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Abstract—MHD compression of a heterogeneous Z-pinch produced by the explosion of a thin metal wire in
the diode of a high-power current generator is investigated. The process is calculated starting from the instant
when the breakdown of the evaporation products from the metal surface has come to an end and the current is
just switched from the central core to the surrounding plasma corona, whereas the core material is still in the
liquid–vapor state. The influence of the cold core on the plasma implosion is studied. The results obtained are
compared with similar calculations carried out under the assumption that, in the initial state, either the core
material is completely ionized or the core is absent at all. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

High energy densities can be achieved by using
explosions, shock waves, magnetic implosion, high-
power lasers, and pulsed current generators. The latter
are used in experiments with fast pinches, which play
an important role in controlled fusion research and for
X-ray generation. Due to the progress in studying the
compression of high-power pinches produced by the
explosion of thin metal wires, fast pinch drivers, as well
as drivers based on the laser compression of targets, are
considered to be promising for inertial confinement
fusion. It is believed that, along with lasers, fast pinches
will make it possible to obtain in laboratory experi-
ments extreme states of matter, which have so far been
attainable only in nuclear explosions. For an electric
wire explosion, single wires and wire arrays are used.
Of interest are also X-pinches [1] arising in a discharge
through two or more thin crossed wires. These pinches,
proposed as early as the 1980s, were used in the 1990s
to develop the diagnostics of wire discharges [2]. Struc-
turally, X-pinches may also be regarded as a model of a
constriction (which is typical of wire explosions),
whose hot spots are the sources of X-ray emission from
multicharged ions.

This paper is devoted to the study of the MHD com-
pression of a heterogeneous Z-pinch created by the
explosion of a thin metal wire under the action of the
current produced by a high-power pulsed generator.
Most attention is given to the influence of a liquid–
vapor core arising in the course of the so-called “cold
start” in the two-phase domain of thermodynamic
states. For comparison, we present also the data from
calculations with initial states lying outside the phase
transition domain.
1063-780X/02/2806- $22.00 © 20457
2. PROBLEM OF THE COLD START
OF A DISCHARGE THROUGH EXPLODING 

WIRES

The progress achieved in the late 1990s in research
on wire-array liners arose from the idea to substantially
increase the number of wires [3]. Following a common
notion, it was assumed that the metal evaporates com-
pletely in the beginning of the discharge and, then, the
plasma shell is imploded toward the axis. The predicted
increase in the radiation yield from such a load was
confirmed experimentally in the Z device (20 MA,
40 TW) in the Sandia Laboratory (USA), where the soft
X-ray yield attained 2 MJ at a peak power higher than
200 TW [4, 5]. However, the real situation turned out to
be more complicated, because the metal was evapo-
rated only partially and the bulk of the load material
remained at rest. In this case, in spite of a cylindrical
shell, extended plasma jets were originated on individ-
ual wires [6]. This fact showed the importance of the
problem of the cold start (note that the calculations of
[7] successfully reproduced the situation in the r–θ
geometry).

The essence of the problem is elucidated by the
results of experiments [8, 9], in which the modern
X-ray backlighting technique with use of X-pinches as
pulsed point radiation sources was employed. This
technique confirmed the existence of a long-living
dense and cold liquid–vapor core surrounded by a
plasma corona, i.e., an optically visible plasma column
formed during the breakdown of the surface evapora-
tion products. Both media are separated by a sharp (by
a factor of up to 100) increase in the density due to the
liquid–vapor transition [10]. The study of the discharge
start in a low-current device [11] revealed the change in
the regime of the impedance growth from a gradual
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growth at the beginning of the heating and metal evap-
oration to the subsequent sharp increase. After the
breakdown of the outer vapor, the current first switches
to the arising plasma corona and, then, vapor bubbles
appear in the metal volume. However, the total evapo-
ration occurred only for very fine wires with a special
coating and only for the best conductors (besides Al,
Cu, Ag, and Au, all the remaining metals at any acces-
sible sizes could not be exploded completely). It was
found that the fast expansion of the central core, as well
as the formation and growth of vapor bubbles in the liq-
uid phase are related to the thermal energy introduced
due to Joule heating [12].

Hence, the liquid phase and vapor play an important
role in the dynamics of exploding wires. The study of
their behavior is just beginning, so it is yet unclear how
the magnetic field affects metastable states in the region
between the binodal (the curve describing the liquid–
vapor equilibrium) and the spinodal (the line determin-
ing the boundary of the existence domain of an over-
heated liquid and overcooled vapor in the two-phase
region; the spinodal is tangent to the binodal at the crit-
ical point). Thus, the thermodynamic analysis [13] of
the liquid–vapor equilibrium conditions at the bound-
ary of a current-carrying metal conductor suggests that
an electric explosion is the generation of a rapidly
expanding mixture of submicron liquid drops with
vapor under the action of Joule heating. In this analysis,
besides the work on the formation of a surface, the con-
dition of phase equilibrium at the metal boundary also
incorporated the work on the bending of magnetic field
lines, but did not include the medium motion (later, the
quasi-steady medium flow was also incorporated in
[14]). The previous models [15] of the evaporation
wave and volume boiling assumed the formation of an
overheated liquid. Until now, there is still no clear
knowledge of the process of electric explosion and
switching of the current to the corona. However, it is
clear that the long-lived liquid–vapor core exits almost
independently of the surrounding corona. Its evolution
depends on the load type. In liners, the cores exist
throughout the entire discharge phase; the same refers
to the main part of the X-pinch (however, there is still
little information on the material state in the cross).
Finally, in a single-wire load, the independent existence
of the core comes to an end after the arrival of an MHD
compression wave. The width of the wave front is usu-
ally comparable with the core radius; as a result, the hot
plasma and the cold dense core interact over a relatively
long time. The details of this interaction are still
unknown, and it is reasonable to obtain an additional
information from numerical simulations.

In this paper, we study the influence of the cold core
material on the implosion process. However, we have to
omit another important aspect of the cold-start prob-
lem, namely, the modeling of the process of the core
formation and the switching of the current to the corona
in the beginning of the discharge. Accordingly, we have
to start calculations from the instant when the switching
of the current to the corona has already finished. Note
that Chittenden’s model [16], which underlies the cal-
culations of [7], ignores this problem. In that model, it
is assumed that, from the very beginning, the metal
evaporation products are in the plasma state and the
complicated kinetics of phase transitions and the pro-
cesses of breakdown of the produced vapor are thus
ignored.

3. MODIFICATION OF THE RADIATIVE 
MHD MODEL

Our study required the modification of the previous
MHD model [17, 18] of the axisymmetric radiative
compression of a hot dense plasma column based on the
Eulerian–Lagrangian scheme of Dyachenko free
points. The scheme was taken in the version by Jach (a
detailed description and various applications of this
scheme are given in [19]). The long-term work with the
progressively complicated model required its further
modification. Like the previous code, the new version
describes the transport processes in the magnetic field,
radiative–collisional processes, and radiation diffusion
(matched in the outer layers to the transparent medium
approximation). The innovations reduce to the follow-
ing: (i) the new code contains the other, wide-range
equation of state [20], which works better in the two-
phase region; (ii) the other form is used for the power
approximations of the Rosseland and Planckian photon
ranges proposed in [21]; and (iii) the calculation algo-
rithm is improved, first of all, in the blocks of calcula-
tions of multiple ionization and radiation. The main
feature of the new code is the description of the metal
liquid–vapor transition and the related processes: the
formation of neutrals in dense vapor, the presence of
the core–corona boundary, and the averaging of the
properties of the two-phase medium. This allowed us to
avoid the representation of the core material as being
the same as the corona plasma, but with a much higher
density. Such a plasma was replaced with a cold two-
phase medium. Now, the cold start of the discharge is
still difficult to model; hence, we have to chose the ini-
tial conditions by intuition, based on few experimental
data. For the most part, our study is based on the results
of experiments with low-current pulses (5 kA, 15 kV, a
half-period of 0.6 µs, and a damping time of 8–9 µs)
[11] with the use of the X-ray backlighting technique.
A longer time duration of the initial implosion phase
made it possible to perform photographing, which was
impossible in high-current devices.

The most important distinction of the present model
from the previous one is the description of the thermo-
dynamically equilibrium liquid–vapor transition. In
this description, we do not consider how the magnetic
field produced by the current flowing through the metal
influences the phase transition, because this problem is
still poorly understood. To which extent the equilibrium
description is rough can be estimated from the time τ of
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002



        

RADIATIVE DYNAMICS OF IMPLODED WIRES 459

                                                                                                                                                                                            
the formation of a vapor bubble in liquid.1 The recipro-
cal of this time is the probability of atoms to pass
through the liquid–vapor interface per unit time. Using
the conventional Frenkel representation, we write this
quantity in the form 1/τ = ωexp(–ε/T), where ω is the
frequency of thermal atomic oscillations in liquid. The
characteristic transition energy ε includes the atomic
evaporation heat Λ and the work on the formation of a
seed vapor nucleus W. As ω, we take the Debye fre-
quency ωD, which corresponds to wavelengths as short
as interatomic spacing. Substituting typical values of
the parameters ωD ≈ cs (ρl /mi )1/3 and cs ≈ (3ZεF /mi )1/2

into τ ≈ exp((Λ + W)/T) (where ρl is the liquid mass
density and εF is the Fermi electron energy), we obtain
that, for copper at T ≥ 0.3 eV, τ is shorter than the typi-
cal duration of the explosion stage of interest (1–10 ns).
In this case, we neglect the delay times shorter than
0.1 ns, which are required to overcome the barrier for
the formation of vapor bubbles in the liquid in the evap-
oration region. Hence, if we restrict consideration to
these starting temperatures, then, in the first approxi-
mation, we can omit the details of the evaporation
model, which is important in view of incomplete
knowledge of the cold-start processes.

Such a simplification is impossible in the full-scale
modeling of the cold-start process, because at real low
starting temperatures and typical heating rates of
≈0.1 eV/ns (≈1012 K/s), the nucleus formation time
amounts to ≈10 ns [22]. For this reason, starting calcu-
lations from a real cold initial state may require the
description of metastable phases. We will also have to
take into account the nonequilibrium heating of solid-
state metal. According to measurements [11], the cur-
rent flowing through a 10-µm-radius wire in the begin-
ning of explosion does not exceed 200–300 A. In other
words, the current density attains j ≈ 108 A/cm2 and the
carrier drift velocity at a typical electron density in
metal of ne ≈ 1023 cm–3 is u = j/ene ≈ 5 × 105 cm/s,
which is comparable to the speed of sound cs . As a
result, in the energy spectrum of the heated electrons,
the supersonic component plays an important role. This
component excites lattice oscillations via the process of
Cherenkov sound emission, which results in ion heat-
ing. Note that the electron temperature remains higher
than the ion temperature, Te > Ti . The difference
between the electron and ion temperatures, which
according to [23] is equal to Te – Ti = (12/π2)(u/cs)2Ti (the
quasi-steady estimate in the limit of low Debye temper-
atures TD ! Ti < Te), can attain high values comparable
to Ti. As will be shown below, even after 10 ns, the core
still remains in the nonequilibrium state with Te > Ti.

The two-phase states were described by using the
usual hydrodynamics averaging. This procedure, which

1 It is clear that the volume evaporation time is longer than the sur-
face evaporation time because the latter process goes without the
formation of a seed vapor nucleus.

ωD
1–
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results in the effective homogenization of the heteroge-
neous core medium, assumes that the radii of bubbles
or drops are small in the regions where one of the
phases is dominant. In the intermediate region, the
interpolation was applied. In this model, the two-phase
state was characterized by the vapor volume fraction x,
so that the average mixture density was presented in the
form ρ = (1 – x)ρl + xρg , where ρl and ρg are the mass
densities of the liquid and gaseous phases of the core
material. For ρg < ρ < ρl, any characteristic of the
homogenized medium at pressures of p < pc and ion
temperatures of Ti < Tc (where pc and Tc are the critical
parameters) was defined by the formula ρf = (1 – x)ρl fl +
xρg fg . The one exception was made for the conductiv-
ity, for which we used an effective medium model pro-
posed by Kirkpatrick [24]: σ = [Y + (Y2 + y/2)1/2]σl with
the parameters y = σg/σl and Y = [(2 – 3x)(1 – y) + y]/4.
This model works up to the percolation threshold. For
nonconducting vapor (y = 0) at volume averaging,
which more adequately describes the geometrical prop-
erties of the phenomenon, it predicts the disappearance
of conductivity even for x = 2/3 instead of unity.

In view of the fact that the temperature Ti and the
pressure p remain constant during evaporation, such a
description allows us to perform calculations for the
averaged liquid–vapor mixture by solving the same
equations of motion and temperature balance between
Te and Ti as were used in [17]. All information about the
phase transition was included in the equation of state.
For example, the evaporation heat Λ was determined
from the difference between the specific enthalpies at
x = 1 and 0 at a given temperature Ti . Using the binodal
equation in the (ρ, Ti) plane in the explicit form [20],
we determined the values of ρl and ρg for a given ion
temperature Ti < Tc and, thereby, the volume vapor con-
tent x = (ρ – ρg)/(ρl – ρg) for a given mass density. Then,
we determine both the individual electron and ion com-
ponents and the total pressure of the mixture, together
with the transport coefficients and radiative properties
averaged according to the rules described above. Then,
as in [17], we solved the MHD, ionization, and radia-
tion diffusion equations, which gave the distributions of
the corresponding quantities over the entire medium
volume. It should be noted that, although the equations
keep their form in the mixture, the conditions on the
core–corona interface are modified: instead of the con-
tinuity of the ion heat flux component normal to the
boundary, they contain the term ρlVf Λ, where Vf is the
velocity of the boundary with respect to the medium.
The core material at the boundary was assumed to be in
the liquid state. When the working material was easily
evaporated copper and vapor was dominant in the ini-
tial state, this implied that the core was surrounded by
a thin liquid shell (the possibility of this was demon-
strated by the experiments of [11]). Note also that the
average charge number Z in the region where it is less
than unity, in fact, describes the concentration of elec-
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trons and ions in vapor. The description of ionization in
this region requires a more complete account for neu-
tral kinetics.

Obviously, this model does not take into account a
number specific features of the process, first of all, the
above-mentioned possibility of generating metastable
states. However, as a first step, this model can be con-
sidered admissible. The most significant modification
of the code resulted from the introduction of the core–
corona interface. Now, the procedure of determining
neighbors [19] for the interface points is the same as for
those located on the outer plasma surface, so that the
model is capable of adequately describing the real con-
tact of two media. Because of the small curvature and
low velocity of the interface, the capillary and surface
evaporation effects were omitted in the heat and force
balances; the validity of this assumption was confirmed
by calculations. Previously, when the core was modeled
by a dense plasma qualitatively similar to the corona
plasma, the contact conditions were not used and the
density drop was spread within a cell. A comparison
with such calculations showed the importance of the
introduction of a special procedure at the core–corona
interface. Thus, an insulator–conductor transition of the
Mott type appeared in the dense material near the core
boundary; i.e., the high-impedance core material trans-
formed into a high-conductivity plasma (see [25]). In
turn, this made it necessary to modify the correction for
the reduction in the ionization potential due to the influ-
ence of the medium. The relative value of this correc-
tion depends on the ratio of the Bohr radius to the
plasma Debye radius. The fact that their values are
comparable meets the criterion for the Mott transition.
In our calculations, the value of the total potential taken
from [26] (we write its ratio to the potential in vacuum
as 1 – q) decreased below zero. For this reason, the iter-
ation procedure in calculations of the ionization kinet-
ics became unstable. To avoid this, we used different
versions and, ultimately, replaced 1 – q with the repre-
sentations in the form 1/(1 + q/k)k. For k = 1 and 10, cal-
culations demonstrated only a slight dependence on the
power index; hence, below, we restrict our analysis to
the case k = 1.

4. IMPLOSION OF A LOAD 
WITH A LIQUID–VAPOR CORE

As was mentioned above, our calculations start with
a state in which the current is not zero. Previously (see
calculations of [8, 17, 18] for W and Ti), this state was
associated with the maximum expansion of the prod-
ucts of the electric explosion of the metal wire. Now,
the calculations start after the corona has been formed
and the core current is switched to the corona. The wire
material was chosen taking into account the data acces-
sibility. It was also desirable to have a core that is not
too cold in the early stage in order to avoid problems
with metastable phases. As was mentioned in Section 2,
we chose high-conductivity copper. The 10-µm-radius
copper wire was 4 mm in length. We performed prelim-
inary calculations in which either a core was absent or
it was modeled by a jump of the plasma density in the
axial region. In subsequent calculations, the problem
was formulated in a more correct way by introducing a
corona–core interface. The initial density profiles
inside the core and the corona were taken to be para-
bolic, and the temperature was assumed to be constant
across the core (0.3 eV < Tc) and the corona (0.8 eV).
Near the ends of the load, the corona density was grad-
ually doubled, thereby imitating the evaporation of the
electrode material.2 To initiate perturbations, a random
scatter in the parameters at a level of 1% (5% for the
core material) was superimposed onto the initial distri-
bution. The outer radius of the plasma produced by
explosion was taken to be 300 µm, the core radius was
50 µm, and a 20-fold jump in the density was specified
for the core–corona interface (the masses of the core
and corona were assumed to be nearly the same). In
contrast to [8, 17, 18], where the current varied sinuso-
idally with time, the current in this run increased lin-
early from 0.5 to 250 kA over 40 ns and, then, remained
constant. The anomalous resistance of the corona was
taken into account. The problem was solved on a mesh
of 18 × 240 cells. To check the calculation stability, the
number of cells was varied (increased or decreased).

Figure 1a shows the density and temperature distri-
butions at t = 0.3 We can see that, in the core, the elec-
tron density is relatively low, which confirms the high
content of nonionized vapor. In the early stage of the
process, until the core material starts to affect the
corona dynamics, the implosion resembles that
observed in the previous models without a core [18,
27].4 A low (on the order of 100 A) current also flows
through the core, which results in a somewhat higher
(by nearly 0.1 eV) electron temperature near the corona
as compared to the ion temperature (0.3–0.5 eV). How-
ever, the main current flows through the corona, where
the skin layer is formed, as it usually occurs in such
problems. This process continues for the first ≈10 ns
and is characterized by the higher electron temperature
Te as compared to the ion temperature Ti due to Joule
heating. The plasma expands slowly (by 12% in the
middle of the pinch and by 19–20% near the ends) up
to t ≈ 11 ns. Then, the implosion begins. After 11.5 ns,
the implosion process extends to the wire ends.
Between 15 and 18 ns, a shock wave is formed. Its wide
front structure is determined by radiation, electron ther-
mal conduction, and multiple ionization. The evidence
of the shock formation is the appearance of the density
gradient propagating toward the core, as well as the
difference between Ti and Te . The heated region with

2 Otherwise, after 15 ns, both the corona and core near the wire
ends were heated intensely, thus giving rise to an enhanced com-
pression in these regions.

3 In all figures, the anode is on the left and the cathode is on the
right.

4 We note that the computation time for the core region increases
substantially.
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Fig. 1. Initial distributions of the electron densities and temperatures in the models (a) with the evaporation of the core material,
(b) with a plasma core, and (c) in the conventional model of the plasma column without a core. The cores surrounded by the corona
are seen in the axial regions of frames (a) and (b). In each frame, the density scales are shown at the top and the temperature scales
are shown at the bottom. Numerals along and across the images indicate the radial r and axial z coordinates (in cm).
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Te > Ti ahead of the compression front arrives at the
core boundary, and, by the time t = 20 ns, the core mate-
rial becomes heated to 1 eV and ionized and the maxi-
mum of the electron density is displaced into this region
(Fig. 2). By that time, the appearance of the core
changes slightly, and the corona boundaries are almost
the same on the outer (vacuum) and inner sides. After
arriving at the core boundary, the front sharply deceler-
ates. This occurs after 20 ns and is clearly seen in Fig. 2
at t = 25 ns. The interaction of the compression wave
with the core is confirmed by the increase in the density
and the heating of the boundary layer of the dense
material. Between 22 and 26 ns, the maximum density
ne increases by a factor of 5 (reaching a value typical of
solid metals), whereas the corona temperature Te ≈
50 eV changes only slightly. At the same time, the
shock wave reflected from the interface arrives at the
corona–vacuum interface and decelerates the corona
compression.5 This is evidenced by the development of
the MHD instability of the corona surface. Because of
the corona compression, the released heat density
increases, which, in turn, increases the heat flux from
the corona into the core. Therefore, the axial inhomoge-
neity of the subsequent core heating (Te from ≈1 to
≈10 eV) correlates with the onset of instability modes
in the corona.

Let us consider in more detail how the core material
is converted into a plasma. This process begins when
the front of the shock wave approaches the core. At t =
20 ns, in the distribution of the density ne, distinct thin
layers appear at the core–corona interface. These layers
may be attributed to the core heating on the corona side.
The important point is a substantial decrease in the ion-
ization potential because of the high density of the com-
pressed material. This decrease (by a factor of 3–4 or
higher) becomes even more pronounced at t > 21 ns,
when the insulator–conductor transition occurs (which
is analogous to the metal–dielectric transition consid-
ered by Mott). This effect is observed only in the model
that uses the procedure of separating the points of the
core–corona contact interface. Without this procedure,
the material density is not so high and the corrections to
the ionization potential do not reach very high values.
The core itself is gradually heated by the penetrating
UV radiation of the hot plasma corona. As a result, the
difference between the electron and ion temperatures
increases. By 23 ns, the temperature inside the core
reaches 1–10 eV, the average charge number Z becomes
close to unity, and the dense core becomes fully ion-
ized. Further, nearly 0.1–0.2 ns before t = 24 ns, the
process of core heating is rapidly (in an explosive man-
ner) enhanced, in contrast to the previous gradual heat-
ing. As is seen in Fig. 3, by 24 ns, the ion temperature
Ti is close to 40 eV, whereas Te reaches 100 eV or
higher in the bulk of the core. However, because of the
high heating rate, the core material has no time to ionize

5 If the core mass is greater than that of the corona, the latter may
even expand for a short time.
strongly. In spite of the high temperature, Z does not
exceed unity (ni ≈ ne ≈ 1022 cm–3). Such a nonequilib-
rium state of the core material points to a relatively long
electron–ion energy relaxation time τei, which, for the
given parameter values, is estimated at 10–100 ns. In
contrast, the corona plasma is in an almost equilibrium
state. The value of Z here is much higher, and, in spite
of the lower (as compared to the core) ion density ni, the
electron density ne here is higher and the temperatures
Te and Ti are close to 50 eV. By 24.5 ns, the excessive
heating gradually ceases, the ion charge number in the
core becomes consistent with the temperature, which
decreases to the coronal level, and the electrons and
ions relax to their equilibrium states. Such behavior of
the core heating may be explained by the combination
of the fast processes related to radiative and electron
heat conduction. The corona radiation (UV photons
with energies up to 100 eV or higher), penetrating into
the core to a depth of several Planckian length lP
(~Te/ni) = 1–10 µm, can heat the core volume at the
slow stage of this process. As Te increases, the front of
radiative heating propagates toward the axis. This pro-
cess is accompanied by the heat removal from the
corona to the core by electrons. In this case, the super-
sonic heat conduction mechanism can be realized,

when the heating time /χe (where rc is the core radius
and χe is the electron thermal diffusivity) become
shorter than the hydrodynamic time rc /cs ≈ 5 ns, which,

in turn is shorter than τei ~ /Z2ni . This heating
affects only electrons and leads to the ionization of the
dense plasma, thus reducing τei and the degree to which
the material state is nonequilibrium. First, the Rosse-
land length and, then, lP become comparable to rc , the
core becomes transparent, and the heating terminates.
Because of the high heat conductivity, the skin effect
prevents the penetration of the current into the core. By
25 ns, the core temperature falls below the corona level,
whereas the degree of ionization is high everywhere.

The current flowing over the core surface produces
the magnetic field suppressing the core expansion. The
current channel is a thin highly ionized layer clearly
seen in Fig. 2 after 20 ns. Since the heated core remains
long in the equilibrium state, we can find, using Ben-
net’s condition, that this current can attain 10 kA or
higher (the pressure produced by the corona should also
be taken into account). The jump in the magnetic field
maintains the sharp core boundary. After 25 ns, the
alternating compression and expansion regions arise
around the narrow central core throughout the entire
plasma length. Then, these regions transform rapidly
into constrictions and disks. However, the core remains
visible for a long time. Its cross size changes only
slightly and the boundary remains rather even up to
29 ns. The shape of the corona and the distribution of
the core parameters correlate to each other: the density
ne increases appreciably in the constrictions in the core

rc
2

Te
3/2
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Fig. 2. Time evolution of the spatial distributions of the electron density and temperature in the corona and core in the model with
evaporation.
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Fig. 3. The electron and ion densities and temperatures in the corona and core at the time 24 ns. The same density and temperature
scales are used for both plasma components.
boundary layer, whereas the peak of the temperature is
displaced inward, where the volume heating is now
localized. At t > 29 ns, we can see constrictions near the
ends and the compression region lying somewhat to the
left from the middle. The plasma velocity there attains
(1–2) × 107 cm/s, and the temperatures increase from
70–80 to 110 eV or higher over 1 ns. The core boundary
begins to deform near the ends, which evidences that
implosion comes to an end.

The final stage is characterized by a subnanosecond
time scale. The fast compression can proceed only
locally in the course of the development of constric-
tions (in Fig. 2, they appear near the ends). This com-
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002
pression is accompanied by the strong local heating of
the dense plasma into which the core has been trans-
formed; however, the bulk material cannot change in
such a short time interval. Near the right end (Figs. 2,
4a; t > 30 ns), the constriction radius decreases during
rapid deceleration from ≈40 µm to less than 1 µm over
≈0.3 ns. In hot spots, the temperatures Ti and Te attain
0.5–1 keV, the density ne is (2–3) × 1023 cm–3, the ion
charge number Z is 20–22, and the pressure is up to
500 Mbar. In disks, the temperature of the cold core
plasma is no higher than 10–30 eV, and the pressure in
the most dense part is 3 Mbar, which indicates a very
sharp spatial distribution of the parameters.



466 IVANENKOV, STEPNIEWSKI
5. COMPARISON WITH SIMPLIFIED MODELS

It is expedient to compare the data obtained with the
results of calculations by the same model, but without
evaporation, i.e., assuming that, in the initial state,
either the core material is completely ionized or the
core is absent at all. For this purpose, we increased the
initial temperature to 2 eV, which is higher than the crit-
ical temperature Tc ≈ 0.85 eV. The corona density near
the ends was increased only in the model with a core.
Without a core, the number of current carriers was high
enough and there was no need for increasing the corona
density. At the boundary of the dense plasma core, we
have to spread the initial density jump over a pair of
neighboring cells6 and to artificially require that Z > 1
during all the run. In the conventional model of the
plasma column, a smooth initial density distribution
was represented by a quadratic function vanishing on
the surface. The time dependences of the current, the
mass and size of the load, and the initial mesh parame-
ters were identical in all cases as far as was allowed by
the configuration used. The corresponding distributions
at the initial time t = 0 are shown in Figs. 1b and 1c
(note that the peaks of the densities ne and ni fall now
into the core).

In the model with a hot plasma core, there is no
qualitative differences from the case with a cold core
until the shock wave arrives at the corona–core inter-
face. As long as the core does not affect the corona
compression dynamics, the picture is very similar to
that shown in Fig. 2 for t = 15 ns. A closer inspection,
however, shows a small quantitative difference in the
results obtained with a hot and cold cores. The higher
the starting temperature, the larger the initial expansion
in the stage of adaptation to physical conditions during
the first ≈10 ns and the slower the subsequent compres-
sion. Thus, with a cold core, the plasma surface radius
at 15 ns is larger than the initial one by nearly 3.5–4%
(up to 17% near the ends) and the velocity of the plasma
motion toward the axis is ≈106 cm/s, whereas, in the
model with a plasma core, the compression is delayed
by nearly 1 ns (in this case, we have 8–9% and ≈8 ×
105 cm/s, respectively). The pictures remain similar
until the shock wave arrives at the core. The decrease in
the ionization potential in a thin layer near the interface
between the media is now smaller because there is no
insulator–conductor transition [see Figs. 5a, 5b]. On the
whole, all the evolution processes seem to be less
intense; in particular, the onset of MHD instability in
the corona plasma is slower. At the same time, in the
constriction regions, the core material is more easily
involved into the compression process. As a result, the
plasma column is not so rippled and the final picture of
the parameter distribution in Fig. 4b is less contrast as
compared to Fig. 4a.

6 This was done in order to avoid subfemtosecond steps required
by the scheme in the early stage of calculations.
Now, let us consider the conventional model without
any core. In this model, the implosion process differs
strongly from that considered above. Although the load
mass is the same as in the previous cases, the plasma is
denser than the corona plasma in the models with a
core, the initial expansion of the column turns out to be
smaller, and the multiple-ionization process goes more
slowly. For this reason, the ion charge number in this
model is somewhat lower and the plasma conductivity

σ ~ /Z is higher than those in the models with a
core. As a result, the skin effect is more pronounced, the
plasma heating is more intense, the plasma shell is
formed at an earlier time, and the compression starts
more than 1 ns earlier as compared to the models with
a core. However, the subsequent acceleration of the
denser plasma goes much more slowly and the shock
wave with the same front radius is less intense (Fig. 5c).
However, in the later stage, when the implosion in the
other models is already suppressed by the core, the
compression goes more rapidly. The instability of the
outer plasma develops at earlier times and is more pro-
nounced (although at later times, after the arrival of the
shock wave reflected from the core boundary, the insta-
bility in the models with a core develops more rapidly).
At t < 30 ns, the even shock front propagates toward the
axis with a velocity of no higher than 2 × 106 cm/s, thus
heating and ionizing the plasma ahead of it. From 22 to
30 ns, the plasma temperature increases very slowly to
≈50 eV, whereas the density ne grows from 2 × 1021 to
1.7 × 1022 cm–3. As the pressure increases to 2 Mbar, the
plasma motion toward the axis slows down to 105 cm/s.
Between 28 and 30 ns, in the growing instability of the
plasma column surface, we can distinguish a leading
group of constrictions: two constrictions on the anode
side and one constriction near the cathode. The shock
wave that develops due to the competition between
these constrictions arrives at the axis at t ≈ 33 ns and,
then, reflects from it. In the hot spot located at a dis-
tance of 0.7 mm from the middle, the plasma parame-
ters are Te ≈ 130 eV, Ti ≈ 160 eV, Z ≈ 16, and ne ≈
1023 cm–3; the pressure increases, and the compression
slows down. For this reason, the implosion velocity
falls rapidly from 6 × 106 cm/s to zero. As a result, a
rather smooth hot spot ~15 µm in diameter arises in the
constriction. The plasma column transforms into a
quasi-periodic system of constrictions and disks more
pronounced on the anode side. Then, we had to stop
computations because the number of points in the con-
striction rapidly decreases and the arising fluctuations
made the results far from realistic.

A comparison of the results of calculations obtained
in simplified models shows that the plasma surface in
these models has a similar shape. We also note that, in
this case, the mobility of the outer plasma turns out to
be so high that, near the anode, the outer fragments of
neighboring disks merge together. In the case of the ini-

Te
3/2
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Fig. 4. Final compression states calculated in three models. The correlation between the positions of constrictions and disks obtained
with different models is seen.
tial plasma core, the brightest hot spot arises just
between these disks; the current through this constric-
tion is probably amplified by the induction loop.
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002
Figures 4 and 5 present the data obtained with three
different initial states. As expected, the material mobil-
ity generally decreases in the presence of the core. The
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Fig. 5. Comparison of the electron temperature and density distributions calculated for 22 and 26 ns in three models.
increase in the initial core temperature enhances the
plasma flows into the disk-shaped regions of the col-
umn. However, the plasma there is colder and hot spots
are more intense than those predicted by the conven-
tional model. In the absence of a core, the final shape of
the column surface is deformed more strongly, the dis-
tribution of the material parameters is smoother, and the
intensity of hot spots is lower as compared to the mod-
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els with a core. The cold core suppresses the onset of
instability of the corona surface. As a result, the insta-
bility develops at later times, when the corona becomes
thin and its spatial dimensions decrease. As a result,
although the compression time in all the cases is
YSICS REPORTS      Vol. 28      No. 6       2002
approximately the same (accurate to 10%), the final
picture turns out to be very different: the denser and
colder the core, the more contrast the distribution of the
parameters and the higher their maximum values. Note
that the obtained scatter in the final times characterizes
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just the difference of the initial states used, including
their random component, whereas irregularities in the
calculation mesh that cause the termination of compu-
tations only locally influence the extremely fast com-
pression phase lasting 10 ps and do not affect the gen-
eral picture shown in Fig. 4. Therefore, the role of the
core is twofold: on the one hand, the compression time
increases in the presence of a dense core, and, on the
other hand, the presence of a cold core shortens this
time, thereby giving rise to the processes of the fast
heating and ionization of the core due to heat transfer
via corona radiation and supersonic heat conduction.

We should also mention that the computation time
increases sharply as the model becomes more compli-
cated. As compared to computations by the conven-
tional model (without a core), this time is longer by a
factor of 3 for the model with a plasma core and by a
factor of 12–15 for the model with a cold core. For
modern CPUs with frequencies of 1 GHz, the run time
amounts to several days.

6. CONCLUSION

Over the last few years, an MHD model of the com-
pression of a plasma produced by the explosion of thin
metal wires has been developed [17, 18]. This model
was applied to materials characterized by a high spe-
cific impedance (heavy tungsten, which is opaque to
optical and X radiation [8, 17, 18], and relatively light
transparent titanium [17, 27]), as well as to high-con-
ductivity copper. Loads in the form of single wires,
X-pinches [17, 28], and wire arrays [17] were consid-
ered. However, in all of these configurations, the state
of a dense and cold material near the axis was described
in simplified models. In this paper, we have described
the two-phase state of the material in the axial region by
incorporating evaporation into the model. As a result,
we could depart from the conventional model, as well
as from the model with a plasma core. The latter is
found to be capable of adequately describing the
parameters of hot spots; however, it somewhat underes-
timates the temperature and the ion charge number and
smoothes out both the distributions of the physical
quantities and the plasma column boundary. The new
model allowed us to perform calculations in the entire
core and corona density range observed in experiments.
This made it possible to describe the effect of the core
on the compression dynamics throughout the entire
lifetime of the core. However, in this case, the short ini-
tial stage of explosion in which the core and the sur-
rounding plasma corona were formed was excluded
from consideration. The available one-dimensional
models of the initial stage (see, e.g., [14]) are restricted
to the prebreakdown phase. The incorporation of this
stage in our two-dimensional model encounters serious
difficulties, because this requires a detailed knowledge
of the evaporation processes in the current-carrying
metal and the breakdown of the evaporation products.
In this context, important effects are the formation of
metastable phases during the liquid–vapor transition
and the influence of metal drops and ion complexes on
the breakdown of vapor around the core.

The importance of the cold-start model stems from
the fact that, although the presence of a two-phase core
has been established experimentally, it is hard to say
now what type of a heterogeneous mixture the core sub-
stance is: vapor bubbles in a boiling liquid or liquid
drops in a dense vapor. This fact testifies to the com-
plexity of the problems arising in contemporary
research on exploding wires and to the necessity of the
joint effort of theorists, programmers, and experimen-
tors in order to solve them. However, even in the
present (far from complete) form, the model demon-
strates the effects caused by the presence of a cold and
dense core: the Mott transition in a thin boundary layer,
the processes of fast heating and ionization of the core
material, the slow development of the corona surface
instability, and the contrast structure of the parameter
distributions. All this explains why the imploding wires
are leading loads with respect to the attainable plasma
parameters in high-power discharges.
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Abstract—Results are presented from the studies of the magnetic implosion of a tungsten wire liner onto an
aluminum wire at currents of 2.0–2.6 MA. The experiments were carried out in the S-300 high-power pulsed
facility at the Russian Research Centre Kurchatov Institute. The liner is composed of 50 wires 6 µm in diameter
and 1 cm in length, which are equally spaced on a circle 1 cm in diameter. An aluminum wire 120 µm in diam-
eter is positioned at the array axis. The liner implosion was accompanied by the generation of VUV and soft
X-ray emission. The parameters of the pinch plasma produced during the liner implosion onto the aluminum
wire were determined from the time-resolved spectral measurements by a five-channel polychromator. The ion
and electron densities turned out to be equal to ni ≈ 4 × 1019 cm–3 and ne ≈ 4 × 1020 cm–3, respectively, and the
electron temperature was Te ≈ 40 eV. The radiation energy measured in the range 50–600 eV was 2–10 kJ. The
sources of soft X-ray emission in hydrogen- and helium-like aluminum lines were the bright spots and local
objects (clouds) formed in the plasma corona at an electron temperature of 200–500 eV and electron density of
1021–1022 cm–3. The possibility of both the generation of an axial magnetic field during the liner implosion and
the conversion of the energy of this field into soft X-ray emission is discussed. © 2002 MAIK “Nauka/Interpe-
riodica”.

s⁄
1. INTRODUCTION

High-density and high-temperature Z-pinches that
form during the electrodynamic implosion of light lin-
ers are high-power sources of VUV and soft X-ray
(SXR) emission [1, 2]. The implosion of gas puffs and
wire arrays is achieved by using high-power current
generators capable of producing 20-MA currents
through the load with a rise time of 1014 A/s [3]. Most
thermal radiation in the photon energy range from tens
to hundreds of electronvolts is emitted from the corona,
which is formed at the pinch axis in the phase of maxi-
mum compression. Only a few percent of the total radi-
ation is emitted from unstable and randomly located hot
spots. These spots are the sources of radiation with pho-
ton energies of several kiloelectronvolts. Recently, the
results have been published of the measurements of the
plasma corona formed during the implosion of the
plasma-focus shell by a megaampere current onto a
wire positioned at the discharge axis [4]. A fairly large
diameter of the central aluminum wire used in these
experiments was apparently a stabilizing factor,
because the material of the central wire remained in the
solid state [5], while the corona plasma was confined by
the high magnetic field. High-energy photons were
1063-780X/02/2806- $22.00 © 20472
emitted from helical and annular structures [6]. The
dense corona plasma can be used as an efficient SXR
source, as well as an active medium for producing
inverse population in recombination schemes proposed
for creating X-ray lasers [7]. In our study, the parame-
ters of the plasma generated during the implosion of a
liner consisting of tungsten wires onto an aluminum
wire 120 µm in diameter are investigated with the help
of different diagnostics with a temporal, spatial, and
spectral resolution. The experiments were carried out in
the S-300 facility (4 MA, 70 ns) [8].

2. EXPERIMENTAL RESULTS

Experiments on studying the implosion of a tung-
sten liner onto an aluminum wire were carried out in the
S-300 eight-module high-power pulsed facility gener-
ating a current in a load of up to 3 MA with a rise time
of 100 ns. The cylindrical liner assembly 1 cm in diam-
eter, consisting of 60–80 tungsten wires 6 µm in diam-
eter and 1 cm in length, imploded onto an aluminum
wire (120 or 250 µm in diameter), which was posi-
tioned at the liner axis. Information about the pinch
dynamics was obtained with the following diagnostics:
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Schlieren photographs and X-ray images demonstrating the time evolution of the imploding plasma.
(i) optical photography with a streak camera observ-
ing the plasma in the radial direction with a slit oriented
perpendicular to the central-wire axis (time resolution
of 1 ns and space resolution of 0.05 mm) and three
frame image converters recording the plasma images
with an exposure time of 3 ns and intervals between
frames of 10–15 ns;

(ii) frame-by-frame photography in the SXR range
with the help of image converters with an exposure time
of 3 ns;

(iii) X-ray measurements in the radial and axial
directions with the help of two absolutely calibrated
PIN diodes equipped with beryllium foils of thickness
100–300 µm and providing a temporal resolution of
3−4 ns, an SPPD11-04 semiconductor detector
equipped with X-ray filters (100 and 300 µm Be and
10 µm mylar + 10 µm Al foils) and operating in the pho-
ton energy range 0.4–40 keV, and an SPPD11-02 detec-
tor equipped with 20-µm-thick copper filters and oper-
 PHYSICS REPORTS      Vol. 28      No. 6       2002
ating in the range 0.4–30 keV with a temporal resolu-
tion of ≤9 ns;

(iv) measurements of radiation in the photon energy
range 0.1–4 keV by means of VUV diodes with gold
cathodes (the spectral sensitivity of the diodes was
equalized by using 0.1-µm films with a 0.01-µm depos-
ited lead layer);

(v) X-ray measurements in the photon energy range
1–10 keV with an absolutely calibrated convex mica
crystal spectrometer;

(vi) SXR photography with a two-pinhole camera
(with two 100-µm-diameter pinholes filtered by mylar
and aluminum foils) viewing the plasma in the radial
direction;

(vii) study of the plasma dynamics with the use of
two-frame laser shadow and schlieren photographs;

(viii) time-resolved measurements of the plasma
X-ray emission spectrum with a five-channel polychro-
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mator [9] in spectral ranges of 50–70, 90–180, 180–
280, 280–400, and 400–900 eV; and

(ix) measurements of the time-integrated X-ray
radiation with luminescent dosimeters.

The evolution of the liner implosion is shown in
Fig. 1. The figure presents a series of photographs
obtained with the schlieren diagnostics and X-ray
frame cameras in different experiments. It can be seen
in Fig. 1a that, 80 ns after the beginning of the current

0

50

100

150

100 200 300 ns
1

2

3

U
, k

V
I,

 M
A

P
hν

, a
rb

. u
ni

ts

Fig. 2. Oscillograms of the voltage U, current I, and signal
Phν from the radially viewing PIN diode filtered with a 100-
µm-thick beryllium foil.
pulse, some wires are still in their initial positions. At
that time, a radiating precursor forms at the axis of the
liner (Figs.1b, 1d). Such a precursor was observed in
many other experiments on the acceleration of hollow
gas puffs and wire-array liners [10, 11]. The plasma
precursor is formed by radial plasma flows originating
on the tungsten wires and imploding toward the axis
[12]. The existence of this precursor depends on
whether or not a central wire is present in the discharge.
Most of the wire mass is involved in implosion after the
wires are completely evaporated at 90–100 ns after the
current start (Fig. 1c). Then, the tungsten plasma accel-
erates to velocities of (1–2) × 107 cm/s (Figs. 1c, 1f).
At the end of implosion, by 160–180 ns after the cur-
rent start, the plasma pinch reaches its minimum diam-
eter. The value of the minimum diameter (1.5–3 mm)
was estimated from the photographs obtained with the
X-ray and optical image converters, the streak camera,
and the schlieren diagnostics (Figs. 1g, 1h, 1i, 1j). The
duration of the phase corresponding to the minimum
pinch diameter was determined from the streak-camera
images and turned out to be 5–30 ns. In the course of
implosion, the current decreases and high-frequency
oscillations and knees appear in the current pulse oscil-
logram; a sharp increase in the voltage (the second
peak) measured with an Ohmic divider mounted at the
output of the energy concentrator is also observed
(Fig. 2).

During the implosion, we observed the generation
of VUV and SXR pulses. Photons in the VUV spectral
range corresponding to 10–40 eV were emitted over the
entire surface of the liner. The semiconductor diodes
filtered with beryllium foils of thickness 100–300 µm
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Fig. 3. Oscillograms of (1) the current and the signals from the (2) radially and (3) axially viewing PIN diodes filtered with 300-µm-
thick beryllium foils (shot no. 00-10-7-1).
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Fig. 4. Pinhole images recorded with the use of mylar films of thickness (a) 1.5 and (b) 12 µm (shot no. 12-6-1).
(Fig. 3) detected SXR emission with photon energies of
several kiloelectronvolts. The full width at half-maxi-
mum (FWHM) of the pulse was 20–40 ns, and the total
energy and power were 5–20 J and 200–500 MW,
respectively.

Figure 4 illustrates the pinhole-camera images of
the radiating plasma. The radiation spectrum in a pho-
ton energy range of several kiloelectronvolts is shown
in Fig. 5. The two-pinhole camera was filtered with 1.5-
or 12-µm mylar film. The radiation recorded by the pin-
hole camera was emitted from the inner regions of the
pinch. The 12-µm mylar foil absorbed the photons with
energies below 700–800 eV, whereas the 1.5-µm mylar
film absorbed the photons with energies of 300–400 eV.
Figure 4a differs from Fig. 4b by the presence of a radi-
ating plasma channel with the helical surface emitting
the photons with energies below 700–800 eV. These
radiating plasma channels were observed in nearly 50%
of experiments. In the others experiments in which the
radiating channels were absent, the pinhole camera
with a thin foil recorded two to four bright spots.

Figure 5 shows the lines of the hydrogen- and
helium-like aluminum ions, which correspond to pho-
ton energies of several kiloelectronvolts. These lines
are emitted from the bright spots and clouds with a
characteristic size of 1–4 mm. It should be noted that
neither the radiating channels in the pinhole-camera
images nor the aluminum lines were observed in exper-
iments with the imploding liner when the central wire
was absent. After the pinching phase, the compressed
plasma expanded with a typical velocity of (0.5–2.5) ×
107 cm/s.

Figure 6 shows the typical oscillograms of the sig-
nals from the polychromator detectors operating in
energy ranges of 90–180, 280–400, and 400–900 eV
(shot no. 00-11-01-1). The time behavior of the radiated
power for different photon energies for this shot is dem-
onstrated in Fig. 7. The time dependences of the total
radiation power and the temperature (in the range 50–
600 eV) are shown in Fig. 8. SXR pulses with the larg-
est amplitudes and photon energies lying in the range
A PHYSICS REPORTS      Vol. 28      No. 6       2002
100–150 eV were observed 120–180 ns after the cur-
rent start. The total radiation energy in the range 50–
600 eV amounted to 2–10 kJ. This energy was approx-
imately the same both in the presence and in the
absence of the wire at the liner axis and depended only
slightly on the discharge current. It was found that the
FWHM of the pulses detected in the different polychro-
mator channels depended strongly on the photon
energy (Fig. 9). For the VUV emission with photon
energies of hν < 50 eV, the FWHM was ≈100 ns,
whereas for higher energies, it was 50–80 ns for hν ≈
60 eV, 30–50 ns for hν ≈ 120 eV, and 15–30 ns for hν ≈
600 eV. In the presence of the central aluminum wire,
the FWHM of the pulses increased from 25 to 35 ns for
the same radiation energy. In shot no. 00-11-01-1
(Fig. 6), two SXR pulses were recorded by the channel
corresponding to a photon energy of 600 eV at a current
of 2.4 MA. The FWHM of both pulses was about 20 ns,
and the delay time of the second pulse was ≈20 ns.

The streak camera made it possible to observe the
time evolution of the plasma corona in visible light in
the direction transverse to the wire axis over 200 ns
after the current start (in this case, the slit was oriented
parallel to the electrodes and located at a distance of
4 mm from the faces of both electrodes). In Fig. 10
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Fig. 5. X-ray spectrum for the upper spot in Fig. 4a (shot
no. 12-6-1).
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(shot no. 00-11-1-1), we can see that the implosion
begins 100 ns after the current start. The liner is
imploded over ≈50 ns with a velocity of ~6 × 106 cm/s
and reaches its minimum diameter equal to ≈1.7 mm.
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Fig. 7. Spectrum of the radiation power as a function of time
and photon energy (shot no. 00-11-01-1).

Fig. 8. Time dependences of the radiation power and the
plasma temperature (shot no. 00-11-01-1).
Over the following 20 ns, the diameter remains
unchanged; then, it increases to 4 mm over 10–15 ns,
which corresponds to an expansion velocity of (7–10) ×
106 cm/s. Over the following 20 ns, the diameter again
does not change; then, we observe the fast plasma
expansion in the radial direction.

The intensity of VUV and SXR pulses generated
during the implosion of a tungsten wire array was high
enough to destroy 230-nm-thick polymethylmethacry-
late and 350-nm-thick teflon films even when the sam-
ples were positioned at a fairly large distance (≈50 cm)
from the source.

3. DISCUSSION

The implosion of the wire array starts after the tung-
sten wires evaporate (about 100 ns after the current
start). The X-ray pulse corresponding to photon ener-
gies of about several kiloelectronvolts with a total
energy of about 20 J is emitted from two to four clouds
≈1 mm in diameter in the pinch phase of implosion.
This pulse was detected in the hydrogen- and helium-
like aluminum lines. In the photon energy range of
about several kiloelectronvolts, the FWHM of the pulse
was 20–40 ns. The electron temperature and density
were estimated from the line intensities of the spectral
lines, assuming the plasma to be in thermal equilib-
rium, and were found to be 200–500 eV and 1021–
1022 cm–3, respectively. In the pinhole images recorded
with a 1.5-µm aluminized mylar foil, we can see two
types of structures formed in the pinch core. These
structures emit photons with energies above 200 eV.
The structures of the first type are helical plasma chan-
nels, and the structures of the second type are bright
spots 1–2 mm in diameter. The radiation in the spectral
range corresponding to several kiloelectronvolts is
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002
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emitted from the spots and clouds. Probably, the clouds
are formed by the explosion of the helical channels and
the spots.

The plasma that is confined in the channels by the
magnetic field has a lower temperature (about 70–
100 eV) and a higher density in comparison with that in
the clouds. The energy density in the channels is suffi-
cient for this energy to be converted into radiation. The
presence of the hydrogen- and helium-like aluminum
lines in the liner spectrum evidences that the channels
are formed in the corona of the central wire. The exist-
ence of helical channels indicates that an axial mag-
netic field can be generated in the wire corona. As a
result, the plasma in the channels is compressed by this
field and, then, is confined by the strong azimuthal
magnetic field, as was suggested in [6]. Probably, the
clouds of high-temperature plasma are formed due to
the dissipation of magnetic energy.

The total radiation power in the range 50–600 eV
and the ion temperature (of about ≈40 eV) were esti-
mated by processing the SXR signals of shot no. 00-11-
01-1 (Figs. 7, 8). The total radiation energy was deter-
mined from the measured signals in the absolutely cal-
ibrated polychromator channels, assuming that the
X-ray flux is uniform over the solid angle 4π sr. The total
electromagnetic energy in the range 50–600 eV was
about 2–10 kJ both in the presence and in the absence of
the wire on the liner axis and depended only slightly on
the discharge current. Almost the same values of the total
energy (about 2–8 kJ) in the spectral range 0.1–4 keV
were obtained from the measurements with VUV diodes
with gold cathodes in combination with thin 0.1-µm foils
with a deposited lead layer. The radiation power in this
photon energy range attained 2 × 1011 W.

The average ion density can be estimated from the
values of the total mass of the tungsten liner (250 µg)
and the pinch radius (≈1 mm). The plasma temperature
in the pinch was estimated at 40 eV, assuming the pinch
radiation to be blackbody radiation with a maximum
energy of 120 eV. Taking into account that, according
to the Saha equation, the degree of ionization is Z ≈ 10,
we can estimate the electron density as ne ≈ 4 × 1020 cm–3.
This estimate corresponds to a thermal pressure in the
pinch of 2 × 109 Pa. At the same time, for a current of
2 MA, the azimuthal magnetic field in the compression
phase is on the order of 2 × 106 G, which corresponds
to a magnetic pressure of 2 × 1010 Pa. This points to the
fact that the magnetic energy can play a dominant role
in the pinch dynamics. The hypothesis of the conver-
sion of the internal magnetic field into VUV and SXR
emission is confirmed by the streak-camera images of
two compression phases shown in Fig. 10, which illus-
trates the change in the pinch diameter from 2 to 5 mm
during the period of magnetic confinement. Apparently,
in this case, the configuration of the magnetic field
changes abruptly. These two phases correlate in time
with two peaks of X-ray emission with a photon energy
of 600 eV (see Fig. 6). They are observable due to their
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002
short FWHM. In the range 50–300 eV, both phases are
not separated.

For an electron temperature of 40 eV, density of
≈4 × 1020 cm–3, and degree of ionization of 10, we can
estimate the Spitzer conductivity as σ ~ 104 Ω–1 m–1.
This value is one order of magnitude lower than that
calculated assuming the Joule heating (in this case, the
radiation energy is (2–10) × 104 J) or determined from
the duration of the compression phase (20–30 ns),
which is governed by the magnetic-field diffusion.
Apparently, a conductivity of ~105 Ω–1 m–1 is a more
appropriate estimate.

The disturbance of the balance between the mag-

netic pressure  and the thermal pressure may be
attributed to the generation of a chaotic magnetic field
[13]. The chaotic magnetic field may be generated due
to the transformation of a fraction of the azimuthal
component Bϕ of the pinch magnetic field into the
radial Br and azimuthal Bz components. This transfor-
mation may be caused by the inhomogeneity of the
plasma density in the pinch regions where the azi-
muthal magnetic field exists and the electric current
flows [14]. The formation of helical plasma channels is
indirect evidence of the generation of the axial mag-
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Fig. 9. FWHM of the VUV and SXR pulses as a function of
the photon energy (1) in the absence of a central wire,
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a C central wire 100 µm in diameter.

Fig. 10. Streak-camera image of the tungsten wire array
(shot no. 00-11-01-1).
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netic field. The high values of the photon energy and the
power of thermal emission from the plasma are proba-
bly related to the fast transformation of the axial com-
ponent of the magnetic field, generation of high electric
fields, and acceleration of electrons.

4. CONCLUSION

Thermal VUV emission and SXR emission in a pho-
ton energy range of several kiloelectronvolts are gener-
ated in the pinch phase of the liner implosion. The ther-
mal radiation is emitted from the pinch column with a
temperature of ≈40 eV and an electron density of ≈4 ×
1020 cm–3. The SXR pulse with a FWHM of 20–40 ns is
generated in the wire corona, specifically, in two to four
high-temperature spots and clouds 1–2 mm in diameter.
The total radiation energy emitted in the hydrogen- and
helium-like aluminum lines in the spectral range on the
order of several kiloelectronvolts amounts to ≈20 J. The
electron temperature and the electron density calcu-
lated from the line intensities are 200–500 eV and 1021–
1022 cm–3, respectively. These values are close to the
plasma parameters required to produce an inverse pop-
ulation in a recombining aluminum plasma. As to the
plasma structure, it is necessary to continue experimen-
tal studies of the possibility of creating an extended
homogeneous plasma and to choose the optimum initial
Z-pinch configuration.

A disturbance of the balance between the magnetic
and thermal pressures in the pinch may be attributed to
the generation of a chaotic magnetic field. As a result,
both the radial and axial components of the magnetic
field are generated during the liner plasma implosion.
The subsequent conversion of the energy of the chaotic
magnetic field into thermal energy results in an addi-
tional pressure. It seems plausible that some fraction of
the pinch plasma is confined by the magnetic field in
the helical structures. The high-energy emission from
the plasma may be attributed to the fast transformation
of the axial component of the magnetic field, which
results in the generation of high electric fields and elec-
tron acceleration.
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Abstract—The structure of the ion acoustic precursor of a shock wave in a weakly ionized collision-dominated
plasma is studied numerically. It is shown that the simultaneous action of the nonlinearity, dispersion, and dis-
sipation leads to the formation of an oscillating profile of the ion density in the precursor. There exist regimes
in which the charged-particle density decreases abruptly and simultaneously the number of maxima in its pro-
file within the precursor becomes smaller as the shock wave velocity increases in a jumplike manner. This effect
is analogous to the corresponding hydrodynamic effect in narrow shallow channels (the “Houston’s horse”
effect). In the stage preceding this jumplike process, local regions may appear in which the degree of plasma
ionization is elevated. Such plasma “bunches” give rise to the strong reverse action of the charged particles on
the neutral component, resulting in the “stretching” of the precursor. This phenomenon is resonant in character
and occurs in a narrow range of shock wave velocities. © 2002 MAIK “Nauka/Interperiodica”.
In recent years, there has been much interest in the
nonlinear processes in weakly ionized plasmas. Thus,
the related topics have been the subject of regular inter-
national conferences such as the Workshops on Weakly
Ionized Plasmas (Norfolk, VA, 1997–2001), the Work-
shops on Magnetoplasma Aerodynamics in Aerospace
Applications (Moscow, 1999–2001), and the Work-
shops on Thermochemical Processes in Plasma Aero-
dynamics (St. Petersburg, 2000–2001). An interesting
problem in this line of research is that of studying the
plasma structure in a supersonic flow, whose velocity is
higher than the ion acoustic speed. The plasma precur-
sor that forms ahead of a shock wave has a number of
“exotic” features [1, 2].

The problem will be treated in a formulation analo-
gous to that in [1, 2]. Specifically, we investigate a one-
dimensional steady-state plasma precursor of a strong
shock wave. We assume that the precursor structure
depends on the combination z – ct, where z is the coor-
dinate, t is the time, and c = const is the shock wave
velocity. We also assume that the electron and ion tem-
peratures ahead of the shock front satisfy the condition
Te @ Ti , which refers to the ion acoustic approximation.
Taking into account the nonlinearity, elastic collisions,
dispersion, ion viscosity, and electron heat conduction,
we can obtain the following equation for the dimen-
sionless velocity of the ion plasma component, Vi = w/c
(where w is the dimensional ion velocity) ahead of the
shock front [2]:
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Here, x = (z – ct), ξ1 = Vsν–1, Vs is the ion acoustic
speed, ν is the effective frequency of collisions between
the ions and neutrals (the effect of electron heat con-
duction is incorporated into the representation of ν [1]),

d = D , D is the electron Debye radius, A =

0.5  is the dimensionless ion viscosity coeffi-

cient, and M = c  is the ion Mach number. The
dimensionless ion density in a steady-state shock wave
is represented as ni = ni /ni0 = (1 – Vi)–1, where the zero
subscript denotes unperturbed parameter values. Equa-
tion (1) was derived under the assumption that the
reverse action of the charged particles on neutrals is
negligible. In this approximation, there are upper limits
on the amplitude of the ion density perturbations and on
the degree of plasma ionization. As will be seen below,
Eq. (1) admits solutions describing the appearance of
regions in which the degree of plasma ionization
becomes elevated under certain conditions. Of course,
in order to provide a correct description of the fields in
these regions, where the reverse action of the charges
on the neutral component and on the shock wave itself
is strong, the model should be refined to include the
self-consistent interaction between the neutral and
charged plasma components.

It should be noted that Eq. (1) fails to correctly
describe the processes occurring in the plasma in the
region x < 0 (behind the shock front): in this region, the
above condition of the ion acoustic approximation is
violated, so that the corresponding equation, in contrast
to Eq. (1), contains an external source term accounting
for the field of the shock wave of the neutral compo-
nent. Instead of the closed problem with an external
source on the interval –∞ < x < ∞, we will solve the
corresponding approximate Cauchy problem on the

ξ1
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interval 0 ≤ x < ∞ under the assumption that, in the
region x < 0, the ions are totally entrained by neutral
particles. The results obtained in this way are approxi-
mations to the solutions to the closed problem with a
source.

In order to solve Eq. (1) in the region x ≥ 0, it is nec-
essary to formulate three boundary conditions. The
condition required for solving the equation analytically
is imposed ahead of the shock front at infinity: Vi(∞) = 0,
which corresponds to a limiting transition to the unper-
turbed state. The remaining two boundary conditions
should ensure the “matching” of the fields at the shock
front. They can be derived from the solution to the
closed problem in the region behind the front (x < 0).
However, instead of doing so, we formulate the second
boundary condition approximately. The assumption
that the charges are totally entrained by the front of a
strong shock wave gives Vi(0) ≈ 2(γ + 1)–1, where γ ≈ 1.4
is the ratio of the specific heat capacities. In this
approximate approach, the third boundary condition is
difficult to formulate, because it may be chosen in dif-
ferent ways, e.g., as a selection rule reflecting a certain
feature.

For the numerical integration of Eq. (1) by the
Runge–Kutta method (based on the rkadapt Matcad
8/2000 software package), all of the three boundary
conditions were imposed at the initial point x = 0 so as
to provide the limiting transition Vi  0 as x  ∞.
This indicates that the two conditions on the derivatives

(0) and (0) should simultaneously ensure the lim-
iting transition to the unperturbed state at infinity and
the rule for selecting the solution. It should be noted
that, with d = 0 and A = 0, Eq. (1) is a first-order differ-
ential equation, in which case, however, the solution to
the physical problem in question should satisfy the two
boundary conditions, Vi (0) and Vi (∞) = 0. For M < 1,
Eq. (1) has a continuous solution. In contrast, for M > 1,
a zero boundary value at infinity, Vi(∞), can only be
achieved by introducing a discontinuity [2]. In the
plasma precursor, the discontinuity is smoothed by the
dispersion (d ≠ 0) and viscosity (A > 0) effects.

The general solution to Eq. (1) can be represented as

(2)

Here, Cn = const; the function f1 decreases asymptoti-

cally at infinity; f1 ∝ exp(– ); the remaining two
functions increase without bound at infinity, f2, f3  ∞

Vi' Vi''

Vi C1 f 1 C2 f 2 C3 f 3.+ +=

xx0
1–
as x  ∞, and x0 is a positive root of the dispersion
relation

(3)

Thus, in the absence of dispersion (d  0), we obtain
the representation

(4)

We are interested in such solutions to Eq. (1) that have
the form Vi = C1f1, C2 = C3 ≡ 0. Because of a certain
(finite) inaccuracy of numerical integration, special
measures should be taken in order to prevent the
appearance of the terms with f2 and f3 in the region
x > x0. We denote by xm the maximum value of x in
numerical calculations (in a theoretical analysis, we
have xm = ∞). If we increase the numerical value xm , we
must simultaneously increase both the accuracy with
which to choose the (0) and (0) boundary values
(the Vi(0) value is fixed and thus cannot be changed)
and the number of integration steps in order to satisfy
the condition Vi(xm)  0. It is this procedure that
ensures the above zero boundary values at infinity for
any ion Mach number. Without refinement of the
boundary values (0) and (0), an increase in xm

will be accompanied by an increase in Vi(xm) because
of the strong effect of f2 and f3 at a fixed accuracy of

(0) and (0) in the region x > x0. In calculations,
not only the boundary condition Vi(xm)  0 was con-
trolled but also the true shape of the exponential asymp-

totic profile Vi ∝  exp(− ) was checked. With
increasing xm, the phase trajectory in phase space

(Vi, , ) approached the origin of the coordinates

according to the asymptotic law Vi ∝  exp(– ).

Without using the rule for selecting a solution, it is
possible to construct a number of solutions such that
Vi  0 as xi  ∞ by specifying all of the three
boundary conditions at the point x = 0. In order to illus-
trate different possible ways of constructing the solu-
tion, Figs. 1 and 2 show the profiles ni = ni(x), having
five maxima and three maxima, respectively. The pro-
files, which were calculated for M = 1.3, d = 0.05, and
A = 0, show that different types of precursors can, in
principle, be formed at the same values of the Mach
number and at the same levels of dispersion and viscos-
ity by different excitation mechanisms, namely, by cre-
ating different boundary conditions at the shock front
x = 0 that ensure an unperturbed state at infinity (x = ∞).
In this case, the question of whether different precur-
sors can actually be formed at the same d, A, and M val-
ues remains open.
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The rule for selecting a solution to the physical
problem at hand can be formulated on the basis of the
properties of the exact analytic solution to Eq. (1) with
d = 0 and A = 0. In this situation, we arrive at the fol-
lowing representations at the shock front:

(5)

The related function ni(x) is shown in Fig. 3. In the
region x ≈ 1.29, there are discontinuities in the func-
tions Vi and ni(x), in which case the higher derivatives
in Eq. (1) come into play in order to smooth the discon-
tinuities in the situation with d ≠ 0 and A > 0. As a
result, in this region inside the precursor, the ion density
profile should become the steepest and there should be
inflection points of the corresponding curves. This case
corresponds to the profile shown in Fig. 1. Let us ana-
lyze how this solution changes as the ion Mach number
M increases. Figure 4 shows the dependence of the
maximum value nmax of the dimensionless density on
M; here, the parameter N = 5, 4, 3, 2, 1, and 0 is the
number of maxima in the ion density within the precur-
sor. For M < 1.47, there exists a precursor with five
maxima. As M  1.47, the perturbation amplitude
grows without bound, in which case it is necessary to
refine the model. The transformation of the solution in
the range M > 1.47 can be interpreted as follows. We
suppose that some possible fluctuations of the shock
wave velocity cause no significant energy transfer to
the system. Under this assumption, the onset of fluctu-
ations with Mach numbers close to M = 1.47 can lead
to an abrupt change in the boundary value (0). This
effect should manifest itself as the appearance of the
ni(x) profile with four maxima, in which case the profile
of the perturbed ion density sharply rearranges—the
number of maxima per unit length reduces and the
value nmax decreases abruptly. (It should be stressed
that, in regimes with M < 1.47, the nonlinear system is
fairly fluctuation-resistant, so that the fluctuations do
not change the fields qualitatively.) This phenomenon is
a plasma analogue of the so-called Houston’s horse
effect in hydrodynamics. For a plasma, this effect was
predicted for the first time in my earlier paper [2] on the
basis of analytic estimates. In the range M ≥ 1.52, a
solution can be constructed that has an even smaller
number of maxima, namely, three maxima. A further
increase in M up to 1.56 leads to a similar situation:
first, the value nmax increases; then, for M ≥ 1.56, the

boundary value (0) changes abruptly, thereby mak-
ing it possible to construct a solution with two maxima;
and so on. Finally, for M ≥ 1.70, the last plasma bunch
collapses completely and the ion density profile
becomes monotonic. In Fig. 4, the dashed curves illus-
trate the states that occur as the Mach number
decreases; the maximum density nmax is seen to change
monotonically. If we restrict ourselves to fluctuations
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Fig. 1. Profile ni (x) at M = 1.3, A = 0, and d = 0.05 for

boundary conditions Vi(0) = 5/6, (0) = –3.883149, and
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that cause no significant energy transfer to the system,
then we can see that, as M decreases, the fields do not
change qualitatively. Thus, the system exhibits a pecu-
liar hysteresis effect with respect to a decrease and an
increase in M. This indicates that, as the Mach number
decreases from the value characteristic of the state in
which the ion density profile has less than five maxima,

2

0.50 1.0 1.5
1

3

4

5

6
ni

x

Fig. 3. Profile ni (x) at M = 1.3, A = 0, and d = 0.
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Fig. 4. Dependence nmax(M) at A = 0 and d = 0.05 (N is the
number of maxima within the precursor).
the maximum density nmax, first, decreases in the down-
ward direction along a solid curve and, then, changes
along a dashed curve. Of course, when the nonlinear
system described by Eq. (1) is subjected to specially
created nonautonomous forces, the hysteresis effect can
be eliminated at the expense of the external energy.

With allowance for viscosity, the effect under con-
sideration takes place at higher Mach numbers M. In
this case, the highest peak in the ion density profile
changes its position: it can occur either in the leading or
trailing edge of the precursor. Figure 5 shows the pro-
files nmax = nmax(M) calculated for the conditions typical
of steady glow discharges in experiments on anomalous
gas flows in ballistic devices [3]: the pressure is P =
40 torr, the degree of ionization is about α ~ 5 × 10–6,
the ion temperature is Ti ~ 1500 K, and the electron
temperature is Te ~ 1 eV. With these parameters, the
above two dimensionless coefficients are equal to d =
0.05 and A = 0.13. It is of interest to note that the reso-
nance effect is pronounced even when the dissipation is
strong. The ion density increases considerably only in a
narrow range of Mach numbers, so that we may speak
of a peculiar nonlinear resonance. It should be noted
that, in the stage preceding the Houston’s horse effect,
a local region appears in which the degree of plasma
ionization is elevated. In this region, one of the assump-
tions made in deriving Eq. (1) is violated (i.e., the
assumption that the self-consistent interaction between
the neutral and charged plasma components is negligi-
ble), so that the model should be appropriately refined.
Although the problem in a refined formulation has not

10
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1.4 1.6 1.8 M

100

1000
nmax

N = 2

N = 1

N = 0

Fig. 5. Dependence nmax(M) at A = 0.13 and d = 0.05 (N is
the number of maxima within the precursor).
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yet been solved rigorously, we can estimate the spatial
scale of the perturbed region in question:

(6)

where ξ1 ≈ ν–1Vs is the characteristic spatial scale in the
situation when the charged particles do not have the
reverse effect on neutrals and a is the speed of sound.
The reverse action of the charged component on the

ξ2 aν 1–
Vs TnTe

1–( )ν 1–
nnni

1–( )0≈ ≈

≈ ξ1 TnTe
1–
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neutral component results in the stretching of the pre-
cursor of a shock wave.
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Abstract—The thermodynamic properties of a hydrogen–helium plasma are calculated both by the quantum
Monte Carlo method and by using a chemical model. It is shown that the previously observed anomalous behav-
ior of the isotherms of superdense molecular gases (the so-called dissociative phase transition) is suppressed in
plasma mixtures of molecular and noble gases. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In [1, 2], the thermodynamic parameters of a super-
dense plasma of molecular gases were calculated both
by the quantum Monte Carlo method [3] and by using
the chemical model of a nonideal chemically reacting
plasma [4, 5]. In both cases, simulations showed the
anomalous behavior of the isotherms of a superdense
hydrogen plasma in the submegabar and megabar pres-
sure ranges. Calculations by the chemical model
showed that, under certain conditions, a van der Waals
loop characteristic of the gas–liquid phase transition
appears in the phase diagram of a molecular gas
plasma. The typical values of the critical temperature Tc

turned out to be on the order of the dissociation energy
of molecules or molecular ions, depending on what par-
ticles are dominant in the region where the temperature
is close to the critical temperature. Numerical simula-
tions by the quantum Monte Carlo method also showed
the presence of a loop typical of phase transitions. It
should be noted that an abrupt change in density is
accompanied by an abrupt change in the plasma com-
position. The anomalous behavior observed was called
the dissociative phase transition, because, when going
over along the spinodal from the rarified phase to the
dense one, the molecule density decreases sharply (by
nearly five to seven orders of magnitude) due to the
intense dissociation caused by the high pressure.

At the same time, for noble-gas plasmas, calcula-
tions by the chemical model demonstrate the mono-
tonic behavior of the isotherms as the specific volume
decreases. Although the interaction between plasma
particles is rather strong, the calculated values of the
thermodynamic parameters differ only slightly from
those predicted by the ideal-gas model, as was pointed
out in [5]. Since there are no molecules in a noble-gas
1063-780X/02/2806- $22.00 © 20484
plasma, no anomaly is observed in the isotherms of this
plasma. In this context, the question arises as to the
character of the phase diagrams of mixtures containing
molecular and noble gases. Intuitively, it is clear that
the anomalous effects observed in [1, 2] should disap-
pear as the mole fraction of the noble gas in the mixture
increases.

The objective of this paper is to illustrate how the
dissociative phase transition in the plasma mixture of a
molecular and noble gas is suppressed as the noble gas
fraction in the mixture increases. As an example, the
thermodynamic properties of a superdense hydrogen–
helium plasma are calculated both by the quantum
Monte Carlo method and by using the chemical model
of a multicomponent plasma. An analysis of the calcu-
lation results obtained by using both approaches allows
us to conclude that the phase transition gradually disap-
pears as the helium fraction in the mixture increases.

2. RESULTS OF ANALYTICAL 
AND NUMERICAL CALCULATIONS

In this paper, we do not describe the calculation pro-
cedures, because they are described in detail in [3–5].
We only note their basic points.

When calculating by the quantum-mechanical
Monte-Carlo method, we selected a system of
100 nuclei; the number of seed electrons was given by
the ratio of the hydrogen and helium mole fractions in
the mixture. The thermodynamic quantities were calcu-
lated as the logarithmic derivatives of the statistical sum
[6]. The statistical sum of the quantum system was
expressed through the density matrix, which was
approximately represented in the form of integrals over
trajectories [3, 6].
002 MAIK “Nauka/Interperiodica”
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The chemical model is based on the separation of
the spectrum of free and bound states of the Coulomb
and neutral subsystems of the plasma. The Coulomb
corrections to the thermodynamic functions were cal-
culated as exact asymptotic expansions in terms of the
activity powers in the grand canonical ensemble [4].
When calculating the atomic statistical sum, we used
the nearest neighbor approximation. The corrections
for the interactions with the participation of neutrals
were written as a series expansion in terms of the den-
sity with allowance for all the types of charge–neutral
and neutral–neutral binary and triple interactions [5].
The second and third virial coefficients due to the inter-
action of different types of free particles were calcu-
lated in [7] for the Hill pseudopotentials [8] constructed
on the initial Lennard-Jones potentials (12-6) and
(12-4).

By using previously developed procedures of calcu-
lating the thermodynamic properties of a nonideal
plasma, we analyze their behavior on the phase diagram
for a hydrogen–helium mixture over a wide range of
densities and temperatures. First, we present the results
of calculations obtained by the chemical model. Their
analysis seems to be more convenient and simple and
provides the possibility of obtaining a large body of
information. Then, we compare these results with the
quantum-mechanical Monte Carlo method. The results
of the latter are most important and demonstrative,
because they can be regarded as a numerical experi-
ment. However, in this method, it is rather difficult to
obtain a large body of numerical data because of seri-
ous computational problems. For this reason, calcula-
tions were performed for some isotherms with certain
specified compositions (He : H = 7 : 93 and 33 : 67).

We consider a nonideal muticomponent hydrogen–
helium plasma. We specify the plasma components as

e–, H, H+, H–, H2, , He, He+, He++, , and HeH+.
The other possible components can be omitted because
of the low probability of their formation. In calcula-
tions, we varied the mass density ρ, the plasma temper-
ature T, and the mole fractions of hydrogen and helium
in the mixture, cH and cHe. As in [1, 2], the region of the
phase diagram with an anomalous behavior of iso-
therms is studied by moving along the isotherm with a
small step in the density. As was mentioned above, the
isotherms of noble gas plasmas have no singularities
because, in this case, there is no molecular components
in the plasma. Hence, it is convenient to begin calcula-
tions for a helium plasma and, then, to increase the
hydrogen fraction in the mixture. The results of calcu-
lations of the plasma composition along each preceding
isotherm can be used as an initial approximation when
calculating the next one. The main parameter distin-
guishing one curve from another is the hydrogen or
helium mole fraction in the mixture (cH + cHe = 100%).

H2
+

He2
+
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Figure 1 shows the isotherm T = 104 K of the hydro-
gen–helium mixture at different values of cH and cHe.
The isotherm of pure helium is the monotonic curve 1.
As the hydrogen mole fraction in the mixture increases,
the behavior of the isotherm gradually changes (curves
2, 3) and a distinct inflection point appears at cH = 25%
(curve 4). This point corresponds to a mass density of
≈4 g/cm3 and a pressure of ≈4.25 Mbar. At a tempera-
ture of T = 104 K, the molar concentrations (25% H and
75% He) in curve 4 can be considered to be critical for
the phase transition studied in [1, 2] in pure hydrogen.
As the hydrogen mole fraction increases further, a char-
acteristic van der Waals loop appears (curves 5, 6).
Then, this loop degenerates into instability (curves 7,
8), which means that a stable solution for the dense
phase is absent. Hence, according to calculations by the
chemical model, the dissociative phase transition at T =
104 K is suppressed when the helium concentration in
the mixture is higher than cHe = 75%. Similar depen-
dences for the isotherms T = 3 × 104 K and 4 × 104 K are
shown in Figs. 2 and 3. It is seen that, as the plasma
temperature increases, the critical helium concentration
required for suppressing the phase transition decreases
rapidly (from 56% for T = 3 × 104 K to 10% for 4 ×
104 K). The critical temperature for the dissociative
transition in pure hydrogen calculated by the chemical
model is about 5 × 104 K [1, 2].

Now, we compare the results of calculations by the
chemical model with the data from quantum-mechani-
cal Monte Carlo calculations. An analysis of the dia-
grams shows that, over a wide range of temperatures for
different helium concentrations in the range of low and
moderate pressures, the results obtained with these two
methods almost coincide (see Figs. 4–9). This agree-
ment means that the quantum Monte Carlo method not
only provides the reliable values of thermodynamic
quantities for the specified ensemble of 100 nuclei, but
also allows one to qualitatively trace the plasma com-

106

0.01
V, cm3/g

0.1 1 10

P, atm

3 × 106

5 × 106

–106

T = 10000 K

1234
5

6

7 8

Fig. 1. Isotherm T = 104 K for a hydrogen–helium plasma.
The mole fraction of the components in the mixture (H : He,
%): (1) pure helium, (2) 10 : 90, (3) 20 : 80, (4) 25 : 75,
(5) 30 : 70, (6) 50 : 50, (7) 90 : 10, and (8) pure hydrogen.
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Fig. 2. Isotherm T = 3 × 104 K for a hydrogen–helium
plasma. The mole fraction of the components in the mixture
(H : He, %): (1) pure helium, (2) 10 : 90, (3) 20 : 80,
(4) 30 : 70, (5) 44 : 56, (6) 50 : 50, (7) 70 : 30, (8) 80 : 20,
(9) 90 : 10, and (10) pure hydrogen.

Fig. 4. Comparison of the results of calculations of the pres-
sure for the isotherm T = 104 K by the chemical model
(curves) and the Monte Carlo method (squares) for different
helium mole fractions in the mixture: (a) 7 and (b) 33%.

position. In other words, these calculations account (at
least qualitatively) for the formation of bound states
(atoms, molecules, etc.).
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Fig. 3. Isotherm T = 4 × 104 K for a hydrogen–helium
plasma. The mole fraction of the components in the mixture
(H : He, %): (1) pure helium, (2) 10 : 90, (3) 20 : 80,
(4) 90 : 10, and (5) pure hydrogen.

Fig. 5. Comparison of the results of calculations of the
internal energy for the isotherm T = 104 K by the chemical
model (curves) and the Monte Carlo method (squares) for
different helium mole fractions in the mixture: (a) 7 and
(b) 33%.

Moreover, for T = 104 K and a low helium concen-
tration, both methods result in the appearance of the
phase transition (Figs. 4, 5), whose positions in the
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002
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Fig. 6. Comparison of the results of calculations of the pres-
sure for isotherms T = (a) 3 × 104 and (b) 5 × 104 K by the
chemical model (curves) and the Monte Carlo method
(squares) for a helium mole fraction of 7%.

phase diagrams calculated by the two methods are in
qualitative agreement. However, there is a significant
quantitative difference. According to the Monte Carlo
calculations, the helium concentration at which the
phase transition is suppressed turns out to be ~40%,
whereas the calculations by the chemical model give
75%.

At higher temperatures of T > 3 × 104 K, the quan-
tum-mechanical Monte Carlo calculations (Figs. 6, 7)
do not result in the appearance of anomalies in the
phase diagram even at a low helium concentration,
whereas the calculations by the chemical model show
the existence of anomalies at least up to T = 5 × 104 K.
It should also be noted that the agreement between the
calculations with respect to the internal energy is, of
course, worse than that with respect to the pressure.

At T > 5 × 104 K (the critical temperature of the dis-
sociative phase transition obtained by the chemical
model), the results of calculations of the plasma pres-
sure obtained with both methods agree well up to
108 atm (Fig. 8). In this case, the plasma mass density
is on the order of 10 g/cm3. The density range in which
the data on the internal energy obtained with both meth-
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Fig. 7. Comparison of the results of calculations of the inter-
nal energy for isotherms T = (a) 3 × 104 and (b) 5 × 104 K by
the chemical model (curves) and the Monte Carlo method
(squares) for a helium mole fraction of 7%.

Fig. 8. Same as in Fig. 4 for isotherm T = 105 K.
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ods are in good agreement expands significantly
(Fig. 9).

3. CONCLUSION

A substantial quantitative difference between the
results obtained by the Monte Carlo method and by
using the chemical model at high pressures and low
temperatures is related to the fact that the calculations
were performed in the parameter range in which the
chemical model is no longer applicable. Under these
conditions, computations by the quantum Monte Carlo
method are also characterized by poor stability. Never-
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Fig. 9. Same as in Fig. 5 for isotherm T = 105 K.
theless, an important result is that, in both cases, we
observed the specific anomaly in the isotherms in the
phase diagrams of hydrogen–helium plasma mixtures.
The anomaly observed is of the same nature as that for
pure hydrogen (the dissociative phase transition [1, 2]).
The phase transition disappears gradually as the helium
fraction in the mixture increases. Although both meth-
ods give different numerical values of the critical
helium concentration above which the phase transition
is suppressed, both of these methods indicate that the
anomaly disappears as the He mole fraction in the mix-
ture increases.

As a rule, noble gases are atomic. In our opinion,
this fact confirms the dissociative nature of this phase
transition [1, 2], because, according to our calculations,
the phase transition in noble gases is absent due to the
low concentration of molecular components.
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Abstract—The propagation of lower hybrid (LH) waves in a tokamak plasma in the presence of an LH reso-
nance surface is studied experimentally with the use of a specially elaborated technique based on the backscat-
tering of the probing microwave radiation in the upper hybrid resonance region. The technique provides reso-
lution in the wave vectors of the scattering density fluctuations. The conditions are determined under which the
LH wave propagates in accordance with the predictions of linear theory and is converted into the short-wave-
length ion Bernstein mode. The parameter range is found in which the predictions of linear theory fail to hold
and the nonlinear effects come into play during LH wave conversion. The radial wavelengths of the LH and ion
Bernstein waves are determined. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the early 1970s, a method based on the linear con-
version of slow waves in the lower hybrid resonance
(LHR) region was proposed to heat the ion component
in a tokamak plasma. This method was implemented in
many devices with different geometric dimensions and
plasma parameters over a wide range of heating wave
frequencies (from 300 MHz to 2.5 GHz) [1]. In spite of
numerous experimental studies, the role of the LHR in
the absorption of slow waves was not clearly estab-
lished and attempts to achieve efficient and reproduc-
ible ion heating were unsuccessful. Instead, these
experiments revealed a complicated picture of the non-
linear interaction of lower hybrid (LH) waves with a
plasma. To study this interaction, it was necessary to
elaborate new sensitive methods for the local diagnos-
tics of plasma oscillations in high-temperature tokamak
plasmas.

The method of enhanced scattering (ES) of micro-
waves in the vicinity of the upper hybrid resonance
(UHR) [2–4] is an efficient tool for studying short-
wavelength density oscillations and waves in tokamak
plasmas. This method, which has significantly pro-
gressed in the past decade [4–10], implies that a prob-
ing extraordinary wave is launched from the high-field
side, whereas the observation is made of a wave scat-
tered backward by low-frequency plasma density fluc-
tuations near the UHR surface, whose position is given
by the equality

(1)ωi
2 ωce

2
x( ) ωpe

2
x( ),+=
1063-780X/02/2806- $22.00 © 20489
where ωi is the probing frequency, ωce is the electron
cyclotron frequency, and ωpe is the electron plasma fre-
quency. As the hybrid resonance is approached, the
radial wavenumber of the probing wave increases rap-
idly and becomes much higher than the wavenumber in
vacuum k0 = ωi /c. That is why the method turns out to
be very sensitive to small-scale oscillations. The ampli-
tudes of both the probing and backscattered waves
increase as the wavenumber increases, which ensures
high scattering efficiency and high spatial resolution of
measurements. If the radial component of the wave vec-
tor q of fluctuations lies in the range

(2)

where ρce is the electron Larmor radius, the location of
the measurement region is determined by the UHR
position. For shorter wavelength fluctuations, the posi-
tion of the backscattering point, given by relation (1),
can differ from the position of the UHR point. In the ES
technique, one or two closely spaced antennas are used
to launch the probing waves and to receive the scattered
signals. Information about the spatial distribution of
plasma fluctuations can be obtained by displacing the
UHR layer, for which purpose either the probing fre-
quency or the magnetic field is varied.

Since the wave vectors of the incident ki(x) and scat-
tered ks(x) waves change significantly, the Bragg reso-
nance condition for ES, which has the form

(3)

can be satisfied over a wide range of the wave vectors q
of the scattering fluctuations. For this reason, the ES

2k0 ! q ! ρce
1–
,

ki x( ) ks x( )– q,–=
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signal is, in fact, integrated over the wave vectors of the
plasma fluctuations. This circumstance reduces the
amount of prior information required to perform the
measurements and allows one to restrict the analysis to
one-dimensional scattering, which is a significant
advantage of the technique under discussion. At the
same time, because of the above-mentioned integral
character of this technique, the resolution in the wave
vectors is poor and the data obtained with this method
are, to a great extent, qualitative. Recently, some ways
have been proposed to improve the resolution in wave
vectors [5–8] by using the effect of decreasing the
group velocities of the incident and scattered waves in
the UHR region. It was shown theoretically [5, 6] that
this effect can ensure a very long delay time of the ES
signal, td. In the geometrical-optics approximation, this
time is determined by the expression

(4)

where x0 is the horn coordinate and Vg is the group
velocity of the extraordinary wave. For fluctuations sat-
isfying inequality (2), the delay time depends linearly
on the radial component q of the wave vector of the
scattering fluctuations:

(5)

This dependence was confirmed in several linear
plasma devices [7–10], in which spontaneous and para-
metric ion-acoustic turbulence and the propagation of
LH waves excited by external antennas were studied.

In this study, the time-of-flight ES diagnostics is
used to investigate the propagation of LH waves in a
tokamak plasma and the conversion of these waves into
ion Bernstein waves. A brief description of the experi-
ment in the FT-1 tokamak is given, and the experimen-
tal results are presented and discussed.

2. DESCRIPTION OF THE EXPERIMENT

The experiments were carried out in the FT-1 toka-
mak [11] with a major radius of R = 62.5 cm and a
minor radius of a = 15 cm. The maximum toroidal mag-
netic field in the center of the chamber was B(0) = 1 T,
the plasma current was Ip = 30 kA, the central electron
density was ne(0) = (7–13) × 1012 cm–3, and the central
electron temperature was Te(0) = 400 eV. In the experi-
ments, we used a set of conventional electromagnetic
diagnostics and a one-channel interferometer. The den-
sity profile was determined before the experiments with
the help of a four-channel interferometer. In some dis-
charges, we monitored charge-exchange neutral fluxes,
soft X-ray emission, and the emission at the first har-
monic of the electron cyclotron resonance (ECR). LH
waves at a frequency of 360 MHz were excited with the

td 2 x/Vg,d

x0

xs q( )

∫=

td 2qωi

∂ωpe
2

∂x
------------

∂ωce
2

∂x
-----------+

–1

.=
help of a loop antenna positioned in the limiter shadow
at the low-field side of the tokamak. The magnetron
power was up to 50 kW. In what follows, the section in
which the LH-wave antenna was installed is called the
LH section. At the high-field side, opposite the LH-
wave antenna, two horn antennas for launching and
receiving extraordinary microwaves were positioned in
the equatorial plane. The angle corresponding to a level
of 3 dB in the antenna directional patterns was ±20°
about the equatorial plane. The fraction of the ordinary
mode in the total antenna power was less than 2%.
Three additional horn antennas were installed in the
section spaced at 180° from the LH-section in the tor-
oidal direction. Two of these antennas were positioned
in the equatorial plane at the high-field side and served
as an emitter and a receiver of extraordinary waves. The
third antenna was installed in the same section at the
low-field side and was used in this experiment for cali-
bration measurements, in which the probing wave was
launched in the absence of a plasma. For these anten-
nas, the angle corresponding to a level of 3 dB in the
directional pattern was ±8° and the ordinary mode frac-
tion was less than 1%. Below, the poloidal section in
which these antennas were installed will be called the
ES section.

The estimate by formula (4) shows that, under the
FT-1 experimental conditions, the delay time of the ES
signal is fairly long and can exceed 10 ns. In principle,
such delay times could be measured with a strobo-
scopic technique based on the amplitude modulation
[7–10]. This technique, which was tested in previous
experiments, makes it possible to estimate the wave-
number spectrum of oscillations. Unfortunately,
because of the low power of the scattered signal, which
is only one order of magnitude higher than the power of
electron cyclotron emission from the plasma, the loss of
the scattered signal that is inherent in this technique
cannot be tolerated. In our experiment, we used a tech-
nique based on the harmonic amplitude modulation of
the incident wave with the subsequent analysis of the
phase delay in the modulated scattered power. This
technique allowed us to determine the average wave-
number of fluctuations within the frequency range
under study.

Figure 1 shows a schematic diagram of the measure-
ments. A probing power of 20 mW at a frequency of
28.1 GHz from a standard signal generator G0 was
modulated in the amplitude with a 10-MHz modulation
generator MG with the help of a p–i–n diode M and was
gained to a level of 50 W at the output of an amplifier
A0 based on the travelling-wave tube with a 1-GHz
amplification band. To suppress the strays from the
magnetron, a filter F1 was installed at the output of the
travelling-wave tube; the filter attenuation exceeded
15 dB when tuning away from the probing frequency
by ±360 MHz. A power of 20 W transmitted into the
probing horn was launched into the plasma as an
extraordinary wave. The scattered radiation was ana-
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002
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Fig. 1. Schematic of the diagnostics: (G0) probing generator, (M) modulator, (A0) microwave amplifier based on the travelling-wave
tube, (F1) microwave filter, (MG) modulation generator, (PI) phase inverter, (G) square-wave generator, (G1) heterodyne, (MX)
mixer, (A1, A2, A3) intermediate-frequency amplifiers, (F2) filter, (SA) spectrum analyzer, (AD) amplitude detector, (PD) phase
detector with two quadrature channels, and (O) oscillograph.
lyzed with the help of a superheterodyne receiver tuned
to a signal shifted by 360 MHz from the probing fre-
quency toward the higher (blue satellite) or lower (red
satellite) frequencies by extracting the intermediate fre-
quency in a mixer MX with the use of a generator G1 as
a heterodyne. After the 20-dB amplification (A1) of the
modulated signal at an intermediate frequency of
920 MHz, its spectrum and phase delay relative to the
modulation of the incident power were studied in the
60-MHz band. This was made possible by using a filter
F2, which produced the 3-dB attenuation when tuning
away from the frequency 920 MHz by ±30 MHz and
the 10-dB attenuation when turning away by ±40 MHz.
After the filter F2, the signal was additionally amplified
by 40 dB with the help of an amplifier A2. To obtain the
spectrum of the scattered signal, we used a spectrum
analyzer SA with an operating time of 2 ms. Before the
phase measurements, we performed an additional
amplitude detection of the received signal with the help
of an amplitude detector AD. After the detection and
amplification by 30 dB (an amplifier A3), the signal was
fed to one of the inputs of a phase detector PD, based
on the quadrature circuit. 10-MHz oscillations from the
second output of the generator MG were fed as a refer-
ence signal to the other input of the phase detector.
From the outputs of the phase detector PD, the signals
were fed to an oscillograph O and amplitude-to-digital
converter, after which they were stored in a computer.
To simplify the interpretation of the phase measure-
ments, 10-MHz modulation oscillations were addition-
ally inverted with the help of a phase inverter PI, in
which their phase was changed by 180° at a repetition
rate of 1 kHz by using a square-wave generator G. As a
consequence, the PD output signals were 1-kHz oscil-
lations. The phase-tunable 10-MHz output of the gen-
erator MG was used to calibrate the circuit. For this
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002
purpose, the amplitude of the signal from the PD output
in one of the channels was set at zero. By convention,
this channel was referred to as the sinusoidal one,
whereas the second channel was referred to as the cosi-
nusoidal one. The phase shift ϕ was determined from
the phase curve

(6)

where S and C are the amplitudes of 1-kHz oscillations
in the sinusoidal and cosinusoidal channels, respec-
tively. The scattered-signal power PS in the 60-MHz
band was determined from the formula

(7)

and the signal delay time td (in s) was calculated as

(8)

To measure the signal spectrum, we interrupted the
amplitude modulation of the probing radiation for 2 ms
(this is seen in the phase curves in Fig. 2). To compen-
sate the phase shift due to the propagation of the scat-
tered and probing waves through the transmission lines,
the system was calibrated in the absence of a plasma. In
the ES section, the probing wave was launched from the
horn situated at the high-field side into the horn situated
at the opposite side. For calibration, we used signals at
the probing frequency (Fig. 2a) and the frequency
shifted by 360 MHz from the probing frequency with
the help of an imitator. The phase between two outputs
of the 10-MHz generator was tuned such that the signal
in the sinusoidal channel became zero (Fig. 2a). In the
LH section, the calibration was performed using a sig-
nal at the probing frequency that was reflected from the
chamber wall. In the presence of the plasma, the ratio
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Fig. 2. Frequency spectra and phase curves of the signal measured during the calibration of the system at the probing frequency
(a) without a plasma and (b) by scattering in the plasma at the magnetron frequency.
between the amplitudes in the sinusoidal and cosinuso-
idal channels changed (Fig. 2b) and the LH-wave spec-
trum was substantially broader than the magnetron
spectrum.

3. DISCUSSION OF THE EXPERIMENTAL 
RESULTS

In the experiments, we studied how the frequency
spectrum, the power PS, and the delay time td of the ES
signal within the 60-MHz frequency band depended on
the toroidal magnetic field, which was varied from shot
to shot. These dependences were constructed for both
the red and blue satellites corresponding to the propa-
gation of LH waves into and out of the plasma, respec-
tively. The delay time td derived from the values of the
signals in the quadrature channels was recalculated by
formula (5) to the corresponding value of the radial
wavenumber q. If the obtained values turned out to be
close to the reciprocal of the electron Larmor radius,
they were refined with the exact expression (4). The
dependences on the magnetic field were represented in
terms of the electron density in the UHR point, nUH, cal-
culated from relationship (1), taking into account the
current values of the density and field in the discharge.
It should be noted that the local density value at the
scattering point xs(q) given by relation (3) coincided
with nUH only for fluctuations with wavenumbers satis-
fying inequality (2). In the figures, we present the val-
ues of the power and delay time at the beginning (cir-
cles) and end (triangles) of the microwave pulse. The
measurements for the red and blue satellites are shown
by open and closed symbols, respectively. The fre-
quency spectra were constructed as functions of the
average value of nUH measured over a 2-ms interval in
the middle of the microwave pulse.

Figure 3 shows the results of the measurements of q
and PS in the ES section in the regime with a low den-
sity (ne(0) = 7 × 1012 cm–3 before the microwave pulse)
and low LH power (PLH = 22 kW). As can be seen in
Fig. 3a, the values of the radial wavenumber of LH
oscillations for both spectral satellites increase as nUH
increases, i.e., as the UHR resonance is shifted deeper
into the plasma. For nUH = 3 × 1012 cm–3, the wavenum-
bers reach a maximum value of q = 400 cm–1 and, then,
arrive at a level of q = 200–150 cm–1 at nUH = (3.5–5.5) ×
1012 cm–3. At lower densities in the UHR region (nUH <
3 × 1012 cm–3), the ES powers PS for the red and blue
components of the spectrum (Fig. 3b) are comparable
to each other. However, at higher densities in the UHR
region, the red component is dominant and the power of
the UH wave propagating into the plasma is almost
three times as large as that of the wave propagating
toward the plasma boundary. In the dependence of PS

on nUH for the red satellite, we can see a peak in the
region nUH = 3.5 × 1012 cm–3, where the wavenumbers
fall down to a level of q = 200 cm–1. Under the same
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002
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Fig. 3. (a) Radial wavenumbers and (b) the scattered-signal
power in the ES section of the tokamak for a discharge with
ne(0) = 7 × 1012 cm–3 and PLH = 22 kW.
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conditions, the 3-MHz wide UH line shifted by 360 MHz
toward lower frequencies from the probing frequency is
dominant in the spectrum (Fig. 4a); however, its inten-
sity decreases at lower values of nUH. At nUH < 3 ×
1012 cm–3, the intensity of this line becomes comparable
with that of the LH line shifted by 360 MHz toward
higher frequencies (Fig. 4b) and the width of the scat-
tering spectrum increases substantially. The large
wavenumbers observed in the experiment cannot be
assigned to LH waves, because they are possible only
for ion Bernstein waves (q = 400 cm–1) or the waves in
the linear conversion regions (q = 200–150 cm–1). The
observations described above may be explained on the
assumption that, for nUH > 3 × 1012 cm–3 (B < 1.0 T), the
scattering point is located in the region of the main flux
of the wave energy reaching the LHR surface. To con-
firm this assumption, we performed a one-dimensional
analysis of the dispersion curves of the LH, ion Bern-
stein, and probing extraordinary waves. These depen-
dences are presented in Fig. 5 by the dotted lines for the
LH (curves 2) and ion Bernstein (curves 3) waves with
N|| = 7 and by the solid line for the difference between
the radial components of the wave vectors of the inci-
dent and scattered waves, ki – ks (curves 1). It is seen
that, for the density nUH = 3.5 × 1012 cm–3 (B = 0.95 T),
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the Bragg resonance condition (3) for the radial compo-
nents of the wave vectors, ki – ks = q, is satisfied for q =
130, 180, and 370 cm–1 on the ion Bernstein branch
(Fig. 5a). For a higher density in the UHR point, nUH =
4.7 × 1012 cm–3 (or a lower magnetic field of B = 0.85 T),
the Bragg resonance conditions can be satisfied only in
the LHR region and on the “warm” branch; in this case,
we have q . 100 cm–1 (Fig. 5b). For a higher central
density, ne(0) = 1.7 × 1013 cm–3, and a magnetic field as
low as B = 0.85 T, the Bragg resonance condition can
be satisfied not only for the LH wave, but also on the
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Fig. 5. (1) The difference between the radial components of
the wave vectors of the incident and scattered waves and the
dispersion curves of (2) LH and (3) ion Bernstein waves for:
(a) ne(0) = 7 × 1012 cm–3 and B = 0.95 T, (b) ne(0) = 7 ×
1012 cm–3 and B = 0.85 T, and (c) ne(0) = 1.7 × 1013 cm–3

and B = 0.85 T.
warm branch at q = 150 and 200 cm–1 (Fig. 5c). Strictly
speaking, the analysis performed is valid only when the
wave propagates in the radial direction, which, for LH
waves, takes place only after linear conversion. Hence,
although both values of the wavenumbers are close to
those in Fig. 3a, it necessary to verify that the linear
conversion of the LH wave at B = 0.95 T can occur in
the ES section. The LH ray trajectories in the (ϕ, θ)
plane (where ϕ and θ are the toroidal and poloidal
angles, respectively) calculated for different magnetic
fields (Fig. 6) confirm that this situation is quite possi-
ble. As is seen, the lengths of the ray trajectories start-
ing in the LH section with the initial value of the refrac-
tive index N|| = 7 are very short (Fig. 6a). These trajec-
tories make only a half toroidal revolution and end
when the wave is absorbed in the LHR region in the ES
section. The segment of the ray trajectory representing
the warm LH mode propagating outward and the Bern-
stein harmonic traveling into the plasma column is ori-
ented radially. This segment is projected into a point on
the (ϕ, θ) plane. When calculating the ray trajectories at
the edge of the discharge, we assumed that, besides pro-
tons, the plasma also contains completely ionized nitro-
gen ions. The value of the effective charge number in
this case was taken to be equal to Zeff = 1.8. This value
is close to the estimate given in [12] for a low-density
FT-1 discharge, although it is lower than the values typ-
ical of this tokamak. Note that the waves starting with
lower values of N|| have longer trajectories which can
finish even beyond the ES section. At lower values of
the magnetic field, when the LHR region is shifted
deeper into the plasma, these trajectories make a com-
plete revolution and reach the LH section.

It should be noted that, according to the ray-tracing
calculations, the ES signal at strong magnetic fields and
low values of nUH was observed well apart from the res-
onance cone of LH waves emitted by the antenna. This
signal is probably produced via ES by the LH waves
that have changed their propagation direction substan-
tially after scattering repeatedly by low-frequency tur-
bulent density fluctuations. This hypothesis is indi-
rectly confirmed by the broad scattering spectra and the
fact that the red and blue satellites have nearly the same
amplitudes.

Figure 7 shows the results of the measurements of q
and PS in the LH section under the same operating con-
ditions. The values of the wavenumbers observed in
this section are somewhat lower than those in the ES
section; however, their dependences on nUH (Fig. 7a)
are similar to those shown in Fig. 3a for the ES section.
At the same time, the behavior of the power of the scat-
tered signal turned out to be different. The PS value
increases as the UHR region approaches the LH
antenna, is minimum at nUH = 3 × 1012 cm–3, and then
increases monotonically as nUH increases to the maxi-
mum value attainable in the experiment. Outside the ES
section, the ES signal powers for the red and blue satel-
lites were almost the same everywhere, except for the
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002
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narrow region near the LH antenna, where the red sat-
ellite was higher than the blue one by 30–50%. Figure 8
shows the frequency spectra of the ES signal for the LH
section. In the red component of the spectrum (Fig. 8a),
the LH line at a frequency of 360 MHz does not show
up against the background of many other lines observed
over a certain range of nUH (e.g., of the radial coordi-
nate). In the blue component (Fig. 8b), the 360-MHz
LH line is dominant in the spectrum for nUH > 2.5 ×
1012 cm–3. As a whole, this line is noticeably broader
(up to 10 MHz in the half-width). At nUH > 4.5 ×
1012 cm–3, the amplitude of the red satellite is lower
than that of the blue satellite.

The described features of the ES signal in the LH
section can be explained qualitatively based on the ray-
tracing analysis. First of all, the increase in the signal in
the vicinity of the LH antenna may be attributed to the
scattering by the intense LH wave just detached from
the antenna. This is also supported by the fact that, at
the plasma edge, the relatively low q value can be
assigned immediately to the LH wave. The increase in
the signal at low magnetic fields and, accordingly, high
values of nUH, are explained as follows. In this case, the
LHR occurs deeper in the plasma and, in the LH sec-
tion, the possibility exists of the linear conversion of
waves with low longitudinal velocities (3 < N|| < 5),
which appear to be dominant in the spectrum excited by
the antenna. At high magnetic fields, these waves are
converted before they make a complete toroidal revolu-
tion, as is shown in Fig. 6a for a wave with N|| = 7. In
these measurements, the higher wavenumbers were
observed, which may be explained by the displacement
of the UHR region toward the plasma edge and, as a
consequence, the higher wavenumbers of the incident
and scattered waves in the this region (Fig. 5c). Note
that, as in the case of Fig. 3, the scattering spectra are
observed far from the calculated position of the reso-
nance cone of the LH wave; the plausible explanation is
that, in the plasma, there are LH waves that have been
scattered repeatedly by turbulent density fluctuations
and do not have any definite propagation direction.

Figure 9 presents the results of the measurements of
q and PS in the ES section for a discharge with the same
value of the LH power PLH = 22 kW, but with a higher
density before the microwave pulse (ne(0) = 1.3 ×
1013 cm–3). In this case, somewhat lower (in compari-
son with the ES section) radial wavenumbers may be
explained by the lower values of the longitudinal
refractive index for LH waves arriving at the LH section
after a complete toroidal revolution. As the density in
the UHR region increases, the wavenumbers (Fig. 9a)
increase to a maximum level of q = 550 cm–1 at nUH =
3 × 1012 cm–3 and, then, decrease to q = 350–250 cm–1

at nUH = (4.2–5.5) × 1012 cm–3. The ES signal power PS

for the red spectral component is higher than that for
the blue one (Fig. 9b) by only 30–40% for nUH > 4.2 ×
1012 cm–3 (B < 0.90 T). For the lower values of nUH, the
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Fig. 6. Projections of LH ray trajectories starting in the LH
section (a) for the initial value of the refractive index N|| = 7
in a discharge with an initial (before the microwave pulse)
central density of ne(0) = 7 × 1012 cm–3 and (b) for N|| = 3

in a discharge with ne(0) = 1.3 × 1013 cm–3.

Fig. 7. (a) Radial wavenumbers and (b) the scattered-signal
power in the LH section of the tokamak for a discharge with
ne(0) = 7 × 1012 cm–3 and PLH = 22 kW.
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Fig. 9. (a) Radial wavenumbers and (b) the scattered-signal
power in the ES section of the tokamak for a discharge with
ne(0) = 1.3 × 1013 cm–3 and PLH = 22 kW.
difference is even smaller. In comparison with Fig. 3b,
the maximum of PS for the red spectral component is
shifted to the range nUH = 4.5 × 1012 cm–3 (B = 0.87 T),
nearer to the maximum possible values of nUH. The fre-
quency spectra for the red and blue satellites are shown
in Fig. 10. The 360-MHz line is well pronounced in
these spectra. The amplitude of this line (which corre-
sponds to the LH wave) in the red satellite (Fig. 10a)
dominates over the blue satellite (Fig. 10b) only at
nUH > 3.8 × 1012 cm–3 (B < 0.93 T).

The ray-tracing analysis shows that, since, in this
case, the LHR region is located nearer to the plasma
edge, the waves corresponding to the high values of N||
are converted not reaching the ES section. This is true
for N|| = 7 at any magnetic field permitting the use of the
ES diagnostics. Calculations performed for N|| = 3 show
(Fig. 6b) that the ray trajectories arrive at the ES section
only at B < 0.9 T. These calculations confirm qualita-
tively that the spectrum can contain LH waves such that
ES in the LHR region occurs in the ES section and also
show that these waves are absent in the LH section. For
the LH section, this conclusion is confirmed by the rel-
evant measurements described below.

The nUH dependences of the wavenumbers and the
ES signal power measured in the LH section under the
same operating conditions are similar to those in Fig. 7.
The values of the wavenumbers at the plasma edge do
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002
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Fig. 10. Spectra of the scattered signal for the (a) red and (b) blue satellites as functions of nUH in the ES section of the tokamak for

a discharge with ne(0) = 1.3 × 1013 cm–3 and PLH = 22 kW.
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Fig. 11. (a) Radial wavenumbers and (b) the scattered-sig-
nal power in the ES section of the tokamak for a discharge
with ne(0) = 7 × 1012 cm–3 and PLH = 50 kW.
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a discharge with ne(0) = 1.3 × 1013 cm–3 and PLH = 50 kW.
not exceed q = 150 cm–1. At nUH = 2.5 × 1012 cm–3, the
wavenumbers increase sharply up to a level of q =
550 cm–1 and, then, decrease gradually to q = 200 cm–1

at nUH = 5.5 × 1012 cm–3. The level of the ES signal
power and its dependence on nUH are the same for the
red and blue satellites. At nUH < 2.5 × 1012 cm–3, the sig-
nal increases as the antenna is approached. After pass-
ing a minimum at nUH = 2.5 × 1012 cm–3, the value of PS

increases monotonically as nUH increases to its maxi-
mum value. The frequency spectra at the red and blue
sides appear to have nearly the same amplitudes, and
both spectra have no dominant lines at the pumping fre-
quency 360 MHz.

Figure 11 shows the results of the measurements for
the ES section in a discharge with a low density before
the microwave pulse (ne(0) = 7 × 1012 cm–3), but with a
high power (PLH = 50 kW). As a whole, this experiment
is characterized by the higher wavenumber values.
After passing through a maximum value of q = 500 cm–1

at nUH = 3 × 1012 cm–3, the wavenumbers (see Fig. 11a)
decrease to a level of q = 270 cm–1 more gradually than
in Figs. 3b and 9b. The increase in the wavenumbers by
the end of the microwave pulse seems to be analogous
to the effect observed when comparing Figs. 3a and 9a
and may be explained by the fact that the density
increases to ne(0) = 1.2 × 1013 cm–3 during the high-
power microwave pulse. The dependences of PS on nUH
for both satellites are very similar. By the end of the
microwave pulse, the amplitude of the signal increases
in both spectral components. The frequency spectra,
which are very similar for the red and blue satellites,
become somewhat broader, whereas the 360-MHz line
does not show up.

As the LH power increases, the wavenumbers
observed in the LH section are also larger (Fig. 12a)
than those in Fig. 7a. The wavenumbers of LH oscilla-
tions near the antenna are q = 180 cm–1; they increase
sharply to q = 550 cm–1 at nUH = 3 × 1012 cm–3 and, then,
decrease to q = 200 cm–1 at nUH = 5.5 × 1012 cm–3. As in
the ES section, the wavenumbers increase by the end of
the microwave pulse. The dependences of the ES signal
power for both satellites (Fig. 12b) are close to each
other. As in Fig. 7b, the value of PS increases as the
antenna is approached, is minimum at nUH = 2.5 ×
1012 cm–3, and, then, increases monotonically as the
density in the UHR region increases to its maximum
value. In the frequency spectra, which were similar for
both satellites, the 360-MHz line does not show up.

In a discharge with a high LH power (PLH = 50 kW)
and a high density before the microwave pulse (ne(0) =
1.3 × 1013 cm–3), the wavenumbers observed in the ES
section turned out to be even higher and attained a value
of q = 760 cm–1 and the wavenumbers in the LH section
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002
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for a discharge with ne(0) = 1.3 × 1013 cm–3 and PLH = 50 kW.
attained q = 730 cm–1. As in the LH section (Fig. 12a),
the wavenumbers near the antenna were relatively low
(q = 180 cm–1), increased sharply as nUH increased, and
then decreased gradually to q = 180 cm–1 at nUH = 5.5 ×
1012 cm–3. It should be noted that such a decrease was
observed in both experimental sections at all combina-
tions of the LH power and the electron density in the
discharge. Most probably, this effect is due to the fact
that the values of ki – ks decrease in the plasma core (as
is seen in Fig. 5b) and the high values of q can no longer
be measured. The dependences of PS on the nUH were
close in each section. The behavior of the ES signal
power remains the same as in a discharge with a low
density and a high microwave power (Figs. 11b, 12b).
Figure 13 illustrates the frequency spectra for the ES
section. It is seen that the spectra of the red (Fig. 13a)
and blue (Fig. 13b) satellites differ insignificantly.
These spectra contain a set of narrow lines, whose
amplitudes are comparable with or exceed that of the
360-MHz line. The spectral lines are observed over a
wide range of nUH and their positions are spaced by a
frequency close to the ion cyclotron frequency. Figure 14
shows the spectra measured in the ES section under the
same operating conditions. There is no substantial dif-
ference between the satellites. The spectral lines with
the highest amplitudes correspond to the frequencies
different from 360 MHz. In contrast to regime with a
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002
low density and low LH power (Fig. 8a), these lines are
observed over a wider range of nUH and, hence, exist in
a larger spatial region. The features of the frequency
spectra observed and the dependences of PS and q on
nUH confirm to the fact that, as the microwave power
and ne(0) increase, the picture of the wave propagation
predicted by linear theory fails to hold and the role of
nonlinear effects becomes important.

4. CONCLUSION

The study of the propagation of LH waves in a toka-
mak plasma by means of a specially elaborated time-of-
flight diagnostics based on the backscattering of micro-
waves in the UHR region shows the efficiency of this
method. The following features of the propagation and
conversion of LH waves were observed (some of them
being observed for the first time):

At the plasma edge, far from the calculated position
of the resonance cone of the LH wave, its frequency
spectrum turned out to be very broad (broader than
10 MHz) and no dominant direction of the energy prop-
agation was detected. The radial wavelength of these
oscillations, which are probably produced through the
scattering by spontaneous density fluctuations, is 0.06–
0.12 cm; this corresponds to very slow LH waves with
N|| > 15.
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In a discharge with a low plasma density and a low
microwave power, we observed the effects indicating
that the propagation and transformation of LH waves
occurred in accordance with linear theory. The fre-
quency spectrum appeared to be narrow, and its width
was no larger than 3 MHz. The wave propagated pre-
dominantly into the plasma. The radial wavelength, in
this case, was equal to 0.03 cm, which corresponded to
the region of the linear conversion of the LH wave into
a warm mode. In addition, this was the first time in
tokamak experiments that we could observe small-
scale Bernstein waves at high harmonics of the ion
cyclotron frequency; these waves were produced via
liner conversion in the LHR region. The radial wave-
length corresponding to these waves amounted to
0.010–0.015 cm.

At a higher microwave power and higher plasma
density in the discharge, the picture of the LH wave
propagation was somewhat different from that pre-
dicted by linear theory. The ES frequency spectra in the
vicinity of the pumping frequency became broader, and
the lines shifted by a frequency close to the ion cyclo-
tron frequency appeared in these spectra. The values of
the wavenumbers nearly doubled. For the short-wave-
length component of the LH wave, which could be
observed with the help of the ES diagnostics, no domi-
nant direction of the energy flux was observed. All
these observations provide evidence that, even at a rel-
atively low input microwave power of 50 kW, the non-
linear effects play a significant role in the propagation
and conversion of LH waves.
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Abstract—Effective boundary conditions for the electromagnetic field of the slow surface waves of a thin-
walled annular plasma in a metal waveguide are derived and justified. With the boundary conditions obtained,
there is no need to solve field equations in the plasma region of the waveguide, so that the dispersion properties
of plasma waveguides can be investigated analytically for an arbitrary strength of the external magnetic field.
Examples are given that show how to use the effective boundary conditions in order to describe surface waves
with a normal and an anomalous dispersion. The boundary conditions are then employed to construct a theory
of the radiative Cherenkov instabilities of a thin-walled annular electron beam in a waveguide with a thin-
walled annular plasma. The single-particle and collective Cherenkov effects associated with low- and high-fre-
quency surface waves in an arbitrary external magnetic field are studied analytically. The method of the effec-
tive boundary conditions is justified in the context of application to the problems of plasma relativistic micro-
wave electronics. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The theoretical investigation of electromagnetic
waves in a circular waveguide in which the radial
plasma profile is a piecewise constant function and the
plasma is affected by an external magnetic field is a
complicated and laborious task. The reason is that the
electromagnetic field in the plasma region of the
waveguide is represented as the superposition of four
cylindrical functions with complex arguments, which
results in an extremely complicated dispersion relation
for the wave spectra [1–3]. Even in the simplest case of
a waveguide completely filled with a plasma, a compre-
hensive examination of the spectra can be conducted
only by numerical methods [4]. For a waveguide with
an annular plasma (this case is very important from a
practical standpoint), the dispersion relation is difficult
not only to solve but even to write [5]. It is because of
the complexity of description that the theory of the
excitation of electromagnetic waves by an electron
beam in a plasma-filled waveguide in an external mag-
netic field of finite strength is still far from being fully
elaborated. However, the development of plasma rela-
tivistic microwave electronics created a demand for
such a theory. Another important case is that of a
waveguide with a thin-walled annular plasma. In this
case, there is no need to solve the field equations in the
plasma region and some types of plasma waves can be
described analytically by incorporating the thin-walled
annular plasma only into certain effective boundary
conditions for the field equations. These boundary con-
1063-780X/02/2806- $22.00 © 20501
ditions and their application to plasma microwave elec-
tronics are the subject of the present paper.

1. FORMULATION OF THE PROBLEM 
AND BASIC RELATIONSHIPS

We consider a vacuum metal waveguide with a cir-
cular cross section of radius R. Let there be a thin annu-
lar plasma column with the mean radius rp and the
thickness ∆p ! rp < R inside the waveguide. In other
words, the plasma that fills the waveguide is treated as
a tube with a thin wall. As was mentioned above, a com-
plete mathematical description of such a plasma
waveguide is extremely complicated because of the
many different types of plasma and electromagnetic
waves. Among these are surface plasma waves with
phase velocities lower than the speed of light, two of
which are especially interesting from the standpoint of
plasma relativistic microwave electronics [6–8]. The
objective of the present study is to construct a theory of
these two waves by including the plasma in the equa-
tions for electromagnetic fields in vacuum through cer-
tain effective boundary conditions. This approach
makes it possible to substantially simplify not only the
theory of surface plasma waves but also the theory of
their excitation by high-density relativistic electron
beams. Below, the following three systems will be stud-
ied separately: a waveguide in an infinitely strong
external longitudinal magnetic field, a waveguide in the
absence of a magnetic field, and a waveguide in an
002 MAIK “Nauka/Interperiodica”
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external longitudinal magnetic field of finite strength.
Although the first two systems are particular cases of
the third one, they are of considerable practical and
methodological interest in their own right.

We introduce cylindrical coordinates {r, ϕ, z} in
such a way that the z-axis coincides with the symmetry
axis of the waveguide. We restrict ourselves to con-
sidering azimuthally symmetric waves and represent
the electromagnetic field components in the form
F(r)exp(−iωt + ikzz), where ω is the angular frequency,
kz is the longitudinal wavenumber, and F(r) is the
amplitude of any component of the field vectors. The
field components in the vacuum regions of the
waveguide (i.e., at r < rp – ∆p/2 and rp + ∆p/2 < r < R)
are denoted by F(r) ≡ F (0)(r). Analogously, the field
components in the plasma region (rp – ∆p /2 < r < rp +
∆p/2) are denoted by F(r) ≡ F (p)(r).

We assume that any electromagnetic field compo-
nent F(r) is continuous at the boundaries between dif-
ferent mediums. In the case at hand, these are the inner
boundary r1 = rp – ∆p/2 of the plasma tube and its outer
boundary r2 = rp + ∆p/2. The conditions for the field
component to be continuous at the plasma boundaries
have the form

(1.1)

We retain only the terms that are linear in the small
annular plasma thickness ∆p and use the expansions

(1.2)

As a result, we obtain from conditions (1.1) the rela-
tionship

(1.3)

It is well known that, in the vacuum regions of the
waveguide, the electromagnetic field components are
described by linear combinations of cylinder functions
of the argument χ0r, where

(1.4)

Under the strong inequality

(1.5)

we take into account the smoothness of cylinder func-
tions and write the approximate relationship

(1.6)
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which holds exactly in the limit ∆p  0. Hence, from
relationships (1.3) and (1.6), we finally obtain

(1.7)

Relationship (1.7) is a local one, because it relates the
field components at the same point rp. Consequently,
relationship (1.7) can be used as a boundary condition.
However, in this way, the necessary formal transforma-
tions of this relationship should rest on a constructive
physical approach. A description of the plasma in terms
of the boundary condition of the form (1.7) will be
called an “infinitely thin plasma approximation.” It
should be stressed that this approximation, as well as
the basic expansion (1.2), removes from consideration
electromagnetic waves whose fields are localized in the
plasma volume. That is why we restrict ourselves to
considering surface waves. However, it is precisely
these waves that are of interest in the context of appli-
cation to plasma microwave electronics.

Note that, if the right-hand side of relationship (1.7)
equals zero, then the corresponding field component is
continuous at an infinitely thin plasma cylinder. How-
ever, this does not mean that the field component is not
perturbed by the plasma in the waveguide: there may be
a discontinuity in its radial derivative. If the right-hand
side of relationship (1.7) is nonzero, then the field com-
ponent at the plasma cylinder is discontinuous. The dis-
continuity should not be understood in the strict sense
(i.e., as a discontinuity in a continuous physical quan-
tity), but merely as a strong change of the field compo-
nent on the radial distance ∆p across the plasma region
in the waveguide. For a small plasma thickness ∆p, such
a strong change in the field component may conve-
niently be regarded as a discontinuity.

2. INFINITELY STRONG EXTERNAL 
MAGNETIC FIELD

Here, we consider a waveguide in an infinitely
strong external magnetic field. We are interested in
E-waves, whose electromagnetic field has the only non-
zero components Ez , Er , and Bϕ, which satisfy the Max-
well equations [9]

(2.1)

where ε|| = 1 – /ω2 is the longitudinal dielectric func-
tion of the plasma and ωp is the electron Langmuir fre-
quency. In the vacuum regions of the waveguide, we
should set ε|| = 1.
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Equations (2.1) yield, first, the expressions for the
components Er and Bϕ,

(2.2)

and, second, the equation for the component Ez,

(2.3)

Equation (2.3) with the boundary condition Ez(R) = 0 at
the metal waveguide wall constitutes the eigenvalue
problem for determining the spectra of E-waves. The
solvability condition for this problem yields the follow-
ing exact dispersion relation for the wave spectra ω =
ω(kz) [10]:

(2.4)

Here, we have introduced the notation

(2.5)

where Jl(x) and Yl(x) are Bessel and Neumann func-
tions, Il(x) are modified Bessel functions of the first
kind, and Kl(x) are lth order modified Bessel functions
of the second kind. The dispersion relation (2.4) not
only describes the frequency spectra but also makes it
possible to determine the transverse structure of the
waveguide field. Thus, the expressions for the compo-
nents {Ez(r), Er(r), Bϕ(r)} can readily be obtained by
substituting the eigenfrequencies ω(kz) found from the
dispersion relation (2.4) into Eqs. (2.3) and (2.2). Since
these expressions are very involved, we do not write
them out here and restrict ourselves to the relevant
graphic representations obtained by solving the exact
dispersion relation (2.4) numerically.

The results of a numerical solution of the exact dis-
persion relation (2.4) are illustrated in Fig. 1, in which
curve 1 shows the dispersion law for the slow (ω < kzc)
surface plasma wave in which we are interested here.
Figure 2 illustrates the r dependence of the electromag-
netic field components Ez, Er, and Bϕ calculated for this
wave at the point A on the dispersion curve in Fig. 1
(kz = 6 cm–1). The corresponding calculations were car-
ried out for the following parameter values of the
plasma waveguide: R = 2 cm, ωp = 1011 rad s–1, rp = 1 cm,
and ∆p = 0.1 cm. Figure 1 also shows the “light” straight
line ω = kzc and curve 1‡, with which we will be con-
cerned below. In Fig. 1 (and in subsequent analogous
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figures), the frequency is measured in 1010 rad s–1 and
the wavenumber is expressed in inverse centimeters.
Note that here we are interested only in the so-called
cable plasma wave, whose frequency is the highest
among all slow (ω < kzc) plasma waves [10, 11]. This
wave has the highest phase velocity, and its transverse
fundamental mode has the smallest transverse wave-
number. For ∆p ! rp, other plasma waves have far lower
frequencies and thus are of no interest for the purposes
of plasma relativistic microwave electronics. Recall
also that their fields are localized in the plasma region
of the waveguide, so that they cannot, in principle, be
described by expansions (1.2).

From Fig. 2, we can see that, in the plasma region,
the component Ez changes relatively insignificantly
(Fig. 2a). Therefore, for the wave at hand, we have

(2.6)

On the contrary, the component Bϕ (as well as Er)
changes strongly, which allows us to set

(2.7)

The field structure just described is governed by the
features of plasma polarization during the excitation of
a cable plasma wave. In an infinitely strong magnetic
field, the plasma electrons experience no transverse
motion, so that the plasma is polarized only by longitu-
dinal electron motion. In this case, it is only the space
charge perturbations that are produced in the plasma
volume and no surface charges are induced on the inner
and outer boundaries of the plasma tube. In the lan-
guage of potential theory, the plasma behaves as if it
were a conventional layer. Mathematically, this circum-
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Fig. 1. Dispersion curves of the low-frequency slow surface
wave of a thin-walled annular plasma in a waveguide in an
infinitely strong external magnetic field: (1) solution to the
exact dispersion relation and (1a) solution in the infinitely
thin plasma approximation.
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Fig. 2. Components Ez, Er, and Bϕ of the electromagnetic field of a low-frequency surface wave, calculated at point A on the disper-
sion curve 1 from Fig. 1.
stance is reflected by the limiting expressions (2.6) and
(2.7).

From expressions (1.7) and (2.6), we obtain the first
boundary condition for the field equations in vacuum:

(2.8)

From expressions (1.7) and (2.7) and the second of
expressions (2.2), we obtain the relationship

(2.9)

The second derivative of  in this relationship can be
determined from Eq. (2.3) with allowance for the ine-
quality ∆p ! rp:

(2.10)

Substituting expression (2.10) into relationship (2.9)
gives

(2.11)

The limit on the right-hand side of equality (2.11) is
calculated to be

(2.12)

When calculating limit (2.12), we took into account the

following two circumstances: first, the product ∆p  is
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proportional to the total number of plasma electrons per
unit length and thus is constant and, second, the conti-
nuity of the tangential component of the field and rela-

tionships (2.8) imply that the limiting value of  is

(rp). We thus arrive at the following effective
boundary conditions for an infinitely thin plasma cylin-
der in the case of excitation of the cable plasma wave of
interest to us:

(2.13)

Note that the second of the boundary conditions (2.13)
is usually obtained by making the replacement

(2.14)

in the longitudinal dielectric function ε|| and then by
integrating Eq. (2.3) over r in the vicinity of the plasma
[10, 11].

However, the effective boundary conditions in the
infinitely thin plasma approximation cannot always be
obtained simply by integrating the field equations: in
this way, it is often necessary to involve additional
physical considerations.

The significance of the effective boundary condi-
tions (2.13) lies in the fact that they greatly simplify
mathematical matters, because there is no need to solve
field equations in the plasma region of the waveguide.
To be specific, let us derive the dispersion relation of
the plasma wave in the infinitely thin plasma approxi-
mation and compare the resulting dispersion curve with
the corresponding dispersion curve shown in Fig. 1. We
also analyze the amount of information that is lost in
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describing the plasma on the basis of the effective
boundary conditions, or, in other words, we determine
the extent to which the infinitely thin plasma approxima-
tion is inaccurate. In the vacuum regions (where ε|| = 1),
Eq. (2.3) has the solution

(2.15)

Substituting solution (2.15) into the boundary condi-
tions (2.13) and eliminating the constants A and B, we
arrive at the familiar dispersion relation for determining
the frequency spectra of the waves in a waveguide with
an infinitely thin plasma tube in an infinitely strong
external magnetic field [10, 11]:

(2.16)

The dispersion curve ω(kz) shown by heavier curve 1‡
in Fig. 1 was calculated by solving the dispersion rela-
tion (2.16) for the same parameter values of the plasma
and of the waveguide as those used to obtain the disper-
sion curve 1 by solving the exact dispersion relation
(2.4). The two curves are seen to coincide in the long-
wavelength range, in which inequality (1.5) is satisfied.
However, when this inequality fails to hold, the disper-
sion curves deviate from one another. In the limit of
large kz values, the curve calculated from the exact dis-
persion relation asymptotically approaches ωp, because
the wave field becomes locked in the plasma volume.
On the contrary, as kz increases, the dispersion curve
obtained in the infinitely thin plasma approximation
approaches infinity according to the law

. (2.17)

It is clear that, for kz∆p > 1, dependence (2.17) proved
to be incorrect. This is the main drawback of the infi-
nitely thin plasma approximation. This approximation
fails to describe the structuring of the field distribution
in the plasma volume. However, in the short-wave-
length range (kz∆p > 1), this structuring is important. On
the other hand, the model of an infinitely thin annular
plasma is valid under inequality (1.5), i.e., in the case
that is of primary interest for the purposes of plasma
relativistic microwave electronics.

3. WAVEGUIDE IN THE ABSENCE
OF AN EXTERNAL MAGNETIC FIELD

Now, we proceed to the analysis of a waveguide in
the absence of an external magnetic field. We are again
interested in E-waves, whose electromagnetic field has
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the only nonzero components Ez , Er , and Bϕ, which sat-
isfy the Maxwell equations

(3.1)

where the transverse dielectric function ε⊥  = 1 – /ω2

of the plasma coincides with its longitudinal dielectric
function ε|| [9]. In Eqs. (3.1), we must set ε⊥  = ε|| = 1 in
the vacuum regions of the waveguide.

From Eqs. (2.1), we obtain the expressions for the
components Er and Bϕ,

(3.2)

and the equation for the component Ez,

(3.3)

where χ2 =  – ε⊥ ω2/c2. Equation (3.3) is supple-
mented with the conventional boundary condition
Ez(R) = 0. In the resulting eigenvalue problem, the dis-
persion relation for the spectra of the symmetric E-waves
in a waveguide with an annular plasma in the absence of
an external magnetic field has the form [9, 12]

(3.4)

Here, we have introduced the notation

(3.5)

Figure 3 shows the dispersion curves of slow (ω <
kzc) surface plasma waves. The curves were obtained by
solving Eq. (3.4) numerically for the following param-
eter values of the plasma waveguide: R = 2 cm, ωp =
1011 rad s–1, rp = 1 cm, and ∆p = 0.1 cm. We can see that
there are two surface waves: a low-frequency wave with
a normal dispersion (curve 1) and a high-frequency
wave whose dispersion becomes anomalous as kz

increases (curve 2). In the limit kz  ∞, the dispersion

curves both approach the frequency ωp/  [9, 12].
Figure 4 displays the r profiles of the components Ez ,
Er , and Bϕ of the electromagnetic field of the low-fre-
quency wave. The profiles were calculated at point A of
the dispersion curve 1 (kz = 6 cm–1).
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According to Fig. 4, the components of the electro-
magnetic field of the low-frequency wave on the whole
behave as the components of the wave field in the pres-
ence of an infinitely strong external magnetic field
(Fig. 2); certain differences are observed only in the
plasma region, but they are unimportant in view of the
small plasma thickness. Consequently, the low-fre-
quency wave satisfies relationships (2.6) and (2.7). As a
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Fig. 3. Dispersion curves of the slow surface waves of a
thin-walled annular plasma in a waveguide in the absence of
an external magnetic field. Curves 1 and 1‡ refer to a low-
frequency wave with a normal dispersion and were calcu-
lated by solving the exact dispersion relation and in the infi-
nitely thin plasma approximation, respectively. Curves 2
and 2a refer to a high-frequency wave with an anomalous
dispersion and were calculatedby solving the exact disper-
sion relation and in the infinitely thin plasma approxima-
tion, respectively.
result, writing relationship (1.7) for the components Ez

and Bϕ and using the second of expressions (3.2) and
Eq. (3.3), we arrive at the boundary conditions (2.13)
for the low-frequency wave.

Now, we consider a high-frequency surface plasma
wave with an anomalous dispersion (Fig. 3, curve 2).
The r profiles of the components Ez, Er , and Bϕ of the
electromagnetic field of this wave are depicted in
Fig. 5. The components were calculated at point B of
the dispersion curve 2 (kz = 6 cm–1). We can see that the
field structure in Fig. 5 differs radically from those in
Figs. 2 and 4. The component Ez changes strongly
across the plasma region (Fig. 5a). We can even say
that, over the radial distance ∆p, the component Ez

undergoes a jump, in contrast to the component Bϕ,
which is continuous across this radial interval (Fig. 5c).
The field structure just described is governed by the
features of plasma polarization in this wave. In the
absence of an external magnetic field, the plasma is
polarized primarily by transverse electron motion. The
excitation of a high-frequency surface wave gives rise
to surface charges of opposite sign on the boundaries of
the plasma tube, while the space charge inside the
plasma remains unperturbed. In the terminology of
potential theory, the plasma behaves as if it were a dou-
ble layer. Mathematically, this circumstance is reflected
by the limiting expressions

(3.6)

(3.7)

Formula (1.7), the second of expressions (3.2), and
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Fig. 4. Components Ez, Er, and Bϕ of the electromagnetic field of a low-frequency surface wave calculated at point A on the disper-
sion curve 1 from Fig. 3.
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Fig. 5. Components Ez, Er, and Bϕ of the electromagnetic field of a high-frequency surface wave calculated at point B on the dis-
persion curve 2 from Fig. 3.
relationship (3.7) yield one of the boundary conditions:

(3.8)

Let us calculate limit (3.6). First, using the second of
expressions (3.2), we transform this limit to

(3.9)

Then, taking into account the fact that the physical
component Bϕ is continuous, we substitute the vacuum

value (rp) into relationship (3.9) in order to express
it in terms of the derivative of Ez with respect to r. As a
result, we obtain

(3.10)

Since the derivative is finite, the limiting value (3.10)
vanishes, which indicates that there is no plasma in the
waveguide. In fact, for ∆p = 0, opposite surface charges
on the plasma boundaries merge and neutralize one
another by virtue of the plasma quasineutrality. Conse-
quently, the limiting transition in relationship (3.10)
should be understood as a decrease in the plasma thick-
ness to a value below which the infinitely thin plasma
approximation fails to hold:
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Further, we substitute relationship (3.10) into expres-
sion (1.7) and take into account relationship (3.11) and
boundary condition (3.8) to obtain the following final
boundary conditions for describing an infinitely thin
tube of an unmagnetized plasma in the case of excita-
tion of a high-frequency surface plasma wave with an
anomalous dispersion:

(3.12)

As an example, let us consider the dispersion prop-
erties of a high-frequency surface wave with an anom-
alous dispersion in the infinitely thin plasma approxi-
mation with no external magnetic field present. Insert-
ing solutions (2.15) into the boundary conditions (3.12)
and eliminating the constants A and B, we arrive at the
following dispersion relation for a high-frequency sur-
face wave with an anomalous dispersion:

(3.13)

As before, a low-frequency surface wave with a nor-
mal dispersion obeys dispersion relation (2.16). The
dispersion curves obtained by solving Eqs. (2.16) and
(3.13) are represented by heavier curves 1‡ and 2‡ in
Fig. 3. Recall that curves 1 and 2 in this figure were
obtained by solving the exact dispersion relation (3.4),

dEz
0( )

dr
------------ rp( )

 
 
 

0,=

Ez
0( )

rp( ){ } ∆ p
χ2

χ0
2ε⊥

-----------
dEz

0( )

dr
------------ rp( ).=

1
ωp

2

ω2
------–

=  rp∆pχ
2
I1

2 χ0rp( )
K1 χ0rp( )
I1 χ0rp( )
----------------------

K0 χ0R( )
I0 χ0R( )
---------------------+ .–



508 KUZELEV
i.e., without assuming that the wall of the plasma tube
is infinitely thin. We again find good agreement
between the results obtained in different ways. An espe-
cially impressive agreement is observed between the
results obtained for a high-frequency surface wave in
the frequency range ω < kzc. In this frequency range,
which is the most important for the purposes of plasma
relativistic microwave electronics, curves 2 and 2‡
coincide almost exactly. Moreover, they are qualita-
tively similar in shape even in the range ω > kzc, which
was not supposed to be included in our analysis. As for
the low-frequency surface wave, the correlation
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Fig. 6. Spectra of the surface waves of a thin-walled annular
plasma with a free surface: curves 1 and 2 were calculated
by solving the exact dispersion relation and curves 1‡ and
2‡ were obtained in the infinitely thin plasma approxima-
tion.

Fig. 7. Spectra of the surface waves of a thin-walled annular
plasma of high density: curves 1 and 2 were calculated by
solving the exact dispersion relation and curves 1‡ and 2‡
were obtained in the infinitely thin plasma approximation.
between curves 1 and 1‡ is even worse than that in the
case of an infinitely strong external magnetic field. This
stems from the fact that, when the finite plasma thick-
ness is taken into account, the frequency in the short-
wavelength limit approaches ωp in an infinitely strong

external magnetic field and ωp/  in the absence of the
external field. However, in the long-wavelength range,
the spectra of the low-frequency surface wave coincide
almost exactly.

Another piece of evidence that the infinitely thin
plasma approximation may be judged adequate is pro-
vided by Fig. 6, which displays the spectra of surface
waves in the case of a thin-walled annular plasma with
a free surface. This case corresponds to an infinitely
large radius R in Eqs. (2.16) and (3.13). The remaining
parameters of the waveguide and the plasma are the
same as in Figs. 1 and 3, and the notation in Fig. 6 is the
same as in Fig. 3. We see good coincidence between the
exact and approximate dispersion curves. It should be
emphasized that the infinitely thin plasma approxima-
tion correctly describes the following important prop-
erty of waves on the free surface of the plasma: in the
long-wavelength spectrum range, the velocity of these
waves is equal to the speed of light. As is clear from
Fig. 6, the high-frequency surface wave exhibits this
property in a wide range of kz values. This circumstance
also demonstrates the correctness of the approximation
at hand.

Up to this point, in speaking of high-frequency
waves excited on the surface of a thin-walled annular
plasma in the absence of an external magnetic field, we
have used the term anomalous dispersion. However,
this term is used not quite properly. Anomalous disper-
sion is significant only under the inequality

(3.14)

The calculations that have been discussed in deriving
boundary conditions (3.12) and whose results are illus-
trated in Figs. 3–5 were carried out for a waveguide
such that the parameter in inequality (3.14) was equal
to 1/3. As the plasma density increases, inequality
(3.14) becomes violated and anomalous dispersion
changes to a normal dispersion, or, more precisely, the
dispersion remains anomalous in the range of increas-
ingly short wavelengths, where the infinitely thin
plasma approximation fails to hold. That is why it is
expedient to consider the accuracy of this approxima-
tion in the long-wavelength range [see inequality (1.5)],
in which condition (3.14) is violated.

Figure 7 shows the dispersion curves calculated for
a plasma whose density is one order of magnitude
higher than in the previous figures, specifically, ωp = 3 ×
1011 rad s–1, the remaining parameters being the same as
in Fig. 3. One can see that, in the range of relativistic
wave phase velocities, which is important for the pur-
poses of plasma relativistic microwave electronics, the

2

∆p

c/ωp

----------- 1.<
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infinitely thin plasma approximation is quite accurate.
The dispersion of the waves described by curves 2 and
2‡ in Fig. 7 is anomalous at kz values larger than those
presented in the figure.

To conclude the discussion of the case of a thin-
walled annular plasma in the absence of an external
magnetic field, note that, unlike boundary conditions
(2.13), conditions (3.12) cannot be derived by integrat-
ing the field equations with a δ-shaped radial plasma
profile (2.14) over the radial coordinate r. In fact, inte-
gration of the third of Eqs. (3.1) leads to the relation-
ship

(3.15)

However, taking into account the fact that the plasma in
a high-frequency surface wave has the structure of a
double layer and relying on Fig. 5a, we can conclude

that (rp) = 0, in which case relationship (3.15) and
the second of expressions (3.2) yield the first of the
boundary conditions (3.12). Then, we integrate the sec-
ond of Eqs. (3.1) and take into account the finiteness of

Bϕ to obtain ∆p (rp) = 0. Consequently, since the

line plasma density is constant (∆p  = const), we deal
with one of the two possible cases: either the wave is
absent (which is certainly not the case) or the equality

(rp) = 0 holds (which contradicts Fig. 5b). The fact
that the boundary conditions (3.12) cannot be derived
by integrating the field equations with a δ-shaped radial
plasma profile has a simple physical meaning: the exist-
ence of a high-frequency surface wave is governed by
the processes on the boundaries of the plasma tube
rather than by the processes occurring in the plasma
volume.

4. EXTERNAL MAGNETIC FIELD 
OF FINITE STRENGTH

Here, we consider the general case of an external
magnetic field of arbitrary strength. The dielectric ten-
sor of a cold electron plasma in an external field has the
form [9, 12]

(4.1)

Here, i, j = r, ϕ, z;

(4.2)
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and Ωe is the electron cyclotron frequency. It is well
known that, at a finite frequency Ωe, the electromag-
netic field in a plasma waveguide does not split into
independent E- and H-type fields [9]. Consequently, we
must start with a complete set of equations for the six
components of the electromagnetic field:

(4.3)

Of these six equations, the first three are the equations
for components Ez, Er, and Bϕ of the E-type field and the
remaining three are the equations for components Bz,
Br, and Eϕ of the H-type field. In Eqs. (4.3), these two
triples of the components are coupled by the terms in
square brackets.

From Eqs. (4.3), transverse components Er, Eϕ, Br,
and Bϕ of the electromagnetic field in a waveguide are
expressed in terms of longitudinal components Ez and
Bz and their derivatives with respect to r as follows:

(4.4)

where χ2 =  – ε⊥ ω2/c2 and ξ = χ4 – g2ω4/c4. With
expressions (4.4), Eqs. (4.3) yield the following set of
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equations for longitudinal components Ez and Bz of the
electric and magnetic fields:

(4.5)
χ2 g
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Fig. 8. Dispersion curves of (1) the low-frequency and (2)
high-frequency surface waves of a thin-walled annular
plasma in a waveguide in an external magnetic field of finite
strength (the case Ωe > ωp corresponds to a strong magnetic
field). The curves were calculated by solving the exact dis-
persion relation.

Fig. 9. Exact dispersion curves of the low-frequency surface
waves of a thin-walled annular plasma in a waveguide in
magnetic fields of different strengths: (1) Ωe = ∞, (2) Ωe = 0,

(3) Ωe = 1.5 × 1011 rad s–1, and (4) Ωe = 0.5 × 1011 rad s–1.1 

1In Fig. 9, curves 3 and 4 should be smoothed out, because the
small-scale fluctuations in them are associated exclusively with
the computational process.
where ∆⊥  =  is the transverse Laplace operator

in cylindrical coordinates. Supplementing Eqs. (4.5)
with boundary conditions Ez(R) = Eϕ(R) = 0, we arrive
at the boundary-value problem, which is, however, very
complicated to solve analytically, especially in the case
of an annular plasma. Since the solution in the form of
a dispersion relation and expressions for the eigenfunc-
tions [3, 5] is extremely involved, we do not write out it
here, but the corresponding numerical results needed
for our analysis will be discussed below.

When studying the plasma waveguide in a magnetic
field of finite strength, we must distinguish between the
cases of a strong (Ωe > ωp) and a weak (Ωe < ωp) exter-
nal magnetic field. We start by considering the
waveguide in a strong magnetic field, because, in this
case, it is clearly possible to describe the limiting tran-
sition Ωe  ∞ to an infinitely strong external mag-
netic field. The characteristic dispersion curves for the
relevant surface plasma waves are shown in Fig. 8. The
curves were calculated by solving the exact dispersion
relation for a plasma waveguide with the parameters
R = 2 cm, rp = 1 cm, ∆p = 0.1 cm, ωp = 1011 rad s–1, and
Ωe = 1.5 × 1011 rad s–1. The waveguide at hand differs
from the waveguide with Ωe = ∞, whose dispersion
curves are given in Fig. 1, only in that the electron
cyclotron frequency is finite, the remaining parameters
being the same. In Fig. 8, curve 1 illustrates the disper-
sion of a low-frequency plasma wave and curve 2 refers
to a high-frequency plasma wave. Figure 1 differs from
Fig. 8 chiefly in that it contains no dispersion curve of
the high-frequency plasma wave. The explanation of
this circumstance is really quite clear: for Ωe  ∞, the
dispersion curve of the low-frequency plasma wave lies
at infinitely high frequencies. In Fig. 8, the dispersion
curve of the low-frequency plasma wave is of conven-
tional shape. For Ωe > ωp, this curve asymptotically
approaches ωp in the short-wavelength limit kz  ∞.
Of course, this asymptotic behavior cannot be
described by means of the infinitely thin plasma
approximation. Recall that this approximation and the
effective boundary conditions, which are the subject of
our analysis, are aimed at describing the plasma waves
in the opposite (long-wavelength) limit (1.5). Again, it
should be stressed that, among the variety of slow (ω <
kzc) surface plasma waves, we are interested here exclu-
sively in transverse fundamental modes, namely, the
low-frequency mode (curve 1) and the high-frequency
mode (curve 2). Let us first derive the effective bound-
ary conditions for the fields of the low-frequency
plasma wave in the infinitely thin plasma approxima-
tion.

The above exact dispersion curves of the low-fre-
quency wave (Figs. 1, 3, 8) are seen to depend weakly
on the strength of the external magnetic field in the
long-wavelength range. For illustrations, Fig. 9 shows
exact dispersion curves calculated for different Ωe val-

1
r
--- d

dr
-----r

d
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Fig. 10. Components (1) Ez, Er, and Bϕ and (2) Bz, Br, and Eϕ of the electromagnetic field of a low-frequency surface wave calcu-
lated at point A on dispersion curve 1 from Fig. 8 (the case Ωe > ωp corresponds to a strong magnetic field).
ues (the remaining parameter values being the same):
curve 1 is for Ωe = ∞, curve 2 is for Ωe = 0, and curve 3
is for Ωe = 1.5 × 1011 rad s–1 (curve 4 will be explained
below). At sufficiently small kz (in the example at hand,
for kz < 2–3 cm–1), the dispersion curves are seen to
coincide, while, at larger wavenumbers, they gradually
deviate from each other. This circumstance stems from
the small plasma thickness; moreover, the smaller the
thickness ∆p, the larger the interval of kz values where
the dispersion curves coincide. In a waveguide with a
thin-walled annular plasma, not only the dispersion of
the low-frequency waves depends weakly on the
strength of the external magnetic field but also the fields
of these waves are close in structure. Figure 10(1)
displays field components Ez, Er, and Bϕ calculated for
point A on dispersion curve 1 from Fig. 8 (kz = 6 cm–1).
There are essentially no visible differences between
this figure and Fig. 2, which refers to the case of an infi-
nitely strong external magnetic field. The finiteness of
the external magnetic field manifests itself primarily in
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002
the fact that the electromagnetic field of the low-fre-
quency plasma wave acquires the components of the H-
type field. Figure 10(2) depicts components Bz, Br, and
Eϕ calculated for the same point A on dispersion curve 1
from Fig. 8. A comparison of Fig. 10(2) with Fig. 10(1)
shows that components Bz, Br, and Eϕ of the H-type
field are small, because they are about two orders of
magnitude smaller than components Ez, Er, and Bϕ (the
units of measure in these figures are the same). Hence,
in the case of a thin-walled annular plasma, the disper-
sion and the field structure of the low-frequency surface
plasma wave in the long-wavelength spectral range
both depend weakly on the strength of the external
magnetic field: with a high degree of accuracy, they are
the same as those for Ωe = ∞. It should be emphasized
that this conclusion is valid only for a thin-walled annu-
lar plasma.

It is easy to understand why a low-frequency wave
on the surface of a thin-walled annular plasma is so
insensitive to the strength of the external magnetic
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field. From Fig. 10(1), we can see that, inside the
plasma, the component Er , which is perpendicular to
the external magnetic field, passes through zero and
changes sign; consequently, the efficiency with which
the component Er affects the charges in the plasma vol-
ume is, on the average, close to zero. But it is the Er

component that induces the azimuthal current in the
plasma and, as a consequence, gives rise to H-type
fields. Mathematically, this effect is described by the
term in square brackets in the next to last equation in set
(4.3). Because of the relationship Er ≈ 0, which is, on
the average, satisfied in the plasma volume, this term is
small, thereby explaining the smallness of components
Bz, Br, and Eϕ of the H-type field. From Fig. 10(1), we
can also see that, inside the plasma, component Ez,
which is aligned with the external magnetic field, is
large. Therefore, the motion of the charges in the
plasma is governed precisely by this component and is
clearly insensitive to the external magnetic field
(because the charges move just along its direction).
Consequently, in the long-wavelength limit, the disper-
sion properties of the low-frequency plasma wave are
approximately the same for any value of the electron
cyclotron frequency Ωe. The thinner the plasma, the
higher the degree of confidence in the validity of the
above analysis.

Hence, when describing a low-frequency plasma
wave in the infinitely thin plasma approximation, we
can neglect the coupling between the field components
of different types. In this way, we can keep only the fol-
lowing three equations for the components of the E
wave in the general set (4.3):

(4.6)

As for the remaining three equations, they can be used
to estimate the effect of H-type fields. Using Eqs. (4.6),
we express components Er and Bϕ in terms of Ez and
obtain a separate equation for Ez:

(4.7)

(4.8)

Expressions (4.7) and Eq. (4.8) generalize formulas
(2.2), (2.3), (3.2), and (3.3) to the case of infinitely
strong external magnetic fields (only in relation to a
low-frequency plasma wave!).

As follows from Figs. 10(1)a and 10(1)b, compo-
nents Ez and Bϕ satisfy relationships (2.6) and (2.7), in
which case relationships (1.7) and (2.6) give the first of
boundary conditions (2.8). Then, using relationships
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(1.7) and (2.7), the second of formulas (2.2), and the
second of formulas (4.7), we obtain

(4.9)

Further, we find the second derivative of  from
Eq. (4.8) and substitute it into expression (4.9). As a
result, we arrive at equality (2.11). The limiting transi-
tion is independent of whether the external magnetic
field is finite or not. As a result, we can see that effective
boundary conditions (2.13) are again satisfied for the
fields of the low-frequency wave on the surface of an
infinitely thin plasma tube. Consequently, dispersion
relation (2.16) is also valid for finite external fields, so
that its solutions correctly describe the dispersion of
low-frequency waves on the surface of an infinitely thin
plasma tube in external magnetic fields of different
strengths. This conclusion is fully confirmed by Fig. 9,
which shows the dispersion curves calculated from the
exact mathematical model, and by Figs. 1 and 3, which
compare the exact solutions to the dispersion relation
with the solutions obtained in the infinitely thin plasma
approximation.

Now, we proceed to the derivation of the effective
boundary conditions for the fields of the high-fre-
quency plasma wave. We begin by assuming that the
external magnetic field is strong, Ωe > ωp. For this case,
the exact dispersion curve for a high-frequency wave is
shown by curve 2 in Fig. 8. In the short-wavelength
range, the dispersion of the wave is anomalous and, as
kz  ∞, the dispersion curve approaches the electron
cyclotron frequency Ωe from above (the range of large
kz values is not shown in the figure). The highest fre-
quency of this wave does not exceed the upper hybrid

frequency Ωh =  (for the parameter values of
Fig. 8, we have Ωh ≈ 1.8 × 1011 rad s–1), and the cutoff
frequency ω(kz = 0) is independent not only of Ωe but
also of ωp. Figure 11 presents the field components of
the high-frequency plasma wave, which were calcu-
lated at point Ç on dispersion curve 2 in Fig. 8. Compo-
nents Ez, Er, and Bϕ are seen to be similar in shape to
those of the high-frequency plasma wave in the absence
of an external magnetic field (Fig. 5). Additionally,
from Fig. 11(2), one can see that, in an external mag-
netic field of finite strength, components Bz, Br, and Eϕ
are significant. Consequently, in the case at hand, it is
not quite correct to speak of a small addition of the
H-type field to the E wave: in an external magnetic field
of finite strength, a high-frequency plasma wave is a
mixed EH wave. Large values of components Bz, Br,
and Eϕ stem from the fact that, inside the plasma, the
transverse component Er of the electric field of the
high-frequency wave is significant, see Fig. 11(1)b.
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Fig. 11. Components (1) Ez, Er, and Bϕ and (2) Bz, Br, and Eϕ of the electromagnetic field of a high-frequency surface wave calcu-
lated at point B on dispersion curve 2 from Fig. 8 (the case Ωe > ωp corresponds to a strong magnetic field).
Let us write out relationships (1.7) for electromag-
netic field components that are tangent to the plasma
boundaries:

(4.10)

(4.11)

First, we analyze relationships (4.11). Taking into

account the shape of components (r) and (r),
which are shown in Figs. 11(1)c and 11(2)c, and using
almost the same analytical procedure as was used to
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obtain boundary conditions (3.12), we can conclude
that the limits on the right-hand sides of relationships
(4.11) equal zero. As a result, we have

(4.12)

Taking account of the formulas

(4.13)

which are valid in the vacuum regions of the waveguide
[see expressions (4.4)], we obtain from relationships
(4.12) the first two of the desired boundary conditions:

(4.14)

Second, we analyze relationships (4.10). Taking into

account the shape of components (r) and (r),
which are shown in Figs. 11(1)a and 11(2)a, and repeat-
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ing the procedure used to deduce boundary conditions
(3.12), we can conclude that the limits on the right-hand
sides of relationships (4.10) are nonzero. These limits
can be calculated in essentially the same way as limit
(3.11). Using the second and fourth of formulas (4.4),

we express derivatives  and  in terms of 

and :

(4.15)

Then, taking into account conditions (4.12) and the
continuity of physical components Bϕ and Eϕ, we insert

vacuum values (rp) and (rp) into relationships
(4.15) in order to express them in terms of derivatives
of Ez and Bz with respect to r. As a result, we obtain

(4.16)

Further, we substitute expressions (4.16) into formulas
(4.10) and combine the resulting expressions with con-
ditions (4.14) to arrive at the following final boundary
conditions for the fields of the high-frequency plasma
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Fig. 12. Dispersion curves of (1) low-frequency and (2)
high-frequency surface waves of a thin-walled annular
plasma in a waveguide in an external magnetic field of finite
strength (the case Ωe < ωp corresponds to a strong magnetic
field). The curves were calculated by solving the exact dis-
persion relation.
wave in an external magnetic field of finite strength in
the infinitely thin plasma approximation:

(4.17)

Now, we consider a waveguide in a weak magnetic
field such that Ωe < ωp. Clearly, this case involves the
limiting transition Ωe = 0. The representative dispersion
curves of the surface plasma waves are shown in
Fig. 12. The curves were calculated by solving the
exact dispersion relation for a plasma waveguide with
the parameters R = 2 cm, rp = 1 cm, ∆p = 0.1 cm, ωp =
1011 rad s–1, and Ωe = 0.5 × 1011 rad s–1. Curve 1 in
Fig. 12 illustrates the dispersion of a low-frequency
plasma wave, and curve 2 refers to a high-frequency
plasma wave. The dispersion curve of the low-fre-
quency plasma wave in Fig. 12 has the same shape
as the corresponding curves in Figs. 1, 3, and 8. For
Ωe < ωp, this curve asymptotically approaches the fre-

quency ωh/  from below in the short-wavelength
limit (kz  ∞). In the same limit, the dispersion curve
of the high-frequency plasma wave also approaches
this frequency but from above, indicating that the dis-
persion of the high-frequency wave is anomalous.
These short-wavelength asymptotics cannot be
described in the infinitely thin plasma approximation.

Figure 13 presents the electromagnetic field compo-
nents of the low-frequency plasma wave, which were
calculated at point Ä on dispersion curve 1 in Fig. 12.
The components are seen to be completely analogous in
shape to those displayed in Fig. 10. The dispersion
curve of the low-frequency plasma wave in Fig. 12
is  reproduced by curve 4 in Fig. 9. In the long-wave-
length limit, this curve coincides with the dispersion
curves obtained for other strengths of the magnetic
field. Hence, over the entire range of magnetic fields
(0 ≤ Ωe ≤ ∞), a low-frequency wave on the surface of a
thin-walled annular plasma has the same dispersion
properties in the long-wavelength limit and its fields are
close in structure. We can thus conclude that, in the infi-
nitely thin plasma approximation, a low-frequency sur-
face plasma wave can be described by boundary condi-
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Fig. 13. Components (1) Ez, Er, and Bϕ and (2) Bz, Br, and Eϕ of the electromagnetic field of a low-frequency surface wave calcu-
lated at point A on dispersion curve 1 from Fig. 12 (the case Ωe < ωp corresponds to a weak magnetic field).
tions (2.13) regardless of the strength of the external
magnetic field.

Now, we consider a high-frequency plasma wave in
a weak (Ωe < ωp) external magnetic field. Recall that the
relevant characteristic dispersion curve is represented
by curve 2 in Fig. 12. The electromagnetic field compo-
nents of this wave that were calculated at point Ç on the
dispersion curve 2 from Fig. 12 are shown in Fig. 14.
We can see that the components have the same shapes
as those obtained for Ωe > ωp, see Fig. 11. Conse-
quently, when analyzing low-frequency and high-fre-
quency surface waves in the long-wavelength limit in
the infinitely thin plasma approximation, there is no
reason to distinguish between the cases of a strong and
a weak external magnetic field. In these cases, the low-
frequency and high-frequency surface waves should be
analyzed in different ways only in the short-wavelength
range, which, however, is beyond the scope our study
because it cannot be described in the infinitely thin
plasma approximation. Hence, we can conclude that, in
the infinitely thin plasma approximation, a high-fre-
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002
quency surface plasma wave can be described by effec-
tive boundary conditions (4.17) regardless of the
strength of the external magnetic field. In the particular
case Ωe = 0, these conditions pass over to boundary
conditions (3.12).

5. WAVES OF AN INFINITELY THIN PLASMA 
CYLINDER IN AN EXTERNAL MAGNETIC 

FIELD OF FINITE STRENGTH

Let us apply the above effective boundary condi-
tions to investigate the spectra of the surface waves of a
thin-walled annular plasma in a waveguide under the
action of an external magnetic field of finite strength.
We restrict ourselves to considering high-frequency
waves, because it has already been established that the
dispersion and the fields of the low-frequency waves of
such a plasma are both independent of the strength of
the external magnetic field. We supplement boundary
conditions (4.17) with the requirement that the tangen-
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Fig. 14. Components (1) Ez, Er, and Bϕ and (2) Bz, Br, and Eϕ of the electromagnetic field of a high-frequency surface wave calcu-
lated at point B on dispersion curve 2 from Fig. 12 (the case Ωe < ωp corresponds to a weak magnetic field).
tial component of the wave electric field be zero at the
metal waveguide wall:

(5.1)

Taking into account the second of formulas (4.13), we
obtain from requirement (5.1) the following boundary
conditions at the metal wall:

(5.2)

Conditions (4.17), together with conditions (5.2), con-
stitute the full set of boundary conditions for the elec-
tromagnetic field of the high-frequency surface wave of
a thin-walled annular plasma in an external magnetic
field of finite strength.

The second of Eqs. (4.5) implies that, in the vacuum

regions of the waveguide, the component  satisfies
the equation

(5.3)
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The solution to Eq. (5.3) that satisfies the second of
conditions (5.2) has the form

(5.4)

where C and D are constants and the component Ez,
which satisfies the first of Eqs. (5.2), is, as before, given
by formula (2.15). Substituting solutions (5.4) and
(2.15) into boundary conditions (4.17) and eliminating
constants A, B, C, and D, we obtain a dispersion rela-
tion for the spectra of a high-frequency plasma wave in
a magnetic field of finite strength in the infinitely thin
plasma approximation:

(5.5)
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Fig. 15. Comparison between the dispersion curves calculated by solving the dispersion relation in the infinitely thin plasma approx-
imation (heavier lines) and the exact dispersion relation (lighter lines).
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Here, we have introduced the following notation for the
geometric factors:

(5.6)

In a nonzero external magnetic field, the right-hand
side of dispersion relation (5.5) vanishes (g = 0). As a
result, dispersion relation (5.5) splits into the following
two independent equations for the E and H waves,
respectively:

(5.7‡)

. (5.7b)

One can readily see that Eq. (5.7a) coincides exactly
with dispersion relation (3.13) and that Eq. (5.7b) has
no roots for ω < kzc, as was to be expected, because, in
this frequency range, there are no dispersion curves of
the H waves. Consequently, Eq. (5.5) correctly
describes the limiting transition to a zero external mag-
netic field. Note that dispersion relation (2.16) cannot
be derived from Eq. (5.5) by taking the limit of an infi-
nitely strong external magnetic field: these equations
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describe qualitatively different types of surface plasma
waves.

Figure 15 compares the dispersion curves calculated
by solving approximate dispersion relation (5.5) and
the exact dispersion relation. The dispersion curves
obtained in the infinitely thin plasma approximation are
shown by the heavier lines, and the exact dispersion
curves are represented by the lighter lines. All of the
dispersion curves were calculated for a plasma
waveguide with the parameters R = 2 cm, rp = 1 cm,
∆p = 0.1 cm, and ωp = 1011 rad s–1 and for two values of
the electron cyclotron frequency: Ωe = 0.5 × 1011 rad s–1

(Fig. 15a) and Ωe = 1.5 × 1011 rad s–1 (Fig. 15b). These
parameter values are the same as those for the exact dis-
persion curves shown in Figs. 8 and 12, which are also
reproduced in Fig. 15 in order to make the comparison
with the approximate dispersion curves more illustra-
tive. Figure 15 shows that the infinitely thin plasma
approximation provides a high degree of accuracy: the
approximate and exact dispersion curves differ only
near the cutoff frequency, i.e., in the range where we
did not intend to use this approximation. Note that the
right-hand side of dispersion relation (5.5) is quadratic
in the small parameter kz∆p. Consequently, to second
order in this parameter, the spectra in the infinitely thin
plasma approximation are determined from the very
simple dispersion relation (5.7a), in which ε⊥  is given
by the first of expressions (4.2). The spectra calculated
from Eq. (5.7a) also agree reasonably well with those
obtained from more exact models.
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6. APPLICATION TO PLASMA MICROWAVE 
ELECTRONICS

Here, we apply the infinitely thin plasma approxi-
mation to solve one of the main problems of plasma
microwave electronics, namely, the problem of the
Cherenkov excitation of surface plasma waves by an
electron beam in a waveguide. We consider a
waveguide with a thin-walled annular plasma and a
thin-walled annular electron beam with the mean radius
rb and thickness ∆b ! rb. To be specific, we set rb < rp.
The beam is assumed to be infinitely thin; i.e., it is
incorporated only through certain effective boundary
conditions. Let us derive these boundary conditions for
the beam.

It is well known that the dielectric tensor of a
straight electron beam in an external magnetic field of
finite strength is more complex in structure than tensor
(4.1) [9, 13]. Accordingly, the theory of the beam waves
becomes much more elaborate, even when the beam is
assumed to be infinitely thin. However, it is also a well-
known fact that the Cherenkov interaction of a straight
electron beam with a plasma is completely described by
the contribution of the beam to the longitudinal dielec-
tric function alone [9]:

(6.1)

where ωb is the Langmuir frequency of the beam elec-
trons, u is their velocity, and γ = (1 – u2/c2)–1/2 is the rel-
ativistic factor. In describing the Cherenkov interaction
of a beam with a plasma, the contribution of the beam
to the remaining elements of the dielectric tensor can be
neglected. On the other hand, the longitudinal dielectric
function of any medium (in particular, the beam and the
plasma) enters only the effective boundary conditions

(2.13). Taking into account the fact that the ratio /ω2

in these conditions is equal to 1– ε|| and that the longi-
tudinal dielectric function of the beam is given by for-
mula (6.1), we arrive at the following effective bound-
ary conditions for describing the Cherenkov interaction
of an infinitely thin annular electron beam with a
plasma:

(6.2)

Of course, these conditions can be obtained not only in
the same way as conditions (2.13) but also by repeating
an analytical procedure very similar to that used to
describe a low-frequency surface wave of an infinitely
thin annular plasma.

Let us consider the Cherenkov interaction of an infi-
nitely thin annular electron beam with an infinitely thin
annular plasma in a waveguide. For simplicity, we
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restrict ourselves to analyzing a beam and a plasma
with free surfaces, i.e., we consider the limit R  ∞.
A more general and complete analysis will be done in a
separate paper. We start by deriving a dispersion rela-
tion describing the interaction of a beam with a high-
frequency plasma wave. To do this, we substitute the
solutions to the field equations in the vacuum regions of
the waveguide (0 < r < rb, rb < r < rp, rp < r < ∞) into the
boundary conditions (6.2) at r = rb and into the bound-
ary conditions (4.17) at r = rp. Taking account of the
finiteness of the fields at infinity and eliminating the
arbitrary constants in the solutions at hand, we obtain
the following dispersion relation, describing the Cher-
enkov interaction of a beam with a high-frequency sur-
face plasma wave:

(6.3)

where

(6.4)

For simplicity, the dispersion relation (6.3) was
obtained to first order in the small parameter kz∆p.

The left-hand side of Eq. (6.3) contains the product
of the two functions

(6.5)

The dispersion relation Db(ω, kz) = 0 determines the
spectra of the surface waves of an infinitely thin annular
beam with a free surface. In fact, if, in dispersion rela-

tion (2.16), we replace /ω2 by (ω – kzu)–2 [see
expression (6.1)] and take the limit R  ∞, then we
can see that the resulting relation coincides with disper-
sion relation (6.5). In the same limit R  ∞, the dis-

persion relation (ω, kz) = 0 coincides with Eq. (5.7a);
i.e., to first order in kz∆p, it can be used to determine the
spectrum of a high-frequency surface wave of an infi-
nitely thin annular plasma with a free surface. Hence, as
expected, general dispersion relation (6.3) refers to a
system of two coupled oscillators—a beam–plasma
oscillator. The coupling between the oscillators is
accounted for by the right-hand side of this relation.

Now, we derive a dispersion relation describing the
interaction of an electron beam with a low-frequency
surface plasma wave. To do this, we substitute the solu-
tions to the field equations in the vacuum regions of the
waveguide (0 < r < rb, rb < r < rp, rp < r < ∞) into bound-
ary conditions (6.2) at r = rb and into boundary condi-
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tions (2.13) at r = rp. Taking into account the finiteness
of the fields at infinity and eliminating the arbitrary
constants in the solutions at hand, we obtain the follow-
ing dispersion relation, which describes the Cherenkov
interaction of a beam with a low-frequency surface
plasma wave:

(6.6)

where ξb is defined by expression (6.4) and

(6.7)

The left-hand side of dispersion relation (6.6) is again
the product of two functions—the first of functions (6.5)
and the function

(6.8)

The dispersion relation (ω, kz) = 0 describes the
spectrum of a low-frequency surface wave of an infi-
nitely thin annular plasma with a free surface. In fact, it
coincides with Eq. (2.16) in the limit R  ∞. Hence,
dispersion relation (6.6) also describes a system of two
coupled oscillators.

At this point, it is important to make a comment
regarding dispersion relation (6.8) and more general
dispersion relation (2.16). These dispersion relations
are well known, and, beginning with paper [11], they
are routinely used to theoretically explain experiments
in plasma microwave electronics and to perform partic-
ular calculations of plasma-filled electrodynamic sys-
tems. However, in many papers devoted to plasma rela-
tivistic microwave electronics (see, e.g., [6, 14, 15]), it
was pointed out that dispersion relation (2.16) and all
conclusions drawn from it are valid only in the limit of
an infinitely strong external magnetic field. In the
present work, it has been rigorously verified that disper-
sion relation (2.16) is valid for an external magnetic
field of finite strength. Thereby, the results and conclu-
sions of the above-cited theoretical and experimental
investigations of the Cherenkov excitation of low-fre-
quency surface waves of an infinitely thin plasma by an
electron beam in a waveguide are actually applicable
over a range far wider than previously thought. In the
author’s opinion, this is one of the most important
results of the present paper. As for dispersion relation
(6.3), it arises in the study of such new problem in
plasma microwave electronics as the problem of the
interaction of an electron beam with high-frequency
surface waves of an infinitely thin plasma.

Figure 16 shows the dispersion curves calculated from
dispersion relations (6.3) and (6.6) for a beam–plasma
waveguide with the parameters ωp = 25 × 1010 rad s–1,
Ωe = 50 × 1010 rad s–1, rp = 1 cm, rb = 0.9 cm, and ∆p =
∆b = 0.1 cm, the beam velocity and beam current being
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u = 2.6 × 1010 cm/s and Ib = 2 kA, respectively. Since
dispersion relations (6.3) and (6.6), which describe the
interaction of an electron beam with different types of
waves, are entirely independent of one another, the
curves in Fig. 16 were obtained by matching the corre-
sponding dispersion curves of the two groups. Specifi-
cally, for frequencies above 20 × 1010 rad s–1, the disper-
sion curves were calculated from relation (6.3) and, for
frequencies below 35 × 1010 rad s–1, the dispersion curves
were calculated from relation (6.6). Being plotted in the
same figure (Fig. 16), the corresponding curves are
seen to coincide surprisingly well in the common fre-
quency range from 20 × 1010 to 35 × 1010 rad s–1. Also
shown in Fig. 16 (and in the next figure) are the Cher-
enkov resonance line ω = kzu (short dashes) and the
“light” straight line ω = kzc (long dashes).

In Fig. 16, we can see that, in the beam–plasma
waveguide under consideration, there are two instabil-
ity regions, whose boundaries are indicated by the ver-
tical straight lines: the frequency axis (kz = 0), line α
(kz ≈ 4.9 cm–1), line β (kz ≈ 18.5 cm–1), and line γ (kz ≈
19.9 cm–1). In the region of wavenumbers kz from zero
to line α, the instability is governed by the interaction
of an electron beam with a low-frequency surface
plasma wave under the Cherenkov resonance condi-
tions. The structure of the dispersion curves allows us
to conclude that this low-frequency instability is asso-
ciated with the stimulated single-particle Cherenkov
effect. In recent years, this instability has been thor-
oughly investigated both theoretically and experimen-
tally for essentially the same parameters of the beam–
plasma waveguide [6]. The second, far narrower, insta-
bility region lies between lines β and γ. In this range of
wavenumbers, the instability is governed by the Cher-
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Fig. 16. Dispersion curves characterizing the Cherenkov
instability in a waveguide with an infinitely thin annular
plasma and an infinitely thin annular electron beam in the
case of the minimum possible gap between the beam and
the plasma.
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enkov resonance interaction of an electron beam with a
high-frequency surface plasma wave. Judging from the
structure of the dispersion curves, this high-frequency
instability is associated with the stimulated collective
Cherenkov effect. To the best of my knowledge, this
instability remains virtually uninvestigated. In the cited
experiments on the interaction between thin-walled
annular electron beams and thin-walled annular plas-
mas, no radiation was recorded in the frequency range
of high-frequency instability [15, 16].

From the theory of plasma microwave electronics, it
is well known that the character of the Cherenkov inter-
action of a thin-walled annular electron beam with a
thin-walled annular plasma is governed by the gap |rp –
rb | between them [6, 14]. If the gap is sufficiently small,
the beam interacts with the plasma under the single-
particle Cherenkov resonance conditions. As the gap
increases, the regime of the single-particle Cherenkov
effect goes over to the collective Cherenkov regime.
The high-frequency instability is much more sensitive
to an increase in the gap |rp – rb | than is the low-fre-
quency instability. In a waveguide characterized by the
dispersion curves shown in Fig. 16, we deal with the
minimum possible gap (for |rp – rb | = 0.1 cm, the outer
beam boundary rb + ∆b /2 coincides with the inner
plasma boundary rp – ∆p/2). Nevertheless, high-fre-
quency instability in this waveguide is associated with
the collective Cherenkov effect. With increasing gap,
the collective character of the high-frequency instabil-
ity becomes even more pronounced, which manifests
itself as a narrowing of the instability region. Figure 17
shows the dispersion curves calculated for a waveguide
with the same parameters as in Fig. 16 but with a
smaller beam radius (rb = 0.7 cm). We can see that, as
the gap is increased from 0.1 to 0.3 cm, the region of
high-frequency instability becomes so narrow that it is
hardly distinguished visually (in Fig. 17, this region is
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Fig. 17. Dispersion curves characterizing the Cherenkov
instability in a waveguide with an infinitely thin annular
plasma and an infinitely thin annular electron beam in the
case of a large gap between the beam and the plasma.
determined by the inequalities 19.28 < kz < 19.50 cm–1).
As for the low-frequency instability, a comparison of
Fig. 17 with Fig. 16 shows that it does not change its
character. It is only at rb < 0.59 cm (the remaining
parameters being the same) that the single-particle
Cherenkov regime of the low-frequency instability
goes over to the collective regime, in which case the
region of high-frequency instability turns out to be neg-
ligibly narrow.

Above, we have spoken of the instability region, i.e.,
the wavenumber interval in which the dispersion relation
has not only real solutions but also complex solutions (in
the plane of the complex frequency ω). As regards exper-
imental investigations, it is also meaningful to speak of
the region of wave amplification, i.e., the frequency
range in which the dispersion relation has complex solu-
tions in the plane of the complex wavenumber kz. In the
interaction of an electron beam with a high-frequency
surface wave, the amplification region is extremely nar-
row. Thus, for the minimum possible gap, the boundaries
of the amplification region can be inferred from Fig. 16:
47.2 × 1010 < ω < 49.4 × 1010 rad s–1. In this case, the rel-
ative width ∆ω/ω of the emission spectrum of the beam
at the highest frequency is about 0.046 (which is
smaller than 5%). Presumably, it is because of this fea-
ture of the high-frequency radiation that it was not
recorded in the cited experimental investigations. Note
that, in a weak external magnetic field (Ωe < ωp), the
radiation spectrum at high frequencies is not much nar-
rower than the low-frequency radiation spectrum. How-
ever, this effect was not investigated in the cited exper-
iments.

The above characteristic features of the interaction
of an electron beam with low- and high-frequency sur-
face waves of an infinitely thin annular plasma (see the
discussion of Figs. 16 and 17) are governed by the value
of the resonance frequency. The higher the resonance
frequency, the weaker is the coupling between the beam
and the plasma wave, the narrower is the radiation spec-
trum, the lower is the instability growth rate, etc. All
these effects are captured by dispersion relations (6.3)
and (6.6). In order to see this, let us consider some par-
ticular solutions to the dispersion relations. Following
[6, 14], we convert dispersion relation (6.6) to a gener-
alized form:

(6.9)

where

(6.10)

are the squared frequencies of the beam wave and of the
low-frequency plasma wave, respectively, and

(6.11)
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is the coupling coefficient for beam and plasma waves.
Dispersion relation (6.3) can be written in a similar
form:

(6.12)

where Ωh =  is the upper hybrid frequency
and

(6.13)

As in the first of expressions (6.10), the quantity  is
the squared frequency of the beam wave (without

allowance for the Doppler shift). The quantity 
enters the definition of the spectrum of a high-fre-
quency plasma wave. Also, in the dispersion relation
(6.12), the coupling coefficient for beam and plasma
waves is denoted by

. (6.14)

In the notation used for dispersion relations (6.9)
and (6.12), the frequency spectra of the beam waves
and of the low- and high-frequency plasma waves can
be written, respectively, as

(6.15)

Of course, formulas (6.15) can be regarded as the
expressions for spectra only tentatively. Since the quan-

tities , , and  are functions of ω, formulas
(6.15) serve as equations for determining the eigenfre-
quencies. Examples of solutions to the second and third
of Eqs. (6.15) are presented in Figs. 8 and 12, as well as
in some other figures. Under the inequality

, (6.16)

the first of Eqs. (6.15) yields the following expression
for the spectrum of the slow wave of an electron beam:

(6.17)

First, we consider the instability of an electron beam
in the interaction with a low-frequency surface plasma
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wave. We denote by ω↓ and kz↓ the solution to the set of
equations

(6.18)

It is obvious that, in the plane (ω↓, kz↓), the values of ω
and kz are the coordinates of the point of the resonant
interaction between a slow beam wave and a low-fre-
quency surface wave. At kz = kz↓, the solution to the dis-
persion relation (6.9) can be represented in the form

(6.19)

Here, the inequality implies that the electron beam den-
sity is low, which agrees with inequality (6.16). We sub-
stitute solution (6.19) into dispersion relation (6.9) to
obtain the following equation for the instability growth
rate δω↓ in the interaction with a low-frequency wave:

(6.20)

The right-hand side of this equation should be calcu-
lated at the resonant point (ω↓, kz↓). From Eq. (6.20), we
find the growth rates of the Cherenkov instability of an
electron beam in the interaction with a low-frequency
surface plasma wave:

(6.21)

When deriving growth rates (6.21), we used the ine-
quality αb ! 1, which follows from inequality (6.16).
The instability with the first of growth rates (6.21) is
called a single-particle Cherenkov effect, and the insta-
bility with the second of the growth rates is called a col-
lective Cherenkov effect. For the waveguide parameters
of Figs. 16 and 17, the coupling coefficient Θ↓ is larger
than 0.37, which indicates that, when discussing these
figures, we dealt with a single-particle Cherenkov
effect.

We now consider the instability of an electron beam
in the interaction with a high-frequency surface plasma
wave. We denote by ω↑ and kz↑ the solution to the set of
equations

(6.22)

It is obvious that, in the plane (ω, kz), the values of ω↑
and kz↑ are the coordinates of the point of the resonant
interaction between a slow beam wave and a high-fre-
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quency surface wave. At kz = kz↑, the solution to disper-
sion relation (6.12) can be represented in a form analo-
gous to solution (6.19):

(6.23)

Substituting solution (6.23) into dispersion relation
(6.12), we obtain the following equation for the insta-
bility growth rate δω↑ in the interaction with the high-
frequency wave:

(6.24)

The right-hand side of this equation should be calcu-
lated at the resonant point (ω↑, kz↑). From Eq. (6.24), we
find the growth rates of the Cherenkov instability of an
electron beam in the interaction with a high-frequency
surface plasma wave:

(6.25)

The instability with the first of growth rates (6.25) is
called a single-particle Cherenkov effect, and the insta-
bility with the second of the growth rates is called a col-
lective Cherenkov effect. For the waveguide parameters
of Figs. 16 and 17, the coupling coefficient Θ↑ is
smaller than 0.13 because of the high value of the reso-
nance frequency ω↑. Also, the inequalities that deter-
mine the type of Cherenkov effect in dispersion rela-
tions (6.25) contain the coefficient Θ↑ with the small
factor (Ωp↑ /ω↑)2. Consequently, in discussing the
examples illustrated in Figs. 16 and 17, we dealt with
the collective Cherenkov regime of the beam instability
in the interaction with a high-frequency surface plasma
wave.

CONCLUSION

In conclusion, note that the physical meaning of the
surface waves under consideration here and the mathe-
matical structure of the formulas describing them are
both governed by the character of plasma polarization.
In the case of a low-frequency wave, the plasma is
polarized predominantly in the longitudinal direction
and the perturbations of the electric charge are impor-
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tant over the entire volume of the annular plasma, so
that the plasma behaves as if it were a conventional
layer of thickness ∆. In terms of an analogy with math-
ematical potential theory [17], in describing a low-fre-
quency surface wave, the role of the potential of the
conventional layer is played by the electric field com-
ponent Ez. It is well known that the potential of the con-
ventional layer is continuous and its normal derivative
in the layer is discontinuous; both of these circum-
stances are reflected in boundary conditions (2.13). In
the case of a high-frequency surface wave, the plasma
is polarized predominantly in the transverse direction
and the perturbations of the electric charges of opposite
sign are mostly localized near the surfaces of the annu-
lar plasma, so that the plasma behaves as if it were a
double layer of thickness ∆. In describing a high-fre-
quency surface wave, the role of the potential of the
double layer is played by the electric field component
Ez. This potential is known to be discontinuous within
the layer, as reflected by the second of boundary condi-
tions (3.12). The first of these conditions implies that, if
the total electric charge of the double layer is equal to
zero, then the electric field component normal to the
layer (i.e., the directional derivative of the potential
along the normal to the layer) is continuous. It is pre-
cisely specific polarization motions of the annular
plasma in the surface waves under consideration that
made possible the development of the method of the
effective boundary conditions. Note that the above-
described high-frequency surface wave is associated
exclusively with the plasma layer: in a nonannular
plasma (r1 = rp – ∆p/2 = 0), this wave does not exist.

The method of the effective boundary conditions
makes it possible to analytically describe the main sur-
face waves of a thin-walled annular plasma in a
waveguide and the Cherenkov excitation of these waves
by a thin-walled annular electron beam in an arbitrary
external magnetic field. The method provides a wider
range of applicability of the theoretical results obtained
in plasma relativistic microwave electronics and out-
lines future directions for theoretical investigations in
this field of plasma physics.
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Abstract—Results are presented from Monte Carlo calculations of the electric charge of dust grains in a plasma
produced during the slowing down of the radioactive decay products of californium nuclei in neon. The dust
grain charging is explained for the first time as being due to the drift of electrons and ions in an external electric
field. It is shown that the charges of the grains depend on their coordinates and strongly fluctuate with time. The
time-averaged grain charges agree with the experimental data obtained on ordered liquidlike dust structures in
a nuclear-track plasma. The time-averaged dust grain charges are used to carry out computer modeling of
the formation of dynamic vortex structures observed in experiments. Evidence is obtained of the fact that
the electrostatic forces experienced by the dust grains are potential in character. © 2002 MAIK “Nauka/Inter-
periodica”.
† 1. INTRODUCTION

Dust particles are widely encountered in nature.
They are present in industrial and engineering pro-
cesses, the environment, and cosmic space. The dust
may often be technologically and environmentally
harmful, so that removing it from the chambers of engi-
neering devices and from the environment is an impor-
tant practical task. Especially disastrous is the effect on
humans, animals, and the environment of radioactive
dust particles that can be released into the atmosphere
during nuclear emergencies. Dust particles in the atmo-
sphere, as well as in the chambers of technological
devices, often form dust clouds. From a practical stand-
point, it is important to investigate the physical proper-
ties of such clouds in order to learn to control their
behavior and to overcome their possible dangerous
effects. This challenging problem has been partially
solved with developing and implementing electrical
collecting filters in the ventilating systems of nuclear
reactors. The mechanism by which such filters collect
radioactive aerosol particles is based on the acquisition
of electric charge by the dust in the plasma of corona
discharges.

The behavior of dust particles in a plasma is the sub-
ject of a newly developed branch of plasma physics.
The addition of even a small amount of dust to the
plasma may considerably change the plasma proper-
ties. The discovery of the self-organization of dust

† Deceased.
1063-780X/02/2806- $22.00 © 20524
grains into liquidlike and crystalline ordered structures
has attracted special attention. By now, static dust struc-
tures having long- and short-range orders were observed
in the plasmas of stratified gas discharges [1, 2], thermal
plasmas [3], and RF discharge plasmas [4]. The results
of experiments on the formation of dust structures in air
affected by a radioactive source were reported in [5]. It
is well known that ordered dust structures can form
when Γ > 10, where Γ is the coupling parameter, which
characterizes the degree to which the plasma is non-
ideal and is defined as the ratio of the energy of the elec-
trostatic interaction between dust grains to the energy
of thermal motion. In the absence of screening, we have

(1)

where Z is the dust grain charge in units of the electron
charge e, a is the distance between the grains, and T is
the energy of thermal motion. The parameter Γ is fairly
large in a dusty plasma in which the distances between
the grains are small and their charges are large.

The objective of this paper is to produce dynamic
ordered dust structures in a nuclear-track plasma cre-
ated by nuclear-reaction products in inert gases and to
carry out computer modeling of the processes that lead
to their formation.

We apply the Monte Carlo (MC) method to calcu-
late the time dependence of the charge of dust grains in
a nuclear-track plasma that decays under the action of
an external electric field into the flows of electrons and
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ions drifting toward the oppositely charged electrodes.
We show that, since the grain charge is alternately
affected by electron and ion flows, it fluctuates strongly
about a value smaller than that typical of a quasineutral
plasma. The mean values of the grain charge agree with
those measured experimentally.

We theoretically explain the formation of the exper-
imentally observed dynamic vortex dust structures in a
nuclear-track plasma in neon in the presence of an
external electric field and experimentally test our theo-
retical model for describing such a plasma. Numerical
investigations carried out using the method of molecu-
lar dynamics make it possible to explain the character-
istic features of the formation of vortex dust structures.
The numerical results presented here agree qualita-
tively with the experimental data. Evidence is obtained
of the potential character of the electrostatic forces
experienced by the dust grains.

2. CALCULATION OF THE DUST GRAIN 
CHARGE

Investigations of the behavior of dust grains in a
plasma created by nuclear-reaction products provide
new information on the self-organizing abilities of the
dust in the plasma. The dusty plasma differs consider-
ably in properties from other plasmas, the primary dif-
ference being that it is strongly inhomogeneous in
space and highly unsteady in time. In a nuclear-track
plasma, a dust grain is affected by the flows of drifting
electrons and ions that are cylindrically symmetric in
structure (the symmetry axis being parallel to the prop-
agation direction of an ionizing particle). Because of
diffusion, the electron and ion flows spread out in the
radial direction; simultaneously, because of a differ-
ence in the electron and ion diffusion coefficients, the
radii of the electron and ion cylindrical flows increase
to a far greater extent. As a rule, the dust grains acquire
a negative electric charge, because the electrons are
much more mobile than the ions. The ion flows effi-
ciently discharge the grains. The external electric fields
of both the dielectric walls of an experimental device
and its electrodes can substantially redirect the drift
flows of plasma particles.

The experimental device in which we observed the
formation of levitated dust structures consists of an ion-
ization chamber with horizontally oriented parallel
electrodes. The chamber was filled with neon at a cer-
tain pressure. Dust grains were injected through a hole
in the upper electrode into the interelectrode space, in
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002
which the external electric field was created. The role of
the radioactive source was played by a 7-mm-diameter
plane layer of 252Cf at the lower electrode. The numeri-
cal results presented below were obtained for the exper-
iments condition under which we observed liquidlike
dust structures (see table and Fig. 1).

The physical model of dust grain charging consists
in the following. The ionizing particles emitted from
the source are stopped in the gas over a time of several
nanoseconds. The energy of the primary electrons is, on
the average, 90 eV [6]. In turn, the primary electrons
ionize neon atoms and thus produce a plasma cloud,
which is called the track of an ionizing particle. The
degree of plasma ionization inside the track is about 10–8.
The length of the track is much larger than the diameter
of its cross section. As time elapses, the diameter of the
track increases and, correspondingly, the electron and
ion densities within the track decrease. The electric
field generated in the track hinders charge separation
[7] and delays this process in the presence of an exter-
nal electric field. However, since the electron density
gradient is large, the electron diffusion eventually
reduces the electric field inside the track, so that the
charges begin to be separated by the external field.

(a) (b)

(c) (d)

I

IIIIIIV IVIII

I

Fig. 1. Evolution of a cloud of Zn dust grains. The photo-
graphs were taken (a) 2 min, (b) 4 min, (c) 4 min 30 s, and
(d) 4 min 45 s after the injection of the dust. The upper elec-
trode was held at a potential of 152 V, the distance between
the upper and lower electrodes was 3.5 cm, and the neon gas
pressure was 76000 Pa. Each photograph corresponds to an
observational area of 4.2 × 3.1 cm2.
Conditions of our experiments on the formation of dynamic dust structures

Grain diameter, µm Interelectrode
distance, mm

Chamber radius, 
mm Neon pressure, torr High-voltage elec-

trode potential, V
252Cf source

intensity, fission/s

1.87 17 15 380 162 105

2.1 35 25 557 152 4 × 106
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Hence, the process of the formation of a track plasma
and the charging of dust grains proceeds in the follow-
ing two stages. The first, extremely short (~100 ns [8]),
stage of the track evolution is far from being studied
completely. In the second, much longer (several micro-
seconds), stage (electron drift in the interelectrode
space), the dust grain charge changes after the track
plasma decays into two flows, namely, the flows of
electrons and ions drifting toward the oppositely
charged electrodes and toward the charged dielectric
walls of the device.

Let us discuss the main physical assumptions under-
lying the mathematical description of the dynamic pro-
cesses in a nuclear-track plasma. We start by consider-
ing the second stage of the formation of dust structures
and charging of the dust grains, because the processes
occurring in this stage have been studied in great detail.
Since the electric field strength in our experiments was
such that the measured current reached the saturation
stage, we neglect the recombination of charged parti-
cles. When a dust grain is affected by an electron flow
from the track toward the positively charged electrode
(anode), it collects some of the electrons and thus
acquires a negative charge. When an ion flux meets this
grain, it decreases the grain’s negative charge and may
even charge the grain positively (Fig. 2). A statistical
treatment of these charging processes in time consti-
tutes the essence of the mathematical model for calcu-
lating the grain charge. The main constants for these
processes were chosen from the published data so as to
satisfy the conditions of our particular experiments on
the formation of ordered dust structures in neon.

Z

High-voltage
electrode

Track

Ions

Grounded
electrode

ϕ

θ
θ0

Track

Ions

Grain

Source

Electrons E

Fig. 2. Schematic of electron and ion motions in the vicinity
of a dust grain in an electric field and geometry for MC sim-
ulations.
Under the action of the electric field, the mean
energy of the electron thermal motion becomes several
orders of magnitude higher than the kinetic energy of
the ions and neutral atoms. The mean electron energy
was calculated from the formula [9]

(2)

where E is the electric field strength and p is the gas
pressure. In our experiments, the ratio E/p was equal to
0.25 V/(cm torr). The electron drift velocity we corre-
sponding to this value was taken from [10, 11]. The
electron mobility µe was calculated from the relation-
ship

(3)

The electron diffusion coefficient De was calculated
from the Nernst–Townsend–Einstein formula, which is
valid for both electrons and ions. That is why we write
this formula as the general relationship

(4)

where e is the electron charge, k is Boltzmann’s con-
stant, and T is the temperature. The electron mean free
path was determined from the data on the cross section
for the elastic scattering of electrons by neon atoms at
the known density of a neon gas [10].

The temperature (mean energy) of the ions was set
equal to that of the neon atoms. This assumption is jus-
tified in view of the effective energy exchange between
ions and atoms. The ion diffusion coefficient was taken
from [12]. The ion mobility was calculated from for-
mula (4), and the ion drift velocity was calculated from
a formula analogous to relationship (3). The ion mean
free path was determined from the data presented in
[11].

In order to simplify the analysis, the energy losses of
the ionizing particles were calculated from the follow-
ing analytic formulas:

 for fission fragments, (5)

 for alpha particles, (6)

where E0 and E1 are the initial energies of the ionizing
particles, x is the distance between from the radioactive
source, R is the total path length traversed by an ioniz-
ing particle before it is stopped in a neon gas, and α is
the approximating parameter lying between 1 and 2.
Formulas (5) and (6) were obtained by approximating
the expressions that describe the energy losses of heavy
ions in matter and follow from the Bethe and Lindhardt
theories.

The energy losses were normalized to the energy
cost of the production of one electron–ion pair (for
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neon, this cost is 35 eV) [13]. As usual, we assumed
that the energy cost does not change as the energy of the
ionizing particles decreases. In a nuclear-track plasma,
the dynamics of the electric charge q of a dust grain in
electron and ion flows is described by the equation

(7)

where I is the total electron and ion current to the grain
surface. The mathematical expression for this current is
governed to a large extent by the ratio of the grain diam-
eter to the mean free paths of the plasma particles. Thus,
a grain diameter of 1 µm is four times smaller than the
electron mean free path, but six times larger than the ion
mean free path. That is why we used two different
approaches to calculating the electron and ion currents
to the grain surface. The electron current, which is deter-
mined by the absorption cross section for plasma elec-
trons, was calculated from the formula [14, 15]

(8)

where a is the grain radius, ne is the electron density, vT

is the electron thermal velocity, and ϕ is the potential
acquired by the grain during the charging process.

The charge acquired by a negatively charged grain
in ion flows is determined by the currents of positive
and negative ions to its surface. These currents are
described by the following analytic formulas, which
were obtained in the diffusion approximation:

(9)

The charge of the grain affected simultaneously by the
electron and ion flows is determined by the total current
of the electrons and ions. If the electron mean free path
is much larger than the grain diameter, the electron cur-
rent is calculated from formula (8); otherwise, it is cal-
culated from the first of formulas (9). For electron mean
free paths comparable with the grain diameter, the elec-
tron current is calculated by matching formula (8) with
the first of formulas (9). The ion current to the grain sur-
face is calculated from the second of formulas (9). As a
result, the dynamics of the grain charge is described by
the equation

(10)

In a nuclear-track plasma with a low degree of ion-
ization and a low electron temperature, the dust grains
acquire small charges.
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3. STATISTICAL MODELING OF THE TRACKS 
OF IONIZING PARTICLES

As was already noted, the plasma created by high-
energy ionizing particles is strongly inhomogeneous in
space and highly unsteady in time, and the degree of
ionization is the highest near the radioactive source of
the experimental device. At relatively low intensities of
radioactive sources approved for use in laboratories, the
tracks of different ionizing particles do not intersect
and the plasma exists for a short time in the form of
long narrow tracks, whose distribution in space and
time exhibits statistical regularities. Hence, the first
step in calculating the charge of dust grains in a
nuclear-track plasma is to model the track distribution
statistically by the MC technique.

Let a dust grain be located at some distance r from
a point radioactive source, and let the angle that the
straight line passing through the grain and source
makes with the horizontal plane be θ0 (Fig. 2). The
angle θ is measured from the horizontal plane, and the
azimuthal angle ϕ is measured from the vertical plane
containing the grain and the source. A uniform electro-
static field is assumed to be created by two electrodes,
the upper of which is held at a positive potential.

In order to economize on the computer time, among
the ionizing particles emitted from the source in all pos-
sible azimuthal directions, we chose only those that
generate such flows of drifting electrons for which the
probability of meeting the grain is nonzero. It is elec-
trons that, due to their large diffusivity, determine the
region where the statistical track distribution should be
modeled. We also took into account the fact that, for
very small angles θ0, this region can be determined by
the downward drifting ions. For the emission events
modeled by this statistical sampling, our code calcu-
lates the mean time between the events, which, in turn,
are distributed in time according to the Poisson law
[16]. Then, the code statistically samples the type of
ionizing particle (an alpha particle or a fission frag-
ment). It is assumed that the source emits 16 alpha par-
ticles per one fission fragment (the second fission frag-
ment is lost in the substrate); in other words, it is
assumed that one-half of each 32 alpha particles are lost
in the substrate. In each statistical sample of the angle θ,
the code determines what type of newly produced par-
ticles can meet the grain: electrons or ions. Then, the
code calculates the drift time required for a newly pro-
duced electron (or ion) to reach the grain. If this time is
too short for the flow of the drifting electrons (or ions)
to meet the grain, then the code stops calculating this
event. Otherwise, if the flow meets the grain, the code
calculates the electron (ion) density in the flow, the
instant when the flow reaches the grain surface, and the
residence time of the grain within the flow. Because of
the statistical nature of the processes in question, the
grain charge may be recycled, i.e., the grain can be
charged by the electrons (or ions) of the next but nearer
track before it will be charged by the electrons (or ions)
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Fig. 3. (a) Time evolution of the dust grain charge in a neon
gas ionized by alpha particles and fission fragments (the
time-averaged grain charge is equal to 105 electron charges)
and (b) magnified fragment of the image. Here and below,
the grain charge is expressed in units of the absolute value
of the electron charge e.

Fig. 4. Calculated time evolution of the dust grain charge in
a neon gas ionized only by 90-MeV fission fragments. The
time 0.075 s corresponds to the direct impact of a fission
fragment on a dust grain (as a result, the grain loses
250 electrons).
of the preceding but farther track. That is why the times
at which each of the flows meets the grain and departs
from it, as well as the density of the drifting plasma par-
ticles, are stored in computer memory. Then, the code
regulates (sorts) all of these processes in time. If the
flows from different tracks overlap, the code sums the
corresponding particle densities in the overlap regions.
Then, the code integrates Eq. (10) by the Runge–Kutta
method. In this equation, the currents are calculated as
functions of the grain radius: the electron current is cal-
culated from formula (8) or by matching formula (8)
with the first of formulas (9), and the ion current is cal-
culated from the second of formulas (9). In our simula-
tions, the longitudinal and transverse diffusion coeffi-
cients for the electrons were different but, for the ions,
these coefficients were assumed to be the same, which
is valid for the ratios E/N (where N is the density of
neon atoms) typical of our experiments (~10–17 V cm2)
[9]. At this point, we should emphasize the following
characteristic difference between the charging process
in a nuclear-track plasma and in a quasineutral plasma:
in the case at hand, the currents on the left-hand side of
Eq. (10) are strongly fluctuating, which leads to strong
fluctuations of the dust grain charge with time.

The numerical results obtained for a grain located at
a distance of 1 cm from the source and for θ0 = 45° are
illustrated in Figs. 3–5. Since the grain charge is nega-
tive, the ordinate shows the absolute value of the
charge, for convenience in representing the results.
First of all, note that the grain charge fluctuates strongly
with time. On the one hand, the grain acquires a charge
in electron attachment processes; on the other hand, its
charge decreases substantially in less frequent events of
interaction with the ions. This stems from the fact that
the grain interactions with the electrons and ions are
different in nature: a negatively charged grain repulses
electrons but attracts positively charged ions. Since the
ionizing ability of alpha particles is far lower than that
of fission fragments, they have an insignificant impact
on the process under consideration and are responsible
exclusively for small-amplitude variations in the time
evolutions of the grain charge (Fig. 3b).

As an example, Fig. 4 illustrates the results obtained
for the direct impact of a fission fragment on a dust
grain. As a result of secondary electron emission, the
grain loses 250 electrons simultaneously [6]; however,
the lost charge is soon restored.

The dependence of the mean charge of the grain on
its radius is almost linear (Fig. 5), as is the case for a
quasineutral plasma. The experimental points in Fig. 5
were obtained for levitated spherical monodisperse
melamineformaldehyde grains, whose charge was
determined from the balance between the gravity and
electrostatic forces with allowance for the nonunifor-
mity of the electric field under the hole in the upper
electrode.
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Fig. 5. Calculated dependence of the grain charge on the ratio E/p and the grain diameter in Ne at a pressure of 380 torr. The grain
is at a distance of 3 cm from the radioactive source, the angle that the straight line passing through the grain and source makes with
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results: the closed square corresponds to E/p = 0.3 V/(cm torr) and rd = 13.57 µm, the closed circle refers to E/p = 0.155 V/(cm torr)
and rd = 4.82 µm, and the closed triangle is for E/p = 0.09 V/(cm torr) and rd = 13.57 µm. The inset shows a magnified fragment of
the figure for grains with small diameters and low charges.

E/p = 0.55 V/(cm torr)
4. DUST GRAIN CHARGING
IN NUCLEAR TRACKS

The description of plasma processes in the above
slow stage, in which the drift flows of plasma electrons
and ions form and charge the dust grains, is valid at suf-
ficiently large distances from the radioactive source,
i.e., in regions where the tracks occur close to the dust
grain only in sufficiently rare cases. Near the source,
i.e., in the region where the frequency of occurrence of
the tracks close to the grain increases in proportion to
1/r2, the dust grain charge is determined primarily by
the asymptotic behavior of the nonequilibrium electron
distribution function in the high-energy range. In this
region, the grain charging process is dominated by the
electrons produced by ionization in the track and also
by the frequency of occurrence of the tracks close to the
grain and the discharging of the grain in the flows of
drifting ions. Recall that the evolution of the tracks is
extremely fast (~100 ns [8]) and is far from being stud-
ied completely. However, assuming that this evolution
is described by the approximate expressions (5) and (6)
and applying the model of grain charging that was pro-
posed in [17, 18] yields the following estimate for the
mean charge of a dust grain:

. (11)Q r( )〈 〉 Cφt r( )=
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Here, the coefficient C . 4πε0Rp is approximately equal
to the capacitance of the grain and the coordinate-
dependent function φt(r) has the form

(12)

where N = (2E0 + 32E1), ε is the energy cost of the pro-
duction of an electron–ion pair, ζi = |r/Ri |, r is the dis-
tance from the ionization source, Rp is the grain radius,
R0 is the total path length traversed by a fission frag-
ment before it is stopped, R1 means the same for the
alpha particles, E0 is the initial energy of a fission frag-
ment, and E1 means the same for the alpha particles.
Hence, the mean charge 〈Q〉  of the grain is a prescribed
function of its spatial coordinates.

Clearly, in experiments with dust grains of different
diameters, the values of the ratio E/p are different. On
the average, the condition for spherical grains of radius
r0 to be in equilibrium yields the relationship

(13)

where m is the mass of a grain and ρ is the density of
the matter. For the mean strength of the electrostatic
field, the characteristic mean grain charges calculated
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in units of the electron charge from this relationship
range from 100 to 1000.

In numerical modeling of the dynamic vortex struc-
tures, the dependence of the dust grain charge on the
spatial coordinates was obtained by matching the
dependences obtained for small and large distances
(Fig. 6) between the grain and the radioactive source.
As a result, we can see that the grain charge increases
sharply as the source is approached.

5. COMPUTER MODELING OF THE DYNAMICS 
OF THE FORMATION OF LIQUIDLIKE

DUST STRUCTURES

Since this is the first paper in which an attempt is
made to model the formation of vortex structures from
dust grains in a nuclear-track plasma, our theoretical
approach does not pretend to completely describe the
dust behavior under the experimental conditions in
question. Our main objective here is to develop a rea-
sonable model for describing the most characteristic
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features of the grain behavior in a plasma and to reveal
the main physical mechanisms for the formation of a
potential trap that ensures the levitation of the dust
grains. That is why it is expedient to carry out numeri-
cal modeling for the experimental conditions under
which vortex structures were stable. In this context, it is
most reasonable to model the structures like that shown
in Fig. 1, which were observed to form in a nuclear-
track neon plasma at pressures from 2.5 × 104 to 7.5 ×
104 Pa.

In order to investigate the levitation of dust grains
and their mutual interactions, it is necessary not only to
establish the mechanism for their charging but also to
reveal the nature of the forces acting upon them. At
present, several different mechanisms are being dis-
cussed in the literature that affect both the balance
between the gravity and electrostatic forces experi-
enced by the levitated dust grains and the interactions
between them (see [6, 17, 18] for details). Here, we
investigate the complex dynamic problem under con-
sideration by a simplified approach that makes it possi-
ble to trace the formation of dynamic vortex structures
and their evolution using a reasonable amount of com-
puter time. First, because of the comparatively small
charges of dust grains and comparatively large mean
distances between them, we neglect their mutual inter-
actions. Second, because of the low intensity of the
radioactive source and low degree of ionization of the
nuclear-track plasma created by it, we ignore the drag
forces exerted on dust grains by drift ion flows, which
are directed primarily downward, i.e., toward the
grounded electrode (with the radioactive source) and
the dielectric wall of the device. In future studies, we
are going to consider how the drag forces influence the
formation of dynamic vortex structures. In the model
developed here, we take into account the interaction of
grains with the electrostatic fields of both the electrodes
of the device and its walls, the weight of the grains, and
the effect of their friction with the buffer gas. The levi-
tation of dust grains results from the balance between
the gravity force associated with the mass of the grain
and the electrostatic forces of the device, in which case
the electrostatic fields are governed equally by the
internal plasma processes and by the processes of
recombination and adsorption of the charges on the
walls. In our experiments, the electrostatic trap was cre-
ated by the electrostatic fields of both a negative surface
charge on the walls of the device and a positive charge
of the electrode with a hole. The effect of the steady-
state positive space charge induced in the plasma near
the radioactive source is insignificant because the elec-
tron mobility is much higher than the ion mobility. This
effect will be taken into account in ongoing studies.
Numerical modeling of the vortex structures of charged
dust grains in the electrostatic trap of the device
requires the use of convenient analytic expressions for
the electrostatic potential that should correctly reflect
its physical nature. The numerical results presented in
PLASMA PHYSICS REPORTS      Vol. 28      No. 6       2002
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this paper were obtained from the expressions derived
in [17].

Dynamic vortex dust structures in a nuclear-track
plasma were simulated using the standard method of
molecular dynamics. This method usually assumes cal-
culations for a finite number N of particles in a cell of
size L. In order for the computations to take a reason-
able amount of time on available computers, we
restricted our simulations to N = 200–1000. Accord-
ingly, in order for an MC cell to capture the character-
istic dust structure, the linear cell size was chosen to be
equal to L = 100rD ≈ 3 cm, which approximately corre-
sponds to our experimental conditions. Note that such a
small cell size, as well as a smaller number of dust
grains in comparison with that in the experiments, sub-
stantially relaxed the requirements on computational
resources and made it possible to reduce the run time of
the code to about ten hours. We modeled levitated dust
grains in an electrostatic trap with the potential derived
in [17]. The characteristic potential at the chamber wall
was varied in the range from 0.5 to 3 V. The z-axis was
directed downward, i.e., along the direction of the grav-
ity force. The initial spatial distribution of dust grains
and their initial velocities were specified with the help
of computer-generated random numbers, distributed
uniformly within the interval from zero to unity.

6. DISCUSSION OF THE CALCULATED 
RESULTS

Here, we present the results of numerical simula-
tions carried out by the standard method of molecular
dynamics for a cylindrical volume in space. Figure 7
shows parts of the grain trajectories inside a planar ver-
tical axial layer of small radial thickness. The trajecto-
ries were calculated at three successive times. The
arrows indicate the direction of the grain motion. The
physical cause of the onset of dynamic vortex structures
is the dependence of the charges of both dust grains and
the device walls on the distance from the source. In fact,
let us consider a grain located near the upper electrode,
in which case the grain’s negative charge is small
because its distance from the source is large. Under the
action of the gravity force, which exceeds the electro-
static force of attraction toward the upper electrode, the
grain starts falling downward, i.e., toward the lower
electrode. In such motion, the grain charge, first,
decreases and, then, begins to increase. A downward
moving grain experiences increasingly strong radial
fields of the dielectric walls, whose charge, in turn,
increases near the radioactive source. The radial forces
bend the grain trajectory and cause the grain to move
toward the device axis and toward the radioactive
source at the axis. On the other hand, as the charge of
the grain increases, it is affected by the increasingly
strong upward-directed electrostatic force of the posi-
tively charged upper electrode. Because of inertia, the
grain passes the equilibrium position and its charge
continues to increase until the electrostatic force
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becomes larger than the gravity force. The grain begins
to move upward, keeping its radial velocity component
unchanged, until the gravity force becomes larger than
the electrostatic force. Then, this cycle of the grain’s
motion repeats itself. As a consequence, most of the
grain trajectories are very similar in shape to the infinity
symbol. In the axial region of the device, the grains
move predominantly upward, while, in the peripheral
region near the walls, the grains fall downward. As a
result, a dynamic vortex structure forms that consists of
dust grains rotating in the same direction as the vortex
structures observed in our experiments.

We stress the following important feature of the
results obtained here. In our study, the main attention is
focused on energy transfer from the radioactive source,
which creates the plasma, to the disperse grains. The
energy-transfer mechanism is associated with the vari-
ation in the charge of a moving dust grain. The charge
of the grain is a function of its spatial coordinates and
also depends on the energy parameters of the inhomo-
geneous plasma closely around it. Hence, the above
system of levitated dust grains is an open system, which
exchanges energy with its surrounding. Following
[2, 18], we assume that the electrostatic forces acting
upon the grains are potential in character. As a result,
these forces (which are defined as minus the spatial gra-
dient of the potential energy) are described by two
types of terms. The terms of the first type are formally
similar in structure to those describing the Coulomb
forces of particles with coordinate-dependent charges.
The terms of the second type (non-Coulomb correc-
tion) account for the dependence of the charges on the

Fig. 7. Schematic representation of a thin layer of the vortex
dynamic structure obtained using the method of molecular
dynamics under the assumption that the forces acting upon
the grains are potential. Each part of the grain trajectories
calculated at three successive times is shown by three suc-
cessive arrows. The black and gray arrows refer to the grains
moving downward and upward, respectively. The radioac-
tive source is at the center of the bottom of the frame.
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spatial coordinates and are represented in terms of the
gradients of the grain charges and the gradient of the
surface charge on the dielectric walls of the device.
Note that the effect of the surface charge is equivalent

Fig. 8. Thin layer of a dynamic structure analogous to that
in Fig. 7. The parts of the grain trajectories were calculated
under the assumption that the forces acting upon the grains
are nonpotential.

Fig. 9. Late stage of the time evolution of the dynamic struc-
ture shown in Fig. 7 under the long-term action of the fric-
tional forces exerted by the buffer gas on the dust grains.

Fig. 10. Late stage of the time evolution of the dynamic
structure shown in Fig. 8 under the long-term action of the
frictional forces exerted by the buffer gas on the dust grains.
to that of an effective macroparticle. Non-Coulomb
forces are directed opposite to the gradient of the abso-
lute value of the grain charge and displace a dust cloud
toward the region where the grain charges and, accord-
ingly, the Coulomb repulsion energy in the device are
both minimum.

In the alternative approach [19], the electrostatic
forces acting upon the dust grains in a plasma are
assumed to be Coulomb forces |F | ~ q(r1)q(r2)/|r1 – r2 |
with coordinate-dependent grain charges. However, as
was noted in [19], these forces cannot be represented in
terms of the gradient of a certain effective potential.
Consequently, the terms describing these forces do not
contain the charge gradient, as is the case with the terms
of the second type.

The results obtained from the alternative approach
[19] for the same parameters and the same model
device as in Fig. 7 are illustrated in Fig. 8, which again
shows parts of the grain trajectories inside a thin planar
vertical axial layer, calculated at three successive times.
We can see the formation of a vortex structure in which
the grains rotate in two opposite directions, which,
however, contradicts our experimental observations.
Hence, a comparison of the results of numerical model-
ing with experimental data clearly indicates the poten-
tial character of the forces acting upon the grains in a
nuclear-track dusty plasma.

The effect of the frictional forces exerted by the
buffer gas on the dust grains is illustrated in Figs. 9 and
10, which show parts of the grain trajectories inside a
vertical axial layer of small radial thickness in the
model device, calculated at three successive times. The
frictional forces were calculated from Stokes’ law. The
computations were carried out using the above two
approaches. We can see that, under the action of the
frictional forces, the linear dimensions of the dynamic
vortex structures of dust grains become several times
smaller than in the initial stage and the structures them-
selves evolve to a nearly steady stable state analogous
to that simulated by the MC method in [18]. The calcu-
lated time evolution of the vortex structures agrees
qualitatively with the experimental observations illus-
trated in Fig. 1.

7. CONCLUSION

The main results of our investigations can be sum-
marized as follows. The spatial dependence of the dust
grain charges has been calculated. The experimentally
observed formation of the dynamic vortex structures of
dust grains under the action of an external electric field
in a nuclear-track plasma in neon has been explained
theoretically. The theoretical model of such a plasma
has been tested experimentally. The physical mecha-
nisms for levitating dust grains and forming dynamic
vortex structures in a nuclear-track plasma in neon have
been investigated both theoretically and experimen-
tally.
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The MC method has been applied to trace the time
evolution of the dust grain charge in a nuclear-track
plasma, which disintegrates under the action of an
external electric field into the flows of electrons and
ions drifting toward the electrodes.

The dynamic vortex dust structures that form under
the action of an external electric field in a nuclear-track
plasma in neon has been explained theoretically, and
the theoretical model of such a plasma has been tested
experimentally. Numerical simulations carried out
using the method of molecular dynamics made it possi-
ble to explain the characteristic features of the forma-
tion of vortex dust structures. It has been shown that the
non-Coulomb forces, which are described by the terms
proportional to the gradients of the charges and, along
with the Coulomb forces, act on the dust grains, reverse
the rotation of vortex dust structures. The resulting
direction of rotation agrees with our experimental
observations, thereby qualitatively indicating the
potential character of the electrostatic forces of interac-
tion between the grains. We have also analyzed the
effects of friction between the buffer gas and the dust
grains on both the evolution of dynamic vortex dust
structures and the formation of the steady-state struc-
tures that were investigated previously by the MC
method [18]. The results of calculating these effects
numerically agree qualitatively with our experimental
data. 
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