eV, while the
barrier for trapping electrons with energies at the con-
duction band bottom is about 0.55–0.63 eV.

A significant (measurable) population of these cen-
ters in thermal equilibrium is possible only provided
that the conduction band is filled with electrons approx-
imately up to the level of the DX– center. Therefore, the
electron density must be about 1.5 × 1019 cm–3. Proba-
bly, the difference between the density of free electrons
and the dopant concentration in heavily homoge-
neously doped samples is related (at least partly) to the
presence of DX– centers [8] (this was already men-
tioned in Section 3.1). Generally speaking, it is theoret-
ically possible to form a DX– center in GaAs even at
lower electron densities. For example, this can be
achieved by the optical excitation of free or valence
electrons into a resonance state of silicon atom with a
zero generalized coordinate Q, followed by its transfor-
mation into the DX– center (Q ≠ 0) due to a strong elec-
tron–phonon interaction in this state (see [67] and refer-
ences therein) or due to the Jahn–Teller interaction [68].
However, the resonance character of this interaction and,
hence, the short lifetime make the electron relaxation
within the conduction band more probable than the trap-
ping of a second electron with “large relaxation” of the
lattice (corresponding to the DX– center formation).

3.4. Formation of DX– Centers 
during Redistribution of Hot Electrons

in a Quantum Well 

The results of calculations of the temperature
dependence of the energy spectrum (Fig. 6) were used
for describing the effect of a strong electric field on the
shape of the potential in the quantum well formed as
SICS      Vol. 99      No. 3      2004
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a result of planar doping. The self-consistent potential
is independent of the lattice temperature: the tempera-
ture in the Fermi function refers to the electron temper-
ature. At high electron densities characteristic of our
samples, the electron–electron interactions predomi-
nate over other inelastic scattering processes even in
strong electric fields. Therefore, the electron distribu-
tion function can be approximated by the Fermi distri-
bution with an effective electron temperature. We did
not study the relationship between the electron temper-
ature and the electric field strength, which can be deter-
mined using the Monte Carlo method or by numerical
solution of the Boltzmann equation. However, in order
to evaluate the order of magnitude, we extrapolated the
results of calculations [69, 70] performed for higher
field strengths and took into account some results for
the homogeneously doped GaAs [71]. As can be seen
from Fig. 7, a temperature of about 700 K corresponds
to a field of 3 kV/cm, that is, to the observed threshold
for DX– center formation.

In order to explain the mechanism of DC– center for-
mation in a strong electric field, it is important to take
into account that the energy level of DX– centers in the
absence of such fields occurs at EDX > 0 in the structures
of both types at T below approximately 200 K (see
Fig. 6). Fore this reason, the wave functions of quasi-
free electrons and the electron state corresponding to
the DX– center overlap insignificantly and the probabil-
ity of transitions between these sates is small. In a
strong electron field, the energy level of the DX– cen-
ters shifts to fall within the potential well and the for-
mation of DX– centers becomes principally possible.

1000

0 2000

T, K

F, kV/cm

2000

4000 6000

Fig. 7. Plot of the calculated electron temperature versus
electric field strength for δ-doped GaAs with an impurity
concentration N = 5 × 1011 cm–2 at a lattice temperature T =
4 K [69] (circles) and N = 4 × 1011 cm–2 at T = 5 K [70] (tri-
angles) and for a homogeneously doped GaAs [71] without
scattering on impurities (squares).
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In addition, the electric field increases the screening
radius [16]. According to [62], an increase in the
screening radius leads to a decrease in the energy of
DX– centers and favors the shift of SiGa toward the
interstitial position.

It should be emphasized that, as was demonstrated
previously [4], a decrease in the current depends only
on the product of the pulse duration and the frequency
(within the interval of pulse durations studied). This
implies that an increase in the lattice temperature dur-
ing the pulse does not influence the DX– center forma-
tion. Therefore, the system is not in thermodynamic
equilibrium and, strictly speaking, the dynamics of
DX– center formation proposed in [62] is inapplicable.

However, is necessary to take into account that hot
carriers may excite, in addition to optical and acoustic
phonons, the local oscillations of silicon atoms.3 Such
a local model can decay into phonons of lower energies
during a short period of time [72]. If the probability of
binding two hot carriers on a substitutional silicon
impurity is comparable with the probability of decay of
the local vibrational modes, the formation of DX– cen-
ters also becomes possible. Apparently, this process
must significantly depend on the electron density,
which probably explains the experimentally observed
threshold with respect to the donor concentration.

The processes in planar-doped structures are charac-
terized by the hierarchy of the electron trapping times,
which is related to a multilevel structure of the energy
spectrum and the potential fluctuations in the plane of
doping [73, 74]. The structure under consideration
resembles the systems scale-invariant with respect to
time [75] and its behavior is descried by a “delayed”
exponent observed in our experiments.

4. CONCLUSIONS

We have thoroughly studied the kinetics of current
changes in planar-doped GaAs:Si structures in strong
electric fields at low temperatures (T = 77 and 4.2 K).
The obtained data, together with the results of our pre-
vious investigations, show that (i) a decrease in the cur-
rent of hot electrons is caused by the formation of DX–

centers in the plane of doping and (ii) this process is
characterized by an important feature distinguishing it
from the DX– center formation in homogeneously
doped crystals: the formation of DX– centers in the
GaAs:Si structures studied is characterized by thresh-
olds with respect to the electric field strength and the
electron density (or donor concentration).

In order to explain this behavior, we calculated the
depth and shape of the potential well and the position of
the Fermi level for various electron temperatures. As is

3 To our knowledge, no theoretical investigations or experimental
observations of local oscillations excited by hot electrons have
been reported. However, this possibility may be indicated by an
additional phonon flux observed in the time-of-flight spectra [9].
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known, the potential well in δ-doped structures is
formed due to the positive charge of ionized impurity
and the space charge of electrons. In a strong field, the
cloud of hot electrons shifts to a greater distance from
the plane of doping and the potential well increases in
both width and depth.

In a zero electric field, the energy level of DX– cen-
ters is significantly above the well edge and there is vir-
tually no electrons with such energies in the well,
which makes the probability of DX– center formation
negligibly small. In a strong field, the electron temper-
ature increases, the edge of the well raises, and the
energy level of DX– centers falls within the well, which
makes the formation of DX– centers possible. This
explains the existence of a threshold with respect to the
electric field strength. The estimates of the electron
temperature obtained from the results of our measure-
ments give a threshold value close to that observed in
experiments. The existence of a threshold with respect
to the electron density can be explained within the
framework of the hypothesis about the formation of
DX– centers involving the excitation of local vibra-
tional modes by hot electrons.

Interpretation of the observed kinetics of DX– center
formation in planar-doped GaAs:Si, having the shape
of a “delayed” exponent, requires further development
of the proposed model.
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Abstract—The mirror nesting of the Fermi contour of a quasi-two-dimensional electronic system and the pres-
ence of at least one negative eigenvalue of the Fourier transform of interaction energy are sufficient conditions
for the formation of bound states of the relative motion of pairs with large total momenta. As distinct from pair-
ing by attractive interactions, the wave functions of such pairs have alternating signs and lines of zeros that
twice intersect the Fermi contour in the regions of definition of relative motion momenta. The total number of
intersection points between the line of zeros and the Fermi contour is determined by symmetry of a linear com-
bination of the wave functions of crystallographically equivalent pairs. Long-lived quasi-stationary states exist
in the form of noncoherent pairs with different but close momenta and cause substantial suppression of the den-
sity of one-particle states (the appearance of a pseudogap) over a fairly wide energy range. The upper temper-
ature bound of the pseudogap is determined by the decay of pairs, and the lower bound, by phase coherence
disturbance when pairs leave the condensate that is formed at some optimum pair momentum value owing to
mirror nesting. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The attraction of particles excited outside (or holes
excited inside) the Fermi surface results in the forma-
tion of a true bound state of a pair with zero total
momentum [1] (Cooper pair) and decreases the energy
of the system. This is evidence of instability of the
ground state [2], which is treated at zero temperature as
a fully occupied momentum space region within the
Fermi surface. The energy of the bound state of a Cooper
pair exponentially depends on the dimensionless
parameter, the product of the effective coupling con-
stant and the density of states on the Fermi surface. The
preexponential factor is determined by the energy
width of the layer adjacent to the Fermi surface in
which attraction is defined that prevails over Coulomb
repulsion. The separation of a layer with predominant
attraction means the dynamic bounding of the phase
space region that contributes to relative pair motion
states. For pairs with zero total momentum, there are no
kinematic constraints, and the momenta of particles
coincide with the momenta of relative motion and can
be arbitrary. The Fermi surface is the natural boundary
that separates momentum space regions where pairs of
particles (Brillouin zone region external with respect to
the Fermi surface) and pairs of holes (internal Fermi
surface region) can be excited. At this boundary, the
energy of pair excitation vanishes. Note that, in addi-
tion to the stationary state with a negative energy (a dis-
crete level splitting off from the continuous spectrum
band), the Cooper problem of two attracting particles
formally admits solutions that belong to the continuous
1063-7761/04/9903- $26.00 © 20585
spectrum band. The weight of each such state of the rel-
ative motion of a Cooper pair is, however, small
(inversely proportional to the number of particles) com-
pared with the weight of the stationary state (which is
on the order of magnitude of one). We can therefore
ignore the redistribution of levels in the continuous
spectrum band.

For pairs with nonzero total momenta, the momen-
tum space regions accessible to the pairing of both elec-
trons and holes are substantially reduced [3–5]. This
kinematic constraint decreases the statistical weight of
a pair (of the number of quantum states that contribute
to the wave function of the relative motion of the pair)
and, accordingly, the bound state energy. The locus cor-
responding to zero excitation energy of the pair is then
a set of a smaller dimension than a surface in the three-
dimensional momentum space, as for pairs with zero
momenta. For this reason, pairing becomes possible at
a not arbitrarily small coupling constant. The supercon-
ducting pairing channel with zero momentum therefore
stands out as predominant [6].

Cuprate superconducting compounds with layered
crystal structures, which are quasi-two-dimensional
(2D) electronic systems, exhibit certain properties (in
both the superconducting and normal states) that do not
fit in [7] with the Bardin–Cooper–Schriffer theory of
superconductivity. Most clearly, the difference between
usual and high-temperature cuprate superconductors
manifests itself by the pseudogap behavior of the latter
at a relatively low hole doping level in a fairly wide
temperature interval above the superconducting transi-
004 MAIK “Nauka/Interperiodica”
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tion temperature [8]. This behavior corresponds to sub-
stantial suppression of the density of one-particle
states. It can naturally be explained on the assumption
that pairs of carriers whose condensation is responsible
for superconductivity dissociate not at the condensation
temperature, at which phase coherence of pairs disap-
pears, but at a much higher temperature that corre-
sponds to pseudogap opening. In usual superconduc-
tors, the region of fluctuations close to the supercon-
ducting transition temperature is extremely narrow,
which is responsible for the short lifetime of pairs out-
side the condensate. It follows that, in the Bardin–Coo-
per–Schriffer scheme corresponding to the attraction of
carriers that form pairs, the transition to the noncoher-
ent state is almost immediately accompanied by unpair-
ing. This circumstance provides grounds for claiming
that the Bardin–Cooper–Schriffer scheme based on the
mean-field approximation is inapplicable to the prob-
lem of high-temperature superconductivity of cuprates.

As in the Bardin–Cooper–Schriffer model, the
superconducting state of cuprates arises because of sin-
glet pairing of carriers in copper–oxygen planes. The
electronic 2D spectrum of cuprates, however, differs
from that of the isotropic Bardin–Cooper–Schriffer
model. The line that separates the occupied and unoc-
cupied states in the 2D momentum space, the Fermi
contour, is in its essential part situated in the neighbor-
hood of the saddle point of the electronic dispersion law
at doping levels close to half-doping [9]. The character-
istic shape of the Fermi contour in cuprates with hole
doping is evidence for strong anisotropy of the Fermi
velocity and effective masses of electrons and holes,
which strengthens the logarithmic Van Hove singularity
of the 2D density of states. For this reason, the principal
values of the tensor of reciprocal effective masses,
which determine the kinetic energy of the relative
motion of a pair, have different signs in a broad neigh-
borhood of the saddle point.

The special features of the dispersion law in the
vicinity of the saddle point manifest themselves when
particles with a large total momentum (on the order of
twice the Fermi momentum) are paired [5]. The energy
of such a pair is the sum of the energy of the center of
mass and the energy of relative motion. The bound
state, if it appears, corresponds to a decrease in the
energy of relative motion. Because of the kinematic
constraints on pairing with a nonzero pair momentum
in the 2D system, the boundary that separates the
regions of filled and vacant states is generally formed
by two points. For this reason, the bound state of a pair
can only arise on the condition that the effective cou-
pling constant exceeds some threshold value, because
the density of states of relative motion vanishes at zero
pair excitation energy.

If, for some distinguished directions and total pair
momentum values, the electronic dispersion law admits
the formation of a boundary between filled and vacant
states in the form of segments of lines that are Fermi
JOURNAL OF EXPERIMENTAL 
contour regions, these segments constitute the pair
Fermi contour, which plays the same role for relative
pair motion as the Fermi contour for the motion of par-
ticles [10, 11]. The appearance of a pair Fermi contour
is possible provided the mirror nesting condition is sat-
isfied, that is, when separate Fermi contour segments
coincide with the isoline of the kinetic energy of rela-
tive pair motion [12]. This condition can be exactly sat-
isfied when the pair momentum is oriented along one of
the symmetrical directions in the 2D Brillouin zone and
the Fermi contour has a special form that determines
the pair momentum value. Perfect mirror nesting is a
necessary condition for the formation of a bound state
of the relative motion of a pair with a nonzero total
momentum at an arbitrary (arbitrarily small) effective
coupling constant [13]. Bound states are also retained
(with lower bound state energies) when mirror nesting
is approximate, and they disappear at some characteris-
tic deviation from perfect nesting [12].

Currently, the nature of pairing interactions in
cuprates cannot be considered established unambigu-
ously. In particular, along with usual electron–phonon
pairing attraction [14, 15], pairing mechanisms caused
by repulsive interaction are discussed [16]. For this rea-
son, the solution to the problem of two repelling parti-
cles constituting a pair with a large total momentum can
be useful for determining the nature of the supercon-
ducting state of cuprates. The simplest approximation
corresponding to point repulsive interaction (as in the
Bardin–Cooper–Schriffer scheme) shows [11] that two
solutions to the Cooper problem arise in a continuous
spectrum band of the relative motion of a pair with a
large total momentum. These solutions are character-
ized by complex energies whose imaginary parts have
different signs. One of these solutions with the smaller
real energy part has negative decay, which can result in
a tendency toward system instability with respect to
repulsive interaction. The second solution with the cor-
rect decay sign corresponds to the redistribution of lev-
els in the continuous spectrum band. It can, in particu-
lar, be responsible for the formation of a quasi-station-
ary state with a fairly long lifetime [11].

According to commonly accepted views [17], the
physics of cuprates is determined by the very strong
repulsive interaction of electrons (or holes) localized on
copper atoms in the conducting copper–oxygen planes.
It is believed that the Hubbard model, which only
includes correlations on one and the same node, and
more complex related models that also include fairly
well-screened internode interactions (the Penson–
Colb–Hubbard model [18]) are well suited for describ-
ing strong repulsive electron–electron correlations. The
higher the Hubbard energy of intracenter correlation U0
compared with the energy bandwidth t (U0 @ t), the
higher the predictive ability of such models. It appears
that approximately equal U0 and t values correspond to
real cuprate compounds. The physics of cuprates can
therefore be qualitatively studied in terms of band mod-
AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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els, which give the best results when the opposite ine-
quality t @ U0 holds. In the present work we use this
approach taking into account the metric of the momen-
tum space in the region of momentum definition for rel-
ative pair motion to solve the problem of bound states
of pairs of likely charged particles with large total
momenta and repulsive interaction in a quasi-two-
dimensional electronic system.

2. THE KINEMATICS OF PAIRS

Let ε(k) be the law of dispersion of particles in a 2D
electronic system. The ε(k) = µ isoline, where µ is the
chemical potential, then determines the Fermi contour,
and a pair of likely charged particles with the total
momentum K and the energy of the center of mass
εcm(K) = 2ε(K/2) should have momenta k+ and k– either
inside [ε(k±) < µ] or outside [ε(k±) > µ] the Fermi con-
tour, as is schematically shown in Fig. 1. The momenta
of the particles constituting the pair, like the relative
pair motion momentum k = (k+ – k–)/2, are within some
ΞK region of the momentum space, which, generally
speaking, consists of two subregions, namely, the filled

(at T = 0)  and vacant  regions. It follows that
the momenta of particles excited above the Fermi con-

tour belong to , and the momenta of holes excited

inside the Fermi contour, to . The ΞK region, like its

subregions  and , is symmetrical with respect
to the inversion of the relative pair motion momentum,
k  –k. Note that hole and electronic fillings corre-

spond to the  and  regions, respectively, in
cuprates with high-temperature superconductivity.

The energy of a pair is the sum of the energy of the
center of mass and the relative motion energy,

(1)

The metric of the 2D momentum space of relative pair
motion (the metric of the momentum space in the
vicinity of the K/2 point) can be determined by repre-
senting (1) as a quadratic form corresponding to the
first nonvanishing terms of the expansion of (1) in pow-
ers of momentum components of relative pair motion,

(2)

Here, the 2D-tensor Dαβ(K) determines the reciprocal
reduced masses, and the summation over repeating
Greek indices from 1 to 2 is implied. If the principal
values of this tensor have like signs, the metric of the
momentum space of relative pair motion can be consid-
ered elliptical, because the kinetic energy isolines of
relative motion are ellipses at energies close to zero
(Fig. 1a). If the principal values of the Dαβ(K) tensor

ΞK
–( ) ΞK

+( )

ΞK
+( )

ΞK
–( )

ΞK
–( ) ΞK

+( )

ΞK
–( ) ΞK

+( )

εK
r( ) k( ) ε K/2 k+( ) ε K/2 k–( ) 2ε K/2( ).–+=

εK
r( ) k( ) Dαβ K( )kαkβ.≈
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have different signs, quadratic form (2) determines a
hyperbolic metric, because isolines are then two fami-
lies of hyperbolas in a narrow neighborhood of the K/2
point. The structure of isolines over the whole ΞK

region, which constitutes an extended neighborhood of
the K/2 point, is then more complex.

The density of relative motion states when the met-
ric of the momentum space is elliptical is schematically
shown by a thick line in Fig. 1c. When the boundary

separating  and  consists of points (P and P ' in
Fig. 1a), zero density of states corresponds to the ener-
gies of the relative motion of the pair at these points,
εp = 2[µ – ε(K/2)]. The smallness of the density of
states in the vicinity of the εp energy corresponds to
only taking into account the contribution of isoline
regions that belong to the ΞK region (such isolines are

shown for the  region in Fig. 1a). If the boundary

between  and  was a line (the pair Fermi con-
tour shown in Fig. 1b by a thick line), the density of
states of the relative motion of the pair, gr , at the ellip-
tical metric of the ΞK region (shown by a thick line in
Fig. 1d) would be finite at the εp energy. Continuous
spectrum band edges correspond to the –εm and εM rela-
tive motion energies εr . Clearly, εm = 0 if the metric is
elliptical.

If the metric of the ΞK region is hyperbolic, the
energy of relative pair motion can take both positive
and negative values. The logarithmic Van Hove singu-
larity of the density of states (thin lines in Figs. 1c and
1d) then corresponds to zero energy (εs = 0). The den-

ΞK
–( ) ΞK

+( )

ΞK
–( )

ΞK
–( ) ΞK

+( )

P

(a)

P'

ΞK
(+) ΞK

(–)

(b)

ΞK
(+) ΞK

(–)

–εm εs εp εM

εr

gr
(c)

–εm εs εp εM

εr

gr
(d)

Fig. 1. Kinematically allowed momentum space region
(hatched) for relative pair motion with the total momentum
K: (a) boundary separating the occupied (Ξ(–)) and unoccu-
pied (Ξ(+)) region ΞK subregions degenerates into points P

and P ' and (b) boundary between Ξ(–) and Ξ(+) is segments
(shown by tick lines) that form the pair Fermi contour. The
K/2 vector corresponds to the center of the ΞK region. The
density of states of relative pair motion gr as a function of
the kinetic energy of relative motion: (c) pair Fourier con-
tour degenerates into points [P and P ' in (a)], and (d) pair
Fourier contour of finite length [see (b)].
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0

(a)

ζ0 ζ

g

0

(b)

ζ0 ζ

g

ζs

Fig. 2. Density of states for excited (a) pair of particles and (b) pair of holes. Thin lines are the densities of state when the pair Fermi
contour degenerates into points (P and P' in Fig. 1a). The formation of the pair Fermi contour of a finite length results in a nonzero
density of states at excitation energy ζ = 0 (thick lines). Figure 2b corresponds to a hyperbolic metric of the momentum space in
the Ξ(–) region; excitation energy ζs corresponds to the Van Hove 2D singularity. Figure 2a corresponds to an elliptical momentum
space metric; the density of states for the excitation of pairs of both particles and holes then does not have singularities within the
continuous spectrum band.
sity of states vanishes at the energy equal to εp (Fig. 1c)

if the boundary between  and  degenerates into
points. The appearance of the pair Fermi contour results
in a finite value of the density of states at the εp point,
as is shown in Fig. 1d.

The excitation energy ζ of a pair of particles outside
the region bounded by the Fermi contour corresponds

to the kinetic energy of relative pair motion (K) ≥
εp , and the density of states of such excitations over this
energy range coincides with the density of states of rel-

ative pair motion gr( ), as is shown in Fig. 2a. If a
pair of holes is excited inside the region bounded by the
Fermi contour, the excitation energy (positive by defi-
nition) corresponds to the kinetic energy of the relative

motion of a pair of particles in the interval 0 ≤ (k) ≤

εp for the elliptical metric and –εm ≤ (k) ≤ εp for the
hyperbolic metric. The density of states of such excita-
tions that corresponds to these intervals of the kinetic
energy of relative pair motion reproduces the density of
states of relative motion gr shown in Fig. 1 up to a
change in the origin for counting energy and mirror
reflection at the εp point, as is shown for the hyperbolic
metric in Fig. 2b.

At zero excitation energy (ζ = 0), the densities of
excitation states of a pair of particles and a pair of holes
coincide. If the momentum space metric is hyperbolic,
the behaviors of the densities of states at ζ > 0 are
essentially different for pairs of particles [g(ζ) is a reg-
ular function without singularities over the whole range
0 ≤ ζ ≤ ζ0] and pairs of holes [g(ζ) exhibits a logarith-
mic singularity at the ζs = 2µ – 2ε(K/2) point, which
can be close to the left edge of the continuous spectrum
band]. It follows that, if ζs is small, and it is small under
the conditions of a strong anisotropy of the effective

ΞK
–( ) ΞK

+( )

εK
r( )

εK
r( )

εK
r( )

εK
r( )
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masses in an extended neighborhood of the saddle
point, electron–hole asymmetry of the density of states
of relative motion is well defined. There is no such
asymmetry for the elliptical metric, when the functions
representing the density of states of the relative motion
of a pair of electrons and a pair of holes are qualitatively
similar; that is, the density of excitation states of a pair
of particles and a pair of holes has the form shown in
Fig. 2a.

The appearance of the pair Fermi contour, which
results in a nonzero density of states of relative motion
at ζ = 0, is an obvious condition necessary for pairing
at K ≠ 0 to be possible at an arbitrarily small effective
coupling constant. By definition, the pair Fermi contour
is the 2D momentum space locus where Fermi contour
segments coincide with the kinetic energy isolines of
relative pair motion corresponding to zero excitation

energy, (K) = εp . As the one-particle states on the
pair Fermi contour with the momenta K/2 ± k, which
correspond to a pair with the total momentum K and the
relative motion momentum k, have energies equal to
the Fermi energy µ, the equations that determine the
pair Fermi contour can be written as ε(K/2 ± k) = µ.
These equations determine two lines in the 2D momen-
tum space of the relative motion of a pair with the total
momentum K. These are the coinciding segments of
these two lines that form the pair Fermi contour. The
region of relative motion momenta bounded by these
lines, for which the pair Fermi contour is part of its

external boundary, is the  region defined above.

The region external with respect to , which also has
the pair Fermi contour as part of its boundary (the
boundary of this region includes segments of the 2D

Brillouin zone boundary) is the  region. The char-
acter of the solutions to the system of equations ε(K/2 ±

εK
r( )

ΞK
–( )

ΞK
–( )

ΞK
+( )
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k) = µ is shown in Figs. 3a and 3b for the cases when
the pair Fermi contour degenerates into two points and
when it has a finite length, respectively. In Fig. 3a,
which corresponds to the isotropic dispersion law, kF is

the Fermi momentum and kp = ; the struc-
ture of the relative motion energy isolines is shown in

the  region. In Fig. 3b, where the Fermi contour is

a square with rounded corners, the  region is
hatched.

3. ELEMENTARY EXCITATIONS

The Hamiltonian of the electronic subsystem of a
cuprate compound can be written in the nodal represen-
tation as

(3)

where the three-dimensional vector index n = (n1, n2,

n3) numbers crystal lattice nodes; ( ) is the oper-
ator of creation (annihilation) of particles (a particle is
usually understood in cuprate compounds as a hole

with spin σ = ↑ , ↓  on node n);  =  is the
operator of the occupation number of the state with spin
σ on node n;  = ; and the Hamiltonian
parameters ε0(n – n'), U(0), and U(n – n'), which deter-
mine the seed dispersion law, the intracenter correlation
energy, and the interaction energy between particles on
nodes n and n', respectively, do not depend on the nor-
malization volume. As cuprates are compounds with a
layered crystal structure characterized by weak interac-
tions between neighboring conducting copper–oxygen
planes, these interactions can be ignored and Hamilto-
nian (3) can be approximated by the sum of the 2D
Hamiltonians of the electronic subsystems in copper–
oxygen planes. Let us consider one of these planes and
determine the operators of creation and annihilation of
a particle whose 2D momentum is k and spin σ with the
use of the two-dimensional Fourier transform,

(4)

where N0 is the number of elementary cells in the plane
under consideration with the normalization area S and

kF
2 K2/4–

ΞK
–( )

ΞK
–( )

Ĥ ε0 n n'–( )ĉnσ
† ĉn'σ

n n' σ, ,
∑=

+ U 0( ) n̂n↑ n̂n↓
1
2
--- U n n'–( )n̂nn̂n' ,

n n'≠
∑+

n

∑

ĉnσ
† ĉnσ

n̂nσ ĉnσ
† ĉnσ

n̂n n̂nσσ∑

ĉkσ
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n

∑=
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n = (n1, n2) is the 2D vector index that determines the
position of the node on the plane and in the exponents;
it has the meaning and dimension of the radius vector
of the node. The Hamiltonian in the 2D momentum rep-
resentation takes the usual form

(5)

This Hamiltonian is obtained from the  –  opera-

tor, where  is the operator of the total number of par-
ticles,

(6)

can be treated as the seed dispersion law, and the matrix
element of interparticle interaction is

(7)

Here, the integral representation corresponds to the
case when the U(n) parameters comparatively weakly
vary at distances on the order of the lattice constant a.
The use of the integral representation of V(k) matrix
elements virtually excludes extremely strong intrac-
enter correlations from consideration. As has been

Ĥ
2D( ) ε0 k( ) µ–[ ] ĉkσ

† ĉkσ

kσ
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+
1
2
--- V q( )ĉk q σ,+

† ĉk' q σ',–
† ĉk'σ'ĉkσ.

kk'qσσ'

∑

Ĥ µN̂
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ε0 k( ) ε0 n( )e ik– n⋅
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V k( ) 1
N0
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--- U r( )e ik– r⋅ d2r.∫

K/2
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kP kP
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Fig. 3. Character of solutions to the system ε(K/2 ± k) = µ
when the pair Fermi contour (a) degenerates into two points

and (b) has a finite length; the  region is hatched.ΞK
–( )

(a) (b)
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mentioned, these correlations are moderate (compara-
ble with the energy bandwidth t, U(0) ~ t) in cuprates.

The existence of a “large” Fourier contour deter-
mined by the total concentration of particles (1 – x),
where x is the level of doping, follows from angular res-
olution photoemission spectroscopy measurements
[19, 20]. We can therefore treat the state that corre-
sponds to the fully filled one-particle states inside the
Fermi contour and fully vacant states outside it as the
ground state |F〉  of Hamiltonian (5). The excited state
corresponding to a particle with the momentum k and
spin α added to a system of N particles can then be

defined as |F〉 , and the excited state corresponding
to a particle with the momentum k and spin α removed
from the system of N particles, as |F〉 . These
excited states are not eigenstates of Hamiltonian (5),
because the commutators between this Hamiltonian

and the  and  operators contain products of
three Fermi operators. The linearization of these com-
mutators in the approximation of chaotic phases yields
the equations of motion [21]

(8)

which determine the dispersion law

(9)

reproducible in principle from angular resolution pho-
toelectron spectra. Here,

is the mean occupation number of the state with
momentum p and spin σ, which, in the absence of a
magnetic field, is independent of the spin index.

The first equation in (8) determines a quasi-particle
with the energy (ε(k) – µ) and momentum k > kF , where
kF is the Fermi momentum in the direction of momen-
tum k. The second equation determines a quasi-hole
with the energy (µ – ε(k) and momentum k < kF . The
boundary that separates the regions of filled and vacant
states in the 2D momentum space, that is, the Fermi
contour, is determined by the equation ε(k) = µ.

Next, let us consider singlet excitations in the form
of a pair of particles outside, or a pair of holes inside,
the Fermi contour. The total momentum of the pair K =
k+ + k– remains unchanged, and the state of the pair at

ĉk α,
†

ĉk α,

ĉk α,
† ĉk α,

Ĥ
2D( )

ĉk α,
†,[ ] – + ε k( ) µ–( )ĉk α,

† ,=

Ĥ
2D( )

ĉk α,,[ ] – – ε k( ) µ–( )ĉk α, ,=

ε k( ) ε0 k( ) V q( )nσ p( ) δq0 δp k q+, δσα–[ ] ,
pqσ
∑+=

nσ p( ) F〈 | ĉ p σ,
† ĉ p σ, F| 〉=
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given K is formed as a linear combination of relative
motion states with momenta k = (k+ – k–)/2,

(10)

where the spin index  is opposite to α; that is, if α =
↑ (↓ ), then  = ↓ (↑ ). Calculations of the commutators

between Hamiltonian (5) and the operators  and 
defined as

(11)

and subsequent linearization of the resulting equations
in the approximation of chaotic phases lead to integral

equations that determine the (k) and (k) coef-

ficients in linear combinations (10). The (k) coef-
ficient is given by

(12)

where the kinetic energy of a pair of particles counted
from the chemical potential is

(13)

and E is the pair excitation energy to be determined.
The energy of particles ε(K/2 ± k) is given by (9). At
zero temperature, the occupation numbers in (12) are
one or zero if their arguments K/2 ± k' are inside or out-
side the Fermi contour, respectively. The expression in
square brackets therefore equals one if the K/2 ± k
momenta of particles that constitute a pair with the total
momentum K are both outside the Fermi contour. This

condition determines the momentum space region 
where the summation over k' in (12) is actually per-
formed. At a nonzero temperature, the multiplier in the
square brackets is smaller than one and the summation
(with the corresponding weight) is over the whole
momentum space. It follows that the interaction
between pair components experiences “temperature
weakening.”

The equation for (k) is obtained in the form

(14)

N 2; K+| 〉 ψK
+( ) k( )ĉK
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ÂK

N 2; K+| 〉 ÂK
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where ξK(k) < 0 and the mean occupation numbers of
hole states are given by

(15)

At zero temperature, the expression in square brackets

in (14) equals one in the momentum space region 
inside the Fourier contour, for which the summation is
actually performed over the momenta of relative pair
motion.

The kinetic energy (13) of a pair with the total
momentum K is the sum of the kinetic energy of rela-
tive motion (1) and the energy of the center of mass of
the pair that remains unchanged. As it is the relative
motion of the pair that is responsible for bound state
formation, we can, by defining the relative motion

energy as  = λ[E – 2ε(K/2)], reduce (12) and (14)
to

(16)

where λ = ±1 for a pair of particles and holes, respec-

tively, the (k) characteristic function has the form

(17)

and the kinetic energy of a pair of particles or holes is

(k) = λ (k).

4. THE RELATIVE MOTION OF A PAIR

Let us rewrite (16) in the form of the integral equa-
tion

(18)

where ψ(k) ≡ (k), U(k – k') ≡ S/(2π)2V(k – k'),

Θ(k') ≡ (k'), the integration is over the whole 2D
Brillouin zone, and the retarded Green function of the
free relative motion of a pair is given by

(19)

where γ  +0.
Consider an auxiliary homogeneous linear Fred-

holm equation of the second kind with the symmetrical
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kernel U(k – k'), which determines the eigenfunctions
ϕs(k) and eigenvalues λs of this kernel,

(20)

If the kernel is nondegenerate, the eigenfunctions ϕs(k)
form an infinite complete orthonormal system of func-
tions [22],

(21)

and the kernel of the integral operator in (20) can be
represented as the Hilbert–Schmidt spectral decompo-
sition in these functions [22]

(22)

Let us expand the Θ(k)ψ(k) function in terms of the
complete system of functions ϕs(k),

(23)

The expansion coefficients are written as

(24)

We can use (22) and (24) to reduce integral equation (18)
to an infinite system of linear homogeneous equations

(25)

in which the retarded Green function in the representa-
tion formed by the ϕs(k) functions is written as

(26)

Note that the Θ(k) function at zero temperature equals

one inside some momentum space region Ξ (Ξ = 

for a pair of particles and Ξ =  for a pair of holes)
and zero outside this region. For this reason, the inte-
gration in momentum is then actually performed over
this bounded momentum space region. The condition
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of nontrivial compatibility of equations (25) determines
the energy spectrum for the relative motion of a pair.

If the kernel is degenerate, algebraic system (25)
reduces to a finite system of linear homogeneous equa-
tions, and the condition of its compatibility takes the
form

(27)

where index s numbers a finite set of eigenfunctions of
the degenerate kernel.

It follows from definition (26) that the main contri-
bution to the matrix elements of the Green function is
made by a comparatively small momentum space
region Ξ. This gives grounds for replacing the true non-
degenerate kernel U(k – k') by some degenerate kernel
Ud(k – k'), which is close to the true one within region
Ξ. Let kb be the characteristic linear size of region Ξ,
such that the main contribution to (18) is made by
momenta k ≤ kb and k' ≤ kb . The vector of momentum
transfer in scattering k = k – k' is then limited, κ ≤ 2kb ,
and the U(κ) kernel in the region 0 ≤ κ ≤ 2kb can be
approximated by the simple quadratic function

(28)

where U0 > 0 and r0 are the parameters of the repulsive
interaction potential between particles that characterize
its amplitude and range of action, respectively. At κ >
2kb , we must set Ud(κ) = 0. Treating this approximate
potential as the kernel of integral equation (20), we can
find the corresponding eigenfunctions and eigenvalues.
A finite number of eigenfunctions correspond to degen-
erate kernel (28), and it is easy to see that this kernel has
four eigenfunctions only.

The eigenfunctions of a degenerate kernel repro-
duce its form [22] and can be written as

(29)

if 0 ≤ k ≤ kb and as ϕ(k) = 0 if k > kb , where the coeffi-
cients a, b, and c must be determined for each of the
eigenfunctions. The equations that determine these
coefficients are considerably simplified because the
region of integration Ξ in (20) is invariant with respect
to inversion, k  –k. It follows that the eigenfunc-
tions possess certain parity with respect to variable k.
The system of equations that determine the coefficients
in (29) is divided into two independent subsystems, one
of which gives even, and the other odd, eigenfunctions.

det δss'
1
λ s'
-----Gss' E( )–

 
 
 

0,=

Ud κ( ) U0r0
2 1 κ2r0

2/2–( ),=

ϕ k( ) a ck bk2+ +=
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Let the k1 and k2 coordinate axes in the momentum
space be directed along the symmetry axes of region Ξ.
We will use the notation

(30)

where n = 0, 1, and 2 and s = 1, 2 corresponds to a Car-
tesian coordinate axis in the momentum space. The nor-
malized odd eigenfunctions and the corresponding
eigenvalues of the degenerate nucleus are immediately
found as

(31)

The condition of the solvability of the system of equa-
tions with respect to the a and b coefficients that deter-
mine even eigenfunctions gives two eigenvalues,

(32)

and the corresponding real eigenfunctions,

(33)

where, as previously, s = 1, 2, as are the normalization
coefficients, and, by definition,

(34)

is a positive value (by virtue of the Cauchy–Bunya-
kowsky inequality for the Kn integrals). Note that the
eigenfunctions of degenerate kernel (28) that we found
are orthogonal with the weight Θ(k).

Also note that one of the eigenvalues (32) that cor-
responds to the upper sign of the root is negative,
whereas the other one and all eigenvalues (31) are pos-
itive. The sign of the eigenfunction (33) that corre-
sponds to the negative eigenvalue is not constant in the
region of its definition and alternates on a certain line
(an arc of a circle) inside this region.

Not any kernel that corresponds to a repulsive (pos-
itive definite) potential can have negative eigenvalues
(or at least one negative eigenvalue). For instance, all
eigenvalues of the kernel described by the Gauss func-
tion are nonnegative.

Kn r0
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It follows that the 4 × 4 matrix of Green operator (26)

splits into two 2 × 2 matrices between even (E) and

odd (E) eigenfunctions of degenerate kernel (28).
The latter matrix is diagonal, and its elements are

(35)

Equation (27) therefore splits into three independent
equations,

(36)

where s, s' = 1, 2, and

(37)

These equations determine the energy spectrum of the
relative motion of a pair of particles.

5. STATIONARY STATES

The reference point for counting energy can conve-
niently be changed in calculations as E  E + εp to
pass from the energy of relative motion to the excitation

energy by putting (k) = ζ(k) + εp in (19). By defini-
tion, the excitation energy of a pair belongs to the con-
tinuous spectrum band, 0 ≤ ζ(k) ≤ ζ0. When the refer-
ence point is selected this way, the bound state energy
is negative, E < 0. Accordingly, the energy denominator
in (19) has a definite sign, E – ζ(k) < 0, and the infini-
tesimal imaginary term in the denominator of the Green
function in the integrand in (19) can be ignored. It fol-

lows that we have  < 0 if E < 0. As both eigenvalues
corresponding to odd eigenfunctions are positive at
U0 > 0 [see (31)], the conclusion can be drawn that the

equations (E) =  do not have solutions at E < 0.

The equation from (36) that gives even eigenfunc-
tions can be written in the form

(38)

A solution to (38) can conveniently be found graphi-
cally if its left- and right-hand sides are treated as func-
tions of the variable E < 0. The function on the left-hand
side of (38) is nonnegative by virtue of the Cauchy–
Bunyakowsky inequality for the corresponding inte-
grals. The sum of the first two terms on the right-hand
side of (38) is also nonnegative in spite of the different

signs of  and . Indeed, we can put k = k' in (22)
and calculate the sum on the right-hand side of (22) for
degenerate kernel (28); this sum then consists of only
four terms. Using the explicit form of the odd eigen-

Gss'
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–( ) k( )[ ] 2Θ k( )d2k.∫=
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functions and the corresponding eigenvalues (31), we
find

(39)

The right-hand side of (39) is essentially positive over
the whole region where the relative pair motion
momentum is defined because of the condition Ud(|k –
k'|) > 0, which corresponds to repulsion between parti-
cles. Equation (39) can be used to represent the first two
terms on the right-hand side of (38) as the product of
the negative value

(40)

and the integral of form (37), in which we have the
obvious inequality G(k; E) < 0 if E < 0 and the product

(k) (k) is replaced by the definitely positive

Ud(k ) value,

(41)

Note that the value (41) is inversely proportional to the
effective coupling constant U0.

The asymptotic behavior of Green functions (37) as
E  –∞ follows from their definition,

(42)

The solution to (38) that corresponds to extremely large
effective coupling constant U0 values then takes the
form

(43)

Note that the left-hand side of (38) tends to zero as E–2

when E  –∞, whereas the right-hand side tends to a

positive finite limit | |.
Green functions (37) are given by integrals over the

 and  regions. To consider their asymptotic
behavior as E  –0, we can conveniently pass from
the integration in the components of the momentum of
relative motion to the integration in new variables ζ and
τ, where ζ is the excitation energy and τ is the curvilin-
ear coordinate in the space of momenta along the ζ =
const isoline of the energy of relative pair motion.
Functions (37) can then be rewritten as

(44)

where g(ζ) is the density of states of relative pair

motion corresponding to the  or  region (fur-
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ther denoted by Ξ), ζ0 is the width of the continuous
spectrum band with respect to motion, and

(45)

It follows that Fss'(ζ) is the mean values of the

(k) (k) products on the ζ = const isoline. Note
that the Fss(ζ) functions at s = s' are necessarily positive,
like their combination

is (by virtue of the Cauchy–Bunyakowsky inequality).
Here and throughout, Fss' ≡ Fss' (0).

Green functions (37) have a singularity at small |E|,
which can be examined by the well-known Kantorov-
ich method [23]. Suppose that the function

is differentiable at E = 0. Equation (44) can then be
written in the form

(46)
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0 |E|b2 |E|b1 |E|
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lh lhs
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rhs

lhs|λ1
(+) λ 2

(+)|

Fig. 4. Character of solutions to (38) at a finite pair Fermi
contour length (solid lines) and when the pair Fermi contour
degenerates into points (dashed lines). The curves describ-
ing the left- and right-hand sides of (38) are denoted by lhs
and rhs, respectively. Solutions at finite (|E|b1) and zero
(|E|b2) pair Fermi contour lengths are shown. The solution
for zero pair Fermi contour length corresponds to the con-

dition U0 > . Otherwise, the value of the left-hand side

of (38) (denoted by lh on the axis of ordinates) becomes
smaller than the value of the right-hand side (rh), and (38)
has no solutions.

U0
c( )
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where primes denote the differentiation with respect to
ζ. The integral in braces does not have a singularity at
|E| = 0. At small |E| values, the whole expression in
braces can therefore be replaced by its value at |E| = 0;
we denote this value by Ass' . It follows that –Ass' is the
periodic part of the Green function when |E |  0.
Therefore, the Green functions at |E | ! ζ0 can be repre-
sented as

(47)

The first two terms in (47) determine the character of
the singularity of the Green functions at point E = –0. If
the density of states on the pair Fermi contour is non-
zero (the pair Fermi contour has a finite length), that is,
if g(0) ≠ 0, the Green functions exhibit a logarithmic

singularity, then (E) ∝  ln|E | as E  –0. However,
if the pair Fermi contour degenerates into points and
g(0) vanishes, the character of the Green function sin-

gularity as E  –0 becomes much softer, (E) ∝
|E |ln1/|E |.

If the pair Fermi contour has a finite length, the left-
hand side of (38) diverges as [ln(1/|E|)]2 when E 
−0, whereas the right-hand side only diverges as
[ln(1/|E|)]. Taking into account the asymptotic behavior
of the Green functions as E  –∞ considered above,
we obtain the functions representing the left- and right-
hand sides of (38) in the form schematically shown in
Fig. 4 by solid lines. According to this figure, (38) has
a unique solution no matter what the effective coupling
constant U0 value. The character of this solution in the
limit of weak coupling is easy to determine using the
explicit equations for Green functions (47). When con-
sidering the case g(0) ≠ 0, the second term, which van-
ishes at |E | = 0, should be omitted. Equation (38) trans-
forms into a quadratic equation with respect to x ≡
g(0)ln(ζ0/|E |), whose positive solution can be repre-
sented as x0 = 1/cU0, where c is a positive constant,
which, in the weak coupling limit, is given by

(48)

Here, the C constant, which is independent of the effec-
tive coupling constant U0, is determined by the integral
along the pair Fermi contour

(49)
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We therefore have

(50)

that is, the bound state of the relative motion of a pair is
already formed at an arbitrarily small effective coupling
constant value. Note that, if FK ! C, (50) retains its
form with the replacement c  C.

If the pair Fermi contour degenerates into points
(the case considered in [5]), the first term in (47) disap-
pears and the contribution of the periodic part to the
Green functions becomes predominant as |E |  0. A
solution to (38) then only exists for a fairly high effec-

tive coupling constant U0 value that exceeds some 

value (see Fig. 4). Indeed, if U0 < , the left-hand
side of (38) denoted by lh in Fig. 4 becomes smaller
than the right-hand side (rh) at |E | = 0; the curves cor-
responding to the left- (lhs) and right-hand (rhs) sides
of (38) [these curves are shown in Fig. 4 by dashed lines

for U0 >  then do not intersect, and there is there-
fore no solution to (38).

Solution (50) found for repulsive interaction of
form (28) for the pair Fourier contour of a finite length
[g(0) ≠ 0] formally coincides with the solution to the
Cooper problem for attractive interaction of the form
U(k – k') = –U0 (U0 is a positive constant, and interac-
tion is nonzero in an energy layer ζ0 wide) of a pair of
particles with zero total momentum [1]. This solution
exists for pairs of particles excited in the Ξ(+) region and
pairs of holes excited in the Ξ(–) region. According
to [24], the bound state energy of a Cooper pair has
exponential smallness (factor 2 in the exponent) com-
pared with the superconducting gap width. Of course,
the same refers to pairing with a large total momentum
(factor 2 in the exponent in (50) compared with the
order parameter calculated in [13]). The reason for this
smallness is as follows. By virtue of the problem state-
ment itself, the solution to (50) is obtained against the
background of the nonrearranged ground state of the
normal Fermi liquid without taking into account scat-
tering between momentum space regions Ξ(+) and Ξ(–).
The very existence of bound state (50) is evidence of
instability of the ground state of the electronic system
treated as the state that corresponds to filling all states
inside the momentum space region bounded by the
Fermi contour [25].

Note that bound stationary state (50) appears
in repulsive interactions if the kernel of integral equa-
tion (18) has at least one negative eigenvalue. As has
been shown above, kernel (29) certainly has such a neg-

ative eigenvalue. The passage to the   0 limit

in (29) at U0  = const causes the appearance of a
degenerate kernel with a single positive eigenvalue. In
such a passage, the pole of the amplitude of scattering

E ζ0
2

cU0g 0( )
---------------------– 

  ,exp=

U0
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U0
c( )

U0
c( )

r0
2

r0
2
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in the complex energy plane corresponding to the
bound stationary state shifts from the real axis to the
upper half-plane and, at a hyperbolic momentum space
metric, formally corresponds to some state character-
ized by “negative decay” [11]. This can also be consid-
ered evidence of instability of the ground state in the
form of Fermi filling.

The passage to the   0, U0  = const limit,
which formally corresponds to the zero-radius potential
approximation [26], admits a simple phenomenology,
which allows the pair bound state energy obtained by
solving (18) with a potential of form (28) to be fixed if
the “memory” of this potential is retained in the discon-
tinuous piecewise-constant wave function of the pair,
which abruptly changes sign on some line (line of
zeros) inside the region of relative motion momentum
definition. Such a solution for the superconducting
order parameter that appears for repulsive interaction
and pairing with a large total momentum was obtained
in [11].

It is well known [6] that a purely imaginary vertex
function pole in the upper complex energy half-plane
corresponds to the bound state in the Bardin–Cooper–
Schriffer model. The absolute value of this pole gives
the energy gap in the spectrum of the excited system
that appears as a result of the rearrangement of its
ground state. An examination of the vertex function for
the class of repulsive potentials (28) with one or several
negative eigenvalues appears to give a similar result. This
assertion can be proved the same way as for the repulsive
potential with a negative scattering length for one of the
angular momentum values l ≠ 0 [27, Section 54], which
therefore belongs to the class of the potentials under
consideration. Provided that the equal sums of entering
and exiting momenta in the vertex function are the pair
momentum K, the purely imaginary vertex function
pole gives the energy gap value in the spectrum of exci-
tations of relative pair motion. As in the Bardin–Coo-
per–Schriffer model, the dependence of the gap found
in [13] is described in the weak coupling limit by an
exponential function of type (50) without the multi-
plier 2 in the exponent and with a preexponential factor
that is twice as large.

6. QUASI-STATIONARY STATES

At excitation energies 0 < E < ζ0, integral equation (18)
determines the states of the continuous spectrum of rel-
ative pair motion. The distribution of energy levels in
the continuous spectrum band 0 < ζ < ζ0 can be found
from system (36). It may well be that the interaction of
particles constituting a pair results in a substantial
crowding of relative motion energy levels in a small
neighborhood of some point ζq , 0 < ζq < ζ0 within the
continuous spectrum band. The corresponding change
in the density of relative motion states is resonance in
character, and the arising peak of the density of states
resembles a smeared δ-shaped peak that corresponds to

r0
2 r0

2
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the bound state. Such a quasi-stationary state is charac-
terized by a finite lifetime τq , which is inversely propor-
tional to the extent of smearing of the resonance peak.

The complex solution to (36) that corresponds to the

quasi-stationary state has the form  = E – iΓ/2,
where E is the resonance energy and Γ ∝  "/τq > 0 is the
quasi-stationary state damping. At a finite damping
value, the infinitesimal term in the denominator of
Green function (19) can be ignored. Omitting the
superscript (±), Green functions (35) and (37) can then
be written as

where the real and imaginary parts have the form

(51)

(52)

Here, the Fss'(ζ) functions are defined by (45). It follows
that the diagonal matrix elements (52) are positive def-
inite.

System (36), which now determines two unknown
values E and Γ, should be written in the form of an
extended system of equations for its real and imaginary

parts. We obtain  =  and  = 0 for all Eqs. (36)
related to odd eigenfunctions. It follows that neither
discrete relative motion energy levels that fall out of the
continuous spectrum nor the quasi-stationary states in
the continuous spectrum band can be related to odd
eigenfunctions. Indeed, as follows from definition (52),

the equation  = 0 cannot have solutions at any Γ > 0.

The real and imaginary parts of (36) related to even
eigenfunctions have the form

(53)

Every equation in (53) determines some curve on the E,
Γ/2 plane. The intersection points between these
curves, if exist, give solutions to (53).

Let us consider the quasi-stationary states mainly
formed by one-particle states in the immediate vicinity
of the pair Fourier contour. The excitation energy of
quasi-stationary states can then be taken to be a small
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value. In addition, we only consider the case when the
quasi-stationary state damping is also small, namely,
we assume that Γ ≤ 2E. If E and Γ are small, it is easy
to examine the singular contribution to the real part of
Green functions (51) using the procedure suggested by
Kantorovich [23]. We restrict consideration to the pair
Fermi contour of a finite length. For the real Green
function part [Eq. (51)], we obtain

(54)

where, as in (47), Ass' is the periodic Green function part
as E  +0. In a similar way, the imaginary part
[Eq. (52)], which is a periodic function as E  +0, is
found in the approximate form

(55)

[correcting terms are omitted because the exact limit
of (52) as Γ  +0, which equals πg(E)Fss'(E), is close
to the corresponding limit of (55) at small E values; the
latter equals πg(0)Fss'(0)].

Functions (54) depend on E and Γ combined as E2 +
Γ2/4 ≡ ρ2. If ρ is treated as a polar radius on the Γ/2, E
plane, then, setting Γ/2 = ρcosϕ and E = ρsinϕ, where
ϕ is the corresponding polar angle, we obtain

/Γ = ϕ. The ρ variable can conveniently be
replaced by x = g(0)lnζ0/ρ, which is positive definite at
ρ < ζ0.

The second equation in (53) contains no dependence
on ϕ and determines some x = x0 value. The solution to
this equation is

(56)

where 2D ≡ A11F22 + A22F11 – 2A12F12 and the positive
constant C is given by integral (49). The equality x = x0
determines a circle on the ρ, ϕ plane; its radius is

(57)

where g ≡ g(0). In the weak coupling limit when the
second term in parentheses in (56) can be ignored, (57)
takes the form

(58)

where c' = C/F2K2.
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Excluding x in the first equation in (53), that is,
assuming that x = x0 in it, we obtain the equation for the
polar angle ϕ

(59)

Here,

Equation (59) determines the polar angle ϕ = ϕ0, which
should satisfy the inequality 0 ≤ ϕ0 ≤ π/2. This angle
and the polar radius ρ = ρ0 found above determine the
solution to system (53) if it does exist. Note that a key
role in the problem of the quasi-stationary state is
played by the contributions of the periodic term Ass' to
the real parts of Green functions. Ignoring these contri-
butions (as in the problem of bound states) leads to (59)
with A = 0 and µ = 0. Clearly, (59) then has no solution.

The conditions of the formation of quasi-stationary
states with small damping are determined by two ine-
qualities, x0 ≥ 0 and 0 ≤ ϕ0 ≤ π/2. The first one and the
quite obvious condition D ≥ 0 lead to bounding of the

effective coupling constant from above, U0 ≤  ≡
2C/DK2. If (59) has a solution in the interval (0, π/2)
under this constraint, this solution ϕ = ϕ0 and (57)
determine the quasi-stationary state. Figure 5 shows
schematically how a solution corresponding to a quasi-
stationary state appears. The vertical B axis corre-
sponds to the values of the left- and right-hand sides
of (59), and the horizontal axis, to the effective cou-
pling constant U0 values. Figure 5 illustrates the char-
acter of solving (59) for a pair with some momentum K,
that is, at definite equation parameter values, which are
characteristics of the definition region of the momen-
tum of relative pair motion. As U0 tends to zero, the

right-hand side of (59) tends to –∞ as – , and, as
U0  ∞, it tends to a constant limit B0 = A2 – D2/F2.

The  value bounds the effective coupling constant
from above. For this reason, while the left-hand side
of (59) changes from B1 = π2F2g2/4 to B2 = π2F2g2 when
the polar angle changes from 0 to π/2, as is shown on
the vertical axis in Fig. 5, the intersection points
between the horizontal straight lines B = B1 and B = B2
and the plot of the right-hand side of (59) denoted by
rhs determine the interval of the effective coupling con-
stant values

(60)

within which quasi-stationary states with long lifetimes
can be formed.
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The actual  and  values substantially
depend on the size and shape of the integration region
Ξ and on the form of the dispersion law for relative pair
motion ζ(k), which are in turn determined by the elec-
tronic dispersion law and the value and direction of the
total pair momentum K. As asymptotic equations (54)
and (55) are valid if the mirror Fourier contour nesting
condition is satisfied, the conclusion can be drawn that
there exist some set of vectors K close to optimal (when
the mirror nesting condition is best satisfied), for which
the condition of the formation of quasi-stationary states
with small damping can certainly be met. Only one of
the possibilities of the formation of a quasi-stationary
state with some momentum K is shown in Fig. 5. A
change in K entails a change in the parameters of (56)
and (59), in particular, it may happen that B1 > BM , and
no quasi-stationary state will be formed. If B2 < BM ,

where BM corresponds to the coupling constant 
value, the position of the upper boundary of the effec-
tive coupling constant is determined by the intersection
of the B = B2 horizontal straight line and the plot of the
right-hand side of (59).

Note that a change in the effective coupling constant
at a given K value (for instance, its decrease as the level
of doping increases [5]) can displace this constant from
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U0
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QSS
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B2
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B1

rhs

U0
(m) U0

(M) U0

Fig. 5. Graphic illustration of the appearance of a quasi-sta-
tionary state depending on the effective coupling constant
U0. The values of the left- and right-hand sides of (59) are
plotted on the axis of ordinates (B). The left-hand side val-
ues, independent of U0 and allowed by the condition 0 ≤
ϕ0 ≤ π/2, lie within the interval B1 ≤ B ≤ B2. The right-hand
side is described by the curve labeled rhs. Solutions to (56)
and (59) that correspond to quasi-stationary states exist in

the interval of effective coupling constant values  ≤

U0 ≤ .

U0
m( )

U0
M( )
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the interval ( , ) and thereby cause the disap-
pearance of quasi-stationary states.

7. THE PSEUDOGAP STATE

Currently, there are various points of view on the
nature of the pseudogap state based on an analysis of
models with strong electron correlation. One of these is
related to the suggestion that the pseudogap arises
thanks to strong fluctuations of the superconducting
phase order parameter [28–30]. This presupposes that
noncoherent pair states exist in some temperature inter-
val above the superconducting transition temperature
TC . According to another point of view [31, 32], a spe-
cial substance phase exists under pseudogap conditions
and is characterized by a “latent” (that is, difficult to
determine experimentally) order parameter caused by
the circulation of orbital currents along chemical bonds
in copper–oxygen planes. The staggered order in the
distribution of the sign of circulation over unit cells cor-
responds to antiferromagnetic orbital ordering. A non-
coherent state in the form of a fluctuation of such an
orbital antiferromagnetic order [33, 34] is also treated
as a possible reason for the formation of the pseudogap
state of cuprates.

Although the specified approaches to describing the
pseudogap state are based on different physical ideas,
they eventually lead us to conclude that states in the
form of either noncoherent pairs excited from the con-
densate when a substance passes TC as its temperature
rises (pairing in the particle–particle channel) or pairs
formed by orbital currents that circulate in opposite
directions in neighboring unit cells [33] (pairing in the
particle–hole channel) exist above TC in a wide temper-
ature interval. The wide temperature range in which
phase fluctuations exist at a nonzero amplitude of the
superconducting order parameter is explained either by
the presence of a quantum critical point [33] or by ther-
mal disordering of the d density wave [34] correspond-
ing to antiferromagnetism. Note that, in terms of the t−J
model studied in [33], two Bose branches of the spec-
trum of elementary excitations are naturally formed.
One of these is related to the absence of fermionic exci-
tations, and the other, to filling a node with two fermi-
ons. It was shown in [33] that bosons of both kinds
(interpreted as holes) condense at the bottom of their
energy bands. Zero momentum (Q1 = 0) corresponds to
the position of the bottom of one band and a large
momentum [Q2 = (π, π)], to the bottom of the second
band. The character of correlation of currents that cir-
culate in unit cells shows that holes of two kinds effec-
tively attract each other, which corresponds to a com-
paratively low binding energy between a pair of holes
and various orbital current circulation signs.

Quasi-stationary states with a comparatively long
lifetime obtained in terms of the concept of delocalized
electrons also correspond to special elementary excita-

U0
m( ) U0

M( )
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tions of the crystal electronic subsystem formed by
pairs of one-particle states. At the given total pair
momentum, such excitations belong to the continuous
spectrum of the relative motion of pairs and manifest
themselves as a sharp increase in the density of states in
a narrow energy interval, on the order of the quasi-sta-
tionary state damping. Generally, quasi-stationary
states are formed by all one-particle states from the
region of definition of the relative pair motion momen-
tum. It follows that the suppression of the density of
one-particle states over the whole range of variations in
the energy of relative motion corresponds to the forma-
tion of a quasi-stationary state. In this sense, the appear-
ance of a pseudogap in the spectrum of one-particle
excitations, which is observed in cuprates, can be
directly related to the formation of quasi-stationary
states.

We stress that quasi-stationary states, like the sta-
tionary state of a pair of particles or holes, are formed
as solutions to the same equation (18) for the wave
function of the relative motion of a pair.

Inequality (60) leads us to conclude that quasi-sta-
tionary states and the pseudogap mode related to them
exist in a limited temperature range. Indeed, the inter-
action energy between particles V(k – k') enters into the
equation of pair motion (18) with weight Θ(k'), which
is the characteristic function (17) of the kinematically
allowed region Ξ at T = 0, namely, Θ(k') = 1 inside Ξ
and Θ(k') = 0 outside Ξ. Because of the temperature
dependence of the mean occupation numbers, the con-
tribution of the Θ(k') function to the integral in (18)
decreases as temperature increases, which can be inter-
preted (as has already been mentioned above) as tem-
perature weakening of intercomponent interactions in
pairs. The corresponding decrease in the effective cou-
pling constant U0 results in the absence of a solution
to (59) and, therefore, nonexistence of quasi-stationary

states with low damping starting with the  value
corresponding to a certain temperature T*. The T* tem-
perature takes on different but close values for quasi-
stationary states with different total momenta close to
optimal; therefore, the transition (crossover) from the
pseudogap state to the state of a normal Fermi liquid
should be observed in some temperature interval.

The crossover temperature T* has the same energy
scale as the superconducting transition temperature TC .
Indeed, if we suggest that the effective coupling con-
stant has some U0 value from interval (60) at a given
level of doping and T = 0, then we must expect it to
decrease as temperature increases because of tempe-
rature-induced weakening of interaction. As the pairs
become noncoherent at TC , the temperature depen-
dence of the effective coupling constant can be esti-
mated as U0(T) = U0 . The crossover

temperature can therefore be estimated as T* =
TC .

U0
m( )

TC/T( )tanh

U0
m( )/U0( )tanh
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The presence of quasi-stationary states as elemen-
tary excitations of the electronic system, which mani-
fests itself in the temperature interval TC < T < T*, can
cause this system to be substantially different from the
normal Fermi liquid above the superconducting transi-
tion temperature. The phenomenological scheme [35]
developed to describe the state of the quasi-two-dimen-
sional electronic system formed from the supercon-
ducting condensate of pairs as the temperature
increases (“algebraic Fermi liquid” [36, 30], whose
properties are in some sense intermediate between the
properties of the normal Fermi liquid and the Luttinger
liquid, in which collective excitations in the form of
charge and spin density waves are well defined and
quasi-particle excitations strongly decay) presupposes
that the transition from the superconducting to the nor-
mal state occurs as a Berezinski–Kosterlitz–Thouless
transition as a result of phase disturbance of the wave
function of the condensate caused by the rupture of
“vortex–antivortex” pairs. The theory suggested
in [35], which is asymptotically exact in the 1/N param-
eter, where N is the number of nodes of the supercon-
ducting order parameter, therefore presupposes the
existence of noncoherent states of pairs in the tempera-
ture interval TC < T < T*; it is capable of explaining
many properties of the pseudogap states of nondoped
cuprates. Note that, when pairing occurs with a large
total momentum and repulsive interaction, the number
of nodes (the number of the intersection points between
the line of pair wave function zeros and the Fermi con-
tour) is N ≥ 8. In addition, the line of zeros can itself be
close to the Fourier contour regions that form the pair
Fourier contour. Formally, the approach of the line of
zeros to the pair Fermi contour means the passage to the
N  ∞ limit, which broadens the applicability range
of the theory suggested in [35]. Simultaneously, this
approach increases the contribution of gapless excita-
tions that arise at every node and favor the destruction
of superconductivity. This causes exponential lowering
of the amplitude of the superconducting order parame-
ter [13].

8. CONCLUSIONS

The wave function Θ(k)ψ(k) of the relative motion
of a pair [Eq. (23)] in the bound state is defined in
region Ξ of the momentum space with characteristic
dimensions ∆k1 and ∆k2 in the directions of the coordi-
nate axes k1 and k2. The characteristic pair dimensions
along the corresponding coordinate axes x1 and x2 can
be estimated as ∆x1 ~ (∆k1)–1 and ∆x2 ~ (∆k2)–1, and

some mean pair size, as ξ0 ~ 1/ . Such estimates can
be made for both the stationary and quasi-stationary
pair states [5]. As directly follows from (18), the wave
function of a bound stationary state is not alternating in
region Ξ. Indeed, the bound state energy E < 0; there-
fore, the Green function in (18) is negative definite,
G(k; E) < 0. For this reason, ψ(k) should necessarily

Ξ
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change sign on some line inside Ξ [as follows
from (23), this line is an arc of a circle if kernel (28) is
degenerate) to ensure the equality of the left- and right-
hand sides of (18) at U(k – k') > 0. Such lines of zeros
of the wave function of relative motion exist both in the
Ξ(+) region, where a pair of particles is excited, and in
the Ξ(–) region, where a pair of holes is excited. The
wave function of the relative motion of a quasi-station-
ary state with a low excitation energy also has a line of
zeros, because otherwise, the integral over Ξ of the
product of the real part of the Green function G(k; E)
and the positive function U(k – k') would be an essen-
tially negative value. Note that the superconducting
order parameter that appears in pairing with a large
total momentum and repulsive interaction [13] also has
a line of zeros that intersects the pair Fermi contour.
The independently determined lines of zeros in the Ξ(–)

(for pairs of holes) and Ξ(+) (for pairs of particles)
regions transform exactly into this line when scattering
between Ξ(–) and Ξ(+) is “switched on.”

The superconducting order parameter that describes
the condensate of pairs with the total momentum K
therefore twice vanishes inside the ΞK region. Because
of degeneracy along the directions crystallographically
equivalent to the direction of the K vector, the order
parameter that corresponds to the currentless state of
the condensate is represented by a linear combination
of crystallographically equivalent functions [5], each
with two nodes on the Fourier contour. It follows that
the superconducting order parameter of a tetragonal
crystal, which transforms under the trivial A1g irreduc-
ible representation, does not change sign under rotation
through π/2 but has eight nodes on the Fermi contour
and can be assigned extended s-wave symmetry or
(s + g) symmetry [37]. If the order parameter trans-
forms under another one-dimensional irreducible rep-
resentation (B1g), it has twelve nodes on the Fermi con-
tour and can formally be assigned d-wave (or d + g)
symmetry, because it changes sign under rotation
through π/2.

Order parameter symmetry is determined by the
interaction that mixes states in the ΞK regions where the
relative motion momenta of pairs with different crystal-
lographically equivalent total momenta are defined.
Coulomb repulsion (weaker because of substantial
momentum transfer compared with the scattering of
pairs within each of the ΞK regions), clearly, results in
A1g symmetry. Interaction caused by antiferromagnetic
fluctuations [38] mixes states corresponding to pair
momenta rotated through π/2 with respect to each other.
If this interaction prevails over Coulomb scattering
between crystallographically equivalent ΞK regions, it
results in B1g order parameter symmetry. Note that the
role played by antiferromagnetic fluctuations increases
as the level of doping of cuprates decreases, which does
not exclude the possibility of the A1g  B1g change in
order parameter symmetry at a certain doping level.
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The dependence of the superconducting order
parameter on the pair kinetic energy ξ(k) of the form
∆ = a + bξ, which was considered in [39], is naturally
related to asymmetry of current–voltage characteristics
observed in cuprates. For this reason, the mere “tilt” of
the superconducting gap (the ratio of the gap parame-
ters a/b ≠ 0) can serve as a basis [39] for selecting both
interactions responsible for superconductivity and
models for describing the superconductivity of
cuprates. In this sense, pairing with a large total
momentum and repulsive interaction, which results in
the appearance of a line of zeros [13] and, therefore,
some mean gap tilt, is compatible with the observed
asymmetry of tunnel characteristics.

The bound state energy (50) exponentially depends
on the density of states g(0) of relative motion on the
pair Fourier contour. If region Ξ has a hyperbolic metric
(the metric is hyperbolic if the Fermi contour is situ-
ated in an extended neighborhood of the saddle point
of the electronic dispersion law), the g(0) value
depends on how close is the logarithmic Van Hove sin-
gularity of the density of states of relative pair motion
to the pair Fermi contour, g(0) ≡ g(0; ζs), where ζs is the
energy of the logarithmic singularity counted from the
pair Fermi contour (Fig. 2b). We can therefore assert [40]
that the closeness of the Fermi contour to the saddle
point is the reason for an increase in the density of
states on the Fermi contour, g(0; ζs) ∝  g(0)lnζ0/ζs , and
the corresponding increase in the bound state energy
given by (50). Note that the logarithmic singularity

degenerates into the root singularity g(0; ζs) ∝  in
the case of an extremely strong anisotropy of effective
masses [14]. As follows from (57), the closeness of the
Fermi contour to the saddle point is also the reason for
an increase in the energy and damping of quasi-station-
ary states.
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Abstract—Distribution of a magnetic moment in an exchange-coupled bilayer Fe/SmCo epitaxial structure
grown on a (110) MgO substrate is visualized by the magnetooptic indicator film technique. The direction and
the magnitude of the effective magnetization in this structure are determined both under external magnetic fields
of variable magnitude and direction and after the removal of these fields. It is shown that such a heterostructure
is remagnetized by a nonuniform rotation of a magnetic moment both along the thickness of a sample and in its
plane. A field antiparallel to the axis of unidirectional anisotropy gives rise to spin springs with opposite chiral-
ities in different regions of the magnetically soft ferromagnetic layer. The contributions of these springs to the
net magnetization cancel out, thus decreasing the averaged magnetic moment and the remanent magnetization
without their rotation. When the external field deviates from the easy axis, the balance is violated and the sample
exhibits a quasi-uniform rotation of the magnetic moment. Asymmetry in the rotation of the magnetic moment
is observed under the reversal of the field as well as under repeated remagnetization cycles. It is established that
a monochiral spin spring is also formed in a rotating in-plane magnetic field when the magnitude of the field
exceeds the critical value. Possible mechanisms of remagnetization in this system are discussed with regard to
the original disordered orientation of magnetization of the magnetically soft layer with respect to the easy axis,
which is defined by the variance of unidirectional anisotropy axes of this layer on the interface. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The development of layered nanocomposite materi-
als has opened a new chapter in the physics of magne-
tism [1]. The exchange interaction on the interface
between layers with different magnetic ordering forms
an essentially new ground state of a heterophase mag-
net, radically changes the behavior of spins in an exter-
nal magnetic field, and gives rise to a number of new
and unusual phenomena [2–7]. These include the phe-
nomenon of unidirectional (exchange) anisotropy,
which manifests itself in the shift of hysteresis loops
along the magnetic-field axis with respect to the origin
of coordinates, in the considerable increase in the coer-
civity of the ferromagnet, in the anomalous rotational
hysteresis of a bilayer structure, etc. The exchange-
induced shift of a hysteresis loop may reach several
tens of oersteds and has already been used in magnetic-
field sensors based on the giant magnetoresistance phe-
nomenon as well as in new computer memory ele-
ments.

In spite of the fact that the properties of bilayer
nanocomposite structures consisting of exchange-cou-
pled magnetically hard and soft ferromagnetic layers
have been intensively studied, a number of fundamental
1063-7761/04/9903- $26.00 © 20602
features of the remagnetization of these structures
remain unclear. Currently, the simplest mechanism,
associated with the formation of a one-dimensional het-
erophase spin spiral (exchange spring) in an external
magnetic field, is being extensively discussed. In such
a spring, the spins of adjacent atomic layers in the mag-
netically soft layer smoothly turn, under an external
field, from the direction of the effective field on the sur-
face to the direction of the unidirectional anisotropy
field near the interface [8–11]. Calculations on the basis
of this idealized model give only a qualitative explana-
tion to certain observable remagnetization features,
such as an exchange-induced shift of a minor hysteresis
loop of the heterostructure, critical fields needed for the
beginning of the formation of a spin spiral, and the sub-
sequent reversibility of the initial stage of remagneti-
zation.

When analyzing the behavior of real layered nano-
composites, one should take into account that the
equivalence of the energy of the exchange spin spring
with respect to its twisting direction may give rise to
domains with opposite rotation of spins in different
regions of the film. A real crystal contains magneto-
static fields, lattice defects, boundaries of blocks and
004 MAIK “Nauka/Interperiodica”
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grains, and steps on the interface. All these factors lead
to the misorientation of the anisotropy fields and may
stimulate a rotation of spins in opposite directions.

Similar two-dimensional spin spirals, but topologi-
cally stable ones—domain walls—are formed in thin
films and bulk samples of homogeneous ferromagnets
[12, 13]. Usually, domain walls consist of subdomains
that are characterized by different chiralities and are
separated by Bloch lines, which, in turn, may be sepa-
rated by Bloch points. The formation and the dynamic
properties of two- and three-dimensional walls in these
materials have been studied in sufficient detail both the-
oretically and experimentally [13–15].

The analysis of similar phenomena that occur in
thin-film heterophase structures is presently at its initial
stage. However, it is already clear that the investigation
of these phenomena is a necessary step toward an ade-
quate description of microscopic mechanisms of
remagnetization in layered magnetic nanocomposites.
Another important feature is the fact that the thickness
of a magnetically soft layer in typical structures con-
sisting of magnetically soft and hard layers is no greater
(and usually much less) than the width of a Bloch wall

δ ~ , where A and K are the exchange and crys-
tallographic anisotropy energies. This means that the
whole remagnetization process of a magnetically soft
layer occurs only due to the nucleation and the develop-
ment of a partial domain wall (spin spiral or exchange
spring) parallel to the surface of the film rather than due
to its translational motion as in single-phase materials.
Moreover, a full switching of magnetization in a mag-
netically soft layer (and in the entire heterostructure)
should strongly depend on the interaction between the
forming exchange spring and the spin subsystems
localized both in the bulk of the magnetically hard layer
and near the interface.

The boundaries between regions with different
chiralities in a quasi-two-dimensional heterophase
exchange spring are somewhat similar to the well-
known Bloch lines in domain walls, but they should be
characterized by a specific nontrivial spin structure
because they are bounded by interphase surfaces rather
than by domains. By now, a direct experimental study
of the formation and the development of a spin spiral
(which constitutes a partial domain wall) under an
external magnetic field has been performed in a bilayer
thin-film heterostructure [16] by the magnetooptic indi-
cator film technique [17]. In [16, 17], the initial stage of
remagnetization of a layered nanocomposite consisting
of a thin (50 nm) magnetically soft iron layer and a
high-coercivity 35-nm-thick SmCo layer grown on the
(100) surface of single-crystal MgO was studied. It was
found that, despite theoretical predictions, a one-
dimensional exchange spring (or a spin spiral) was not
formed in a field that is strictly antiparallel to the mac-
roscopic unidirectional anisotropy axis. The system
was remagnetized by a nonuniform rotation of spins
that gave rise to a two-dimensional spin spiral, while

A/K
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the magnetic moment M, averaged over the thickness
of the heterostructure, retained its direction along the
unidirectional anisotropy field. The quasi-one-dimen-
sional spin spiral was only formed when the magnetic
field was tilted to the easy axis. It was the only case
when the evolution of the spring under increasing field
was accompanied by the rotation of the vector M.

In [18], the authors investigated the same Fe/SmCo
system as that in [16, 17] but with somewhat different
thicknesses of the layers and grown on a different plane
of single-crystal MgO, namely, on the (110) plane. The
authors of [18] observed a rotation of the vector M both
during the remagnetization of a single magnetically
soft layer and after the removal of a large external mag-
netic field that stimulated the penetration of the
exchange spring from the magnetically soft layer into
the high-coercivity layer. The last effect, the deviation
of the averaged remanent magnetization from the initial
direction, parallel to the unidirectional anisotropy axis,
was not previously predicted. It was interpreted by the
authors of [18] as a result of competition between the
intrinsic and the interlayer exchange interactions that
gave rise to an apparent biquadratic interaction, similar
to that in the Slonczewski model [19]. It should be
emphasized that, in [18], the rotation of averaged mag-
netization, which was evidence of the formation of a
one-dimensional exchange spring, was observed in a
field that was nominally antiparallel to the anisotropy
axis, in contrast to the results presented in [17].

To determine the conditions and the formation
mechanisms of the phenomena revealed in [16–18] and
to implement one of possible switching modes associ-
ated with the formation of spin spirals of different
dimensions, in the present work, we carry out detailed
investigations of the evolution of the net magnetic
moment in the structure consisting of magnetically soft
and hard layers as a function of the angle between the
external field and the macroscopic unidirectional
anisotropy axis under repeated remagnetization cycles.
As a result, we show that an inhomogeneous two-
dimensional spin spiral is also formed in a Fe/SmCo
nanocomposite grown on the (110) MgO substrate in a
field antiparallel to the undirectional anisotropy axis;
moreover, it is formed in a very narrow (less than one
degree) interval of orientations of these fields. We also
observe a new phenomenon of asymmetry in the devel-
opment of the exchange spring under the reversal of the
field during repeated remagnetization cycles.

2. EXPERIMENTAL TECHNIQUES

The sample under investigation was a Fe/SmCo/Cr
epitaxial structure deposited by the magnetron sputter-
ing technique on a single crystal (110) MgO substrate.
The thicknesses of the magnetically hard layer, magnet-
ically soft layer, and the chromium buffer layer were
35 nm, 50 nm, and 20 nm, respectively. More detailed
description of the fabrication technology is given in [11]. 
SICS      Vol. 99      No. 3      2004
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Fig. 1. Determination of the direction of magnetization by a magnetooptic indicator film. (a) Scheme of the experiment and mag-
netooptic contrast due to stray fields: (1) distribution of magnetooptic contrast, (2) linearly polarized light, (3) indicator film,
(4) deposited mirror film of aluminum, and (5) sample with a hole. (b) Magnetooptic portrait of magnetization near the edge of the
hole and the intensity profile of the magnetooptic signal.
Remagnetization processes were studied by visual-
izing stray magnetic fields with the use of a magnetoop-
tic indicator film [17, 20] that was placed immediately
on the surface of the sample (Fig. 1a). In the absence of
external magnetic fields, the magnetic moment of the
indicator film lies in the plane of the film; however,
under the normal component of the stray fields of the
sample, the local magnetization of the indicator film
deviates from the plane, thus rotating the polarization
plane of light due to the Faraday effect. Polarized light
is incident normal to the indicator film and is reflected
from the surface adjoining the sample, which is coated
with a thin aluminum film to improve the reflectivity.
When the polarizer and analyzer are slightly uncrossed,
a magnetooptic pattern looks either dark or light, with
appropriate variations of intensity, depending on the
magnitude and the sign of the local stray field.

To analyze the magnetization in the plane of the
sample, a round through hole with a diameter of
300 µm was made in the latter (Fig. 1b). When the sam-
ple is magnetized uniformly, the direction of the mag-
netization M is determined by the orientation of the
symmetry axis (which is indicated by a compass nee-
JOURNAL OF EXPERIMENTAL 
dle) of the magnetooptic portrait formed by the compo-
nents of the stray field at the edge of the round hole. It
should be noted that the magnetostatic field around the
probing hole, just as the stray fields associated with the
edges of the film, did not give rise to closure domains
and did not produce any appreciable effect on the mag-
netization of the film. A quantitative characteristic of
magnetization is given by the averaged intensity of the
magnetooptic signal,

where Il and Ir are the maximal intensities on the dark
and light edges, respectively. This characteristic is
determined by the angle of Faraday rotation of the
polarization plane of light, which is proportional to the
perpendicular component of the stray field at the edge
of the hole and, hence, to the in-plane magnetization
averaged over the sample thickness.

In large external fields H (µ0H > 100 mT), direct
observation of the magnetic structure is complicated by
a strong field that bends the magnetic moment of the
indicator to the plane of the film. In this case, one

I I l Ir+( )/2,=
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Fig. 2. Hysteresis loop of a Fe/SmCo sample obtained by a
SQUID magnetometer.
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observes a magnetooptic portrait of remanent magneti-
zation after the application and the removal of the field
of necessary magnitude.

3. EXPERIMENTAL RESULTS 
AND THEIR DISCUSSION

Figure 2 shows a hysteresis loop of the bilayer sys-
tem under investigation that was obtained by a SQUID
magnetometer when the field was applied along the
easy axis of the magnetically hard Sm2Co7 film. One
can easily see two characteristic stages of the remagne-
tization process: the first is largely associated with the
magnetically soft iron layer (up to about 150 mT), and
the second, with the magnetically hard SmCo layer.

The specific features of the magnetization process
revealed by a magnetooptic indicator film are shown in
Fig. 3. In the initial state, the directions of magnetiza-
tions in the magnetically soft and hard layers coincide
due to the unidirectional exchange anisotropy induced
by the SmCo layer. A magnetooptic signal proportional
(a) (d)

(b) (e)

(c) (f)

å

Fig. 3 Evolution of the magnetooptic portrait of the Fe/SmCo system under its (a–d) reversible and (e–f) irreversible remagnetiza-
tion along easy axis: (a) initial state (H = 0) after the removal of a large positive field of µ0H = +7.0 T; (b) and (c) the same for µ0H =
–0,02 and –0.09 T, respectively; (d), (e), and (f) after the removal of a field of µ0H = –0.09, –0.75, and –0.87 T, respectively.
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to the magnitude of the stray field vanishes at the point
at which the direction of magnetization coincides with
the tangent to the edge of the hole (Fig. 3a). Along the
horizontal axis, where the radial component of magne-
tization and the density of induced magnetic charges at
the edge of the hole are maximal, one observes a strong
magnetooptic signal; the signs of this signal on the right
and left edges are opposite (positive and negative mag-
netic charges). The observed pattern of the stray fields
reflects the two-dimensional distribution of magnetiza-
tion averaged over the thickness.

Application of the magnetic field of opposite direc-
tion changes the distribution of magnetization. This fact
manifests itself in the reduced magnetooptic contrast at
the edges of the hole (Fig. 3b). A further increase in the
field gives rise to spatial fluctuations of the magnetoop-
tic signal that correspond to a nonuniform distribution
of magnetization along the sample surface. The inver-
sion of the magnetooptic contrast corresponds to the
reversal of the magnetization (Fig. 3c). If the applied
field is relatively small, then the remagnetization is
completely reversible, and the initial pattern is fully
recovered after the removal of the field: both layers are
magnetized along the easy axis (Fig. 3d). In stronger
fields, the reversibility is lost, and the magnetooptic
contrast is not recovered after the removal of the field.
Nevertheless, the direction of the remanent magnetiza-
tion, which is determined by the symmetry axis of the
magnetooptic pattern at the edges of the hole, remain
unchanged and coincide with the direction of the easy
axis (Fig. 3e). Under a further increase of the magnetiz-
ing field, the remanent magnetooptic contrast vanishes
and then appears again, but with the opposite sign. Fig-
ure 3f clearly shows that, in the maximal field attainable
in the experiment, magnetooptic contrast virtually
reaches its initial absolute value.

In addition to the visual observation of the qualita-
tive features of remagnetization, the magnetooptic indi-
cator film technique allows one to measure the numeri-

Fig. 4. Variation of the averaged maximal intensity  of the
remanent magnetooptic signal at the edge of the hole under
remagnetization along easy axis.

I
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0

40

80

120
, arb. unitsI
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cal characteristics of the remagnetization. Figure 4 rep-

resents the variation of the averaged intensity 
corresponding to the variation of the remanent magne-
tization of the structure due to the magnetic field
applied along the easy axis. The intensity of the magne-
tooptic signal is obtained by the digital processing of
the stray field patterns, similar to those shown in Fig. 3,
near the edge of the hole. One can see that, up to the
fields of 0.5 T, the variations of magnetization are fully
reversible (the remanent magnetization is close to the
initial value); a rapid decrease (virtually up to zero) of
the magnetooptic signal, accompanied by the inversion
of the contrast under a further increase in the field,
occurs only in the neighborhood of 0.7 T. However, it is
important that the initial intensity is not fully recovered
up to a field of 0.9 T, and, hence, the structure is not
magnetized up to saturation.

The observed variation of the magnetooptic portrait
in a field directed along the easy axis corresponds to the
remagnetization of the system by a nonuniform rotation
of magnetization in submicron-size regions (beyond
the spatial resolution limit of optical microscopy). A
similar mode of remagnetization was earlier observed
in Fe/SmCo bilayer structures with the (100) orienta-
tion of a MgO substrate [17].

The remagnetization kinetics described above is in
an obvious contradiction with the results of [18], where
the authors observed a uniform rotation of remanent
magnetization in bilayer structures of identical compo-
sition but with slightly different structural and geomet-
rical characteristics. We have established that a transi-
tion to a quasi-uniform remagnetization mode, which
corresponds to the formation of a macroscopic
exchange spring in a sample, occurs under a small (of
about few fractions of a degree) deviation of the applied
field from the easy magnetization axis. This remagneti-
zation mechanism is illustrated in Fig. 5. The field is
directed at an angle of α = –3° to the easy axis. Instead
of successive vanishing and inversion of magnetooptic
contrast, which was observed in the experiments in
which the field is antiparallel to the unidirectional
anisotropy axis, here we have a rotation of magnetiza-
tion in the plane of the film. Just as in the case of a
strictly antiparallel field, the first stage of remagnetiza-
tion is reversible, and the magnitude and the direction
of the magnetization are restored after the removal of
the field. As the field increases, the resultant vector of
remanent magnetization also begins to deviate from the
easy axis (Figs. 5b–5e). The rotation is accompanied by
a slight reduction of the magnetooptic contrast, which
provides evidence for the inhomogeneity of this pro-
cess. However, the contrast is not reduced to zero, as is
the case in a strictly anisotropic field, and the direction
of remanent magnetization is easily determined for any
magnitude of the applied field.

The investigation of the full remagnetization cycle
(under the reversal of the field) revealed another inter-
esting phenomenon. The sign of rotation of the vector

I
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

å

ç

Fig. 5. Remagnetization of a Fe/SmCo heterostructure under small (α ≈ –3°) deviation of the field from easy axis; (a) in the initial
state, H = 0; (b) µ0H = –0.57 T; (c) µ0H = –0.72 T; (d) µ0H = –0.78 T; (e) µ0H = –0.87 T; (f) µ0H = +0.35 T; (g) µ0H = +0.48 T;
and (h) µ0H = +0.57 T. The figure demonstrates the state of polarization after the removal of the field. Light and dark arrows inside
the hole show the directions of the unidirectional anisotropy and of the net magnetization, respectively.
of remanent magnetization in the field of opposite
direction sometimes coincided with the sign of rotation
of the vector M on the previous branch of the hysteresis
loop (Figs. 5f–5h). In other words, the angle of this
rotation, which varied counterclockwise in the previous
half-cycle of remagnetization, continued to vary in the
same direction up to an angle of 360°, which coincides
with the initial angle ϕ = 0. This sign of rotation
remained unchanged during repeated remagnetization
cycles. In some other cases, the variation of ϕ had
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
opposite signs on the descending and ascending
branches of the hysteresis loop; i.e., during reverse
remagnetization, intermediate directions of remanent
magnetization reproduced, in reverse order, the previ-
ous directions, while the values of the angle ϕ between
180° and 360° were not realized at all.

To investigate the characteristics of the asymmetry
in the evolution and the sign of twisting of the spin
spring, we performed a series of remagnetization cycles
for different angles between the magnetic field and the
SICS      Vol. 99      No. 3      2004
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Fig. 6. Rotation of remanent magnetization under various tilt angles of a remagnetizing field with respect to easy axis; (a) small
angles α = +0.5° and α = –0.5° and (b) large angles (1) α = –6°, (2) –8°, (3) –10°, (4) 15°, and (5) 5°. Dashed curves with arrows
correspond to transitions from a negative to a positive remagnetization half-cycle.

ϕ ϕ
easy axis. Some of these results are shown in Fig. 6. It
turned out that the rotation angle of the remanent mag-
netization is extremely sensitive to the sign and the rel-
ative magnitude of the magnetic field component per-
pendicular to the easy axis. For a nonuniform rotation
of the remanent magnetization, which was observed
when the field was strictly parallel to the easy axis, the
angle ϕ is equal to zero for any value of the field. As
described above, even small deviations (of about 1°)
change the mode of remagnetization and result in a
nonzero rotation of the remanent magnetization
(Fig. 6a). For small tilt angles, the variation of ϕ is rel-
atively small up to a certain critical value of the field at
which this angle sharply increases. When the field
increases further, this angle rapidly reaches its maximal
value (which is close to 180°). When the sign of the tilt
angle between the direction of the field and the easy
axis is changed, the sign of rotation of the remanent
magnetization is also reversed. The divergent curves in
Fig. 6a are obtained for a relative rotation of the exter-
nal field through an angle as small as 1°.

We have observed that an increase in the tilt angle of
the field with respect to the easy axis substantially
changes the evolution of the spin spring. For instance, a
rotation of the field through only ±10° results in a
decrease in the resultant angle of remanent magnetiza-
tion from 180° to about 70° (curves 3 and 4 in Fig. 6b).
The range of fields within which the angle ϕ shows sig-
nificant variation is also changed: instead of a sharp
increase of the angle to values close to 180° (Fig. 6a),
the rotation of the remanent magnetization occurs
slowly (curves 1–5). Figure 6 illustrates the above-
described asymmetry in the twisting sign of the spin
spring under the reversal of the remagnetizing field.
When the field was tilted with respect to the easy axis
at a small angle in the counterclockwise direction, then,
after the reversal of the field, the sign of rotation of the
remanent magnetization M coincided with the sign of
rotation at the preceding half-cycle of remagnetization
JOURNAL OF EXPERIMENTAL 
(curve 1 in Fig. 6b). Thus, the angle ϕ varied from 180°
to 360°. When the field was tilted in the opposite direc-
tion, then the sign of twisting of the spin spring was
changed, and the angle ϕ ran through the same values
as in the preceding half-cycle, but in the reverse order
(curve 5). Since the intervals of angles from 180° to
360° and from –180° to 0° are physically equivalent,
we can conclude that there exists a distinguished sign of
rotation of remanent magnetization when a sample is
remagnetized in a slightly tilted field with the magni-
tude ranging from –0.9 T to 0.9 T. Figure 6b shows that,
for large tilt angles of the field (greater than 7°), the
variation of ϕ in the reverse half-cycle is always oppo-
site to that in the initial half-cycle (curves 3 and 4). Fig-
ure 6b also shows that this variant is always realized
when the angle of rotation of remanent magnetization
does not reach 120° in absolute value after the applica-
tion of the maximal field of 0.9 T.

The remagnetization of multilayer magnetic sys-
tems exhibits a wide variety of mechanisms compared
with the remagnetization of bulk materials. The main
reason lies in the presence of additional factors—the
interlayer exchange interaction and the unidirectional
exchange anisotropy. When studying the remagnetiza-
tion of similar systems, most authors restrict them-
selves to one-dimensional models and consider only
spatial variations of magnetization that is perpendicular
to the layers, assuming that the distribution along the
remaining two coordinates is uniform [8–11]. However,
it is well known from experience in the study of bulk
samples that idealized mechanisms of uniform remag-
netization very rarely occur in real samples and the key
effect on the remagnetization of a specific system is
produced by the irregularities of the crystalline struc-
ture and by magnetostatic fields.

One of the mechanisms by which irregularities
affect the remagnetization of heterostructures with spin
springs was considered in [18] while explaining the
phenomenon of irreversible rotation of remanent mag-
AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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netization. It was demonstrated that the key role in this
process is played by the competition between interlayer
exchange interaction and the exchange inside a soft
layer. The presence of small-scale (comparable to the
size of grains in a sample) domains of opposite polari-
ties in the SmCo layer should form an appropriate
“domain structure” from local spirals of opposite
chiralities in the magnetically soft layer. On the other
hand, such rapid spatial variations of magnetization in
the iron layer would significantly increase both the
exchange and the magnetostatic energy of the system.
The competition between these two opposite trends
may give rise to an intermediate state in which the mag-
netization of the magnetically soft layer is approxi-
mately uniform along two in-plane coordinates but is
turned to a certain compromise angle with respect to the
magnetization of the magnetically hard layer [18]. The
rotation angle of the remanent magnetization is deter-
mined by the relative density of domain states in the
SmCo layer; the domains of opposite polarities serve as
local sources of nanosprings that twist the remanent
magnetization of the soft layer in one or other direction.
The rotation of the remanent moment of the magneti-
cally soft layer due to the rearrangement of the domain
structure of the SmCo layer is similar in appearance to
the manifestation of a hypothetical biquadratic exchange
interaction, whose presence in layered magnetic sys-
tems has been extensively discussed over the last
decade [19, 21–23]. Indirect evidence of the fact that
the observed rotation of the remanent magnetization is
not associated with a certain additional fundamental
interaction is the fact that the perpendicular configura-
tion of magnetic moments of the layers, which is char-
acteristic of the biquadratic exchange interaction,
seems to be unstable and is virtually not observed in the
experiment (see Fig. 5 and figures in [18]), whereas
other intermediate orientations of spins are sufficiently
widely presented.

The arguments presented in [18] account for the
rotation mechanism of remanent magnetization under
conditions when a quasi-uniform spin spring may be
formed in a sample. Nevertheless, the results obtained
in our studies show that such conditions are not always
realized. Moreover, it turns out that the remagnetization
of multilayer systems strongly depends on the initial
conditions of the formation and evolution of a macro-
scopic spin spring.

One of the situations when the mechanism proposed
in [18] does not work is the remagnetization in a field
that is strictly parallel to the easy axis. The most prob-
able factor that prevents the formation of a monochiral
spin spring in a sample is the dispersion of the anisot-
ropy axes associated with a columnar nanometer-grain
structure that penetrates through all the layers of the
structure. A weakly disordered orientation of the crys-
tallographic axes in the grains, nonuniform stresses, the
coexistence of different crystalline modifications of
SmCo compounds, as well as the presence of steps on
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the interface [24] have been considered as mechanisms
of such variance. When there is a magnetic field com-
ponent perpendicular to the easy axis, this component
determines a more favorable direction of twisting of
spins, and the nuclei of spin springs in each grain are
twisted in the same direction. Although this process is
inevitably nonuniform due to the existence of a real
potential relief, the presence of a strong exchange inter-
action smoothens these irregularities, thus forming a
smooth distribution of spins over relatively large spatial
areas. If there is no transverse component of the field,
the direction of twisting in each nucleus of a spin spring
is chosen randomly depending on the local potential
microrelief. The interaction between these nuclei of
different chiralities inevitably leads to a sharp increase
both in the exchange energy and the energy of demag-
netization fields, which is very large in a magnetically
soft material. It is rather difficult to imagine the result-
ant magnetic configuration; however, it is most proba-
ble that this is a rippled three-dimensional vortex struc-
ture based on the balance of magnetostatic and
exchange energies. In this case, elementary remagneti-
zation processes occur on small spatial scales and can-
not be resolved by optical microscopy (Fig. 3e).

Another moment that is not quite clear is the strong
dependence of the rotation of remanent magnetization
on the tilt angle of the magnetic field to the easy axis.
One of possible explanations is the incompleteness of
remagnetization processes in the SmCo layer even in
the maximal field attainable in our experiment. How-
ever, it is unlikely that a small decrease in the longitu-
dinal component of the field at a relatively small tilt
angle may lead to such a sharp variation in the magne-
tization curves (see Fig. 6a). It is more probable that a
reason should be sought for in the magnetically soft
layer. Here, one should note that the twisting direction
of spin springs is not yet quite obvious, the rotation of
the magnetization vector M is in fact unstable, the pro-
cess of remagnetization is avalanche-like, and a large
part of intermediate angles is “skipped,” leading
directly to the opposite orientation. There may be a cer-
tain competition between rotation and 180-degree
switching of magnetization; this is indirectly supported
by the reduced magnetooptic contrast at the edges of
the hole in the sample (see Fig. 4). The reasons for the
“suppression” of the rotation of remanent magnetiza-
tion for a large tilt angle (see Fig. 6c) are not quite clear
at present. For example, this may be associated either
with an increase in the magnetostatic energy or with a
certain metastability of the remanent heterochiral struc-
ture under the variation of its spatial scale.

As for the asymmetry of rotation during a full
remagnetization cycle, it also may be associated with
the initial twisting direction of a spin spring. Suppose
that a sample was initially remagnetized in a field
directed to the left (Fig. 7a). In this case, the macro-
scopic spin spiral should be twisted so that the magne-
tization coincides with the transverse component of the
SICS      Vol. 99      No. 3      2004
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field, as is shown in the figure. As a result, domains with
the magnetization directed to the left are formed in the
magnetically hard layer (Fig. 7b). After the removal of
the field, the spins of the magnetically soft layer will be
turned in the same direction, specified by the new direc-
tion of induced unidirectional anisotropy. Nevertheless,
the presence of a nonremagnetized part in the bulk of
the magnetically hard layer, which contains spins ori-
ented in the previous direction (to the right; see Fig. 7d)
gives rise to intermediate regions between the remagne-
tized and nonremagnetized parts of the layer, in which
the magnetic moments of the magnetically soft layer
are not completely reversed. As a result, the magnetiza-
tion of the magnetically soft layer in these regions
proves to be slightly tilted to the easy axis (Fig. 7c) and
acts as localized nanosprings that tend to turn a part of
spins in this layer in the previous direction.

When the external magnetic field is applied in the
opposite direction, the twisting direction of a new spin
spring is determined by the sign of the transverse pro-
jection of the field. It is obvious that, in the ideal case
of total remagnetization, the rotation in the same direc-
tion is more favorable (Fig. 7b). However, due to the
incompleteness of the remagnetization in the hard
layer, the remanent magnetization after the first half-
cycle often makes a considerable angle with the easy

H

M

H

H

M

M

M

H

(a)

(b)

(c)

(d)

Fig. 7. Twisting direction of a spin spring under a full
remagnetization cycle in a tilted field; (a) the first half-cycle
of remagnetization; (b) effect of reverse field on remagne-
tized regions; (c) effect of a field on the inclined magnetiza-
tion of the soft layer; (d) absence of a spin spring in macro-
scopic remanent domains.
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axis (see Fig. 6). If this angle is sufficiently large, then
the sign of the transverse projection of the field proves
to be opposite, and the spin spring starts to twist in the
opposite direction (Fig. 7c). Thus, depending on the
magnetization distribution in the crystal, three variants
of the local effect of the magnetically hard layer on the
magnetically soft one are possible under reverse remag-
netization: an effect in the same direction, produced by
the regions remagnetized during the previous half-cycle
(Fig. 7b); an effect in the opposite direction, produced
by the regions with tilted magnetization (Fig. 7c); and
a nearly zero twisting moment produced by large non-
remagnetized regions (Fig. 7d). The development of the
resultant macroscopic spin spiral is determined by the
statistical contribution of these three effects to the pro-
cess of remagnetization. Since the remanent magneti-
zation is maximally different from 180° at large tilt
angles of the field (see Fig. 6), the sign of its rotation in
a new half-cycle of remagnetization should always be
reversed, which is observed in experiment.

Thus, if there is even a small factor in a sample that
removes the degeneracy of states of the exchange
spring with respect to its chirality, then the formation of
a macroscopic spin spiral proves to be much more
favorable compared with nonuniform rotation of the
magnetic moment. This fact has been confirmed by
experiments in which a rotating magnetic field of con-
stant magnitude was used instead of remagnetization in
a prescribed direction to form a spin spiral. The mea-
surement of the longitudinal Ml and transverse Mt com-
ponents of magnetization as a function of the rotation
angle of the field shows a variation in the sign of twist-
ing of the spiral when the deviation of the field from the
easy axis is 15°–20° (see the jumps in Mt in Fig. 8). In
this experiment, just as during the remagnetization along
a fixed direction for ϕ ≠ 0, the magnetooptic portrait
illustrates the rotation of magnetization (Figs. 9a–9d); in
this case, a decrease in intensity is not observed
because the twisting moment is uniquely specified. The
rotation angle of magnetization as a function of the cur-
rent direction of the field is shown in Fig. 9e for several
values of H. The following fact is noteworthy: a change
of the sign of rotation of magnetization does not depend
on the magnitude of the field and occurs soon after the
field vector passes through the easy axis. This means
that, during change of sign of the twisting moment
(which is defined by the orientation of the field with
respect to the magnetization of the hard layer), the spin
spring relatively easily reverses its chirality. This pro-
cess seems to be in a sense analogous to the generation
of horizontal Bloch lines in twisted domain structures
that occurs when the field in films with magnetic bubble
domains reaches its critical value [13]. When the mag-
nitude of the rotating field exceeds a certain critical
value (µ0H > 60 mT), the inhomogeneity of the remag-
netization can be observed visually (Figs. 9c and 9d); in
this case, a macroscopic domain structure is formed in
the sample.
 AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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Fig. 8. Longitudinal and transverse components of magnetization in a rotating magnetic field of µ0H = 0.05 T.
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Fig. 9. Rotation of magnetization under rotating magnetic fields of various intensities; (a)–(d) successive stages of magnetization
rotation and (e) angle of magnetization rotation versus the field direction for rotating field magnitudes of µ0H = (1) 0.06, (2) 0.03,
and (3) 0.006 T.
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4. CONCLUSIONS

We have established that there are three remagneti-
zation modes in a Fe/SmCo system grown on the (110)
MgO substrate:

(1) a nonuniform small-scale remagnetization under
strictly parallel orientation of the field, accompanied by
the generation of spin springs of opposite chiralities;

(2) a quasi-uniform rotation of the net magnetiza-
tion via a spin-spring mechanism when the magnetic
field deviates from the easy axis;

(3) a uniform rotation of magnetization accompa-
nied by the generation of a coherent spin spiral and a
macroscopic domain structure.

We have shown that the tilt angle of the magnetic
field with respect to the easy axis produces a very
strong effect both on the magnitude of the remanent
rotation angle of magnetization and on the choice of a
right- or left-handed twisting of a spin spiral. The
observed twisting asymmetry under a field reversal as
well as under repeated remagnetization cycles gives
evidence of the fact that the remagnetization processes
in this system are largely determined by the moment of
the initial deviation of the magnetization in the magnet-
ically soft layer.
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Abstract—The effect of indirect interactions (through the field of elastic deformations) on the temperature
dependences of a two-point correlator of the order parameter of an improper ferroelastic is studied theoretically
taking into account the interaction of fluctuations at different spatial points with one another and with defective
elastic fields. The latter are accounted for by using a phenomenological field of the sources of defective elastic
fields. Analysis is carried out using diagrammatic expansions followed by a transition to the Dyson equation. It
is proposed that the Dyson equation be approximately solved nonperturbatively using the ansatz for an exact
two-point Green function of the form Gint(k) = T/[αij(τ)kikj + β(τ)]. Such an approach makes it possible to
reduce the problem to solving a system of nonlinear algebraic equations, which can effectively be solved by
numerical methods. The aggregate of the assumptions made is equivalent to the mean field theory, which, how-
ever, cannot be reduced in the present case to the Ginzburg–Landau theory in view of the essentially nonlocal
character of the indirect interaction via the field of elastic deformations. The results of numerical calculations
are considered for a defect-free Hg2Cl2 crystal, for which it is shown that parameters of dispersion αij acquire
a substantial temperature dependence in a temperature range much broader than the width of the critical region
of the given crystal. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that fluctuations of the degrees of
freedom corresponding to the order parameter sharply
increase in systems experiencing a continuous phase
transition (in particular, improper ferroelastics)1 in the
vicinity of Tc. It is assumed that the behavior of these
fluctuations can be described in the Gaussian approxi-
mation (see, for example, [1]) in the framework of the
Ginzburg–Landau theory if we disregard the narrow tem-
perature interval directly adjoining Tc (critical region). In
accordance with this theory, the spatial Fourier transform
of the one-time correlator of fluctuations is a Lorentzian
with an amplitude proportional to (T – Tc)–1 and a width
proportional to (T – Tc)1/2.

At the same time, fluctuations of the order parame-
ter in ferroelastics at T > Tc were directly observed in

1 In a broad sense, the term improper ferroelastic can be applied to
any crystal in which spontaneous deformation emerges as a result
of a structural phase transition, the deformation itself being not
an order parameter. Owing to striction coupling between polar-
ization and deformation, ferroelectrics are also improper fer-
roelastics in the broad sense of the term. However, ferroelastics
are usually the crystals in which electric polarization does not
emerge in a structural phase transition. We will use here the term
“improper ferroelastic” precisely in the narrow sense of the word
since, in the case of ferroelectrics, we must consider, in addition
to the interaction of fluctuations via the emerging deformation,
the interaction via the macroscopic electric field appearing in fer-
roelectrics, which is beyond the scope of this article.
1063-7761/04/9903- $26.00 © 20613
experiments using diffuse scattering of X rays [2, 3]; in
these experiments, the above-mentioned dependences
have not generally been confirmed. It is important that
this occurs in a wide temperature range clearly exceed-
ing the critical region, which amount to only 1 K for
Hg2Cl2 according to estimates from [4].

There are in principle at least two reasons for the
discrepancy between the results of these experiment
and the predictions of the Ginzburg–Landau theory.
First, the contour of the line describing diffuse scatter-
ing of X rays cannot exactly correspond to the Fourier
transform of the order parameter correlator (e.g., due to
the effect of random elastic deformations that inevita-
bly are present in ferroelastics). Second, the behavior of
order parameter fluctuations may deviate from the pre-
dictions of the theory.

One of the factors due to which deviations in the
behavior of fluctuations in improper ferroelastics may
differ from the predictions of the Ginzburg–Landau
theory can be the indirect interaction between fluctua-
tions at different spatial points via the field of elastic
deformations. Such an interaction is essentially nonlo-
cal, which obviously contradicts the local character of
the thermodynamic potential expansion normally used
in the given theory.

It should be emphasized that nonlocal terms in the
expansion of the crystal energy into a power series in
the order parameter, which emerge as a result of the
indirect interaction, are anharmonic. This complicates
004 MAIK “Nauka/Interperiodica”
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theoretical analysis and generally necessitates the use
of certain approximations. Such approximations may
be quite successful in the quantitative respect, espe-
cially if we use empirical and not calculated parame-
ters; however, their role mainly lies in the description of
the observed phenomena on a qualitative level.

Naturally, far away from the phase-transition tem-
perature, when fluctuations are small, the interaction
via the elastic field can be accounted for, as a rule, in
perturbation theory. It is well known, however [5], that
the effective parameter of the expansion in perturbation
theory increases as T  Tc . Consequently, in the
vicinity of the transition temperature, a finite order of
perturbation theory does not provide even a qualita-
tively correct pattern. For this reason, it would be desir-
able to take into account (at least partly) the indirect
interaction of fluctuations even in the zeroth approxi-
mation. This could extend the temperature range in
which the theory gives physically reasonable depen-
dences of the observables. In addition, elastic fields of
crystal-structure defects of a real crystal may also play
a significant role and should also be included in the
description.

Thus, analysis of the role of elastic fields in the for-
mation of the correlator of fluctuations in ferroelastics
is quite important. It is also interesting to study the
effect of elastic fields on the correlation between the
line contour of diffuse X-ray scattering and the Fourier
transform of one-time two-point correlator of fluctua-
tions; however, this question is beyond the scope of this
paper. We will only analyze the fluctuations of the order
parameter themselves; the main attention will be paid
to the qualitative aspect of the problem.

This article has the following structure. In Section 2,
the adopted theoretical model is described taking into
account the interaction between fluctuations located at
different spatial points via an elastic field as well as the
indirect elastic interaction of the fluctuating field of the
order parameter with crystal structure defects. The lat-
ter are described phenomenologically by introducing
a random field of the sources of elastic deformations.
In this section, the diagrammatic technique that will
be used in the subsequent section is introduced. In
Section 3, we introduce the Dyson equation for the
two-point correlator of fluctuations, which is solved by
a nonperturbative method using the ansatz that has the
following form in the k representation:

The approximation used in this case is equivalent to the
mean field theory; however, in the present case this
approximation cannot be reduced to the Ginzburg–Lan-
dau theory in view of the nonlocal character of the
interaction. As a result, after numerical solution of the
system of nonlinear algebraic equations obtained for a
defect-free Hg2Cl2 crystal, it is shown that, in contrast
to the Ginzburg–Landau theory, a strong temperature

Gint k( ) T / α ij τ( )kik j β τ( )+[ ] .=
JOURNAL OF EXPERIMENTAL 
dependence of dispersion parameters αij emerges in
addition to the temperature dependence of parameter β.
The obtained results are discussed in Section 4.

2. EXPANSION
OF THERMODYNAMIC POTENTIAL 
AND DIAGRAMMATIC TECHNIQUE

Since we are interested only in the qualitative aspect
of the problem, we will confine our analysis to the case
of a one-component order parameter η. It should be
noted that the same approach could be used for crystals
with a multicomponent order parameter if we assume
that each component of η fluctuates independently,
which seems to be a reasonable first approximation. A
rigorous generalization of the theory to the case of a
multicomponent order parameter can be carried out
directly when necessary.

In the power expansion of the thermodynamic
potential in spatially inhomogeneous order parameter
η, we take into account harmonic (Gaussian) terms,
fourth-order anharmonism in η, the interaction of the
order parameter with the field of elastic deformation,
and the interaction of elastic deformations with crystal-
structure defects. We will describe the latter interaction
by introducing the random field of sources of elastic
stresses σij . In the case of point defects, the field σij is
δ-correlated.

In accordance with the above arguments, we write
the expansion of thermodynamic potential Φ in the
form

(1)

The terms in formula (1) are defined as

(2)

(3)

(4)

(5)

(6)

where the indices label spatial components; the index
after coma indicates the partial derivative with respect
to the corresponding spatial coordinate; recurrent indi-
ces indicate summation; η is the order parameter, ui are
elastic displacement components, Cijkl is the elastic
moduli tensor, λij are the dispersion parameters, and g
and fij are parameters of interactions.

Φ Φ2 Φel Φdef Φ4 Φint.+ + + +=

Φ2
1
2
--- λ ijη ,iη , j τη 2+( )d3r,∫=

Φel
1
2
--- Cijklui j, uk l, d3r,∫=

Φdef σijui j, d3r,∫=

Φ4 gη4d3r,∫=

Φint f ijη
2ui j, d3r,∫=
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Parameter τ requires additional explanation. In the
Landau theory disregarding fluctuations, it is usually
assumed that τ ∝  (T – Tc). When the interaction
between fluctuations is taken into account in the frame-
work of the mean field theory, an additional correction
to this term appears, which is proportional to T in the
main approximation. In this case, we can assume that τ
is a negative quantity independent of temperature; tak-
ing the fluctuation correction into account, we obtain
τ ∝  (T – Tc) as in the original phenomenological Lan-
dau theory.

It is important to note, however, that optical phonon
modes of the crystal disregarded in potential (1) con-
tribute to the temperature dependence of effective
parameter τ in a completely analogous way. To take
into account the effect of these modes phenomenologi-
cally, we assume that τ ∝  (T – Tc0), where Tc0 is the “ini-
tial” phase transition temperature, which is higher than
the actual phase-transition temperature of the crystal.

Obviously, taking into account the interactions, we
can define the correlation function we are interested in
via the continual integral,

(7)

It should be emphasized that this relation defines the
correlator for determinate field σij . Actual physical
quantities are defined by this correlator averaged over
the set of realizations of the field σij . It is important that
averaging over σij should be carried out precisely after
evaluating the continual integral. If expression (7) did
not contain the continual integral in the denominator,
we could directly average expression (7). The presence
of the denominator does not allow us to do this. One of
the methods for averaging expressions of type (7) is the
well-know replica technique (see, for example, [6]).
However, in the theories based on diagrammatic expan-
sions, the replica technique is equivalent to direct aver-
aging of diagrams. It is well known that denominator in
expressions of type (7) only leads to disappearance of
disconnected diagrams and, hence, no serious difficul-
ties necessitating the application of the replica tech-
nique emerge in such an approach.

Since the continual integral with respect to $u in
Eq. (7) is Gaussian, continual integration with respect
to $u can be carried out exactly, which leads to a for-
mula similar to Eq. (7). The only difference is that this
formula does not involve integration with respect to $u
and contains, instead of potential (1), the effective
potential

(8)

where Φu describes indirect interaction between fluctu-
ation via the field of elastic deformations, Φdef–eff is a

Gint r r'–( )
η r( )η r'( )e Φ/T– $η$u∫

e Φ/T– $η$u∫
---------------------------------------------------------.=

Φeff Φ2 Φ4 Φu Φdef–eff Φdef–def,+ + + +=
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similar interaction of the order parameter with defects,
and Φdef–def is the elastic interaction between defects.
The last term is insignificant for the subsequent analy-
sis and will be omitted.

Indirect interaction are represented by the expres-
sions

(9)

(10)

(11)

where Rijkl(r) is the elastic Green function defined by
the formula

(12)

Πij(k) being the tensor reciprocal to tensor Γij(k) =
knkmCinjm .

Expanding in expression (7) the exponential of the
terms describing the interaction into a series, we can
easily construct the corresponding diagrammatic tech-
nique. In this technique, we depict the field σij by a cir-
cle, the correlator (propagator) of the order parameter
in the zeroth Gaussian approximation,

, (13)

by a solid line, a nonlocal vertex of the indirect interac-
tion [–T–1U(r)] by a wavy line, a nonlocal vertex of the
indirect interaction with defects [–T–1fijRijkl(r – r')] by a
spiral, and a local vertex [–T–1g] by a point.

Such a diagrammatic technique describes a crystal
for a determinate field σij . However, we require quanti-
ties averaged over realizations of σij . This averaging
slightly modifies diagrammatic rules, the modification
affecting only the diagrams containing circles.

To determine the diagrammatic technique corre-
sponding to the quantities averaged over field σij , we
consider Fig. 1, which contains several diagrams with
elements affected by averaging over σij . Additional
wavy lines and fourth-order vertices do not change the
following line of reasoning.

Each diagram in Fig. 1a corresponds to an analytic
expression containing the number of factors σij equal to
the number of circles in the diagram. After averaging
over realizations of fields of defects, these factors give
correlators of field σij . In the diagrammatic language,
we will depict these correlators by circles correspond-
ing to cofactors in the correlator enclosed in a rectan-

Φu η2 r( )U r r'–( )η2 r'( )d3rd3r',∫=

U r( ) 1
2
--- f ijRijkl r( ) f kl,=

Φdef–eff η2 r( ) f ijRijkl r r'–( )σkl r'( )d3rd3r',∫=

Rijkl r( ) 1

2π( )3
------------- k jkle

ik r⋅ Π ikd
3k,∫–=

G r r'–( ) 1

2π( )3
------------- T

λ ijkik j τ+
------------------------eik r⋅ d3k∫=
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gle. As a result of averaging, the diagrams in Fig. 1a
acquire the form shown in Fig. 1b.

Now, we must make a significant assumption
according to which the field σij(r) is Gaussian with zero
mean value (a nonzero mean would only renormalize
the parameters, which is immaterial for our purposes).
Then multipoint correlators of field σij split into prod-
ucts of two-point correlators. As a result, the diagram-
matic technique for quantities averaged over field σij

acquires an additional nonlocal vertex, which will be
depicted by a broken line; circles and spirals disappear,
and Fig. 1b is replaced by Fig. 1c. Figure 1d shows
graphically how a vertex corresponding to a broken line
is expressed in terms of the vertex of the indirect inter-
action with defects and the two-point correlator of field
σij . Analytically, this expression can be reduced to

(14)

where T–1V(r – r') is the analytic expression of a broken
line.

3. DYSON EQUATION 
AND ITS APPROXIMATE NUMERICAL 

SOLUTION

Separating in the standard manner the class of one-
particle irreducible diagrams (see, for example, [7]),
introducing the exact propagator represented by a bold
line, as well as the vertices renormalized by the interac-
tions and depicted by circles with letter Γ, we can intro-
duce the mass operator Σ(k) and write the Dyson equa-
tion, which is shown graphically in Fig. 2. Exact verti-

V r r'–( ) f ijRijkl r r''–( )
σkl r''( )σnm r'''( )〈 〉

T
------------------------------------------∫=

× Rnmrs r''' r'–( ) f rsd
3r''d3r''',

+

=

(a) + +

+++

+ + +

(b)

(c)

(d)

Fig. 1.
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ces are now represented by infinite diagrammatic
series, which, however, will not be written here.

If we could find exact vertices in closed form, the
solution of the Dyson equation would lead to the exact
solution of the problem since iterations of this equation
generate the entire series of perturbation theories. How-
ever, the problem is that it is impossible even to write a
closed equation for vertices. We can only write an infi-
nite chain of equations in which lower order Green
functions can be expressed in terms of higher order
functions [8]. The Dyson equation given in Fig. 2 is just
the first equation in this chain.

Thus, for vertices in the Dyson equation, we can
either use several first terms of the corresponding
series, or seek Γ by disentangling the above-mentioned
chain of equations using some approximate method. In
any case, we effectively sum not the entire series of per-
turbation theory, but only a certain infinite subsequence
of the terms of this series.

Here, we will confine our analysis to the simplest
approximation for vertices, taking them in the zeroth
order in the interaction. In particular we disregard in
this case the last diagram from those shown in Fig. 1c
(this diagram contains a correction to the vertex), while
the first three diagrams, as well as an infinitely large
number of other higher order diagrams that do not con-
tain corrections to vertices, are included.

For the mass operator Σ(k), we also confine our-
selves to the one-loop approximation; i.e., we disregard
the last term in Fig. 2b. In addition, the first three terms
in this figure give an identical expression to within con-
stant coefficients. In fact, the action of the second and
third diagrams boils down to a change in the value of g.
We will henceforth assume that g is precisely the mod-
ified constant (which means that the second and third
diagrams in Fig. 2b are implicitly taken into account).

(a)

(b)

+

=

= + +

++

+ Σ

Γ4

Γ3'

Σ

Γ3

Γ4Γ3

Γ3'

Fig. 2.
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In these approximations, the equations correspond-
ing to the diagrams in Fig. 2 can be reduced to the rela-
tions

(15)

(16)

As regards the physical meaning of the approxima-
tions introduced above, we can make the following
remarks. If the range of indirect interactions tends to
zero, the second, third, fourth, and fifth terms on the
right-hand side of Fig. 2b become absolutely equivalent
to the first term. However, the inclusion of only this dia-
gram in the zeroth approximation in corrections to the
vertex leads to the conventional mean field theory
equivalent to the Ginzburg–Landau theory.

Thus, we can state that the above approximations
correspond to the mean field theory modified so that to
take into account the nonlocal character of indirect
interactions. Physically, this means that, in the case of
a long-range interactions, the mean field acting on
modes with different values of k also has different val-
ues depending on k.

To solve Eq. (15) approximately, we represent
Gint(k) in the form

(17)

for the purpose of self-consistency, Σ(k) should be rep-
resented in this case as a power expansion in compo-
nents of vector k to within second-order terms. The
terms linear in k turn out to be identically equal to zero
since functions U(q) and V(q) are even. This leads to
the following equations for functions αij(τ) and β(τ):

(18)

(19)

Direct calculation of Σ(k = 0) shows that the corre-
sponding loop integrals linearly diverge at the upper
limit (this reflects the well-known fact of infinite renor-
malization of the phase-transition temperature for the
cutoff parameter tending to infinity). Consequently, the
integrals should be truncated at the upper limit for a
certain momentum equal to Λ.

In contrast to Σ(k = 0), quantity ∂2Σ/∂ki∂kj(k = 0)
can be expressed by an integral converging at the upper
limit. This quantity is insensitive to truncation at large

Gint
T

λ ijkik j τ TΣ k( )–+
---------------------------------------------,=

Σ k( ) 3g

2π3T
------------ Gint q( )d3q∫–=

–
1

π3T
--------- Gint q k+( ) U q( ) V q( )–[ ] d3q.∫

Gint k( ) T
α ij τ( )kik j β τ( )+
----------------------------------------;=

τ TΣ k 0=( )– β τ( ),=

λ ij
T
2
--- ∂2Σ

∂ki∂k j

---------------–
k 0=

α ij τ( ).=
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momenta, which is associated with the discrete struc-
ture of a real crystal. Consequently, calculating
∂2Σ/∂ki∂kj(k = 0), we can assume that the maximal loop
momentum is infinitely large. As a result of direct cal-
culations, Eq. (19) is transformed to

(20)

Thus, the system of equations (18), (19) is uncou-
pled. We can seek coefficients αij as functions of β from
Eq. (20) and only after that do we determine β as a
function of temperature. Moreover, since β can be
expressed in terms of an experimentally measured
quantity (the amplitude of a diffuse reflection), we can
obtain information on the temperature behavior of the
fluctuation correlator even without solving Eq. (18).

It was mentioned above that U(q) depends only on
the direction of vector q. If the sources of random elas-
tic field are δ-correlated, function V(q) also possesses
the same property. In this case, we can integrate
Eq. (20) with respect to q in polar coordinates in the
general form. To this end, we introduce the unit vector
p = q/q; after a series of transformation, we obtain

(21)

where dΩp is the differential of the solid angle of direc-
tions of vector p.

System of equations (21) is nonlinear and can appar-
ently be solved only numerically. In the numerical solu-
tion, however, it is more convenient to pass to dimen-
sionless normalized quantities, writing αij in the form

(22)

where

(23)

calculating U(p) and V(p), we must use elastic moduli
Cijkl normalized to the dimensional constant C and
interaction parameters fij normalized to f. In this case,
tensors αij and λij in Eqs. (22) are normalized to dimen-
sional constant λ. The temperature in the numerator on
the right-hand side of Eq. (23) must be expressed in
energy units.

α ij λ ij
T

π3
-----

4α riα sj α rsα ij–( )qrqs α ijβ–

α rsqrqs β+( )3
--------------------------------------------------------------------∫+=

× U q( ) V q( )–[ ] d3q.

α ij λ ij
T

4π2β1/2
------------------ U p( ) V p( )–[ ]∫+=

×
3α riα sj α ijα rs–( )pr ps

αnm pn pm( )5/2
----------------------------------------------------- Ωp,d

α ij λ ij A U p( ) C 1– V p( )–[ ]∫+=

×
3α riα sj α ijα rs–( )pr ps

αnm pn pm( )5/2
-----------------------------------------------------dΩp,

A
T f 2

4π2β1/2λ3/2C
-------------------------------;=
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Let us obtain numerical estimates for a perfect
(defect-free) Hg2Cl2 crystal. We will not try to fit the
results to a specific experiment; the experimental
results obtained in [2] will be used as a landmark for
choosing approximations. Our aim is to estimate the
effect of elastic interactions on the behavior of the cor-
relator of fluctuations on the basis of experimentally
obtained parameters, which are independent of experi-
ments on X-ray scattering. Since the crystal defective-
ness may change from sample to sample, it is meaning-
less to take defects into consideration.

First of all, we must verify that the temperature
dependence of dispersion parameters αij predicted by
the theory proposed here can be observed in a wide
temperature range, which is considerably larger than
the critical region. Consequently, we are interested in
the temperature dependence of parameter β to a much
smaller extent that the same dependence of parameters
αij . In addition, it is well known [4, 9] that the fourth-
order term in η renormalized by the elastic interaction
are small for Hg2Cl2 crystals (at any rate, in the frame-
work of the Landau phenomenological theory). For this
reason, it seems expedient to set Σ(k = 0) = const in the
first approximation and, hence, β = τ to within the
renormalization of the phase-transition temperature.
The temperature dependence of the amplitude of the
diffuse X-ray reflection obtained in [2] also corre-
sponds to this assumption, deviating from the pro-
portionality to 1/(T – Tc) only in a small neighborhood
of Tc .

200

100

200 250 T, K

αi

α2

10α1

2α3

Fig. 3. Temperature dependence of dispersion parameters αi
of a Hg2Cl2 crystal. The curves for α1 and α3 are given on
magnified scales (10 : 1 and 2 : 1, respectively) along the
ordinate axis.
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Thus, the problem is actually reduced to solving the
system of equations (22). The results of the numerical
iterative solution of these equations using numerical
values of parameters from [4, 9–11] are presented in
Fig. 3. Tensor αij in this case is reduced to the principal
axes rotated through 45° relative to tetragonal axes of
the crystal, and only the strongest interaction with the ε6
component of the strain tensor is taken into account [9].

In Fig. 3, parameters αij are normalized in such a
way that their numerical values in the absence of the
interaction with elastic deformations are 8, 255, and 18,
which agrees with the results obtained in [10]. Pay
attention to the fact that the scale on the ordinate axis,
on which the temperature dependence of parameters α1
and α3 is depicted, is magnified tenfold and twofold,
respectively, as compared to the scale for α2. The
curves are plotted for the temperature interval 190–
273 K, which is beyond the critical region of the Hg2Cl2
crystal (according to the estimates obtained in [4], this
regions lies between 0.1 and 1 K) in the vicinity of the
phase-transition temperature Tc = 186 K.

It can be seen from the figure that parameter α1 var-
ies insignificantly. The variation of parameter α2 is more
pronounced (in the experimental temperature range, this
parameter changes by a factor exceeding 1.3). Accord-
ingly, the anomalous behavior of the width of the dif-
fuse reflection must be more pronounced for scanning
in the ZE–X–EZ direction than for scanning in the Γ–X–
Γ direction. Parameter α3 varies even more strongly (in
the given temperature range, it changes by a factor of
1.5). Thus, the effects studied here must be manifested
most clearly in diffuse X-ray scattering for scanning
along the tetragonal axis of the crystal. Unfortunately,
such scanning was not carried out in [2].

It should be emphasized once again that the above
results were obtained taking into account the interac-
tion with only one component ε6 of the strain tensor,
which is the strongest. In addition, the calculations
were made only for a perfect (defect-free crystal) since
it is difficult to obtain a priori estimates of the correlator
for the sources of defective elastic fields. Such an
approach is justified for estimating minimal possible
effects; a meticulous comparison of the theory with
experiment requires more detailed experimental infor-
mation as compared to that provided in [2].

4. CONCLUSIONS

Thus, we have proved that the inclusion of the indi-
rect interaction of order parameter fluctuations in
improper ferroelastics via the field of elastic deforma-
tions radically changes (at least for a Hg2Cl2 crystal) the
form of the temperature dependence of the Fourier
transform of fluctuation correlator. Instead of tempera-
ture-independent coefficients of k2, the corresponding
Lorentzian acquires the coefficients of k2 with a pro-
nounced temperature dependence; this is observed in
 AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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the temperature interval in which the description in the
framework of the mean field theory is applicable. This
will naturally rule out the description of the behavior of
diffuse X-ray scattering line width in terms of a simple
power dependence. We can assume that either the
power dependence obtained in [2] for the reflection
width is an artifact of the method of experimental data
processing or some processes that were disregarded
here played a significant role in the experiment.

It should also be noted that the behavior of the
amplitude of diffuse X-ray reflection in the proposed
theory may completely correspond to the Ginzburg–
Landau theory and can be described by a power depen-
dence with an exponent of –1, in complete agreement
with [2].

It should also be noted that neither the dynamic
experiments on neutron scattering [10] nor the experi-
ments on the Mandelstam–Brillouin scattering of light
revealed any temperature dependence of the dispersion
parameters in the corresponding Lorentzian. However,
in such experiments, a high-frequency component of
the temporal Fourier transform of the fluctuation corre-
lator 〈η (t, r)η(t', r')〉  is measured in actual practice. In
other words, only rapid fluctuations play a noticeable
role in such experiments. Considering that elastic
deformations correspond to slow movements of the
system, we cannot expect that the temperature behavior
of the high-frequency part of fluctuations will be the
same as the temperature dependence of the one-time
correlator analyzed here. At the same time, diffuse
X-ray scattering in which the frequency of a scattered
photon is not detected is described precisely by the one-
time correlator; it was shown above that the tempera-
ture dependence of the parameters of this correlator
with allowance for elastic interaction differ from the
predictions of the Ginzburg–Landau theory.

At the same time, final conclusions about the role of
the processes considered here in real Hg2Cl2 crystals
necessitates more detailed experiments and, above all,
the analysis of the behavior of the diffuse X-ray reflec-
tion width under scanning along the tetragonal axis,
where the most clear manifestation of the effects stud-
ied here can be expected. It would also be interesting to
study experimentally the diffuse X-ray scattering on
crystals with various levels of the defect concentration.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
We can expect that crystals containing defects will bet-
ter exhibit effects similar to those calculated in the
present study for a defect-free Hg2Cl2 crystal since the
second term in the brackets in Eq. (22), which is propor-
tional to the defect concentration, is quite analogous to
the first term describing the elastic interaction in a
defect-free crystal.
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Abstract—A microscopic model is developed for resonant tunneling transport in weakly coupled semiconduc-
tor superlattices in a constant external electric field. The model takes into account multiple subbands and elec-
tric-field dependence of scattering by acoustic and optical phonons, charged impurities, and interface rough-
ness. The model is used as a basis for computing the resonant-tunneling profiles for structures with small size-
quantization energies. The computed results are in good agreement with experiment. In structures of this type,
an important role is played by electric-field dependence of scattering processes and the threshold behavior of
elastic processes is strongly manifested. A substantial asymmetry is predicted not only for the first tunneling
resonance, but also for higher order resonant tunneling processes. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The considerable current interest in transverse trans-
port through semiconductor superlattices and quantum-
well structures is primarily explained by the application
of resonant tunneling through structures of this type in
selective pumping of upper size-quantized subbands,
inversion of subband populations, and development of
unipolar injection infrared lasers based on intersubband
optical transitions [1]. Furthermore, new phenomena
associated with the resonant tunneling nature of current
in such structures have been discovered, such as current
multistability [2, 3] and self-sustained high-frequency
current oscillations in a constant transverse electric
field [4–6]. The latter phenomenon is of both funda-
mental and applied importance, because the oscillation
frequency can vary within a very wide range.

The phenomena mentioned above are explained by
the resonant tunneling nature of the current. In tunnel-
ing transport, an essential role is played by carrier-scat-
tering processes, which determine both tunneling-cur-
rent amplitude and resonant-tunneling profile. There-
fore, mathematical modeling and understanding of the
physics of the phenomena in question must rely on a
sufficiently realistic microscopic model of resonant
tunneling transport that takes into account various car-
rier-scattering processes.

A theory of this kind can be constructed by invoking
mathematical methods based on Green’s functions [7].
This approach was applied to the problem of tunneling
transport through weakly coupled superlattices in a uni-
form constant electric field in [8–10], where one-elec-
tron two-time Green’s functions were applied to model
scattering processes without using any adjustable
1063-7761/04/9903- $26.00 © 20620
parameters and to obtain tunneling current densities
that agree with experimental results.

In this paper, we use a similar approach to develop a
microscopic model of resonant tunneling transport
through superlattices and quantum-well structures. The
model can be used to calculate tunneling current densi-
ties and resonant-tunneling profiles ab initio for a broad
class of superlattices, including structures with small
size-quantization energies (i.e., with wide quantum
wells).

Wide quantum wells are characterized by multiple
low-lying subbands separated by relatively small gaps.
As a consequence, the coupling between different sub-
band states induced by electric field in such wells leads
to dependence of both resonant tunneling mechanisms
and scattering processes on electric field. For this rea-
son, we take into account the field dependence not only
of tunneling mechanisms (as in [8–10]), but also of
scattering processes in wells with multiple subbands.
We analyze scattering by impurities, acoustic and opti-
cal phonons, and interface roughness.

The analysis of scattering mediated by charged
impurities takes into account their screening. To calcu-
late the screened potential of an array of impurities in a
superlattice, we solve a three-dimensional problem by
the Hartree self-consistent field method, taking into
account multiple subbands. The mathematical appara-
tus developed in this study makes it possible to take into
account the effect of electric field on scattering pro-
cesses of this kind. It can also be used to allow for the
electric-field effect on screening, which cannot be done
by calculating matrix elements for zero field and then
changing to a new basis. Moreover, we do not employ
any approximation of the type usually employed (Tho-
004 MAIK “Nauka/Interperiodica”
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mas–Fermi model). According to a numerical analysis,
this is an important advantage to the present treatment,
because we can therefore model the behavior of the
polarization operator in the vicinity of the thresholds of
elastic processes, above which a drastic decrease in
screening is observed. As a result, we predict stronger
scattering and a more complicated physical model. Fur-
thermore, our model can be used to perform computa-
tions for arbitrary distributions of impurities both along
the z axis and over the planar surface. Numerical results
are obtained for structures with uniform bulk doping
over the entire superlattice, instead of standard delta-
doped structures.

Phonon-assisted scattering is modeled here approx-
imately by applying the Fermi rule as done in the math-
ematical apparatus developed in [11]. We allow for the
dependence of self-energy on the planar wave vector,
which is important in certain cases, and on optical-
phonon-assisted intrasubband scattering, which plays
an important role in resonance “tail” effects.

Scattering by interface roughness is modeled here
by developing the statistical approach of [8] to obtain
analytical expressions for self-energy for various chan-
nels of this scattering mechanism in the Born approxi-
mation as functions of total energy, planar wave vector,
and electric field. These expressions not only provide a
basis for qualitative analysis, but also simplify numeri-
cal computations (in particular, they substantially
reduce time complexity). We also propose a phenome-
nological approach that can be used to model correla-
tions between different interfaces.

In addition, the present model takes into account the
subband nonparabolicity (except for its role in scatter-
ing by interface roughness) and correlation between
planar and transverse motions (dependence of the
wavefunctions of transverse motion on the planar wave
vector). This may be important for analyzing transport
in cases when the subband bottom energy is close to the
barrier height.

The theory developed here was used as a basis for
computing resonant-tunneling profiles for structures
with small size-quantization energies, and good agree-
ment was achieved. The resulting widths of not only
first-order, but also higher order, tunneling resonances
are much greater than those estimated by using the
uncertainty relation and relaxation times given by the
Fermi rule [11–14]. Moreover, a substantial asymmetry
is predicted for tunneling resonances of any order.

It was concluded in [13, 14] that optical-phonon-
assisted intersubband scattering is much stronger for
high-lying subbands, as compared to other scattering
processes in structures with wide quantum wells. How-
ever, we show that comparable rates are characteristic
of impurity-mediated intrasubband scattering for all
subbands in such structures. Furthermore, it is found
that the contributions of resonant tunneling transport to
different subbands vary significantly, as manifested by
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
dependence of characteristics of a tunneling resonance
on its order.

We show that structures with small size-quantiza-
tion energies are characterized by strong electric-field
dependence of scattering processes and strong manifes-
tations of the threshold behavior of elastic processes.

In Section 2, we present a general theory and con-
sider scattering-assisted transport in uniform constant
electric field without specifying any scattering mecha-
nism. Sections 3, 4, and 5 are focused on scattering by
impurities, optical and acoustic phonons, and interface
roughness, respectively. Section 6 presents numerical
results and their discussion.

2. BASIC ASSUMPTIONS
AND MATHEMATICAL APPARATUS

The proposed model is based on the following
assumptions. First, the time-independent and uniform
external electric field F is applied in the negative direc-
tion of the growth axis of the structure (z axis). We also
neglect all spin correlations in the electron gas; i.e., we
consider a spin-degenerate system. Second, electron–
electron interaction is taken into account only in calcu-
lating the screened potential of impurities by the Har-
tree self-consistent field method, so that analysis of
superlattice transport is reduced to the problem of a
noninteracting electron gas in an external potential.
Third, tunneling coupling between electronic states in
adjacent wells is treated as weak; i.e., the characteristic
tunneling time is assumed to be longer than the
intrawell relaxation time. This implies that the super-
elattice can be represented as an array of interacting
quantum wells with strongly localized intrawell states.
Therefore, equilibrium with the corresponding electro-
chemical potential is reached on the tunneling time
scale in each well, and the tunneling probability per
unit time is described by the Fermi rule for a system of
noninteracting electrons with densities of states calcu-
lated by taking into account intrawell scattering. These
densities of states are calculated by invoking two-time
one-electron Green’s functions [7, 15] without using any
adjustable parameters. In these calculations, self-ener-
gies are obtained in the Born approximation, while the
contribution of the interference effects due to various
scattering processes to self-energy is neglected. Further-
more, we use the envelope function approximation [16]
with a jump in effective mass across the well–barrier
interface and neglect the effects due to the finite size of
the superlattice, using periodic boundary conditions.

The original basis is defined as the product of the
plane waves corresponding to transverse motion with
the Wannier functions associated with motion along the
growth axis:

(1)Ψn k,
ν r z,( ) ik r⋅( )exp

S
--------------------------Wk

ν z nd–( ),=
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where r is the coordinate in the plane perpendicular to
the growth axis (planar surface), k is the planar wave
vector, S is the area of the sample,

is the Wannier function quasi-localized in the nth well
that corresponds to the state of the νth subband with the
wave vector k, N is the number of wells in the superlat-
tice, d is the superlattice period, q is the Bloch wave

vector, and (z) is the corresponding Bloch function.
The constant phase factors of the Bloch functions are
taken so as to satisfy the Kohn theorem [17]. Then, each
Wannier function is a real one symmetric or antisym-
metric about the center of the corresponding well and is
characterized by the highest degree of localization in
the well among all possible linear combinations of
Bloch functions.

It was shown in [18] that the external electric field
gives rise not only to resonant tunneling, but also to
coupling between states in different subbands of the
same well. Following [8], we allow for the coupling by
incorporating it into one-electron states as we change to
the electric-field-independent basis [18]

(2)

where the elements of the unitary matrix { (Ud)}νµ

satisfy the system of equations

(3)

Here,

denotes the energy (q) averaged over the νth Bloch
band corresponding to the planar wave vector k (the
mean energy of an electron in the corresponding Wan-
nier state in the absence of scattering and electric field).
The matrix

(4)

represents the electric-field-induced coupling between
subband states ν and ν' associated with k and localized

Wk
ν z nd–( ) 1

N
-------- iqnd–( )ϕqk

ν z( )exp
π/d q π/d≤<–

∑=

ϕqk
ν

Ψ̃nk
ν

z r Ud, ,( ) ik r⋅( )exp

S
--------------------------W̃k

ν
z nd Ud,–( ),=

W̃k
ν

z nd Ud,–( ) Uk
µν Ud( )Wk

µ z nd–( )
µ
∑=

 
 
 
 
 
 
 

n k,

ν

,

Uk
νµ

Eν k( ) Ẽ
µ

k( )–[ ]δνν' Ud R0
νν'–{ } Uk

ν'µ Ud( ) 0.=
ν'

∑

Eν k( ) 1
N
---- Ek

ν q( )
π/d q π/d≤<–

∑=

Ek
ν

R0
ν'ν k( ) zWk

ν' z( ) z
d
---Wk

ν z( )d∫=
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in the same well, and Ud = eFd is the voltage drop per
superlattice period (e is the electron charge).

We not only renormalize the one-electron states in
the absence of scattering and resonant tunneling matrix
elements, as in [8–10], but also use basis (2) to calculate
the self-energies for intrawell scattering processes
(even in calculating the screened impurity potential). In
other words, the dependence of scattering processes on
the electric field is modeled almost exactly. A numeri-
cal analysis shows that this is particularly important for
the modeling of transport in structures with small size-
quantization energies and tunneling to high-lying sub-
bands.

In the presence of external electric field and sta-
tionary defects characterized by the total scattering
potential

where Vsc, i(r, z) is the total potential generated by
defects of the ith type, the superlattice electron-gas
Hamiltonian has the form

(5)

where

(6)

(7)

is the part responsible for resonant tunneling (with con-
served planar wave vector) induced by the superlattice
potential and electric field, and

(8)

is the contribution corresponding to scattering by sta-

tionary superlattice defects. Here,  and anνσ are the
creation and annihilation operators for electrons in the

V sc r z,( ) V sc i, r z,( ),
i

∑=

H̃ H̃0 H̃ inter
res

H̃sc,+ +=

H̃0 Ẽn
ν

k( ){ } anνσ
† k( )anνσ k( ),

n ν k σ, , ,
∑=

H̃ inter
res

T̃h
ν'ν

k( ) Ud R̃h
ν'ν

k( )–{ }
n h 0,>,
ν ν' ,, k σ,

∑=

× an h ν'σ,+
† k( )an νσ, k( ) an νσ,

† k( )an h+ ν'σ, k( )+[ ]

H̃sc Ṽ sc i,[ ] n h n,+
ν' ν,

k p k,+( )
i n h,ν ν' ,,, , k p σ, ,

h ν' p, ,( ) 0 ν 0, ,( )≠

∑=

× a n h+( )ν'σ
† k p+( )anνσ k( )

αnνσ
†
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basis state characterized by a set quantum numbers
{n, ν, σ} (σ corresponds to spin),

(9)

(10)

(11)

(12)

Under the assumptions made above, the total current
density from nth to (n + 1)th well is expressed as fol-
lows (see [19]):

(13)

× 

where

(14)

(15)

is the contribution of the state {ν, k} localized in the nth
well to the corresponding density of states per spin pro-

Ẽn
ν

k( ) Ẽ
ν

k( ) Udn– Ṽ sc i,[ ] n n,
ν ν,

k k,( ),
i

∑+=

T̃h
ν'ν

k( ) 1
N
---- Uk

ν1ν'

ν1

∑=

× Ek
ν1 q( ) qhd( )Uk

ν1ν
,cos

π/d q π/d≤<–

∑

R̃h
ν'ν

k( ) zW̃k
ν'

z hd–( ) z
d
---W̃k

ν
z( ),d∫=

Ṽ sc i,[ ] n h n,+
ν' ν,

k p k,+( ) zW̃k p+
ν'

z hd–( )d∫=

× 1
S
--- d2r ip– r⋅{ } V sc i, z nd r,+( )W̃k

ν
z( ).exp∫

jn n 1+→
1
S
---4πe

"
---------=

+ T̃1
ν'ν

k( )δp 0, Ud R̃1
ν'ν

k( )δp 0, ∫–
ν ν',
k p,

∑

+ Ṽ sc i,[ ] n 1 n,+
ν'ν

k p k,+( )
i

∑
2

ρeff n ν k n 1 ν' k p+, ,+, , ,( ),

ρeff n ν k n' ν' k', , , , ,( )

=  Eρn
ν k E,( )ρn'

ν' k' E,( ) Nn E( ) Nn' E( )–[ ] ,d

∞–

∞

∫

ρn
ν k E,( ) 1

π
---=

×
ImΣn

ν k E,( )

E Ẽn
ν

k( )– ReΣn
ν k E,( )–[ ]

2
ImΣn

ν k E,( )[ ] 2
+

----------------------------------------------------------------------------------------------------------
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jection (partial density of states per spin projection for
the state {ν, k} in the nth well),

(16)

(17)

is the contribution of scattering between states local-
ized in the nth well to the self-energy of scattering pro-
cesses, and Nn(E) is the Fermi distribution for electrons
in the nth well.

In what follows, we use the matrix elements for the
potentials generated by stationary scattering centers
and their squared absolute values averaged over their
random distribution.

3. SCATTERING BY IONIZED IMPURITIES

The scattering impurities are treated as identical
point charges Ze. Electron–electron interaction is taken
into account only in calculating the screened potential
of impurities by the Hartree self-consistent field
method [15]. When the effects of tunneling and
intrawell scattering due to other mechanisms on screen-
ing are neglected, the zeroth approximation used in the
calculation of the screened impurity potential is
described by the Hamiltonian

(18)

where (k) = (k) – Udn and the Fermi distribution
over one-electron states in each well, NF(n, µ, k). The
field generated by impurities is instantly switched on at
t = 0, and the screened impurity potential is sought at
t = ∞.

Calculating the self-consistent response of the elec-
tron gas to an external disturbance (see [15]), we obtain
a system of linear algebraic equations for the coeffi-

cients (n, ν, k) of the decomposition of the

screened impurity potential (r, z) in basis (2):

(19)

Σn
ν k E,( ) Σni

ν k E,( ),
i

∑=

Σni
ν k E,( )

Ṽ sc i,[ ] n n,
ν1ν

k1 k,( )
2

E Ẽn
ν1 k1( )– i0–

-------------------------------------------
ν1 k1,

ν1 k1,( ) ν k,( )≠

∑=

H0 Ẽn
ν

k( )[ ] anµσ
† k( )anµσ k( ),

n µ k σ, , ,
∑=

Ẽn
ν

Ẽ
ν

V imp
tot

V imp
tot

k2δnn'δ
νν'– K2

νν' n n' k,–( )+




n' ν',
∑

+
4πe2

ε
-----------Λnn'

νν' k( )




V imp
tot n' ν' k, ,( )

=  
4πZe2

ε S
--------------- ik– ri⋅{ } Wk

ν zi nd–( ).exp
i 1=

N imp

∑
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The relation between the coefficients and the matrix
element for the screened impurity potential follows
directly from their definitions:

(20)

Here, ε is the superlattice permittivity, Nimp is the num-
ber of impurities, the coordinates of the ith impurity are
r = ri and z = zi ,

(21)

(22)

(23)

In averaging over the impurities, they are assumed
to be distributed independently and described by a uni-
form distribution function in the layer plane:

The sample area and impurity concentration are sup-
posed to be such that the total probability of configura-
tions in which almost all impurities are separated by
distances greater than the effective screening radius is
close to unity. This makes it possible to neglect the
effects produced on the screening of the field of a par-
ticular impurity by the remaining impurities.

Under these assumptions, the diagonal matrix ele-
ment for the screened potential of an array of impurities
and squared absolute value of the matrix element for
scattering by impurities between states in a particular

n ν k V imp
tot n' ν' k, ,, ,〈 〉

=  
1

S
------- K3

νν'ν1 n' n n1 n k k' k k'–, , ,–,–( )
n1 ν1,
∑

× V imp
tot n1 ν1 k k'–, ,( ).

K2
νν' n n' k,–( )

=  zW̃k
ν

z n n'–( )d–( )∂
2W̃k

ν'
z( )

∂z2
---------------------,d∫

Λnn'
νν' k( )

=  
2
S
--- K3

νν1ν2 n1 n n2 n k k p p,+, ,–,–( )
p

∑
n1 ν1,
n2 ν2,

∑

×
NF n1 ν1 k p+, ,( ) NF n2 ν2 p, ,( )–

Ẽn1

ν1 k p+( ) Ẽn2

ν2 p( )– i0–
-------------------------------------------------------------------------------

× K3
ν1ν2ν'

n2 n1 n' n1 k p p k, ,+,–,–( ),

K3
ν1ν2ν3 n2 n1– n3 n1– k1 k2 k3, , , ,( )

=  zW̃k1

ν1
z( )W̃k2

ν2
z n2 n1–( )d–( )d∫

× W̃k3

ν3
z n3 n1–( )d–( ).

F ri zi,{ } i( )
f zi( )

S
------------.

i 1=

N imp

∏=
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well averaged over the impurities are expressed,
respectively, as

(24)

and

(25)

Here, 〈n, ν, k| (ri = 0, zi = z)|n, ν1, k1〉  is the scatter-
ing matrix element for the impurity located at ri = 0,
zi = z for which the screening is calculated without tak-
ing into account the effects of the remaining impurities.

The mathematical apparatus developed here was
used to allow for electric-field effects on scattering by
impurities, which was not done in [8, 9]. A numerical
analysis has shown that this leads to particularly impor-
tant modifications in models of resonant-tunneling pro-
files for structures with small size-quantization ener-
gies and tunneling to high-lying subbands.

Note also that the effect of electric field on screening
cannot be described by calculating the matrix element
for a screened impurity potential for zero field (in
basis (1)) and then renormalizing it by unitary transfor-
mation to basis (2).

Moreover, even though the thresholds of elastic pro-
cesses manifest themselves as quasi-two-dimensional
characteristics, the screening of the impurity potential
is strongly affected by the possibility of motion along
the growth axis. The most important manifestation of
this effect is the strong dependence of polarization
operator (22) on the wavefunctions corresponding to
transverse motion, which vary substantially with the
subband number. For structures with small size-quanti-
zation energies and tunneling to high-lying subbands,
they also depend on the electric-field strength. This jus-
tifies the analysis of an essentially three-dimensional
problem developed here (without any reference to
quasi-two-dimensionality) to calculate the screened
impurity potential for structures with small size-quanti-
zation energies.

In this study, we performed computations for a
structure with uniform bulk doping (required for com-
parison with experiment). However, the model pro-
posed here can be applied to arbitrary impurity distribu-
tions both along the z axis and over the planar surface,
instead of standard delta-doped structures.

Furthermore, the present mathematical apparatus
makes it possible to calculate the matrix element for a
screened impurity potential (required for numerical anal-
ysis) directly, without calculating either the screened

n ν k, ,〈 |V imp
tot n ν k, ,| 〉〈 〉 imp

=  N imp z n ν k, ,〈 |V imp
tot ri 0= zi z=,( ) n ν k, ,| 〉 f z( )d∫

n ν k, ,〈 |V imp
tot n ν1 k1, ,| 〉 2

imp

=  N imp z n ν k, ,〈 |V imp
tot ri = 0 zi = z,( ) n ν1 k1, ,| 〉 2

f z( ).d∫
V imp

tot
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potential in the coordinate representation or the matrix
elements for the bare impurity potential.

4. PHONON-ASSISTED SCATTERING

In this study, we allow for scattering processes
involving emission of longitudinal polar optical and
long-wavelength acoustic phonons. Their contribution
to the self-energy for intrawell scattering is modeled
here approximately by applying the Fermi rule: the
total self-energy for scattering by impurities and inter-
face roughness from the νth subband of the nth well
with planar wave vector k is corrected by adding the
independent of E term

(26)

Here, the contribution (n, ν, k) of intrawell scat-
tering involving emission of longitudinal polar optical
phonons and long-wavelength acoustic phonons to the
inverse lifetime for a particular state is calculated by
using the model developed in [11], but with states (2)
treated as one-electron ones.

In contrast to [8], we allow for electric-field depen-
dence of these scattering mechanisms. This strongly
modifies resonant-tunneling profiles for structures with
small size-quantization energies. Moreover, we take
into account phonon-assisted intrasubband scattering,
which plays an important role in resonance tail effects,
and the planar-wave-vector dependence of the contribu-
tion of these scattering processes to self-energy. These
effects manifest themselves in numerical results.

5. SCATTERING BY INTERFACE ROUGHNESS

The well–barrier interface localized at a point z = zm

on the mth interface of an ideal superlattice is repre-
sented by a fluctuating function ξm(r). Interface fluctu-
ations are described by a joint probability functional
P[{ξm(r)}m], which is used to average all dependent
functionals:

(27)

is the functional F[{ξm(r)}m] averaged over interface
fluctuations.

From here on, scattering by interface roughness is
modeled by using a parabolic-subband approxima-
tion [16]. Accordingly, the wavefunctions in original
basis (1) corresponding to transverse motion are inde-
pendent of the planar wave vector and are calculated for
k = 0. In the absence of scattering and electric field, the

Σopt ac( ) n ν k, ,( ) i"
2τopt ac( ) n ν k, ,( )
--------------------------------------.=

τopt ac( )
1–

F ξm r( ){ } m[ ]〈 〉 rough

=  P ξm r( ){ } m[ ] F ξm r( ){ } m[ ]
ξm r( ){ } m

∑
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one-electron energy is a quadratic function of the pla-
nar wave vector:

(28)

where (z) =  or (z) =  if z belongs to the well
or barrier, respectively. In addition to this approxi-
mation, we neglect the distinction of the integrals

〈 |1/ (z)| 〉 from 1/  since the superlattice is
weakly coupled. Then, the elements of the renormaliz-
ing matrix are independent of the planar wave vector,
and so are the wavefunctions in basis (2), while the dis-
persion of one-electron energy with respect to the pla-
nar wave vector in the absence of scattering has the
form

(29)

with Ek = "2k2/2 .

In these approximations, the contribution of impuri-
ties to the average value of one-electron energy (29) is
also independent of the planar wave vector (which is

included into (k = 0) in what follows).
The potential due to interface roughness added to

the superlattice potential is defined as follows (see [8]):

(30)

where USL is the superlattice barrier height.
Then, after averaging over interface fluctuations, the

matrix element corresponding to (30) and its squared
absolute value are expressed, respectively, as

(31)

and

(32)

where

(33)

and

En
ν k( ) En

ν k 0=( ) "
2

2N
------- ϕq 0,

ν 1
m̃ z( )
----------- ϕq 0,

ν k2,
q

∑+=

m̃ m̃w m̃ m̃b

ϕq 0,
ν m̃ ϕq 0,

ν m̃w

Ẽn
ν

k( ) Ẽn
ν

k 0=( ) Ek+=

m̃w

Ẽn
ν

V rough r z,( ) USL ξm r( )δ z zm–( ),
m

∑=

V rough[ ] n h n,+
ν'ν

k p k,+( )

=  USL W̃
ν'

zm nd– hd–( )W̃
ν

zm nd–( )
m

∑
× ip– r⋅( )ξm r( )exp〈 〉 r〈 〉 rough

V rough[ ] n h n,+
ν'ν

k p+ k,( )
2

Jn h,
ν'ν p m m', ,( ),

m m',
∑=

Jn h,
ν'ν p m m', ,( ) USL

2 W̃
ν'

zm n h+( )d–( )=

× W̃
ν'

zm' n h+( )d–( )W̃
ν

zm nd–( )W̃
ν

zm' nd–( )

× ip R⋅( ) ξm r( )ξm' r R+( )〈 〉 r〈 〉 roughexp〈 〉 R

f r( )〈 〉 r
1
S
--- d2rf r( ).∫=
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Contributions (33) to squared absolute value (32) of
the scattering matrix element with m = m' and m ≠ m'
have a different nature. The former quantities (to which
the analyses in [8, 10] were restricted) represent direct
scattering by particular interfaces and are determined
by the corresponding autocorrelation functions. The
latter contributions are associated with the interference
of scattering by different interfaces and depend on the
corresponding cross-correlation functions.

We assume that the autocorrelation function for
each interface has the form (see [20])

(34)

Then, the contribution of direct scattering by the mth
interface to the squared absolute value of a matrix ele-
ment averaged over interface fluctuations is expressed
as follows [8]:

(35)

For each interface, we suppose that

(36)

which implies zero value of the diagonal matrix ele-
ment in (31).

The resulting total contribution of scattering by
interface roughness to self-energy calculated in the
Born approximation is the sum of the contributions due
to direct scattering by each particular interface (with

ξm r( )ξm r R+( )〈 〉 r〈 〉 rough ηm
2 R/λm–( ).exp=

Jn h,
ν'ν λm p( )2 m m, ,( )

=  USL
2 W̃

ν'
zm n h+( )d–( )[ ]

2
W̃

ν
zm nd–( )[ ]

2

× ηm
2 2πλm

2

S
------------- 1

1 λm p( )2+[ ] 3/2
------------------------------------.

ξm r( )〈 〉 r〈 〉 rough 0,=
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m = m') and the contributions of interference between
scattering by different interfaces (with m ≠ m'):

(37)

In the analysis of intrawell scattering by interface
roughness presented below, we neglect the real part of
self-energy.

We obtained the following analytical expressions
for the imaginary parts of direct contributions to the
self-energy of scattering by interface roughness:

(38)

where

(39)

θ(x) is the Heaviside step function, E(x) is the complete

elliptic integral of the second kind, (E) = [E –

(0)]/ , and  = "2/2mw  is the size-quantiza-
tion energy for a system of characteristic size λm .

For arbitrary values of parameters, integral (39) can
be represented by either the series

Σrough n ν k E, , ,( ) Σmm'
rough ν1,

n ν k E, , ,( ).
m m',

ν1

∑=

ImΣmm
rough ν1,

n ν k E, , ,( )

=  
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2
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where

(42)

× 1
1
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2i 1+( )2

i 0=

l 1–

∏

2i( )2

i 0=

l

∏
-----------------------------

l 2=

∞

∑ yn
ν λmk E m, ,( )[ ] 2l

+ +

 
 
 
 
 
 
 

,

yn
ν λmk E m, ,( )

2 1 λmk κn
ν E( )+ 

 
2

+
1/2

1 λmk κn
ν E( )+ 

 
2

+
1/2

1 λmk κn
ν E( )– 

 
2

+
1/2

+

----------------------------------------------------------------------------------------------------------------------------------------.=
Both series expansions are exact ones with monotoni-
cally decreasing terms. Since the convergence rate of
series (41) is higher than that of (40) for any particular
set of parameter values, series (41) is better suited for
numerical analysis, whereas (40) is better suited for
analytical calculations.

Expressions (38)–(42) can be used to substantially
simplify both algorithmic implementation and time
complexity without any loss of accuracy. This made it
possible to allow for the effects of electric field on scat-
tering processes (which was not done in [8, 10]).

“Exact” modeling of interference of scattering by
different interfaces is a more complicated task: while
the autocorrelation functions can be evaluated experi-
mentally (see [20]), no technique is currently available
for evaluating the cross-correlation functions corre-
sponding to different interfaces. However, there are rea-
sons to believe that, at least, adjacent interfaces in real
heterostructures are correlated to some extent. The phe-
nomenological approach proposed below makes use of
several adjustable parameters to take into account the
interference effects due to scattering by different inter-
faces.

Since we deal with a weakly coupled superlattice,
only the contributions of interference between adjacent
well boundaries (labeled 1 and 2) and adjacent barrier
boundaries (labeled 2 and 3) are taken into account in
our models of intrawell and interwell scattering,
respectively (see Fig. 1). We assume that the autocorre-
lation functions corresponding to interfaces 1, 2, and 3
are identical,

(43)

and so are the cross-correlation functions,

(44)

ξ1 r( )ξ1 r R+( )〈 〉 r〈 〉 rough ξ2 r( )ξ2 r R+( )〈 〉 r〈 〉 rough=

=  ξ3 r( )ξ3 r R+( )〈 〉 r〈 〉 rough A R( ),≡

ξ1 r( )ξ2 r R+( )〈 〉 r〈 〉 rough

=  ξ2 r( )ξ3 r R+( )〈 〉 r〈 〉 rough K R( ).≡
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To characterize the relative contribution of interfer-
ence between different interfaces, we introduce the nor-
malized correlation function

(45)

It is obvious that

(46)

If the interfaces are totally uncorrelated, then g(p) = 0.

If the interfaces are fully correlated (identical up to
inversion), then |g(p)| = 1, we have the highest possible
contribution of interference, and the corresponding
term in the expression for the squared absolute value of
the matrix element is

(47)

while the corresponding contribution to the imaginary

g p( )
ip R⋅{ }exp K R( )〈 〉 R

ip R⋅{ }exp A R( )〈 〉 R
-----------------------------------------------------.=

g p( ) 1.<

Jn n 1+,
ν'ν λp( )2 m m', ,( )

=  USL
2 W̃

ν'
zm d–( )W̃

ν'
zm' d–( )W̃

ν
zm( )

× W̃
ν

zm'( )η22πλ2

S
------------ 1 λp( )2+[ ] 3/2–

,

F

1

2
3

z

Fig. 1. Schematic of a superlattice in electric field.
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Table 1

Order of
resonance

jres, mA/cm2 Γ, meV Γ–/Γ+

nimp = 1.75
× 1010 cm–2

nimp = 5
× 1010 cm–2

nimp = 1.75
× 1010 cm–2

nimp = 5
× 1010 cm–2

nimp = 1.75
× 1010 cm–2

nimp = 5
× 1010 cm–2

1 2.64 4.26 3.40 5.00 0.55 0.67

2 28.70 53.87 4.43 7.35 0.48 0.62

3 146.17 232.75 5.20 11.40 0.60 0.56

4 469.67 1045.59 9.05 11.15 1.03 0.86
part of self-energy is

(48)

The contributions due to direct scattering are mod-
eled by using isotropic autocorrelation function (34);
i.e., the interfaces are assumed to be isotropic on aver-
age. Extending this assumption to interference of dif-
ferent interfaces, we also use an isotropic cross-correla-
tion function. Since it is a real-valued analytic function,
the normalized correlation function depends on p2 (its
series expansion in terms of p contains only even pow-
ers of the absolute value). The wave-vector range that
contributes most to scattering by interface roughness is
determined by the correlation length: ∆p ∝  λ–1. For cor-
relation lengths varying between 10 and 100 Å and an
electron concentration of about 1010 cm–2, the inverse
correlation length is λ–1 ~ (0.01–0.1)kF , where kF is the
Fermi wave vector.

The Fourier transform of autocorrelation function (34),

(49)

weakly varies with λp. This allows us to assume that the
Fourier transform of the cross-correlation function also
is a weakly varying function of λp.

Accordingly, normalized correlation function (45)
can be represented by a finite number of terms of its
series expansion in terms of (λp)2,

(50)

and the expansion coefficients can be treated as adjust-
able parameters.

ImΣmm'
rough ν1,

n ν k E, , ,( )
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4Eλ
---------η2W̃

ν
zm( )=

× W̃
ν

zm'( )W̃
ν1

zm( )W̃
ν1

zm'( )

× In
ν1 λk E m m', , ,( )θ E Ẽn

ν1
0( )–( ).

ip R⋅{ } A R( )exp〈 〉 R η22πλ2

S
------------ 1 λp( )2+[ ] 3/2–

,=

g p2( ) g0 g1 λp( )2 g2 λp( )4 …,++ +≈
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As a result, we determine the approximate Fourier
transform of the cross-correlation function directly
from (45) and use it to calculate the corresponding con-
tributions to (32) and (37).

According to (33), the role played by scattering by
interface roughness strongly depends on barrier height
and quantum-well width (which determine the values
of wavefunctions on interfaces). Since the structures
numerically analyzed in this study are characterized by
a relatively small barrier height and large quantum-well
width, scattering by interface roughness is relatively
weak as compared to optical-phonon- and impurity-
assisted scattering (being slightly stronger than acous-
tic-phonon-assisted scattering). With increasing barrier
height or decreasing well width, the role of scattering
by interface roughness increases and becomes impor-
tant for a broad class of structures (see [21], where scat-
tering times were given by the Fermi rule, mobility was
calculated by using the Boltzmann equation, and Bloch
states were taken as a basis). Therefore, the role played
by interference between adjacent interfaces is an
important issue and requires further analysis.

6. RESULTS AND DISCUSSION
Even though the model developed in this study can

be used in computations for electric fields correspond-
ing to resonances of all orders in the entire range of
geometric parameters of weakly coupled structures,
this paper is focused on structures with small size-
quantization energies, for which the present model pre-
dicts a number of striking and unexpected phenomena.
Figure 2 shows the tunneling current density calculated
as a function of electric-field intensity by taking into
account intrawell scattering assisted by longitudinal
polar optical and long-wavelength acoustic phonons,
impurities, and interface roughness for a weakly cou-
pled GaAs/Al0.3Ga0.7As superlattice (with a barrier
width of 100 Å and a quantum-well width of 250 Å)
with uniform bulk doping characterized by the impurity
concentrations nimp = 1.75 × 1010 and 5 × 1010 cm–2 at a
temperature of 4.2 K. The interface roughness was
parameterized by a correlation length of 70 Å and a
mean amplitude of 3 Å, and we set g(p) = 0.5. Table 1
AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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lists the basic characteristics of resonances (amplitude
jres, full width at half-height Γ, and the ratio of the left-
hand half-width at half-height Γ– to the right-hand half-
width at half-height Γ+) corresponding to the plotted
curves.

The following trends exhibited by these resonant-
tunneling profiles are of interest.

First, the computed resonance widths are much
greater than those based on the uncertainty relation and
relaxation times given by the Fermi rule [11, 13, 14] not
only for the first-order resonances, but also for higher
order resonances. In particular, the tunneling-resonance
widths predicted for the structure with nimp = 1.75 ×
1010 cm–2 by using the results of [11–14] are not greater
than 2 meV. Second, the profiles computed for reso-
nances of all orders are characterized by a substantial
asymmetry.

According to a direct numerical analysis, optical-
phonon- and impurity-assisted scattering processes are
dominant in structures of the type considered here,
whereas the contributions due to scattering by acoustic
phonons and interface roughness are comparatively
weak. For this reason, the first two scattering mecha-
nisms are discussed here in some detail. Regarding
optical-phonon-assisted scattering, the following
remarks should be made. First, the contribution of
intersubband transitions of this type must be taken into
account even if the intersubband gap is smaller than the
optical-phonon energy. Second, note that optical-
phonon-assisted intrasubband scattering weakly con-
tributes to the tunneling resonance peak, as compared

1000

0 20 40 60 80 100 120

Ud, meV

j, mA/cm2

Fig. 2. Tunneling current density between adjacent quantum
wells versus voltage drop per period for a
GaAs/Al0.3Ga0.7As superlattice with a well width of 250 Å
and a barrier width of 100 Å: solid and dashed curves cor-
respond to nimp = 5 × 1010 and 1.75 × 1010 cm–2, respec-
tively.

800
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to intersubband scattering, but plays an important role
in resonance tail effects.

A more complicated and interesting pattern is char-
acteristic of scattering by impurities. Figure 3 and 4
show, respectively, the contributions of the impurity-
assisted scattering in the first subband to the imaginary
part of self-energy and the corresponding partial densi-
ties of states calculated as functions of planar energy
for several values of total energy. These graphs demon-
strate that impurity-assisted intrasubband scattering

Im Σ11
imp(E, Ek), meV

5

4

3

2

1

0 10 20 30 40 50

Ek, meV

1

2

3

4

Fig. 3. Imaginary part of the contribution of impurity-
assisted intrasubband scattering in the first subband to self-
energy versus the planar energy Ek = "2k2/2mw for the total
energies E = 0 (1), 2 (2), 4 (3), and 10 meV (4). The total
energies are measured from the first subband bottom by tak-
ing into account the shift due to impurities in a prescribed
electric field; nimp = 5 × 1010 cm–2; Ud = 58.93 meV.

0.16

0.12

0.08

0.04

0 4 8 12 16 20

ρ1(E, Ek), 1/meV

1

2

3

Ek, meV

Fig. 4. Partial density of states in a well for the first subband
versus the planar energy Ek = "2k2/2mw for the total ener-
gies E = 0 (1), 2 (2), and 4 meV (3). The total energies are
measured from the first-subband bottom by taking into
account the shift due to impurities in a prescribed electric
field; nimp = 5 × 1010 cm–2; Ud = 58.93 meV.
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Fig. 5. Tunneling current density between adjacent quantum wells versus voltage drop per period for a GaAs/Al0.3Ga0.7As super-
lattice in the vicinity of the third-order resonance calculated with (solid curve) and without (dashed curve) allowance for the electric-
field effect on intrasubband scattering (a) and thresholds of elastic processes (b); nimp = 1.75 × 1010 cm–2.
leads to considerable uncertainty in one-electron
energy. The corresponding contributions to the imagi-
nary part of the self-energy strongly depend on the total
energy E. This dependence manifests itself both in the
calculated resonance amplitude, width, and shape,
being primarily responsible for the asymmetry pre-
dicted for high-order resonances. It must be taken into
account in calculating the tunneling current density.
When the Fermi rule is used, this dependence is ignored
and the imaginary part of the contribution of intrasub-
band scattering to self-energy is calculated much less
accurately as a function of planar energy. (It is obvious
that the characteristic broadening of one-electron states
based on this rule is even less accurate.)

Another effect of particular importance for transport
in structures with small size-quantization energies and
tunneling into high-lying subbands is the dependence
of the states quasi-localized in wells on electric field.

In addition to the electric-field dependence of both
energy states in wells and tunneling matrix elements
(demonstrated in [8–10]), the resonant-tunneling pro-
files for structures with small size-quantization ener-

Table 2

Without allowance
for the electric-field
effect on scattering

With allowance for
the electric-field

effect on scattering

, meV 59.34 59.14

jres, mA/cm2 123.06 146.17

Γ, meV 7.26 5.20

Γ–/Γ+ 0.47 0.60

Ud
res
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gies are affected by the electric-field dependence of
scattering processes. Figure 5a shows the resonant-tun-
neling profiles calculated with and without allowance
for the electric-field effect on scattering (the electric-
field dependence of energy states in wells and tunneling
matrix elements is taken into account in both cases).
The corresponding resonance characteristics are listed
in Table 2. It is obvious that the electric-field depen-
dence of scattering processes modifies the tunneling-
resonance width and asymmetry, as well as its ampli-
tude (albeit to a lesser degree).

We found that the electric-field dependence of both
optical-phonon-assisted scattering and impurity-
assisted intrasubband scattering is important and must
be taken into account. (Note that the former was shown
to be substantial for structures with small size-quanti-
zation energies in [11].) The mathematical apparatus
presented in Section 3 provides an adequate tool for
modeling the dependence of impurity-assisted intra-
subband scattering on electric field. This is illustrated
by Fig. 5a, which shows the tunneling current density
calculated with and without allowance for the electric-
field effect on scattering.

Furthermore, our analysis of scattering by impuri-
ties leads to the following important observation. Cal-
culations of the screened potential (as in the case of
wide quantum wells [13, 14]) are commonly based on
the Thomas–Fermi model, which does not take into
account the threshold behavior of elastic processes.
However, we found that this behavior strongly affects
the resonant-tunneling profiles obtained for structures
with small size-quantization energies, as demonstrated
in Fig. 5b by the third-order tunneling-resonance spec-
tra calculated with and without allowance for the
thresholds of elastic processes. The corresponding res-
ND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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onance characteristics are listed in Table 3. It is obvious
that the threshold behavior of elastic processes mani-
fests itself in the tunneling-resonance amplitude, width,
and asymmetry.

The importance of the thresholds of elastic processes
is clear from Fig. 3. The trends illustrated here are
explained by the behavior of polarization operator (22)
in the vicinity of the thresholds of elastic processes,
above which a drastic decrease in screening is
observed. The resulting high scattering intensity and
the rapid decrease in the threshold value of planar
energy with increasing total energy substantially mod-
ify the resonant-tunneling profile.

We also revealed an unusual dependence of the
characteristics of a tunneling resonance on its order.
The difference between resonances of order higher than
one is mainly attributed to the difference in tunneling
matrix elements between these resonances and in inten-
sity of optical-phonon-assisted scattering between sub-
bands. However, our numerical results suggest that the
difference between resonances of different orders is at
least equally due to impurity-assisted intrasubband
scattering. (Note that scattering by impurities, interface
roughness, and acoustic phonons are very weak.) This
is clear from the substantial variation in both width and

0.25

0.20

0.15

0.05

0 1 2 3
U, V

j, A/cm2

0.10

Fig. 6. Comparison of the current–voltage characteristic
calculated by using the resonant-tunneling profile for nimp =

1.75 × 1010 cm–2 shown in Fig. 2 (solid curve) with a mea-
sured one (dashed curve).

Table 3

Without allowance
for the thresholds

of elastic processes

With allowance for
the thresholds

of elastic processes

jres, mA/cm2 191.72 146.17

Γ, meV 4.05 5.20

Γ–/Γ+ 0.84 0.60
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asymmetry of resonances of all orders with impurity
concentration (see Fig. 2) and the fact that the extent of
the variation depends on the order of a resonance.

We used the tunneling-resonance spectra obtained
in this study and a discrete model of resonant tunneling
transport through superlattices [3] to calculate the cur-
rent–voltage characteristic of the GaAs/AlGaAs super-
lattice compared with a measured one in Fig. 6. It is
clear that the numerical and experimental results are in
good agreement.

Even though the present analysis is focused on tun-
neling transport through superlattices with small size-
quantization energies driven by electric field in the
absence of other external factors, the present model can
be applied to a broader class of problems arising in
studies of transport in weakly coupled superlattices.
The general part of the proposed theory, as well as cer-
tain ideas and methods used in solving problems of this
kind, can be employed to examine the dependence of
transport on various time-independent factors, such as
nonuniform electric field, magnetic field, etc.
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Abstract—The nonlinear absorption of electromagnetic radiation by electrons in a quantizing magnetic field
is investigated. The inclusion of multiphoton processes is shown to result in additional peaks in the absorption
curve. The shape and arrangement of these peaks were found. The absorption is shown to depend on the electric
field strength in the electromagnetic wave nonlinearly and nonmonotonically. The results obtained are in good
agreement with experimental data. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Several different types of high-frequency resonance
transitions attributable to photon absorption are possi-
ble for electrons in the conduction band of a semicon-
ductor placed in a quantizing magnetic field B. A cyclo-
tron resonance arises at the radiation frequency ω = ωc ,
and cyclotron–phonon resonances (CFR) accompanied
by the emission or adsorption of optical phonons with
frequency ω0 arise at the frequencies ω = nωc ± ω0 (n =
0, 1, 2, …). In particular, cyclotron–phonon transitions
can occur with a spin flip or can lead to a transition
between the valleys in multivalley semiconductors. A
comprehensive overview of the theoretical and experi-
mental works in this area performed before 1978 is
given in [1].

The scattering of electrons by impurities can also
lead to resonance transitions at the harmonics of the
cyclotron frequency ωc or, more specifically, at ω = nωc

[2, 3]. In these papers, the resonance absorption was
investigated by using the randomly arranged pointlike
potentials that modeled neutral impurities. The absorp-
tion coefficient was calculated in [2, 3] by a method [4]
based on perturbation theory. However, using perturba-
tion theory for δ-like potentials in a dimension larger
than unity is unacceptable [6].

When the electromagnetic field is strong, apart from
single-photon processes, multiphoton processes (non-
linear CFR) are possible. This effect was considered
in [7], where the resonance frequencies were shown to
be sω = nωc ± ω0 (s, n = 0, 1, 2, …).

Note that the resonance transitions mentioned above
are also possible in the case of scattering by ionized
impurities. The transitions of electrons with the absorp-
tion of photons and the scattering by such impurities
can occur both with and without electron capture by an
impurity. Below, we consider only the transitions of the
first type. Such cyclotron–impurity transitions in vari-
1063-7761/04/9903- $26.00 © 20633
ous semiconductors have been extensively studied in
the linear (in field) approximation both theoretically and
experimentally [8–17]. The two-photon cyclotron–
impurity resonance was also studied experimentally [9].

The goal of this work is to investigate the nonlinear
resonance absorption of electromagnetic radiation by
electrons of the conduction band attributable to scatter-
ing by ionized impurities.

We assume that all impurities are identical and are
randomly arranged in the sample. If the mean separa-
tion between the impurities is much larger than the ther-

mal electron wavelength λT = "/  (a nondegen-
erate semiconductor) or the Fermi electron wavelength

λF = "/  (a degenerate semiconductor), then the
probability of the scattering by Ni scatterers averaged
over the impurity positions is equal to the probability of
the scattering by one scatterer multiplied by the number
of scatterers Ni .

For an impurity located at the coordinate origin, the
simplest form of the screened potential energy of the
electron–impurity interaction is well known:

(1)

Here, κ = 1/r0, r0 is the screening radius, Ze is the impu-
rity charge, and ε is the dielectric constant. For the sub-
sequent analysis, it is convenient to represent this
potential energy as the Fourier expansion [18]

(2)

where V0 is the normalization volume. Let us introduce
the quantity Cq = 4πZe2/εV0(q2 + κ2). The potential

2m*T

2m*εF

U r( ) Ze2

εr
--------e κ r– .=

U r( ) 4πZe2

εV0
--------------- 1

q2 κ2+
---------------- iq r⋅( ),exp

q

∑=
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energy (2) then takes the form

According to the simple screening theory [19], the
screening radius for a nondegenerate semiconductor
does not depend on magnetic field and is equal to the
classical Debye radius. Below, when considering the
dependence of absorption on the external magnetic
field, κ is assumed to be independent of B. The nonlin-
ear cyclotron–impurity absorption coefficient Γ(ω) can
be calculated in the first order of perturbation theory in
electron–impurity perturbation by a method similar to
that used in [7]. Next, we assume that the magnetic

length lB =  is much larger than the lattice con-
stant; hence, we can use the approximation of an elec-
tron effective mass [20] that, for simplicity, is taken to
be isotropic. Let us assume that the magnetic field B || z
is a quantizing one, the photon energy is "ω @ T, and
the collisional width of the electron levels "/τ is small
compared to the temperature T and "ω. Here, τ is the
relaxation time for the electron momentum at the scat-
terers.

2. THE HAMILTONIAN
AND THE TRANSITION PROBABILITY

Let us consider the interaction of electrons with
photons and ionized impurities that induces the transi-
tions between Landau magnetic subbands. The impu-
rity-unperturbed Hamiltonian of an electron in the field
of an electromagnetic wave and in a stationary and uni-
form magnetic field is

(3)

The vector potential of the fields is A = A1 + A2, where
A1 = acosωt, a = E0/ω, and A2 = (–By, 0, 0). Here, E0
and ω are the strength amplitude and frequency of the
variable electric field of the wave, and B is the induction
of the stationary magnetic field. The exact solution of
the Schrödinger equation with Hamiltonian (3) was
found in [5]. The electron–impurity interaction opera-
tor V is

(4)

Here, Ri are the positions of the impurities.

The electron transition probability attributable to the
simultaneous action of the impurities and the electro-
magnetic field that includes multiphoton processes can
be determined by using results from [7]. After simple,

U r( ) Cq iq r⋅( ).exp
q

∑=

c"/eB

H0
1

2m*
----------- p

e
c
--A– 

 
2

.=

V U r Ri–( ).
i

∑=
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but rather cumbersome transformations, averaging over
the impurity positions, we obtain

(5)

Here, q⊥  = ,

(6)

where we introduced χ = " /2m*ωc . The function
Ps(q) in (5) is [5]

(7)

where

(8)

Here, Js(α) is the Bessel function.

If the probability of the s-photon process  is
given by the formula

(9)

then the absorption coefficient Γs for the s-photon pro-
cess can be written as [7]

(10)

For a degenerate gas, f(εα) in (10) should be substituted
with f0(εα)[1 – f0(εα')], where f0(εα) is the Fermi func-
tion, n0 is the electron density, f(εα) is the Boltzmann

Wαα '

2πNi

"
2

------------=

× cq
2Dl'l q⊥( ) Ps f( ) 2δ px' px "qx+,( )

q s,
∑

× δ pz' pz, "qz+( )δ ωc l' l–( ) sω–
"qz

2

2m*
-----------

pzqz

m*
----------–+ .

qx
2 qy

2+

Dl'l q⊥( ) χ–( )exp

2ll!2l'l'!
--------------------=

×
2ll'!( )2 κ

2
--- 

 
l l'–

Ll'
l l'– χ( )[ ] 2

, l l',≥

2l'l!( )2 κ
2
--- 

 
l' l–

Ll
l' l– χ( )[ ] 2

, l l',<








q⊥
2

Ps q( ) iπs'
2

--------- 
  Js' s– α1( )Js' α2( ),exp

s' ∞–=

∞

∑=

α1
eazqz

m*ω
------------

e axqx ayqy+( )
m*

----------------------------------- ω
ωc

2 ω2–
------------------ 

  ,–=

a2

e ayqx axqy–( )
m*

----------------------------------
ωc

ωc
2 ω2–

------------------ 
  .=

Wαα '
s

Wαα ' Wαα '
s ,

s

∑=

Γ s 16π"n0s

c ε ω( )a
2ω

-----------------------------=

× 1 "ω
T

-------– 
 exp– f εα( )Wαα '

s .
α α, '

∑
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distribution normalized to unity, and the factor in
parentheses includes the induced photon radiation.
Below, we restrict our analysis to the transverse case
where the electric component of the electromagnetic
radiation field E ⊥  B, where B is the induction vector of
the stationary and uniform magnetic field. Note that the
case of E || B is of no interest at the resonance points
under consideration (when the frequency detuning
∆ω = ωc(l – l') + sω = 0), because the argument of the
Bessel function in (5) is proportional to qz in this case.
As follows from the asymptotics of Js , Γs(∆ω = 0) = 0
at low values of the argument, i.e., at ∆ω = 0.

If we assume that E = Ex in the transverse case con-
sidered below, then

(11)

where  = qy/qx .

Using the Graf summation formula for the Bessel
function in (5), we obtain

(12)

Substituting (12) into (10) yields

α1
2 α2

2+
eaq⊥

m* ωc
2 ω2–( )

------------------------------- ωc
2 ϕ ω2 ϕsin

2
+cos

2
,=

ϕtan

Wαα '
s 2πNi

"
2

------------ cq
2Dl'l q⊥( )

q

∑=

× Js α1
2 α2

2+( )
2
δ px' px, "qx+( )

× δ pz' pz "qz+,( )δ ∆ω
"qz

2

2m*
-----------–

pzqz

m*
----------+ 

  .

Γ s 4π2V0n0sNi

c" ε ω( )a2ω
-------------------------------- 1 "ω

T
-------– 

 exp– 
 =
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(13)

where qz ≡ q||.
The single-photon absorption coefficient can be

derived from (13) by passing to the limit, setting s = 1,
and using the inequality for a weak field Ex:

(14)

Taking the asymptotics of the Bessel functions at low
values of the argument, we obtain from (13)

(15)

The same result is obtained when considering the tran-
sitions in the second order in electron–impurity and
electron–photon perturbations by the method described
in [4].

When the inequality opposite to (14) holds, a highly
nonlinear case considered below takes place. Using the
asymptotics of the Bessel functions at high values of
the argument, the integral in (13) over the angle ϕ can
be estimated as

× q|| q⊥ q⊥ Cq
2Dl'l q⊥( )d∫d∫

α l',
∑

× f εα( )δ ∆ω
"

2q||
2

2m*
-----------–

p||q||

m*
----------+ 

 

× Js

eaq⊥

m*
------------

ωc
2 ϕcos

2 ω2 ϕsin
2

+

ωc
2 ω2–

---------------------------------------------------
 
 
 

2

ϕ ,d

0

2π

∫

eaq⊥

m*
------------

ωc
2 ϕcos

2 ω2 ϕsin
2

+

ω2 ωc
2–

--------------------------------------------------- ! 1.

Γ1 2π( )3e2V0n0Ni

4c" ε ω( )m*2ω
---------------------------------------- 1

ω ωc–( )2
----------------------- 1

ω ωc+( )2
-----------------------+=

× q|| q⊥ q⊥
3d∫d∫

α l',
∑

× Cq
2Dll' q⊥( ) f εα( )δ ∆ω

"q||
2

2m*
-----------–

p||q||

m*
----------+ 

  .
(16)Js
2 ϕd

2m*
πeaq⊥
--------------- ωc

2 ω2–
eaq⊥ ω2 ϕsin

2 ωc
2 ϕcos

2
+ / m* ωc

2 ω2
–( ) πs/2– π/4–[ ]cos

2

ω2 ϕsin
2 ωc

2 ϕcos
2

+
---------------------------------------------------------------------------------------------------------------------------------------------------- ϕ .d

0

2π

∫≈
0

2π

∫

Averaging the square of the cosine of the large argu-
ment in (16), i.e., substituting 1/2 for it, yields

(17)Js
2 ϕd

8m* ωc
2 ω2–

πeaq⊥ ω
--------------------------------K

ωc
2 ω2

–
ω

-------------------------
 
 
 

, if ω ωc,>

8m* ωc
2 ω2–

πeaq⊥ ωc

--------------------------------K
ωc

2 ω2
–

ωc

-------------------------
 
 
 

, if ωc ω.>










≈
0

2π

∫

Here K(x) is the complete elliptic integral of the first
kind. Substituting (17) into (13) yields

(18)

where

Γ s As ω( ) q|| q⊥ Cq
2Dll' q⊥( ) f εα( )d∫d∫

α l, '

∑=

× δ ∆ω
"q||

2

2m*
-----------–

p||q||

m*
----------+ 

  ,
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(19)Aa ω( )

16πV0n0Nim* ωc
2 ω2– s

ec" ε ω( )a3ω2
-----------------------------------------------------------K

ωc
2 ω2–
ω

-------------------------
 
 
 

1 "ω
T

-------– 
 exp– , if ω ωc,>

16πV0n0Nim* ωc
2 ω2– s

ec" ε ω( )a3ωωc

-----------------------------------------------------------K
ωc

2 ω2–
ωc

-------------------------
 
 
 

1 "ω
T

-------– 
 exp– , if ω ωc.<











=

3. THE SHAPE AND INTENSITY
OF THE RESONANCE PEAKS

Next, let us consider the integral over q⊥ :

(20)

Because of the δ function in (18), the absorption has a
singularity at ∆ω = 0. The behavior of this singularity
can be analyzed by taking ∆ω ! ωc . The domain of
integration whose sizes are determined by the largest of

the quantities kT or /" will then be signifi-
cant in the integral over p|| and q|| in (18) due to the fac-
tors f(εα) and δ. However, the values of both these quan-
tities are much smaller than the magnetic length lB .
Therefore, to study the behavior of the singularity, we
can assume B(q||) to be a constant function and set q|| =
0 in it. If the impurity concentration and the tempera-

B q||( ) q⊥ Cq
2Dll' q⊥( ).d

0

∞

∫=

2m*∆ω( )
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ture are such that κ = (εT/4πn0e2)1/2 satisfies the ine-
quality κ ! 1/lH (the condition for a fairly strong mag-
netic field), then we may disregard the screening in (20)
and set κ = 0 in it. In this case, B(q||) takes the form

(21)

The integral in (21) can be calculated by using (21) and
expression (6) for Dll'(q⊥ ). Let us first reduce it to the
form

(22)

For l ' < l, we must substitute l'  l in (22). Using (22)
to determine B(q||), we then obtain for l – l ' ≥ 2

B q||( ) 4πZe2

V0
--------------- 

 
2

q⊥
1

q⊥
4

-----Dll' q⊥( ).d

0

∞

∫≈

B q||( ) 4πZe2

εV0
--------------- 

 
2 lB

3

4 2
---------- l!

l'!
-----=

× e x– xl' l– 5/2– Ll
l' l– x( )[ ] 2

x, l' l.≥d

0

∞

∫

(23)

B q||( ) 4πZe2

εV0
--------------- 

 
2lB

3 l!
l'!

--------Γ l' l– 3/2–( )Γ l' 1+( )
Γ l' l– 1+( ) l!( )2

------------------------------------------------------=

× dl

dxl
-------

F
l' l– 3/2–

2
------------------------

 l' l– 1/2–
2

------------------------; l' l– 1; 
4x

1 x+( )2
-------------------+ 

,

1 x+( )l' l– 3/2– 1 x–( )5/2
-------------------------------------------------------------------------------------------------------------

 
 
 
 
 

x 0=

,

where Γ(x) is the Euler function and F(α, β, γ, δ) is the
hypergeometric function.

In the most interesting case where l = 0 and l' > 1,
expressions (23) greatly simplifies:

(24)

At l = 0 and l' = 1, integral (22) diverges at the lower
limit. However, if we take q||, κ ≠ 0, then we obtain
from (22) [23]

B q||( ) 4πZe2

εV0
--------------- 

 
2 lB

3

2 2
----------Γ l' 1

2
---+ 

  .=
 

(25)

where ψ(α, β; x) is the degenerate hypergeometric
function. Since the denominator is small, this term
mainly contributes to the absorption intensity. As fol-
lows from (22)–(25), B(q||) can always be represented
as

(26)

B q||( ) = 
4πZe2

εV0
--------------- 

 
2 lB

2 Γ 3/2( )

2 q||
2 κ2+

------------------------ψ 3
2
--- 1

2
---; 

lB
2 q||

2 κ2+( )

2
-------------------------, ,

B q||( ) 4πZe2

εV0
--------------- 

 
2

Ml'l.=
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It then follows from (18) that the partial absorption

coefficients Γl'l (Γs = ) near the resonance
points are

(27)

where pz = p||. We find from (27) that

(28)

where ε|| = /2m* and εl = "ωc(l + 1/2). According
to [4], f(ε|| + εl) is given by

(29)

We find from (28) and (29) that

(30)

Here, K0(x) is the Macdonald function. Since the Mac-
donald function has a logarithmic singularity at x = 0,
there is a resonance in the absorption of electromag-
netic radiation when the condition ∆ω = 0 is satisfied.
We determine the resonance frequencies from this con-
dition:

(31)

Γ l'l
s

l l, '∑

Γ l'l
s As ω( ) 4πZe2

εV0
--------------- 

 
2

Ml'l f εα( )
px p, z

∑=

× p||'δ "∆ω
p||

2

2m*
-----------

p||'
2

2m*
-----------–+ 

  ,d∫

Γ l'l
s 2m*As ω( ) 4πZe2

εV0
--------------- 

 
2

Ml'l

f ε|| εl+( ) εd

ε|| ε|| "∆ω+( )
------------------------------------,

0

∞

∫=

p||
2

f ε|| εl+( )
2 "ωc/T( )sinh

2πm*T
----------------------------------

ε|| εl+
T

--------------– .exp=

Γ l'l
s 4 "ωc/T( )m*sinh

2πm*T
------------------------------------------ 4πZe2

εV0
--------------- 

 
2

As ω( )=

× "∆ω "ωc l
1
2
---+ 

 – /T
 
 
 

K0
" ∆ω

T
-------------- 

  .exp

ωr
s l' l–

s
----------ωc.=

123

0.9 1.3 1.70.5
0

30

60

90

120

Γ s, arb. units

ω, 1013 s–1

Fig. 1. Partial absorption coefficients versus radiation fre-
quency for ωc = 2.02 × 1013 s–1, T = 10 K, l = 2, and l ' = 0;

curves 1, 2, and 3 correspond to s = 3, 4, and 5, respectively.
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As follows from (30), the behavior of the singularity in
the case considered is the same as that in CFR. Conse-
quently, the conclusion reached in [4] about the behav-
ior of the curve to the left and to the right of the points
where ∆ω = 0 is also valid in our case. To the right of
the resonance points where "∆ω @ T, the absorption

depends on ∆ω as 1/ , transforming into ln"|∆ω|/T
at "∆ω ! T, while to the left, the singularity is also log-
arithmic at ∆ω < 0 and "|∆ω| ! T, but the exponential
decrease |∆ω|–1/2exp[–"|∆ω|/T] is superimposed on the
square-root singularity far at ∆ω < 0 and "|∆ω| @ T.
Thus, the resonance peaks are asymmetric; i.e., the
right wing of the peak is flatter than the left wing. The
same result also shows up in the experimental data [9].
Interestingly, the dependence Γs(ωc) differs from Γs(ω)
in that the left wing in them is flatter than the right wing
(Figs. 1 and 2). This is attributable to the factor

 in (30). As follows from (31), an s-pho-
ton resonance takes place at fractional multiples of the
cyclotron frequency. For single-photon absorption
(s = 1), a resonance arises at integer multiples of the
cyclotron frequency, i.e., at the harmonics of the cyclo-
tron frequency. Comparing expression (15) for single-
photon absorption with (30), we see that the shape of
the resonance peaks in the absorption curve and the
behavior of the singularity at the resonance point in the
nonlinear case are the same as those in the linear case.
The same conclusion can be reached with regard to the
dependence of the amplitude of the resonance peaks in
the absorption curve on the temperature and the mag-
netic field. The dependence of the absorption coeffi-
cient on the number of photons involved in the transi-
tions is determined by the function As(ω). As follows
from (19), this dependence is mainly defined as s–1.
Therefore, the amplitude of the photon repetitions of
the main (s = 1) peak decreases with increasing s. This
estimate agrees well with the experimental data [9] for
the two-photon cyclotron–impurity resonance. We see
from (31) that these repetitions are arranged not equi-

∆ω

"ωc/T( )sinh

0.04

0.03

0.02

0.01

0
1 2 3 4

ωc/ω

1

2

3

Γ s, arb. units

Fig. 2. Partial absorption coefficients versus magnetic field
for ω = 5 × 1012 s–1, T = 30 K, l = 2, and l ' = 0; curves 1, 2,
and 3 correspond to s = 3, 4, and 5, respectively.
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distantly in the curve Γs(ω), but in such a way that the

separation between the nearest peaks is  –  ∝
[s(s + 1)]–1. Thus, the separations between the nearest
repetitions of the main peak decrease with increasing s.

4. CONCLUSIONS

It is interesting to compare the amplitudes of the
nonlinear and linear resonance peaks: in the main case,
we obtain the following estimate from (15) and (19)
using (24):

(32)

Let us compare the intensities of the peaks of the lin-
ear cyclotron–impurity resonance (CIR) and the cyclo-
tron–phonon resonance (CFR). To this end, we write

 as

(33)

We take  for LO phonons from [4]. In that case,

. (34)

For B = 10 T and Ni ≈ 1015 cm–3, ΓCIR/ΓCFR ~ 4. Thus,
under the experimental conditions [24], the intensity of
the linear CIR peaks is much higher than that of the
CFR peaks. A similar result was also obtained in the
experiment [24]. It was hypothesized in [2] that the
peaks observed in [24] at the harmonics of the cyclo-
tron resonance are attributable to the scattering by ion-
ized impurities. The above estimates are consistent with
this hypothesis.

For the nonlinear CIR to be observed, a certain con-
dition for the field strength of the electromagnetic wave
must be satisfied. It follows from (11) that the nonlin-
earity condition for the effect at ω ~ ωc is

(35)

Assuming that q⊥  ~ , we obtain eE0lB * "ωc @ T
from (35). This inequality is known [25] to be the crite-
rion for a significant dependence of the electron transi-
tion probability in a magnetic field on the amplitude of
the variable electric field.

ωr
s ωr

s 1+

Γ l'0
1( )nonlin

Γ l'0( )lin
----------------------

m*"ωc
3

eE0
-----------------

 
 
 

3

.∝

Γ l'0
1

Γ l'0
1 CIR( ) 4πZe2

V0
--------------- 

  lH Γ3 l' 1/2+( )
2 2

---------------------------------=

×
2π( )3e2V0n0Ni

4c" εm*ω
------------------------------------ 1

ω ωc–( )2
----------------------- 1

ω ωc+( )2
-----------------------+

×
"ωc/T( )m*sinh

2πm*T
--------------------------------------- "∆ω "ωc l' 1

2
---+ 

 – K0
" ∆ω

T
-------------- 

  .exp

Γ l'0
CFR

ΓCIR

ΓCFR
-----------

4π( )3/2 l' 1/2–( )Z2e2lB
2

"ω0
-------------------------------------------------------

Ni

εV0
--------- 

 ≈

eE0q⊥ /m*ωc * 1.

lB
1–
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Having estimated ωc ~ 2 × 1013 s–1 and q⊥  = 105 cm,
we obtain an estimate for E0 ~ 103 V cm–1 that follows
from (35) for the n-InSb parameters. The values of ω ~
1014 s–1 and E0 ~ 103 V cm–1 can be obtained by illumi-
nating the sample by the electromagnetic radiation of a
CO2 laser [26]. This radiation is commonly used to
experimentally study the CIR.

To estimate the partial absorption coefficients at
maximum, we substitute "∆ω + iδ, where δ is the phe-
nomenological damping constant, for the argument
"∆ω in the resonance factor in (30),

that contains a weak (logarithmic) singularity. This fac-
tor near the resonance absorption will then take the
form

(36)

where C is the Euler constant.
The first two terms in this expression make a mono-

tonic contribution to the absorption, while the last term
makes a resonance contribution. Let us estimate this
factor at the resonance point by taking δ = "/τ0, where
the relaxation time τ0 ~ 10–12 s. At T = 10 K, we then
have Ref [∆ω" + iδ] ~ 1. For the linear absorption, we

obtain (CIR) ~ 0.3 cm–1 at the resonance point. As
follows from (32), Γnonlin/Γlin ~ 100 at ωc ~ 1013 s–1 and
E0 ~ 103 V cm–1 and, hence, Γnonlin @ Γlin. However, the
absorption decreases with growing field in the region of
the nonlinear effect, so that the E0 dependence of the
amplitude of the peaks is nonmonotonic. As follows
from (13), this dependence is attributable to the non-
monotonic dependence of the Bessel function on its
argument.

For a degenerate gas, to study the resonances in the
absorption coefficient at low temperatures, the distribu-
tion function may be assumed to be f0(εα) = 1. The
absorption coefficient near the resonance points then
has the same logarithmic singularity as in the nonde-
generate case. This is because the singularity originates
from the singularities in the density of the initial and
final states and does not depend on the electron gas
degeneracy. In the above calculations, we ignored the
heating of the electron gas by the electric field of the
electromagnetic radiation. The heating may be disre-

f ∆ω( )
"∆ω "ωc l 1/2+( )–

T
------------------------------------------------

 
 
 

K0
" ∆ω

T
-------------- 

  ,exp=

Re f ∆ω iδ+( ) 2 C–ln( ) δ
T
---cos=

+
δ
T
--- δ

δ2
"

2 ∆ω( )2+
------------------------------------ 

 arcsinsin

–
1
2
--- δ

T
--- "

2 ∆ω( )2 δ2+

T2
-------------------------------- ,lncos

Γ0l
1( )
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garded if (eE0lH/T)2δ ! 1, where δ is the scattering
inelasticity parameter [25].
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Abstract—We consider the model of a Fermi–Bose mixture with strong hard-core repulsion between particles
of the same sort and attraction between particles of different sorts. In this case, in addition to the standard anom-
alous averages of the type 〈b〉 , 〈bb〉 , and 〈cc〉 , pairing between fermions and bosons of the type 〈bc〉  is possible.
This pairing corresponds to creation of composite fermions in the system. At low temperatures and equal den-
sities of fermions and bosons, composite fermions are further paired into quartets. At higher temperatures, trios
consisting of composite fermions and elementary bosons are also present in the system. Our investigations are
important in connection with the recent observation of weakly bound dimers in magnetic and optical dipole
traps at ultralow temperatures and with the observation of collapse of a Fermi gas in an attractive Fermi–Bose
mixture of neutral particles. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The Fermi–Bose mixture model is currently very
popular in connection with different problems in con-
densed matter physics, such as high-Tc superconductiv-
ity, superfluidity in 3He–4He mixtures [1], and fermi-
onic superfluidity in magnetic traps.

In high-Tc superconductivity, this model was first
proposed by Ranninger [2, 3] for simultaneous descrip-
tion of high transition temperature and short coherence
length of superconductive pairs, on the one hand, and of
the presence of a well-defined Fermi surface, on the
other.

In this paper, we show that the Fermi–Bose mixture
with attractive interaction between fermions and
bosons is unstable with respect to the creation of com-
posite fermions f = bc. Moreover, for low temperatures
and equal densities of fermions and bosons, composite
fermions are further paired into 〈 ff 〉  quartets. We note
that the matrix element 〈 f 〉  = 〈bc〉  is nonzero only for
transitions between states |NB; NF〉  and 〈NB – 1; NF – 1|,
where NB and NF are the numbers of elementary bosons
and fermions, respectively. For the superconductive
state, the matrix element 〈 ff 〉  is nonzero only for tran-
sitions between states |NB; NF〉  and 〈NB – 2; NF – 2|. Our
results are interesting not only for the physics of high-
Tc superconductors, but also for Fermi–Bose mixtures
in magnetic and optical dipole traps, as well as in opti-
cal lattices, where we can easily tune such parameters

¶This article was submitted by the authors in English.
1063-7761/04/9903- $26.00 © 20640
of the system as the particle density and the sign and
strength of the interparticle interaction [4, 5].

2. THEORETICAL MODEL

The model of the Fermi–Bose mixture has the fol-
lowing form on a lattice:

(1)

This is a lattice analog of the standard Hamiltonian con-
sidered, for example, in [6]. Here, tF and tB are fermi-

onic and bosonic hopping amplitudes, and , ciσ, 
and bi are the fermionic and bosonic creation and anni-
hilation operators; the Hubbard interactions UFF and
UBB correspond to hard-core repulsion between parti-
cles of the same sort; the interaction UBF corresponds to
attraction between fermions and bosons; WF = 8tF and
WB = 8tB are the bandwidths in the two-dimensional
case; and finally, µF and µB are fermionic and bosonic
chemical potentials. For the square lattice, the spectra

H HF HB HBF,+ +=

HF tF ciσ
+ c jσ UFF ni↑

F ni↓
F µF niσ

F ,
i σ,
∑–

i

∑+
i j,〈 〉
∑–=

HB tB bi
+b j

1
2
---UBB ni

Bni
B µB ni

B,
i

∑–
i

∑+
i j,〈 〉
∑–=

HBF UBF ni
Bniσ

F .
i σ,
∑–=

ciσ
+ bi

+
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of fermions and bosons after the Fourier transformation
are given by

for fermions and

for bosons, where d is the lattice constant. In the inter-
mediate coupling case

the energy of the bound state is given by

(2)

where

is an effective mass 

For simplicity, we consider the case of equal densities
nB = nF = n.

We note that in the intermediate coupling case, the
binding energy |Eb| between a fermion and a boson is
larger than the bosonic and fermionic degeneracy tem-
peratures

and

but smaller than the bandwidths WB and WF . In this
case, pairing of fermions and bosons, 〈bc〉  ≠ 0, occurs
earlier (at higher temperatures) than both Bose–Ein-
stein condensation of bosons (or bibosons) (〈b〉  ≠ 0 or
〈bb〉  ≠ 0) and superconductive pairing of fermions
(〈cc〉  ≠ 0). We note that in the case of a very strong
attraction UBF > WBF , we have the natural result |Eb| =
UBF , and the effective mass

is additionally enhanced on the lattice [7]. We also note
that the Hubbard interactions UFF and UBB satisfy the

ξ pσ 2tF pxd pydcos+cos( )– µF–=

η p 2tB pxd pydcos+cos( )– µB–=

WBF

WBF/T0BF( )ln
---------------------------------- UBF WBF,< <

Eb
1

2mBFd2
------------------ 1

2π/mBFUBF[ ]exp 1–
----------------------------------------------------,=

mBF

mBmF

mB mF+
--------------------=

WBF
4

mBFd2
---------------,=

T0BF 2πn/mBF.=

T0B

2πnB

mB

------------=

T0F

2πnF

mF

------------ εF,≡=

mBF*
mBFUBF

WBF

------------------- @ mBF=
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inequalities

We now consider the temperature evolution of the
system. It is governed by the corresponding Bethe–Sal-
peter equation. After analytic continuation iωn  ω +
i0 [8], the solution of this equation becomes

, (3)

where

are spectra of fermions and bosons at low densities
nFd2 ! 1 and nBd2 ! 1. We note that the temperature
factor

enters the pole of the Bethe–Salpeter equation, in con-
trast with the factor

for two-fermion superconductive pairing and

for two-boson pairing. The pole of the Bethe–Salpeter
equation corresponds to the spectrum of the composite
fermions,

(4)

where

(5)

is the chemical potential of composite fermions. Com-
posite fermions are well-defined quasi-particles,
because the damping of quasi-particles is equal to zero
in the case of a bound state (Eb < 0), but becomes non-
zero and is proportional to Eb in the case of a virtual
state (Eb > 0). The dynamical equilibrium (boson +

UFF

WF

WF/ Eb( )ln
-----------------------------,=

UBB

WB

WB/ Eb( )ln
-----------------------------.>

Γ q ω,( )

=  
UBF–

1 UBF
d2 p

2π( )2
-------------

1 nF ξ p( )( )– nB η q p–( )( )+
ξ p( ) η q p–( ) ω– i0–+

---------------------------------------------------------------------∫–

----------------------------------------------------------------------------------------------------------

ξ p( ) p2

2mF

---------- µF,–=

η p( ) p2

2mB

---------- µB–=

1 nF ξ p( )( )– nB η q p–( )( )+

1 nF ξ p( )( )– nF ξ q p–( )( )–

1 nB η p( )( ) nB η q p–( )( )+ +

ω ξp*≡ p2

2 mB mF+( )
---------------------------- µcomp,–=

µcomp µB µF Eb+ +=
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fermion  composite fermion) is governed by the
standard Saha formula [9]. In the two-dimensional
case, it is

(6)

The crossover temperature T∗  is determined, as usual,
from the condition that the number of composite fermi-
ons is equal to the number of unbound fermions and
bosons:

This conditions yields

(7)

We note that in the Boltzmann regime |Eb| >
{T0B; T0F}, we actually deal with the pairing of two
Boltzmann particles. Therefore, this pairing does not
differ drastically from the pairing of two particles of the
same type of statistics. Indeed, if we replace µB + µF

in (5) with 2µB or 2µF , we obtain the familiar expres-
sions for chemical potentials of composite bosons
consisting of either two bosons [10, 11] or two fermi-
ons [12, 13]. The crossover temperature T∗  plays the
role of a pseudogap temperature, and therefore the Green

nBnF

ncomp
-----------

mBFT
2π

-------------
Eb

T
--------–

 
 
 

.exp=

ncomp nB nF n.= = =

T*
Eb

Eb /2T0BF( )ln
------------------------------------ @ T0B; T0F{ } .≈

ψα
–ψα

ψβ ψβ
–

p + q

q

–q–p – q

–p

p

Fig. 1. Skeleton diagram for coefficient b at Ψ4 in the effec-
tive action. Dashed lines correspond to bosons, and solid
lines correspond to fermions.

ψα
–ψα

ψβ ψβ
–

–q
ψα
–ψα

ψβ ψβ
–

–q

fBB0 fFF0

Fig. 2. Corrections to coefficient b containing boson–boson
and fermion–fermion interactions.
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functions of elementary fermions and bosons acquire a
two-pole structure below T∗  in similarity with [13].

For lower temperatures T0 < T < T∗ , where

is the degeneracy temperature of composite fermions,
the numbers of elementary fermions and bosons are
exponentially small. The chemical potential of compos-
ite fermions is given by

and hence

By the Hubbard–Stratonovich transformation, the
original partition function

can be written in terms of the composite fermions,

This procedure gives the magnitude of the interaction
between the composite fermions. The lowest order of
the series expansion is given in Fig. 1. Analytically, this
diagram is given by

(8)

where

are the fermion and boson Matsubara Green functions,
and

are the fermion and boson Matsubara frequencies. This
integral actually determines the coefficient b at Ψ4 in
the effective action. Evaluation of integral (8) yields

(9)

where

The corrections to the coefficient b are presented in
Fig. 2. They explicitly contain the T matrices for the

T0
2πn

mF mB+
--------------------=

µcomp T T /T0( ),ln–=

µcomp  ! Eb     for  T  !  T *.

Z $b$b$c$c βF–{ }exp∫=

Z $Ψα$Ψα βFeff–{ } .exp∫=

1
2
--- d2 p

2π( )2
------------- GF

2 p; iωnF( )GB
2 p; iωnB––( ){∫

n

∑–

+ GF
2 p; iωnF––( )GB

2 p; iωnB( ) } ,

GF
1

iωnF ξ p( )–
----------------------------,=

GB
1

iωnB η p( )–
----------------------------=

ωnF 2n 1+( )πT , ωnB 2nπT= =

b
N 0( )
Eb

2
------------,–≈

N 0( ) mBF/2π.=
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boson–boson and fermion–fermion interactions. In the
intermediate coupling case, these diagrams are small in
the small parameters

Therefore, the exchange diagram indeed makes the
main contribution to the coefficient b.

The coefficient of the quadratic term Ψ2 in the effec-
tive action, in agreement with general rules of diagram-
matic technique [8], is given by

(10)

where Γ(q; 0) is given by (3). The solution of (10)
yields

Therefore, although T∗  in reality corresponds to a
smooth crossover and not to a real second-order phase
transition, the effective action of composite fermions at
temperatures T ~ T∗  formally resembles the Ginzburg–
Landau functional for the Grassmann field Ψα .

If we want to rewrite the effective action with gradi-
ent terms

(11)

in the form of the energy functional of a nonlinear
Schrödinger equation for the composite particle with
the mass mB + mF , we have to introduce the effective
order parameter

Accordingly, in terms of ∆α , the new coefficients  and

 at the quadratic and quartic terms become

We note that the Grassmann field ∆α corresponds to the
composite fermions and is normalized by the condition

Hence, the coefficient  plays the role of the effective
interaction between composite particles. From Eqs. (9)
and (10),

f BB0
1

WB/ Eb( )ln
-----------------------------, f FF0

1
WF/ Eb( )ln

-----------------------------.∼∼

a
cq2

2 mB mF+( )
----------------------------+

1
Γ q; 0( )
------------------,–=

c
N 0( )

Eb

------------, a N 0( ) T /T*( ).ln= =

∆F αΨαΨα
c

2 mF mB+( )
---------------------------- ∇Ψ α( ) ∇Ψ α( )+=

+
1
2
---bΨαΨβΨβΨα

∆α cΨα .=

ã

b̃

ã
a
c
---, b̃

b

c2
----.= =

∆α
+∆α ncomp.=

b̃

b̃
1

N 0( )
------------.–=
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This result coincides in absolute value with the
result in [14], but has the opposite sign. In [14], the
residual interaction between two composite bosons,
each consisting of two elementary fermions, was calcu-
lated in the two-dimensional case. The difference in
sign between these two results is due to different statis-
tics of elementary particles in the two cases. It is also
important to calculate b(q), where the momenta of the
incoming composite fermions are equal to (q, –q). It is
easy to find that

(12)

In the case of equal masses mB = mF = m, a straightfor-
ward calculation for small q yields

(13)

Accordingly,

(14)

where

A similar result in the three-dimensional case was
obtained in [15]. Hence, the four-particle interaction
has a Yukawa form in momentum space. Therefore,

corresponds to an attractive potential with the interac-
tion radius equal to a/2. We can now calculate the bind-
ing energy |E4| of quartets. A straightforward calcula-
tion, absolutely similar to the calculation of |Eb|, yields

(15)

Hence,

(16)

b q( ) 1
2
--- d2 p

2π( )2
-------------∫

n

∑–=

× GB p; iωnB( )GF p; iωnF–( ){

× GB p q; iωnB+( )GF p q; iωnF––( )

+ GB p; iωnB–( )GF p; iωnF( )

× GB p q; iωnB––( )GF p q; iωnF+( ) } .

b q( ) m

4π Eb q2/4m+( )2
--------------------------------------------.–=

b̃
b

c2
---- 4π

m 1 q
2
/4m Eb+( )

2
---------------------------------------------,–≈=

Eb
1

ma2
---------.=

U4 r( ) 1

ma2
--------- a

2r
----- 2r

a
-----– 

 exp–≈

1
b̃ mB mF+( )

2π
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q2 mB mF+( ) E4+
---------------------------------------------.

0

2/a

∫=

E4
4

a2 mB mF+( ) 4π
b̃ mB mF+( )
------------------------------- 

 exp 1–
-------------------------------------------------------------------------------------------.=
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For equal masses mB = mF ,

and therefore

(17)

The dynamical equilibrium (composite fermion + com-
posite fermion  quartet) is again governed by the
Saha formula

(18)

where

The number of composite fermions is equal to half the
number of quartets, n4 = n2/2, for the crossover temper-
ature

(19)

Below this temperature, the quartets of the type 〈 ci↑bi;
cj↓bj〉  play the dominant role in the system. We note that

 > T∗ , and therefore quartets dominate over pairs
(composite fermions) in the entire temperature interval.
We also note that the quartets are in the spin-singlet
state. The creation of spin-triplet quartets is prohibited
or at least strongly reduced by the Pauli principle. The
triplet p-wave pairs of composite fermions are possibly
created in the strong-coupling case |Eb| > W when the
corrections to the coefficient b given by the diagrams in
Fig. 2 are large and repulsive. However, small parame-
ters are absent in this case, and it is very difficult to con-
trol the diagrammatic expansion.

3. THREE-PARTICLE PROBLEM

If we consider the scattering process of an elemen-
tary fermion on a composite fermion, we obtain a repul-

b̃ mB mF+( )
4

------------------------------- 1
2
---=

E4

2 Eb

e1/2 1–( )
---------------------- 3 Eb .≈=

ncomp
2

n4
-----------

m4F
2π

----------
E4

T
--------–

 
 
 

,exp=

m4

mB mF+
2

--------------------.=

T**
4( ) E4

E4 /2T0( )ln
------------------------------.=

T**
4( )

ψβ ψβ
–

p1 

p – q

q p1 + q

Fig. 3. Exchange diagram for the three-particle interaction. 

p
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sive sign of the interaction regardless of the relative
spin orientation of the composite and elementary fermi-
ons. The same result in three dimensions for scattering
of an elementary fermion on a dimer consisting of two
fermions was obtained in [16]. However, for a scatter-
ing process of an elementary boson on a composite fer-
mion, we obtain an attractive sign of the interaction.
Moreover, in the two-dimensional case, the Fourier
component of the three-particle interaction for mB =
mF = m is given by (see Fig. 3)

(20)

where GF(0, q) is the Green function of elementary fer-
mions and c = N(0)/|Eb|. Hence,

(21)

which again corresponds to an attractive potential of the
Yukawa type, but now with the interaction range equal
to a. Calculation of the three-particle bound-state
energy yields

(22)

Hence, for mB = mF = m, we have

(23)

We note that we are studying trios and quartets in the
zeroth-order exchange approximation. A more rigorous
solution of the three- and four-particle problems
requires analyzing the Skorniakov–Ter-Martirosian
type of equations [17]. This investigation will be the
subject of a separate publication. The dynamical equi-
librium of the type composite fermion + boson  trio
is governed by the Saha formula

(24)

where

Accordingly, trios dominate over unbound bosons for

temperatures T < , where

(25)

U3 q( ) 1
c
---GF 0 q,( ) 8π

m 1 q2a2+( )
-----------------------------,–= =

U3 r( ) 1

ma2
---------K0 r/a( )–

1

ma2
--------- a

r
--- r/a–( ),exp–∼ ∼

1
U3 0( )

2π
----------------- q qd

q2/2mB q2/2 mB mF+( ) E3+ +
---------------------------------------------------------------------------.

0

1/a

∫=

E3
3

4ma2
------------- 1

3π/m U3( )exp 1–[ ]
---------------------------------------------------=

=  
3 Eb

4 e3/8 1–( )
------------------------- 1.65 Eb .≈

nBncomp

n3
-----------------

m3T
2π

----------
E3

T
--------–

 
 
 

,exp=

m3

mB mB mF+( )
2mB mF+

--------------------------------.=

T**
3( )

T**
3( ) E3

E3 /2T0( )ln
------------------------------.=
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We note that  < , and therefore, trios are not as
important as quartets.

As a result, there are mostly quartets in the system

for T < . The quartets are Bose-condensed at the
critical temperature

in the case of equal masses. It is important to note that
in the Feshbach resonance scheme [4, 5, 18], we are
usually in the regime T ~ T0, where quartets prevail over
trios and pairs. In this scheme, the particles are first
cooled to very low temperatures T < T0 and only then is
the sign of the scattering length changed by magnetic
field to support the formation of bound pairs. We
emphasize that in the restricted geometry of magnetic
or optical dipole traps, our theory is valid under the
condition Tc > ω, where ω is the level spacing in the
trap. For a large number of particles N @ 1 in the two-
dimensional trap, ω ~ T0/N1/2 (ω ~ T0/N1/3 in three-
dimensional traps), and this condition is therefore easily
satisfied. We also note that octets are not formed in the
system because two quartets repel each other due to the
Pauli principle, in similarity with the results in [14, 19].

4. CONCLUSIONS

We have considered the appearance and pairing of
composite fermions in a Fermi–Bose mixture with an
attractive interaction between fermions and bosons.

At equal densities of elementary fermions and
bosons, the system is described at low temperatures by
a one-component attractive Fermi gas for composite
fermions and is unstable with respect to formation of
quartets.

The problem that we considered is important for a
theoretical understanding of high-temperature super-
conducting materials and for the investigation of
Fermi–Bose mixtures of neutral particles at low and
ultralow temperatures. In high-Tc superconductors,
quartets play the role of singlet superconductive pairs.
The radius of the quartets (the coherence length of the
superconducting pair) is governed by the binding
energy |E4| of the quartets. If |E4| is larger that T0, the
quartets are local: pFa < 1. For

the local quartets are Bose-condensed and the system
becomes superconductive. We note that at higher tem-
peratures T > T0, a certain amount of trios is also
present in the system in addition to quartets. The role of
trios is usually neglected in the standard theories of
high-Tc superconductivity.

T**
3( ) T**

4( )

T**
4( )

Tc

T0

8 4/na2( )lnln
---------------------------------=

Tc

T0

8 4/na2( )lnln
---------------------------------,=
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We also note that we consider the low-density limit
|Eb| @ T0. In the opposite case of higher densities T0 @
|Eb|, Bose–Einstein condensation of bosons or bibosons
[11, 20, 21] occurs earlier than the creation of compos-
ite fermions and quartets. Such a state can be distin-
guished from an ordinary BCS-superconductor by mea-
suring the temperature dependence of the specific heat
and normal density.

For Fermi–Bose mixtures, our investigations have
enriched the superfluid phase diagram in magnetic and
optical dipole traps and are important in connection
with recent experiments where weakly bound dimers
6Li2 and 40K2, consisting of two elementary fermions,
were observed [22, 23]. We note that in an optical
dipole trap, it is possible to obtain an attractive scatter-
ing length for fermion–boson interaction with the help
of the Feshbach resonance [18]. We also note that even
in the absence of the Feshbach resonance, it is experi-
mentally possible now to create a Fermi–Bose mixture
with attractive interaction between fermions and
bosons. For example, in [24, 25], such a mixture of 87Rb
(bosons) and 40K (fermions) was experimentally stud-
ied. Moreover, the authors of [24, 25] experimentally
observed the collapse of the Fermi gas with the sudden
disappearance of fermionic 40K atoms when the system
enters the degenerate regime. In principle we cannot
exclude the fact that this is just a manifestation of
〈bc; bc〉  quartets being created in the system. We note
that in the regime of strong attraction between fermions
and bosons, phase separation with the creation of larger
clusters or droplets is also possible. We also note that a
much slower collapse in the Bose subsystem of 87Rb
atoms can possibly be explained by the fact that the
number of Rb atoms in the trap is much larger than the
number of K atoms, and therefore, after the formation
of composite fermions, many residual bosons are still
present in the system. A more thorough comparison of
our results with an experimental situation will be the sub-
ject of a separate publication. Here, we only mention that
for the experiments performed in [24, 25], the three-
dimensional case is more relevant. In the three-dimen-
sional case, the attractive interaction between compos-
ite fermions acquires the form

(26)

where

is a shallow level of a fermion–boson bound state. We
note that in the case of a repulsive interaction between
two bosons (each of which consists of two fermions),
aeff = 2a in the mean-field theory in [19], aeff = 0.75a in
the calculations in [15], and aeff = 0.6a in the calcula-

b̃ q( )
πaeff

mBF 1 q2/2 mB mF+( ) Eb+[ ]
---------------------------------------------------------------------,–=

Eb
1

2mBFa2
------------------=
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tions in [16]. The shallow bound state of quartets exists
in the three-dimensional case only if

(27)

For mB = mF = m, we have
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Abstract—Dynamics of an ultrashort electromagnetic pulse in a system with an array of anisotropic tunneling
states spanned by the pulse spectrum are analyzed. A system of nonlinear wave equations is derived for the ordi-
nary and extraordinary components of the pulse propagating at an arbitrary angle to the anisotropy axis. Differ-
ent regimes of ultrashort pulse propagation parallel and perpendicular to the anisotropy axis are examined.
Ultrashort-pulse propagation regimes analogous to self-induced transparency and extraordinary transparency
are identified. The properties of rational soliton-like pulses having no quasi-monochromatic analogs are ana-
lyzed. A longitudinal electric field component is generated in each regime, whereas off-resonance quasi-mono-
chromatic pulses propagating under similar conditions (parallel and perpendicular to the anisotropy axis) have
no longitudinal components. Stability of the solutions obtained and the effect of diffraction on ultrashort pulse
dynamics are analyzed. The values of pulse parameters for which defocusing dominates over self-focusing are
calculated. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Studies of the nonlinear dynamics of few-cycle laser
pulses, also called ultrashort pulses (USP), have devel-
oped into a well-established line of research [1–18].
Since pulses of this kind cannot be characterized by
well-defined carrier frequencies, they cannot be mod-
eled by invoking the slowly varying envelope approxi-
mation routinely applied to quasi-monochromatic
pulses [19]. For this reason, self-induced transparency
(which has been well studied for quasi-monochromatic
pulses [20–22]) has certain distinctive characteristics in
the case of USP propagation [23, 24]. In [24], this phe-
nomenon was analyzed for a USP propagating in a
hydrogen-bonded ferroelectric near the Curie tempera-
ture Tc. In such a system, the pulse interacts with tun-
neling proton states giving rise to a soft mode. Since the
soft mode is strongly suppressed by dipole–dipole
interactions between tunneling states near Tc , self-
induced transparency cannot be observed for resonant
quasi-monochromatic pulses. However, a high-energy
USP whose spectrum spans the tunneling states can
eliminate dipole–dipole interactions [24]. Therefore,
tunneling states exhibit individual rather than collective
behavior and tunneling modes are neither soft nor sup-
pressed in the region occupied by the pulse. As a result,
the pulse propagates in a soliton regime involving sub-
stantial excitation of tunneling states, which is analo-
gous to self-induced transparency. Tunneling states in a
KDP crystal are highly anisotropic: proton tunneling
mainly occurs in the plane perpendicular to the ferro-
electric axis [25, 26]. Accordingly, these tunneling
1063-7761/04/9903- $26.00 © 20647
states in double-well potentials are treated as one-
dimensional in theoretical studies [24–27]. More com-
monly, tunneling states arise in a three-dimensional
array of anisotropic potential barriers separating poten-
tial minima. Such potentials are created by the crystalline
electric field, which eliminates degeneracy in the abso-
lute value of the projection of orbital angular momen-
tum. Thus, tunneling states are doubly degenerate in the
general case. Moreover, anisotropy can give rise to a per-
manent dipole moment, which corresponds to nonzero
diagonal matrix elements of the dipole moment operator.
A permanent dipole moment can strongly affect nonlin-
ear regimes of both quasi-monochromatic-pulse and
USP propagation in such media [28–32].

In [32], use was made of the fact that an optical
pulse consists of two components called ordinary and
extraordinary waves. In particular, it was demonstrated
that a resonant quasi-monochromatic ordinary wave
can generate an ultrashort extraordinary-wave pulse
(video pulse), which gives rise to a dynamic shift in
quantum-transition frequency due to permanent dipole
moment. Subsequently, the two components are cou-
pled via nonlinear interaction, and soliton regimes of
two-component pulse propagation become possible.
When the ordinary component is dominant, the reso-
nant phenomenon of self-induced transparency is
observed. In the opposite limit, the regime called
extraordinary transparency in [32] takes place. In the
latter case, the two-component solitons decelerate as in
the case of self-induced transparency and have no
appreciable dynamic effect on the populations of quan-
tum states. In view of the aforementioned difference
004 MAIK “Nauka/Interperiodica”
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between nonlinear regimes of USP and quasi-mono-
chromatic pulse propagation, it would be interesting to
examine dynamics of a two-component pulse in the
case when neither an ordinary nor extraordinary com-
ponent has a well-defined carrier frequency; i.e., it must
be classified as an ultrashort pulse by standard termi-
nology. For this reason, two-component USP propaga-
tion in an array of anisotropic tunneling states is ana-
lyzed in the present study.

The paper is organized as follows. In Section 2, we
formulate a model and use it as a basis for deriving a
system of material and wave equations describing self-
consistent dynamics of tunneling states characterized
by uniaxial anisotropy and USP propagation in an array
of such states. In Section 3, the fact that the USP spec-
trum spans the tunneling states is used to eliminate
material parameters and to derive a system of nonlinear
wave equations for the pulse components. Section 4
deals with several regimes of two-component USP
propagation parallel and perpendicular to the anisot-
ropy axis. Regimes analogous to self-induced transpar-
ency and extraordinary transparency are identified. In
Section 5, the properties of rational soliton-like pulses
having no quasi-monochromatic analogs are analyzed.
In Section 6, we examine the effect of transverse pertur-
bations, such as diffraction, on the dynamics of the one-
dimensional solitary pulses considered in the preceding
section. In the Conclusions section, we summarize the
main results of the study and outline some promising
directions of further research.

2. SYSTEM OF MATERIAL
AND WAVE EQUATIONS

In the case of a double-well potential, the ground-
state and first excited-state wavefunctions of a tunnel-
ing particle are, respectively, symmetric and antisym-
metric under the coordinate inversion z'  –z' of the
tunneling axis [25, 26]. Since the probability densities
associated with the corresponding wavefunctions are
identical and finite in both wells, tunneling can occur.
This particular model is generally used to describe an
order–disorder type ferroelectric [25, 26].

A one-dimensional model can be generalized by
extending a double-well potential in directions perpen-
dicular to the z' axis. Suppose that both the wells and
the potential barrier between them are axially symmet-
ric. The uniaxial anisotropy is attributed to the crystal-
line electric field. This implies that the energy eigen-
states of the tunneling particle are degenerate in the abso-
lute value of the projection m of orbital angular
momentum l on the z' axis (henceforth, we neglect spin-
related effects). In such a double-well potential, m = 0 for
the ground state and m = ±1 for the first excited state.

The operator of interaction between the particle and
the internal electric field responsible for the uniaxial
JOURNAL OF EXPERIMENTAL
anisotropy is invariant under the inversions

z'  –z', ϕ  –ϕ,

where ϕ is the angle in a cylindrical coordinate system.
Therefore, we can consider even and odd wavefunc-
tions of the particle with respect to these symmetries:

ψ(r, z', ϕ) = ±ψ(r, –z', –ϕ').

The ground level (with m = 0) is even, and the excited
one (with m = ±1) is odd and doubly degenerate. Note
that the concept of parity is defined here with respect to
the inversions specified above, rather than to the inver-
sion of the entire coordinate system (as in the case of
spherical symmetry). This restricted symmetry implies
that an energy eigenstate can have a permanent dipole
moment (see below).

The three-level model with a doubly degenerate
upper level can be considered as a three-dimensional,
axially symmetric generalization of the two-level sys-
tem corresponding to a one-dimensional double-well
potential.

The tunneling frequency ω0 is on the order of 1013 s–1.

Following [18, 32], we represent the energy eigen-
states of a proton as

(1)

where µ is the set of quantum numbers associated with
cylindrical symmetry.

Then, we can find the µ  ν dipole transition
matrix elements [18, 32]. The corresponding Cartesian
components are

with

Here, x, y', and z' are the axes of a Cartesian orthogonal
coordinate system, and e is the charge of a tunneling
particle.

ψµ m, Rµ m, r z',( ) imϕ( ),exp=

     

dµν
x dµν

2
------- ∆mµν , dµν

y' i
dµν

2
-------∆mµν,= =

dµν
z' Dµν 1 ∆mµν–( ),=

∆mµν mµ mν– 0 1,±,= =

dµν 2πe r2 r Rµ r z',( )Rν r z',( ) z',d

∞–

+∞

∫d

0

∞

∫–=

Dµν 2πe r r z'Rµ r z',( )Rν r z',( ) z'.d

∞–

+∞

∫d

0

∞

∫–=
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By virtue of the wavefunction symmetry indicated
above, it holds that

with plus and minus signs corresponding to m = 0 and
m = ±1, respectively. The function Rµ, m(r, z') cannot be
characterized by any definite parity under the inversion
z'  –z' when m is held invariant. Therefore, the diag-
onal elements Dµµ given by the expression for Dµν have
nonzero values in the general case.

To analyze USP propagation at an arbitrary angle α
to the anisotropy axis, we perform a rotation about the
x axis. In the new Cartesian system (x, y, z), the dipole-
moment components are written as

(2)

Accordingly, the matrix elements of the Hamilto-

nian  of electric-field–dipole interaction between a
tunneling proton state and the pulse field are expressed
as

(3)

Here, Eo and Ee denote the electric fields associated
with the ordinary and extraordinary components (paral-
lel to the x and y axes, respectively), and Ez is the lon-
gitudinal component of the pulse, which is always
present (even if weak) in electromagnetic wave propa-
gation in crystals [33].

For the degenerate quantum transition considered
here (µ = 1 for m = 0 and µ = 2, 3 for m = ±1), the sys-
tem of material equations for the elements of the den-
sity matrix  is written as

(4)

Rµ m, r z',( ) Rµ m–, r z'–,( ),±=

dµν
x dµν

2
------- ∆mµν ,=

dµν
y i

dµν

2
-------∆mµν α Dµν 1 ∆mµν–( ) α ,sin–cos=

dµν
z i

dµν

2
-------∆mµν α Dµν 1 ∆mµν–( ) α .cos+sin=

V̂

Vµν dµν–= E r t,( )⋅

=  Dµν 1 ∆mµν–( ) αsin i
dµν

2
-------∆mµν αcos– Ee

–
dµν

2
------- ∆mµν Eo

– Dµν 1 ∆mµν–( ) αcos i
dµν

2
-------∆mµν αsin+ Ez.

r̂

∂ρµν

∂t
----------- iωµνρµν– i Ŵ r̂,[ ] µν,+=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where ω21 = ω31 = ω0,

(5)

(6)

In system (4)–(6), the longitudinal component of the
pulse is neglected because

This component is taken into account in the wave equa-
tions formulated below, where it is attributed to the
transverse polarization of the medium. This approach
can be interpreted as a method of successive approxi-
mations. Moreover, we set D33 = D22 for simplicity, fol-
lowing [30]. We should make yet another remark con-
cerning system (4)–(6). In this study, we consider tun-
neling that may occur in different media, including
ferroelectrics. Generally, we should allow for dipole–
dipole interaction between different tunneling states,
because interaction of this particular type is responsible
for the phase transition into the ferroelectric state [25,
26]. However, as we noted above, a high-energy pulse
whose spectrum spans the tunneling states eliminates
the dipole–dipole interactions, and each tunneling state
interacts with the pulse field much more strongly than
with similar neighboring tunneling states [24]. For this
reason, we neglect dipole–dipole interaction here, and
all conclusions drawn below apply to ferroelectrics as
well.

Equations (4)–(6) are supplemented with the Max-
well equation for the electric field of the pulse:

(7)

Ŵ
Ω22 0 Ω31

0 Ω22 Ω21

Ω31* Ω21* Ω11 
 
 
 
 

,=

r̂
ρ33 ρ32 ρ31

ρ32* ρ22 ρ21

ρ31* ρ21* ρ11 
 
 
 
 

,=

Ωµµ
DµµEe

"
--------------- α ,sin=

Ω31

d31

2
------- Eo iEe αcos–( ),=

Ω21

d21

21
---------- Eo iEe αcos+( ).=

Ez ! Eo Ee.,

∆E ∇ ∇ E( ) n̂2

c2
-----∂2E

∂t2
---------––

4π
c2
------∂2P

∂t2
---------,=
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where c is the speed of light in free space,  is the
refractive index tensor due to off-resonant transitions
different from the tunneling considered here, and P is
the polarization of the medium.

Hereinafter, we assume that the parameters of a
pulse propagating along the z axis weakly depend on
the transverse coordinates y and x. Since Ez ! Eo, Ee ,
the transverse components of the term ∇ (∇ E) can be
neglected. However, the contribution of its z component
is important. Retaining only the derivatives with
respect to z in this term, integrating the resulting equa-
tion with respect to time, and using the fact that both Ez

and Pz vanish at infinity, we obtain

where n|| is the longitudinal component of the refractive
index.

The expression

for polarization components (N is the concentration of
tunneling states; j = x, y, z) yields

where D = D11 – D22. The quantity D is henceforth
referred to as the permanent dipole moment. Then, the
wave equations for Eo and Ee become

(8)

n̂

Ez

4πPz

n||
------------,–=

P j NSp r̂d̂
j( ),=

Px Po N
d21

2
------- ρ21 ρ21*+( )

d31

2
------- ρ31 ρ31*+( )+ ,= =

Py Pe N i
d21

2
------- α ρ21* ρ21–( )cos= =

– i
d31

2
------- α ρ31* ρ31–( ) D α ρ11 W1–( )sin+cos ,

Pz N
i

2
------- α d31 ρ31* ρ31–( )(sin=

– d21 ρ21* ρ21–( ) ) D α ρ11 W1–( )cos+ ,

∆Eo

no
2

c2
-----

∂2Eo

∂t2
-----------–

4πN

c2 2
------------=

× ∂2

∂t2
------- d21 ρ21 ρ21*+( ) d31 ρ31 ρ31*+( )+[ ] ,
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(9)

where no and ne are the refractive indices corresponding
to the ordinary and extraordinary waves, respectively.
The longitudinal field component is

(10)

where Wj (j = 1, 2) denotes the initial level populations
(W3 = W2 since the upper level is degenerate).

System (4)–(6), (8)–(10) provides a self-consistent
description of the pulse components and the array of
tunneling states. According to these equations, the ordi-
nary wave causes transitions in the system of tunneling
sublevels, whereas the extraordinary component both
induces these transitions and gives rise to a dynamic
shift in the transition frequency due to a permanent
dipole moment (nonzero diagonal elements of the

matrix ). According to (10), the longitudinal compo-
nent Ez is generated by a permanent dipole moment and
transition dipole moments.

When α = 0, only transitions are caused by both
ordinary and extraordinary components. When α = 90°,
the effects of these components are different: whereas
the ordinary one causes quantum transitions, the
extraordinary one only shifts the transition frequency.
The longitudinal component is determined by the per-
manent dipole moment in the former case and by the
transition dipole moments in the latter. Note that nei-
ther off-resonance pulses nor continuous radiation have
longitudinal components when α = 0 or 90° [18, 33].
According to (10) and the analysis presented below,
this is not true for USP propagation.

In deriving a self-consistent system of material and
wave equations, we assumed that the pulse field inter-
acts only with tunneling states at the frequency ω0.
Since systems with double-well potentials generally
have higher levels (proton states), the model may not be
reducible to a two-level system with a degenerate upper
level. However, the nearest higher level in many cases

∆Ee
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is separated by a considerable gap: while ω0 ~ 1013 s–1,
the frequency-scale distance to such a level is about 5 ×
1014–1015 s–1 in a KDP-type ferroelectric [26]. Since the
spectrum of a pulse with duration τp ~ 10–14 s does not
extend to the high-lying levels, their influence, as well
as that of electronic transitions (for a similar reason), is
taken into account by introducing the refractive index
tensor.

3. NONLINEAR WAVE EQUATIONS

Now, we use Eqs. (4)–(6) to express the matrix ele-
ments of  in terms of Eo and Ee and proceed to an
analysis of nonlinear wave equations. A condition for
the tunneling states to be spanned by the USP spectrum
can be written as follows [1–3, 7–9]:

(11)

By condition (11), the first term in (4) can be
neglected. The resulting equation is written in symbolic
form as

(12)

The formal solution to (12) is

(13)

where  is the density matrix before the interaction

with the pulse and  is a unitary evolution operator.

Expression (5) for  implies that this matrix does not
commute with an analogous matrix taken at a different
time. Following [32, 34–36], we henceforth assume
that the pulse is so short and intense that the noncom-
mutativity is not significant within the interval ∆t of
interaction with the pulse. Accordingly, the evolution
operator can approximately be written as follows [32,
34–36]:

(14)

where ||…|| is an operator norm.

The approach based on (13) and (14) is equivalent to
an operator version of the asymptotic WKB method

r̂

ω0τp ! 1.

∂r̂
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------ i Ŵ r̂,[ ] .=

r̂ Ûr̂0Û
+
,=
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Ŵ
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∆t 0→

Ŵ ∞→
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t0 ∆t+

∫= =
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(see [32, 35–38]). We use Sylvester’s formula [39] to
calculate the operator exponential in (14):

(15)

where  is the identity matrix, {λk} is the spectrum of

the operator . Since   ∞, the eigenvalues λk

tend to a similar limit. Using L’Hôpital’s rule to evalu-
ate the indeterminate forms that multiply the imaginary
exponentials in (15) and using the relation

where {pj} is the spectrum of the operator , com-
bine (14) with (15) to obtain

(16)

The eigenvalues of  are

where

(17)

Using (16) and (17), we represent the evolution
operator as follows:
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Ωoe
2

---------------------------------–
 
 
  θ

2
---,sin
SICS      Vol. 99      No. 3      2004



652 NESTEROV, SAZONOV
where

By virtue of (13), this yields

(19)

(20)

(21)

(22)

(23)

(24)

where B is a real quantity depending on the matrix 
(its particular form is not essential for the present anal-
ysis).

Next, we approximately take into account the first
term on the right-hand side of (4), using expressions (19)–

(24). Expressing the elements of  in terms of the orig-
inal field and material variables, we obtain
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(26)

where

(27)

Substituting (25), (26), and (22) into the right-hand
sides of (8) and (9), we invoke the quasi-unidirectional
approximation [2–4, 7, 18, 40] to obtain

(28)

(29)

where

and ∆⊥  is the transverse Laplace operator.
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The approximation frequently used in this study is
called quasi-unidirectional, because we allow for a
weak dependence on the transverse coordinates by
retaining the transverse Laplacian in Eqs. (28) and (29).
This approach is analogous to the paraxial approxima-
tion in the theory of monochromatic beams [41].
Another reason for invoking this approximation calls
for a more detailed discussion. First of all, we note that
the use of a similar approximation in [40] was based on
the assumption of low concentration of atoms interact-
ing with the field,

which is not required in the present study. Indeed, con-
dition (11) combined with (25) and (26) implies that the
polarization associated with both pulse components can
be estimated as

By virtue of (11), the product ηω0τp can be small
even if η ~ 1. Moreover, since

Po, e ! Eo, e; i.e., the right-hand side of Eq. (7) is small.
The last relation justifies the use of a quasi-unidirec-
tional approximation here.

Combining (10), (19), (20), and (22), we find an
expression for the longitudinal field component:

(30)

Setting α = 0 and 90° in (30), we obtain

(31)

(32)

Let us consider expressions (31) and (32) in some
detail. It is well known that no longitudinal component
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is generated in a uniaxial crystal when a monochro-
matic wave propagates parallel or perpendicular to the
optical axis [33]. This is also true for USPs that do not
contain any resonant Fourier components [18]. The lon-
gitudinal component arising in the present model is due
to a permanent dipole moment when α = 0 and to a shift
in the 1  3 and 1  2 transition dipole moments
when α = 90°. Furthermore, Eqs. (31) and (32) demon-
strate a nonlinear dependence of the longitudinal com-
ponent on the remaining two field components. Thus,
the generation of Ez is an essentially nonlinear pheno-
menon.

Since the difference between the ordinary and
extraordinary waves is not manifested when α = 0,
either wave can generate a longitudinal component.
However, Ez is generated by the ordinary wave in the
case of USP propagation perpendicular to the optical
axis.

System (28), (29) describes the nonlinear dynamics
of the ordinary and extraordinary components of an
ultrashort pulse propagating in an array of tunneling
states at an arbitrary angle α to the anisotropy axis. The
two cases analyzed in detail below correspond to prop-
agation parallel and perpendicular to the anisotropy
axis.

4. SELF-INDUCED TRANSPARENCY

If α = 0, then ne = no, and Eqs. (28) and (29) can be
rewritten as the single equation

(33)

for the complex function

Representing Ω as

(34)

we separate the real and imaginary parts of Eq. (33) to
obtain

(35)
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where

In deriving Eq. (35), we used the fact that transverse
perturbations are small, as well as the fact that the vari-
ation of the parameters of the pulse within an interval
on the order of τp is relatively slow (see above). Accord-
ingly, we can write

In the one-dimensional approximation (∆⊥  = 0),
Eq. (35) reduces to the sine-Gordon equation, whose
one-soliton solution expressed in terms of z and t is

(36)

where the velocity is defined by the relation

(37)

Using (36) and (31), we find the corresponding expres-
sions for the field components E⊥  = "|Ω|/2d and Ez and
a nonlinear phase ϕ:

(38)

(39)

(40)

The tunneling-state populations are determined
from (36), (22)–(24), (27):
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Expressions (41) demonstrate that a propagating soli-
ton causes total inversion in the tunneling system fol-
lowed by return to the initial state. This means that the
USP propagates in the regime of self-induced transpa-
rency.

According to (34), (38), and (40), the plane of USP
polarization has a twist because δ ≠ 0 (d21 ≠ d31). Note
that a theory of self-induced transparency for two-fre-
quency quasi-monochromatic pulse propagation in
three-level resonant media (including the degenerate
case) was developed in [42, 43]. One important distinc-
tion of the case considered here from the results of
those studies is that the USP has a longitudinal compo-
nent due to a permanent dipole moment. In view of (38)
and (39), the condition Ez ! E⊥  used at the outset can
be rewritten as

This condition should be satisfied in addition to (11).
When the concentration of tunneling centers is low
(η ! 1), this inequality holds for a wide range of d/D.
Otherwise, the transition dipole moments must domi-
nate over the permanent dipole moment.

Now, suppose that α = 90°. In this case,  = Ωe,
and Eqs. (28) and (29) become

(42)

(43)

where

Neglecting the distinction between ne and no, setting
∆⊥  = 0, and using the fact that the field vanishes at infin-
ity, we derive from (42) and (43) a relation between Ωo
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and Ωe analogous to that found in [44, 45], where a dif-
ferent physical problem was solved by applying the
inverse scattering method of soliton theory:

(44)

In particular, this entails

The approximation adopted in this study implies that

 @ , and we can set

in (42). On the other hand, Eq. (44) (with Ωe = 0 when
βe = 0) yields

Then, Eq. (42) becomes

(45)

A soliton-like solution to Eq. (45) can be written as

(46)

where

Again, the relation velocity and duration of the pulse
are related by (37). The extraordinary component is
expressed as
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in (32), we obtain

(48)

In contrast to the positive and negative humps in the
ordinary and extraordinary components, respectively,
the longitudinal one has the form of a bipolar solitary
pulse.

Using (22)–(24) and (46) under the condition

 = , we obtain

(49)

According to (46) and (49), a propagating soliton
causes total inversion of population followed by return
to the initial state; i.e., the regime of self-induced trans-
parency is predicted, as in the case of α = 0.

Setting D = 0 (ε = 1) in (46), we obtain expression (38)
for a soliton described by the sine-Gordon equation.
The pulse described by (46) is characterized by a lower
amplitude and weaker spatiotemporal localization as
compared to the soliton described by the sine-Gordon
equation. The expression for ε entails a lower limit for
the pulse duration,

(50)

which must hold in addition to (11).
Both conditions are easily satisfied when d/D ≥ 5.

5. RATIONAL ULTRASHORT PULSES

Suppose that α = 90° and ne ≠ no. Furthermore,
assume that Ωe @ ω0 and Ωo has an arbitrary value irre-

spective of Ωe . Therefore, it again holds that  @ ω0.
The field components can also have arbitrary values.
We can approximately set

in (42). We also assume proportionality of Ωe to Ωo:
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In this case, Eqs. (42) and (43) have at least one
time-independent traveling-wave solution. An analo-
gous case was considered in [46].

The approach used below not only leads to travel-
ing-wave USP solutions, but also makes it possible to
analyze their stability.

Using (51) and the assumptions introduced above,
we rewrite Eqs. (42) and (43) with ∆⊥  = 0 as follows:

(52)

Since Eq. (52) contains the parameter q of the
expected solution, this system can be treated as equa-
tions only tentatively. Moreover, these equations must
be identical when written for the same quantity. A con-
dition for their compatibility can be written after inte-
grating with respect to τ. Then, we have two ansatzes:

(53)

These ansatzes, as well as (52), are used in the sta-
bility analysis presented below.

Seeking a solution to (53) in the form of a solitary
traveling wave, we obtain

(54)

where

and the velocity v  and duration τp are related to q as
follows:
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The field and material components are

(56)

(57)

According to (56), the components of field strength
decrease toward infinity as powers rather than exponen-
tials. As in the last case considered in the preceding sec-
tion, both transverse components are unipolar, while
the longitudinal component is bipolar. The latter
expression in (55) implies that pulses of this kind cannot
propagate when no = ne. According to the former expres-
sion in (55), the USP velocity lies in the interval between
c/no and c/ne. When the ordinary component is dominant
(q2 ! 1), we have v  = c/no, the pulse duration is

and (57) implies that a propagating soliton causes total
inversion followed by return to the initial state (regime
of self-induced transparency). In the opposite limit,
when v  = c/ne , the pulse duration is

and the populations of tunneling sublevels are virtually
constant. This regime can be interpreted as analogous
to the extraordinary transparency considered in [32]. It
differs from extraordinary transparency in that the
velocity of a two-component USP does not decrease,
remaining almost equal to c/ne , while τp tends to a con-
stant value τpe. In the case of positive birefringence
(ne > no), it holds that

c/ne < v  < c/no.
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In the case of negative birefringence (ne < no),

c/no < v  < c/ne .

Note that the USP duration is the absolute value of τp.
The pulse duration has a maximum: if 2D2 > d2, then

τpmax = τm;

if 2D2 < d2, then

Note also that the rational solitons described by (56)
are different from the one-component (scalar) solitons
obtained in [31].

To examine the one-dimensional stability of rational
USP, we let τ go to infinity in the first ansatz in (53).
Then,

and (53) becomes

(58)

An analysis of this equation shows that the inte-
grated “area” A of the incoming USP approaches 2πk
(k = 0, 1, 2, …) as it propagates through the medium. A
2π-pulse can evolve if the input satisfies the condition
2π < A0 < 4π, a 4π-pulse develops if 4π < A0 < 6π, and
so on. If 2π < A0, then A  0 as z  ∞ and a rational
soliton cannot develop. It is clear from (54) that the
integrated areas of the solitons are 2π.

The analysis based on ansatz (58) demonstrates the
one-sided stability of a USP in the one-dimensional
case. Note that the rational soliton develops over the
distance leff = 2βo when the extraordinary component is
dominant (q2 @ 1), which is much shorter than the cor-
responding distance in the case of a dominant ordinary
component.

6. DIFFRACTION EFFECTS

To analyze the effect of transverse perturbation
(including diffraction) on the one-dimensional USP
propagation considered above, we use the averaged-
Lagrangian method [47].
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First, we consider the case of self-induced transpar-
ency for a USP propagating along the anisotropy axis.
Equation (35) can be derived from the Lagrangian
density

(59)

We seek a trial solution to (35) with ∆⊥  ≠ 0 corre-
sponding to (36) in the form

(60)

where ρ = ρ(z, r⊥ ) and Φ = Φ(z, r⊥ ) denote, respec-
tively, slow and fast functions of coordinates to be
determined. Substituting (60) into (59) and integrating
the result with respect to τ, we obtain the “averaged
Lagrangian”

(61)

Variation of Λ with respect to Φ and ρ leads to the
Euler–Lagrange equations

(62)

where

and p is related to ρ by the equation

(63)

In the one-dimensional case (∇ ⊥  = ∆⊥  = 0), system (62),
(63) has the solution

and v is determined by Eq. (37). Thus, the averaged-
Lagrangian method leads to an exact one-soliton solu-
tion to Eq. (35) in this case.

L
1
2
---∂θ

∂z
------∂θ

∂τ
------

ω0

l
------ 1 θcos–( ) c

4no
-------- ∇ ⊥ θ( )2.––=

θ 4arccot ρ τ Φ–( )[ ]exp{ } ,=

Λ 1
4
--- L τd

∞–

∞

∫ ρ∂Φ
∂z
-------

ω0

lρ
------––= =

–
c

2no
--------ρ ∇ ⊥ Φ( )2 π2c

24no
-----------

∇ ⊥ ρ( )2

ρ3
-----------------.–

∂Φ
∂z
-------

V⊥
2

2
------- pd

ρ
------∫+ +

g0

ρ3
----- ∆⊥ ρ 3

2ρ
------ ∇ ⊥ ρ( )2– ,=

∂ρ
∂z
------ ∇ ⊥ ρV⊥( )+ 0,=

V⊥ ∇ ⊥ Φ, g0
π2c2

12no
2

-----------,= =

dp
dρ
------

2cω0

nolρ2
------------.=

ρ ρ0
1
τp
---- const, Φ z

v
----,= = = =
SICS      Vol. 99      No. 3      2004



658 NESTEROV, SAZONOV
The right-hand side of the first equation in (62) rep-
resents diffraction effects in transverse dynamics of a
pulse. Neglecting the right-hand side, one obtains the
eikonal (geometric-optics) approximation for solitons
[41]. In this case, system (62) is equivalent to the equa-
tions of inviscid fluid dynamics: the former equation is
interpreted as the Cauchy theorem for inviscid flows;
the latter, as the continuity equation; p, ρ, and V⊥  corre-
spond to pressure, density, and fluid velocity, respec-
tively. Extending the analogy, one can interpret (63) as
the isentropic process associated with fluid motion.
Then, transverse stability of the soliton in the eikonal
approximation is equivalent to stability of the inviscid
flow described by Eqs. (62) and (63), and the corre-
sponding criterion is

It follows from Eq. (63) that a sine-Gordon soliton is
stable in the geometric-optics approximation if the
medium is in equilibrium at the initial moment (1/l ~
W1 – W2 > 0). Expressions (38) and (39) imply that, if

,

then V⊥  is a monotone increasing function of the USP
amplitude. Therefore, wavefront portions characterized
by larger amplitudes (which are closer to the center of
the USP cross section) move faster than peripheral por-
tions characterized by smaller amplitudes. This defo-
cusing effect may transform the pulse into an “electro-
magnetic missile” or a “light bullet” [48].

Next, we analyze the effect of diffraction (right-
hand side of (62)) on pulse dynamics. System (62) is
only slightly different from the system describing the
transverse dynamics of a continuous beam [41].
Extending this analogy, we assume that the USP is axi-
ally symmetric. Writing Eq. (62) in a cylindrical coor-
dinate system (z, r), we seek a self-similar approximate
solution for ρ [41]:

(64)

where R0 is a constant interpreted as the input USP
radius and R(z) as the current radius.

Following [41], we henceforth focus on the paraxial
pulse propagation (r2/R2 ! 1). Accordingly, we repre-
sent the solution for Φ as a series expansion:

. (65)

Substituting (64) and (65) into (62), retaining terms of
order up to r2/R2, and comparing the coefficients of

dp/dρ 0.>

dp/dρ 1/l 0>∼
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2
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equal powers of r, we obtain

(66)

(67)

(68)

where

and primes denote derivatives in z. The last terms
in (67) and (68) correspond to deviations from the geo-
metric-optics approximation.

Substituting (66) into (67) leads to an equation for
the USP radius:

(69)

which is formally equivalent to the equation of motion
for a Newtonian particle of unit mass in the field with
potential energy

(70)

The first integral of Eq. (69) is

(71)

where the constant

is determined by the input condition R'(0) = 0 (accord-
ing to (66), f2(z0) = 0 for an input pulse having a plane
wave front).

The solution R(z) can be represented in quadratures
by integrating Eq. (71). However, a qualitative charac-
terization of the behavior of the USP radius can be
obtained by examining the curve of U(R).

The last term on the right-hand side of (70) repre-
sents diffraction effects on transverse USP dynamics.
This part of U(R) is analogous to the potential energy of
the harmonic oscillator, except that R ≥ 0. Thus, in con-
trast to the case of a continuous beam with a well-
defined carrier frequency, diffraction enhances the USP
self-focusing. This distinction can be explained as fol-
lows. The dimensionless parameter σ = λ/R, where λ is
a characteristic wavelength, determines the effect of
wave properties of a pulse on its dynamics. When
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σ ! 1, the eikonal (geometric-optics) approximation is
valid. When σ ~ 1, wave properties (diffraction) must
be allowed for. The wavelength λ of a monochromatic
self-focusing beam remains nearly constant while
R  0; i.e., σ increases, and diffraction plays an
increasingly important role. Therefore, diffraction can
cause a self-focused beam to spread out if its intensity
is below a certain threshold value [41]. An ultrashort
pulse cannot be characterized by a carrier frequency,
and the role of λ is played by its size along the direction
of pulse propagation:

where v  is the pulse velocity, which is almost equal to
c/no in the quasi-unidirectional approximation adopted
here. Using (17), we estimate σ at the center of the USP
cross section as

This means that σ  0 for a self-focusing pulse; i.e.,
the reliability of the eikonal approximation increases
and the relative role played by diffraction decreases.

According to Eq. (69), defocusing corresponds to

which yields

(72)

In the opposite case, a soliton described by the sine-
Gordon equation is self-focusing. Note that the eikonal
approximation used in [24] reveals only the defocusing
effect. Therefore, the conclusion about stability of the
soliton with respect to self-focusing made in [24]
applies only to pulses with relatively large cross sec-
tions. To estimate Rc for a KDP-type ferroelectric, we
set d ~ 10–18 CGSE units, N ~ 1021 cm–3, ω0 ~ 1013 s–1,
and no ≈ 1. Then, a ~ 1015 s–1 cm–1, and (72) yields Rc ~
0.1 mm.

Equation (45) cannot be associated with any
Lagrangian, which makes it impossible to apply the
averaged-Lagrangian method. It is clear that (45)
reduces to the sine-Gordon equation under the strength-
ened version of condition (50),

In this case, the averaged-Lagrangian method is appli-
cable, and the results concerning the transverse dynam-
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ics of the sine-Gordon soliton described above are
valid. If the strengthened version of condition (50) is
not satisfied, then we can use qualitative arguments
valid in the eikonal approximation, as in the case of the
sine-Gordon soliton considered above. Since the ordi-
nary component of the USP described by (46)–(48) is
dominant, the arguments are developed here for this
component. The amplitude Eom = dε/"τp of the wave
described by (46) is a nonmonotonic function of τp.
With decreasing τp, Eom monotonically increases as
long as

and decreases otherwise. Using (37), we conclude that
this inequality is a stability criterion for the USP
described by (46)–(48) in the eikonal approximation.
Note that this criterion is more restrictive than condi-
tion (50).

Finally, we analyze the effect of diffraction on the
dynamics of the rational USP considered in Section 5.
Substituting the latter ansatz in (53) into the first equa-
tion in (52), we obtain

(73)

where

The Lagrangian associated with (73) is

(74)

We seek a trial solution corresponding to (54) in the fol-
lowing form:

Substituting it into (74) and integrating the result
with respect to τ, we obtain the averaged Lagrangian

Variation of Λ with respect to Φ and ρ leads to equa-
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tions similar to (62) and (63) with

The latter equality means that the eikonal approxi-
mation is not sufficient to determine stability of a ratio-
nal USP with respect to transverse perturbation. This is
explained by the fact that the second and third terms on
the left-hand side of (73) cancel out after averaging
over τ.

In this case, the procedure proposed above to take
into account diffraction effects leads to an equation
similar to (69) for the USP radius, where U is given
by (70) with

Thus, we have the harmonic-oscillator equation of
motion. Under the initial conditions

it describes the self-focusing of a USP:

(75)

where the self-focusing length lf is expressed as

(76)

and τp = 1/ρ0 is the input USP duration.
Note that lf is independent of parameters of the tun-

neling states, because the transverse dynamics is
entirely controlled by diffraction, whereas the eikonal
approximation is not sufficient to describe the trans-
verse dynamics of a rational USP. Setting τp ~ 10–14 s,
no ~ 1, and R0 ~ 0.1 mm, we obtain lf ~ 1 cm.

Thus, diffraction effects are reduced to self-focusing
of a rational ultrashort pulse.

7. CONCLUSIONS

This study demonstrates the substantial effect of
anisotropy of tunneling on USP dynamics. The system
of nonlinear wave equations for the ordinary and
extraordinary components, (28) and (29), describes
USP propagation at an arbitrary angle to the anisotropy
axis. Expressions (30)–(32) determine the behavior of
the longitudinal field component. It is important in this
context that the longitudinal component can be gener-
ated when a USP spanning the tunneling states propa-
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gates parallel or perpendicular to the anisotropy axis. It
is well known that there is no such component in mono-
chromatic beams and USPs propagating in these direc-
tions unless quantum transitions are spanned by the
USP spectrum.

A detailed analysis of the regimes of USP propaga-
tion parallel and perpendicular to the anisotropy axis is
presented. In the former case, self-induced transpar-
ency described by the sine-Gordon equation is pre-
dicted. This regime is associated with strong excitation
of tunneling states. Diffraction leads to self-focusing of
the corresponding solitons if their transverse size is less
than the critical radius given by (72). In the opposite
case, defocusing is predicted. When the direction of
propagation is perpendicular to the anisotropy axis, a
regime analogous to self-induced transparency can be
observed. It is described by Eq. (45), which is different
from the sine-Gordon equation. Propagation of a soli-
tary pulse in an array of tunneling states is also associ-
ated with their strong excitation. It is shown that the
duration of such a soliton-like pulse is limited from
below by condition (50). The existence of this limita-
tion essentially depends on the permanent dipole
moment D. A qualitative analysis shows that the effect
of transverse perturbation strengthens inequality (50).

When the difference between the ordinary and
extraordinary refractive indices due to nonresonant pro-
cesses in the medium is sufficiently large, high-energy
resonant soliton-like pulses can develop, with ampli-
tudes decreasing toward infinity as powers of coordi-
nate and time. When the ordinary component is domi-
nant, strong excitation of tunneling states is predicted.
In the opposite limit, the populations of the tunneling
sublevels remain confined and the propagation velocity
is determined solely by the extraordinary refractive
index.

Rational soliton-like pulses can develop in an array
of tunneling states if the integrated area A0 of the
incoming signal exceeds 2π. If A0 < 2π, then the pulse
decays.

Note that the transverse dynamics of resonant USPs
considered here is entirely determined by their wave
properties (diffraction), whereas the geometric-optics
stage corresponds to “neutral equilibrium.” Therefore,
the self-focusing length lf is determined by the input
USP parameters, being totally independent of tunneling
characteristics (see (76)). Note that lf is proportional to
the squared input USP radius and inversely propor-
tional to its duration. When τp ~ 10 fs and R0 ~ 0.1 mm,
we obtain lf ~ 1 cm. By increasing the radius to 1 mm,
the self-focusing length can be increased by a factor of
100, i.e., to 1 m. This makes it possible to conduct
experiments on rational soliton-like pulses. Reduction
of τp to several femtoseconds would broaden the USP
spectrum and, therefore, make it necessary to allow for
optical electronic transitions and take into account
higher lying proton states in double-well crystal poten-
AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004



NONLINEAR REGIMES OF ULTRASHORT PULSE PROPAGATION 661
tials. In the first approximation, the ensuing effects can
be treated as weak because of weak interaction of the
USP spectrum with the corresponding states and can be
taken into account in the optical-transparency approxi-
mation [49], while optical electronic transitions can be
taken into account additively.

As an example of tunneling, we mentioned proton
transitions in KDP-type ferroelectrics. Note that the cur-
rent progress in nanotechnologies makes it possible to
deal with coherent optical effects in arrays of quantum
dots and/or quantum wells in semiconductors [50–52],
where the tunneling particles are electrons rather than
protons. Since semiconductor structures are low dimen-
sional, these tunneling states are sufficiently anisotro-
pic for permanent dipole moments to exist [28, 30].
Therefore, we can hope to reveal USP propagation
regimes similar to those described in this study in
strongly anisotropic, artificially grown semiconductor
crystals.
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Abstract—An analysis of the stochastic layer in a pendulum driven by an asymmetric high-frequency pertur-
bation of fairly general form is continued. Analytical expressions are found for the amplitudes of secondary har-
monics, and their contributions to the amplitude of the separatrix map responsible for onset of dynamical chaos
are evaluated. Additional evidence is presented of the previously established fact that the secondary harmonics
completely determine the stochastic-layer width when the primary frequencies lie in certain intervals. The
mechanism of the onset of chaos in the vicinity of zeros of Melnikov integrals is shown to be substantially dif-
ferent as compared to the previously analyzed case of symmetric perturbation. © 2004 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

The phase space of a typical (i.e., nonintegrable)
Hamiltonian system consists of chaotic and regular
regions. It is well known that interaction between non-
linear resonances is the mechanism responsible for
onset of dynamical chaos. Generally, initial conditions
are set in the neighborhood of one resonance (the
“main” one), and the remaining resonances are treated
as a perturbation. The most interesting—and often
unexpected—dynamics are observed in the vicinity of
the separatrices of the main resonance, which separate
regions where the phase rotates (outside resonance)
from those where it oscillates (inside resonance).

The neighborhoods of separatrices have been com-
monly considered to be the “origin” of chaos, because
motion along separatrices is characterized by infinitely
large periods and substantial interaction between reso-
nances. However, this is true only when the main reso-
nance corresponds to an analytic potential with expo-
nentially decreasing Fourier amplitudes. In this case,
each separatrix is split by perturbation into two distinct
trajectories. Trajectories of this kind fill a narrow region
and make up a stochastic layer [1–4], in which three
parts should be distinguished: an upper one of width wu
(where the phase x rotates so that p > 0), a middle one
of width wm (where the phase oscillates), and a lower
one of width wl (where the phase x rotates so that p < 0).

Qualitatively different behavior is observed when
the potential is a smooth function with Fourier ampli-
tudes decreasing as a power of the harmonic number.
Some striking examples of preserved integer- and frac-
tional-resonance separatrices and absence of stochastic
layer in their neighborhoods were discussed in [5–7]
for perturbed piecewise linear systems. It should be
emphasized that these systems remain nonintegrable
and their separatrices are preserved despite the pres-
ence of strong local chaos (see Fig. 4 in [6]).
1063-7761/04/9903- $26.00 © 20663
Furthermore, it was found that the onset of chaos
strongly depends on the spectrum of the perturbation.
Let us briefly recall the history of the problem.

The first analysis of a system subject to a symmetric
high-frequency perturbation was presented by Chir-
ikov [1]. He showed that both amplitude of the separa-
trix map and energy width of the stochastic layer expo-
nentially decrease with increasing frequency and the
three parts of the layer have equal widths in the high-
frequency limit.

In a recent study [8], the low-frequency asymptotic
behavior of the same system was considered. In this
limit, it was found that the separatrix-map amplitude
linearly increases with frequency, while the layer width
is independent of frequency. Both asymptotics are rela-
tively simple, and the problem is most difficult to ana-
lyze in the intermediate frequency range, where the adi-
abaticity parameter cannot be treated as small or large.
It was noted that the so-called resonance invariants
could play an important role in this range, since they
adequately represent the topology of individual reso-
nances. Resonance invariants of the first to third order
(corresponding to the 1 : 1, 1 : 2, and 1 : 3 resonances)
were found for Chirikov’s standard map in [9] and for
the single-frequency separatrix map in [10]. A suffi-
ciently detailed characterization of the structure of the
stochastic layer was recently presented in [11] for a
pendulum driven by symmetric perturbation of arbi-
trary frequency.

The first analysis of asymmetric perturbation was
presented in [12, 13], where the Hamiltonian of a pen-
dulum driven by two harmonics:

(1)

(2)

H x p t, ,( ) p2

2
----- x V x t,( ),+cos+=

V x t,( ) ε1 x Ω1t–( )cos ε2 x Ω2t–( ).cos+=
004 MAIK “Nauka/Interperiodica”
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The harmonic amplitudes were assumed to be small (ε1,
ε2 ! 1), while the frequencies were assumed to be
high relative to the natural oscillation frequency (|Ω1|,
|Ω2| @ 1).

It was found that, in addition to the primary frequen-
cies Ω1 and Ω2, the perturbed motion has secondary
harmonics with amplitudes proportional to ε1ε2 and fre-
quencies equal to the sum and difference of the primary
frequencies. Moreover, it was found that the secondary
harmonics are much weaker than the primary ones
when ε1, ε2 ! 1.

Even the first numerical experiments revealed the
seemingly surprising fact that these secondary harmon-
ics completely determine both separatrix-map ampli-
tude and stochastic-layer width under certain condi-
tions [12, 13]. In the example of system (1), (2) consid-
ered in [13], the parameter values were ε1 = ε2 = 0.075,
Ω1 = 13, and Ω2 = –10. The amplitude of the sum-fre-
quency harmonic of the perturbed motion (with ∆Ω+ = 3)
was ε ≈ 4.5 × 10–5 [12], which is smaller than the pri-
mary-harmonic amplitude by a factor of about 1700.
However, its contribution to the separatrix-map ampli-
tude corresponding to the upper part of the layer
(responsible for the onset of chaos) exceeded the total
contribution of the primary harmonics by a factor of
almost 400, while the individual parts of the layer had
substantially different widths. This is explained by the
exponential dependence of layer width on frequency at
Ω @ 1, which leads to a dominant effect of weak low-
frequency harmonics on the onset of chaos. The impor-
tant role played by sum-frequency secondary harmon-
ics was also demonstrated for smooth systems [14].

The sum-frequency secondary harmonic of the per-
turbed motion has the form

(3)

and gives rise to a harmonic with the same frequency
and the amplitude

(4)

The perturbed motion has two symmetric differ-
ence-frequency harmonics:

(5)

ε+ 2x ∆Ω+t–( )cos , ε+

ε1ε2

2
--------- 1

Ω1
2

------ 1

Ω2
2

-------+ ,–=

∆Ω+ Ω1 Ω2 0>+=

W+
4π
3

------ε1ε2
1

Ω1
2

------ 1

Ω2
2

-------+=

×
π∆Ω+/2( )exp

π∆Ω+( )sinh
----------------------------------∆Ω+

2 ∆Ω+
2

2–( ).

ε– x ∆Ω–t–( )cos x ∆Ω–t+( )cos–[ ] ,

ε–

ε1ε2

4
--------- 1

Ω1
2

------ 1

Ω2
2

-------–
1

∆Ω–
2

----------,=

∆Ω– Ω2 Ω1 0,>–=
JOURNAL OF EXPERIMENTAL
which give rise to a separatrix-map harmonic with the
frequency ∆Ω– and the amplitude

(6)

In this paper, the analysis of the onset of chaos in a
pendulum driven by a high-frequency perturbation that
has a more complicated form as compared to (2):

(7)

where m1 and m2 are arbitrary positive integer numbers.
Note that these parameters determine the structure (in
particular, the number of zeros) of Melnikov integrals.
The characteristics of the onset of dynamical chaos in
the vicinity of these zeros are discussed in Section 3.

2. AMPLITUDES
OF SECONDARY HARMONICS

Consider the Hamiltonian of a pendulum driven by
the single-frequency perturbation

(8)

with positive n and Ω . Since this perturbation harmonic
is a resonance lying above the main resonance in the
phase plane, it is called the upper harmonic for conve-
nience.

It was shown by Chirikov in [1] that the amplitude
of the separatrix map for the upper part of the stochastic
layer generated by upper harmonic (8) is expressed as

(9)

in terms of the Melnikov integrals

(10)

(11)

The parameter n is called the index of Melnikov inte-
gral here.

By replacing Ω with –Ω in (8), the upper harmonic
is transformed into the lower one. The corresponding
contribution to the amplitude of the separatrix map for
the upper part of the layer is evaluated by using an
essentially different expression in (9):

(12)

W– –
πε1ε2

π∆Ω–/2( )cosh
------------------------------------ 1

Ω1
2

------ 1

Ω2
2

------– .=

V x t,( ) ε1 m1x Ω1t–( )cos ε2 m2x Ω2t–( ),cos+=

V x t,( ) ε n
2
---x Ωt– 

 cos=

WT Ω n,( ) εΩAn Ω( )=

An Ω 0>( ) 2π
n 1–( )!

------------------- πΩ/2( )exp
πΩ( )sinh

----------------------------=

× 2Ω( )n 1– 1 f n Ω( )+[ ] ,

f 1 f 2 0, f n 1+ f n 1 f n 1–+( )n n 1–( )
4Ω2

--------------------,–= = =

n 3.≥

An Ω 0<( ) 1–( )nAn Ω( ) π Ω–( ).exp=
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It should be noted that the derivation of (9)–(12)
in [1] did not rely on any simplifying assumptions, and
these relations are valid for 0 < |Ω| < ∞. Note also that
integrals (10) considered here have even indices n,
because perturbation (7) contains only integer m1 and m2.

Let us estimate the secondary-harmonic amplitudes,
which are not known a priori. Following [12], change
from the coordinate x(t) and momentum p(t) to the

deviations from their values xs(t) =  and
ps(t) = 2sinxs(t) on the unperturbed separatrix,

(13)

and use the generating function

to rewrite the Hamiltonian (1), (7) as follows:

(14)

Since the perturbation is weak, assume that |y(t)| !
1 and replace cos(my)  1 – (my)2/2 and sin(my) with
my to derive the equation

Define ∆yε as the difference between the left- and right-
hand sides of this equation:

(15)

The forced solution yε of interest here (vanishing for
ε = 0) can be found by performing successive approxi-

4 etarctan

y t( ) x t( ) xs t( ), u t( )– p t( ) ps t( ),–= =

F2 u x t, ,( ) ps t( ) u–[ ] x xs t( )–[ ]=

H y u t, ,( ) u2

2
----- y xs t( )coscos+=

– y xs t( )sinsin y xs t( )sin+

+ εk mky( ) mkxs t( ) Ωkt–( )coscos[
k 1=

2

∑

– mky( ) mkxs t( ) Ωkt–( ) ] .sinsin

d2y

dt2
-------- y xscos εkmk

2 mkxs Ωkt–( )cos
k 1=

2

∑+=

+ εkmk mkxs Ωkt–( ).sin
k 1=

2

∑

∆yε
d2y

dt2
-------- y– xscos εkmk

2 mkxs Ωkt–( )cos
k 1=

2

∑+=

– εkmk mkxs Ωkt–( ).sin
k 1=

2

∑
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mations in order to reduce ∆yε to zero [12]. After two
iterative steps, the result is

(16)

where unimportant terms are omitted and m+ = m1 + m2
and m– = m2 – m1 are introduced by analogy with the
sum and difference frequencies.

By virtue of the inequality |Ω1, 2| @ ps, max ≈ 2, the
terms mps in the denominators in (16) that contain these
frequencies can be dropped to simplify further expres-
sions. The denominators that contain the sum and dif-
ference frequencies are simplified similarly without
any substantiation. However, the ensuing errors are cor-
rected below by introducing empirical numerical coef-
ficients into the final results (see Section 3).

Returning to (1) and (7), set x = xs(t) + (t). Since
motion in the neighborhood of the unperturbed separa-
trix is considered, the replacements cos(my)  1 and

sin(my) ≈  can be used to rewrite perturbation (7)
as

(17)

Substituting (16) into (17), one finds that sum- and
difference-frequency harmonics (which are the only
important ones in this analysis) can arise in the per-
turbed system in two ways. First, the sum in (16) inter-
fere with the primary harmonics in (17), giving rise to
a sum-frequency harmonic,

(18)

yε
2( ) t( )

εkmk

mk ps Ωk–( )2
------------------------------- mkxs Ωkt–( )sin

k 1=

2

∑–≈

–
ε1ε2m1m2

2
-----------------------

m2

m1 ps Ω1–( )2
-------------------------------

m1

m2 ps Ω2–( )2
-------------------------------+





×
m+xs ∆Ω+t–( )sin

m+ ps ∆Ω+–( )2
-------------------------------------------

+
m1

m2 ps Ω2–( )2
-------------------------------

m2

m1 ps Ω1–( )2
-------------------------------–

×
m–xs ∆Ω–t–( )sin

m– ps ∆Ω––( )2
------------------------------------------





…,+

yε
2( )

myε
2( )

V y t,( )

≈ yε
2( ) xssin εkmk mkxs Ωkt–( )sin

k 1=

2

∑+ .–

ε+ m+xs ∆Ω+t–( ),cos

ε+

ε1ε2m1m2

2
-----------------------

m2

Ω1
2

------
m1

Ω2
2

-------+ ,–=
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and a difference-frequency one,

(19)

Second, the terms proportional to ε1ε2 in (16) inter-
fere with sinxs in (17), giving rise to two sum-frequency
harmonics,

(20)

where ε+ is defined in (18), and two difference-fre-
quency ones,

(21)

where ε– is defined in (19).
Once the amplitudes of secondary harmonics are

known, relation (9) can be used to express their normal-
ized amplitudes, W* = W/ε1ε2, in terms of Melnikov
integrals (10):

(22)

(23)

Here, the upper and lower signs in the subscripts corre-
spond to the sum and difference frequencies, respec-
tively. In (23), empirical coefficients a+ and a– are intro-
duced. Practical application of (22) has shown that the
first term in brackets plays a dominant role.

In the next section, the results of numerical verifica-
tion of (22) and (23) are presented and some interesting
details of the onset of chaos are discussed.

3. COMPARISON OF THEORETICAL RESULTS
WITH NUMERICAL EXPERIMENT

The separatrix map originally introduced in [15]
characterizes the behavior of a dynamical system in the
neighborhood of a separatrix. For pendulum, it is
defined as

(24)

ε– m–xs ∆Ω–t–( ),cos

ε–

ε1ε2m1m2

2
-----------------------

m2

Ω1
2

------
m1

Ω2
2

-------– .=

ε+

2∆Ω+
2

-------------- m+ 1–( )xs ∆Ω+t–( )cos[

– m+ 1+( )xs ∆Ω+t–( ) ] ,cos

ε–

2∆Ω–
2

-------------- m– 1–( )xs ∆Ω–t–( )cos[

– m– 1+( )xs ∆Ω–t–( ) ] ,cos

W±*
W±

ε1ε2
--------- ε̃± ∆Ω±A2m±

∆Ω±( )= =

+
A2m± 2– ∆Ω±( ) A2m± 2+ ∆Ω±( )–

2∆Ω±
----------------------------------------------------------------------- ,

ε̃±
a±m1m2

2
------------------

m2

Ω1
2

------
m1

Ω2
2

------± .=

w w Wl Ωltπ( ),sin
l

∑+=

tπ tπ
32
w
------, lln+ 1 2 …,, ,= =
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where w = H(x, p, t) – 1 is the relative energy deviation
from the unperturbed separatrix, tπ denotes the
moments when the system passes through a stable equi-
librium point x = π. The sum must contain all harmon-
ics that are important for the analyzed part of the sto-
chastic layer, both primary ones (contained in (7)) and
secondary ones (not contained in (7)).

When the frequencies Ωl are incommensurate, the
moments tπ are measured on a continuous time scale.
When the frequencies are multiples of some reference
frequency Ω0, the last relation in (24) may be rewritten
as

(25)

Iterating the map is the fastest method for evaluating
the widths of individual parts of the stochastic layer, and
this justifies the effort required to construct the map.

Before comparing theoretically and numerically
evaluated separatrix-map amplitudes, the numerical
algorithm for constructing the map is briefly recalled
(see [12] for details).

First of all, the central homoclinic point pfb is found
with high accuracy on the symmetry line x = π, as a
boundary between the regions of rotating and oscillat-
ing phase. Then, a trajectory is constructed starting
from an arbitrary point in a narrow momentum interval
on the line x = π, pfb < p < pfb + δp, which definitely lies
in the analyzed part of the layer. The trajectory is either
computed until it spans a prescribed number of periodic
orbits or terminated when it enters a different part of the
layer. In both cases, a new arbitrary trajectory is con-
structed starting from the same interval until a required
number N of periodic orbits have been traversed. For
each period, the energy deviation from the separatrix is
evaluated:

(26)

where T is the time interval between two consecutive
moments when the system passes through the stable
equilibrium point x = π. Calculating the energy change
δw =  – w between each pair of consecutive periods
and assigning it to the moment tπ separating the periods,
one can construct separatrix map (24) in terms of (δw)k

and tπ, k (k = 1, 2, …, N – 1). To be specific, we analyze
the upper part of the layer here. Note that the outer
(upper and lower) parts of the layer are of particular
interest, because they contribute to the overlap of adja-
cent resonances and the onset of global chaos.

In this study, we consider perturbation (7) with the
constant parameters

(27)

for different values of the primary frequencies Ω1 and
Ω2 . Note that the contributions of the primary harmon-

ψπ ψπ Ω0
32
w
------, ψπln+ Ω0tπmod2π.= =

w 32 T–( ),exp=

w

ε1 ε2 0.05, m1 1, m2 3= = = =
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ics to the separatrix-map amplitude is determined,
according to (9), by the Melnikov integrals with n1 =
2m1 = 2 and n2 = 2m2 = 6, respectively, while n– =
2(m2 – m1) = 4 and n+ = 2(m1 + m2) = 8 for the differ-
ence- and sum-frequency secondary harmonics, respec-
tively.

Apparently, the most important result of the study of
perturbation (7) of general form is that it provides addi-
tional evidence of the fact (established in [12, 13]) that
there exist relatively large intervals of parameters
where secondary harmonics play a dominant role in the
onset of chaos. Consider system (1), (7), (27) with Ω1 =
15 and Ω2 = –12. These frequencies are commensurate,
and Ω0 = 3.0 can be used as a reference frequency
in (25). The corresponding amplitudes of the separatrix
map constructed for the upper part of the layer by the
algorithm outlined above are

(28)

In the example considered here, the contribution of the
secondary harmonic with the sum frequency ∆Ω+ = 3 is
greater than those due to the primary harmonics by
order of magnitude, and the map for the upper part of
the layer can be considered, to high accuracy, as a sin-
gle-frequency one (with low frequency Ω = 3). It may
seem that the only role played by the weak forcing har-
monics in the onset of chaos is to give rise to a strong
secondary harmonic in the separatrix map.

According to (10) and (11), the Melnikov integrals
with n = 3 and higher, including the factor in brackets,
change their signs as they pass through zero. The inte-

gral A2 has no zeros at all; A4 has a single zero at  =

; A6 has zeros at  ≈ 1.1514… and  ≈

2.9452…; A8, at  ≈ 1.0248…,  ≈ 2.4495…,

and  ≈ 4.5771…; and so on. By analogy with the
forcing harmonics, it is convenient to make a distinc-
tion between primary and secondary integrals in (10).
Note that the four integrals in the example considered
here (two primary and two secondary ones) differ by
the number of zeros.

Figure 1 illustrates the behavior of the primary and
secondary integrals, A2(Ω) and A8(Ω), and the corre-
sponding normalized separatrix-map amplitudes  =
W/ε. In particular, the linear growth at Ω ! 1 and expo-
nential decay at Ω @ 1 of (Ω) calculated theoreti-
cally above are demonstrated.

If the secondary integral A8(Ω+) reflects any reality,
then the frequency dependence of the separatrix-map
amplitude, W*(∆Ω+), must have the three zeros charac-
teristic only of this integral. Indeed, consider the case of
Ω1 = 14.0 and Ω2 = var illustrated by Fig. 2, where the

W 3( ) 1.35 10 4– , W 15( ) 2.09 10 7– ,×≈×≈

W 12–( ) 6.18 10 7– .×≈

Ω1
4( )

2 Ω1
6( ) Ω2

6( )

Ω1
8( ) Ω2

8( )

Ω3
8( )

WT*

WT*
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theoretical results obtained by using expressions (22)
and (23) are represented by the solid curve and the
experimental results obtained by computing separatrix
map (24) are plotted as circles. It is clear that both func-
tions have zeros almost where expected. However, the
meaning of the corresponding empirical coefficient,
a+ ≈ 0.25, is unclear.

A substantial difference in the behavior of second-
ary harmonics in the separatrix map considered here
from the case of symmetric perturbation analyzed in [8]
is localized in the vicinity of zeros of Melnikov inte-
grals. It was found in [8] that the separatrix map has two

101

100

10–1

|A|, 

Ω

10–2

10–3

10–4

10–5

10–6

10–7

10–3 10–2 10–1 100 101

Fig. 1. Absolute values of the Melnikov integrals A2 and A8
(solid curves) and the corresponding normalized amplitudes

 = WT/ε given by (9) (dotted curves).WT*

0.06
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0.02

W*

∆Ω+
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–0.02

–0.04
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–0.08

–0.10
1.0 1.5 2.0 2.5 4.03.0 3.5 4.5 5.0

Fig. 2. Normalized amplitude of the sum-frequency second-
ary harmonic in the separatrix map for Ω1 = 14.0 and Ω2 =
var. The solid curve is plotted by using (22) and (23) with
empirical coefficient a+ ≈ 0.25. Circles represent numerical
results obtained by computing the map defined by (24).

WT*
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harmonics in the intermediate frequency range: a sin-
gle-frequency one and a double-frequency one (the lat-
ter corresponds to the difference-frequency secondary
harmonic). At the zeros of the integrals in (10), the sin-
gle-frequency harmonic amplitude passes through zero
(its sign changes), but the amplitude of the map remains
finite because of the double-frequency contribution.
Resonance invariants for the double-frequency har-
monic were found in [11] in order to examine the vicin-
ity of zeros of Melnikov integrals.

When the perturbation is asymmetric, no double-
frequency harmonic is generated, the amplitude of the
separatrix map for the upper part of the stochastic layer
is small at the zero of (10), and so is the width of this
part of the layer. For example, the energy widths of the
individual parts of the layer obtained by using (26) for
the shortest period when Ω1 = 14.0 and Ω2 = –12.9752
(∆Ω+ = 1.0248 is very close to the first zero of the sec-
ondary integral A8(Ω)) are as follows:

(29)

where wu, wm, and wl are the widths of the upper, mid-
dle, and lower parts of the layer. The upper part (to
which the secondary harmonic is “tuned”) is much
smaller than the remaining ones. Note that a secondary
harmonic was intentionally used in [13] to reduce the
width of a certain part of the stochastic layer.

The difference-frequency secondary harmonic in
the separatrix map is represented by the integral

A4(∆Ω−), which has the single zero  = . Figure 3
compares theoretical results obtained by using expres-
sions (22) and (23) (solid curve) with numerical exper-
iment (circles). Here, quantitative agreement is not as
good as in the preceding example, but the trends exhib-

wu 9.72 10 7– , wm 2.51 10 2– ,×≈×≈

wl 1.66 10 2– ,×≈

Ω1
4( ) 2

0.04

0.02

W*

∆Ω–

0

–0.02

–0.04

–0.06

–0.08

–0.12
1.0 1.5 2.0 2.5 4.03.0 3.5 4.5 5.0

–0.10

Fig. 3. Results analogous to those in Fig. 2 obtained for the
difference-frequency secondary harmonic in the case of
Ω1 = 13.0 and Ω2 = var with a– ≈ 0.57.
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ited by the theoretical and numerical results are quali-
tatively similar. The corresponding empirical coeffi-
cient is a– ≈ 0.57.

4. CONCLUSIONS

The results presented above (see also [12, 13]) make
it clear that the secondary harmonics corresponding to
the sum and difference of the primary frequencies (con-
tained in the Hamiltonian of the system) are real entities
that contribute decisively to the formation of the sto-
chastic layer under certain conditions. Therefore, the
development of a comprehensive theory of dynamical
chaos in Hamiltonian systems must include their fur-
ther detailed experimental and theoretical analysis.
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