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Abstract—Results are presented from investigations of the nonmonotonic spatial distributions of charge-
exchange neutral fluxes and optical radiation from plasma in the DAMAVAND tokamak. It is shown that, dur-
ing ohmic heating of the plasma, the regions with enhanced confinement of both the background plasma parti-
cles and heavy impurity ions arise near rational magnetic surfaces with q = 1 and 2. These regions are charac-
terized by enhanced emission of accelerated charge-exchange neutrals and optical radiation from impurity ions.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One way of prolonging the plasma energy lifetime
in tokamaks is to achieve operating conditions favor-
able for the onset of transport barriers in the plasma,
which considerably affect transport processes and trig-
ger transitions to improved confinement regimes
(H-modes) [1, 2]. That is why the study of transport
barriers and the processes responsible for their forma-
tion is important for the development of methods for
controlling discharges with long plasma energy life-
times in a tokamak reactor. In this way, experimental
investigations on small tokamaks can also be helpful in
solving the related problems.

Experimental results reported in [3] showed that,
during MHD activity before current disruption in the
TVD tokamak, the ions are accelerated preferentially
across the magnetic field lines, in which case the trans-
verse plasma temperature increases by a factor of 1.5 to
2. In studying the processes occurring in the predisrup-
tion phase in the DAMAVAND tokamak (Tehran,
Islamic Republic of Iran) [4, 5], it was observed that the
intensities of charge-exchange neutral fluxes and opti-
cal radiation from impurities change nonmonotonically
from the plasma core to the periphery. This effect can
be interpreted as evidence that the background and
impurity ion densities both become elevated in some
plasma regions. However, in [4, 5], the related measure-
ments were carried out only at a few radial positions in
the plasma column, so that it was impossible to deter-
mine the radial profiles of the intensity of charge-
exchange neutral fluxes and optical radiation from the
plasma with good spatial resolution.

The goal of the present paper is to investigate in
more detail regions with enhanced emissivity proper-
1063-780X/02/2807- $22.00 © 0535
ties in the predisruption phase and just after the disrup-
tion in the DAMAVAND tokamak.

2. EXPERIMENTAL CONDITIONS

The experiments were carried out in the DAMA-
VAND tokamak [4] with the following main parame-
ters: the major radius is R = 36 cm, the minor radius is
a = 7 cm, the vertical elongation of the plasma column
is k = 1.2, the toroidal magnetic field is BT ≤ 1 T, the
plasma current is Ip ≤ 40 kA, the plasma density is ne ≈
(1–2) × 1013 cm–3, the electron temperature is Te ~ 300–
350 eV, the ion temperature is Ti ~ 100–150 eV, and the
discharge duration is 15 ms. The elongation k was cho-
sen to be the lowest in order for the vertical instability
not to develop.

MHD-driven disruption of the plasma current was
initiated by connecting an additional energy supply to
the inductor 8 ms after the beginning of the discharge.
As a result, the discharge current increased by 10–20%
and became disrupted. Experiments were carried out
with several different plasma currents [4, 5]. The cur-
rent was varied consistently with the toroidal magnetic
field so as to keep the safety factor at the plasma bound-
ary nearly the same (qa ≈ 2.3). Such plasma parameters
as the plasma current Ip, the loop voltage V, the time
derivative of the oscillating magnetic field component

, the intensity of hard X radiation, the intensities of
impurity (deuterium, carbon, and oxygen) line radia-
tions in the optical range, and plasma displacements
along the major radius and in the vertical direction were
measured by a standard tokamak diagnostic complex.
The distribution of charge-exchange neutral fluxes and
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Fig. 1. Schematic of the diagnostic system.
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Fig. 2. Intensity of the fluxes of charge-exchange neutrals
with an energy of 150 eV, emitted from the plasma in the
vertical direction, 1 ms (curve 1) and 160 µs (curve 2)
before the disruption and 25 µs (curve 3) after the disrup-
tion. The up arrows above the experimental points indicate
that the corresponding signal amplitude is much larger than
that designated in the figure.
the plasma ion temperature were investigated by a
charge-exchange neutral atom analyzer (CXNAA) with
a solid target [6], and the plasma electron temperature
was measured by an integral photoelectron spectrome-
ter [7]. A layout of the diagnostic components is shown
schematically in Fig. 1.

In chord measurements, the spatial resolution ∆z of
the diagnostic equipment was about 10 mm, the time
resolution being about ∆t ~ 5 µs.

A more detailed description of the experimental
conditions and diagnostic system is given in [8].

3. EXPERIMENTAL RESULTS

Figure 2 shows representative profiles of the inten-
sities of the fluxes of charge-exchange neutrals with an
energy of 150 eV, emitted from the plasma along differ-
ent chords 1 ms (curve 1) and 160 µs (curve 2) before
the disruption and 25 µs (curve 3) after the disruption.
Unfortunately, we failed to carry out measurements
during the disruption because of technical difficulties.
Figure 3 shows the same profiles, but for charge-
exchange neutrals with an energy of 700 eV. The pro-
files are seen to be nonmonotonic: they are highly
peaked near the chords corresponding to the vertical
displacement at the positions z ≈ ±20 and ±70 mm with
respect to the plasma center. In Fig. 3, this effect is
more pronounced. We can also see that the intensity of
charge-exchange neutral fluxes, on the average,
increases in the negative direction from the plasma cen-
ter to the periphery. Under the above experimental con-
ditions, the centrifugal drift of the ions and their drift in
the nonuniform magnetic field of the device have the
same direction.

Figure 4 shows representative profiles of the OV
(λ = 2781 Å) and Dβ (λ = 2781 Å) line intensities. The
OV line intensity is seen to be peaked near the same
chords as the intensity of charge-exchange neutral
fluxes. It is important to note that the positions of the
peaks depend neither on the discharge current nor on
the magnetic field strength, provided that the safety fac-
tor at the plasma boundary is the same in different dis-
charges. The z-profile of the Dβ line intensity is far
more monotonic. It is notable that the intensity of the
Dβ line increases along the z coordinate in the direction
of the electron drift.

Figure 5 shows how the plasma ion temperature
depends on the distance from the viewing chord to the
plasma center. The measurements were carried out 1 ms
(curve 1) before the disruption and 25 µs (curve 2) after
the disruption. The ion temperature profiles are seen to
be more monotonic than those of the intensity of
charge-exchange neutral fluxes. We note that there are
regions with a high temperature gradient near the
plasma boundary, i.e., at )z) > 40–50 mm. This indicates
that the energy lifetime of the ions in these regions is
fairly long, which is usually regarded as evidence for
the existence of an external transport barrier for the
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002
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ions. We can see that, during the disruption, the ion
temperature (or, more precisely, its transverse compo-
nent) increases by a factor of approximately 1.5–2. In
small tokamaks, the ion temperature determined by
analyzing the flux of charge-exchange neutrals emitted
from the plasma along a certain chord is close to the
maximum plasma temperature over this chord. It
should be stressed that the existence of the observed
regions with enhanced emission of charge-exchange
neutrals and optical radiation from impurity ions may
be a source of errors in the measurements of the radial
profiles of the ion temperature. Additionally, in toka-
maks, errors in the radial ion-temperature profile mea-
sured by particle diagnostic techniques may result from
banana particles and particles trapped in the local wells
of a rippled toroidal magnetic field [9–11]. Since the
profiles in Fig. 5 were not corrected for these possible
sources of errors, the nonmonotonic character of the
ion temperature in the z direction may be less pro-
nounced than that of the charge-exchange neutral
fluxes.

4. DISCUSSION OF THE RESULTS

The main distinctive feature of the experimental
profiles shown in Figs. 3–5 is that they are peaked near
certain chords. Emission of charge-exchange neutrals
and radiation from impurities are enhanced in regions
near the chords corresponding to the vertical displace-
ment at the positions z = ±20 mm and z = ±70 mm with
respect to the plasma center. Estimates show that, at
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Fig. 3. Same as in Fig. 2, but for charge-exchange neutrals
with an energy of 700 eV.
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such distances from the plasma center in the DAMA-
VAND tokamak, the safety factor q at qa ~ 2.3 is close
to 1 and 2, respectively. This indicates that enhanced
emission of charge-exchange neutrals and enhanced
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Fig. 4. Intensity of OV and Dβ radiation lines emitted from
impurities in the vertical direction ( ) 1 ms before and ( )
25 µs after the disruption. 
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Fig. 5. Profiles of the plasma ion temperature in the vertical
direction (1) 1 ms before and (2) 25 µs after the disruption. 
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radiation from highly ionized impurities along these
chords are largely governed by the regions around
rational magnetic surfaces with m = 1, 2 and n = 1.
Summarizing the experimental data presented here and
in the cited works makes it possible to conclude that,
during the disruption, the ions are accelerated primarily
near the rational magnetic surfaces.

The fact that the nonmonotonic character of the
z-profile of the OV line intensity is more pronounced
than that of the Dβ line intensity allows us to suggest
that fast electrons accumulate near the rational mag-
netic surfaces, whereas slow electrons (with energies
Ee < 50 eV) are distributed more uniformly over the
cross section of the plasma column. In fact, the highest
ionization rate constant for deuterium atoms corre-
sponds to an electron energy of about 50 eV, while the
rate constant of the ionization process OIV  OV is
maximum at an electron energy of about several kilo-
electronvolts [12]. The nonmonotonic character of the
OV line intensity profile can also be regarded as evi-
dence of the accumulation of heavy impurities near the
rational magnetic surfaces.

It is known [13, 14] that transport processes near to
and far from the rational surfaces differ in properties.
This results in the formation of transport barriers near
the rational surfaces and the accumulation of back-
ground electron and ions, as well as impurity ions,
within the barriers. Moreover, the particle temperature
in the barrier zones can differ appreciably from that in
other plasma regions [13]. Such accumulation of impu-
rity ions (in particular, carbon ions) was observed in
experiments on the JT-60U tokamak [14].

Hence, the experimental data obtained from ohmi-
cally heated discharges in the DAMAVAND tokamak
show that the properties of the regions appearing near
the rational magnetic surfaces are characteristic of
transport barriers.

For small tokamaks operating in ohmic heating
modes, this conclusion, at first glance, seems to be
strange. Although the mechanisms for the formation of
transport barriers and the physical processes inside
them have not yet been studied in detail, it is well
known that the formation of transport barriers in large
tokamaks is initiated by a sufficiently high auxiliary
heating power. It should be emphasized that, in experi-
ments with ohmically heated discharges in the DAMA-
VAND tokamak, the mean specific power input to the
plasma is about 1 W/cm3, which is nearly the mean spe-
cific power input required for the formation of transport
barriers in large tokamaks.

5. CONCLUSIONS

(i) The experimental data reported here provide evi-
dence that, in ohmically heated discharges in the DAM-
AVAND tokamak, local plasma regions appear whose
physical properties are typical of transport barriers.
(ii) An analysis of the available database for differ-
ent plasma currents and different toroidal magnetic
fields shows that regions with enhanced emissivity
properties arise near rational magnetic surfaces with
q = 1 (z = ±20 mm) and q = 2 (z = ±70 mm).

(iii) In these regions, the background and impurity
ions both accumulate. Presumably, the electron con-
finement also improves in these regions.

(iv) The peaks in the profiles of both the intensity of
charge-exchange neutral fluxes and the radiation from
impurities are observed before and immediately after
the disruption of the plasma current. This indicates that
the regions with enhanced emissivity properties disap-
pear, if ever, only during the disruption event.

(v) Experimental data show that the radial distribu-
tion of the fluxes of charge-exchange neutrals with dif-
ferent energies is fairly sensitive to the presence of
transport barriers in the plasma. For this reason, particle
diagnostic techniques can be successfully employed to
study the formation of transport barriers and their evo-
lution in the plasmas of toroidal devices.
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Abstract—The ECHLAB code, intended for a self-consistent numerical analysis of the evolution of the elec-
tron distribution function and the spatial structure of the electromagnetic field during EC plasma heating in a
stellarator, is described. The results from calculations of plasma heating and current drive under conditions cor-
responding to experiments on EC plasma heating by an X2-mode in the L-2M stellarator are presented. It is
shown that, at the existing level of microwave power, the energy deposition region displaces only slightly during
heating. The energy is mainly absorbed by relatively fast passing electrons. The influence of locally trapped
electrons on the efficiency of current drive is insignificant. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In present-day plasma confinement experiments,
oscillations at the electron cyclotron (EC) frequency
and its harmonics are widely used both to heat the
plasma and to create and maintain the longitudinal cur-
rent in toroidal magnetic confinement systems [1–4].

EC oscillations efficiently interact with electrons
satisfying the resonant condition ω – nωe – k||v || = 0.
The electric current can be generated due to both direct
transfer of the longitudinal momentum from the heat-
ing wave to the plasma electrons and collisional relax-
ation of the perturbed electron distribution function
(EDF). The latter mechanism (also called the Fisch–
Boozer mechanism [5]) is related to the fact that, at
k|| ≠ 0, the diffusive flux in velocity space, which
reduces the number of electrons with low transverse
energies and increases the number of high-energy elec-
trons, is different for electrons with oppositely directed
longitudinal velocities. Since the rate of collisional
isotropization of low-energy electrons is higher than
that of suprathermal electrons (νei ∝  v –3), there is a rel-
ative excess of electrons with sign(v ||) = sign((ω –
 nωe)/k||); i.e., the longitudinal electric current is gener-
ated. This mechanism for current drive is usually dom-
inant; hence, in kinetic simulations of EC heating, it is
necessary to take into account both particle collisions
and the interaction of electrons with the microwave
field. The presence of electrons trapped in the local
minima of the magnetic field results in two additional
current drive mechanisms. First, trapped electrons, exe-
cuting fast longitudinal oscillations, immediately lose
the acquired longitudinal momentum; as a result, the
friction between trapped and passing electrons reduces
the current carried by the latter. Second, when “barely
passing” electrons acquire transverse energy due to res-
onant absorption, they can pass into the trapped state;
this results in the generation of a current (the so-called
1063-780X/02/2807- $22.00 © 20539
Ohkawa current [6]) directed oppositely to the Fisch–
Boozer current.

The problem of current drive in closed plasma con-
finement systems is very challenging from the stand-
point of creating and maintaining the optimum current
profiles (e.g., for suppressing MHD instabilities or
compensating the bootstrap current). A specific feature
of EC heating is that the microwave energy is deposited
(and, accordingly, the current is driven) in a narrow spa-
tial region, whose position and shape depend substan-
tially on both the magnetic field structure and the EDF.
The increase in the electron energy and the attenuation
of the microwave beam as it propagates in the plasma
are determined by the local efficiency of the resonant
EC interaction on each of the magnetic field lines
crossed by the beam. These processes are self-consis-
tently taken into account in the codes CQL3D [7],
BANDIT-3D [8], and OGRAY [9, 10] (see also [11]),
designed for the simulations of EC heating in toka-
maks.

Similar numerical codes used to simulate EC heat-
ing in stellarators have the following specific features.
On the one hand, the majority of modern codes [12–15]
take into account radial transport related to uncompen-
sated drift of the trapped particles. On the other hand,
the spatial distribution of the microwave field ampli-
tude is usually found by using the local damping coef-
ficients calculated under the assumption that the EDF is
Maxwellian and the magnetic field is uniform. This
means that, when calculating the interaction of elec-
trons with a microwave beam, the finite beam aperture
and the nonuniformity of electron motion in the reso-
nance region are not actually taken into account. For
stellarators, such an approach seems to be even less jus-
tified than for tokamaks, first of all, because of the con-
siderable longitudinal magnetic field gradient, which
varies the efficiency of the resonant interaction. The
002 MAIK “Nauka/Interperiodica”
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importance of a self-consistent analysis is associated
not only with the possible influence of the modification
of the EDF on the microwave field absorption, but also
with the fact that, in the presence of the longitudinal
nonuniformity of the magnetic field, the conventional
method for computing the damping rate can result in
considerable errors in calculating the power absorbed
by electrons.

This paper is aimed at simulating EC plasma heating
and current drive in stellarators and studying the influ-
ence of the change in the EDF on the profiles of energy
deposition and current drive during EC heating. For this
purpose, the numerical code ECHLAB, designed by us,
is applied. The underlying principles of the code are
described below.

2. KINETIC EQUATION

The interaction of electrons with an electromagnetic
wave results in the time evolution of the EDF on the
magnetic surfaces crossed by the microwave beam. To
study this process, we use a kinetic equation describing
electron diffusion in velocity space under the action of
microwave oscillations and Coulomb collisions:

(1)

Here, F = F(V, U, r, ϑ) is the EDF averaged over longi-
tudinal motion, r is the mean radius of a magnetic sur-
face, ϑ  is the poloidal angle, vdr is the drift velocity, V =
p/(mec), U = p||0/p, p is the absolute value of the electron
momentum, and p||0 is the longitudinal momentum of an
electron in the minimum of the magnetic field on the
given field line. The averaging over longitudinal motion
makes sense if the characteristic frequency of this
motion (the bounce frequency for trapped particles or
the reciprocal of the period of circulation along the
torus for passing particles) substantially exceeds the
collision frequency. Under conditions typical of EC
heating in stellarators, this requirement is satisfied for
the majority of electrons. In the variables V and U, the
operator of quasilinear diffusion for the resonance heat-
ing at the nth harmonic of the electron gyrofrequency
has the form [10]

(2)

where

(3)

ωb = 2π/ d, = 2πcVγ–1/  – b + bU2)–1/2d, is the

characteristic frequency of longitudinal motion of an
electron, , is the longitudinal coordinate, ωe0 is the rel-
ativistic electronic gyrofrequency in the minimum of
the magnetic field on a given field line, γ = (1 + V2)1/2 is
the relativistic factor, and b is the local value of the
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magnetic field normalized to its minimum value on the
electron trajectory (the mirror ratio). In the so-called
“shove” approximation [16], the local value of the qua-
silinear diffusion coefficient is determined as

(4)

where ∆γ corresponds to the increment in the electron
energy during one passage through the resonance
region and ωt is the passage rate, which coincides with
ωb for passing electrons and is equal to ωt = ωb/M for
trapped electrons (here, M is the number of the minima
of the magnetic field on a given field line). The linear-
ized operator of Coulomb collisions (averaged over
longitudinal motion) has the form

(5)

where Λ is the Coulomb logarithm, uα = V ,  =

, κα = exp , Aα = exp(–x2)dx, Cα =

exp(– ) + Aα, Zeff =  is the

effective ion charge number, and α = e, i; the other nota-
tion is standard.

Almost all specific features of EC interaction are
described by the expression for the quasilinear diffu-
sion coefficient Dn. If the electron Larmor radius is
small as compared to the transverse wavelength, then
the equations of electron motion (averaged over Larmor
rotation) in a microwave field [16] result in the follow-
ing expression:

(6)

where E± = Ex ± iEy is the circularly polarized compo-
nents of the microwave electric field (x and y are the
coordinates in the minor cross section of a torus); the
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amplitude values are taken in the plane , = ,0, corre-

sponding to the beam axis; b* ≡  is the reso-

nant value of b;

(7)

and  is the profile of the microwave beam ampli-
tude along a magnetic field line. The quantity G is the
dimensionless time of resonant interaction (in the given
model, the limits of integration can be considered infi-
nite).

3. CODE ECHLAB

Kinetic processes in toroidal devices are simulated
by using equation (1), averaged over a magnetic sur-
face. For passing particles, whose energy is rapidly
redistributed over the magnetic surface, the averaging is
performed over the entire range of poloidal angles. For
locally trapped particles, the averaging is performed
over the ϑ  interval corresponding to their banana trajec-
tories. In the kinetic equation, we use the quasilinear
diffusion coefficient Dn(V, U, r), averaged over ϑ  with
a weight function accounting for the nonuniformity of
the magnetic field over ϑ  (in particular, for a magnetic
surface with a circular cross section, the weight func-
tion has the form (1 + εt cosϑ)–1).

In this study, we ignore the effects related to the pro-
cesses of cross-field transport of particles and energy in
order to ensure an unambiguous interpretation of the
computation results. Accordingly, the kinetic equation
does not contain gradient terms describing neoclassical
diffusion, so that the electron density ne =

 + dVdUd, on a mag-

netic surface is conserved. In fact, this means that the
residence time of a particle in a trapped state ttr ~

∆b, which is determined by the modulation depth of
the magnetic field ∆b and the collision frequency, is
assumed to be so small that, over this time, the trapped
particle practically does not shift from the magnetic
surface. For the problem of simulating EC heating and
current drive in the axial region of a stellarator under
conditions when the energy deposited in the locally
trapped electrons is relatively low, such a model seems
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to be quite satisfactory. The contribution of the high-
energy tails of the locally trapped electrons to energy
transport under conditions typical of L-2M was consid-
ered in [17].

Since we are interested, first of all, in the distribu-
tion of passing electrons, we will assume that all the
trapped electrons are described by a unified distribution
function, irrespective of their localization along a torus.
As a result, instead of a set of kinetic equations for
passing electrons and, in general, for electrons trapped
in each magnetic well with boundary conditions corre-
sponding to the continuity of the EDF at the boundaries
of the trapping regions and to the conservation of the
particle fluxes, we are dealing with one equation
describing both trapped and passing electrons.

For many stellarators, the magnetic field near the
magnetic axis can be represented by one helical har-
monic:

(8)

This representation is characteristic of classical stellar-
ators (such as L-2M and U-3M), as well as torsatron
(heliotron) devices (LHD, ATF, CHS, and Heliotron-E).
For these systems, the longitudinal profile of the mag-
netic field in the region where electrons interact with a
microwave beam can be represented as

(9)

where ξ = 2εh(1 – εt cosϑ  – εh)–1, χ = π,/L, and L is the
spatial (along the torus) period of a helical magnetic
field. The unperturbed longitudinal motion of an elec-
tron is described by the expression

(10)

where the wave phase on the electron trajectory is equal
to

(11)

Here, D(χ, λ) = (1 – λ2sin2ϕ)–1/2dϕ is the Leg-

endre elliptic integral, am(τ, λ) is the amplitude of the
Jacobi elliptic function, and the quantity λ2 = ξ(1 –
U2)/U2 characterizes the degree to which an electron is
trapped in the magnetic well. Note that the expressions
for χ(t) and Ψ(t) can also be obtained for magnetic con-
figurations more complicated than those described by
formulas (8) and (9) by approximating the dependence

 by a piecewise-sinusoidal function with a
varying amplitude. This may be needed when the rota-
tional transform over one period of the magnetic field is
not small (in the theory of neoclassical transport, a sim-
ilar approach was used in [18]).
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The transverse intensity profile of the microwave
beam launched into a plasma is usually close to Gauss-
ian. Therefore, at small angles between the propagation
direction of the beam and the magnetic field gradient,
the amplitude of the microwave field on the electron
trajectory can be described by

(12)

where ρ and χ0 are functions of x and y. Integration in
formula (7) is performed numerically, because the
approximate analytical methods [19, 20], based on
keeping the terms ~t3 and ~t2 in the expansions of Ψ(t)
and a(t), respectively (or taking into account the a(t)

a t( ) L
2

π2ρ2
----------- χ t( ) χ0–( )2

– 
  ,exp=
dependence parametrically), do not provide the neces-
sary accuracy for certain groups of electrons.

To calculate the distribution of the electromagnetic
field in a microwave beam, we used the following
model. In the direction perpendicular to both the wave
vector k and the magnetic field B, the beam was split
into plane layers. In each of these layers, the profile of
the electromagnetic field along the toroidal coordinate
was described by expression (12). To find the distribu-
tion of the microwave field amplitude in an individual
layer along the propagation direction of the beam, we
used one-dimensional equations obtained from a set of
algebraic equations [16, 21] by the replacement N⊥  

. In the case |ω – nωe | ! ω, k⊥ vTe ! |ωe |, and

n ≥ 2, this set takes the form

i
c
ω
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where qe = /ω2. The boundary conditions for an
electromagnetic field were imposed in a vacuum and
corresponded to an incident and reflected waves on the
side where the microwave beam was launched into the
plasma and to a transmitted wave on the opposite side.
Such an approach allowed us, e.g., to adequately
describe the strong damping of the wave in the reso-
nance region (as well as the reflection from this region)
for a characteristic damping length on the order of or
smaller than the wavelength of microwave oscillations.
In this situation, the geometric-optics approximation is
inapplicable. We note that, in set (13), we only retain
the imaginary component η ≡ Imε––, because, for
k⊥ vTe ! |ωe |, the hierarchy of the imaginary parts of the
matrix elements is as follows: η @ Imε–|| @ Imε|| || @
Imε+|| @ Imε++. To describe the problem self-consis-
tently, the η value should be found from the energy bal-
ance between the absorption of the microwave field and
the quasilinear heating of electrons:

(14)

Here, Det is the determinant of the matrix in set (13); P
is the energy flux density of the wave; and wabs is the
specific power density acquired by electrons in the
course of quasilinear diffusion, described by Eq. (2):

ωpe
2

2 ImDet
∂ ReDet( )/∂k
--------------------------------

wabs ,d∫
P ,d∫

--------------------.–=
(15)

It follows from Eq. (14) that, for the heating at the sec-
ond harmonic of the electron gyrofrequency and for
quasi-transverse wave propagation, the η value can be
calculated by the formula

(16)

The procedures for solving the wave equations and
averaging the quasilinear diffusion coefficients over a
set of magnetic surfaces (whose coordinates were cal-
culated in advance) require a numerical grid with a
rather small step along the x coordinate (no larger than
1/10 of the wavelength). However, the kinetic equation
itself can be solved with a relatively large step in r, and
the local values of the EDF, required to calculate the
specific power density (15), can be found by interpola-
tion.

4. RESULTS OF SIMULATIONS
In calculations, the parameters of the plasma and the

magnetic field corresponded to the conditions of exper-
iments on plasma heating by an extraordinary wave at
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Fig. 1. Distributions of (a) |E– |2 and (b) wabs in the cross section at which the microwave beam is launched into the plasma for
Bres/B0 = 1 and ϕ = 0 (on-axis heating). The ticks on the contours B = const are directed to the lower B values.
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Fig. 2. Same as in Fig. 1 for Bres/B0 = 0.97 and ϕ = 0 (off-axis heating, the middle of the slope of the magnetic well).
the second harmonic of the electron gyrofrequency in
the L-2M stellarator [22–25]: ne0 = 1.7 × 1013 cm–3,
Te0 = 1 keV, Ti0 ! Te0, Zeff = 2, the major radius is R0 =
100 cm, and B0 = 1.34 T. The profile of the electron den-
sity and the initial profile of the electron temperature
were taken to be ne = ne0[1 – (r/a0)6] and Te = Te0[1 –
(r/a0)2], where a0 = 11.5 cm is the mean radius of the
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002
plasma column and r is the effective radius of a mag-
netic surface. It is assumed that a microwave beam with
the radius ρ0 = 2.5 cm, frequency f = 75 GHz, and
power W0 = 230 kW is launched from the low-field side.
The beam axis lies in the horizontal plane and is quasi-
perpendicular to the magnetic field (N|| = 0.1). The spa-
tial structure of the magnetic field was described in the
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Fig. 3. Same as in Fig. 1 for Bres/B0 = 0.97 and ϕ = –π/2M (off-axis heating, the bottom of the magnetic well).
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Fig. 4. Same as in Fig. 1 for Bres/B0 = 1.05 and ϕ = π/2M (off-axis heating, the top of the magnetic hump).
lowest order stellarator approximation by an expression
similar to expression (8):

(17)

where M = 14 is the number of the stellarator field periods.
Calculations were performed for the following

schemes of microwave beam launching:

B = 1
r

R0
----- ϑcos– 0.227

Mr
2R0
--------- 

  2

2ϑ Mϕ+( )sin+ 
  B0,
1. Bres /B0 = 1 and ϕ = 0 (on-axis heating);

2. Bres /B0 = 0.97 and ϕ = 0 (off-axis heating, the
middle of the slope of the magnetic well);

3. Bres /B0 = 0.97 and ϕ = –π/2M (off-axis heating,
the bottom of the magnetic well); and

4. Bres /B0 = 1.05 and ϕ = π/2M (off-axis heating, the
top of the magnetic hump).
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Fig. 5. Radial profiles of the power deposition density wabs at t = 0 (dashed curves) and t = 12τe0 (solid curves): (a) Bres/B0 = 1 and
ϕ = 0 (on-axis heating), (b) Bres/B0 = 0.97 and ϕ = 0 (off-axis heating, the middle of the slope of the magnetic well), (c) Bres/B0 =
0.97 and ϕ = –π/2M (off-axis heating, the bottom of the magnetic well), and (d) Bres/B0 = 1.05 and ϕ = π/2M (off-axis heating, the
top of the magnetic hump). The power density deposited in the locally trapped electrons is shown by the dashed-and-dotted line.
Here, Bres = mecω/2|e | is the resonant value of the
magnetic field, which determines the position and the
general structure of the energy deposition region. Note
that, in the existing system of EC plasma heating in the
L-2M stellarator, the microwave beam is launched into
the plasma in the cross section ϕ = 0; therefore,
schemes 3 and 4 cannot presently be realized in exper-
iments.

Figures 1–4 show the contour lines of |E– |2 and wabs

in the launching cross section for all of the above
schemes. For clarity, the contours B = const are also
shown in the figures. We note that, in the given model,
the cross sections of the magnetic surfaces are concen-
tric circles with the center at x = 0 and y = 0. A some-
what wavy structure of the |E– |2 contour lines is related
to the partial reflection of the wave from the narrow
region of resonant absorption, the reflection coefficient
being about 1%. It is seen that the energy is deposited
in the plasma in a relatively narrow spatial region (∆x ≤
λ0) close to the “cold” resonance (B = Bres). Calcula-
tions show that, at the given microwave power, the spa-
tial distribution of the microwave amplitude changes
only slightly in the course of EC heating. Only in the
case of on-axis heating, we can see a minor (≈2 mm)
displacement of the energy deposition region toward
the higher magnetic field. A fraction of the microwave
power, which is launched into the plasma as an s-polar-
ized wave (E = Ey), is transferred to the ordinary mode;
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002
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this is related to the mode splitting at the plasma–vac-
uum interface. As a result, the microwave beam is
incompletely absorbed during one passage through the
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Fig. 7. Time evolution of the total current at (1) Bres /B0 = 1
and ϕ = 0, (2) Bres /B0 = 0.97 and ϕ = 0, (3) Bres /B0 = 0.97
and ϕ = –π/2M, and (4) Bres/B0= 1.05 and ϕ = π/2M.
resonance region: for all of the above launching
schemes, the absorption factor amounts to 87–92%.

Figure 5 shows the radial profiles of the power dep-
osition density wabs (averaged over magnetic surfaces)
in the beginning of EC heating and at t = 12τe0, when a
steady state has been almost established (the character-
istic time of Coulomb collisions is τe0 ≡

(2πne0e4Λ)–1 = 20 µs). Naturally, the largest
wabs(r) values are attained for on-axis heating, because
the plasma volume in which the microwave energy is
deposited increases with increasing radius of the mag-
netic surface. The figure also shows the profiles of the
power density deposited in the locally trapped electrons
(dashed-and-dotted line). It is seen that, in the region
where the power deposition density is maximum, the
fraction of energy absorbed by the trapped electrons is
no larger than 20% for schemes 2 and 3 and is negligi-
ble for schemes 1 and 4. However, at magnetic surfaces
distant from the “cold” resonance, the fraction of
energy deposited in the locally trapped electrons can
substantially increase.
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Fig. 8. EDF on the (v /vTe0, U = p||0/p) plane for Bres/B0 = 1 and ϕ = 0 (on-axis heating) at t = 12τe0 and r = 0.
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The radial profiles of the current density j||0 =

−2π|e | c4 γ–1V3UdVdU in the steady state for

schemes 1 and 2 are shown in Fig. 6. It is seen that the
current is driven most efficiently in the region where the
power deposition density is maximum. The radial pro-
file of the current density for schemes 3 and 4 is approx-
imately the same as for scheme 2. Figure 7 shows the
time evolution of the total current for all of the above
launching schemes. It is seen that the characteristic
time during which the current saturates at a quasi-
steady value amounts to several collisional times. The
largest current is generated in the case of on-axis heat-
ing (≈3 kA), which is explained, first, by the higher
value of wabs (and, hence, the larger number of suprath-
ermal electrons) and, second, by the small number of
trapped electrons in the axial region.

The anisotropy of electron heating is illustrated in
Fig. 8, which shows the relief of the EDF at t = 12τe0 for
the case of on-axis heating (scheme 1). In this case, the

effective electron temperature Teff =  =

 ×  + dVdUd, at

r = 0 and t = 12τe0 amounts to 2.3 keV, which corre-
sponds to the increase in the temperature by a factor
more than 2. We can see the high-energy tail of the EDF
in the range of positive longitudinal velocities corre-
sponding to resonant interaction. For the other launch-
ing schemes, Teff increases during EC heating by no
more than 10% and the tails of the EDF are not so pro-
nounced.

5. CONCLUSION

In this study, we have investigated EC plasma heat-
ing and current drive in the L-2M stellarator by using
the newly developed numerical code ECHLAB. The
code self-consistently takes into account the energy
acquired by electrons on a magnetic field line and the
damping of the microwave beam. The kinetics of the
EC resonant interaction was calculated by using a
model that accounts for the nonuniformity of electron
motion in a magnetic field with one helical harmonic.
The distribution of the electromagnetic field along the
propagation direction of the microwave beam was cal-
culated by solving the wave equation, which allowed
us, in particular, to take into account the reflection of
radiation from the region of resonant absorption. How-
ever, at this stage, a number of important effects, such
as the refraction of a microwave beam and radial parti-
cle transport, as well as the complicated dynamics of
transitional (intermediate between trapped and passing)
electrons were ignored. When considering Coulomb
collisions, the background EDF was assumed to be
Maxwellian with the temperature equal to the initial
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temperature. The calculations were performed without
allowance for an additional vertical magnetic field, usu-
ally applied to a plasma in real experiments in order to
displace the magnetic axis in the horizontal direction.
In the presence of such a field, the modulation of the
magnetic field on the axis is nonzero, which can sub-
stantially increase the role of trapped electrons in the
case of on-axis heating.

Nevertheless, the model used, on the whole, satis-
factorily describes the main characteristics of the EC
interaction for the above schemes of microwave
launching. The results obtained demonstrate that, in the
case of EC plasma heating by an X2-wave under condi-
tions typical of experiments in L-2M, the energy depos-
ited in the locally trapped electrons is low (as was pre-
dicted by analytical estimates [17]). The effect of the
reflection of microwave radiation from the region of
resonant absorption under the given conditions is also
insignificant.

Further simulations of EC plasma heating and cur-
rent drive will require, on the one hand, improving the
numerical code and, on the other hand, combining it
with the ray tracing method and the existing transport
codes.
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Abstract—Results are presented from experimental studies of the spatial electron density distribution in cur-
rent sheets formed in three-dimensional magnetic configurations with X-lines. The electron density is measured
by using two-exposure holographic interferometry. It is shown that plasma sheets can form in a magnetic con-
figuration with an X-line in the presence of a sufficiently strong longitudinal magnetic-field component B|| when
the electric current is excited along the X-line. As the longitudinal magnetic-field component increases, the
electron density decreases and the plasma sheet thickness increases; i.e., the plasma is compressed into a sheet
less efficiently. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

According to present notion, the origin of flare phe-
nomena that occur in astrophysical and laboratory plas-
mas lies in a fundamental physical process—the recon-
nection of magnetic field lines (“magnetic reconnec-
tion”) in a high-conductivity magnetized plasma [1–3].
By flare phenomena is usually meant a local, sudden,
and rapid (i.e., explosive in character) conversion of
magnetic energy into the energy of plasma and acceler-
ated particles. Among flare phenomena, we can men-
tion solar and stellar flares, substorms in the magneto-
spheres of the Earth and other planets, disruption insta-
bilities in tokamak plasmas, and the fast restructuring
of magnetic fields in reversed-field pinches, compact
tori, and Z- and Θ-pinches. Magnetic reconnection
results in a rapid change of the magnetic-field topology,
which is accompanied by the conversion of magnetic
energy into the thermal and kinetic energy of the
plasma, as well as into accelerated particles and radia-
tion. According to B.B. Kadomtsev, magnetic recon-
nection is of particular importance as “a fundamental
plasma process responsible for many active plasma
phenomena. To adequately describe the plasma dynam-
ics in a magnetic field, an understanding of this effect is
of no less importance than the frozen-in magnetic field
concept” [4].

Magnetic reconnection can occur in plasma regions
where oppositely (or differently) directed magnetic
field lines lie at a short distance from each other. These
regions are characterized by the high current density
and small scale length; as a result, dissipative processes
begin to play an important role even in high-conductiv-
ity plasmas and the condition that the magnetic field be
1063-780X/02/2807- $22.00 © 20549
frozen in the plasma can be violated. Plasma regions
that separate differently directed magnetic fields and
where the current is concentrated usually take the form
of a current sheet [1, 2]. In this sheet, the reconnection
of oppositely directed magnetic field lines, as well as
the efficient conversion of magnetic energy is into other
types of energy, can occur.

In real situations, e.g., in the solar corona or plasma
confinement systems, magnetic reconnection usually
occurs in three-dimensional (3D) magnetic configura-
tions that have topological singularities. Therefore, the
study of the current sheet formation in 3D magnetic
configurations is of great importance for the magnetic
reconnection problem as a whole.

Among a variety of 3D magnetic configurations,
configurations with X-lines are of particular interest.
Such configurations, which often occur in nature
(active solar regions) and in laboratory experiments
(closed magnetic confinement systems, etc.), play an
important role in effects related to magnetic reconnec-
tion. Previously, magnetic reconnection in configura-
tions with null lines [5–9] and null points [10–16] was
studied both theoretically and experimentally. It is well
known that, in the vicinity of a null line, there are two-
dimensional (2D) magnetic fields, which vanish at this
line. In 3D configurations, all of the three components
of the magnetic field can vanish at isolated null points.
In a 3D configuration with an X-line, the total magnetic
field can be nonzero everywhere; however, both of the
transverse components of the magnetic field vanish at
the X-line (as in the case of configurations with a null
line), whereas the magnetic field component B||,
directed along the X-line, is nonzero. It is the presence
002 MAIK “Nauka/Interperiodica”
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of the longitudinal component that distinguishes the
X-line from a null line. In other words, a magnetic con-
figuration with an X-line is a more general structure as
compared to configurations with a null line or null
point. Note that, in the latter configurations, the singu-
lar X-line is present both in the zero-field region and far
from it.

According to theoretical predictions, in the vicinity
of X-lines, cumulative effects can occur and current
sheets can form; i.e., magnetic reconnection in the
vicinity of an X-line can play a governing role [1].
Therefore, it is very important to clarify the possibility
of the current sheet formation in magnetic configura-
tions with X-lines and to determine the spatial structure
of the magnetic field and the plasma parameters in the
vicinities of these lines.

The simplest magnetic field configuration with an
X-line can be represented in the form

B = {Bx; By; Bz} = {–hy; –hx; B||}. (1)

Here, the X-line coincides with the z-axis and B|| . const
is the uniform longitudinal component directed along
the X-line. In the (x, y) plane, the magnetic field van-
ishes at the z-axis and is characterized by a constant
gradient h . const; i.e., it increases linearly with dis-
tance from the z-axis. Obviously, all three components
of magnetic field (1) are independent of the z coordi-
nate.

Recently, it was found that current sheets can actu-
ally be formed in a magnetic configuration with an
X-line when the electric current is excited along the sin-
gular line and the longitudinal component of the mag-
netic field B|| is sufficiently strong [16–18]. Further-
more, it was established that, throughout the entire
region occupied by the plasma (or within the major part
of this region), the longitudinal component of the mag-
netic field can be larger than the transverse component.
These results were obtained by analyzing the spatial
distributions of HeI and HeII plasma emission. The
spatial distributions of plasma emission adequately rep-
resent the plasma configuration as a whole; however,
they fail to provide quantitative information. At the
same time, our previous studies demonstrated that
holographic interferometry can be efficient in obtaining
quantitative data on the spatial plasma density distribu-
tions in current sheets produced in 2D magnetic fields
[9, 19–21]. In connection with this, we have recently
started investigations of the spatiotemporal characteris-
tics of the plasma in current sheets formed in magnetic
configurations with X-lines. These studies are based on
two-exposure holographic interferometry. Here, we
present the first results obtained by this technique. Most
attention is concentrated on the determination of struc-
tural features of plasma sheets and their dependence on
the initial conditions, including the topology of the ini-
tial magnetic configuration. We note that some evi-
dence of decreasing the plasma density in the central
region of the sheet in the presence of the longitudinal
component B|| were previously obtained from spectral
measurements [17].

It is well known that interferometric measurements
yield the parameter values averaged over the line of
sight (in our case, along the z-axis). For this reason,
magnetic configuration (1) with h . const and B|| .
const, (i.e., a configuration in which none of the three
magnetic field components depend on the z coordinate)
is very attractive from the diagnostic standpoint. This
also refers to measurements of the spatial distributions
of plasma emission [16–18]. In this paper, we compare
these methods.

It should be emphasized that magnetic reconnection
depends substantially on the magnetic structure of the
current sheet, as well as on the plasma parameters
inside the current sheet and in its vicinity. Hence,
besides the fundamental importance for plasma phys-
ics, these studies can be of great importance for a num-
ber of applications, in particular, for analyzing various
magnetoplasma phenomena in the solar atmosphere
and in closed magnetic confinement systems.

2. EXPERIMENTAL DEVICE 
AND DIAGNOSTIC TECHNIQUES

Magnetic reconnection in configurations with sin-
gular X-lines was studied experimentally with the CS-
3D device [14–18], shown schematically in Fig. 1. Var-
ious initial 3D magnetic configurations were formed by
superposing two magnetic fields [22] characterized by
different types of symmetry—the translational and
axial ones. To form magnetic configuration (1) with an
X-line, we used a 2D field B⊥  = {–hy; –hx; 0} with a
null line on the z-axis and with the gradient h ≤
600 G/cm in combination with an almost uniform field
B|| ≤ 6 kG aligned with the null line. Since B|| in the vac-
uum chamber somewhat decreases near the electrodes,
the magnitude of the longitudinal field averaged over z
amounted to .90% of the B|| value in the midplane of
the device. The ripples of the longitudinal magnetic
field far from the ends of the system did not exceed
.2% in the 4-cm-radius region around the axis.

The magnetic fields were produced with the help of
separate electrotechnical systems, so that the parame-
ters of each field could be varied independently. This
allowed us to form various configurations with different
ratios between the longitudinal and transverse compo-
nents and also to pass gradually from one configuration
to another. Both magnetic fields were quasi-steady on
the time scale of plasma processes.

To produce a plasma in the initial 3D magnetic field
and to excite the electric current through the plasma, we
also used two independent electrotechnical systems,
which allowed us to vary the plasma parameters over a
wide range. The preevacuated vacuum chamber was
filled with a gas under study, specifically, helium at an
initial pressure of 300 mtorr. At this relatively high ini-
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002
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Fig. 1. (a) Longitudinal and (b) transverse cross sections of the CS-3D experimental device: (1) conductors producing the transverse
2D magnetic field with a null line; (2) coils producing the uniform longitudinal magnetic field B||; (3) vacuum chamber 18 cm in
diameter, L = 100 cm; (4) current sheet; (5) grid electrodes; (6) transparent end flanges; (7) controllable spark gap for switching the
longitudinal electric current Iz; and (8) Rogowski coil.
tial pressure, the role of hydrodynamic processes
increases (against the background magnetohydrody-
namic processes), the sheet forms over a relatively long
time, and the dissipative processes become more
important [23, 24]. All these features distinguish the
high-pressure operating conditions from the previous
experiments conducted under the “strong-magnetic-
field” conditions, when the plasma pressure was negli-
gibly small [7–9, 19–21].

The initial plasma in the 3D magnetic field was pro-
duced by the breakdown of the gas filling the chamber
with the help of an auxiliary Θ-discharge with a strong
preliminary preionization produced by a set of spark
injectors. Then, a pulsed voltage of .10 kV was applied
between two grid electrodes inserted into the vacuum
chamber from the ends. This voltage excited the elec-
tric current Iz in the plasma and initiated the plasma
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002
flows in the magnetic field, which resulted in the forma-
tion of a current sheet. The half-period of the plasma
current was T/2 = 5 µs, and its maximum value in this

experiment was  . 50 kA.

Experiments carried out with different ratios
between the longitudinal and transverse components of
the magnetic field allowed us to determine the main
characteristics of current sheets and find out how the
specific features of their fine structure depend on the
topology of the initial magnetic configuration with an
X-line.

Conventional diagnostic techniques used in CS-3D
included electric measurements, magnetic measure-
ments outside the vacuum chamber [25], time-resolved
recording of plasma images in isolated spectral lines
[26], and spectral measurements in the visible spectral
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Fig. 2. Schematic of the holographic interferometer: (L) lenses, (M) mirrors, (W) wedge, (D) aperture, and (F) film.
region [27]. From these data, we obtained information
on the plasma configurations and the current distribu-
tions [14–18], determined the electron and ion temper-
atures [28] and, in some cases, the plasma density [27,
29] and the strength of nonequilibrium electric fields
[30, 31].

In the present study, most attention was given to the
use of two-exposure holographic interferometry [32] to
determine the spatial electron-density distributions in
current sheets. For this purpose, we created a special
setup for hologram recording (Fig. 2) and also modified
the CS-3D device.

A holographic procedure, which yields interfero-
grams characterizing the plasma density distributions,
is performed in two stages. In the first stage, two holo-
grams are successively recorded: one with a plasma and
another without it. In the reconstruction stage, this two-
exposure hologram allows one to obtain the fringe pat-
tern of two waves that have passed the same way in suc-
cessive instants. In view of a differential character of
holographic interferometry, this method had a number
of advantages over other interferometric methods. In
particular, it is insensitive to the quality of optical com-
ponents and windows through which the radiation
passes, which makes it possible to study plasma objects
with large cross sections.
The setup for obtaining holograms (Fig. 2) is analo-
gous to that used previously by us when studying a cur-
rent-sheet plasma in 2D magnetic fields [19–21]. The
main distinction of this setup from that described in
[19] consists in that we can obtain holograms by using
the image holography scheme [33]. One of the advan-
tages of this scheme is that it is possible to eliminate
aberrations in the object image at any configuration and
wavelength of the reconstructing beam, in particular, in
the white light.

The holograms were recorded in the light from an
OGM-20 multimode ruby laser (λ = 694.3 nm, τ =
25 ns, and W = 20 MW). The aperture D1 of diameter
.1.5 mm separated the central part of the laser beam,
where the intensity was almost uniform. Then, the
beam diameter was enlarged to .20 mm with a tele-
scopic system consisting of a negative (L1) and a posi-
tive (L2) lens. In this stage, the radiation was divided
into an object and a reference beams with the help of a
semitransparent mirror M2.

A telescopic lens system L3–L4 served to enlarge
the object-beam diameter to ≈150 mm. This beam was
directed along the axis of the vacuum chamber by mir-
rors M1 and M3. With a lens system L5–L6 placed
behind the output window of the chamber, a reduced
image (≈25 mm in diameter) of the middle cross sec-
tion of the chamber was formed in the plane F, where
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002
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holograms were recorded. When passing through grid
electrodes located inside the vacuum chamber, the
object beam diffracted on these grids, which resulted
in the mixing of the beam mode structure. To separate
out the zeroth diffraction order, we employed a spatial
filtration of radiation. For this purpose, an aperture D2

positioned in the focal plane of the lens L5 was used.
The aperture diameter was chosen to match the period
of the electrode grid structure and was usually equal to
≈1.5 mm.

In order to substantially improve the quality of
holograms, the CS-3D device was modified. For this
purpose, the vacuum chamber electrodes through
which the object holographic beam passed were metal
grids with a relatively short period .0.26 mm. As a
result, the angles of the object-beam diffraction on the
electrodes increased substantially, so that it became
easier to filter the zeroth-order wave in the focal plane
of the lens L5.

The reference beam in the holographic setup was
formed by the lenses L7–L8. The beam was directed
onto the lens L6 by mirrors M4–M5 and was superim-
posed on the object beam in the plane F.

Holograms were recorded on a Mikrat-500 film. To
obtain fringes in the holographic interferograms, a
glass wedge W was placed in the path of the reference
beam. This wedge was turned by a small angle between
the first and second exposures. Changing the orienta-
tion of the wedge, we could change the orientation of
fringes; in particular, we could obtain vertical or hori-
zontal fringes. The optical scheme was adjusted with
the help of a helium–neon laser whose beam was pre-
liminarily aligned with the ruby laser beam.

The interferograms obtained by reconstructing two-
exposure holograms were digitized with an Epson
FilmScan 200 slide-scanner. To process the data
obtained, we created a special computer program. The
data processing includes noise filtering, the determina-
tion of fringe orientation, the compensation of the dis-
tortion of the optical system, and, finally, the construc-
tion of the 2D electron-density distribution. The use of
this program made calculations less laborious and
allowed us to increase the accuracy of interferogram
processing.

An interferogram obtained by reconstructing the
two-exposure hologram yields the 2D electron density
distribution in the plane orthogonal to the X-line. In
other words, the interferogram provides information
about the configuration of the region where the plasma
is concentrated, as well as about the plasma density at
different points in this plane. The values of the electron
density at each point are averaged over the X-line, i.e.,
over a distance of ~60 cm between the electrodes of the
vacuum chamber.
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Fig. 3. Interferograms of the current sheets formed in He at
a pressure of 300 mtorr for the longitudinal magnetic field
B|| = (a) 0, (b) 2.9, and (c) 5.8 kG. The gradient of the qua-
drupole magnetic field is h = 0.43 kG/cm.
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(a)

(b)

1 cm

Fig. 4. 2D distributions of the plasma emission intensity in the HeII spectral line (on the left) and the interferograms of the current
sheet plasma (on the right) for the longitudinal magnetic field B||= (a) 0 and (b) 5.8 kG. The discharge is excited in He at a pressure
of 300 mtorr. The gradient of the quadrupole magnetic field is h = 0.43 kG/cm. The circle indicates the viewing field of the holo-
graphic interferometer.
3. EXPERIMENTAL RESULTS

3.1. Spatial Plasma Density Distributions in Current 
Sheets Formed in 2D Magnetic Configurations 

with a Null Line

In our previous studies, it was found that current
sheets in 2D magnetic configurations with null lines
could be formed at relatively high initial gas pressures
(helium, 300 mtorr) [23, 24]. The results from measure-
ments of plasma emission in different spectral lines
indicated that the plasma was also concentrated within
a plane sheet. However, the quantitative data on the
plasma density in the sheet were obtained for the first
time in this study. The interferogram shown in Fig. 3a
represents the z-averaged distribution of the electron
density Ne in the (x, y) plane. In the figure, the deflec-
tion of fringes from straight lines is proportional to the
electron density Ne. The fringe shift equal to the dis-
tance between neighboring fringes corresponds to Ne .
5.33 × 1015 cm–3. It is seen in Fig. 3a that the plasma is
shaped as a plane sheet and the electron density inside
the sheet is substantially higher than in the surrounding
plasma.

A similar interferogram presented in Fig. 4a allows
us to compare two diagnostic techniques used by us: the
measurements of the spatial distributions of plasma
emission in different spectral lines [16–18] and the
method of holographic interferometry. Comparing the
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002
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interferogram and the profile of plasma emission in the
HeII spectral line measured under the same conditions,
we can conclude that both methods agree satisfactorily.

Figure 5 shows the profiles Ne(y) at x . 0 for differ-
ent values of the gradient h, characterizing the 2D mag-
netic configuration; the maximum electron density

 in the sheet and the FWHM sheet thickness 2∆y1/2

as functions of h; and the total number of particles 1e
per centimeter of the sheet width. It is seen that, as the
gradient of the 2D magnetic field increases, the plasma
is more efficiently compressed into the sheet, which
manifests itself as an increase in the maximum plasma
density and a decrease in the plasma sheet thickness.
Note that similar dependences of plasma evolution on
the gradient of the 2D magnetic filed were previously
demonstrated by us in [23–24].

3.2. Spatial Plasma Density Distributions in Current 
Sheets Formed in 3D Magnetic Configurations

with an X-line

Of particular interest are the spatial electron density
distributions in current sheets formed in magnetic con-
figurations with an X-line, i.e., in the presence of the
longitudinal magnetic field component B||. The data on
the electron density distributions are presented in
Figs. 3b and 3c in the form of interferograms. The lon-
gitudinal component was B|| = 2.9 and 5.8 kG for
Figs. 3b and 3c, respectively. In all cases presented in
Fig. 3, the plasma was shaped as a plane sheet and the
sheet width (the size in the x direction) was 10–15 times
larger than the sheet thickness (the size in the y direc-
tion). As in the 2D case, the electron density in the sheet
was substantially higher than in the surrounding plasma
and varied relatively slowly along the sheet width. In
the direction normal to the sheet, the density gradient
was fairly high. This gradient somewhat decreased with
increasing B||. In Fig. 6, the plasma density distribution
Ne(x, y) is presented by the density contour lines. One
can see that the maximum density in the center of the
sheet attained a value of Ne . 1016 cm–3.

Thus, experiments carried out with a helium plasma
show that, when the current sheet is formed in a mag-
netic configuration with an X-line (including configura-
tions with a sufficiently strong longitudinal component
B|| directed along the X-line and along the electric cur-
rent flowing in the plasma), the plasma also evolves into
a plane sheet.

The time evolution of the maximum electron density
in the center of the sheet is demonstrated in Fig. 7,
which presents the data from processing ≈30 holo-
graphic interferograms recorded under identical condi-
tions, but at different instants. Curve 1 shows the den-
sity evolution in a plasma sheet formed in a 2D mag-
netic configuration with a null line (B|| = 0), and curve 2
corresponds to a 3D magnetic configuration with an
X-line at B|| = 2.9 kG. It is seen in Fig. 7 that the elec-

Ne
max
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tron density grows over 2–3 µs; then, the current sheet
seems to be destroyed. This effect requires a further
study.

Figure 8 shows how the change in the spatial plasma
density distribution depends on the longitudinal mag-
netic field component B||. The figure presents the maxi-
mum electron density and the sheet thickness in the
center of the sheet (x . 0) and at its periphery (x .
±3 cm). As the longitudinal component increases, the
plasma density decreases and the sheet thickness at the
periphery increases. Note that the total number of elec-
trons in the sheet changes insignificantly. Hence, the
compression of the plasma within a well-defined sheet
becomes less efficient. Most likely, this is because the
longitudinal component of the magnetic field in the
sheet increases as compared with its initial value, as
was suggested previously in [1].

4. CONCLUSIONS

(i) The spatiotemporal characteristics of the current
sheet plasma in magnetic configurations with singular
X-lines have been studied for the first time by the
method of two-exposure holographic interferometry,
which made it possible to determine how the main
plasma characteristics depend on the structure of the
initial magnetic configuration.

(ii) In experiments carried out with a helium plasma,
convincing evidence has been obtained that, when the
current sheet is formed in a magnetic configuration
with an X-line, the plasma also evolves into a plane
sheet. The width of the plasma sheet is usually a factor
of 10–15 larger than its thickness. It has been demon-
strated that plasma sheets can form in the presence of a
sufficiently strong longitudinal magnetic-field compo-
nent B|| directed along the X-line and along the electric
current flowing in the plasma.

(iii) It has been shown that, in the absence of the lon-
gitudinal component B|| (i.e., in a 2D magnetic field
with a null-line), the plasma is compressed into the
sheet more efficiently as the gradient of the transverse
magnetic field h increases. The more efficient compres-
sion manifests itself in an increase in the maximum
plasma density and a decrease in the plasma sheet
thickness.

(iv) In magnetic configurations with an X-line, the
increase in the longitudinal component B|| leads to a
decrease in the plasma density and an increase in the
plasma sheet thickness; as a result, the total number of
electrons in the sheet changes insignificantly. Hence,
the plasma compression within a well-defined sheet
becomes less efficient. Most likely, this is because the
longitudinal component of the magnetic field in the
sheet increases as compared with its initial value.
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002
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Abstract—A study is made of some characteristic features of ion cyclotron resonance (ICR) heating in plasma-
based isotope separators. The effects associated with ion drift in the RF field of a solenoidal antenna are con-
sidered in the single-particle approximation. Estimates are obtained and numerical calculations are carried out
for ICR heating in the case of a “narrow” (ρ/r ~ 1, where ρ is the ion gyroradius) plasma flow. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

One of the methods of isotope separation is based on
selective ion cyclotron resonance (ICR) plasma heating
[1–4]. This method may serve as a basis for the devel-
opment of highly efficient technological devices for
isotope separation, because a quasineutral plasma is
free from the effects associated with the ion space
charge. The problem of choosing an optimum antenna
system for ion heating in ICR isotope separators has
been discussed in a number of papers [2, 4–6]. A possi-
ble candidate for ICR heating of the ions in projected
separators is a solenoidal antenna [4, 7]. This type of
antenna has a number of advantages:

(i) sufficiently small values of k|| (this makes it pos-
sible to heat ions in such a way that they always remain
within the resonance region),

(ii) the absence of longitudinal components in the
excited electric fields, and

(iii) a simple design.
The obvious drawbacks of solenoidal antennas are:

(i) a high Q-factor [5];
(ii) the weak RF electric field near the antenna axis;

and
(iii) a decrease in the ICR heating efficiency because

of the opposite polarities of the electric field at the ends
of a solenoidal antenna in the presence of a dense (n ~
1018 m–3) plasma (in which case it is necessary to opti-
mize the positions of the plasma source and the extrac-
tion system with respect to the antenna [7–9]).

In this paper, we consider one more feature of ICR
heating by a solenoidal antenna, namely, the one asso-
ciated with ion drift in both the radial and azimuthal
directions. This drift not only restricts the energy
acquired by resonant ions but also leads to the mixing
of ions in both coordinate and energy spaces. As a
result, the energy spectra of resonant and nonresonant
ions at the exit from the antenna region are close to one
another.
1063-780X/02/2807- $22.00 © 20559
2. ICR HEATING BY A SOLENOIDAL
ANTENNA

A solenoidal antenna produces a solenoidal azi-
muthal RF electric field whose amplitude is propor-
tional to the radius, Eφ(r) = –πfhf Ba rcos(2πfhf t ),
where Ba is the amplitude of the RF magnetic field
excited by the antenna. In moving along a Larmor orbit
in the gradient vortex electric field of a solenoidal
antenna, an ion drifts in both the radial and azimuthal
directions. Thus, the radial drift of a resonant ion mov-
ing in phase (∆ϕ = 0) with the RF antenna field stems
from the fact that, far from the antenna axis, the ion
experiences a stronger RF electric field than near the
axis. As a result, the ion deviates more and more from
its initial trajectory, acquiring a component of drift
velocity toward the antenna axis (Fig. 1).

The radial displacement of the ion per Larmor revo-
lution is independent of its position r and can be esti-
mated as

where r is the distance from the antenna axis to the
guiding center of the Larmor orbit, ρ is the ion gyrora-
dius (in the approximation at hand, ρ = const during
each Larmor revolution), B0 is the axial magnetic field
in the ICR region, T is the period of ion gyration in the
magnetic field, Ga = πfhfBa is the radius-independent
gradient of the vortex electric field of the antenna, fhf is
the frequency of the RF field, and Ba is the antenna
magnetic field.

The radial drift velocity is also independent of the
ion position r and increases with ion gyroradius: Vr ≈
∆r/T ≈ –Gaρ/2B0. The mean energy acquired by an ion
during each Larmor revolution is equal to
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where q is the ion charge. This energy is a linear func-
tion of the radial position of the ion (the guiding center
of the Larmor orbit):

The closer the ion to the antenna axis, the lower the
rate at which the ion acquires energy. After the guiding
center of the ion Larmor orbit intersects the antenna
axis, the ion experiences an RF field of opposite sign
and thus is decelerated. The maximum energy is
acquired by a resonant ion drifting from its initial radial
position r0 to the antenna axis:

where  is the mean distance from the antenna axis to
the guiding center of the Larmor orbit,  ≈ r0/2.

The maximum energies acquired by resonant 157Gd
ions starting from the initial radial positions r0 = 0.03 m
and r0 = 0.01 m in the field of a solenoidal antenna (the
amplitude of the axial magnetic field being B0 = 1 T)
can be estimated as Wmax ≈ 275 and 30 eV, respectively.
Here and below, the energy is expressed in eV (for the
benefit of readers), but all of the formulas and estimates
are written in SI units.
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Fig. 1. Drift motion of a resonant ion in the field of a sole-
noidal antenna.
In an RF field, the ions start to gyrate at arbitrary ini-
tial phases and drift in both the radial and azimuthal
directions with the velocities

where ∆ϕ is the difference between the phase of the RF
field and the phase of an ion at the entrance to the
antenna.

The above expressions qualitatively characterize the
regular features of the motion of resonant ions. In the
gradient RF field of a solenoidal antenna, nonresonant
ions behave in essentially the same manner: they also
drift in both the radial and azimuthal directions.

The estimates illustrated in Figs. 2 and 3 agree with
the results from numerical calculations (carried out in
the single-particle approximation) of ICR heating of
the ions by a solenoidal antenna. A resonant ion
acquires and loses energy several times during its pas-
sage through the ICR heating region (Figs. 2a, 3a). The
energy of nonresonant ions changes in essentially the
same manner (Figs. 2b, 3b). The lower the gradient of
the vortex electric field of the antenna, the lower the
radial ion drift velocity and the higher the ion gyrofre-
quency (Figs. 2, 4).

The selective ICR heating method implies that an
ion should complete at least N = A Larmor revolutions
when passing through the ICR heating region [2]. Here,
Ä is the mass number. In this case, the energy acquired
by an ion is W ~ N∆W ~ 2qAGa  ≤ Wmax, where  is
the mean distance from the guiding center of the Lar-
mor orbit to the antenna axis and  is the mean ion Lar-
mor radius.

With an antenna optimally adapted to ICR heating,
a resonant ion has enough time to acquire the maximum
energy (W ≈ Wmax). The optimal use of the antenna
requires that the longitudinal (along the antenna) veloc-
ity of the ion be optimum; i.e., the longitudinal ion
velocity should be such that the ion completes N = A
Larmor revolutions along the antenna length. This
yields the following requirement on the gradient of the
RF field of a solenoidal antenna: Ga ≈ ωB0 /(4A ). For
a 157Gd ion with a mean gyroradius of about ρ ~ 0.01 m
at the initial radial position r0 = 0.01 m, we have Ga ~
1000 V/m2. According to the results shown in Fig. 2,
which were obtained for a Ga value larger than that just
presented, resonant 157Gd ions are on the average
heated to higher energies than nonresonant 158Gd ions
and have a small spread in energies at the exit from the
antenna region.

Since the optimum parameters of a solenoidal
antenna depend on both the initial phases and initial
radial positions of the ions, it is difficult to choose the
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gradient of the RF field so as to satisfy the selective ICR
heating conditions for all ions in a plasma flow.

Hence, the results of a qualitative analysis of the fea-
tures of ion motion in the field of a solenoidal antenna
can be summarized as follows.

(i) In the gradient field of a solenoidal antenna, the
ions always undergo drift motion and their actual tra-
jectories are complicated curves (Figs. 5, 6).
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Fig. 2. Change in the transverse energies of (a) resonant
157Gd ions and (b) nonresonant 158Gd ions moving at opti-
mum longitudinal velocities in a heating region with the
length L = 2.5 m along the antenna for B0 = 1 T, Ga =

5000 V/m2, and r0 = 0.03 m, the initial ion energy at the
entrance to the antenna being W0 = 35 eV. The relative
phases ∆ϕ of the ions to the phase of the RF field are (1) 0°,
(2) 180°, (3) 90°, and (4) 270°.
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(ii) ICR heating of the ions depends on their initial
phases, on the initial positions of the guiding centers of
their Larmor orbits at the entrance to the heating region,
and on the RF field amplitude (Figs. 2–4).

In a narrow (r ~ ρ) plasma flow, the ions acquire
transverse energy in a periodic regime: the larger the
amplitude of the RF field, the shorter the period
(Figs. 2, 4). Although, along the antenna length, reso-
nant ions are on the average heated to a greater extent
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Fig. 3. Change in the transverse energies of (a) resonant
157Gd ions and (b) nonresonant 158Gd ions moving at opti-
mum longitudinal velocities in a heating region with the
length L = 2.5 m along the antenna for B0 = 1 T, Ga =

5000 V/m2, W0 = 35 eV, and r0 = 0.01 m. The relative
phases ∆ϕ of the ions to the phase of the RF field are (1) 0°,
(2) 180°, (3) 90°, and (4) 270°.
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than nonresonant ions (Figs. 2–4), the mixing of the
ions of different isotopes in both coordinate (Figs. 5, 6)
and energy (Figs. 2–4) spaces renders their separation
less efficient. In addition, RF fields in the central
regions of the plasma flow are too weak to heat the ions
therein at the cyclotron resonance.

In a wide (r @ ρ) plasma flow and/or in a strong
magnetic field, a resonant ion may drift only slightly
when passing through the ICR heating region and thus
cannot be heated to the maximum energy. In order for
the separation to be efficient, the energy of the resonant
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Fig. 4. Change in the transverse energies of (a) resonant
157Gd ions and (b) nonresonant 158Gd ions moving at opti-
mum longitudinal velocities in a heating region with the
length L = 2.5 m along the antenna for B0 = 1 T, Ga =

2500 V/m2, W0 = 35 eV, and r0 = 0.03 m. The relative
phases ∆ϕ of the ions to the phase of the RF field are (1) 0°,
(2) 180°, (3) 90°, and (4) 270°.
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orbits of resonant 157Gd ions moving at optimum longitudi-
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Fig. 6. Displacement of the guiding center of the Larmor
orbit of a resonant 157Gd ion moving at an optimum longi-
tudinal velocity in a heating region with the length L =
2.5 m along the antenna for B0 = 1 T, Ga = 5000 V/m2,
W0 = 35 eV, and r0 = 0.01 m. The relative phase ∆ϕ of the
ion to the phase of the RF field is 0°. The displacement
changes sign when the guiding center of the Larmor orbit
intersects the antenna axis.
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ions at the exit from the ICR heating region should be
much higher than the initial ion energy W0 (at the
entrance to the antenna):

If the product of the amplitude of a uniform mag-
netic field and the mean distance from the guiding cen-
ter of the Larmor orbit to the antenna axis is B0  @

 (where ma is the proton mass), then
the effect of the ion drift motion is insignificant and the

W ∆WN 2qGarρA @ W0.≈ ≈

r

W0maAπ/ 2q
2( )
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Fig. 7. Change in the transverse energies of (a) resonant
157Gd ions and (b) nonresonant 158Gd ions moving at opti-
mum longitudinal velocities in a heating region with the
length L = 2.5 m along the antenna for B0 = 3 T, Ga =

5000 V/m2, W0 = 35 eV, and r0 = 0.03 m. The relative
phases ∆ϕ of the ions to the phase of the RF field are (1) 0°,
(2) 180°, (3) 90°, and (4) 270°.
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radial displacement of the ion in the heating region is

small, N/  ≈ A/  ! 1 (where  is the mean ion
displacement per Larmor revolution and the number of
Larmor revolutions along the antenna length is N ~ A).
For 157Gd ions with the initial energy W0 = 35 eV, the
effect of their drift motion on their heating is insignifi-
cant at B0  @ 10–2 T m.

Hence, selective ICR heating by a solenoidal
antenna is possible only for a wide annular plasma flow
in a strong magnetic field. The characteristic ICR heat-
ing process for this case is illustrated in Fig. 7 and is
seen to be analogous to ICR heating in a uniform RF
field of a capacitive antenna [10]. The calculations car-
ried out in [7, 8, 11] for a similar case confirm the above
conclusion on the possibility of selective ICR heating
by a solenoidal antenna.

3. CONCLUSION

In the case of ICR heating of a narrow (ρ/r ~ 1)
plasma flow in a weak magnetic field, the use of a sole-
noidal antenna is decidedly unpromising because of the
significant ion drift in the gradient vortex electric field,
which results in the mixing of ions in both coordinate
and energy spaces and thereby renders the separation of
isotopes much less efficient.

Solenoidal antennas can be successfully used for
selective ICR heating of the ions in a wide (ρ/r ! 1)
plasma flow in a strong magnetic field in which the drift
effects are insignificant. In this case, the process of ICR
heating is closely analogous to that in a uniform field of
a capacitive antenna. However, an increase in the mag-
netic field and/or the width of the plasma flow requires
significant energy expenditure.

The ion drift motion in the gradient RF electric field,
which was considered above for the case of a solenoidal
antenna, may also be encountered in cases with some
other antennas. Thus, for a capacitive antenna, the ion
drift in the region of a weaker field can be driven by the
spatial inhomogeneities associated, e.g., with the
screening of the RF field by the plasma and with the
inaccuracy of the assembly. On the other hand, by
forming the region of a stronger field near the central
plane of the capacitive antenna (a so-called “reversed”
solenoidal configuration), it may be possible to
improve the direct extraction of resonant ions from the
plasma flow [10].
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Abstract—The separation parameters of a collector of heated ions are estimated in the context of the ion cyclo-
tron resonance method of isotope separation. The separation power dU, the coefficient ΓC of the extraction of
the target isotope, and the collector efficiency η are calculated. These parameters are investigated as functions
of the repulsive potential U of the collector plates, the half-height a of the front screen, and the distance b
between the plates. It is shown that the dependence of the collector efficiency η on the distance b between the
plates has a pronounced maximum at b ≈ , where  is the mean ion gyroradius. © 2002 MAIK
“Nauka/Interperiodica”.

2rL* rL*
1. INTRODUCTION

Among the plasma methods for the separation of
stable isotopes, the ion cyclotron resonance (ICR)
method is now considered to be the most promising. To
the best of our knowledge, the ICR method of isotope
separation in a plasma was first proposed as early as
1975 by Askar’yan et al. [1] and the first verification of
the possibility of separating isotopes by this method
came from the experiments carried out in 1976 by Daw-
son et al. [2]. The most interesting results on ICR iso-
tope separation were obtained in [3–6]. It is expedient
to apply this method to the separation of the isotopes of
chemical elements that form no gaseous compounds
under normal conditions. The ICR method is based on
selective ICR heating of the ions of the target isotope,
followed by the extraction of this isotope from the
plasma flow under the conditions such that the colli-
sions between particles are negligible. A version of the
separator that is most suitable for industrial applica-
tions is shown schematically in Fig. 1. A steady plasma
flow from the plasma source passes through the region
where a solenoid (1) creates a uniform magnetic field
and where an RF antenna (2) producing the heating
field is located. A system for collecting the target mate-
rial is arranged behind the heating region. The ion-col-
lecting system consists of equidistant collector plates
(3) and a waste plate (5). The collector plates, which are
parallel to the plasma flow and are protected by front
screens (4), are intended for extracting the heated ions
(with a large gyroradius) of the target isotope (7). The
waste plate, which is perpendicular to the plasma flow,
is aimed at depositing the “cold” (nontarget) ions (6). In
order to increase the separation efficiency, the collect-
ing plates can be held at a positive repulsing potential
1063-780X/02/2807- $22.00 © 20565
U, which substantially reduces the nontarget ion flux.
An ICR separator is capable of yielding a considerably
larger amount of the target material (in comparison
with industrial electromagnetic separators based on ion
beams), because the plasma (and, accordingly, the flow
of the isotopes to be processed) is free of restrictions
associated with the positive space charge of an ion
beam. A competitive alternative to ICR separation is the
laser isotope separation method [7]. However, it should
be noted that the application of the laser method may
involve difficulties associated with the loss of selectiv-
ity due to the charge exchange of the target ions with
the atoms of the nontarget isotope during the ion extrac-
tion from a partially ionized plasma. The ICR method
is free of this drawback because it implies the use of a
fully ionized plasma. Nevertheless, in the above version
of an extractor of heated ions in the ICR method (i.e.,
in an extractor whose main elements are cooled metal
plates parallel to the plasma flow), not all of the target
ions produced by the source are extracted: some of
them miss the collector plates when passing through the
collector and reach the waste plate. Below, we will
attempt to estimate the efficiency with which the target
material is extracted as a function of different charac-
teristics: the geometric parameters of the collector and
the repulsive potential of the collector plates.

2. CALCULATION OF THE SEPARATION 
PARAMETERS OF A COLLECTOR

The efficiency of the extraction of the target isotope
is characterized by the extraction coefficient Γ. For
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic diagram of the ICR method of isotope separation: (1) solenoid, (2) RF antenna, (3) collector plates, (4) front
screens, (5) waste plate, (6) “cold” ions, and (7) target isotope ions.
classical separation schemes, this coefficient is defined
by the relationship [8]

(1)

where τ and G are the product and feed fluxes of the
separation unit, respectively, and Cτ and Cg are the cor-
responding partial mole concentrations. For the ICR
separation method, the total extraction coefficient
should be determined from the relationship

(2)

where the coefficient ΓS accounts for the losses of mate-
rial within the plasma source and the extraction coeffi-
cient ΓC of the collector system is defined as the ratio of
the flux of the target isotope deposited on the parallel
collector plates to the flux of this isotope at the entrance
to the collector. The calculation of the coefficient ΓS ,
dependent on the type of source, is a separate task,
which is fairly complicated and goes beyond the scope
of this paper. Our purpose here is merely to estimate the
extraction coefficient ΓC of the collector. Note that the
extraction coefficient, along with the mean separation
coefficient 〈α〉  and the separation power δU [8], is an
important parameter governing the economic charac-
teristics of the ICR separation method. Below, we will
focus on the calculation of the extraction coefficient in
a collector with parallel plates protected by front
screens and on the determination of the optimum
parameters of an extractor.

We take into account the following circumstance. At
the entrance to the collector, the ions of the target iso-
tope move along spiral trajectories; in the plane trans-
verse to the flow, they rotate along the Larmor circles
with the gyrofrequency ωc. We start by obtaining a
rough estimate of the extraction coefficient. We assume
that, when an ion strikes an infinitely thin plate, it
becomes a neutral and remains on the plate surface. In

Γ
Cττ
CgG
----------,=

Γ Γ SΓC,=
order to simplify the analysis, we also assume that the
ions of the target isotope are heated to the same energy
W⊥ 0 (and, accordingly, have the same gyroradius rL)
and there is no repulsive potential. Let the distance
between the plates be b, and let the half-height of the
front screen be a (Fig. 2). Additionally, we neglect elec-
trostatic field perturbations induced in the plasma by
the deposition of the ions in the collector [9]. For b ≤ 2rL

and a = 0, each of the ions eventually reaches one or
another of the collector plates and we immediately
obtain ΓC = 1. In the presence of the front screen
(a ≠ 0), the extraction coefficient is obviously equal to

(3)

The front screen has several functions. It protects the
collector plates from the plasma flow, thereby making
it possible to maintain a positive potential on the plates.
It also increases the degree of separation by reducing
the flux of cold ions of the nontarget isotope. However,
since the screen absorbs some of the target material, it
is expedient to decrease its height to the maximum pos-
sible extent consistent with the design requirements and
the constraints of protecting the collector plates from an
electron flux in the operating modes with the repulsive
potential. In the limit a  0, the extraction coefficient
ΓC is equal to

ΓC = 1 for 2rL ≥ b, (4)

ΓC = for 2rL < b. (5)

Assuming that, initially, the condition b = 2rL is satis-
fied, we fix the gyroradius rL and change the distance b
between the collector plates. In the approximation at
hand (i.e., under the assumption that the gyroradii of
the ions of the target isotope are the same), an increase
in b from b = 2rL to ∞ results in a proportional decrease
in the extraction coefficient from ΓC = 1 to 0. As b is

ΓC
b 2a–

b
---------------.=

2rL

b
--------
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Fig. 2. Magnified fragment of an element of the extractor.
decreased from 2rL to zero, the coefficient ΓC remains
unchanged and equals unity.

In practice, for a number of reasons (first of all,
because of the initial longitudinal velocity spread of the
ions and the associated distribution over the residence
times of the ions within the heating region), the ions
deposited on the collector plates have a spread in trans-
verse energies. As a first approximation, we assume that
the distribution function of the target ions over their
transverse velocities V⊥  is equilibrium:

(6)

where n is the ion density, T⊥  is the effective transverse
ion temperature, m is the mass of an ion, and k is Bolt-
zmann’s constant. Let us estimate the extraction coeffi-
cient, assuming that the plates are separated by the dis-

tance b =  (where  =  is the mean ion

gyroradius) and that there is no repulsive potential
(U = 0) and no front screen (a = 0). In the plasma flow,
the fraction of ions whose gyroradii are rL > b/2  (V⊥  >
V⊥ 1 = (b/2)ωc) and which thus eventually reach the col-
lector plates is equal to

However, the ions with gyroradii rL < b/2 also reach the
plates. In order to obtain a rough estimate of the frac-

f n m/2πkT ⊥( )
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2
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------------– 
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tion q1 of the ions that are additionally deposited on the
collector plates, we calculate the mean gyroradius of
the ions whose velocities lie within the range from 0 to
bωc/2:

In this case, the fraction of the ions that are additionally
deposited on the collector plates is

so that, for ΓC, we obtain

For a front screen of finite height (a ≠ 0), we find, to a
first approximation, ΓC = (q + q1)(1 – 2a/b). Thus, set-
ting a = 2.5 mm and b = 30 mm yields ΓC . 0.6. Note
that this is merely a rough estimate. The method provid-
ing more precise calculations of the extraction coeffi-
cient was first developed by Ustinov [10]. In the present
paper, we use a modified calculation procedure
described in our earlier paper [11]. We calculate the
coefficient ΓC as the ratio of the flux j⊥ 1 of the ions of
the target isotope deposited on the collector plates to
the total longitudinal flux j||1 of these ions at the
entrance to the collector:

(7)

In this way, we assume that the effect of the front screen
on the extractor parameters is negligible. We determine

rL 0
b
2
---ωc, 

 
V ⊥ 0

b
2
---ωc, 

 

ωc

----------------------------  . 0.38
2kT ⊥

m
------------

1
ωc
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q1

2rL 0
b
2
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 

b
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ΓC q q1 . 0.75.+=

ΓC
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the fluxes of the ion components onto the collector
plates by integrating the corresponding distribution
functions with different effective transverse tempera-
tures for the allowed values of the coordinates of the
guiding centers of the ion trajectories at the entrance to
the extractor [11]. The related calculations were carried
out for a natural 6Li–7Li isotope mixture and for the fol-
lowing parameters of an ICR separator [6]: the mag-
netic induction is Bz = 0.25 T, the electric field ampli-
tude in the plasma is E = 50 V/m, the length of the ICR
heating region is L = 0.8 m, and the wavelength of the
RF field is λ = 0.8 m, the initial transverse and longitu-
dinal ion temperatures being T⊥ 0 = 5 eV and T||0 = 10 eV,
respectively. Under these conditions, the calculated
transverse temperature of 6Li ions is T⊥ 6 . 40 eV and
that of 7Li ions is T⊥ 7 . 5 eV [11]. We assume that the
longitudinal velocity distribution function of the ions of
the Kth species is “semi-Maxwellian” (no ions move
toward the ion source):

(8)

where X = Vz(mK/2kT||K)1/2 and Vz is the longitudinal ion
velocity. The dimensionless ion flux on the upper sur-
face of the collector plate, JK = jK/j0K (where j0K =

2nK , with nK the density of the ions of

the Kth species), is determined by the following expres-
sion, which incorporates the repulsive potential U of
the collector plate:

(9)
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where

ωcK = eBz/mK is the cyclotron frequency of the ions of
the Kth species, αK = ωcKz/Vz is the angle by which the
gyrating ions rotate as they fly from the front edge of
the plate to the point z at which they strike the plate, and

 = eU/kT⊥ K.

Note that the ions are deposited on the collector
plates mainly over the mean period of their spiral tra-
jectories, L ≈ VzTc , where Vz is the mean longitudinal
ion velocity and Tc is the cyclotron period (Fig. 2). In
actuality, however, the transverse ion flux density
depends on the longitudinal coordinate due to such fac-
tors as the longitudinal velocity spread of the ions and
the character of their motion before they strike the plate
(the ions can strike the upper plate surface only when
they fly toward the plate from above and the plate itself
does not allow the deposition of some ions over the sec-
ond half-period of their spiral trajectories; as a result,
most of the ions are deposited over the first half-period
of the “spirals”). It is for this reason that the separating
parameters should be calculated by integrating the cor-
responding quantities over the z-coordinate. In this
case, expression (7) for the coefficient of the extraction
of the ions of the Kth species can be rewritten as

(10)

where d is the thickness of the collector plate.

Figure 3 shows the dependence of the extraction
coefficient for a 6Li target isotope on the repulsive
potential U, calculated for a fixed distance between the
plates and without allowance for the plate thickness
(d = 0).
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Let us estimate the separation power δU of one of
the sides of the collector plate. To do this, we turn to the
expression [8]

(11)

where τ1(z) is the density of the ion-mixture flux onto
one side of the plate per unit length in the direction per-
pendicular to the main flow velocity at the distance z

from the front edge of the plate, α(z) = 

is the local separation coefficient, C6(z) and C7(z) are the
concentrations of 6Li and 7Li isotopes at the plate, and
C60 and C70 are the concentrations of the same isotopes
in the plasma flow from the source. In Fig. 4, curve 1
shows the dependence of the dimensionless separation
power dU = δU/0.05(n60 + n70)(2kT⊥ 6/m6)1/2 (where n60
and n70 are the corresponding initial ion densities) of
one side of the plate on the repulsive potential at a fixed
distance between the plates. We can see that there is an
optimum value of the separation power in terms of the
repulsive potential U. The dashed curve 2 shows the
U-dependence of the extraction coefficient ΓC of the
collector, and the dotted curve 3 is for the same coeffi-
cient calculated by Ustinov [10]. Figure 5 shows the
extraction coefficient ΓC calculated as a function of the
distance b between the plates for different repulsive
potentials. As may be seen, the extraction coefficient

δU τ1 z( ) α z( ) 1–( )
α z( ) 1+

------------------------- α z( ) z,dln
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∞
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Fig. 3. Dependence of the extraction coefficient ΓC for a 6Li
target isotope on the repulsive potential U for collector
plates separated by the distance b = 30 mm (T⊥ 6 = 40 eV,
T⊥ 7 = 5 eV).
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decreases as b increases, which is associated with an
increase in the fraction of ions that do not strike the col-
lector plates. The decrease in ΓC also results from an
increase in the repulsive potential U

 

, which facilitates
the reflection of the fraction of ions with such velocities
whose projections onto the direction transverse to the
plate are small. We introduce the quantity 

 

η

 

 as the prod-
uct of the separation power 

 

δ

 

U

 

 and the extraction coef-
ficient 

 

Γ

 

C

 

 and call this quantity the “collector effi-
ciency.” The dependence of the efficiency 

 

η

 

 on the
repulsive potential 

 

U

 

 is shown by curve 

 

4

 

 in Fig. 4. Cal-
culations show that the collector efficiency is the high-
est at repulsive potentials lower than those at which the
separation power is maximum. Figure 6 shows the col-
lector efficiency 
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 calculated as a function of the dis-
tance 
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 between the plates for different values of the
repulsive potential 

 

U

 

. We see a very pronounced maxi-
mum with respect to the distance 
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 between the plates:
the collector efficiency is peaked at approximately 
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≈

 

.

The results presented above were obtained without
allowance for the effects of the front screen and the
finite thickness of collector plates. Note that, in an
actual extractor, the collector plates should be inten-
tionally cooled, so that their thickness cannot be arbi-
trarily small.

Let us analyze the effects of both the thin front
screen and the finite thickness of the collector plates on
the coefficient of the extraction of the target isotope.
For a relatively large distance between the plates (
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Fig. 5. Extraction coefficient ΓC vs. distance b between the
plates for two values of the repulsive potential U at T⊥ 6 =
40 eV and T⊥ 7 = 5 eV.

Fig. 7. Extraction coefficient ΓC vs. half-height a for infi-
nitely thin plates (dashed curve) and for plates with the
thickness d = 4 mm (solid curve), the remaining parameters
being b = 30 mm, U = 0, T⊥ 7 = 5 eV, and T⊥ 6 = 40 eV.
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ing parameters being b = 30 mm, d = 4 mm, T⊥ 6 = 40 eV,
and T⊥ 7 = 5 eV.
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), the ion fluxes onto the plates can be estimated
from the relationships

(12)

where  = (mK/2kT⊥ K)1/2, DK =

(Y2sin2(bKz/X)/  –1)1/2, A1 = /sin(bKz/X), A2 =

/sin2(bKz/X), X = Vz/(2kT||K/mK)1/2,  =
(ωcKz/2000π)(mK/2kT||K)1/2, Y = V⊥ /(2kT⊥ K/mK)1/2, bK =

π/z.

Figure 7 shows the extraction coefficient ΓC calcu-
lated as a function of the half-height a of the front
screen for infinitely thin collector plates (dashed
curve) and for collector plates with the thickness d =
4 mm (solid curve). The calculations were carried out
for a fixed distance between the plates, the repulsive
potential being zero. The results of calculations show
that, at the plate thickness d = 4 mm (which is the min-
imum possible thickness for the plates to be water-
cooled), the extraction coefficient is smaller by 10 to
30% than that for infinitely thin plates. Figure 8 shows
the dependence of the extraction coefficient ΓC on the
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repulsive potential U for a front screen with different
half-heights a.
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Abstract—Potential hybrid oscillations in a resonator of arbitrary shape are investigated theoretically. It is
shown that, for a periodic waveguide, the frequency dependence of the wavenumber is represented by a fractal
curve of the “devil’s staircase” type. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

About ten years ago, Lou et al. [1] theoretically
revealed strange behavior of the spectrum of the Trivel-
piece–Gould (TG) waves in a periodic waveguide. Usu-
ally, plasma oscillations are either characterized by a
certain dependence of the frequency on the wavenum-
ber or do not satisfy any dispersion relation, as is the
case, e.g., with Langmuir waves in an inhomogeneous
cold plasma or Van Kampen waves [2]. However, the
spectra revealed in [1] and called dense spectra had
nothing to do with these two types of waves and were
represented by a dense (in the mathematical sense) set
in the (ω, k) plane.

The arguments of Lou et al. [1] apply, in principle,
to any type of oscillations; it is only necessary that the
oscillation frequency be limited from above by a certain
maximum frequency. Thus, consider a uniform
waveguide bounded in the transverse direction and
filled with a certain medium and assume that the eigen-
modes of the waveguide are excited at frequencies ωn(k)
(n = 1, 2, …) such that ωn(k) < ωmax (Fig. 1a). This prop-
erty is peculiar to the TG modes, but there are many
other examples of such oscillations in physics. In the
presence of a weak periodic perturbation (e.g., in a peri-
odic waveguide with a slightly corrugated wall), the
wave spectrum in the standard perturbation theory is
constructed as follows. First, it is necessary to plot all
1063-780X/02/2807- $22.00 © 20572
of the dispersion curves and shift them along the k-axis
by the wavenumbers that are multiples of the wavenum-
ber of the perturbation, k0 = 2π/a, where a is the period
of the perturbation. This results in an infinite set of dis-
persion curves ω = ωn(k + lk0) (l = 0, ±1, ±2…). Then,
it is necessary to take into account the fact that, at the
intersection of two curves, there is a Bragg gap (or a
stop band); of course, this is possible only if the exist-
ence of the gap is allowed by the symmetry properties
of the waveguide. For conventional electromagnetic
waves in a waveguide, the dispersion curves obtained
by this procedure do not exhibit any particularly
unusual behavior. But if the oscillations exist only in a
certain frequency band (as is shown in Fig. 1a), there
are an infinite number of shifted dispersion curves each
of which intersects the remaining curves, giving rise to
a certain fractal grid that densely covers the entire fre-
quency band 0 < ω < ωmax. Some insight into the grid
structure can be gained from Fig. 1b, which shows the
first Brillouin zone (0 < k < π/a) with several intersec-
tions and in which the Bragg gaps are not plotted, for
simplicity.

The above procedure for constructing the wave
spectrum raises the following two questions. The first
question is whether it is, in principle, possible to
describe the situation under consideration by perturba-
tion theory. Serious doubts on this possibility were
raised by the results obtained by Gusakov and Piliya
(a) (b)
ω

k

ω

π π
k

Fig. 1. Formation of a dense spectrum: (a) unperturbed spectrum and (b) perturbed spectrum with the period a = 1.
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[3], who investigated the propagation of a hybrid wave
in a periodically nonuniform waveguide in the geomet-
rical-optics approximation and noted that the spatial
wave structure is highly singular, which indicates that,
even in a slightly corrugated waveguide, the solution
describes a large number of spatial modes. The second
question is how Fig. 1b can be converted back to Fig. 1a
in the limit of a vanishingly small periodic perturbation.
In fact, the question is how to understand Fig. 1b: in the
sense of reduced or in the sense of extended Brillouin
zones (see, e.g., [4]). This understanding can be readily
reached for waves with an infinitely broad frequency
spectrum, but the situation at hand is far more com-
plicated.

The dense spectra were further investigated in a
number of papers. Thus, the author of this paper dem-
onstrated that, under certain restrictions, it is possible to
construct an exact solution for TG waves in a planar
periodic waveguide of arbitrary shape [5]. The wave
spectrum was found to consist of separate oscillation
branches analogous to those shown in Fig. 1a. How-
ever, each of the branches is rather unusual: the fre-
quency dependence k(ω)/k0 is a fractal curve, which is
called the Cantor’s function by mathematicians and the
devil’s staircase by physicists. This dependence is
described by a monotonic function, which is constant in
a certain interval if its value is a rational number.1 The
method used in [5], which will be considered in more
detail below, makes it possible to determine the main
parameters of the devil’s staircase and to calculate the
field structure explicitly when the ratio k/k0 is a rational
number. The resulting eigenfunctions of a waveguide
are highly singular: to approximate them requires a
large number of spatial harmonics. If the ratio k/k0 is
irrational, it can only be stated that the eigenfunctions
are, on the contrary, smooth, but their shapes cannot be
determined analytically and it is, in a sense, impossible
to find them numerically.

On the other hand, using a fairly involved algorithm
based on the perturbation theory in terms of the
waveguide corrugation depth, Zaginaylov et al. [7, 8]
numerically calculated dispersion curves for the TG
waves under essentially the same assumptions as those
made in [5]. The main result obtained in [7, 8] is pre-
cisely opposite to the conclusions drawn in [5]: for cer-
tain rational values of k(ω)/k0 that are determined by the
order of perturbation theory, there are Bragg gaps in the
spectrum, while, for intermediate values of k(ω)/k0, the
spectrum is smooth. Nevertheless, papers [5] and [7, 8]
do not apparently contradict one another. This point
will be discussed at the end of the paper. It is also nec-
essary to mention the paper by Volkov and Krasovitskiœ
[9], who obtained solutions for a cylindrical waveguide
but under the model boundary conditions that can
hardly be treated as physically meaningful.

1 It should be noted that analogous spectra are also met in the so-
called quasicrystals in solid-state physics [6].
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The goal of the present paper is to discuss the spec-
tra of potential hybrid waves in a purely electron
plasma in a two-dimensional waveguide of arbitrary
shape. The main result obtained in this work is illus-
trated in Fig. 7, in which the spectra of both the upper
and lower hybrid waves are represented by fractal
curves of the devil’s staircase type. The paper is orga-
nized as follows. In Section 2, the basic equations are
formulated and the statement of the problem is dis-
cussed. Section 3 is aimed at constructing a very gen-
eral solution for a waveguide of arbitrary shape. In Sec-
tion 4, a periodic waveguide is considered and corre-
sponding explicit solutions are derived. In Section 5,
the calculation of the spectral characteristics is illus-
trated using a waveguide with a sawtooth-shaped wall
as an example.

2. BASIC EQUATIONS

We consider a symmetric planar waveguide oriented
along the z-axis and bounded by metal walls at x =
±a(z) (Fig. 2). At this point, no restrictions (including
the periodicity condition) are imposed on the wall
shape. Let the region –a(z) < x < a(z) be filled with a
cold electron plasma against a neutralizing ion back-
ground, and let the magnetic field be directed along the
z-axis. The potential hybrid oscillations are described
by Poisson’s equation

(1)

where

(2)

are the longitudinal and transverse dielectric functions
of a cold magnetized plasma and ωp and Ω are the
plasma and cyclotron frequencies.

The boundary conditions on Eq. (1) have the form

(3)

Obviously, Eq. (1) with the boundary conditions (3)
has nontrivial solutions only when ε||(ω) and ε⊥ (ω) have

ε|| ω( )∂
2ϕ z x,( )

∂z
2

---------------------- ε⊥ ω( )∂
2ϕ z x,( )

∂x
2

----------------------+ 0,=

ε|| ω( ) 1
ωp

2

ω2
------, ε⊥ ω( )– 1

ωp
2

ω2 Ω2
–

-------------------–= =

ϕ z a z( )±,( ) 0.=

1 2

a(z)

z2z0z–1 zz1 = f(z0, s)

x

Fig. 2. Mapping that results from the reflection of the wave
front from the waveguide wall: z0  z1 = f(z0, s).
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opposite signs. This circumstance is reflected in
explicit form by rewriting Eq. (1) as

(4)

where

(5)

An important point here is that Eqs. (1) and (4) are
hyperbolic, in which case ω and s are spectral parame-
ters. Although the simplest wave equation (4) has been
known for several hundred years, it is usually treated in
a quite different mathematical sense: the quantity s is
assumed to be a given constant (such as the speed of
sound, the speed of light, etc.). To the best of my knowl-
edge, the spectral problems associated with Eq. (4)
have not yet been investigated by mathematicians (at
least, I failed to find references to such investigations in
the literature). Thus, in the traditional theory of hyper-
bolic equations, the question of solving equations of the
type of Eq. (4) in a region bounded by a closed curve is
meaningless: as has been noted in many textbooks,
such solutions do not exist. On the other hand, the ques-
tion about the oscillation spectrum in a finite-size
closed resonator filled with a magnetized plasma is
quite natural from the physical standpoint. Thus, for a
resonator of rectangular cross section, the eigenvalues
of Eq. (4) can be determined by elementary methods.

3. OSCILLATIONS IN A WAVEGUIDE
OF ARBITRARY SHAPE

In what follows, we restrict ourselves to considering
a waveguide unbounded in the longitudinal direction.
The general solution to Eq. (4) is well known. The
boundary-value problem with conditions (3) at a
boundary a(z) of arbitrary shape can be solved by the
technique of h-conformal mappings [10]. In the case
under consideration, reproducing this solution does not
require heavy mathematics. Since we are interested in a
symmetric waveguide, any solution is either even or
odd in x. Hence, in the general case, we can write

(6)

where Φ(z) is an arbitrary function and odd and even
solutions are those with λ = 0 and λ = 1, respectively.
Substituting representation (6) into boundary condi-
tions (3) yields the following functional equation for
Φ(z):

(7)

This equation can be solved as follows. First, we
define the function f(z, s) as

(8)

∂2ϕ z x,( )
∂z

2
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2∂2ϕ z x,( )
∂x

2
----------------------– 0,=

s
2 ε⊥ ω( )

ε|| ω( )
--------------–

ω2 ω2 Ω2
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2
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ωp
2 ω2
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------------------------------------------------.= =

ϕ z x,( ) Φ z x/s+( ) 1–( )λΦ z x/s–( ),–=
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How to construct this function is illustrated in
Fig. 2, in which the wave fronts represented by straight
lines 1 and 2 are at angles ±ϑ  to the z-axis, where

 = s. The function f(z, s) is clearly defined at all
points z only when s > s0 = max |a'(z)|, in which case we
have ∂f(z, s)/∂z > 0. In accordance with relationship
(5), the condition s > s0 also imposes certain restrictions
on the oscillation frequencies. Equation (7) is now writ-
ten as Φ( f(z, s)) = (–1)λΦ(z), and its solution is looked
for in the form

(9)

where m is an arbitrary integer. Equation (7) is an iden-
tity when

(10)

It is significant to note that, if we find a solution satis-
fying condition (10), we thus obtain a series of
waveguide modes with different numbers m and λ (or,
equivalently, with different spatial structures).

Let us now apply these results to a straight
waveguide. Assuming that a(z) = const, we find f(z, s) =
z + 2a/s, in which case the simplest of solutions satisfy-
ing condition (10) is the linear function ψ(z) = κz, where
κ = s/(2a). Then, using formulas (5), (7), and (9), we can
readily determine an entire spectrum of waveguide
modes similar to that shown in Fig. 1a.

It is also an easy matter to construct a general solu-
tion satisfying condition (10) for the boundary a(z) of
arbitrary shape. We choose a certain point z0 and suc-
cessively calculate the points z1 = f(z0, s), z2 = f(z1, s),
zn = f (n) (z0, s), where f (n)(z, s) stands for the nth itera-
tion of the function f(z, s) (Fig. 2). Since f(z, s) is a
monotonic invertible function of z (see above), this
sequence is increasing and we have zn  ∞ as n  ∞.
By iterating the inverse function, we can also construct
the sequence zn for n < 0. In this case, the entire z-axis
is divided into the intervals In = [zn, zn + 1); moreover, the
function f(z, s) induces a one-to-one mapping of any
interval onto a neighboring interval, In  In + 1. Now,
it is sufficient to arbitrarily specify the phase ψ(z) over
the entire interval I0; below, this phase will be denoted
by ψ0(z). Then, the phase ψ(z) in any interval can be
calculated by iterating the function f (z, s) using condi-
tion (10): if z ∈ In, then f (–n)(z, s) ∈ I0, so that ψ(z) =
ψ0( f (–n)(z, s)) + n. In order for the function ψ(z) to be
continuous over the entire axis, it is necessary to require
that ψ0(z1) = ψ0(z0) + 1.

Hence, for any s > s0 or, equivalently, for an upper or
lower hybrid wave with any frequency lying in the cor-
responding range, it is possible to construct quite arbi-
trary solutions to Eq. (4) with boundary conditions (3).
In order to reduce the arbitrariness of the solutions, it is
necessary to impose additional restrictions. As has been
mentioned, for a straight waveguide with a(z) = const,
it is convenient (but not necessary) to choose the phase

ϑtan

Φ z( ) iπ 2m λ+( )ψ z( )[ ] ,exp=

ψ f z s,( )( ) ψ z( )– 1.=
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as a linear function of z. In fact, this choice is based
upon the waveguide symmetry. Another kind of restric-
tion is associated with a waveguide of a variable thick-
ness such that a(z) tends to certain finite limiting values
as z  ±∞. Generally, the function ψ0(z) constructed
from an arbitrarily chosen function ψ(z) behaves at
infinity in an irregular manner. We may require that the
derivative ψ'(z) tends to certain limiting values at infin-
ity. As was proved in [10], this requirement determines
the function ψ0(z) to within a constant. Although it is
impossible to construct an explicit solution for this
case, the line of reasoning described in [10] may well
be adapted to develop a numerical algorithm. Finally, a
waveguide with a periodically corrugated wall is of
most practical interest. Additional natural constraints
on such a waveguide will be discussed in the next
section.

4. PERIODIC WAVEGUIDE

Let the function a(z) be periodic. The scale length
can be chosen to equate its period to unity, a(z + 1) =
a(z). Now, it is natural to require that the solutions to
Eq. (4) should satisfy the additional constraint

(11)

Although the wavenumbers k and k + 2π yield the same
solution, in what follows, the value of k may be conve-
niently regarded as an arbitrary number, in which case
we can use the scheme of extended Brillouin zones [4].

For a periodic waveguide, the solution can be
obtained in essentially the same way as in the previous
section. The only difference is that condition (11),
together with condition (10), yields an additional con-
straint:

(12)

where the quantity κ is proportional to the wavenum-
ber, k = π(2m + λ)κ. Hence, the task now is to find the
solution satisfying both conditions (10) and (12) and to
determine the κ values for which the solution exists.

As in the previous section, the construction of the
solution reduces to an analysis of the successive itera-
tions of the function f(z, s), defined by relationships (8).
By virtue of the periodicity of the boundary a(z), this
function possesses the obvious property f(z + 1, s) =
f(z, s) + 1. Such functions, which are called circle maps,
have been investigated in detail (see, e.g., [11]). In
physics, they appear in the study of both nonlinear
oscillations and transitions to chaos (see, e.g., [12]).
Recently, de la Llave and Petrov [13] have applied the
theory of circle maps to study the spectrum of an opti-
cal resonator with an oscillating wall and have also
found that the spectrum is described by Eq. (4).

The character of the sequence zn = f (n)(z0, s) depends
strongly on the so-called winding number, which is for-
mally defined as the limit W(s) =  – z0)/n. If

ϕ z 1 x,+( ) e
ikϕ z x,( ).=

ψ z 1+( ) ψ z( ) κ ,+=

(zn
n ∞→
lim
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W(s) is an irrational number, then the sequence {zn}
(where {a} denotes the fractional part of a number)
densely fills the unit interval [0, 1) as n increases. If the
winding number is rational, W(s) = P/Q, then, in the
limit n  ∞, the sequence {zn} becomes periodic and
consists of the repeating Q values α0, α1, …, αQ – 1,
which are called the Q cycle. (More precisely, the cycle
length is a multiple of Q, but this point is unimportant
for further analysis.)

These considerations may be illustrated by a simple
example. We assume that, for a certain integer P, the
equation

f(z, s) = z + P (13)

has a root (the case with P = 1 is illustrated in Fig. 3).
Clearly, in the unit interval [0, 1), there are at least two

such roots. We denote them by  and  and assume

that ( , s) < ( , s). The successive iterations
shown as a broken line in Fig. 3 result in the convergent

sequence {zn}   for any of the initial points z0

except for {z0} = . In this case, for n @ 1, we have
zn + 1 = zn + P, so that the winding number is equal to
W(s) = P. We can also iterate the inverse function
f (−1)(z, s) (this corresponds to the motion in the opposite
direction along the broken line in Fig. 3), in which case

we obtain {zn}n → –∞   provided that {z0} ≠ .

Now, we insert z =  into conditions (10) and (12)
and obtain

(14)

α0
– α0

+

f z' α0
–

f z' α0
+
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α0
+

α0
+ α0
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α0
–
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Fig. 3. Successive iterations of the function f(z, s).
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This indicates that conditions (10) and (12) are consis-
tent only if κ = 1/P = 1/W(s). A slight change in the fre-
quency or, equivalently, in the parameter s causes a
small displacement of the curve in Fig. 3 but does not
change the number of roots of Eq. (13), so that the quan-
tity κ remains constant in a certain range of variation of
the parameter s. Using definition (8), we can easily con-
vince ourselves that Eq. (13) has roots in the range

(15)

We denote this range by ∆1/P. Now, we can readily
understand the structure of the solution satisfying con-
ditions (11) and (12). In successive iterations of the
function f(z, s), the fractional part of the phase remains

unchanged, {ψ(z0)} = {ψ(zn)}n → ∞   ψ( ) = const,

if z0 ≠ . Consequently, the phase ψ(z) is a piecewise
constant function with discontinuities at the points

 + n. Since κ = 1/P, the periodicity condition (12)
implies that the jumps at the discontinuities are equal to
1/P.

The second solution can be obtained by iterating the
inverse function. Clearly, these iterations again yield
the range ∆1/P and a piecewise constant phase, but the

discontinuities now occur at the points  + n.

The solution just constructed describes a wave
whose electric field has singularities of the δ-function
type at the points at which the phase is discontinuous.
In other words, the wave is a superposition of double
layers oriented along a periodically continued broken
line shown in Fig. 2. Using formulas (6) and (9), we
can immediately write out the following explicit
expression for the electric field of, e.g., the fundamen-
tal even mode (m = 0, λ = 1) at the x = 0 axis: Ez(z) =
−2Re[exp(−iωt)Aη(z, s)], where

(16)

η = ±, and ω and s are related by expression (5). To be
specific, we assume here that s > 0 and note that the
wave propagation direction is determined by the sign of
ω. Using the familiar Poisson’s formula, we can rewrite
expression (16) as

(17)

which shows that, although the position of the double
layers does not change with time, the wave phase veloc-
ity is nonzero and is equal to ωP/π. It may be proved
that the functions Aη(z, s) with s ∈ ∆ 1/P form a basis in
the class of functions satisfying the quasi-periodicity
condition y(z + 1) = eiπ/Py(z), and the expression for the
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temporal evolution of an arbitrary wave packet is also
easy to obtain [5].

Hence, we have shown that, as the parameter s (or,
equivalently, the frequency) changes within the range
∆1/P (15), the wavenumber remains a constant multiple
of 1/P. In the theory of nonlinear oscillations, the same
method is used to describe the phenomenon of mode
locking (which has been known for several hundred
years and underlies the entire scope of radio engineer-
ing): two coupled self-excited oscillators tend to tune
their frequencies to the same frequency or to frequen-
cies such that one frequency is a multiple of the other;
moreover, the oscillator frequencies so tuned remain
unchanged when subjected to slight variations in the
external parameters. In the situation under discussion,
we deal with a reverse (in a sense) phenomenon: we can
vary the frequency, in which case, however, the spatial
period of the wave remains unchanged.

Consider what happens when the parameter s goes
beyond the range ∆1/P . This situation can be understood
by analyzing the fixed points of an arbitrary iteration of
the above mapping of a circle. In other words, instead
of Eq. (13), we must investigate the roots

(18)

where Q and P are arbitrary integers that have no com-
mon divisors. Clearly, after Q iterations, the function
f (Q)(z, s) is again a circle map that is analogous to the
mapping illustrated in Fig. 3, but now the number of
oscillations of this function in the unit interval is larger.
Accordingly, there are at least 2Q roots (18) in the unit
interval, provided that they do exist. Let us assume that
there are exactly 2Q roots, which is valid if the function
a(z) has only one minimum and only one maximum per

period. We denote them by , , …,  in such

a way that  = { f( , s)} (i = 1, …, Q – 1) and

 = {f( , s)}. Then, as n  , the fractional

part {zn} runs through the sequence of the roots (…, ,

, …, , , …). Performing the same analysis
as for the root Q = 1 of Eq. (13), we can establish that
the winding number is equal to W(s) = P/Q and condi-
tions (10) and (12) are consistent only if the wavenum-
ber is κ = Q/P. In this way, we again arrive at two solu-
tions satisfying conditions (10) and (12): the solutions
turn out to be piecewise constant functions with discon-

tinuities at the points  and , which indicates that
there are Q discontinuities in each of the solutions
within a unit interval. Between the discontinuities, the
phase ψ(z) takes on arbitrary values. In order to satisfy
periodicity condition (12), it is sufficient to assume that
each jump is equal to 1/P. An example of this depen-
dence is illustrated in Fig. 5.

Finally, we again see that the number of roots (18)
do not change when the parameter s is varied within a

f
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certain range ∆Q/P. However, in contrast to range (15) in
the case Q = 1, it is now impossible to explicitly find the
boundaries of the range ∆Q/P. In numerical calculations,
these boundaries can be conveniently determined as
follows. We solve Eq. (18) with respect to s and denote
the solution obtained by s = σQ/P(z). Clearly, this solu-
tion is a periodic function varying in the range ∆Q/P, at
the boundaries of which it has a maximum and a mini-
mum. Treating the relationship s = σQ/P(z) as an equa-

tion for z, we can obtain all the elements , …, 
of the cycle and thereby determine the phase ψ(z).

If the shape a(z) of the waveguide possesses addi-
tional symmetry, some of the ranges ∆Q/P may shrink to
a point. In particular, this is true when a(z) = a0 + b(z),
where b(z + 1/2) = –b(z), e.g., b(z) ∝ (2πz), in which
case, from definition (8), we can readily see that, for
Q = 2, the function σ2/2m + 1(z) ≡ 4a0/(2m + 1) is
constant.

Hence, for any rational winding numbers, the wave-
number is equal to κ = 1/W(s). Since any irrational
number is approximated by a rational number, this
equality is also valid for irrational W(s). However, in
regard to the phase ψ(z), we can only say that it is a con-
tinuous function. Some insight into the character of the
function ψ(z) can be provided by considering the limit
of large Q and P values such that κ = Q/P   const. In
this limit, the number of discontinuities in the unit
interval increases and the jump at each discontinuity
decreases. In this sense, the phase ψ(z) tends to become
a continuous function. In the next section, the above
analysis will be illustrated by a particular example.

Based on the general theorems on the properties of
the circle map (see, e.g., [11]), we can state that the
dependence κ(s) is a monotonically increasing continu-
ous function. In this case, the range s > s0 is divided into
an infinite number of nonoverlapping subranges over
each of which the function κ(s) is constant. As was
mentioned above, such a dependence (which is illus-
trated, e.g., in Fig. 6) is called the devil’s staircase.

In this context, two questions arise. The first is how
to go over to a smooth waveguide. For a function a(z) =

α0
± αQ 1–

±

1.9325
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Fig. 4. Function σ5/6(z).
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a0 + eb(z), where b(z) is a periodic function, we can see
that, as the corrugation depth tends to zero, so does the
width of each staircase step, and the centers of all steps
tend to lie along a straight line. In other words, we have
κ(s) = s/(2a0) + ∆κ, where ∆κ ≤ eQ.

The second question concerns the total length of the
subranges ∆Q/P. Let us calculate the Lebesgue measure
(the total length L) of all of the subranges ∆Q/P inside a
certain range s1 < s < s2. It can be shown that, in the case
at hand, L < s2 – s1; that is to say, the devil’s staircase is
incomplete. Moreover, if e  0, then L  0. In
other words, for a randomly chosen wave frequency ω,
the probability for the corresponding wavenumber to
occur at a step of the devil’s staircase is always smaller
than unity. On the other hand, inside any wave packet
with a nonzero frequency spread, there should exist
either one step or an infinite number of steps.

As a result, we can see that the evolution of a wave
packet is generally very complicated. Thus, it is clear
that the traditional notion of the group velocity is inap-
plicable to such wave packets, because the dependence
ω(k) is nondifferentiable. It also remains unclear how to
describe the dispersive spreading of a wave packet
when passing to a smooth waveguide.

The above method of constructing the solution is
valid if the spectral parameter s is larger than a certain
minimum value. But, as s  s0, the first and second
derivatives of f(z, s) with respect to z both vanish at a
certain point. For most problems in the theory of non-
linear oscillations, this indicates that the inverse func-
tion f (–1)(z, s) is non-single-valued. Hence, we have
come to the most interesting point—the onset of sto-
chastic oscillations. However, in the case under discus-
sion, the method of constructing the solution becomes
invalid: before the broken line in Fig. 2 comes back to
the x = 0 axis, it may be reflected from the walls several
times, in which case the resulting function is not,
strictly speaking, a circle map. For reasons related to
this, the situation with s < s0 still remains unclear.

0.2

1.00.80.60.40.2

0.4

0.6
0.8

1.0
1.2
Ψ(z)

z

Fig. 5. Coordinate dependence of the wave phase for Q/P =
20/17 and s = 3.12393.
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5. AN EXAMPLE

Here, we consider a waveguide with a sawtooth-
shaped wall:

(19)

For such a waveguide, the function f(z, s) is a piece-
wise smooth function that can readily be evaluated in
explicit form:

(20)

the periodicity condition being f(z + 1, s) = f(z, s) + 1.
Solving Eq. (18) numerically for a certain set of

rational numbers Q/P, we can obtain a piecewise-linear
function σQ/P(z). An example of this function for Q/P =
5/6, a0 = 1, and s0 = 1 is depicted in Fig. 4, which shows,
in particular, that the maxima, as well as the minima, of
σQ/P(z) are the same in magnitude and that the equation
s = σQ/P(z) with respect to z has exactly 2Q roots. As
was noted earlier, having found these roots, we can
determine the coordinate dependence ψ(z). An example
of this dependence is displayed in Fig. 5: we can see
how the function ψ(z) tends to become a smooth func-
tion as Q and P increase.

Taking all rational numbers Q/P with Q and P
smaller than a certain large number and determining the
maxima and minima of the function σQ/P(z) for each of
them, we arrive at a set of steps of the devil’s staircase.
An example of the devil’s staircase κ(s) obtained in this
way is shown in Fig. 6. The completeness of the stair-
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3/1

7/2
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Fig. 6. Dependence κ(s) for a a0 = 1 and s0 = 1. Shown are
all steps of the devil’s staircase that correspond to the ratio-
nal values of κ = Q/P with Q ≤ 20 and P ≤ 20.
case is characterized by the ratio of the total length of
its steps to the total length of the range of variation of
the parameter s; in the case at hand, this ratio is approx-
imately equal to 0.364.

Finally, the entire spectrum of hybrid waves can be
constructed from Fig. 6 using relationship (5). A char-
acteristic example of the mode with m = 0 and λ = 1 at
Ω/ωp = 1.2 is given in Fig. 7.

Of course, the spectral curves constructed above are
not dense in the (ω, k) plane. To arrive at a dense spec-
trum implies the neglect of the spectral classification by
the numbers m and λ in formula (9). A dense spectrum
can be obtained by constructing the spectral curves for
all m values (in analogy with the two curves in Fig. 7),
by reducing them to the first Brillouin zone –π < k < π,
and by plotting them in the same figure. An approxima-
tion to a dense spectrum constructed in this way for
λ = 1 and m ≤ 5 is shown in Fig. 8.
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0.6

1/1 3/2 2/1 5/2 3/1 7/2 k
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1.4
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Fig. 7. Spectrum of hybrid waves in a periodic waveguide.
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Fig. 8. Formation of a dense spectrum.
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6. CONCLUSION

Hence, the main result of the present study is that
the spectra of hybrid waves in a periodic waveguide are
nowhere differentiable, fractal curves. An analogous
result for the TG waves was obtained in my earlier
paper [5], where it was shown that, if the wavenumber
occurs at one of the steps of the devil’s staircase, then it
is possible to find explicit solutions to wave equation (1).

On the other hand, Zaginaylov et al. [7, 8] solved
essentially the same equation (1) by the method of
expansion in the waveguide corrugation depth. How-
ever, for the same values of the wavenumber, they
arrived at solutions that differ from those obtained
above; specifically, they obtained stop bands or Bragg
gaps in the spectrum. Thus, according to [7, 8], the
Bragg gaps should take the place of the vertical lines at
k = π or k = π/2 in Fig. 7. It is expedient to discuss the
causes of this discrepancy in more detail.

Recall that the solutions constructed above are sin-
gular. According to expression (16) or (17), all of the
spatial Fourier harmonics have the same amplitude and
differ only in phase. Consequently, it seems very likely
that the perturbation methods used in [7, 8] do not result
in singular solutions. The conclusion that a stop band
(or an instability) arises at the intersection of two spec-
tral curves is actually based on the analysis of solutions
to a quadratic equation (see, e.g., [14], Section VI). In
the system under consideration, every neighborhood of
the intersection point of any two spectral curves is
crossed by an infinite number of spectral curves, which
should also be taken into account. With this circum-
stance in mind, one cannot expect that it is precisely the
stop band that will appear.

In the above analysis, the theory of the circle map-
ping made it possible to find solutions for a rational
normalized wavenumber, κ = Q/P. Formally, this is
enough to say that all possible solutions are found,
because irrational numbers, being experimentally non-
measurable, may be regarded merely as a mathematical
abstraction and computer calculations are always car-
ried out with rational numbers. However, the computa-
tions based on the above-described algorithm can actu-
ally be performed only when the numbers Q and P are
not too large (no larger than several thousands). As a
result, the relative accuracy of such computations is
comparatively low.

On the other hand, the computational scheme used
in [7, 8] naturally smoothes out small-scale irregulari-
ties and thus makes it possible to efficiently calculate
smooth dispersion curves far from resonances with
small Q and P numbers. Hence, the approaches devel-
oped in the present study and in [7, 8] are not so much
contradictory as they are supplementary: solving the
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002
problem by different approaches may yield different
results, each of which is nevertheless valid.

In conclusion, note that the plasma model adopted
here is fairly simple: it does not take into account ther-
mal corrections to the plasma dielectric function. These
corrections change Eq. (4), and they are rather difficult
to analyze accurately. It may be expected that allowing
for thermal corrections will result in some smoothing
out of the singular natural waves (the width of the dou-
ble layers should be on the order of the Debye radius)
and of the dispersion curves far from resonances, as
well as in an additional damping of oscillations. On the
other hand, taking into account the nonpotential charac-
ter of oscillations is unlikely to change the final results
qualitatively.
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Abstract—A study is made of the cross-polarization scattering by magnetic field fluctuations and the resulting
conversion of an extraordinary wave into an ordinary wave in the vicinity of the upper hybrid resonance. It is
shown that the scattering efficiency increases with decreasing fluctuation wavelength. It is also demonstrated
that the accompanying spurious signal from the cross-polarization scattering by density fluctuations is sup-
pressed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The development of methods for diagnosing mag-
netic turbulence in tokamak plasmas is a very important
task because this kind of turbulence may play a role in
the anomalous energy and particle transport [1]. In
most of the modern tokamak experiments, the level of
small-scale magnetic field fluctuations is inferred from
the lifetime of the runaway electrons; however, the
information so derived is averaged over the discharge
duration, the cross section of the discharge plasma, and
the fluctuation spectrum. On the other hand, the data
obtained on the properties of small-scale magnetic tur-
bulence in the plasma core from magnetic measure-
ments by the probes placed in the shadow of a limiter
are even less reliable and less direct. Diagnostic meth-
ods based on collective scattering of electromagnetic
waves are usually efficient in studying plasma turbu-
lence, but they are difficult to apply to magnetic fluctu-
ations because of their relatively low intensity. Accord-
ing to present opinion, the relative level of magnetic
fluctuations, 10–5 < δB/B < 10–4, is substantially lower
than that of density fluctuations, 10–3 < δn/n < 10–2,
which govern the amplitude of the scattering signal in
conventional tokamak experiments. The only possible
way to diagnose magnetic fluctuations by a collective
scattering technique is that based on the effect of the
cross-polarization scattering (CPS) of a probing wave
propagating transverse to the external magnetic field
[2, 3]. The essence of this method is that plasma density
fluctuations in such experiments cause no change in the
polarization of the probing wave during the scattering,
thereby making it possible in principle to record weaker
magnetic fluctuations. However, the implementation of
CPS diagnostics runs into serious difficulties associated
with the stringent requirements for the transverse prop-
agation of both probing and scattered waves, the mode
selectivity of the antenna, and the suppression of a
small-angle scattering signal driven by the density fluc-
1063-780X/02/2807- $22.00 © 20580
tuations in the polarization of a probing wave. Thus, if
the last requirement is not satisfied because of the
imperfect mode selectivity of the receiving antennas,
the CPS signal can become indistinguishable from a
high-power spurious signal. The method for diagnosing
magnetic fluctuations by the CPS technique was
already implemented in the TORE SUPRA tokamak,
where the receiving antennas were protected by the cut-
off surface from the direct action of the extraordinary
probing radiation [4].

The level of magnetic fluctuations was for the first
time estimated directly in the cited TORE SUPRA
experiments, in which the correlation of magnetic tur-
bulence with electron heat transport was also investi-
gated. However, it should be noted that the scheme of
CPS experiments adopted in [4] had a number of disad-
vantages. Thus, the attenuated small-angle scattering
signal from the probing extraordinary wave was not
completely prevented from reaching the receiving horn
after multiple reflections from both the cutoff surface
and chamber wall. In addition, the assumption that
magnetic fluctuations are localized near the cutoff sur-
face for the probing wave appears questionable, as well
as the corresponding estimate of the wave vector of
fluctuations.

An alternative scheme for implementing the CPS-
based diagnostic method in tokamaks was proposed in
recent papers by Bulyiginskiy et al. [5, 6]. In this
scheme, the plasma is sounded by microwaves under
the conditions of electron cyclotron resonance (ECR)
for the probing waves within the tokamak chamber.
A probing wave with extraordinary polarization is
excited in the equatorial plane from the high-field side.
When propagating transverse to the external magnetic
field, the wave traverses the ECR region, without being
subject to a strong absorption in the plasma of the
experimental devices (Te ≤ 4 keV, R ≤ 1 m), and then
reaches the upper hybrid resonance (UHR) region,
002 MAIK “Nauka/Interperiodica”
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where the projections of its wave vector and its electric
field onto the direction of the gradient of the external
magnetic field both increase sharply. According to [5,
6], in the UHR region, the probing wave can undergo
CPS by short-wavelength fluctuations with a wide

wavenumber spectrum (ωce/c < q < ). The scattered
wave is recorded from the low-field side by an antenna
that is also placed in the equatorial plane of a tokamak.
In this one-dimensional probing scheme, the wave vec-
tors are resolved by either a time-of-flight or a correla-
tion technique [5–7]. An obvious advantage of the pro-
posed scheme is a complete absorption of the probing
extraordinary wave and of the waves whose polariza-
tion remains unchanged during the scattering after the
linear transformation at the UHR. Another advantage is
the considerable ECR absorption of a small admixture
of an ordinary wave in the probing radiation and of the
waves that result from the small-angle scattering of this
admixture by density fluctuations. The theoretical anal-
ysis carried out below will reveal some other advan-
tages of the proposed scheme.

The paper is organized as follows. In Section 2, the
nonlinear current that drives CPS in the vicinity of the
UHR is analyzed. It is shown that, in contrast to the
accepted views [2, 3, 8], the nonlinearity of the ponder-
omotive force, (v · —)v, in the electron cyclotron fre-
quency range is not negligible in comparison with that
of the Lorentz force. Moreover, the vicinity of the UHR
is dominated by the effects associated with the nonlin-
earity of the ponderomotive force, so that CPS is more
likely to be associated with the fluctuations of the lon-
gitudinal current rather than with the magnetic field
fluctuations. In Section 3, the CPS signal from the UHR
region is calculated using the plane-stratified plasma
model under the assumption that the directional pat-
terns of the emitting and receiving antennas are narrow.
Expressions are obtained both for the actual signal from
the CPS by magnetic fluctuations and (in Section 3) for
the spurious CPS signal, which is driven by the density
fluctuations and is associated with a deviation of the
propagation direction of the probing wave from the
direction transverse to the external magnetic field. In
the Conclusion, the advantages of the proposed scheme
are summarized.

2. NONLINEAR CURRENT

In the MHD approximation [9], the nonlinear cur-
rent that drives collective scattering has the form

(1)

Here, N is the unperturbed electron density; the sub-
scripts s and i refer to the scattered and probing waves,
respectively; the subscript Ω stands for low-frequency
fluctuations; nΩ and vΩ describe low-frequency pertur-
bations of the electron density and electron velocity,

ρce
1–

js eNvs enivΩ enΩvi.+ +=
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respectively; the oscillatory electron velocity in the
field Ei of the probing wave is given by the relationship

(2)

and δσαβ(ωi) are the partial electron conductivities in
linear theory.

The electron density perturbed at the frequency of
the probing extraordinary wave has the form

(3)

where ki is the wave vector of the probing wave. In the
MHD approximation, the electron velocity perturbation
at the frequency of the scattered wave is given by rela-
tionship (2) with the subscript i replaced by s and the
field Eβ replaced by , which is the effective electric
field describing the effect of the nonlinear components
of the ponderomotive and Lorentz forces on the elec-
tron motion:

(4)

Using relationships (1)–(4), we can readily obtain an
expression for the projection of the nonlinear current
onto the direction of the external magnetic field—in
other words, for the nonlinear current component that
leads to CPS when the probing and scattered waves
propagate strictly transverse to the external magnetic
field:

(5)

This expression shows that CPS can be associated not
merely with the magnetic fluctuations but also with the
fluctuations of the longitudinal electron velocity.

In contrast to the assertions made in [2, 3, 8], the
contribution of longitudinal velocity fluctuations is not
negligible, which can be easily verified by using
Ampére’s law for low-frequency fluctuations. In fact,
neglecting the displacement current, we have vΩ =

kΩ × BΩ . Using this expression and the Bragg

relationship ks = ki + kΩ, we can readily obtain the rela-
tionship

(6)

which shows that the only contribution of the longitudi-
nal velocity fluctuations that can be neglected is the
contribution of long-wavelength fluctuations such that
kΩc/ωpe < ωpe/ωi . Note that relationship (4) fails to hold
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for the experimental conditions of [4] and even more so
for the scattering at the UHR, which can only be driven
by fluctuations satisfying the condition kΩc/ωi @ 1. In
the latter case, the inequality kΩc/ωpe @ ωpe/ωi is satis-
fied by a large margin, so that the nonlinear current is
dominated by the ponderomotive force.

It should be stressed that the MHD expressions (5)
and (6) for the nonlinear current are, strictly speaking,
valid only when all of the three interacting waves are
fast; i.e., when they satisfy the conditions k||αvTe/ωα ! 1,
k⊥α vTe/ωce ! 1, and k||αvTe/(ωα ± ωce) ! 1. On the other
hand, as was shown in a recent paper by Bindslev [10],
MHD expressions that are closely analogous to those
presented in this section are also valid when only two
of the three interacting waves, specifically, the probing
and scattered waves, are fast. It is this situation that usu-
ally holds in experiments on collective scattering.

3. CALCULATION OF A CPS SIGNAL 
FROM THE UHR REGION

According to the reciprocity theorem [11], the CPS
signal with ordinary polarization that is recorded by the
receiving antenna placed on the low-field side can be
expressed as

(7)

where the nonlinear current js is given by relationship

(1) and  is the field distribution of the receiving
antenna, which operates as an emitting antenna in a

reversed constant external magnetic field. The field 
is normalized in such a way that the incident power is
equal to unity, and the CPS signal is normalized so that
〈As(ωs) ( )〉  = 2πPs(ωs)δ(ωs – ).

In the plane-stratified plasma model, the expression

for the field  of the receiving antenna can be written
in the geometrical-optics approximation, which ade-
quately describes the behavior of the refractive index of
the plasma along the ray trajectory in the case of prob-
ing in the equatorial plane. In the paraxial approxima-
tion, the main component of the electric field of an ordi-
nary wave has the form

(8)
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where k0 = (ωs/c) , the x coordinate is
directed along the tokamak major radius, y is a poloidal
coordinate, R = R0 + a is the radial position of the

receiving antenna, κ0y = /2k0c2 and κ0z = k0/2. The
beams of radiation from the emitting and receiving
antennas are both assumed to be Gaussian near the
horn; this assumption corresponds to the directional

pattern f(ky, kz) = 4πρexp[–ρ2(  + )/4].

Expression (8) is written in the plane-stratified
plasma model, which implies that ksy is constant along
the tokamak major radius. This model is well suited for
describing the wave propagation in a vertically elon-
gated plasma and can be generalized to a plasma with a
circular cross section by introducing the quantity κ0y =
(ωsa)2/2k0(cr)2, which takes into account the relation-
ship ky ~ 1/r. In order to calculate the nonlinear current,
it is necessary to know the field of an extraordinary
wave in the vicinity of the UHR. According to [12], this
field is described by the following expressions:

(9‡)

(9b)

(9c)

where Ψ(t, ξ) =  –  + ξt, ξ = (R – RUH + iεiml)

is the dimensionless coordinate, l = (∂ε/∂R , ε =

1 – /(ω2 – ) + iε'', kc = ωce(RUH)/c, κ = ,

and  = /(  – ). The factor D(kiy, kiz) is
determined by the directional pattern of the emitting
antenna and the wave propagation far from the UHR.
The assumption that the plasma is homogeneous only
along the major radius (which provides an adequate
description of the propagation of an extraordinary wave
in the equatorial plane of a tokamak) allows us to cal-
culate this factor in explicit form:

(10)
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where φe =  – (  + dR',

ke =  is the wave vector of a transversely

propagating extraordinary wave, g = , κey =

/2kec2, κez =  + ,

R0 – a is the position of the emitting horn, and Pi is the
power of the probing wave.

Substituting expression (8) for the field of the
receiving antenna and expression (6) for the nonlinear
current into representation (7) for the scattered signal
and using expression (2) for the oscillatory electron
velocity and expressions (9) and (10) for the field of the
probing wave, we can integrate over the spatial coordi-
nates and thus obtain the spectral density of the scat-
tered signal as a function of the spectrum of magnetic
fluctuations:

(11)

with

(12)

In formula (11), the magnetic fluctuations responsible
for CPS are expanded in a Fourier integral,

(13)

under the assumption that they are statistically uniform
and steady,  = |bqΩ|2(2π)4δ(q – q')δ(Ω –
Ω'). Also, in formula (11), the following notation is
introduced: τ is the optical thickness of the ECR layer
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for an extraordinary wave, X0α = 

and Xeα = .

An important feature of expression (11) for the
spectral density of the CPS signal in the UHR region is
that it contains the factor (qx/kc)2, which accounts for
the contribution of the short-wavelength fluctuations
(qx @ kc) to the scattering process and is associated with
the contribution of the fluctuations of the longitudinal
electron velocity to the nonlinear current. It is this fac-
tor that facilitates the observation of short-wavelength
magnetic fluctuations and, in particular, electron-tem-
perature-gradient (ETG) driven modes.

Note that, when deriving representation (11), the
contribution of the density fluctuations to the CPS sig-
nal was neglected. This simplifying assumption is valid
for a probing wave propagating strictly transverse to the
external magnetic field, but it has yet to be justified for
the case of an obliquely propagating probing wave.
Since obliquely propagating waves are always present
in the actual directional pattern of an emitting antenna,
it is necessary to estimate the contribution of their scat-
tering by density fluctuations to the total CPS signal.
The CPS by density fluctuations is driven by the nonlin-
ear current component js = enΩvi . The CPS signal asso-
ciated with this component can be calculated from rela-
tionship (7) even with allowance for the contribution of
the field components Eiz, Esx, and Esy , which are given
by expressions (9c) and (14) and are small for the case
of nearly transverse propagation:

(14)

As a result, we obtain that the spectral density of the
CPS signal driven by the plasma density fluctuations is
described by expression (11), in which the function
S1(q) is replaced with

(15)

where the notation  =  is intro-

duced and it is assumed that 〈nqΩ /N2〉  =

(2π)4|δnqΩ|2δ(Ω – Ω')δ(q – q').
Note that, although the level of density fluctuations

in a tokamak discharge is relatively high, the signal of
the CPS driven by them in the UHR region is sup-
pressed to a significant extent. This suppression is

described by both the factor /  (which is small
for conventional tokamaks) and the factor [qz/(qx – kc)]2
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(which is extremely small for the drift turbulence). The
latter factor can be estimated from the expression qx =
m/R(n/m – µ), where m and n are the poloidal and tor-
oidal mode numbers, and µ is the reciprocal of the
safety factor. To do this, it is necessary to take into
account the fact that the characteristic width of the
region where the drift mode is localized in the vicinity
of the resonant magnetic surface is on the order of the
ion gyroradius ρci . In this way, one can readily obtain

the relationship  = , in which the shear

length rs = |µ/µ' |–1 is introduced and the fact that the
CPS diagnostics makes it possible to observe fluctua-
tions with the poloidal numbers m ≤ a/ρ is taken into
account. We can see that the parameter qz/qx is repre-
sented as the product of four factors, each of which is
either smaller or much smaller than unity, thereby
explaining a substantial suppression of the signal from
the CPS driven by the density fluctuations in the UHR
region. Note that such a significant suppression occurs
only when the directional patterns of the antennas are
symmetric with respect to the direction of the external
magnetic field. In the case of asymmetric directional
patterns characterized by the mean wavenumber  @ qz,
the factor [qz/(qx – k0)]2 in expression (15) should be

replaced with the factor [ /(qx – k0)]2, which also
leads to the suppression of the spurious signal of the
CPS associated with density fluctuations. The smaller
the radial scale of the fluctuations (i.e., the smaller the
deviation of the propagation direction of the probing
wave from the direction transverse to the external mag-
netic field in the UHR region), the more significant the
suppression. This effect is associated with an increas-
ingly small deviation of the propagation direction of the
probing wave from the direction transverse to the exter-
nal magnetic field in the UHR region.

Recall that, in the plane-stratified plasma model, the
poloidal asymmetry of the directional patterns of anten-
nas does not enhance the spurious CPS signal. This is,
however, not the case for a true toroidal geometry. The
reason is that, in a nonuniform tokamak magnetic field,
the UHR surface is not a magnetic surface, so that the
projection of the increasing wave vector component
perpendicular to the UHR surface onto the poloidal
direction may be finite and even large.

In this case, the projection of the wave vector onto
the magnetic field direction is described by the expres-

sion qz = 4α . Here, Ln is the scale on

which the plasma density varies;  is the mean poloi-
dal wavenumber of the directional pattern of an
antenna; α is a factor of order unity, which is deter-
mined by the propagation of a probing wave far from
the UHR; and Hθ and Hϕ are, respectively, the poloidal
and toroidal components of the magnetic field. Note

qz

qx

----- a
R
--- ω

cqx

--------
ρci

rs

------µ

kiz

kiz

ωce
2

ωpe
2

--------
Ln

R
-----

cky

ω
-------

Hθ

Hφ
------qx

ky
that, in this situation, the attenuation coefficient for the
spurious CPS signal is also much smaller than unity.

It should be emphasized that, although the above
expressions for the CPS signal were derived for the
scattering process in which an extraordinary wave is
converted into an ordinary wave, the symmetry of the
nonlinear matrix elements and of the overall pattern of
the propagation of waves also makes it possible to use
expression (11) to describe the opposite CPS process,
in which an ordinary wave excited from the low-field
side is converted into an extraordinary wave.

4. CONCLUSION

In conclusion, let us summarize the advantages of
the proposed scheme for diagnosing magnetic fluctua-
tions by the CPS technique:

(i) Localization of the signal from the CPS driven by
short-wavelength fluctuations in the UHR region.

(ii) Possibility of investigating a wide wavenumber
spectrum of fluctuations by a simple one-dimensional
probing technique.

(iii) Resolution of the wave vectors by a time-of-
flight or a correlation technique [5–7].

(iv) Increasing the CPS efficiency due to the contri-
bution of the fluctuations of the longitudinal electron
velocity in the UHR region.

(v) Suppression of the signal from the CPS by den-
sity fluctuations in the UHR region because of the
strictly transverse propagation of a probing wave near
the UHR.

(vi) Absorption of the small-angle scattering radia-
tion with extraordinary polarization in the UHR region.

(vii) ECR absorption of an admixture of an ordinary
wave in the probing radiation and of the waves that
result from the small-angle scattering of this admixture
by density fluctuations.
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Abstract—A study is made of the dynamics of planetary-scale electromagnetic waves in the F-layer of the ion-
osphere. It is shown that, in this layer, a new branch of large-scale magneto-ionospheric wave perturbations is
generated under the action of the latitudinal variations of the geomagnetic field, which are a constant property
of the ionosphere. The waves propagate along the parallels with phase velocities of tens to hundreds of km/s.
The pulsations of the geomagnetic field in the waves can be as strong as several tens of nT. A possible self-
localization effect is revealed: these waves may form nonlinear localized solitary vortices moving either west-
ward or eastward along the parallels with velocities much higher than the phase velocities of the linear waves.
The characteristic dimension of a vortex is about 104 km or even larger. The magnetic fields generated by vortex
structures are one order of magnitude stronger than those in linear waves. The vortices are long-lived formations
and may be regarded as elements of strong structural turbulence in the ionosphere. The properties of the wave
structures under investigation are very similar to those of ultralow-frequency perturbations observed experi-
mentally in the ionosphere at middle latitudes. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Large-scale wave structures play an important role
in the energy balance and in circulations of the atmo-
sphere and oceans. Numerous observations show that
planetary-scale perturbations of an electromagnetic
nature are always present in the ionosphere in the form
of background wave perturbations [1–4]. Of particular
interest among these perturbations are so-called large-
scale ionospheric perturbations propagating around the
Earth along the parallel at a fixed latitude [4]. They are
especially pronounced during geomagnetic storms and
substorms [5], earthquakes [6, 7], major artificial
explosions, military operations [8, 9], etc. Observations
also revealed so-called magneto-ionospheric wave per-
turbations (MIWP) propagating in the F-layer along the
parallels at middle latitudes [4, 6]. The amplitudes of
the geomagnetic pulsations in such waves may vary
from a few to several tens of nT.

In planetary atmospheres, the wave perturbations
are actually generated in the tropo- and stratosphere
and can hardly penetrate to the ionospheric F-layer
because of the strong screening effect of stable zonal
winds in the ionosphere (especially in summer) [10].
That is why MIWP should be excited just inside the
ionospheric F-layer. One of us [11] showed, first, that a
possible mechanism for generating MIWP may be
associated with the latitudinal variations of the geo-
magnetic field (a permanent fundamental factor in plan-
etary-scale processes in the ionosphere) and, second,
that MIWP generated by this mechanism are a new
branch of natural oscillations in the F-layer.
1063-780X/02/2807- $22.00 © 0586
In nature, these perturbations manifest themselves
as background oscillations. Observations show that
forced oscillations of this type occur in the ionosphere
under the pulsed action from above (geomagnetic
storms [5]) or from below (earthquakes, volcanic erup-
tions, and major artificial explosions [4, 6, 8, 12]). In
the latter case, the perturbations exist in the form of
localized solitary wave structures.

In this paper, we continue a theoretical investigation
of the properties of MIWP. We demonstrate the possi-
bility of a self-localization effect: these wave perturba-
tions may form nonlinear localized solitary vortices in
the ionosphere.

2. FORMULATION OF THE PROBLEM
AND BASIC EQUATIONS

When studying the dynamics of large-scale (L ~
104 km) waves in the F-layer of the ionosphere, it is
necessary to take into account the fact that the Hall con-
ductivity depends on the sign of the charge; i.e., the
electron and ion contributions to the Hall conductivity
have opposite signs. Calculations show that, at altitudes
above about 150 km, these contributions cancel one
another, so that the Hall conductivity vanishes. Since
large-scale waves are damped by turbulent and molec-
ular viscosities only slightly, the Reynolds number for
such wave motions is high [13]. For planetary-scale
perturbations in the F-layer, the magnetic Reynolds
number Rem = ωL2/ν⊥  (where ν⊥  = c2/(4πσ⊥ ), ω is the
characteristic perturbation frequency, σ⊥  is the trans-
verse conductivity, and L is the characteristic perturba-
2002 MAIK “Nauka/Interperiodica”
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tion scale length) is about 102, so that, in a first approx-
imation, the damping by ions can also be neglected.
This is justified by the observations [4, 10]: in the
F-layer, planetary-scale electromagnetic waves propa-
gate over very large distances without being signifi-
cantly damped. Additionally, the dimensionless Max-

well’s equation Rem  =  (where the superior bar
indicates the dimensionless character of the quantities
and of the operator) implies that, even when the current
J in the ionosphere is low, the magnetic field h induced
by it should play an important role in planetary-scale
processes. In this case, the problem of the dynamics of
large-scale low-frequency electromagnetic perturba-
tions in the ionosphere is solved in the so-called induc-
tion approximation (Rem @ 1) on the basis of the MHD
equations for the ionosphere. In the case Rem ! 1, no
waves of electromagnetic nature can exist [13, 14]. In
this approximation, the magnetic field is assumed to be
prescribed and is set equal to the external geomagnetic
field H0, whose effect on the motions in the ionospheric
F-layer reduces to the inductive damping of Rossby
waves [13, 15, 16] (however, as was noted in the Intro-
duction, these waves can hardly reach the F-layer).

With the above analysis in mind, we consider the
problem in the induction approximation (Rem @ 1),
which a priori implies the existence of electromagnetic
waves, and investigate the possible generation of plan-
etary-scale electromagnetic wave structures in the
F-layer by such permanent factors as the latitudinal gra-
dients of the geomagnetic field and of the angular
velocity of the Earth’s rotation. Taking into account the
fact that large-scale flows do not seriously perturb the
particle densities [13, 17], we can exclude acoustic-
gravitational waves from consideration and use the
MHD equations and the generalized Ohm’s law to
obtain the following set of equations:

(1)

(2)

Here, W = ∇  × V, W0(0, Ω0sinθ, Ω0cosθ) is the vector
of the angular velocity of the Earth’s rotation; θ is the
colatitude, i.e., the complement of the latitude ϕ' (θ =
π/2 – ϕ'); H = H0 + h, H0 is the geomagnetic field
strength; h is the induced magnetic field; V is the vector
of the perturbed hydrodynamic velocity; ρ = MNn is the
density of neutrals; Nn is their concentration; and M is
the mass of a neutral (and an ion).

Equation (2) implies that, in the F-layer, the total
magnetic field H is frozen in the ionospheric plasma.
According to the experimental data [18, 13], at altitudes

J ∇ h×

∂W
∂t

-------- ∇ V W(× 2W0+( ) )×–

1
4πρ
----------∇ ∇ H×( ) H×( )×– 0,=

∂H
∂t
------- V —⋅( )H H —⋅( )V–+ 0,=

∇ V⋅ 0, ∇ H⋅ 0.= =
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of about 200 km in the F-layer, the ratio of the charac-
teristic vertical velocity vv to the horizontal velocity v h

is small, vv /v h ≤ Lv /Lh < 10–2, where Lv and Lh are,
respectively, the vertical and horizontal scales of the
perturbation. Hence, large-scale motions in the F-layer
are nearly horizontal.

That is why we restrict ourselves to investigating a
horizontal incompressible flow in the β-plane approxi-
mation [17], using a standard coordinate system in
which the ı-axis is directed eastward along the parallel,
the Û-axis is directed northward along the meridian, and
the vertical z-axis is directed outward from the Earth’s
surface. We assume that the vertical velocity compo-
nent is zero, Vz = 0, and that Vx, y = Vx, y(x, y, t). For sim-
plicity, we also assume that the geomagnetic field has
only the vertical component (i.e., we consider middle
and temperate latitudes), H0z = –Hpcosθ, where Hp = 5 ×
10–5 T is the geomagnetic field strength at the pole. In
the linear approximation, the horizontal component of
the field H0 was taken into account in [11]. From a
dynamic point of view, the motions in question are
affected primarily by the angular velocity component
that is perpendicular to the Earth’s surface, Ω0z =
Ω0cosθ. We thus take into account the latitude varia-
tions of both the geomagnetic field and the angular
velocity of the Earth’s rotation. In what follows, we will
be interested only in the perturbation hz(x, y, t) of the
geomagnetic field H0z, in which case the quantities
(H0 · —)V and (2W · —)V vanish identically and
Alfvén, magnetoacoustic, and inertial waves as well as
helicons are all excluded from consideration. We intro-
duce the stream function ψ through the relationship V =
—ψ × ez  (where ez is the unit vector along the vertical
axis) and write Eqs. (1) and (2) in the form

(3)

(4)

Here, R is the Earth’s radius; θ0 is a certain mean colat-
itude, in the vicinity of which we are considering the
motions in the medium; N is the density of the charged
particles; c is the speed of light; e is the elementary
charge; and the following notation is introduced:

(5)
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When writing Eqs. (3) and (4), we also neglected the
difference between the geographic and geomagnetic
latitudes.

From these equations, we obtain the conservation
laws for the energy E,

(6)

and for the potential enstrophy K,

(7)

Here,  = N /(Nnc2),  = 4πe2N/M, and — is the
two-dimensional nabla operator in the horizontal plane.
The energy of the wave perturbation under consider-
ation is the sum of the hydrodynamic (kinetic) energy
and the electromagnetic energy.

3. PLANETARY-SCALE WAVE
STRUCTURES

Here, we investigate Eqs. (3) and (4). We start by
analyzing the linear stage, i.e., the case of small-ampli-
tude motions. We seek a solution in the form of a plane
wave ψ, h ~ exp{i(k · r – ωt)} (where k is the wave vec-
tor and ω is the perturbation frequency) and assume that
k @ k0 (the wavelength corresponding to k0 is much
larger than the Earth’s radius λ0 = 2π/k0 ~ 103R). From
Eqs. (3) and (4), we obtain the dispersion relation

(8)

where

In the absence of planetary-scale Rossby waves in
the ionospheric F-layer (i.e., when β = 0, ωp = 0, and the
penetration of Rossby waves to the ionosphere is hin-
dered by the screening effect of stable zonal winds), the
dispersion relation (8) yields the eigenfrequency

(9)

We can see that, in contrast to the one-dimensional
case analyzed in [11], a two-dimensional wave with the
eigenfrequency ωn has dispersion. In the F-layer, this
wave can propagate either westward or eastward along
the parallels. According to expression (8), the presence

of a Rossby wave such that  = /(1 – ωp/ω)
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2

(where Vph = ω/k and Cn = ωn/k) produces an additional
dispersion of the wave with the eigenfrequency ωn .

Since, at altitudes from 150 to 500 km, the density
Nn of neutral particles decreases substantially with
increasing altitude (from 3.8 × 1016 to 2.2 × 1012 m–3

[13]), the eigenfrequency ωn of the zonal oscillations
changes over a wide range. The eigenfrequency ωn is a
new (eighth) eigenfrequency for the ionospheric
F-layer [11] (the closed set of MHD equations for the
ionosphere is eight-order in time [13]).

The physical mechanism for generating these free
zonal wave perturbations in the F-layer can be readily
understood from the following equations, which are a
simplified version of Eqs. (3) and (4):

(10)

Introducing the displacement Vy = dξy/dt = ∂ψ/∂x =

−iωξy and the quasi-elastic force density f = –  ≡
−æξy/ρ, we obtain from Eqs. (10) the following equa-
tion for free oscillations of a linear oscillator:

(11)

The second of equations (10), which is the frozen-in
equation h = βHξy or, equivalently, h = H0zξy/R, implies
that, owing to collisional processes, a transverse dis-
placement ξy of a neutral particle in the ionospheric
plasma in the F-layer gives rise to the tension of the
lines of the geomagnetic field H0z. As a result, the geo-
magnetic field acquires the hz-component, which is pro-
portional to ξy and generates a quasi-elastic force with

the density f = –κξ y/ρ. The quantity κ =  can be
referred to as the electromagnetic elasticity of a unit
volume of the ionospheric plasma.

Now, we solve the nonlinear equations (3) and (4).
We seek a solution in the form of steady regular waves,
ψ = ψ(η, y) and h = h(η, y), propagating along the paral-
lels with a constant velocity (u = const) without chang-
ing their shape (η = x – ut). Following [19], we intro-
duce the polar coordinates on the Earth’s surface, r =
(η2 + y2)1/2 and  = y/η, and also a circle of radius
a, on which the corresponding internal and external
solutions are to be matched. We require that the func-
tions ψ(r, ϕ, t) and h(r, ϕ, t) tend to zero exponentially
as r  ∞ and be twice continuously differentiable
everywhere (in particular, at the circle with the radius
r = a) with respect to each of their arguments. Then,
Eqs. (3) and (4) have the exact solution

(12)

ωk
2ψ kxCHh, ωh–≈ kxβHψ.–=

ωn
2ξ y

d
2ξ y

dt
2

---------- ωn
2ξ y+ 0.=

ρωn
2

ϕtan

ψ r ϕ t, ,( ) u
βH

------h r ϕ t, ,( )– auF r t,( ) ϕ ,sin= =
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where

(13)

the parameters p and χ are related by the dispersion
relation

(14)

Jn are Bessel functions of the first kind, and Kn are mod-
ified Bessel functions of the second kind (n = 1, 2).

Since we are constructing a solution that decreases
exponentially to zero at infinity, the parameter p2

should be positive. This requirement impose a restric-
tion on the possible phase velocities u of the nonlinear
wave structures. A nonlinear wave described by solu-
tion (12) can propagate either westward (u > 0) or east-
ward (u < 0) along the parallels with the velocity u <

k2 /( ). In this case, the velocity u of a vortex is
much higher than the phase velocity of a linear wave:

|u/Vph | = |k3ωn/( )| @ 1.

An important point here is that the phase velocity of
the nonlinear structures in question cannot take on val-
ues lying within the range of all possible phase veloci-
ties of the corresponding linear periodic waves. As a
consequence, no energy of the vortices is expended on
generating linear waves, so that the vortices themselves
are long-lived structures.

With allowance for the dispersion relation (14),
solution (12) contain two free parameters, u and a,
although the range of their values is limited by the
above inequalities. As r  ∞, solution (12) has the
asymptotic behavior ψ, h ~ r1/2exp(–pr), thereby indi-
cating that the wave is localized along the Earth’s sur-
face (η, y). Since the pattern of isolines of the stream
function is dipole in character, such structures exist in
the form of a pair of vortices (a cyclone and an anticy-
clone) that rotate in opposite directions, have the same
intensities, and move along the parallels against the
background of a mean zonal flow.

In the nonlinear structures described by solution
(12), the vorticity of the particle motion is nonzero:
∇  × V = –∆ψez ≠ 0; this indicates that the particles in a
vortex rotate at a velocity of uc ~ u. The vortex entrains
a group of particles in circulation. The number of these
particles is approximately equal to the number of transit
particles. These particles circulate inside the vortex and
migrate together with it. The characteristic dimension d
of the vortex is about d ~ a ~ p–1 ≈ αωn/β (α < 1).

F r t,( ) = 
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p
2
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
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
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p
2 uβ CHβH–
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4. DISCUSSION OF THE RESULTS

We have established that, in the ionospheric F-layer,
linear and nonlinear planetary-scale wave structures
may be generated as a result of the latitudinal variations
of the geomagnetic field. The parameters of the struc-
tures (such as the amplitude of the geomagnetic pulsa-
tions, phase velocity, and period) have been calculated
numerically using the familiar models of the iono-
sphere and neutral atmosphere [20–22]. Calculations
show that, for the wavelength λ = 2000 km and exo-
spheric temperature Tex = 600° at the mean colatitude
θ0 = 45°, the phase velocity Vph = ωn/k of the linear
waves changes from 20 to 1400 km s–1 at altitudes of
200 to 500 km and, for Tex = 2600°, it changes from 10
to 50 km s–1 at the same altitudes. The phase velocity
Vph increases in linear proportion to the wavelength λ.
The wave period Tn is independent of the wavelength
and changes from 105 to 3 s for Tex = 600° and from 210
to 40 s for Tex = 2600°. For displacements ξy equal to
0.1 and 1 km at θ0 = 45°, the amplitude hz . H0zξy/R of
the geomagnetic pulsations driven by the waves under
consideration is 8 and 80 nT, respectively. The strong
dependence of the parameters Vph and Tn on the exo-
spheric temperature (in particular, a decrease in Vph and
an increase in Tn with increasing exospheric tempera-
ture) can be explained as being due to the inflation of
the atmosphere and the generation of the ascending
flows transporting heavy particles to the F-layer from
the lower ionospheric layers. The wave phase velocity
increases with increasing altitude and latitude θ0.

The linear waves can propagate either westward or
eastward along the parallels.

By solving the nonlinear dynamic equations (3) and
(4) analytically, we have established a self-localization
effect: large-scale waves may form nonlinear localized
solitary vortex structures moving either westward or
eastward along the parallels with a constant velocity

|u| < k2 /( ), which is much higher than the phase
velocity of the corresponding linear waves, |u/Vph| .

|k3ωn/( )| ~ 107 @ 1. It is because of the large differ-
ence in phase velocities that no energy of the nonlinear
structures is expended on generating linear waves, so
that the structures themselves may be fairly long-lived
formations. The nonlinear structures consist of a pair of
vortices (a cyclone and an anticyclone) that rotate in
opposite directions, entrain the particles of the medium
in circulation, and transport them to the ionosphere.
The characteristic dimension of a vortex is about d ~
αωn/β . 104 km.

Being long-lived objects, nonlinear planetary-scale
electromagnetic vortex structures may play an impor-
tant role in transporting matter, heat, and energy, and
also in driving the macroturbulence of the ionosphere
[23].

ωn
2

kx
2β

kx
2β
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In particular, vortex structures that play the role of
“turbulization agents” can be treated as elements of the
horizontal macroscopic turbulent exchanges in global
circulation processes in the ionospheric F-layer. The
coefficient of the horizontal turbulent exchange can be
estimated from the Obukhov formula [24]: kT .
10−2d4/3 m2 s–1. Thus, for vortices with dimensions of
about d ~ 103 km at latitudes of about ϕ' . 50°–55°, we
obtain kT . 3 × 106 m2 s–1. This estimate (which can be
regarded as an upper one) shows that, in the global
exchange processes between high and low latitudes, the
meridional heat transport from north to south in the ion-
ospheric F-layer should be of the nature of a macrotur-
bulence (recall that, in the ionosphere, the polar regions
are warmer than the equatorial region). This question
requires a separate analysis and is the subject of an
ongoing investigation.

Using solution (12), we can determine the amplitude
hzb of the magnetic field generated by nonlinear vortex
structures. With allowance for the relationship d ~ a .
αωn/β (α < 1), we obtain from solution (12) the estimate

where ωci = eHp/(Mc). From the parameter values char-
acteristic of the F-layer, namely, ωci . 102 s–1, Nn . 3 ×
1014 m–3, N = 3 × 1011 m–3, βH = 5.4 × 10–11 m–1 s–1, β =
1.3 × 10–11 m–1 s–1, α = 0.1, and ωn = 2π/Tn with Tn .
100 s, we find hzb . 200 nT. Presumably, the generation
of such strong geomagnetic field perturbations is asso-
ciated with the following intrinsic feature of the large-
scale nonlinear structures under consideration. On the
one hand, the vortices drive particles (in particular,
charged particles) in circulation. On the other hand, the
geomagnetic field in the F-layer is frozen in the iono-
spheric plasma. As a result, the formation of vortex
structures is accompanied by the compression of the
magnetic field lines and, accordingly, by the growth of
magnetic perturbations within the structures.

The above theoretical estimates for the parameters
of the wave structures in question agree fairly well with
the experimentally deduced values of the parameters of
fast large-scale MIWPs [1–9], which provides evidence
for the actual existence of mechanisms for the genera-
tion of intrinsic (background) planetary-scale electro-
magnetic wave structures in the ionospheric F-layer.
These mechanisms may involve the latitudinal varia-
tions of both the geomagnetic field and the angular
velocity of the Earth’s rotation.

The above wave structures are associated with the
excitation of the internal degrees of freedom of the ion-
ospheric F-layer. They occur on planetary scales and
can be recorded at all latitudes in the Earth’s iono-
sphere. The MIWPs observed at mid-latitudes in the
ionospheric F-layer are manifestations of these natural
oscillations in the upper atmosphere. When the iono-

hzb α
Nn

N
------

βH

β
------

ωn

ωci

-------H p,=
sphere is affected from above (e.g., by geomagnetic
substorms) or from below (by earthquakes, major arti-
ficial explosions, etc.), the first to be generated and/or
amplified are precisely the wave structures at the
MIWP modes [25]. That latitudinal geomagnetic-field
variations with a certain amplitude are capable of gen-
erating solitary vortices [19] is confirmed by observa-
tions [8, 26–28].
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Abstract—A study is made of the dynamics of a relativistic charged particle in an electromagnetic wave (with
an electrostatic component) in a constant uniform magnetic field. A system with a high-frequency wave is a
Hamiltonian system with two degrees of freedom and with fast and slow variables. The trapping of a particle
into resonance and its scattering on resonance in such a system is described. © 2002 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

This paper is aimed at investigating the problem of
the interaction between a charged particle and a high-
frequency electromagnetic wave with an electrostatic
component in a magnetic field. Similar problems often
arise in studying the phenomena that occur in magnetic
confinement systems and accelerators, as well as in
planetary magnetospheres and cosmic rays. In the case
of a constant magnetic field and a plane electromag-
netic or electrostatic wave, the problem reduces to that
of investigating a Hamiltonian system with two degrees
of freedom; under certain condition, such a system can
be examined by the methods of perturbation theory
[1−8].

Previously, this problem was studied by Chernikov
et al. [8], who obtained the conditions for particle trap-
ping into a resonance. In the present paper, the dynam-
ics of the system is analyzed in more detail. The pur-
poses here are to describe the structure of the phase
space of the system, to investigate the conditions for
particle trapping and detrapping and also for particle
scattering on a resonance, and to give examples of dif-
ferent types of particle motion. On the whole, the sys-
tem is examined in the same way as was done in [1] for
a system with a purely electrostatic wave. The problem
is studied by using a scheme for analyzing resonance
phenomena in Hamiltonian systems with two degrees
of freedom: this scheme, which was described by
Neishtadt [9], is a Hamiltonian version of a more gen-
eral approach [10, 11].

The wave phase at the position of a particle is a
“fast” variable. In what follows, the term “resonance”
means that the time derivative of this phase vanishes.
Physically, this indicates that the projection of the par-
ticle velocity onto the propagation direction of the wave
coincides with the wave phase velocity (Cherenkov res-
onance). In the space of slow variables, resonance
1063-780X/02/2807- $22.00 © 20592
points form a so-called resonant surface. The particle
dynamics far from resonance can be described by the
method of averaging over the fast variable. The variable
that is canonically conjugate to the fast variable is an
integral of motion (an adiabatic invariant) of the system
so averaged. However, in the vicinity of resonance,
where this averaging method is inapplicable, the adia-
batic invariant may change by a large amount. The par-
ticle dynamics in this region is described by the proce-
dure proposed in [9]. The original system is modeled by
a system analogous to a nonlinear pendulum under the
action of a constant torque. The parameters of the pen-
dulum depend on the slow variables of the original sys-
tem. This slow time dependence makes possible transi-
tions of a phase point from the regions of rotational
motion in the phase space of the pendulum to the
regions of oscillatory motion. These transitions corre-
spond to particle trapping into resonance. During a
trapping event, the particle leaves the adiabatic trajec-
tory and continues to move along a resonant trajectory,
which is the intersection of an isoenergetic surface and
a resonant surface. As a result, the adiabatic invariant
changes significantly, so that, under certain additional
conditions, the particle may be accelerated without
bound.

The trapping into resonance is a probabilistic phe-
nomenon. The probabilistic approach to studying the
behavior of dynamic systems was described in [12, 13]
(see also [9, 11]). The trapping probability is estimated
by the method described in [9]. If the particle passes
through resonance without being trapped, then it is
scattered on resonance, in which case the adiabatic

invariant undergoes a jump on the order of  [14] (the
small parameter ε of the perturbation characterizes the
typical ratio between the velocities of slow and fast
motions). The accumulation of such jumps due to mul-
tiple passages through resonance destroys the adiabatic

ε

002 MAIK “Nauka/Interperiodica”
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invariance; as a result, the particle motion becomes sto-
chastic.

The paper is organized as follows. In Section 2, the
Hamiltonian equations of motion are derived and the
particle motion far from resonance is described. In Sec-
tion 3, particle motion in the immediate vicinity of the
resonance is investigated and the Hamiltonian is
reduced to that of a nonlinear pendulum. In Section 4,
the properties of the nonlinear pendulum are used to
study the particle trapping into resonance, to estimate the
trapping probability, and to consider the conditions for
unbounded acceleration of the particles. In Section 5, the
particle scattering on resonance is investigated and dif-
fusion-like statistical changes in the adiabatic invariant
are estimated.

2. HAMILTONIAN EQUATIONS OF MOTION
We consider the motion of a relativistic particle with

charge e and rest mass m in an elliptically polarized
plane electromagnetic wave with an electrostatic com-
ponent under the action of a constant magnetic field B.
The wave frequency is assumed to be much higher than
the cyclotron frequency of the particle. We introduce
the orthogonal coordinate system (q1, q2, q3) such that,
first, the vector B lies in the (q1, q3) plane and is directed
at an angle α to the q1-axis and, second, an electromag-
netic wave propagates along the q1-axis, in which case
the components of its electric field are E2 = b1cos(kq1 –
ωt) and E3 = b2sin(kq1 – ωt) (Fig. 1). In these coordi-
nates, the vector potential of the wave electromagnetic
field can be chosen to be

(1)

so that the Hamiltonian H of the particle has the form

(2)

A = A1 A2 A3, ,{ }  = 0 B0q1 αsin
cb1

ω
-------- kq1 ωt–( ),sin+,





B0q2 αcos
cb2

ω
-------- kq1 ωt–( )cos–





,

H m
2
c

4
c

2
p1

2
+=

+ c32 eB0q1 αsin–
ceb1

ω
----------- kq1 ωt–( )sin– 

 
2

+ c33 eB0q2 αcos–
ceb2

ω
----------- kq1 ωt–( )cos– 

 
2 1/2
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where c is the speed of light, 32 = p2 + eA2/c, 33 = p3 +
eA3/c, and p = (p1, p2, p3) is the particle momentum. The
variables p1, 32, and 33 are canonically conjugate to
the variables q1, q2, and q3. Since Hamiltonian (2) is
independent of q3, the quantity 33 is an integral of
motion, which can be driven to zero, 33 = 0, by shifting
the q2-axis. We introduce the notation

(3)

where ωc is the cyclotron frequency, and specify the
parameter range in which the problem is to be treated:
ω/(kc) ~ 1, ε ! 1, ωc/ω ~ ε, and εµ ! 1.

We also introduce the new dimensionless variables
and parameters

(4)

and, omitting the tildes, write the dimensionless Hamil-
tonian

+ eΦ0 kq1 ωt–( ),cos

ωc

eB0

mc
--------, b b1

2
b2

2
+ ,= =

ε eb
mωc
-----------, κ1 2, b1 2, /b, εµ e

Φ0

mc
2

---------,= = =

3̃2 3, 32 3, /mc, p̃1 p1/mc, q̃1 2,
ωcq1 2,

εc
---------------,= = =

v ω/kc, k̃ kcε/ωc, t̃ ωct/ε,= = =

ω̃ εω/ωc, H̃ H/mc
2

= =

α

k

B

q3

q2

q1

Fig. 1. Configuration of the fields.
(5)H 1 p1
2 εq2 αcos εκ2 kq1 ωt–( )cos–( )2 32 εq1 αsin– εκ1 kq1 ωt–( )sin–( )2

+ + + εµ kq1 ωt–( ).cos+=
Then, we make a canonical transformation to a new set
of variables, (q1, p1, q2, 32)  (q, p, φ, I), using the
generating function W(q1, q2, I, p, t) = (kq1 – ωt)I/k +
q2(p + εq1sinα).
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In terms of the new variables, the Hamiltonian becomes

(6)

Now, we introduce the new coordinate  = εq and, again omitting the tilde, write the Hamiltonian in the form

(7)

* v I– 1 I εq αsin+( )2 εq αcos εκ2 kφcos–( )2
p εκ1 kφsin–( )2

+ + + εµ kφ.cos+ +=

q̃

* v I– 1 I
2

p
2

q
2

2Iq αsin 2ε qκ2 α kφcoscos pκ1 kφsin+( )– O ε2( )+ + + + + εµ kφ,cos+ +=
where the canonically conjugate pairs of variables are
(p, ε–1q) and (φ, I). Additionally, we introduce the
unperturbed Hamiltonian

(8)

and the perturbation ε*1 = * – *0, which can be
rewritten as

(9)

In the (I, p, q) space, the equation *0 = const deter-
mines the second-order isoenergetic surface, such that
the moving particle always remains within its ε-vicin-
ity. The isoenergetic surface may have different shapes,
depending on the ratio between *0, v, and α.

Hamiltonian (7) leads to the following equations of
motion:

(10)

We can readily see that these equations describe par-
ticle motion on short and long time scales: the variable
φ is fast, while the remaining variables are slow. There-

fore, if  ≠ 0, the dynamics of the system can be inves-
tigated by using the averaging method [15]. Thus, aver-
aging Eqs. (10) over the fast variable φ yields I = const.
Consequently, in this approximation, the particle trajec-
tory in the (I, p, q) coordinates is the intersection of the

*0 v I– 1 I
2

p
2

q
2

2Iq αsin+ + + ++=

ε*1 ε
qκ2 α kφcoscos pκ1 kφsin+

1 I
2

q
2

p
2

2Iq αsin+ + + +
--------------------------------------------------------------------–=

+ εµ kφcos O ε2( ).+

İ
∂*
∂φ
--------– εk

pκ1 kφcos qκ2 α kφsincos–

1 I
2

q
2

p
2

2Iq αsin+ + + +
--------------------------------------------------------------------= =

+ εkµ kφsin O ε2( ),+

φ̇ = 
∂*
∂I

--------

=  –v
I q αsin+

1 I
2

q
2

p
2

2Iq αsin+ + + +
-------------------------------------------------------------------- O ε( ),+ +

ṗ = ε∂*
∂q
--------–  = ε–

q I αsin+

1 I
2

q
2

p
2

2Iq αsin+ + + +
-------------------------------------------------------------------- O ε2

( ),+

q̇ ε∂*
∂p
-------- ε p

1 I
2

q
2

p
2

2Iq αsin+ + + +
-------------------------------------------------------------------- O ε2( ).+= =

φ̇

isoenergetic surface *0 = const and the plane I = const.
We call this trajectory the adiabatic trajectory. The adi-
abatic trajectory is an ellipse corresponding to Larmor
gyration of the particle. Actually, the particle momen-
tum I along the trajectory is conserved accurate to ε on
time scales of about 1/ε.

However, the averaging method is inapplicable in
the vicinities of the resonances where ∂*0/∂I = 0.
Along a trajectory passing through resonance, the
change in I may be large. The phenomena occurring
near resonance will be considered below.

3. REDUCTION OF THE HAMILTONIAN
IN THE VICINITY OF THE RESONANCE

In the (I, p, q) space, the resonant condition
∂*0/∂I = 0 determines the surface I = Ires(p, q), which
is called the resonance surface. If the resonant and
isoenergetic surfaces intersect, their intersection is a
second-order plane curve [1]. We call this curve the res-
onant curve. For v  = cosα, the resonant curve is a
parabola, and, for v  > cosα and v  < cosα, it is a hyper-
bola and an ellipse, respectively. The projection of the
resonant curve onto the (p, q) plane is described by the
equation

(11)

It is easy to see that isoenergetic and resonant surfaces,
as well as adiabatic (Larmor) trajectories, are symmet-
ric about the p = 0 plane. Each adiabatic trajectory
either does not intersect the resonant surface or inter-
sects it at two points, which are symmetric with respect
to the p = 0 plane.

Particle motion in the vicinity of the resonant sur-
face cannot be investigated by the averaging method.
Let us consider the phenomena that occur at the inter-
section of the phase trajectory of the particle and the
resonant surface. Near the resonant surface (in its vicin-

ity with a width on the order of ), the Hamiltonian
* can be represented as

(12)

q
2 αcos

2
v

2
–( ) 1 v

2
–( )p

2
2qv *0 αsin+ +

+ 1 v
2

– *0
2

– 0.=

ε

* Λ p q,( ) 1
2
---g p q,( ) I Ires p q,( )–( )2

+=

+ ε*1 O I Ires–
3( ),+
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where Λ and g are the values of *0 and ∂2*0/∂I2 at the
resonant surface.

Let us introduce the new momentum K = I –
Ires(p, q) + O(ε). To do this, we make a canonical trans-

formation to a new set of variables, (K, , , ), using
the generating function

(13)

We omit the bar over the new variables and write the
new Hamiltonian as

(14)

where {·, ·} is the Poisson bracket in terms of the vari-
ables p and q. It is an easy matter to obtain the follow-
ing relationships:

(15)

We consider the motion in the region in which b is on
the order of unity. In this region, the new momentum

changes by K = O( ) and the phase φ changes by an
amount of O(1) on a time scale of about O(1/ε). Conse-
quently, we have

(16)

Then, we introduce the momentum P = K/  =

O(1) and the new time θ = t . In order to keep the
canonical Hamiltonian form of the system, we also

φ p q

W1 pε 1–
q K Ires p q,( )+( )φ.+=

* Λ p q,( ) 1
2
---g p q,( )K

2 εd p q,( ) kφ β+( )cos+ +=
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3( ) O εKφ( ) O εφ( )2( ),+ + +
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2
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q
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---------------------------------------------,–=
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2
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introduce the new Hamiltonian F = */ε and switch to
the new canonically conjugate pairs of variables, (P, φ)
and (p, ε–3/2q). The new Hamiltonian F has the form

(17)

Particle motion in the vicinity of the resonant sur-
face can be approximately described by Hamiltonian

(17) in which the terms O( ) are omitted. In this case,
we obtain the following equations of motion:

(18)

where the prime denotes the derivative with respect
to θ. In these equations, (p, q) are slow variables and
(P, φ) are fast variables. The evolution of p and q is

determined by the Hamiltonian Λ, which defines a
flux at the resonant surface (the “resonant” flux). The
evolution of the variables P and φ is described by Eqs.
(18) with the Hamiltonian F0(P, φ, p, q), which depends
on the slow variables (p, q). Equations (18) approxi-
mately describe the motion in the resonance region, i.e.,
at short distances from the resonant surface (on the

order of  or shorter).

4. PARTICLE TRAPPING
INTO RESONANCE

At fixed values of p and q, Eqs. (18) for the variables
P and φ refer to a Hamiltonian subsystem with one
degree of freedom. The Hamiltonian F0 describes a
nonlinear pendulum under the action of a constant
torque b. Similar systems always arise in solving the
problems of passage through the resonance [10] and are
characterized by two types of phase portraits: with and
without the region of oscillatory motion. For |b | < |dk |,
the region of oscillatory motion is present in the phase
portrait (Fig. 2a), and, for |b | > |dk |, this region is absent
(Fig. 2b). For brevity, we will call this region the “oscil-
latory” region. In Fig. 2a, the motion within the oscilla-
tory region corresponds to the motion of the phase point
trapped into a resonance. The motion outside this
region corresponds to the phase points that cross the
resonance region without being trapped.

The area S of the oscillatory region is important for
further analysis. This area is a function of the coordi-
nates on the resonant surface. Since there is a one-to-
one correspondence between the points of the resonant
curve and the points of its projection onto the (p, q)
plane, the quantity S can be regarded as a function of
the variables p and q: S = S(p, q). We take into account
the slow change in the parameters p and q along the res-

F ε 1– Λ p q,( ) F0 P φ p q, , ,( ) O ε( ),+ +=

F0
1
2
---gP

2
d kφ β+( )cos bφ.+ +=

ε

p' ε∂Λ
∂q
-------, q'– ε∂Λ

∂p
-------,= =

P '
∂F0

∂φ
---------, φ'–

∂F0

∂P
---------,= =

ε

ε
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Fig. 2. Phase portrait of a pendulum system for (a) |b | < |dk | and (b) |b | > |dk |.
onant flux in the subsystem described by Eqs. (18) and
assume that the area S increases along this flux. In this
case, an additional space appears within the oscillatory
region. Since Hamiltonian systems preserve phase vol-
ume, this space is not occupied by phase points that
were previously trapped into the resonance. Conse-
quently, the phase points of subsystem (18) cross the
separatrix and change from the passing to the oscilla-
tory state. This indicates that the phase points are
trapped into the resonance. The trapped phase point of
system (10) leaves the vicinity of the curve (I = const,
*0 = const) and continues to move near the resonant
curve. The area of the region enclosed by the trajectory
of the phase point in the (P, φ) plane is also an adiabatic
invariant, which is called the “internal” adiabatic
invariant [9]. This invariant is approximately conserved
along the trajectory of the trapped point. Consequently,
if the area S of the oscillatory region decreases along
the resonant flux, some of the phase points leave the
oscillatory region and then they also leave the reso-
nance region. This corresponds to detrapping of the
phase point from the resonance. Note that, if the area S
always increases along the resonant flux, then neither of
the phase points can escape from the oscillatory region,
so that detrapping is impossible.

If ε is small, the initial conditions for the phase
points trapped into the resonance and those for the
phase points passing through the resonance region
without being trapped are mixed in phase space. Even a
small (on the order of ε) variation in the initial condi-
tions may considerably change the state of motion. That
is why it is expedient to treat trapping as a random event
and, accordingly, to analyze the trapping probability.
This approach to studying systems in which there are
crossings of a separatrix was proposed by Lifshits et al.
[12]. A rigorous definition of the trapping probability
was given by Arnol’d [13] (see also [1]).
Following [9], we find that this probability is
described by the expressions

(19)

where the asterisk indicates that the value should be
calculated at the point at which an adiabatic trajectory
with the initial conditions M0 intersects the resonant
surface.

The trapped phase point moves along the resonant
curve, which is the intersection of the resonant and
isoenergetic surfaces. As was mentioned in the previous
section, depending on the ratio between v  and cosα, the
resonant curve is an ellipse, a hyperbola, or a parabola.

The probabilities of trapping into the resonance and
detrapping from resonance depend on the behavior of
the function S(p, q) along the phase trajectory. Two
reliefs of this function are shown in Fig. 3. The function
S(p, q) in Fig. 3a does not vanish at any point in the
(p, q) plane; i.e., the separatrix is always present in the
phase portrait of the corresponding pendulum. This
indicates that, in Hamiltonian (17), we have |b | < |dk |
regardless of the p and q values.

In Fig. 3b, the function S(p, q) vanishes in a certain
region in the (p, q) plane; i.e., there is no separatrix in
this region (|b | > |dk |).

In a system with a purely electrostatic wave, the
boundary of the region {S = 0} is a hyperbola [1]:

(20)

Generally, the region {S = 0} can be bounded by a sec-
ond-order plane curve of any type.

Pr M0( ) ε
S Λ,{ } *
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Fig. 3. Reliefs of the function S(p, q) for (a) k = 1.3, α = π/4, v  = 0.4, κ1 = 0.8, and µ = 0 and (b) k = 1.3, α = π/4, v  = 0.72, κ1 =
0.8, and µ = 0.
Let us consider particle motion under the condition
|b | < |dk |. Figure 4a shows the isolines of S(p, q) for the
same parameters as in Fig. 3a. Also shown in Fig. 4a is
the projection of a resonant curve (an ellipse) onto the
(p, q) plane. The particle moves along the adiabatic tra-
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002
jectory, which is the intersection of the isoenergetic sur-
face *0 = const and the plane I = const. For certain val-
ues of I, this trajectory intersects the resonant curve at
two points, which are symmetric with respect to the
p = 0 plane. At one of these points (point A in Fig. 4a),
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Fig. 4. (a) Isolines of S(p, q) for k = 1.3, α = π/4, v  = 0.4, κ1 = 0.8, and µ = 0 and the projection of the resonance curve (the ellipse)
onto the (p, q) plane for *0 = 10.71. (b) Phase trajectory of a particle that becomes trapped into the resonance for *0 = 10.71 and
ε = 0.04. (c) Time evolution of the adiabatic invariant.
the area S increases along the resonant flux, so that we
have {S, Λ} > 0. At the other point (point B), this area
decreases, so that {S, Λ} < 0. Consequently, when the
adiabatic trajectory intersects the resonant curve at
point A, the particle can be trapped into the resonance.
Then, the particle continues to move along the resonant
curve up to point B, at which it becomes untrapped.

The results of numerical investigations involving a
solution of the exact equations of motion generated by
Hamiltonian (7) are illustrated in Fig. 4b, which shows
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002
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the projection of the particle trajectory onto the (p, q)
plane. After many Larmor revolutions (smaller
ellipses), the particle is trapped into the resonance and
moves along the resonant curve (larger ellipse). At the
point that is symmetric with respect to the trapping
point about the p = 0 plane, the particle becomes
untrapped (i.e., it leaves the resonance region). Note
that, in Fig. 4b, the smaller ellipses (the parts of the tra-
jectory of a gyrating particle) are somewhat different.
The reason is that the adiabatic invariant undergoes a
small jump every time the particle trajectory intersects
the resonant surface. This phenomenon will be dis-
cussed in the next section. The time evolution of I is
shown in Fig. 4c. For a long time, the particle moves
along the adiabatic trajectory and its adiabatic invariant
I changes insignificantly. Then, the phase point is
trapped into the resonance, in which case the adiabatic
invariant I changes considerably. After the particle
becomes untrapped, it continues to move at approxi-
mately the same value of I. If the resonant curve is a
hyperbola or a parabola, the particle may go to infinity,
in which case the particle energy H becomes arbitrarily
high [see expression (2)] and the particle velocity
approaches the speed of light. As a result, the particle is
accelerated without bound (this effect is called the sur-
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002
fatron acceleration and was studied for the first time by
Katsouleas and Dawson [7] for the case of a wave prop-
agating transverse to the magnetic field). The particle is
accelerated along the wave front by a magnetic field in
such a way that the projection of its velocity onto the
wave vector remains approximately equal to the wave
phase velocity. The condition for unbounded accelera-
tion can be obtained as follows. Since (p2 + q2)  ∞
along the resonant curve, expressions (11) and (15)
yield

(21)

Consequently, for |b | < |dk |, i.e., for
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the area S of the oscillatory region increases monotoni-
cally to infinity along the resonant curve, thereby indi-
cating that the acceleration is unbounded. If inequality
(22) fails to hold, then the unbounded acceleration is
impossible. Let us introduce the following notation: B1
and B2 are the amplitudes of the y- and z-components of
the magnetic field of an electromagnetic wave and E|| is
the amplitude of the electric field of the electrostatic
wave. Then, condition (22) can be rewritten as
(23)
B0 αsin

1 v
2

–
------------------ B2

2
B1 α 1 v

2
–

v
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2
–

--------------------------cos E||
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1 v
2

–( ) v
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2
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--------------------------------------------------------–
 
 
 

2

+ .<
One can readily see that condition (23) coincides with
condition (20) from [8], which was obtained in a quite
different way. For a purely electrostatic wave, condition
(23) coincides with condition (25) from [1].

In the case illustrated in Fig. 5a, which was obtained
for the function S(p, q) shown in Fig. 3a, the resonant
curve is a hyperbola. If the trapping occurs at p > 0, the
area S increases along the resonance curve, so that the
particle may be accelerated without bound. However,
Fig. 5a implies that the particle can also be trapped at
p < 0, in which case, however, the trapped particle
becomes untrapped at a certain point at which p > 0.
Figure 5b shows the phase trajectory of a particle that is
trapped into resonance and moves to infinity along the
resonant curve. The related time evolution of I is dis-
played in Fig. 5c.

Now, we consider the case in which the inequality
|b | < |dk | holds for some but not all values of p and q.
Figure 6 shows the isolines of S and the projections of
the resonant curves onto the (p, q) plane. The resonant
curve in Fig. 6a is an ellipse, and the resonant curves in



600 ITIN
–30

–20

–10

0

10

20

30
–30 –20 –10 0 10 20 30

p

(‡)

q

0 –100100
20

100

180
(b)

p

q

4 80
10

40

70
(c)

t × 10–4

I

Fig. 5. (a) Isolines of S(p, q) for k = 1.3, α = π/4, v  = 0.72, κ1 = 0.8, and µ = 0 and the projection of the resonance curve (the hyperbola)
onto the (p, q) plane for *0 = 11.658. (b) Phase trajectory of a particle that becomes trapped into the resonance (the regime of
unbounded acceleration) for *0 = 11.658 and ε = 0.03. (c) Time evolution of the adiabatic invariant.
Figs. 6b and 6c are hyperbolas. Condition (22) holds for
isolines shown in Fig. 6b and is not satisfied for those
in Fig. 6c. In the case illustrated by Fig. 6b, the particle
can be accelerated without bound.
5. SCATTERING ON RESONANCE

Now, we consider the motion of the phase point that
crosses the resonant surface without being trapped into
the resonance. This situation will be described in much
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002
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the same way as in [1]. Far from the resonant surface,
the adiabatic invariant I oscillates along the trajectory
with an amplitude O(ε). When the phase point passes
through resonance, the invariant I undergoes a jump

∆I ~ . This effect is illustrated in Figs. 4c and 5c, as
well as in Fig. 7, in which the jumplike change in the
adiabatic invariant at the resonance is shown sepa-
rately.

Let a particle start moving from the point (I0, φ0, p0,
q0) at t = 0. The adiabatic trajectory with these initial
conditions intersects the resonant surface at the point
(I0, p∗ , q∗ ). Let φ∗  be the φ value at the intersection
point of the true trajectory with the resonant surface,
and let h∗  be the value of the Hamiltonian F0 at the
point (I, φ, p, q) = (I0, φ∗ , p∗ , q∗ ) in the resonant sur-
face. Hence, we have h∗  = d(p∗ , q∗ )cos(kφ∗  + β∗ ) +
b(p∗ , q∗ )φ∗ . The jump in the adiabatic invariant in the
first approximation can be found from the correspond-
ing asymptotic formula [9, 14]:

(24)

where s =  and the values of g, d, and b are taken
at the intersection point of the adiabatic trajectory with
the resonant surface. The value φ∗  depends strongly on
the initial conditions: even a small (on the order of ε)
variation in these conditions may lead to a large (on the
order of unity) change in φ∗ . Accordingly, the jump ∆I

is also highly sensitive to the initial conditions. That is
why we can treat φ∗ , h∗ , and ∆I as random quantities.
We can determine their probability distributions taking
into account the fact that the quantity ξ =
Frac(h∗ /2π|b |), where Frac is the fractional part of a
number, is distributed uniformly over the interval (0, 1)
[1, 9].

Using formula (24), we can obtain the probability
distribution of ∆I. In particular, the averaged value of ∆I
is equal to [9]

(25)

Repeated crossings of the resonant surface by the
trajectory of the phase point give rise to diffusion-like
changes in the adiabatic invariant. During the period,
the adiabatic trajectory of a particle intersects the reso-
nant surface at two points, which are symmetric with
respect to the p = 0 plane. The above analysis shows
that, in the lowest order approximation, the averaged
jump over the period equals zero.

Let us consider the jumps in the adiabatic invariant
at two successive intersections of the resonant surface
by the phase trajectory of the particle. Let these inter-
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------------------------------------------------------------------------,
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sections occur at φ∗  = φ1 and φ∗  = φ2, respectively.
A small variation δφ1 of the quantity φ1 leads to the fol-
lowing variation of the jump in the adiabatic invariant:

δ∆I ≈ ∆I (φ∗ )δφ1 ~ δφ1, where R is the char-

acteristic dimension of the adiabatic trajectory and
∆I(φ∗ ) is given by formula (24). As a result, the time of
particle motion between two successive passages
through the resonant surface changes by ∆t ~ δ∆I/ε,
which produces the variation δφ2 ~ δ∆I/ε. Therefore,

we have dφ2/dφ1 ~ /  @ 1, so that the values φ1
and φ2 can be regarded as independent. Hence, the
changes in the adiabatic invariant due to the jumps in it
after multiple passages through resonance are of the
nature of a diffusion. After the particle has passed
through the resonance N times without being trapped,
the adiabatic invariant I changes by an amount of about

. Consequently, after N ~ (εR)–1 passages,
which occur within a time of about ε–2, the change in I
becomes on the order of unity, so that the diffusion
coefficient can be estimated as D ~ ε2.
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Abstract—The moment and geometric aberrations of magnetoelectrostatic plasma lenses are studied by com-
puter modeling. Conditions are determined such that these aberrations can be made substantially lower, in
which case the cross-sectional area of a focused beam can be reduced by a factor of 105 and the ion current
density at the focus of a lens can amount to 103 A/cm2. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problems associated with the focusing of
intense ion beams are important not only for controlled
fusion research but also for scientific and engineering
fields, such as high-energy physics, acceleration tech-
niques, radiative technology, and implantation metal-
lurgy (see, e.g., [1, 2]). An essential feature of the
focusing of intense ion beams is that, in order to prevent
the beam ions from expanding, the ion space charge
should be neutralized by electrons during both the guid-
ing of a beam and its focusing. For these purposes, it is
expedient to use plasma-optic focusing devices
(lenses), whose development was initiated by
A.I. Morozov et al. [3, 4] and, in recent years, has been
successfully continued by A.A. Goncharov et al. [5–8].
Additional advantages of these lenses are their high
focusing power, the possibility of removing geometric
aberrations, and the possibility of focusing large-aper-
ture (nonparaxial) beams. At present, the main prob-
lems in this area are those of improving such lenses,
minimizing aberrations, and maximizing both the
focusing efficiency and the focusing power.

The quality of the focusing of charged particles is
governed by different types of aberrations. These are
geometric aberrations, which depend on the beam
radius and the beam injection angle (in [4] and in sub-
sequent papers on the focusing of parallel beams in
plasma optics, geometric aberrations are called spheri-
cal aberrations or aberrations of finite-width beams);
chromatic aberrations, which are associated with the
longitudinal momentum of the beam particles; and, in
the presence of magnetic fields, aberrations that result
from the azimuthal particle motion (in plasma optics,
they are called moment aberrations, because they are
associated with the particle’s angular momentum with
respect to the lens axis [4]). It should be noted that, in
traditional electron optics (which deals mainly with
electron microscopy), the generally accepted terminol-
ogy is somewhat different [9–11]: chromatic aberra-
tions have the same meaning; the term “moment aber-
rations” is not used; and geometric aberrations are
1063-780X/02/2807- $22.00 © 20603
divided into eight types, notable among which are
spherical aberrations (they are independent of the
radius of the injected beam and are determined by the
beam injection angle with respect to the lens axis) and
anisotropic aberrations (these include three types of
aberrations that depend on the direction of the magnetic
field and its strength).

Moment aberrations in plasma-optic systems were
studied theoretically for the case of focusing of com-
pensated ion beams over radial and azimuthal velocities
and also for recuperation of such beams [4]. Moment
aberrations in electrostatic (or, more precisely, magne-
toelectrostatic) plasma lenses were studied experimen-
tally by Goncharov et al. [5, 6], who arrived at the fol-
lowing conclusion: in the absence of spherical (geomet-
ric) aberrations, a relatively small experimental
compression factor of an ion beam (a decrease in the
beam radius by a factor of 2–5) can be explained by the
moment aberrations that result from the azimuthal rota-
tion of fast ions focused in the magnetic field of a
plasma lens and are, in principle, unavoidable.

In the present paper, the moment aberrations in
magnetoelectrostatic plasma lenses are considered in
more detail by computer simulations with a special-
purpose computer program that was devised in order to
model a plasma-optics focusing lens. We will be inter-
ested in modeling conditions analogous to those under
which the experimental data reported in [5–8] were
obtained. The computer program presented below,
being unable to exactly simulate the experimental lens
developed and created in [5–8], makes it possible, how-
ever, not only to model the main operating modes of the
lens, its focusing properties, and its moment and geo-
metric aberrations but also to give recommendations
for the ways of removing these aberrations.

2. FORMULATION OF THE PROBLEM

In our earlier paper [12], a Morozov plasma lens in
which the magnetic field is produced by a single current
loop was thoroughly investigated through computer
002 MAIK “Nauka/Interperiodica”
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modeling. In experimental papers [5–8], the reference
electrodes (with which the electric potentials were
applied to the plasma) were localized near the central
plane of a lens by using three short solenoids carrying
opposite currents. Here, we model this configuration by
three loops with opposite currents. In contrast to [12],
we take into account the azimuthal motion of the
focused particles, which gives rise to moment aberra-
tions. We consider an axisymmetric lens. Note that
Morozov plasma lenses are studied theoretically under
the assumption that there is no current across the mag-
netic field and that the magnetic surfaces coincide with
the equipotential surfaces of the electric field. In this
case, the strength of the electric field and its spatial dis-
tribution in a plasma are governed completely by the
magnetic field geometry and by the boundary condi-
tions, which are usually imposed on the externally
defined electric potential Φ in the form of a continuous
function Φ(R, z), where R is the radius of a cylindrical
surface around the plasma. In practice [5–8], the elec-
tric potentials Φn applied to the plasma are generated by
n reference ring electrodes of radius R, which give rise
to a set of equipotential surfaces of the electric field in
the plasma. Note that, in experimental investigations, it
is very desirable to carry out direct measurements in
order to control and to correct for the calculated opti-
mum strength and optimum distribution of the electric
field in the plasma.

The magnetic field created by the current J in a ring
of radius ac, with its center at the point l on the z-axis,
is described by the azimuthal component of the vector
potential (see [13], Section 4):

(1)

Aϕ
4J
ck
------

ac

r
---- 1 k

2

2
----– 

  K k( ) E k( )– ,=

k
2 4acr

ac r+( )2
z l–( )2

+
-------------------------------------------,=

–1

20 4 6 8 10 12
z, cm

0

1

2

H, kOe

Fig. 1. Longitudinal profiles Hz(z) and Hr(z) calculated at a
radius of 5.7 cm in the region around the ring electrodes of
the lens with the above parameters and with the current Jc =
10 kA in the central coil.
where c is the speed of light and K and E are complete
elliptic integrals of the first and second kind, respec-
tively.

In an axisymmetric lens, the magnetic surfaces sat-
isfy the equation (see [13], Section 3)

(2)

We calculated the magnetic surface topography for dif-
ferent ratios between the opposite currents in the cen-
tral coil (Jc) and in two side coils (Js), the center of the
central coil and the centers of the side coils being at
z = 0 and z = ±5 cm. In this case, the equation for the
magnetic surfaces can be written as

(3)

where Aϕ, c, Aϕ, l , and Aϕ, r are the vector potentials of
the fields produced by the central, left, and right coils,
respectively. The numerical results presented below
were obtained for Jc = –1.5Js , in which case the mag-
netic field line topography is appropriate for our pur-
poses.

Figure 1 shows the longitudinal profiles Hz(z) and
Hr(z) calculated at a radius of 5.7 cm in the region
around the ring electrodes of the lens with the above
parameters and with Jc = 10 kA.

The density and other parameters of the plasma that
fills the lens and through which an ion beam propagates
are chosen so as to ensure complete neutralization of
the beam space charge and to create the required focus-
ing fields (these questions were thoroughly discussed in
[3, 4]). In the central region of the lens (–2.8 cm < z <
2.8 cm), i.e., in the region bounded by separatrices (at
which the magnetic field vanishes) and by a cylindrical
surface of radius R, the optimum (for ion focusing) dis-
tribution of the electric potentials over the magnetic
surfaces is produced by ring electrodes introduced into
the plasma at the radius R. In the region r > R, the mag-
netic surfaces are free of electric charges, which can be
ensured, e.g., by placing a special annular insulator at a
radial position R1 > R on the outside of the ring elec-
trodes. Thereby, the electric field of the lens is pre-
vented from being short-circuited to the wall of the vac-
uum chamber. Instead, it is the magnetic field lines to
the left and to the right of the central region that are
assumed to be short-circuited to the wall and/or the spe-
cial electrodes. The topography of the equipotential
surfaces of the electric field, calculated for Jc = –1.5Js,
is shown in Figs. 2 and 3 (see below).

3. BASIC EQUATIONS

We express the components of the electric and mag-
netic fields in terms of the so-called magnetic flux func-
tion [4]

(4)

rAϕ const.=

rAϕ r z,( ) rAϕ c, rAϕ l,– rAϕ r,– const,= =

Ψ r z,( ) rAϕ r z,( ).=
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Fig. 2. Trajectories of 20-keV protons in the absence of an electric field. The beam radius is 5.5 cm, Jc = 30 kA, and the coordinate
of the proton injector is zi = –20 cm.

Fig. 3. Proton trajectories for a lens with the parabolic radial potential profile Φ = 1.5r2 in the cross section z = 0 (in the Gauss
system of units). The remaining parameters are the same as in Fig. 2.
In the plasma of a Morozov lens, the electric potential
Φ is assumed to change in a prescribed manner from
one magnetic surface to another. This change is
described by the relationship

(5)

in which case the electric- and magnetic-field compo-
nents can be written as

(6)

(7)

(8)

The equations of motion in cylindrical coordinates have
the form

(9)

(10)
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(11)

Substituting the expressions for the electric- and mag-
netic-field components into these equations, we obtain

(12)

(13)

(14)

where q and M are the charge and mass of an ion and V
is its velocity (the calculations described in this paper
were carried out for protons).

For a homogeneous monoenergetic ion beam
injected parallel to the lens axis, the initial conditions
(at t = 0) have the form

Vz = V0, Vr = Vϕ = 0, z = zi (zi < 0), r = ri, (15)

where zi is the coordinate of the end of the injector and
the radius ri at which an ion is injected is varied from
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zero to a value somewhat smaller than the radius R of
the reference electrodes, which, in turn, is smaller than
the radius ac of the current-carrying coils.

The boundary conditions are imposed by specifying
the radial profile Φ(r, 0) of the electric potential in the
plane of the central coil:

(16)

The profile was optimized by choosing the dimensional
coefficients Bn so as to minimize the geometric aberra-
tions [see profiles (17) and (18) below]. If necessary,
the optimized profile was recalculated into the potential
distribution Φ(R, z) over a cylindrical surface. (It is pre-
cisely the boundary conditions that are expected to be
the principle cause of a discrepancy between the lens
modeled theoretically and the actual one. It seems that
this discrepancy may be resolved by using adequate
methods for measuring the strength of the electric fields
and their spatial distribution in the plasma.)

From the standpoint of computational mathematics
[14], Eqs. (12)–(14) with the initial and boundary con-
ditions (15) and (16) may themselves be regarded as a
solution to the problem as formulated in our model.
Thus, the corresponding first integrals of the problem
reflect the laws of conservation of the total energy and
the moment of the generalized momentum (see, e.g.,
[15]). We calculated the trajectories of the ions and
their velocities by integrating Eqs. (12)–(14) directly
and by checking the calculated results against these
conservation laws. As will be shown below, it is possi-
ble in this way to establish a relation between the
moment aberrations and the law of conservation of the
moment of the generalized momentum of an ion with
respect to the z-axis.

Formulas (1)–(16) served as the basis for devising a
special-purpose program—a computer model of a
plasma-optics focusing device, which was used to trace
ion trajectories in a plasma lens and to investigate the
dependence of momentum and geometric aberrations
on the parameters of the lens and of the ion injector. The
images displayed on the screen of a conventional per-
sonal computer allowed us to observe the ion focusing
dynamics over a time of about ten seconds and correct
it rapidly (in a time as short as several minutes).

4. ION FOCUSING BY BOTH ELECTRIC
AND MAGNETIC FIELDS IN A MOROZOV LENS

As a rule, aberrations are calculated by the method
of perturbations of the trajectories of paraxial ions [4,
9–11]. Computer modeling makes it possible to inves-
tigate the focusing of large-aperture (nonparaxial)
beams in strong magnetic fields, in which case moment
and geometric aberrations of a lens are significant. In
such simulations, a Morozov lens should be assumed to
be magnetoelectrostatic, because the ions are focused
both by the electric field and, to a lesser extent, by the
magnetic field, which, in addition, gives rise to moment

Φ B1r
2

B2r
4

B3r
6 … .+ + +=
aberrations. As an example, we consider ion focusing in
a Morozov plasma lens with the following parameters:
the radius of a proton beam is 5.5 cm, the radius of the
current-carrying coils is 6.5 cm, the current in the cen-
tral coil is 30 kA (this corresponds to 3 × 104 ampere-
turns of an equivalent short solenoid), and the coordi-
nate of the proton injector is zi = –20 cm. Figure 2
shows the trajectories of protons focused by a purely
magnetic lens (with the electric field switched off). In
this case, the influence of moment aberrations can be
seen in the fact that azimuthally moving protons do not
pass through the lens axis. We also simulated proton
trajectories under the same conditions but for zi =
−50 cm and found that moment aberrations practically
disappear, whereas geometric aberrations do not. As
will be shown below, this effect can be explained in
terms of the conservation law for the moment of the
generalized momentum of a charged particle.

Figure 3 shows proton trajectories calculated for the
above conditions but in the presence of an electric field
whose potential has a parabolic profile in the plane of
the central coil (such a profile is regarded as being
nearly optimum [7]):

(17)

We can see that the electric field potential with pro-
file (17) ensures the focusing of paraxial protons, while
the nonparaxial character of the beam is the source of
significant geometric aberrations, which, in turn, can be
reduced by invoking the next-order terms in polynomial
(16). Figure 4a shows (on an enlarged scale) proton tra-
jectories in the focal region in the presence of an elec-
tric field that is optimized by choosing the coefficients
of polynomial (16) so as to minimize geometric aberra-
tions and whose potential has the following radial pro-
file in the plane of the central coil:

(18)

This profile was adjusted to fit the focusing by both
electrostatic and magnetic fields. The corresponding
radial profile of the proton current density is shown in
Fig. 4b. In a stronger (or weaker) magnetic field, the
focusing is appreciably worse. Hence, in the case in
question, a Morozov plasma lens is to be regarded as a
magnetoelectrostatic lens with intrinsic moment and
geometric aberrations.

5. DEPENDENCE OF MOMENT ABERRATIONS 
ON THE FOCUSING CONDITIONS 

AND LENS PARAMETERS

Different types of aberrations can be treated as
being independent of each other provided that they are
sufficiently low (see [11], Section 5.7). Hence, having
minimized geometric aberrations, we can switch to the
investigation of moment aberrations. Let us consider
how they depend on the focusing conditions in a lens

Φ 1.5r
2
.=

Φ 1.5r
2

0.015r
4

– 0.00033r
6
.–=
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Fig. 4. (a) Proton trajectories and (b) radial proton current density profile in the focal region for zi = –20 cm, Jc = 30 kA, a beam
radius of 5.5 cm, and the optimized radial profile (18) of the potential Φ (in the Gauss system of units). The spread of protons in the
radial and longitudinal coordinates is governed by the moment and geometric aberrations, respectively.
with the parameters adopted in the previous section.
Figure 5 shows the dependence of the minimum radius
r of a proton trajectory in the focal region on both the
radius ri at which the proton is injected and the coordi-
nate zi of the injector. The calculations were carried out
for a fixed current in the central coil (Jc = 30 kA). As
may be seen, the moment aberrations increase as the
injection radius increases and as the injector is dis-
placed toward the region of stronger longitudinal mag-
netic field created by the current loops of a lens. As the
injector is moved farther away from the current loops,
the moment aberrations fall to zero.

In order to investigate the dependence of moment
aberrations on the magnetic field in a Morozov lens, we
carried out a series of computations for the following
conditions: the beam radius was 3.5 cm, the radius of
the reference electrodes was 3.7 cm, the coordinate of
the injector was zi = –15 cm, and the radial potential
profile was

(19)

We numerically traced proton trajectories in mag-
netic fields of different strengths by increasing the cur-
rent Jc in the central coil from 1 to 30 kA, in which case,
the current density at the focus of a lens decreased from
2600 to 10 A/cm2 as a result of moment aberrations.
Figure 6 shows the dependence of the minimum radius
r of a proton trajectory in the focal region on both the
radius ri at which the proton is injected and the mag-
netic field of a lens (or, equivalently, the current Jc in
the central coil).

According to our computer modeling, the moment
aberrations increase as the beam injection radius and
the magnetic field of a lens increase and as the ion
injector is displaced toward the lens. Along the calcu-

Φ 1.5r
2

0.017r
4
.–=
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lated ion trajectories, the conservation law for the
moment of the generalized momentum,

(20)

(in electronics, an analogous relationship is known as
the Busch theorem), and the conservation law for the
total energy are both satisfied to within five significant
decimal digits.

An important point to note is that the ion gyroradius
is not small in comparison with the characteristic
dimensions of the lens under investigation. The gyrora-
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Fig. 5. Dependence of the minimum radius of a proton tra-
jectory in the focal region on the radius at which the proton
is injected and on the coordinate of the injector for a fixed
current in the central coil (Jc = 30 kA).
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dius of the plasma electrons, in contrast, is fairly small
(for the characteristic lens parameters, it is about
0.1 mm). The electrons drift in the azimuthal direction
in crossed electric and magnetic fields, in which case
their guiding centers move along the corresponding
magnetic surface (see [15], Section 3).

The conservation law (20) implies that, in order for
a parallel particle beam to be focused into the focal
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Fig. 6. Dependence of the minimum radius of a proton tra-
jectory in the focal region on the radius at which the proton
is injected and on the current in the central coil. The beam
radius is 3.5 cm, the radius of the reference electrodes is
3.7 cm, the coordinate of the injector is zi = –15 cm, and the

electric potential profile is Φ = 1.5r2 – 0.017r4 (in the Gauss
system of units).
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Fig. 7. Steplike radial profile of the ion current density in
the focal plane for a beam radius of 3.5 cm, the remaining
parameters being zi = –20 cm, Jc = 30 kA, and Φ = 1.5r2 –

0.023r4 (in the Gauss system of units).
point of a lens, it suffices that the initial azimuthal
velocities of the particles be zero and that the magnetic
field vanish in the injection region and in the focal
plane. The lenses used in the experiments of [5–8] sat-
isfy all these conditions. Consequently, the reasons for
an insufficient focusing of the ion beams in [5–8] lie not
in the moment aberrations but in other effects. Prelimi-
nary results from computer modeling show that one of
the reasons for this may be an insufficient optimization
of the focusing fields over the lens volume.

Of course, ordinary vacuum magnetic lenses are
also not devoid of moment aberrations (see Fig. 2 as an
example). However, it should be noted that mono-
graphs [9–11] on traditional electron and ion optics
contain no information about investigations of the aber-
rations under discussion.

6. PLASMA LENSES AND ENGINEERING 
APPLICATIONS OF ION BEAMS

The above results show that, in magnetoelectrostatic
plasma lenses, moment aberrations can readily be
removed by placing an ion injector in a region of a zero
magnetic field, while geometric aberrations can be
appreciably reduced by choosing an optimum distribu-
tion of the radial electric field Er(r, z) over the lens
volume. Under the above assumptions, the ion current
density at the focus is calculated to be as high as
~103 A/cm2 for an injection current of 1 A, and the
cross-sectional area of a focused beam can be reduced
by a factor of about ~105. In the experiments of [5–8],
the beam’s cross-sectional area was reduced by a factor
of about 30 and the achievable ion current density was
about 0.1 A/cm2 for an injection current of 0.1–1 A. For
high-dose ion implantation, the aim is to achieve a com-
pression factor of about ~103 [8]. Our investigations
show that the results from computer modeling of exper-
imental devices by using special-purpose computer
programs may be helpful in making the ion focusing
substantially stronger. We stress that, in order to reduce
the cross-sectional area of a focused beam to the maxi-
mum possible extent, the accuracy with which the pre-
scribed optimum distribution Er(r, z) is maintained
should be sufficiently high [see formulas (18), (19)].

As for moment aberrations, they can be effectively
employed for a uniform exposition of samples with
finite area (fractions of a square centimeter). By arrang-
ing an ion injector in such a way that its exit end occurs
either at a certain distance from the lens or within a spe-
cial solenoid with a controllable longitudinal magnetic
field, it is possible to form a steplike radial profile of the
ion current density in the focal plane. Figure 7 shows an
example of the radial profile j(r) for which the ion cur-
rent density j . 10 A/cm2 is distributed fairly uniformly
over the radial interval from 0 to 0.16 cm and is higher
than the initial current density by a factor of approxi-
mately 340. Numerical modeling shows that an ion
beam focused under these conditions remains laminar
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002
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(i.e., the ion trajectories do not intersect); moreover, the
ion beam radius in the focal plane is proportional to the
ion beam radius in the injection plane. As the injector is
displaced farther away from the lens, the radius of the
focal spot decreases, the ion density in the focal plane
increases, and the profile j(r) remains close to a steplike
profile. 

In conclusion, note that the longitudinal ion velocity
in the focal plane is fairly nonuniform: it decreases
away from the lens axis, at which it is equal to the initial
longitudinal velocity (Vz = Vz0). This decrease is associ-
ated, first of all, with the radial focusing (Vz ≈
Vz0cos( /Lf ), where Lf is the focal length and ri

is the radius at which an ion is injected) and, to a lesser
extent, with the azimuthal ion motion. An example of
the calculated velocity Vz(z) is shown in Fig. 8, in which
we can see, in particular, how the velocity of the ions
changes when they pass through the lens. In order to
reduce the longitudinal velocity spread of an ion beam
in the region where the sample is placed (e.g., in the
case of implantation of separate parallel ion layers), it
is necessary to increase the focal length severalfold, in
which case it is sufficient to decrease the coefficients of
polynomials (18) and (19) for the profile Φ(r) in the
same proportion.
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Fig. 8. Change in the longitudinal velocity of protons
injected at a radius of 5.5 cm during the focusing. The lens
parameters are the same as in Fig. 4.
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Abstract—The electric excitation of a neuron is interpreted as the formation of a nonlinear solitary ion acoustic
wave of the charge density of sodium and hydrogen ions in an electrolytic intracellular fluid, which is treated
as a dense plasma. It is shown that such a wave can be described by the coupled sine-Gordon and Korteweg–de
Vries equations, having a solution in the form of a soliton whose internal vibrational structure is described by
the Fermi–Pasta–Ulam spectrum. It is concluded that a nerve impulse can be interpreted as a low-frequency
solitary wave of the charge density of sodium ions with a trapped high-frequency charge density wave of pro-
tons. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Neurons, or nerve cells, are building blocks of the
brain. Although their internal structure, as well as
genetic and biochemical properties, is analogous to all
other cells, they have unique features that differ them
from the others. An important property of neurons is
their ability to respond to nerve impulses. The internal
potential of a neuron with respect to the surrounding
medium is equal to –70 mV [1]. This “resting potential”
results from the ion gradient created by a “sodium
pump” and is also associated with a certain class of per-
manently open channels that are selectively permeable
to potassium ions. The density of potassium ions accu-
mulated in the intracellular fluid by this mechanism is
one order of magnitude higher than that in the sur-
rounding medium. As a result, a potential difference of
70 mV is established. Neurons can be excited by ingo-
ing nerve impulses and are capable of generating elec-
tric pulses at very different repetition rates: from one
pulse to several hundred pulses per second. All of the
generated pulses have the same amplitude. Tradition-
ally, the electric activity of an individual neuron is
described by the Hodgkin–Huxley model [2]. In this
way, according to the Hartley formula, the information
capacity of a neuron is equal to  = 1 bit. In other
words, a neuron is treated as a system with two possible
(passive and active) states, and the functioning of the
human brain is ascribed to its ability to process enor-
mous amounts of information in parallel. At the same
time, in a number of papers [3, 4], it has been reported
that there are correlations between the concentrations
of both ribonucleic acid (RNA) and some proteins in
neurons on the one hand, and the learning process in
higher animals on the other hand. In this case, in the
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context of the amount of information per RNA code
triplet (or codon),  = 2 bit, a simple estimate of
the information capacity of an RNA molecule in a neu-
ron yields a value of 1010–1011 bits per neuron [5].

The purpose of this paper is to model an individual
neuron in the brain as a generator of solitary ion waves
in an intracellular fluid. Being a strong electrolyte, the
intracellular fluid within a neuron is treated as a dense
plasma, and the neuron itself is treated as an object
capable of storing up to 1011 bits of information. It is
proposed that the role of the main dynamic information
carrier is played by the Fermi–Pasta–Ulam (FPU)
recurrence [6].

The existing traditional theories of aqueous solu-
tions of electrolytes are valid only for dilute solutions
in which the ions do not interact with each other. The
higher the electrolyte concentration, the more impor-
tant the role of ion–ion interaction and the more com-
plicated the situation. Attempts to develop a theory of
strong electrolytes have yet been unsuccessful.

It should be noted that aqueous solutions of electro-
lytes are inherent in all living organisms. Thus, in the
human organism, they make up 65–70%, of which two-
thirds is an intracellular fluid and the remaining is blood
plasma and lymph. The ion content of these aqueous
solutions is close to that of sea water [7], which is a
strong electrolyte, because the concentration of NaCl in
it is about 0.2 mole per liter.

Being strong electrolytes, sea water, blood plasma,
and intracellular fluid can all be treated as a dense
plasma. This approach makes it possible to describe
these three types of fluid in the language of the nonlin-
ear properties of the fourth state of matter.
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2. MODEL OF THE FORMATION 
OF HIGH-FREQUENCY WAVES OF PROTON 

SPACE CHARGE IN A NEURON

Let us consider a neuron as an object filled with a
strong electrolyte of intracellular fluid. The dynamics
of ion concentrations in a neuron will be analyzed using
the Frank and Wen’s cluster model of an electrolyte of
sea water [8]. In this model, it is assumed that each
sodium ion is surrounded by an ion atmosphere con-
taining four water molecules and that the ion atmo-
sphere around each chlorine ion has two water mole-
cules (see figure). Then, we consider a one-dimensional
chain of Na+ and Cl– ions near the inner surface of the
membrane of a neuron, as is shown in the figure. In
what follows, the analysis will be restricted to the vibra-
tions that occur near the membrane.

An electrical activation of a neuron perturbs ion
concentrations in the intracellular fluid, in particular,
the concentrations of protons and éç– ions, whose
mobilities are almost one order of magnitude higher
than those of the remaining ions. The anomalously high
mobility of protons and hydroxyl ions is explained in
terms of the model developed by Grotthuss [9] in order
to describe the nonlinear processes of the “relay-race
jump” of a proton between neighboring water mole-
cules. We assume that, as a result of activation of a neu-
ron, a proton jumps in the field of the ion atmospheres
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002
of Na and Cl ions (in which case the corresponding
éç– ion jumps in the opposite direction). Then, in
accordance with Poisson’s equation for a strong elec-
trolyte [9] in the Debye–Hückel theory, the potential ϕH
experienced by a proton in the field of the ion atmo-
spheres of Na and Cl ions (the proton is closer to the Cl
ion) can be written as a sum of the attractive and repul-
sive components [8]:

(1)

where b = , a = , e is the charge of an

electron, n0 is the concentration of sodium ions, ε is the
permittivity of water, r0 is the distance between sodium
and chlorine ions in the chain, and rn = xn – xn – 1, xn

being the shift of the nth proton in the chain.

With allowance for representation (1), the equations
for the dynamics of a proton in the chain (see figure)
can be described by the Toda chain of equations [10]

(2)
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where mH is the mass of a proton. In Eqs. (2), the wave-
length is small in comparison with the radius of curva-
ture of the neuron cell body.

Toda [10] showed that, in the long-wavelength limit,
Eqs. (2) can be reduced to the Korteweg–de Vries
(KdV) equation

(3)

The periodic boundary conditions for the charge
density wave of protons described by Eq. (3) have the
form

(4)

where Ln = 2πRn, Rn being the inner radius of the neuron
cell body.

Zabusky and Kruskal [11] showed that Eq. (3) with
boundary conditions (4) has a solution in the form of
the FPU recurrence. In the model proposed in the
present paper, the charge density wave of protons in a
neuron can be modulated in accordance with the
sequence of nitrogen bases in an RNA molecule (see
the brace in the figure).

3. MODELING OF A LOW-FREQUENCY CHARGE 
DENSITY WAVE OF SODIUM IONS

IN A NEURON

The next step in the development of the model is a
formal description of a high-frequency information sig-
nal in the low-frequency component of a nerve impulse.
As was shown in [12], charge density waves can be
described by the sine-Gordon equation. With this cir-
cumstance in mind, we apply the sine-Gordon equation
to describe the dynamics of the charge density waves of
sodium ions. For this purpose, let us consider the mem-
brane of a neuron as a liquid crystal containing a double
layer [13] (see figure). In accordance with the distance
between lipid molecules in the membrane and also a
distance of 0.47 nm (the distance between sodium ions
in an electrolyte) [9, 14], a possible mechanism for the
interaction of the high-frequency charge density waves
of protons with a low-frequency ion wave of the action
potential can be described as follows. Let us denote by
un the displacement of a Na+ ion with respect to a pro-
tein molecule in the lower layer of the membrane (see
figure). In this way, the ion dynamics in a neuron can be
analyzed using the approach developed by Frenkel’ and
Kontorova [15] in order to describe the dynamics of
dislocations in crystals.
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Let us also denote by U(un) the potential exerted by
an immobile chain of lipid molecules in the membrane
on the nth Na+ ion (the influence of the membrane
mobility on the variations of the ion concentration can
be neglected):

(5)

where aL is the distance between two neighboring lipid
molecules in the membrane and U0 is the potential of a
lipid molecule.

In this notation, the dynamics of a Na+ ion can be
described by the equation

(6)

where mNa is the mass of a Na+ ion and the constant ρ
characterizes the extent to which the Na+ ions are resil-
ient to relative displacements.

Switching to the continual approximation un(t) 
U(x, t) and introducing the function proportional to the
modulation of the concentration of Na+ ions,

(7)

we arrive at the sine-Gordon equation

(8)

where cs = aL  is the speed of longitudinal ion

acoustic waves in a chain of sodium ions and λ0 =

 is the scale length on which the potential in the

chain varies.
Keeping in mind that the length of the chain is Ln,

we can obtain the following breather solution (i.e., a
soliton solution with a vibrational degree of freedom)
to Eq. (8) [16]:

(9)

where ω2 +  =  is the dispersion relation.

Let us draw an analogy with the experimentally
revealed phenomenon of the trapping of Langmuir
waves by the nascent regions of the depressed plasma
density [17]. In terms of this phenomenon, a nerve
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impulse can be interpreted as a low-frequency solitary
wave of the charge density of sodium ions with a
trapped high-frequency wave of the charge density of
protons. Let us consider the interaction between these
two types of waves.

The jumps of protons along a chain of water mole-
cules (see figure) give rise to periodic variations of their
relative positions in the chain and, as a consequence, to
a periodic variation of the potential U0 (5). This modu-
lating action of protons can be described by writing the
variation of the potential as U0(1 + β1un), where the
quantity β1 is inversely proportional to the distance
between Na ions and water molecules. The displace-
ment of Na ions along the Wen chain (see figure) leads
to a distortion of the exponential shape of the potential
ϕH (1) at the expense of periodic variations of the coef-
ficient b in Eqs. (2) in the form b(1 + β2ϕ), where the
quantity β2 is inversely proportional to the distance
between Na ions and water molecules in the Wen chain.
Hence, the equations describing the interaction
between the low-frequency and the high-frequency
wave can be written in the form

(10)

In accordance with the results obtained by Bishop
[18], we can reduce Eqs. (10) to a perturbed sine-Gor-
don equation and, thus, arrive at a breather solution (or
a soliton solution with internal vibrational degrees of
freedom) [19]:

(11)

in which the displacements of the wavenumbers and
frequencies, ∆k and ∆ω, are associated with the pres-
ence of the FPU recurrence in the chain described
above.

We denote the spatial and temporal rates of the FPU
recurrence by KFPU and ωFPU, respectively. Estimating
these quantities yields KFPU = 10–4 and ωFPU = 1011.

Following Bishop [18], we can approximately rep-
resent solution (11) in energy form as a sum of the
squared amplitudes of the equidistant and non-equidis-
tant modes. In this representation, the sum of the energy
of the Fourier harmonics and the energy of a series of
non-equidistant modes remains constant, and the
reversible regrouping of energy between the equidistant
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and non-equidistant frequency spectra has the period
TFPU = 2π/ωFPU and thus is the FPU recurrence:

(12)

where EFPU is the total energy of harmonics of the FPU
recurrence, in accordance with the description of the
FPU recurrence in terms of the Kolmogorov–Arnold–
Mozer (KAM) theory [6] of the formation of invariant
tori in the phase space of the quasi-integrable system
(11).

The dynamics of the spectrum of the FPU recur-
rence is governed by the properties of the nonlinear
dynamics of vibrational processes in a quasi-periodic
crystal of an RNA molecule, or, in other words, by the
positions of the nitrogen bases along an RNA molecule.
In accordance with the properties of the FPU recur-
rence [12], the dynamic behavior of its spectrum can
play the role of the dynamic memory: the parameters of
the FPU modes recurrence periodically to their initial
conditions, determined by the ordering of nitrogen
bases in an RNA molecule.

4. MODEL ESTIMATE OF THE INFORMATION 
CAPACITY OF A NEURON

Taking into account the fact that the distance
between Na and Cl molecules which the proton jumps
over is about 0.31 nm [9], we can estimate the excita-
tion frequency νc of a nerve impulse from the a and b
values: νc . 1013 Hz.

Recall that nerve impulses are as short as several
milliseconds [20]. With this in mind, we can apply the
Kotel’nikov theorem [21] and use the highest excitation
frequency to arrive at the following formal estimate for
the information capacity of an individual nerve
impulse:

(13)

5. CONCLUSION

The model developed here provides a piece of evi-
dence in support of the previously proposed hypotheses
[3–5] about the capacity of neurons to store a consider-
able amount of information (about 1010–1011 bits per
neuron). The role of the storing mechanism is played by
repeated periodic returns of the frequency distribution
in the spectrum of charge density waves in an electro-
lytic intracellular fluid of a neuron to the original distri-
bution. Every time the neuron is excited electrically, a
significant part of the stored information can be incor-
porated into the internal high-frequency structure of the
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action potential and then transferred to other neurons. It
should be noted that the high-frequency component of
a nerve impulse has not as yet been measured.

Hence, the model proposed here extends the notion
of a neuron as a system with two possible states to a
system with numerous possible states.
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Abstract—The dendritic structure of streamer channels in a corona discharge is described by using fractal the-
ory. It is found that, for a needle–plane discharge, the fractal dimension of the plasma structure is D = 2.16 ±
0.05. The computed spatial distributions of the branching ratios are compared with the available experimental
data. The influence of the branching processes on the distribution of chemically active radicals in streamer
corona discharges is studied. © 2002 MAIK “Nauka/Interperiodica”.
1. Interest in studies of streamer corona discharges
stems from their applications in ozone synthesis, the
cleaning of flue gases, the removal of organic impuri-
ties, etc. [1–3]. An advantage of the devices based on
streamer corona discharges as compared to those based
on conventional barrier discharges is their simplicity
and reliability, as well as a relatively high energy effi-
ciency.

The excitation and ionization of the gas in pulsed
corona discharges occurs in streamer channels that
form near the corona electrode and, then, propagate
into the discharge gap. The chemically active radicals
(O(3P), H, OH, etc.) are produced in the active region
with a high electric field at the streamer head. Then,
these radicals participate in reactions resulting in both
the decomposition of harmful impurities and the clean-
ing of the gas flowing through the region occupied by
the streamer channels. The volume of this region is
determined by the channel length and the cross size of
the streamer zone. The latter depends on the streamer
branching ratio, i.e., the number of channels produced
from a primary streamer starting from the electrode.
The problem of the enlargement of the streamer zone is
of primary importance for passing over from moderate-
size research facilities to large industrial reactors [4].

Up to now, theoretical studies have been devoted
mainly to describing the dynamics of solitary straight-
line streamers [5–8], because taking into account the
trajectory bending and branching requires three-dimen-
sional numerical simulations. However, in experiments,
in most of cases that are of practical interest, plasma
channels are crooked and highly branching.

The simplest method to account for branching was
used in [9], where the number of corona discharge
streamers was multiplied by a constant factor equal to
the ratio of the measured current amplitude to the cor-
responding calculated value obtained for a solitary
streamer. However, it was not taken into account that,
generally, the total current in the system of branching
1063-780X/02/2807- $22.00 © 20615
channels is not equal to the sum of the currents in indi-
vidual streamers [8]. Moreover, the branching ratio can
change significantly (by a factor of several tens) with
distance from the corona electrode [10–14], which was
not incorporated in this approach.

In [15], the formation of two effective avalanches
with an angle between them exceeding a certain critical
angle θcr was taken as a criterion for streamer branch-
ing. The probability of the formation of these ava-
lanches is determined by the distribution of the second-
ary photoelectron density in front of the streamer head.
For θcr . 60°, it is possible to achieve an agreement
between the experimental data and calculations by the
model proposed. In [16], a model of branching related
to the formation of secondary streamers moving along
the plasma channel of the primary streamer and catch-
ing up with it was proposed. According to [16], the
interaction between the charges of the primary and sec-
ondary streamer heads determines the probability of
streamer channel branching. However, this model fails
to explain a number of the experimentally observed
phenomena, e.g., a significant decrease in the branch-
ing ratio in streamer discharges in nitrogen–oxygen
mixtures as compared to discharges in pure nitrogen
[11, 17].

In [18], the influence of the interacting streamer
channels starting simultaneously from the corona elec-
trode on the characteristics of an individual streamer
was studied and the development of several parallel
streamers in a wire–plane electrode configuration under
the experimental conditions [13] was simulated. The
results of calculations with allowance for the multiplic-
ity of the streamer channels are in better agreement
with the experimental data than calculations by the sol-
itary streamer model. It was shown that the streamer
channels can greatly influence each other; the higher
the applied voltage and the lower the distance between
the streamers, the stronger the influence.
002 MAIK “Nauka/Interperiodica”
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One of the well-known models describing the spa-
tial structure of branching channels was developed in
[19, 20]. In this model, the plasma channels propagate
toward the higher electric field, provided that the field
exceeds the threshold value Ecr. The spatial distribution
of the electric field is determined by solving Laplace’s
equation for the potential with the boundary conditions
that account for the existence of conducting channels.
All the channels are considered to be identical and the
electric field inside the channels is assumed to be con-
stant. The probability Pz of streamer propagation in the
z direction is determined by the distribution of the elec-
tric field in the vicinity of the streamer head,

(1)

where Ek is the field along the k direction and summa-
tion is performed over all the possible directions.

This model was employed to describe the Lichten-
berg figures that are formed on a glass surface in SF6
[21], the leader breakdown in atmosphere [22, 23], etc.
In [22, 23], Poisson’s equation (rather than Laplace’s
equation) was solved, which enabled one to take into
account the influence of the channel space charge on
the electric field distribution. However, the most impor-
tant result obtained with the model proposed in [19, 20]
is that the plasma structures allow spatial scaling; i.e.
they are self-similar structures or fractals.1 It was
shown in [19] that the fractal dimension D depends
only on the dimensionality of space d and the power
index γ in formula (1). It should be noted that, in most
studies, the parameter γ was chosen by comparing the
calculation results with the corresponding experimental
data, which indicates an incompleteness of the model.

The purpose of this study is to apply fractal theory
to describing the structure of the branching plasma
channels in a streamer corona discharge and to investi-
gate the influence of branching on the spatial distribu-
tion of the chemically active radicals produced.

2. According to present-day knowledge, the
streamer propagates due to the formation of new elec-
tron avalanches (originating from the secondary elec-
trons produced via photoionization) in the strong elec-
tric field of the space charge near the streamer head [24,
25]. The propagation direction of these avalanches is
determined by the streamer field, rather than the weaker
external field. In [15, 26], a model was proposed in
which many individual avalanches were replaced with
one avalanche that had an equivalent charge and propa-
gated along the maximum field. The interaction

1 Before introducing the term fractal, mathematics dealt with the
so-called Hausdorff–Besikovitch dimension, which could acquire
any value. This justified the conception of fractional dimension.
Now, it is clear that the fractal structure and dimension serve as
the main characteristic of a variety of physical processes [20].
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Ez
γ
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γ
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Ek
γ

Ecr
γ
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k

∑
--------------------------------, γ 0,>=
between the individual avalanches is such that the
weaker avalanches (i.e., those propagating in a weaker
field) lag behind the stronger avalanches and, on
approaching the streamer head, are absorbed by them.
Thus, the main avalanche, which determines the subse-
quent streamer motion, is formed along the force line of
the maximum field. Hence, the probability of streamer
propagation in a given direction is determined by the
spatial distribution of a certain function f(E) of the elec-
tric field near the streamer head [in formula (1), f(E) ∝
Eγ]. Quantitatively, the growth of the electron ava-
lanches is determined by the function νion(E) – νatt(E),
where νion and νatt are the ionization and electron attach-
ment frequencies. Note that νion(Ecr) – νatt(Ecr) = 0. Thus,
the avalanche grows only if E > Ecr. Here, we assume
that

(2)

As was mentioned above, if the probability of the
plasma channel propagation is determined by formula
(1) and the electric field in the channel is constant
(which holds for streamer channels; see, e.g. [7, 8]),
then, according to [19], the plasma structure is a fractal.
The fractal dimension D of this structure (at a given
space dimensionality d) is determined by the power
index γ in formula (1). It should be noted that, in spite
of the simplicity of the streamer channel model pro-
posed in [19, 20], the distribution of the probability Pz

(1) in the vicinity of the channel head can be deter-
mined quite exactly. Indeed, for comparable channel
lengths, the potentials of the heads of the neighbor
streamers are close to each other. Therefore, the electric
field distribution near a given head is mainly deter-
mined by the spatial configuration of the neighbor
heads. This configuration and, hence, the electric field
distribution that determines the propagation direction
for the given channel are fairly well described by the
model proposed in [19, 20].

Under assumptions (2), the power index γ is

. (3)

For a given gas species, it is entirely determined by the
reduced electric field E/N, where N is the density of gas
molecules. At high E/N values typical of the streamer
head, we have νion @ νatt; hence, f(E) = νion(E) –
νatt (E) . νion(E).

Figure 1 presents an example of the dependence
γ(E/N) for air in the range E/N = 150–1500 Td (1 Td =
10–17 V cm2). The data on the ionization and attachment
frequencies, νion(E/N) and νatt(E/N), were taken from
[27, 28]. The fractal dimension of the plasma structures
versus E/N (under the assumption that the maximum
electric field in the streamer head is constant and equal
to E) is also shown in Fig. 1. For D(γ), we used the
results of calculations for the three-dimensional

f E( ) ν ion E( ) νatt E( )– E
γ
.∝=

γ ξ( )
∂ ν ion νatt–( )ln[ ]

∂ Eln( )
----------------------------------------=

E ξ=
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002



SPATIAL STRUCTURE OF THE BRANCHING STREAMER CHANNELS 617
Laplace field at d = 3 [29]. Note that, for most of flue
gases, the ionization frequency νion(E/N) is almost the
same as for air [28]; hence, the dependences presented
in Fig. 1 are also relevant for these gases.

Thus, if the system of plasma channels in a corona
discharge is a fractal, then, to determine the fractal
dimension, it is necessary to evaluate the maximum
reduced electric field in the streamer head and, then, to
use the calculated D(E/N)) values for the gas under con-
sideration.

The results of two-dimensional calculations of
streamer propagation in highly nonuniform [5–7] and
weakly nonuniform [30] electric fields show that the
maximum field at the streamer head changes slightly
and, for air at atmospheric pressure, amounts to Emax =
160–180 kV/cm (i.e., Emax/N = 640–720 Td). Based on
these results, it was assumed that, in the streamer head,
where the branching probability is maximum, the
parameter E/N attains 640–720 Td. It is seen in Fig. 1
that, in this case, the fractal dimension of the branch-
ing plasma channels (in air and most of flue gases)
should be

D = 2.16 ± 0.05. (4)

According to fractal theory, the total length of
streamer channels inside a surface of radius R can be
written in the form [19, 20]

L ∝  RD, (5)

and the number of streamers crossing this surface is

(6)

where D is the fractal dimension and R0 is the charac-
teristic distance within which streamer branching
occurs. The quantity R0 cannot be determined within
the fractal theory and is the parameter of the problem.

3. To verify the assumptions underlying the method
for determining the fractal dimension D, the calculated
values of the streamer branching ratio (6) were com-
pared with the available experimental data. Most of the
data on the streamer channel branching were obtained
in the following way (see monographs [11, 12]). A thin
dielectric plate covered with photoemulsion was placed
in the discharge gap normally to the external electric
field. The streamers crossing the plate initiate surface
microdischarges, whose glow, similar to Lichtenberg
figures, is recorded on a photoplate. One of these pat-
terns, borrowed from review [12], is shown in Fig. 2.
Based on the number of microdischarges, the number
N(R) of streamer channels at a given distance from the
corona electrode is determined. The scatter in branch-
ing ratios determined in this way is 20–30% [10, 11].

However, it is not clear how the dielectric plate
inserted into the discharge gap affects the discharge
characteristics. The charges of the streamer heads are
deposited onto the photoplate, thereby perturbing the
electric field distribution and the streamer trajectories

N R( ) dL
dR
-------

R
R0
----- 

  D 1–

,= =
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near the plate. The angles at which the peripheral
streamer branches approach the plate are smaller than
the corresponding angles for the streamers near dis-
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Fig. 1. Parameter γ and the fractal dimension D of a
streamer discharge in air as functions of the reduced electric
field E/N for d = 3.

Fig. 2. Pattern of a system of microdischarges crossing a
dielectric photoplate for U = 30 kV and R = 2 cm [12].
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charge axis. Thus, the trajectories of the peripheral
channels change so that they may not cross the plate.
The lower the potential at the streamer head and the
velocity of the streamers approaching the plate, the
higher the probability for the streamer channel to pass
by the plate. Hence, the significant distortion of the dis-
charge spatial picture can be expected only at distances
comparable with the maximum (under given condi-
tions) channel propagation length. In the remainder of
the discharge region, the influence of the photoplate on
the measurements of the branching ratios seems to be
insignificant [10, 11].

The regime in which the streamer parameters
change slightly during streamer propagation is opti-
mum for testing the branching models. On applying an
additional steady electric field Eadd ≥ 4.6 kV/cm,
streamers can propagate in steady-state regime over
very long distances [31]. The main streamer parame-
ters, such as the radius, the propagation velocity, and
the maximum electric field Emax at the streamer head,
arrive at their steady-state values [30, 32]. Hence, the
fractal dimension of the streamer structure should also
be approximately constant at sufficiently long distances
from the corona electrode.

The branching of the steady-state streamers was
studied in [33] for a discharge in the needle–plane
geometry with a combined power supply. The dc volt-
age was applied to two plane-parallel electrodes, and

Measured and calculated streamer branching ratios, Nexp and
Ncal , vs. distance to the anode in a needle–plane discharge
with a combined power supply [33]

R, cm 1.0 2.5 4.0 6.0

Nexp 4.0 9.0 20.0 –

Ncal 4.04 9.03 20.18 32.3

100

10.1 R, cm

10

N(R)

Fig. 3. Streamers branching ratio N(R) vs. distance R to the
needle for U = 36 kV and Rh = 4 cm [10]. The slope of the
straight line is D – 1 . 1.18.
the pulsed voltage (U = +35 kV) was applied to the nee-
dle placed in an opening in the plane anode. The needle
apex radius was Ra = 0.05 cm, the opening radius was
0.5 cm, and the additional electric field was Eadd =
4.7 kV/cm. In [33], the electric field distribution was
such that the size of the region with an enhanced field
was R∅  . 0.3 cm. The calculated branching ratios N(R)
adequately describe the corresponding experimental
data from [33] at D = 2.16 and R0 = R∅  = 0.3 cm (see
table).

In [10], a needle–plane discharge in air at atmo-
spheric pressure was studied. The voltage amplitude U
was from +30 to +40 kV, the pulse duration was τ =
1 ms, the pulse rise time was τ f = 50 ns, the needle apex
radius was Ra = 0.05 cm, and the interelectrode distance
was Rm = 3–10 cm. The measured streamer branching
ratios are shown in Fig. 3 for U = 36 kV and Rm = 4 cm.
The function N(R) shown on a double logarithmic scale
is a straight line with a slope of D – 1 . 1.18. This value
agrees with the theoretical prediction (4). The fact that
the fractal dimension D and, consequently, the power
index γ remain unchanged while the streamers cross the
discharge gap indicates that the Emax field at the
streamer head changes slightly. In this case, inaccuracy
in determining D (with allowance for an uncertainty in
the data on N(R)) is rather low, D = 2.18 ± 0.02. Taking
into account the dependence D(Emax) (Fig. 1), this cor-
responds to the field Emax/N . 700 ± 20 Td. These
results confirm the assumption (see, e.g., [7, 8, 34])
that, for a given gas, a more or less constant maximum
field Emax is established in the streamer head.

When the length of the interelectrode gap Rh

exceeds the mean distance that can be passed by
streamers at a given applied voltage U, the dependence
N(R) changes (Fig. 4). In this case, the branching ratio
has a maximum Nmax(Rm) at the point Rm. At R < Rm, the
experimental data are adequately described by formula
(6) with D = 2.16 and R0 = Ra = 0.05 cm (the solid line
in Fig. 4). At R ≥ Rm, the dependence N(R) can no
longer be described within fractal theory. This fact
agrees with both simulation results and experimental
data [21]. The reason for the decrease in the branching
ratio at R ≥ Rm is the reduction in the potential of the
channel head, which becomes lower than the critical
value Ucr . As a result, either the streamers stop or their
trajectories change so strongly that they do not cross the
plate. According to measurements [10, 11], the periph-
eral branches with the maximum length “die” first.
Assuming that, at R < Rm, the angle of deflection of the
outer branches from the axial direction is nearly con-
stant [10], we have

(7)

where Rmax is the maximum distance to which stream-
ers propagate, Ec is the average electric field in the

Rm Rmax . 
U
Ec

-----,∝
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channel (in air at atmospheric pressure, this field
amounts to 5 kV/cm [8]), and Rm is the parameter deter-
mining the maximum branching ratio Nmax = (Rm/R0)D – 1

and the size of the region where fractal theory is appli-
cable.

Based on the available experimental data on the
streamer branching ratios in corona discharges [10, 12],
one can analyze the dependence of Emax on the applied
voltage. In a number of studies (see, e.g., [13, 14]), it
was asserted that the branching ratio increases with
applied voltage. The dependences N(R) measured for
the maximum voltages Um = 30 and 36 kV [10] are
shown in Fig. 4. It is seen that the shape of the N(R)
dependence does not change as Um increases, which is
in agreement with similar measurements in [12]. How-
ever, the maximum streamer branching ratio Nmax
increases with the voltage Um. As was mentioned
above, simulations at a constant value of D (solid line
in Fig. 4) adequately describe the experimental data
within the range of applicability of fractal theory.
Hence, the maximum electric field Emax in the streamer
head changes slightly. The experimentally observed
increase in Emax = (Rm/R0)D – 1 with applied voltage is
related to the extension of the range of applicability of
fractal theory [according to (7), Rm increases propor-
tionally to U], rather than to an increase in the fractal
dimension D.

The conclusion about the weak dependence of D on
voltage is important because it allows one to compare
the fractal dimensions of the streamer structures in dif-
ferent gases in which the breakdown electric fields and,
consequently, the applied voltages can differ greatly.
Moreover, it follows from here that the change in the
voltage growth rate dU/dt should not significantly influ-
ence the fractal dimension D, although it does affect the
Nmax value.

In [35], it was noted that the streamer branching
ratio increases with the degree of electric field inhomo-
geneity (i.e., with Ra/Rh). The data from [10] indicate
that changing the discharge gap length Rh only slightly
affects the branching ratio.

To evaluate the degree to which the description of
the streamer corona structure within fractal theory is
universal, it is of interest to compare the N(R) depen-
dences in nitrogen–oxygen mixtures with different
oxygen content. In recent study [17], evidence for a sig-
nificant increase in the streamer branching ratio with
decreasing oxygen content in the mixture was obtained.
In the region where the electric field is high, E/N ≥
600 Td, the dependences νion(E/N) for nitrogen–oxygen
mixtures with different oxygen content differ slightly
[27]. Hence, according to our model, the difference in
the parameter γ and the fractal dimension D in the
plasma structures also should not be large.

In [11], the streamer branching ratios in N2 : O2 mix-
tures at atmospheric pressure were measured in a facil-
ity similar to that used in [10]. The voltage amplitude
PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002
was U = +32.5 kV, the pulse duration was τ = 1 ms, and
the interelectrode distance was Rh = 8 cm. The oxygen
percentage δ in the mixture was varied from 10 to 75%.
Figure 5 presents the measured streamer branching
ratios [11] for the N2 + 10%O2 and N2 + 36%O2 mix-
tures and the results of calculations by formula (6) for
D = 2.15 and R0 = 0.031 cm. It is seen that, in the appli-
cability region of fractal theory, the difference between
the simulation and experimental results does not exceed
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Fig. 4. Streamers branching ratio N(R) vs. distance R to the
needle for Ra = 0.05 cm, Rh = 8 cm, and Um = (1) 36 and
(2) 30 kV [10]. The solid line shows the computation results
for D = 2.16 and R0 = Ra = 0.05 cm (N2 : O2 = 4 : 1).
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Fig. 5. Streamers branching ratio N(R) vs. distance R to the
needle for discharges in (1) N2 + 10%O2 and (2) N2 +
36%O2 mixtures; the discharge parameters are Ra =
0.05 cm, Rh = 8 cm, and U = 32.5 kV [11]. The solid line
shows the computation results for D = 2.15 and R0 =
0.031 cm.
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the measurement error. It was experimentally observed
that the maximum branching ratio Nmax significantly
increased with decreasing oxygen content. The reason
is that, according to [14], the decrease in the O2 concen-
tration results in a decrease in the average electric field
Ec in the streamer channel. As a result, both the
streamer propagation length and the size Rm of the
region where fractal theory is applicable increase [see
(7)], which leads to the increase in Nmax = (Rm/R0)D – 1.

Thus, we can conclude that the system of branching
plasma channels in a streamer corona discharge is a
fractal. The fractal dimension D and the characteristic
distance R0 over which streamer branching occurs
change slightly with changing the applied voltage and
oxygen content in the mixture (in the range δ = 10–
70%). The latter fact seems to be important because, as
δ changes, both the photoelectron density in front of the
streamer head and the width of the ionization wave
front also change [17]. This, according to [17], is the
main reason for an increase in the branching ratio with
decreasing δ (a possible influence of photoionization
on streamer branching was also discussed in [36, 37]).
The fact that the characteristic length of branching R0
does not depend on the oxygen content in the mixture
apparently indicates the insignificant influence of pho-
toionization on streamer branching.

4. Many applications of streamer corona discharges
are related to the efficient production of chemically
active radicals [1–3]. As was mentioned above, these
radicals are produced in the streamer channels; hence,
the spatial distribution and the volume-averaged con-
centrations of active particles depend strongly on the
spatial structure of the discharge.

As an example, we consider the distribution of
chemically active radicals in a wire–plane streamer
corona discharge. The active particles are mainly pro-
duced in the streamer head, where the electric field is
high. The two-dimensional simulations [5–7] showed

that the quantities Emax and , as well as the maxi-

mum concentration of radicals  in the plasma chan-
nel, change slightly along the streamer trajectory. The
total number of radicals produced per one pulse in a
cylindrical volume of unit length with radius R is

(8)

where Nc is the number of streamers per unit length of
the electrode (this number depends on the applied volt-
age and amounts to 5–7 cm–1 [13, 14]2), Rc is the radius
of the streamer channel, and L(R) is the total length of

2 In many discharge devices, special points are made on the corona
wire in order to increase the number of streamers starting from it.
Since the streamers start mainly from these points, the streamer
number Nc is a known fixed value.

Ne
max

NR
m

NR r( )
Ra

R

∫ 2πr rd× πRc
2
NR

m
NcL R( ),=
all the streamer branches inside a cylindrical volume of
radius R [see formula (5)].

According to Eqs. (6) and (8), the radial profile of
the radical concentration NR(R) can be written in the
form

(9)

or

where

(10)

The quantity RD has a meaning of the limiting size of
the diffusion broadening of the streamer track before
the interaction with the tracks of the neighbor channels,
i.e., the average distance between the streamers. It is
seen from formula (10) that, at D . 2, the average dis-
tance between the streamers changes slightly with R
(within the streamer zone, in which expressions (9) and
(10) are valid).

In a wire–cylinder electrode configuration, a lot of
streamers can simultaneously start from the corona
electrode (Nc ≥ 5 cm–1). The streamer systems initiated
by the streamers starting from the corona electrode
begin to interact with each other already at a distance of

Rw = /2π . /6 ! Rm [14], where θ is the aver-
age angle of the lateral expansion of the streamer sys-
tem. At R > Rw, the effective dimensionality of space
decreases from d = 3 to d = 2 due to the strong interac-
tion between the streamer systems. This, in turn, should
decrease the fractal dimension of the plasma structure.
At a maximum reduced electric field in the streamer
head of Emax/N = 650–720 Td (according to Fig. 1, this
corresponds to γ . 2) and d = 2, the fractal dimension is
D . 1.83 [29]. Later, this value of D was used to esti-
mate the parameters of the spatial structure in the wire–
cylinder electrode configuration.

The production of chemically active radicals is only
the first stage of plasmochemical gas cleaning. Then,
these radicals participate in reactions that result in the
decomposition of harmful agents. The volume-aver-
aged concentration of the particles removed in one
pulse is determined by both the concentration of radi-
cals produced in the streamer channels and the relation
between the reactor volume V0 and the volume Vc occu-
pied by the streamers. The latter amounts to

where Rm is the maximum radius of the streamer zone
and Z0 is the reactor length.

NR R( ) NR
m Rc

2
NcR
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2R0
D 1–

--------------------------=

NR R( ) NR
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Rc/RD( )2
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2R0
D 1–

NcR
D 2–

-------------------.=

Nc
1– θ Nc

1–

Vc πRc
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PLASMA PHYSICS REPORTS      Vol. 28      No. 7       2002



SPATIAL STRUCTURE OF THE BRANCHING STREAMER CHANNELS 621
Defining the radius of the cylindrical reactor as Rh,
we have

(11)

In [38], the removal of impurities and the production
of ozone in a pulsed corona discharge with a wire–cyl-
inder electrode configuration were numerically simu-
lated under conditions of [39, 40] (Ra = 0.07 cm and
Rh = 10 cm). The maximum distance to which stream-
ers propagate did not exceed Rm = 5 cm. The streamer
channel radius was assumed to be Rc = 0.025 cm. In
[38], the quantity F0 = Vc/V0, which was a parameter of
the problem, was determined by fitting the simulation
results to the experimental data. The results of simula-
tions of ozone production and the removal of NOx and
SO2 impurities can be fitted to the corresponding exper-
imental data from [39, 40] at F0 . (6–7) × 10–3. Under
these conditions, the calculations by formula (11) at
Nc = 6 cm–1, D = 1.83, and R0 = Ra = 0.07 cm give F0 =
6.5 × 10–3.

5. Thus, we can conclude that fractal theory can be
used to describe the spatial structure of the branching
plasma channels in streamer corona discharges. The
fractal dimension D and the characteristic distance R0
over which the channel branching occurs remain con-
stant within the range of applicability of fractal theory.
This confirms the concept repeatedly discussed in the
literature that, for a given gas species, a certain fixed
maximum electric field Emax is established at the
streamer head.

As was mentioned above, fractal theory does not
allow one to determine the characteristic length of the
streamer branching R0. This parameter is to be deter-
mined based on the branching criterion, which has not
yet been formulated. The results of our study show that
the quantity R0 does not change in the range of applica-
bility of fractal theory and is independent of the applied
voltage, the radius of the corona electrode, and the mix-
ture composition (for N2 : O2 mixtures). These results
should be taken into account in developing the streamer
branching models.

It should be noted that, up to now, all the studies of
the streamer branching ratio have been carried out in
the needle–plane geometry. To evaluate the degree to
which the fractal model of the streamer corona struc-
ture is universal, it is of interest to carry out experi-
ments under conditions in which one can expect the
change in the fractal dimension D (e.g., due to the
reduction of the dimensionality of space where the
streamers propagate). One of the possible approaches
to this problem is to use wire–plane or wire–cylinder
electrode configurations, which, as was noted above,
allow one to reduce the fractal dimension of the plasma
structures produced. The experimental studies of the

F0
Vc

V0
------

Rc

Rh

----- 
 

2

Nc

Rm
D

R0
D 1–
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branching ratio N(R) in various gas mixtures are also of
interest.
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