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Abstract—Whereas quantum cryptography ensures security by virtue of complete indistinguishability of non-
orthogonal quantum states, attenuation in quantum communication channels and the unavailability of single-
photon sources present major problems. In view of these difficulties, the security of quantum cryptography can
change from unconditional to conditional. Since the restrictions imposed by nonrelativistic quantum mechanics
and used to formulate key distribution protocols have been largely exhausted, new principles are required. The
fundamental relativistic causality principle in quantum cryptography can be used to propose a new approach to
ensuring unconditional security of quantum cryptosystems that eliminates the aforementioned difficulties.
Quantum cryptosystems of this kind should obviously be called relativistic. It is shown that relativistic quantum
cryptosystems remain unconditionally secure: first, attenuation in a quantum communication channel can only
reduce the key generation rate, but not the security of the key; second, the source may not generate pure single-
photon states, and a nonzero single-photon probability will suffice. The scheme remains secure even if the con-
tribution of a single-photon component is arbitrarily small. This formally implies that a state may be character-
ized by an arbitrarily large mean photon number. The single-photon probability affects only the key generation
rate, but not security. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Quantum cryptography, i.e., secure key distribution
over public quantum communication channels, may be
the only method for implementing absolutely secure
“one-time pad” cryptography systems [1–3]. To date,
several different fiber-based prototype quantum crypto-
systems have been constructed. A Japanese group
reported in [4] that the maximum range of secure key
distribution in a quantum cryptosystem reached with
self-compensation by means of Faraday mirrors is
100 km. The previous record, 67 km, was set by a Swiss
group [5]. Recently, MagiQ presented a commercial
quantum cryptography system with a fiber length of
120 km. Most existing prototype quantum cryptosys-
tems rely on the following coding principles:

(i) in polarization coding, information about the key
is encoded into polarization states [6];

(ii) in phase coding, an unbalanced Mach–Zehnder
interferometer is employed and information is encoded
into the phase difference between the input and output
arms of the interferometer [7, 8];

(iii) in frequency coding, frequency modulation is
applied to the carrier frequency [9];

(iv) in quantum cryptography using coherent states,
homodyne detection is performed at the receiver end [10].

The best results have been achieved in the develop-
ment of fiber-based cryptosystems with phase coding
1063-7761/04/9904- $26.00 © 0669
and self-compensation by means of Faraday mirrors [4,
5, 11].

Recently, the first local quantum cryptography net-
work for key exchange between users within a range of
10 km was tested in Boston (the project is supported by
DARPA) [12].

Several prototype quantum cryptosystems for
secure key distribution over free space have been cre-
ated [13, 14]. The longest range (documented in publi-
cations) is 23.4 km under both daylight and nighttime
conditions. The purpose of all free-space quantum
cryptosystems is secure key exchange between ground-
based stations and low-orbit satellites (at altitudes of up
to 1000 km) or between ground-based stations via sat-
ellites. According to estimates made by specialists from
QinetiQ, a company developing surface-to-satellite
communication systems, this can be done in the very
near future by analyzing quantum cryptography
schemes, because a sufficiently high level of technol-
ogy development has been reached and the projected
costs are reasonable [15]. Moreover, key distribution
via satellites potentially has a much wider scope.
Experiments in this line of research are being planned
for the next year.

All schemes mentioned above, except for those
based on homodyne detection, rely on single-photon
detection. However, since strictly single-photon
sources are not available to this day (some progress in
construction of their laboratory prototypes was
2004 MAIK “Nauka/Interperiodica”
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reported in [16]), the pseudo-single-photon sources
currently employed make use of laser pulses with mean
photon numbers reduced to µ = 0.1–0.3 photons per
pulse. In this scheme, a communication channel may
carry more than one photon, because the coherent state
corresponding to a laser pulse is characterized only by
the mean photon number. The actual attenuated laser
radiation in a communication channel corresponds to a
mixture of states with different photon numbers. This
implies that a quantum cryptosystem may be insecure
against attacks of certain kinds (e.g., see [17, 18]). Note
also that the key generation rate substantially decreases
when the mean photon number is low (when it is as low
as 0.1, about 90% of pulses are empty).

Attenuation in a quantum communication channel
presents an essential in terms of security. While attenu-
ation obviously reduces the key transmission rate and
some photons may not reach the receiver, the basic
problem is that security cannot be guaranteed if the
attenuation exceeds a certain value (see [18] and dis-
cussion below). Attenuation in a fiber-optic cable
depends on its length. The critical length within which
the system guarantees security is not known to this day,
and its estimated values vary from tens of kilometers to
150 km [18].

An analysis of the basic quantum cryptographic pro-
tocols (BB84 and B92 and their derivatives) shows that
the proofs of their security for a channel with attenua-
tion essentially rely (explicitly or implicitly) on some
prior information about the quantum bit error rate
(QBER). For example, if the attenuation in the channel
varies during the execution time for a key distribution
protocol, then so does the error rate (even in the
absence of an eavesdropper). In this situation, no secu-
rity can be guaranteed if a constant QBER is assumed
in the protocol. Whereas the attenuation can be treated
as constant for fiber-based quantum cryptosystems
(0.17–0.25 dB/km for a 1550-nm single-mode fiber), a
similar assumption is not valid in the case of a free-
space link, because atmospheric conditions cannot be
controlled. Therefore, key-distribution protocols
should be stable and guarantee security for a channel
with attenuation that either varies during the execution
time for a key distribution protocol or is known a priori.
This serious problem must be solved in order to rule out
any doubt concerning unconditional security in quan-
tum cryptography (i.e., security that is guaranteed by
fundamental limitations dictated by the laws of quan-
tum mechanics rather than by the eavesdropper’s tech-
nical restrictions).

The difficulties outlined above are due to the fact
that the security of a protocol relies only on the geomet-
ric properties of quantum state vectors in a Hilbert
space *. More precisely, it is based on the no-cloning
theorem for an unknown quantum state [19] and on
Bennett’s theorem on complete indistinguishability of
nonorthogonal quantum states [20]. Roughly speaking,
protocols are formulated in a Hilbert space *, and the
JOURNAL OF EXPERIMENTAL 
fact that quantum-state measurements and propagation
take place in spacetime has never been used explicitly.
Since attenuation takes place in spacetime rather than
in a Hilbert space, additional fundamental limitations
due to properties of propagating quantum states are
required to rule out any insecurity due to attenuation,
and spacetime information about them must be avail-
able. Limitations on quantum cryptographic protocols
dictated only by geometric properties of quantum states
in Hilbert spaces seem to be exhausted. Additional fun-
damental limitations should be found in a special the-
ory of relativity. Note also that, since photons are truly
relativistic massless particles (field quanta) propagating
with the highest possible speed, it would be unreason-
able not to use additional opportunities offered by
nature.

Thus, quantum cryptosystems may not be uncondi-
tionally secure because of the lack of single-photon
sources and high attenuation.

In what follows, several free-space quantum crypto-
systems are proposed in which limitations on measur-
ability dictated both by quantum mechanics and by spe-
cial theory of relativity are employed. Since the quan-
tum cryptosystems discussed below allow for quantum-
state (key) propagation in spacetime, knowledge of the
channel length is required. Relativistic quantum crypto-
systems remain secure irrespective of attenuation in the
communication channel: attenuation reduces the key
transmission rate without affecting security. Moreover,
security of a key is guaranteed even for multiphoton
states. Formally, the scheme is effective for a quantum
state characterized by an arbitrary mean photon num-
ber. The highest efficiency is reached for µ between 1
and 3, when empty pulses are almost absent (the contri-
bution of vacuum to the coherent state is low). This
means that the key generation rate is at least an order of
magnitude higher than that in schemes relying only on
geometric properties of quantum states and requiring
faint laser pulses with µ = 0.1–0.3. The rate is addition-
ally increased because even orthogonal states can be
used under the limitations imposed by special relativity
theory, in which case no bases-reconciliation procedure
(indispensable in the BB84 protocol) is required. Fur-
thermore, since both legitimate users and the eaves-
dropper act in spacetime, collective attacks performed
by the eavesdropper are not advantageous as compared
to individual measurements of each pulse when orthog-
onal states are used. Finally, the system guarantees
security even if the error rate in the adopted binary string
is higher than 40% (when µ ≈ 1). For example, it should
be recalled that security of the BB84 protocol is guaran-
teed only if the error rate is lower than 11% [21, 22].

The only additional requirement in relativistic quan-
tum cryptography, as compared to nonrelativistic quan-
tum cryptosystems using nonorthogonal states, is
knowledge of the channel length. This appears to be a
modest price to pay for the advantages gained in the rel-
ativistic case.
AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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Several realizations of quantum cryptosystems are
discussed below.

2. PHYSICS 
OF QUANTUM CRYPTOGRAPHY

In quantum cryptography, security is based on fun-
damental limitations imposed by the laws of quantum
mechanics, rather than on any assumption about the
eavesdropper’s technical or computational resources
(in contrast to classical coding schemes, e.g., RSA [23,
24]). In a quantum cryptosystem, any eavesdropping
attempt is detected by virtue of the following interre-
lated fundamental limitations in quantum mechanics.

I. The process

(1)

(copying of unknown quantum states) is forbidden by
the no-cloning theorem.

II. No information can be extracted about a nonor-
thogonal state without perturbing it; i.e., the following
process is forbidden:

(2)

where |A〉  is a detector state and U is a unitary operator
describing simultaneous evolution of the detected and
detector states. In essence, these limitations follow
from Heisenberg’s uncertainty principle, which rules
out simultaneous measurement of observables associ-
ated with noncommuting operators.

For orthogonal states, nonperturbative copying or
extraction of information is not forbidden. In nonrela-
tivistic quantum mechanics, the observables

are associated with commuting measurement operators
defined as the orthogonal projectors

Limitations (1) and (2) follow from geometric proper-
ties of the state vectors |ϕ0, 1〉  in the Hilbert space corre-
sponding to a quantum system. Orthogonal quantum
states cannot be used in quantum cryptography without
imposing additional fundamental limitations on mea-
surability, such as those dictated by special theory of
relativity. The photons used as quantum information
carriers are inherently relativistic objects (quanta of a
massless field). Therefore, novel secure quantum cryp-
tosystems can be created by using additional limita-
tions on measurability dictated by special theory of rel-
ativity.

ϕ0| 〉 A| 〉 ϕ 0| 〉 ϕ 0| 〉 A0| 〉 ,⊗ ⊗⊗
ϕ1| 〉 A| 〉 ϕ 1| 〉 ϕ 1| 〉 A1| 〉 ,⊗ ⊗⊗

if ϕ0 ϕ1〈 〉 0≠

-
-

ϕ0| 〉 A| 〉 U ϕ0| 〉 A| 〉⊗( )⊗ ϕ 0| 〉 A0| 〉 ,⊗=

ϕ1| 〉 A| 〉 U ϕ1| 〉 A| 〉⊗( )⊗ ϕ 1| 〉 A1| 〉 ,⊗=

if A0| 〉 A1| 〉 ,≠

-
-

ρ0 ϕ0| 〉 ϕ 0〈 | , ρ1 ϕ1| 〉 ϕ 1〈 |= =

30 1, ϕ0 1,| 〉 ϕ 0 1,〈 | , 30 31,[ ] 0.= =
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Unavailability of single-photon sources and attenu-
ation in communication channels are the main impedi-
ments to practical applicability of the quantum cryptog-
raphy schemes whose security is guaranteed only by
complete indistinguishability of nonorthogonal states.
To demonstrate how a cryptosystem becomes insecure,
consider a protocol using two nonorthogonal states (so-
called B92 protocol). When attenuation is sufficiently
high, the eavesdropper can use the intercept–resend strat-
egy to extract complete information about the transmit-
ted key without revealing the intervention. This far-from-
optimal strategy can be described as follows. In each
pulse, the eavesdropper makes use of measurements rep-
resented by the partition of the identity operator

(3)

Consider the outcome space Ω consisting of three out-
comes: Ω = {0, 1, ?}. The probability of the outcome 0,

is nonvanishing only for the input state |ϕ0〉  and zero for
the other input state, |ϕ1〉 . Similarly, the outcome 1 will
take place with the probability

which does not vanish only for the input state |ϕ1〉 .
Since the states are nonorthogonal (i.e., completely
indistinguishable), the outcome ? (inconclusive result)
will occur with the probability

Therefore, the eavesdropper can identify the state in the
channel if the outcome 0 or 1 has occurred. After the
outcome ?, the eavesdropper cannot tell which state has
been transmitted. A pulse sent into a channel with atten-
uation may not reach the receiver. In the case of the out-
come ?, the eavesdropper blocks the link and does not
resend anything. When attenuation exceeds a certain
critical level, the intervention cannot be detected, while
the eavesdropper has complete information about the
key and remains unnoticed. An analogous strategy can
be used in the BB84 protocol.

Another essential security requirement is the avail-
ability of a single-photon source. Formally, it follows
from (1) and (2) that any pair of nonorthogonal (even
multiphoton) states can be used. These states must be
distinguishable by means of the measurement proce-
dure used at the receiver end; i.e., the procedure must
implement projection onto multiphoton state vectors.
The required source is a laser, and the corresponding
coherent state is characterized by the mean photon
number 〈n〉  = µ only. However, since no phase reference

I 30
⊥ 31

⊥ 3?, 30
⊥

+ + a I ϕ0| 〉 ϕ 0〈 |–( ),= =

31
⊥

a I ϕ1| 〉 ϕ 1〈 |–( ),=

3?
⊥

I 30
⊥

– 31
⊥
, a–

1
1 ϕ0 ϕ1〈 〉+
-------------------------------.= =

p0 ϕ0 31
⊥ ϕ0 1,<=

p0 ϕ1 30
⊥ ϕ1 1,<=

p? ϕ0 3? ϕ0〈 〉 ϕ 1 3? ϕ1〈 〉 ϕ 0 ϕ1〈 〉 0.≠= = =
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is available, the eavesdropper can determine a density
matrix rather than a pure coherent state,

(4)

The photons in a statistical mixture are described by the
Poisson distribution. The actual experiments are per-
formed on weak coherent radiation with µ ≈ 0.1–0.3, in
which Fock states with photon numbers n = 0, 1, … can
be detected with probabilities p(µ, n).

Thus, no photons are detected with probability
p(0, µ); one photon, with probability p(1, µ); and so on.
In the case of a multiphoton source, the eavesdropper
can perform the so-called photon-number splitting
(PNS) attack [17, 18]. A nondemolition measurement
of the photon number is represented by a partition of
the identity operator:

(5)

Formally, a nondemolition measurement that deter-
mines the photon number has two outcomes:

(6)

Therefore, if the outcome corresponds to 3n = 1 (one
photon is detected), then the link is blocked. In the
alternative case of 3n ≠ 1 (multiple photons are
detected), the eavesdropper can split the photons into
two parts, perform measurements on one part, and
resend the remaining photons over a channel with lower
attenuation. Since some photons do not reach the
receiver, an attack of this kind cannot be revealed [18].
It should be noted here that the use of single-mode
(monochromatic) photon states

(where k0 is frequency and " = c = 1) is a highly ideal-
ized model, because monochromatic waves are not
localized in space and time. The measurement formally
described by a projector |n〉〈 n| requires access to a state
as a whole, i.e., to the entire unbounded domain in
space where the plane-wave amplitude of the state is
not zero. Thus, the measurement requires an infinite
time since the maximum speed is finite. If the distribu-
tion protocol makes use only of geometric properties of
states in a Hilbert space, then it is formally beyond time
(the discussion above is time-independent). For such
protocols, the fact that a formally infinite time is
required to measure the photon number in a communi-
cation channel is unimportant. Actually, any state occu-
pies a bounded domain in space (associated with a finite
spectral bandwidth). Accordingly, a finite time is
required to formulate a real-time protocol for measur-

ρ θd
2π
------ µeiθ| 〉 µe iθ–〈 |∫ p µ n,( ) n| 〉 n〈 |

n

∑ ,= =

p µ n,( ) e µ– µn

n!
-----.=

I 3n
n 0=

∞

∪ n| 〉 n〈 | .
n 0=

∞

∪= = ⊕⊕

I 3n 1= 3n 1≠ , 3n 1≠+ I 3n 1= .–= =

n| 〉 ak0

+( )n
0| 〉=
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ing the photon number (or another quantity), which
leads to a delay in the arrival of measurement results at
the receiver end. This makes it possible to reveal any
eavesdropping attempt.

Thus, if the attenuation is such that the eavesdropper
performing a nondemolition measurement of the pho-
ton number in a communication channel can block all
signals when the channel carries a single-photon Fock
state, then the protocol becomes insecure.

Reliable nonperturbative identification of orthogo-
nal states is not forbidden by Bennett’s theorem [20]. In
a frequently articulated interpretation of the theorem,
an orthogonal state is said to be “coupled” to an auxil-
iary system and change its state |A〉 . This is inconsistent
with the fact that the theorem has a purely geometric
meaning: the state vector |A〉  of the auxiliary system can
be rotated by a unitary transformation depending on the
input vector |ϕ0, 1〉  into a new state |A0〉  or |A1〉  without
changing the input vector. The theorem relies on the
implicit assumption that the input vector |ϕ0, 1〉  is acces-
sible as a whole. In other words, a unitary transforma-
tion U can be performed only if the entire state space

 can be accessed. Otherwise, the transformation is
not unitary. The fact that the proof deals with |ϕ0, 1〉  as a
whole, disregarding its “internal” coordinates, implies
that the “entire” state vector subject to the unitary trans-
formation is available “instantly.”

The Hilbert space  representing a real physical
system is tied to the Minkowski spacetime, where each
state is characterized by a wavefunction amplitude.
Access to the Hilbert space of states implies access to
the spacetime domain of nonvanishing state amplitude
(wavefunction). If only the domain in space where the
state amplitudes do not vanish is accessible, then even
orthogonal states cannot be reliably copied or distin-
guished. This is more or less obvious, because no
manipulation (including copying and identification)
cannot have an outcome with a probability higher than
the partial norm corresponding to the states lying in the
accessible spacetime domain, i.e., in the accessible part
of the Hilbert space. An orthogonal state to be reliably
copied or distinguished must be available instantly and
as a whole.

If a state has nonzero amplitude within a bounded
spacetime domain, then its accessibility implies that the
domain is accessible. Since there is no limit on the max-
imum speed in nonrelativistic quantum mechanics, any
bounded domain can be accessed instantly. In quantum
field theory, the maximum speed is limited. Accord-
ingly, a state with finite support can be accessed only
after it has been mapped by a unitary transformation
into a state having nonzero amplitude within an arbi-
trarily small domain in space. Then, the theorem
from [20] can be applied. By the relativistic causality
principle [25], a unitary transformation of a state
defined on a bounded spacetime domain into a state
localized within an arbitrarily small spatial domain can

*ϕ0 1,

*ϕ0 1,
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Fig. 1.
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be performed only in a finite time. The minimal time is
determined by the condition that the past light cone
contains the original spatial domain of nonzero state
amplitude (see Fig. 1). The cone’s apex is the arbitrarily
small domain (point) to which the original state ampli-
tude is mapped by the unitary transformation. Each of
two mutually orthogonal states mapped by a unitary
transformation to the arbitrarily small domain can then
be reliably copied or distinguished. Since these are
states of a massless quantum field (photons) propagat-
ing with the maximum possible speed, a unitary trans-
formation followed by copying would shift (delay) the
propagation of a state in spacetime relative to the free
evolution (propagation) of the state. This effect makes it
possible to reveal any eavesdropping attempt. Note that
relativistic limitations on measurements were examined
by Landau and Peierls in a pioneering study [26] contin-
ued by Bohr and Rosenfeld [27].

In summary, a no-cloning theorem for orthogonal
states of a massless quantum field can be stated as fol-
lows. Orthogonal states can be copied with a probabil-
ity arbitrarily close to unity. The copied states have sim-
ilar amplitudes shifted in spacetime. Thus, admissible
manipulations are subject to a restriction weaker than
nonrelativistic condition (1):

(7)

where UL is the operator of translation along a light-

ϕ0| 〉 UL ϕ0| 〉( ) UL ϕ0| 〉( ),⊗
ϕ1| 〉 UL ϕ1| 〉( ) UL ϕ1| 〉( ),⊗

-
-
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cone branch over the interval L = ∆(x – t) (diameter of
the domain of nonzero state amplitude). (For simplicity,
it is assumed here that both states have nonzero ampli-
tudes within the same spacetime domain, but their
shapes ϕ0, 1(x – t) are different.)

Bennett’s theorem on identification of orthogonal
states [20] is modified in a similar manner: admissible
manipulations are subject to a restriction weaker than
nonrelativistic condition (2):

(8)

Figures 1a and 1b illustrate the above discussion.

Since the amplitudes of massless quantum-field
states propagating in a certain direction along the x axis
depend only on x – t, it will suffice to consider the case
in which time is fixed and coordinate is treated as vari-
able (or vice versa). Consider one of the orthogonal
states propagating at the speed of light, with amplitude
ϕ(x – t) (c = 1, and the state index 0 or 1 is omitted for
brevity). Suppose that the state is localized within a
domain L in the sense that

where ϕ0, 1(x – t0) is the amplitude at t0.

ϕ0| 〉 A| 〉 UL ϕ0| 〉( ) A0| 〉 ,⊗
ϕ1| 〉 A| 〉 UL ϕ1( ) A1| 〉 , A0| 〉 A1| 〉 .≠⊗⊗

-

-

ϕ x t0–( ) 2 xd

L

∫ 1,≈
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To determine the values of the state amplitude at t0
at all x in the localization domain simultaneously, a uni-
tary transformation must be applied to the entire state:

The new state  has nonzero amplitude within a
smaller spatial domain. The minimum domain size in x'
at time t is dictated by the relativistic causality princi-
ple, which was formulated in its final form by Bogolyu-
bov [25]. The unitary operator has nonzero matrix ele-
ments only if the points (x, t0) and (x', t) lie in the past
light cone with apex at the point Γ, which contains the
domain of nonzero state amplitude at t0. By any
moment that precedes L, the original state amplitude
can be mapped by a unitary transformation to a state
amplitude localized in an arbitrarily small neighbor-
hood of Γ. It is essential that this state is different from
ϕ(x – t0). By the instant Γ, the values of state amplitude
at all x can be accessed instantly. Now, a measurement
result can be obtained instantly, and complete informa-
tion about the state is available (with probability one).
If the states in the original pair are orthogonal, then a
unitary transformation can be executed to obtain
another pair of orthogonal states at the instant Γ, and,
therefore, one state can be reliably distinguished from
the other (by the theorem on complete distinguishabil-
ity of orthogonal states [20], which is now applicable).
It should be emphasized that these orthogonal states
differ from the original ones. A state can be recovered
or copied by executing the inverse unitary transforma-
tion “directed” forward in time. A state amplitude with
shape identical to the original one cannot be obtained
earlier than dictated by the relativistic causality princi-
ple. The state amplitude with an amplitude identical to
the original one is localized in the future light cone with
apex at Γ. Moreover, the resulting state also differs
from the original one in the sense that it is delayed in
time relative to the original state, which would have
traveled the distance L forward along the x axis by the
moment L if no copying or information-extraction
operations were attempted (see Fig. 1a). These consid-
erations apply to extraction of information about states
in a channel with probability one. A similar reasoning
is true for extraction of information with probability
less than unity, in which case the corresponding delay
is shorter than L (see Figs. 1a and 1b).

A similar analysis can be developed in the nonrela-
tivistic case. If the limitations imposed by special rela-
tivity theory are ignored, the part of the analysis con-
cerning the light cone should be removed. Formally,
unitary transformations can then be executed instantly,
and even the coordinate can be left out of analysis,
while it should be kept in mind that any state subject to
a unitary transformation can be instantly accessed as a
whole (and so is the corresponding spatial domain).

A similar analysis can also be developed for a state
mapped by a unitary transformation to a state of an aux-

Uϕ0 1, x t0–( ) ϕ̃0 1, x' t–( ), t t0.>=

ϕ̃ x' t–( )
JOURNAL OF EXPERIMENTAL 
iliary system. One example of unitary transformation of
this kind is the so-called light trapping [28]. This trans-
formation maps a state of the photon field to the vac-
uum state (since the field is massless and propagation
speed cannot be zero), while an atomic state is mapped
to a new one. Since the transformation is unitary, access
to all values of the photon-packet amplitude is required
at the point of localization of the atomic system. They
are accessed naturally as the packet propagates at the
speed of light and reaches (“enters” as a whole) the
localized atomic system. If a result valid with unit is
sought, a time interval equal to L is required (the entire
single-photon packet must “enter” the atomic system).
The resulting photon field is in the vacuum state, while
the auxiliary system is in a new state depending on the
input photon state. By the moment L, the latter state can
be identified with probability one, and its copy can be
prepared with delay L relative to the freely propagating
original packet (see Fig. 1b).

Thus, extraction of any information about one of the
orthogonal states modifies them, inducing translation
(delay) in spacetime.

It is also important for further analysis that no evo-
lution of a massless quantum field interacting with its
environment (other quantum and classical degrees of
freedom in a channel) cannot lead to “contraction” of a
state in the sense that the partial norm of the state cor-
responds to a smaller spatial domain extending beyond
the light cone as compared to free propagation (see
Fig. 1c). Normally, the interaction gives rise to a mixed
state, but the support of the density matrix in spacetime
cannot be “contracted” and “pushed” out of the light
cone (see Fig. 1c). Otherwise, information could be
transmitted by using quantum states faster than the
speed of light. Indeed, consider one of a pair of orthog-
onal states (see Fig. 1c). Alice cannot extract classical
information from a quantum state before the instant
defined by the condition that the state amplitude is cov-
ered by the past light cone. After that, classical informa-
tion can be transmitted to Bob, but not faster than the
speed of light (the partners are connected by a branch
of the light cone in Fig. 1c). (Alice and Bob are the con-
ventional names of the sender and receiver, respec-
tively, and A and B denote their locations.) If a quantum
state evolving in a channel could be “contracted” so
that the cone’s apex would lie in the spacelike region
relative to the cone with apex at point A and with a
branch passing through point B when the past light cone
contains the state, then Bob could extract classical
information from the quantum state before it would
have been transmitted at the speed of light by Alice,
because the apex of the light cone containing the “con-
tracted” quantum state extends into the spacelike
region.

With regard to cryptography, the analysis developed
above implies that the eavesdropper can neither copy a
state nor extract information about it from a noisy chan-
nel before the instants depicted in Figs. 1a and 1b. (If
AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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the delay test is passed, then Eve’s error probability
cannot be smaller than those given by expressions (31)
and (41) below.) This observation is of key importance
for security of relativistic quantum cryptography,
which remains secure irrespective of arbitrary attenua-
tion. Since the security in question relies on the relativ-
istic causality principle applied to evolution of quantum
states, the limitations dictated by relativistic causality
cannot be eliminated by any attenuation.

3. INFORMATION STATES 
AND MEASUREMENTS

Consider a scheme using multiphoton coherent states.
The information states corresponding to 0 and 1 are
defined, respectively, as orthogonal states ρ0 and ρ1 with
nonoverlapping frequency bands of equal bandwidth. Let
us show that there exist states with a given bandwidth
characterized by the highest degree of localization of spa-
tial amplitude (smallest spacetime extent). The use of a
prescribed bandwidth facilitates analysis and does not
affect the results. Polarization degrees of freedom are
ignored as unimportant here. It is essential for the analy-
sis developed below that photons are massless.

Since the relative phase of the states is not specified
in each pulse sent into the communication channel, the
channel contains a state described by the density matrix

(9)

where

(10)

(11)

Henceforth, states propagating in the same direction are
considered, since such states are used in data transmis-
sion. By virtue of (10) and (11),

(12)

where

(13)

ρ0 1, p n µ,( ) ϕ0 1,
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denotes symmetrized basis vectors and {i} means all
possible indicial permutations. This expression auto-
matically reflects the fact that photons are identical
bosons. The orthogonality condition for generalized
basis vectors is written as

(14)

The amplitudes of the orthogonal states ϕ0, 1(k) are
defined in frequency bands ∆k0, 1 of equal bandwidth. It
is assumed that

The analysis developed below makes use only of the
bandwidths, but not the absolute frequencies. The state
amplitudes are normalized to unity:

(15)

For single-mode (monochromatic) states,

In a coordinate–time representation, the amplitudes of
states propagating in the same direction depend only on
the difference τ = x – t (since photons are massless). It
holds that

(16)

(17)

The fact that the amplitudes depend only on τ = x – t
implies that, if a measurement result can be obtained at
t in the neighborhood of x, then it can be obtained with
equal probability at t ' + (x' – x) in the neighborhood of
x', because the state amplitudes propagate at the speed
of light. Since state amplitude depends on x – t, any
measurement result can be obtained with a nonzero
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probability only if the spacetime domain of nonzero
state amplitude is accessible. The probability of any
measurement result cannot be higher than the partial
norm of the states corresponding to this domain. Since
the state amplitude of a massless field depends only on
x – t, the actual method used to access the domain of
nonzero amplitude is formally irrelevant. Access can be
gained if the coordinate is held constant (a condition-
ally local instrument is used). In this case, the state is
recovered in the finite time required to reach the neigh-
borhood of a certain point, which depends on the spatial
extent of the nonzero-amplitude domain. This condi-
tion can be implemented by means of a unitary transfor-
mation that is local in space and nonlocal in time so that
the photon state is mapped to a quantum state localized
in space. Being massless, the photon field is mapped by
the transformation to the vacuum state, while a local-
ized (e.g., atomic) system is mapped to a new state (as
in experiments on light trapping).

Formally, a measurement can be performed with a
nonlocal instrument at a certain instant, since the
amplitude depends only on x – t. (The instrument is
nonlocal in the sense that it starts to interact with the
state at a certain instant in the domain of nonzero state
amplitude.) In this case, speed limitation and relativis-
tic causality dictate that the measurement is nonlocal in
space and requires a finite time to be performed, which
cannot be shorter than that required for the instanta-
neous domain of nonzero state amplitude to fall into the
past light cone. Moreover, the state belonging to the
domain at a certain instant must be mapped to another
localized state at a later instant, because photons are
massless.

In any case, even to obtain a result with probability
less than one, access is required to a subdomain where
the amplitude is not zero. Formally, the delay due to the
corresponding transformation of one state to another
can be arbitrarily long (because the field is massless). A
shorter delay implies a smaller accessible domain and a
smaller partial norm corresponding to the domain. The
next problem discussed here is the optimal (for the
eavesdropper) relations between extraction of informa-
tion about the transmitted state and the ensuing delay.
For brevity, measurements that are feasible in the sense
explained above are henceforth called measurements in
the spacetime window T.

4. RELATIONS BETWEEN STATE DELAY 
AND INFORMATION EXTRACTED 

BY THE EAVESDROPPER: 
DIRECT ATTACK ON THE KEY

In this section probabilities for distinguishing
between states are obtained as functions of delay, based
on a qualitative analysis.

Any measurement on a quantum system can be
described in terms of a set of operator-valued measures
constituting a partition of unity. The identity operator is
JOURNAL OF EXPERIMENTAL 
the direct sum of identity operators in symmetrized
n-particle subspaces. Since a pair of states defined on
frequency bands ∆k0 and ∆k1, respectively, are used
(the speed of light is c = 1), it suffices to consider parti-
tion of the identity operator in basis vectors defined on
these bands:

(18)

where operator-valued measure is defined as

(19)

(20)

The operator-valued measure  is the
probability of measurement results within the space-
time window (τ1, τ1 + dτ1…τ1, τn + dτn) for the input
density matrix. The n-photon component of the density
matrix is

(21)

In the case of n = 1 (single-photon packet correspond-
ing to state 0 or 1), the probability of obtaining a mea-
surement result defined on the entire space is

Accordingly, if only the spacetime window T1 is acces-
sible for measurement, then the probability to obtain a
corresponding result is

If an outcome is obtained, than orthogonal states are
reliably distinguished with this probability. However,
no outcome obtained in the time window T1 with the
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probability  < 1, since the outcome takes place

in the spacetime region  = (–∞, ∞) – T1, which is not
accessible to the observer. For the observer, the absence
of an outcome is an inconclusive result. In this case, the
probability of correct identification of one of two states
is 1/2, which is equivalent to that of a correct guess.

As noted above, in the case of (massless) photon
field, access to the spacetime domain of nonzero state
amplitude induces delay (translation) in spacetime.
This implies that a result can be obtained with probabil-
ity p0, 1(T1) < 1 in the spacetime window T1 if access to
a domain of certain size is gained, which leads to delay.

In the case of measurement on a multiphoton input
state represented by (9), the indistinguishability of pho-
tons implies that, in view of (21), the probability of
detection in a time window T satisfies the relation

(22)

where  is a binomial coefficient. The state indices 0
and 1 are omitted here for brevity. This relation means
that k photons can be detected in a time window, while
the remaining n – k photons cannot (formally, they are
detectable outside the accessible window T), and, since
photons are identical, the probability of such an event is

Once a frequency band is chosen for state ampli-
tudes, the next step is to determine the minimal time
window T required to detect a state with a probability
arbitrarily close to unity, i.e., the minimal delay caused
by the eavesdropper attempting to access the entire
state in a given frequency band.

For a given finite frequency band c∆k, the maximum
partial norm corresponding to a given time window T is
obtained for a state with support contained in ∆k and
with a spacetime amplitude ϕ(k) that solves the uncon-
ditional extremum value problem for the functional

(23)

One-particle amplitudes are normalized to unity:

(24)

The highest degree of localization within the time win-
dow T is reached for the states whose amplitudes are the
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eigenfunctions of the integral equation obtained by
varying the functional

(25)

The largest eigenvalue is the probability of localization
(partial norm within the time window T), and the cor-
responding eigenfunction determines the optimal form
of the state amplitude. This equation was analyzed
in [29, 30]. The eigenvalues are positive functions of
∆kT making up a decreasing sequence: 1 > λ0 > λ1 >
… > 0 (m = 0, 1, …, ∞). The first few eigenvalues were
found for several values of ∆kT in [30], and an asymp-
totic expression valid at ∆kT @ 1 for any m was derived
in [29]. Equation (25) implies that the eigenvalues
exponentially approach unity at ζ > 1. Thus, no mea-
surement result can be obtained within the spacetime
window T with a probability greater than λ0(∆kT) for a
state with support in a frequency band ∆k. The proba-
bility of detection outside the window can be reduced
to an arbitrarily small value by adjusting its width T.

In quantum cryptography, an appropriate choice of
the window guarantees that the eavesdropper will have
only an arbitrarily small amount of information about
the transmitted state outside the window. Thus, the min-
imal time window T is required to detect of one of the
orthogonal states with a probability arbitrarily close to
unity (see Eq. (25)).

Because the state amplitude is defined on the mass
surface (ϕ(k, k0) is a function of k0 = k rather than of inde-
pendent k and k0), it has a nonzero value at every point
outside any compactum [31–33]. The nonlocalizability
of states in quantum field theory is a well-established fact
(e.g., see [34] for discussion of the underlying physics).
In the present context, nonlocalizability can be demon-
strated as a corollary to the Wiener–Paley theorem [35].
If a function ϕ(k) normalized by the relation

vanishes at k ≤ 0, but not everywhere, then the admissi-
ble decay of its spacetime preimage at infinity is guar-
anteed by convergence of the integral

Hence, the amplitude ϕ(τ) cannot be even exponen-
tially decreasing (and much less vanishing outside a
compactum), because if

then the integral is divergent. However, the decrease in
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amplitude may be arbitrarily close to exponential with
any α > 0:

A similar degree of localization of photon field is feasi-
ble in the 3D case [36], even though it has been believed
for a long time (after Newton and Wigner [37]) that the
steepest possible decay in space is described by the
inverse power 7/2.

The fact that amplitude is nonlocalizable (nonvan-
ishing outside any compactum) is essentially due to rel-
ativistic causality. In particular, it was shown in [33]
that free evolution of a state amplitude localized in a
finite spatial region at an initial moment t0 results in
nonzero state amplitude in a region separated from the
initial localization domain by an arbitrarily large space-
like interval at any t > t0. This behavior is inconsistent
with relativistic causality, since it implies that informa-
tion can be transmitted faster than the speed of light
even if the probability of a measurement outcome
obtained in the domain separated from the initial local-
ization domain by a spacelike interval is less than unity.

Suppose that the eavesdropper tries to identify one
of the two orthogonal states described by (9), using a
preset time window (controlled delay) δT. The index 0
or 1 is omitted hereinafter, because identification prob-
abilities are equal for equal bandwidths corresponding
to states 0 and 1.

Since the states are orthogonal, they can be distin-
guished by detecting at least one photon within the time
window δT chosen by the eavesdropper. Note that the vac-
uum components contained in (21) and (22) carry no
information about the transmitted state (0 or 1). The total
probability minus the vacuum-state probability must be
normalized to unity, because only the probability of detec-
tion of at least one photon carries information about the
transmitted state. Since the vacuum-state probability is

the normalization condition is

(26)

A simple combinatorial analysis using expression (26)
leads to the following expression for the probability
that the states 0 and 1 are distinguished by detecting at
least one photon:

(27)

This probability corresponds to a conclusive result and
approaches unity as δT  ∞. Therefore, this probabil-
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ity exponentially approaches unity as ∆kT only if a time
window T where the state is localized almost entirely is
accessible.

Accordingly, the no-detection probability (incon-
clusive result) corresponding to delay δT is

(28)

To extend these results to the case of a classical
field, note that the probability that two orthogonal states
of electromagnetic field with nonoverlapping fre-
quency bands are distinguished (depending on δT)
approaches the classical limit as µ  ∞. In this limit,
an arbitrarily small time window (δT  0) is sufficient
for distinguishing the states almost completely; i.e., it
suffices to have access to an arbitrarily small spacetime
domain where classical signal does not vanish. In the
opposite limit (µ ! 1), the time window (delay) δT
required to distinguish the states almost completely must
correspond to a domain where the partial norm of the
squared state amplitude is close to unity.

Now, consider the measurements that must be per-
formed at the receiver end to reveal the presence of the
eavesdropper.

To ensure security of the key, it is essential that Bob
accepts only pulses with outcomes in the time window
defined by the relation

Here, tA is the instant at which the state enters the com-
munication channel, Lch is the channel length, and T is
the time window where the states are localized almost
entirely. The time (tA + Lch + T) – tA is required for a
state extending over T and propagating with the speed
of light to reach Bob completely. Henceforth, it is
assumed that tA = 0 for brevity.

Since T is uniquely related to a frequency band, the
measurements to be performed by Bob should be
restricted to ∆k0, 1, say, by filtering the signal before it
reaches a light detector. Formally, a filtered measure-
ment of this kind is described by a partition of the iden-
tity operator into operator-valued measures with sup-
ports in preset nonoverlapping frequency bands ∆k0, 1:

(29)
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where Tch denotes the time window (Lch, Lch + T) and

 = (–∞, ∞)/Tch (complementary to Tch). In this
scheme, the set of measurement outcomes can be
divided into two subsets: those in which all counts are
in the time window Tch controlled by Alice and repre-
sented by the first summand in (30) below and those in
which at least one count falls outside Tch. The pulses
resulting in outcomes of the latter type are discarded by
Bob. In this measurement scheme, filters are required to
ensure that the eavesdropper cannot use states occupy-
ing shorter intervals, i.e., those with bandwidths wider
than ∆k0, 1. Moreover, the light-detector response time
τd must satisfy the condition τd ! T to ensure represen-
tative statistics within the state localization window.
The probability that the eavesdropper identifies a bit
sent by Alice and passes the delay test performed by
Bob does not exceed

(30)

The first summand in (30) is the product of three multi-
pliers, which correspond to the absence of any count
within the eavesdropper’s time window δT, a correct
guess in the absence of any count (with probability
1/2), and a passed delay test, respectively. The last
probability is unity, because no counts occur within δT.

The second summand in (30) is the product of the
probability that at least one photon is detected in the
frequency band ∆k0 or ∆k1 within the time window δT,
the unit probability of identification when at least one
photon is counted, and the probability of passing the
delay test (i.e., to be counted by Bob within Tch). Since

the last probability does not exceed 1 – p(δT); i.e., the
highest probability that the presence of the eavesdrop-
per will not be revealed is attained if only single-photon
states are resent to Bob, rather than multiphoton ones
represented by density matrix (9). Physically, this
means that the probability of counting outside Tch is
higher for delayed multiphoton states. In particular, the
probability of passing the delay test tends to zero in the
limit of classical signal even for in the case of infinites-
imal delay, because an arbitrarily short “tail” that does
not fit into Tch will fail the test. (Note that delay is guar-
anteed by the existence of a maximum speed and by the
“tuning” of the time window to the “shortest” states
associated with the frequency band in question.)

Tch

Pr bitE bitA test τ i Tch∈∀( ) OK=∧=( )

=  PrE not detected( ) 1
2
--- 1××

+ PrE n 1 detected≥( ) 1 1 p δT( )–( )××
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Denote the highest value of probability (30) by

(31)

This value corresponds to the “shortest” states in (23)–
(25); i.e., the function p(δT) is known. Therefore, the
eavesdropper can determine the corresponding δT; i.e.,
p(δT) can henceforth be used as an independent vari-
able. (Note that it cannot exceed (31) by virtue of rela-
tivistic causality.) Moreover, this scheme does not
require collective measurement, because only orthogo-
nal states are used and the protocol is implemented in
real time, in contrast to schemes using only geometric
properties of nonorthogonal states. In the present
scheme, orthogonal states cannot be reliably distin-
guished because the eavesdropper does not actually
have enough time to access the entire state. Whereas
collective measurement may provide more information
about nonorthogonal states in nonrelativistic cryptogra-
phy (blocks, rather than individual states, are mea-
sured), no advantage over individual measurement on
each pulse is gained by the eavesdropper in relativistic
cryptography.

If the input states 0 and 1 are pure single-photon
ones, i.e.,

(32)

then the probability that the eavesdropper identifies the
transmitted state and pass the delay test at the receiver
end is

(33)

Its maximum is attained when p(δT) = 1/4. The optimal
time window δT for the eavesdropper can be found by
solving the equation

(34)

If µ = 1, then the value of δE is not very close to 9/16 =
0.5625, which would be the case if the input states were
single-photon Fock states with amplitudes ϕ0,1 defined
within nonoverlapping frequency bands of bandwidth
∆k. It should be recalled here that a finite bandwidth is
actually required to set a lower limit on the spacetime
support of state amplitude. Moreover, the protocol does
not dictate that Alice must prepare the “shortest” states
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within the preset frequency band, but Bob must accept
only measurements resulting in counts fitting in the
time window (measured from the leading front) corre-
sponding to the “shortest” states.

5. PHOTON-NUMBER SPLITTING ATTACK
In the direct attack on the key analyzed above, the

eavesdropper directly measures the transmitted state. In
a photon-number splitting (PNS) attack dealing with a
multiphoton state, the eavesdropper “splits” the pho-
tons into two parts by means of a beamsplitter (see
Fig. 2) and measures the states of the “diverted” pho-
tons. The beamsplitter is characterized by the splitting
ratio η/(1 – η).

The output of a beamsplitter is

(35)

(36)

(37)

It is essential for further analysis that the beamsplitter
output states measured by Eve (conventional name of the
eavesdropper) and Bob are entangled. By using (35)–
(37), the density matrix of an entangled state can be
expressed as

(38)
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Because of entanglement, the measurements per-
formed by Eve and Bob are correlated, as in the classi-
cal Einstein–Podolsky–Rosen paradox [38]. For the
present analysis, it is important that the photon num-
bers in Eve’s and Bob’s channels are entangled. Since
Bob accepts only measurements resulting in photon
counts, entanglement implies that Eve gains reliable
information about the transmitted state when she
records a simultaneous count. The probability of simul-
taneous counts recorded by Bob and Eve is

(39)

where the operator-valued measure containing only
summands with n, n' ≥ 1 corresponds to counting at
least one photon by Eve and Bob simultaneously. The
eavesdropper identifies the transmitted states and
remains unnoticed with probability (39). Note that pho-
ton-splitting measurements do not induce any delay at
the receiver end. The operator-valued measures in (29)
associated with measurements in a finite time window
can be replaced with identity operators, because state
splitting does not induce any delay and only exponen-
tially small “tails” of states fall outside the window T.

Each n-photon component of the density matrix cor-
responds to n photons counted with probability ηn in
Eve’s beamsplitter channel. Since these outcomes do
not result in any counts at Bob’s end, this component
does not contribute to the total probability. Similarly,
each n-photon component of the density matrix corre-
sponds to n photons counted with probability (1 – η)n

in Bob’s beamsplitter channel. Since these outcomes
are accepted by Bob, but Eve records no counts in this
case, the corresponding probability that the transmitted
state is identified by Eve is the probability 1/2 of a cor-
rect guess.

The fact that the vacuum components of states does
not contribute to counts recorded at Eve’s or Bob’s end
should be taken into account in calculating the total
probability, as done in the preceding section.

Finally, the probability that the eavesdropper per-
forming a PNS attack identifies the transmitted states
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and remains unnoticed is expressed as

(40)

The first summand in (40) corresponds to the case when
all of the n photons in each n-photon component of the
density matrix are counted by Bob. The probability that
Eve distinguishes between states is 1/2 (the multiplier
in the first summand). The second summand represents
simultaneous photon counting by Eve and Bob, in
which case the probability of identification is unity.

In this attack, the maximum value

(41)

for a preset photon number µ depends on the beamsplit-
ter’s splitting ratio η.

6. MAXIMUM 

The maximum probability  that the eavesdrop-
per measures each bit transmitted by Alice and passes
the delay test is plotted in Fig. 3a as a function of p(δT)
and µ. According to argumentation presented above
(see Fig. 1c), attenuation in a communication channel
cannot increase the probability of successful detection
by the eavesdropper within a preset time window.

If the photon number is as small as µ = 0.1, then

 = 0.565 (see Table 1 and Fig. 3a), which exceeds
the probability of a correct guess only by 0.065. For
convenience, the analysis presented below deals with

the eavesdropper’s error probability δE = 1 – ,

Pr bitE bitA B, n∧ 1 detected by B≥=( )

=  
1
2
---e µη– e µ––

1 e µ––
---------------------- 1 e µη– e µ 1 η–( )– 2e µ––+

1 e µ––
--------------------------------------------------– 

  .+

δE
OK

=  maxη Pr bitE bitA B, n∧ 1 detected by B≥=( ){ }

δE
OK

δE
OK

δE
OK

δE
OK
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which is interpreted as follows. Since Bob accepts only
pulses received within the preset time window, δE is the
probability that the eavesdropper fails to identify the
bits that pass the test and are accepted by Bob. If µ = 5,
then δE = 30%. This means that the eavesdropper cor-
rectly detects about 70% of the bits that are accepted by
the legitimate users. If the length N of the string of bits
adopted by Alice and Bob is sufficiently large, then
0.3N encrypted bits can be extracted (see below).

When the mean photon number is large, 
approaches unity; i.e., δE  0 and the delay also tends
to zero. Even though the partial norm p(δT) approaches
zero (p(δT) = 0.04 if µ = 100), its small value is com-
pensated for by the large number of photons that can be
counted in the time window δT. When µ @ 1, the clas-
sical limit is approached and two states of electromag-
netic field with nonoverlapping frequency bands (“col-
ors”) can be reliably identified almost instantly.

δE
OK

Table 1

µ p(δT)

0.1 0.25 0.565

0.3 0.25 0.569

1.0 0.25 0.587

3.0 0.23 0.642

5.0 0.2 0.691

10.0 0.14 0.771

20.0 0.11 0.847

50.0 0.06 0.918

100.0 0.04 0.952

δE
OK
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Since coherent states with µ = 1–3 (associated with
relatively large δE) can be practically implemented,
faint laser pulses with µ = 0.1–0.3 (the fraction of
empty pulses is ≈90%) are not required. When µ = 3,
empty pulses are scarce (their fraction is 5%) and the
key generation rate is higher by a factor of 10.

Since the probability δE depends only on the dimen-
sionless parameter ∆kT, any bandwidth can be com-
bined with a time window sufficiently wide to “con-
tain” the entire photon state. The value of δE depends
only on the structure of a state, reaching a maximum for
a pure single-photon state propagating with the speed
of light. A single-photon packet corresponds to the
quantum relativistic limit, in which case δE can be inter-
preted as a “universal” constant, because it is derived by
using only the normalization of state amplitude and the
fact of propagation at the speed of light.

The probability  associated with PNS attack is
plotted in Fig. 3b as a function of the beamsplitter
parameter η and the mean photon number µ. Table 2

lists the maximum  corresponding to the optimal η.

When µ = 0.1, the probability that the eavesdropper
identifies a state and remains unnoticed is close to 1/2

(  = 0.502). This result is qualitatively clear. Indeed,
the state corresponding to µ = 0.1 (minus the vacuum
component) is typically a single photon, and the proba-
bilities of two or more photons are much lower. There-
fore, a single-photon state can be detected either in
Eve’s or in Bob’s beamsplitter output channel, but can
never be detected in both channels simultaneously.

When µ > 10, the classical limit is approached, and
the probability of simultaneous counts recorded by Eve
and Bob is close to unity for η = 1/2.

7. KEY SECURITY

The principal difficulty in proving the unconditional
security of nonrelativistic quantum cryptography
(based on complete indistinguishability of nonorthogo-
nal states) arises from the fact that the aforementioned
protocols are formulated as “exchange” protocols in a
Hilbert space. When a protocol is formulated by using
only the properties of the state space, it is necessary to

δE
OK

δE
OK

δE
OK

Table 2

µ η

0.1 0.0001 0.502

1 0.20 0.515

3.0 0.40 0.746

5.0 0.45 0.893

10.0 0.5 0.997

δE
OK
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prove its stability with respect to collective measure-
ment, and this is the most difficult task. To date, several
proofs of security have been proposed for various pro-
tocols [21, 22, 39, 40].

Transmission of information always involves prepa-
ration of the quantum system to be employed as an
information carrier, transfer of its copy to a remote user
over a communication channel, and subsequent mea-
surement of its state. In relativistic quantum cryptogra-
phy, there is no need to take into account collective
measurement. Moreover, the error (delay) induced by
the eavesdropper can be separated from those due to
channel noise (e.g., dark counts). In the nonrelativistic
case, even partial discrimination between these errors is
impossible.

A criterion for key security can loosely be stated as
follows: Alice and Bob must use identical copies of a
key, and it must be known only to them. To state it for-
mally, suppose that both Alice and Bob have a string of
m bits obtained by implementing a protocol and adopt
it as a key. Then, the key must satisfy the following
requirements,

1. Identity. The probability that the ith bits bA(i) and
bB(i) in the m-bit strings adopted as keys by Alice and
Bob, respectively, are different must be exponentially
small for some preset values of security parameters
M, ε1:

(42)

The mutual information between Alice’s and Bob’s
m-bit strings is

(43)

2. Security. The probability that Eve knows every
bit in the key exceeds by an exponentially small quan-
tity the probability 2–m of a correct guess of the m-bit
string adopted by Alice. (The lowest probability 1/2
corresponds to a correct guess of a bit.) Equivalently,
the probability that Eve knows any particular bit in the
string adopted as a key exceeds 1/2 by an exponentially
small quantity:

(44)

This implies that Eve’s information about bA(m) and
bB(m) adopted by the legitimate users is exponentially
small:

(45)

where the pairs ε1, η1 and ε2, η2 may be mutually inde-
pendent. The string of bits adopted as a key should not
be interpreted as the bits in the pulse sent by Alice.

ε1 0 M, Pr bA i( ) bB i( )≠{ }∃> e M– ε1.≤ ≤∀

I A; B( ) m 2 M'– .–≥

ε2 0 η2 ζ ,,∃>∀

Pr bA i( ) bE i( )={ } 1
2
--- e

η2–
, e

η2–
ε2.≤+≤

I A; E( ) e
η2–

ε2, I B; E( ) e
η2–

ε2,≤ ≤ ≤ ≤
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Each bit in the key is a function of the set of bits in
Alice’s pulse.

Now, let us formulate a protocol for secure key gen-
eration. (Recall that the length of the quantum commu-
nication channel must be known.) Note that a protocol
may or may not require synchronization of Alice’s and
Bob’s clocks.

1. Alice and Bob publicly choose states to be
employed. A bandwidth ∆k is set (which corresponds to
a certain time window T since the channel length is
known). A mean photon number µ is chosen, which
automatically defines δE. An N @ 1 is chosen. (The pro-
tocol contains 2N bits.)

2. Alice generates a random string bi of bits of length
i = 1, …, 2N.

3. Bob performs measurements described by parti-
tion of unity (21) and publicly announces the fact of
recording a count.

4. After all states prepared by Alice have been sent,
Bob publishes the indices of the pulses for which mea-
surement outcomes were obtained in the time windows
(ti + Lch, ti + Lch + T), i.e., without delay. (Here, ti is the
ith instant at which the pulse was sent.) The pulses with
outcomes outside the time windows are discarded. Sup-
pose that the number of outcomes that pass the delay
test is 2n.

5. The partners randomly choose substrings of n out-
comes out of the 2n retained ones and publish the cor-
responding bit values.

6. Using a public channel, Alice and Bob compare
their respective published substrings bit by bit and eval-
uate the error rate. Denote the number of equal bit val-
ues by nOK and the number of unequal bit values by

 (these numbers are equal). The error rate is evalu-

ated as δAB = . When n is sufficiently large, the
error rate for the unpublished substrings is exponen-
tially close to δAB.

7. If δAB > δE, then the protocol is aborted, because
the key cannot be extracted.

8. Alice and Bob use the classical error correction
code [n, k, d] to correct t = δABn errors in the unpub-
lished n-bit substrings. In this code, the number of code
words is 2k, and the minimal distance between the code
words is either d > 2δABn + 1 (for linear code) or d >
2t + 1 (for random linear code). To do this, Alice
announces v i test strings of the code (i = 1, …, r, r =
n − k). Alice also publishes r test parity bits,

(nA and nB denote Alice’s and Bob’s unpublished sub-
strings, respectively; they contain about δABn unequal
bits with probability close to unity).

9. Knowing the correct substring parity, Bob cor-
rects errors in his string. As a result, Alice’s and Bob’s

n
OK

n
OK

/n

parityi v inA=
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have identical strings with probability close to one if n
is sufficiently large.

10. The condition δAB < δE guarantees that Eve has
an exponentially small amount of information about the
key after the correction of errors is performed by Alice
and Bob by using a public channel (see below). Thus,
the application of the error correction code ensures the
identity and security of the key.

If 2n is sufficiently large (see step 4), then the eval-
uation of the error rate for the randomly chosen n-bit
substring of the total string of length n guarantees an
arbitrarily close-to-unity value of the probability that
the number of errors in the n bits that have not been
published by Alice and Bob is

(46)

This makes it possible to use the linear error correction
code [n, k, d] with d ≥ 2t + 1. The length of the final key
obtained by using this code does not exceed

where H(x) is the binary entropy function. This is a nec-
essary condition for correcting errors characterized by
the probability δAB in a binary symmetrical setup. The
code can be used to correct (d – 1)/2 bit values with a
probability arbitrarily close to unity [41–43]. This
result corresponds to the maximum Shannon informa-
tion [41] for random linear codes.

For the best error-correction codes [n, r, d] with
d/n ≥ δAB, the value of the “code speed” R = k/n does
not fall below the Varshamov–Hilbert boundary [43]:

(47)

(Shannon limit). However, the estimate that follows
from the Varshamov–Hilbert inequality is more con-
structive. There exist linear regular (nonrandom) codes
for which this boundary is achieved, in contrast to the
Shannon limit. The latter can be achieved only for ran-
dom codes and is essentially a theorem of existence,
rather than a constructive limit: no regular codes are
known for which this boundary can be achieved [41, 43].

The protocol is executed as long as the condition
δAB < δE is satisfied. The code used by Alice and Bob
must be optimal in that it must correct all error strings
with probabilities lower than δAB, but fail to correct δEn
errors.

If δAB < δE, then there exists a random error-correc-
tion code such that

(48)

which will correct Alice’s and Bob’s errors with a prob-
ability arbitrarily close to unity (provided that n is suf-
ficiently large to ensure reliability), but will not correct
Eve’s errors. As a result, Alice and Bob will retain a

t nδAB.=

k n 1 H δAB( )–( ),<

H x( ) x x 1 x–( ) 1 x–( ),log–log–=

k n 1 H
d
n
--- 

 – 
 ≥

d/n δAB, but d/n δE,<≥
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nearly equal number nR of identical bits if n @ 1 such
that

(49)

where C(x) is the capacity of the classical symmetric
binary communication channel and R is the “speed” of
the error-correction code.

After Alice and Bob have corrected their errors by
using a public communication channel, the probability

that the strings

are different is

(50)

where

(51)

Thus, identity conditions (42) and (43) for the keys
possessed by the legitimate partners are satisfied. It
remains to show that the key remains secure, i.e., the
probability that Eve knows the corrected string expo-
nentially decreases with increasing n.

When the condition δAB < δE is satisfied, Eve deals
with a binary symmetrical setup [42], for which the
data rate (measured in bits per pulse) exceeds the
capacity C(δE) of the channel connecting her with
Alice. When δAB < δE, she perceives error correction as
data transmission with a data rate higher than the capac-
ity of the channel connecting her with Alice, whereas
the capacity C(δAB) of the channel connecting the legit-
imate partners exceeds C(δE). Error correction per-
formed by using codes is perceived as data transmission
with a data rate R < C(δAB), which exceeds the capacity
of the channel connecting Eve with the legitimate part-
ners (R > C(δE)).

When R > C(δE), the following theorem on the aver-
age probability of error per bit is valid [44].

Theorem. If a discrete memoryless channel has a
capacity C and R > C for any (n, R)-code, then the error
probability Pe is such that

(52)

nR nC δAB( ), C δAB( )< 1 H δAB( ),–=

Pr bA i( ){ }{ } bB i( ){ }≠
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0 z 1≤ ≤
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Pe 1 4A

n R C–( )2
------------------------ n R C–( )

2
---------------------– 

  ,exp––≥
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where A is a positive constant depending on the chan-
nel characteristics and independent of R and n.

This bound can be improved [42]: for any memory-
less channel,

(53)

where

(54)

and

(55)

For a discrete binary symmetric channel,

(56)

C = C(δE) and R ≈ C(δAB) in (52)–(55). Thus,

(57)

(58)

The function g(s) is expressed as

(59)

and the exponent in (53) is on the order of n(R – C).
As a result, security criterion (44), (45) is satisfied:

Eve has an exponentially small amount of information
about the key:

(60)

Note that the BB84 protocol [45] guarantees key
security in the Shannon limit only if the error rate is
lower than 11% [20, 21]. This limit is due to the fact that
phase errors arising in measurements performed in dif-
ferent bases must be corrected, as well as bit flips [21].
Accordingly, the limit is determined by solving the
equation

(61)
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Even though Eve’s information about the bits
retained by Alice and Bob after performing the error
correction has been performed tends to zero for n @ 1,
a privacy amplification procedure can be used to
enhance security.

Narrow-
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8. QUANTUM CRYPTOSYSTEM 
WITH CLOCK SYNCHRONIZATION 

AT THE SENDER AND RECEIVER ENDS
The cryptosystem described in this section requires

synchronization of the clocks used at the sender and
receiver ends, i.e., precise timing of each pulse.

The other scheme discussed below does not require
synchronization. It suffices that two identical clocks
(pulse generators) are started independently at the
sender and receiver ends and the communication chan-
nel length is not required either.

Suppose that the communication channel length Lch
is known, and the clocks used by the partners are syn-
chronized (say, by using a public classical channel).

The system is schematized in Fig. 4a. The time evo-
lution of states is illustrated by Fig. 5a, where pulses are
depicted after they have been filtered. The spectra of the
laser pulses emitted at the sender end are centered at
different wavelengths λ1 and λ2 and do not overlap. The
execution of the protocol is started at a certain instant
by randomly triggering one of the lasers. The laser
emits a pulse with a wide bandwidth ∆ω1 and a short
duration ∆t ~ 1/∆ω1. The triggering instant is subse-
quently announced by using a public classical commu-
t
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nication channel. The clocks are synchronized within
∆t. Each filter (see Fig. 4a) reduces the broad laser
spectrum to a narrow frequency band of width ∆k. If the
laser power corresponding to the starting spectral width
∆ω is known and controlled, then the power corre-
sponding to ∆k can be evaluated to find the mean num-
ber µ of filtered photons injected into the communica-
tion channel. The prism shown in Fig. 4 is required to
deflect pulses centered at different wavelengths.

The narrow frequency band ∆k is associated with
the spacetime interval ∆T ~ 1/∆k required for a pulse of
length c∆T to enter the communication channel
entirely. The time when the leading front enters the
channel is known within ∆t. Accordingly, the duration
of a pulse with a narrow bandwidth ∆k must be much
greater than error ∆t of synchronization of the clocks
used at the sender and receiver ends. The channel
length, pulse length ∆T, and the instant of leading-front
entry can be used to calculate the time required for a
pulse to reach the receiver end. The signals received by
the avalanche photodiodes (APDs) at the receiver end
pass through filters identical to those used at the sender
end to ensure that pulses shorter than those correspond-
ing to the bandwidth ∆k do not reach the APDs. The
APDs operate in the so-called Geiger mode. The APD
recovery time τD must be such that τD ! ∆T. Bob
accepts only pulses that trigger the APDs in the time
window [Lch, Lch + ∆T] (see Fig. 5a). The emission time
for the leading front is tA = 0 (see Fig. 5a). Filtering at
the receiver end is required to rule out the possibility of
JOURNAL OF EXPERIMENTAL
sending pulses with shorter duration (wider bandwidth)
by the eavesdropper, which would compensate for the
delay induced by measuring a pulse of duration T.

9. DOUBLE-PASS QUANTUM CRYPTOSYSTEM 
WITHOUT CLOCK SYNCHRONIZATION 
AT THE SENDER AND RECEIVER ENDS

The double-pass scheme shown in Fig. 4b differs
from that described above in that it does not require
synchronization. It suffices to know the length of the
communication channel. States are prepared as in the
other scheme. The channel length and the moment of
pulse emission can be used to calculate the moment
when the pulse returns to Alice. Thus, Alice can use her
knowledge of the time window for the returning pulse
to reveal Eve’s presence, as illustrated by Fig. 5b.

Operating at the reflector end, Bob randomly opens
one of the reflector channels, keeping the other channel
shut. Alice uses the open channel to announce only the
pulses that have returned to her and detected in the
respective correct time windows. If the channel opened
by Bob does not match the pulse sent by Alice, then the
pulse is discarded, because it will not return to Alice. If
Bob opens the right channel and then Alice announces
that the pulse has been detected in the correct time win-
dow, then both partners know the transmitted bit.

If the leading front of the pulse enters the channel at
a moment tA, then Alice must accept only counts that fit
in the time window (tA + 2Lch + tB delay, tA + 2Lch +
 AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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tB delay + T), where tB delay is a randomly varied delay
introduced by Bob and subsequently specified for each
pulse by using an open channel (see Fig. 5b). The use of
a random delay is essential for security of the protocol.

Finally, let us discuss a prototype system for key
distribution to an orbiting object (see Fig. 6, where
tracking and positioning schemes are not shown to sim-
plify presentation).

Technically, it is easier to construct “extended”
states from short-duration pulses than prepare states
with narrow bandwidths. This is done by combining an
arm of an unbalanced interferometer with two beam-
splitters. Figure 6a shows a double-pass scheme with-
out clock synchronization at the two ends. “Short”
states with pulse durations on the order of 1 ns are cre-
ated by using two lasers with different wavelengths that
match atmospheric windows, such as 850 and 1000 nm,
which are characterized by transmittance of 74 to 75%.
The triggering instant for one of the lasers is measured
up to the pulse duration (say, 1 ns). The emitted pulse
enters an arm of an unbalanced interferometer with a
path difference greater than the length of the input pulse
(the pulse does not interfere with itself). The output is
the superposition of two “short” states with separation
(output length) greater than the error in measuring the
distance between the ground-based and orbiting objects
(see Fig. 6c). After the pulse is focused by means of a
telescopic system, it is sent to the orbiting object. The
pulse is received by the telescopic system at the
receiver end (see Fig. 6b) and directed to a piezoelectri-
cally controlled mirror and reflectors. One of the two
mirror positions is randomly set and is independent of
the sender parameters. In this scheme, a random delay
is also required at Bob’s end and the delay time is
announced by Bob by using a public channel after a
string of bits has been transmitted. If the emitted state
characterized by λ1 matches the reflector position (set
to reflect a state characterized by λ1), then the state
returns to the sender end. Otherwise, the pulse is empty
and the state does not return to the sender end. The posi-
tion of the controlled reflector used at the sender end
depends on the transmitted state. After the state with λ1
has returned, the reflector position is such that the pulse
is directed to an APD tuned to λ1. The pulse consists of
three “spikes” (not shown in Fig. 6b) separated by the
path difference between the interferometer arms, the
amplitude of the central spike being twice as large as
those of the leading and trailing “spikes.” The APD ran-
domly fires when triggered by one of the “spikes,” and
the triggering instant is recorded.

Procedures analogous to those described above are
used to extract a key from the transmitted string and
detect possible eavesdropping attempts.

An “extended” state consisting of two “halves” is
advantageous as compared to a narrow-bandwidth
state, because it is easier to implement in practice and
to detect with an APD, which must be kept under
reverse bias only during the short intervals when the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
“halves” reach the APD, so that the dark count rate is
substantially reduced.

Let us perform some numerical estimates. For a sat-
ellite orbit radius Ls ≈ 1000 km = 108 cm, a satellite
speed v s ≈ 5 km/s = 5 × 105 cm/s, and a speed of light
c = 3 × 1010 cm/s, the error in measuring the distance
between the ground-based object and the satellite by
means of a classical signal is estimated as the shift in
the satellite’s position over the time interval required
for the probe signal to reach the satellite:

Therefore, the length of the “extended” state consisting
of two “halves” must be greater than 17 m. Suppose
that L = 300 m = 3 × 104 cm. The shift is the satellite’s
position required for both “halves” to be reflected by
Bob’s reflectors is

Therefore, no additional adjustment of the reflector is
required during the reflection time if the diameter of the
telescopic antenna is about 10 cm. The distance
between the orbiting and ground-based objects can be
measured by a third party with the use of GPS or the
Russian GLONASS system.

Since this cryptosystem makes use of orthogonal
states nonoverlapping spectra, the scheme can be gen-
eralized by introducing frequency multiplexing, in
which case the key generation rate is proportional to the
number of channels in the atmospheric window.

10. CONCLUSIONS
Attenuation in quantum communication channels

presents the principal difficulty for security of nonrela-
tivistic quantum cryptography schemes, which relies on
complete indistinguishability of nonorthogonal states.
Nonrelativistic key distribution protocols cannot guar-
antee unconditional security (dictated only by the laws
of quantum mechanics) if attenuation exceeds some
critical level (which cannot be accurately evaluated).

An analysis of quantum cryptographic protocols
and the proofs of their security shows that security
problems arise when the eavesdropper can “replace”
the available attenuating channel with a channel char-
acterized by lower attenuation. It is important that this
can be done in both fiber-optic and free-space systems
without installing, say, a new cable. The eavesdropper
can follow a simple strategy of channel “replacement”
equivalent to laying out a new fiber, which requires tap-
ping into the channel at two points located near the
sender and receiver ends, where the detector and trans-
mitter are installed, respectively. In this setting, attenu-
ation in the links between the eavesdropper and the
legitimate partners can be neglected. Near the sender,

Lsv s

c
-----------

108 5 105××
3 1010×

------------------------------- 1.7 103 cm×≈ 17 m.= =

Lv s

c
--------- 3 104 5 105×××

3 1010×
---------------------------------------- 5 10 1–  cm× 5 mm.= = =
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the eavesdropper performs measurements analogous to
those described in Section 2. If a conclusive result (0 or
1) is obtained, then the eavesdropper sends this infor-
mation to tapping location near the receiver over a pub-
lic classical channel, which can always be treated as
ideal. Another eavesdropper uses the information
received over the classical channel to prepare a quan-
tum state (|ϕ0〉  or |ϕ1〉) and sends it to the legitimate
receiver over the fiber. If an inconclusive result “?” is
obtained (see (3)), then no quantum state is sent to the
legitimate receiver from the nearest tapping location.
Since the quantum channel is attenuating, the presence
of the eavesdropper cannot be revealed if the channel
length exceeds a certain critical value. It is obvious that
a similar strategy can be used in free-space cryptogra-
phy without improving any properties of the transmit-
ting medium (atmosphere).

Another principal difficulty is the unavailability of
single-photon sources. Even though pure single-photon
states are not required, the measurement procedure
used at the receiver end must identify a pair of mul-
tiphoton states as a whole. Currently, the only suitable
method is homodyne detection, which can be repre-
sented as projection onto a coherent state. However,
this method is very complicated, and the cryptographic
stability of key distribution protocols using multipho-
ton states is poorly studied. When a standard avalanche
photodiode is employed as a detector, the use of a sin-
gle-photon source is essential. Even if ideal single-pho-
ton sources were available (some progress in construc-
tion of their laboratory prototypes was reported
in [16]), the problems due to attenuation would not be
eliminated.

It is argued here that the attenuation problem in
quantum cryptosystems relying only on geometric
properties (complete indistinguishability) of nonor-
thogonal quantum states cannot be solved by using any
tricks or complicated protocols. Additional fundamen-
tal laws must be invoked to ensure security for any
attenuation. The relativistic causality principle provides
the desired solution. The limitations for measurability
and data rate imposed by special relativity theory
remain valid at any level of attenuation. Otherwise, it
would be possible to exchange classical information
between remote observers faster than at the speed of
light.

Additional fundamental physical principles are
invoked to formulate a new approach and ensure uncon-
ditional security of quantum cryptosystems by elimi-
nating the aforementioned difficulties.

Thus, relativistic quantum cryptosystems remain
unconditionally secure: first, any attenuation in a com-
munication channel only reduces the key generation
rate without affecting its security; second, the source
may not generate pure single-photon states and a non-
zero single-photon probability will suffice. The scheme
remains secure even if the contribution of a single-pho-
ton component is arbitrarily small. This formally
JOURNAL OF EXPERIMENTAL
implies that a state may be characterized by an arbi-
trarily large mean photon number. The single-photon
probability affects only the key generation rate, but not
security.

This work was supported by Academy of Cryptog-
raphy and the Russian Foundation for Basic Research,
project no. 02-02-16289.
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Abstract—The method of cascade equations is used for studying the dynamics of the energy loss process
(struggling) during passage of particles through a substance. Special attention is paid to multiphoton processes
of emission of relativistic electrons in amorphous media and in oriented crystals. New analytic solutions to cas-
cade equations are obtained and a method is developed for solving these equations, which makes it possible to
express the results in terms of rapidly converging integrals. It is shown that the relatively simple Landau equa-
tion for the energy loss distribution function can be used for analyzing processes of energy loss commensurate
with the initial energy of particles. The experimental data for 150-GeV electrons in oriented crystals are thor-
oughly analyzed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

An ultrarelativistic electron in a medium or in an
external field can emit photons with an energy ω com-
mensurate with the initial electron energy E0. In this
case, such quantities as mean radiation loss 〈∆E〉  or
even mean square fluctuation 〈(∆E)2〉  fail to provide a
correct pattern of energy loss due to a strong electron
energy spread (struggling) at the output. Under these
conditions, the energy loss distribution function p(y, t)
is required, where y is the energy loss and t is the time.
This problem was formulated in such a form long ago
by Bethe and Heitler in their pioneering work [1], in
which simple but rather approximate expressions for
p(y, t) were derived. Another important case concerns
ionization energy loss in relatively thin targets, when
the energy loss is much smaller than the beam energy.
Landau [2] proved that distribution p(y, t) in this case
can be determined from an integral equation leading to
a standard distribution function. The problem is formu-
lated as follows: knowing the differential probability of
interaction over an infinitely short interval of time (path
length) ν(y)dt, find the probability p(y, t) corresponding
to a finite time interval. The Landau solution corre-
sponds to the Rutherford differential cross section of
energy loss per unit length, when ν(y) ~ 1/y2. In this
case, the limitation on small energy loss (for y  0)
was introduced.

In applications to radiation problems, ν(y) is the
emission probability per unit time. In the case of
bremsstrahlung in an amorphous medium, this quantity
is ν = σBHNc, where σBH is the Bethe–Heitler cross sec-
tion [1], N is the number of atoms of the media per unit
volume, and c is the velocity of light. However, the
value of ν for radiation processes can not always be
1063-7761/04/9904- $26.00 © 20690
defined in this way. The classical formulas, which are
spectral–angular characteristics of radiation, are func-
tionals of the electron trajectory and determine the
characteristics of radiation over the entire time of inter-
action rather than per unit path length. Schwinger [3]
derived the emission probabilities per unit time; how-
ever, the corresponding expressions for each instant
depend on the past history and future of an electron;
consequently, in the context being discussed, such an
approach is applicable only in the constant field
approximation (CFA), in which the formulas describ-
ing emission can be reduced to familiar expressions for
synchrotron radiation (or their semiclassical generali-
zations). In this connection, the approach developed
in [4] appears promising, since it makes it possible to
express the characteristics of radiation in a nonuniform
external field in terms of local interaction parameters
(i.e., the field potential and its derivatives) rather than in
terms of the trajectory. Nevertheless, we will confine
our analysis of multiphoton processes of energy loss by
radiation in oriented crystals to the CFA, assuming that
the mean free pass l ≈ v /ν between consecutive emis-
sion events exceeds the radiation formation length (v  is
the electron velocity that approximately equals the
velocity of light).

Lindhard and Nielsen [5, 6] thoroughly analyzed the
main properties of integral equations for distribution
function p(y, t) and obtained analytic solutions for a
number of important cases. In particular, they consid-
ered certain types of exponential cross sections with
screening. Lindhard [7] developed an approach for
obtaining an approximate solution to the Landau–
Vavilov equations [8] with an error smaller than 2% in
the second approximation. We present here a number of
004 MAIK “Nauka/Interperiodica”
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new analytic solutions for p(y, t), consider their applica-
tions to the problems of emission of electrons with
energies 150–240 GeV in oriented crystals, and com-
pare the results with the experimental data [9–12]. It is
shown that a relatively simple Landau equation can be
useful in the case when it seems to be inapplicable (i.e.,
when y ~ E0).

Another aspect of the problem is the study of the
multiphoton nature of radiation. Since all photons emit-
ted by an electron arrive at a detector almost simulta-
neously and are indistinguishable, information on the
initial one-photon radiation cross sections cannot be
obtained from direct measurements. Nevertheless, we
will show that the probabilities of processes and distri-
bution functions for measurable quantities can be cal-
culated.

Baier and Katkov [13] have recently studied in
detail the multiphoton nature of radiation and its influ-
ence on the spectra being measured; in particular, an
important case of bremsstrahlung in an amorphous
medium was considered. Multiphoton processes
accompanying the passage of electrons through ori-
ented crystals were studied in detail by numerical sim-
ulation methods [14–19]. Some aspects of struggling
(energy loss) were considered in [20]. The effect of dis-
tortion of the measured emission spectra in the case of
channeling was studied in [21] for photons with ener-
gies much smaller than the electron energy. However,
we propose an approach based on cascade-type equa-
tions. The results are applicable for studying the emis-
sion of hard photons as well as ionization energy loss.
Some important probabilistic and mathematical aspects
of the problems considered below are described in [22].
Here, we give new convenient representations of some
special functions that play an important role in prob-
lems of this type.

2. POISSON-TYPE ENERGY LOSS PROCESS

We will apply the term Poisson-type processes to
processes in which the statistics of individual events of
interaction accompanied by energy loss for an electron
passing through a medium can be described by the
Poisson distribution. Our analysis is based on the solu-
tion of integral equations of motion determining the
time evolution of energy loss distribution function
p(y, t), where spatial variable y characterizes the energy
loss. This is not necessarily the energy lost in the pro-
cess, but a quantity that is in one-to-one correspon-
dence with this energy. This problem is formulated in
general form in [5, 6], where analytic solutions are
obtained for a number of important cases. It will be
shown below that an effective procedure for obtaining
a wide class of solutions to the integral equations of
motion can be constructed and new analytic solutions
will be given for a practically important case of the
exponential type of differential interaction cross sec-
tions with screening.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
2.1. Basic Equation of Motion 

The integral equation describing the evolution of the
energy loss distribution function was introduced by
Landau [2] in the form

(2.1)

where p(y – µ, t) = 0 for µ > y and the kernel ν(µ)dµ is
independent of y and t and is equal to the cross section
of interaction per unit time, which leads to a decrease in
the particle energy. This means that quantity ν(y)dydt
can be treated as the differential probability of interac-
tion with a preset change in parameter y, referred to an
infinitely small time interval dt, while distribution func-
tion p(y, t) is the probability density corresponding to a
finite time interval. In Eq. (2.1), we assume that the
energy loss is much smaller than the initial energy of
the particle. However, this circumstance is immaterial
for further analysis. Distribution p(y, t) is normalized,

(2.2)

and satisfies the initial condition p(y, t = 0) = δ(y),
where

(2.3)

The differential cross sections of the equations describ-
ing energy degradation satisfy this condition in contrast
to equations describing, for example, processes of the
type of multiple scattering.

It will be shown below that relatively simple equa-
tion (2.1) permits generalizations that make it possible
to analyze a wide class of much more complicated
equations. We will distinguish between two types of
differential cross sections ν(y) with finite and diverging
values of the total cross section. The first type of cross
sections mainly corresponds to processes of energy loss
by emission of hard photons, while the second type cor-
responds to ionization losses in a substance.

Let the total interaction cross section be finite,

(2.4)

In this case, we can introduce a function g(y), such that
ν(y) = ν0g(y) and normalized to unity,

(2.5)

∂ p y t,( )
∂t

------------------ p y µ– t,( ) p y t,( )–[ ]ν µ( ) µ,d

0

∞

∫=

p y t,( ) yd

0

∞

∫ 1,=

ν y( )
ν y( ), y 0>
0, y 0.<




=

ν y( ) yd

0

∞

∫ ν0.=

g y( ) yd

0

∞

∫ 1.=
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Then we can write Eq. (2.1) in the form

(2.6)

where the time variable ξ = ν0t has been introduced.

In the case considered here, total cross section ν0 for
an individual interaction is a time-independent con-
stant. Consequently, we assume that the distribution
over individual events of interaction is a Poisson distri-
bution; i.e., we assume that the probability that exactly
m interactions occur during a finite time interval t is
determined by the Poisson distribution Pm(ξ). In this
case, quantity ξ = ν0t has the meaning of the mean num-
ber of interaction events during time t, which lead to
discrete events of energy loss. After the occurrence of
m events, the value of variable y becomes y = y1 + y2 +
… + ym . We introduce the probability density g(m)(y) for
the fact that, after m interactions, a finite value of y
belongs to the interval (y, y + dy). Obviously,
g(1)(y) = g(y).

It can be verified by direct substitution that the solu-
tion to Eq. (2.6) under the above initial condition has
the form

(2.7)

where Pm(ξ) is the Poisson distribution,

(2.8)

Thus, for Poisson-type processes, the temporal
(depending on ξ) and spectral (depending on y) parts in
Eq. (2.7) can be described independently.

Functions g(m)(y) in Eq. (2.7) are normalized to unity
and satisfy the recurrence relations 

(2.9)

where g(0)(y) = δ(y) and g(1)(y) = δ(y).
Partial probability distributions of type (2.9) can be

calculated using the Fourier transformation,

(2.10)

where

(2.11)

∂ p y ξ,( )
∂ξ

------------------- – p y ξ,( ) p y µ– ξ,( )g µ( ) µ,d

0

∞

∫+=

p y ξ,( ) Pm ξ( )g m( ) y( ),
m 0=

∞

∑=

Pm ξ( )
ξm

m!
------ ξ–( ).exp=

g m( ) y( ) g m n–( ) y µ–( )g n( ) µ( ) µ,d

0

y

∫=

n m,≤

g m( ) y( ) 2π( ) 1– gk( )m iky( )exp k,d

∞–

∞

∫=

gk g µ( ) ikµ–( )exp µ.d

0

∞

∫=
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Substituting expressions (2.10) and (2.8) into
Eq. (2.7), after summation we arrive at the known rep-
resentation of the solution to Eqs. (2.1) and (2.6) in the
form [5]

(2.12)

where

(2.13)

Consequently, we have verified that relation (2.7) indeed
satisfies Eq. (2.1) and the known expressions (2.12) and
(2.13) correspond to Poisson-type processes, which is
not seen directly from expressions (2.12) and (2.13). In
contrast to expression (2.7), a solution in the
form (2.12) and (2.13) is also valid in the case when
integral (2.4) diverges and Poisson distribution (2.8) is
meaningless. Nevertheless, processes satisfying
Eq. (2.1) will also be treated as Poisson-type processes.

Equation (2.1) describes energy-loss processes
(Landau case) only for asymmetric differential cross
sections (2.3). If a differential cross section is symmet-
ric (i.e., if ν(–y) = ν(y)), Eq. (2.1) has the form of a Mol-
lier equation [23] describing the processes of multiple
scattering of fast charged particles in a substance. In
this case, p(y, t) is the angular distribution at instant t. It
should be noted that formulas resembling Eqs. (2.7)–
(2.9) also take place for multiple scattering [24]. These
formulas are of practical importance in studying multi-
ple scattering through relatively large angles, when the
number of individual scattering events does not exceed
5–10. A detailed analysis for the case of symmetric
nuclei is given in [5].

2.2. Finite Cross Section 
of Power Type with Screening 

A wide class of differential cross sections, which
lead to analytic solutions and are important for practical
application, can be described by a power function with
an exponential cutoff parameter (screening),

(2.14)

where the normalization constant C = λα/Γ(α), α > 0,
and λ > 0. In this case, from expressions (2.10) and
(2.11), we obtain

(2.15)

p y ξ,( ) 2π( ) 1– iky ξλ k( )–( )exp k,d

∞–

∞

∫=

λ k( ) 2i
kµ
2

------ ikµ
2

--------– 
  g µ( )expsin µ.d

0

∞

∫=

g y( ) Cyα 1– λy–( ),exp=

g m( ) y( )
λαm

Γ α m( )
----------------yαm 1– λy–( ).exp=
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Then the solution to Eq. (2.1) has the form

(2.16)

where x = (λy)αξ.
In particular, for α = 1 (exponential differential

cross section), expression (2.16) leads to the known
result (see [22, Section 10])

(2.17)

where I1 is a modified Bessel function.
Formulas (2.15) and (2.16) lead to the following use-

ful relations for the mean value of quantity exp(–ky):

(2.18)

This leads to the following relation for the value of
exp(–ky) averaged over distribution function (2.16):

(2.19)

2.3. Saddle-Point Method 

We will apply the saddle-point method not in the
conventional sense as a method for approximate calcu-
lation or analysis of asymptotic behavior of quantities,
but as a method of exact calculation, which makes it
possible to avoid the emergence of rapidly oscillating
integrals in final expressions. Such a method was devel-
oped in [25] for problems of calculating the spectral–
angular characteristics of radiation by relativistic elec-
trons. We will demonstrate the effectiveness of an analo-
gous approach in solving integral equations of type (2.1).

Formulas (2.12) and (2.13) contain rapidly oscillat-
ing expressions in the integrands, which makes these
formulas inapplicable for practical calculations. In
some important cases, however, this difficulty can be
overcome by choosing an appropriate integration con-
tour. For this purpose, we write solutions (2.12), (2.13)
to Eq. (2.1) in the form of a Laplace transform (see
also [2]),

(2.20)

where

(2.21)

Here, z = r + iw is a complex variable.

p y ξ,( ) y 1– xm

m!Γ α m( )
---------------------- –λy ξ–( ),exp

m 1=

∞

∑=

p y ξ,( ) y 1– ξλ y( )1/2I1 2 ξλ y( )1/2[ ]=

× –λy ξ–( ),exp

ky–( )g m( ) y( )exp yd

0

∞

∫ λ
λ k+
------------ 

 
mα

.=

ky–( )exp〈 〉 –ξ ξ λ
λ k+
------------ 

 
α

+ .exp=

p y ξ,( ) zy ξλ z( )–[ ] zd
2πi
--------,exp

σ i∞–

σ i∞+

∫=

λ z( ) g µ( ) 1 zµ–( )exp–[ ] µ .d

0

∞

∫=
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It is important for further analysis that the argument
of the exponential in expression (2.20),

(2.22)

has a saddle point lying on the real axis of the complex
variable z for an arbitrary type of differential cross sec-
tion g(µ). Indeed, saddle point z0 is defined by the con-
dition f '(z0) = 0. This leads to the following transcen-
dental equation for saddle point z0:

(2.23)

Since g(µ) is a real-valued function, all quantities in
Eq. (2.23) are real and the saddle point also lies on the
real axis, z0 = r0.

Instead of the integration contour traditional for
Laplace transformations, it is expedient to carry out
integration in Eq. (2.20) along the steepest descent line
(SDL). Let us represent function (2.22) as the sum of
the real and imaginary parts, f = u + iv. Since the saddle
point is real-valued, the integration path along the SDL
in Eq. (2.20) is defined by the condition v(r, w) =
Im f(z) = 0, which gives the following equation defining
the SDL for the integral in Eq. (2.20):

(2.24)

It can be seen that the SDL (2.24) passes via saddle
point z0 defined by formula (2.23).

By way of an example, let us consider differential
cross section (2.14). Formulas (2.20) and (2.21) in this
case give

(2.25)

. (2.26)

In accordance with expression (2.23), the saddle point
on the real axis is given by

(2.27)

Then the equation for the SDL has the form

(2.28)

where we have introduced polar coordinates ρ and θ in
the complex plane.

f z( ) zy ξ g µ( ) 1 zµ–( )exp–[ ] µ ,d

0

∞

∫–=

y ξ µg µ( ) z0µ–( )exp µ.d

0

∞
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w
ξ
y
-- g µ( ) rµ–( ) µw( )sinexp µ.d

0

∞

∫=

p y ξ,( ) λ –ξ λ y–( ) f z( )[ ] zd
2πi
--------,exp

C

∫exp=

f z( ) λyz ξz α–+=

r0
αξ
λy
------- 

 
1/ α 1+( )

.=

ρ θ( )
ξ αθ( )sin
λy θsin

-----------------------
1/ α 1+( )

,=
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The solution to Eq. (2.1) with differential cross sec-
tion (2.14) can now be expressed in terms of the rapidly
converging integral

(2.29)

where

(2.30)

Here, ρ = ρ(θ) can be determined from Eq. (2.28)
and quantity u(θ) in Eq. (2.30) is the real part of func-
tion (2.26); i.e., u = Re[f(z)].

This, a wide class of solutions to problems with a
finite total cross section can be represented in two
equivalent ways—in the form of infinite series (2.7)
or  in the form of a rapidly converging integral of
type (2.25). Solutions of type (2.7) are convenient
when the process is characterized by a relatively small
number of interactions k ≤ 10–20 (e.g., the case of elec-
trons with energies above 100 GeV in oriented crys-
tals). If, however, the number of interaction events is
large (e.g., in the case of ionization energy loss), it is
much more convenient to use the integral representa-
tion of solutions of type (2.25) or (2.29). In addition,
the integral representation makes it possible to describe
processes with a diverging total cross section
(bremsstrahlung) as well as the cases permitting only
numerical integration with realistic expressions for dif-
ferential cross sections. In the latter case, the initial rap-
idly oscillating expressions (2.12) and (2.13) are virtu-
ally invalid and a correct result can be obtained by inte-
grating along the SDL.

2.4. Diverging Power-Type Cross Section
with Screening 

If a differential cross section leads to a diverging
expression for the total cross section, the solution to
Eq. (2.1) cannot be represented in the form (2.6) and
formulas (2.7)–(2.11) are meaningless.

Let us apply the saddle-point method for solving
equation of motion (2.1) with a diverging cross section
of the form

(2.31)

The result has a form similar to expressions (2.29) and
(2.30), in which we must carry out the substitution
α  –β, ξ  –κ with

(2.32)

where we now have ξ = Ct.

p y ξ,( ) πy( ) 1– –ξ λ y–( ) α
α 1+
------------- 

 exp=

× u θ( ) u θ( )[ ]exp θ,d

0

π

∫

u θ( ) ξρ α– θ 1 α+( )[ ]sin
θsin

----------------------------------.=

ν y( ) Cy–1 β– λy–( ), 0 β 1.< <exp=

κ πξλβ

β πβ( )Γ β( )sin
----------------------------------,=
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The solution to Eq. (2.1) assumes the form

(2.33)

(2.34)

In contrast to solution (2.29), solution (2.33) with
diverging cross section possesses the following prop-
erty. Suppose that we know solution p0(y, ξ) for a
power-type differential cross section without screening
(i.e., defined by formula (2.31) with λ = 0). In this case,
the solution for cross section (2.31) can be found by the
formula

(2.35)

Note that u(θ) in expression (2.34) is independent of λ.
Let us consider a few relatively simple analytic solu-

tions for various values of parameter β.

1. β = 1/3, κ = 3ξλ1/3Γ(3/2). In this case, the solution
has the form

(2.36)

where Ai(x) is the Airy function. In particular, for λ = 0,
we arrive at the result obtained in [5] for a power-type
potential with β = 1/3.

2. β = 1/2, κ = 2ξ(πλ)1/2. In this case, expressions (2.33)
and (2.34) can be reduces to the result obtained in [5]:

(2.37)

3. β = 2/3, κ = (3/2)ξλ2/3Γ(1/3). The solution can be
expressed in terms of the Airy function and its deriva-
tives. We will write here only the solution for a power-
type differential cross section p0(y, ξ) (i.e., for λ = 0)
with β = 2/3:

(2.38)

where a = 31/3(ξ/2)y–2/3Γ(1/3). The solution in the
case with screening p(y, ξ) can be obtained using for-
mula (2.35).

4. β = 0. In the limit β  0 (see Appendix 1), we
obtain from formula (2.33) the well-known distribution
(gamma-density) [22]:

(2.39)
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------------exp=

× u θ( ) u θ( )[ ]exp θ,d

0

π

∫
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θsin
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λy θsin

-----------------------
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3λy( )1/3

-------------------Ai
κ

3λy( )1/3
------------------- ,exp=

p y ξ,( ) ξy–3/2 π1/2ξ λ 1/2y–( )2

y
------------------------------------– .exp=

p0 y ξ,( ) 2y 1– a1/2 2
3
---a3/2– 

 exp=

× a1/2Ai a( ) Ai' a( )–[ ] ,

p y ξ,( ) λ λy–( )exp
Γ ξ( )

----------------------- λy( )ξ 1– .=
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The mean value of quantity exp(–ky) averaged over dis-
tribution (2.39) is given by

(2.40)

In the particular case λ = 1, gamma distribution (2.39)
is transformed into the Bethe–Heitler distribution [1]

. (2.41)

It will be shown below that distribution (2.39) has a
number of considerable advantages as compared
to (2.41) when applied to problems of radiation emitted
by relativistic electrons in an amorphous medium.

It should be noted that solutions p(y, t) to Eq. (2.1)
satisfy the condition

(2.42)

where t = t1 + t2.

3. EMISSION OF HARD PHONONS

The cascade process of successive emission of a
large number of photons by an electron is completely
determined by defining the differential probability of
emission of a photon with an energy from the interval
(ω, ω + dω) by an electron with energy E during an infi-
nitely short time interval, νω(E)dωdt. This quantity will
be referred to as the differential radiation cross section
per unit time. Then the electron distribution by instant t
will be characterized by function Wω(E0, t)dω, which
gives the probability density of the fact that the energy
loss for an electron with initial energy E0 after the pas-
sage of path z = v t lies in the interval (ω, ω + dω) (in the
case considered here, the electron velocity can be
assumed to be equal to the velocity of light, v  ≈ c).

Distribution function Wω(E0, t) is normalized,

(3.1)

and satisfies the initial condition Wω(E0, 0) = δ(ω). In
experiments, the radiation intensity

(3.2)

is directly measured (see, for example, [9, 10]).
The total energy loss by radiation is given in this

case by

(3.3)

ky–( )exp〈 〉 λ
k λ+
------------ 

 
ξ
.=

p y ξ,( )
y–( )exp

Γ ξ( )
--------------------yξ 1–=

p y t,( ) p y µ– t1,( ) p µ t2,( ) µ,d

0

y

∫=

Wω E0 t,( ) ωd

0

E0

∫ 1,=

Iω E0 t,( ) ωWω E0 t,( )=

∆E t( ) Iω E0 t,( ) ω.d

0

E0

∫=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
3.1. Cascade Equation for a Multiphoton Process 

The time evolution of energy loss distribution func-
tion Wω(E0, t) is described by the cascade-type equation

(3.4)

and we consider the general case of the time-dependent
differential cross section νω(E, t).

The solution to Eq. (3.3) can be expressed in terms
of contributions from individual emission events. We
assume that the total radiation cross section has a finite
value,

(3.5)

Let (E0, t)dω be the probability of the fact that the
total energy of k emitted photons lines between ω and
ω + dω; i.e., ω in this case is the sum, ω = ω1 + ω2 +
… + ωk . Then the energy loss distribution is determined
by the sum of partial contributions,

(3.6)

where (E0, t) has the meaning of the probability
that not a single emission event occurs within the time
interval (0, t).

We will find the values of (E0, t) from the fol-
lowing considerations. The probability that an electron
emit precisely k photons during the time interval (0, t +
dt) is the sum of two terms. The first term corresponds
to the process in which exactly k emission events occur
during the time interval (0, t), and not a single emission
event occurs during an infinitely short time interval dt.
The second term corresponds to the case when k – 1
photons are emitted during time interval (0, t) and one
photon is emitted during time dt:

(3.7)

Here, ν(E, t) is the total radiation cross section per unit
time, which is defined by formula (3.5).

∂Wω E0 t,( )
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0
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Wω
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∞
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k( ) t dt+( ) Wω

k( ) t( ) 1 ν E0 ω– t,( )dt–[ ]=

+ Wω µ–
k 1– t( )νµ E0 ω– µ+ t,( ) µd t.d

0
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Solving Eq. (3.7), we obtain the recurrence relation
for the partial probabilities in expression (3.6),

(3.8)

where

(3.9)

Expressions (3.6)–(3.9) define the solution to the
equation of motion of general form (3.4).

Since the total radiation cross section in these
expressions is a function of time and energy, ν = ν(E, t),
the statistics of individual emission events in expres-
sions (3.6) and (3.8) cannot be presented any longer by
a simple relation of type (2.8). In particular, in the case
when the total cross section is independent of E (i.e.,
ν = ν(t)), the probability Pk(t) of obtaining exactly k
photons during time interval (0, t) is defined by the
formula

(3.10)

where

(3.11)

Formulas (3.7)–(3.11) define a generalized Poisson
process. If the radiation cross section is constant (ν =
ν0), expression (3.10) is transformed into Poisson dis-
tribution (2.8) with ξ = ν0t. The motion of an electron
in the field of atomic chains and planes of a crystal is
an example of a time-dependent differential cross sec-
tion [26].

3.2. Multiphoton Process of the Poisson Type 

The results of the previous section can be consider-
ably simplified in the case of a time-independent differ-
ential cross section νω(E). We will also assume that the
total cross section ν0 does not depend on the electron

Wω
k( ) E0 t,( ) ν E0 ω– τ,( ) τd

0

t

∫–exp=

× τ ν E0 ω– τ',( ) τ'd
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∫expd

0
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∫
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0
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0
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∫– ν τ( )Pk 1– τ( ),expd

0

t
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P0 t( ) ν τ( ) τd

0

t

∫– .exp=
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energy E. In this case, equation of motion (3.4) assumes
the form

(3.12)

Let  be the differential probability density of the
fact that the energy of an emitted photon is ω:

(3.13)

We introduce the probabilities dω that the total
energy of k photons emitted by an electron with initial
energy E0 lies between ω and ω + dω. These quantities
are normalized to unity,

(3.14)

and satisfy the recurrence relations

(3.15)

The probability Pk(t) that exactly k photons are emitted
during time interval [0, t] is now given by Poisson dis-

tribution (2.8) with ξ0 = ν0t. Functions (E0, t)
defined by formula (3.6) can now be simply reduced to

products of the type Pk(t) (E0). For the energy loss
distribution, we now have

(3.16)

This expression, which is a solution to Eq. (3.12)
with a time-independent differential cross section and
an energy-independent total cross section, satisfies the
condition

(3.17)

where t = t1 + t2.

If the total radiation cross section depends on
the electron energy, but does not depend of time, for-
mulas (3.6)–(3.9) give a solution of a more general
form than (3.16), which will not be considered here.
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3.3. Multiplicity of Radiation 

Some quantities characterizing the multiphoton
nature of radiation can be expressed in terms of distri-

bution functions (E0, t). For example, the average
number of emitted photons as a function of their total
energy ω is given by

(3.18)

where ω is the total energy of k emitted photons. In
other words, if an experimenter sees that the total
energy of all photons emitted by an electron is ω, quan-
tity (3.18) indicates their mean number.

The probability of emission of exactly k photons
during time t is given by

(3.19)

and the average number of emitted photons is

(3.20)

The values of quantities (3.18)–(3.20) can be directly
measured in experiments (see, for example, [9]). An
important quantity (which, however, cannot be directly
measured) is the number of single photons nω(E0, t)dω
corresponding to the given interval (ω, ω + dω) of their
energies and emitted by an electron with initial energy
E0 by instant t. The knowledge of such a radiation spec-
trum that is not distorted by multiphoton nature of
emission is important for practical applications and
provides the most complete experimental information
on the type of radiation. If a process is of the Poisson
type and evolves in accordance with Eq. (3.12), we
obtain for the one-photon spectrum the expression

(3.21)

where Pk(t) is the Poisson distribution. Partial contribu-
tions to spectrum (3.21) are defined by a recurrence
relation of the form differing from (3.15):

(3.22)

Each partial quantity (E0) defines the probability
that the energy of the mth emitted photon lies in the

interval (ω, ω + dω). Here, quantity (E) = (E) is

defined by Eq. (3.13), (E) = δ(ω).
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Functions (3.22) satisfy the normalization condi-
tions,

The integral of nω(E0, t) gives the same quantity
as (3.20); i.e., the average number of photons emitted
by instant t is

(3.23)

For a Poisson-type process expressed by formulas (3.21)
and (3.22), we have 〈k(t)〉  = ν0t. Thus, while quantity ω
in expressions (3.21)–(3.23) is the energy of an individ-
ual photon, quantity ω in formulas (3.1)–(3.20) is the
total energy of all emitted photons. One-photon spectra
of type (3.21) were studied in [27] using computer sim-
ulation.

We assume that the passage of electrons through a
substance is characterized by two independent mecha-
nisms of emission. Then, intensity (3.2), as well as the
distribution function Wω(E0, t) for a given ω, is not an
additive sum of contributions from the corresponding
types of radiation, while the total loss by radiation (3.3),
the total number of emitted photons (3.18), and the
spectrum of single photons (3.21) are additive quanti-
ties. For example, the passage of electrons through an
oriented crystal is accompanied by incoherent radiation

emitted by individual atoms,  [1], and coherent
radiation at continuous potential of atomic chains and

planes,  [28]. Then Iω ≠  + , while nω =

 + .

3.4. Analytic Solutions 

Let us consider a particular case when electron
energy E and energy ω of an emitted photon appear in
the differential emission probability in the form of a
certain combination so that

(3.24)

where

(3.25)

i.e., the denominator in the argument of the logarithm
in relation (3.25) contains the electron energy after the
emission.

Let two photons with energies ω1 and ω2 be emitted
in succession. These energies correspond to y1 =
ln(E/E1) and y2 = ln(E1/E2), where E1 = E – ω1 and E2 =
E1 – ω2. Then the total value of y = y1 + y2 is trans-
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E
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formed in accordance with the same law (3.25) as for
components y1 and y2; i.e., y = ln(E/E2), E2 = E – ω,
where ω = ω1 + ω2 is the total energy loss in two emis-
sion events. Thus, an important property of transforma-
tion (3.25) is that the sum of yk corresponding to k pho-
tons emitted in succession satisfies a transformation of
the same type as (3.25) for each quantity yk taken sepa-
rately. Transformation (3.25) makes it possible in this
case to reduce Eq. (3.12) to a much simpler equation of
the type (2.1) or (2.6) if the corresponding differential
cross section has the form (3.24). Indeed, let us pass in
the first integral in relation (3.12) from variables ω and
µ to variables y and η using the formulas y = ln(E0/E ')
and η = ln(E ''/E '), where E ' = E0 – ω and E '' = E ' + µ.
Then the distribution function p(y, t) in the new variable
is connected with the initial function by the relation

Quantity ω – µ can be expressed in terms of the differ-
ence y – η, and the first integral in relation (3.12) can be
expressed in terms of an integral of product p(y – η,
t)ν(η) with respect to η from 0 to y. Proceeding analo-
gously with the second integral, we reduce Eq. (3.12) to
an equation of the type (2.1). All these arguments cor-
respond to the case when the differential cross section
is independent of time and the total cross section (if the
corresponding integral converges) is independent of the
electron energy (i.e., if a Poisson-type process occurs).
Thus, the results obtained in Section 2 for Eq. (2.1) can
be applied to Eq. (3.12); a large class of solutions to the
latter equation for distribution function Wω(E0, t) can be
obtained by substituting expression (3.25) into the for-
mulas derived for Eq. (2.1).

The simplest case corresponds to the uniform distri-
bution

(3.26)

Then relation (3.15) leads to the following expression
for the k-photon probability:

(3.27)

Substitution of this expression into Eq. (3.16) leads to
the solution

(3.28)

where ξ = ν0t, which corresponds to formula (2.17) for
λ = 1 with y defined by formula (3.25).

To analyze the spread in the energy losses of relativ-
istic electrons in a medium, Bethe and Heitler [1] intro-
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duced the following approximate expression for the dif-
ferential cross section per unit time:

(3.29)

here, ν0 ≈ (4/3)c/L0 and L0 is the radiation length in an
amorphous substance. Formula (3.29) corresponds to
the expression

(3.30)

The Bethe–Heitler solution [1] for cross section (3.29)
is given by

(3.31)

where ξ = ν0t and Γ(ξ) is the gamma function.

Result (3.31) is inconvenient for large energy losses,
when ω ~ E0; i.e., for large values of y (for ξ > 1, we
have divergence for ω = E0). This drawback can be
eliminated by replacing relation (3.30) by the expres-
sion

(3.32)

where λ > 1.

Cross section (3.32) has the form (2.14) with α = 0;
consequently, the solution to the corresponding equa-
tion of motion has the form (2.39). This leads to the
Lindhard distribution [29]

(3.33)

where ξ = Ct.

A wide class of one-photon differential radiation
cross sections with a regular asymptotic behavior for
small frequencies ω  0 can be described by a less
general expression as compared to those considered
above,

(3.34)

where α  > 0. This expression corresponds to for-
mula (2.14).

The energy loss distribution is connected with the
energy distribution of particles through the relation
Wω(E0, t) = F(E = E0 – ω, t), where function F(E, t) sat-
isfies the initial condition F(E, t = 0) = δ(E – E0).
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In accordance with Eq. (3.16), the electron energy
distribution function corresponding to differential cross
section (3.34) has the form

(3.35)

The mean value of quantity (E/E0)m is given by

(3.36)

For distribution (3.35), we obtain, in accordance with
Eq. (2.19),

(3.37)

In particular, for the Bethe–Heitler case (3.31), we have
〈E/E0〉  = 2–ξ.

Figure 1 shows partial contributions  (3.27)
for the uniform initial distribution (3.26). It can be seen
that, with increasing number k of emitted photons, the
partial distributions as functions of ω are rapidly dis-
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Fig. 1. Partial contributions (E) (3.27) for the uniform

initial distribution (3.26) for different values of k.
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Fig. 2. (a) Stepwise one-photon distribution  (3.38) for
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placed towards harder frequencies, exhibiting a loga-
rithmic divergence for ω ~ E. The step distribution

(3.38)

where 0 < α < 1, possesses much more realistic proper-
ties. This distribution also has an analytic solution in
the form of a combination of piecewise-continuous
functions of a simple form, which are not given here in
view of their cumbersome nature. Figure 2 illustrates

the two-photon  (Fig. 2b) and five-photon 
(Fig. 2c) distributions for various initial step distribu-
tions (Fig. 2a) defined by formula (3.38). In this case,

all values of  vanish for ω  E. It can be seen

from Fig. 2 that the shape of distributions  is deter-
mined to a considerable extent by the initial conditions.

4. RADIATION IN ORIENTED CRYSTALS

The trajectory of a relativistic electron passing
through a crystal at a certain small angle θ ~ θL to princi-
pal crystallographic directions is determined by the corre-
lated action on the electron by atoms forming this direc-
tion [26]. Here, θL = (4Ze2/dE)1/2 is the Lindhard critical
angle, Z is the atomic number of the substance, and d is
the distance between neighboring atoms along the given
direction. Such a correlated action of atoms in a chain
is characterized by a continuous potential U(r) [26]
acting on the electron and depending only on the dis-
tance to the chain. The force F = |∇ U(r)| acting on the
electron is on the order of F ~ Ze2/(daF) ~ 102–103 eV/Å
and leads to intensive emission (the Kumakhov effect)
[28, 30]. Here, aF is the Thomas–Fermi screening
parameter. For electron energies above 50–100 GeV,
we can assume that the field acting on the electron does
not change over the length of radiation formation; con-
sequently, the characteristics of radiation can be
described in the constant field approximation [31]. In
this case, the corresponding cross sections can be
reduced to the familiar formulas for synchrotron radia-
tion taking into account spin and quantum recoil effects
during emission [32, 33]. From the standpoint of cas-
cade equations of type (3.4), it is important that the
radiation cross sections in the CFA are determined only
by local characteristics of the field (namely, by the
force acting at a given point) and, hence, can be used
directly as the differential cross sections νω(E) appear-
ing in formulas (3.4) and (3.12). A more consistent the-
ory, which takes into account the field nonuniformity
over the length of radiation formation and at the same
time is local by nature, has been developed recently
in [4]. Nevertheless, we will confine our analysis to the
CFA since it is sufficient for studying typical properties
of cascade processes of multiple emission of photons,

gω
1( ) E( )

αE( ) 1– , 0 ω αE< <
0, αE ω E,< <
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2( ) gω
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which accompany the passage of electrons with ener-
gies exceeding 100 GeV through oriented crystals.

4.1. Constant Field Approximation 

The differential cross section of emission of a pho-
ton with energy ω by an electron with E per unit time is
defined in the CFA by the quantum-mechanical syn-
chrotron formula [32]

(4.1)

(4.2)

where the argument of the exponential function is

(4.3)

Here, α = 1/137, u = ω/E, γ = E/mc2 is the Lorentz
factor,

χ = "Fγ/m2c3 is the Lorentz-invariant field parameter,
F is the force acting on the electron, and m is the elec-
tron rest mass. Function Y(x) = (1 + x2/3)1/2 is the SDL
for the Macdonald functions K1/3(ξ) and K2/3(ξ) (see
Appendix B). Our representation (4.2) is much more
convenient for specific applications of standard for-
mula (4.1) since it does not contain special functions
and has the form of a rapidly converging integral, in
which argument ξ appears only in the exponential fac-
tor. Formula (4.2) was derived by the saddle point
method [25] (see Appendix B). Formulas (4.1)–(4.3)
are transformed into the classical formulas for synchro-
tron radiation for small values of field parameter
χ < 0.1.

Figure 3 shows the dependence of the total radiation
cross section in the CFA per unit length (in µm–1)
on force F acting on the electron (in keV/Å), calculated
on the basis of formulas (4.1)–(4.3) for various values
of energy E. In other words, the integral quantity (3.5)
laid along the ordinate axis (divided by the velocity of
light) can be treated as the number of photons emitted
per unit length. The values of force F typical of oriented
crystals are indicated. It can be seen that the total radi-
ation cross section in the CFA slowly decreases with
increasing E. For example, as the electron energy
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decreases by half from 150 GeV for F ≈ 500 eV/Å, the
total radiation cross section increases only by 10%.
Thus, in the case considered here, the total radiation
cross section can be approximately assumed to be inde-
pendent of the electron energy. In the CFA, the differ-
ential cross section (4.1)–(4.3) has an integrable singu-
larity νω ~ ω–2/3 for ω  0. This leads to the presence
of a large number of photons with relatively low ener-
gies in the radiation spectrum. For example, the frac-
tion of photons with energies smaller that 0.01 of the
electron energy ranges from 50% (for E ~ 100 GeV) to
25% (for E ~ 20 TeV) of all emitted photons. It should
be noted, however, that such a form of the dependence
for ω  0 is typical precisely for synchrotron-type
spectra. More accurate calculations (as compared to
those made in the CFA) taking into account the field
nonuniformity indicate strong suppression of radiation
in the soft part of the spectrum [4].

Figure 4 shows one-photon emission probabilities
(spectra) (3.13) normalized to unity and calculated in
the CFA for various values of field parameter χ. For
large values of χ > 40–50, the photon spectrum acquires
a peak at ω/E ~ χ/(1 + χ) ~ 1. The emergence of this
peak is associated with an increase in the contribution
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Fig. 3. Photon emission probability per unit length as a func-
tion of force F calculated in the CFA using formulas (4.1)–
(4.3) for various electron energies (in TeV): 0.075 (1),
0.150 (2), 0.3 (3), 1 (4), 4 (5), 10 (6), and 20 (7).
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of the spin term to the spectrum with increasing χ. The
spin contribution to radiation is determined by the
terms containing u2/(1 – u) in expressions (4.1), (4.2).
For E ≈ 150–300 GeV, the values of χ range from 1 to
10 in different crystals. The effect of spin on radiation
has been studied recently in experiments [34]. The
mean energy 〈ω〉 of an emitted photon, i.e., the value of

ω averaged over one-photon distributions  (3.13), is
of interest for our analysis. For χ ≈ 1–2, the value of this
quantity is 〈ω〉 ≈ 0.1–0.12 and tends to the limit 〈ω〉 
0.25 as χ  ∞.

Partial probabilities  (3.15) for 150-GeV elec-
trons are shown in Fig. 5 for two values of the force. The

initial distributions  corresponding to the CFA (4.1)–
(4.3) are shown by the dashed curves. The numerical

method for calculating  for an arbitrary initial dis-
tribution is given in Appendix C. In Fig. 5, the total
energy of k emitted photons is laid along the abscissa
axis. Figure 5 illustrates the strong dependence of the
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Fig. 4. One-photon emission probabilities  (3.13) cal-

culated in the CFA (4.1)–(4.3) for various values of field
parameter χ = 0.05 (1), 0.5 (2), 1.45 (3), 3 (4), 9 (5), 45 (6),
and 208 (7).
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30 (3).

gω
k( )
JOURNAL OF EXPERIMENTAL
shape of the k-photon distribution of probabilities 
on the initial distribution for the same value of k (cf.
curves 5 and 2 in Figs. 5a and 5b for k = 20).

Figure 6 shows the solutions to the cascade equa-
tion (3.16) for 150-GeV electrons for three values of
force in a 185-µm-thick target. The solid curves are cal-
culated in the CFA, while the dashed curves describe
the Lindhard distribution (3.33). It can be seen that,
with appropriately chosen parameters ξ and λ, the rela-
tively simple Lindhard distribution can successfully
approximate the results of more accurate calculations.
Since the process studied here is of the Poisson type,
the average number of emitted photons in this case is
〈k〉  = ν0z (the values of ν0 can be found in Fig. 3).

4.2. Analysis of Experimental Results 

We will apply the results to analyze radiation emit-
ted by electrons with energies of hundreds GeV during
their motion at small angles θ ~ θL to an atomic chain
in a crystal (axial channeling and quasi-channeling
[35–37]). The regular motion in the continuous poten-
tial U(r) (r is the distance to the atomic chain) is per-
turbed by incoherent multiple scattering from individ-
ual atoms of the crystal, which leads to a stochastic
increase in the transverse electron energy ε.
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Fig. 6. Solutions to cascade equation (3.16) for 150-GeV
electrons in a 185-µm-thick target. Solid curves are calcu-
lated in the CFA and dashed curves correspond to Lindhard
distribution (3.33): 1—F = 200 eV/Å, χ = 0.44, 〈k〉  = 3.4,
λ = 3, ξ = 2.3; 2—F = 500 eV/Å, χ = 1.1, 〈k〉  = 14, λ = 5,
ξ = 8.6; 3—F = 1000 eV/Å, χ = 2.22, 〈k〉  = 24, λ = 12, ξ =
30.3. Here, 〈k〉  is the mean number of emitted photons
(3.20); λ and ξ are the parameters of the Lindhard distri-
bution.
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In our calculations, we disregard multiple scattering
and the competing effect of the decrease in the trans-
verse energy due to emission of photons (transverse
energy damping). In this case, the motion of an electron
in an axially symmetric potential U(r) is characterized
by two integrals of motion, viz., transverse energy ε and
electron angular momentum µ relative to the atomic
chains, while the pattern of axial channeling can be
described as follows. The electron incident on the crys-
tal at angle θin to the atomic chain at a distance rin from
it acquires a transverse energy

and an angular momentum

where ϕin is the azimuthal angle of incidence relative to
the chain. The electron moves in a trajectory with con-
stant ε and µ and emits photons whose spectrum can be
calculated using formulas (3.13)–(3.16). The resultant
spectrum can be obtained by averaging over points rin
and angles θin of incidence, which is equivalent to aver-
aging over the electron distribution functions over
transverse energies and angular momenta in the crys-
tal [35, 36]. In this way, the initial experimental condi-
tions (angular divergence of the electron beam at the
inlet, etc.) are taken into account.

To use formulas (3.13)–(3.16) for calculations, we
must specify the initial one-photon distribution func-

tion . In the CFA, this quantity depends on the cur-
rent distance r to the atomic chain at each instant.
For this reason, for the one-photon function in for-

mula (3.16), we must take distribution  calculated
in the CFA (4.1)–(4.3) and averaged over the equilib-
rium distribution function for electrons with preset val-
ues of ε and µ over the transverse coordinate. For elec-
trons getting in a state with a finite transverse motion
(i.e., with ε < 0), the equilibrium distribution over the
transverse coordinate has the form

(4.4)

where T(ε, µ) is the period of transverse radial oscilla-
tions of an electron in a channel, rmin < r < rmax, and the
values of rmin and rmax are determined from the condi-
tion that the radicand in formula (4.4) is equal to zero.

Quasi-channeled electrons with infinite transverse
motion (ε > 0) are uniformly distributed in the trans-
verse plane. The transverse region accessible to elec-
trons is independent of ε (and is equal to the cross-sec-
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tional area per chain, S0 = 1/Nd, where N is the number
of atoms in the crystal per unit volume); consequently,
the radiation cross section for channeled electrons in
the CFA is independent of their transverse energy. For
channeled electrons with ε < 0, the radiation cross sec-
tions strongly depend on the transverse energy because
the transverse region S(ε) accessible to electrons
strongly depends on ε and electrons with modulo large
transverse energies emit more strongly since they move
at smaller distances from the atomic chain.

We calculated the continuous atomic chain potential
U(r) on the basis of the Doyle–Turner atomic potential
[38] with averaging over thermal vibrations of atoms in
the crystal. We assumed that the potential is equal to
zero (U(r) = 0) in region r1 < r < r0, where r1 is the
shortest distance between atomic chains along the pre-
set direction and r0 = (πNd)–1/2 is the channel radius. In
other words, the maximal fraction of electrons that can
be trapped in a channel is Nch = (r1/r0)2 (for θin = 0). For
example, for a 〈110〉  germanium crystal, this fraction
amounts to about 30% of the beam.

The results of calculation of the radiation intensity
spectrum (3.2) are shown in Figs. 7a and 7b, which
present the results for 150-GeV electrons incident at
angles in the intervals 0–7 (Fig. 7a) and 15–21 (Fig. 7b)
µrad relative to the 〈110〉  direction of a germanium
crystal of thickness 200 µm (in this example, θL =
55 µrad). The experimental data are borrowed from [9].
The spectra are given in units of intensity for an amor-
phous medium: Ez/Lrad , where z is the crystal thickness
and Lrad is the radiation length (Lrad = 2.36 cm for ger-
manium). Thus, the values laid along the ordinate axis
in Figs. 7a and 7b show that the radiation intensity in an
oriented crystal exceeds that in an amorphous target of
the same thickness. The solid curve in Fig. 7a corre-
sponds to calculations performed in the cascade theory
in accordance with formulas (3.2) and (3.16). Theoret-
ical values in Fig. 7a and in the remaining figures were
calculated at individual points connected by straight
lines. It can be seen that, under the conditions repre-
sented in Figs. 7a and 7b, the theory developed here
reproduces the experimental results to a high degree of
accuracy.

The fraction of electrons trapped in the channeling
mode under the condition represented in Fig. 7a is Nch =
0.25 (for angles of incidence of 0–7 µrad). The dashed
curves show the calculated contributions to the radia-
tion spectrum from electrons with different transverse
energies: ε > 0 (1); ε ∈  [–10, 0] eV, (0.113) (2); ε ∈
[−20, –10] eV, (0.044) (3); and ε ∈  [–Um , –20] eV,
(0.094) (4). The values in parentheses show the fraction
of electrons with corresponding transverse energies.
The depth of the potential well in this case is Um =
202 eV (the crystal temperature is 293 K, the mean
amplitude of thermal vibrations was taken equal to u⊥  =
0.12 Å). It follows from Fig. 7a that the main contribu-
tion to the experimentally observed peak at ω ≈ 0.8E
SICS      Vol. 99      No. 4      2004
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Fig. 7. Radiation intensity spectra for 150-GeV electrons in a germanium crystals of thickness 200 (a, b) and 400 (c) µm for inci-
dence angles of 0–7 (a, c) and 15–21 (b) µrad relative to the 〈110〉  axis; m—experiment [9], n—numerical simulation; solid curves
are calculated in the cascade theory and dashed curves describe the contributions from electrons with different transverse energies
(see text).
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comes from a relatively small number of electrons in
deeply bound states of transverse motion (in our exam-
ple, the number of such electrons does not exceed
10%). It is found that the main contribution to the peak

comes from partial functions  with k ~ 10. The
results of simulation are shown in Fig. 7a by light sym-
bols. Multiple incoherent scattering of impinging elec-
trons from individual atoms of the crystal was taken into
account as well as the damping of transverse energy due
to radiation, δε = –(ω/E)[ε – U(r)]. The numerical simu-
lation method is described in [19]. In contrast to [19],
however, we separately simulated the point at which an
emission event takes place (see also [16]).
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Figures 7a and 7b illustrate the strong orientation
dependence of the spectral characteristics of radiation
(the fraction of electrons in a channel is 0.09 under the
conditions depicted in Fig. 7b), which is successfully
accounted for in the cascade theory. It should be noted
that the theory developed here does not contain fitting
parameters and leads to correct quantitative results.

However, the correspondence between the cascade
theory and experiment is worse for thicker crystals (see
Fig. 7c). The disregard of multiple scattering in the cas-
cade theory leads to a sharp peak predicted by the the-
ory but not observed for thick crystals. Nevertheless, in
this case also, the theory provides values of the inten-
sity in the soft part of the spectrum, which agree with
 AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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the experiment, and correctly predicts the total energy
loss by radiation. The total energy loss by radiation is
proportional to the area under the curves in Fig. 7. For
the conditions depicted in Figs. 7a and 7c, the total
energy losses amount to 27 and 44%, respectively, of
the initial electron energy, which is close to the experi-
mental results.

The quantity that can be measured in experiments is
the average number of emitted photons as a function of
their total energy 〈k(ω, z)〉 , defined by formula (3.18).
This quantity for 150-GeV electrons is shown in Fig. 8
for various conditions of their entrance in a 200-µm-
thick germanium crystal relative to the 〈110〉  direction.
The area under the curves in Fig. 8 is equal to the total
average number 〈k(z)〉  of emitted photons over a given
thickness z. Figure 8 illustrates the strong orientation
dependence of the number of emitted photons if the
angles of incidence vary within the critical Lindhard
angle θL. The presence of a peak on the 〈k(ω, z)〉  spectra
for ω  0 in Fig. 8 is associated with the behavior of

one-photon probabilities in the CFA,  ~ ω–2/3, which
considerably exaggerates the number of soft photons in
the radiation spectrum as compared to the results of a
more accurate analysis [4].
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Fig. 8. Dependence of the mean number of emitted photons
〈k(ω, z)〉  on their total energy ω for the conditions depicted
in Fig. 7a. The angles of incidence are 0–7 (1) and
21−27 (2) µrad.
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5. CONCLUSIONS

Processes leading to a spread in energy losses can be
divided into two groups, viz., the processes in which
energy losses in a single interaction event are relatively
small and the final distribution is determined by a large
number of interactions exceeding 102–103 (ionization
losses) and the processes in which the energy lost in
one interaction event is commensurate with the particle
energy, while the resultant distribution is determined by
the contribution of a relatively small number of interac-
tion events <10–20 (bremsstrahlung and radiation emit-
ted by electrons with energies above 100 GeV in ori-
ented crystals). In the latter case, an adequate descrip-
tion of the energy loss spread corresponding to specific
experimental conditions can be obtained as the sum of
partial contributions from the probabilities of emission
of different numbers of photons (3.6). The expressions
for the energy loss distribution function are especially
simple when the total interaction cross section is inde-
pendent of time and energy (which corresponds to a
Poisson-type process). In both cases, a large class of
phenomena corresponding to power-type differential
cross sections of interactions with screening can be
described by exact solutions of a relatively simple
form, which can be expressed in terms of rapidly con-
verging integrals of elementary functions.
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APPENDIX A

Formulas (2.33) and (2.34) lead to the gamma distri-
bution (2.39) if we use the relation

(A.1)

This formula follows from the standard representation
(see, for example, [39, 8.315])

(A.2)

where the integration contour C passes from +∞ along
the real axis, bypasses the origin counterclockwise, and
returns to +∞. Formula (A.1) can be obtained from for-
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mula (A.2) by integration along the steepest descent
line (see text).

In contrast to standard representations [39–41], for-
mula (A.1) is convenient in view of its rapidly converg-
ing integrand, which makes it very helpful on account
of the fact that factor Γ–1(ξ) is often encountered in the
distribution functions considered here.

APPENDIX B

Standard representations for the Macdonald func-
tions in formula (4.1) have the form (see [39, 8.433])

(B.1)

(B.2)

Replacing the integration variable in formulas (B.1)
and (B.2) by the complex variable z = x + iy, we find that
the argument of the trigonometric functions in expres-
sions (B.1) and (B.2) has a saddle point z0 = i lying on
the imaginary axis, and the equation for the SDL has
the form Y(x) = (1 + x2/3)1/2. Integrating along this line,
we obtain

(B.3)

(B.4)
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3
--------+ 
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Fig. 9. Mesh in variables u = ω/E0 and e = E/E0 for numer-
ical calculation of partial probabilities (3.15).
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Our representation (B.3) and (B.4) is not encountered
in the literature. It is convenient since parameter ξ
appears in the argument of the exponential of the rap-
idly converging integrand, which is beneficial in opera-
tions of differentiation and integration with respect to
argument as well as in numerical calculations. The Airy
function and its derivative in expressions (2.36) and
(2.38) are in one-to-one correspondence with K1/3 and
K2/3 and, hence can also be represented by formulas of
type (B.3) and (B.4) [40].

APPENDIX C

The problem lies in numerical calculation of inte-
grals of the type

(C.1)

where e and u are dimensionless variables varying from
zero to unity and corresponding to the electron energy
and frequency (energy) of emitted photons. We assume
that the integrands in expression (C.1) are defined for
all e > u.

Integral (C.1) was evaluated on a triangular mesh
(see Fig. 9) with the same number of partitions and
identical steps δ in both variables,

Here, N is the maximal number of points at which e and
u are calculated (N = 6 in Fig. 9), umin = 1 – umax, where
umin and umax are the minimal and the maximal photon
frequencies for which integrals (C.1) are evaluated. In
our case, umin = 0.0051529. Such a choice of quantity
umin is dictated by the algorithm of numerical integra-
tion of functions with a singularity of the type u–2/3 in
the left integration limit. The values of frequency vari-
able m increase along the abscissa axis, while variable
n increases in the negative direction of the ordinate
axis.

The functions appearing in the integrand of for-
mula (C.1) are juxtaposed to the mesh functions fnm and
wnm , the first index corresponding to electron energy en

and the second, to photon frequency um . Then the nth
value of energy on the mesh corresponds to N – n + 1
values of frequency variable m. By definition, e1 = 1,
eN = 1 – 2umin, u1 = umin, and uN = 1 – umin.

On this mesh, integral (C.1) can be evaluated by the
formula (method of trapezoids)

(C.2)

where δij is the Kronecker delta.

F e u,( ) f e x– u x–,( )w e x,( ) x,d

0

u

∫=

δ ∆e≡ ∆u
1 2umin–

N 1–
---------------------.= =

Fnm δ 1
1
2
---δ1k

1
2
---δmk–– 

 
k 1=

m

∑=

× f n k 1–+ m k– 1+, wnk,
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In accordance with this formula, the values of fij in
the indicated sum on a mesh of the type shown in Fig. 9
for given en and um (encircled point in the figure) are
taken on the diagonal connecting points (n, m) and (n +
m – 1, 1) (dashed line BC in Fig. 9, n = 2 and m = 3).
The values of wij in Eq. (C.2) are taken along the line
n = const (line AB). The values of integral (C.1)
between zero and u = u1 = umin were calculated analyti-
cally taking into account the smallness of umin ! 1; i.e.,
integral (C.1) was evaluated using formula (C.2) in the
limits [umin, u]. At each stage of computations, the accu-
racy was corrected with the help of the normalization
condition and the results were verified by comparing
with analytic solutions.
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Abstract—We present the results of our measurements of the spectra for multicharged ions in a plasma pro-
duced by moderately intense (about 1017 W cm–2) picosecond laser pulses. They suggest the existence of intense
plasma oscillations with a frequency appreciably lower than the frequency of the laser radiation. The observed
spectrum for the plasma satellites of the Lyman Lyα doublet of the hydrogenic F IX ion in a dense plasma was
modeled theoretically. The resulting doublet profile was shown to have a complex structure that depends non-
trivially both on the plasma density and on the frequency and amplitude of the plasma oscillations. The posi-
tions of the satellites and their separations allowed them to be associated with intense electrostatic oscillations
with an amplitude of (4–6) × 108 V cm–1 and a frequency near (0.7–1) × 1015 s–1. Assuming the oscillation fre-
quency to be determined by the strength of the magnetic field B generated in the plasma, we obtained an esti-
mate of B that is in reasonable agreement with other measurements and estimates of this quantity. Our theoret-
ical analysis allowed explanation of the emission spectra observed when flat fluoroplastic targets were heated
by intense picosecond laser pulses. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The X-ray spectra of a high-temperature plasma are
shaped mainly by such atomic processes as electron–
ion collisions and radiative or autoionization ionic level
decays. The presence of slowly varying (quasi-static)
electric and magnetic fields in a plasma also affects its
radiative characteristics, causing the profiles of the
emitted spectral lines to change mainly through the
Zeeman and Stark effects.

In addition, strong oscillating electromagnetic fields
attributable both to external exposure of the plasma
(laser or microwave emissions used for plasma heating)
and to the growth of strong plasma instabilities and the
corresponding plasma oscillations can exist in the
plasma.

The peculiarities of a plasma produced by intense
sub- and picosecond laser pulses stem from the fact that
the electron velocity distribution is highly anisotropic.
This anisotropy gives rise to intense electromagnetic
oscillations attributable to the growth of instabilities in
such a plasma, primarily the so-called Weibel instability.
1063-7761/04/9904- $26.00 © 20708
Its growth is known to lead to the generation of strong
quasi-static magnetic fields with the strength determined
by the laser radiation intensity and reaching several hun-
dred megagauss at intensities above 1019 W cm–2. Recent
experiments [1] have revealed such superstrong quasi-
static magnetic fields generated in a laser plasma.
Their presence, irrespective of the generation mecha-
nism, is fundamentally important, because it radically
changes the physical properties of the laboratory plasma.
The experimentally detected magnetic fields [1] are
~500 MG, and they affect the propagation of ordinary
and extraordinary waves in the visible spectral range.
Naturally, the presence of magnetic fields also affects
the pattern and frequency distribution of the plasma
oscillations.

The frequencies of the electromagnetic oscillations
in a laser plasma typically do not exceed "ω ~ 1–10 eV.
Such oscillations may have the strongest effect on the
emission spectra in the visible spectral range, where the
atomic transition energy is comparable to the oscilla-
tion energy. A characteristic spectroscopic manifesta-
tion of the oscillating electromagnetic fields in a plasma
004 MAIK “Nauka/Interperiodica”
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is the emergence of additional spectral lines (satellites)
with the frequencies

where ωa is the atomic transition frequency; and l = 1,
3, 5, … and l = 2, 4, 6, … are for parity-forbidden and
parity-permitted atomic transitions, respectively.
Depending on whether the oscillating field is an exter-
nal laser field or generated by plasma oscillations, these
satellites are called laser (laser satellites were detected,
e.g., in [2–7]) or plasma (plasma satellites were
detected, e.g., in [8, 9]). If the atomic transition fre-
quency lies in the X-ray spectral range (multicharged
ions with "ωa > 1 keV), then, in general, the emerging
satellites will no longer be isolated lines, but will form
the profiles of the observed X-ray transitions. Note that
their detection requires using high-resolution (λ/∆λ ~
103–104) X-ray spectrographs. However, such X-ray
instruments currently exist and are widely used in
X-ray spectral studies of high-temperature plasmas.

Detection of the spectroscopic effects attributable to
plasma oscillations is undoubtedly of interest, first, as
an independent confirmation of the emergence of these
oscillations and, second, as a method for measuring
their parameters (amplitude, frequency, polarization).
Of particular interest is the case where the frequency of
these oscillations is close to the electron cyclotron fre-
quency, which corresponds to the growth of Bernstein-
mode-type plasma oscillations in a magnetic field.
Observations of such oscillations could serve as an
independent method for measuring the magnetic fields
generated in a plasma.

The observed spectral characteristics must be com-
pared with calculations that take into account the simul-
taneous presence of oscillating and quasi-static fields in
a plasma and that are performed for actual atomic
systems whose energy level structure can be fairly
complex.

In this paper, we present the results of our measure-
ments of the spectra for multicharged ions in a plasma
produced by moderately intense (about 1017 W cm–2)
picosecond laser pulses, suggesting the existence of
intense plasma oscillations with a frequency apprecia-
bly lower than the frequency of the laser radiation.

The observed spectrum for the plasma satellites of
the Lyman 2p1/2, 3/2–1s1/2 doublet of the hydrogenic flu-
orine ion in a dense plasma was modeled theoretically.
The resulting doublet profile was shown to have a com-
plex structure that depends nontrivially both on the
plasma density and on the frequency and amplitude of
the plasma oscillations. In this paper, we assume that
the oscillation frequency is determined by the strength
of the magnetic field B generated in a plasma. Under
this assumption, we were able to obtain an estimate for
B that is in reasonable agreement with other measure-
ments and estimates of this quantity. Our theoretical
analysis allowed us to explain the emission spectra

ωs ωa lω,±=
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observed when flat fluoroplastic targets were heated by
intense picosecond laser pulses.

2. EXPERIMENTAL RESULTS

We carried out our experiments with the Neodim
terawatt laser facility [10]. This laser facility provided
the following laser pulse parameters: an energy as high
as 1.7 J, a wavelength of 1.055 µm, and a duration of
1.5 ps. A laser beam 60 mm in diameter was focused on
the target by a 14.5-mm-thick aspherical lens with a
focal length of 140 mm that concentrated 50% of the
beam energy into a circle 15 µm in diameter. As a
result, the intensity of the beam when focused on the
target reached 3 × 1017 W cm–2. Flat 200-µm-thick flu-
oroplastic plates were used as the targets. The residual
gas pressure in the vacuum chamber did not exceed
10−3 Torr.

The X-ray radiation from a plasma produced by the
interaction of a laser pulse with the target (see Fig. 1)
was recorded by two FSPR spectrographs [11] with
spherically bent quartz or mica crystals (the radius of
curvature of the crystal surface was 150 mm). In all
experiments, the angle of observation was 5° and 85° to
the normal to the target surface for spectrographs 1 and
2, respectively. A Kodak-2492 X-ray photographic film
protected from visible light by two 1-µm-thick
polypropylene layers with evaporated Al 0.2 µm in total
thickness was used as the detector of the radiation
reflected from the crystal.

The plasma emission spectra were investigated in
the spectral range 1.49–1.51 nm. Under experimental
conditions, the spectrographs provided a spectral reso-
lution λ/∆λ of at least 5000. Figure 1 shows typical F
IX Lyα line spectrograms emitted by the plasma in dif-
ferent directions: almost along the normal to the target
and parallel to its surface. Both spectrograms were
taken with a spatial resolution, but the spatial resolution
was along the x axis (i.e., in the target plane) in the
former case and along the z axis (i.e., in the direction of
the preferential plasma expansion) in the latter case.

These spectrograms show that the size of the plasma
emission region is large, about 800 µm along both the x
and z axes. (Recall that the diameter of the laser focus-
ing spot was about 15 µm.) We see from the spectro-
gram shown in Fig. 1b that the profile of the Lyα line
recorded along the x axis is symmetric. Since its full
width at half maximum (FWHM) is no larger than
0.04 Å, this implies that the plasma expansion velocity
component v x does not exceed 4 × 107 cm s–1. We see
from the spectrogram shown in Fig. 1a that in the
region x ≈ –100–400 µm, the Lyα line profile is asym-
metric and have deep dips and local peaks in the long-
wavelength wing. Since v x < 4 × 107 cm s–1, the emis-
sion from this spatial region occurs t ~ 0.25–1 ns after
the onset of plasma expansion, i.e., much later than the
termination of the heating laser picosecond pulse. Thus,
SICS      Vol. 99      No. 4      2004
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Fig. 1 Experimental setup for observing the Lyα line profiles of F IX in a laser plasma and spectrograms taken with a spatial reso-
lution along (a) and perpendicular (b) to the surface of a fluoroplastic target.
the spectral features emitted from the plasma regions
with x ≈ –100–400 µm cannot be laser satellites.

In general, the dips in the Lyα line profile could be
associated with self-absorption. Whereas the dips (due
to self-absorption) for a homogeneous plasma emerge
only at the line center, the dips for an inhomogeneous
plasma, in which the absorbing and emitting regions
have different velocities, can emerge due to the Doppler
shift in both the short- and long-wavelength wings,
depending on whether the absorbing region moves
toward the observer faster or more slowly than the emit-
ting region (see, e.g., [12]). However, two dips (absorp-
tion on the Ly1 and Ly2 components) whose separation
must have been exactly equal to the fine splitting
(5.4 mÅ for F IX) must have emerged in any case.
Since the separation between the dips in our experi-
JOURNAL OF EXPERIMENTAL 
ments, first, changed with laser flux density from 8 to
11 mÅ and, second, differed significantly from the fine
splitting, the observed profiles cannot be explained in
terms of self-absorption.

Figure 2 shows the Lyα line profiles observed from
various spatial plasma regions for two experiments
where the laser flux density was qlas = 2 × 1017 (a) and
3 × 1017 W cm–2 (b). We see that the observed profiles
depend most strongly on qlas. However, even at the same
intensity, different spatial plasma regions yield signifi-
cantly differing structures of the emission spectrum.

Note also that the spectra in our experiments were
recorded without a time resolution; i.e., the experimen-
tal spectra are an integral of the plasma emission over
its lifetime. Since the density and temperature of the
AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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Fig. 2. Lyα line profiles of F IX emitted by various spatial plasma regions: x = –400 (1, 6), –315 (2), –230 (3, 7), –60 (4, 8), and

0 µm (5, 9). The laser flux density was qlas = 2 × 1017 and 3 × 1017 W cm–2 in experiments (a) and (b), respectively. For clarity, the
profiles were displaced along the vertical axis.
plasma during its evolution change and since the
parameters of the oscillating field can also change,
describing the observed spectrum by only one set of
parameters Ne , T, ω, and E0 is a rough approximation.
However, as we show below, this approximation yields
excellent qualitative (and even quantitative) agreement
with experimental data.

3. CALCULATIONS 
OF THE Lyα EMISSION LINE SPECTRUM 

FOR F IX IN A DENSE PLASMA

Calculations of the emission spectra under the
simultaneous influence of the quasi-static fields of ions
and the variable fields of plasma oscillations underlie
any theoretical modeling. We assumed that the quasi-
static field generated by plasma ions obeyed the Holts-
mark distribution with an ion density of about 1020 cm–3.
The electric field strength of the plasma oscillations has
the largest uncertainty. This strength is determined by
the plasma turbulence level, which is characterized by
the ratio of the oscillation energy density to the plasma
thermal energy density. In our calculations, it was var-
ied over a wide range corresponding to various turbu-
lence levels from 10–1 to 10–3. As regards the plasma
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
oscillation frequency, it was also varied to obtain the
best fit to the experimental data. This frequency proves
to be appreciably lower than the frequency of the inci-
dent laser radiation. The frequency scale of such oscilla-
tions may be related to the electron cyclotron frequency
of the oscillations in a magnetic field with the character-
istic scale determined by the Weibel instability.

A characteristic feature of the experimental Lyα line
profiles for F IX ions is the presence of many peaks and
dips in the profiles (see Fig. 2). Although the Stark
effect attributable to the influence of quasi-static elec-
tric plasma ion microfields F on hydrogenic ions plays
an important role in shaping the Lyα line profiles, this
effect alone cannot explain the severe raggedness of the
observed Lyα line profiles for F IX ions. The additional
influence of a quasi-monochromatic electric field of the
following form is the principal mechanism that can give
rise to features (peaks and dips) in the smooth quasi-
static line profiles of the hydrogenic ions formed by the
low-frequency ion electric microfields F:

E t( ) E0k ωkt α k+( )cos
k

∑=
SICS      Vol. 99      No. 4      2004
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(see, e.g., [13–15]). Here, we assume that the character-
istic spectral width of the oscillating field E(t) is much
smaller than the frequencies of the individual harmon-
ics ωk . The specific form of these features depends on
the parameters of the electric fields F and E(t) (on the
characteristic strengths of these fields, the characteris-
tic frequency of the field E(t), and the pattern of E(t) in
a plasma), the mutual arrangement of the atomic energy
levels, and the matrix elements of the dipole moment
between these atomic levels.

The n = 2 energy level of a hydrogenic ion consists
of three sublevels: 2P3/2 , 2S1/2 , and 2P1/2 . In the absence
of electric fields, the Lyα spectral line is produced by
two radiative transitions: 2P3/2  1S1/2 and 2P1/2 
1S1/2 . For F IX, the 2P3/2  1S1/2 and 2P1/2  1S1/2
spectral components are spaced approximately δλ =
5.4 × 10–4 nm apart. Note that the value of the fine
structure (i.e., the separation between the 2P3/2 and
2P1/2 levels) on the frequency scale is δω = 4.54 ×
1014 s–1. Stark state mixing of the 2P3/2 , 2S1/2 , and 2P1/2
levels takes place under the influence of plasma electric
microfields. This effect, together with the Doppler
effect, causes a rearrangement of the Lyα line profile:
the individual 2P3/2  1S1/2 and 2P1/2  1S1/2 com-
ponents disappear, and one broad resulting profile
appears in place of them.

Here, to theoretically analyze the experimental Lyα
line profiles for F IX ions, we used a model in which
each F IX ion was assumed to experience two electric
fields: a quasi-static field F (generated by plasma ions)
and a linearly polarized harmonic field E(t) = E0cosωt.
Since there was no a priori information about the possi-
ble amplitude–angular distribution of the oscillating
field E(t) in a plasma, we considered the simplest case
where F || E(t) in terms of our model. The Holtsmark
function [16] was used as the distribution function of
the ion microfield strength W(F). Although the distribu-
tion function of the plasma ion microfields W(F)
slightly differs from the Holtsmark function due to the
cross correlation between the ions and the Debye
screening of the ion-produced electric fields for the
plasma parameters under consideration (the electron
temperature Te is more than or ~100 eV, and the plasma
density Ne is more than or ~1020 cm–3), we disregarded
this difference, because our prime objective was to
describe the features observed in the experimental Lyα
line profiles for F IX ions.

When theoretically analyzing the modification of
the Lyα emission spectrum for F IX ions under the influ-
ence of two electric fields, the ion microfield F and the
oscillating field E(t) = E0cosωt, we chose the quantiza-
tion z axis of the Cartesian coordinate system along the
vector F. (Here, the coordinate origin is assumed to
coincide with the F IX nucleus.) Let us denote the
wavefunctions ϕj (j = 1, 2, …, 8) of the states belonging
JOURNAL OF EXPERIMENTAL 
to the level with the principal quantum number n = 2 for
F IX as follows:

mj = 1/2 for ϕ1, ϕ2, and ϕ3; mj = –1/2 for ϕ4, ϕ5, and ϕ6;
mj = 3/2 for ϕ7; and mj = –3/2 for ϕ8. In our model
(F || E(t) || z), the combined electric field e(t) = F +
E0cosωt interacts with each of the two individual three-
level systems:

In this case, to calculate the Lyα emission spectrum, it
will suffice to consider the radiative transitions from the
three level system ϕ1  ϕ2  ϕ3 perturbed by the
field e(t) to the lower n = 1 level and to take into
account the spectral component corresponding to the
radiative transition from the ϕ7 state to the n = 1 state.
The radiative transitions to the n = 1 level from the
states with negative magnetic quantum numbers mj

(mj = –1/2, –3/2) belonging to the upper n = 2 level
yield an emission spectrum that matches the emission
spectrum for the transitions from the states with posi-
tive mj (mj = 1/2, 3/2).

To determine the evolution of the F IX states in the
combined electric field e(t), we solved the Schrödinger
equation

(1)

In Eq. (1) and below, unless specified otherwise, we use

atomic units: " = e = me = 1. In Eq. (1),  is the unper-
turbed Hamiltonian for F IX with the energy eigenval-

ues  and the corresponding wave eigenfunctions ϕj ,

 = zF is the operator for the dipole interaction of F

IX with the field F, and (t) = zE0cosωt is the opera-
tor for the dipole interaction of F IX with the oscillating
field E0cosωt. Analyzing the behavior of the three-level
system ϕ1  ϕ2  ϕ3 in the field e(t) = F +
E0cosωt, we represent the solution of the Schrödinger
equation (1), according to the Floquet theorem (see,
e.g., [17]), as the wavefunction of a quasi-energy state

(2)

In expression (2), the quasi-energy µ and the time-inde-
pendent coefficients Ajs are unknown quantities. Substi-
tuting (2) into (1), we obtain a system with an infinite

ϕ1 4, 2S1/2 m j,| 〉 , ϕ2 5 7 8, , , 2P3/2 m j,| 〉 ,≡≡

ϕ3 6, 2P1/2 m j,| 〉 ,≡

ϕ1 ϕ2 ϕ3, ϕ4 ϕ5 ϕ6.

i
∂Ψ
∂t

-------- Ĥ0 V̂1 V̂2 t( )+ +[ ]Ψ .=

Ĥ0

ε j
0( )

V̂1

V̂2

Ψ t( ) iµt–( ) A js isωt–( )ϕ j.exp
s ∞–=

+∞

∑
j 1=

3

∑exp=
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number of algebraic equations with constant coeffi-
cients after simple transformations:

(3)

where k = 1, 2, 3; s = 0, ±1, ±2, …; and  = zE0/2. To
obtain a system with a finite number of algebraic equa-
tions from (3), we will retain only the terms containing
Aj0, Aj1, Aj, –1, Aj2, and Aj, –2 in (3). This imposes an
upper limit on the amplitude of the oscillating field in
our calculations:

As a result, we obtain a system of 15 linear algebraic
equations with constant coefficients in place of (3). The
system of equations derived in this way describes the
behavior of an effective 15-level quantum-mechanical
system under the influence of a constant (time-indepen-

dent) perturbation . The unperturbed energy levels
for this effective system are

(4)

where k = 1, 2, 3 and s = 0, ±1, ±2. The matrix elements

of the operator  calculated using the wavefunctions
|ks〉  that correspond to the unperturbed energy levels

 in (4) can be easily deduced from system (3). They
are a linear combination of the matrix elements for the

operators  and  calculated using the wavefunc-
tions ϕk (k = 1, 2, 3) of the initial three-level system
ϕ1  ϕ2  ϕ3. Thus, we reduced the problem of the
dynamic Stark effect for the three-level system ϕ1 
ϕ2  ϕ3 in the electric field e(t) = F + E0cosωt to the
simpler problem of the evolution of an effective

15-level system that undergoes a static perturbation .
We solved the latter problem numerically by diagonal-
izing the corresponding 15 × 15 energy matrix. This
allowed us to numerically calculate the three quasi-
energies (µ1, µ2 , and µ3) and the corresponding three
wavefunctions Ψp(t) (see (2)) for the three-level system
ϕ1  ϕ2  ϕ3:

(5)

Using expression (5), we can represent the emission
spectrum for the radiative transition from the three-level

εk
0( ) µ– sω–( )Akω A js ϕk〈 |V̂1 ϕ j| 〉[

j 1=

3

∑+

+ A j s 1–, A j s 1+,+( ) ϕk〈 | v̂ 2 ϕ j| 〉 ] 0,=

v̂ 2

E0 V  cm 
–1 [ ] 11.5 10 

7– ω  s 
1– [ ] . ×<

Û

Eks
0( ) εk

0( ) sω,+=

Û

Eks
0( )

V̂1 v̂ 2

Û

Ψp t( ) iµpt–( ) A js
p( ) isωt–( )ϕ j,exp

s 2–=

2

∑
j 1=

3

∑exp=

p 1 2 3., ,=
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1

 

  

 

ϕ
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ϕ

 

3

 

 to the lower 

 

n

 

 = 1 level as

(6)

where 

 

ϕ

 

0

 

 is the wavefunction of the 

 

n

 

 = 1 state and all
energies are assumed to be measured from the energy
of the

 

 n 

 

= 1 level. Note that the arguments of the 

 

δ

 

 func-
tion in (6) specify the positions of the spectral compo-
nents:

(7)

where 

 

p

 

 = 1, 2, 3 and 

 

s

 

 = 0, 

 

±

 

1, 

 

±

 

2.

Based on formula (6), our computer code numeri-
cally computed the “Doppler” spectrum 

 
I

 

D

 
(

 
∆ω

 
) that

was obtained by substituting Gaussian profiles with the
FWHM determined by the F IX ion temperature for the

 

δ

 

 functions in (6). To find the resulting Ly

 

α

 

 line profile,
our code then numerically averaged the Doppler spec-
trum 

 

I

 

D

 

(

 

∆ω

 

) over the ion microfield distribution 

 

W

 

(

 

F

 

)
and added the Doppler profile of the line corresponding
to the radiative transition from the 

 

ϕ

 

7

 

 state to the 

 

n 

 

= 1
state to the spectrum obtained in this way.

Thus, in our model, the computed line profile
depended on four parameters: the plasma temperature 

 

T

 

and density 

 

N

 

 as well as the frequency 

 

ω

 

 and amplitude

 

E

 

0

 

 of the oscillating field. The results of our calcula-
tions for various values of these parameters are pre-
sented in Figs. 3–6.

Figure 3 shows how the emission spectrum in the
wavelength range 14.94–15.04 Å depends on the
amplitude of the oscillating electric field 

 

E

 

0

 

 at its fre-
quencies 

 

ω

 

 = 5 

 

×

 

 10

 

14

 

 (a) and 10

 

15

 

 s

 

–1

 

 (b). We see that a
change in 

 

E

 

0

 

 leads not only to an intensity redistribution
between the emerging spectral components, but also to
a change in their positions. The latter stems from the
fact that the positions of the spectral components are
determined (at fixed ion microfield strength 

 

F

 

) by

 

∆ω

 

p

 

, 

 

s

 

 = 

 

µ

 

p

 

 + 

 

s

 

ω

 

 (see (7)), and the quasi-energy 

 

µ

 

p

 

depends on the amplitude

 

 E

 

0

 

. Note that 

 

µ

 

p

 

 also depend
on the ion microfield strength

 

 F

 

. Since different F IX
ions in a plasma experience different fields 

 

F, the above
spectral components broaden in accordance with the
plasma ion microfield distribution function. When the
frequency of the oscillating field ω exceeds the fine
splitting of the n = 2 level for F IX and the characteristic
FWHM of the Stark Lyα line profile for F IX in the
plasma ion microfields, some of these spectral com-
ponents can be roughly treated as Blochinzew’s satel-
lites [18] (see also [19]). As an example, note that pro-

file 9 in Fig. 3b exhibits the ± ω/2πc satellites
(denoted by S+1 and S–1), while profile 5 exhibits the

± ω/2πc and ± ω/πc satellites (denoted by S+1, S–1

I ∆ω F,( ) A js
p( ) 2 ϕ j〈 |z ϕ0| 〉 2

s 2–=

2

∑
j 1=

3

∑
p 1=

3

∑=

× δ ∆ω µp– sω–( ),

∆ωp s, µp sω,+=
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2

λ0
2 λ0

2
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Fig. 3. Computed Lyα line profiles for F IX in a plasma with (a) Ti = 100 eV, Ne = 1020 cm–3, ω = 5 × 1014 s–1 and (b) Ti = 100 eV,

Ne = 2 × 1020 cm–3, ω = 1015 s–1 for various oscillating electric field strengths: E0 = 6 × 108 (1, 7), 5 × 108 (2, 8), 4 × 108 (3, 9),

2.5 × 108 (4), 109 (5), and 7 × 108 V cm–1 (6). For clarity, the computed profiles were displaced along the vertical axis.
and S+2, S–2, respectively). Here, λ0 is the wavelength of
the Lyα transition for F IX ions.

Figure 4 shows how the spectrum depends on the
frequency ω at fixed field amplitudes E0. We see that a
change in ω affects both the positions of the spectral
components and their intensities.

It is clearly from the above figures that the emitted
spectrum has a complex structure that depends nontriv-
ially on both the amplitude and frequency of the oscil-
lating field, and the positions of the local maxima and
minima emerging in the Lyα line profile are determined
by the pair of parameters E0 and ω, not by one of them.

Figure 5 shows how the spectrum depends on the
ion temperature. Here, the situation is simpler: an
increase in the plasma temperature causes the spectral
components to broaden, and the line profile is
smoothed; i.e., the maxima and minima emerging in the
profile become less distinct, although their positions
remain unchanged.

The change in plasma density (see Fig. 6) from Ne =
1019 cm–3 to Ne = 6 × 1020 cm–3 has a more complex
effect on the emitted spectrum. We see that an increase
JOURNAL OF EXPERIMENTAL
in Ne results both in an intensity redistribution between
the spectral components and in their shift.

Thus, it follows from Figs. 3–6 that, depending on
Ne , T, E0, and ω, the Lyman doublet can have a com-
pletely different profile that does not resemble the clas-
sical doublet structure even remotely. If the X-ray spec-
trogram recording the plasma radiation has a suffi-
ciently high spectral resolution, λ/∆λ > 103, and if
electric oscillations of sufficient amplitude exist in the
plasma, then such complex profiles must be observed
experimentally. We recorded these profiles in the radia-
tion from a plasma heated by intense picosecond pulses
at laser flux densities qlas ≈ (2–3) × 1017 W cm–2.

4. COMPARISON WITH CALCULATIONS

We see from Fig. 7 that the observed line profiles
can be well described by calculations that take into
account the presence of oscillating electric fields. For
example, the profile observed at qlas = 2 × 1017 W cm–2

is satisfactorily reproduced by calculations for Ti =
100 eV, Ne = 1020 cm–3, ω = 7 × 1014 s–1, and E0 = 4 ×
108 V cm–1 (see Fig. 7a), while the profile observed at
 AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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Fig. 4. Computed Lyα line profiles for F IX in a plasma with (a) Ti = 100 eV, Ne = 1020 cm–3, E0 = 4 × 108 V cm–1 and (b) Ti =
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Fig. 5. Computed Lyα line profiles for F IX in a plasma with

Ne = 2 × 1020 cm–3, ω = 1015 s–1, E0 = 6 × 108 V cm–1, and
Ti = 100 (1), 200 (2), and 400 eV (3).

qlas = 3 × 1017 W cm–2 is satisfactorily reproduced by
calculations for Ti = 100 eV, Ne = 2 × 1020 cm–3, ω =
1015 s–1, and E0 = 6 × 108 V cm–1 (see Fig. 7b). Note that
the experimental line profiles slightly differ from the
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Ti = 100 eV, ω = 5 × 1014 s–1, E0 = 4 × 108 V cm–1, and Ne =

1019 (1), 1020 (2), 3 × 1020 (3), and 6 × 1020 cm–3 (4).

computed ones in the short-wavelength wings. This is
because fast ions are present in the plasma (as we
showed previously [20], the fraction of the fast F IX
ions can reach 20% under our experimental condi-
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tions); their motion toward the spectrograph must cause
the short-wavelength wings of the spectral lines to
increase. We disregarded the presence of fast ions in our
theoretical model. That is why the theoretical and
experimental profiles in Fig. 7 differ.

Note also that we recorded the spectra without a
time resolution; i.e., the experimental spectra are an
integral of the plasma emission over its entire lifetime.
Since the density and temperature of the plasma during
its evolution change and since the parameters of the
oscillating field can also change, describing the
observed spectrum by only one set of parameters Ne , T,
ω, and E0 is a rough approximation. However, this
approximation yields excellent qualitative (and event
quantitative) agreement with experimental data.

Thus, the assumption about the presence of an oscil-
lating electric field in a plasma allows us to explain
observed X-ray spectral results that cannot be inter-
preted in any other way. We consider the possible gen-
eration mechanisms for such fields in the next section.

4

2

0
14.92 14.96 15.00 15.04

In
te

ns
ity

, a
rb

. u
ni

ts

λ, Å

(b)

9

3

0

In
te

ns
ity

, a
rb

. u
ni

ts

(a)

6

Fig. 7. Comparison of the experimental (thin curves) and
theoretical (thick curves) Lyα line profiles for F IX: (a) the

experiment at qlas = 2 × 1017 W cm–2, and the calculation

for Ti = 100 eV, Ne = 1020 cm–3, ω = 7 × 1014 s–1, E0 = 4 ×
108 V cm–1; (b) the experiment at qlas = 3 × 1017 W cm–2,

and the calculation for Ti = 100 eV, Ne = 2 × 1020 cm–3, ω =

1015 s–1, E0 = 6 × 108 V cm–1.
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5. POSSIBLE GENERATION MECHANISMS
FOR AN OSCILLATING ELECTRIC FIELD

IN A PICOSECOND LASER PLASMA

The above calculations were essentially based on
phenomenological ideas of the existence of intense
electrostatic oscillations in a plasma with a given fre-
quency and amplitude. Here, we briefly analyze the
possible generation mechanisms for such oscillations in
a plasma produced by picosecond laser pulses.

A characteristic feature of the laser plasma is anisot-
ropy in the electron velocity distribution that is attribut-
able to the formation of a strong electric current and
that gives rise to a number of plasma instabilities. Ion–
acoustic oscillations are the best-known type of insta-
bility. However, these are low-frequency oscillations
whose effect on an atom is quasi-static and can cause
only an additional broadening of the profiles of spectral
lines without characteristic satellite structures. High-
frequency electron Langmuir oscillations with the elec-
tron plasma frequency may be considered as a candi-
date for the generation of an oscillating electric field
that affects the atomic spectra. However, the dispersion
law for Langmuir oscillations results in a wide smear-
ing of the oscillation spectrum due to intense thermal
electron motion, which also affects the spectral smear-
ing of the atomic satellites attributable to such oscilla-
tions.

The mechanisms related to the generation of strong
magnetic fields when the solid target surface is exposed
to a laser pulse are preferred among other possible can-
didates for the generation mechanism of an oscillating
electric field in a plasma. The recorded magnetic field
strengths under these conditions reach (3–5) × 108 G at
a radiation flux density of 1019 W cm–2 [1].

The relationship of these strengths to the laser radi-
ation intensity is well described by the formula [21]

(8)

which can be derived by setting the energy density of
the laser wave equal to the energy density of the gener-
ated magnetic field.

Using this similarity law under our experimental
conditions, we estimated the magnetic field strength to
be B = 5 × 107 G. An electron cyclotron frequency of
about 8 × 1014 s–1, which is in good agreement with the
frequencies of the electrostatic oscillations used above
to interpret the experimental data, corresponds to this
field strength. Thus, it seems natural to associate the
oscillating electromagnetic fields affecting an atom
with the plasma oscillations in a magnetic field at the
electron cyclotron frequency.

The Bernstein modes [22] propagating across the
magnetic field are the most suitable candidate for such
oscillations. This is because they, first, have frequencies
close to the electron cyclotron ones, second, possess a
dispersion law with (in contrast to, e.g., Langmuir
oscillations) an isolated discrete spectrum (a kind of

B G[ ] 10 1– J1/2,  W  cm –2 [ ] 
1/2

 , ≈                                           
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Landau levels), and, finally, they correspond to the
oscillations in a collisionless plasma, which most
closely matches the conditions of short picosecond
laser pulses.

The generation mechanisms for Bernstein oscilla-
tions have been extensively studied in the literature and
are associated with the growth of electron cyclotron
drift instability [23, 24]. The drift of electrons relative
to ions attributable to the flow of a strong electric cur-
rent across the magnetic field underlies the growth of
this instability. In the laser plasma conditions under
consideration, a quasi-static magnetic field is generated
due to the growth of Weibel instability [25] that is
related to the anisotropy in the electron velocity distri-
bution function caused by the current of ionization of
the medium by a laser pulse. The direction of this con-
stant magnetic field coincides with the direction of the
laser wave magnetic field; hence, it is perpendicular to
the direction of the current. The emerging current is
probably attributable to the reverse currents that appear
when a beam of fast electrons is generated by the main
laser pulse. These currents are responsible for the laser
plasma pinching observed in recent experiments [26]
that arises when thin wire targets are exposed to picosec-
ond laser pulses. The growth rate of the electron cyclo-
tron drift instability is described by the formula [23]

(9)

where ωB is the electron cyclotron frequency, θ is the
angle between the wave vector of the oscillations k and
the velocity vector of the current drift v d , v e0 is the ther-
mal electron velocity, Te and Ti are the electron and ion
temperatures, λD is the electron Debye length, and νee

is the electron–electron collision frequency.
The second term in (9) corresponds to the stabiliza-

tion of the cyclotron instability by electron–electron
collisions, and its contribution is generally negligible
under laser plasma conditions. Indeed, the collision fre-
quency estimated using the formula

yields νee ≈ 1011 s–1 for Ne = 1020 cm–3 and Te = 1 keV,
which is more than three orders of magnitude lower
than the electron cyclotron frequency.

The growth of this instability is effective at a high
electron drift velocity v d determined by the current.
The condition that determines this velocity is [23]

(10)

where the magnetic field B is in gausses, and the elec-
tron density Ne is in cm–3.

Substituting the typical magnetic field strength and
electron density used above, we obtain a value of the

γ
ωB

------
θcos

π1/2
------------

v d

v e0
--------

Te

2Ti

-------- 1.5

1 kλD( )2+[ ] 2
--------------------------------

νee

ωB

-------,=

νee 1010 Ne cm 3–[ ] /1016( ) 10/Te eV[ ]( )3/2 s 1–≈

v d

v e0
-------- ñB

2 10 5– Ne×( )1/2
------------------------------------,≥
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right-hand side in formula (10) that is on the order of
unity for the fundamental  = 1 mode. The correspond-
ing growth rates estimated using formula (9) are γ ≈
1013–1014 s–1 for these v d/v e0 ratios, whose reciprocal is
smaller than the laser pulse duration. Thus, the condi-
tions for intense generation of Bernstein oscillations
due to the growth of electron cyclotron drift instabilities
are realized in the laser plasma.

The intensity of the Bernstein plasma oscillations
can be roughly estimated on the grounds that the effec-
tive electron–wave collision frequency νE0 that limits
the field strength E0 must be on the order of the wave
growth rate. In this case, the effective electron–wave
collision frequency νE0 in a thermally equilibrium
plasma differs, according to [27], from the electron–
electron collision frequency νee only by a logarithmic
factor of ~10. The wave energy density at thermody-

namic equilibrium, /8π (where Ecn is the wave
amplitude), is lower than the thermal energy density
NeTe by a factor of NeρD @ 1. Setting the effective col-
lision frequency equal to the growth rate of the oscilla-
tions under consideration using formula (9), we obtain
an estimate for the amplitude of the generated waves:

(11)

Substituting the plasma parameters used above
into (11) yields an estimate of E0 ≈ (4–6) × 108 V cm–1,
in reasonable agreement with the strengths of the oscil-
lating fields adopted above.

6. CONCLUSIONS

Our measurements have revealed intense plasma
oscillations in a laser plasma produced by picosecond
laser pulses. The separation between the observed sat-
ellites, which correlates with the estimates of the mag-
netic field emerging in a plasma, allows them to be
associated with the growth of Bernstein-mode-type
plasma oscillations. If this correlation will receive fur-
ther experimental confirmation, then its presence will
make it possible to directly measure the magnetic fields
generated in a laser plasma.

Actually, the observed spectral pattern proves to be
more complex than the computed one. This is probably
attributable, first, to the presence of low-frequency ion–
acoustic oscillations and, second, to the presence of
additional satellite lines related to the possible sublevel
intersection of the fine structure of the n = 2 level for F
IX in a strong magnetic field (see [28] for more details).
In the latter case, the influence of the variable electric
field of plasma oscillations near these points of inter-
section gives rise to Blochinzew’s standard structure of
equidistant satellites [18] whose intensity depends on
the ratio of the field strength and frequency. The
observed spectrum probably corresponds to a superpo-
sition of these types of spectra. Unfortunately, the dis-
tribution of the magnetic field emerging from the

ñ

Ecn
2

E0
2/8πNeTe( ) NeρD

3( )νee/10 γ.=
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growth of Weibel instability is not known. Further
experiments on observing satellites in the spectra of
multicharged ions will allow one to determine the type
of distribution of these fields and, thus, the peculiarities
of the growth of Weibel instability as well as another
type of oscillations in a plasma.
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Abstract—Two different modes of capacitively coupled radio-frequency (RF) discharge in methane at gas
pressures between 0.01 and 1.00 Torr are examined by numerical simulation based on a combined approach. It
is shown that transition between volume-dominated and active-sheath modes is caused by variation of dis-
charge current or gas pressure. Hysteretic behavior is revealed as the discharge current density is varied along
the growing- and falling-current branches of the current-density curve. A phase diagram representing the
domains of different discharge modes is obtained in wide current and pressure ranges. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The existence of different discharge modes was
examined in a pioneering experimental study by Lev-
itskii [1]. Starting with that outstanding work, the
change between different (high- and low-voltage) dis-
charge modes were attributed to the so-called α–γ tran-
sition. The sharp increase in plasma density and
decrease in electron temperature were explained by the
effect of secondary electrons on the discharge dynam-
ics. Depending on power input, discharge can be sus-
tained either by electrons in the quasi-neutral region,
which are heated as the electrode sheath moves (α mode),
or by electrons emitted by the electrodes (γ mode).
Transition between different modes of RF discharge
characterized by high and low voltages in argon and
helium was studied experimentally in [2]. It has been
demonstrated that electron density is much higher in
the γ mode, and the corresponding electron energy dis-
tribution function (EEDF) is Maxwellian owing to elec-
tron–electron collisions. Both in kinetic simulations [3]
and in simulations using a two-fluid model for the elec-
tron gas [4], the α–γ transition was examined for an RF
discharge in helium. Transition of different type was
revealed experimentally for a low-pressure RF dis-
charge in argon [5]. A sharp transition from low to high
electron temperature associated with increase in gas
pressure was observed. The increase in electron tem-
perature was explained in [5] by a change in the elec-
tron-heating mechanism involving the Ramsauer effect.
Transition between different modes of discharge in
silane was observed experimentally in [6, 7] and ana-
lyzed numerically in [8]. The transition from volume
glow to electrode-sheath glow observed in [6, 7] was
attributed to secondary electrons. It should be noted
1063-7761/04/9904- $26.00 © 20719
that a higher rate of α-Si:H film deposition was mea-
sured for the volume-dominated discharge mode. Even
though capacitively coupled RF discharge plasmas are
widely applied in technological processes (e.g., in dia-
mond-like film deposition), the dynamics of transition
between different modes of discharge in molecular
gases has never been investigated.

2. MODEL AND NUMERICAL TECHNIQUE

In this study, transition between different capaci-
tively coupled RF discharge modes is analyzed by
using the algorithm developed in [9], which combines
fluid-dynamic and kinetic approaches. The purely
fluid-dynamic approach is disadvantageous in that the
inertia of both electrons and ions is neglected, which
restricts the scope of the fluid model to high gas pres-
sures. On the other hand, solution of kinetic equations
by the PIC–MCC (Particle-In-Cell Monte Carlo Colli-
sion) method requires a very large particle number N,
particularly at low gas pressures. It is well known that
an increase in N reduces electric-field fluctuations,
which lead to spurious heating of electrons. Currently,
hybrid models combining kinetic and fluid-dynamic
approaches are widely used in computations of glow
discharges (e.g., see [4, 10, 11]). In the present com-
bined model [9], the kinetic equations for electrons and
ions (three-dimensional in velocity space and one-
dimensional in space), the continuity equations for the
electron and ion densities and fluxes, and the Poisson
equation for electric-field strength E are solved self-
consistently. Kinetic equations are solved to find the
electron energy distribution function and the kinetic
004 MAIK “Nauka/Interperiodica”
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coefficients in transport equations. One advantage of
the present combined PIC–MCC approach over the
conventional PIC–MCC algorithm (see [12]) is the
lower time complexity achieved by substantially reduc-
ing the number of particles. Even at low gas pressures,
we use only N = 5000 for each plasma component,
whereas the conventional PIC–MCC algorithm
requires more than N = 256000 particles to ensure
agreement with experiment (see [9]).

We computed a one-dimensional capacitively cou-
pled RF discharge with sinusoidal current density j of
frequency 13.56 MHz. One electrode was grounded,
and the potential at the other was computed self-consis-
tently by assuming that a prescribed current was sus-
tained. The interelectrode spacing d was varied from
3 to 6 cm. Methane was treated as an electropositive
gas [13]. To simplify analysis, we follow [14] and con-

sider only  ions. We used a model of electron
kinetics with electron–neutral [13, 14] and electron–
electron collisions computed by the method proposed
in [15]. Figure 1 shows cross sections for elastic colli-
sions, excitation of vibrational levels, dissociation, ion-
ization, and dissociative ionization. Since the methane
decomposition rate was assumed to be low, only colli-
sions between electrons and CH4 molecules are taken

CH5
+

10

1

10–1 1 10 102

1

2 3

4

ε, eV

σ, 10–16 cm2

5

6

7

Fig. 1. Cross sections for electron scattering by CH4 mole-
cules versus electron energy: elastic scattering (1), excita-
tion of vibrational levels (2, 3), CH2 or CH3 radical produc-
tion by dissociation (4, 5), ionization (6), and dissociative
ionization (7).
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into consideration. Plasma chemistry is not discussed in
this paper.

3. STRUCTURE AND CHARACTERISTICS
OF DIFFERENT RADIO-FREQUENCY 

DISCHARGE
Our discharge simulations revealed two different

modes of capacitively coupled RF discharge. Figure 2
shows typical electron density distributions ne and elec-
tron energies ε averaged over the RF discharge period.
The volume-dominated discharge mode (VD mode) is
characterized by low plasma density and high electron
energy (solid curves in Fig. 2). The distribution of mean
electron energy across the discharge gap is flat. This
mode occurs at lower gas pressures and current densi-
ties. The active-sheath mode (AS mode) is associated
with a much higher plasma density (dashed curves in
Fig. 2). The distribution of mean electron energy has
peaks in the sheaths and a deep minimum at the center
of the discharge gap. Transition between the modes
occurs under a certain critical conditions. In computa-
tions, variation of either current density or gas pressure
causes gradual change in discharge characteristics until
a critical point is reached, and then the discharge struc-
ture changes abruptly. Figure 2 demonstrates how a
slight change in current density by 0.1 mA/cm2 makes
the system switch from VD to AS mode. The plasma
density increases by a factor of 4 to 5, while the mean
electron energy drops at the center of the discharge gap.
Figure 3 shows the variation of mean electron energy at
the center of the gap with discharge current density for
several values of gas pressure. The drop in ε spans a
narrow current-density interval, and the lowest current
density corresponds to P = 0.03 Torr.

It should be noted that the transition involves a drop
in discharge power and a sharp increase in the total
degree of ionization.

4. ROLE OF SECONDARY ELECTRONS
IN DISCHARGE DYNAMICS

In previous studies, the change between the modes
was attributed to the α–γ transition. For this reason, we
performed an analysis of the effect of secondary elec-
trons on discharge dynamics. The calculated secondary
ion–electron emission coefficient γ was varied between
0 and 0.5, while the initial secondary-electron temper-
ature Te was set equal to 1 eV. The results of computa-
tions performed for several values of γ revealed a weak
effect of secondary electrons on discharge characteris-
tics. Even at the highest value, γ = 0.5, the critical cur-
rent density j* was only 25% lower than j* at γ = 0.
Only the α mode was obtained at P = 0.01–1.00 Torr
and j = 0.45–2.2 mA/cm2. Therefore, the α–γ transition
is not responsible for the change between different
modes of capacitively coupled RF discharge in meth-
ane, in contrast to inert gases. The key difference in
electron kinetics between molecular and inert gases is
 AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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Fig. 2. Distributions of electron density ne and electron energy ε across the discharge gap averaged over the discharge period for

j = 0.70 and 0.75 mA/cm2 at P = 0.03 Torr (a, b) and for j = 1.0 and 1.1 mA/cm2 at P = 0.075 Torr (c, d).

0 0
that the electron-energy relaxation length is much
smaller in methane, as compared to inert gases, because
vibrational levels with very low threshold energies
(0.162 and 0.361 eV) are excited. Accordingly, the sec-
ondary electrons emitted by electrodes cannot give rise
to a high-energy beam, as they do in the γ mode of dis-
charge in an inert gas.

5. SCENARIO FOR TRANSITION
BETWEEN DIFFERENT MODES

The electric-field strength in the electrode sheath
increases with current density. At the critical point, the
mean free path for ionization lion becomes smaller than
the sheath thickness lsh , and the degree of ionization in
the sheath sharply increases. In other words, the elec-
tron energy exceeds the ionization threshold energy
inside the electrode sheath, which causes transition
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
from VD to AS mode. To verify this hypothesis, we var-
ied the ionization cross section σi by δ so that the criti-
cal current density increased for δ > 0 and decreased for
δ < 0. For example, j* = 0.725 mA/cm2 for δ = 0, and
the critical current density decreased to 0.70 mA/cm2 as
ionization threshold energy was reduced by using δ =
−0.5 eV.

Figure 4 shows the electron energy distribution
functions in the electrode sheath and at the center of the
discharge gap corresponding to j = 1 mA/cm2 (subcrit-
ical current density) and j = 1.1 mA/cm2 (supercritical
current density). In the volume-dominated discharge
mode, a low ionization rate in the sheaths is compen-
sated for by ionization in the quasi-neutral region. The
EEDFs shown in Fig. 4a demonstrate that the concen-
tration of ionizing electrons in the VD mode is low both
in the sheaths and at the center. In contrast, the EEDF
SICS      Vol. 99      No. 4      2004
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corresponding to the active-sheath mode has a high-
energy tail in the interval above the ionization threshold
(12.6 or 14.3 eV) (curve 1 in Fig. 4b). These hot elec-

6

2

1 2

ε, eV

j, mA/cm2
0

4

0.01 Torr
0.03
0.05
0.10
0.30

Fig. 3. Mean electron energy at the center of the discharge
gap versus current density for several values of gas pressure.
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trons can ensure a sufficiently high ionization rate in an
electrode sheath to sustain a discharge with prescribed
current density. At the center of the discharge gap, elec-
trons have low energies (ε < 0.5 eV), compared to
sheath electrons, and play a passive role (curve 2 in
Fig. 4b).

The processes responsible for the EEDF shape in
different modes are illustrated as follows. Figure 5
shows the rates of electron heating by electric field and
electron-energy dissipation due to various inelastic pro-
cesses in the VD and AS modes for j = 1.0 and
1.1 mA/cm2 at P = 0.075 Torr. In the VD mode, elec-
trons are heated in the quasi-neutral region (curve 1 in
Fig. 5a), whereas electron energy is gained only in the
electrode sheaths in the AS mode (curve 2 in Fig. 5a).
Figure 5b demonstrates that the greater part of electron
energy is transferred in the VD mode to excite vibra-
tional levels in CH4 molecules (curve 1). However, note
that a smaller interelectrode spacing width corresponds
to a lower energy transfer to vibrational degrees of free-
dom and a higher power consumption due to dissocia-
tive processes. Note also that, even though the ioniza-
tion rate is lower at j = 1 mA/cm2 (solid curve in
Fig. 5c) as compared to 1.1 mA/cm2, a higher degree of
methane dissociation is obtained for the VD mode of
discharge at j = 1 mA/cm2 (dashed curve in Fig. 5d). A
similar trend was observed experimentally in [6] for
discharge in silane. The electron kinetics are different
in that electrons gain some additional energy in the cen-
tral discharge region in the VD mode, whereas the mean
10–1

10–2

0 10 20

EEDF

10–3

10–4

1
2

(a)

10–1

10–2

0 10 20
ε, eV
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10–3
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12

(b)

Fig. 4. Electron energy distribution function for P = 0.075 Torr and d = 6 cm: (a) j = 1.1 mA/cm2, x = 0.86 (1) and 3.0 cm (2);
(b) j = 1.0 mA/cm2, x = 1.36 (1) and 3.0 cm (2).

ε, eV
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electron energy is as low as tenths of an electronvolt in
the AS mode because the electric field in the quasi-neu-
tral region is weak. In the latter mode, thermalized elec-
trons are trapped by a potential well and plasma density
increases, as predicted in [16]. The heating of electrons
in the AS mode is illustrated by Fig. 6, where the distri-
butions of electric field strength E and electron concen-
tration are shown at several instants in the cathode part
of the discharge period. It is clear that an electron-den-
sity wave approaches the electrode as the field strength
decreases. The phase shift between the electron wave
and E is responsible for electron heating. Figure 6b
shows the distribution of E on a coarser scale. The elec-
tric field strength changes sign across the plasma–
sheath interface, giving rise to a potential well analo-
gous to negative glow in DC glow discharges.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
6. PHASE DIAGRAMS 
FOR VOLUME-DOMINATED 

AND ACTIVE-SHEATH MODES

Determination of the critical parameters of the tran-
sition between the two RF discharge modes requires
considerable computational resources. To find condi-
tions for existence of the volume-dominated and active-
sheath modes, we computed the dynamics of capaci-
tively coupled RF discharge in methane over wide
ranges of current density and gas pressure. In Fig. 7, the
numerical results obtained for the growing-current
branch are summarized in a phase diagram including
VD- and AS-mode regions in the j–P plane for d = 3, 4,
and 6 cm.

In the computations performed for the growing-cur-
rent branch, we started from a low current density cor-
0 2

1

4 6
x, cm

2

(c)

0 2

2

4 6
x, cm

(d)

4

6

5

1

2
2

1

0

10

20

30
P, 10–4 W/cm3

10
P, 10–4 W/cm3

(a) (b)

P, 10–4 W/cm3 P, 10–4 W/cm3

Fig. 5. Distributions of (a) time-averaged total rate of electron heating and power transferred to (b) excited vibrational levels,
(c) ionized states, and (d) CH2 or CH3 radicals produced by dissociation for d = 6 cm at P = 0.075 Torr: j = 1.0 mA/cm2 (solid

curves); j = 1.1 mA/cm2 (dashed curves).
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responding to the volume-dominated discharge mode.
With increasing discharge current density, the dis-
charge switched into the active-sheath mode at a critical
point. Domain I in Fig. 7 corresponds to the VD mode
of discharge with d = 6 cm. The solid curve separates
the VD- and AS-mode regions. Note that the critical
current density substantially varies with gas pressure.
As the interelectrode spacing is reduced, the phase-dia-
gram region representing the volume-dominated mode
tends to expand. The VD-mode region corresponding to

108

5.0 5.4 5.8
x, cm

n e
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Fig. 6. Distributions of (a) E and ne near an electrode and
(b) E on a coarser scale at t = 0.2T (1), 0.3T (2), 0.4T (3),
and 0.5T (4), where T is discharge period, at P = 0.075 Torr
for j = 1.1 mA/cm2 and d = 6 cm.
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d = 4 cm consists of domains I and II. When the dis-
charge gap is reduced to d = 3 cm, domain III joins the
region. When P < 0.05 Torr and j < 2.2 mA/cm2, the
discharge is sustained in the volume-dominated mode.
Figure 7 demonstrates that previous results concerning
capacitively coupled RF discharge in methane are in
good agreement with the present phase diagram. In [17],
VD and AS modes (with j = 0.2 and 2.2 mA/cm2, respec-
tively) were obtained numerically for P = 0.14 Torr and
d = 3 cm (triangles in Fig. 7). The discharge structure
computed in [18] for P = 0.1–0.35 Torr, j = 3 mA/cm2,
and d = 3.5–6.5 cm corresponds to the active-sheath
mode. The volume-dominated mode was also revealed
in [14] for a capacitively coupled RF discharge at a
voltage drop U = 275 V, P = 0.2 Torr, and d = 3.5 cm
(diamond in Fig. 7). In [19], an RF discharge in meth-
ane was simulated by using a two-dimensional fluid
model, and transition from a corner-dominated mode to
a volume-dominated mode was observed at U = 100 V.
The transition resulted in a drop in plasma density and
an increase in electron energy in the entire discharge
gap. The transition revealed in [19] is in excellent
agreement with the present phase diagram (circles in
Fig. 7). Note that a relatively high, smoothly distributed
electron temperature at P = 0.25 Torr was obtained by
using the fluid model employed in [19], whereas our
kinetic simulations predict a pronounced minimum in
electron energy in the central discharge region.

Fig. 7. Phase diagram for capacitively coupled RF dis-
charge in methane. Solid, dotted, and dashed curves sepa-
rate the VD- and AS-mode regions for d = 6, 4, and 3 cm,
respectively. Symbols ,, e, and d represent data borrowed
from [15], [12], and [16], respectively.
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7. HYSTERESIS

The results presented above were obtained for the
growing-current branch by approaching a preset cur-
rent-density value “from below.” An attempt to
approach the same current-density value “from above”
produced an unexpected result: we obtained a new sta-
ble solution. Figures 8a and 8b show the values of ne

and ε, respectively, at the center of the discharge gap
corresponding to the growing- and falling-current
branches of the current-density curve. For d = 6 cm and
P = 0.075 Torr, the VD mode is observed as the current
density is increased up to j* = 1 mA/cm2 along the
growing-current branch. As the discharge switches into
the active-sheath mode, ε decreases and ne substantially
increases. As the current density is decreased along the
falling-current branch, the AS mode persists until a
very low value of j is reached. Hysteresis of this kind
has been observed experimentally for discharge in
silane [6]. For d = 3 cm and P = 0.03 Torr, discharge
characteristics varied without hysteresis, because only

100

1.0 1.5

ε, eV

j, mA/cm2

10

ne × 108, cm–3

(b)

d = 6 cm

3 cm

6

2

(a)

d = 3 cm
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4

0

Fig. 8. Current-density dependence of ne (a) and ε (b) at the
center of the discharge gap at P = 0.075 Torr: dashed and
solid curves correspond to the growing- and falling-current
branches at d = 6 cm; dotted curves, to d = 3 cm.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the VD mode can be observed according to the phase
diagram.

To elucidate the nature of the hysteretic behavior,
we computed ionization dynamics for the growing- and
falling-current branches. Figures 9a and 9b show total
ionization as a function of the number of discharge
periods obtained for j = 0.70 and 0.75 mA/cm2 by
increasing and decreasing the current density, respec-
tively. Figure 9a demonstrates that Ni is increased by a
factor of about 5 by changing from j = 0.70 to j =
0.75 mA/cm2. It is obvious that the transition is initi-
ated by a rapidly increasing ionization rate in the elec-
trode sheaths, because a much higher ionization rate is
required to sustain the AS mode as compared to the VD
mode. The change in total ionization Ni due to the
decrease in current density from 0.75 to 0.70 mA/cm2

is insignificant (see Fig. 9b).

The hysteretic behavior is explained by the exist-
ence of two stable solutions (different modes) in a cer-
tain interval of current density. The actual mode is
determined by the system’s history. When the discharge

10
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200 400 600
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Fig. 9. Total ionization Ni versus number of discharge peri-

ods for j = (1) 0.70 and (2) 0.75 mA/cm2 approached
(a) “from below” and (b) “from above” for P = 0.03 Torr
and d = 6 cm.
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switches from VD into AS mode along the ascending

current-density branch, the electron density  in the
VD mode remains relatively low. Therefore, the electric
field Esh in the electrode sheath must be sufficiently
strong for the energy of a greater part of electrons to
exceed the ionization threshold. When j varies along the

falling-current branch,  @ , and the high ioniza-
tion rate required to sustain the AS mode can be
reached for lower Esh . Thus, the transition from AS to
VD mode occurs at a lower j*, as compared to the VD–
AS transition. This hysteretic behavior is not specific to
discharge in methane. It is characteristic of any RF dis-
charge that exhibits two modes.

8. CONCLUSIONS

Two modes of capacitively coupled RF discharge in
methane are systematically analyzed by numerical sim-
ulation based on a combined PIC–MCC algorithm. A
phase diagram representing the VD- and AS-mode
regions was obtained for j = 0.45–2.2 mA/cm2 and P =
0.01–1 Torr. Critical conditions for the VD–AS transi-
tion were computed for wide intervals of current den-
sity and gas pressure. It was shown that the transition is
not due to the effect of secondary electrons, which is
characteristic of discharges in inert gases. Hysteretic
behavior of the discharge is analyzed. Different dis-
charge modes were observed when the current density
was increased and decreased to a certain value.
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Abstract—We have established the dependences of the maximum Weibel instability growth rate and the cor-
responding wavenumber on the degree of anisotropy in the photoelectron distribution formed through tunnel
atomic ionization in the field of a circularly polarized short laser pulse. We show how the relaxation of the initial
distribution of photoelectrons due to their collisions with ions affects the pattern of generation of a quasi-static
magnetic field. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

When material is exposed to intense ultrashort laser
pulses, a plasma with a highly nonequilibrium photo-
electron velocity distribution is produced in a time
comparable to or shorter than the reciprocal of the fun-
damental pulse frequency. In particular, if the laser
radiation has such parameters that tunnel atomic ion-
ization takes place, then the photoelectron distribution
is highly anisotropic. The pattern of the anisotropy
depends significantly on the degree of polarization of
the ionizing radiation. In the case of linearly polarized
radiation, an anisotropic bi-Maxwellian electron veloc-
ity distribution elongated in the direction of the field
polarization is formed [1, 2]. When the radiation is cir-
cularly polarized, the photoelectron velocities are con-
centrated mainly in the plane of its polarization near the
velocity of the electron oscillations in the field, vE [1].
A plasma with an anisotropic electron velocity distribu-
tion is unstable against the growth of Weibel instability,
which generates a quasi-static magnetic field [3, 4].
Arefyev et al. [5] showed that the Weibel instability
could grow via atomic ionization by linearly polarized
radiation. Krainov [6] demonstrated a similar possibil-
ity for the conditions under which a plasma is produced
in the field of circularly polarized radiation. This author
found the maximum possible growth rate of the Weibel

instability γ0 ≈ ωLvE/ c, where ωL is the electron
plasma frequency and c is the speed of light, and
showed that more favorable conditions for the genera-
tion of a magnetic field are created when atoms are ion-
ized by circularly polarized radiation.

In this paper, we continue to study the Weibel insta-
bility due to atomic ionization by circularly polarized
radiation. In contrast to [6], the emphasis is on studying
the conditions under which the degree of anisotropy in

2
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the photoelectron distribution is not assumed to be
anomalously large, which is of interest for wide ranges
of frequencies and flux densities of the ionizing radia-
tion. Special attention is given to studying the depen-
dence of the maximum instability growth rate γmax on
the degree of anisotropy in the photoelectron distribu-
tion function. We show that the maximum value of γ0

found in [6] is realized only for an anomalously large
ratio vE/vT ≥ 100, where vT is the characteristic photo-
electron velocity in a direction orthogonal to the plane
of polarization of the radiation; i.e., when the electron
oscillation energy in the pump field is four orders of

magnitude higher than . The value of γmax

decreases with decreasing ratio vE/vT and is apprecia-
bly lower than γ0 for 100 @ vE/vT @ 1. Lower values of
the wavenumbers kmax, which determine the spatial
structure of the generated magnetic field, correspond to
lower values of vE/vT . As vE/vT decreases from 100 to

, the length scale of the exponentially growing
magnetic field perturbations increases by a factor of 8.
Collisions of photoelectrons with ions and between
themselves can significantly affect the growth of Wei-
bel instability, because these collisions cause the degree
of anisotropy in the photoelectron distribution function
to decrease. Below, we show how the initial distribution
of photoelectrons changes due to their collisions with
ions. This change is insignificant at the initial instability

growth stage if γmax @ ν / , where ν is the elec-
tron–ion collision frequency in a strong laser field. In

contrast, if ν ! γmax ! ν / , then the degree of
anisotropy in the photoelectron distribution will

decrease by a factor of vE /vT  @ 1 before the
growth of instability begins. Because of the decrease in

mv T
2
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v E
2 v T

2

v E
2 v T

2

ν γmax
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the degree of anisotropy, the most effectively growing
magnetic field perturbations will have a larger length
scale and a lower growth rate. The corresponding quan-
titative changes in γmax and kmax are plotted as a function

of the parameter vE/vT . For ν ! γmax ! ν / , vE/vT

should be substituted with the smaller quantity

 in the plots.

2. THE PHOTOELECTRON VELOCITY 
DISTRIBUTION

Let us consider the interaction between an ionizing
ultrashort laser pulse and material. The pulse duration
is assumed to be longer than the short atomic ionization
time, but shorter than the time of change in the nonequi-
librium photoelectron velocity distribution. Suppose
that the laser field is circularly polarized and is roughly
described by a relation of the form

(1)

where i ⊥  j are unit vectors, ω is the fundamental pulse
frequency, and E is the electric field strength. We
assume that the frequency and strength of the electric
field (1) satisfy the conditions

(2)

where vE = |eE/mω|, e is the electron charge, m is the
electron mass, and I is the atomic ionization potential.
Under these conditions, tunnel atomic ionization takes
place in the electric field (1), and the photoelectron dis-
tribution in velocity v corresponds to the ionization
probability W(v) derived in [1]:

(3)

It follows from this relation and from inequalities (2)
that the distribution function for the bulk of the photo-
electrons with velocities

(4)

v E
2 v T

2

γmax/ν

E iE ωt( )sin– jE ωt( ),cos+=

mv E
2
 @ 2I  @ 

3
2
---"ω

mv E
2

2I
-----------,

W v( ) 2

3"ωv E m
---------------------------–





exp∝

× 2I mv z
2 m v ⊥ v E–( )2+ +[ ] 3/2





.

v z
2
 ! 

2I
m
-----, v ⊥ v E–( )2

 ! 
2I
m
-----,
JOURNAL OF EXPERIMENTAL 
can be roughly represented as

(5)

Here,

is the error function,

(6)

kB is the Boltzmann constant, T is the effective temper-
ature, and n is the photoelectron density. It follows from
relations (6) and (2) that vE @ vT. This inequality allows
distribution (5) to be substituted with a simpler one:

(7)

Relation (7) yields  ∝  vT and 〈v ⊥ 〉  ∝  vE for the
mean photoelectron velocities. Taking into account this
estimate, by the degree of anisotropy in the photoelec-
tron distribution we will mean the ratio vE/vT . This esti-
mate is justified when the influence of electron–elec-
tron collisions is negligible. The highly nonequilibrium
photoelectron velocity distribution (7) forms the basis
for the subsequent analysis of the pattern of generation
of a quasi-static magnetic field in a plasma.

3. THE GROWTH RATE 
OF THE WEIBEL INSTABILITY

A plasma with an anisotropic photoelectron distri-
bution (7) is unstable against the growth of Weibel
instability. Assuming, as usual, that the small electric
and magnetic field perturbations are in the form

(8)
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we find from the Maxwell equations that

(9)

(10)

where k is the wave vector of the perturbations and

ωL =  is the photoelectron plasma fre-
quency. According to [7], the instability growth rate is
at a maximum for field perturbations with the wave vec-
tor k = (0, 0, k) and the fields δE = (δE, 0, 0), δB =
(0, δB, 0) or δE = (0, δE, 0), δB = (δB, 0, 0). For this
configuration of the field perturbations, we derive the
following dispersion relation for the instability growth
rate from Eqs. (9) and (10):

(11)

where the function J+(β) is [8]

(12)

At a low perturbation frequency, |ω| ! kvT ! kc, taking
into account the approximate relation

(13)

we find from Eq. (11) that

(14)

Since the ratio vT/vE is small, we obtain the growth rate
of the Weibel instability from (14):

(15)

The instability growth rate (15) is comparatively small
in absolute value for wavenumbers

(16)

its value is much smaller than vEωL/c , which is
much lower than ωL .
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In the opposite limiting case where |ω| @ kvT , using
the expansion

(17)

we find from (11) that

(18)

The dispersion relation (18) has the approximate solu-
tion

(19)

where the inequality γ @ kvT defines the range of wave-
numbers in which solution (19) is applicable. It follows
from this inequality that relation (19) has a wide range

of applicability: k ! ωLvE/cvT . At wavenumbers

~ωLvE/cvT , (19) is joined with (15). The instability
growth rate γ is plotted against k in Fig. 1. The curves
in Fig. 1 describe the numerical solution of the equation

(20)

that follows from (11) for γ ! ωL . The curves in Fig. 1

correspond to two values of the parameter vE/vT , 
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Fig. 1. Weibel instability growth rate γ versus wavenumber

k. The curves correspond to two values of vE/vT = 
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and 10. Figure 1 shows that the growth rate of the Wei-
bel instability has a distinct maximum. The larger the
ratio vE/vT , which characterizes the degree of anisot-
ropy in the photoelectron distribution function, the
higher the maximum growth rate γmax. The wavenum-
ber kmax, which determines the length scale of the most
rapidly growing field perturbations, increases with
increasing vE/vT . The maximum instability growth rate
and the corresponding wavenumber kmax are plotted
against vE/vT in Fig. 2. Figure 2 shows that the growth

rate γmax ≈ 0.28ωLvE/c at vE/vT =  first increases
with vE/vT and then reaches its maximum. We see from
Fig. 2 that the maximum growth rate obtained previ-
ously [6] is defined by the formula

(21)

and is reached at an anomalously large ratio vE/vT ≥
100. This value is approximately twice vE/vT ∝  .
This change in the exponent that determines the change
in the magnetic energy density,

where 2γmaxt @ 1, is significant. The increase in kmax
with vE/vT is larger than that in γmax. As we see from
Fig. 2, kmax increases by a factor of 8 as vE/vT changes

from  to 100. This implies that the length scale of
the generated quasi-static magnetic field decreases by
the same factor. The curves in Fig. 2 indicate that the
growth rate of the magnetic field and its spatial struc-
ture depend significantly on the degree of anisotropy in
the photoelectron distribution function.
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Fig. 2. Maximum Weibel instability growth rate γmax and
wavenumber kmax, which determines the inhomogeneity
length scale of the most rapidly growing perturbations, ver-
sus vE/vT .
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4. RELAXATION 
OF THE PHOTOELECTRON DISTRIBUTION

The growth time scale of the Weibel instability is

1/γmax ≥ c/ωLvE . It makes sense to talk about the
instability growth and the related generation of a quasi-
static magnetic field if the reciprocal of the instability
growth rate is shorter than the time of relaxation of an
anisotropic photoelectron distribution to an isotropic
one. Collisions of photoelectrons with ions and
between themselves cause their distribution to be
isotropized. The influence of collisions on the degree of
anisotropy in the photoelectron distribution when
atoms are exposed to linearly polarized radiation was
considered in [5] (see also [9] for numerical estimates
and a discussion). Let us perform the corresponding
analysis for circularly polarized radiation whose expo-
sure time is shorter than the time scale of the change in
the photoelectron distribution, but longer than the com-
paratively short tunnel atomic ionization time. If the
degree of ionization of ions Z is greater than one, then
the isotropization is determined mainly by electron–ion
collisions. In this case, the evolution of the initial pho-
toelectron distribution (7) is described by an equation
of the form

(22)

where f = f(v, ξ, t), ξ = cosθ, θ is the angle between the
velocity vector v and the axis of symmetry of distribu-
tion (7),

(23)

is the electron–ion collision frequency, and Λ is the
Coulomb logarithm. Since vE @ vT for the initial distri-
bution, the bulk of the photoelectrons at the initial time
is concentrated in the relatively narrow velocity range
vE – vT ≤ v  ≤ vE + vT and in a range of angles close to
π/2, when ξ ≤ vT/vE ! 1. This implies that to describe
the relaxation of the initial photoelectron distribution
on short time scales, Eq. (22) may be substituted with a
simpler approximate equation:

(24)

where ν ≈ ν(v  = vE). This equation yields an estimate
for the influence of collisions on the anisotropy in the
photoelectron distribution function that is sufficient for
our discussion. Assuming that νt ! 1, the approximate
solution of Eq. (24) can be represented as

(25)
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where ξ ≤ νt ! 1, and the initial distribution f(v, ξ,
t = 0) is described by Eq. (7) in which v z = vξ and v ⊥  =

v . On short time scales when νt ! / ,
distribution (25) is close to the initial photoelectron dis-
tribution. If, however,

then we derive an approximate relation from (25):

(26)

According to (25) and (26), electron–electron collisions
cause the angular photoelectron distribution to broaden
on short time scales. As we see from relation (26), the
localization region of the bulk of the electrons in veloc-

ity space expands with time as –  ≤ ξ ≤ .
According to Eq. (26), the degree of anisotropy

vE/  in the electron distribution is given by

At νt ≈ 1, electron–ion collisions cause the photoelec-
tron distribution to be isotropized. For Z @ 1 on time
scales νt ≤ 1, we may disregard the influence of elec-
tron–electron collisions on the relaxation of the initial
photoelectron distribution. If, however, Z = 1, then elec-
tron–electron collisions speed up the isotropization of
the photoelectron distribution by a factor of about 2. In
addition, collisions between electrons result in relax-
ation of the electron energy, which is accompanied by
the formation of a Maxwellian electron distribution
also in a time ~1/ν. It follows from the above discussion
that the conservation time scale of the anisotropy in the
photoelectron distribution is approximately 1/ν.

5. DISCUSSION

The pattern of relaxation of the initial photoelectron
distribution described above allows us to specify the
conditions under which the Weibel instability can grow.
If the maximum instability growth rate γmax is larger

than ν / , then the exponential growth of a sponta-
neous magnetic field is characterized by the rate γmax
dependent on vE/vT that arises immediately after the
tunnel ionization of atoms. The wavenumber kmax,
which determines the length scale of the magnetic field,
corresponds to the same value of vE/vT . If, however, the
growth rate satisfies the inequalities ν ! γmax !

ν / , then, before a spontaneous magnetic field
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begins to grow exponentially, electron–ion collisions
will cause the degree of anisotropy in the initial veloc-
ity distribution to decrease. According to relation (26),

because of electron–ion collisions at νt @ / , the
photoelectron distribution function along the axis of
symmetry is characterized not by the velocity vT , but
by the larger quantity vE , which satisfies the ine-

qualities vT ! vE  ! vE . If we ignore the quantita-
tive changes in γmax due to the decrease in the anisot-
ropy of the photoelectron distribution (see Fig. 2), then
we may assume that by the beginning of the exponen-
tial growth of the magnetic field, the anisotropy will be
characterized not by the parameter vE/vT , but by the

smaller, but still fairly large parameter ,

vE/vT @  @ 1. Under these conditions, the
instability growth is also possible, but, as we see from
Fig. 2, it is characterized by a slightly lower rate γmax

and a smaller wavenumber kmax. It follows from the
above discussion that the necessary condition for the
growth of Weibel instability is γmax ∝  ωLvE/c @ ν,
where the electron–ion collision frequency decreases as

 with increasing vE . This condition is much weaker
than that obtained previously [5] when considering the
Weibel instability of a plasma with a photoelectron dis-
tribution formed through tunnel atomic ionization in
the field of linearly polarized radiation. The degree of
weakening of the inequality γmax @ ν is characterized
by the large parameter A4 @ 1, where

(27)

The relation A @ 1 follows from inequalities (2), which
define the boundaries of the region where the regime of
tunnel atomic ionization is realized. At A @ 1, the
parameter A approximately characterizes the ratio of
the kinetic energies of the photoelectrons produced in
the fields of circularly and linearly polarized radiation.
For linearly polarized radiation, the kinetic energy is
appreciably lower. The relative increase in γmax due to
the change in radiation polarization has A @ 1. The
weakening of the inequality γmax @ ν and the relative
increase in γmax confirm the conclusion reached in [6]
that in the regime of tunnel atomic ionization, circularly
polarized radiation generates a quasi-static magnetic
field much more efficiently than linearly polarized radi-
ation. Another advantage of using circularly polarized
radiation is that at the same flux density of the ionizing
radiation, it generates a magnetic field that is a factor of
A @ 1 stronger than that generated by linearly polarized
radiation. Following [5, 9], we can estimate the maxi-
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mum strength of the generated magnetic field from the
relation

(28)

where the coefficient 0.1 was taken from the numerical
study by Wallace et al. [10] and means that ~10% of the
particle kinetic energy transforms into magnetic
energy. For our estimates, we assume that radiation
with a frequency of ω = 2 × 1015 s–1 and a flux density
of q = 2 × 1015 W cm–2 ionizes helium atoms with an
ionization potential of I ≈ 24.4 eV. The photoelectron
density is taken to be n ≈ 1021 cm–3. For such plasma
and radiation parameters, the tunnel ionization of
helium atoms takes place, and the radiation itself pene-
trates deep into the plasma being produced. In this case,
relation (28) yields an estimate for the magnetic field
strength of B ≈ 1 mG.
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Abstract—For strongly Comptonized radiation in a nonrelativistic plasma, we calculate the bremsstrahlung
source of Comptonized photons with an accurate allowance for free–free absorption and nonlinear stimulated
Compton emission. We formulate radiation hydrodynamics equations that are valid in the limit of strong Comp-
ton energy exchange between plasma and radiation. We derive a formula for the energy dissipation rate under
these conditions. For an optically thick region, we have found an equation that describes the spatial variation in
the exponential fall-off factor of the radiation spectrum. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The issues of interaction between intense radiation
and matter are of great practical and fundamental
importance. The manifestations of inverse Compton
scattering feature prominently among them. For exam-
ple, on a laboratory scale, it can be essential for estimat-
ing the radiative energy losses when a body undergoes
shock compression to a high density. Under astrophys-
ical conditions, this effect is also noticeable for rarefied
media due to their large scales. It has an effect on the
radiation spectrum called Comptonization. The
bremsstrahlung amplification and the spectral pattern
under strong Comptonization were first reported by
Kompaneets [1]. Subsequently, Comptonization was
studied in a homogeneous case (see, e.g., the review [2])
and was widely used to interpret astrophysical data.
A number of authors also generalized the Kompaneets
kinetic equation to an inhomogeneous plasma (see,
e.g., [3] and references therein) and considered various
solutions of this equation (see, e.g., [4, 5] and references
therein). Nevertheless, these solutions allow one nei-
ther to determine the emergent luminosity of a strongly
Comptonized plasma region nor to describe the Comp-
ton energy exchange to find the plasma temperature in
a self-consistent way.

Under strong Comptonization, the part of the spec-
trum that makes a major contribution to the radiation
energy density has a Wien distribution and can be
described by its photon number density. In a spatially
inhomogeneous case, the parameters that completely
characterize the radiation spectrum require an equation
that describes their spatial variation. In particular, this
is needed to calculate the radiative losses, because the
emergent radiation is determined not only by the
bremsstrahlung emission, but also by the optical depth
of the emitting medium and by its temperature profile.
A continuity equation for the photon number in the sys-
tem of radiation hydrodynamics equations under the
1063-7761/04/9904- $26.00 © 20733
domination of Compton scattering was formulated
in [6]. However, no accurate expression for the photon
number source has been published as yet. Such an
expression implies an allowance for both absorption
and nonlinear stimulated Compton emission. The irre-
versible energy release in an inhomogeneous plasma
with strongly Comptonized radiation has not been con-
sidered in general form at all.

The main goal of this study is to calculate the effec-
tive source of the photon number generated by
bremsstrahlung processes in a nonrelativistic plasma.
This quantity and the photon number density calculated
from it are used in the formula for the total energy
release in a Comptonized region that is obtained from
the radiation hydrodynamics equations under strong
Compton energy exchange.

2. THE KINETIC EQUATION

In this paper, we consider the continuum X-ray radi-
ation produced by thermal bremsstrahlung emission in
a plasma. The plasma is assumed to be in local equilib-
rium and have a temperature T, an electron density ne ,
and a nonrelativistic flow velocity u. This radiation can
be locally described by the occupation number of unpo-
larized photons in momentum (p) space at point r in the
reference frame comoving with each small plasma part
in local equilibrium. Several parameters that character-
ize the radiation transport impose further conditions on
these quantities. They usually hold in astrophysical
applications [7].

The angular distribution of the radiation depends on
Thomson scattering with the opacity

where σT is the Thomson cross section. The coefficient

kT σTne,=
004 MAIK “Nauka/Interperiodica”
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kT is also related to the optical depth τ by the expression

that gives the fraction of the scattered radiation on the
path dl in the direction under consideration. Below, we
assume that τ @ 1 for all significant sizes. The kinetic
description of the radiation then reduces to a photon
occupation number n(t, r, p) averaged over the p direc-
tions, which obeys the equation

(1)

For a plasma moving with a nonrelativistic velocity u,
the left-hand side of Eq. (1) may be written as [8]

(2)

Here, the terms related to the spatial variation describe
the radiation advection by the plasma flow and the radi-
ation diffusion. The term related to the variation in
momentum space describes the contribution of the
Doppler effect to the radiation spectrum. For clarity, it
makes sense to emphasize that the differentiation oper-

ations ∇  in the expression for  are performed at fixed
p. In particular, when another variable q = pc/T(r) is
used below, they transform as

(3)

The terms on the right-hand side of Eq. (1) are the
collision integrals for Compton scattering and
bremsstrahlung processes. For plasma temperatures
T ! mec2, where me is the electron mass and c is the
speed of light, the Compton collision integral takes the
form [1]

with the radial flux density in momentum space

Here, the first and second terms are responsible for
cooling and heating the radiation by plasma electrons,
respectively. In astrophysical literature, the action of
inverse Compton scattering for optical depths τ @ 1 is
commonly described by the parameter

dτ kTdl=
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This is the relative fraction of the energy gained by the
radiation from plasma electrons when scattered from a
region with an optical depth τ. In order of magnitude,
this parameter can also be interpreted as the ratio of the
Compton heating term to the spatial diffusion term in
Eq. (1).

The contributions of emission and absorption in the
bremsstrahlung collision integral can be written using
one quantity, the effective bremsstrahlung (free–free)
opacity kB:

The latter equality implies that the Plank occupation
number nP = (eq – 1)–1 is an equilibrium one. For photon
energies pc & T and plasma temperatures T @ IH,
where IH is the atomic hydrogen ionization potential,
the effective bremsstrahlung opacity [9] is

(4)

where K0(s) is the modified Bessel function of the sec-
ond kind. For collisions between electrons and ions of
each type a with density na and charge zae,

Below, we consider the problem of finding n for
Eq. (1) in the absence of extrinsic sources of high-
energy photons, i.e., with the boundary condition

(5)

The boundary conditions for the spatial variable r
are not used here. They are assumed to have no effect
on the intrinsic spatial and energy scales of the n(t, r, p)
variations in the spatial regions under consideration.
The satisfaction of a similar condition is also implied
for the time dependence of the plasma parameters ne , T,
and u. In other words, we consider only the quasi-sta-
tionary limit for both Eq. (1) and the hydrodynamic
plasma motion.

The choice of characteristic scales in Eq. (1)
depends on the question under consideration. If plasma
is accreted into an inner region and the emergent lumi-
nosity needs to be found, then the characteristic intrin-
sic spatial scales are determined by an order-of-magni-
tude equality of the diffusion and advection terms in
Eq. (2). For flows with a moderately complex stream-
line topology, for example, with a spherically or axially
symmetric topology, this equality is achieved on a cer-

1
c
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tain surface. The geometric size of this surface R for
each direction of propagation of the radiation is then a
characteristic scale. The corresponding optical depth is
τ ~ kTR, and the plasma parameters must be taken at the
above surface. If, however, the local radiation spectrum
must be investigated, then the local sizes of the ne , u,
and T profiles will be characteristic ones. For example,
for spherically symmetric outflow and power-law radial
dependences of these quantities, the radius (the dis-
tance to the center of symmetry) at a given point will be
a characteristic scale. In this study, the conditions τ @
1 and YC @ 1 are assumed to be satisfied both for global
characteristic scales of the problem and locally in a cer-
tain spatial region.

Therefore, it seems convenient to reduce Eq. (1) to
dimensionless equations:

(6)

(7)

Here, the operator

is on the order of ζ ~ 1/YC ! 1. The relative role of the
bremsstrahlung processes in Eq. (7)is described by the
parameter

The inequality ξ ! 1 is the last condition imposed on
the plasma parameters in this paper.

3. THE EFFECTIVE PHOTON SOURCE
3.1. Preliminary Estimates 

For q ! 1, the function φ in (4) is

.

Therefore, we can conclude from our estimates of the
derivatives q∂/∂q ~ 1 in (6) and (7) that the absorption
is significant for q ~ ξ1/2, with n ~ ξ1/2 and j ~ ξ. Indeed,
since the absorption dominates for q ! ξ1/2, the occupa-
tion number must approach its equilibrium Planck
value nP ≈ 1/q and remains the same in order of magni-
tude for q ≈ ξ1/2.

A further comparison of the terms in (7) in the range
ξ1/2 ! q ! (ξ/ζ)1/3 shows that an increase in the Comp-
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tonizing flux j can be caused by the bremsstrahlung
source:

Hence,

This flux acts as an effective source along with the
bremsstrahlung proper. Being spent on the spatial
escape of the radiation, it decreases for q @ (ξ/ζ)1/3.

3.2. Radiation in a Strongly Comptonized Region 

More accurate relations arise if we construct the
expansion in the lowest order of ξ ! 1 and ζ ! 1 uni-
formly for q and n. It is clear from (6) and (7) that on a
scale q ~ 1 and for any n, this expansion must be iden-
tical to the expansion in powers of the right-hand side
of (7). In other words,

(8)

with

and

(9)

with

In these expansions, the zero-order term n0(q; j) denotes
the solutions of Eq. (6) at fixed j. The function u(q; j)
in (9) denotes the solution of the homogeneous equa-
tion

that corresponds to the inhomogeneous equation for the
first-order correction n1(q; A1; j), which can be obtained
from (6).

∂j
∂q
------ ξ1

q
---

4ηE

q
---------.ln∼

j ξ1
2
---

4ηE

ξ
---------.ln

2∼

j q( ) j0 j1 q( ) …++=

j1 q( ) q1q1
2ζ̂n0 q1; j0( )d

q

q0

∫=

– ξ q1 nP q1( ) n0 q1; j0( )–[ ]φ q1( )d

q

q0

∫

n n0 q; j0( ) n1 q; A1; j0( ) …++=

n1 q; A1; j0( ) u q; j0( ) A1 q2

j1 q2( )

u q2; j0( )q2
4

---------------------------d

q

q1

∫+
 
 
 

.=

∂u
∂q
------ u 1 2n0 q; j( )+[ ]+ 0=
SICS      Vol. 99      No. 4      2004



736 WAGNER
However, to use the boundary condition (5), we
need to find out whether this expansion is valid for
q @ 1. At j0 ≠ 0, it is easy to establish the asymptotic
behavior of the functions

It thus follows that, on the one hand, expansion (9)
proves to be uniform for q  ∞, thereby allowing
external boundary conditions to be imposed on it, but,
on the other hand, it does not satisfy the specific condi-
tion (5). Therefore, we should choose j0 = 0 and set
q0 = ∞ in expansion (8).

Solving Eq. (6) with j = 0, we can easily make sure
that

To further study the uniformity, we must retain the lead-
ing (for q @ 1) terms in Eq. (9). Since these terms con-

tain , we must turn to the explicit form (2) of the oper-

ator  with allowance made for (3). In this way, we
obtain

suggesting that the expansion is nonuniform because of
the contribution from the spatial variations at q ~ 1/ζ.
Nevertheless, one might expect the matching with the
uniform (in r) expansion of n for q @ 1 that satisfies (5)
to yield q1. However, this quantity is not needed for the
final result of this study. Therefore, the next section
only briefly shows the existence of this expansion.

3.3. Exponential Asymptotics of the Spectrum 

To construct the expansion that satisfies (5), we
must take into account the established exponential
behavior of n for q @ 1. In other words, we must sub-
stitute n = exp(–g) into the original equation (1) and
expand it in terms of 1/g ! 1 by assuming that p∂g/∂p ~
g and |R∇ g| ~ g. This procedure yields the equation

(10)
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for the lowest-order approximation of g that balances
the terms of order g2 and p2. It has a solution of the spe-
cial form

(11)

called the complete integral. Here, the function β obeys
the equation

(12)

Since the boundary condition (5) can be satisfied only
for real β > 0, the more stringent requirement 1/β > T
follows from (12). Different solutions of this equation
differ, for example, by the distribution of β over a
closed surface. For the standard formulation of the
problem where the emergent radiation spectrum
observed far from sources needs to be calculated, a
sphere with a large radius can be such a surface. In par-
ticular, for a spherically symmetric flow and a mono-
tonically decreasing plasma temperature T(r) with
increasing distance r to the center of symmetry, the
solution β(r) of Eq. (12) is uniquely determined by the
condition 1/β  T as r  0, yielding a specific
value of β(∞) at large radii.

For ζ ! 1, the difference 1/β – T is small. Therefore,
eliminating it in the expansion

using (12), we can see it to match the last expansion of
the previous section. Closer matching that could yield
q1 in (9) requires the next approximation. In this case,
both lnA and the integration constants in (12) should be
regarded as functions of lnp, which let the substitution
n = exp(–g) to balance the terms of order g and p in (1).
However, this procedure is beyond the scope of this
paper, which is limited to ζ ! 1.

3.4. Dependence of the Photon Source 
on the Bremsstrahlung Parameter 

To take into account the action of the bremsstrahl-
ung source, it remains to consider the limit q ! 1 in (9).
This yields the expressions
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Here,

is the sought effective source of the photon number. The
corresponding dimensional quantity is

(15)

Expression (14) shows that expansion (9) can again
become invalid, but now when q  0. To find j1, we
must reconcile (13) and (14) with the asymptotic
behavior of this solution of (6) and (7) that would sat-
isfy the equilibrium condition n  nP as q  0 for
q @ ξ1/3. In principle, this solution can be found numer-
ically. The satisfaction of the above three conditions for
the two constants A0 and j1 would entail an additional
functional dependence of j1 on A0. However, the role of
this dependence is determined by the relation between
the scales of variations in n with q. Expansion (14) indi-
cates that the scales 1 – A0 and [ j1(1 – A0)/A0]1/3 are pos-
sible. The estimates in Section 3.1 revealed the scale
ξ1/2 and the relation j1 ~ ξ. Meanwhile, the relations
ξ1/2 * [ξ(1 – A0)/A0]1/3 or ξ1/2 * (1 – A0) strongly sug-
gest that 1 – A0 ! 1, which corresponds to small devia-
tions from the Planck occupation number for all q. In
this case, however, it makes no sense to calculate the
photon source, because all radiation parameters prove
to be well known. If, alternatively, ξ1/2 ! [ξ(1 –
A0)/A0]1/3 (which also include nearly Planck values of
the occupation number), then the significant integration
range is ξ1/2 & q ! [ξ(1 – A0)/A0]1/3. We may then sub-
stitute j(q) = ξu, q = ξ1/2x, and n(q) = ξ–1/2w into Eqs. (6)
and (7) and pass to the lowest order of the expansion in
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terms of ξ and ζ. Thus, we obtain the system of equa-
tions

for the final integration under the conditions

at x @ 1 and

at x ! 1.

In this case, the influence of

on the values of f and, hence, on the sought source j1 =
ξ[ f – f1(A0)] proves to be an insignificant small correc-
tion to the case of w0 = 0.

The results can be represented as
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where v(λ, w0) ≈ v (λ, 0) is a comparatively slow func-
tion. It is shown in the figure. For comparison, it is
worth noting that the calculation in [1] corresponds
f = 0.5λ2.

4. RADIATION HYDRODYNAMICS 
UNDER STRONG COMPTON ENERGY 

EXCHANGE

Problems associated with outflows of interstellar
matter from compact objects and its accretion onto
them figure prominently in astrophysics. The required
accuracy of calculating the radiation that accompanies
these processes and its interaction with matter can often
be achieved by using only integrated radiation parame-
ters: energy density E, pressure P, energy flux density F,
and Compton temperature Tr . In particular, in an opti-
cally thin case, τ ! 1, calculating the radiation spec-
trum reduces to adding up the actions of the sources. In
this case, F, E, P, and ETr can be determined in the same
way and independently of spectral information. In gen-
eral, based on the conservation law for the energy–
momentum tensor, a system of equations similar to the
hydrodynamic one can be formulated for these quanti-
ties (see, e.g., [10]). Under the domination of multiple
scattering, τ @ 1, the radiation has a nearly isotropic
angular distribution that yields the relation P = E/3. For
YC ! 1, when the inverse Compton effect may be
ignored, this relation closes the system of equations for
F, E, and P. Finding other radiation parameters, in par-
ticular, the Compton temperature Tr , may still require
turning to the kinetic equation [11].

The Compton energy exchange between plasma and
radiation, which is commonly expressed in terms of Tr ,
can no longer be ignored for YC * 1. The results of the
previous section enable us to formulate the radiation
hydrodynamics equations in the limit YC @ 1. In partic-
ular, the photon occupation number at energies pc ~ T
was found in this section to be close to the Bose–Ein-
stein distribution

Moreover, in the lowest order of the expansion in terms
of 1/YC ! 1, this energy range makes a major contribu-
tion to the radiation energy density:
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The Comptonized photon number density may be
more convenient to use in place of the quantity A0,
which yields the chemical potential µr = TlnA0:

(17)

where

In this case,

and

where  = 1.202…N0.

The integration in (15) yields the photon production
equation

(18)

For N ! N0, the absorption term in Jr may be disre-
garded, so the photon production rate takes the form

Integrating the original kinetic equation (1) over
p3dp from 0 to ∞, we can make sure that the energy den-
sity (16) also obeys the equation for energy exchange
with plasma electrons:
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In accordance with the separation of the plasma–radia-
tion interaction processes in the collision integral, the
rate of energy exchange in this equation can also be
separated into the bremsstrahlung and Compton ones:

Here, the Compton energy exchange rate can be
expressed in terms of the Compton radiation tempera-
ture [12]:

Since the condition YC @ 1 implies that the Compton
energy exchange dominates over the spatial transport of
the energy density E, Eq. (19) in the approximation
under consideration yields only the value of Tr or, more
precisely, its small deviation from T.

Equation (19) also implicitly contains the irrevers-
ible energy release. To find it requires introducing the
radiation entropy density

This quantity obeys the relations

Using them, we can rewrite (19) as an equation for
entropy:
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we can establish the Maxwell identity

Therefore,

is positive and describes the irreversible energy dissipa-
tion.

The equation

(21)

for the entropy density Sa(na, T) of all plasma compo-
nents with the particle number density na , chemical
potential µa(na, T), and particle production rate Ja also
holds for plasma. Adding Eqs. (20) and (21) and taking
into account Qer + Qre = 0, we can obtain the equation

(22)

for the production of the total entropy with the density

The radiation parameters and the plasma temperatures
under strong Comptonization must be found simulta-
neously from Eqs. (18) and (22).

To conclude, it is worth noting that finding the
remaining plasma parameters used in this section
requires including the momentum balance equation for
the plasma velocity u and the continuity (particle pro-
duction/loss) equations for the number density na of
each component. These equations are not written out
here, because they are unrelated to the Compton energy
exchange.

5. CONCLUSIONS

We have derived the equations that describe the spa-
tial transport of the photon number and determine the
energy output in a region of strong Compton exchange
with an inhomogeneous moving plasma. Together with
the hydrodynamic equations, they determine the plasma
and radiation parameters in a self-consistent way.
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Abstract—The methods of infrared absorption spectroscopy and electron paramagnetic resonance are used for
studying the effect of adsorption of NO2 molecules, which are strong acceptors of electrons, on the electronic
and optical properties of silicon nanocrystals in mesoporous silicon layers. It is found that the concentration of
free charge carriers (holes) in silicon nanocrystals, which exhibits a nonmonotonic dependence on the NO2
pressure, sharply increases in the presence of these molecules. At the same time, a monotonic increase in the
concentration of dangling silicon bonds (Pb1 centers) is observed. A microscopic model proposed for explaining

this effect presumes the formation of donor-acceptor pairs -(NO2)– on the surface of nanocrystals, which
ensure an increase in the hole concentration in nanocrystals, as well as Pb1 centers, which are hole-trapping cen-
ters. The proposed model successfully explains a substantial increase in photoconductivity (by two or three
orders of magnitude) in the layers of porous silicon in the presence of NO2 molecules; the increment in the con-
centration of free charge carriers is detected within an order of magnitude of this quantity. The results can be
used in designing electronic and luminescence devices based on silicon nanocrystals. © 2004 MAIK
“Nauka/Interperiodica”.

Pb1
+

1. INTRODUCTION

Porous silicon (PS) obtained by electrochemical
etching of monocrystalline silicon (c-Si) in a solution
of hydrofluoric acid remains an object of intense stud-
ies (see, for example, reviews [1, 2]). This is due to the
variety of physicochemical properties of this material,
which is formed by an aggregate of silicon residues of
nanometer size (nanocrystals). One of the interesting
and most thoroughly studied properties of PS is its
effective luminescence in the visible spectral range at
room temperature. This property is successfully
explained on the basis of the model of radiative recom-
bination of excitons existing in small silicon nanocrys-
tals (nc-Si), taking into account their interaction with
the subsystem of free charge carriers capable of nonra-
diative recombination at surface defects [3]. At the
same time, other model have been developed, in which
the possibility of radiative recombination at surface
centers is considered (see reviews [1, 2]). Both these
approaches allow for the fact that silicon nanocrystals
in PS have a huge surface (up to 103 m2/g [2]), which is
exposed to the action of various molecules from the
surrounding medium. This leads to an exceptionally
high sensitivity of physical properties of PS to the
molecular coating of the nanocrystal surface [4]. Sur-
face effects are apparently responsible for instability of
luminescence characteristics of PS, which hampers the
1063-7761/04/9904- $26.00 © 20741
development of light emitting devices on its basis. On
the other hand, the presence of the developed inner sur-
face is a significant merit of PS in the study of funda-
mental aspects of adsorption processes in nc-Si.

From various adsorption effects modifying the
properties of PS, the influence of various polar and non-
polar hydrocarbons has been studied best of all (see, for
example, [3, 4] and the literature cited therein). The
adsorption effect of active molecules forming nega-
tively and positively charged complexes on the surface
of a solid (i.e., exhibiting the properties of strong elec-
tron acceptors and donors, respectively) has been stud-
ied least. At the same time, analysis of fundamental
mechanisms of interaction of such active molecules
with a solid is very important in connection with the
problem of nc-Si doping, which is required for opto-
electronic applications of PS and other materials con-
taining nc-Si [2]. In addition, such investigations are
important for the development of a new generation of
gaseous sensors. In this respect, nitrogen dioxide (NO2)
molecules are of considerable interest, since such mol-
ecules can be adsorbed at the surface of solids in the
form of anion complexes [5]. Another important crite-
rion dictating the choice of an adsorbate is the practical
(ecological) aspect of the problem considered here.
Indeed, the control of the NO2 concentration in the
atmosphere is an urgent problem since this substance is
004 MAIK “Nauka/Interperiodica”
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very toxic and the search for new materials for develop-
ing high-sensitivity NO2-based sensors is of consider-
able importance [6, 7].

It was established in [6, 8, 9] that the adsorption of
NO2 molecules leads to an increase in the concentration
of free charge carriers (holes) and in the electrical
conductivity in the layers of so-called mesoporous sili-
con (MPS). This type of PS is characterized by pores
4−100 nm in diameter and the characteristic size of
nc-Si in it exceeds 5 nm [1]. The quantum size effect in
nc-Si of this size is very weak and does not exceed the
thermal energy at room temperature [1, 2]. Conse-
quently, the electronic properties of MPS are close to
those of c-Si except the contribution associated with the
surface states of nc-Si.

Among the publications devoted to the effect of NO2
adsorption on the electronic properties of PS, we can
mention only a few studies in which the microscopic
mechanism of the interaction of NO2 molecules with
the surface of nc-Si is considered [7, 9, 10]. In accor-
dance with one of these models, (NO2)– anion com-
plexes formed on the surface of nc-Si activate boron
atoms by their Coulomb field [9]. Thus, the hole con-
centration substantially increases as a result of NO2
adsorption. However, using this approach, it is difficult
to explain, for example, why the free carrier concentra-
tion varies within an order of magnitude in the course
of adsorption of NO2 molecules, while the conductivity
increases by two or three orders of magnitude [6].
Analysis of the data presented in [6, 7] revealed that the
PS samples subjected to the action of NO2 molecules
were initially characterized by different degrees of oxi-
dation of the surface. The concentration of defects in
the initial samples and those placed in the NO2 atmo-
sphere was not monitored. At the same time, defects in
PS are known to be charge carrier trapping centers that
can limit to a considerable extent their concentration
and electric transport and, hence, can affect the elec-
tronic properties of nc-Si [11].

In this study, we employed IR and EPR spectros-
copy to study the main physicochemical processes
occurring as a result of adsorption of NO2 molecules on
the surface of nc-Si in MPS. This enabled us to monitor
both the chemical composition of the surface coating of
Si nanocrystals and their electronic properties (namely,
the concentrations of equilibrium charge carriers and
defects containing an unpaired electron spin).

2. EXPERIMENTAL TECHNIQUE

The PS samples were prepared using the standard
technique of electrochemical etching of monocrys-
talline plates with the (100) surface orientation in a
solution based on hydrofluoric acid [1]. The substrates
were boron-doped c-Si plates with a resistivity of
10−20 mΩ cm (the equilibrium hole concentration was
~5 × 1018 cm–3). The electrolyte was an aqueous solu-
JOURNAL OF EXPERIMENTAL
tion of hydrofluoric acid mixed with ethyl alcohol in
a proportion of HF(48%) : C2H5OH = 1 : 1. The current
density was 50 mA/cm2. After the termination of pore
formation, PS films were separated from the substrate
by an abrupt short-term increase in the current density
to 500 mA/cm2. The thickness of the layers formed in
this way was measured with the help of an optical
microscope and was found to be 60 µm. The PS poros-
ity was determined gravimetrically was found to be
50%.

Nitrogen dioxide was obtained from the chemical
reaction

Cu(chip) + 4HNO3 

= 2NO2(gas) + Cu(NO3)2 + 2H2O.

Gaseous NO2 was purified from water admixture by
passing it through a flask containing dehydrator P2O5.
Adsorption of NO2 molecules was carried out from vac-
uum; all experiments were made in situ. We used vac-
uum equipment (membrane and turbomolecular
pumps) manufactured at Varian.

The EPR measurements were made on the
PS_100.X spectrometer (with a working frequency of
9.5 GHz and a sensitivity of 5 × 1010 spin/G). To calcu-
late the g factors and the defect concentrations, the fol-
lowing standards were used: MgO with Mn++ ions and
CuCl2 · 2H2O, respectively. The IR transmission
spectra of detached PS films were measured in a
400−6000 cm–1 range at a resolution of 2 cm–1 using
a Perkin Elmer RX I instrument with the inverse Fou-
rier transformation.

3. EXPERIMENTAL RESULTS

3.1. IR Absorption Spectroscopy 

Figure 1 shows the spectra of the absorption coeffi-
cient α(ν) of PS layers in vacuum and after absorption
of NO2 molecules under various pressures. The α(ν)
dependences were calculated from the measured trans-
mission spectra in accordance with the relation

(1)

where T(ν) is the transmission coefficient and d is the
layer thickness.

In the IR spectrum of freshly prepared PS (Fig. 1a),
the predominant absorption bands correspond to vari-
ous local surface vibrations, namely, valence modes of
Si–Hx bonds (x = 1, 2, 3) with frequencies of 2070–
2170 cm–1; scissors vibrations of Si–H2 bonds at a fre-
quency of ~910 cm–1; and deformation vibrations of
Si−Hx bonds with the band maximum at a frequency of
~660 cm–1 [2]. The presence of these bands indicates
that the nc-Si surface is predominantly coated with
hydrogen. These bands are observed against the back-

α ν( ) d 1– T ν( )[ ] ,ln–≈
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Fig. 1. Spectra of the absorption coefficient of PS layers in vacuum and under various NO2 pressures: (a) in a vacuum of 10–6 Torr;

(b)  = 0.1 (1) and 10 Torr (2); (c)  = 1 Torr (1) and subsequent evacuation to 10–6 Torr (2). The inset shows the absorption

band at scissors vibrations of Si–H2 bonds for freshly prepared samples (solid curve) and samples subjected to NO2 adsorption at

 = 10 Torr (dashed curve).
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PN2O
ground of absorption at free charge carriers, which
monotonically increases with decreasing wavenumber
(increasing wavelength); this adsorption will be ana-
lyzed in detail at a later stage.
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The adsorption of NO2 molecules under a pressure
 > 0.1 Torr led to the emergence of new bands in

the ranges 1050–1100 and 3100–3800 cm–1, which are
associated with adsorption under valence vibrations of

PNO2
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Si–O–Si and O–H bonds in water molecules adsorbed
at the surface of nc-Si, respectively [2]. With increasing
NO2 pressure, the intensity of these lines increases,
indicating stronger oxidation of the nc-Si surface. In
addition to the above-mentioned bands, the PS samples
subjected to the action of NO2 molecules under high
pressures exhibit adsorption at frequencies of 1290 cm–1

(trans-dimers of covalent nitroso compounds
Si−N+O−=–O+N–Si) and 1620–1680 cm–1 (cis- and
trans-isomers of covalent nitrites Si–O–N=O
(spectrum 2 in Fig. 1b). “N+O–” indicates a semipolar
bond, viz., a covalent pair of electrons connecting
atoms that carry a total positive (N) and a total negative
(O) charge [12].

Thus, the interaction of NO2 molecules with the sur-
face of silicon nanocrystals in PS layers exhibits all the
features of chemisorption and can be represented by the
following reaction (disregarding stoichiometric coeffi-
cients):

(2)

where 1 ≤ y ≤ 2 accounts for the possibility of partial of
complete oxidation of surface silicon bonds. The sec-
ond term on the left-hand side of relation (2) indicates
the region of the nc-Si surface in the initial PS, which is
characterized by a predominantly hydrogen coating
(see above). It should be noted that the formation of
H2O molecules, which is reflected on the right-hand
side of relation (2), occurs due to partial consumption
of the hydrogen coating of the nc-Si surface, which can
be detected, in particular, from a decrease in adsorption
at scissors vibrations of Si–H2 bonds in a sample sub-
jected to NO2 adsorption (see the inset to Fig. 1a).

It is well known that the silicon surface is effectively
oxidized during the interaction with nitric acid, the oxi-
dation rate exceeding the analogous quantity for oxida-
tion by gaseous NO2 by several orders of magnitude
[12]. Nitric acid can be formed as a reaction product
during the interaction of NO2 with water (2NO2 +
H2O  HNO3 + HNO2). To clarify the role of these
oxidation processes, we performed a control experi-
ment in which the numbers of Si–O–Si groups formed
as a result of adsorption of molecules of dehydrated
NO2 (used in these experiments) and NO2 containing
water vapor (in proportion 1 : 1) were compared using
the IR spectra. It was found that no additional oxidation
in the NO2 atmosphere saturated with wave vapor takes
place. Thus, under our experimental conditions, HNO3
is apparently not formed and the oxidation of PS layers
is due only to the interaction with NO2 molecules. The
experimental results match the theoretical estimates of
the probability of nitric acid synthesis from NO2 and
H2O, which are based on the value of the standard Gibbs
energy of the corresponding chemical reaction [12].

NO2 Si3–Si–H Si–O–N=O+

+  Si–N 
+ O 

– = O 
– + N–Si SiO y H 2 O,+ +                                                                       
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It can be seen from Figs. 1a and 1b that the mono-
tonic component of the α(ν) spectrum associated with
the absorption of IR radiation by free charge carriers
increases in the NO2 atmosphere. This indicates the
increase in the hole concentration in nc-Si and can be
formally written in the form

(3)

where the first term on the right-hand side denotes a
complex of the anion type on the nc-Si surface, the
dashed line denotes a complex with charge transfer [5]
(see Section 4 for details), and h+ is a hole ejected to the
bulk of a nanocrystal.

Adsorption at free charge carriers in MPS was
observed earlier in [8, 9]. It was found that the type of
adsorption for samples obtained under conditions sim-
ilar to ours (the characteristic size of nc-Si exceeds
5 nm) is in good agreement with the predictions of the
classical Drude model under weak scattering condi-
tions. In this case, for frequencies on the order of or
higher than the plasma frequency, the α(ν) dependence
can be expressed as [13]

(4)

where Np is the concentration of free charge carriers
(holes in our case), n is the refractive index of the sam-
ple, and τ is the scattering time for the quasimomentum
of holes. It should be noted that the concentration of
free charge carriers in the bulk of nc-Si, which is
defined as  = Np(1 – p)–1, where p is the PS porosity,
is approximately twice as high as Np .

To determine the value of Np from the α(ν) spectra,
we must know the value of τ. It was shown in [8, 9] that
the scattering time for holes in nc-Si with characteristic
sizes far from the conditions of the quantum size effect
are close to the values for the c-Si substrate used for
obtaining PS. On account of this fact, we can derive
from formula (4) the following relation for the concen-
tration of free holes in PS:

(5)

here, NSi is the concentration of free holes in the silicon
substrate and nSi and αSi are the refractive index and the
absorption coefficient of the substrate, respectively.
The latter values were borrowed from [13].

Figure 2 shows the values of concentration of free
holes in PS layers in vacuum and under various NO2
pressures, calculated by formula (5). For freshly pre-
pared samples, Np = 3.7 × 1017 cm

 

–3

 

, which is approxi-
mately an order of magnitude smaller than the doping
level for the initial 

 

c

 

-Si. Depletion of PS layers in equi-
librium free charge carriers as compared to the mono-

NO2 nc-Si nc-Si--- NO2( )– h+,++

α ν( ) N pn 1– τν 2– ,∝

N p*

N p NSi
nα

nSiαSi
-------------;=
AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004



INTERACTION OF NITROGEN DIOXIDE MOLECULES 745

                 
crystalline substrate was studied in detail in [7, 11, 14],
where several mechanisms responsible for this effect
were proposed (namely, trapping at surface defects [9,
11] and deactivation of acceptor impurities as a result of
their preferred localization at the nc-Si surface and an
increase in the ionization energy [9, 14]).

The increase in the free hole concentration induced
by NO2 adsorption was a nonmonotonic function of the
pressure produced by molecules (see Fig. 2). The max-
imal effect was observed for  = 10–1 Torr, and the

value of Np was 2 × 1018 cm–3, which is an order of mag-
nitude higher than for the initial freshly prepared sam-
ple. Moreover, the charge carrier concentration per unit
volume of nc-Si,  = 4 × 1018 cm–3, closely
approaches the substrate doping level (~5 × 1018 cm–3).
At first glance, the decrease in the value of Np upon a
further increase in  was rather unexpected. More-

over, the value of Np for  = 10 Torr was smaller by
approximately a factor of 2.5 than for a freshly pre-
pared sample. Another unexpected effect was that, after
the removal of NO2 molecules, the value of Np for sam-
ples in vacuum decreased below the initial level for
freshly prepared layers (cf. curves in Fig. 1a and 1c).

The results indicate that, along with doping of nc-Si
described by formula (3), another process occurs dur-
ing the interaction of NO2 molecules with the PS sur-
face, which limits the increase in Np for small values of

 and reduces the values of Np for large values of

 as well as upon subsequent evacuation. Since the
adsorption of NO2 molecules is accompanied by oxida-
tion of the PS surface (see reaction equation (2)), we
can expect the emergence of surface defects [15]. We
investigated such defects by the EPR method both in
freshly prepared samples and in PS layers subjected to
NO2 adsorption in the entire range of pressures used in
our experiments.

3.2. EPR Measurements

The results of investigation by the EPR method are
presented in Figs. 2 and 3. The EPR spectrum of the
samples being studied (Fig. 3) exhibits the characteris-
tic three-component structure. The measured orienta-
tion dependence of the EPR signal indicates the ortho-
rhombic symmetry of the g tensor of spin centers being
recorded. The values of the three main tensor compo-
nents g1 = 2.0068 ± 0.0005, g2 = 2.0054 ± 0.0005, and
g3 = 2.0027 ± 0.0005, as well the corresponding line
width ∆H1 = 7.6 ± 0.8 G, ∆H2 = 3.2 ± 0.8 G, and ∆H3 =
3.2 ± 0.8 G, indicate that the defects being detected are
the so-called Pb1 centers, i.e., defects of a type of rup-
tured Si bond at the Si/SiO2 interface [15, 16]. It should
be noted that an ultimate atomic model of a Pb1 center

PNO2

N p*

PNO2

PNO2

PNO2

PNO2
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Fig. 2. Dependence of concentrations of free holes (Np) and
spin centers (Ns) in PS on the NO2 gas pressure. The values

for freshly prepared samples in a vacuum of 10–6 Torr
(encircled by the dashed curve) are shown for comparison.
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has not been developed as yet; it is known only that its
nearest neighborhood contains one or two oxygen
atoms [15]. Figure 4a schematically shows a region of
the PS surface containing a Pb1 center. It should be noted
that Pb1 centers exhibit amphoteric properties (i.e., such
centers can trap both electrons and holes [17]).

The adsorption of NO2 molecules under a pressure
of 10–2 Torr led to a certain decrease in the EPR signal
amplitude. An increase in the value of  up to

10−1 Torr virtually restored the signal level, while a fur-
ther increase in  led to a substantial increase in the
EPR signal amplitude (see Fig. 3a).

The dependence of concentration Ns of Pb1 centers
on , obtained from the measured EPR spectra, is

shown in Fig. 2. The value of Ns in vacuum (~10–6 Torr)
for a freshly prepared PS sample (Ns = 4.4 × 1016 cm–3)
is given for comparison. It can be seen that the number
of defects is approximately halved (as compared to
freshly prepared samples) after letting in NO2 mole-
cules under a pressure of 10–2 Torr and then monotoni-
cally increases in the pressure interval 10–1–10 Torr,
attaining the maximal value Ns = 2.3 × 1018 cm–3 at

PNO2

PNO2

PNO2

(a)

(b) 1 2

3

Si H

N

O B

Pb1
+ Pb1

0

+–
h+

–

Fig. 4. Schematic representation of a surface region of the
initial PS sample (a) before and (b) after the adsorption of
NO2 molecules and basic adsorption-induced processes:

1—formation of donor-acceptor pairs –(NO2)– and

generation of a free hole h+; 2—formation of a covalent
chemical bond (oxidation of silicon surface) and the emer-
gence of Pb1 centers; 3—formation of Si–N+O–=–O+N–Si
trans-dimers and water molecules.

Pb1
+
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 = 10 Torr. This value is equal in order of magni-
tude to the concentration of the boron impurity and free
holes in the substrates used for obtaining PS. It should
be noted that each next evacuation of PS after its being
filled with NO2 increased the intensity of the EPR sig-
nal by a factor of approximately 1.5–2 as compared to
the value in the NO2 atmosphere (see Fig. 3b). The vari-
ations of values of Ns were reproduced in the next NO2
admission-evacuation cycles. It should also be noted
that holding of the samples at a given value of  (or
in vacuum) for several hours hardly changed the value
of Ns  at all.

4. DISCUSSION

Analysis of the data described in the previous sec-
tion leads to the conclusion that the interaction of NO2
molecules with the surface of silicon nanocrystals in PS
is a complex adsorption process that modifies the
molecular coating of nanocrystals and noticeably
affects their electronic properties.

Let us consider the electronic properties of PS. We
can expect that relatively small values of Ns (~5 ×
1016 cm–3) and Np (~1017 cm–3) detected in a freshly
prepared PS sample can be due to the fact that a large
part of defects are transformed into the nonparamag-

netic state after the capture of a hole:  + h+ = .
In spite of the fact that most boron atoms are in the ion-
ized state, the hole concentration is not high. In other
words, the boron acceptor impurity in the initial PS is

compensated by deeply lying donor states of  cen-
ters at the surface of nc-Si. This conclusion is in good
agreement with our experimental data and with the
results obtained in [9, 11].

Adsorption of NO2 in PS for small values of 
leads to a sharp increase in Np , which can be formally
explained by the formation of anion complexes (NO2)–

at the surface of nc-Si (see formula (3)). Such adsorp-
tion complexes with charge transfer can play the role of
a doping impurity [5]. This must lead to the emergence
of corresponding acceptor levels in the forbidden gap of
nc-Si. These levels are apparently quite deep and can-
not ensure by themselves the emergence of free holes in
nc-Si at room temperature. However, adsorbed NO2
molecules and Pb1 centers can experience a Coulomb
interaction leading to the formation of donor-acceptor

pairs –(NO2)–. The formation of such pairs
increases the value of Np in view of passivation of Pb1
centers, which acquire a positive charge and cease to be
the trapping centers for holes. Figure 4b illustrates
schematically the doping mechanism for nc-Si consid-
ered here (process 1). This model explains why the
maximal value of Np detected after the adsorption of

PNO2

PNO2

Pb1
0 Pb1

+

Pb1
+

PNO2

Pb1
+
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NO2 in our experiment, as well as in [6, 8, 9], does not
exceed the doping level of the substrate.

The decrease in the charge carrier concentration in
the interval of  = 10–1–10 Torr can be explained by
trapping of a part of holes at new defects (Pb1) centers)
formed as a result of chemisorption (see expression (2)).
Indeed, it can be seen from Fig. 2 that a sharp increase
in the value of Ns takes place in the pressure range con-
sidered here. Oxidation of the PS surface in the atmo-
sphere of NO2 and the emergence of additional Pb1 cen-
ters is shown schematically in Fig. 4b (mechanism 2).
This process obviously limits the value of Np for small
pressures  and causes its decrease at large pres-
sures of the adsorbate. In addition, the Pb1 centers
emerging as a result of chemisorption lead to an addi-
tional and irreversible decrease in the hole concentra-
tion upon the removal (desorption) of weakly bound
NO2 molecules from the surface of nc-Si (see Fig. 1c).
The interaction of such weakly bound molecules with
the nc-Si surface cannot be described by formula (2),
but is apparently a weak form of chemisorption (with
partial or complete charge transfer) [5].

The decrease in the value of Ns for small values of
 = 10–2 Torr is successfully explained by trapping

of holes at defects (which thus become diamagnetic),

i.e., by the formation of above-mentioned –(NO2)–

pairs. The increase in the number of spin centers being
detected after desorption of weakly bound NO2 mole-
cules (see Fig. 3b) is apparently due to the transition of

part of the defects from the  state to the  state.

Thus, we can now single out the main processes
occurring at the surface of silicon nanocrystals during
the adsorption of NO2 molecules and affecting the elec-
tronic properties of PS. These processes are presented
schematically in Fig. 4b, while Fig. 4a shows the same
region of the PS surface prior to desorption.

1. The formation of donor–acceptor pairs –
(NO2)– at the surface of silicon nanocrystals, which is
accompanied by an increase in the free hole concentra-
tion (process 1).

2. The formation of a covalent chemical bond with
an adsorbent in the form Si–O–Si and Si–O–N=O,
which leads to oxidation of the silicon surface and the
formation of Pb1 centers (process 2).

3. The formation of Si–N+O–=–O+N–Si trans-
dimers and water molecules (process 3).

The hypothesis concerning the formation of donor–

acceptor pairs –(NO2)– at the nc-Si surface during
the adsorption of NO2 molecules makes it possible to
explain the contradiction between the relatively small
increase in the concentration of free charge carriers in
PS (within an order of magnitude) and a considerable

PNO2

PNO2

PNO2

Pb1
+

Pb1
+ Pb1

0

Pb1
+

Pb1
+
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increase in the conductivity (by two or three orders of
magnitude) [6]. Indeed, the total charge of the pairs
formed in this case is equal to zero, while freshly pre-
pared samples contain a large number of charged

defects ( ) at which charge carriers undergo scatter-
ing [11]. Neutralization of charged spin centers in the
course of adsorption of NO2 molecules leads to a sharp
increase in the mobility of holes due to a decrease in
their scattering. Consequently, the substantial increase
in the PS conductivity in the NO2 atmosphere is mainly
associated not with an increase in the concentration of
holes, but rather with an increase in their mobility in
ensembles of coupled nc-Si.

5. CONCLUSIONS

The interaction of NO2 molecules with the nc-Si
surface in PS layers is a complex physicochemical pro-
cess including adsorption with charge transfer and the

formation of donor-acceptor pairs – , as well as
chemisorption leading to the oxidation of the nc-Si sur-

face. The emergence of adsorption-induced –
complexes leads to an increase in the concentration of
free charge carriers (holes) in nc-Si due to passivation
of Pb1 centers. The oxidation of the PS surface occur-
ring in this case is accompanied by the formation of
new Pb1 centers, which limits to a considerable extent
the increase in the hole concentration due to trapping of
holes at the defects. Under NO2 pressures on the order
of 0.1 Torr and below, defect formation is virtually
absent and the hole concentration in nanocrystals
approaches the doping level of the initial monocrystal-
line substrate. Thus, the process of adsorption-aided
doping of PS is most effective for low pressures of gas-
eous NO2. The results can be used in designing sensors
based on the NO2 molecule.
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Abstract—The nonresonant spectra of the Raman scattering in Zn1 – xCdxSe crystals (0 ≤ x ≤ 1) are investi-
gated. The mode doublet was found to gradually shift with increasing x from the longitudinal–transverse fre-
quencies of ZnSe to the longitudinal–transverse frequencies of CdSe. Furthermore, an additional branch of
weak modes was observed between the doublet components. The frequencies of this branch are shown to cor-
respond to the frequencies of the cadmium impurity vibrations in the ZnSe lattice at x = 0 and the zinc impurity
vibrations in the CdSe lattice at x = 1. The concentration dependences of the modes and atomic displacements
are analyzed by using the isodisplacement model that includes the interaction between ZnSe- and CdSe-like
vibrations. It is concluded that a one-mode behavior with the formation of an additional weak branch in the lon-
gitudinal–transverse splitting region is characteristic of this system. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The system of solid solutions Zn1 – xCdxSe is of great
interest in practical applications, in particular, in opto-
electronics, owing to its unusual physical properties.
Structures with quantum wells [1] and quantum dots [2]
have been created and investigated on the basis of thin
layers of these solid solutions. These are promising in
creating sources of blue light. The system of solid solu-
tions Zn1 – xCdxSe is also interesting in that a structural
phase transition from the cubic phase (sphalerite) to the
hexagonal phase (wurtzite) occurs in it at x = 0.3–0.4 [3].
The Raman scattering spectroscopy (RSS) of solid
solutions of tetrahedral type-II–VI semiconductors is
an efficient method for investigating the dynamics of
mixed crystal lattices.

The lattice dynamics for this system of solid solu-
tions has been studied inadequately. The resonant RSS
spectra were investigated in [4]. The Fermi resonance
of a transverse optical phonon with two-phonon acous-
tic states was found in [5]. According to the current cri-
terion for the rearrangement of the phonon spectrum as
the composition of the solid solution changes [6], a
two-mode type of optical phonon rearrangement must
take place in the Zn1 – xCdxSe system. However, having
analyzed the RSS spectra, Brafman [7] concluded that
this system has a one-mode behavior. Subsequently,
while investigating the RSS of some of the solid solu-
tions Zn1 – xCdxSe, Valakh et al. [8] obtained results
consistent with the one-mode behavior of this system.
Studies of epitaxial films of the solid solutions
Zn1 − xCdxSe by means of RSS [9] and infrared spec-
troscopy [10] also provided evidence for its one-mode
behavior. The authors of [7–10] investigated only iso-
1063-7761/04/9904- $26.00 © 20749
lated ranges of alloy concentrations, which did not pro-
vide the full pattern of rearrangement of the phonon
spectrum, while the accuracy and reliability of the mea-
surements have not always corresponded to the present
state of the art of the RSS technique.

In this paper, using a large set of compositions of
high-quality Zn1 – xCdxSe crystals and taking the spectra
with an RSS Fourier spectrometer with infrared excita-
tion of the RSS spectra, we analyzed the concentration
rearrangement of the phonon spectrum in detail. In con-
trast to previous studies of the RSS spectra, we excited
the spectra under nonresonant conditions. One of the
complex problems in interpreting the spectra of solid
solutions is to determine the positions of the local (impu-
rity) modes. Here, we show that the frequencies of the
impurity modes for the extreme compounds (x ≈ 0 and
x ≈ 1) can be estimated by using the model of inde-
pendent displacements of the ZnSe and CdSe atomic
groups [11]. If the frequencies of the impurity modes are
known, then the isodisplacement model can be used to
analyze the concentration dependence of the vibration
frequencies in a solid solution [12, 13]. We have experi-
mentally and theoretically studied the concentration
dependences of the lattice vibration frequencies, deter-
mined the type of mode rearrangement, calculated the
composition dependences of the oscillator strengths, and
found the amplitudes of the atomic displacement vectors
for normal vibrations in the Zn1 – xCdxSe system.

2. THE EXPERIMENTAL TECHNIQUE

The Zn1 – xCdxSe crystals were grown by crystalliza-
tion from the gas phase. The composition of the grown
004 MAIK “Nauka/Interperiodica”
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Fig. 1. RSS spectra of Zn1 – xCdxSe crystals for (a) x ≤ 0.30 and (b) x ≥ 0.30.
crystals was determined by measuring the lattice con-
stants by the X-ray diffraction method and by analyzing
the cathodoluminescence spectra.

The RSS spectra were excited by the 1.06-µm line
of a continuous-wave YAG : Nd laser in a backscatter-
ing geometry at room temperature and recorded with an
RFS-100 Bruker Fourier spectrometer. The drawbacks
of the infrared excitation (the decrease in scattering
cross section by almost a factor of 18 compared to the
excitation by the 0.5145-µm line of an argon laser and
the large detector noise in the near infrared) were offset
by the following: the Fourier spectrometer had a large
aperture (a gain by more than a factor of 10), the record-
ing system was a multichannel one (a gain by a factor
of 102–103), and a liquid-nitrogen-cooled Ge detector
was used. The exciting stray light in the spectrometer
was suppressed by a notch filter that attenuated the sig-
nal at the frequency of the exciting line by more than a
factor of 106 and that allowed both the Stokes (from
50  to 3500 cm–1) and anti-Stokes (from –1900 to
−80 cm–1) parts of the spectrum to be investigated.

3. EXPERIMENTAL RESULTS 
AND THEIR DISCUSSION

3.1. Results of Measurements 

The RSS spectra were measured for twelve compo-
sitions of the solid solutions Zn1 – xCdxSe that covered
the entire range from x = 0 to 1 almost uniformly
(Fig. 1). All of the crystals under study were transpar-
JOURNAL OF EXPERIMENTAL 
ent to the exciting radiation. The RSS spectrum of the
binary semiconductor compound ZnSe (sphalerite)
with a cubic symmetry exhibits two bands of the longi-
tudinal–transverse class-F2 dipole vibration splitting:
ωTO = 207 cm–1 and ωLO = 252.2 cm–1. At lower and
higher frequencies, we see the second-order vibra-
tional excitation bands that were studied in detail pre-
viously [14]. When a cadmium impurity concentration
up to x = 0.03 is introduced, an additional band at ωad =
224 cm–1, whose nature is discussed below, appears in
the region of the ωLO–ωTO phonon splitting in ZnSe. As
the cadmium atomic concentration increases further to
x = 0.3, an appreciable decrease in the LO-phonon fre-
quency, to 246.7 cm–1, and a slight decrease in the fre-
quencies ωTO and ωad are observed. As regards the fre-
quency ωTO of the transverse optical mode, more com-
plex processes related to the Fermi-resonance
interaction of the TO mode with two-phonon acoustic
states take place here [5]. The anharmonic interaction
between them gives rise to an antiresonance dip in the
RSS spectra near 160 cm–1 at x = 0.4–0.8 (Fig. 1b). For
x > 0.3, the position of the TO phonon is difficult to
determine due to the Fermi resonance, and the rear-
rangement of the phonon spectrum in Zn1 – xCdxSe as x
changes is described only by two vibration branches,
ωLO and ωad .

The additional band ωad is of greatest interest. It
shows up only in the spectra of solid solutions and dis-
appears in the extreme binary compounds ZnSe and
CdSe. The intensity of the RSS lines at the LO mode as
AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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the composition of the solid solution changes remains
almost constant, while the intensity of the additional
mode ωad increases for the middle compositions and
decreases at the edges. The attempts to explain the
appearance of peaks in the RSS spectra at ωad in terms
of two-phonon processes have failed, because combi-
nations of two-phonon states that fall within this fre-
quency range could not be found [14]. It is also difficult
to explain its appearance in terms of the formation of
macroscopic clusters caused by the deviation of the
distribution of cadmium or zinc ions from the random
one [15], because the studies of solid solutions by
investigating the fine structure of the X-ray absorption
spectra (EXAFS) and by other methods have not con-
firmed the existence of such clusters in alloys. When
investigating the films of the cubic system Zn1 – xCdxSe,
Alonso et al. [9] attributed the additional band ωad =
224 cm–1 at x = 0 to the impurity vibration of cadmium
atoms in ZnSe that smoothly transforms into the impu-
rity vibrations of zinc atoms in CdSe at x = 1 as x
increases.1 Since this attribution is not obvious, this
assumption must be justified. Below, we provide esti-
mates for the possible frequency of the impurity mode.

3.2. The Frequencies 
of the Atomic Impurity Vibrations 

The frequencies of the impurity modes in the
Zn1 − xCdxSe system can be estimated if the equations of
motion for the ZnSe (CdSe) groups are represented
as [11]

(1)

where µi , ui , Fi(x), and ei(x) are, respectively, the
reduced mass, the atomic displacement, the force con-
stant, and the effective charge of the ZnSe- and CdSe-
group ions. As follows from the analysis in [13],
Eqs. (1) are acceptable only for the extreme compounds
(near x = 0 and 1), where the interaction between ZnSe-
like and CdSe-like vibrations may be disregarded. In
this approximation, the dielectric constant ε(ω, x) of the
Zn1 – xCdxSe system has two poles at x ≈ 0,

(2)

and two poles at x ≈ 1 [18],

(3)

1 Similar results with the detection of impurity vibrations in the
frequency range of the longitudinal–transverse optical phonon
splitting were obtained in the RSS and infrared reflectivity spectra
of CdxZn1 – xTe crystals at small x [16] and in the infrared reflectiv-
ity spectra of Zn1 – xCdxS crystals at all x ≠ 0 and x ≠ 1 [17]. 

µi u̇̇i –Fi x( )ui µiΓ iu̇i– ei x( )Eloc, i+ 1 2,,= =

f 1
2 ωTO 1,

2 , f 2
2 ωIM 2,

2 ,= =

f 1
2 ωIM 1,

2 , f 2
2 ωTO 2,

2 ,= =
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where

Vi(x) is the volume of the primitive cell, ωIM, 1 and ωIM, 2
are the impurity vibration frequencies of the zinc atoms
in CdSe and the cadmium atoms in ZnSe, respectively,
and ε∞ is the high-frequency dielectric constant.

Using the macroscopic parameters of the CdSe crys-
tal (µi = 46.38 amu, ε∞, i = 6.2, ei = 0.815e, and ωTO, 2 =
171 cm–1), we obtain F2(1) = 1.1 × 104 g s–2. According
to (2), F2(0) must be known to determine the impurity
vibration frequency of the cadmium atoms. In the solid
solution Zn1 – xCdxSe, the bond length rCdSe decreases as
x changes from 1 to 0 [19]. Assuming the dependence
of the force constant on the bond length in type-II–VI
semiconductors to be [20]

(4)

we obtain F2(0) = 1.3 × 104 g s–2. We then find from
Eq. (2) that ωIM, 2 = 217 cm–1. The calculated impurity
vibration frequency of the cadmium atoms in ZnSe is
close to the frequency ωad of the additional band

f i
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Fig. 2. Concentration dependences of the frequencies of
optical atomic vibrations in the solid solution Zn1 – xCdxSe:
the solid lines indicate the computed dependences for the
transverse modes; the dashed lines indicate the computed
dependences for the longitudinal modes; and the dots repre-
sent the experimental data.
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detected at x = 0.03. Given that Eq. (4) is approximate,
the agreement between the calculations and the experi-
mental data may be considered to be excellent, and the
additional band ωad may be assumed to pertain to the
impurity vibration of the cadmium atoms in ZnSe.

The impurity vibration frequency of the Zn atoms in
CdSe can be estimated in the same way.

3.3. The Concentration Dependence of the Frequencies
and Oscillator Strengths 

The normal vibrations in the solid solution
Zn1 − xCdxSe can be found in the isodisplacement model
[12, 13]. The fundamental assumption of this model is
that the anions and cations of the ZnSe (CdSe) groups
vibrate in phase with the same amplitude, and the
forces statistically averaged over all neighbors act on
each ion. The fact that only the macroscopic parameters
of the extreme compounds are required to describe the
normal modes of the solid solution is among the advan-
tages of this model. However, the frequencies of the
impurity modes in the extreme compounds must be
known for a proper description.

To determine the concentration dependences of the
mode parameters in the solid solution, we used the
potential energy density function for the TO and LO
modes [13]. This function allows not only the mode dis-
persion, but also the atomic displacements for normal
vibrations to be determined. In particular, in the system
of (w1, w2) coordinates, where w1 are the displacements
of the zinc and cadmium atoms relative to the selenium
atoms, and w2 are the relative displacements of the zinc
and cadmium atoms, the TO-mode frequencies are the
solution of the equation

(5)

where

(6)

and µVCA and µDSL are functions of the atomic masses
mi and the composition x [13]. For the LO modes, the
terms that include the effective ion charges in the ZnSe

det Dw ω2I–( ) 0,=
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and CdSe crystals are added to the matrix elements [13].
As in [13], we assumed a linear composition depen-
dence of the force constants. In this case, we took into
account the fact that the force constants FCdSe and FZnSe

must decrease with increasing x, because the bond
lengths r(CdSe) and r(ZnSe) increase with x [19].

The solution of Eq. (5) yields two frequencies for
the TO modes and two frequencies for the LO modes.
Figure 2 shows the computed dependences of the fre-
quencies of optical phonons in the Zn1 – xCdxSe crystals
(0 ≤ x ≤ 1) together with the experimental data obtained
from the RSS spectra. In general, there is satisfactory
agreement between the computational and experimen-
tal data. Note that the TO1 branch gradually deviates
from the computed curve due to the resonant interac-
tion of the TO1 phonon with the two-phonon acoustic
states (Fig. 1b). The deviations of the experimental data
from the computational data are also clearly seen in the
region of the structural phase transition (x = 0.3–0.4).

The concentration dependence of the TO- and
LO-branch frequencies is indicative of the one-mode
behavior of the vibrations in the solid solution
Zn1 − xCdxSe. Indeed, the TO1 (LO1) mode of the ZnSe
crystal smoothly passes into the TO1 (LO1) mode of
the CdSe crystal as x increases from 0 to 1. An addi-
tional pair of frequencies, TO2 and LO2, with an
inverse sequence of frequencies (ωTO2 > ωLO2) is
formed between the TO1- and LO1-mode frequencies.
The frequency inversion occurs when one mode falls
into the TO–LO splitting region of the other mode [21].
The TO2–LO2 mode pertains to the quasi-local vibra-
tions, because it has the impurity modes as its limit at
the boundaries (x = 0 and x = 1).

The derived dispersions of the TO and LO modes in
the solid solution Zn1 – xCdxSe (Fig. 2, the computa-
tional data) make it possible to calculate the concentra-
tion dependence of the oscillator strengths of both the
fundamental and quasi-local vibrations. The concentra-
tion dependences of the oscillator strengths allow the
intensities of the modes in the RSS spectra to be quali-
tatively explained. We see from Fig. 3 that the oscillator
strengths of the quasi-local TO and LO modes are
smaller than those of the fundamental modes, and these
are at a maximum for the middle compositions. This
may suggest that the intensities of the quasi-local TO2
(LO2) modes are weaker than those of the fundamental
TO1 (LO1) modes, because the RSS cross section for
the dipole modes is proportional to the oscillator
strength [22, 23]. However, when comparing the rela-
tive intensities of the TO and LO modes, we should take
into account the fact that the RSS tensor components
for the TO and LO modes are different, because the ten-
sor component of the TO mode is determined only by the
deformation contribution, while the tensor component of
the LO mode also depends on the electrooptic contribu-
 AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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tion. In particular, a detailed analysis indicates that the
intensity ratio ITO/ILO in a diatomic cubic crystal is [23]

where γ is the ratio of the deformation and electrooptic
contributions, and ε0 is the static dielectric constant.
According to the measurements [24], the parameter γ is
negative for the ZnSe crystal, which is why ITO ! ILO.
If the same intensity ratio is assumed to be also pre-
served for the quasi-local modes, then the RSS spectra
of solid solutions must be dominated by the longitudi-
nal quasi-local vibration mode, while the transverse
mode must have a very low intensity.

As we see from Figs. 2 and 3, no phase transition
shows up in the computed dependences of the phonon
frequencies and the oscillator strengths on the alloy
composition. This may be primarily because the com-
puted model is approximate. In particular, this model
disregards the possible change in the number of oscilla-
tors during the phase transition, because two atoms in
the primitive cell are contained in the zinc blende struc-
ture and four atoms are contained in the wurtzite struc-
ture. As a result, the number of optically active modes
must change. However, since the anisotropy is small,
these new modes do not show up in the experiment. It
is well known that the CdSe structure may be consid-
ered as a slightly distorted zinc blende structure with a
very small anisotropy. As a result of the small anisot-
ropy, only two bands pertaining to the TO and LO
modes are observed in the RSS spectrum of hexagonal
CdSe, as in the spectrum of cubic ZnSe. Therefore, we
performed our calculations by assuming that all com-
positions of the solid solution Zn1 – xCdxSe are charac-
terized by the same structure and only two optical fre-
quencies. In addition, in our computed model, we used
the assumption employed previously [12, 13] about a
linear composition dependence of the force constants.
It disregards the small changes in the parameters of the
vibrational system of the crystal during the phase tran-
sition. However, these changes manifest themselves in
the experiment (see Figs. 1 and 2). Therefore, it should
be noted that, although the spectra for low CdSe con-
centrations (x ≤ 0.3) (Fig. 1a) significantly differ in
appearance from the spectra for CdSe-enriched compo-
sitions (Fig. 1b), this difference is largely attributable
not to the phase transition, but, most probably, to a
manifestation of the Fermi-resonance interaction
between the TO mode and the two-phonon acoustic
states [5] that distorts significantly the RSS spectrum.

3.4. Atomic Displacements for Normal Vibrations 
in the Solid Solution 

If the equations of motion for atoms in the solid
solution were set up not in (w1, w2) coordinates, but in
normal Qi coordinates, then the matrix DQ would be

ITO

ILO
-------

ε∞ε0

ε∞ γ ε0 ε∞–( )–[ ] 2
------------------------------------------,=
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diagonal. The relationship between these matrices can
be represented as

i.e., the transformation matrix is

An expression for the diagonal elements of the matrix
DQ for the TO modes follows from relation (6):

The normal coordinates are then defined by the trans-
formation matrix R:

DQ RDw,=

R DQDw
1– .=

DQ ii,
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Fig. 3. Concentration dependences of the oscillator
strengths for (a) the longitudinal and (b) transverse modes
in the solid solution Zn1 – xCdxSe.
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Fig. 4. Concentration dependences of the displacement amplitudes for atoms in the solid solution Zn1 – xCdxSe during normal vibra-
tions in the (a) fundamental and (b) local modes.
Let us now pass from the (w1, w2) coordinates to the
(uZn, uCd, uSe) displacement coordinates, which are
related by simple relations presented in [13]. We obtain

(7)

where  is a 2 × 3-rank matrix, and the index k per-
tains to the Zn, Cd, and Se atoms.

Equation (7) allows the vibration amplitudes for each
atom to be determined in normal coordinates Q1 (funda-
mental mode) and Q2 (quasi-local mode). Figure 4
shows the concentration dependences of the displace-
ment amplitudes for each of the atom for the fundamen-
tal LO1 mode and the quasi-local LO2 mode.

At x = 0, the zinc and selenium atoms in the funda-
mental mode vibrate out of phase (Fig. 4a), which is
well known for the optical mode in the binary ZnSe
crystal. As x increases, the cadmium atom that vibrates
in phase with the zinc atom begins to be involved in the
vibration; its vibrations amplitude increases, while the
vibration amplitude of the zinc atoms decreases. The
vibration amplitude of the selenium atom changes only
slightly with concentration of the solid solution.

In the quasi-local mode, the cadmium and zinc
atoms vibrate out of phase, while the displacement
amplitudes of the selenium atoms in this mode are
small and noticeable only for x ≠ 0 and x ≠ 1 (Fig. 4b).
As x increases, the displacement amplitude of the cad-
mium atoms decreases, but the displacement amplitude
of the zinc atoms that vibrate out of phase with the cad-
mium atoms increases. The dipole moment that arises
in these vibrations is determined by the difference
between the effective charges of the zinc and cadmium
ions. The effective ion charge (Szigeti charge) is eS =
0.75e and 0.81e for the ZnSe and CdSe crystals, respec-
tively. This difference is small, and the dipole moment
of the (Zn–Cd) vibrations is almost a factor of
10 smaller than that of the fundamental (Zn–Se or Cd–
Se) vibrations; hence the small oscillator strength of the

Qi Rik' uk,=

Rik'
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(Zn–Cd) vibrations and the low intensity of the RSS
peaks at the impurity modes.

The composition dependence of the atomic dis-
placements in normal vibrations for the TO modes is
the same as that for the LO modes.

4. CONCLUSIONS

We have investigated the crystals of solid solutions
Zn1 – xCdxS over a wide range of concentrations (0 ≤ x ≤
1) by means of Raman scattering spectroscopy for the
nonresonant excitation of spectra by the 1.06-µm laser
line. The frequencies of both the TO and LO phonons
in the ZnSe crystal were found to smoothly decrease
with increasing x. At x ≠ 0 and x ≠ 1, an additional
branch of optical phonons within the longitudinal–
transverse splitting region of the fundamental optical
mode was observed in the RSS spectra. This additional
mode was shown to pertain to the impurity vibration of
cadmium atoms at x ≈ 0 and to the impurity vibration of
zinc atoms at x ≈ 1. Using the model of isodisplace-
ments, we computed the composition dependences of
the mode dispersion and the oscillator strengths that
agree with the experimental data. We conclude that the
type of rearrangement of the phonon spectrum for the
solid solution Zn1 – xCdxS fits into the one-mode behav-
ior with the formation of an additional branch of quasi-
local modes. In [25], this type of rearrangement is
called intermediate. We determined the displacement
amplitudes for each of the atoms for normal vibrations
in the fundamental and quasi-local modes over the
entire range of concentrations.
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Abstract—The structural, magnetic, and electrotransport properties of La1 – xSrxMnO3 – x/2 (0 ≤ x ≤ 0.30) man-
ganites with perovskite structure are investigated experimentally as a function of oxygen deficiency. In the solid
solutions La1 – xSrxMnO3, a change in the type of symmetry of the unit cell is observed at x = 0.125. Samples
with x ≤ 0.125 are characterized by an O'-orthorhombic unit cell, whereas samples with x > 0.125 are charac-
terized by a rhombohedral unit cell. The structural properties of the anion-deficient solid solutions
La1 − xSrxMnO3 – x/2 are analogous to those of the stoichiometric system. It is assumed that, as the oxygen con-
tent decreases, La1 – xSrxMnO3 – x/2 anion-deficient solid solutions experience a series of successive magnetic
phase transformations in the ground state: from an A-type (x = 0) antiferromagnet to a cluster spin-glass-type
inhomogeneous magnetic state (0.175 < x ≤ 0.30) through a two-phase (antiferromagnetic and ferromagnetic)
state (0 < x ≤ 0.175). The anion-deficient solid solution with x = 0.175 has the maximal value of the ferromag-
netic component. As the oxygen deficiency increases, the resistivity of La1 – xSrxMnO3 – x/2 samples first
decreases (up to a value of x = 0.175), acquiring an activation character, and then increases (up to a value of
x = 0.30). In this case, none of the anion-deficient solid solutions exhibits a metal–semiconductor transition in
the whole range of concentrations considered. A peak of magnetoresistance at a temperature below the point of
magnetic ordering is observed only in the sample with x = 0.175. The results of experiments carried out with a
series of La1 – xSrxMnO3 – x/2 anion-deficient solid solutions are summarized in the concentration diagrams of
the spontaneous magnetic moment and the critical temperature of magnetic phase transitions. Hypothetical
magnetic phase states are pointed out. The experimental results obtained can be interpreted in terms of the
phase-separation model and the competition between ferromagnetic and antiferromagnetic indirect superex-
change interactions. It is assumed that Mn3+–O–Mn3+ indirect superexchange interactions in the orbitally dis-
ordered phase are positive in the case of octahedral coordination of manganese ions and are negative when the
coordination of at least one Mn3+ ion is pentahedral. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Substituted manganites of perovskite structure with
the general chemical formula Ln1 – xAxMnO3 (Ln3+ is a
lanthanide ion and A2+ is an alkaline-earth ion) have
attracted the keen interest of specialists in the physics of
magnetic phenomena for more than 50 years [1–12].
This interest has been aroused due to the large number
of various phase states and phase transformations
observed in this class of compounds [13–15].

Substituted manganites represent a good model
object for studying the properties of strongly correlated
electron systems and are of interest both from funda-
mental and practical points of view. These compounds
attract interest due to the close connection between
orbital, charge, spin, and lattice degrees of freedom and
the associated diversity of physical properties. How-
ever, currently, the general state of the theory does not
allow one to adequately describe the whole volume of
experimental information available. Moreover, experi-
1063-7761/04/9904- $26.00 © 20756
mental information on the physical properties of mag-
nets is being continuously supplemented, sometimes
with contradictory data. The nature of magnetic and
electric processes in manganites is not yet quite clear
and has been a subject of extensive discussion [10–12].
Note that the physical properties of manganites are very
sensitive to the method of production, the type of sym-
metry of a unit cell, size effects, the concentration of a
substitute, the presence of ions of different valence at
equivalent crystallographic sites, nonstoichiometry,
etc. Moreover, as new experimental results are
obtained, one feels more confident that even the funda-
mentals of the theory can be revised to take into account
the effect of various defects and irregularities, includ-
ing fluctuations. In spite of all the problems of funda-
mental character in understanding the physical proper-
ties of manganites, these compounds have already
found wide application in the technology of magnetic
recording as an active element of reading devices. Due
to their high chemical stability, these compounds are
004 MAIK “Nauka/Interperiodica”
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also employed as electrode materials in high-tempera-
ture fuel cells and in cathodes for CO2 lasers [16].

Among the properties of substituted manganites, of
special importance are magnetoresistive ones, which
provide favorable conditions for the practical applica-
tion of substituted manganites. There is a demand for
materials with high magnetoresistance at room temper-
ature in small magnetic fields [17]. However, the cur-
rent interest in manganites is associated not only with
possible engineering applications of the so-called
colossal magnetoresistance but also with the fact that
these compounds represent a suitable object for inves-
tigating the physics of strongly correlated systems. In
particular, as we pointed out above, the close connec-
tion between orbital, charge, spin, and lattice degrees of
freedom attracts great interest.

The original compound LaMnO3 is an antiferromag-
netic semiconductor with the magnetic structure of
A-type. The weak ferromagnetic component is attrib-
uted to the Dzialoshinsky–Moriya antisymmetric
exchange [18, 19]. The Néel temperature of this com-
pound is about 140 K [20, 21]. The magnetic properties
of manganites are related to the spins of manganese
ions because their orbital magnetic moments are frozen
into the crystalline field of anions, while the La3+ and
O2– ions are diamagnetic. The presence of Jahn–Teller

Mn3+ ions with the  (S = 2) electron configuration

in the stoichiometric La3+Mn3+  is responsible for
the O'-orthorhombic symmetry of the unit cell of this
compound. The d shell of Mn3+ ions in the octahedral
surrounding of oxygen is split into a doublet and a trip-
let. The threefold-degenerate t2g level is filled with three
electrons, whereas the twofold-degenerate eg level con-
tains only one electron. Such a high-spin configuration
is associated with strong Hund’s exchange coupling,
which arranges the spins of all electrons in the same

direction, while the  electrons form a local spin of
S = 3/2.

The substitution of A2+ ions for La3+ in

La1 − xAxMnO3 gives rise to Mn4+ ions with the  (S =
3/2) electron configuration. When the concentration x
of substitute ions equals about 0.10, cooperative static
Jahn–Teller distortions are removed [22]. To explain
the magnetic and electrical properties of substituted
manganites, one applies the so-called double exchange
mechanism [23–25]. The double exchange provides an
actual transition of an electron from the partially filled
eg orbital of a Mn3+ ion to a free eg orbital of a Mn4+ ion.
However, a great deal of the experimental results on the
properties of substituted manganites can only be under-
stood in terms of the model of phase separations [8, 9]
and indirect superexchange interactions [26, 27].

The system of solid solutions La1 – xSrxMnO3 repre-
sents the best example of a double exchange system.
The samples of this system are characterized by the

t2g
3 eg

1

O3
2–

t2g
3

t2g
3
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greatest width W of the one-electron band and, hence,
are the least subject to Coulomb correlations [28]. An
exception is the La1 – xSrxMnO3 (x ≤ 10) samples, which
are characterized by cooperative static Jahn–Teller dis-
tortions. The temperature of a Jahn−Teller transition is
determined by the concentration of Mn4+ ions. An elec-
tronic phase diagram for La1 − xSrxMnO3 was first pro-
posed in [1], and the modern diagram has been refined
in [29–33].

A review of the literature shows that the effect of
oxygen deficiency on the physical properties of the sub-
stituted manganites La1 – xSrxMnO3 has been studied
poorly. It is clear that oxygen vacancies will break the
ordering of magnetic ions (Mn3+ and Mn4+) and change
the angular and radial distributions of the electron den-
sity, which causes considerable changes in the mag-
netic and electrical properties of substituted mangan-
ites. Currently, there are only dispersed experimental
data on the oxygen nonstoichiometry for separate
manganite compounds [34–37]. Detailed systematic
studies of this kind have not yet been performed.
Therefore, the present paper is devoted to the sys-
tematic study of the crystalline structure and the
magnetic and electric states of the anion-deficient man-
ganites La1 – xSrxMnO3 – x/2 . The solid solutions of this
system contain only Mn3+ ions; therefore, the magnetic
properties of these solutions cannot be interpreted in
terms of the double exchange model.

2. EXPERIMENT

Stoichiometric ceramic solid solutions of
La1 − xSrxMnO3 (x = 0; 0.05; 0.075; 0.10; 0.125; 0.175;
0.225; 0.30) were prepared by the conventional ceramic
technology. La2O3 and Mn2O3 oxides and SrCO3 car-
bonate (all materials of special purity) were weighted to a
prescribed ratio of cations (La : Sr : Mn = (1 – x) : x : 1)
and thoroughly mixed. The chemical materials were
ground in an agate mortar with a small amount of ethyl
alcohol. Since La2O3 is rather hygroscopic, it was
annealed in air at 1000°C for 5 h before weighting to
remove moisture and carbon dioxide. The mixtures of
lanthanum and manganese oxides and a strontium car-
bonate thus obtained were compressed into pellets with
a diameter of 2 cm and a height of 1.5 cm by a hydraulic
press in a steel press mold under a pressure of about
108 P and annealed in air at 1100°C for 2 h. Then the
pellets were ground again, pressed, and finally synthe-
sized in air at 1550°C for 2 h and slowly (100 deg/h)
cooled to room temperature. During the synthesis, the
samples were kept on a platinum substrate. The temper-
ature in a furnace with chromide lanthanum heaters was
controlled by a platinum–platinum-rhodium (10%)
thermocouple. The reference junction of the thermo-
couple was placed in melting ice. The heating and cool-
ing rates of samples in the furnace were controlled by
an RIF-101 device.
SICS      Vol. 99      No. 4      2004
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The equation of the chemical reaction for obtaining
stoichiometric samples of lanthanum manganite substi-
tuted by strontium ions can be represented as follows:

(1)

To obtain solid solutions with the content of oxygen
close to stoichiometric, La1 – xSrxMnO3 samples with
x < 0.20 were tempered at 1000°C, and the samples
with x ≥ 0.20 were kept in air at 900°C for 100 h and then
cooled to room temperature at a rate of 100 deg h–1. It is
well known that the concentration of oxygen in the sub-
stituted manganites obtained by such technology is close
to that in stoichiometric samples [38].

An X-ray analysis of the synthesized samples was
carried out on a DRON-3 diffractometer with the Kα
radiation of Cr at room temperature in the interval of
angles 30° ≤ 2θ ≤ 100°. A graphite monochromator was
used to filter out the Kβ radiation. The content of oxy-
gen was determined by a thermogravimetric analysis.
According to our investigations, the samples synthe-
sized in air were oxygen stoichiometric.

Anion-deficient solid solutions of La1 – xSrxMnO3 – x/2
(x = 0; 0.05; 0.075; 0.10; 0.125; 0.175; 0.225; 0.30)
were prepared by the method of topotactic reactions.
Samples were placed in evacuated (P ~ 10–4 Pa) quartz
ampoules together with a certain amount of metallic
tantalum, which was used as an oxygen absorber. The
quartz ampoules were kept at 800°C for 24 h and then
cooled to room temperature at a rate of 100 deg h–1. The
equation of the chemical reaction of reduction is
expressed as follows:

(2)

The content of oxygen in the anion-deficient solid
solutions La1 – xSrxMnO3 – x/2 was determined by a
change in the mass of samples by weighting them
before and after reduction. To reduce the relative error
in measuring the content of oxygen, a sample with a
mass of about 3 g was usually placed in a quartz
ampoule. In this case, the error was no greater than
0.3%. The anion-deficient samples were subjected to
oxidation in air at 900°C for 5 h. This reaction can be
described by the equation

(3)

After oxidation, the samples were weighted again to
control the content of oxygen. These investigations
have shown that the absolute accuracy of determining
the oxygen index is ±0.01, and the chemical formula of

1 x–( )/2[ ] La2O3 xSrCO3 0.50Mn2O3+ +

La1 x– SrxMnOz xCO2↑.+

La1 x– SrxMnO3 x/5( )Ta+

La1 x– SrxMnO3 x/2– x/10( )Ta2O5.+

La1 x– SrxMnO3 x/2– x/4( )O2+

La1 x– SrxMnO3.
JOURNAL OF EXPERIMENTAL
anion-deficient solid solutions can be expressed as
La1 − xSrxMnO3 – x/2 ± 0.01.

The magnetic properties were measured on an
OI-3001 commercially available vibrational magne-
tometer in the range of temperatures from 4 to 300 K.
The specific magnetic moment was measured as a func-
tion of temperature in weak fields (below 100 Oe) in the
zero-field-cooling (ZFC) and field-cooling (FC)
regimes, and also as a function of a field at a low tem-
perature (5 K). The Néel temperature TN was deter-
mined from the temperature dependence of the inverse
magnetic susceptibility. The dynamic magnetic suscep-
tibility was measured by an inductance bridge in the
temperature interval from 77 to 350 K. The field ampli-
tude was equal to 200 A/m, and the frequency was
1200 Hz. The temperature of magnetic ordering (Tmo)
was determined by the temperature dependence of the
FC curve of the specific magnetic moment in a suffi-
ciently weak magnetic field of 100 Oe as the tempera-
ture of the fastest decrease of the specific magnetic
moment (min{dMFC/dT}). The freezing temperature TF
of the magnetic moments of ferromagnetic clusters was
determined as the temperature corresponding to the
maximum of the ZFC curve of the specific magnetic
moment. The electric resistivity was measured on well-
sintered samples with a size of 10 × 2 × 2 mm3 and
without obvious macroscopic cracks by the conven-
tional four-probe technique in the range of tempera-
tures from 77 to 330 K. Indium contacts were formed
by ultrasonic deposition. The magnetoresistance was
calculated by the formula

(4)

where MR(%) is the negative isotropic magnetoresis-
tance in percent, ρ(H) is the resistivity in a magnetic
field of 9 kOe, and ρ(0) is the resistivity in zero mag-
netic field. The electric current was directed along the
longest side of a sample. The magnetic field was
applied parallel to the electric field in a sample.

3. EXPERIMENTAL RESULTS

To assess the crystalline structure of the stoichiometric
La1 – xSrxMnO3 and anion-deficient La1 − xSrxMnO3 – x/2
samples, we carried out a powder X-ray diffraction
analysis. The X-ray diagrams of some of the solid solu-
tions are shown in Fig. 1. We found that all the samples
have the perovskite structure. The symmetry of a unit
cell depends on the concentration of the substitute ion.
For instance, stoichiometric samples of La1 − xSrxMnO3
exhibit a change in the type of symmetry of the unit cell
at x = 0.125. Samples with x ≤ 0.125 have an O'-ortho-
rhombic unit cell (the space group Pbnm, Z = 4),
whereas samples with x > 0.125 have a rhombohedral

unit cell (the space group , Z = 2). Earlier, we
observed such a change in the symmetry of the unit cell
in the system of barium-substituted solid solutions

MR %( ) ρ H( ) ρ 0( )–[ ] /ρ 0( ){ } 100%× ,=

R3c
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Fig. 1. Powder X-ray diffraction patterns obtained at room temperature for (a–c) stoichiometric solid solutions La1 – xSrxMnO3 and
(d–f) anion-deficient solid solutions La1 – xSrxMnO3 – x/2 for the following values of x: (a, d) 0.05, (b, e) 0.175, and (c, f) 0.30. The

inset shows the X-ray multiplets (132 + 024 + 204 + 312) for samples with x = 0.075 and 0.175 and (  + 211 + ) for x =
0.30. The solid lines represent data for stoichiometric samples, and the dashed lines, for anion-deficient samples.
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La1 − xBaxMnO3 – x/2 [39]. The concentration depen-
dence of structural distortions in anion-deficient sam-
ples of La1 – xSrxMnO3 – x/2 is analogous to that in the
stoichiometric system. It is noteworthy that identical
X-ray reflexes are displaced toward smaller Bragg
angles in the case of anion-deficient samples. This fact
indicates that the volume of the unit cell of anion-defi-
cient samples is greater than that of the stoichiometric
samples.
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Fig. 2. Concentration dependence of the unit-cell parame-
ters (filled squares) a, (filled circles) b, (filled triangles) c,
and (open squares) α at room temperature for (a) stoichio-
metric solid solutions La1 – xSrxMnO3 and (b) anion-defi-
cient solid solutions La1 – xSrxMnO3 – x/2. Panel (c) shows
the concentration dependence of comparable volumes of a
unit cell for (filled squares) stoichiometric and (filled cir-
cles) anion-deficient samples.
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According to Goodenough [27], the O'-orthorhom-

bic symmetry (c/  < a ≤ b) is attributed to the coop-
erative static Jahn–Teller effect, which is responsible
for the antiferrodistortion ordering of  orbitals in

Mn3+ ions. This effect consists in reducing the free
energy of a degenerate electron system by reducing its
symmetry through the removal of the degeneracy of
electron states. A necessary condition for the Jahn–
Teller effect is the presence of a degenerate electron
system. These may be d9d7 ions in a low-spin and d4

ions in high-spin states. In the case of manganites, the
degeneracy of eg levels of Mn3+ in an octahedral sur-
rounding of oxygen anions is removed. Earlier [40], it
was established that the system La1 – xCaxMnO3 with
x ~ 0.1 experiences a transition from the O'-orthorhom-

bic to the O-orthorhombic symmetry (a < c/  < b).
One may assume that the O'  R transition in our
case is associated with the fact that the size effect dom-
inates the Jahn–Teller effect because a similar transi-
tion is observed in barium-substituted manganites. It is
well known that, for a coordination number of 12, the
effective radii of Sr2+ (r{Sr2+} = 1.44 Å) and
Ba2+ (r{Ba2+} = 1.61 Å) ions are greater than those of
La3+ (r{La3+} = 1.36 Å) and Ca2+ (r{Ca2+} = 1.34 Å)
ions [41].

A variation in the concentration dependence of the
parameters and the unit-cell volume of stoichiometric
La1 – xSrxMnO3 and anion-deficient La1 – xSrxMnO3 – x/2

samples is illustrated in Fig. 2. As the substitution of Sr
ions increases, the parameters a and b monotonically

decrease, while c/  increases. The change in the type
of symmetry produces virtually no effect on the mono-
tonicity of the variation in the parameter a. The angle α
also varies monotonically (Figs. 2a and 2b).

As x increases, the unit-cell volume of the stoichio-
metric La1 – xSrxMnO3 samples monotonically
decreases (Fig. 2c). Such behavior is associated with
the fact that Mn4+ ions arise in the system whose radius
(r{Mn4+} = 0.530 Å) in the octahedral surrounding of
anions is less than the radius of Mn3+ ions (r{Mn3+} =
0.645 Å) and that the size effect of increasing the A sub-
lattice, 〈∆rA〉  = +0.08, is overbalanced by the decrease
of the B sublattice, 〈∆rB〉  = –0.115. When oxygen
vacancies arise, the coordination number decreases,
and, hence, the effective radius of Mn3+ ions also
decreases. The effective radius of Mn3+(V) ions in the
pentahedral coordination is equal to 0.580 Å [41]. In
this case, the effect of the B sublattice is as small as
〈∆rB〉  = –0.065. However, due to the presence of actual
vacancies of oxygen anions, the unit-cell volume of
anion-deficient samples of La1 – xSrxMnO3 – x/2 also
decreases as x increases, although this decrease is
somewhat smaller (Fig. 2c).
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The temperature and field dependence of the mag-
netic properties of certain stoichiometric La1 − xSrxMnO3
samples are shown in Fig. 3. The dynamic magnetic
susceptibility of the La0.95Sr0.05MnO3 (Fig. 3a) and
La0.70Sr0.30MnO3 (Fig. 3b) samples obeys the Curie–
Weiss law with TN ≈ 141 K and TC ≈ 350 K, respec-
tively. As x increases, the spontaneous atomic magnetic
moment also increases. For La0.70Sr0.30MnO3, it
amounts to about 3.7µB per manganese ion. These
results are in good agreement with the results of other
authors [1, 2, 20, 42].

The temperature dependence of the specific mag-
netic moment in the ZFC and FC regimes for the anion-
deficient solid solutions La1 – xSrxMnO3 – x/2 is shown in
Fig. 4. The samples investigated show substantially dif-
ferent behavior of the ZFC and FC curves. Most proba-
bly, this fact points to the absence of long-range ferro-
magnetic ordering in these samples. For
La0.925Sr0.075MnO2.95 (Fig. 4a), the FC curve starts to
slowly increase below Tmo ~ 110 K. The ZFC curve has
a peak at T ~ 90 K and is virtually independent of tem-
perature below this point. The samples of
La0.775Sr0.225MnO2.89 (Fig. 4b) and La0.70Sr0.30MnO2.85
(Fig. 4c) have a rather wide transition region to a para-
magnetic state. The peaks of the ZFC curves are
observed at about 45 and 40 K, respectively. These tem-
peratures are taken as the freezing points TF of the mag-
netic moments of ferromagnetic clusters. The FC
curves are virtually constant below TF. Thus, anion-
deficient samples with x > 0.10 show properties that are
characteristic of cluster spin glasses. A slow decrease in
TF with increasing x points to a decrease in the size of
ferromagnetic clusters.

The field dependence of the atomic magnetic
moment of anion-deficient samples of the system
La1 − xSrxMnO3 – x/2 (Fig. 5) substantially differs from
that of the stoichiometric system La1 – xSrxMnO3. First,
the magnetic moment is not completely saturated in
fields of up to 16 kOe, which slightly complicates the
determination of the spontaneous atomic magnetic
moment Ms . Second, under the assumption of complete
ferromagnetic ordering of Mn3+ ions, the theoretically
possible value of Ms , equal to 4µB per formula unit, is
attained in none of the samples. Third, Ms gradually
increases with x and then decreases, and the maximal
value of the ferromagnetic component is observed in
the La0.825Sr0.175MnO2.91 sample.

All anion-deficient solid solutions of
La1 − xSrxMnO3 – x/2 are characterized by the semicon-
ductor type of electric conductivity. The temperature
dependence of the resistivity and the magnetoresistance
of La0.825Sr0.175MnO2.91 is shown in Fig. 6. As x
increases, the room-temperature resistivity of anion-
deficient samples first decreases (ρ ≈ 5 Ω cm) for the
values of x up to 0.175 and then increases (up to x =
0.30). In the whole range of concentrations, anion-defi-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
cient solid solutions do not show a metal–semiconduc-
tor transition. Note that the resistivity of samples with
large oxygen deficiency (x ≥ 0.175) is satisfactorily
described by the equation lnρ ∝  T–1 (see also the inset
to Fig. 6). In almost all the samples, the absence of
anomalies in the magnetoresistance is attributed to the
absence of anomalies in the electric resistance near the
transition temperature to the magnetically ordered
state. A magnetoresistance peak equal to about 17%
was observed only in La0.825Sr0.175MnO2.91 near the
temperature T ≈ 90 K.

The results of magnetic investigations of anion-defi-
cient samples of La1 – xSrxMnO3 – x/2 are summarized in
Figs. 7 and 8. As the concentration of the substitute ion
increases, the spontaneous atomic magnetic moment

La0.95Sr0.05MnO3

TN = 141 K

10

5

0 0

10

20

30

χ, arb. units χ–1, arb. units

(a)

100

50

0
100 200 300 400

T, ä

Të = 350 K

La0.70Sr0.30MnO3
(b)

χ, arb. units

Fig. 3. Temperature dependence of (filled symbols)
dynamic magnetic susceptibility and (open symbols)
inverse dynamic magnetic susceptibility for the stoichio-
metric solid solutions (a) La0.95Sr0.05MnO3 and
(b) La0.70Sr0.30MnO3.
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slowly increases (at x = 0, we have Ms ≈ 0.1µB per for-
mula unit) and then decreases (at x = 0.30, we have
Ms ≈ 0.35µB per formula unit). The point x = 0.175,
which corresponds to the maximal value of the ferro-
magnetic component Ms ≈ 2.52µB per formula unit, is a
critical point. However, for any sample composition,
Ms does not reach its theoretically possible value calcu-
lated under the assumption of purely ferromagnetic
ordering of Mn3+ ions.

LaMnO3 is an A-type ferromagnet with TN ≈ 140 K.
Because of the weak ferromagnetic component associ-
ated with the Dzialoshinsky–Moriya antisymmetric
exchange interaction [18, 19], this compound is often
called a weak ferromagnet. As x increases from 0 to

9

6

M, G cm3/g

La0.925Sr0.075MnO2.95

3

0

(a)

H = 100 Oe

FC

ZFC
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La0.775Sr0.225MnO2.89
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(b)
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La0.70Sr0.30MnO2.85

0

(c)

H = 100 Oe

FC

ZFC

40 80 120 160

T, K

Fig. 4. Temperature dependence of the specific magnetic
moment in an external magnetic moment of 100 Oe mea-
sured on warming after zero-field cooling and field cooling
at 100 Oe for the anion-deficient solid solutions
(a) La0.925Sr0.075MnO2.95, (b) La0.775Sr0.225MnO2.89, and
(c) La0.70Sr0.30MnO2.85.
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0.10, TN decreases from 140 to 100 K. From the view-
point of magnetic structure, La1 – xSrxMnO3 – x/2 samples
in this range of concentrations represent an antiferro-
magnetic charge-ordered phase with ferromagnetic
cluster inclusions. In the interval 0.10 < x ≤ 0.175, the
ground state is the mixture of ferromagnetic and anti-
ferromagnetic charge-disordered phases with TC
increasing up to about 130 K. A transition to the para-
magnetic state occurs through a mixed state with short-
range ferromagnetic correlations below TF. For
x > 0.175, all anion-deficient samples are cluster spin
glasses with TF ≈ 40 K. It should be noted that a tem-
perature of 40 K is typical for the state of a cluster spin
glass in manganites [43]. Information about the mag-
netic phase states of the stoichiometric solid solutions
of La1 – xSrxMnO3 can be found in [29–33].

4. DISCUSSION OF THE RESULTS

Substituted lanthanum manganites La1 – xSrxMnO3 – x/2
with oxygen deficiency are of interest for the experi-
mental investigation of an indirect 180° exchange
between manganese ions [44]. Note that La3+, Sr2+, and
O2– ions are diamagnetic. This fact significantly simpli-
fies the interpretation of the results of magnetic investi-
gations.

The following arguments can be used to understand
the nature of magnetic processes that take place in
anion-deficient samples of La1 – xSrxMnO3 – x/2 . As
pointed out above, to explain the magnetic properties of
substituted manganites, one often applies the theory of
indirect 180° exchange interactions—the double
exchange mechanism, which was proposed by Zener

3

2

0 4 12 16

M, µB/per formula unit

La1 – xSrxMnO3 – x/2

1

H, kOe

8

x = 0.175

T = 5 K

0.125
0.225
0.075

0.30

Fig. 5. Atomic magnetic moment versus external magnetic
field at 5 K for the anion-deficient solid solutions
La1 − xSrxMnO3 – x/2 with (filled squares) x = 0.075, (open
squares) 0.125, (filled triangles) 0.175, (filled circles)
0.225, and (open circles) 0.30.
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[23, 24] and developed in detail by de Gennes [25]. The
double exchange mechanism can be realized in a sys-
tem with a mixed valence of manganese ions
(Mn3+/Mn4+). The samples of the system considered
here contain Mn3+ ions alone; therefore, the double
exchange mechanism cannot be applied to interpret the
magnetic properties of these samples.

Goodenough formulated the basic principles of the
superexchange theory—a specific type of the indirect
180° exchange interaction [26]. It is assumed that fer-
romagnetism can be attributed to the specific character
of exchange interactions in the system of Mn3+ Jahn–
Teller ions. The orbital configuration of 3d electrons in
case of removed cooperative static Jahn–Teller distor-
tions is determined by the positions of the nuclei of
manganese ions. In order that the Mn3+–O–Mn3+ inter-
actions become ferromagnetic, a correlation should
exist between the electron configuration and the vibra-
tional modes of the nuclei. The Mn3+–O–Mn3+ superex-
change interactions are anisotropic in the orbitally
ordered phase (positive in the (001) plane and negative
along the [001] direction) but isotropic in the orbitally
disordered phase (positive along any direction) [27].

The compound LaMnO3 (x = 0) exhibits an antifer-
rodistortion orbital ordering (the ordering of  orbit-

als) caused by the Jahn–Teller effect. Therefore, the
Mn3+–O–Mn3+ superexchange interactions are antifer-
romagnetic, and LaMnO3 is an A-type antiferromagnet
(Fig. 8).

The substitution of Sr2+ ions for La3+ leads to the
dilution of the Jahn–Teller system and removes the
orbital ordering. As a result, one gets ferromagnetic
clusters in an antiferromagnetic charge-ordered matrix.
In the interval 0 < x ≤ 0.10, anion-deficient samples
show an increase in the ferromagnetic component and a
decrease in TN. The elimination of the orbital ordering
also gives rise to oxygen vacancies that change the
angular and radial distributions of the electron density.

In the interval 0.10 < x ≤ 0.175, the ferromagnetic
component continues to grow and TC also increases.
The value x = 0.175 at which the Jahn–Teller effect and,
as a result, the orbital ordering are completely elimi-
nated is a critical concentration. However, a purely fer-
romagnetic state cannot be realized because the appear-
ance of oxygen vacancies changes the sign of Mn3+–O–
Mn3+ exchange interactions. A Mn3+–O–Mn3+ superex-
change interaction for a pentahedral coordination of at
least one manganese ion is antiferromagnetic. The

compound Ca2+Mn3+ , which is antiferromagnetic,
serves as confirmation of this fact [45]. The Mn3+ ions
in this compound are in a pentahedral coordination of
oxygen anions. The samples in this region consist of
antiferromagnetic (orbitally ordered and disordered)
and ferromagnetic (orbitally disordered) phases. A
transition to the paramagnetic state occurs through a
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O2.50
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mixed state with short-range ferromagnetic correla-
tions below TF.

For x > 0.175, the volume of the orbitally disordered
antiferromagnetic phase that is associated with the
Mn3+(V)–O–Mn3+(V) interaction starts to rapidly
increase, thus reducing the spontaneous magnetic
moment. Competition between the antiferromagneti-
cally and ferromagnetically ordered clusters is likely to
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Fig. 6. Temperature dependence of the resistivity,
measured (filled circles) in zero magnetic field and (open
circles) in a magnetic field of 9 kOe, and (filled squares) the
magnetoresistance for the anion-deficient sample
La0.825Sr0.175MnO2.91. The inset shows the natural loga-
rithm of resistivity versus inverse temperature for the same
sample.
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Fig. 7. Concentration dependence of experimental
values   (filled circles) of spontaneous atomic magnetic
moment at 5 K for the anion-deficient solid solutions
La1 − xSrxMnO3 − x/2. The dashed line represents expected
theoretical values of the spontaneous atomic magnetic
moment for the system of samples considered.
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give rise to a cluster spin-glass-type state with the
slowly decreasing freezing temperature of the magnetic
moments of ferromagnetic clusters. The orientation of
the magnetic moments of spin-glass clusters below TF
does not show any spatial periodicity. It randomly var-
ies in space, similar to the configuration of atoms in
ordinary glasses. In contrast to paramagnets, where the
magnetic moment fluctuates with time, spin glasses are
characterized by “frozen” magnetic moments, i.e., by
nonzero time-average vector quantities. A cluster spin-
glass-type state is frequently observed in inhomoge-
neous magnetic systems such as Co–Cu and Co–Ag
granular films [46, 47]. In these films, ferromagnetic
grains are embedded into a nonferromagnetic matrix.
The realization of this possibility in the anion-deficient
solid solutions La1 – xSrxMnO3 – x/2 is confirmed by a
clear-cut peak on the temperature dependence of the
ZFC curve. A slow decrease in TF points to a decrease
in the size of ferromagnetically ordered clusters.

A similar behavior of magnetic properties is
observed in the substituted anion-deficient manganites
La1 – xCa(Ba)xMnO3 – x/2 [39, 40]. The specific features of
the resistivity and the magnetoresistance of polycrystal-
line anion-deficient samples of La1 – xSrxMnO3 – x/2 can
be understood based on the fact that they consist of two
contributions: (1) intragranular and (2) intergranular
domains (the surface of grains). As x increases, the vol-
ume of ferromagnetic clusters increases. This increases

200

0 0.05 0.15 0.25

T, K

La1 – xSrxMnO3 – x/2

x
0.10
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0.20 0.30

150

100
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0
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P + Fcl

A + Fcl F + A1 SG

Fig. 8. Concentration dependence of the critical tempera-
tures of magnetic phase transitions for the anion-deficient
solid solutions La1 – xSrxMnO3 – x/2; A is an A-type charge-
ordered ferromagnetic phase, A + Fcl is a mixed magnetic
state consisting of an antiferromagnetic phase and ferro-
magnetic clusters, F + A1 is a mixed magnetic state consist-
ing of ferromagnetic and antiferromagnetic charge-disor-
dered phases, P + Fcl is a mixed magnetic state consisting of
a paramagnetic phase and ferromagnetic clusters, SG is a
cluster spin glass, and P is a paramagnet. Filled symbols
denote the transition temperature to a paramagnetic state,
and open symbols denote the freezing temperature of the
magnetic moments of ferromagnetic clusters.
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the mobility of charge carriers and thereby reduces the
resistivity for x ≤ 0.175. As the volume of the antiferro-
magnetic (orbitally disordered) phase increases for x >
0.175, the scattering of charge carriers by randomly
distributed spins outside ferromagnetic clusters
increases, thus increasing the resistivity.

It is well known that the diffusion coefficient of oxy-
gen anions situated on the surface of grains is an order
of magnitude greater than that of oxygen anions inside
a grain [48]; therefore, the reduction reaction gives rise
to oxygen-anion-poor microscopic regions on the sur-
face of grains. Thus, the reduction leads to a domina-
tion of the intergranular contribution and increases the
resistivity. A metal–semiconductor transition due to the
intragranular contribution does not occur. The higher
the concentration of oxygen vacancies, the higher the
resistivity.

5. CONCLUSIONS

The phase composition and the structural, magnetic,
and electrotransport properties of La1 – xSrxMnO3 – x/2
(0 ≤ x ≤ 0.30) manganites have been investigated exper-
imentally as a function of the concentration of oxygen
deficiency. In the stoichiometric La1 − xSrxMnO3 solid
solutions, a change in the type of symmetry of the unit
cell has been observed for x = 0.125. Samples with
x ≤ 0.125 are characterized by an O'-orthorhombic
unit cell, whereas samples with x > 0.125 are charac-
terized by a rhombohedral unit cell. The structural
properties of the anion-deficient solid solutions
La1 − xSrxMnO3 − x/2 are analogous to those of the sto-
ichiometric system. It is assumed that, as the oxygen
content decreases, La1 – xSrxMnO3 – x/2 anion-deficient
solid solutions experience a series of successive mag-
netic phase transformations in the ground state: from an
A-type (x = 0) antiferromagnet to a cluster spin-glass-
type inhomogeneous magnetic state (0.175 < x ≤ 0.30)
through a two-phase (antiferromagnetic and ferromag-
netic) state (0 < x ≤ 0.175). The anion-deficient solid
solution with x = 0.175 has the maximal value of the
ferromagnetic component. As the oxygen deficiency
increases, the resistivity of La1 − xSrxMnO3 – x/2 samples
first decreases (up to a value of x = 0.175), and then
increases (up to a value of x = 0.30). In this case, none
of the anion-deficient solid solutions exhibits a metal–
semiconductor transition in the whole range of concen-
trations considered. A peak of magnetoresistance below
the temperature of magnetic ordering has been
observed only in a sample with x = 0.175. The results of
experiments have been summarized in the concentra-
tion diagrams of the spontaneous atomic magnetic
moment and the critical temperature of magnetic phase
transitions. Hypothetical magnetic phase states have
been pointed out. The experimental results obtained can
be interpreted in terms of the phase-separation model
and the competition between ferromagnetic and antifer-
romagnetic indirect superexchange interactions. It is
 AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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assumed that Mn3+–O–Mn3+ indirect superexchange
interactions are positive in the orbitally disordered phase
in the case of octahedral coordination of manganese ions
and are negative when the coordination of at least one
Mn3+ ion is pentahedral.
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Abstract—Antiferromagnetic resonance in single crystals of rhombohedral gadolinium ferroborate
GdFe3(BO3)4 was studied. The frequency–field dependences of antiferromagnetic resonance over the frequency
range 26–70 GHz and the temperature dependences of resonance parameters for magnetic fields oriented along
the crystal axis and in the basal plane were determined. It was found that the iron subsystem, which can be
treated as a two-sublattice antiferromagnet with anisotropy of the easy-plane type, experienced ordering at T =
38 K. At temperatures below 20 K, the gadolinium subsystem with the opposite anisotropy sign strongly influ-
enced the anisotropic properties of the crystal. This resulted in a spontaneous spin-reorientation transition from
the easy-plane to the easy-axis state at 10 K. Below 10 K, magnetic field-induced transitions between the states
were observed. Experimental phase diagrams on the temperature–magnetic field plane were constructed for
fields oriented along the crystal axis and in the basal plane. A simple model was used to calculate the critical
transition fields. The results were in close agreement with the experimental values measured at T = 4.2 K for
both field orientations. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Crystals whose magnetic subsystems are formed by
ions of different kinds have interesting magnetic prop-
erties. These properties are especially pronounced in
rare-earth magnets in which rare-earth ions interact
with 3d iron family ions. Most rare-earth metal ions are
strongly anisotropic, and the magnetic anisotropy of
such crystals is as a rule determined by the competition
of the anisotropic interactions of these groups of ions.
This results in the appearance of spin-reorientation
transitions, both spontaneous that occur when tempera-
ture changes and field-induced. Transitions of this type
and magnetic phase diagrams have been thoroughly
studied for rare-earth metal ferrite–garnets and ortho-
ferrites [1].

Another class of crystals of rare-earth metal com-
pounds of the general formula RM3(BO3)4, where R is
a rare-earth metal and M = Fe, Cr, Al, Ga, and Sc [2–5],
has received much less attention. These compounds are
of interest not only from the point of view of their mag-
netic properties: they offer promise as materials for
laser techniques and second optical harmonic genera-
tion. The crystals have hantite rhombohedral structures,
space group R32 [6]. The magnetic properties of rare-
earth crystals of this class remain virtually unstudied.
The temperature dependences of magnetization mea-
sured for polycrystalline RFe3(BO3)4 samples, where
R = Y, La, Nd, Eu, and Ho [6, 7], made it possible to
suggest antiferromagnetic ordering in these com-
pounds.
1063-7761/04/9904- $26.00 © 20766
More detailed and informative studies have recently
been performed for GdFe3(BO3)4 single crystals [8].
Temperature dependence anomalies were observed for
magnetization at about 10 and 40 K. In addition, the
field dependences of magnetization contained jumps
below 10 K when the field was directed along the crys-
tal axis. These jumps were interpreted as spin flop tran-
sitions. On the basis of these data, a model of the mag-
netic structure of GdFe3(BO3)4 was suggested in [8]; its
reliability, however, is questionable. It is very difficult
to unambiguously determine the magnetic structure of
a crystal solely on the basis of magnetic measurements.
The purpose of this work was to study the magnetic
structure and phase transitions of gadolinium ferrobo-
rate GdFe3(BO3)4 by the antiferromagnetic resonance
method, which is very sensitive to the magnetic struc-
ture of crystals.

We stress that the GdFe3(BO3)4 crystal is the first
representative of the family of crystals with the hantite
structure for which the magnetic structure and mag-
netic phase diagram were studied in detail. This crystal
offers much promise for studies of this kind, because
both magnetically active ions, Fe3+ and Gd3+, are S ions.
This circumstance is of special importance for reso-
nance studies, because the corresponding resonance
absorption should be fairly narrow.

2. EXPERIMENTAL DATA

We used GdFe3(BO3)4 single crystals; the procedure
for preparing them was described in [8]. Measurements
004 MAIK “Nauka/Interperiodica”
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were performed for bulk single crystals with well-
defined faceting of size up to 2 mm.

Magnetic resonance was studied over the frequency
and temperature ranges 25–70 GHz and 4.2–60 K,
respectively, using an automated magnetic resonance
spectrometer with a pulsed magnetic field [9].

The frequency–field dependence of antiferromag-
netic resonance measured at T = 4.2 K in a magnetic
field directed along the principal crystal axis c is shown
in Fig. 1. Two dependence regions can easily be distin-
guished. At low magnetic fields, we observe two oscil-
lation branches (1 and 1') whose frequencies linearly
depend on the field and the line width does not exceed
110 Oe at 37 GHz for the best samples. Both branches
have equal initial splittings of about 29 GHz; the fre-
quency of one of them linearly increases as the field
grows, and that of the other decreases. In fields higher
than Hc ≈ 6.0 kOe, both magnetic resonance branches
disappear (the highest resonance frequency of the upper
branch is about 44.4 GHz). In their place, one oscilla-
tion branch (2) appears; its frequency increases as the
field rises, and its splitting is smaller than that of the
first two oscillation branches.

The frequency–field dependences of antiferromag-
netic resonance measured at 4.2 K for the magnetic
field orientation in the basal plane are shown in Fig. 2.
We observe two oscillation branches with the same ini-
tial splitting as for H || c (Fig. 1). The frequency of one
of them (1) nonlinearly increases as the field grows
stronger. The other branch (2) is a decreasing function.
Its linewidth measured in a magnetic-field sweep is
6−8 times larger than that for the first branch, and its
frequency slowly decreases as the field increases. In
strong fields, an additional line is observed, due to
a narrow resonance. The corresponding frequency is a
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Fig. 1. Frequency–field dependence of antiferromagnetic
resonance in GdFe3(BO3)4 at T = 4.2 K and H || c. Line 4
corresponds to the paramagnetic dependence ν = γH. The
initial portions of the dependences for (1, 1') GdFe3(BO3)4
and (3) GdFe3 – xGax(BO3)4 are shown in the inset.
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slowly increasing function of magnetic field intensity
(see curve 3 and triangles in Fig. 2).

The temperature dependences of resonance fields
for the magnetic field oriented along the crystal axis
were measured at frequencies of 26.11 and 44.48 GHz
(Fig. 3). At the lower frequency, we observed resonance
absorption corresponding to both the low- (line 1) and
high-field (line 2) regions. In the low-field region, the
resonance field first decreased to zero and then
increased as the temperature grew. This resonance dis-
appeared above approximately 8.5 K. The resonance
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Fig. 2. Frequency–field dependences of antiferromagnetic
resonance at T = 4.2 K, magnetic field is perpendicular to
the crystal axis.
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and C, paramagnetic. Open and solid triangles are the anti-
ferromagnetic resonance and magnetic measurement [8]
data, respectively.
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field for the high-field resonance branch also sharply
decreased to zero as the temperature increased to
approximately 18 K. Over the temperature range 18–
28 K, no resonance absorption was observed at this fre-
quency. Starting with T ≈ 28 K, resonance absorption
reappeared, and the resonance field increased as the
temperature grew and reached a plateau at T ≈ 38 K. As
the 44.48 GHz frequency was slightly higher than the
highest frequency of the upper oscillation branch in the
low-field resonance region, we only observed reso-
nance absorption corresponding to the high-field
branch over the whole temperature range. The temper-
ature dependence of the resonance field was qualita-
tively similar to that characteristic of the lower fre-
quency, namely, the resonance field first decreased and
passed a minimum at about 20 K and then increased
and reached a plateau close to 38 K.

The temperature dependence of the resonance
parameters was different when the field was oriented in
the basal plane of the crystal. The temperature depen-
dences of the resonance fields measured at various fre-
quencies are shown in Fig. 4. The fields first monoton-
ically increase as the temperature of the crystal grows.
Next, at a certain temperature, the resonance spectrum
sharply changes, the temperature interval of these
changes being less than 1 K. The transformation of the
resonance spectrum measured at 44.32 GHz is shown in
Fig. 5. The spectrum contains one inhomogeneously
broadened line corresponding to branch 1 in Fig. 2 at
temperatures up to about 6 K (the weak peak on the left
wing of the resonance line is in our view an inhomoge-
neous peak). Additional resonance absorption appears
at T = 6.2 K in higher magnetic fields above some crit-
ical value marked by an arrow in the figure. The critical
field decreases as the temperature grows, and, at T =
6.5 K, the absorption spectrum contains two absorption
lines. The low-field absorption line disappears as the
temperature increases further, and only the high-field
line remains.

The region of resonance spectrum transformation
shifts to lower temperatures as the resonance frequency
increases. The temperature dependence of the critical
field is shown in Fig. 4 by crosses (line 6). We also see
that the resonance field of the high-field peak is inde-
pendent of temperature to the right of line 6. The fre-
quency–field dependence for this crystal state is shown
in Fig. 2 (line 4); it can be approximated by a linear
dependence starting at the origin.

3. RESULTS AND DISCUSSION

It is reasonable to assume that the magnetic proper-
ties of GdFe3(BO3)4 are determined by the coexistence
of two magnetic subsystems of iron and rare-earth
metal ions interrelated by exchange interaction. An
analysis of the resonance data obtained at T = 4.2 K
leads us to conclude that the crystal at low temperatures
in the ground state is an antiferromagnet with an easy
anisotropy axis parallel to the principal crystal axis.
 AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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Indeed, if magnetic field H0 is applied along the crystal
axis and is lower than the critical spin flop transition
field Hsf , the field dependences of the resonance fre-
quencies have the form [10, 11]

(1)

For the spin flop phase, we have

(2)

Here, HE and HA are the effective exchange and anisot-
ropy fields, respectively, with respect to the crystal axis
c (HA > 0); χ|| and χ⊥ are the antiferromagnetic suscep-
tibilities along the principal axis and in the basal plane,
respectively; and γ|| is the gyromagnetic ratio for the
axial magnetic field direction. The solid lines in Fig. 1
are the theoretical dependences constructed according
to (1) for oscillation branches 1 and 1'. The dependence

parameters are as follows: ν||c = γ||  =
29.4 ± 0.2 GHz and γ||(1 – χ||/2χ⊥) = 2.55 ±
0.05 MHz/Oe. Using the γ|| = 2.808 MHz/Oe value
obtained from EPR measurements at room tempera-
ture, we obtain the susceptibility ratio χ||/2χ⊥ = 0.081,
which is close to the experimental value 0.083 mea-
sured at T = 4.2 K [8].

The magnetic field value Hc = 6.0 kOe at which the
oscillation branches described by (1) for H < Hsf dis-
appear at T = 4.2 K is close to the characteristic field
Hc = 6.15 kOe corresponding to the magnetization
jump observed in [8] and interpreted as a spin flop tran-
sition. However, oscillation branch 2 observed at this
magnetic field orientation in fields higher than 6.0 kOe
cannot be assigned to a resonance in the spin flop phase
of an easy-axis antiferromagnet, primarily because the
critical field Hc of the disappearance of the resonance of
the easy-axis phase is much lower than the spin flop
transition field Hsf = 11.3 kOe calculated by (1). In
addition, the experimental frequency–field dependence
in fields higher than 6.0 kOe cannot be approximated
by Eq. (2) for the spin flop phase with any reasonable
parameter values. At the same time, these data are well
described by the dependence characteristic of antiferro-
magnets with easy-plane anisotropy [11],

(3)

Here,  < 0 is the anisotropy field in the induced
easy-plane state. The solid line in Fig. 1 for oscillation

ν1 2,

γ ||
--------- 2HE HA+( )HA H0 1

χ||

2χ⊥
---------– 

  ,±=

H Hsf< 2HE HA–( )HA.=

ν1

γ ||
----- 

 
2

H0
22HE 2HE HA+( )

2HE HA–( )2
--------------------------------------- 2HEHA,–=

ν2 0, H Hsf .>=

2HE HA–( )HA

ν||

γ ||
---- 

 
2

2HE HA' H0
2.+=

HA'
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
branch 2 corresponds to this equation with an energy

gap νc2 = γ||  = 16.5 ± 0.5 GHz. It follows that
the magnetization jump observed in [8] in the magnetic
field Hc = 6.15 kOe aligned with the principal axis is the
magnetic field-induced spin-reorientation transition
from the easy-axis to the easy-plane state rather than
the spin flop transition in the easy-axis GdFe3(BO3)4
phase. This magnetization jump is then caused by the
transition from parallel susceptibility χ|| to perpendicu-
lar susceptibility χ⊥, which is much larger in magni-
tude. According to the antiferromagnetic resonance and
magnetic [8] measurements, the temperature depen-
dence of the critical field shown in Fig. 3 by triangles is
the phase boundary separating these two states on the
plane temperature–magnetic field along the c axis.

The conclusion that the low-temperature state of the
GdFe3(BO3)4 crystal in the region of low fields is an
easy-axis state is also substantiated by magnetic reso-
nance in the field oriented in the basal plane. The fre-
quency–field dependence at HA � HE then takes the
form [11]

(4)

The first equation describes oscillation branch 1
(Fig. 2), whose frequency increases as the field grows.
Solid line 1 in Fig. 2 is the theoretical dependence of

ν⊥1 with the parameters ν⊥c = γ⊥  =
29.0 ± 0.2 GHz and γ⊥ = 2.66 MHz/Oe; the ν⊥c value
coincides with ν||c for H || c.

We found that a magnetic field applied in the basal
plane of the crystal can also induce the transition to the
easy-plane state. In this state, the frequency–field
dependences of antiferromagnetic resonance for a mag-
netic field in the basal plane take the form [11]

(5)

where magnetic anisotropy in this plane, which is weak
according to the antiferromagnetic resonance data, is
ignored.

The frequency–field dependences for the ν⊥1
branches in the easy-plane and easy-axis states are
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sharply different. Because of the presence of a gap in
the spectrum of oscillations, the resonance field in the
easy-axis state is always lower than in the state with an
easy-plane anisotropy. The transformation of the reso-
nance spectrum caused by heating the crystal (see
Fig. 5) is just the transition between the ν⊥1 oscillation
branches of the easy-axis and easy-plane states.

It follows that the temperature dependence of the
critical field shown in Fig. 4 is the phase boundary
between the states with easy-axis and easy-plane
anisotropies on the plane temperature–magnetic field in
the basal plane. The temperature dependence of reso-
nance fields for the ν⊥1 branch in the easy-axis state of
the crystal is caused by the temperature dependence of
the energy gap in spectrum (4). In the easy-plane state,
the resonance field for ν⊥1 is temperature-independent
according to (5). Resonance branch 2 in Fig. 2 corre-
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Fig. 6. (a) Temperature dependence of the energy gaps in
the spectra of the (1) easy-axis and (2) easy-plane states.
Frequencies and magnetic field orientations: (1) 26.11 GHz,
H || c; (2) 44.48 GHz, H || c; (3) 26.11 GHz, H || c; and
(4) 38.63 GHz, H ⊥ c. (b) Temperature dependence of anti-
ferromagnetic resonance line width at a 44.48 GHz and
H || c.
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sponds to just this oscillation branch of the induced
easy-plane phase.

Using (1) and (4), we can calculate the temperature

dependences of the energy gaps  and  for the
easy-axis and easy-plane states, respectively, from the
temperature dependences of resonance fields (Fig. 3).
The results are shown in Fig. 6a, which also contains

the temperature dependence of  obtained from the
temperature dependence of resonance absorption mea-
sured at 38.63 GHz for field H ⊥ c. These results
closely agree with those obtained for H || c. The energy

gap  (curve 1) tends to zero as the temperature
approaches T = 10 K. It follows that the uniaxial anisot-
ropy field HA does indeed change sign at this tempera-
ture, and a spontaneous spin-reorientation transition
occurs. The anomaly of magnetic properties close to
10 K observed in [8] is related to just this phase tran-
sition.

The temperature dependence of the energy gap 
(Fig. 6a, curve 2) has an unusual form. The gap first
increases as the temperature grows, reaches a plateau at
about 20 K, and then decreases to zero as the tempera-
ture approaches T = 38 K. Apparently, this is the tem-
perature of magnetic ordering of the subsystem of iron
ions, because spontaneous ordering of the subsystem of
rare-earth metal ions usually occurs at much lower tem-
peratures [1, 12]. The boundary between the paramag-
netic state of the crystal and the ordered state of the iron
subsystem is shown by dashed line 5 in the phase dia-
gram (Fig. 3). The ground state of the iron subsystem is
antiferromagnetic, and its anisotropy is of the easy-
plane type. An increase in the energy gap as the temper-
ature decreases from TN = 38 K is typical of antiferro-
magnets. It is caused by an increase in the effective
exchange and anisotropy fields as the crystal is cooled.
In the absence of a rare-earth metal subsystem, the tem-
perature dependence of the energy gap would reach a
plateau below approximately 15–20 K, and the gap
would remain virtually unchanged during cooling to
0 K, as is shown by the dashed line in the figure. It is
reasonable to suggest that a decrease in the energy gap
starting with about 20 K is related to the influence of the
gadolinium subsystem. It is likely that this subsystem
has the opposite anisotropy sign, its contribution to the
total anisotropy increases in magnitude as the tempera-
ture lowers, and spontaneous reorientation from the
easy-plane to the easy-axis state occurs at T = 10 K.

As concerns the supposed state of the gadolinium
subsystem in this temperature region, it cannot be
entirely ruled out that this subsystem experiences
ordering precisely at about T = 20 K. Apart from the
strong line broadening as the iron subsystem
approaches the Néel temperature TN = 38 K, we observe
an obvious broadening in the region of 20 K, see the
temperature dependence of line width (Fig. 6b) mea-
sured at a frequency of 44.48 GHz for H || c. This broad-
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EA νc

EP

νc
EA

νc
EA

νc
EP
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ening can be caused by spontaneous ordering in the
gadolinium subsystem. However, no magnetic property
anomalies were detected at this temperature [8]. In
addition, an analysis of the crystallographic structure
(see below) leads us to suggest that indirect exchange
interaction in the gadolinium subsystem is fairly weak.
Lastly, it should be mentioned that, according to mag-
netic measurements, spontaneous ordering of the gado-
linium subsystem in the GdGa3(BO3)4 crystal, where all
iron ions are replaced by diamagnetic ions, does not
occur even at T = 4.2 K [13]. For this reason, the gado-
linium subsystem should rather be treated as polarized
by a biasing field created as a result of Fe3+–Gd3+

exchange interaction over the whole temperature range
of magnetic order studied, 4.2–38 K.

The suggestion of the polarization of the rare-earth
metal subsystem and its influence on crystallographic
anisotropy at low temperatures is substantiated by the
results obtained in analyzing the gadolinium ferrobo-
rate crystal structure and exchange interactions. The
crystal structure of rare-earth metal ferroborates is
rhombohedral, space group R32 at room temperature
[5, 6]. The lattice parameters are a = 9.567(3) Å and c =
7.578(2) Å [5], and the unit cell contains three
GdFe3(BO3)4 molecules. The Fe3+ ions have an oxygen
environment in the form of slightly distorted octahedra.
Neighboring octahedra share edges to produce a heli-
coidal chain along the c axis. The oxygen environment
of Gd3+ is a distorted triangular prism sharing vertex
oxygen atoms with Fe–O6 octahedra of three neighbor-
ing helicoidal chains. A fragment of the crystal struc-
ture of GdFe3(BO3)4 is shown in Fig. 7a, where two
chains of Fe–O6 octahedra and two adjacent Gd–O6
prisms are shown. Two neighboring iron ions in a chain
are coupled by indirect Fe–O–Fe exchange interaction
through two oxygen ions with bond angles of 101.10°
and 103.43°. The estimates obtained using the simple
model of exchange coupling [14] show that exchange
interactions between iron ions in chains are antiferro-
magnetic and the exchange integral value is JFe–Fe ≈
−9 K. Neighboring chains interact with each other
through the Fe–O–Gd–O–Fe bonds and B–O3 com-
plexes shown as triangles in the figure. Judging from
the absence of a broad maximum of the temperature
dependence of magnetic susceptibility characteristic of
low-dimensional magnetism [8], these interchain inter-
actions are sufficiently strong for the establishment of
three-dimensional magnetic order in the iron sub-
system.

If the structure of gadolinium ferroborate is treated
as planes containing iron and gadolinium ions that
alternate along the c axis, then each gadolinium ion is
coupled by indirect Gd–O–Fe interactions with iron
ions of two neighboring planes that belong to one sub-
lattice and is not coupled with iron ions of its own plane
that form another sublattice. According to estimates
obtained by following [14], Gd–O–Fe exchange inter-
actions that polarize the gadolinium subsystem at T <
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
TN are also antiferromagnetic and are weaker than
exchange interactions in the iron subsystem. These
interactions are weak because the distance between the
gadolinium and oxygen ions RGd–O = 2.4 Å in this chain
is much larger than the Fe–O distances, RFe–O = 1.99–
2.04 Å. It is likely, however, that polarizing exchange
coupling between the iron and rare-earth metal ions in
the hantite structure, that is, in GdFe3(BO3)4, is stron-
ger than similar coupling in rare-earth metal orthofer-
rites, where rare-earth metal ions interact with iron ions
from different sublattices, which results in almost com-
plete isotropic exchange balancing [1, 15, 16].

The gadolinium ions are in turn coupled with each
other only through B–O3 complexes. Both arms in the
Gd–BO3–Gd interaction chain are fairly long, RGd–O =
2.4 Å. It appears that indirect exchange coupling in the
gadolinium subsystem is for this reason weaker than
the polarizing action of the iron subsystem, which
explains the absence of spontaneous magnetic ordering
in the gadolinium subsystem of GdGa3(BO3)4 even at
T = 4.2 K.

A consideration of all these special features leads us
to suggest that the GdFe3(BO3)4 crystal at low temper-
atures has the magnetic structure shown in Fig. 7b. This
structure consists of planes perpendicular to the c axis
and alternating along it. The planes contain ferromag-
netically ordered iron and gadolinium ions. Neighbor-
ing planes are ordered antiferromagnetically. The size
of the magnetic unit cell is doubled along the c axis
compared with the crystal lattice cell.

It follows that the magnetic anisotropic properties of
gadolinium ferroborate at low temperatures are formed
in the competition between anisotropic interactions of
iron and gadolinium ion subsystems, which have differ-
ent anisotropy signs. The iron subsystem is a collinear
two-sublattice antiferromagnetic subsystem spontane-
ously ordered at T < TN = 38 K. The gadolinium sub-
system is polarized by antiferromagnetic interactions
with the iron subsystem and can also be divided into
two sublattices.

This view on the magnetic structure of gadolinium
ferroborate allows us to write the energy of this crystal
in the presence of a magnetic field as

(6)

Here, J1 > 0 and J12 > 0 are the exchange coupling
parameters in the iron subsystem and between the iron
and gadolinium subsystems, respectively; M1, 2 and
m1, 2 are the magnetic moments of the iron and gadolin-
ium subsystem sublattices, |M1| = |M2| = M0 and |m1| =
|m2| = m0; and K1 and K2 are the uniaxial anisotropy
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Fig. 7. (a) Fragment of the crystal structure of GdFe3(BO3)4 and (b) supposed magnetic structure of GdFe3(BO3)4 at T < 10 K.
constants of the iron and gadolinium subsystems. It fol-
lows from the experimental data that K1 < 0 and K2 > 0.
Exchange coupling in the gadolinium subsystem and
anisotropy in the basal plane are ignored. In addition,
the second energy term is written on the assumption
that the ions of each iron sublattice only interact with
ions of one gadolinium sublattice. The minimization of
JOURNAL OF EXPERIMENTAL
energy (6) in the absence of a magnetic field gives the
following solutions for polar angles θi and ηi and sub-
lattice magnetic moments Mi and mi:

1) θ1 = 0, θ2 = π, η1 = π, η2 = 0;

2) θ1 = π/2, θ2 = –π/2, η1 = –π/2, η2 = π/2;

3) θ1 = θ, θ2 = π + θ, η1 = π + η, η2 = η.
 AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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Generally, θ and η are not equal to each other and to
0 and π/2.

The last solution describes the angular phase in the
narrow region K2 ≈ |K1|, more exactly, in the region
bounded by the inequalities

(7)

Outside this region, we have the state with an easy-axis
anisotropy if K2 > |K1| [solution (1)] or the state with an
easy-plane anisotropy [solution (2)].

It follows that the sequence of changes in the mag-
netic state of gadolinium ferroborate as the temperature
lowers in the absence of a magnetic field can be
explained as follows. The crystal is a two-sublattice
antiferromagnet with an easy-plane anisotropy in the
region of 20–38 K, where only the subsystem of iron
ions is predominantly ordered. The degree of the polar-
ization of the gadolinium subsystem with the opposite
anisotropy sign increases as the temperature lowers;
accordingly, the contribution of this subsystem to the
total crystal anisotropy grows. This contribution
becomes noticeable at temperatures lower than 20 K,
and, at T = 10 K, the total anisotropy energy changes
sign. The anisotropy fields HA and  present in equa-
tions (1)–(5) for antiferromagnetic resonance frequen-
cies are resultant anisotropy fields at temperatures
below 20 K; they are determined by the contributions of
both magnetic subsystems. The magnetic structure of
GdFe3(BO3)4 shown in Fig. 7b corresponds to low tem-
peratures.

This model can be used to estimate the anisotropy
fields of both magnetic subsystems of gadolinium fer-
roborate at T = 4.2 K. Using the experimental exchange
field value HE = 180 kOe obtained from perpendicular
susceptibility at T = 4.2 K [8] and the energy gap in the
spectrum extrapolated to low temperatures νc ≈ 30 GHz
for the iron subsystem (see Fig. 6a), we obtain the
anisotropy field for the iron subsystem at low tempera-

tures  ≈ –320 Oe. The experimental energy gap
29.4 GHz value for the easy-axis crystal state at T =
4.2 K, which is determined by the resultant anisotropy
field HA ≈ 310 Oe, can be used to estimate the anisot-
ropy field for the gadolinium subsystem at the helium

temperature,  ≈ 630 Oe.

A magnetic field changes the orientations of the
magnetic moments of the sublattices of both sub-
systems, primarily the gadolinium subsystem coupled
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by comparatively weak exchange interaction with the
iron subsystem. Moreover, further calculations show
that, in very strong magnetic fields, the gadolinium sub-
system experiences the transition from the polarized
antiferromagnetic to the “collapsed” spin-flip state.
This changes the ratio between the contributions of the
iron and gadolinium subsystems to the total anisotropy.
As a result, the temperature of the orientation transition
should also change as the magnetic field increases, and
the very transition between the easy-axis and easy-
plane states can occur under changes not only in tem-
perature but also in magnetic field. The dependences of
the equilibrium polar angles θ1 and η2 on the magnetic
field along axis c obtained by numerically minimizing
crystal energy (6) are shown in Fig. 8. The minimiza-
tion was performed using the following potential
parameter values:

The exchange parameter J1 = HE/M0 and the anisotropy

constant K1 = M0 were calculated from the
exchange field HE = 180 kOe and the anisotropy field of

the iron subsystem  ≈ –320 Oe given above, and the
J12, K2, and m0 values played the role of adjustment
parameters. The magnetization of the gadolinium sub-
system sublattice was taken to be smaller than the satu-
ration value m0 = 35 G cm3/g. Because of weak
exchange interactions with the iron subsystem, the gad-
olinium subsystem was considered unsaturated at T =
4.2 K (this is the temperature at which the calculation
results were compared with the experimental data). For

J1 2400, J12 320, K1 24000 erg/cm3,–= = =

K2 62000 erg/cm3, M0 75 G cm3/g,= =

m0 25 G cm3/g.=

HA
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π

π/2

0 42 6 8 10
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m1M2

H

M2M1
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Fig. 8. Field dependence of equilibrium polar angles of the
(1) iron and (2) gadolinium sublattice magnetic moments.
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the same reason, the magnetic moments of the sublat-
tices in the gadolinium subsystem “collapse” in a mag-
netic field more rapidly than the iron sublattice
moments, see Fig. 8.

Calculations show that, at this set of parameters, the
transition from the easy-axis to the easy-plane state
occurs in a magnetic field of Hc = 5.92 kOe. This value
is close to the experimental critical field values
obtained from antiferromagnetic resonance and mag-
netic measurements [8]. Also note that, according to
our calculations, magnetic moment reorientation
occurs in a jump, without the formation of an angular
phase.

If the magnetic field is directed in the basal plane of
the crystal, field-induced spin reorientation occurs via
an angular phase at the same thermodynamic potential
parameters. This phase exists in the interval of mag-
netic fields from 30.2 to 33.8 kOe (the larger value is
labeled by an asterisk in Fig. 4). Within this interval,
which is in agreement with the antiferromagnetic reso-
nance data, the antiferromagnetic vectors of both mag-
netic subsystems rotate in the plane perpendicular to
the magnetic field. According to the magnetic measure-
ments [8, 13], this transition extends from 30.8 to
33.5 kOe at T = 4.2 K and has no field hysteresis, which
also closely agrees with the results of our calculations.

The suggestion of the field dependence of the result-
ant anisotropy field of gadolinium ferroborate allows
the unusual character of frequency–field dependences 2
and 3 (Fig. 2) to be explained. As they are situated
above and below the critical spin reorientation field, it
is reasonable to suggest that these dependences corre-
spond to oscillations ν⊥2 of the easy-axis and field-
induced easy-plane states. A comparison of Eqs. (4)
and (5) shows that the oscillation frequencies ν⊥2 in
both states virtually identically depend on the magnetic

20 3025 35 40 45
H, kOe

HA, kOe
0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

Fig. 9. Field dependence of the resultant anisotropy field for
H ⊥ c at T = 4.2 K.
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field because |HA| � HE . Using the exchange field HE ≈
180 kOe and the experimental energy gap value,
29 GHz, we find that the HA/2HE ratio, which deter-
mines the steepness of the frequency–field dependence
for this branch, is about 2 × 10–4. This value was used
in Fig. 2 to plot the frequency–field dependence of ν⊥2
[Eq. (4)] for the easy-axis state (the dashed line). On the
scale of the figure, this branch can be considered mag-
netic-field–independent. As concerns the experimen-
tally observed fairly strong magnetic field dependence
of resonance frequencies, it probably originates from
changes in the energy gaps in the spectrum caused by
the field dependence of the resultant anisotropy and
determined by the competing contributions of the iron
and gadolinium subsystems. The field dependence of
the resultant uniaxial anisotropy field calculated on the
basis of these considerations is shown in Fig. 9.

Also note that the suggestion of competitive contri-
butions of the iron and gadolinium subsystems to the
uniaxial anisotropy of GdFe3(BO3)4 is qualitatively
substantiated by the magnetic resonance data on
GdFe3 − xGax(BO3)4 (x ≈ 1) crystals. Partial substitution
of iron ions by diamagnetic gallium ions decreases the
contribution of the iron subsystem to anisotropy. For
this reason, the total anisotropy and energy gap at 4.2 K
increase compared with pure GdFe3(BO3)4 (see inset to
Fig. 1), and the critical field of the transition to the easy-
plane state for H || c increases from 6.0 to 9.3 kOe at
T = 4.2 K.

4. CONCLUSIONS

To summarize, we thoroughly studied antiferromag-
netic resonance and magnetic phase transitions in gad-
olinium ferroborate GdFe3(BO3)4. This is the first such
study for rare-earth metal magnets with hantite struc-
tures. An analysis of the experimental data led us to the
following conclusions on the magnetic structure of this
compound.

Ordering of the subsystem of iron ions, which is a
two-sublattice antiferromagnet with easy-plane anisot-
ropy, occurs at the Néel temperature TN = 38 K. In our
view, the influence of the anisotropy of the gadolinium
subsystem polarized by exchange interaction with the
iron subsystem becomes noticeable as the temperature
decreases to 20 K. The gadolinium subsystem can also
be represented in the form of a two-sublattice antiferro-
magnet with easy-axis anisotropy at temperatures
below 20 K. The competition of the anisotropic contri-
butions of the iron and gadolinium subsystems results
in a spontaneous transition from the easy-plane to the
easy-axis state as the temperature decreases to T =
10 K. An analysis of the crystal structure and exchange
interactions at temperatures below 20 K led us to sug-
gest the magnetic structure of GdFe3(BO3)4 comprising
planes that contain ferromagnetically ordered iron and
gadolinium ions, are perpendicular to the c axis, and
alternate along this axis. The neighboring planes are
 AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004



ANTIFERROMAGNETIC RESONANCE AND PHASE DIAGRAMS 775
ordered antiferromagnetically. The size of the magnetic
unit cell along the c axis equals two times the size of the
crystallographic unit cell.

It follows from the resonance data that transitions
between the easy-axis and easy-plane states occur not
only depending on the temperature but also as the mag-
netic field changes. We constructed the experimental
magnetic phase diagrams for magnetic fields oriented
along the crystal axis and in the basal plane.

A simple model was suggested to describe sponta-
neous and induced phase transitions. The model takes
into account antiferromagnetic exchange interactions
within the iron subsystem and between the iron and
gadolinium subsystems, the anisotropy energies of both
subsystems, and the Zeeman energy. This model was
used to find the conditions of the existence of the easy-
axis, easy-plane, and angular phases. Calculations were
performed to determine the critical fields of spin reorien-
tation transitions in magnetic fields along the crystal axis
and in the basal plane. The results were in close agree-
ment with the experimental data obtained at T = 4.2 K.
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Abstract—Solid deuterium clusters that for the first time have been isolated in a matrix of solid helium have
been investigated at T = 1.3 K and P = 3 MPa by the coherent anti-Stokes Raman spectroscopy (CARS) tech-
nique. The vibronic Q1(J = 0) and Q1(J = 1) line intensity, shape, and positions have been studied as functions
of ortho and para content in the solid, as well as of the size of clusters. The strong effect of Raman scattering
cross-section sensitivity to the molecular environment nuclear spin state has been found in CARS: the ratio of
probabilities for the scattering by para (J = 1) and ortho (J = 0) deuterium, which is equal to 1 in a gas, is as
high as 10000 in nearly pure ortho deuterium, whereas it is about 50 in spontaneous Raman scattering.
This effect has been shown to occur starting from a cluster size corresponding to the onset of the phonon band.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The most inert matrix ever applied in matrix isola-
tion spectroscopy is para hydrogen [1]; only helium
should be more inert than hydrogen in the symmetric
J = 0 state (J is the rotational number). Because helium
cannot be solid at ambient pressure, the conventional
technique of matrix isolation spectroscopy is inapplica-
ble. Instead, spectroscopic studies of molecules and
clusters surrounded by helium have been performed by
the very interesting technique of their capture into cold
liquid helium droplets. Although the molecule densities
in the droplet experiments do not exceed those in the
gas phase, the result of a photoinduced process could be
detected with very high sensitivity by the depletion
technique: the energy of visible and even infrared light
photons released in a droplet induces evaporation of
several thousand helium atoms, which is readily detect-
able if the droplet is sufficiently small. Although the
finite size of a droplet, of course, causes some small
distortion in the spectra observed, the approach makes
it possible to obtain very interesting information,
mainly on quantum helium liquid interaction with
microinclusions [2].

Meanwhile, the argument underlying the principal
suggestions in [2], in particular, the effect of 4He super-
fluidity on the rotation of molecules and clusters
embedded in liquid helium has been restricted by the
experimental impossibility of varying the matrix tem-
perature and pressure in the framework of the droplet

¶ This article was submitted by authors in English.
1063-7761/04/9904- $26.00 © 20776
technique. The simplest solution would be experiments
at high pressure in a helium crystal doped by the spe-
cies under study; however, this has been widely
accepted as impossible.

Nevertheless, a method of an impurity embedded in
solid helium has been recently created [3, 4]. Among its
first applications was the problem of matrix isolation
spectroscopy of hydrogen; being the best material for
isolation, hydrogen itself could not to this point have
been placed in a matrix more inert than its own.
Because of the high mobility of hydrogen molecules in
solid helium [5], only molecular clusters can be stabi-
lized in a helium crystal.

There is a very pronounced effect in the low-temper-
ature vibrational v  = 0  v  = 1 Raman spectra of con-
densed molecular hydrogen, which is especially
expressed for deuterium [6]: the ratio of the Raman
scattering cross sections corresponding to the Q1(J = 1)
and Q1(J = 0) transitions, which is equal to 1 in the gas
phase, has been found to strongly depend on the con-
centration of molecules in the J = 1 state in condensed
phases; this ratio varies from 5 for nearly pure para
(J = 1) deuterium (p-D2) to 50 for nearly pure ortho
deuterium (o-D2) (J = 0). This unexpectedly strong
cooperative effect has been reliably explained for solid
hydrogen and deuterium in [6] to be caused by the delo-
calization of the v  = 1 impurity states in a crystal. How-
ever, at least two questions remain unanswered. First,
how does this effect manifest itself in stimulated
Raman scattering (while in spontaneous Raman scatter-
ing the transition probability is proportional to the
004 MAIK “Nauka/Interperiodica”



        

CARS STUDY OF DEUTERIUM CLUSTERS STABILIZED IN SOLID HELIUM 777

                               
square of the polarizability, the probability of coherent
anti-Stokes Raman scattering (CARS) is proportional
to the square of the third-order susceptibility). Second
starting from what size of the microcrystal does the
ratio of the cross sections become large? 

Although the size effect in Raman scattering by
solid hydrogen should obviously exist and should be
strong, to our knowledge, nobody has discussed it, pos-
sibly due to the experimental impossibility of isolating
small hydrogen clusters in a sufficiently inert matrix.
Because the same effect has also been observed for liq-
uid hydrogen and deuterium [7], it should not be too
sensitive to crystal structure faults. Two cluster sizes
may therefore be critical for the effect: first, when the
phonon band appears (it corresponds to about ten layers
of molecules in a crystallite and to the number of mol-
ecules in it about N ≈ 103), and second, when the crys-
tallite size becomes comparable to the scattered light
wavelength, i.e., when N ≈ 109 (an ideal infinite crystal
was considered in the calculations in [6]).

2. TECHNIQUES

Unlike in the case of heavier rare gases commonly
used for matrix isolation, the introduction of impurities
into solid helium represents a very sophisticated prob-
lem. Both liquid and solid helium are self-purified spe-
cies because the solubility in them of any other sub-
stances is negligibly small. Epitaxial growth of a doped
crystal from the gas phase is also impossible because
helium is the only substance possessing no triple point,
nor even a coexistence of gas and solid phases in equi-
librium. Moreover, due to the high plasticity of solid
helium, a noticeable pressure gradient does not exist in
it and the position of the liquid–solid interface in
helium is governed only by the temperature profile;
hence, the growth of a crystal from a liquid layer, which
should be accompanied by the interface motion, is
impossible. Only by using laser ablation from a target
placed inside solid helium can the metallic clusters be
stabilized, trapped in solid helium in the very vicinity
of a target [8, 9].

The technique that we use allows the creation of
large doped helium crystals with impurities uniformly
distributed in the bulk. The permanent growth of the
crystal from its upper edge has been carried out under
continuous moving down of the crystal body at the
expense of helium exhaust from the bottom of the crys-
tal; due to a small amount of friction of helium solid on
a cell wall, even a very small pressure gradient is
already sufficient for this motion. As a result, helium
gas from the gas supply system enters the cell to restore
the former crystal surface position by condensation.
Thus, although neither the position nor the shape of the
crystal do not visually change in time, its contents per-
manently move down, with the velocity determined by
the helium mass outflow.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
As shown in Fig. 1, the experimental setup consists
of an optical cell submerged into a liquid helium bath
of an optical helium cryostat and a stainless steel gas-
handling system. The body of the optical cell is a cylin-
drical sapphire tube (outer diameter 20 mm, inner
diameter 17 mm, and length 80 mm) placed between
indium-sealed brass flanges connected with the gas
source at the top and with the outlet tube at the bottom.
Sapphire was chosen because it simultaneously pos-
sesses the necessary strength for high-pressure opera-
tion, optical transparency, and a reasonable thermal
conductivity at low temperatures. The gas source repre-
sents two coaxial thin-wall stainless tubes with outer
diameters of 10 and 4 mm, and the inner diameter had
an orifice of 0.25 mm in diameter at its bottom to form
the gas jet entering the optical cell. For thermal insula-
tion, the space between the tubes was pumped out and
the lower end of the tubes was covered with a teflon cap
with an orifice at the center to allow passage of the jet.
The heater was wired and glued to the surface of the
inner tube along its entire length, inserted into the cry-
ostat to keep the temperature in the tube well above the
dew point of dopant D2; the temperature near the orifice
was measured by a Cu-constantan thermocouple. Sev-
eral layers of aluminum mesh were interposed at the
bottom of the cell to provide uniformity of the outflow
and to create a pressure gradient between solid helium
in the optical cell and liquid helium in the outlet tube.
To stabilize the position of the helium crystal’s upper
interface, it was useful to insert a constantan heater
inside the outlet tube (heating prevents solidification of
helium in the tube, violating the stability of the out-
flow). The cell as a whole can be moved up and down
by Wilson sealing at the cap of the cryostat, allowing
study of the whole height of the grown sample.

Deuterium with enhanced abundance of o-D2 was
prepared by mixing normal deuterium (n-D2) with o-D2
produced in the cryocooler (Nagase & Co. Ltd. Model
UV204SC) filled with a ferric oxide (FeO(OH)) cata-
lyst at a temperature close to the D2 triple point. Deute-
rium was then premixed with helium at a ratio of
1 : 500 ~ 1000 in a stainless steel cylinder at a pressure
of 6.0 MPa.

The procedure of sample preparation was as fol-
lows. During the pouring of liquid helium into the opti-
cal cryostat, the pure helium gas from the outer high-
pressure cylinder was allowed to condensate in the cell
at the pressure of about 1 MPa up to filling of the entire
cell by liquid helium and subsequent inflow termina-
tion; the cylinder was kept connected to the cell after
that. Then, the main helium bath of the cryostat was
cooled by pumping with booster (Shinko SMB-C60)
and rotary (Alcatel T2063SD) pumps down to 1.2 K.
The pressure of pure helium in the gas supply system
was then increased to 2.8 MPa, the crystal was seen to
grow in a few minutes after pressure equalization (it
was sometimes noticeable that a solid–solid transition
occurred at the beginning, and the ascending interface
SICS      Vol. 99      No. 4      2004
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Fig. 1. Diagram of optical cell, He cryostat, and stainless gas-handling system: (1) cryostat, (2) sapphire cell, (3) brass flanges,
(4) double-walled inlet tube (a constantan heater and a thermocouple are glued to the inner tube), (5) outlet tube (a constantan heater
is inside), (6) teflon cap, (7) alumina mesh, (8) gas cylinders, (9) para–ortho converter, (10) pressure regulators, (11) pressure gauge,
(12) mass flow meters, (13) needle valve.
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was clearly seen; this proceeded at a rather small pres-
sure while, as follows from the phase diagram [10], the
bcc phase of solid helium formed earlier and was then
converted to the hcp phase upon further cooling). After-
ward, the needle valve at the end of the outlet tube was
opened to start helium gas exhaust from the bottom of
optical cell, the outflow usually kept at 200–400 sccm
(it corresponds to (0.9–1.8) × 1020 atoms/s). In steady
conditions, the arising inflow was equal to the outflow;
however, periodical jumps of the flows occurred, espe-
cially when the pressure in the cell was sufficiently
high. We believe that this happened when the pressure
in the cell was more than 2.8 MPa (because of the
impedance caused by the orifice, we could not accu-
rately determine the pressure in flow conditions) and
the film of liquid helium covering the crystal surface
was not consequently superfluid anymore (both normal
liquid and solid helium have rather low thermal diffu-
sivity [10]). Indeed, the liquid–solid interface was con-
cave in the case in which the main impedance for con-
densation heat removal is inside the cell. By decreasing
the pressure, one can achieve conditions when the inter-
face becomes flat (the main impedance is the heat trans-
fer through a sapphire wall) and stable. The photo in
Fig. 2 demonstrates such a pattern. For growing a
doped crystal, the flow of pure helium from the cylinder
was replaced by that of the He-impurity mixture pre-
JOURNAL OF EXPERIMENTAL 
liminarily prepared in the storage vessel. The typical
rate of D2-doped helium crystal growth was 1 mm/min.
The pumping rate was high enough to keep the temper-
ature of the bath less than 1.7 K during the sample prep-
aration procedure when the heat release due to both the
inlet heating and the gas mixture condensation was
about 3 W. In all cases, the doped crystals were nicely
transparent. After sample preparation, the inflow of the
He-impurity mixture was again replaced by the flow of
pure helium for several minutes and then, keeping the
pure helium supply system connected with the cell, the
outflow was terminated and the inlet heater switched
off. The sample thus prepared could be investigated for
a long time without any noticeable changes.

The slow decrease of the pressure inside the cell by
introducing a small outflow without any inflow led to
frontal melting of the sample starting from its upper
edge, as demonstrated in Fig. 3. The impurity from the
melted part of the crystal then concentrated at the liq-
uid–solid interface, forming a semitransparent sedi-
ment if the impurity content in the gas mixture was
large. The interface and sediment motion can be termi-
nated at a given position by stopping outflow and open-
ing inflow to solidify the whole sample again. By verti-
cal shift of the cell as a whole, the place with the
AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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Gas jet
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Sediment
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Fig. 2. Photos of a He crystal doped by 700 ppm of nitrogen: (a) the procedure of sample preparation, Φ = 200 sccm, P = 3.15 MPa,
T = 1.5 K, the temperature of orifice is around 250 K; (b) crystal frontal melting by pressure decreasing to 2.6 MPa.
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Fig. 3. Motion of the liquid–solid interface under diminishing helium pressure in real time for solid He doped by N2 (upper) and by
D2 (lower), the window diameter is 3 cm.
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enhanced impurity density could be placed into the
observation zone.

The vibronic spectrum of coherent anti-Stokes
Raman scattering of deuterium at our temperatures
(around 1.5 K) consists of Q1(1) and Q1(0) transitions,
the first of which belongs to p-D2, and the second, to
o-D2. The scheme of CARS measurements is presented
in Fig. 4. Two light beams with wavelengths of 566
(green) and 670–675 nm (red) from tunable pulsed dye
lasers (Lambdaphysik Scanmate and Lumonics Hyper-
dye-300) pumped by the second harmonic of a pulsed
Nd:YAG laser with a pulse duration of 5 ns and repeti-
tion rate of 10 Hz (Continuum Powerlite 7000) were
focused in one spot, usually near the axis of the optical
cell. The CARS signal generated at the focal point was
detected by a photomultiplier (Hamamatsu R-4220).
Laser light and parasite luminescence were attenuated
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
by dichroic filters and a monochromator (Nikon P-250)
tuned to the wavelength of CARS emission. After inte-
gration by Boxcar (Stanford SR250), the CARS signal
was digitized by an AD converter (Interface PCI3133)

DM

BS

DM

Nd : YAG Laser

Dye laser 1

Diaphragm
L

DF

Optical cell

Monochromator

CARS
PM

DM

L
Dye laser 1

Fig. 4. Scheme of CARS detection: DM, dichroic mirror;
BS, beam splitter; DF, dichroic filter; L, lenses; PM, photo-
multiplier.
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and was then accumulated in a personal computer.
Using this technique, we were able to detect the Q1(1)
and Q1(0) lines of gaseous deuterium even at a pressure
of 10–4 MPa with a frequency resolution of about
0.5 cm–1. As is known, the intensity of CARS signal
ICARS is

(1)

where Ig and Ir are the respective intensities of green
and red laser light and n is the density of deuterium
molecules at the focal point.

3. EXPERIMENTAL RESULTS

The presence of solid helium in the cell resulted in
the appearance of a rather intense nonresonant blue sig-
nal, whose intensity was approximately proportional to

 and to Ir and whose wavelength was 2ωg – ωr . The
signal shown in Fig. 5 corresponds to nonresonant four-
wave scattering by helium. The probability of such a
process is known to be proportional to the square of the
nonresonant third-order susceptibility, which is ten
times less for helium than for deuterium and is equal to
4 × 10–39 cm6/erg per molecule [11]. The presence of an
impurity in the helium crystal grown by condensation
of the gas mixture containing a rather small (less than
1000 ppm) amount of deuterium did not cause any sig-
nificant change of this spectrum in either shape or
intensity.

However, if part of the sample was temporarily
melted, the intensive narrow resonant deuterium signal
was observed under focusing the laser beams to the
former border between melted and nonmelted solid
helium. The signal was stable in time (see Fig. 6).

Under the condensation of the gas mixture with
large deuterium content, the resonant signal at a wave-
length close to the deuterium line position exists from
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Fig. 5. CARS signal from pure He solid and from that doped
by n-D2 (2000 ppm). Apparent nonresonant signal shape is
determined by the monochromator spectral width. The
shape of D2 line is shown in the inset.
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the very beginning (without preliminary melting) on
the background of the nonresonant CARS signal. Its
shape, shown in Fig. 5, is typical of the resonance
CARS signal superimposed on the intensive nonreso-
nant background [12, 13]; the interference of these
scatterings forms a so-called modulation dip distorting
the line and “eating away” the background. The depth
of the modulation dip shows that a significant part of
nonresonant scattering originates from the focal point
of laser beams, i.e., caused by solid helium; the rest
may proceed from the sapphire tube, optical windows,
etc. It is worth mentioning that the CARS signal inten-
sity was found independently of the focus point moving
up and down or along the cell radius, thereby proving
the uniformity of the stabilized cluster distribution in
solid helium.

The impurity concentrating near the bottom of the
“melted” zone during crystal temporal melting evi-
dences a large size of free inclusions formed by this
procedure in condensed helium. Indeed, the height h of
the region of impurity clusters precipitation by gravity
in liquid helium can be evaluated from the Boltzmann
distribution

(2)

where m is the mass of deuterium, N is the number of
molecules in a cluster, and  and ρHe are the respec-
tive densities of solid deuterium and liquid helium. The
height of the region with large cluster concentration
estimated by the existence of an intensive CARS reso-
nant signal is about 0.3 mm. Such an estimate gives
N = 108, which corresponds to a cluster size of 100 nm.
The results of X-ray analysis of clusters formed by
helium–deuterium jet injection directly to superfluid
helium gave a size of 3–6 nm [14]. However, this esti-
mate, made from the diffraction peak shape, represents

Nmgh
kT

---------------
ρD2

ρHe–

ρHe
--------------------- 1,≈

ρD2

2982 2984 2986

Raman shift, cm–1

2%

10%

33%

2980

Fig. 6. CARS signal from D2-doped solid He with the
doped D2 molecules (with different contents of p-D2: 2, 10,
and 33%) concentrated by the crystal temporal melting. The
large left and small right peaks correspond to Q1(1) and

Q1(0) transitions of D2, respectively.
 AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004



CARS STUDY OF DEUTERIUM CLUSTERS STABILIZED IN SOLID HELIUM 781
a lower bound of size because the width of the diffrac-
tion peak is sensitive not to the crystallite size but to the
length of the regularity of the crystal’s structure. Most
probably, temporal melting of solid helium causes
mutual gluing of small clusters possessing rather regu-
lar structure, into large particles.

The above observations make the following sce-
nario acceptable.

The condensation of mixtures containing a rela-
tively small amount of deuterium (less than 1000 ppm)
leads to the formation of rather small deuterium clus-
ters distributed in bulk solid helium. As the content of
the impurity in the gas mixture increases, the probabil-
ity of molecule coalescence in a cooled gas jet just
before it enters liquid helium and especially in liquid
helium (during particle motion to the solid–liquid inter-
face) significantly increases and the clusters that have
stabilized in solid helium become larger.

Finally, under helium crystal temporal melting, the
clusters merge together in large objects precipitating
due to gravity. The cluster coalescence occurs in spite
of the pressure being only about 1 bar less than that at
the helium melting point, but the effective centripetal
pressure caused by van der Waals interaction of the sec-
ond layer of surrounding helium atoms with the deute-
rium core, being several bars, is therefore sufficient for
keeping this layer solid even in a liquid [15].

It is reasonable to begin the analysis of CARS spec-
tra of deuterium stabilized in solid helium from this
sediment modeling a massive deuterium sample. In this
case, the Q1(0) and Q1(1) line positions for different
o-D2 contents presented in Fig. 7 fit well the literature
data available for solid deuterium with o-D2 content
more than 20% [6] and correctly reflect superlinear
decrease of the Q1(0)–Q1(1) splitting at small o-D2 con-
tent observed recently [16] (the Fabri–Perrot resonator
technique used in this work makes it possible to deter-
mine only splitting, not line positions).

It is immediately seen from Fig. 6 that, even at a
p-D2 content as low as 2%, the Q1(1) line is still much
more intense than the Q1(0) one (in the CARS spectrum
of that mixture in a gas, we did not observe the Q1(1)
line at all because it should be more than three orders of
magnitude less intense than the Q1(0) line). Taking into
account that, according to (1), the CARS signal inten-
sity is proportional to the square of the scatterer con-
centration, we calculated the ratio of the probabilities
of the Q1(1) and Q1(0) transitions in stimulated Raman
scattering for deuterium crystallites with different
ortho–para ratios. CARS line profiles both in a gas and
in a solid were found to be nicely approximated by a
Gaussian width of 0.62 cm–1, which probably repre-
sented the frequency resolution of our technique, and
we simulated the line shape by this form in all cases.
These probability ratios are compared in the table with
those known for common Raman scattering. One can
easily notice that the crystal-field effect under consider-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
ation is much more pronounced in CARS: in deuterium
containing 2% of para modification, that ratio is as
large as 10 000, although it is only about 50 in Raman
scattering [6].

For deuterium clusters isolated in solid helium (see
Fig. 5), line distortion by a coherent interaction with the
background does not allow precise determination of the
position of the resonant CARS line. However, the peak
of the ungarbled line should be positioned around half
the distance between the maximum and the minimum
of the distorted line [17], and as seen from Fig. 7, the
signals for clusters with 10 and 33% p-D2 content con-
sist mainly of Q1(1) lines. This means that, for these
clusters, presumably containing 103–104 molecules, the
effect of Q1(1) line predominance already exists:
assuming the equal probabilities of Q1(0) and Q1(1)
transitions, as is the case for the gas phase, the Q1(0)
line intensity should be 10 and 100 times larger for n-D2

and D2 containing 10% of para modification corre-
spondingly. This effect seems to be weaker than in a
massive sample: in deuterium clusters containing 2% of
para modification, both the spectral width of the signal
(much broader) and its position are evidence that it
actually consists of both Q1(1) and Q1(0) lines with

10

2985

20

R
am

an
 s

hi
ft

, c
m

–
1

2983

40

2986

2982

2984

0 30

Concentration of p-D2, %

Fig. 7. Raman line for D2 positions vs. ortho–para content
in a mixture: distorted line for D2 molecules trapped in solid
He ((.) negative peak, (m) positive peak); (s, h) o- and
p-D2 molecules lines in remelted solid He; (×, +) the same
for solid D2 [16].

The ratios of probabilities of the Q1(1) and Q1(0) transitions
for different contents of para-D2 in a solid; for spontaneous
RS, data were taken from [6], the CARS data are our results

100% 33% 10% 2%

RS 5 10 30 50

CARS ? 150 1260 10000
ICS      Vol. 99      No. 4      2004



782 GORDON et al.
comparable intensities, whereas in sediment, the inten-
sity of the Q1(1) line is still much higher than that of
Q1(0) (see Fig. 6). This conclusion has been proved
directly by comparing the line profiles before and after
solid helium sample temporary melting; for reliable
line resolution, we then used n-D2, where Q1(0) and
Q1(1) splitting is rather large. The results of such exper-
iments presented in Fig. 8 clearly demonstrate that, in
smaller clusters, the lines are significantly more broad-
ened and the ratio of their intensities is smaller.

4. DISCUSSION

In spite of the obvious presence of deuterium in
solid helium bulk, no signal has been found for small
deuterium content in a mixture when the smallest clus-
ters are supposed to have been stabilized. The low deu-
terium densities should not be the only reason for fail-
ure to observe CARS. Indeed, we have reliably detected
the CARS signal from gas deuterium at a density of 3 ×
1017 cm–3. In experiments with solid helium, there was
extra noise connected with the instability of nonreso-
nant scattering by solid helium, caused as usual by fluc-
tuation of laser energies from pulse to pulse. However,
with the same linewidth, we should easily detect deute-
rium lines at a D2 density of about 3 × 1018 cm–3

(100 ppm of deuterium in gas mixture). That means the
deuterium lines from small clusters should be notice-
ably broadened, either by multiple faults of the crystal
structure or due to the large contribution from mole-
cules located at a cluster surface where the matrix shift
should be about half that in the bulk; both reasons
should be valid only for small molecular clusters con-
sisting of a few layers. In principle, small clusters could
be studied by using delayed CARS [18]: because the

Fig. 8. Q1(1) and Q1(0) lines for He: n-D2 crystal (T =
1.3 K, P = 3.15 MPa). Solid line, condensation of He gas
containing 200 ppm of D2. Dashed line, the same sample
after fast annealing by decreasing the pressure to 2.6 MPa.
Dotted line, solid obtained by condensation of He contain-
ing 1000 ppm of D2.
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2979 2983 2989

Q1(0)
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helium third-order susceptibility should be formed
already in femtoseconds and hydrogen CARS charac-
teristic times are about a nanosecond even in a nonideal
crystal, the nonresonant background may be removed
there.

The modulation dip we observed for larger deute-
rium clusters stabilized in solid helium can be used to
measure the helium nonresonant third-order suscepti-

bility  by the procedure proposed in [19] and

applied there for argon  determination from analy-
sis of the shape of the dip in modulation of the nitrogen

CARS signal. Although the  value of helium is of
general interest [12], the accuracy of its value in the lit-

erature is far from satisfactory. Owing to the small 
value, it is difficult to measure it in a helium gas; this
has been impossible unless by embedding small (less
than λ) separated optically active impurities into con-
densed helium.

Surprisingly, although the Q1(0) and Q1(1) lines in
condensed hydrogen and deuterium have been exten-
sively studied by Raman scattering, the CARS tech-
nique has not been used for this. Our results for deute-
rium sediment in remelted solid helium should there-
fore be considered the first study of the large effect of
the surrounding nuclear spin modification on the Q1(0)
and Q1(1) transition probability ratio in solid deuterium
by the CARS technique. From a general standpoint,
such an effect should be much stronger in CARS than
in Raman scattering. Indeed, in the harmonic oscillator

approximation valid for simple molecules,  ∝  α2,

where α is the polarizability and  is the third-order
susceptibility at a resonance [20], and there is a simple
relation between the ratios of the Q1(1) and Q1(0) line
intensities in spontaneous RS and in CARS,

(3)

The data in the table show that this is nearly true.
Nevertheless, one may notice that the effect is stronger
than follows from (3): for example, in Raman scattering
experiments [6] for deuterium crystals containing 2%
of para modification, the intensities of Q1(1) and Q1(0)
lines are nearly the same, whereas in CARS, as is seen
from Fig. 6, the Q1(0) line is significantly weaker. In
fact, this effect may be used for determination of com-
pleteness of the para–ortho conversion in deuterium
with sensitivity better than 10–3%.

The impossibility of detecting the resonant CARS
signal in small clusters does not allow us to fully trace
the size dependence of the effect—it already exists
when the resonant deuterium peak appears in our
experiments. This is evidence that the effect of huge
predominance of the CARS accompanied by the Q1(1)
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transition develops together with phonon band forma-
tion in a deuterium cluster. However, the transfer to a
large probability ratio proceeds gradually: we managed
to observe enhancement of the effect as the cluster size
grows further (see Fig. 5), synchronously with the line
narrowing.

5. CONCLUSIONS

The promises of the new technique of embedding
impurities into solid helium have been demonstrated
with the example of deuterium cluster stabilization in a
matrix more inert than hydrogen. It was experimentally
shown that the impurity clusters are distributed homo-
geneously in the helium crystal; this opens the possibil-
ity of using laser irradiation to evaporate individual
molecules from the clusters preliminarily stabilized in
solid helium, as has been done in [8, 9] for metallic
atoms.

The extremely strong dependence of the third-order
resonant susceptibility related to Q1(0) and Q1(1) tran-
sitions in solid deuterium on the ratio of ortho–para
modifications has been found. Of course, this effect
must exist in a massive deuterium crystal, as well as in
hydrogen. It is significant that, in spontaneous Raman
scattering, the effect of the J = 1 transition dominance
consists of redistribution of probabilities of scattering
by ortho and para states, with the total cross section
being independent of their content [6]. This should not
be true for stimulated Raman scattering, where the
probabilities are proportional to square of the species
concentration.

The phenomenon of the J = 1 Raman scattering
dominance has been found to occur just as the size of
deuterium crystallite becomes sufficient for phonon
band formation.

Nonresonant CARS from solid helium has been
observed for the first time; in a crystal doped by small
clusters of Raman-active molecules, the modulation dip
of their CARS line made it possible to calculate the
absolute value of the nonresonant third-order suscepti-
bility for helium.
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Abstract—We incorporate the effect of lattice thermal vibrations into the Glauber-theory description of parti-
cle and nucleus–crystal Coulomb interactions at high energy. We show that taking the lattice thermal vibrations
into account produces a strong absorption effect: the phase shift function of the multiple-diffraction scattering
on a chain of N identical atoms acquires a large imaginary part, and the radius of the absorption region in the
impact parameter plane grows logarithmically with N. Consequences of this observation for the elastic and
quasi-elastic Coulomb scattering are discussed. The practically interesting example of the coherent Coulomb
excitation of ultrarelativistic particles and nuclei passing through a crystal is considered in detail. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In this paper, we develop the description of the
absorption phenomenon in coherent particle and
nucleus–crystal Coulomb interactions at high energy in
the framework of the Glauber theory [1].

As is well known, multiloop corrections generate
the imaginary part of the scattering amplitude even if
the tree-level amplitude is purely real. For example, the
purely real Born amplitude of the high-energy Cou-
lomb scattering in a crystal acquires the imaginary part
due to the multiple scattering (MS) effects. However, in
the widely used static/frozen lattice approximation (SL
approximation), taking rescatterings into account alters
only the overall real phase of the full amplitude, thus
producing no absorption effect. The latter is related to
the creation and annihilation of excited intermediate
states of the crystal and as such manifests itself only
beyond the SL approximation (see [2] for the analysis
of elastic scattering based on the SL approximation).
Indeed, the amplitude of small-angle elastic scattering
on a chain of N identical atoms in the impact parameter
representation is equal to

where the scattering matrix placed between the ground
states of crystal is

with the purely real phase shift function

1 S b( )〈 〉 ,–

S b( )〈 〉 iχ b( )[ ]exp〈 〉 ,=

χ b( ) χ j b( ).
j 1=

N

∑=

¶ This article was submitted by the author in English.
1063-7761/04/9904- $26.00 © 20784
In the SL approximation,

In general, therefore, the Coulomb phase shift function
acquires a nonvanishing imaginary part, which is inter-
preted as an absorption effect, only with the lattice ther-
mal vibrations taken into account. The imaginary part
appears only as a second-order perturbation,

But the strength of the effect is proportional to β2N,
where β is the coupling constant. For the coherent scat-
tering of relativistic nuclei (the electric charge Z1) on
the chain of N atoms (the atomic number Z2) in a crys-
tal, the effective coupling

is strong and the absorption effect is also strong. The
absorption is strong for the impact parameters b smaller
than some characteristic value

and vanishes toward the region of larger b. This phe-
nomenon provides a natural ultraviolet regulator of the
theory and enables, in particular, consistent calculation
of the coherent elastic scattering cross section. The lat-
ter is calculated and turns out to be equal to half the
total cross section. As we see in what follows, the
absorption effect is also of prime importance for quan-
titative understanding of the phenomenon of the coher-
ent Coulomb excitation of relativistic particles and

iχ b( )[ ]exp〈 〉 iχ b( )[ ] .exp≈

~
i
2
--- χ2〈 〉 χ〈 〉 2–[ ] .

β 2αZ1Z2=

ba βN( )log∝
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nuclei passing through a crystal. A consistent descrip-
tion of this phenomenon is the goal of our paper.

The outline of the paper is as follows. We start with
the well-known example of the coherent Coulomb elas-
tic scattering of charged particle/nucleus by a linear
chain of N identical atoms in a crystal target (Section 2).
In Section 3, we derive the scattering matrix with
absorption and calculate the cross section σel of the
coherent elastic scattering and the cross section σQel of
the incoherent excitation and breakup of the target.
Then we find that in the large-N limit,

In Section 4, we discuss the coherent Coulomb excita-
tion of ultrarelativistic particles and nuclei passing
through the crystal to the lowest order of perturbation
theory. The higher-order effects are considered in Sec-
tion 5, where the cross section of the process is calcu-
lated. We finally conclude with a brief summary in Sec-
tion 6.

2. COHERENT ELASTIC SCATTERING 
AND ABSORPTION

The interatomic distances in a crystal, a, are large
compared to the Thomas–Fermi screening radius r0,

where Z2 is the atomic number of the target atom and rB
is the Bohr radius [3]. The relevant impact parameters
b satisfy the condition b ! a, and the amplitudes of
scattering by different atomic chains parallel to a given
crystallographic axis are incoherent.

The amplitude of small-angle scattering of a
charged particle (charge Z1) by a linear chain of N iden-
tical atoms in the eikonal approximation is given by [1]

(1)

where Ψi and Ψf are the initial and final state wavefunc-
tions of the crystal and q is the two-dimensional vector
of the momentum transfer. The incident particle
momentum p is assumed to be large enough to satisfy
the condition of applicability of the straight-paths
approximation, p/q2 @ aN. The latter condition ensures
the coherence of interactions with different atoms.

The elastic scattering corresponds to i = f and the
brackets 〈 〉  signify that the average is to be taken over

σel σQel
1
2
---σtot.≈ ≈

a 3–5 Å @ r0∼ rBZ2
1/3– 0.1 Å,∼=

F fi q( ) ip
2π
------ d2b iq b⋅( )exp∫=

× Ψ f r j{ }( )〈 |1 S b s1 … sA, , ,( ) Ψi r j{ }( )| 〉 ,–
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all configurations of atoms in the ground state,

(2)

In (2), the total scattering phase is the sum of the phase
shifts contributed by the individual atoms. The posi-
tions of the N atoms that make up the target are defined
by the three-dimensional vectors rj, j = 1, …, N. The
two-dimensional vectors sj are the projections of these
vectors on the impact parameter plane. We neglect all
position correlations of the atoms and describe the
ground state of the crystal by the wavefunction |Ψ〉 such
that

(3)

where the three-dimensional vectors uj are defined by

and uj = (sj, zj).

From Eq. (2), it follows that

(4)

Hereinafter, J0, 1(x) and K0, 1(x) are the Bessel functions
and the screened Coulomb phase shift function is

(5)

with

After integration over longitudinal variables {zj} fol-
lowed by the azimuthal integration, the term 〈exp(iχ)〉
takes the form

(6)

The two-dimensional vector s, describes the position of
the target atom in the impact parameter plane. The one-

Ψ rj{ }( )〈 |1 S b s1 … sN, , ,( ) Ψ r j{ }( )| 〉–

=  d3r1…d3rN Ψ r j{ }( ) 2∫

× 1 i χ µ b s j–( )
j  =  1 

N

 ∑
  

 
 

 
exp– .

Ψ r j{ }( ) 2 ψ u j( ) 2,
j 1=

N

∏=

r j j 1–( )a u j, j+ 1 … N , a, , 0 0 a, ,( )= = =

Fii q( ) F q( )=

=  ip b bJ0 qb( ) 1 iχ µb( )[ ]exp〈 〉 N–{ } .d∫

χ µb( ) βK0 µb( )–=

β 2αZ1Z2, µ r0
1– .= =

iχ( )exp〈 〉 d2sρ s( ) iχ µ b s–( )[ ]exp∫=

=  Ω2b2–( ) x x–( )expd

0

∞

∫exp

× I0 2bΩ x( ) iβK0 µ x/Ω( )–[ ] .exp
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particle probability distribution ρ(s) is given by

(7)

For the most commonly studied elements at room tem-
perature, the ratio µ/Ω varies in a wide range, from
µ/Ω ~ 0.1 to µ/Ω ~ 1 [3]. We first consider the region of
small impact parameters including b & 1/Ω .1 For b &
1/2Ω , only small s, such that µs & 1, contribute. We can
then set

and integrate over s,

(8)

where

(9)

is the confluent hypergeometric function and

From Eq. (8), it follows that

(10)

1 We note that the smallness of the ratio /u2 ~ 10–6–10–5 where

rA is the nuclear radius and u = 1/Ω is the amplitude of lattice
thermal vibrations, allows one to neglect the nuclear interactions
of the projectile up to N ~ 105. As we see below, the absorption
effect in which we are interested enters the game at much
smaller N.

ρ s( ) z ψ s z,( ) 2d∫ Ω2/π( ) Ω2s2–( ).exp= =

rA
2

K0 µs( ) 1/µs( )log≈

iχ( )exp〈 〉 µ
Ω
---- 

 
iβ

Ω2b2–( )exp≈

× xxiβ/2 x–( )I0 2bΩ x( )expd

0

∞

∫

=  
µ
Ω
---- 

 
iβ

Γ 1 iβ
2
-----+ 

  Φ iβ
2
-----– ; 1; Ω2b2– 

  ,

Φ a; b; z( ) 1
a
b
--- z

1!
----- a a 1+( )

b b 1+( )
-------------------- z2

2!
----- …++ +=

Φ a; b; z( ) z( )Φ b a; b; z––( ).exp=

iχ( )exp〈 〉 b 0=
πβ

2 πβ/2( )sinh
-------------------------------

1/2

,=

(a) (b)

Fig. 1. Example of the relevant multiple scattering dia-
grams to the order β3. The unitarity cut of the elastic
amplitude (a) that contributes to the absorption is shown by
crosses. Diagram (b) allows cuts only between the projec-
tile-atom blocks and does not contribute to the absorption
effect.
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where identity

(11)

was used. In the weak coupling regime β ! 1,

and

(12)

For β * 1,

(13)

Therefore, at small impact parameters, b & 1/2Ω , the
intensity of outgoing nuclear waves as a function of N
exhibits exponential attenuation. In terms of the unitar-
ity cuts of the elastic scattering amplitude, the imagi-
nary part of the phase shift function comes from the
cuts through the multiphoton projectile-atom blocks, as
shown in Fig. 1a. The account of diagrams like that in
Fig. 1b, which allows cuts only between projectile-
atom blocks, gives a scattering matrix of the form
exp(iN〈χ〉 ) and affects only the overall real phase of the
amplitude.

The absorption effect becomes weaker toward the
region of large impact parameters b * 1/2Ω ,

(14)

For still larger b, b @ 1/2Ω , using the asymptotic form

we obtain

(15)

To evaluate the integral in (15), we expand χ(µs) in
powers of (s – b),

If the frequency ω,

is small compared to Ω ,

(16)

Γ iβ/2( ) 2 2π
β πβ/2( )sinh
-------------------------------=

iχ( )exp〈 〉 b 0= 1
1
2
--- χ2〈 〉 χ〈 〉 2–( )–≈

χ2〈 〉 χ〈 〉 2–
π2β2

24
-----------.=

iχ( )exp〈 〉 b 0= πβ πβ/4–( ).exp≈

iχ( )exp〈 〉 N iχ( )exp〈 〉 b 0=
N≈

× 1
Nβ2

16
---------- Ωb( )4 …+ + .

I0 z( ) 2πz( ) 1/2– z( ),exp≈

iχ( )exp〈 〉 2Ω s sd

πbs
------------- Ω2 b s–( )2–[ ]exp∫≈

× iχ µs( )[ ] .exp

χ µs( ) χ µb( ) ω s b–( ).+≈

ω dχ
db
------ µβK1 µb( ),= =

ω ! Ω,
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then

and

(17)

Condition (16) is satisfied if b @ β/Ω . For the impact
parameters from the region

we can write ω ≈ β/b; for larger b such that b @ µ–1,

(18)

From the consideration presented above, it follows that
the absorption effect in the elastic scattering amplitude
is especially strong for impact parameters

(19)

For b ! ba , the atomic chain acts as an opaque “black”
disc. Certainly, the value of this finding differs for dif-
ferent observables and for different processes proceed-
ing at different impact parameters. The only thing that
is worth noticing here is the representation of the scat-
tering matrix in the form

(20)

Equation (20) supplemented with the observation that

(21)

simplifies all further calculations greatly.

3. THE CROSS SECTIONS

3.1. The Elastic Cross Section 

Integrating by parts reduces F(q) to a form conve-
nient for evaluation of the total cross section,

(22)

χ2〈 〉 χ〈 〉 2
– ω2

2Ω2
----------=

iχ( )exp〈 〉 iχ iωb–[ ]exp≈

× Ω s sd

πbs
------------- Ω2 b s–( )2–[ ] iωs[ ]expexp

0

∞

∫

≈ iχ( ) ω2/4Ω2–[ ] .expexp

β/Ω ! b ! 1/µ,

ω µβ π
2µb
---------- µb–( ).exp≈

b & ba
1

2µ
------ πµ2β2N

4Ω2
-------------------.log=

S b( )〈 〉 iNχ Nω2

4Ω2
-----------– 

  , b @ βΩ 1– .exp≈

S b( )〈 〉 πβ( )N /2 Nπβ
4

-----------– 
  , b & Ω 1– ,exp≈

F q( ) ipµN
q

------------- b bJ1 qb( ) iχ' iχ( )exp〈 〉d

0

∞

∫=

× iχ( )exp〈 〉 N 1–( ).
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At small impact parameters b ! 1/2µ,

(23)

Because of multiple scatterings, only large impact
parameters b may contribute to F(q) at large N and
small q. Hence,

(24)

where the explicit form of 〈exp(iχ)〉  at large b, Eq. (17),
is used. For large b,

as b grows, ω2 decreases much faster than the phase
shift function χ(µb), which is proportional to exp(–µb).
We see that the leading contribution to the elastic scat-
tering amplitude (24) comes from

where

For large N, the second term in the square brackets
in (24) is small compared to the first one. Then, for

and ξ @ 1, the steepest descent from the saddle point

(25)

in Eq. (24) yields

(26)

The effect of lattice thermal vibrations at small q
appears to be marginal and reduces to the factor
exp(µ2/4Ω2N) in (26), which is irrelevant at large N.
The amplitude F(q) in Eq. (26) coincides with the
elastic scattering amplitude given by the SL approxi-
mation [2].

If q * q0, the stationary phase approximation gives
elastic scattering amplitude of the form

(27)

where

Taking into account the lattice thermal vibrations

χ' iχ( )exp〈 〉 β µ
Ω
---- 

 
iβ 1–

Ω2b
2

–( )exp≈

× Γ iβ 1+
2

-------------- 
  Φ iβ 1+

2
--------------; 1; Ω2b2

 
  .

F q( ) ipµN
q

------------- b bJ1 qb( ) iχ' ωω'/2Ω2–[ ]d

1/µ

∞

∫≈

× iNχ( ) Nω2/4Ω2–( ),expexp

ω2
2µb–( );exp∝

b µ 1– ξ  @ ba,∼

ξ βN( ).log=

q & q0 µ/ξ=

b0 µ 1– ξ iπ/2+[ ]=

F q( )
ipb0

q
----------J1 qb0( ).≈

F q( ) ip η–
µq

---------------- iqη
µ

--------– 
  q

2

4Ω2N
--------------– 

  ,expexp≈

η µβN /q( ) @ 1.log=
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insures the convergence of the integral for the coherent
elastic scattering cross section,

(28)

which for ξ @ 1 is simply

(29)

3.2. The Quasi-Elastic Cross Section 

In this paper, we focus on the coherent nucleus–
atom interactions. The incoherent process of ionization
of the target atom is suppressed by a factor on the order

of . Then the inelastic process, which by unitarity
gives rise to attenuation of the elastic amplitude, is the
process of the quasi-elastic scattering (Fig. 1a). Its
cross section is given by [1]

, (30)

where the sum extends over all final states of the crystal
in which no particle production occurs. The closure
relation then yields

(31)

and

(32)

In the SL approximation,

and

From (20) and the discussion of the absorption radius ba

presented above, it follows that for ξ @ 1,

(33)

and

(34)

σel
π
p

2
----- q2 F q( ) 2 πξ2

µ2
-------- q2d

q2
--------J1

2 qξ
µ
------ 

 

0

q0
2

∫≈d∫=

+
π
µ2
----- q2d

q2
-------- µβN

q
----------- 

  q2

2Ω2N
--------------– 

  ,explog

q0
2

∞

∫

σel
π
µ2
-----ξ2

.≈

Z2
1–

p2dσQel

d2q
------------ F fi q( ) 2 Fii q( ) 2–

f

∑=

dσQel

d2q
------------

1

4π2
-------- d2bd2b' iq b b'–( )[ ]exp∫=

× iχ µb( ) iχ* µb'( )–[ ]exp〈 〉 N{

– iχ µb( )[ ]exp〈 〉 N iχ* µb'( )–[ ]exp〈 〉 N }

σQel d2b 1 iχ µb( )[ ]exp〈 〉 2N–{ } .∫=

iχ µb( )[ ]exp〈 〉 1=

σQel 0.=

1 iχ µb( )[ ]exp〈 〉 2N θ 2ba b–( )≈–

σQel π 2ba( )2 π
µ2
-----ξ2.≈ ≈
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3.3. The Total Cross Section 

From Eq. (26), by means of the optical theorem, we
find the total cross section

(35)

We therefore conclude that at high energy and in the
large-N limit,

(36)

4. COULOMB EXCITATION OF 
ULTRARELATIVISTIC PARTICLES AND NUCLEI 

IN A CRYSTAL CHANNEL: 
THE EXCITATION CROSS SECTION 

TO THE LOWEST ORDER 
AND THE BORN APPROXIMATION

We now consider the process of the coherent Cou-
lomb excitation of ultrarelativistic particles and nuclei
passing through the crystal. This method for the exper-
imental study of rare processes was proposed in [4–10].

The ultrarelativistic projectile nucleus (the mass
number A, the charge Z1, and the 4-momentum p) mov-
ing along a crystal axis undergoes a correlated series of
soft collisions that give rise to diagonal (A  A,
A*  A*) and off-diagonal (A  A*, A*  A)
transitions.

In [4, 5, 9], it was proposed that the electric dipole
transition in 19F be studied, the excitation of the state
|Jπ = 1/2–〉  from the ground state |1/2+〉 . The phenome-
nological matrix element of the transition 1/2+  1/2–

is [11]

(37)

where u(p') and u(p) are bispinors of the initial and final
states of the projectile, d is the transition dipole
moment, and ε is the photon polarization vector. The
transverse and longitudinal components of the 4-vector
p – p' are denoted by q and κ, respectively. In what fol-
lows, q = |q|. The only phenomenological parameter in
the problem is the dipole moment d. The measured life-
time of the 110-keV level 19F(1/2–) is τ = (0.853 ±
0.010) × 10–9 s [12]; the dipole moment of the 1/2+ 
1/2– transition, determined from the width of the level
19F(1/2–), is d ≈ 5 × 10–8 keV–1 [11]. Then, first, because
of the large value of τ, the decay of the excited state
inside the target crystal can be safely neglected, and,
second, due to the smallness of d, the excitation ampli-
tude is much smaller than the elastic Coulomb ampli-

tude for all q up to q ~ Z1/d and can be consid-
ered a perturbation. Thus, the multichannel problem
reduces to a one-channel one.

σtot
4π
p

------ImF 0( ) 2π
µ2
------ξ2.≈=

σel σQel
1
2
---σtot.≈ ≈

}
1
2
---du p'( )γ5 q̂ε̂ ε̂q̂–( )u p( ),=

4πα
AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004



ULTRARELATIVISTIC NUCLEI IN A CRYSTAL CHANNEL 789
The high-energy helicity-flip Born amplitude of the
transition 1/2+  1/2– in collision of the projectile
nucleus with N bound atoms in the crystal is given by

(38)

where s = (σ1, σ2, σ3) is the Pauli spin vector, {σi, σj} =
2δij , and the amplitude we are constructing is to be
regarded as an operator that transforms the initial helic-
ity state of the projectile into its final state. In the
denominator of Eq. (38), λ2 = µ2 + κ2. In the Glauber
approximation, the longitudinal momentum transfer,
which determines the coherency length lc ~ κ –1, is given
by [13]

(39)

where M is the mass of the projectile and ∆E is the exci-
tation energy.2 

In the first order in g, the structure factor of crystal is

(40)

If the projectile momentum satisfies the resonance con-
dition [4, 5, 7, 9]

(41)

then S(κ) ~ N. In the first order in g and in the zeroth
order in β (the Born approximation), the cross section
of the coherent excitation of the projectile in scattering
on a chain of N atoms in a crystal is

(42)

where

The central idea in [4–7, 9, 10], based on the Born
approximation, is that the transition rate can be
enhanced substantially due to coherency of interac-
tions, which is assumed to be sustained over a long-dis-
tance scale. The law σex ∝  N2 is expected to hold up to
the crystal thicknesses N = L/a ~ 105–106 in a tungsten
target. In [10], the Born approximation for the coherent
excitation of Σ+ in high-energy proton–crystal interac-
tions pγ  Σ+ was assumed to be valid up to N ~ 108.

2 The Fresnel corrections to the eikonal approximation, which are
neglected here, become important at large N or at large q; they
diminish the coherency length and additionally suppress coherent
processes [14].

Fex
B q( ) S κ( ) p

2π
------g s q⋅( )

q2 λ 2
+

------------------- q2

4Ω2
----------– 

  ,exp=

κ M∆E
p

-------------,=

S κ( ) κ 2

4Ω2
----------–

κNa/2( )sin
κa/2( )sin

-----------------------------.exp=

M∆E
p

-------------
2πn

a
---------, n 0 1 2 …,, , ,= =

σex
B π

p2
----- q2 Fex

B q( ) 2
d∫=

∼ g2N2

4π
------------ 1 2Ω2

λ2
----------+ 

 log 2Ω2

λ 2
2Ω2+

---------------------– ,

g 4πα Z2.d=
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However, taking into account the initial and final state
Coulomb interactions dramatically changes the depen-
dence of σex on N. For instance, at N = 2, the excitation
amplitude is of the form

(43)

The first of the two bracketed factors in Eq. (43) corre-
sponds to the nuclear excitation amplitude in scattering
on a bound atom. It differs from the excitation ampli-

tude of the Born approximation, (b), by the multi-
plicative phase factor that occurs due to the initial and
final state multiple Coulomb scattering. At small
impact parameters b & 1/2Ω ,

(44)

For large b,

(45)

where nb = b/|b|, ns = s/|s|, and b * µ–1. Because

for small b and

for large impact parameters b * 1/µ, the cross section

(46)

is dominated by b ~ 1/2µ. For the diamond crystal,
µ/Ω ≈ 0.16 [3]. Hence,

This estimate shows that even for the diamond crystal
target, the Born approximation is invalid already at
N * 10.

Fex
2( ) q( ) p

π
--- d2b iq b⋅( ) f ex

B iχ( )exp〈 〉exp∫=

× iχ( )exp〈 〉 .
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f ex
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2πb
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× 1
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---Ω2b2
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2
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4π
------ d2sρ s( ) s nb ns–( )⋅( )∫=

× λK1 λ nb ns–( ) iχ µ nb ns–( )[ ]exp

≈ S κ( ) g
4π
------ s nb⋅( )λK1 λb( ) iχ( ) ω2

4Ω2
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  ,expexp

f ex
B iχ( )exp〈 〉 2 Ω2b2∝

µbK1
2 µb( ) 2µb–( )exp∝

σex
2( ) d2b f ex

B iχ( )exp〈 〉 2
iχ( )exp〈 〉 2∫=

≈ 4σex
1( ) 1 ω2
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2Ω2
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5. MULTIPLE SCATTERING EFFECTS 
AND ABSORPTION 

IN THE COHERENT COULOMB EXCITATION 
PROCESSES

The transition amplitude on a chain of N identical
atoms including all the multiphoton t-channel
exchanges is given by

(47)

Because of both the multiple scattering effect and
absorption, only large impact parameters b @ µ–1 may
contribute to Fex(q). Evaluation of Fex(q) then gives

(48)

where nq = q/|q|. The contribution of the domain q &
q0 = µ/ξ to the excitation cross section can be neglected
because Fex ∝  q in this region. If q @ q0 and ξ @ 1, the
stationary phase approximation gives the coherent exci-
tation amplitude of the form

(49)

We see that the helicity-flip dynamics removes the fac-
tor 1/q from the elastic amplitude (27), thus making the
UV regularization of the excitation cross section indis-
pensable. This cross section is evaluated as

(50)

where

In (50), we simply set S(κ) = N. Thus, the account of
multiple scatterings and absorption turns the Born
approximation cross section

Fex q( ) p
π
--- d

2b iq b⋅( ) f ex
B iχ( )exp〈 〉exp∫=

× iχ( )exp〈 〉 N 1– .

Fex q( ) gp
2π
------S κ( ) s nq⋅( ) b bJ1 qb( )d

1/µ

∞

∫≈

× λK1 λb( ) iNχ( ) Nω2/4Ω2–( ),expexp

Fex q( )
ipg s nq⋅( )

2πβ
---------------------------S κ( )

N
-----------λ

µ
--- η δη–( )exp≈

× iqη
µ

--------– 
  q2

4Ω2N
--------------– 

  .expexp

σex
π
p2
----- q2 Fex q( ) 2d∫ g2N1 δ–

8π
-----------------C

N
δγ
------ 

  ,log∼=

C γ∆∆2Γ ∆( ), γ 2Ω2/β2µ2
,= =

∆ λ /µ, δ ∆ 1 κ2/2µ2
 ! 1.∼–= =

σex N2∝
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into

In the limit as p  ∞ and δ  0,

. (51)

The dependence of σex on N differs from that of the
fully unitarized elastic cross section,

The reason is that in σex, we sum the eikonal diagrams
to all orders in β but only to the first order in g. Such a
unitarization procedure is, of course, incomplete, but
this is not important for practical purposes because the
smallness of d2Ω2 makes the next-to-leading-order
terms negligibly small up to

6. SUMMARY

The main goal we pursued in this paper is a consis-
tent description of the coherent Coulomb excitation of
ultrarelativistic particles and nuclei passing through the
aligned crystal. We started with a discussion of the elas-
tic scattering and found that taking into account the lat-
tice thermal vibrations within the Glauber multiple
scattering theory gives rise to a strong absorption effect.
The radius of the absorption region in the impact
parameter space appeared to grow logarithmically as
the crystal thickness grows. We derived a convenient
representation for the scattering matrix with absorption
and calculated the coherent elastic and the incoherent
quasi-elastic cross sections. The suppression of scatter-
ing amplitudes in the absorption region was shown to
serve as a natural UV regulator and enables consistent
calculation of the cross section σex of the coherent
nuclear excitation. The dependence of σex on the crystal
thickness was found. The multiple scattering effects
were shown to become numerically important already
at N * 1, thus leaving no room for the Born approxima-
tion widely used in early analyses of the problem.
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Abstract—Experimental data on the conduction of heterogeneous systems have been traditionally interpreted
in the context of the theory of percolation phenomena taking into account the relative threshold volume fraction
(ηc ≈ 0.16) of the high-conductivity phase. This work is concerned with the conduction of eutectic compositions
semiconductor–normal metal at T > Tc (the classical limit) and semiconductor–superconductor at T < Tc (the
quantum limit) obtained at various material growth rates; these materials contain metal particles as oriented
whiskers in semiconducting matrices. The paper presents spatial and energy models of discrete, finite, and infi-
nite clusters that well explain classical and quantum percolation conductivities. Depending on the growth rate
of eutectic compositions, their classical and quantum conductivities can manifest themselves at arbitrary per-
colation thresholds ηp (0 < ηp ≤ ηc). It is shown that the density of whiskers, the distances between them, their
diameters, and the critical supercurrent density per whisker can be controlled by varying the rate of composition
growth. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The determination of the mechanisms of classical
and quantum phenomena and controlling them in
dielectric (I) and semiconducting (Sm) materials, nor-
mal metals (N), superconductors (S), and composite
structures I1–I2, I–Sm, I–N, I–S, Sm1–Sm2, Sm–N,
Sm–S, N1–N2, N–S, and S1–S2 are fundamental prob-
lems of modern experimental, theoretical, and applied
physics.

In [1, 2], we determined the mechanisms and possi-
bilities of controlling such classical kinetic phenomena
as heat conductivity determined by changes in phonon
processes and the tensometric effect determined by
changes in electronic processes in semiconductor–nor-
mal metal eutectic compositions. We also showed that
semiconductor–normal metal eutectic compositions
were good models of inhomogeneous compensated
semiconductors [3]. The special features of the large-
scale relief in these materials depend on the morphol-
ogy of the eutectic compositions, the degree of doping,
and the degree of compensation of their semiconduct-
ing matrices. We found that electrical conduction, Hall
effect, thermal electromotive force, heat conductivity,
and the other classical physical effects exhibited strong
anisotropy in semiconductor–normal metal eutectic
compositions [4–9]. In these compositions at various
mutual electric current, heat flux, and magnetic field
directions and directions of metallic cylinders, ellip-
1063-7761/04/9904- $26.00 © 20792
soids, plates and rods, and other forms, the anisotropy
of classical phenomena can be controlled within wide
ranges depending on changes in the electronic and
phonon subsystems.

In recent years, much attention has been given to
quantum phenomena in symmetrical high-Tc supercon-
ducting bicrystalline Josephson junctions and the
dependence of their electrophysical properties on the
grain-boundary angle [10–12].

Among numerous Josephson junctions, supercon-
ductor–semiconductor–superconductor (S–Sm–S)
junctions hold a special position, primarily because of
the possibility to control semiconducting interlayer
parameters by doping and applying external electric
and magnetic fields [13–18].

In [19], we reported the observation of quantum
superconductivity and Josephson effect phenomena for
a eutectic semiconductor–superconductor composition.
In [20], we showed that the superconductivity of a
semiconductor–superconductor eutectic could be con-
trolled by varying the angle between the electric current
and superconducting filamentary crystal (whisker)
directions.

This work is concerned with GaSb–V2Ga5 eutectic
compositions obtained at various growth rates in the
normal and superconducting states. The work presents
original results on the mechanism and control of classi-
cal and quantum percolation phenomena in eutectic
004 MAIK “Nauka/Interperiodica”
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(a) (b)

Fig. 1. Photomicrographs of the surface of the eutectic composition GaSb–V2Ga5 obtained at a v  = 7 cm/h growth rate parallel to
whiskers: (a) magnification ×200 and (b) magnification ×3000.
compositions above and below the superconducting
transition temperature.

2. EXPERIMENTAL RESULTS

GaSb–V2Ga5 eutectic compositions were prepared
by the Bridgman method at various crystallization front
rates (v  = 0.85, 2.8, 7, 22, 70, and 200 cm/h). The prep-
aration of eutectics at various growth rates is of interest
because changes in the growth rate can influence the
morphology of the products and geometric dimensions
of metallic whiskers. The dependence of the distance
between whiskers R on the rate of eutectic crystalliza-
tion is given by the equation [21]

(1)

The data on the density of whiskers, their size, and dis-
tances between them at various crystallization front
rates are listed in the table.

The morphology of the samples was studied using a
MIM-8M microscope and an electron microscope.
Photomicrography (magnification ×200) of the surface
of the GaSb–V2Ga5 eutectic composition parallel to the
growth direction (v  = 7 cm/h) obtained using the
MIM-8M microscope is shown in Fig. 1a. According to
this figure, the metallic V2Ga5 phase in the GaSb matrix

R2v const.=
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is formed in the form of whiskers largely oriented along
the direction of crystallization front motion.

We see in Fig. 1a certain irregularities in the density
of metallic whiskers; there are also some voids in the
material. Irregularities in the growth of the GaSb–
V2Ga5 eutectic composition are also quite obvious in
electron microscopic images. An electron microscopic
image of the surface of the eutectic composition along
the direction of growth of metallic whiskers at v  =
7 cm/h is shown in Fig. 1b. There are three whiskers in
this figure, one at the left bottom corner, another closer
to the center, and the third at the top right corner of the
figure. The figure shows that whiskers grow irregularly.
They bend, and their diameters decrease. On the right
of the whisker in the center, there is an empty bent
channel that originally contained a metallic whisker
that was fully etched off when the surface was treated
with an etching agent. It is clearly seen that the diame-
ter of the empty channel is not the same everywhere.
Photomicrograph 1b was obtained with a magnification
of ×3000. In the region of narrowing, the diameter of
metal whiskers is approximately 0.5 µm. Eutectic
growth irregularities and the appearance of regions
with whisker narrowings are responsible for the
Josephson effect [19] in this composition. Note that the
Growth rate (v ) of eutectic GaSb–V2Ga5 compositions, whisker densities (n) and diameters (d), microbridge diameters (d'),
distances between whiskers (R), and critical current densities (I) per infinite whisker

Composition no. v, cm/h n, 104 mm–2 d, µm d ', µm R, µm I, A/cm2

1 0.85 0.4 6 1–1.5 8 105

2 2.8 1.2 3 0.7–1 6 104

3 7 2 2 0.5–0.6 4–5 103

4 22 6 1 0.3–0.4 3–4 (3–4) × 102

5 70 10–20 0.3–0.5 0.1–0.2 1–3 (1–2) × 102

6 200 – – – – –
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(b)

(a)

1 5

1 4
5 6

Fig. 2. Schematic models of eutectic compositions obtained at various growth rates v : (a) I || X, v  = (1) 0.85 and (5) 70 cm/h and
(b) I || X, v  = (1) 0.85, (4) 22, (5) 70, and (6) 200 cm/h. Composition or curve numbers in all figures correspond to those in the table.
volume of the V2Ga5 superconducting phase was 4.4%
of that of the GaSb–V2Ga5 eutectic composition.

Two kinds of samples were cut from eutectic com-
positions obtained at various growth rates. The samples
had the shape of rectangular parallelepipeds (Fig. 2).
Height h of the parallelepipeds was either parallel to the
direction of composition growth X (the orientation of
whiskers), h || X (samples a), or perpendicular to this
direction, h ⊥  X (samples b). The specific resistances ρ
of the samples were measured over the temperature
range 2–300 K. In h || X samples, the electric current I
direction through a sample was parallel to whiskers X
(I || X). For h ⊥  X samples, we had I ⊥  X.

The temperature dependences of the specific resis-
tances ρ|| of the samples obtained at various growth
rates v  measured with I || X are shown in Fig. 3. Accord-
ing to this figure, the specific resistances ρ|| of all sam-
ples except sample 6 were close to each other at T =
300 K. The ρ||(T) curves diverged as the temperature
JOURNAL OF EXPERIMENTAL 
decreased, and, at T ≤ 200 K, the specific resistances of
the samples were sharply different. The temperature
dependences of the specific resistances of the samples,
ρ||(T), were metallic in character over the whole tem-
perature range. However, the slope of curves 1–5
decreased as the growth rate increased. Curve 6 was
weakly metallic in character over the whole tempera-
ture range.

According to Fig. 3, all the samples under study
underwent superconducting transition at T ≤ 5.5 K. It
follows that, at I || X, we can write the following ine-
qualities for v  and ρ|| (at equal temperatures):

(2)

 (3)

The temperature dependences of the specific resis-
tances ρ⊥  (I ⊥  X) of samples obtained at various growth
rates v  are shown in Fig. 4. According to this figure, the

v 1 v 2 … v 6,< < <

ρ||1 ρ||2 … ρ||5 ! ρ||6.< < <
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specific resistances ρ⊥ (T) of the samples are again close
to each other at T = 300 K. The ρ⊥  curves diverge as the
temperature decreases. The temperature dependences
of the specific resistances ρ⊥  of the samples, except
sample 6, are semiconducting in character. Semicon-
ducting dependences, however, become weaker as the
growth rate increases. For sample 6, ρ⊥  almost does not
change over the temperature range 300–3.8 K. It fol-
lows that, for I ⊥  X, we can write the following inequal-
ities for v  and ρ⊥  (at equal temperatures):

(4)

We also see that, below T = 4.1K, the shape of the
ρ⊥ (T) curves for samples 1 and 2 strongly changes
(Fig. 4). The specific resistances of samples 3 and 4
sharply decrease close to 4.1 K; this is followed by
a change in the shape of the ρ⊥ (T) dependences. Sam-
ples 5 and 6 undergo the superconducting transition at
T = 4.1 K.

3. DISCUSSION

Note that the diameters of whiskers are not every-
where equal (Fig. 1b). In the region of whisker narrow-
ings, their statistical mean diameter d ' is on the order of
the coherence length (d ' ≈ 10–4–10–5 cm). For this rea-
son, each whisker in a eutectic composition represents
variable-thickness microbridges connected in series.

v 1 v 2 … v 6,< < <
ρ⊥ 1 ρ⊥ 2 … ρ⊥ 6.> > >

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

10–4

0

10–3

10–2

ρ||, Ω cm

3.8 4.0 4.6 5.55.6 10 100 200 300

T, K

6

5

4

3
2 1

Fig. 3. Temperature dependences of specific resistances ρ||
of eutectic compositions grown at different rates v  (I || X).
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We showed in [19] that, when electric current was par-
allel to superconducting whiskers X (I || X), the Joseph-
son effect was observed. These variable-thickness
microbridges are therefore weak Josephson bonds.
Each whisker in a eutectic sample is an S–S'–S–S'–S…
chain (Fig. 2a, 1), where S is a superconducting whis-
ker (or a superconducting bank) and S' is a Josephson
variable-thickness microbridge (or a Josephson weak
bond).

A metallographic study of the surface of the samples
shows that the number of whiskers penetrating them
and the lengths of many other whiskers decrease as the
growth rate v  of the eutectic composition increases.
However, new whiskers grow close to broken ones.
These whiskers are weakly bound with each other by
Josephson junctions of the type superconductor–semi-
conductor–superconductor (S–Sm–S). For this reason,
two types of chains penetrating the sample, namely,
S−S'–S–S'–S… and S–S'–S–Sm–S–S'–S…, are respon-
sible for superconductivity in the I || X direction
(Fig. 2a, 5). These chains will be called infinite clusters
in what follows. When I is parallel to X, infinite clusters
of both types are connected in parallel. At low sample
growth rates, Josephson infinite clusters of the type
S−S'–S–S'–S… predominate in superconductivity. The
number of S–S'–S–S'–S… chains decreases as the rate
of sample growth increases, and the contribution of
superconducting clusters of the type S–S'–S–Sm–S–S'–
S… begins to grow.

Note that infinite clusters of the type S–S'–S–Sm–
S–S'–S… are bound more weakly than infinite clusters

~ ~
~ ~

~ ~

4

3

2

1102

10

1

10–1

10–2

0
2 3 4.1 100 200 300

T, K

ρ⊥ , Ω cm

1

6
6 5

Fig. 4. Temperature dependences of specific resistances ρ⊥
of eutectic compositions grown at different rates v  (I ⊥  X).
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of the type S–S'–S–S'–S… because of the presence of
Sm semiconducting interlayers. For this reason, when
electric current I is parallel to whiskers X (I || X), infinite
clusters of the S–S'–S–S'–S… type predominate in all
samples except those grown at a rate of v  = 200 cm/h.
A study of the surface of the composition grown at v  =
200 cm/h showed that the orientation relations between
the matrix and whiskers were strongly disturbed in this
sample (Fig. 2b, 6). For this reason, the specific resis-
tance ρ|| of this composition was 2–3 orders of magni-
tude higher at low temperatures than those of the other
samples.

At I || X above the superconducting transition tem-
perature Tc, infinite S–S'–S–S'–S…. and S–S'–S–Sm–
S–S'–S… clusters transform into N–N'–N–N'–N… and
N–N'–N–Sm–N–N'–N… clusters, where N is the nor-
mal metal, N' is the normal metal narrowing, and Sm is
the semiconducting interlayer between normal metals.
At low composition growth rates, the number of infinite
clusters comprising N–N'–N–N'–N… chains is much
larger (Fig. 2a, 1) than the number of infinite N–N'–N–
Sm–N–N'–N… clusters. The number of infinite N–N'–
N–N'–N… clusters decreases and the contribution of
infinite N–N'–N–Sm–N–N'–N… clusters grows as the
rate of composition growth increases (Fig. 2a, 5). Note
that the resistance of the semiconducting interlayer
(RSm) is much larger than the resistance of normal met-
als (RN), RSm @ RN. For this reason, the specific resis-
tance ρ|| decreases as the growth rate becomes lower
(Fig. 3). The temperature dependences of the specific
resistances of the compositions obtained at low growth
rates exhibit steeper metallic trends. Note that, at I || X,
normal electric current flows in infinite N–N'–N–N'–
N… and N–N'–N–Sm–N–N'–N… clusters connected
in parallel. A decrease in the growth rate also causes an
increase in the diameter of the metallic whiskers and
metallic bridges on them (see table).

It follows that the specific resistances of eutectic
compositions ρ|| can be controlled by varying the rate of
their growth.

According to Fig. 4, the specific resistances ρ⊥  of
eutectic compositions [electric current I is perpendicu-
lar to whiskers X (I ⊥  X)] can also be controlled by
varying the rate of eutectic composition growth. The
semiconducting character of the dependences of the
specific resistances ρ⊥  is caused by current passage
through junctions normal metal (N)–semiconductor
(Sm)–normal metal (N) (N–Sm–N). At a v  = 0.85–
70 cm/h rate of eutectic composition growth, samples
largely contain N–Sm–N–Sm–N… chains (Fig. 2b,
1−5). All compositions except sample 6 (Fig. 2b, 6)
exhibit semiconductor-type dependences (Fig. 4). A
change in the temperature dependence of the resistance
ρ⊥  or a rapid decrease in ρ⊥  at T = 4.1 in samples 1, 2,
3, and 4 is related to the transition to the superconduct-
ing state of metallic whiskers and the appearance of
Josephson junctions comprising S–Sm–S–Sm–S….
JOURNAL OF EXPERIMENTAL
The weakening of semiconductor-like behavior of
ρ⊥  in sample 5, its complete elimination in sample 6,
and transition of both samples to the superconducting
state manifests the formation of infinite clusters of
S−Sm–S–Sm–S… (v  = 70 cm/h) and S–S'–S–Sm–S–
Sm–S–S'–S… (v  = 200 cm/h) Josephson chains. At a
v  = 70 cm/h eutectic composition growth rate, statisti-
cal mean distances between superconducting whiskers
are of 1–3 µm (see table), which is closer to weak bind-
ing conditions in semiconductors.

The inverse proportionality ρ⊥  ∝  f(1/v) is caused by
a decrease in the thickness of the Sm semiconducting
interlayer as a result of an increase in the rate of com-
position growth. For this reason, at low growth rates,
discrete N–Sm–N–Sm–N… cascades appear in the
samples.

The conductivities of strongly inhomogeneous
media are explained by percolation phenomena in
experimental and theoretical works [22, 23]. According
to the percolation conductivity condition, the relative
critical volume ηc of the high-conductivity phase
should exceed some threshold value. For instance, ηc ≈
0.16 for isometric grains and can be slightly smaller
than 0.16 for differently shaped grains. Note that the
threshold value ηc for percolation conductivity was
treated in [22, 23] as averaged over the whole material
volume. In these works, arbitrary distributions over the
volume of a material were ignored. For instance, when
eutectic compositions of the semiconductor–metal type
are obtained as a result of oriented crystallization, one
infinite metallic whisker is quite sufficient for the
appearance of percolation conductivity at I || X in both
the quantum (T < Tc) and classical (T > Tc) limits. The
threshold ηc value is then closer to zero. Note that, in
the GaSb–V2Ga5 compositions, the relative volume of
V2Ga5 whisker crystals was ηc1 ≈ 0.04, and, at I ⊥  X, we
had ηc1 ! ηc ≈ 0.16. Depending on the rate of eutectic
composition growth, the threshold ηc value can there-
fore be attained in discrete, long finite, and “infinite”
composition regions (Figs. 2–4). Theory has ignored
such percolation conductivity features thus far.

Note that the tunneling mechanisms in S–Sm–S-
type junctions were theoretically considered in [13–15]
for three cases: (a) nondegenerate semiconductors (low
charge carrier concentrations in the Sm semiconducting
interlayer), (b) intermediate charge carrier concentra-
tions, and (c) degenerate semiconductors.

When a semiconductor is nondegenerate, the chem-
ical potential µ is far below the bottom of the conduc-
tion band and impurity levels Ed are scattered close to
the chemical potential µ. The spread of impurity level
values can be large compared with the barrier height
V − µ. It is assumed that the gap value or order param-
eter ∆ is zero in the semiconductor. All free electrons
then pass from the semiconductor to superconductors.
Such junctions behave like superconductor–insulator–
superconductor (SIS) junctions. The thickness of the
 AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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insulator is then of several dozen angstrom units. In our
samples, the thickness of the semiconducting layer was
on the order of one micron.

At strong degeneracy, the major tunneling mecha-
nism is the neighborhood effect, and the junction
behaves like a superconductor–normal metal–super-
conductor (SNS) junction. The normal metal thickness
in such junctions can be as large as several tens of thou-
sands of angstrom units.

In our compositions, the thickness of the semicon-
ducting layer in junctions (S–Sm–S), cascades of junc-
tions (S–Sm–S–Sm–S…), and finite and infinite clus-
ters (S–S'–Sm–S'–S…) was of the same order of magni-
tude as the normal metal thickness in SNS junctions. The
concentration of carriers in GaSb (n = 1016 cm–3), how-
ever, corresponded to intermediate concentrations [14].
In such junctions, resonance tunneling of Cooper pairs
occurs. Because of resonance tunneling, the thickness
of the Sm semiconducting interlayer in the case of a
nondegenerate semiconducting barrier can be larger than
the thickness of the dielectric layer in SIS junctions by
several orders of magnitude. Overlapping of the wave-
functions of superconductors is then unnecessary.

Resonance tunneling of electrons was also consid-
ered in [24]. It was shown that, if the energy of elec-
trons was close to impurity levels, resonance passage of
electrons in the junction over special impurity configu-
rations was possible. It was found in [14] that the prob-
ability of formation of a trajectory with strictly periodic
arrangement of impurities was zero. Resonance-perco-
lation trajectories appeared as the concentration of the
impurity increased up to the development of degener-
acy, and Cooper pairs were tunneled along these trajec-
tories.

We found that interphase boundaries in semicon-
ductor–metal eutectic compositions were strongly
inhomogeneous [3, 8], and many features of transport
phenomena in these materials were determined by
interphase boundaries. For this reason, interphase
boundaries in S–Sm–S and N–Sm–N junctions, their
cascades, and finite and infinite clusters S–S'–S–Sm–
S–Sm–S–S'–S… and N–N'–N–Sm–N–Sm–N––N'–N…
are also strongly inhomogeneous. These inhomoge-
neous regions can overlap because of various fluctua-
tion effects during eutectic composition growth. The
overlap of inhomogeneous regions between whiskers at
T < Tc is responsible for the Josephson effect. The top
of the valence band and the bottom of the conduction
band in inhomogeneous semiconductors are modu-
lated. The formation of an impurity band and interphase
boundary inhomogeneities then increase the probabil-
ity of the appearance of resonance-percolation trajecto-
ries for both Cooper pairs (at T < Tc) and single elec-
trons (at T > Tc). The bottom of the conduction band in
S−Sm−S and N–Sm–S junctions, their cascades, and
infinite clusters lowers with respect to the chemical
potential µ level as the thickness of Sm semiconducting
interlayers increases; it decreases on both sides of the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
semiconducting barrier and is modulated only in a nar-
row region of interphase boundaries. Two- or one-par-
ticle percolation currents on both sides of the barrier
then flow over the modulated bottom of the conduction
band. In the middle of a semiconductor, these currents
can flow along resonance-percolation trajectories. In
thinner semiconducting interlayers Sm, the modulated
bottom of the conduction band decreases with respect
to the chemical potential µ level over the whole semi-
conductor thickness. Both two- and one-particle cur-
rents then flow only over the modulated bottom of the
conduction band of the semiconductor. A schematic
model of variable-thickness microbridges in an infinite
S–S'–S–S'–S… whisker cluster and a scheme of the
band structure of a cascade of S–Sm–S–Sm–S…
Josephson junctions are shown in Fig. 5.

The dependences of the specific resistances ρ⊥  and
ρ|| on the growth rate of eutectic compositions at vari-
ous temperatures are shown in Fig. 6. As follows from
this figure, ρ⊥  decreases and ρ|| increases as the rate
grows. At a v  = 200 cm/h growth rate, the ρ⊥ (v) and
ρ||(v) curves converge into one bundle. An interesting
feature of ρ⊥ (v ) and ρ||(v) is their approach to each
other at high composition growth rates and tempera-
tures. The ρ⊥ (v) and ρ||(v) curves diverge at low tem-
peratures and composition growth rates.

As distinct from ρ⊥ , an increase in ρ|| as the rate of
composition growth increases can be explained by a
decrease in the diameter d of metallic whiskers and the
accompanying breaking of numerous bridges (N') in

Fig. 5. Spatial and energy models of clusters: (a) cluster
S−S'–S–S'–S… with variable-thickness bridges, (b) band
structure of S–Sm–S–Sm–S… clusters with thick semicon-
ducting bridges Sm, and (c) band structure of S–Sm–S–
Sm–S… clusters with thin semiconducting bridges Sm.
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N–N'–N–N'–N… and N–N'–N–Sm–N–N'–N… clus-
ters. In both clusters, semiconducting interlayers
appear in place of the broken bridges. Part of both clus-
ters therefore transform into N–Sm–N–Sm–N… clus-
ters. The disappearance of the orientation relation in
composition 6 results in the gathering of the ρ⊥ (v) and
ρ||(v) curves into one bundle. Note that, as distinct from
the other compositions, orientation relations between
the whiskers and matrix in composition 6 are strongly
distorted. The composition consists of separate cells.
Inside each cell, whiskers are parallel and arranged
more closely. For this reason, the probabilities of the
appearance of infinite clusters or resonance-percolation
trajectories are higher in composition 6 than in the other
compositions at an arbitrary percolation threshold.

These peculiarities are also observed for the depen-
dences of the anisotropy coefficients ρ⊥ /ρ|| on the rate of
composition growth. It is clearly seen in Fig. 7 that the
anisotropy coefficient curves ρ⊥ /ρ|| gather into a bundle
as the growth rate increases. The anisotropy coeffi-
cients ρ⊥ /ρ|| decrease substantially in magnitude as the
temperature grows. The bundle of anisotropy coeffi-
cient curves diverges as the growth rate decreases.
Maximum anisotropy coefficients are observed at low
temperatures.

The temperature dependences of the anisotropy
coefficients of specific resistances ρ⊥ /ρ|| of eutectic
compositions obtained at various growth rates are

5.5 K

50 K

100 K
150 K

300 K

300 K

250 K

200 K

150 K

100 K 50 K

5.5 K

0.85 2.8 7 22 70 200

v , cm/h

10–5

10–4

10–3

10–2

10–1

1

10
ρ |

|, 
Ω

 c
m

ρ ⊥
, Ω

 c
m

Fig. 6. Dependences of ρ⊥  and ρ|| on the rate v  of composi-
tion growth.
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shown in Fig. 8. The anisotropy coefficients ρ⊥ /ρ|| in
samples 1–5 strongly decrease as the temperature
increases. This observation can be explained by the
opposite temperature dependences of ρ⊥  and ρ||. That is,
the specific resistances ρ|| decrease and ρ⊥  increase as
the temperature grows. Because of the disturbance of
the orientation relation in composition 6, ρ⊥  and ρ||
approach each other, and identical clusters participate
in conductivity in both cases. We can therefore write the
following inequalities:

(5)

A change in the superconducting character of the
ρ⊥ (v ) curves at I ⊥  X, a decrease in their absolute value
at T > Tc (the classical limit), steep drops in ρ⊥ (v) resis-
tances and their transitions to the superconducting state
at T < Tc (Fig. 4) below the traditional percolation
threshold ηc ≈ 0.16, and arbitrary percolation threshold
values (0 < ηp < ηc) prove the inexhaustible possibilities
of interphase boundaries for the example of semicon-
ductor–superconductor eutectic compositions.

Note one more interesting feature of classical and
quantum percolation conductivity. The normal IN and
superconducting IS electric currents in the eutectic

v 1 v 2 … v 6,< < <
ρ⊥ 1/ρ||1 ρ⊥ 2/ρ||2 … ρ⊥ 6/ρ||6.> > >
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v , cm/h

1

10

102

103

104

105

106

107

ρ⊥ /ρ||

5.5 K

50 K

100 K

150 K

200 K

250 K

300 K

Fig. 7. Dependences of anisotropy coefficients ρ||/ρ⊥  on the
rate v  of composition growth.
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compositions under consideration in both classical (T >
Tc) and quantum (T < Tc) limits are the sums

(6)

(7)

where INper is the normal percolation current compo-
nent, ISper is the superconducting percolation current
component, and INSm is the normal nonpercolation cur-
rent component.

For I || X, we have INper @ INSm and ISper @ INSm. The
normal and superconducting currents are then largely
determined by the percolation components; that is, IN ≈
INper and IS ≈ ISper .

For I ⊥  X and low growth rates, INSm @ INper and
INSm @ ISper , and normal INper and superconducting ISper
percolation currents only exist in discrete N–Sm–N–
Sm–N… and S–Sm–S–Sm–S… cascades. The contri-
bution of INper and ISper begins to grow as the rate of
composition growth increases. The normal INper and
superconducting ISper percolation currents exist in both
finite and infinite composition clusters and are then
determined by (6) and (7).

Note that, at low growth rates, the number of paral-
lel infinite clusters per unit area of the cross section of
a composition is approximately equal to the number of
infinite whiskers. The supercurrent through an area of
1 mm2 is then

(8)

If the statistical mean diameters of whiskers are
assumed to be equal at equal growth rates, we have

(9)

(10)

We used (10) to approximately estimate the critical
current density per whisker at 2 K. It follows from the
table that a change in the critical current density by
three orders of magnitude corresponds to a 100-fold
change in growth rate v  as it decreases from 70 to
0.85 cm/h. Such a change in the critical current density
cannot be explained by a tenfold increase in the diame-
ter of whiskers. An increase in the diameter of whiskers
by one order of magnitude in infinite crystals compris-
ing S–S'–S–S'–S… chains is accompanied by an
increase in the thickness of many Josephson micro-
bridges. Many of these microbridges cease to exist. The
other microbridges transform into bridges correspond-
ing to stronger bonds. For this reason, the critical cur-
rent density increases as the growth rate of composi-
tions decreases.

Note that whiskers are arranged more regularly in
the eutectic compositions grown at rates of 0.85–
22 cm/h. At a 70 cm/h growth rate, strong irregularities
are observed. At 200 cm/h, periodicity completely dis-

IN INper INSm,+=

IS ISper INSm,+=

I i1 i2 … in.+ + +=

i1 i2 … in,= = =

I ni.=
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appears. For this reason, the ρ value near the critical
temperature is two orders of magnitude larger at v  =
200 cm/h than at v  = 70 cm/h.

4. CONCLUSIONS

(1) We found that, depending on the rate of growing
semiconductor (GaSb)–superconductor (V2Ga5) eutec-
tic compositions (v  = 0.85, 2.8, 7, 22, 70, and
200 cm/h), the superconducting V2Ga5 phase is formed
in the semiconducting GaSb matrix in the form of ori-
ented whiskers at all growth rates except v  = 200 cm/h.
The density of whiskers, the distances between them,
and their lengths and diameters can be controlled by
varying the rate of growing compositions.

(2) At T < Tc , I || X, and low growth rates, supercur-
rent is largely carried by infinite clusters comprising
S−S'–S–S'–S… Josephson chains. Part of these clusters
are replaced by S–S'–S–Sm–S–Sm–S–S'–S… infinite
clusters in compositions grown at higher rates. At T <
Tc , I ⊥  X, and low growth rates, changes in the shape of
ρ⊥  curves are caused by the appearance of discrete cas-
cades of S–Sm–S–Sm–S… Josephson junctions. These
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Fig. 8. Temperature dependences of anisotropy coefficients
ρ||/ρ⊥  of eutectic compositions grown at different rates v.
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cascades transform into finite clusters as v  increases. At
large v, the superconducting transition is caused by the
joining up of finite clusters into infinite S–Sm–S–Sm–
S… clusters.

(3) At T > Tc , I || X, and low v, normal electric cur-
rent is largely carried by infinite N–N'–N–N'–N… clus-
ters. Part of these clusters are replaced by infinite
N−N'–N–Sm–N–N'–N… clusters as v  increases. At
T > Tc and I ⊥  X, normal electric current is largely car-
ried over all infinite N–Sm–N–Sm–N… clusters that
fill the whole composition.

(4) The critical supercurrent density per infinite
cluster can be controlled by varying the rate of growing
the composition. The diameter d of superconducting
whiskers decreases as the growth rate increases; this
breaks numerous Josephson microbridges (S') in S–S'–
S–S'–S… and S–S'–S–Sm–S–Sm–S–S'–S… clusters.
In both clusters, broken microbridges are replaced by
Sm semiconducting interlayers corresponding to
weaker bonds than those formed by S' microbridges.

(5) We considered possible mechanisms of two- and
one-particle currents over S–Sm–S–Sm–S… and N–
Sm–N–Sm–N… clusters. The passage of supercurrent
and normal current in semiconductor–superconductor
compositions was shown to mainly occur as resonance
tunneling of Cooper pairs and single electrons, respec-
tively, along resonance-percolation trajectories at arbi-
trary percolation threshold values (0 < ηp ≤ ηc).

(6) The results of this work can be used in modeling
and developing a theory of classical and quantum phe-
nomena in similar low-temperature and high-tempera-
ture superconductors and Josephson structures on their
base.
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Abstract—Partial (calculated by the volume of separate components) moments of electric field strength of dif-
ferent orders are calculated within a linear problem on the electric conductivity of binary composites. A numer-
ical experiment is carried out on a square lattice with a size of 401 × 401 sites with randomly distributed bonds.
The moments (of orders n = 2, 3, …, 6) are calculated as a function of concentration for a number of fixed values
of the parameter h—the ratio of the conductivities of the components. The behavior of partial moments near the
metal–dielectric phase-transition point is studied, and the corresponding critical indices are determined. © 2004
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In a number of studies [1–5], it has been pointed out
that various effective characteristics of two-component
media (in particular, binary composites) can be
expressed in terms of partial (calculated by the volumes
of separate components) moments of electric field
strength of different orders. For example, the effective
conductivity σe can be expressed in terms of moments
of both the first and second orders. The knowledge of
the second-order moments allows one to determine the
derivatives of σe with respect to its arguments—the
conductivities of the components [2]. The simultaneous
determination of the effective conductivity and its
derivatives allows one to analyze in sufficient detail the
critical behavior of σe in the neighborhood of a metal–
dielectric phase-transition point (see [6, 7]). The deriv-
atives of σe also enter expressions for the low-fre-
quency permittivity, the magnetoresistance in a weak
magnetic field [2], and, for a certain relation between
parameters, the formula for the thermal emf. Structural
fluctuations of the field and current [1, 2], as well as the
Joule heat produced in each component, are expressed
in terms of second-order moments.

When studying nonlinear phenomena, one faces the
problem of determining higher order moments.
According to [3, 4], the calculation of the first nonlinear
correction to the effective conductivity requires the
knowledge of the partial moments of the fourth order.
Further approximations in nonlinearity involve the
moments of the sixth, eighth, etc., orders (see [5]). The
fourth-order moments arise in the problem on the spec-
trum of low-frequency noises [3, 4]. Finally, note that,
sometimes, one has to investigate partial moments of
odd orders.
1063-7761/04/9904- $26.00 © 20801
Thus, the partial moments of electric field strength
play an important role in the theory of transport phe-
nomena in binary composites. These quantities, deter-
mined in a linear problem of electric conductivity, rep-
resent functions of two arguments, the concentration p
and the ratio of the conductivities of the components,
h = σ2/σ1. Thus, the initially multiparameter effective
characteristics of a binary medium, being expressed in
terms of appropriate moments, reduce to two-parame-
ter functions. For systems with a metal–dielectric phase
transition, the critical behavior of the two-parameter
functions can be described within the standard similar-
ity hypothesis, like the electric conductivity [8] and
some other parameters [2]. For partial moments, this
procedure is described in [5], where appropriate critical
indices are introduced and a relation between them is
determined. It is shown in [5] that each partial moment
of order greater than two is characterized by a new (in
addition to the indices of effective conductivity) critical
index. According to [5], the number of critical indices
in the two-dimensional case is half of that in the three-
dimensional case.

In the present paper, we investigate a number of par-
tial moments of electric field strength for a two-dimen-
sional two-component medium within a linear problem
of conductivity. We carry out a numerical experiment
on a square lattice with a size of 401 × 401 sites with
randomly distributed bonds over the whole range of
concentrations p for six values of the parameter h: h =
10–m, where m = 1, …, 6. For a specific “realization”
(i.e., for a given concentration of bonds), we apply
numerical methods to solve an appropriate system of
Kirchhoff equations and determine potentials Vr at all
sites of the lattice. Simultaneously, we solve a similar
004 MAIK “Nauka/Interperiodica”
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problem on determining the potentials  at the sites of
the dual lattice.

Using Vr and , we calculate lattice analogs of the
partial moments of electric field strength. These quan-
tities are determined as averages over six realizations.
In the critical domain, which is the most difficult case
for the analysis and where the results significantly fluc-
tuate when passing from one realization to another, the
number of realizations amounts to ten. For each
moment, we investigate its behavior in the neighbor-
hood of a metal–dielectric phase-transition point and
estimate both the critical indices and the coefficients of
appropriate expansions.

2. EFFECTIVE CHARACTERISTICS
OF A MEDIUM

The problem on the conductivity of an inhomoge-
neous medium is posed as follows. Consider the fol-
lowing system of equations for a direct current:

(1)

where E = E(r) is the electric field strength and j = j(r)
is the current density. In the linear (with respect to the
field) statement of the problem, j and E are related by
Ohm’s law (isotropic medium):

(2)

where σ = σ(r) is a local conductivity of a sample that
depends on coordinates. The system of equations (1),
(2) is solved under the condition that there is a homoge-
neous field of strength 〈E〉  in the medium, where 〈…〉
stands for averaging over the sample volume V.

The effective conductivity σe of the medium is
defined as a coefficient of proportionality between the
average current density 〈j〉  and the field 〈E〉:

(3)

under the condition that V  ∞. In the case of two-
component systems, it is convenient to introduce a
dimensionless effective conductivity f:

(4)

where p is the concentration (volume fraction) of the
first component.

Let us define partial moments of the electric field
strength of order 2n as follows:

(5)

Ṽr

Ṽ r

curlE 0, div j 0,= =

j σ r( )E,=

j〈 〉 σ e E〈 〉=

σe σe p; σ1 σ2,( )= σ1 f p h,( ), h≡ σ2/σ1,=

ψi
2n( ) e2n〈 〉 i( )

, n 1 2 …,, ,= =
JOURNAL OF EXPERIMENTAL 
where

(6)

(7)

The integration in (7) is performed over the volume Vi

of the ith component. The functions , just as the
conductivity σe in (3), are effective (self-averaging as
V  ∞) characteristics of the medium and depend
neither on the magnitude nor (in the isotropic case) on
the direction of the applied field 〈E〉 . The quantities

 are determined solely by the properties of the
medium and, for two-component systems, depend on
the same arguments as the function f from (4):

(8)

According to [1], the effective conductivity σe can
also be expressed in terms of the quadratic characteris-
tics of the field:

(9)

with e = e(r) from (6). For binary media, taking into
account (4), we obtain the following relation from (9):

(10)

where  are second-order partial moments. Qua-
dratic structural fluctuations of the field and current are

also expressed in terms of the moments  (see [5]).

As is shown in [3–5], when studying the nonlinear
properties of inhomogeneous media, one faces the
problem of calculating higher order moments of the
electric field strength. For a weakly nonlinear isotropic
medium, we have

(11)

instead of (2). The mean values 〈j〉  and 〈E〉  are related
by a similar formula:

(12)

where , , … are effective nonlinearity factors.

According to [3, 4], the factor  can be expressed in

e r( ) E r( )
E〈 〉

------------,=

…( )〈 〉 i( ) 1
V
--- …( ) V .d

Vi

∫=

ψi
2n( )

ψi
2n( )

ψi
2n( ) ψi

2n( ) p h,( ).=

σe σe2〈 〉=

f ψ1
2( )

hψ2
2( )

,+=

ψi
2( )

ψi
2( )

j σ r( ) χ 3( ) r( )E2 χ 5( ) r( )E4 …+ + +{ } E=

j〈 〉 σ e χe
3( ) E〈 〉( )2 χe

5 E〈 〉( )4 …+ + +{ } E〈 〉 ,=

χe
3( ) χe
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χe
3( )
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terms of the electric field strength from the linear
problem:

(13)

where e = e(r) is the same as in (6). For a two-compo-
nent medium, from (13) we obtain

(14)

Here,  is the nonlinearity factor in the ith compo-

nent and  are the fourth-order partial moments.

According to [5], expressions for , , … contain
moments of the sixth, eighth, … orders, respectively.

Note that the quantities  also arise in the problem
on the spectrum of low-frequency noises [3, 4].

The partial moments  of odd orders are
determined by the formula

(15)

This formula takes into account that, for an isotropic
medium, the vector quantity 〈e2ne〉 (i) can only be
directed along the unit vector 〈e〉  = 〈E〉/|〈E〉|. It follows
from (15) that

(16)

where e||(r) is the component of e(r) that is parallel to
〈E〉 . The odd moments also depend on p and h. Note
that, according to (3),

(17)

For a binary randomly inhomogeneous system, simul-
taneous substitutions σ1  σ2 and p  1 – p do not
change the macroscopic properties of the medium
(see [1]), so that [5]

(18)

(19)

(20)

Equalities (18)–(20) allow one to determine the func-

tions f(p, h) and (p, h) for h > 1, provided that they
are known for h < 1 in the whole range of concentra-
tions p.

χe
3( ) χ 3( )e4〈 〉 ,=
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1
h
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  ,=
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1
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In the two-dimensional case, the functions f and

 satisfy the so-called reciprocity relations [1, 5]:

(21)

(22)

(23)

Formulas (21)–(23) are valid for isotropic two-dimen-
sional two-component systems of arbitrary structure,
both for periodic and disordered ones.

For a randomly inhomogeneous medium, taking
into account (18)–(20), we can rewrite equalities (21)–
(23) as

(24)

(25)

(26)

For p = 1/2, formula (24) implies the well-known result

f(1/2, h) =  [1]. Formulas (25) and (26) allow one to

relate the function  for p > pc to  for p < pc (and
vice versa), where pc = 1/2 is a critical concentration.

For a binary isotropic system, the moments of the
first and second order can be expressed in terms of the
function f and its derivative [2]:

(27)

(28)

One can easily verify that the functions  and 
identically satisfy all the relations given above.

3. ORGANIZATION 
OF A NUMERICAL EXPERIMENT

The partial moments of the electric field strength for
a two-dimensional two-component system were calcu-
lated within a standard linear problem on the conduc-
tivity of a plane disordered lattice [9] (see also [6]). In
the present paper, we carry out a numerical experiment
on a square lattice with a size of N × N = 401 × 401 sites
over the whole range of concentrations for six values of
the parameter h: h = 10–m, m = 1, …, 6. Each lattice site
r = (k, j), where k is the number of a row and j is the
number of a column (k = 1, …, N; j = 1, …, N), is
assigned a potential Vr = Vk, j . For all lattice sites,
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except for certain boundary sites, these potentials sat-
isfy the following system of Kirchhoff equations:

(29)

where the summation is over the four vectors D = ±Dx =
±(1, 0) and D = ±Dy = ±(0, 1). In the problem of bonds
considered, σr, r + D in formula (29) is the conductivity
of the bond between the sites r and r + D, which takes
the value σ1 = 1 with probability p (“pure” bonds) and
σ2 = h with probability 1 – p (“defective” bonds). On
two opposite sides of the lattice, that are perpendicular
to the x axis, the potentials should satisfy the boundary
values equal to 0 and 1, respectively. Along the y axis,
the potentials should satisfy periodic boundary condi-
tions, so that the sites with k = 1 and k = N are identified.

The numerical experiment is carried out as follows.
For a certain fixed concentration p, a realization is cho-
sen such that the (1 – p)th part of bonds in the initially
pure lattice are randomly replaced by defective bonds.
Then, under the boundary conditions formulated above,
the system of equations (29) is solved with prescribed
values of σr, r + D , and the potentials Vr are determined
at all lattice sites. Simultaneously, a similar problem is

solved to determine the potentials  at the sites of the
so-called dual lattice (see Fig. 1) under the same bound-
ary conditions.

It is usually assumed that, in the problem of bonds
on a square lattice with randomly distributed defects,
the macroscopic properties (conductivity and other
effective characteristics) of the basic and dual lattices
coincide. The calculation performed in the present
paper confirms this assumption as regards the effective

σr r, D+ V r V r D+–( )
D
∑ 0,=

Ṽ r

(k – 1, j – 1)

(k, j – 1)

(k +1, j – 1) (k + 1, j)

(k, j) (k, j + 1)

(k + 1, j + 1)

(k – 1, j + 1)(k – 1, j)

(k – 1, j – 1)

(k, j – 1)

(k +1, j – 1) (k + 1, j)

(k, j) (k, j + 1)

(k + 1, j + 1)

(k – 1, j + 1)(k – 1, j)

x
y

Fig. 1. (Solid lines) basic and (dashed lines) dual lattices.
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conductivity to within the computation accuracy. How-
ever, the primary goal of considering the problem of the
conductivity of the dual lattice is the application of the

potentials  (together with Vr) to calculating the dis-
crete analogs of partial moments of electric field
strength.

In the lattice problem, one has to take the difference
of potentials at adjacent (along the x axis) sites as Ex(r):

(30)

For the y component of the electric field strength, we

take  – , so that

(31)

Formula (31) applies to a horizontal bond (k, j; k, j + 1)
of the basic lattice. For a vertical bond (k, j; k + 1, j) of
this lattice, we have

(32)

Thus, we have the following expression for the function

 in the discrete problem:

(33)

where the summation is over all bonds with conductiv-
ities σi and L = N – 1. Formula (33) takes into account
that 〈Ex〉  = 1/L for a given difference of potentials
U = 1. The summation in (33) is performed over the
doubled number of bonds (on the basic and dual lat-
tices), which is compensated for by the factor 1/2. For

an odd-order partial moment , we obtain

(34)

In the present paper, we apply formulas (33) and (34)

to calculate the partial moments  and  for n = 2,
3, …, 6 (see Tables 1 and 2). The results, averaged over
six realizations, are presented in Figs. 2–9. Figure 10

Ṽ r

Ex r( ) Vk j, Vk j, 1+ .–
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AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004



PARTIAL MOMENTS OF ELECTRIC FIELD STRENGTH 805
shows the logarithm of the dimensionless effective con-
ductivity as a function of concentration.

4. CRITICAL BEHAVIOR

OF FUNCTIONS (p, h) 

The critical behavior of the effective conductivity of
a randomly inhomogeneous two-component medium in
the neighborhood of a metal–dielectric phase transition
point is described within the similarity hypothesis [8].
According to [8] (see also, for example, [2]), in the crit-
ical domain h ! 1, |τ| ! 1, where τ = (p – pc)/pc , pc is a
critical concentration, the function f behaves as follows:

(35)

for τ > 0, ∆0 ! τ ! 1,

(36)

for |τ| ! ∆0, and

(37)

for τ < 0, ∆0 ! |τ| ! 1. Here,

(38)

is the size of the smearing region [8]. The critical indi-

ψi
n( )

f τ t A0 A1
h

τ t /s
------- …+ +

 
 
 

=

f hs a0 a1
τ

hs/t
------- …+ +

 
 
 

=

f
h

τ–( )q
------------ B1 B2

h

τ–( )t /s
--------------- …+ +

 
 
 

=

∆0 hs/t=
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ces t, s, and q are related by the formula [8]

(39)

In the two-dimensional case considered here, we

q
t
s
-- t.–=

180

160

140

120

100

80

60

40

20

0

pc

2

3

4

5

m = 1

p

ψ2
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Fig. 2. The function  versus p for h = 10–m, m = 1, 2, …, 5.ψ2
2( )
Table 1.  Critical indices of the partial moments  and 

n tn sn qn µn λn

2 1.30 ± 0.01 0.500 ± 0.004 3.90 ± 0.08 1.30 ± 0.05 0.500 ± 0.001

3 1.67 ± 0.03 0.666 ± 0.005 6.2 ± 0.2 2.13 ± 0.03 0.823 ± 0.002

4 1.42 ± 0.06 0.641 ± 0.006 8.8 ± 0.2 3.56 ± 0.06 1.349 ± 0.004

5 1.64 ± 0.05 0.734 ± 0.008 11.1 ± 0.3 4.55 ± 0.08 1.749 ± 0.006

6 1.5 ± 0.2 0.68 ± 0.01 13.6 ± 0.4 6.0 ± 0.1 2.307 ± 0.009

ψ1
n( ) ψ2

n( )

Table 2.  Numerical coefficients for  and 

n

2 1.4 ± 0.6 0.500 ± 0.005 0.6 ± 0.1 1.1 ± 0.1 0.500 ± 0.001 0.7 ± 0.1

3 1.4 ± 0.1 0.450 ± 0.006 1.0 ± 0.3 2.0 ± 0.3 0.460 ± 0.003 0.8 ± 0.1

4 1.6 ± 0.3 0.340 ± 0.005 3.4 ± 1.6 4.8 ± 1.1 0.340 ± 0.003 0.7 ± 0.1

5 2.2 ± 0.2 0.300 ± 0.007 11.4 ± 7.5 13.3 ± 4.5 0.310 ± 0.005 0.9 ± 0.1

6 3.7 ± 0.8 0.230 ± 0.006 (0.8 ± 0.5) × 102 (0.5 ± 0.2) × 102 0.240 ± 0.005 1.1 ± 0.2

ψ1
n( ) ψ2

n( )

A1
n( ) a1

n( ) B1
n( ) A2

n( ) a2
n( ) B2

n( )
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have [1, 8]

(40)

It is natural to expect that the representations of the
similarity hypothesis, including formulas (35)–(40), are
also applicable to finely dispersed binary composites.

The critical behavior of the functions  is deter-
mined by substituting formulas (35)–(37) into rela-
tions (28). In this case, all critical indices of the func-

tions  are expressed in terms of the conductivity
indices (see (53)). At the same time, we do not know

any relations of the type (28) for the functions 
with n > 2. Therefore, the behavior of the functions

(p, h) with n > 2 in the neighborhood of a metal–
insulator phase-transition point should be determined
from their general properties. A similar procedure was
performed, for example, in [2, 6, 7] for two-parameter
functions that arise in the problem on the galvanomag-
netic properties of binary systems in a weak magnetic
field.

Restricting ourselves to the leading terms of appro-
priate expansions, we obtain the following expressions

s 1/2, q t.= =
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for the functions (p, h) with n ≥ 2 in the critical
domain [5]:

(41)

for τ > 0, ∆0 ! τ ! 1,

(42)

for |τ| ! ∆0, and

(43)

for τ < 0, ∆0 ! |τ| ! 1. Here,

(44)

In the two-dimensional case considered here, taking
into account (40), we obtain

(45)

ψi
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The arguments that allow one to derive formulas (41)–
(45) are presented in [5].

The numerical experiment meets certain difficulties
in the neighborhood of a metal–insulator phase-transi-
tion points: at 

 

h

 

 = 10

 

–5

 

, and especially at 

 

h

 

 = 10

 

–6

 

, the
results start to strongly fluctuate from one realization to
another. Therefore, the number of realizations in the
corresponding range of concentrations has increased up
to ten. The results of the numerical experiment for the

functions  and  in the critical domain, pro-
cessed by formulas (41)–(43), are presented in Tables 1
and 2.

For the two-dimensional randomly inhomogeneous
systems considered here, the reciprocity relation (25)

(or (26)) for 

 

p

 

 = 1/2 with regard to 

 

f

 

(1/2, 

 

h

 

) =  is
rewritten as

(46)

The substitution of expressions (42) into (46) yields
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one more relation between critical indices:

(47)

where

(48)

In view of relations (45) and (47), in the two-dimen-
sional case, only one of five new critical indices (for

fixed n) for the functions  and , for example, tn ,
are independent; other critical indices are expressed in
terms of tn as follows:

(49)

The reciprocity relations (25), (26) do not give any
new relations between indices beyond the smearing
region. However, the following relations between

sn
n
2
--- λn,–=

a1
n( ) a2

n( ).=
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coefficients arise:

(50)

(51)

The latter formula represents relations between A0, A1,
B1, and B2 that follow from (24). According to (50),

(52)

These equalities can be used both for verifying the cor-
rectness of computations and for the independent deter-
mination of the coefficient A0.

For the second-order moments , the substitution
of (35)–(37) into (28) yields

(53)

(54)
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The index λ2 is positive in view of the inequality s < 1,

and  > 0 since B2 < 0 [2]. For a two-dimensional
system (s = 1/2), we have

(55)

Processing the results of the numerical experiment for
the effective conductivity, we obtain

(56)

(57)

A comparison with the data of Tables 1 and 2 shows
that formulas (55) and (54) (for s = 1/2) are valid to
within the computation accuracy. Note that the value of
t given by (56) is in agreement with the results obtained
in [3, 6].

In the case of the fourth-order moments, the critical

indices are usually introduced for the function /
(see [3, 4]). In the notation of the present paper, the fol-
lowing functions correspond to the relevant functions
of [3, 4]:

(58)
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t2 µ2 t, s2 λ2 1/2, q2 3t.= = = = =

t 1.30 0.06,±=
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for τ > 0, ∆0 ! τ ! 1 and

(59)

for τ < 0, ∆0 ! |τ| ! 1. The substitution of expressions
from (35), (41) and (37), (43) into (58) and (59) yields

(60)

For n = 4, the last relation in (49) can be rewritten as
2t – t4 = µ4 – 2t. In the two-dimensional case (q = t),
comparing this equality with (60), we obtain

(61)

The calculation of k and k' by formulas (58) and (59)
using the results of the numerical experiment yields

(62)

so that equality (61) holds to within the computation
accuracy.

One can easily verify that formulas (49) for the crit-
ical indices and formulas (48), (50), and (52) for the
coefficients hold to the same accuracy for n = 2, 3, …,

h2ψ2
4( )

f 2
-------------- 1

τ–( )k'
-------------≈

k 2t t4, k'– µ4 2q.–= =

k k'.=

k 1.02 0.02, k'± 1.01 0.03,±= =
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6. Note also that the value of the index λ4 from Table 1
actually coincides with the value λ4 = 1.33 ± 0.05
obtained in [10].
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Abstract—Dynamical characteristics of the optical magnetic transition in a manganese arsenide film have been
studied. The results are considered with allowance for the possible generation of light-induced longitudinal
elastic waves at the surface, which produce compression of the manganese arsenide film and cause the transition
from the ferromagnetic to a disordered magnetic state. © 2004 MAIK “Nauka/Interperiodica”.
It was recently established [1, 2] that a magnetic
transition in thin-film structures comprising a ferro-
magnetic layer of manganese arsenide and semicon-
ductor layers of indium arsenide and gallium arsenide
can be initiated by changing the density of carriers in
the magnetic semiconductor layer. In connection with
this, it was of interest to return to the previously discov-
ered phenomenon called optical magnetic transition,
whereby the magnetic state of manganese arsenide
exhibited a change under the action of light pulses [3–5].
Several models were proposed for explaining the opti-
cal magnetic transition in manganese arsenide. In par-
ticular, Tralle [6] considered the possibility that the
magnetic moment decreases due to a diamagnetic con-
tribution to the magnetization.

This paper reports on the results of investigation of
the dynamical characteristics of the optical magnetic
transition in a manganese arsenide film, which passes
from the ordered ferromagnetic to a disordered mag-
netic state under the action of light pulses. We have ana-
lyzed the results with allowance for the possible gener-
ation of longitudinal elastic waves at the film surface as
a result of light absorption.

EXPERIMENTAL

The films of manganese arsenide with equiatomic
composition and a thickness from 0.5 to 2 µm were pre-
pared by chemical vapor deposition onto an amorphous
glass substrate. We obtained both textured films, having
the predominant growth in the [110] direction and the
magnetization vector oriented perpendicularly to the
film plane, and isotropic films with predominant mag-
netization in the film plane.

The dynamical characteristics of the optical mag-
netic transition in a manganese arsenide film was
studied using the experimental setup described else-
1063-7761/04/9904- $26.00 © 20811
where [3]. Light pulses were generated by a pulsed
xenon lamp. In order to eliminate various interfer-
ences, the sample film was irradiated from the side of
glass substrate by light pulses transmitted via an opti-
cal fiber.

The magnetic properties of a manganese arsenide
film were measured using a high-frequency magnetom-
eter. The measuring circuit was based on a thin-film
permalloy core, with a sample film placed in the gap.
The high-inductance magnetizing circuit and the low-
inductance measuring circuit (detecting a response sig-
nal caused by a change in the magnetic state of the sam-
ple film) were spatially separated and oriented at an
angle relative to each other. The shapes of the light
pulse and the signal related to a change in the magnetic
state of the sample film were measured by a high-fre-
quency double-beam oscillograph.

RESULTS AND DISCUSSION

Figure 1 shows the light pulse (curve 1) and the emf
pulse detected in the measuring coil in the presence of
a constant magnetizing field (curves 2 and 3). The mag-
netizing field strength was H = 4 kA/m. As can be seen,
a transition from the ordered ferromagnetic to a disor-
dered magnetic state (curve 2) is related to the leading
front of the light pulse, that is, to the increasing light
flux. The relaxation process, whereby the film returns
to the initial ferromagnetic state (curve 3), occurs at a
maximum of the light pulse, which is evidence of the
nonthermal character of the optical magnetic transition
in manganese arsenide.

Figure 2 presents the temperature dependence of the
magnetic induction B of a 1-µm-thick film of manga-
nese arsenide and the change ∆B of this induction under
the action of light pulses with a power density of
4 W/cm2. As can be seen from these data, manganese
004 MAIK “Nauka/Interperiodica”
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arsenide in this film completely passes from the ferro-
magnetic to a disordered magnetic state at temperatures
above 290 K.

The optical magnetic transition in a manganese ars-
enide film is accompanied by a change in the sample
volume, ∆V/V0 = –0.018. As a result, there appear
acoustic oscillations propagating from the light-acti-
vated surface inward the film. Using an additional layer
of barium titanate deposited in vacuum onto the surface
of the manganese arsenide film, it is possible to mea-
sure the piezoelectric effect and detect these acoustic
oscillations in the sample film (Fig. 3, curve 2). The ini-
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Fig. 1. Shapes of (1) the light pulse, (2) the emf pulse in the
measuring coil of the magnetometer (corresponding to a
transition of the manganese arsenide film from the ferro-
magnetic to a disordered magnetic state), and (3) the signal
due to a relaxation transition to the ferromagnetic state in a
constant magnetizing field of H = 4 kA/m.
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Fig. 2. Temperature dependence of (1) the magnetic induc-
tion B of a 1-µm-thick film of manganese arsenide and
(2) the change ∆B of this induction under the action of light
pulses with a power density of 4 W/cm2.
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tial region of this response displays a negative pulse
reflecting compression of the film related to its transi-
tion from the ferromagnetic to a disordered magnetic
state. Subsequently, the relaxation gives rise to the
intrinsic acoustic oscillations at the fundamental fre-
quency.

In addition to the piezoelectric effect, the barium
titanate layer exhibits a pyroelectric effect related to
heating of the film under the action of the light pulse.
As can be seen in Fig. 3 (curve 2), the maximum heat-
ing of the film does not exceed ∆T = 0.02 K.

We have studied the influence of the rate of the light
flux buildup on the optical magnetic transition in man-
ganese arsenide. The rate of increase in the incident
light energy was controlled by changing the duration of
the leading pulse front from 10 to 100 µs at a constant
light energy density in the pulse.

Figure 4 shows a plot of the relative volume of a dis-
ordered magnetic phase formed under the action of
light pulses versus the rate of the light flux buildup. As
can be seen, when this rate is below ∆E/∆t = 2 ×
105 W/(cm2 s), the optical magnetic transition in man-
ganese arsenide virtually does not take place. There-
fore, there exists a certain threshold value of the rate of
the light energy buildup below which the effect under
consideration is not observed. When the light energy
buildup rate exceeds ∆E/∆t = 5 × 105 W/(cm2 s) and the
light power density in the pulse is on the order of
4 W/cm2 (see Fig. 2), the film with a thickness within
0.5–2 µm completely passes from the ferromagnetic to
a disordered magnetic state.

The nature and mechanism of structural-magnetic
phase transitions in single crystal manganese arsenide
were studied [6–11] taking into account changes in the
lattice statics and dynamics, the magnetic and galvano-
magnetic properties of crystals, and the effects of vari-
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Fig. 3. Shapes of (1) the light pulse and (2) the emf pulse
measured in a piezoelectric barium titanate layer deposited
onto the manganese arsenide film.
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ous external factors. It was established that, at the mag-
netic phase transition temperature Tc = 318 K, manga-
nese arsenide crystals exhibit a structural-magnetic
phase transition from the ferromagnetic to a disordered
magnetic state. In the latter state, the crystal is divided
into ferromagnetically ordered microscopic blocks
with the easy axis orientations in the neighboring
blocks differing by 120°. Application of the magnetic
field with a strength exceeding the crystallographic
magnetic anisotropy leads to the appearance of a sin-
gle-phase ferromagnetic state. This state is broken upon
a transition to the paramagnetic state at Tf = 400 K,
which corresponds to a structural-magnetic phase tran-
sition of the second order. The ferromagnetic state in a
manganese arsenide film breaks with the formation of a
disordered magnetic phase at a temperature of Tc =
350 K. The character of this transition (Fig. 2) is some-
what different from that observed in crystals.

The process of the optical magnetic transition in a
manganese arsenide film passing from the ferromag-
netic to a disordered magnetic state can be divided into
two stages. In the first stage, optical activation of the
phase transition takes place in a thin (50–100 Å thick)
layer [1, 2]. In the second stage, a disordered magnetic
state spreads over the entire film depth.

In order to explain the observed phenomenon,
whereby a disordered magnetic state spreads in depth
of the film, let us consider the possibility that longitudi-
nal elastic oscillations are generated in the medium as a
result of light absorption. The excitation of such oscil-
lations leads to compression of the manganese arsenide
film, thus decreasing the temperature of the transition
to a disordered magnetic state.

The longitudinal elastic oscillations of the film
propagate predominantly along the normal to the sur-
face of the manganese arsenide film (z axis) because
this direction is parallel to the vector of group velocity
of the light waves incident onto the sample structure. In
this case, the strain tensor of the manganese arsenide
film has the only nonzero component,

(1)

where U03 is the amplitude of the longitudinal elastic
oscillations, k3 is the wavenumber, ω is the cyclic fre-
quency of ultrasonic oscillations, and t1 is the moment
of acoustic wave excitation. Thus, we assume that rela-
tion (1) is valid for the time t > t1.

For manganese arsenide with the crystallographic
symmetry class mmm, the volume density of the elastic
energy is

(2)

where C33 is the component of the tensor of elastic
moduli (we use conventional notation for the pairs of
symmetric indices [12]).

γ33 k3U03 k3z ω t t1–( )–[ ] ,sin–=

w
1
2
---C33k3

2U03
2 k3z ω t t1–( )–[ ] ,sin

2
=
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The acoustic pulse appears at the initial moment of
the light flux buildup: t1 = 10–6 s (see Fig. 1). The energy
balance equation for the system under consideration is

(3)

where v  is the group velocity of elastic waves, β is the
coefficient of energy transfer from the light flux to the
film, and angle brackets denote averaging with respect
to time (which accounts for the factor 1/2). For the
Young modulus C = 2 × 1011 N/m2 and the intrinsic
cyclic resonance frequency ω = 6.28 × 105 s–1, we have
β = 0.46.

At the initial time moment t1, when the process of
propagation of the longitudinal elastic oscillations has
not been established, elastic displacement takes place
predominantly on the front (exposed) surface of the
manganese arsenide film. The resulting pressure
exceeds 30 kbar, which is sufficient for activating a
phase transition in manganese arsenide from the ferro-
magnetic to a disordered magnetic state [13, 14].
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Abstract—A theory of nonlinear interference effects is constructed for a heterogeneous charge transfer
between atoms in polycrystalline films or heterogeneous nanostructures of the semiconductor-insulator type,
which interact with resonance radiation, and a metallic contact surface. The probability of resonance contact pho-
toionization in heterogeneous solid nanostructures is determined, which makes it possible to use this process in
nanotechnologies and nonlinear information systems. Nonlinear resonances of contact photoionization are asym-
metric due to interference of a radiative transition to an excited state and a transition to the continuum induced by
the metal surface. The probability of resonance contact photoionization abruptly decreases with increasing dis-
tance between an atom in the semiconductor and the metal. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interest in processes of heterogeneous charge
transfer in the field of resonance radiation is stimulated
by a variety of their possible applications in nanotech-
nologies, nonlinear information systems, charge cou-
pling technologies, collective laser accelerators of ions,
laser-plasma technologies, and optoelectronics [1–4].
Surface effects in photoabsorption and photodesorption
spectra for particles interacting with the surface have
been studied quite actively (see, for example, [5–7]).
An interesting example of such effects is the emergence
of asymmetry in the vibrational spectrum due to energy
transfer between a molecule and a surface in accor-
dance with the electron-hole pair mechanism [5]. The
observation of resonance surface photoionization
effects was reported for the first time in [8, 9]. Vast
information on the electron–atom interaction problem,
which is important in solid-state physics, optoelectron-
ics, and a number of branches of atomic physics can be
obtained from analysis of contact photoionization of
atoms in polycrystalline films or solid heterostructures.
In this study, we construct a theory of charge transfer
between atoms in semiconducting crystallites or heter-
ogeneous nanostructures of the semiconductor-insula-
tor type, which resonantly interact with radiation, and
the metallic surface of the contact. The probability of
contact laser-induced photoionization of atoms local-
ized in polycrystalline films or semiconductor-insulator
nanostructures in the vicinity of a metal surface is
determined.

2. FORMULATION OF THE PROBLEM

We assume that crystallites forming a photosensitive
film possess the n-type conductivity and are surrounded
1063-7761/04/9904- $26.00 © 20815
by tunnel-transparent insulating oxide interlayers. If
the excited state of an atom in an n-type semiconductor
corresponds to the region of the allowed band of a metal
above the Fermi level, the activationless charge
exchange between this atom and the metal is the main
photoionization mechanism. In [10], calculation of the
probability of activationless charge exchange between
an atom at the surface and the metal is reduced to the
problem of ionization of the atom by an external elec-
tric field [11]. In the framework of the model of contact
photoionization that will considered here, it will be
shown that the state of an atom excited by a photon with
an energy approximately equal to half the forbidden
gap in a semiconductor located in the immediate vici-
nity of the metal surface is identified with an auto-
ionization level against the background of the con-
tinuum formed by the quasi-continuous electron spec-
trum of normal metals [12]. It should be noted that
resonance contact photoionization in heterogeneous
nanostructures of the semiconductor-insulator type,
which are in contact with the metal surface, also occurs
in a similar way.

The resonance photoabsorption and surface photo-
ionization spectra in this situation are determined by
nonlinear interference effects of interaction of the given
continuum and the energy states of crystallites, which
correspond to the top of the valence band and the bot-
tom of the conduction band. For photoabsorption in
doped semiconductors, the role of the ground state or
excited states can be played by the levels of donor
impurity centers in the forbidden gap.

We will analyze the dependence of nonlinear inter-
ference effects of resonance surface photoionization on
the distance between an atom in the semiconductor and
004 MAIK “Nauka/Interperiodica”
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the metal. Analogous interference effects appear in the
case of resonance scattering of laser radiation [13].

For definiteness, we assume that the temperature of
the semiconductor is low enough for the energy states
at the bottom of the conduction band and the top of the
valence band to be approximately regarded as discrete.
The quantum-mechanical description of contact photo-
ionization process accompanied by absorption of radi-
ation during the transition between the ground state n of
the atom and the excited state m (which, in contrast to
the ground state, lies above the Fermi level of the metal)
is based on the total Hamiltonian

(1)

where the sum of three terms Ha , HM , and "U is repre-
sented by the model Anderson Hamiltonian [14, 15],
which defines the electron states of a system consisting
of a metal and a two-level subsystem interacting with it.
The Hamiltonian operators of the two-level subsystem,

(2)

and of the unperturbed metal,

(3)

can be expressed in terms of the fermion operators of

creation,  and , and annihilation, cj and cp , of elec-
trons in the atomic and metallic states; and Ej and Ep are
the energies of the electron states in an atom and in the
semi-infinite metal, respectively. Operator

(4)

describes the tunnel interaction between the metal state
p and the states j = m, n of a crystallite. It is analogous
to the Fano configurational interaction between the
continuum and the autoionization state [16, 17]. It is
assumed that electromagnetic radiation interacts only
with atomic states; this interaction is taken into account
by operator V.

3. QUANTUM KINETIC EQUATION

The general solution to the Schrödinger equation for
the given problem,

(5)

can be represented by a linear combination of wave-
functions Ψj and Ψp of stationary states of an unper-
turbed system with Hamiltonian H0 = Ha + HM; taking
into account the quasi-continuous nature of the electron
spectrum of the metal, the summation over states differ-

H Ha HM " U V+( ),+ +=

Ha E j,
j m n,=

∑=

HM Epcp
† cp,

p

∑=

c j
† cp

†

U U pjcp
† c j h.c.+

p j,
∑=

i"∂tΨ HΨ,=
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ing in energy Ep can be approximately replaced by inte-
gration:

(6)

However, in calculating the spectral characteristics of
photoionization in the field of a running wave, it is con-
venient to use the density matrix apparatus instead of
the system of equations for the probability amplitudes
of the states aj, p of the discrete and continuous spectra.
Specific features of the procedure of transition from the
given system of equations to the kinetic equation for the
density matrix, which are determined by the existence
of the continuum of electronic states, are described
in [16]. The quantum kinetic equation suitable for any
interaction of a particle with an external field was
derived earlier in [18].

The nondiagonal density matrix element ρmn corre-
sponding to the Bohr frequency ωmn of a radiative tran-
sition has the oscillating form in the resonance approx-
imation,

(7)

where ω = kc is the frequency of the light field. We
assume that the interaction of an atom in the ground
state lying below the Fermi level with the metal is
noticeably weaker than that for an excited atom. The
corresponding matrix elements of hybridization satisfy
the inequality |Upm| > |Upn|.

Disregarding the effect of radiation on the popula-
tion ρnn of the lower atomic level, we can confine our
analysis to the system of equations for rmn and the pop-
ulation ρmm of the upper level:

(8)

(9)

(10)

where N is the total number of atoms per unit volume.
We denote by Γmn the spontaneous decay constant

for the excited state of the atom; Gmn = E0dmn/",
E0 being the amplitude of the running wave and dmn the
matrix element of the electric dipole transition moment.
Parameters

(11)

(12)

take into account relaxation processes and energy shifts
associated with the interference effect of tunnel interac-

Ψ a jΨ j ωpapΨp, ωpd∫+
j

∑ Ep/".= =

ρmn rmn i Ωt k r⋅–( )–[ ] , Ωexp ω ωmn,–= =

∂t v z∂z Γ iΩ'–+ +( )rmn i Gmn δmn iγmn+ +( )ρnn,–=

Ω' Ω δmm k v,⋅––=

∂t v z∂z Γ+ +( )ρmm Im Gmn δmn iγmn+ +( )rnm[ ] ,=

Γ Γ mn γmm,+=

ρnn N ,=

γmj πUmpU pj ωp ω= ,=

δmj

2GmlGljωl

ω2 ωl
2–

-------------------------
1
π
---

γmj ωp( ) ωpd
ω ωp–

----------------------------∫+
l

∑=
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tion of states j = m, n with the metal surface. In expres-
sion (12), summation is extended to all nonresonance
states and quantities γmj and δmj depend on the distance
z between the atom and the contact surface.

4. NONLINEAR INTERFERENCE EFFECTS
IN CONTACT IONIZATION

The linear susceptibility of the medium,

(13)

and the resonance light absorption coefficient

(14)

can be expressed in terms of the element rmn of the den-
sity matrix averaged over the ensemble of particles. To
calculate the surface photoionization cross section

(15)

it is necessary to determine, along with rmn , the popula-
tion ρmm of the excited state. The solutions to Eqs. (8)
and (9) have the form

(16)

(17)

Parameter qmn reflects the presence of two interfering
radiation absorption channels such as the transition to
excited state m and the transition to a continuous-spec-

trum band of width γmm; the quantity  is propor-
tional to the ratio of the probabilities of these two
processes. In the limit z  ∞, when γmj , δmj = 0, rela-
tions (16) and (17) can be reduced to the known results
for particles that do not interact with the surface:

(18)

(19)

Let us consider the resonant interaction of radiation
with atoms locates at the same distance z = const from
the metal surface. This version is also realized when
absorbing atoms are deposited over a thin insulating
film coating the metal. In this case, in accordance with
relations (14) and (16), we obtain the following rela-
tions for the contour of the frequency dependence of the
resonance absorption coefficient:

(20)

χ 2" E0
2– Gnm rmn〈 〉=

α 4πkImχ=

σ 16π"r E0
2– N 1– γmmρmm 2Re γmnrnm( )+〈 〉=

rmn iρnn Gmn δmn iγmn+ +( ) Γ i Ω δmm–( )–[ ] 1– ,=

ρmm ρnnγmn
2 1 qmn

2+( ) Γ2 Ω δmm–( )2+[ ] 1–
,=

qmn

Gmn δmn+
γmn

-----------------------.=

qmn
2

rmn iρnnGmn Γmn iΩ–( ) 1– ,=

ρmm ρnnGmn
2 Γmn

2 Ω2+( ) 1–
.=

α 8π"kN
Gmnγmn qmn x–( )

E0
2Γ 1 x2+( )

----------------------------------------,=

x
Ω δmm–

Γ
-------------------.=
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The asymmetry of contour α(Ω) is due to interference
of processes of electron transition to discrete state m
and to the continuum formed by the metal surface.

In accordance with relations (15)–(17), the reso-
nance surface photoionization spectrum is defined by
the relation

(21)

The shape of surface photoionization resonance σ(x)
strongly depends on parameters qmn and θ. In the whole,
the frequency contour of the surface photoionization
cross section σ(x) resembles the Fano autoionization
resonance profile [19, 20]. Depending on the distance
between absorbing atoms and the metal surface, the
value of parameter θ can change from 0 to 1 (in partic-
ular, we have θ ≈ 1 for Γmn ! γmm).

As a rule, a decrease in the values of relaxation con-
stants γmj and energy shifts δmj with increasing distance
between the atom and the metal surface is approxi-
mated by the exponential model [14, 20]

(22)

In this situation, the asymptotic behavior of the
decrease in the surface photoionization cross section
for z  ∞ is also represented by the exponential,

(23)

Using approximation (22), we can define the elec-
tron flux,

(24)

induced by radiation in the vicinity of the contact sur-
face. It is proportional to the averaged value of the
probability of charge exchange between the metal and
resonantly excited atoms in the semiconductor,

(25)

where cross section σ(z) is defined by formula (21).
Taking into account the inequality

(26)

which normally holds in a surface photoionization
layer of width a–1, the asymmetric spectral distribution

σ 16π" E0
2– γmn

2 Γ 1– θ 1 qmn
2+( ) 2 2qmnx–+

1 x2+
-------------------------------------------------------,=

θ γmnΓ
1– .=

γmj γ̃mje
az– , δmj δ̃mje

az– .= =

σ z( ) e az– .∝

Ne N W z( ) zd

0

∞

∫ N W〈 〉 ,= =

W z( )
E0

2σ z( )
8π"k

----------------------,=

γmj δmj @ Γmn Gmn,,,
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of the mean probability 〈W〉  can be written in the form

(27)

(28)

The proposed model of resonance contact photoion-
ization is directly realized, for example, when silicon is
used as the semiconducting sample and the metallic
contact is made of sodium. For the parameters of pho-
toionization induced by high-power radiation emitted
by semiconductor atoms at a distance z < a–1 ~ 1 nm
from the metal surface, we have the relation  ~

 & ,  ~ 1013 s–1 [15, 21], and the resonance

W〈 〉 2 δ̃mn
2

γ̃mn
2–( )[=

× βcos x̃ ϕ̃ 2βcosarctan– x̃ 2β rlnsin+( )

– γ̃mnδ̃mn βsin x̃ ϕ̃ 2βsinarctan–(
– x̃ r 2β ) ] /γa,cosln

γ γ̃mm
2 δ̃mm

2
+( )

1/2
, x̃

Ω
γ
----,= =

ϕ̃ γ̃mm Ω δ̃mm–( )
1–
,=

r γ̃mm
2 Ω δ̃mm–( )

2
+[ ]

1/2
Ω 1– ,=

β δ̃mm

γ̃mm

--------.arctan=

γ̃mn

δ̃mn γ̃mm δ̃mm
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Fig. 1. Resonance photoabsorption spectrum:  = 0 (1)

and qmn = 4 (2).

qmn
1–
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photoabsorption contour is represented in Fig. 1 by
curve 2 for function

(29)

at qmn = 4. Symmetric curve 1 in this case corresponds

to the limiting case   0, when the width of the
insulator layer considerably exceeds the characteristic
width a–1 of the photoionization layer. Figure 2 shows
the plot of the function

(30)

which, accordingly, describes the profile of the reso-
nance contact photoionization cross section for param-
eters qmn = 4 and θ = 0.8.

On the frequency scale, the photoionization reso-
nance has a width on the order of  and the degree

of its asymmetry is determined by the ratio / .
Relations (25) and (27) lead to the following simple
expression for electron flux Ne corresponding to the
center of the absorption line (|Ω| ! γ):

(31)

In particular, such resonance tunneling of photo-
electrons from the contact layer in short-period super-
lattices might lead to the emergence of photocurrent
resonances [22].

f x( )
1 x/qmn–

1 x2+
---------------------- α x( )∝=

qmn
1–

ϕ x( )
1 2qmnx θ 1 qmn

2+( ) 2+[ ] 1–
–

1 x2+( )
-------------------------------------------------------------------- σ x( ),∝=

γ̃mm

δ̃mn γ̃mn

Ne N γ̃mm δ̃mn
2

γ̃mn
2–( ) 2γ̃mnδ̃mnδ̃mm–[ ] /γ2a.=
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Fig. 2. Contour of the resonance contact photoionization
cross section; qmn = 4, θ = 0.8.
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5. CONCLUSIONS
Thus, the main result of this study is the calculation

of the probability of charge exchange between atoms in
semiconducting crystallites or heterogeneous nano-
structures of the semiconductor-insulator type, which
resonantly interact with radiation, and the metal surface
with allowance made for nonlinear interference effects
associated with transitions to the excited state of the
semiconductor and to the band in the continuous spec-
trum formed by the metal.

The spectral contours of photoabsorption and pho-
toionization in semiconducting crystallites located in
the vicinity of the metal surface are asymmetric like the
Fano resonance profile [19, 20]. The degree of asym-
metry of photoabsorption and photoionization reso-
nances is determined by the ratio of the probability of a
radiative transition to the excited state to the probability
of transition to the continuum induced by the metal sur-
face. Quite naturally, for atoms at large distances from
the metal surface, the photoabsorption resonance
becomes symmetric and the photoionization probabil-
ity sharply decreases.

The properties of resonance contact photoionization
considered here can be used for developing new tech-
nologies of data transformation and transmission of the
type of photon–charge coupling.
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Abstract—A doped manganite with the composition Eu0.55Sr0.45MnO3 exhibits giant negative magnetostric-
tion and colossal negative magnetoresistance at temperatures in the vicinity of the magnetic phase transforma-
tion (T ~ 41 K). In the temperature interval 4.2 K ≤ T ≤ 40 K, the isotherms of magnetization, volume magne-
tostriction, and resistivity exhibit jumps at the critical field strength Hc1, which decreases with increasing tem-
perature. At 70 K ≤ T ≤ 120 K, the jumps on the isotherms are retained, but the shapes of these curves change
and the Hc1 value increases with the temperature. At H < Hc1, the magnetoresistance is positive and exhibits a
maximum at 41 K; at H > Hc1, the magnetoresistance becomes negative, passes through a minimum near 41 K
and then reaches a colossal value. The observed behavior is explained by the existence of three phases in
Eu0.55Sr0.45MnO3, including a ferromagnetic (in which the charge carriers concentrate due to a gain in the s−d
exchange energy) and two antiferromagnetic phases (of the A and CE types). The volumes of these phases at
low temperatures are evaluated. It is shown that the colossal magnetoresistance and the giant volume magneto-
striction are related to the ferromagnetic phase formed as a result of the magnetic-field-induced transition of the
CE-type antiferromagnetic phase to the ferromagnetic state. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Until recently, the interest in manganites was related
primarily to the phenomenon of colossal magnetoresis-
tance observed in some compounds at room tempera-
ture. However, our previous investigation [1–4],
showed that the colossal magnetoresistance in
La1 − xSrxMnO3 (0.1 ≤ x ≤ 0.3), Nd1 – xSrxMnO3 (x = 0.33
and 0.45), and Sm1 – xSrxMnO3 (x = 0.33, 0.4, and 0.45)
compounds is accompanied by a large negative volume
magnetostriction ω. Moreover, the temperature and
field dependences of the magnetostriction, ω(T) and
ω(H), have proved to behave very much like the analo-
gous curves of the magnetoresistance ∆ρ/ρ versus T
and H. This behavior was explained by the coexistence
of ferromagnetic (FM) and antiferromagnetic (AFM)
phases in the above crystalline compounds, which was
related to a strong s–d exchange interaction and the
concentration of charge carriers (in this case, holes) in
the FM part of the two-phase crystal [5]. It should be
noted that the Curie temperature of a sample occurring
in such a state is rather conditional and refers to the
Curie temperature of the FM part of the system.

As is known, a compound of the Sm1 – xSrxMnO3
system with x = 0.5 exhibits a charge–orbit ordering
leading to the so-called CE-type AFM order. The
results of the neutron diffraction and resistivity mea-
surements showed that the compound
154Sm0.6Sr0.4MnO3 contains the AFM clusters of A and
CE types. The latter clusters, characterized by the
charge–orbit ordering, occur in the conducting FM
1063-7761/04/9904- $26.00 © 20820
matrix [6]. In the composition with x = 0.25, the clus-
ters with charge–orbit ordering are absent [6]. In the
system with x = 0.4, an increase in the temperature
leads to breakage, first, of the FM order at T = TC, then
of the A-rype AFM order at T = TN ≥ TC, and eventually
of the CE-type AFM order at T = Tco (TN is the Néel
temperature and Tco is the temperature of breakage of
the charge–orbit ordering). This behavior is consistent
with the theoretical predictions of Dagotto et al. [7]
based on the results of numerical modeling, according
to which the concentration transition from the FM to
charge–orbit ordering observed in manganites at x = 0.5
is a first-order phase transition and the systems with
compositions close to x = 0.5 contain the magnetic clus-
ters of three types: FM, A-type AFM, and charge–orbit
ordered CE-type AFM.

Previously [8, 9], we have studied the magnetic,
electrical, and galvanomagnetic properties of the com-
pound Eu0.7Sr0.3MnO3, which exhibits conductivity of
the semiconductor type and is characterized by giant
maxima in the temperature dependences of both the
resistivity ρ and the magnetoresistance ∆ρ/ρ. The exist-
ence of the insulating two-phase magnetic state in this
compound was confirmed by the following experimen-
tal results. The isotherms of magnetization σ(H) in the
region of low temperatures represented the sum of a
small spontaneous magnetization and a component lin-
early increasing with the field strength (which is char-
acteristic of the AFM state). There was a difference in
magnetizations of a sample cooled with and without
004 MAIK “Nauka/Interperiodica”
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applied magnetic field, which was observed up to the
maximum field strength studied (45 kOe), and the mag-
netic hysteresis loops of a sample cooled in the field
were shifted along the H axis. The contribution due to
the FM clusters significantly increased the paramag-
netic Curie temperature θ (from 100 K for the undoped
manganite EuMnO3 to 175 K for Eu0.7Sr0.3MnO3). It
was practically impossible to determine the Curie tem-
perature of the FM part of this compound. Indeed, the
TC value determined in a field of 45 kOe (by extrapolat-
ing the steepest part of the σ(T) curve to intersection
with the T axis) amounted to 90 K, which was three
times the value (TC = 30 K) obtained for H = 0.5 kOe.

This work was aimed at a complex study of the mag-
netic, electrical, galvanomagnetic, and magnetoelastic
properties of the compound Eu0.55Sr0.45MnO3, which,
according to the predictions of Dagotto et al. [7], must
contain the magnetic clusters of three types: FM,
A-type AFM, and CE-type AFM. It was of interest to
reveal differences between the properties of this com-
pound and those of Sm1 – xSrxMnO3 (with x = 0.33, 0.4,
and 0.45) and Eu0.7Sr0.3MnO3. The magnetic and galva-
nomagnetic properties of the latter compound [8, 9] are
indicative of the absence of charge–orbit ordered
CE-type AFM clusters. In this context, knowledge of
the properties of Eu0.55Sr0.45MnO3 can provide new
information on the influence of the charge–orbit
ordered phase clusters on these properties and on the
nature of observed peculiarities.

2. EXPERIMENTAL

The sample of Eu0.55Sr0.45MnO3 was synthesized
according to the standard ceramic technology. The
phase composition and crystal lattice parameters were
monitored by X-ray diffraction measured on a Siemens
D5000 diffractometer. According to these data, the
sample represented a single-phase perovskite with an
orthorhombic structure (Pnma space group). The
orthorhombicity parameter of 0.2% (calculated using
the lattice parameters) indicates that the structure is
close to cubic. The sample had a tolerance factor of τ =
0.924, while the degree of disorder was d2 = 0.00893.
The single-phase state of the synthesized samples was
confirmed by the Raman spectroscopy measurements
performed on a Jobin-Yvon T64000 spectrometer with
a triple monochromator. The Raman spectra showed the
presence of only the phonon modes characteristic of the
orthorhombic manganites with Pnma symmetry.

The magnetization was studied using a vibrating-
sample magnetometer in a range of temperatures from
1.5 to 150 K and magnetic field strength up to 130 kOe
(the measurements were performed in the Laboratory
of Strong Magnetic Fields, Wroclaw, Poland). The ini-
tial magnetic susceptibility in an alternating magnetic
field with an amplitude of 1 Oe and the frequency var-
ied from 0.8 to 8 kHz was measured on an F-5063 fer-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
rometer, while the paramagnetic susceptibility was
studied by a weighing technique with electromagnetic
compensation. The electric resistance was determined
by the four-point-probe technique. The magnetostric-
tion and thermal expansion in the temperature range
from 4.2 to 150 K were measured using strain gauges
with a resistance of 92.30 ± 0.01 Ω and a tension sensi-
tivity coefficient of 2.26. One transducer was glued to a
sample and another, to a quartz crystal, so as to have the
same orientation relative to the applied magnetic field.
The magnetostriction components parallel (λ||) and per-
pendicular (λ⊥ ) to the magnetic field were measured,
after which the volume (ω = λ|| + 2λ⊥ ) and anisotropic
(λt = λ|| – λ⊥ ) magnetostrictions were calculated.

3. RESULTS AND DISCUSSION

The temperature dependence of the initial (zero-
field) magnetic susceptibility χ(T) of the sample mea-
sured in an alternating magnetic field with an amplitude
of 1 Oe and a frequency of 8 kHz exhibits a maximum
at TN = 41 K, which is close to the Néel temperature of
undoped EuMnO3. Near this temperature, we have also
observed a bending point in the curve of ρ(T) (Fig. 1)
and a jump in the temperature dependence of the linear
thermal expansion ∆L/L (see the inset to Fig. 1). As can
be seen from Fig. 1, the sample in the absence of
applied magnetic field behaves as an insulator when the
temperature is decreased down to the minimum value
used in this study (ρ = 106 Ω cm at 4.2 K).

The behavior of the isotherms of magnetization σ,
magnetostriction ω, and resistivity ρ as functions of the
magnetic field is different in the temperature intervals
4.2–40 and 70–120 K, while having much in common
in each of these intervals. Figure 2 shows the σ(H),
ω(H), and ρ(H) curves measured at 20 K (in the first

107

106

105

104

103

102

10

1
0 50 100 150 200 250 300

T, K

T, K
0 20 40 60 80 100

4

3

2

1

∆L/L × 104

ρ, Ω cm

Fig. 1. Temperature dependences of the resistivity ρ of
Eu0.55Sr0.45MnO3. The inset shows the temperature depen-
dence of the linear thermal expansion.
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interval) and 70 K (in the second interval). In the first
temperature interval, we observed a jumplike increase
in the magnetization and in the absolute value of the
magnetostriction and a sharp drop in the resistivity in a
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Fig. 2. The isotherms of (a) magnetization σ, (b) volume
magnetostriction ω, and (c) resistivity ρ of
Eu0.55Sr0.45MnO3 measured at T = 20 K (solid curves) and
70 K (dashed curves) with increasing and decreasing
applied field strength as indicated by arrows.
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certain interval of magnetic fields, Hc1 < H < Hc2. Judg-
ing from the value of magnetization at H > Hc2, there is
a transition to the FM state in a rather large part of the
sample. In the region of H > Hc2, all three parameters
exhibit linear growth with the field strength H, showing
no saturation even at the maximum magnetic fields
used in this study (80 kOe for the magnetization and
50 kOe for the magnetostriction and magnetoresis-
tance). The magnitude of magnetization at 4.2 K in a
field of 80 kOe was σ = 2.50µB per formula unit, which
is significantly lower (~70%) than the value (3.55µB per
formula unit) corresponding to the FM ordering of
magnetic moments of the Mn3+ and Mn4+ ions. In the
region of jumplike variation, the curves of σ(H), ω(H),
and ρ(H) exhibit a hysteresis whose width decreases
with increasing temperature. If the magnetic field is
switched off at a low temperature, the volume magne-
tostriction and resistivity do not return to the initial val-
ues (at least during the observation time, which was
about 180 s). These initial values could be restored only
by heating the sample up to about 100 K followed by
cooling.

In the temperature interval 70–120 K, the jumps in
the σ(H), ω(H), and ρ(H) curves are also observed, but
the shapes of these curves change and the sample
returns to the initial state after switching off the
magnetic field (Fig. 2). It should be noted that behav-
ior of the curves in this temperature interval is analo-
gous to that observed previously in ceramics of the
Sm1 − xSrxMnO3 system with x = 0.45 and 0.40 [1, 10].
At 40 K < T < 70 K, the σ(H), ω(H), and ρ(H)) curves
exhibit peculiarities typical of both temperature inter-
vals (the sample does not return to the initial state after
switching off the magnetic field; the critical field Hc1
increases with temperature).

Figure 3 shows the temperature dependence of the
first critical field, Hc1, determined from the measure-
ments of magnetization σ, magnetostriction ω, and
resistivity ρ. As can be seen, the Hc1 values coincide at
each particular temperature, decrease with increasing
temperature in the first temperature interval, and
increase in the second temperature interval, thus exhib-
iting a broad minimum with the lowest point at about
41 K.

Figure 4 shows the temperature dependences of the
magnetization σ, magnetostriction ω, and magnetore-
sistance ∆ρ/ρ of the sample measured in various mag-
netic fields. As can be seen, the σ(H) curves exhibit a
maximum at a temperature near 41 K, while the tem-
perature dependences of ω and ∆ρ/ρ at H > Hc1 exhibit
minima in the same region. The magnetic transition is
strongly smeared under the action of applied magnetic
field. In a magnetic field of 45 kOe, the volume magne-
tostriction reaches a giant value of 4.5 × 10–4 in the tem-
perature interval 10–75 K. The magnetoresistance of
the sample also behaves rather unusually. At H < Hc1,
the ∆ρ/ρ value is positive and exhibits a maximum near
AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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41 K, where it reaches a level of 6% (Fig. 5). At H >
Hc1, the magnetoresistance becomes negative, passes
through a minimum approximately at 41 K, and then
reaches a colossal value of 3 × 105% in a magnetic field
of 50 kOe (Fig. 4).

As was noted above, the behavior of magnetization,
magnetostriction, and magnetoresistance at T ≥ 70 K in
the Eu0.55Sr0.45MnO3 sample under consideration is
analogous to that observed previously at T > TC in
ceramics of the Sm1 – xSrxMnO3 system with x = 0.45
and 0.40 [1, 10]. Our investigation of a single crystal
with the composition Sm0.55Sr0.45MnO3 showed that its
properties are identical to those of ceramics with the
same composition. As was indicated in the introduction
section, the sample of Sm0.6Sr0.4MnO3 at 1.5 K ≤ T ≤ TC

comprises a simply connected FM matrix containing
AFM clusters of A and CE (charge–orbit ordered)
types. Note that TC < TN < Tco [6], where Tco (defined as
the temperature of thermal breakage of the charge–orbit
ordering) coincides with the temperature of breakage of
the AFM order in clusters with charge–orbit ordering.
The behavior of magnetization, magnetoresistance, and
volume magnetostriction at T > TN was explained [1, 10]
in terms of the magnetic-field-induced transition of the
CE-type AFM clusters to the FM state. In a CE-type
AFM state, the magnetic moments of most nearest
neighbors of manganese ions exhibit an AFM ordering
and, hence, it is necessary to apply a certain threshold
field for the transition from AFM to FM state. The
CE-type AFM clusters are fully converted to the FM
state in the field Hc2.

Since the isotherms of σ, ω, and ∆ρ/ρ observed in
this study for Eu0.55Sr0.45MnO3 in the temperature inter-
val 1.5 K ≤ T ≤ 120 K are very much like those observed
previously at T > TC in the samples of Sm0.55Sr0.45MnO3

and Sm0.6Sr0.4MnO3 [1], we may suggest that our sam-
ple of Eu0.55Sr0.45MnO3 ceramics also comprises a mix-
ture of FM, A-type AFM, and CE-type AFM phases.
However, the relative volumes of these phases in the
Eu0.55Sr0.45MnO3 sample studied is different from that
in Sm0.55Sr0.45MnO3 and Sm0.6Sr0.4MnO3 ceramics. As
can be seen from Fig. 1, the temperature dependence of
the resistivity of Eu0.55Sr0.45MnO3 exhibits a semicon-
ductor character with a rather large value of ρ at 4.2 K
(on the order of 106 Ω cm), in contrast to the behavior
observed for Sm0.55Sr0.45MnO3 characterized by con-
ductivity of the metallic type. Therefore, we suggest
that the FM phase in the Eu0.55Sr0.45MnO3 sample stud-
ied is multiply connected (in contrast to the simply con-
nected FM phase in Sm0.55Sr0.45MnO3). This difference
is related to the fact that the tolerance factor τ = 0.924
in our Eu0.55Sr0.45MnO3 ceramics is lower than that in
Sm0.55Sr0.45MnO3 (where τ = 0.927), while the degree
of disorder d2 = 0.00893 in Eu0.55Sr0.45MnO3 is greater
than that in Sm0.55Sr0.45MnO3 (where d2 = 0.00784),
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Nagaev [11] showed that an AFM semiconductor
may occur, depending on the charge carrier density, in
either insulating or conducting two-phase (FM–AFM)
magnetic state. In this state, the carriers concentrate in
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the FM part of the crystal due to a gain in the s–d
exchange energy, while the AFM part is depleted of car-
riers. It was also shown [12] that the volume fraction of
the FM phase in a sample occurring in the insulating
two-phase magnetic state is much smaller than that in
the conducting state. For example, in doped EuSe, the
FM phase volume in the conducting two-phase
magnetic state is about ten times that in the insulating
state [13]. It can be suggested that Eu0.55Sr0.45MnO3
features an insulating two-phase magnetic state,
whereas Sm0.55Sr0.45MnO3 occurs in the conducting
two-phase magnetic state. According to this, the mag-
netization in Sm0.55Sr0.45MnO3 at T < TC proceeds via
increase in the volume of the FM phase occupying most
of the sample and growing by the FM planes of the
A-type AFM phase. On this background, a jumplike
increase in the magnetization related to the CE-type
AFM clusters is not manifested because these clusters
have a significantly smaller volume than the FM phase.
The jumps on the σ(H) curves are manifested only at
high temperatures, where the FM and A-type AFM
phases are thermally broken and only the CE-type AFM
clusters are retained.

For Eu0.55Sr0.45MnO3, the jumps in the isotherms of
magnetization take place both below and above the
Néel temperature (TN = 41 K) determined at the maxi-
mum of the initial susceptibility measured in alternat-
ing magnetic field. This temperature corresponds to
breakage of the A-type AFM magnetic phase, since it
coincides with TN of the undoped compound EuMnO3
featuring the A-type AFM order. As can be seen from
the data presented in Fig. 6, the jumps on the magneti-
zation isotherms are still observed at T = 120 K and are
missing at T = 150 K, so that the Néel temperature of
the CE-type AFM phase falls between 120 and 150 K.
It is also seen that, in the temperature interval 1.4 K ≤
T ≤ 40 K (Fig. 6) and the magnetic fields 0 ≤ H < Hc1,
the σ(H) curves can be represented as the sum of a
small spontaneous magnetization (σ ~ 0.1µB) and a
component linearly increasing with the field H (which
is characteristic of the AFM state). Thus, the volume
fraction of the FM phase in this case is small, reaching
only about 3% of the sample volume (as can be judged
from the ratio of the magnetization of the FM phase and
the saturation magnetization σs = 3.55µB corresponding
to complete FM ordering of the sample).

As can be seen in Fig. 6, the spontaneous magneti-
zation component disappears in the interval 40 K < T <
50 K. This implies that the Curie temperature TC falls in
this interval and is close to the Néel temperature TN for
the composition studied. As was noted above, the mag-
netization at 4.2 K after a jump observed on the magne-
tization isotherms amounts to about 70% of the satura-
tion magnetization, while the jump is approximately
equal to 1.45µB and changes only slightly with temper-
ature. Assuming that the jump is due to the CE-type
AFM phase, we infer that the volume of this phase is
about 41% of the sample volume and the remaining
AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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56% are occupied by the A-type AFM phase. After the
jump, the magnetization exhibits a slow increase with
field H, which is related to the magnetic-field-induced
growth of the FM phase by the FM layers in the A-type
AFM phase.

As is known, the CE-type AFM phase with a charge-
orbit ordering is most stable at low temperatures, while
at elevated temperatures it is least stable than the FM
and A-type AFM phases [7]. For this reason, the critical
field Hc1 decreases with increasing temperature in the
interval below 40 K (Fig. 3), where the CE-type AFM
phase coexists with the FM and A-type AFDM phases.
Beginning at T = 50 K and up to 120 K, the Hc1 value
exhibits a growth. This behavior is probably related to
the fact that, at T > TC, maintaining the FM order
(formed as a result of the magnetic-field-induced tran-
sition of the CE-type AFM phase to the FM state)
requires higher magnetic fields as compared to those
sufficient at T < TC. As was indicated above, the
CE-type AFM phase is characterized by the orbital
ordering and the related charge ordering. If the mag-
netic-field-induced transition from this state to the FM
state were related only to breakage of the charge order-
ing, we might expect the appearance of a paramagnetic
state at T > TC. However, the results of our experiments
show that the CE-type AFM phase converts into the FM
phase. This is related to the fact that the charge carriers,
being disordered under the action of the magnetic field
H > Hc1, retain the FM order due to a gain in the s–d
exchange energy.

Figures 2 and 6 show that the σ(H), ρ(H), and ω(H)
curves measured with increasing and decreasing the
magnetic field differ, and the isotherms measured in the
field decrease mode exhibit no jumps. This means that
the FM state, formed in a magnetic field above Hc1 as a
result of transformation of the CE-type AFM phase, is
retained when the field decreases down to values negli-
gibly small as compared with Hc1. The giant magnitude
of ω and the sharp drop in ρ as a result of this transfor-
mation are retained upon switching off the magnetic
field. The initial state can be restored only by heating
the sample to T > 100 K followed by cooling to a
required temperature. This fact indicates that the free
energies of the FM and CE-type AFM phases are close
and the magnetic-field-induced transition of the
CE-type AFM phase to the FM state is a first-order
phase transition. Beginning at T = 60 K or higher (i.e.,
above TC), switching off the magnetic field reduces the
magnetostriction to ω = 0 and restores the resistivity ρ
on the initial level (before field application), although
there is still a difference between the ρ(H) and ω(H)
curves measured with increasing and decreasing mag-
netic field (Fig. 2).

The negative sign of the colossal magnetoresistance
observed in the Eu0.55Sr0.45MnO3 sample studied is
mostly related to the FM phase formed as a result of the
magnetic-field-induced transition of the CE-type AFM
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
phase to the FM state. Since a semiconductor type of
the conductivity after this transformation is retained,
we may conclude that the FM phase comprises an insu-
lating A-type AFM matrix containing FM clusters in
which the charge carriers (holes) are concentrated due
to a gain in the s–d exchange energy. The phenomenon
of colossal magnetoresistance in the compound studied
is explained as follows. The external magnetic field
increases the radii of the FM clusters, thus facilitating
the tunneling of charge carriers between these clusters.
In addition, ordering of the magnetic moments of the
FM clusters in the applied field also favors the tunnel-
ing of charge carriers. Finally, the external field tends to
break the FM clusters by increasing the energy of holes
concentrated in these clusters and favoring their transi-
tion into a delocalized state [5, 12]. The large positive
magnetoresistance observed for H < Hc1 and T < TC is
probably related to the FM phase and can be explained
in the same way as in nondegenerate FM semiconduc-
tors [14].

The giant volume magnetostriction is also related to
the FM phase formed as a result of the magnetic-field-
induced transition of the CE-type AFM phase to the FM
state. Yanase and Kasuya [15] showed that the crystal
lattice parameters inside the FM clusters are decreased
as a result of the charge redistribution leading to a
decrease in the energy at the expense of an increase in
the overlap between the clouds of charge of the central
impurity ion and the nearest-neighbor magnetic ions.
Apparently, thermal breakage of the two-phase mag-
netic state must be accompanied by an excessive (as
compared to the linear in T) thermal expansion of the
sample, which was actually observed in our experi-
ments (see the inset to Fig. 1). As is known, the temper-
ature dependence of the thermal expansion in dia- and
paramagnets is almost linear. The excess thermal
expansion can be suppressed by applying an external
magnetic field restoring the two-phase magnetic state.
This must give rise to a negative volume magnetostric-
tion, also in agreement with what was observed in our
experiments (Figs. 2 and 4).

4. CONCLUSIONS

We have found, in addition to the previously studied
Sm1 – xSrxMnO3 compounds with 0.4 ≤ x ≤ 0.45, another
compound, Eu0.55Sr0.45MnO3, in which the colossal
magnetoresistance and the giant volume magnetostric-
tion appear as a result of the magnetic-field-induced
transition of the charge–orbit ordered CE-type AFM
phase to the FM state. These systems clearly demon-
strate that the phenomena of colossal magnetoresis-
tance and giant volume magnetostriction are related to
modification of the FM phase, which appears at T > TC
and exhibits a sharp growth at T < TC as a result of the
aforementioned magnetic-field-induced transition.
Although both manganite systems comprise a mixture
of three phases—FM, A-type AFM, and CE-type AFM
SICS      Vol. 99      No. 4      2004
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with charge–orbit ordering—the ratios of these phases
in the two systems are different. Apparently,
Sm1 − xSrxMnO3 samples with 0.4 ≤ x ≤ 0.45 predomi-
nantly contain at T < TC the FM phase, while
Eu0.55Sr0.45MnO3 under these conditions consists for the
most part of the CE- and A-type AFM phases. This
assumption is confirmed by the fact that the first system
exhibits a metallic conductivity (the FM phase, in
which the charge carriers concentrate due to a gain in
the s–d exchange energy, is simply connected), while
the second system has a conductivity of the semicon-
ductor type (the FM phase, comprising separate clus-
ters in the AFM matrix, is multiply connected). For this
reason, the jumps in the isotherms of magnetization,
magnetoresistance, and volume magnetostriction
(indicative of the magnetic-field-induced transition of
the charge–orbit ordered CE-type AFM phase to the
FM state) are observed in Eu0.55Sr0.45MnO3 beginning
at the minimum temperatures studied (1.4 K), whereas
in Sm1 – xSrxMnO3 (0.4 ≤ x ≤ 0.45) these peculiarities
are manifested only after breakage of the FM phase.
Apparently, it is a small volume fraction of the charge–
orbit ordered CE-type AFM phase (compared to the FM
phase volume in Sm1 – xSrxMnO3 with 0.4 ≤ x ≤ 0.45)
that explains the absence of such jumps at T < TC. In
Eu0.55Sr0.45MnO3, the values of the magnetization, vol-
ume magnetostriction, and resistivity after the afore-
mentioned magnetic-field-induced transition at T < TC

are retained upon switching off the applied magnetic
field. This fact indicates that the free energies of the FM
and CE-type AFM phases in this compound are close.
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Abstract—The differential conductivity of metallic island films of Ti, Co, W, and FeNi is investigated in the
vicinity of liquid nitrogen temperatures. It is found that the temperature dependence of the conductivity of
metallic island films in the insulator phase varies in accordance with the activation law σ ∝  Tnexp(–E/kT). It is
shown that the power of temperature in the preexponential factor varies from n = 2 to 1 upon an increase in the
film thickness. In thicker films, in which a transition from the insulator to the metal conductivity phase takes
place, the temperature dependence of the conductivity increases in proportion to temperature. The mechanism
of conduction in metallic island films is discussed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The study of the structure and physical properties of
ultrathin metallic films with a thickness smaller than
2−3 nm began at the end of the 1950s, when the first
metal films were obtained for the first time [1]. The new
stage in the study of these structures was stimulated by
the interest in systems with a low dimension (quantum
wells, dots, and wires) and by advances in the develop-
ment of technologies for preparing various nanostruc-
tures and the methods for their investigation. It should
be noted that metallic island films emit radiation in an
external electric field [2] and exhibit photoconductivity
in the visible and infrared spectral regions [3]. Consid-
erable interest in these objects is due to synthesis and
investigation of a new class of materials, viz., nano-
composites [4]. Nanocomposites are aggregates of
small metallic grains (with a diameter from 1 to
100 nm) in an insulator matrix; thin metallic island
films are special case of such structures.

For a moderate density of metallic islands in such
structures, the thermally activated conductivity mode
can be realized. It was found experimentally that the
conductivity of metallic island structures and nanocom-
posites normally changes with temperature in accor-
dance with the law σ ∝  exp(–T0/T)0.5. Thus, most exper-
imental results can be described by the “1/2 law” [5–8].
Various theoretical models (e.g., [9, 10]) were
employed for explaining the 1/2 law. These models
were basically modifications of the hopping conduction
theory for semiconductors, in which the 1/2 law is
interpreted as the emergence of a Coulomb gap in the
electron density of states in the vicinity of the Fermi
level. The important role of the Coulomb interaction
between charged grains and the formation of the Cou-
lomb gap in nanocomposites was indicated in [9, 10].
Other models explaining the 1/2 law are also available;
for example, the conduction in grained structures is
1063-7761/04/9904- $26.00 © 20827
attributed in [11] to the spread in the size of metallic
granules.

It was shown in a number of publications that the
exponent x in the expression describing the measured
value of conductivity in nanocomposites is not always
equal to 1/2. Zvyagin and Keiper [12] proved that the
standard theory of hopping conduction with variable
range is inapplicable when the hopping range is smaller
than the island size and is comparable with the thick-
ness of interlayers between the islands. It was found
that x = 0.75 in [13], x = 0.72 in [14], and x = 1 in [15].
The reasons for such deviations in the dependence with
x = 1/2 remain unclear. It has been generally accepted,
however, that the conduction mechanism in gained sys-
tems (in particular, in metallic island films) is associ-
ated with tunnel transitions of charge carriers between
grains and is close in this respect to the hopping con-
duction mechanism in doped semiconductors [5].

It should be noted that all authors emphasized that
the temperature dependences of the conductivity of
structures were measured under voltages correspond-
ing to the linear segment of the current-voltage charac-
teristics. On the other hand, it was shown in some pub-
lications (see, for example, [16, 17]) that tunnel sys-
tems consisting of two metals separated by an
insulating barrier do not exhibit an ohmic segment on
the current–voltage characteristic if the conductivity is
measured in extremely weak electric fields. This phe-
nomenon was referred to in [16] as anomalous conduc-
tion at zero bias voltage. The effect of anomalous con-
duction was studied in [17] for systems in which
4−12-nm metal (Sn) particles were contained in an
insulating layer; it was shown that the conductivity of
these structures in weak electric fields may change by a
factor of several units. With increasing temperature, the
effect of anomalous conduction becomes weaker.

Thus, a unified concept of the mechanism of con-
duction in nanocomposites and thin metallic island
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Image of the surface of a 6.3-Å-thick tungsten film deposited on an insulating substrate.
films has not been worked out. At the same time, exper-
imental studies of transport properties in these struc-
tures should be carried out with certain care in view of
the anomalous conduction effect.

In this study, we report on an investigation of the dif-
ferential conductivity of ultrathin metallic films of Ti,
Co, W, and FeNi in the vicinity of liquid nitrogen tem-
peratures, when the anomalous conduction effect does
not introduce substantial errors in measured values of
the conductivity of structures.

2. TECHNOLOGY AND RESULTS
OF MEASUREMENTS

Thin films of Ti, W, FeNi, etc., were grown by
microwave sputtering in argon. The details of the
method for obtaining such films are given in [3]. After
sputtering, each metallic structure was coated by a thin
layer of an insulator (Al2O3, d = 8 Å) or a semiconduc-
tor (ZnTe, SiC, d = 8 Å). The thickness of the metallic
films varied from 5 to 100 Å.

To measure the differential conductivity of such
structures, mesostructures 0.5–1.5 mm in width and
2−3.5 mm in length were prepared. Ohmic contacts
were prepared by sputtering of indium on the surface of
a metallic film. The differential conductivity of the
films was measured in the temperature range from 77 to
300 K. It was found that the frequency dependence of
the conductivity remained unchanged for all samples
JOURNAL OF EXPERIMENTAL 
up to f = 1000 Hz. In the course of measurements, we
monitored the variation of differential conductivity
under the action of a weak electric field. For this pur-
pose, in addition to a varying component, a constant
voltage U0 was supplied to the sample. The error in the
conductivity measurements for island films was
approximately 5%.

Analysis of anomalous conduction in metallic
island films at the liquid nitrogen temperature and at a
constant electric field E0 ~ 40 V/cm in the samples
proved that the differential conductivity of some sam-
ples changes by 30−40%. With increasing temperature,
the effect of anomalous conduction was suppressed. In
view of the arguments formulated above, to avoid
errors associated with the anomalous conduction effect
in the study of the temperature dependence of the dif-
ferential conductivity of the samples, measurements
were made at a frequency f = ω/2π ~ 135 Hz and the
amplitude U1 of variable voltage did not exceed 10 mV
(E1 ~ 50 mV/cm; U0 = 0). Under such conditions, the
error of measurement of the differential conductivity of
metallic island films did not exceed 0.1% in the temper-
ature range under investigation.

Apart from the investigation of the conductivity of
metallic films, we studied the topography of the
obtained structures using atomic-force microscopy.
Figure 1 shows a typical image of the surface of a
6.3-Å-thick tungsten film deposited on the insulating
substrate. It can be seen that the film is of the island
AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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type with island sizes of ~150–300 Å; the islands are
separated by distances of about 15–100 Å. Experiments
with film samples of the same thickness, but made of a
different metal, give similar images differing only in
the island size. As the film thickness increases, the
islands gradually merge together and the film becomes
nearly continuous when the thickness of the metallic
layers is on the order of 20 Å.

Figure 2 shows the temperature dependence of the
specific surface differential conductivity of a tungsten
film on an insulating substrate for eight structures with
various thicknesses of metallic films (d = 6.3 (1), 7 (2),
7.9 (3), 8.5 (4), 9.48 (5), 11 (6), 19 (7), and 100 Å (8)).
The temperature dependences for the conductivity of
Ti- and FeNi-based structures differ insignificantly
from the temperature dependence of the tungsten con-
ductivity shown in Fig. 2. It can be seen from the figure
that the conductivity of the tungsten film on an insulat-
ing substrate varies by seven orders of magnitude when
the film thickness changes approximately by a factor of
three (from 6 to 19 Å). With increasing temperature, the
conductivity of the films increases. For metal film
thicknesses of 19 and 100 Å, the conductivity of the
films is virtually independent of temperature in the tem-
perature range under investigation.

To study the effect of anomalous conductivity on the
processes of charge carrier transfer in metallic island
films, the response time for the current through the
sample corresponding to a constant voltage step U0 was
investigated. Measurements were made at T = 77 K. A
voltage U = U0 + U1cos(ωt) was applied to the sample
and U0 was changed jumpwise from zero to U0 = 4 V
(E0 ~ 20 V/cm). The results of measurements of the cur-
rent response through the sample for a tungsten film of
thickness d = 7.9 Å are shown in Fig. 3. The same figure
presents the time dependences of alternating current
through the sample in relative units (I~) as well as vari-
ation of dc conductivity (σ) and the variation of the dif-
ferential conductivity measured at frequency f = 135 Hz
in relative units (in the present case, these quantities
coincide and are represented by the same curve in the
figure). It can be seen from the figure that the time
dependence of variation of the current through the sam-
ple is complex by nature. This dependence can be
approximated by two exponentials with characteristic
times τ ~ 10–5 s and τ ~ 10 s. The variation of the alter-
nating current and conductivity as a result of applica-
tion of a step voltage to the sample is characterized by
an exponential dependence with a characteristic time
τ ~ 10 s.

3. DISCUSSION OF RESULTS

The sample with a tungsten film of thickness d =
6.3 Å was chosen on purpose to demonstrate the struc-
ture of the surface of an island film (Fig. 1). A tungsten
film deposited of an insulating substrate becomes a
conductor precisely at this value of thickness (see
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Fig. 2). For a smaller film thickness, no electric current
through the film is observed under the present con-
ditions.

The measured temperature dependences of the sur-
face conductivity of metallic films shown in Fig. 2 are
of the dielectric type. The sharp increase in the conduc-

10–3

10–5

10–7

10–9

10–11

100 200 300 T, K

σ, 1/Ω
8

7

6
5
4
3

2

1

Fig. 2. Temperature dependence of the surface conductivity
of a tungsten film for eight structures with various thick-
nesses of metal films: 6.3 (1), 7 (2), 7.9 (3), 8.5 (4), 9.8 (5),
11 (6), 19 (7), and 100 Å (8).
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Fig. 3. Time dependences of variation of current through the
structure and its conductivity upon a change in voltage from
0 to 4 V.
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tivity with increasing temperature of the samples indi-
cates the activation nature of the conduction. It was
noted above that the temperature dependence of the
activation conductivity σ of island and granular films is
explained most often in terms of the theory of hopping
conduction with a variable hopping length (the 1/2 law).
The value of this conductivity is proportional to the prod-
uct of the probability of charge carrier tunneling between
islands and the activation probability [5, 6, 11]:

(1)

where L is the hopping length, λ = "/(mW)0.5 is the
decay length for the wavefunction of an electron in the
insulator separating metallic islands, m is the electron
mass, W is the tunnel barrier height (which nearly coin-
cides with the half-width of the forbidden gap of the
insulator), E is the activation energy, k is the Boltzmann

σ σ0 L/λ– E/kT–( )exp σ0 T0/T( )– 0.5( )exp ,∝ ∝

1.05

0.70

0.35

100 200 300 T, K

σ, 10–4 Ω–1

6

5

Fig. 4. Temperature dependence of the conductivity of a
tungsten film of thickness 9.8 (5) and 11 Å (6).
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constant, and T0 is the parameter determining the tem-
perature dependence of conductivity.

The measured temperature dependences of conduc-
tivity for samples 1–4 shown in Fig. 2 are correctly
approximated by the 1/2 law. The values of parameter
T0 for curves 1–4 are given in the table. The conductiv-
ities of samples 5 and 6 vary in proportion to tempera-
ture (Fig. 4). It is difficult to explain such a temperature
dependence of the conductivity in the model of hopping
conduction with a variable hopping length. The ques-
tion arises concerning the applicability of the 1/2 law
for explaining the temperature behavior of the conduc-
tivity for samples 1–4. To answer this question, we esti-
mate the hopping length L, which is a parameter in
Eq. (1), and compare the obtained value of L with
actual longitudinal sizes R of the islands and the spac-
ing s between them, which can be estimated from
Fig. 1. In accordance with Eq. (1), the hopping length L
is given by

(2)

Hopping length L was estimated for sample no. 1 at
temperatures T = 100 and 300 K; T0 = 9400 K (see
table); λ = "/(mW)0.5 ≈ 2 Å; and W ≈ 1.5 eV. Obviously,
the maximal value of the hopping length (Lmax) in the
case when the 1/2 law is valid is observed for E = 0.
Substituting the values of T0, E, and λ into Eq. (2), we
determine the hopping length (Lmax) for temperatures
T = 100 and 300 K. The value of Lmax = 19.4 Å at T =
100 K and Lmax = 11.2 Å at T = 300 K.

It can be seen from Fig. 1 that the actual distance s
between islands is 15–100 Å, which is comparable to
the hopping length Lmax calculated from Eq. (2). If,
however, we take into account the fact that the size of
the system formed by two neighboring islands exceeds
400 Å, we can assume that tunneling is possible only
between adjacent islands and the standard theory of
hopping conduction with a variable hopping length is
inapplicable in this case. Consequently, the conduction
in island films is associated with electron tunneling
between neighboring islands and the hopping length is

L T0/T( )0.5 E/kT–[ ]λ .=
Table

1 d = 6.3 Å σ ∝  exp(–T0/T)1/2 T0 = 9400 K

σ ∝  Tn exp(–E/kT) E = 2.92 × 10–2 eV n = 2

2 d = 7 Å σ ∝  exp(–T0/T)1/2 T0 = 3400 K

σ ∝  Tn exp(–E/kT) E = 8.8 × 10–3 eV n = 1.5

3 d = 7.9 Å σ ∝  exp(–T0/T)1/2 T0 = 2100 K

σ ∝  Tn exp(–E/kT) E = 7.3 × 10–3 eV n = 1.2

4 d = 8.5 Å σ ∝  exp(–T0/T)1/2 T0 = 1000 K

σ ∝  Tn exp(–E/kT) E = 6 × 10–3 eV n = 1

5, 6 d = 9.48; 11.06 Å σ ∝  T

7, 8 d = 19; 100 Å σ ≈ const
AND THEORETICAL PHYSICS      Vol. 99      No. 4      2004
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determined by the thickness of the insulator between
metallic islands and is independent of temperature.
With increasing film thickness, the sizes of islands
increase, while hopping length Lmax decreases since
parameter T0 becomes smaller (see table). Obviously,
electron tunneling in thicker films is also possible only
between neighboring islands and the hopping length is
independent of temperature. In this connection, the
temperature dependence of the conductivity of metallic
island films cannot be interpreted in terms of the model
of hopping conductivity with a variable hopping length
for all samples investigated here.

The temperature dependence of the conductivity of
island films can be approximated by the empirical
equation

(3)

In this expression, only the factors that may be func-
tions of temperature are taken into account. The
important role of the temperature dependence of the
preexponential factor was noted in a number of pub-
lications [5, 7].

We compared the measured temperature depen-
dences of conductivities for samples 1–4 with those
calculated from Eq. (3). As fitting parameters, we used
the power n of the temperature in the preexponential
factor and the activation energy E. The values obtained
for n and E are given in the table, while the calculated
dependences of the conductivity for samples 1–4 are
shown by solid curves in Fig. 2. It can be seen that the
experimental and calculated temperature dependences
of conductivity are in good agreement. Table shows that
the activation energy E and power n of temperature in
the preexponential factor decrease with increasing film
thickness.

Thus, the mechanism of conduction in metallic
island films is associated, as in [6, 11, 14], with tunnel-
ing of charge carriers between neighboring metallic
islands. At a nonzero temperature, thermodynamic
equilibrium sets in due to tunnel transition of electrons
between metallic islands; in this case, a fraction of
islands acquire a positive or negative charge (as a result
of transition of an electron from one neutral island to
another). The energy of the system in this case changes
by [11]

(4)

where e is the electron charge. The capacitance
C(R1, R2, s) of a capacitor formed by two islands depends
on their longitudinal sizes (R1, R2) and spacing s. If
R1 = R2 and the electrostatic induction associated with
the charges of the islands can be disregarded, we have
E ≈ e2/CR , where CR is the capacitance of an island
determined by its longitudinal size. With the formation
of charged islands, the conditions are created for con-
duction due to tunneling of charge carriers between
charged and neutral islands without a substantial

σ = σ0 T( ) L/λ–( ) E/kT–( ) Tn E/kT–( )exp .∝expexp

E e2/2C R1 R2 s, ,( ),=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
change in the system energy, the conductivity being
proportional to the number of charged islands [11, 14].

The validity of this mechanism of charge carrier
transport in island films is confirmed by analysis of the
time of current response to a step of constant voltage
applied to the sample (see Fig. 3). It is noteworthy that
the variations of the dc conductivity and of the differen-
tial conductivity measured at frequency f = 135 Hz
coincide and are described by an exponential depen-
dence with time τ ~ 10 s. Obviously, the electric field
applied to the sample changes the activation energy E.
The variation of the activation energy leads to a change
in the number of charged islands and to variation of the
conductivity in the films, the time of this variation
being τ ~ 10 s. On the other hand, the slow and identical
variations of the dc conductivity and the ac differential
conductivity are indications of the fact that current in
island films is mainly associated with tunneling of
charge carriers from charged to neutral islands. This
process is faster than the tunneling of electrons between
neutral islands since the former process occurs without
a substantial change in the system energy with charac-
teristic time τ ~ 10–5 s. If two independent (fast and
slow) processes of electron transfer between islands
existed simultaneously, the variation of conductivity at
a higher frequency would differ from the variation of
the dc conductivity. Thus, the mechanism of conduc-
tion in an metallic island film is associated with two
successive processes.

(i) Electron tunneling from one neutral island to
another with the formation of positively and negatively
charged islands. Such a transition involves the change
in the system energy by E ≈ e2/CR .

(ii) Tunneling of charge carriers from a charged to a
neutral island. In this case, the energy of the system
remains unchanged if the islands have the same size or
changes by ∆E ≈ e2(1/CR1 – 1/CR2) if the sizes of the
islands are different. In this case, E > ∆E. The conduc-
tivity of the film is proportional to the product of the
probabilities of these two processes [14].

It can be seen from the table that the value of activa-
tion energy E decreases with increasing film thickness,
which can be explained by an increase in the capaci-
tance of islands upon an increase in their size (see
Eq. (4)). To explain the change in the power n of tem-
perature in the preexponential factor upon a change in
the film thickness, we consider in greater detail the
mechanism of charge carrier transport between islands.

The first process determines the concentration of
charged islands (N+ –). We assume that the number of
charged islands is determined by electron tunneling
between two neutral islands without the participation of
phonons and is proportional to the number of electrons
in an island, which have an energy ε higher than activa-
tion energy E and which can tunnel to a neighboring
neutral island. We also assume that the excess energy of
electrons in islands relaxes during the interaction of
charge carriers with phonons. Hence, the concentration
SICS      Vol. 99      No. 4      2004
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of charged islands N+ – ∝  n(ε), where n(ε) is the concen-
tration of electrons with energy ε > E in a metallic
island. If we assume that the energy of the conduction

band of the metal is proportional to , the number of
electrons in the island, which have an energy higher
than activation energy E, is proportional to

(5)

where F is the Fermi energy measured from the bottom
of the conduction band.

In this case, the concentration of charged islands in
these metallic films (samples 1–4) is

with increasing film thickness, N+ – ∝  T for E ! kT
(samples 5 and 6).

The rate of the second process is proportional to the
probability W of charge carrier tunneling from a
charged island to a neutral one. This process also
involves a change in the system energy by ∆E ≈
e2(1/CR1 – 1/CR2). As in the first process, the probability
W of electron tunneling between charged and neutral
islands is approximately proportional to the number
n(ε) of electrons in a charged island, which possess
energy ε > ∆E and which are capable of tunneling to a
neighboring neutral island. The temperature depen-
dence of the number of electrons n(ε) in a charged
island can be derived from expression (5) by substitut-
ing ∆E for E in it. For ∆E @ kT, we have W ∝  T  ×
exp(−∆E/kT), while for ∆E ! kT, W ∝  T.

If electrons tunnel between islands without a change
in the system energy (i.e., ∆E = 0 and E = 0), the current
in tunnel systems consisting of two metals separated by
an insulating barrier is virtually independent of temper-
ature [18].

It was noted above and proved in [14] that the con-
ductivity of a metallic island film is proportional to the
product of concentration N+ – of charged islands and
probability W of electron tunneling between charged
and neutral islands. It was also noted [11] that the total
resistance of a sample of granular metals is propor-
tional to the resistance between a pair of individual
grains and inversely proportional to the concentration
of charged grains. Consequently, we can assume that
the conductivity of samples in metallic island films is

ε

n ε( ) ε εd
1 ε F–( )/kT( )exp+
-------------------------------------------------

E F+

∞

∫∝

∝ 
T E/kT–( ) for E @ kTexp

T  for E ! kT ,



N+– n ε( ) T E/kT–( ) for E @ kT ;exp∝∝

σ N+–W T2 E ∆E+( )/kT–( )exp∝ ∝

for   E  and  ∆ E  @  kT ,

σ T2 E/kT–( ) for E @ kT  and ∆E ! kT .exp∝
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This is in good agreement with the measured tem-
perature dependence of conductivity for sample 1.

As the film thickness and longitudinal sizes of
islands increase, the value of ∆E tends to zero and the
power of the exponential factor in the expression for
probability W of electron tunneling between charged
and neutral islands changes from unity to zero. In this
case, the temperature dependence of conductivity
changes from σ ∝  T2exp(–E/kT) and for ∆E @ kT to
σ ∝  Texp(–
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can apparently be explained not only
by electron tunneling between islands. Indeed, with
increasing film thickness, the sizes of islands increase
and their spacing decreases, which results, on the one
hand, in a sharp increase in the conductivity associated
with tunneling. On the other hand, an increase in the
island size and the emergence of bridges between
islands in some cases create conditions under which the
conductivity in the structure is limited to a considerable
extent due to scattering of the momentum of charge car-
riers in metallic islands from defects and inhomogene-
ities in the film.

4. CONCLUSIONS

The differential conductivity of ultrathin metallic
films of Ti, Co, W, and FeNi has been studied in the
range of liquid helium temperatures, for which the
effect of anomalous conductivity does not introduce
substantial errors in the measured values of the conduc-
tivity of structures.

It has been established that the temperature depen-
dence of the conductivity of metallic island films in the
insulator phase varies in accordance with the activation
law 
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exp(–
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).
It is shown that, with increasing film thickness, the

power of temperature in the preexponential factor var-
ies from

 

 n 

 

= 2 to

 

 

 

1.
In thicker films, for which a transition from the insu-

lator to the metal phase of conductivity is observed, the
temperature dependence of conductivity increases in
proportion to temperature.

The activation nature of the conductivity in thin
films, the change in the power of temperature in the pre-
exponential factor with increasing film thickness, and
the increase in the conductivity proportional to temper-
ature in thicker films can be explained in terms of the
model of electron tunneling between adjacent islands
taking into account the Coulomb interaction.
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In films for which a transition from the insulator to
the metal phase of conduction is observed, the limita-
tion imposed on the conductivity is not only due to tun-
neling between islands, but also due to scattering of the
momentum of charge carriers in islands from inhomo-
geneities.
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Abstract—The paper presents a theoretical analysis of macroscopic quantum tunneling phenomena in small
particles of a cubic ferromagnet of the HoxY3 – xFe5O12 type with strongly anisotropic (Ising) impurity ions
present in a low concentration x ! 1 in the region of strong magnetic fields, at which many orientation phase
transitions related to the competition of external and exchange field actions on the spin subsystem are observed.
The theory of path integrals for the magnetic subsystem was used to calculate the instanton contributions to
interphase tunneling amplitudes in the vicinity of first-order transitions for three principal orientations of an
external magnetic field in a cubic crystal. It was shown that low-energy barriers separating angular phases could
result in anomalously large mesoscopic volumes at which macroscopic spin tunneling effects could appear in
the energy spectra of particles. The special features of spectral splitting caused by the mixing of azimuthally
degenerate angular phases and phases with different polar angles of magnetization orientation were revealed.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Macroscopic quantum coherence and macroscopic
quantum tunneling of spins in magnetic mesoscopic
systems predicted theoretically [1] and described in
much detail in [2] were observed in experiments per-
formed to study the frequency dependence of magnetic
susceptibility and noise spectral response in small anti-
ferromagnetic particles [3], the temperature depen-
dence of magnetic relaxation frequencies in disperse
and disordered magnetic media [4], and the relaxation
of the transmission spectra of submillimeter waves in
macromolecular spin clusters [5]. Macroscopic quan-
tum effects are manifestations of the mesoscopic prop-
erties of magnetic systems and appear when there are
several equilibrium positions, stable or metastable, sep-
arated by energy barriers ∆E whose height exceeds the
characteristic energy "ω of the quantum of magnetiza-
tion oscillations near the equilibrium position by no
more than one order of magnitude (usually, ∆E ~ 30"ω
for ferromagnetic materials). Low-height energy barri-
ers appear for spin modes of remagnetization of small-
volume ferro- or antiferromagnetic particles [6], spins
of natural magnetic defects such as magnetic vortices
and domain boundaries in thin films and nanoparti-
tions [7], spin clusters in molecular magnets [8], and in
other small-volume magnetic formations. The essential
difference between magnetic mesoscopic systems and
nonmagnetic systems in energetically degenerate states
is the dependence of the spin tunneling amplitude on
the parity of their number, which is related to the Kram-
1063-7761/04/9904- $26.00 © 20834
ers theorem according to which degeneracy cannot be
completely removed if the spin is half-integer [9]. This
restriction is, however, is lifted in the presence of a dis-
sipative environment, which creates dephasing of inter-
fering tunneling amplitudes along topologically differ-
ent instanton trajectories. Generally, spin-dependent
macroscopic quantum coherence is easily destroyed in
the presence of random spins in the system [10], for
instance, in isotopes with magnetic nuclei [11], where
spin transfer creates very strong fluctuations of the
phase of tunneling instantons. In the absence of random
spins in a magnetic system, the decay of the phase
coherence of tunneling amplitudes can be caused by
magnetoelastic coupling of spins with lattice vibra-
tions. The decay of macroscopic quantum coherence
may then be incomplete, the effect of the destructive
interference of instantons that forbids spin tunneling
is in part removed, and the effect of unquenching of
macroscopic quantum coherence appears [12]. The
tunnel coupling of states close in energy results in the
pushing apart of levels and the splitting of degenerate
states. The matrix element of energy splitting is then
proportional to the transition probability amplitude.
The influence of macroscopic quantum spin tunneling
on the energy spectrum of a system can effectively be
studied by the magnetoresonance and resonance spec-
troscopy methods. For instance, microwave spectros-
copy was used in [5, 13] to investigate tunnel tran-
sitions and spin relaxation in the Mn12ac molecular
crystal.
004 MAIK “Nauka/Interperiodica”



        

MESOSCOPIC MIXING OF SPIN ORIENTATION PHASES IN PARTICLES 835

                                                                                                           
Complex-substituted rare-earth metal ferrite-gar-
nets containing strongly anisotropic magnetic ions
offer much promise as objects for studying mesoscopic
manifestations of macroscopic spin tunneling in small
particles. An important role in the physical properties of
such materials is played by microscopic magnetic
defects formed close to impurity rare-earth ion centers.
These defects often play a determining role in static
magnetization and magnetodynamic properties of bulk
magnets [14]. An illustrative example of such materials
is HoxY3 – xFe5O12. Even at very low impurity Ising-
type ion concentrations (x ~ 0.001), it exhibits magnetic
phase transitions in magnetic fields comparable to the
field H ~ HE of intersublattice exchange R–Fe and
complex magnetic resonance behavior at low tempera-
tures [15, 16]. At cryogenic temperatures determined
by the ferromagnetic resonance frequency in an
exchange field, that is, at

small-volume particles with rare-earth ion impurities
can exhibit cooperative quantum properties [17], which
can in turn influence both magnetic saturation and
phase formation and the special features of resonance
properties in the region of intersection of the energy
levels of impurity ions in a magnetic field. The
exchange field that acts between the rare-earth metal
sublattice and the iron sublattice is high (HE ~ 105 Oe),
and the expected crossover temperature in such materi-
als can therefore be no lower than in antiferromagnets,
of T* ~ 10 K. A detailed analysis of macroscopic quan-
tum phenomena during phase transitions in strong mag-
netic fields has not been performed thus far for materi-
als of the specified type with rare-earth metal impuri-
ties, although the experimental data on
magnetoresonance phenomena accompanying phase
transitions in such materials have been reported [15].

In this work, we study macroscopic quantum tunnel-
ing and macroscopic quantum coherence effects in
small particles of HoxY3 – xFe5O12 cubic crystals with
Ising impurity centers in a strong magnetic field ori-
ented along the crystallographic directions H || [100],
[110], and [111]. An analysis will be performed for low
holmium ion concentrations, x ! 1, which are of spe-
cial interest because they ensure the existence of low
energy barriers between equilibrium positions. We cal-
culated energy spectra for each field orientation taking
into account the corresponding splitting close to first-
order phase transition lines; these transitions can be
caused by macroscopic quantum coherence effects. A
detailed analysis can be very useful for performing
experiments with recording the magnetic resonance
spectra of such materials and in studies of spin-orienta-
tion phase transitions in strong magnetic fields.

T T*< "γHE/kB,=
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2. LAGRANGIAN, PHASE TRANSITIONS, 
AND SPIN TUNNELING AMPLITUDES

FOR HOMOGENEOUSLY MAGNETIZED 
HoxY3 − xFe5O12 PARTICLES IN A STRONG FIELD

Yttrium:holmium iron garnet HoxY3 – xFe5O12,
whose unit cell contains eight formula units, has cubic

symmetry; its space group is , point group m3m,
and cell size a = 1.24 nm. The rare-earth cations and
yttrium ions occupy c sites characterized by a dodeca-
hedral anionic (oxygen) environment. The cell has six
nonequivalent sites that can be occupied by impurity
ions. These sites differ in the orientation of local sym-
metry axes of the environment and, as a consequence,
the direction of local magnetization of strongly aniso-
tropic holmium ions, which have the properties of
pseudo-Ising ions. The rare-earth ions are in a strong
exchange field generated by the ferromagnetic matrix
of iron ions, which form two sublattices with octahedral
(a sublattice) and tetrahedral (d sublattice) environ-
ments. Because of the strong intra- and intersublattice
exchange interaction, two iron sublattices can be
treated as a unique ferromagnetic sublattice with mag-
netization MFe up to fields that far exceed the antiferro-
magnetic exchange field

which acts between the rare-earth metal ion spins and
the iron ions. On these assumptions and with the inclu-
sion of only the two lowest rare-earth ion levels, which
is warranted at fairly low temperatures, the thermody-
namic potential of the system under consideration can
be written as [16]

(1)

Here, index i denotes actual nonequivalent positions of
Ising ions, zi is the projection of the effective magnetic
field onto the local magnetization axis zi (in hol-
mium:yttrium iron garnets, the local magnetization
axes of holmium ions zi (i = 1, 2, 3) coincide with the
crystallographic axes [001], [010], and [100]), µ is the
magnetic moment of the Ising ion, xc = c0x is the vol-
ume concentration of the impurity, c0 = 8/a3 is the num-
ber of moles in unit volume, and A is the inhomoge-
neous exchange constant. In the polar coordinates, the
Lagrangian of the system can be written as

(2)

Oh
10

HE λMFe,=

E A
∇ Mk

MFe
----------- 

 
2

MFe H
xckBT

3
--------------–⋅–

k x y z, ,=

∑=

× 2
µ H λMFe– zi

kBT
---------------------------------.coshln

i 1=

3

∑

L
M
γ
----- 1 θcos–( )∂ϕ

∂t
------ E θ ϕ,( )– r,d

V

∫=
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where γ is the magnetomechanical ratio for the ferro-
magnetic sublattice and θ and ϕ are the polar and azi-
muthal angles that determine the orientation of MFe.
Accordingly, the action over the time interval tS is given
by the equation

(3)

The first term in Lagrangian (2) corresponds to the
topological contribution to action (3) in the phase space
of the dynamic system (the Berry phase) [9] responsi-
ble for the appearance of a phase shift in the probability
amplitudes calculated below. The magnetization of
Ising ions, which follows the projection of the effective
magnetic field created by the iron sublattice and an
external magnetic field onto the Ising axis, makes no
topological contribution [18].

The tunneling probability amplitude can be found
using the approach based on the theory of path integrals
in the phase space of the dynamic system in imaginary
time [1, 19]. We limit our consideration to instanton tra-
jectories W = (p, q) that make a determining contribu-
tion to the tunneling probability amplitude,

(4)

The tunneling probability amplitude is then given by
the equation

(5)

where

determines the exponential factor of the tunneling
amplitude (the Gamow factor). This factor is propor-
tional to the imaginary action part along the instanton
trajectory Wcl(τ). The action has an extremum on this
trajectory, which reduces its first variation to zero;
that is,

The probability amplitude phase is proportional to the
real part of the action, that is,

The preexponential factor AK in the equation for the
tunneling amplitude is determined by the spectrum of
small fluctuation excitations in the vicinity of the
instanton trajectory. We omit its calculations and only

SE = L td

0

tS

∫  = t
M
γ
----- 1 θcos–( )∂ϕ

∂t
------ E θ ϕ,( )– r.d

V

∫d

0

tS

∫

Ka b→ W[ ]
iSE W( )

"
----------------- 

 exp .d

a

b

∫=

Kt t T+→ AK iSE Wcl( )/"( )exp=

=  AK –B1 iB2+( )exp ,

B1 ImSE Wcl( )=

δSE W( ) 0.=

B2 ReSE Wcl( ).=
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note that, in the order of magnitude, it is determined by
the equation [20]

(6)

where ω0 is the resonance oscillation frequency close to
the initial equilibrium position.

3. MAGNETIC PHASE TRANSITIONS
IN HOLMIUM:YTTRIUM IRON GARNETS

Let us briefly summarize information about mag-
netic phase transitions in holmium:yttrium iron garnets
and the corresponding phase states of the spin sub-
system necessary for the further analysis. Of greatest
interest to us are low temperatures. Ignoring inhomo-
geneous exchange [the first term in (1)], the energy of
the ground state of the system at T = 0 K [potential (1)]
can be written in the normalized variables

as

(7)

where the vector m is the total moment of the Ho3+ ions
in arbitrary units normalized with respect to MFe; this
vector can only be directed along axes of the type [111].
The modulus of this vector

can be treated as the relative concentration of Ho3+ ions.
Magnetic phase transitions can only occur in the system
as discrete reorientations of the vector m from one
direction of the type [111] to another. The minimization
of energy (7) determines the equilibrium phase states of
the system. A detailed description of the main charac-
teristics of the phase diagrams for the cases under con-
sideration can be found, e.g., in [16].

The classification and denotations of the phases
considered below for the field orientations H || [001],
H || [110], and H || [111] and the equations for the fields
of orientation phase transitions at m ! 1 are as follows.

H || [001]. Here, fourfold degenerate phases that dif-
fer in the projection of m onto H can exist:

(8)

The phase transition line separating these phases is

AK ω0
B1

"
-----,≈

ε E

λMFe
2

------------, h
H

λMFe
------------, l

MFe

MFe
---------= = =

ε –l h m–( ) h m,⋅–=

m xcµ/ 3MFe=

phase  I— m  ||  111 [ ] , 111 [ ] , 111 [ ] , 111 [ ] ,

phase  II— m  ||  111 [ ] , 111 [ ] , 111 [ ] , 111 [ ] .
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given by the equation

(9)

H || [110]. In this case, three phases exist,

(10)

The first-order phase transition lines for the corre-
sponding phases have the form

(11)

H || [111]. There exist four phases,

(12)

The corresponding first-order phase transition lines are

(13)

4. MESOSCOPIC SPIN OSCILLATIONS
IN SMALL HoxY3 – xFe5O12 PARTICLES

AT H || [100]

Let us consider small particles of volume

within which magnetization can be considered homo-
geneous in the external field H || [100] and the first term
in the equation for the energy [Eq. (1)] can be ignored.
The polar axis is aligned with the axis [100], and the
azimuthal angle is counted from the crystal direction

hI II, 1
m2

3
------.–=

phase  I— m  ||  111 [ ] , 111 [ ] ,

phase  II— m  ||  111 [ ] , 111 [ ] , 111 [ ] , 111 [ ] ,

phase  III— m  ||  111 [ ] , 111 [ ] .

hI II, 1
m

6
-------,–=

hII III, 1
m

6
-------.+=

phase  I— m  ||  111 [ ] ,

phase  II— m  ||  111 [ ] , 111 [ ] , 111 [ ] ,

phase  III— m  ||  111 [ ] , 111 [ ] , 111 [ ] ,

phase  IV— m  ||  111 [ ] .

hI II, 1
2
3
---m,–=

hII III, 1,=

hIII IV, 1
2
3
---m.+=

v 0 A/λMFe
2( )3/2

,<
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[010]. The Lagrangian of unit volume then takes the
form

(14)

where

and the action is

(15)

At low temperatures T  0 and low concentrations
x ! 1 (when

is a small parameter), the first-order phase transition
line

appears on the hτ plane in high fields H ~ λMFe
[see (9)]. The energies of two phases fourfold degener-
ate with respect to the azimuthal angle

become equal on this line.
At small polar angles of deviations of MFe from the

direction of field H, which are always small if fields are
high and concentrations x low, we can, after the intro-
duction of the new variables

where

,

rewrite action (15) in the normalized form

L
MFe

γ
--------- 1 θcos–( )φ λMFe

2 h θcos+=

+ τ x̃
θ ϕcossin
τ

----------------------- 
 cosh

θ ϕsinsin
τ

---------------------- 
 coshln

× h θcos–
τ

-------------------- 
 cosh ,

x̃
1
3
---λµMFexc, τ

kBT
λµMFe
----------------, h

H
λMFe
------------,= = =

SE L t vdd∫ v 0 L t.d∫= =

m
xcµ
3MFe

---------------- ! 1=

h 1 m2/3, 0 τ 2m3/3 3< <–≈

ϕ π
4
--- 2k 1+( ), k 0 1 2 3,, , ,= =

p q,( ) 3/m( ) θ ϕ θ ϕsin,cos( ), t̃ ω0t,= =

ω0 γλMFe, τ̃ 3/m( )τ= =

SE

µ2xc
2
v 0

9γMFe
----------------- f τ̃( ).=
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Here,

(16)

is the normalized action, which contains the effective
Hamiltonian

(17)

where the constant H(p0, q0) is the reference level for
counting energy from the equilibrium state (p0, q0).
Considering that m ! 1, we can ignore small correc-
tions related to this parameter at high fields close to the
phase transition line h ~ 1 in Hamiltonian (17). This
allows us to use a simplified Hamiltonian that describes
the effect of fourfold degeneracy in phases (8) on the

f τ̃( ) dt̃
1
2
--- q̇ p ṗq–( ) H̃ q p,( )–

 
 
 

∫=

H̃ q p,( ) h
2
--- p2 q2+( ) τ̃ p

τ̃
--- q

τ̃
---coshcosh

ln–=

× 3 1 h–( )
mτ̃

------------------------ m p2 q2+( )
2 3τ̃

--------------------------– 
 cosh 

 H p0 q0,( ),–

(a)

(b)

q

p

(–a, +a)

(–a, –a)

(+a, +a)

(+a, –a)

q

p0

0

h/ 1 m/ 3–( )
h/ 1 m/ 3+( )

h/ 1 m/ 3+( )

h/ 1 m/ 3–( )

Fig. 1. Equilibrium points in the pq plane at H || [100]:
(a) instanton tunneling trajectories in phase I and (b) instan-
ton tunneling trajectories of the I  II phase transition;
open circles are phase I and hatched circles are phase II.
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assumption that the energy and polar angle directions in
these phases are approximately equal; that is,

(18)

We use this Hamiltonian to illustrate the method for
finding spin tunneling amplitudes between equilibrium
degenerate states in the limiting case of zero tempera-
ture   0.

The Hamilton equations

(19)

can be written in the form

(20)

There are four energetically equivalent equilibrium
points,

where a is the positive root of the transcendental equa-
tion

These points are shown in Fig. 1 in the pq plane. Spon-
taneous transitions related to macroscopic spin tunnel-
ing (macroscopic quantum tunneling) can occur
between these equilibrium points.

The tunneling probability amplitude between the
equilibrium states of the system will be found by means
of the passage to imaginary time τ = it and the complex
variables

The initial system of equations written in these vari-
ables takes the form

(21)

H̃ q p,( ) 1
2
--- p2 q2+( )≈

– τ̃ p
τ̃
---cosh q

τ̃
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q0 p0,( ) a a±,( ); a a±,–( ),=

a
τ̃
---tanh a.=
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In the complex variables, Hamiltonian (18) becomes

(22)

(23)

We therefore obtain the complex Hamiltonian

(24)

analytic with respect to each of its complex variables
pk , qk , k = 1, 2. Here, all the functions (pk , qk , and Hk ,
k = 1, 2) are real functions of their real arguments
(“time” τ is also real).

Partitioning the real and imaginary parts in the
Hamilton equations yields the real dynamic system

(25)

which is Hamiltonian in the variables

with Hamiltonian H1 and additional integral H2. The
system of equations obtained this way is integrable.

Instanton trajectories are found by numerically inte-
grating the equations by the Runge–Kutta method using
the asymptotic behavior of the solutions close to the
equilibrium positions,

where δ and ϕ are the arbitrary amplitude and phase of
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the asymptotic linear solution and

are the roots of the characteristic equation of linearized
system (21).

The system under consideration has two groups of
instanton solutions that connect equilibrium points sit-
uated on the diagonals and sides of a quadrangle. The
obtained numerical instanton solution for the transition
between the points (q–, p–) = (–a, –a) and (q+, p+) =
(+a, +a) is shown in Fig. 2a. The instanton solution for
the transition between the points (q–, p–) = (+a, –a) and
(q+, p+) = (+a, +a) (Fig. 2b) is found in a similar way.

The behavior of the instanton trajectories when tem-
perature varies is shown in Fig. 3. To find the trajectory

λ 1 1

τ̃ a
τ̃
---cosh

2
--------------------–

 
 
 
 

±=

–1

0

1

q1, q2, p1, p2

(a)

(b)

q1 = p1

q2 = –p2

0 10 20 30 40 50 60
t

–1

0

1

q1

q2

p1

p2

Fig. 2. Examples of instanton solutions at  = , a =
 between the points (a) (q, p) = (+a, –a) and (q, p) =

(–a, +a) and (b) (q, p) = (+a, –a) and (q, p) = (+a, +a). Phase
variables q1, q2, p1, and p2 and time t are normalized with

respect to .

τ̃ 3/3tanh
3tanh

τ̃
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in the zero temperature limit, when   0 and a 
1, we must again consider the tunnel transitions
between the points (q–, p–) = (–a, –a) and (q+, p+) =
(a, a). In conformity with the numerical solutions
already found, we will seek a trajectory with the sym-
metry property (q1, q2) = (p1, –p2). On this trajectory,
the second integral H2(q1, q2, p1, p2) is identically equal
to zero. The vanishing of the first integral H1(q1, q2, p1,
p2) = 0 implicitly describes the trajectory of motion.
Taking into account the selected symmetry, we obtain

in the limit   0, a  1.

It follows that

(26)

The above numerical solution of the corresponding
type for  ≠ 0 transforms into asymptotic solution (26)
in the phase space of the system in the limit   0,
a  1. This tendency is shown in Fig. 3, which con-
tains instanton trajectories on the q2q1 plane for various

 parameter values. The trajectories are normalized
with respect to the equilibrium value

The tunneling probability amplitude is determined

τ̃

H1 q1 q2 p1 p2, , ,( ) 1 q1–( )2 p2
2– 0= =

τ̃

p1 q1, p2 q2– 1 q1–( ).±= = =

τ̃
τ̃

τ̃

p0 q0 a τ̃( ).= =

–1 0 1
q1/a

0

1

2

3

4
q2/a

1

2

3

4

Fig. 3. Projection of normalized instanton trajectories
(dash-and-dot lines) between the points (q, p) = ±(a, a) onto
the phase plane q1q2 at various temperature parameter val-

ues  = (1) 0.167, (2) 0.482, (3) 0.763, and (4) 0.924. The
solid line is the projection of the limiting trajectory q2 = 1 –

|q1| that describes the instanton in the limit  = 0.

τ̃

τ̃

JOURNAL OF EXPERIMENTAL 
by (5), where the exponential factor is found as

(27)

Here,

is the normalizing factor. The normalized exponential
factor is determined at zero temperature as the limit

As the instanton trajectory corresponds to the H(q, p) =
0 zero level of the Hamiltonian, the normalized action
along the instanton trajectory can be written as

(28)

After the integration of (28), we obtain

(29)

for the case under consideration.
Next, let us consider the transition between the

points (q–, p–) = (a, –a) and (q+, p+) = a, a. For this tran-
sition, the second integral H2(q1, q2, p1, p2) vanishes in
the limit   0, a  1 at q1 = a, p2 = 0, whereas the
first integral gives q2 = ±(1 – |p1|). The integration
of (28) therefore yields

(30)

for the limiting trajectory under consideration. A com-
parison of (29) and (30) shows that the tunneling fre-
quency between neighboring energetically degenerate
equilibrium positions is much higher than for the
instanton transition between opposite states. A similar
procedure can be used to find the other possible instan-

–B1 iB2+
iSinst

"
---------- B0 f̃ inst τ̃( ).= =

B0
µ2xc

2v 0

9"γM
-----------------=

α inst 0( ) f̃ inst
τ 0→
lim τ̃( ).=

f̃ inst τ̃( ) i
2
--- q̃̇ p̃ p̃̇q̃–( ) t̃d

∞–

∞

∫=

=  
1
2
--- –q̇1 p2 q1 ṗ2 q̇2 p1– q2 ṗ1+ +( ){

∞–

∞

∫

+ i –q1 ṗ1 q̇1 p1 q̇2 p2– q2 ṗ2+ +( ) } t̃d

=  
1
2
--- – p2 q1

∂ p2

∂q1
-------- p1

∂q2

∂q1
--------– q2

∂ p1

∂q1
--------+ + 

 




qa

qb

∫

+ i –q1

∂ p1

∂q1
-------- p1

∂q2

∂q1
-------- p2– q2

∂ p2

∂q1
--------+ + 

 




q1.d

α inst f̃ τ̃( )
τ̃ 0→
lim α1 iα2+ 2–= = =

τ̃

α inst f̃ τ̃( )
τ̃ 0→
lim α1 iα2+ –1 i+= = =
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ton trajectories and their contributions to the tunneling
probability at zero temperature.

We will now consider the case of a finite value of the
small parameter m, when there are two fourfold degen-
erate phases (8) described by Hamiltonian (17) with
different polar orientations of the magnetization vector
of the iron sublattice, in the limit of low temperatures

  0. These phases are defined as follows.

Phase I: , where 
This phase exists in the fields

The dynamics of this phase is described by the Hamil-
tonian

(31)

Phase II: |p0| = |q0| = 1/(h – r). This phase exists in
the fields

The corresponding Hamiltonian is

(32)

The energies of the two phases are compared at the
first-order phase transition point [see (9)], approxi-
mately in the field

We will consider the transition probability between
the nearest equilibrium points of these two phases

(see Fig. 1b) at the field value at which they become
energetically degenerate, that is, at h = h*. The instan-
ton solution can be found from the condition that
Hamiltonians (31) and (32) should remain at the zeroth
level taking into account that

The particular constant instanton solution

τ̃

p0 q0 1/ h r+( )= = r m/ 3.=

h 1
r2

1 r+( )2
------------------.–≤

H̃ q p,( ) h r+
2

----------- p2 q2+( ) p q––=

– 1 h–
r

----------- H p0 q0,( ).–

h 1
r2

1 r2–( )
------------------.–≥

H̃ q p,( ) h r–
2

----------- p2 q2+( ) p q––=

+ 1 h–
r

----------- H p0 q0,( ).–

h h* 1 r2.–≈=

p0
I q0

I 1
h r+
-----------, p0

II q0
II 1

h r–
-----------= = = =

H p0 q0,( ) 1
h* r–
--------------– 1 h*–

r
---------------+ 1

h* r+
---------------–

1 h*–
r

---------------.–= =

p p1 i p2, q+ p1 i p2,–= =
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will be sought using Hamiltonian (17) at

for phase I and Hamiltonian (17) at

for phase II. The p* parameter is determined by the
condition of continuity of the variable p2(p*) for the
angular phases under consideration in the complex
phase space of dynamic system (21).

The imaginary part of the complex Hamiltonian
identically equals zero in the limit   0 for both
angular phases I and II; that is,

The zeroth level of the real part of the Hamiltonian for
phase I is

(33)

which yields

For phase II, we find in a similar way that

(34)

which yields

The condition of sewing together these two solutions at
the point p1 = p* yields

(35)

Using this instanton solution for the zeroth Hamilto-
nian level and (28), we find

(36)

for the case under consideration. The normalized action
between two angular phases I and II [see (8)] that we
found is much smaller than the tunneling factors
obtained above for the orientation macroscopic quan-
tum coherence transitions within each phase. This is

1
h r+
----------- p1 p*< <

p* p1
1

h r–
-----------< <

τ̃

H2 p1 p2,( ) 0.=

H1 p1 p2,( ) h r+( ) p1
1

h r+
-----------– 

  2

p2
2– 

  0,= =

p2 p1
1

h r+
----------- for 

1
h r+
----------- p1 p*.< <–=

H1 p1 p2,( ) h r–( ) p1
1

h r–
-----------– 

  2

p2
2– 

  0,= =

p2
1

h r–
----------- p1 for p* p1

1
h r–
-----------.< <–=

p*
1
2
--- 1

h r–
----------- 1

h r+
-----------+ 

  h

h2 r2–
---------------,= =

p2*
1
2
--- 1

h r–
----------- 1

h r+
-----------– 

  r

h2 r2–
---------------.= =

α inst f̃ τ̃( )
τ̃ 0→
lim r2

2 h*2 r2–( )2
-----------------------------– r2

2
----–≈= =
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explained by a much lower energy barrier between
phases I and II compared with the barrier for an azi-
muthal change in the orientation of the magnetization
of the iron sublattice within one phase. As a conse-
quence, intraphase tunneling effects become strongly
suppressed as the mesoscopic volume increases. Low
energy barriers substantially increase the mesoscopic
volume in which the quantum properties of magnetiza-
tion oscillations close to the first-order phase transition
line can manifest themselves. On the other hand, tran-
sitions between azimuthal equilibrium directions of the
magnetization of the iron sublattice can become essen-
tial to macroscopic quantum coherence as the volume
of particles decreases, the separating barrier for the
interphase transition I–II becomes smaller than the
oscillation quantum ∆E ! "ω0, and the iron sublattice
ceases to distinguish between phases I and II because of
strong quantum fluctuations. The barrier to the transi-
tion I–II is suppressed much more strongly as the tem-
perature increases than intraphase barriers that deter-
mine the stability of these phases with respect to the
other possible transitions.

5. ENERGY SPLITTING OF THE GROUND STATE 
AT H || [100] TAKING

INTO ACCOUNT MACROSCOPIC QUANTUM 
COHERENCE SPIN OSCILLATIONS

The special features of the splitting of the ground
state of a system in the presence of energy degeneracy
are determined by solving the problem of Hamiltonian
diagonalization taking into account the matrix elements
of tunneling. If fourfold azimuthal degeneracy is unim-
portant for macroscopic quantum coherence when
states I and II are mixed, the splitting of the ground state
occurs trivially, into two levels with the tunnel transi-
tion width determined by Gamow factor (36).

However if azimuthal macroscopic quantum coher-
ence transitions acquire importance, the ground state of
the mesoscopic system under consideration with four
degenerate equilibrium positions is found by solving
the eigenvalue problem for the mixed wavefunction

The matrix elements of the Hamiltonian to be diagonal-
ized are determined by the tunneling amplitudes

between the corresponding equilibrium positions. We
can therefore write

(37)

Ψ c1φ1 c2φ2 c3φ3 c4φ4.+ + +=

∆m Am –Bm1 iBm2+( ), mexp≈ 1 2,,=

E– ∆1 ∆2 ∆1*

∆1* E– ∆1 ∆2

∆2 ∆1* E– ∆1

∆1 ∆2 ∆1* E– 
 
 
 
 
 
  c1

c2

c3

c4 
 
 
 
 
 
 

0.=
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The energy eigenvalues are found by solving the
equation

(38)

We see that, in the presence of the destructive interfer-
ence of the tunneling amplitudes, that is, if

pairwise degeneracy of energy levels appears,

Generally, this equation has four different roots.

6. PHASE TRANSITIONS 
AND SPIN TUNNELING AT H || [110]

Next, let us consider a small HoxY3 – xFe5O12 particle
of volume v 0 in field H || [110]. The Lagrangian of unit

volume in the coordinate system , [001], [110]
then has the form [16]

(39)

Here, the notation is the same as in (14). After the intro-
duction of new variables by analogy with the case con-
sidered above, namely,

,

we obtain the action

in fields h ~ 1. Here,

E4 2E2 ∆2
2 2 ∆1

2+( )– 4E∆2 ∆1
2 ∆1

*2
+( )–

– 4∆2
2 ∆1

2 ∆1
2 ∆1

*2
–( )

2
– 0.=

∆1
2 ∆1

*2
+ 0,=

E± ∆2
2

2 ∆1
2+ .±=

110[ ]

L
MFe

γ
--------- 1 θcos–( )φ MFeH θcos+=

+ τ x̃
θ ϕsinsin
τ

---------------------- 
 cosh

 
 
 

ln

+ τ x̃
2 h θcos–( )

τ
--------------------------------- 

 cosh
2 θ ϕcossin

τ
------------------------------- 

 cosh+ .ln

q p,( ) 3m 1– θ ϕ θ ϕsin,cos( ), τ̃ ω0t,= =

ω0 γλMFe, τ̃ 3m 1– τ= =

SE B0 f τ̃( )
µ2x2v 0

9γMFe
----------------- f τ̃( )= =
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1
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--- ṗq q̇ p–( ) H̃ q p,( )–

 
 
 

d∫=
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contains the Hamiltonian

(40)

where

and the points (q0, p0) are the equilibrium points of the
system. These equilibrium points determine phase
types [see (10)] in the limit   0, namely, phases I
and III,

,

and phase II,

The energies of the phases are compared at the first-

order phase transition point,  = ±1/ . The equilib-
rium points and possible types of instanton trajectories
in phases I (III) and at the I–II phase transition point are
shown in Fig. 4.

First, consider the tunnel intraphase macroscopic
quantum coherence transition ∆I → I between the points
(q0, p0) = (0, ±1) in the limit of zero temperature  
0. For this purpose, we select the instanton trajectory in
the imaginary phase space

The Hamiltonian takes the form

in the new variables in the   0 limit. The instanton
trajectory in the phase space is found as

from the condition of the conservation of energy (the
zeroth level of the first integral H = 0). The integration
along this trajectory yields

(41)

H̃ q p,( ) 1
2
--- p2 q2+( ) τ̃ p

τ̃
---cosh 

 ln–=

– τ̃ 2h̃
τ̃

----------cosh 2q
τ̃

----------cosh+ 
 ln

1
2
--- p0

2 q0
2

+( )–

+ τ̃
p0

τ̃
-----cosh 

 ln τ̃ 2h̃
τ̃

----------cosh
2q0

τ̃
------------cosh+ 

  ,ln+

h̃
3 1 h–( )

m
------------------------=

τ̃

p0 1, q0± 0= =

p0 1, q0± 2.±= =

h̃ 2

τ̃

p p1, q iq2.= =

Ĥ
1
2
--- 1 p1–( )2 1

2
---q2

2–=

τ̃

q2 1 p1–=

α 0 1–,( ) 0 +1,( )[ ] f̃ τ̃( )
τ̃ 0→
lim=

=  i
1
2
--- iq2 i

∂q2

∂p1
-------- p1– 

  p1d∫ q2 p1d

1–

1

∫– 1.–= =
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Equation (41) also determines the instanton contribu-
tion to the probability amplitude of the tunnel
intraphase transition III–III. This tunnel interaction
results in the splitting of the twofold degenerate energy
levels in phases I and III into two levels. The splitting
value is

Next, consider the instanton transitions ∆I → II in

field h1 = 1/  for the transition between the points

Here, we put

The Hamiltonian then takes the form

at |q1| < 1/  in the limit   0. Accordingly, p2 =

−|q1| in this region. At |q1| > 1/  in the limit   0,
we have

For this reason, the instanton is described by the equa-
tion

in the region 1/  < q1 < . Integration along this

∆E 2AK B0–( ).exp=

2

q0 p0,( ) 0 +1,( ) + 2 +1,( ).=

p 1 i p2, q+ q1.= =

Ĥ
1
2
---q1

2 1
2
--- p2

2–=

2 τ̃
2 τ̃

Ĥ
1
2
--- 2 q1–( )2 1

2
--- p2

2.–=

p2 2 q1+–=

2 2

–1

1

0 q

p

2– 2

Fig. 4. H || [110]. Equilibrium points and possible types of
tunnel transitions in the pq plane for phases I (hatched cir-
cles) and II (open circles) and for the I  II phase transi-
tion.
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instanton trajectory yields

(42)

The instanton contribution ∆II → II of the transition

between the points (q0, p0) = ( , ±1) is calculated in
a similar way. For this trajectory, we must use the sub-
stitution

The instanton contribution then equals

(43)

For the transition between the points

,

the trajectory is obtained using the relations

which allow the instanton trajectory and its contribu-
tion to the exponent of tunneling to be found in the limit

  0:

(44)

For the transition

we perform the substitution

The Hamiltonian then reduces to
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i
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1
–
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2
-------i.+=
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q1 p1 1–( )/ 2, q2 p2/ 2,–= =
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Ĥ
3
2
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2
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in the limit   0. This yields p2 = 1 – |p1| and the
instanton contribution

(45)

The transition of the type

has the smallest Gamow exponential factor and is there-
fore of the greatest importance for macroscopic quan-
tum coherence. The presence of this tunnel interaction
results in partial removal of sixfold degeneracy of lev-
els at the first-order phase transition point under consid-

eration, h = 1 – m/  (or  = 1/ ). In this approxi-
mation, the sixfold degenerate level splits into three
equidistant twofold degenerate levels separated by the
intervals

Similar reasoning is also valid for the second first-order

phase transition point at h = 1 + m/  (or  = –1/ ).

A similar analysis for H || [110] in the intermediate

field region at h = 1 (  = 0) reveals the presence of three
types of instanton transitions, for which

(46)

(47)

(48)

Among these transitions, of greatest importance are
the instanton transitions between two pairs of the near-
est neighbors [see (48)], which result in pairwise
removal of fourfold degeneracy of levels at this field
value. The interval between the doublets is then

as with the tunnel transitions in phases I and III.

7. MACROSCOPIC QUANTUM COHERENCE
IN THE REGION OF PHASE TRANSITIONS 

AT H || [111]

We will now consider the case of H || [111]. The ini-
tial Lagrangian of unit volume of homogeneously mag-
netized HoxY3 – xFe5O12 ferrimagnet written in the coor-

dinates [11 ], [ 10], [111] has the form [16]

τ̃

α 2– –1,( ) + 2 1–,( )[ ] 2 2.–=

q p,( ) 0 1,( ) 2 1,( )=

6 h̃ 2

∆E 2AK B0/2–( ).exp=

6 h̃ 2

h̃

α 2– 1–,( ) 2 1,( )[ ] 2 2,–=

α 2– 1,( ) 2 1,( )[ ] 2 i+ 2,–=

α 2 1–,( ) 2 1,( )[ ] 1 i 2.+–=

∆E 2AK B0–( ),exp=

2 1
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(49)L
MFe

γ
--------- 1 θcos–( )ϕ̇ MFeH θ τ x̃

1 h– 2 θ ϕ 2πn/3+( )cossin–
τ

--------------------------------------------------------------------------- 
 cosh ,ln

n 0 ±1,=

∑+cos+=
where the notation corresponds to (14). The calcula-
tions will be performed using the normalized time

Consider the region of high magnetic fields h ~ 1. Let
us introduce the substitutions

Since the region of importance of normalized field
|h − 1| ~ m changes is of the same smallness as the non-
zero equilibrium deviation angle θ ~ m/h values, the
Lagrangian of the problem can be simplified and the
action can be written as

(50)

Here, as previously,

and

is the effective normalized action with the effective
Hamiltonian

(51)

where the h parameter in the first term is set at zero,
because the transitions under consideration lie in a nar-
row neighborhood of fields |h – 1| ~ m ! 1.

t̃ ω0t, ω0 γλMFe.= =

p q,( ) 3

2 2m
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2 3q

τ̃
------------- 

 cosh+ ,
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In the limit   0, the Hamiltonian (system
energy) transforms into

(52)

Its minimization gives the equilibrium points shown in
Fig. 5.

Phases I and IV [see (12)] are in the center of the
unit circle; that is, p = 0 and q = 0 for them. They cor-
respond to the magnetization of the iron sublattice par-
allel to the external magnetic field applied along the
[111] axis.

Phase II contains three points that lie opposite each
other on the same circle,

Phase III [see (12)] contains three equivalent equi-

τ̃

H̃ q p,( ) 1
2
--- p2 q2+( )=

–
1
4
--- h2 2 p– h2 p 3q–+ h2 p 3q+ ++ +( ).

p 1, q 0; p
1
2
---, q–

3
2

-------.±= = = =

π/3

p

q

Fig. 5. Phases of the orientation states of MFe at H || [111]
in the pq plane and the types of tunnel transitions between
them: square, phases I and IV; hatched circles, phase II; and
open circles, phase III.
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librium points on the circle of unit radius  = 1,

At the phase transition points and the h parameter
values h = ±1, 0, the level with the lowest energy
includes the largest number of equilibrium points. Let
us consider the instanton trajectories at the phase tran-
sition points of most interest to us. We introduce the
complex variables

The Hamiltonian of the problem has imaginary and real
components that take the form

(53)

(54)

in the zero-temperature limit   0.

Using an approach similar to that described in the
preceding sections, we can find the instanton contribu-
tions to the exponential factor of tunneling for all types
of interphase transitions. For instance, let us find the
radial instanton at h = 1 – 2m/3 (h2 = 1) between the
points p = 0, q = 0 and p = 1, q = 0, which are the equi-
librium points of phases I and II. For this purpose, set
p = p1 and q = iq2. The imaginary part of the complex
Hamiltonian then identically equals zero along the tra-
jectory under consideration; that is,

The remaining real Hamiltonian part is

(55)

At the zero Hamiltonian level that passes through the
equilibrium points under consideration, the real part of
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2
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2

-------.±= = = =
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2
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the action identically equals zero, which gives the
sought instanton solution in the phase space,

(57)

and allows the contribution to the action to be calcu-
lated in the form

(58)

Similar instanton calculations between the points

p = –1/2, q = /2 (phase II) and p = 1/2, q = /2
(phase III) at the first-order phase transition point and
h = 1 (h2 = 0) give the instanton contribution to the nor-
malized Gamow factor,

(59)

We see that, as distinct from the previous case, the
instanton transition introduces the phase shift into the
tunneling amplitude, which is determined by the imag-
inary term. The transition in the opposite direction
changes the phase shift sign. Similar phase shifts
appear in the tunneling amplitudes under the instanton
transition between the equilibrium points of phases II
and III. Let us analyze the special features of the tunnel
splitting of the ground state introduced by macroscopic
quantum coherence transitions in the vicinity of the
phase transitions considered above.

8. THE DIAGONALIZATION 
OF THE INSTANTON INTERACTION 

HAMILTONIAN CLOSE
TO PHASE TRANSITION POINTS AT H || [111]

Let us consider phase transitions close to h = h* =
1 ± m. The wavefunction for the four energetically
equivalent equilibrium points of phases I and II (III and
IV) can be written as

where the coefficients Ci are determined from the
equation

q2

p1, 0 p1
1
2
---< <

1 p1,
1
2
--- p1 1,< <–






=

f̃ I II→ τ̃ 0 h2 1=,=( ) 4
3
--- q2̇ p1 ṗ1q2–( ) td∫=

=  
8
3
---q2d p1–

2
3
---.–=

3 3

f̃ II III→ τ̃ 0=( ) 4i
3
----- p1

3
2

------- iq2+ 
  q2 p1– td∫=

=  i
4

3
------- 8

3
--- q2 p1d

1/2–

1/2

∫– 2
3
---–

4

3
-------i.+=

Ψ p q,( ) C1ΨI 0 0,( ) C2ΨII 1 0,( )+=

+ C3ΨII
1
2
--- 3

2
-------, 

  C4ΨII
1
2
--- 3

2
-------–, 

  ,+
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(60)

EI h( ) E– ∆II I→ ∆II I→ ∆II I→

∆II I→ EII h( ) E– 0 0

∆II I→ 0 EII h( ) E– 0

∆II I→ 0 0 EII h( ) E– 
 
 
 
 
 
  C0

C1

C2

C3 
 
 
 
 
 
 

0.=
Here,

At the phase transition point, we have EI(h*) = EII(h*).
Near the transition (h – h* ! 1), the change in the off-
diagonal element can be considered small (if ∆II → I !
"ω0). The solution to the characteristic equation for
system (60) yields the following result: in the vicinity
of the I  II first-order phase transition, two split sin-
glet levels with a degenerate doublet between them are
formed close to the ground state. At the phase transition
point, the splitting of the levels has the form

(61)

where

Next, consider the III  II first-order phase tran-
sition, which occurs at h = h* = 1. At the transition
point, six states energetically degenerate with respect to
the azimuthal angle are formed, three states in each
phase. We will write the wavefunction of the system in
the form

∆II I→ AK
2
3
---B0– 

  .exp=

∆E1 2, 3∆II I→ ,±=

∆E3 4, 0,=

∆Ei Ei EI.–=
XPERIMENTAL AND THEORETICAL PHY
The solution to the eigenvalue problem for the tunnel-
ing interaction Hamiltonian is obtained as previously. It
follows from the corresponding calculations that, at the
phase transition point

,

the solution to the characteristic equation describes
three pairwise degenerate doublets,

(62)

where |∆III → II| = AKexp(–2B0/3).

Ψ p q,( ) C1ΨIII 1 0,–( ) C2ΨIII
1
2
--- 3

2
-------, 

 +=

+ C3ΨII
1
2
--- 3

2
-------–, 

  C4ΨIII
1
2
---– 3

2
-------–, 

 +

+ C5ΨII
1
2
---– 3

2
-------–, 

  C6ΨIII 1 0,( ).+

EIII h*( ) EII h*( ) E 1( ) 0= = =

∆E1 2, ∆III II→ ,±=

∆E3 4, ∆III II→
5
2
--- 13

2
----------– 

 
1/2

,=

∆E5 6, ∆III II→
5
2
--- 13

2
----------+ 

 
1/2

,=
Table

Field direction
Orientation of MFe(θ, ϕ)

in phases
Phase transition

fields

Normalized action

(0) for the most
important transitions

Level splitting

H || [100]

Phases I, II

,

ϕI = ϕII = ±π/4; ±3π/4

{4}  2 + 2

H || [110]

Phases I, II, III

, ϕI, III = ±π/2,

θII = m, tanhϕII = ±1/

{2 + 4}  2 + 2 + 2

H || [111]

Phases I, II, III, IV

θI, IV = 0, ,

ϕII = 0, ,

ϕIII = ϕII + π

i
{1 + 3}  1 + 2 + 1
{3 + 3}  2 + 2 + 2
{3 + 1}  1 + 2 + 1

f̃

θI,   II 
2
3
--- 

m
h ---- 1 

m
 

3
 

h
 ---------- ± 

 
 = hI II→ 1 m2

3
------–= f̃ I II→

m2

6
------–=

θI,  III 
m

 
3

 
h

 ----------=

2

h̃I II→ 1 m

6
-------–=

h̃II III→ 1 m

6
-------+=

f̃ I II→ f̃ I III→=

=  1
2
---–

i

2
-------+−

θII,  III 
2 2

3
---------- m =

2π
3

------ 4π
3

------,

h̃I II→ 1
2
3
---m–=

h̃II III→ 1=

h̃III IV→ 1
2
3
---m+=

f̃ I II→
2
3
---–=

f̃ II III→
2
3
---–

4

3
-------±=

f̃ III IV→
2
3
---–=
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9. CONCLUSIONS

The results of the preceding analysis are summa-
rized in the table. The table contains the normalized
critical field values for various field orientations in the
crystal at which the first-order orientation phase transi-
tions that we are considering occur. For each transition,
angular variables for angular phase equilibrium points
and the normalized action for the corresponding instan-
ton transitions are given. The ground state of a small
particle (the lowest energy level among the possible
states) is split near the phase transition point because of
the mesoscopic mixing of phases caused by instanton
interactions. The scheme of ground state splitting is
given in the last column of the table. The number of
degenerate energy states in the phase separated in
energy from the angular phases between which the
first-order transition occurs is given in braces. The ori-
entation phase transition at H || [100] attracts attention.
The energy barrier between two orientation phase states
with different polar angles is then substantially differ-
ent from that for intraphase energetically degenerate
states with different azimuthal directions of the magne-
tization of the iron sublattice. The instanton contribu-
tions to the exponential tunneling factor for these two
cases differ by a factor of 2/r2, where

is a small value for dilute compounds with x ! 1. This
means that the mesoscopic volume at which the influ-
ence of the mesoscopic mixing of phases I and II on the
splitting of degenerate ground state levels for this field
orientation can be noticeable is substantially larger than
for the other orientations.

Let us estimate the mesoscopic volume for the tun-
nel transition between phases I and II at H || [100],
when the macroscopic quantum coherence splitting
amounts to ∆ω = 1000 MHz. This can be done using the
equation

where

It follows from this equation that

With x = 0.1, µ = 7.5µB , ω0 = 1000 GHz, and a =
1.24 nm, we obtain v 0 ≈ 105a3 ≈ 2 × 105 nm3. The fre-
quency splitting exponentially increases up to the main
resonance frequency as the volume decreases. An
increase in splitting is also favored by a decrease in the
concentration of impurity ions. A similar frequency

r xcµ/3MFe xµ/15µB= =

∆ω Aω B0α inst( ),exp=

Aω ω0 B0α inst, ω0 γλM, α inst Re f̃ 0( ).= = =

v 0
4

c0α inst
--------------

15µB

xµ
------------ 

 
2 ω0

∆ω
--------ln≈ a3

4
-----

15µB

xµ
------------ 

  ω0

∆ω
--------.ln=
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splitting related to other instanton transitions and
occurring at other field orientations, when αinst = –1/2,
can be observed for the same volume but at substantially
lower impurity concentrations, namely, at x = 0.01.

Decreasing the concentration to x < 0.001 causes the
formation of magnetically inhomogeneous states in the
vicinity of impurity centers [14]. The mesoscopic vol-
ume of spin clusters in the vicinity of Ising ions is then

v cl ~ a2  and is virtually independent of the
concentration of impurities at such dilution values.
Only the number of spin clusters in the given crystal
volume then changes. Mesoscopic magnetization oscil-
lations caused by the tunneling of the magnetization of
the iron sublattice between orientation phases in a clus-
ter are described like macroscopic quantum coherence
oscillations in small particles of volume v cl with the
effective concentration xc = 1/v cl in the equation for
action (18), (44). The normalizing exponential factor is
then very small,

As a result, phase states with different orientations of
equilibrium positions become physically indistinguish-
able because of quantum fluctuations, when the dis-
tance between mesoscopic spin inhomogeneities
increases until they cease to interact. In the transition
region of concentrations, we can observe macroscopic
quantum coherence phenomena in mesoscopic spin
inhomogeneities formed by clusters of Ising impurity
ions [17].
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Abstract—Crystal phase of indirect excitons formed by spatially separated electrons and holes in coupled
quantum wells is analyzed. The collective mode spectrum of the exciton crystal at zero and nonzero magnetic
fields is found. The spectrum consists of two optical and two acoustical modes (transverse and longitudinal in
each case). We also study changes of the dipole crystal collective excitations at the transition exciton crystal–
electron–hole plasma. © 2004 MAIK “Nauka/Interperiodica”.
In a bilayer system with spatially separated elec-
trons and holes, the overlapping of wavefunctions and,
consequently, the recombination rate is suppressed and
therefore the lifetime of laser-pumped electrons and
holes can be sufficient for the appearance of different
interesting quasi-equilibrium electron–hole phases [1, 2].
In particular, a superfluid phase with anomalous trans-
port and optical properties [3], quasi-Josephson phe-
nomena [4], and nonordinary behavior in strong mag-
netic fields [5, 6] can be observed (we note that there is
strong analogy and some mapping between properties
of bilayer electron–hole and electron–electron sys-
tems). The essential feature of the system of interwell
excitons is the existence of parallel electric dipole
moments of the excitons. Dipole–dipole repelling of
the excitons suppresses the exchange interaction of the
excitons and stabilizes exciton phases [2] in compari-
son with the three-dimensional case [7]. Modern man-
ufacturing techniques of layer structures make it possi-
ble to obtain high-quality nanostructures and easily
vary their parameters. In recent years, very interesting
experimental results have been obtained in such bilayer
electron–electron and electron–hole [8–13] systems.
Presently, is possible to obtain a system with spatially
separated electrons and holes of such low densities that
the distance between charge carriers in a layer is much
greater than the interlayer separation. In this case, for-
mation of indirect excitons (dipoles) [14–20] and the
appearance of new exciton phase, the exciton crystal,
becomes possible at low temperature in some interme-
diate region of exciton density [2, 21, 22]. This causes
the great interest in the theoretical research of the
dipole crystal collective excitations at zero and nonzero

¶ This article was submitted by authors in English.
1063-7761/04/9904- $26.00 © 20850
normal magnetic fields, which can be used for experi-
mental verification of the exciton crystal existence by
optical methods. It is also interesting to study the
behavior of the collective excitation spectrum of a
dipole crystal at the transition into the phase of the elec-
tron–hole plasma.

We consider a double-layer two-dimensional sys-
tem. The first layer contains an electron channel with
the density of carriers Ne , and the second layer contains
holes with the density Nh . The distance between the
layers is D. We are interested the case where Ne = Nh .
At low temperatures and small concentrations of elec-

trons and holes (Ne(h)  ! 1, where aB is the effective
radius of indirect excitons along layers), the system is a
weakly nonideal excitonic gas of the areal density
Nexc = Ne = Nh with dipole moments d perpendicular to
the layers; in the ground state, d = eD and it increases
with the distance between layers. In a spatially sepa-
rated electron–hole system, contrary to ordinary (sin-
gle-layer) electron–hole systems, direct dipole–dipole
repulsion makes the main contribution to the total
energy (in contrast to the ordinary single-layer elec-
tron–hole system). At the same time, van der Waals
attraction between excitons and the exchange interac-
tion are insignificant (less than 1% compared with the
contribution of the direct dipole–dipole interaction). At
low temperatures, in a certain region of low concentra-
tions Nexc and interlayer separations D, dipole–dipole
repulsion leads to the formation of an indirect exciton
crystal. The small contribution of the exchange interac-
tion in a spatially separated electron–hole system is
connected with the exponentially small probability of
tunnelling through the barrier of the dipole–dipole
interaction.

aB
2

004 MAIK “Nauka/Interperiodica”
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We start with the exciton crystal phase. The kinetic
energy of the system is

(1)

where M = me + mh is the exciton mass, µ =
(memh)/(me + mh) is the reduced mass, Rnm = (merenm +
mhrhnm)M–1 is the coordinate of the center of the exciton
mass, and rnm = renm – rhnm represents the coordinates of
relative motion.

The potential energy of the system consists of two
terms. The first term is the Coulomb interaction of a
spatially separated electron and hole in one exciton,
which, in the case where ρ ! D, can be transformed as

(2)

Hence, for small oscillation amplitudes, this term can
be approximated by the parabolic potential,

(3)

For a real system of finite thickness, the quantity ω0
must be found using z-dependent wavefunctions in
each layer.

The second term in the potential energy is the inter-
exciton interaction along layers. In the system under
consideration, the interaction of indirect excitons is the
dipole–dipole repulsion,

(4)

Tkin
merenm

2

2
----------------

mhrhnm
2

2
----------------+ 

 
n m, ∞–=

∞

∑=

=  
M
2
-----Ṙnm

2 µ
2
---ρ̇nm

2+ 
  ,

n ∞–=

∞

∑

Uexc
e2

e ρ2 D2+
-------------------------– –

e2

eD
------- 1

2
--- e2

eD3
---------ρ2

.+≈=

U1

µω0
2rnm

2

2
-------------------,

n m,
∑=

ω0
2 e2

eµD3
-------------.=

U2

e2rnmrn'm'R
2 3e2 rnmR( ) rn'm'R( )–

eR5
-----------------------------------------------------------------------------------.

n n' m, m', ,
∑=
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Here, R is the vector between dipoles at different cells
(a is the lattice period)

(5)

xn(ym) are the displacements to the x- (y-) direction of
the dipole (n, m) from the equilibrium, and α is the
angle between basis vectors of an arbitrary lattice. We
consider a triangular lattice of the dipole (exciton) crys-
tal. It corresponds to a minimum of the potential
energy, and the spectrum of its frequencies is stable in
the two-dimensional case, in contrast to other configu-
rations (see, e.g., [21, 23]). Hence, α = π/3. The corre-
sponding reciprocal hexagonal lattice is presented in
Fig. 1.

In the harmonic approximation, we expand the
potential energy U2 to the second order in displace-
ments. As a result, it is easy to obtain the equations of
motion for the center-of-mass coordinates xn and ym , as
well as for the coordinates of relative motion un , vm:

R2 a n n'–( ) xn xn'–( )+[ ] 2=

+ a m m'–( ) ym ym'–( )+[ ] 2

+ 2 a n n'–( ) xn xn'–( )+[ ]

× a m m'–( ) ym ym'–( )+[ ] α ,cos

Γ: (0, 0)
L: (π, 0)
X: (π/2, π/2)

qa

ka
L

X

Γ

30°
60°

Fig. 1. The hexagonal reciprocal lattice. Shown are the Γ−L,
Γ–X, and L–X directions. Presented coordinates of symme-
try points are coefficients attached to basis vectors of the
oblique-angle coordinate system.
(6)

(7)

u̇̇n –ω0
3un Ω2 n n'–( )2 2 m m'–( )2–[ ] un' 3 n n'–( ) m m'–( )[ ] v m'–

n n'–( )2 m m'–( )2 n n'–( ) m m'–( )+ +[ ] 5/2
---------------------------------------------------------------------------------------------------------------------------,

n' , m' ∞–=

∞

∑+=

v̇̇ m –ω0
2v m Ω2 m m'–( )2 2 n n'–( )2–[ ] v m' 3 n n'–( ) m m'–( )[ ] un'–

n n'–( )2 m m'–( )2 n n'–( ) m m'–( )+ +[ ] 5/2
---------------------------------------------------------------------------------------------------------------------------,

n' , m' ∞–=

∞

∑+=
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(8)

(9)

ẋ̇n Ω1
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–3 n n'–( )2 45
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∞

∑

At zero magnetic field, the variables un , vm , describ-
ing optical (out-of-phase) vibrations, and xn , ym ,
describing acoustic (in-phase) vibrations, are sepa-
rated. From Eqs. (6)–(9), we therefore obtain two inde-
pendent determinants of the second rank, which give
the spectrum of collective excitations of the two-
dimensional dipole crystal.

We search for the normal mode in the form un =
uexp[–iωt + ikan], vm = v exp[–iωt + iqam]. The final
equations for optical modes are

(10)

where Ω2 = 2e2/µea3, (k, q) are the x, y components of
wave vector k,

N = n – n', J = m – m'.

ω2 ω0
2– Ω2 f 11 k q,( )+ 3Ω2 f 12 k q,( )–

3Ω2 f 21 k q,( )– ω2 ω0
2– Ω2 f 22 k q,( )+

× u

v
0,=

f 11 f q,( ) = 
N2 2J2–

N2 J2 NJ+ +( )5/2
--------------------------------------- kaN( ) qaJ( ),coscos

N J, 1=

∞

∑

f 22 k q,( ) = 
J2 2N2–

N2 J2 NJ+ +( )5/2
--------------------------------------- kaN( ) qaJ( ),coscos

N J, 1=

∞

∑

f 12 k q,( ) f 21 k q,( )=

=  
NJ

N2 J2 NJ+ +( )5/2
--------------------------------------- kaN( ) qaJ( ),sinsin

N J, 1=

∞

∑
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Correspondingly, for acoustic modes, we obtain

(11)

where  = 8e2D2/Mea5,

The dispersion laws ω(k, q) given by (10) and (11) are
presented in Fig. 2 (optical) and Fig. 3 (acoustical). These
dispersion laws are obtained, respectively, for the follow-
ing directions: (a) Γ–X, (b) Γ–L, and (c) L–X, where Γ,
L, and X are symmetry points in the first Brillouin zone.
The hexagonal reciprocal lattice that corresponds to the
triangular lattice in coordinate space and the symmetry
directions are shown in Fig. 1. In our calculations, the
dimensionless energy units ω = ω/ω0, Ω = Ω/ω0 = 0.2,
Ω1 = Ω1/ω0 = 0.01 and the dimensionless wave vector
units k = ka, q = qa are used. Two modes are found in
each of the spectra. One of the modes corresponds to lon-

ω2 Ω1
2 f̃ 11 k q,( )– Ω1

2 f̃ 12 k q,( )

Ω1
2 f̃ 21 k q,( ) ω2 Ω1

2 f̃ 22 k q,( )–

x

y
0,=

Ω1
2

f̃ 11 k q,( )

=  
–3N2 15

3
4
---J2+

N2 J2 NJ+ +( )7/2
--------------------------------------- 1 kaN( ) qaJ( )coscos–[ ] ,

N J, 1=

∞

∑
f̃ 22 k q,( )

=  

–3J2 15 N
1
2
---J+ 

 
2

+

N2 J2 NJ+ +( )7/2
---------------------------------------------- 1 kaN( ) qaJ( )coscos–[ ] ,

N J, 1=

∞

∑
f̃ 12 k q,( ) f̃ 21 k q,( )=

=  

15
3

2
-------J N

1
2
---J+ 

 –

N2 J2 NJ+ +( )7/2
------------------------------------------- kaN( ) qaJ( ).sinsin

N J, 1=

∞

∑
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gitudinal (in-phase or out-of-phase) vibrations, and the
other, to transverse vibrations. The transverse modes
must undergo strong changes during crystal melting.

1.1

1.0

0.9
0 0.5 1.0 1.5 2.0 2.5 3.0

ka

ω/ω0

qa = 0

||

⊥

(a)

1.1

1.0

0.9
0 0.3 0.6 0.9 1.2 1.5

ka

ω/ω0

qa = ka
||

⊥

(b)

1.1

1.0

0.9
1.8 2.1 2.4 2.7 3.0

qa

ω/ω0

ka = π – qa

||

⊥
(c)

Fig. 2. Dispersion of the optical longitudinal and transverse
modes: LXLX. (a) Γ–L direction, (b) Γ–X, and (c) L–X.
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In the presence of the perpendicular magnetic field,
we add the Lorentz components of acceleration and
obtain the system of four equations
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ka

ω/ω0

qa = 0

||

⊥

(a)
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Fig. 3. Dispersion of the acoustical longitudinal and trans-
verse modes: LXLX. (a) Γ–L direction, (b) Γ–X, and (c) L–X.
(12)

ω2 ω11
2– ω12

2 iω ωe ωh–( )+ 0 iωeB
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ω12
2 iω ωe ωh–( )– ω2 ω22

2– iωeB
µc
------– 0

0 iωeB
Mc
--------– ω2 ω33

2– ω34
2

iωeB
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-------- 0 ω34

2 ω2 ω44
2–

u

v

x

y

0,=
where B is the magnetic field and ωe = eB/mec and ωh =
eB/mhc are the respective cyclotron energies of an elec-
tron and a hole. Dispersion laws for the exciton crystal
in the magnetic field are presented in Fig. 4.
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In strong magnetic fields, optical modes approach
the electron and hole cyclotron energies. Such behavior
occurs because the cyclotron energy of electrons
(holes) in this field is much greater than the character-
istic Coulomb interactions, and therefore the spectrum
of our system is defined by the magnetic field, while the
e–h interaction is a small perturbation. This result
agrees with [24], where a system of spatially separated
electrons and holes under strong magnetic fields was
considered. In this case, the frequencies of the acoustic
modes decrease (see the inset to Fig. 4) because of mag-
netic localization electrons and holes in the layers. This
behavior is similar to one of the acoustic modes of a
Wigner crystal (see, e.g., [25]), with the dispersion law
in the region of strong magnetic fields of the form

(13)

where α ≡ 2πNee2/eme and s2 = 4e2/meea.

We now discuss the phase transition between the
dipole crystal and the electron–hole liquid at which the
long-range order in the electron–hole system disap-
pears. More precisely, we are interested in the change
of the mode properties under the phase transition. The
acoustic transverse mode, therefore, sharply disappears
when the long-range order in the electron–hole system
vanishes, and a damping transverse mode appears at
wavevectors k ~ 1/L, where L is the radius of the short-
range crystal order (see, e.g., [26]). The optical trans-
verse mode becomes nondispersive at small wavevec-
tors k. Two other modes (longitudinal optical and
acoustic ones) have the following dispersion laws at

ω–
α1/2sk3/2

ωe

--------------------,≈

1 2 3 4 5

ka = 0.1
3

2

0

ω/ω0

1

4

qa = 1.0

5

ωc/ω0

ω/ω0

0.10
0.08
0.06
0.04
0.02

0 1 2 3 4

Magnetoacoustic
modes

HCR

ECR

ωc/ω0

Fig. 4. The dipole crystal collective excitations as a function
of magnetic field. ECR and HCR are the electron and hole
cyclotron energies in the GaAs/AlGaAs structure. The inset
shows the magnetoacoustic modes in enlarged scale.
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zero magnetic field:

(14)

(15)

This result was obtained for a continuous medium (that
is, in the long-wavelength limit k[Nexc]–1/2 ! 1) and for
a small distance between the layers D ! [Nexc]–1/2. The
same result can be obtained by expanding in the small
parameter k (ka ! 1) and omitting the summation over
the shift coordinates in expressions (10) and (11),
which formally means the absence of shear modulus.
As follows from formulas (14), (15), and (3), two opti-
cal branches go up as the distance between layers
decreases, but the acoustic mode goes down.

Transition from the interacting indirect excitons to
the electron–hole plasma occurs upon further increase
in the concentration of spatially separated electrons and
holes [27, 28]. Characteristic values of the concentra-
tion at which such a phase transition occurs are on the
order of 109 cm–2. Changes in the collective excitation
spectra take on the character of a principle at this tran-
sition. Systems of the electron–hole plasma have two
collective modes (we neglect the tunneling between
layers). One of them is optical, with the square-root dis-

persion law (  ∝  ), and the other is acoustic, with

the linear law (  ∝  k) [29, 30]. This means that the
frequency of out-of-phase oscillations at k = 0 is equal
to zero, in contrast to the exciton phase of the system,
where out-of-phase branches start from the dipole tran-
sition energy ω0. In a perpendicular magnetic field, the
hybrid magnetoplasma excitations are described as

(16)

(17)

We can see that such field dependences differ from
those of the dipole crystal (see Fig. 4).

In summary, in this work, the properties of a dipole
crystal, a new exciton phase in a two-layer electron–
hole system with low densities of spatially separated
electrons and holes, are investigated. Collective modes
of the two-dimensional exciton triangular lattice at zero
magnetic field are found. The spectrum consists of four
branches: two optical (longitudinal and transverse) and
two acoustic (longitudinal and transverse). The fre-
quencies of optical modes at zero wave vector are non-
zero (in contrast to a Wigner crystal), and the frequen-
cies of the optical modes for D ! [Nexc]–1/2 purely in the

two-dimensional case are ω0 = .
The spectra of in-phase and out-of-phase vibrations

in the normal magnetic field are also found. In strong

ωop
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magnetic fields, the optical modes approach the elec-
tron and hole cyclotron modes, and the acoustic ones
decrease as the field increases.

We have discussed changes in the collective excita-
tions of a dipole crystal at the transition to the electron–
hole plasma phase. Plasma and magnetoplasma vibra-
tions of that phase are considered in the system of two
parallel infinite planes.
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Abstract—A consistent scheme is proposed for quantizing the potential amplitude in the one-dimensional
Schrödinger equation in the case of negative energies (lying in the discrete-spectrum domain). The properties
of the eigenfunctions ϕn(x) and eigenvalues αn corresponding to zero, small, and large absolute values of energy
E < 0 are analyzed. Expansion in the set {ϕn(x)} is used to develop a regular perturbation theory (for E < 0),
and a general expression is found for the Green function associated with the time-independent Schrödinger
equation. A similar method is used to solve several physical problems: the polarizability of a weakly bound
quantum-mechanical system, the two-center problem, and the tunneling of slow particles through a potential
barrier (or over a potential well). In particular, it is shown that the transmission coefficient for slow particles is
anomalously large (on the order of unity) in the case of an attractive potential is characterized by certain critical
values of well depth. The proposed approach is advantageous in that it does not require the use of continuum
states. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the basic problems in nonrelativistic quan-
tum mechanics is the determination of the spectrum of
energy states for a particle in a prescribed potential
(see [1, 2]). Various characteristics of this quantum-
mechanical system can be analyzed by solving the
problem, including its response to external perturba-
tions (e.g. polarizability). Accordingly, a considerable
part of the formal apparatus of quantum mechanics
relies on perturbation theory (see [1, 2]), i.e., on expan-
sion of the desired wavefunction in a complete set of
“zeroth-order” (unperturbed) wavefunctions. Perturba-
tion methods offer regular schemes for solving various
problems. These schemes are particularly simple and
instrumental when the prescribed potential function is
such that the problem has only bound-state solutions
(as in the harmonic oscillator problem).

However, a totally different situation arises in the
case of a realistic potential vanishing at infinity (see
Fig. 1), when the problem involves a continuous spec-
trum of energy E: the bound-state wavefunctions (cor-
responding to E < 0) must be combined with the contin-
uum wavefunctions (corresponding to E > 0) to obtain
a complete basis (see [1, 2]). Therefore, states of both
types must be taken into account in perturbation theory,
which substantially complicates the problem. It would
obviously be advantageous to find an approach that can
be used to solve problems concerning negative-energy
states without invoking continuum states.

In the approach of this kind developed this paper, a
feasible quantization scheme is applied to the ampli-
tude of the potential (i.e., the well depth). The idea
1063-7761/04/9904- $26.00 © 20856
behind the scheme can be explained as follows. The
bound state corresponding to a certain energy E < 0 of
a particle in a potential U(x) = U0v(x) of prescribed
form can be associated with an infinite set of ampli-

tudes  (n = 0, 1, 2, …). The values of  = (E)
and the corresponding wavefunctions ϕn(x) are treated
as eigenvalues and eigenfunctions, respectively.
Accordingly, an arbitrary function ψ(x) corresponding
to a state with E < 0 can be represented as an expansion
in the set {ϕn(x)}, which is expected to be complete.

In this study, the basic properties of the eigenfunc-
tions ϕn(x) and the corresponding eigenvalues αn are

Un
0 Un

0 Un
0

U

a

x

U0

Fig. 1.
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analyzed for the one-dimensional Schrödinger equa-
tion. The orthonormality and completeness of {ϕn(x)}
are established. The asymptotic behavior of ϕn(x) (as
x  ±∞) is determined, including the case of E = 0.
The properties of αn and ϕn(x) are analyzed in detail for
zero, small, and large absolute values of E (E < 0) and
in the semiclassical approximation for n @ 1. Expan-
sion in the eigenfunction basis {ϕn(x)} is used to
develop a regular perturbation theory (for E < 0) with-
out invoking continuum states. A general expression is
found for the Green function associated with the time-
independent Schrödinger equation (for E < 0).

To elucidate the scope of the proposed method, sev-
eral physical problems are analyzed: the polarizability
of a weakly bound quantum-mechanical system, the
two-center problem, and the tunneling of slow particles
through a potential barrier (or over a potential well). In
each case, a consistent scheme is developed for calcu-
lating the desired physical quantities by means of
expansion in the eigenfunction basis {ϕn(x)}. In partic-
ular, it is shown that the transmission coefficient for a
particle having a small energy (E  0) is anoma-
lously large (on the order of unity) for certain critical
values of well depth. To illustrate the key points of the
proposed method, Section 12 presents an exactly solv-
able example in which both eigenfunctions and eigen-
values can be expressed in relatively simple analytical
form. In this case, the completeness of {ϕn(x)} is
proved directly.

Note that quantization has been applied previously
to potentials in some particular cases. For example, the
Sturm functions corresponding to the three-dimen-
sional Coulomb potential were analyzed and used to
solve some quantum-mechanical problems in [3–5].
However, the analysis presented in [3–5] does not offer
a general approach to the problem in the case of an arbi-
trary potential function. Note also that a somewhat
analogous scheme for “quantizing” the permittivities of
macroscopic bodies relies on the eigenfunction method
proposed in [6, 7] for various problems in electrostat-
ics. Some techniques used in [6, 7] may prove helpful
in quantizing the amplitudes of finite-range potentials.

2. EIGENFUNCTION BASIS

Consider a particle in a one-dimensional potential of
the kind illustrated by Fig. 1. If the potential function
U(x) is represented as U(x) = U0v(x), where U0 is the
potential amplitude (U0 < 0) and v(x) (0 ≤ v(x) ≤ 1)
defines its shape (see Fig. 2), then the time-independent
Schrödinger equation can be written as

(1)

ψ'' x( ) εψ x( )+ αv x( )ψ x( ),=

ε 2mE

"
2

-----------, α 2mU0

"
2

--------------.= =
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Suppose that E is negative, i.e., ε < 0. Let v(x) be rap-
idly (say, exponentially) decreasing as x  ±∞. The
wavefunction ψ(x) and its derivative are subject to stan-
dard conditions, i.e., bounded and continuous at any x
and vanish as x  ±∞. In the conventional quanti-
zation scheme [1], these conditions are used to deter-
mine the bound-state energy levels En and wavefunc-
tions ψn(x).

However, an alternative approach can be developed
in which the quantized parameter in Eq. (1) is α.
Accordingly, the eigenvalues are discrete values αn (n =
0, 1, 2, …) of α (i.e., the potential amplitude). The cor-
responding eigenfunctions ϕn(x) satisfy the equation

(2)

In this approach, the energy ε is a parameter: αn = αn(ε)
and ϕn = ϕn(ε; x). As noted in the Introduction, the set
{ϕn(x)} can be used to solve various quantum-mechan-
ical problems (for E < 0). Therefore, the basic proper-
ties of ϕn(x) and αn should be examined.

First of all, it follows from (2) that ϕn(x) ∝
exp(−κ|x|) as x  ±∞ (κ = ). Furthermore, multi-
plying (2) by the complex conjugate  and inte-
grating the result with respect to x from –∞ to +∞, we
obtain

(3)

It follows from (3) that αn are real numbers that are neg-
ative if ε < 0 and v(x) ≥ 0:

αn < 0.

Since αn are real, it can be assumed from here on
that ϕn(x) are real.

ϕn'' x( ) εϕn x( )+ αnv x( )ϕn x( ).=

ε–
ϕn* x( )

αn ϕn' x( )
2

xd

∞–

+∞

∫ ε ϕn x( ) 2 xd

∞–

+∞

∫–
 
 
 

–=

× ϕn x( ) 2v x( ) xd

∞–

+∞

∫
1–

.

x

v

a

1

Fig. 2.
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After the changes ε   and n  m in (2), the
equation for the corresponding  has the form

Multiplying this equation by ϕn(x) and Eq. (2) by
, subtracting one from the other, and integrating

the result over the x axis, we obtain

(4)

Setting  = ε in (4), we find that the functions ϕn(x) and
ϕm(x) are orthogonal with the weight function v(x) if
αn ≠ αm . Accordingly, the orthonormality condition for
{ϕn(x)} is

(5)

where ϕn(x) and ϕm(x) correspond to the same energy.

It can be argued that the eigenfunction set {ϕn(x)} is
complete for a broad class of potential functions (see
below). Then, an arbitrary function f(x) can be
expanded in the basis {ϕn(x)}, and the coefficients fn in
the expansion can be determined by using orthonormal-
ity condition (5):

(6)

This expansion converges to f(x) only if the complete-
ness condition

(7)

holds for {ϕn(x)}, where ϕn(x) and ϕn(x') correspond to
the same energy. Note that (7) is valid for finite-range
potentials only for x and x' such that v (x) ≠ 0 and
v (x') ≠ 0.

Setting m = n in (4), taking the limit as   ε, and
using (5), we obtain

(8)

ε̃
ϕ̃m x( )

ϕ̃m'' x( ) ε̃ϕ̃m x( )+ α̃mv x( )ϕ̃m x( ), α̃m αm ε̃( ).= =

ϕ̃m x( )

αn α̃m–( ) ϕn x( )ϕ̃m x( )v x( ) xd

∞–

+∞

∫

=  ε ε̃–( ) ϕn x( )ϕ̃m x( ) x.d

∞–

+∞

∫

ε̃

ϕn x( )ϕm x( )v x( ) xd

∞–

+∞

∫ δnm,=

f x( ) f nϕn x( ),
n

∑=

f n f x( )ϕn x( )v x( ) x.d

∞–

+∞

∫=

v x( ) ϕn x( )ϕn x'( )
n

∑ δ x x'–( )=

ε̃

ϕn x( )[ ] 2 xd

∞–

+∞

∫
dαn ε( )

dε
----------------.=
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Hence,

(9)

By virtue of (5) and (8), it follows from (3) that

which entails the inequality

(10)

Let us introduce the zeroth-order Green function
G0(x – x'):

(11)

With the use of (11), Eq. (2) can be rewritten in integral
form as

(12)

which yields an asymptotic expression for ϕn(x):

(13)

Note that (12) is a homogeneous Fredholm integral
equation of the second kind with a polar kernel. It can
be transformed into an equation with a symmetric ker-
nel (for v(x) > 0) by changing to the functions

(14)

As a result, (12) becomes

where

(15)

is a symmetric and positive definite kernel. Under cer-
tain conditions, the eigenvalues of the corresponding
integral equation are positive (e.g., see [8]): µn > 0 (in

dαn

dε
--------- 0.>

ϕn' x( )[ ] 2 xd

∞–

+∞

∫ ε
dαn ε( )

dε
---------------- αn ε( ),–=

ε
dαn

dε
--------- αn.>

d2

dx2
--------G0 x x'–( ) εG0 x x'–( )+ δ x x'–( ),=

G0 x x'–( )
1

2κ
------ κ x x'––( ), κexp– ε– .= =

ϕn x( )
αn

2κ
------ κ x x'––( )exp ϕn x'( )v x'( ) x',d

∞–

+∞

∫–=

x ∞: ϕn x( )
αnun ±( )

2κ
------------------ κ x–( ),exp–≈±

un ±( ) e κx± ϕn x( )v x( ) x.d

∞–

+∞

∫=

Ωn x( ) v x( )ϕn x( ).=

Ωn x( ) µn K x x',( )Ωn x'( ) x'; µnd

∞–

+∞

∫ αn,–= =

K x x',( )
1

2κ
------ v x( ) κ x x'––( )exp v x'( )=
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which case αn < 0). Moreover, the corresponding eigen-
functions constitute an orthonormal and complete set
{Ωn(x)}:

(16)

It follows from (16) and (14) that the set {ϕn(x)} satis-
fies the orthonormality and completeness conditions
given by (5) and (7), respectively.

Combining (13) with (6), we find that un(±) are the
coefficients in the expansion of f(x) = exp(±κx) in the
basis {ϕn(x)}:

where both un(±) and ϕn(x) correspond to ε = –κ2. As
x  –∞, the expansion of exp(κx) combined with (13)
yields

Replacing x' with x'' in Eq. (12), multiplying the
equation by (αn)–1ϕn(x'), summing the results over n,
and using (7), we obtain

(17)

Expansion (17) of f(x) = G0(x – x') in the basis {ϕn(x)}
can also be obtained by using (6). The corresponding
coefficients fn are calculated by using (2) and (11).

If x' = 0, then expansion (17) reduces to

As x  ±∞, we can use (13) to obtain

Ωn x( )Ωm x( ) xd

∞–

+∞

∫ δnm,=

Ωn x( )Ωn x'( )
n

∑ δ x x'–( ).=

e κx± un ±( )ϕn x( ),
n

∑=

1
2κ
------ αnun +( )un –( )

n

∑– 1.=

G0 x x'–( )
1

2κ
------ κ x x'––( )exp–=

=  
ϕn x( )ϕn x'( )

αn

--------------------------.
n

∑

κ x–( )exp 2κ
ϕn 0( )

αn

------------ϕn x( ).
n

∑–=

ϕn 0( )un ±( )
n

∑ 1.=
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Setting x = x' in (17), we have the relation

which is valid at any x. Multiplying it by v(x)dx, inte-
grating the result over the x axis, and using orthonor-
mality condition (5), we obtain the “sum rule”

(18)

3. BOUND STATES

Let us apply the proposed approach to find the dis-
crete energy spectrum for a particle in a potential
αv(x), where α is a prescribed amplitude (α < 0).
Expand the bound-state wavefunction ψ(x) in the
eigenfunction basis {ϕm(x)} corresponding to this
potential function:

Substitute this expression into (1) and use (2) to obtain

Multiplied by ϕn(x) and integrated over the x axis, this
relation reduces to Cn(αn – α) = 0 Therefore, Cn ≠ 0 if

(19)

and the remaining Cm (with m ≠ n) vanish. Relations (19)
(with n = 0, 1, 2, …) provide equations for the bound-
state energies εn = εn(α).

First of all, note that the inequality αn < 0 implies
that Eqs. (19) have solutions only if α < 0 (i.e., if the
potential is attractive), which is obvious from physical
considerations. Furthermore, since (9) implies that |αn |
is a monotone increasing function of |ε|, Eq. (19) has a
unique solution εn = εn(α) for each particular n. There-
fore, the wavefunction ψn(x) of a nondegenerate bound-
state with energy εn normalized to unity is

(20)

Expression (20) is derived by using (8) and the relation

which follows from (19). As |x|  ±∞, we can
combine (13) with (20) to find an asymptotic expres-

1
αn

----- ϕn x( )[ ] 2

n

∑ 1
2κ
------,–=

1
αn

-----
n

∑ a
κ
---, a–

1
2
--- v x( ) x.d

∞–

+∞

∫= =

ψ x( ) Cmϕm x( ).
m

∑=

Cm αm α–( )v x( )ϕm x( )
m

∑ 0.=

αn ε( ) α=

ψn x( ) Cnϕn εn; x( ),=

Cn

dαn

dε
---------

ε εn= 
 

–1/2 dεn α( )
dα

----------------
1/2

.= =

dαn

dε
---------

ε εn=

dεn

dα
-------- 1,=
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sion for ψn(x):

(21)

where κn = .

Figure 3 is a schematic illustration of the first three

eigenvalues αn (n = 0, 1, 2) as functions of κ = .
(The fact that α0(ε) vanishes as ε  0 is specific to the
one-dimensional case; see Sections 4 and 5.) In the case
illustrated by Fig. 3, Eqs. (19) have two solutions (cor-

responding to n = 0 and n = 1): ε0 = –  and ε1 = – .
The state corresponding to n = 2 is a virtual level that
becomes a real one as |α| is slightly increased.

If there exist several bound states in a potential well
and εn ≠ εm (while αn(εn) = αm(εm) = α), then it follows
from (4) that the corresponding wavefunctions given
by (20) are mutually orthogonal. Therefore, the set
{ψn(x)} satisfies the standard orthonormality condition

However, the wavefunctions ψn(x) do not constitute a
complete set, in contrast to {ϕn(x)}.

4. STATES WITH ZERO ENERGY

Before proceeding to the important case of small
energies, the basic properties of states with ε = 0 should
be established.

4.1. The eigenfunctions ζn(x) = ϕn(0; x) and eigen-
values λn = αn(0) corresponding to zero-energy states

ψn x( ) An ±( )e
κn x–

,≈

An ±( ) Cn

αnun ±( )
2κ

------------------
ε εn=

,–=

εn–

ε–

κ0
2 κ1

2

ψn x( )ψm x( ) xd

∞–

+∞

∫ δnm.=

n = 1n = 2 n = 0

κ1 κ0 κ

αn

α

Fig. 3. 
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satisfy the equation obtained from (2) as ε  0:

(22)

Assume that   0 as |x|  ∞. Under this
assumption, a standard analysis can be applied to (22)
to show that ζn(x) and ζm(x) are orthogonal with the
weight function v(x) if λn ≠ λm . Therefore, an orthonor-
mality condition analogous to (5) is valid:

(23)

Moreover, this assumption implies that ζn(x) does not
vanish at infinity: ζn(x)  ζn(±∞) ≠ 0 as x  ±∞.
It is also natural to assume that completeness condi-
tion (7) valid for ε ≠ 0 holds as ε  0:

(24)

Note that the potential amplitudes  corresponding to
λn are the critical values of well depth at which zero-
energy states appear (or disappear).

Define the zeroth-order Green function for ε = 0 as
g0(x – x') = |x – x'|/2 (satisfying Eq. (11) with ε = 0). It
can be used to write Eq. (22) in integral form:

(25)

Note that two possibilities arise as κ  0 in Eq. (12).
In particular, the eigenvalue associated with a certain
state (interpreted as a ground one and assigned n = 0)
may scale linearly with κ as κ  0 (λ0 = 0). This
agrees with the well-known fact that there exists a
bound state of a one-dimensional system even if the
attractive potential is infinitesimally weak (see [1]). By
virtue of (12), (22), and (25), the ground-state wave-
function is a constant (independent of x):

(26)

The function (26) is normalized by (23), and a is given
by (18). In the linear approximation in κ, the bound-

state eigenvalue can be determined from (12):  =
−κ/a (see Section 5 for details).

ζn'' x( ) λnv x( )ζn x( ).=

ζn' x( )

ζn x( )ζm x( )v x( ) xd

∞–

+∞

∫ δnm.=

v x( ) ζn x( )ζn x'( )
n

∑ δ x x'–( ).=

Un
0

ζn x( ) λn
x x'–

2
---------------ζn x'( )v x'( ) x'd

∞–

+∞

∫=

+
1
2
--- ζn +∞( ) ζn –∞( )+[ ] .

ζ0 x( ) ζ0
1

2a
----------, λ0 0.= = =

α0
1( )
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The other possibility arises for n ≠ 0, when λn =
αn(0) ≠ 0. In this case, as κ  0, the limit of (12) is
well defined only if

This relation is satisfied automatically, because it
means that ζn(x) (with n ≠ 0) is orthogonal to ζ0 = const,
in accordance with (23). It can be shown that the correct
limit of (12) as κ  0 is Eq. (25).

Setting x = 0 in (25) and using the resulting equa-
tion to eliminate the term [ζn(+∞) + ζn(–∞)]/2, we
rewrite (25) as

where |x|/2 is added to symmetrize the kernel without
changing the integral.

4.2. By virtue of (23) and (24), any function f(x) can
be represented as (6) with ϕn(x) replaced by ζn(x). In
particular, f(x) = x and f(x) = |x| are expanded as follows:

(27)

(28)

Here, the integral terms correspond to n = 0, and the
expansion coefficients corresponding to n ≠ 0 are calcu-
lated by multiplying Eq. (22) by x or |x| and integrating
the result over the x axis.

Combining (27) with (28), we have

(29)

where the left-hand side vanishes if x > 0. In particular,

ζn x( )v x( ) xd

∞–

+∞

∫ 0, n 0.≠=

ζn x( ) ζn 0( )–

=  λn
1
2
--- x x'– x x'––[ ]ζ n x'( )v x'( ) x',d

∞–

+∞

∫

x
1

2a
------ tv t( ) td

∞–

+∞

∫=

+
1
λn

----- ζn ∞–( ) ζn +∞( )–[ ]ζ n x( ),
n 0≠
∑

x
1

2a
------ t v t( ) td

∞–

+∞

∫=

–
1
λn

----- ζn –∞( ) ζn +∞( ) 2ζn 0( )–+[ ]ζ n x( ).
n 0≠
∑

x x–
2

--------------
1

4a
------ t t–( )v t( ) td

∞–

+∞

∫=

+
1
λn

----- ζn –∞( ) ζn 0( )–[ ]ζ n x( ),
n 0≠
∑
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as x  +∞, (29) yields

(30)

Setting x = 0 in (29) and subtracting the resulting equa-
tion from (30), we obtain

(31)

In a similar manner, we can expand the function

(32)

Setting x = 0 in (32) and using (28) with x = 0 to elimi-
nate the integral on the left-hand side of the resulting
equation, we obtain

, (33)

where I is defined in (32).
The expansion of f(x) = |x – x'| in the basis {ζn(x)} is

When x = x', it yields

Multiplying this equation by v (x)dx and integrating the

1
4a
------ t t–( )v t( ) td

∞–

+∞

∫

+
1
λn

----- ζn –∞( ) ζn 0( )–[ ]ζ n +∞( )
n 0≠
∑ 0.=

1
λn

----- ζn –∞( ) ζn +∞( ) ζn 0( )–+[ ]ζ n 0( )
n 0≠
∑

=  
1
λn

-----ζn ∞–( )ζn +∞( ).
n 0≠
∑

f x( ) x t– v t( ) td

∞–

+∞

∫≡ 1
2a
------ I=

– 2a
1
λn

----- ζn ∞–( ) ζn +∞( )+[ ]ζ n x( ),
n 0≠
∑

I t t'– v t( )v t'( ) td t'.d

∞–

+∞

∫
∞–

+∞

∫=

1
λn

-----ζn ∞–( )ζn +∞( )
n 0≠
∑ 1

8a2
-------- I=

x x'–
1

2a
------ t x'– v t( ) td

∞–

+∞

∫=

–
1
λn

----- ζn –∞( ) ζn +∞( ) 2ζn x'( )–+[ ]ζ n x( ).
n 0≠
∑

1
2a
------ t x– v t( ) td

∞–

+∞

∫

=  1
λn

-----
n 0≠
∑ ζn –∞( ) ζn +∞( ) 2ζn x( )–+[ ]ζ n x( ).
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result over the x axis, we find another useful relation,

, (34)

where I is the same integral defined in (32).
4.3. For n @ 1, a semiclassical approximation anal-

ogous to the standard one [1] can be used to calculate
both λn and ζn(x). However, the case of ε = 0 is special
in that the turning points are located at x = ±∞; i.e.,
there is no “outer region.” Note also that the semiclas-
sical approximation becomes invalid as |x|  ∞, and
the exact solution to Eq. (22) with v(x) given by an
asymptotic expression.

Let v(x) be an even function characterized by the
following asymptotic behavior:

(35)

where v 0 ~ 1 and γ ~ 1/a. The semiclassical expression
for ζn(x) valid for exp(–γ|x|) @ 1/n has the form

(36)

The exact solution to Eq. (22) with potential (35) is

(37)

where J0(z) is a Bessel function, and the plus and minus
signs in ζn(±∞) correspond to x > 0 and x < 0, respec-
tively. The constant b in (36) is defined in (38) below.

Expressions (36) and (37) must be matched at x > 0
and x < 0 such that 1/n ! exp(–γ|x|) ! 1. By matching
them at a negative x, the constant phase is found: θ =
−π/4. The matching at a positive x leads to the quanti-
zation rule

which yields

and

(38)

where b ~ 1/γ ~ a. In (38), a term ~n0 is neglected since
its exact calculation requires that a term ~1/n be
retained in the quantization rule.

1
λn

-----
n 0≠
∑ 1

4a
------ I–=

x ∞ : v x( ) v 0e 2γ x– ,≈

ζn x( ) 2
b
---

1–( )n

v x( )4
--------------- λn v t( ) td

∞–

x

∫ θ+
 
 
 

.cos=

ζn x( ) ζn ±∞( )J0 µne γ x–( ),=

µn
1
γ
--- λn v 0,=

λn v x( ) xd

∞–

+∞

∫ n
1
2
---+ 

  π,=

λn n
1
2
---+ 

  π
b
---,=

λn n n 1+( ) π
b
--- 

 
2

, b–≈ v x( ) x,d

∞–

+∞

∫=
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The matching of (36) and (37) also leads to an
expression for ζn(±∞):

Finally, since v (0) = 1, we have

Note that the normalization integral is calculated by
using expression (36), and the squared fast-oscillating
cosine is replaced with 1/2 (see [1]). 

When the potential function asymptotically behaves
as a power,

(where g ~ aν with ν > 2), semiclassical approxima-
tion (36) is valid if (a/|x|)(ν – 2)/2 @ 1/n, and the exact
solution to (22) at |x| @ a is

where Jτ(z) is a Bessel function. Matching these solu-
tions under the condition that 1/n ! (a/|x|)(ν – 2)/2 ! 1,
we obtain

with b given by (38).

5. STATES WITH SMALL ENERGIES

Now, let us examine the properties of αn and ϕn(x)
corresponding to small energies (κa ! 1). Equation (2)
with ε = –κ2 and ϕn(x) expressed as

(39)

becomes an equation for Bn(x):

(40)

ζn +∞( )
π
b
--- 1

γ
--- n

1
2
---+ 

  ,=

ζn –∞( ) 1–( )nζn +∞( ).=

ζn 0( ) 2
b
---

nπ
2

------.cos=

x ∞ : v x( )
g

x ν--------≈

ζn x( ) ζn ±∞( )Γ ν 1–
ν 2–
------------ 

  2
µn

----- 
  1/ ν 2–( )

x Jτ
µn

x ν 2–( )/2
-------------------- 

  ,=

τ 1
ν 2–
------------, µn

2 λn g
ν 2–

-------------------,= =

λn n
ν

2 ν 2–( )
--------------------+

π
b
---, θ νπ

4 ν 2–( )
--------------------,–= =

ζn +∞( )
1

Γ ν 1–
ν 2–
------------ 

 
--------------------- 2π

b g
----------

1/2 λn g
ν 2–

---------------
ρ

,=

ρ ν
2 ν 2–( )
--------------------,=

ϕn x( ) Bn x( )e κ x– ,=

Bn'' x( ) 2κ xBn' x( )sgn αnv x( )Bn x( )––  

=  2 κ B n 0( ) δ x ( ),
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where  = +1 if x > 0 and  = –1 if x < 0. The
solution to Eq. (40) is sought as an expansion in the
zero-energy eigenfunction basis:

(41)

Substituting (41) into Eq. (40), multiplying the equa-
tion by ζk(x), integrating the result from –∞ to +∞, and
making use of (22) and (23), we obtain

(42)

where

(43)

When κ is small, system (42) can be solved by a per-
turbation method using expansions in powers of κ:

In the linear approximation in κ, (42) yields

(44)

(45)

with Mnm given by (43). The approximation is valid if

 ~ κ/a is much smaller than |λn| ~ 1/a2, i.e.,
if κa ! 1. It follows from the results obtained in Sec-
tion 4 that the corresponding condition is κa ! n + 1/2
for large n.

In the same approximation, orthonormality condi-
tion (5) yields

(46)

and hence

xsgn xsgn

Bn x( ) bnmζm x( ).
m

∑=

αn λ k–( )bnk 2κ bnmMmk

m

∑+ 0,=

Mmn ζm 0( )ζn 0( ) ζm' x( )ζn x( ) xsgn x,d

∞–

+∞

∫+=

Mnn
1
2
--- ζn ∞–( )[ ] 2 ζn +∞( )[ ] 2+{ } ,=

Mn0 = ζ0 ζn –∞( ) ζn +∞( ) ζn 0( )–+[ ] , M0n = ζ0ζn 0( ).

bnm δnm bnm
1( ) bnm

2( ) …,+ + +=

αn λn αn
1( ) αn

2( ) ….+ + +=

αn
1( ) 2κ Mnn– κ ζ n ∞–( )[ ] 2 ζn +∞( )[ ] 2+{ } ,–= =

n m: bnm
1( )≠

2κ Mnm

λm λn–
-----------------=

αn
1( )

bnm
1( ) bmn

1( )+ 2κ x ζn x( )ζm x( )v x( ) x,d

∞–

+∞

∫=

bnn
1( ) κ x ζn x( )[ ] 2v x( ) x.d

∞–

+∞

∫=
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The expression for Mnm in (43) can be rewritten as

(47)

It can readily be shown that relation (46) holds for 
given by (45) with Mnm defined in (47).

In the quadratic approximation with respect to κ, we
have

(48)

where Mnm is defined in (43). Both coefficients  and
approximations of higher orders in κ can be calculated
by a similar method.

For the ground state (n = 0), expression (44) com-
bined with (26) yields

, (49)

where a is defined in (18). Solving Eq. (19) with 
given by (49), we obtain ε0 = –(αa)2. In standard units,
this result is equivalent to the well-known expression

for the energy of a weakly bound state [1]. When n = 0,

(48) yields an expression for  that can be rewritten,
by using (31) and (33), as

, (50)

where I is the integral defined in (32).
Note that the lowest order terms in the expansion of

α0(κ) in powers of κ can be determined from (18). In
the linear approximation in κ, (49) is obtained. In the
quadratic approximation, we have

which is equivalent to (50) by virtue of (34). The third-
order correction is

,

where  is given by (44).

Mnm
1
2
--- ζn ∞–( )ζm ∞–( ) ζn +∞( )ζm +∞( )+[ ]=

–
1
2
--- λn λm–( ) x ζn x( )ζm x( )v x( ) x.d

∞–

+∞

∫

bnm
1( )

αn
2( ) 4κ2 MnmMmn

λn λm–
---------------------,

m n≠
∑=

bnm
2( )

α0
1( ) κ

a
---–=

α0
1( )

E0
m

2"
2

-------- U x( ) xd

∞–

+∞

∫
2

–=

α0
2( )

α0
2( ) 2κ2

a
-------- 1

λn

-----ζn ∞–( )ζn +∞( )
n 0≠
∑–

κ2

4a3
-------- I–= =

α0
2( ) κ2

a2
----- 1

λn

-----,
n 0≠
∑=

α0
3( ) α0

2( )[ ] 2

α0
1( )--------------- α0

1( )[ ] 2 αn
1( )

λn
2

--------
n 0≠
∑–=

αn
1( )
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The quantities un(±) defined in (13) are calculated,
by using (39) and (41), as

Using results obtained above, we obtain

The expressions for  are derived by eliminating

the integral contained in  with the use of relation (28)
for x = 0 and by taking into account (31) and (33). By
virtue of relation (27) for x = 0, the expressions for

 can be rewritten as

For an even potential function, it holds that  =

 = 0.

6. STATES WITH LARGE |ε|
As |ε|  ∞, the values of |αn| increase indefinitely.

According to (10), the growth of |αn| cannot be steeper
than linear in |ε|. However, if v(x) is finite at any x, then
|αn| cannot grow slower than |ε|, since a state with suf-
ficiently large |ε| cannot otherwise “fit” in the potential
well. Thus, |αn| scales linearly with |ε| as |ε|  ∞. If
the potential function has a minimum at x = 0 (see
Fig. 1) and v(0) = 1, then the corresponding scaling
factor is unity, and we have (for ε = –κ2)

(51)

where |∆n| ! 1. To simplify calculations, the analysis
that follows is developed for an even potential function.

To calculate ∆n , we note that the value of αn (for
moderate n) is determined by the behavior of v(x) in the
neighborhood of x = 0 as |ε|  ∞. Suppose that, as
x  0,

un ±( )
2κ
αn

------ bnmζm ±∞( ).
m

∑–=

u0
0( ) ±( ) 2a,=

u0
1( ) +( ) u0

1( ) –( )–=

=  κ 2a
1
λn

----- ζn +∞( ) ζn –∞( )–[ ]ζ n 0( ),
n 0≠
∑

n 0: un
0( ) ±( )≠ 0, un

1( ) ±( )
2κ
λn

------ζn ±∞( ).–= =

u0
1( ) ±( )

b00
1( )

u0
1( ) ±( )

u0
1( ) +( ) u0

1( ) –( )–
κ
2a

---------- xv x( ) x.d

∞–

+∞

∫= =

u0
1( ) +( )

u0
1( ) –( )

ε ∞: αn κ2 1 ∆n …+ +( ),–=

v x( ) 1 x2δ2 x  ! 1/δ( ),–≈
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where δ ~ 1/a. Thus, the eigenvalue problem is reduced
to the harmonic oscillator problem [1]. In this approxi-
mation, we have

(52)

where Hn(z) is a Hermitian polynomial. The approxi-
mation is valid if the correction ∆n is much smaller than
unity, i.e., if κ @ (2n + 1)δ or, since δ ~ 1/a: κa @ n +
1/2 (n = 0, 1, 2, …).

Oscillator approximation (52) for ϕn(x) is valid if
|x| ! 1/δ. To find ϕn(x) at |x| > 1/δ a semiclassical
approximation is used (x @ x0 >0):

(53)

where x0 ! 1/δ, e = 2.718… is the base of natural log-
arithms, and Dn is calculated by matching expressions
for ψn(x) in (52) and (53) under the condition that x0 !
x ! 1/δ. It should be emphasized that semiclassical
approximation (53) is valid for any n such that n +
1/2 ! κ/δ, including n = 0.

As x  +∞, the expression for ψn(x) in (53)
yields (13) with

(54)

and ∆n given by (52). For the even potential function, it
holds that un(–) = (–1)nun(+).

It follows from the results obtained above that the
eigenvalues αn with n @ 1 that correspond to the poten-
tial functions considered here should be expanded in
powers of κa/n. In particular, “small” energy means

∆n 2n 1+( )δ
κ
---,=

x  ! 
1
δ
---: ϕn x( )

κδ
π

------ 
 

1/4 1

2nn!
--------------=

× κδ/2( )x2–( )Hn κδx( ),exp

ϕn x( )
Dn

k x( )
------------- k y( ) yd

x0

x

∫–
 
 
 

,exp=

k x( ) κ 1 1 ∆n+( )v x( )–[ ] 1/2, x0

∆n

δ
---------,= =

Dn
1

2π( )1/4
---------------- κδ

n!
------

2n 1+
2e

--------------- 
 

2n 1+( )/4

,=

un +( )
2
κ
--- 1

2π( )1/4
---------------- δ

n!
-----

2κ
δ

------ 
 

2n 1+( )/4 κ
δ
--- I1

∆n

2
----- I2+ 

 
 
 
 

,exp=

I1

δ
---- 1 1 v x( )––[ ] x,d

0

∞

∫=

I2

δ
----

1
δ
--- sδ( )ln v x( ) xd

1 v x( )–
------------------------

s

∞

∫+ ,
s 0→
lim=
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that κa ! n (including the case when 1 ! κa ! n). The
case of an “intermediate” energy, when κa ~ n @ 1, can
be analyzed in a semiclassical approximation analo-
gous to the standard one [1]. The corresponding quan-
tization rule is

where x1 is the zero of the radicand.

7. PERTURBATION THEORY

Consider the bound state characterized by wave-

function  and energy  in a potential well
with U(x) = U0v (x). We seek ψn(x) and εn in the case
when the Hamiltonian contains a small perturbation
V '(x). The equation for ψn(x) is written as

(55)

To find a solution to Eq. (55), each ψn(x) is expanded in
the complete eigenfunction set {ϕm(x)} defined in Sec-
tion 2:

(56)

Each ϕm(x) satisfies Eq. (2) with n replaced with m and

ε = , where the energy  of the bound state is
determined by solving Eq. (19). Accordingly, the

expression for the bound-state wavefunction (x) in

terms of ϕn(x) (corresponding to ε = ) is given
by (20).

Substituting (56) into Eq. (55), multiplying the

equation by ϕk(x) (also corresponding to ε = ), inte-
grating the result over the x axis, and using Eqs. (2)
and (5), we obtain

(57)

ε αnv x( )– xd

0

x1

∫ n
1
2
---+ 

  π
2
---,=

ψn
0( ) x( ) εn

0( )

ψn'' x( ) εnψn x( ) αv x( )ψn x( )–+ V x( )ψn x( ),=

V x( )
2m

"
2

-------V' x( ).=

ψn x( ) Anmϕm x( ).
m

∑=

εn
0( ) εn

0( )

ψn
0( )

εn
0( )

εn
0( )

εn εn
0( )–( ) k m〈 〉 Anm

m

∑ α k αn–( )Ank+

=  k V m〈 〉 Anm

m

∑ ,

k m〈 〉 ϕ k x( )ϕm x( ) x,d

∞–

+∞

∫=

k V m〈 〉 ϕ k x( )V x( )ϕm x( ) x,d

∞–

+∞

∫=
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where 〈n|n〉 = (Cn)–2 by virtue of (8) and (20), and α is

replaced with αn = αn( ) by virtue of (19).

System (57) is solved by using expansions in powers
of V(x):

where  = Cnδnm with Cn defined in (20) for ε = .
In the linear approximation in V(x), we obtain

(58)

which is, expectedly, identical to the well-known result
(see [1]). In the same approximation, (57) yields

(59)

where  is given by (58). In the linear approximation
in V(x), the normalization condition for ψn(x) entails

which can be combined with (59) to find .

In the quadratic approximation in V(x), (57) yields

(60)

where the primed sum skips the term with m = n. Both

coefficients  and higher order approximations of εn

and Anm can be calculated by a similar method. Note
that both functions ϕn(x) and ϕm(x) and values of αn

and αm contained in (56)–(60) correspond to the

energy ε = .

A perturbation theory can also be developed for the
eigenvalues αn and eigenfunctions ϕn(x). The corre-
sponding equation for ϕn(x) is

The linear and quadratic in V(x) corrections to an eigen-
value are

where 〈n|V|m〉  is defined in (57), and both the eigenval-

ues  and  and the eigenfunctions ϕn(x) and
ϕm(x) are calculated for V(x) = 0 and an arbitrary ε. In

εn
0( )

Anm Anm
0( ) Anm

1( ) Anm
2( ) …,+ + +=

εn εn
0( ) εn

1( ) εn
2( ) …,+ + +=

Anm
0( ) εn

0( )

εn
1( ) n V n〈 〉

n n〈 〉
------------------- ψn

0( ) x( )V x( )ψn
0( ) x( ) x,d

∞–

+∞

∫= =

n m: Anm
1( )≠

Cn

αm αn–
------------------= m V n〈 〉    ε n 

1
 
( )
 –  m n 〈 〉[ ] ,

εn
1( )

n m〈 〉 Anm
1( )

m

∑ 0,=

Ann
1( )

εn
2( ) Cn( )2 1

αm αn–
------------------ n V m〈 〉 ε n

1( ) n m〈 〉–[ ]
m

'∑=

× m V n〈 〉 ε n
1( ) m n〈 〉–[ ] ,

Anm
2( )

εn
0( )

ϕn'' x( ) εϕn x( ) αnv x( )ϕn x( )–+ V x( )ϕn x( ).=

αn
1( ) n V n〈 〉 , αn

2( )–
n V m〈 〉 m V n〈 〉

αm
0( ) αn

0( )–
-----------------------------------------,

m

'∑–= =

αn
0( ) αm

0( )
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some cases, it may be easier to calculate corrections to
bound-state energies by solving Eq. (19) for αn =

 +  +  + ….

8. POLARIZABILITY

Consider the ground bound state of a point charge e
in the uniform electric field of strength %. For this sys-
tem, V '(x) = –ex% and V(x) = –(2me%/"2)x, and expres-
sion (60) (with 〈0|x|0〉  = 0) can be used to find the polar-
izability of the system:

(61)

with (C0)2 = dε0/dα and both αn and ϕn(x) correspond-
ing to ε = ε0, where ε0 is determined by solving the
equation α0(ε) = α.

Suppose that there exists only a weakly bound state
of a one-dimensional quantum-mechanical system, ε0 =

– , where κ0 = |α|a ! 1/a, and the corresponding
wavefunction is ϕ0(x) ≈ ζ0exp(–κ0|x|) with ζ0 given
by (26). Replacing α0 with α, rewrite (61) as

Using representation (17) of G0(x – x'), rearrange the
sum contained in this expression as follows:

The second term on the right-hand side does not con-
tribute to Λ (since 〈0|x|0〉  = 0), and the third term is
smaller than the first one by the factor (κ0a)2 ! 1. Thus,

Substituting ϕ0(x) = (2a)–1/2exp(–κ0|x|), ε0 = –  =
−(αa)2, and G0(x – x') = –(2κ0)–1exp(–κ0|x – x'|) into this

αn
0( ) αn

1( ) αn
2( )

Λ 4me2

"
2

------------ C0( )2 0 x n〈 〉( )2

α0 αn–
------------------------

n 1=

∞

∑=

κ0
2

Λ 4me2

"
------------

dε0 α( )
dα

---------------- x xd ϕ0 x( )

∞–

+∞

∫–=

× x' x'ϕ0 x'( )
ϕn x( )ϕn x'( )

αn α–
--------------------------.

n 1=

∞

∑d

∞–

+∞

∫

ϕn x( )ϕn x'( )
αn α–

--------------------------
n 1=

∞

∑ G0 x x'–( )=

–
ϕ0 x( )ϕ0 x'( )

α
-------------------------- α

ϕn x( )ϕn x'( )
αn αn α–( )
--------------------------.

n 1=

∞

∑+

Λ 4me2

"
2

------------
dε0 α( )

dα
---------------- x xϕ0 x( )d

∞–

+∞

∫–≈

× x' x'ϕ0 x'( )G0 x x'–( ).d

∞–

+∞

∫

κ0
2
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expression, we obtain

(62)

which is consistent with the corresponding result
obtained in the three-dimensional case (see [1, Sec-
tion 76, Problem 5]).

Alternatively, expression (62) can be derived by a
method similar to that applied in solving Problems 4
and 5 in Section 76 of [1]. In the linear approximation
in V(x), the correction ψ(1)(x) to the unperturbed wave-
function ψ0(x) satisfies the equation

Here, use is made of the fact that ε(1) = 0 if 〈0|x|0〉  = 0.
Representing ψ(1)(x) = f(x)ψ0(x), we obtain the follow-
ing equation for f(x):

For a weakly bound state, we have ψ0(x) ≈ (κ0)1/2 ×
exp(−κ0|x|) and, therefore,

The solution to this equation of interest for the present
analysis is

Calculating the average dipole moment d = ex,

we obtain (62).

9. TWO-CENTER PROBLEM

A special perturbation theory can be developed to
find the bound states of a particle interacting with the
field generated by two identical potential wells sepa-
rated by a distance l @ a. Denote their centers by x1 and
x2 (l = x1 – x2 > 0). The eigenfunctions ϕν(x) in the two-
center problem satisfy the equation

(63)

The eigenfunctions  ≡ ϕn(x – xi) corresponding to
the ith isolated well obey Eq. (2) with x  x – xi .

Λ 5
4
--- me2

"
2κ0

4
-----------,≈

ψ 1( )'' x( ) ε0ψ
1( ) x( ) αv x( )ψ 1( ) x( )–+ V x( )ψ0 x( ),=

V x( ) Bx, B–
2me%

"
2

---------------.= =

f '' x( ) 2
ψ0' x( )
ψ0 x( )
------------- f ' x( )+ Bx.–=

f '' x( ) 2κ0 f ' x( ) xsgn– Bx.–=

f x( )
B

4κ0
-------- x x

x
κ0
-----+ 

  .=

d 2e xψ0 x( )ψ 1( ) x( ) xd

∞–

+∞

∫≈ 2e x f x( ) ψ0 x( )[ ] 2 x,d

∞–

+∞

∫=

ϕν'' x( ) εϕν x( )+ αν v x x1–( ) v x x2–( )+[ ]ϕ ν x( ).=

ϕn
i( ) x( )
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Since both sets { } (i = 1, 2) are complete at any
x (if v (x) ≠ 0 at any x), we can expand ϕν(x) either in

{ } or in { }.

However, it is reasonable to seek ϕν(x) represented as

(64)

Substituting (64) into Eq. (63), multiplying the equa-

tion by  = ϕn(x – x1), integrating the result over
the x axis, and performing similar operations on

 = ϕn(x – x2), we obtain a set of equations for the
coefficients Aνn and Bνn:

(65)

where

(66)

Since l @ a, asymptotic expression (13) for ϕn(x) can be
used to write

(67)

In the case of short-range potentials v (x) whose asymp-
totic behavior is described by (35), they can be treated
as nonoverlapping if κ < γ ~ 1/a. Note also that this con-
ditions ensures that the integral in (67) is convergent.

Consider a state ν “close” to the unperturbed state n.
Assuming that κl @ 1, we can neglect the terms con-

taining (αn – αν)  and  in (65), as well as those
with m ≠ n, since they are proportional to exp(–2κl). As

ϕn
i( ) x( )

ϕn
1( ) x( ) ϕn

2( ) x( )

ϕν x( ) Aνmϕm
1( ) x( ) Bνmϕm

2( ) x( )+{ } .
m

∑=

ϕn
1( ) x( )

ϕn
2( ) x( )

αn αν–( )Aνn αm αν–( )BνmJmn
1( ) l–( )

m

∑+

=  αν AνmJnm
2( ) l–( ) BνmJnm

1( ) l( )+{ }
m

∑ ,

αm αν–( )AνmJmn
1( ) l( ) αn αν–( )Bνn+

m

∑

=  αν AνmJnm
1( ) l–( ) BνmJnm

2( ) l( )+{ } .
m

∑

Jnm
1( ) l±( ) ϕn x( )ϕm x l±( )v x( ) x,d

∞–

+∞

∫=

Jnm
2( ) l±( ) ϕn x l±( )ϕm x l±( )v x( ) x.d

∞–

+∞

∫=

Jnm
1( ) l±( )

αmum ±( )un +−( )
2κ

---------------------------------e κ l– ,–≈

Jnm
2( ) l±( )

αnun ±( )
2κ

------------------
αmum ±( )

2κ
--------------------e 2κ l– e 2κx+− v x( ) x.d

∞–

+∞

∫≈

Jnm
1( ) Jnm

2( )
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a result, (65) yields two solutions αnσ (σ = 1, 2) for αν ,
which correspond to Bνn/Aνn = –(–1)σ:

(68)

Higher order corrections to (68) can be obtained in a
consistent manner by taking into account the neglected
terms in (65).

Substituting (68) into Eq. (19), we find the corre-
sponding energy levels:

(69)

Here, An(±) are the coefficients in the asymptotic
expressions for the bound-state wavefunction ψn(x)
given by (21) in the case of an isolated potential well

with εn = –  determined by solving the equation
αn(ε) = α. Energy levels (69) are associated with the
wavefunctions

which are identical to those used in the standard analy-
sis of the two-center problem.

Consider the splitting of the level with n = 0 when
l @ a and κa ! 1, while κl is arbitrary. In this case,
the  results presented in Section 5 can be used to
reduce (67) to

Then, we drop the terms with m ≠ 0 in (65), since they
scale with the parameter κa ! 1, to obtain

(70)

where α0 = –κ/a. It follows from (70) that the system
has a single bound state if |α|a2 < a/l ! 1 and two bound
states if a/l < |α|a2 ! 1. If κl @ 1, then (70) is equivalent
to (68) for n = 0 and κa ! 1. Expression (70) is exact in
the case of two singular potentials v (x) = 2aδ(x) sepa-
rated by a distance l.

10. GREEN’S FUNCTION

The Green function G(x, x') satisfies the equation

(71)

Representing the solution to Eq. (71) as an expansion in

αnσ αn 1 1–( )σJn+{ } σ 1 2,=( ),=

Jn
1

2κ
------αnun +( )un –( )e κ l– .–=

εnσ l( ) εn 1–( )σ2κnAn +( )An –( )e
κnl–

+=

σ 1 2,=( ).

κn
2

ψnσ x( )
1

2
------- ψn x x1–( ) 1–( )σψn x x2–( )–{ } ,=

J00
1( ) l±( ) e κ l– , J00

2( ) l±( ) e 2κ l– .≈≈

α0σ
α0

1 1–( )σ κ l–( )exp–
---------------------------------------------,≈

x2

2

∂
∂ ε av x( )–+

 
 
 

G x x',( ) δ x x'–( ).=
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the basis {ϕn(x)}, we obtain

(72)

If α = 0, then (72) reduces to expansion (17) of the
zeroth-order Green function G0(x – x'). Using (17), we
can rewrite expression (72) for G(x, x') as

(73)

In the case of a finite-range potential, i.e., when v (x) =
0 outside the interval (x1, x2), expansions (72) and (17)
are valid if at least one of the coordinates x and x'
belongs to (x1, x2), while the other coordinate may be
arbitrary. If both coordinates lie outside (x1, x2), then
expansions (72) and (17) do not exist and expression (73)
for G(x, x') with G0(x – x') given by (11) is valid
(cf. [7]).

Rewrite Eq. (71) in the integral form

When α is sufficiently small, this equation can be
solved by iteration:

(74)

(75)

where G(k)(x, x') scales with the kth power of α. The
expansion defined by (74) and (75) corresponds to a
standard perturbation that can be applied in the one-
dimensional case if |α|a2 ! κa or, in standard units, if
|U| ! ("2/ma2)κa (see [1, Section 45]).

As α  0, the general expression for the Green
function given by (72) or (73) yields (74) with

(76)

To elucidate the correspondence between (75) and (76),
replace x' with x1 in Eq. (12), multiply the equation by
αkϕn(x ')(αn)–(k + 1), and perform the summation over n.
Since the result is recursive relation (75), the expan-
sions defined by (74) and (75) and by (74) and (76) are

G x x',( )
ϕn x( )ϕn x'( )

αn α–
--------------------------.

n

∑=

G x x',( ) G0 x x'–( ) α
ϕn x( )ϕn x'( )
αn αn α–( )
--------------------------.

n

∑+=

G x x',( ) G0 x x'–( )=

+ α G0 x x1–( )v x1( )G x1 x',( ) x1.d

∞–

+∞

∫

G x x',( ) G0 x x'–( )=

+ G 1( ) x x',( ) G 2( ) x x',( ) …,+ +

G k( ) x x',( ) α G0 x x1–( )v x1( )G k 1–( ) x1 x',( ) x1d

∞–

+∞

∫=

k 1≥( ),

G k( ) x x',( ) α( )k ϕn x( )ϕn x'( )

αn( )k 1+
-------------------------- k 1≥( ).

n

∑=
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equivalent. The expansion defined by (74) and (76) is
valid only if |α/αn| ! 1 for all n, including n = 0.
According to the results presented in Section 5, if
κa ! 1, then |α0| ≈ κ/a ! |αn| ~ 1/a2. Therefore, the
expansion defined by (74) and (76) is valid if |α| ! |α0|
or |α|a2 ! κa, which is equivalent to the criterion for-
mulated above.

Thus, potential energy can be treated as a perturba-
tion (for κa ! 1) in the one-dimensional case only
under the very restrictive condition that |α|a2 ! κa ! 1.
However, it is clear that the expansion in which the state
with n = 0 is singled out has a wider scope corres-
ponding to the three-dimensional case: |α|a2 ! 1 (for
κa ! 1).

Let single out the contribution of the state with n =
0 in (73):

(77)

For n ≠ 0 and κa ! 1, it holds that |αn| ~ 1/a2, and (x,
x ') can be represented as a series in powers of α if
|α|a2 ! 1:

By adding and subtracting the contribution of the state
with n = 0, the sums contained in this expansion can be
expressed in terms of G (k)(x, x') defined by (75). The
resulting perturbative series for the Green function is

(78)

with higher order terms in α “renormalized” in a simi-
lar manner. Expansion (78) is valid if |α|a2 ! 1 for
κa ! 1.

When v (x) = 2aδ(x), there is a single state, for
which α0 = –κ/a and ϕ0(x) = (2a)–1/2exp(–κ|x|). In this
case, it can readily be shown that an exact expression

for the Green function is given by (77) with  =
0 (cf. Problems 2.45 and 2.46 in [9]).

G x x',( ) G0 x x'–( )=

+
α

α0 α0 α–( )
--------------------------ϕ0 x( )ϕ0 x'( ) G̃ x x',( ),+

G̃ x x',( ) α
ϕn x( )ϕn x'( )
αn αn α–( )
--------------------------.

n 0≠
∑=

G̃

G̃ x x',( ) α
ϕn x( )ϕn x'( )

αn( )2
--------------------------

n 0≠
∑ α2 ϕn x( )ϕn x'( )

αn( )3
-------------------------- … .+

n 0≠
∑+=

G x x',( ) G0 x x'–( )
α

α0 α0 α–( )
--------------------------ϕ0 x( )ϕ0 x'( ) α+ +=

× G0 x x1–( )v x1( )G0 x1 x'–( ) x1d

∞–

+∞

∫
ϕ0 x( )ϕ0 x'( )

α0( )2
--------------------------–

 
 
 

…+

G̃ x x',( )
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11. TRANSMISSION COEFFICIENT
FOR SLOW PARTICLES

Consider a plane wave passing through a potential
barrier (or over a potential well). Represent the wave-
function as

(79)

The amplitudes of the transmitted and reflected waves,
d and r, are expressed in terms of F(x) as follows:

Substituting (79) into (1) (with ε = k2 > 0), we have

(80)

The solution to Eq. (80) is sought in the form of an
expansion in the eigenfunction set {ζn(x)} correspond-
ing to zero-energy states:

Using a standard procedure, we obtain a set of equa-
tions for the coefficients Fn:

(81)

where Mmn is defined in (43).
For k  0 (ka ! 1), we represent Fn as expansions

in powers of k: Fn =  +  +  + …. In the

zeroth approximation, we have  = – δn0 and
F (0)(x) = –1; i.e., the transmitted wave obviously van-
ishes. In the linear approximation in k,

Using (30) to eliminate the integral, we finally obtain

(82)

According to (82), the transmission coefficient is D =
|d|2 ∝  k2 as k  0, in agreement with [1, Section 25,
Problem 5].

ψ x( ) eikx F x( )e
ik x

.+=

d 1 F +∞( ), r+ F –∞( ).= =

F '' x( ) 2ikF ' x( ) x αv x( )F x( )–sgn+

+ 2ikF 0( )δ x( ) αv x( ) ik x x–( )( ).exp=

F x( ) Fmζm x( ).
m

∑=

λn α–( )Fn 2ik MmnFm

m

∑+

=  α eik x x–( )ζn x( )v x( ) x,d

∞–

+∞

∫

Fn
0( ) Fn

1( ) Fn
2( )

Fn
0( ) 2a

d 1( ) ik
αa
------- 1

α
2
--- x x–( )v x( ) xd

∞–

+∞

∫+




–=

– 2αa
1
λn

----- ζn 0( )
α

λn α–
---------------ζn ∞–( )+ ζn +∞( )

n 0≠
∑





.

d 1( ) 2ik=
ζn ∞–( )ζn +∞( )

λn α–
----------------------------------.

n 0=

∞

∑
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When |α|a2 ! 1, expression (82) reduces to d ≈
−ik/(αa), which is valid if ka ! |α|a2. If ka ~ |α|a2 ! 1,
then F0 should be calculated by solving Eq. (81) with a
term ~k/a added to α on the left-hand side. The result

obtained in this case is exact when v (x) = 2aδ(x).
Expression (82) for d corresponding to an attractive

potential (α < 0) exhibits singular behavior as α  λn

(with n ≠ 0). In this case, Fn (with n ≠ 0) should be cal-
culated by solving Eq. (81) with a term ~k/a retained in
addition to (λn – α) on the left-hand side. For |α –
λn|a2 ! 1 and ka ! 1, the result is

, (83)

where Mnn is defined in (43). If ka ! |α – λn|a2 ! 1, then
|d| ! 1. If |α – λn|a2 ! ka ! 1, then (83) implies that
|d| ~ 1; for an even potential function, |d| ≈ 1. Thus, an
anomalously large transmission coefficient is obtained,
even though the potential amplitude is not small: |α|a2 ≈
|λn|a2 > 1.

In the same approximation (|α – λn|a2 ! ka ! 1), we
have (for an even potential function)

(84)

Thus, the reflected wave vanishes in the asymptotic
expression for ψ(x) (x  –∞), whereas the wavefunc-
tion corresponding to |x| < a may substantially differ
from the incident plane wave. Note also that expres-
sion (83) (more precisely, its analytic continuation to
the complex ε plane) has a pole at ε = εn , where the
bound-state energy εn is determined by solving Eq. (19)

with αn(ε) = λn + , where  is defined
by (44).

In the case of a potential barrier (α > 0), the trans-
mission coefficient decreases with increasing α. When
αa2 @ 1, the sum in (82) is dominated by terms with
n @ 1. The semiclassical expressions for λn and ζn(±∞)
corresponding to potentials with exponential asymptot-
ics described by (35) are presented in Section 4. Substi-
tuting them into (82) and using the well-known expan-
sion [10]

we obtain

d
ik

ik αa–
-----------------≈

d 2ik
ζn ∞–( )ζn +∞( )

λn α– 2ikMnn+
---------------------------------------≈

x 0: ψ x( ) eikx 1
ζn x( )

ζn ∞–( )
----------------– e ikx– .–≈<

αn
1( ) ε( ) αn

1( ) ε( )

1
πx
2

------cosh
------------------

4
π
--- 1–( )n 2n 1+

2n 1+( )2 x2+
---------------------------------,

n 0=

∞

∑=

d 1( ) ik
π
γ
--- 1

b α( )cosh
----------------------------–≈
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with b defined in (38). When b ~ a, it holds that b  @ 1,
and the final expression for d(1) is

(85)

12. EXACTLY SOLVABLE EXAMPLE
As an illustration of the approach proposed here,

consider the potential function

(86)

for which both eigenfunctions and eigenvalues can be
found in a relatively simple form. Equation (2) with
v (x) defined by (86) is solved by analogy with Prob-
lem 5 in Section 23 of [1]. The eigenvalues are

(87)

The corresponding eigenfunctions normalized accord-
ing to (5) are

(88)

where  are Gegenbauer polynomials [10–12].

According to [10–12], the Gegenbauer polynomials

 are orthogonal with the weight function w(ξ) =
(1 – ξ2)(2ρ − 1)/2 and the functions

constitute a complete orthonormal (closed) set on the
interval (–1 < ξ < +1):

Therefore, the set {ϕn(x)} of the functions defined
in (88) satisfies the condition

(89)

which is equivalent to completeness condition (7).

α

d 1( ) ik
2π
γ

------ α v x( ) xd

∞–

+∞

∫–
 
 
 

exp–≈

αa @ 1 ka ! 1,( ).

v x( )
1

γxcosh
2

-------------------,=

αn γ2 n
κ
γ
---+ 

  n 1 κ
γ
---+ + 

 –=

n 0 1 2 …, , ,=( ).

ϕn x( ) Bn 1 ξ2–( )
2ρ 1–( )/4

Cn
ρ ξ( ),=

ξ γx,tanh=

Bn 2ρΓ ρ( ) γ n ρ+( )n!
2πΓ n 2ρ+( )
-------------------------------

1/2

,=

ρ 1
2
---

κ
γ
---,+=

Cn
ρ ξ( )

Cn
ρ ξ( )

Φn
ρ ξ( ) 2ρΓ ρ( )

n ρ+( )n!
2πΓ n 2ρ+( )
------------------------------

1/2

1 ξ2–( ) 2ρ 1–( )/4
Cn

ρ ξ( )=

Φn
ρ ξ( )Φn

ρ ξ'( )
n 0=

∞

∑ δ ξ ξ'–( ).=

ϕn x( )ϕn x'( )
n 0=

∞

∑ γδ ξ ξ'–( )
δ x x'–( )

v x( )
-------------------,= =
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Condition (89) can be derived as follows. First, the
sum on the left-hand side of (89) is calculated from n =
0 to n = N by invoking the Christoffel–Darboux formula
(see [10–12]). Then, an asymptotic expression for

 valid at N @ 1 (see [11]) is used to find the limit
as N  ∞. As a result, we obtain (89).

As x  +∞, we have ξ ≈ 1 – 2exp(–2γx), and (88)
yields

Combined with (13) and an expression for  bor-
rowed from [10, 11], we obtain

(90)

with ρ defined in (88). Accordingly, we have un(–) =
(−1)nun(+). As κ  0, expression (90) reduces to

(91)

As κ  ∞, (90) yields

(92)

Since

as ρ  ∞ and ξ  0 (see [10, 11]), where Hn(z)
denotes Hermitian polynomials, (88) becomes

(93)

Expression (93) is valid if κ/γ @ 1 for n = 0 and if κ/γ @
n for n > 0, provided that γ|x| ! 1.

As κ  0, we use the fact that  = Pn(ξ)
(see [10, 11]), where Pn(ξ) denotes Legendre polyno-

Cn
ρ ξ( )

x +∞: ϕn x( ) BnCn
ρ 1( )2 2ρ 1–( )/2 κx–( ).exp≈

Cn
ρ 1( )

un +( )
κ
αn

-----2 4ρ 1+( )/2–=

× Γ ρ( )
Γ 2ρ( )
-------------- γ n ρ+( )Γ n 2ρ+( )

2πn!
-----------------------------------------

1/2

u0
0( ) ±( ) 2

γ
---, u0

1( ) ±( ) 0,= =

n 0: un
0( ) ±( )≠ 0,=

un
1( ) +( )

2κ
λn

------ γ n
1
2
---+ 

  .–=

κ ∞ :

un +( )
2
κ
--- 1

2π( )1/4
---------------- γ

n!
-----

2κ
γ

------ 
 

2n 1+( )/4 κ
γ
--- 2ln 

  .exp≈

Cn
ρ ξ( )

ρn/2

n!
--------Hn ξ ρ( ),≈

ϕn x( )
κγ
π

------ 
 

1/4 1

2nn!
--------------≈

× κγ/2( )x2–( )Hn x κγ( ).exp

Cn
1/2 ξ( )
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mials, to derive an expression for ζn(x) = ϕn(0; x)
from (88),

(94)

and find λn = –γ2n(n + 1). The functions in the set defined
by (94) are orthonormal with weight function (86) and
complete (closed). Since Pn(1) = 1 and Pn(–1) =
(−1)n [10, 11], it follows from (94) that

(95)

By invoking an expression for Pn(0) (see [10, 11]), we
use (94) to obtain

Hence,

(96)

For potential function (86), the constants defined
in (18), (32), (38), (52), and (54) are

(97)

When combined with (97), expressions (87), (91)–(93),
(95), and (96) are equivalent to the corresponding
results presented in Sections 4–6.

The tunneling of a particle through the potential bar-
rier defined by (86) was considered in [1, Section 25,
Problem 4]. The solution obtained can be used to obtain
the transmitted-wave amplitude d:

(98)

In the linear approximation in k, (98) yields

(99)

This result can also be obtained by substituting λn =
−γ2n(n + 1) and expression (95) for ζn(±∞) into (82). If

ζn x( ) γ n
1
2
---+ 

  Pn ξ( ), ξ γxtanh= =

ζn +∞( ) γ n
1
2
---+ 

  ,=

ζn –∞( ) 1–( )nζn +∞( ).=

ζn 0( )
γ
π
--- n

1
2
---+ 

 
Γ n

2
--- 1

2
---+ 

 

Γ n
2
--- 1+ 

 
---------------------- nπ

2
------.cos=

n @ 1: ζn 0( ) 2γ
π
------

nπ
2

------.cos≈

a
1
γ
---, b

π
γ
---, I

4

γ3
-----,= = =

δ γ, I1 2, I2ln 0.= = =

d
Γ s 1 i k/γ( )–+( )Γ –s i k/γ( )–( )

Γ 1 i k/γ( )–( )Γ i k/γ( )–( )
--------------------------------------------------------------------------,=

s
1
2
--- –1 1 4α

γ2
-------–+ 

  .=

d 1( ) ik
π
γ
--- 1

π
2
--- 1 4α

γ2
-------–cos

--------------------------------------.–=
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α > 0 and α/γ2 @ 1, then (99) is equivalent to the expres-
sion preceding (85), with b = π/γ.
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APPENDIX A

The eigenvalue problem can be solved for a number
of specific potential functions. In addition to the exam-
ple discussed in Section 12, the results obtained for
three exactly examples are presented here.

1. For the potential function

, (A.1)

the subsystem of symmetric eigenfunctions (represent-
ing even states) is

(A.2)

where Jν(z) is the Bessel function. The corresponding
eigenvalues αsn are found by solving the equation

(A.3)

with µsn defined in (A.2). The normalization factor is
determined by condition (5):

(A.4)

The antisymmetric eigenfunctions (representing
odd states) are

(A.5)

The corresponding eigenvalues αan are found by solv-
ing the equation

(A.6)

with µan defined in (A.5). The normalization factor is

(A.7)

In this case,

The orthonormality of the system defined by (A.2)–
(A.7) can be verified directly. Its completeness follows

v x( ) e 2γ x–=

ϕ sn x( ) AsnJν µsne γ x–( ),=

ν κ
γ
---, µsn

1
γ
--- α sn– ,= =

Jν' µsn( ) 0=

Asn

µsn

Jν µsn( )
---------------- γ

µsn
2 ν2–

------------------.=

ϕan AanJν µane γ x–( ) x,sgn=

ν κ
γ
---, µan

1
γ
--- α an– .= =

Jν µan( ) 0=

Aan
γ

Jν' µan( )
----------------–

γ
Jν 1+ µan( )
----------------------.= =

a
1

2γ
------, b

2
γ
---, I

3

4γ3
--------.= = =
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from the convergence of the Fourier–Bessel and Dini
expansions [11].

2. As an example of finite-range potential, consider
the potential well

(A.8)

where θ(x) = 1 at x > 0 and θ(x) = 0 at x < 0.

The symmetric eigenfunctions are

(A.9)

The corresponding eigenvalues αsn are found by solv-
ing the equation

(A.10)

with µsn defined in (A.9).

The antisymmetric eigenfunctions are

(A.11)

The corresponding eigenvalues αan are found by solv-
ing the equation

(A.12)

with µan defined in (A.11).

The system defined by (A.9)–(A.12) is orthonormal
and complete on the interval (–a < x < a).

3. For the potential function

(A.13)

the eigenfunctions and eigenvalues corresponding to
zero-energy states can be found.

v x( ) θ a x–( ),=

x a: ϕ sn
i( ) x( )< Asn µsnx( ),cos=

µsn –α sn κ2– ,=

x a: ϕ sn
e( ) x( )> Bsn κ x a–( )–( ),exp=

Bsn Asn µsna( ),cos=

Asn a
κ

α sn

-------–
–1/2

.=

µsn µsna( )tan κ=

x a: ϕan
i( ) x( )< Aan µanx( ),sin=

µan α an– κ2– ,=

x a: ϕan
e( ) x( )> Ban κ x a–( )–( ) x,sgnexp=

Ban Aan µana( ),sin=

Aan a
κ

α an

-------–
1/2–

.=

µan µana( )cot κ–=

v x( )
a0

4

x2 a0
2+( )2

-----------------------=
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The even states with ε = 0 are associated with the
symmetric eigenfunctions

(A.14)

and eigenvalues

(A.15)

It follows from (A.14) that

(A.16)

The odd states with ε = 0 are associated with the
antisymmetric eigenfunctions

(A.17)

and eigenvalues

(A.18)

It follows from (A.17) that

(A.19)

The eigenfunction set {ζsn(x), ζan(x)} is orthonormal
(by (23)) and complete.

The results presented in Sections 5 and 6 can be
used to generalize the analysis of the case with ε = 0. In
the present example, we have

APPENDIX B

The states with large |ε| for potential functions with
cusps at their minimum points call for a separate anal-
ysis. Let v (x) tend to a linear function of x as x  0:

(B.1)

ζ sn x( ) 2

πa0
3

-------- x2 a0
2+ 2n 1+( ) x

a0
-----arctancos=

λ sn
1
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2

----- 2n 1+( )2 1–[ ]–
4
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n 0 1 2 …, , ,=( ).

ζ sn +∞( ) ζ sn –∞( ) 1–( )n 2n 1+( ) 2
πa0
--------,= =

ζ sn 0( ) 2
πa0
--------.=

ζ an x( ) 2

πa0
3
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2+ 2n

x
a0
-----arctansin=

λ an
1

a0
2

----- 2n( )2 1–[ ] n 1 2 …, ,=( ).–=
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2
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--------,×= =

ζ an 0( ) 0.=
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3π
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3,= = =

I1 2 2 1 2+( )ln– 0.75,≈=

I2 2 2 2 1 2+( ) 0.14.≈ln–ln=
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1
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  ,+–=
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where γ ~ 1/a. For |x| ! a, Eq. (2) combined with (51)
and (B.1) becomes

(B.2)

The eigenfunctions ϕsn(x) associated with even states
are symmetric in x:

(B.3)

where Φ(z) denotes the Airy function [1]:

(B.4)

The correction ∆sn (see (51)) is determined by the con-
dition Φ'(ξs(0)) = 0:

(B.5)

The positive numbers  in (B.3) and (B.5) are the
zeros of the derivative Φ'(–z).

The eigenfunctions ϕan(x) associated with odd states
are antisymmetric:

(B.6)

The correction ∆an (see (51)) is determined by the con-
dition Φ(ξa(0)) = 0:

(B.7)

The positive numbers zn in (B.6) and (B.7) are the zeros
of Φ(–z). The normalization factors in (B.3) and (B.6)
are calculated by using the equation

(B.8)

ϕn'' x( ) 2γκ2 x
∆n

2γ
------– 

  ϕn x( )– 0.=

ϕ sn x( ) BsnΦ ξs x( )( ),=

ξ s x( ) 2γκ2( )1/3
x

∆sn

2γ
-------– 

  ,=

Bsn
2γκ2( )1/6

2zn' Φ zn'–( )
----------------------------,=

Φ z( ) πAi z( )
1

π
------- zt

1
3
---t3+ 

 cos t.d

0

∞

∫= =

∆sn
2γ
κ
------ 

 
2/3

zn' .=

zn'

ϕan x( ) BanΦ ξa x( )( ) x,sgn=

ξa x( ) 2γκ2( )1/3
x

∆an

2γ
-------– 

  ,=

Ban
2γκ2( )1/6
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∆an
2γ
κ
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2/3

zn.=

Φ z( )[ ] 2 zd∫ z Φ z( )[ ] 2 Φ' z( )[ ] 2,–=
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which is easily verified by means of the equation
Φ''(z) – zΦ(z) = 0 for Φ(z).

The function ϕn(x) can be calculated in the semiclas-
sical approximation at x @ x0 > 0:

(B.9)

where x0 is the zero of the radicand: x0 ≈ ∆n/(2g) ! a.
The factor Dn is determined by matching (B.9)
with (B.3) and (B.6) in the interval x0 ! x ! a:

(B.10)

The calculation of (B.10) relies on the asymptotic for-
mula for Φ(z) [1]:

(B.11)

As x  +∞, function (B.9) reduces to expres-
sion (13) with αn ≈ –κ2 and

(B.12)

where

(B.13)

Here, the value of a can be set equal to that defined
in (18). For the potential function v (x) = exp(–2γ|x|),
we use a = 1/(2γ) to find

Formulas (B.9)–(B.13) apply to both even and odd
states.
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Abstract—We derive the free energy functional of a bilayer lipid membrane from the first principles of elas-
ticity theory. The model explicitly includes position-dependent mutual slide of monolayers and bending defor-
mation. Our free energy functional of a liquid-crystal membrane allows for incompressibility of the membrane
and vanishing of the in-plane shear modulus and obeys reflectional and rotational symmetries of the flat bilayer.
Interlayer slide at the midplane of the membrane results in local difference of surface densities of the monolay-
ers. The slide amplitude directly enters the free energy via the strain tensor. For small bending deformations,
the ratio between the bending modulus and the area compression coefficient, Kb/KA , is proportional to the
square of monolayer thickness h. Using the functional, we perform self-consistent calculation of the entropic
potential acting on a bilayer between parallel confining walls separated by distance 2d. We find that at the min-
imum of the confining potential, the temperature-dependent curvature α ∝  T2/Kbd4 is enhanced four times for
a bilayer with slide as compared with a unit bilayer. We also calculate viscous modes of a bilayer membrane
between confining walls. Pure bending of the membrane is investigated, which is decoupled from area dilation
at small amplitudes. Three sources of viscous dissipation are considered: water and membrane viscosities and
interlayer drag. The dispersion relation gives two branches ω1, 2(q). © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A cell membrane is characterized by complex struc-
tural and dynamical properties [1–4]. Theoretical mod-
eling and description of lipid membranes is of great
fundamental and practical interest and has quite a long
history. The phenomenological model introduced in [5]
treated a lipid membrane as a single sheet with bending
rigidity and spontaneous curvature. This model was
later used for calculation of the frequency spectrum of
the membrane in a water solution [6] and for investiga-
tion of entropic interactions of membranes in multi-
layer systems [7]. The bilayer structure of a lipid mem-
brane was analyzed in [3, 8], where the dynamic cou-
pling between the monolayers and the interlayer slide
was considered. The frequency spectrum of a mem-
brane in the bulk water was recalculated in [9] with the
coupling between local curvature and local densities of
lipids within the monolayers taken into account. After-
wards, viscous modes of a bilayer adhering to a sub-
strate were found in [10] using the density-difference
model [9], supplemented with a binding potential [11].

In this paper, we derive a new free energy functional
of a bilayer membrane with interlayer slide. The inter-
layer slide function, membrane stretching, and bending
amplitude directly enter the strain tensor of the mem-
brane. Our functional is a generalization of the density-

¶ This article was submitted by authors in English.
1063-7761/04/9904- $26.00 © 20875
difference model used in [9, 10]. In our model, two lat-
eral deformation fields (interlayer slide and stretching)
generate the change in the local density and density dif-
ference of the monolayers, used in free energy func-
tional in [9, 10]. However, unlike in [9, 10], we do not
require the presence of neutral surfaces in each mono-
layer in the general case. As a step towards understand-
ing intermembrane interactions, we study dynamics of
a bilayer membrane in a water solution confined
between parallel walls. The effect of confinement is
modeled by the entropic potential [12].

This paper is organized as follows. In Section 2, we
introduce an anisotropic elastic moduli tensor, initially
containing 21 independent components. The reflection
and rotation symmetries of the flat bilayer reduce the
number of components to 5. Next, we impose the zero
shear stress modulus and incompressibility constraint.
We restrict ourselves to the case of small bending
deformations and exclude the corresponding strain and
elastic tensor components. Thus, the number of inde-
pendent components of the elastic tensor in the free
energy functional is reduced to two. The derived free
energy functional of a bilayer membrane contains three
fields describing area dilation and bending deformation
coupled to interlayer slide.

In Section 3, a parabolic entropic potential acting on
the membrane between the confining walls is intro-
duced. We self-consistently calculate the curvature of
004 MAIK “Nauka/Interperiodica”
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the confining potential at its minimum for a bilayer
with a slide and for a unit bilayer. Using our model, we
analytically derive the four-time decrease in bending
rigidity due to interlayer slide.

In Section 4, we use the derived functional to study
dynamic properties and dissipative mechanisms of the
bilayer membrane in water solution confined between
parallel walls. We investigate only pure bending defor-
mations of the membrane (zero total lateral stretching),
which decouple from area dilation. The velocity field in
the surrounding water is found by solving the Stokes
equations for an incompressible fluid. Fluid velocity
vanishes at the walls. Equations of motion are deter-
mined as force balance conditions on the membrane
surfaces with inertial effects neglected. Three sources
of dissipation are included in the dynamic equations:
water and membrane viscosities and interlayer drag.

In Section 5, we discuss limitations and possible
improvements of our model and correspondence with
earlier results [10]. In Appendix A, static behavior of a
membrane in the axially symmetric case is studied.
Analytic solutions are obtained for a circular mem-
brane bent by external pressure. Membrane bending,
interlayer slide, and lateral stress distribution are found
as functions of pressure across the membrane. In
Appendix B, we rederive the dispersion relation [9] for
a membrane in the bulk water solution using our free
energy functional.

2. FREE ENERGY FUNCTIONAL

The free energy density of an anisotropic medium
can be written to the lowest order in the elastic strain
tensor as [13, 14]

(1)

where summation over the repeated indices i, k, l, m is
performed. The indices i, k, l, m take values 1, 2, 3,
which denote the respective space axes x, y, z; uik is the
strain tensor; and λiklm is the elastic (modulus) tensor.
By definition, the elastic tensor is symmetric under the
transpositions i  k, l  m, and i, k  l, m,

and has 21 independent coefficients.
With (1), the (symmetric) stress tensor σik is defi-

ned as

(2)

In a symmetric medium, there is a correlation
between different components λiklm and the number of
independent elements of the tensor of elastic modulus
is reduced.

F
1
2
---λ iklmuikulm,=

λ iklm λ kilm λ ikml λ lmik,= = =

σik
∂F
∂uik

--------- λ iklmulm.= =
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We introduce a Cartesian coordinate system with the
z axis perpendicular to the unperturbed (flat) membrane
plane and with the monolayer interface (i.e., the bilayer
midplane) positioned in the xy plane (at z = 0). The
membrane thickness is equal to 2h, and the flat mem-
brane is modeled as a thin bilayer plate bounded by the
z = –h and z = h planes with in-plane linear dimension
R @ 2h. The xy plane is a plane of reflection symmetry.
This implies that the free energy must be invariant
under the transformation x  x, y  y, z  –z.
Therefore, all the components λiklm with an odd number
of z indices are equal to zero [10]. The membrane can
be considered laterally isotropic. Then the z axis is an
axis of rotational symmetry. The expression for the
elastic energy density F then becomes [11]

(3)

Assuming that the membrane is in a liquid state, we
require that the in-plane shear modulus (the coefficient

in front of ) vanish, and thus obtain

Hence, expression (3) further simplifies and acquires
the form

(4)

Let an external force applied perpendicular to the
membrane plane induce a small bending deformation
along the z axis. Allowing for a typical experimental sit-
uation, we consider a thin membrane with the ratio of
its thickness 2h to the lateral linear dimension (effective
radius) R of the order 10–3. Hence, we neglect the
applied external stresses on the top and bottom mem-
brane surfaces compared to the internal lateral stresses
in it. Due to the smallness of the membrane thickness,
zero stresses on the surface also vanish in the bulk of
the membrane. We therefore impose the condition usu-
ally implied for the thin plates [13],

(5)

where r spans the membrane bulk. This condition is jus-
tified by the fact that small external pressure normal to
a thin membrane induces relatively high lateral stresses
in it [13]. Indeed, we show in Appendix A that the ratio
of the normal stress to the lateral stress is on the order

F
1
2
---λ xxxx uxx

2 uyy
2+( )

1
2
---λ zzzzuzz

2+=

+ λ xxyyuxxuyy λ xxxx λ xxyy–( )uxy
2+

+ λ xxzz uxxuzz uyyuzz+( ) 2λ xzxz uxz
2 uyz

2+( ).+

uxy
2

λ xxxx λ xxyy.=

F
1
2
---λ xxxx uxx uyy+( )2 1

2
---λ zzzzuzz

2+=

+ λ xxzz uxxuzz uyyuzz+( ) 2λ xzxz uxz
2 uyz

2+( ).+

σxz r( ) σyz r( ) σzz r( ) 0,≡= =
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of (h/R)2. In accordance with (2) and (4), the z compo-
nents (5) of the stress tensor are related to the strain ten-
sor components as

(6)

(7)

Combining relations (5) and (7), we find

(8)

It is interesting to mention that, as follows from (6),
the first two conditions in (5) require vanishing of the
strain tensor components uxz and uyz .

Condition (5) allows omission of the terms contain-
ing uxz and uyz  in (4). Also using (8) and expressing uzz

via uxx + uyy in (4), we find the expression for the free
energy density:

(9)

In addition, we impose the “incompressibility” condi-
tion, i.e., the constancy of the bulk density of the mem-
brane:

(10)

Condition (10) is satisfied simultaneously with (8) if
λzzzz = λxxzz .

Finally, the free energy density is written as

(11)

where K1 denotes a superposition of anisotropic elastic
moduli:

In the linear approximation for the strain tensor, we
have

(12)

where ui is the ith component of the distortion field.
To introduce the essentials of our model in a simple

way, we limit the following discussion to the case of a
small bending amplitude, i.e., we impose condition

where uz(r) is the z component of displacement describ-
ing the deformed membrane. Also, we neglect the z
dependence of the component uz(r) in the thin plate

σxz 4λ xzxzuxz, σyz 4λ yzyzuyz,= =

σzz λ xxzz uxx uyy+( ) λ zzzzuzz.+=

uzz

λ xxzz

λ zzzz

---------- uxx uyy+( ).–=

F
1
2
--- λ xxxx

λ xxzz
2

λ zzzz

----------– 
  uxx uyy+( )2.=

uxx uyy uzz+ + 0.=

F
1
2
---K1 uxx uyy+( )2,=

K1 λ xxxx λ zzzz–( ).=

uik
1
2
---

∂ui

∂xk

--------
∂uk

∂xi

--------+ 
  ,=

uz  ! h,
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approximation [13], thus defining the “shape” function
ξ(x, y) ≈ uz(r)independent of the depth z. Substituting
ξ(x, y) in definition (12) and then in relations (6) and
conditions (5), we obtain the partial differential equa-
tions

(13)

In integrating Eqs. (13), we introduce two functions:
the (inhomogeneous) lateral stretching of the mem-
brane a(x, y) and the in-plane slide ±f(x, y) of the lower
(z < 0) and upper (z > 0) monolayers at the midplane
z = 0 of the membrane. Thus, the in-plane distortions ux

and uy of each monolayer have the form

(14)

where the step function is defined as

and the choice of the sign of Θ and of its argument is
made for later convenience. The step functions in (14)
model splitting of the membrane into two separate
monolayers and describe a discontinuity of in-plane dis-
tortions across the interface between the monolayers.

Here it is worth emphasizing the limitations of the
validity of relations (14). Expressions (14) are clearly
distinct from the usual expressions for thin plates [13].
In the latter case, the displacements ux and uy are set to
zero at z = 0, implying the presence of a neutral (not
stretched) surface at the midplane of the plate in the
small bending approximation ξ ! h [13]. It is shown in
Appendix A (see Eq. (A.11)) that the second term
in (14) is of the same order as the first one,

where R is the effective radius of the membrane. The
small bending approximation is justified when the term
quadratic in ξ is negligibly small compared to linear
terms in the expressions for in-plane distortions ux

and uy ,

This condition is fulfilled as long as ξ ! h. On the other
hand, for a strongly bent thin plate, the ξ2-term domi-

∂ux

∂z
--------

∂ξ
∂x
------,–=

∂uy

∂z
--------

∂ξ
∂y
------.–=

ux z
∂ξ x y,( )

∂x
------------------–=

+ Θ z( ) Θ z–( )–( ) f x x y,( ) ax x y,( ),+

uy z
∂ξ x y,( )

∂y
------------------–=

+ Θ z( ) Θ z–( )–( ) f y x y,( ) ay x y,( ),+

Θ z 0>( ) 1, Θ z 0<( ) 0,≡≡

f x y, hξ /R,∼

O ξ2/R( ) ! hx/R.
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nates over the ξ-term and therefore higher-order terms
should be added on the right-hand side of Eqs. (14).

We now discuss the physical meaning of expres-
sions (14). The membrane stretching a(x, y) defines the
position-dependent shift of the neutral surface (along
the z coordinate), while the slide function f(x, y) multi-
plied by step functions leads to the splitting of this neu-
tral surface into two surfaces belonging to the upper
and lower monolayers. These surfaces are determined
from the conditions

The function f(x, y) provides an additional degree of
freedom in comparison with a bilayer without slide (or
a single monolayer). Under the condition of zero total
lateral stretching (i.e., pure bending deformation,
a ≡ 0), the presence of the function f means that the
neutral surface splits into two such surfaces located in
each monolayer symmetrically with respect to the mid-
plane z = 0. The total amplitude of the common inter-
layer slide at each point (x, y) of the midplane is then
given by 2f(x, y), which signifies discontinuity of in-
plane distortions ux and uy across the midplane z = 0. In
the opposite case where f ≡ 0, the monolayers are cou-
pled together (no interlayer slide) and the distortion
field is the sum of bending and stretching (for small
deformations), the latter being continuous across the
midplane z = 0. In general, distortion field (14) includes
bending, stretching, and mutual interlayer slide.

Substituting (14) in (12), we proceed to determine
the strain tensor components for each monolayer (z > 0,
z < 0):

(15)

and uzz can be expressed via uxx and uyy using (8).

The above expressions allow for a free (static)
mutual slide of the monolayers. The jump of the lateral
strain across the interface between the monolayers does
not cost elastic energy. Hence, this jump does not intro-
duce any additional spatial scale smaller than h into the
problem.

The free energy functional of the whole membrane
Fv is obtained by an integration of the free energy den-
sity F over the membrane volume stepwise: first over

ux x y z, ,( ) 0, uy x y z, ,( ) 0.≡≡

uxx z
∂2ξ x y,( )

∂x2
---------------------–=

+ Θ z( ) Θ z–( )–( )
∂ f x x y,( )

∂x
---------------------

∂ax x y,( )
∂x

---------------------,+

uyy z
∂2ξ x y,( )

∂y2
---------------------–=

+ Θ z( ) Θ z–( )–( )
∂ f y x y,( )

∂y
---------------------

∂ay x y,( )
∂y

---------------------,+
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the thickness coordinate (–h < z < h), and then over the
membrane plane {x, y}. Using expressions (11) and
(15), we finally find

(16)

where the tilde refers to two-dimensional differentiation:

Equation (16) is actually quite remarkable. The mean
curvature of the interlayer surface H is expressed as

(17)

Therefore, the first term on the right-hand side gives
the effective bending energy, i.e., the extrinsic curva-
ture-bending energy functional Fc of the “standard”
form [5, 13]:

(18)

with zero spontaneous curvature c0. Here, Kb is the
bending rigidity (modulus). Comparing (16) and (18),
we find

The last term in (16) accounts for the elastic energy
of area dilation with the area compression coefficient
defined as

In general, the local relative area dilation ∆S/S equals
uxx + uyy [13]. According to Eq. (15), the relative area

dilation is given by , while the difference of rela-
tive area dilations between the monolayers is given by

2( ). Hence, the ( )2 term in (16) arises due to
continuous (across the monolayers interface z = 0) lat-
eral stretching of the membrane, which leads to the

change in the average lipid density. The ( )2 term
represents the energy of local area difference of the
monolayers (area-difference elasticity [2]), which is
equivalent to the difference of lipid densities in mono-
layers (density-difference model [9]). In principle, this
energy is not related to the presence of neutral surfaces
within the monolayers (at large membrane stretch-

Fv
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2
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× 2h3

3
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∂
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.=

∇̃ 2ξ ∂2ξ
∂x2
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∂2ξ
∂y2
-------- 2H .≈+=
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Kb

2
------ 2H c0–( )2 S,d∫=

2h3K1/3 Kb.=
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∇̃ f⋅
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ing/compression, there are no neutral surfaces that
would obey ux ≡ uy ≡ 0, see expression (14)). As is
apparent from Eq. (16), the relation between bending
and area compression coefficients (see [2])

occurs naturally in our derivation.
Next, the second term on the right-hand side of

Eq. (16) expresses coupling between bending deforma-
tion and interlayer slide producing a local area dilation
difference between monolayers. We note that in the
lowest-order approximation, bending is decoupled
from (continuous) area dilation caused by lateral
stretching. Due to the hydrophobic effect, the monolay-
ers, while sliding, are forced to stick together and to fol-
low the same shape defined by ξ(x, y) on the monolayer
interface. Mutual interlayer slide along the interface
leads to relaxation of stretching/compression of the
monolayers caused by bending deformation and thus
permits the free energy decrease.

Finally, our free energy functional is invariant with
respect to transversal slide of monolayers such that
divf = 0. Hence, the energy does not change under a
mutual rotation of the monolayers (as a whole) or a
position-independent shift of one of the monolayers
with respect to the other.

We consider pure bending deformations of the
membrane with no overall stretching. Therefore, we
require the lateral strain integrated over the thickness to
be zero at each point of the membrane. This imposes a
restriction on the form of ux and uy: the function a(x, y)
must be equal to zero at every point of the bilayer.
Hence, this function is omitted everywhere below. Then
the strain tensor components can be written as

(19)

and uzz can again be expressed via uxx and uyy using (8).

The free energy functional of the membrane
acquires the form

(20)

To study the properties of functional (20) in detail, a
simple problem with cylindrically symmetric deforma-
tion is discussed in Appendix A. The equilibrium of the
membrane is defined by the Euler–Lagrange equations,
which are obtained by equating to zero the first varia-

Kb/KA h2∼

uxx z
∂2ξ
∂x2
-------- Θ z( ) Θ z–( )–( )

∂ f x

∂x
--------,+–=

uyy z
∂2ξ
∂y2
-------- Θ z( ) Θ z–( )–( )

∂ f y

∂y
--------,+–=

Fv

K1

2
------ uxx uyy+( )2 Vd∫

K1

2
------ 2h3

3
-------- ∇̃ 2ξ( )

2
xd yd∫∫




= =

– 2h2 ∇̃ 2ξ( ) ∇̃ f⋅( ) xd yd∫∫ 2h ∇̃ f⋅( )2
xd yd∫∫+





.
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tional derivatives of the elastic energy functional F(ξ, f)
with respect to the functions ξ(r) and f(r).

3. CONFINING POTENTIAL
FOR A BILAYER WITH SLIDE

Direct influence of confined geometry on the mem-
brane behavior manifests itself in the reduction of the
manifold of accessible membrane conformations.
Entropic interactions of the membrane with confining
walls (see Fig. 1) can be modeled [12] by introduction
of an extra potential energy W dependent on the bend-
ing amplitude,

The free energy functional (20) appended with a con-
fining potential W acquires the form

(21)

The curvature of the confining potential at its min-
imum,

is calculated below using a self-consistent procedure.

W
α
2
---ξ2.=

Fv
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2
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3
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2
xd yd∫∫
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Fig. 1.

 

 Membrane in the confined geometry. A bilayer mem-
brane (each monolayer of thickness 
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) is placed in a water
solution between parallel walls separated by distance 2
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parameterizes position-dependent mutual
slide of the monolayers at their interface.
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In the Fourier space q = {qx, qy}, free energy func-
tional (21) is written as

(22)

where

We diagonalize the quadratic form in (22) with
respect to ξq and q · fq by the linear transformation

(23)

where

In terms of the variables  and fq , energy func-
tional (22) becomes

(24)

Using relations (23) and functional (24), we calculate
the thermodynamic average

(25)

where kB is the Boltzmann constant and T is the tempe-
rature.

Fv K1
2h3

3
--------q4 α+ 

  ξq
2 qx qydd

2π( )2
----------------

0

∞

∫
0

∞

∫=

– K1h2iq2 ξqq fq*⋅ ξq*q fq⋅–( )
qx qydd

2π( )2
----------------

0

∞

∫
0

∞

∫
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ξ̃q

Fv

K1

2
------ 4h3

3
--------q̃4 ξ̃q

2





0

∞

∫
0

∞

∫=

+ h 4 3
q
q̃
--- 

 
4

– 
  q fq⋅ 2



 qx qydd

2π( )2
----------------.

ξq
2〈 〉

kBT

2h3

3
--------K1q4 α+

-------------------------------=

+
3q4kBT

2h3

3
--------K1q4 α+ 

  q4 6α
K1h3
-----------+ 

 
-----------------------------------------------------------------,
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In the absence of interlayer slide, only the first term
remains in Eq. (25), as obtained in [12, 15]. The second
term in (25) signifies enhancement of the bending fluc-
tuations caused by interlayer slide. The latter leads to
relaxation of the lateral stresses (see Appendix A and
Fig. 3 below) and thus to a decrease of the free energy
of the bent membrane.

The mean-square fluctuations of the bending ampli-
tude are found as

(26)

In the confined geometry, the average bending
amplitude is restricted to finite two-dimensional space
between the walls (neglecting the volume occupied by
the membrane itself, i.e., h ! d), thus providing the
self-consistency condition for determination of the
effective rigidity α,

(27)

where µ ≤ 1.
Substituting (26) in (27), we obtain a self-consistent

solution for α:

(28)

We here also evaluate the curvature α0 of the confin-
ing potential for a unit bilayer (without interlayer
slide). In this case, the second term on the right-hand
side of (25) is zero, and hence

(29)

Thus, interlayer slide results in considerable
enhancement (α/α0 = 4) of the curvature of the confin-
ing potential.

4. BILAYER DYNAMICS: VISCOUS MODES

To study the dynamical properties of the introduced
model of bilayer membrane with interlayer slide, we
here determine the equations of motion and find the
eigenmodes of the membrane surrounded by water
solution. We are interested in the behavior of the mem-
brane confined between parallel walls (see Fig. 1).

Let a flat membrane lie in the xy plane with the nor-
mal pointed along the z axis. We treat each monolayer
constituting the membrane as a (unit) two-dimensional
condensed structure. We require the equilibrium
between viscous stresses exerted on the membrane sur-
face by water solution and the membrane restoring
force. We neglect inertial effects and introduce three

ξ2 r( )〈 〉 ξ q
2〈 〉 q

qd
2π
------

0

∞

∫ 3
32
------

kBT

αK1h3
--------------------.= =

ξ2〈 〉 µ d2,=

α
kBT( )2

16µ2d4Kb

------------------------.=

α0

kBT( )2

64µ2d4Kb

------------------------.=
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sources of viscous dissipation: water and membrane
viscosities and interlayer drag. The force balance equa-
tions are expressed as

(30)

(31)

(32)

Here, the fluid stress tensor is defined as

where p denotes hydrostatic pressure, v is the velocity,
and ηw is the viscosity of water solution. The fluid
stress tensor is evaluated at the upper (z = +0) and lower
(z = –0) membrane surfaces and carries the sign of the
normal. The first term on the left-hand side of Eq. (30)
is the elastic restoring membrane force, which is bal-
anced by viscous stress of the fluid normal to the mem-
brane surface. Equation (31) represents force balance in
the lateral direction and contains the following contri-
butions [3, 9]: (a) tangential traction on the interlayer
surface due to differential flow of monolayers;
(b) coherent surface flow of the monolayers as unit sur-
faces (with the dynamic viscosity ηm); (c) viscous drag
between monolayers (characterized by the coefficient bs)
that arises at finite velocity of their mutual slide;
(d) traction of the surrounding fluid. Equation (32)
accounts for the absence of total stretching forces
exerted by water on the membrane because we here dis-
cuss only pure bending deformations of the membrane,
i.e., when the total area dilation is zero.

Navier–Stokes equations for water solutions sur-
rounding the membrane should be added to balance
Eqs. (30)–(32). In the small-velocity limit, treating
fluid as incompressible and neglecting inertia, we write
the “creeping flow” equations as

(33)

The nonslip boundary conditions at the membrane–
water interface provide the continuity of normal and
tangential velocities of the fluid and the membrane:

(34)

(35)

Confinement between parallel walls at the distance
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2d implies vanishing of water velocity (normal and tan-
gential components) at the walls surfaces:

(36)

To find the dispersion relation, we make the Fourier
transform of free energy functional (21) and of the
force balance and creeping flow equations. For this, we
expand the vibration in plane waves propagating along
the x direction. The free energy density Fs(q, ω) then
takes the form

(37)

and

(38)

where Ly is the system dimension along the y axis, and
we have omitted the index ω in the subscripts of Fourier
components.

Restoring membrane forces are given by functional
derivatives of the free energy,

(39)

(40)

Fourier transforms of creeping flow Eqs. (33) for the
components of water velocity and pressure

are written as

We find the following solutions of differential equa-
tions (41) with normal velocity continuous at z = 0, also
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obeying the condition of zero lateral stretching force
acting on the membrane (Eq. (32)) and the condition

(41)

resulting from Eq. (35):

(42)

(43)

(44)

v x z +0=( ) v x z –0=( )–=

pq
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Fig. 2. Viscous modes of a bilayer membrane in a water
solution confined between parallel walls in the case of pure
bending deformations. Damping rates |ωi| (1/s) are plotted
as functions of the dimensionless parameter (q · d), where
q is the wave vector and 2d is the distance between the
walls. Two branches 1 and 2 originate from bending and
interlayer slide. The following values of parameters are
used: d = 10−6 cm, h = 2 × 10–7 cm, ηw = 10–2 dyn s/cm2,

ηm = 1 dyn s/cm2, bs = 107 dyn s/cm3, K1 = 2 ×
108 erg/cm3.
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This solution maintains the symmetry relations
compatible with the confined geometry:

(45)

The physical meaning of Eq. (45), according to the
definitions given before (41), is that the x/z component
of water velocity around a vibrating membrane behaves
symmetrically/antisymmetrically under simultaneous
translation by the half-period (x  x + π/q) along the
wave propagation direction x and mirror reflection in
the midplane between the confining walls (z  –z).

We next eliminate the unknown coefficients C2 and
C4 using stick boundary conditions at the walls, Eq. (36).
We then substitute the solutions in form (42)–(44) into
Fourier-transformed force balance equations (30) and
(31) (exploiting (39) and (40)) and into nonslip condi-
tions (34) and (35) at the water–membrane interface.
Thus, we finally obtain the algebraic system of four lin-
ear homogeneous equations for the unknowns C1, C3,
ξq , and fq:

(46)

(47)

(48)

(49)

The dispersion relation ω(q) is found by equating
the determinant of system (46)–(49) to zero. The latter
gives a quadratic equation for ω(q) that results in two
branches ω1(q) and ω2(q) (see Fig. 2). Two viscous
modes—the hydrodynamically damped bending mode
and the intermonolayer slipping mode—mix, and the
power law ω(q) changes with the wavelength of fluctu-
ations. For pure bending deformation of the membrane,
there exist up to four hydrodynamic regimes (depend-
ing on the parameters of the system), separated by three
crossover wave vectors.

wx z x
π
q
---+, 

  wx z– x,( ),=

wz z x
π
q
---+, 

  –wz z– x,( ).=

ξq
2h3

3
--------K1q4– α– f q K1h2iq3–[ ]+

+ C1 4ηw2q2d2e2qd–[ ]

+ C3 4ηwq 1 e2qd 2qde2qd–+( )[ ] 0,=

ξq –h2K1q3i 4ηwqω–( )

+ f q 2K1hq2 2ηmhq2iω– 2bsiω–( )

+ C1 4ηwi 1 e2qd 2qde2qd+ +( )–[ ]

+ C3 4ηwi2qe2qd–[ ] 0,=

iωξq 2qd2e2qdC1 C3 1 2qde2qd e2qd–+( )+ + 0,=

ω f q

C1

q
------ 1 e2qd 2qde2qd 2q2d2e2qd–––( )+

+ C3 1 2qde2qd e2qd––( ) 0.=
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We use the result in (28) to estimate the upper limit
q0 of the smallest q interval where the eigenmodes are
modified by the confining potential, i.e., where the
induced rigidity term (~α) dominates over the bending
term (~Kbq4) in (22) (and in the first bracket in
Eq. (46)):

(50)

For a typical value of bending rigidity at room temper-
ature [2]

,

we obtain

The second crossover wave vector 1/d bounds the long-
wavelength regime where confinement of the surround-
ing water between the walls affects membrane dynam-
ics. For q @ 1/d, the membrane behaves as in the bulk
water solution. We assume that the distance between
confining walls is much greater than the monolayer
thickness (2d/h ~ 10). The crossover wave vector for
the bulk fluid q1 (see Appendix B) for the chosen
parameters h = 2 × 10–7 cm, ηw = 10–2 dyn s/cm2, and
bs = 107 dyn s/cm3 acquires the value

and therefore obeys the condition q1 ! 1/d. Therefore,
it does not influence dynamic behavior of the mem-
brane in the confined geometry. In the interval of even
shorter wavelengths, there is one more crossover wave
vector

(ηm = 1 dyn s/cm2), which obeys the condition 1/d ! q2.
Hence, we investigate four intervals of wave vector
values:

For long wavelengths, q ! 1/d, confinement
between the walls modifies the bending mode with
respect to the membrane in the bulk solution (see
Appendix B),

(51)

q ! q0
α
Kb

------ 
  1/4

≡
kBT
Kb

--------- 
 

1/2 1
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------ 1

µ
--- 

 
1/2

.=

Kb 25kBT≈
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d

-------.∼

q1

ηw

bsh
2

---------- 105 cm 1–∼=

q2
bs

ηmh
---------

107

2
-------- cm 1–≈=

q ! q0,

q0 ! q ! 1/d ,

1/d  ! q ! q2,

q2 ! q.

ω1
B iq3 K1h3

24ηw

------------–= iq3Kb

ηw

------,–≈
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and results in either q2- or q6-dependences of ω1 instead
of the q3-dependence of the “bulk” mode. For q ! q0,
the bending mode becomes (to be compared with [16])

(52)

The mode ω1(q) is driven by the entropic potential,
characterized by curvature α, and is damped by viscous
losses in the surrounding fluid. It is interesting to men-
tion that, for a bilayer with interlayer slide, α is four
times greater than for a unit bilayer (see Eqs. (28)
and (29)). Thus, interlayer slide leads to faster dynam-
ics of the membrane.

For q0 ! q ! 1/d, the hydrodynamically damped
bending mode is given by

(53)

In this wave vector interval, the finite thickness d of
water layers effectively enhances water viscosity from
ηw to ηw/(qd)3 @ ηw . Result (47) coincides (modulo a
numeric coefficient) with the damped vibration mode
of erythrocyte walls consisting of two membranes with
liquid between them [6].

On the other hand, intermonolayer slipping mode
ω2(q), damped by viscous drag at the monolayer mutual
interface, remains unchanged by confinement (see
Appendix B):

(54)

For a membrane in the bulk solution, mixing of the
bending and slipping modes occurs at q ≈ q1 (see
Appendix B). The relative order of the parameters q1,
1/d, and q2 by increasing value depends on the choice
of characteristic parameters of the system. With our
choice, q1 ! 1/d and the mixing of the modes is delayed
up to q ≈ 1/d (see Fig. 2). We speculate that this happens
because confinement hinders bending fluctuations and
therefore the bending mode remains slower than the
slipping mode up to q ≈ 1/d.

In the short-wavelength limit q @ 1/d we recover, as
expected, the result for a membrane in the bulk water.
Confinement is not revealed in this case because mem-
brane-induced vibrations of water decay exponentially
before reaching the walls. Namely, for q @ 1/d, the
branch ω2(q) now corresponds to the bending mode
damped by viscous losses in the surrounding fluid:

(55)

The renormalized bending rigidity (~K1h3) arises for
high-frequency fluctuations (to be compared with the
numeric coefficients in (51) and (55)) because the
bending mode is faster than the interlayer slipping

ω1 iq2 αd3
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------------.–=

ω1 iq6K1h3d3

144ηw

----------------- iq6Kbd3

ηw

------------.–≈–=

ω2 iq2K1h
bs

--------- iq2KA
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-------.–≈–=
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B iq3K1h3

6ηw
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ηw

------.–≈–=
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mode [9, 10]; interlayer slide leading to relaxation of
lateral stresses in monolayers is retarded. In the interval
1/d ! q ! q2, the branch ω1(q) becomes the interlayer
slipping mode with a renormalized area compression
modulus (superscript B below indicates that the solu-
tion coincides with the bulk water case):

(56)

Finally, for q @ q2, the ω1(q) mode is driven by the
(high-frequency) effective rigidity K1 and is damped by
the monolayer surface viscosity ηm , which dominates
over interlayer drag as the monolayers are dynamically
coupled:

(57)

Viscous modes for a membrane in confined geome-
try obtained in this paper qualitatively agree with the
results for a membrane bound to substrate [10]. We
have not included the membrane tension into our free
energy functional, because in the considered limit of
small bending deformations of the bilayer, the term
proportional to gradient of the bending amplitude is
negligible [15].

The dispersion relation for a bilayer membrane in
the bulk water based on our free energy functional (20)
is derived in Appendix B and also agrees with earlier
results obtained using the density-difference model [9].

5. CONCLUSIONS

A novel free energy functional of a bilayer fluid
membrane derived in this paper reflects important
physical properties of the membrane defining its
dynamic behavior. The functional allows for a two-
dimensional liquid-crystalline structure of the mem-
brane and weak adherence between the monolayers
constituting it, leading to their mutual slide under
(bending) deformations. Our free energy functional
contains three coupled fields parameterizing degrees of
freedom related to bending of the membrane, interlayer
mutual slide, and area dilation.

Using this functional, we have self-consistently cal-
culated the curvature of the effective entropic potential
acting on the membrane between two parallel confining
walls. We found that the curvature at the potential min-
imum (located at the middle between the walls) is
enhanced four times for a bilayer with interlayer slide
in comparison with a unit membrane (with forbidden
slide) of the same thickness. This leads to faster dynam-
ics. This increase can be ascribed to a (partial) decrease
of the lateral stress in the bent membrane via interlayer
slide (static softening of the membrane). The relaxation
of stresses effectively lowers the energetic “cost” of
membrane bending and increases the thermodynamic

ω1
B iq2K1h

4bs

---------–= iq2KA

bs

-------.–≈

ω1
B i

K1

4ηm

---------.–=
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probability for conformations with greater bending
amplitudes. This in turn amplifies entropic repulsion.

We have also calculated the dispersion relations for
a membrane confined between parallel walls. Our
results are in qualitative agreement with those for a
membrane bound to a substrate [10]. Confinement
modifies the viscous modes ω(q) at long wavelengths
compared to the bulk water case. We have found four
wave-vector intervals separated by three characteristic
wave-vector values, q0 ! 1/d ! q2, defined in Section 4.
The inverse of the half-distance d between the confin-
ing walls divides the q axis into two intervals with con-
fined (q ! 1/d) and bulk (q @ 1/d) behavior, respec-
tively. The wave vector q0 delimits the interval of q val-
ues in which the entropic potential modifies the
spectrum of bending modes (see also [16]). In the inter-
val q0 ! q ! 1/d, we found the dependence of bending
mode

similar to peristaltic modes of a soap film [6]. Unlike
in [10], we do not obtain the dependence

because the overall membrane tension is not included
in our free energy functional. Since we consider the
limit of small bending deformations of a flat bilayer, the
term proportional to the gradient of the bending ampli-
tude vanishes [15]. In the interval q @ 1/d, confinement
is not important because membrane-induced vibrations
of water decay exponentially before reaching the walls.
At q > q2, as in the bulk case, the monolayer surface
viscosity ηm dominates over interlayer drag and the
monolayers become dynamically strongly coupled.

Finally, we mention some limitations and possible
improvements of our approach. Our functional respects
reflectional symmetry of a flat bilayer and therefore
implies that spontaneous curvature is zero. We assumed
a thin-plate approximation for each monolayer with
constant elastic moduli. In other words, we developed a
phenomenological effective medium model. Hence,
only fluctuations with wavelengths larger than the
intermolecular distance in a lipid monolayer are con-
sidered. We have exploited smallness of the bending-to-
thickness ratio using linear approximation for the stress
tensor. In the small-bending approximation, area dila-
tion is decoupled from bending. In this paper, we dis-
cussed only pure bending deformations, but the area
dilation dynamics can also be studied using our func-
tional. We found only damped eigenmodes of the mem-
brane in a confined water solution. The propagating
modes will be considered elsewhere.
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APPENDIX A

Analytic Solutions in the Axially Symmetric Case 

We can obtain analytic results describing the equi-
librium shape of and mutual monolayer slide in the
bilayer lipid membrane under constant external pres-
sure in the cylindrically symmetric case. We consider a
flat (unperturbed) circular membrane in the plane xy of
the radius R. We search for an equilibrium solution
independent of the polar angle φ,

(A.1)

where r is the radial coordinate in the reference system
with the origin at the center of the unperturbed mem-
brane midplane and with the z axis directed along the
membrane normal. Hence, the slide functions take the
form

(A.2)

which then leads to the following expression for the
radial component of the distortion field:

(A.3)

Because the deformation is purely radial, the angu-
lar component of the distortion is zero:

The symmetry of distortion fields (A.1) and (A.2)
allows expressing the free energy density (11) in the
cylindrical coordinates as follows:

(A.4)

where

(A.5)

The equilibrium of the membrane under pressure is
defined by the Euler–Lagrange equations, which are
obtained by equating to zero the first variational deriv-
atives of the elastic energy functional F(ξ, f) with
respect to the functions ξ(r) and f(r) entering urr and uφφ
in accordance with (A.5) and (A.3),

(A.6)

ξ ξ r( ),=
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where

P is the z component of the external pressure difference
applied to the opposite sides of the membrane.

Equations (A.6) can be decoupled by the introduc-
tion of the new unknown functions p(r) and g(r) instead
of ξ and f:

(A.7)

In the new basic set of functions {p, q}, Eqs. (A.6)
become form

(A.8)

where

Both equations in (A.8) belong to the Euler class of
equations and can be solved analytically using the
transformation of the variable,

where –∞ < x < ∞ is the new variable.

The following boundary conditions are imposed.

(1) (p''(r)r + p'(r) – p(r)/r)|r = 0 = 0, the bending
amplitude ξ(r) is arbitrary at r = 0;

(2) ξ(R) = 0, membrane is fixed at the edge (no ver-
tical displacement);

(3) (p'(r)r + p(r))|r = R = 0, zero torque at the mem-
brane edge;

(4) ∂ξ/∂r |r = 0 = 0, the slope at the center is zero;

(5) f(0) = 0, no intermonolayer slide at the center
(axial symmetry);

(6) g'(r)r + g(r)|r = R = 0, the intermonolayer slide at
the edge is arbitrary.

These conditions have transparent physical mean-
ing. Conditions (1) and (3) originate from the expression
for the variational derivative ∂Fsr/∂ξ, and condition (6)
arises in the variational derivative δFsr/δf; both deriva-
tives include integration by parts in the segment [0 ≤
r ≤ R]. In particular, condition (1) is obtained by
equating the prefactor in front of δξ(r = 0) to zero. Con-
dition (3) is derived by equating the prefactor in front
of ∂ξ/∂r |r = R to zero, which in turn corresponds to zero

Fv Fsr r,d
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------ 2 f , g– h

∂ξ
∂r
------ 2 f .–= =

r3 p''' 2r2 p'' r p'– p+ + P1r3,=
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torque M at the membrane edge (hence, the membrane
slope at the edge is arbitrary):

(A.9)

Condition (2) models the fixation of the membrane at
the periphery. Condition (4) implies a smooth shape at
the center of the curved membrane. The resulting solu-
tions are

(A.10)

The bending amplitude ξ(r) = uz(r) is defined at the
interface (midplane) of the membrane and is z-indepen-
dent (for small bending of the membrane considered
here). The function f(r) characterizes the amplitude of
mutual slide of the monolayers at the interface of the
membrane (z = 0) (the total amplitude is given by 2f).
As a result of this slide, the bottom surface of the upper
monolayer is compressed, and the top surface of the
lower monolayer is expanded. In the present approxi-
mate approach, f is constant along the thickness (along
the z axis) of the monolayers and depends on the posi-

M K1πh2=

× 4
3
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Fig. 3. Lateral stress σrr normalized by 3PR2/4h2 for vari-
ous z-positions inside the membrane (z > 0 for the upper
monolayer and z < 0 for the lower) is plotted as a function
of the radial coordinate r (in dimensionless units). The solid
lines show stresses in the upper and lower monolayers (the
stress profiles along the z axis in both monolayers coincide
due to interlayer slide, see text). The dashed line represents
two neutral surfaces (at z = ±h/2) in the lower and upper
monolayers. The dotted lines (z = h, z = –h) characterize the
stresses in the membrane of the same thickness 2h with for-
bidden slide.
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tion in the plane of the membrane. It is apparent
from (A.10) that

Substituting (A.10) in expression (A.3) for the
radial distortion ur , we find

(A.11)

The radial stress component corresponding to the
distortion given by (A.11) is readily found as

(A.12)

It is important to mention here that the lateral stress
component σrr in (A.12) proves to be independent of
the elastic modulus (K1) in our weak bending approxi-
mation. On the other hand, the distortion and slide
fields and the strain tensor components depend on the
elastic modulus.

In the considered case of a small bending amplitude,
there is no overall stretch of the deformed membrane
(i.e., pure bending occurs) and thus at any r,

(A.13)

The z-dependent factor in Eq. (A.12) guarantees that
Eq. (A.13) is satisfied. Condition (A.13) is kept by the
equality of the factors in front of Θ(+z) and Θ(–z) (i.e.,
the function f is taken to be the same in both monolay-
ers). Simultaneously, stretching deformation of the
monolayers is equal to zero, a ≡ 0, in the definitions of
the distortion field components (see expression (14) in
Section 3). In general, if the problem is not restricted to
the weak bending deformation and/or if there are addi-
tional forces acting in the lateral direction (stretching
the membrane), we may introduce a(r) ≠ 0 or use two
functions f1 ≠ f2 in front of Θ(+z) and Θ(–z), respec-
tively.

Results of analytic solution of the static equations in
the cylindrically symmetric case are presented in Fig. 3.
The lateral stress σrr(r, z) is shown for several values of
the z coordinate for a bilayer with mutual interlayer
slide (solid lines and dashed lines) and for a unit bilayer
with forbidden slide but of the same thickness 2h
(lines 4, 5). Relaxation of lateral stresses in both mono-
layers is induced by mutual interlayer slide. The neutral
(not stretched) surface at the interface of the membrane
splits into two. Consequently, a neutral surface (with
vanishing lateral stress) appears in the middle of each
monolayer: at z = +h/2 (the upper monolayer) and at z =
–h/2 (the lower monolayer) (line 2). The monolayers
are deformed as if they were disconnected, independent
layers, but still adjusted to the same shape defined at
their mutual interface inside the membrane. Therefore,
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the stress profiles along the z axis coincide with each
other in both monolayers. As a result, the stresses at the
top and bottom external surfaces of the membrane
(z = ±h, lines 1, 3) decrease by half compared to the
case without slide (z = ±h, lines 4, 5). Simultaneously,
as follows from (A.12), the lateral stresses at the bound-
ary r = R turn to zero through the whole depth at the
membrane, σrr(R, z) = 0, corresponding to the absence
of the applied external stretching forces.

APPENDIX B

Bilayer Modes in the Bulk Water 

To test the relevance of our approach to describe the
dynamical properties of a bilayer, we here rederive the
dispersion relation for a membrane in the bulk water
solution using our free energy functional (20) intro-
duced in Section 2. Our results agree with the previous
ones obtained for a membrane in the bulk fluid using
the curvature elastic model [6] and the density-differ-
ence model [9].

For the surrounding bulk fluid, we search for the
solution of creeping flow equations (33) (Section 4) sat-
isfying the nonslip conditions at the membrane–water
interface, Eqs. (34) and (35). In addition, we impose the
boundary conditions for fluid velocity components v i ,

(B.1)

which require the fluid velocity field to vanish at large
distances from the membrane.

As in Section 4, we expand vibrations in plane
waves propagating along the x axis. We make a Fourier
transform of free energy functional (20). The free
energy density Fs(q, ω) is written as

(B.2)

The components of water velocity and pressure in
the form

are substituted in Fourier-transformed creeping flow
equations (41) (see Section 4). The solutions of differ-
ential Eqs. (41) satisfying boundary conditions (B.1),
with the normal velocity continuous at z = 0 and also
obeying the condition of zero lateral stretching force
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acting on the membrane (Eq. (32) in Section 4), are
given by

(B.3)

(B.4)

(B.5)

where the constants C2 and C4 , which are present in
Eqs. (42)–(44), turn to zero due to boundary condi-
tions (B.1).

The unknown coefficients C1 and C3 are determined
from nonslip conditions (34) and (35). Then, we substi-
tute solutions (B.3)–(B.5) in Fourier transforms of
force balance Eqs. (30) and (31) and obtain an algebraic
system of two linear homogeneous equations for the
components ξq and fq ,

(B.6)

(B.7)

Equating the determinant of this system to zero, we
obtain a quadratic equation for ω(q), which results in
two branches ω1(q) and ω2(q). There are three hydrody-
namic regimes,

q ! q1, q1 ! q ! q2, q2 ! q,

separated by crossover wave vectors q1 and q2 [9]:

(B.8)

For long wavelengths, q ! q1, the dispersion rela-
tions are given by

(B.9)

(B.10)

which describe respectively the hydrodynamically

damped bending mode (q) and the intermonolayer

slipping mode (q) damped by viscous drag at the
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membrane midplane. Here, the superscript “B” is intro-
duced to label membrane modes in the bulk fluid.

For wave vectors in the interval q1 ! q ! q2, the
bending and slipping modes mix [9],

(B.11)

(B.12)

The branch (q) now corresponds to the bending
mode damped by viscous losses in the surrounding

fluid, and the branch (q) describes the damping of
the slipping mode. The elastic moduli in (B.11) and
(B.12) differ in general from those in (B.9) and (B.10),
because high-frequency (bending) fluctuations occur at
nonrelaxed monolayer surface densities [9].

In the short-wavelength limit, q @ q2, we obtain

(B.13)

(B.14)

The (q) mode is driven by the (high-frequency)
effective rigidity K1 and is damped by the monolayer
surface viscosity ηm . Effective rigidity is induced by
dynamic coupling of monolayers [3]. Monolayer sur-
face viscosity overwhelms interlayer drag and becomes
the main source of dissipation.
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