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Abstract—The conditions for the fragmentation of the baryonic component during mergers of dark matter
halos in the early Universe are studied. We assume that the baryonic component undergoes a shock
compression. The characteristic masses of protostellar molecular clouds and the minimum masses of
protostars originating in these clouds decrease with increasing halo mass. This may indicate that the initial
stellar mass function in more massive galaxies was shifted towards lower masses during the initial stages
of their formation. This would result in an increase in the number of stars per unit mass of the halo, i.e., in
an increase in the efficiency of star formation. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In the hierarchical theory of the origin of structures
in the Universe, gravitationally bound objects—dark
matter halos, in which stars can form—first appear
at redshifts z ∼ 20 and have masses M ∼ 107 M�,
including the dark and baryonic components [1–3].
These halos form due to multiple collisions and the
merging of similar objects of smaller mass. The
dynamics of the early stages of these processes are
determined by the gravitational instability of the dark
component, which consists of cool (nonrelativistic)
particles. Density perturbations of virtually any wave-
length can develop in the dark component, since
the minimum critical scale of the perturbations—the
Jeans mass, which depends on the velocity dispersion
in a collisionless gas—is negligible compared with
themass of the halo (see, for example, [4]). The spatial
scale of the perturbations can be constrained from
below by a truncation of the perturbation spectrum.
The amplitude of the density perturbations on small
scales is known to decrease with wavelength accord-
ing to a power law (∝ λ−3) [5, 6]. Thus, the forma-
tion of structure includes relatively developed short-
wavelength motions modulated by slowly growing
long-wavelength flows [7].

Under these conditions, a nearly one-dimensional
motion develops, in which perturbations are com-
pressed mainly along a single direction, giving rise
to a disklike configuration [8, 9]. Baryons confined
by the gravitational field of the dark matter and in-
volved in this one-dimensional flow undergo shock
compression and are heated to the temperature Tf ∼
mpv

2
c/2k, where vc is the velocity of the inward gas
1063-7729/05/4908-0587$26.00
flow; as a result, a dense layer or disk is formed.
The compressed baryonic layer is efficiently cooled by
radiative processes with neutral hydrogen atoms or
molecules. The formation of molecular hydrogen is
substantially accelerated behind shock fronts, so that
the cooling of the gas can basically be governed by the
H2 molecules.When the temperature decreases down
to 200 K, deuterium efficiently transforms into HD,
which results in an even higher thermal-energy loss
rate, providing favorable conditions for the fragmen-
tation of the compressed gas [10–17]. Thus, during
the formation of galaxies, encountering flows result
in the formation of evolving, dense baryonic con-
densations in which stellar objects can subsequently
form. This concept was recently discussed in [16, 17].
During the formation of massive protogalaxies, dense
baryonic layers are maintained over longer times, so
that the gas is cooled substantially and higher den-
sities are reached. Therefore, one may expect that,
in the formation of more massive galaxies, baryonic
fragments of lower mass will be gravitationally un-
stable, and less massive stars will be formed, which
increases the number of stars per unit of mass of the
halo—in other words, the star-formation rate. Here,
we study this possibility.

Section 2 discusses the model adopted to de-
scribe the thermal evolution of baryons behind shock
fronts. Section 3 presents the results, and Sec-
tion 4 contains our conclusions and final discus-
sion. Our calculations were based on the ΛCDM
model for the Universe: (Ω0,ΩΛ,Ωm,Ωb, h) =
(1.0, 0.71, 0.29, 0.047, 0.72), with the abundance of
deuterium assumed to be n(D)/n = 2.6 × 10−5 [18].
c© 2005 Pleiades Publishing, Inc.
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2. HALO VIRIALIZATION
AND THE THERMO-CHEMICAL

EVOLUTION OF GAS

In the linear stage of its growth, the evolution
of a dark-matter density perturbation δdm(t) can be
described by the equation (see, for example, [6])

δ̈dm + 2Hδ̇dm =
3
2
H2(Ωbδb + Ωdmδdm), (1)

whereH is theHubble constant, δb is the perturbation
of the baryon density, andΩdm = Ωm −Ωb. Aswe can
see from this equation, there is no limiting minimum
scale in dark matter. In reality, the Jeans mass in
collisionless dark matter depends on the velocity dis-
persion; however, this value turns out to be negligibly
small compared with the mass of the halo. As was
already noted, if a density perturbation in dark matter
is essentially super-Jeans, then its compression will
proceed more rapidly along one direction [8, 9]. The
dissipative baryonic component follows the dark mat-
ter potential and forms a disklike configuration in the
symmetry plane. The growth of the perturbation is es-
sentially a collision between flows of dark matter and
baryons and results in the formation of a shock front
in the baryonic component. Subsequently, the colli-
sionless dark matter becomes virialized via violent re-
laxation [19], and the baryonic component undergoes
shock compression in the colliding flows, forming a
dense, radiatively cooled layer. Starting from some
time, the increased density of the gas may exceed
the density of the dark matter, and the dynamics of
the gas will be determined by its own parameters.
Therefore, we can neglect the influence of the dark
matter and consider only the baryonic component.
This is valid at least within the characteristic time for
a collision between regions, td ∼ D/v.

When gas flows collide, a thin dense gas layer
and two diverging shock fronts around the contact
region are initially formed; behind the shock fronts,
the gas is heated to a temperature of Tf ∼ mpvc

2/2k,
where mp is the proton mass and vc the collisional
velocity. The compression and formation of the dense
layer lasts for approximately a time td = D/vc. In
the transverse direction, the gas is not restrained
by dynamical pressure and can expand freely on a
time scale t⊥ ∼ D/cs, where cs is the sound speed.
Thus, the ratio of the characteristic time scales is
td/t⊥ � 1/M, where M is the Mach number, and
we have for a collision between baryonic flows with
velocities vc > cs the condition td < t⊥. Therefore,
for supersonic collisions, we can neglect the trans-
verse motion in the layer when t < td and solve the
one-dimensional problem. It was shown via two-
dimensional modeling that, indeed, only an insignif-
icant amount of the mass is lost to transverse outflow
during a collision of gas clouds [20].
The velocity of the gas motions during the forma-
tion of a dark halo with massM is

vc =
√

3σ, (2)

where

σ(M) =
√

GM2/3(3π3Ωmρ0)1/3(1 + z) (3)

is the one-dimensional velocity dispersion and ρ0 is
the present mean total density of the Universe. It is
clear that the collisional velocity and gas temperature
behind the shock fronts will be higher when more
massive halos are formed.

The thermal evolution of baryons behind a shock
front can be described by a system of ordinary dif-
ferential equations written for a single Lagrangian
element of the fluid:

ẋ = βxn(1 − x− 2f) − k1nx
2, (4)

ḟ = kmn(1 − x− 2f)x, (5)

ġ = kD1fxndc − nx(kD1f + kD2)g, (6)

Ṫ =
2
3
ṅ

n
T + ΣΛi, (7)

where x = n(e)/n, f = n(H2)/n, g = n(HD)/n are
the relative concentrations of electrons, H2, and HD,
dc = n(D)/n is the cosmological abundance of deu-
terium, ki are the rates of reactions [3, 21], β is the rate
of collisional ionization of hydrogen [14], Λi is the rate
of cooling and heating due to Compton interactions
with photons of the cosmic microwave background
radiation (CMB), emission in atomic and molecular
hydrogen lines [22], and also HD molecules [21, 23,
24]. Initially, the gas density behind the shock front
is n = 4n0, where n0 is the density before the shock
front. Further, we will assume that each element of
the gas behind the shock front evolves isobarically
and that the density is described by the expression

n =
p

µkT
, (8)

where µ = ρ/nmp.
In the ΛCDM model, the spectrum of perturba-

tions in the dark matter is rather steep (n = −3),
which implies that halos with masses of 104−108 M�
condense out over times shorter than the correspond-
ing Hubble time [25]. Some time after condensing,
the halos become virialized. In addition, since they are
involved in large-scale motions, they merge with each
other, forming halos of higher mass. Both virialization
and merging take comparable times. For this reason,
two limiting possibilities can be suggested for the ini-
tial conditions for the halo formation. In the first, halos
of smaller mass (subhalos) collide and soon reach the
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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Fig. 1. Top: concentrations of electrons (solid curve), H2 (dashed curve), and HD (dotted curve), and the temperatures (dot–
dashed curve) reached in the gas during the virialization of a halo with mass M at z = 15. Bottom: total baryonic mass in the
halo (solid curve) and the Jeans mass in the layer behind the shock front. The left and right graphs correspond to the first and
second models for the initial conditions (see the text for more details).
virial state at larger redshifts. In the second, virial-
ization and merging of subhalos occur at the same
time at a given redshift. In both cases, the process
can be presented as a one-dimensional compression.
The two cases differ in the initial characteristics of the
matter in the flow or, more precisely, in the density
and the velocity of the collision. In the first model, a
halo is formed due to collisions of subhalos, and the
parameters of the matter correspond to those in the
objects that have been virialized by the beginning of
the formation of the larger halo (zta), i.e., by the time it
separates from the cosmological expansion. The mat-
ter density can be taken to be ρ � 18π2ρ0(zta) [25],
and the relative concentrations of e, H2, and HD
to their values inside the subhalos. In the second
model, subhalos are virialized and collide at the same
redshift, and the initial density of the matter is ρ �
18π2ρ0(zvir), where ρ0(z) is the background density
of matter at the redshift z; the relative concentrations
of electrons, H2, and HD are assumed to be equal to
their values inside the halo. In both models, a colli-
ASTRONOMY REPORTS Vol. 49 No. 8 2005
sion results in the formation of a shock front, behind
which gas is rapidly heated to the temperature Tf =
mpv

2
c/3k, which is taken as the initial temperature of

an element of gas behind the front. Since the initial
conditions in the models considered differ only in
their densities, the results will be qualitatively similar.
Therefore, we will describe only the first model, but
present graphs for both. Calculations for halos with
the masses corresponding to 3σ perturbations were
carried out only for the second model.

3. RESULTS

3.1. Thermal and Chemical Evolution of Baryons

Let us investigate the chemical and thermal evo-
lution of the gas behind the shock front using the
example of halos formed at redshifts near z = 15.
Figure 1 presents the concentrations of electrons, H2,
and HD and the temperatures reached in the gas
behind the shock front at the end of one compression
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Fig. 2. The minimum halo mass for which the gas layer
behind the shock front becomes unstable according to the
criterion (9) during the formation of the halo for two halo-
formation models (dot–dashed and dotted curves). The
solid line indicates the mass of 3σ perturbations, and the
dashed line the minimum mass for which baryons can be
cooled and form gravitationally bound objects [3].

time during the formation of a halo with mass M . It
is clearly seen that, starting from some halo mass,
the relative concentration of H2 molecules exceeds
5 × 10−4 and the temperature of the gas decreases
substantially (T ∼ 500 K). This corresponds to the
minimum H2 concentration needed in order for the
gas to cool rapidly, in one comoving Hubble time [3].
In more massive halos, the H2 concentration con-
tinues to grow and can reach 10−2 for halos with
Mh � 4 × 107 M�. Radiative losses in H2 lines cool
the gas to T � 200 K, and all the deuterium rapidly
becomes bound in HD molecules due to the effects of
chemical fractionation. Due to strong cooling in HD
lines, the temperature drops to severаl tens of Kelvin,
which is close to the temperature of the CMB radia-
tion at this redshift (2.73 (1 + z) К). HD molecules
provide efficient heat exchange between the CMB
and baryons, due to the fact that the baryons absorb
background photons and subsequently transfer the
excitation energy to the gas through collisions [24,
26, 27]. Under these conditions, the Jeans mass be-
hind the shock front (dashed curves in lower panels
of Fig. 1) decreases and, starting from some value,
becomes substantially lower than the baryonic mass
of the forming halo (ΩbMh/Ωm, solid curve). For ex-
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Fig. 3. Dependence of the Jeans mass behind the shock
front on the time when the halo forms. The dashed and
dotted lines correspond to the minimum halo masses
needed in order for the layer behind the shock front to
be unstable according to criterion (9) for the first and
second models, respectively. The solid line corresponds to
the mass of the 3σ perturbations.

ample, for a halo with M = 107 M�, the Jeans mass
isMJ � 103 M�.

Let us now consider the instability of the cool
compressed layer and the possible formation of dense
baryonic condensations in it. We will assume that the
gas in the layer is gravitationally unstable and can
fragment, provided the critical perturbation length λm

is shorter than the initial size of the cloud D and
that the corresponding time tm is shorter than the
compression time [28, 29]:

λm/D ≤ 1, tm/td ≤ 1. (9)

The vertical line in Fig. 1 indicates the minimum
halo mass for which the criterion (9) is fulfilled during
its formation. Thus, the gas behind the shock front
originating during the formation of a halo with mass
M ≥ 107 M� at a redshift z � 15 is unstable by the
end of the compression phase; accordingly, the first
baryonic objects with masses roughly equal to the
Jeans mass MJ ≤ 103 M� can form inside the halo.
Since the temperature of the gas in the unstable frag-
ments is lower than 200 K, the concentration of HD
also increases substantially, thereby determining the
subsequent thermal evolution of the gas behind the
shock fronts forming during the formation of the first
halos.
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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Figure 2 shows the relation between the redshift
and the minimum halo mass for which the layer be-
hind the shock front becomes unstable according to
criterion (9) during its formation. For comparison, the
mass of 3σ perturbations is displayed, as well as the
minimum mass for which baryons can cool and form
gravitationally bound objects (the latter value was
derived in [3]). A gravitationally unstable gas layer is
formed during the virialization behind the shock front
in a halo with mass Mmin � 5 × 106 M� at z = 20.
This derived minimum halo mass is comparable to
that obtained in [3]; however, the temperature of the
gas is substantially lower in our model.

Baryonic objects with masses approximately equal
to the Jeans mass can condense inside this unstable
layer. Figure 3 displays the dependence of the Jeans
mass behind the shock front on the time at which
the halo forms; the dashed line corresponds to the
minimum halo mass needed in order for the layer
behind the shock front to be unstable according to (9),
and the solid curve, to the mass of 3σ perturba-
tions. It is seen that, at the given redshift, the Jeans
mass in the layer formed behind the shock front de-
creases with increasing halo mass: the conditions are
favorable for forming fragments with lower masses
in more massive halos. For example, in the forma-
tion of a halo with mass 107 M� (which corresponds
to the minimum halo mass) at redshift z = 15, the
layer behind the shock front becomes unstable, and
the baryonic objects formed there can have masses
of Mb ∼ 3 × 103 M�, while Mb ∼ 300M� for a ha-
lo with mass 108 M�. Fragments with masses as
low as Mb ∼ 100M� will be unstable in a halo with
mass 3 × 109 M� formed at z = 10. The possible
masses of gravitationally unstable baryonic conden-
sations lie between the above limits which widen with
decreasing z.

During the formation of a massive halo, the gas
behind the shock front cools and is compressed
more intensely, due to the more efficient formation
of H2 molecules behind more intense shock fronts.
Figure 4 presents the dependence of the gas density
on the mass of the halo and the redshift at which it
begins to form. The variation of the slope of the n(M)
curves with increasing M reflects the fact that, by
the end of the compression phase, the temperature
behind the shock front reaches the temperature of the
CMB, due to the efficient formation of HD molecules
and energy exchange between the gas and CMB
radiation via the absorption of background photons by
HD molecules followed by collisional de-excitation.
The final density at the given z depends only on
the initial temperature of the gas behind the shock
front, which, in turn, is a function of the halo mass:
n = n0(Tf/TCMB).
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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Fig. 4. Dependence of the final density of the gas behind
the shock fronts on the halomass and the initial redshift at
which the halo forms for z = 20, 18, 16, 14, 12, 10 (curves
from left to right, respectively).

3.2. The MinimumMass of Baryonic Objects

Baryonic fragments with masses 102−104 M�
(Fig. 3) formed behind the shock front in an unstable
layer are optically transparent to radiation in H2

and HD lines. Compression of the fragments occurs
in an isothermal regime at a temperature close to
2.73(1 + z) К, as is mainly ensured by the HD
molecules.

In the isothermal regime, a characteristic self-
similar density profile is formed, ρ ∼ r−2 [30, 31],
and, as a result, the optical depth in the HD lines
increases in the central regions, and the Jeans mass
gradually decreases. The critical point is the forma-
tion of an optically thick (τ ≥ 1) core region with a
mass equal to or exceeding the Jeans mass. In the
central regions when τ ∼ 1, the gas density is high
(∼109−1010 cm−3), and all the hydrogen is trans-
formed into the molecular phase via three-particle
reactions. However, due to the low temperature of the
gas, the contribution of H2 molecules to the cooling
in optically transparent regions—and, therefore, their
impact on the dynamics of the compression—will be
unimportant. The formation of an opaque core will be
fully determined by theHDmolecules in the gas. After
the formation of an opaque, gravitationally unstable
core, the compression changes from being isother-
mal to being adiabatic. Figure 5 presents the depen-



592 VASIL’EV, SHCHEKINOV

 

M

 

h

 

, 

 

M

 

�

 

10

 

–1

 

10

 

–2

 

10

 

–3

 

10

 

–4

 

10

 

–5

 

10

 

0

 

10

 

–1

 

10

 

–2

 

10

 

–3

 

10

 

–4

 

10

 

–5

 

10

 

0

 

r

 

, pc

10

 

–4

 

10

 

–3

 

10

 

–2

 

10

 

–1

 

10

 

0

 

τ

 

10

 

3

 

10

 

4

 

10

 

5

 

10

 

6

 

10

 

7

 

10

 

8

 

10

 

9

 

10

 

10

 
10

 
11

 

n

 

, c
m

 

–
3

 
44.70

44.65

44.60

44.55

10

 

2

 

10

 

1

 

10

 

0

 

10

 

–1

 

10

 

–2

 

10

 

–3

 

10

 

–4

 

10

 

–5

 

T

 

, K

Fig. 5.Density, optical depth, temperature, and Jeans mass inside a cloud at the time of formation of an opaque gravitationally
unstable core (z � 15.3) for a fragment with massM = 500M� formed due to instability of the layer during the formation of a
halo withMh = 2 × 107 M� at zv = 17. The dashed line in the lower right graph indicates the mass inside the corresponding
radius.
dences of the density, optical depth, temperature, and
Jeans mass inside the cloud when this state has been
reached by z � 15.3, for a fragment with mass M =
500M� formed as a result of instability in the layer
during the formation of a halo withMh = 2× 107 M�
at zv = 17. It is clear that the temperature is almost
constant and close to that of the CMB throughout
the cloud. The formed opaque core has a density of
≥1010 cm−3 and a mass of∼0.15M�.

Figure 6 presents the dependence of the mass of
the opaque core on the mass of the halo for the limit-
ing masses: the minimum mass Mmin needed for the
layer behind the shock fronts to be unstable according
to (9) for both models of the initial conditions and the
mass corresponding to 3σ perturbations, M3σ. The
numbers in Fig. 6 denote the redshift at which the
halo is virialized. It is seen that themass of the opaque
core decreases as the mass of the halo increases: the
mass of the core for a halo mass ofMh � 2 × 107 M�
at z = 17 is M(τ ≥ 1) ∼ 0.15M�, while the mass
of the core is M(τ ≥ 1) ∼ 0.06M� for a halo mass
Mh � 109 M� at z = 12.
Thus, the formation of dark halos results in the
formation of intense shock fronts in the baryonic
component, substantial cooling, and an increase in
the gas density. The cold postshock gas layer is
unstable against formation of baryonic condensations
in which protostellar cores in turn be formed. The
higher the mass of the initial halo, the lower the
characteristic mass of the gravitationally unstable
fragment—a possible protostellar cluster or opaque
protostellar core.

3.3. Thermal Instability

The development of thermal instability becomes
possible in a radiatively cooling gas under certain
cooling regimes [32]. In the non-steady-state case,
when radiative losses are not balanced by heating, the
condition for this is

d lnΛ
d lnT

< 2, (10)

where Λ is the effective radiative-loss function (see,
for example, [33]). Figure 7 shows the temperature
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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dependence of the function d lnΛ/d lnT in the whole
range of temperatures encompassed by the gas cool-
ing behind the shock front. It is obvious that thermal
instability can develop at all points where the cooling
is determined by H2 and HD molecules, i.e., when
70 К < T < 8000 К. To order of magnitude, the char-
acteristic size of the region of instability coincides
with the size of the region behind the shock front
where the gas is cooled from T = Tf . Therefore, it is
obvious that the forming condensations will facilitate
the subsequent gravitation fragmentation of the com-
pressed layer.

4. DISCUSSION AND CONCLUSIONS

Collisions of baryonic flows during the formation
of the first protogalaxies are accompanied by intense
cooling of the gas, which promotes the fragmenta-
tion of the gas into condensations with characteristic
masses that are close to the masses of the present-
day molecular clouds. The subsequent cooling and
compression of such condensations can be accom-
panied by star formation. The higher the mass of
the galaxy, the more intense the gas cooling and
the smaller the mass of the molecular cloud and the
minimum mass of stars formed as a result of its
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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Fig. 7. Temperature dependence of the cooling rate and
its logarithmic derivative Φ = dlnΛ/dlnT for various ap-
proximations for the radiative losses in HD lines.

subsequent fragmentation. Thus, in this picture, we
expect that the initial mass function of stars and initial
luminosity function of stellar clusters will be shifted
towards smaller values in more massive galaxies.

The formed low-mass fragments cool rapidly, due
to the high abundances of H2 and HD molecules.
Starting from some time, a protostellar cloud
switches to an isothermal compression phase, since
the gas temperature is maintained near the tempera-
ture of the cosmic microwave background, due to effi-
cient heat exchange between the CMB radiation and
baryons, which absorb background photons and then
transfer the excitation energy to the gas in collisional
processes [24, 26, 27]. Further, as the density in the
central regions of the fragment increases, an opaque
core with a mass of (10−1−10−2)M� is formed. This
core evolves then into a hydrostatic protostellar core
with a lower mass of the order of 10−3 M� [30, 31],
onto which matter gradually accretes, with the accre-
tion rate determining the final mass of the star [34]. In
this process, practically all of the total gravitational
energy of the accreted gas is radiated in H2 and HD
lines. A possibility to observe H2 line emission was
discussed in [35–38]; it would be extremely diffi-
cult to detect this emission with either currently
operating or planned telescopes [38]. For example,
if ∼2000 protostellar objects are formed behind the
shock front during the virialization of a halo withmass
3 × 107 M� (which corresponds to approximately
10% of the mass of baryons being transformed into
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protostellar fragments), the luminosity of this cluster
in the H2 2.34-µm line will be ∼1038 erg/s. With a
spectral resolution ofR ∼ 1000, this corresponds to a
flux from the object of ∼10−2 µJy at redshift z = 15,
while the sensitivity of the next planned SAFIR space
telescope1) is 1 µJy.
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Abstract—Optimized photoionization models of selected HII regions in Blue Compact Dwarf Galaxies
are calculated with the aim of determining their chemical composition. The stability of the optimized-
photoionization calculations and means of deriving the most accurate chemical abundances are checked.
Initialization of the free physical parameters using different data sets, deviations from spherical geometry,
and the introduction of gas-density fluctuations in an HII region do not affect the accuracy of the
derived chemical compositions. The chemical abundances found for 12 HII regions using the optimized-
photoionization models are used to derive the primordial helium abundance Yp and its enrichment dY/dZ.
The obtained values of Yp and dY/dZ are close to values found previously using ionization-correction
factors. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In our first work in this series [1], we determined
the elemental abundances for 43 HII regions in Blue
Compact Dwarf Galaxies (BCDGs) using ionization-
correction factors found from a grid of photoionization
models for the emission of these objects [2]. We de-
rived the primordial helium abundance Yp = 0.2440 ±
0.0024 and rate of its enrichment dY/dZ = −4.02 ±
2.46. However, we adopted certain simplifications in
the calculation of the model grid: (a) the He/H abun-
dance was assumed to be constant; (b) the spectral
energy distribution of the ionizing sources at λ ≤
912 Å was taken to be the minimum, mean, or max-
imum value on the energy scale for three objects;
(c) we neglected the decrements in the abundances of
different elements. This gave rise to the need to check
the effect of these assumptions on the resulting Yp and
dY/dZ values.

Given the importance of determining the helium
abundance, we further considered ways to take
into account various factors affecting the derived
He/H abundances [3]. As a result, we redetermined
the He/H abundances for 28 HII regions, obtain-
ing the values Yp = 0.244 ± 0.004 and dY/dZ =
8.8 ± 4.6. The abundances of heavy elements were
taken from [1].

In the current paper, we propose a new method
for determining the chemical compositions of HII re-
gions in BCDGs based on the calculation of
optimized-photoionization (OP) models for the emis-
sion of these objects. The technique and algorithm
1063-7729/05/4908-0595$26.00
used in the OP calculations, procedure used to select
the HII regions, and verification of the stability of the
solutions are described in Section 2. The derived Yp

and dY/dZ values and a comparison with other such
results are given in Sections 3 and 4.

2. TECHNIQUE FOR CALCULATING
OPTIMIZED-PHOTOIONIZATION MODELS

OF HII REGIONS IN BLUE COMPACT
DWARF GALAXIES

The goal of the OP calculations is to search for
values of the free parameters such that the calculated
model spectrum of an HII region is as close as possi-
ble to the observed spectrum (the relative intensities
of the lines and Hβ line luminosity). The criterion for
agreement between the model and observed spectra is
the so-called χ2 function, which, for the ith quantity
in the photoionization model is [4]

χ2
i =

(
Obsi −Modi

σ

)2

, (1)

where Obsi and Modi are the observed and model
values of the corresponding quantity, and σ is the
standard deviation of the observed value. As in [5],
we will use the average values of χ2 for the relative
intensities of emission lines in the OP calculations.
The σ for the logarithm of the Hβ line luminosity of
an HII region was always taken to be 0.05 (5%). The
essence of the optimization algorithm (or χ2 mini-
mization) consists in varying the values of the free
c© 2005 Pleiades Publishing, Inc.
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Table 1. Comparison of free parameters obtained from the
OP calculations applying the optimization to all selected
line intensities (see text) and to only one line for each ion

Parameter All lines
inOPmodel

One line per ion
in OP model

nH , cm−3 176+39
−19 161+40

−14

logQtot 53.87 53.87

ε 0.0059+0.0003
−0.0004 0.0064+0.0036

−0.0008

He/H, 10−2 8.42+0.57
−0.72 8.47+0.67

−0.71

O/H, 10−5 9.53+0.48
−0.46 9.57+0.31

−1.67

N/H, 10−6 4.39+0.79
−0.67 4.49+0.16

−1.09

Ne/H, 10−5 1.64+0.09
−0.12 1.63+0.47

−0.06

S/H, 10−6 3.21+0.22
−0.16 3.10+0.22

−0.80

Ar/H, 10−7 4.44+0.80
−1.08 4.37+0.42

−0.39

Fe/H, 10−6 1.25+0.73
−0.46 1.28+6.65

−0.47

parameters of the model until the χ2 function reaches
a minimum.

We selected the HII regions 0917+527,
0926+606, 0940+544N, 0948+532, 1054+365,
1135+581, 1152+579, 1211+540, 1256+351,
1533+574A for the OP calculations, taking their
spectra from [6, 7]. The selection of these objects
was determined by the fact that their elemental
abundances (see [1]) reproduce the same values of Yp

and dY/dZ as for all the objects in the sample within
the errors (Fig. 1). We chose four HeI lines for the
analysis.

Note that we used the same observed spectra in
theOP calculations as we did when finding the chem-
ical compositions in [1]. For each of the objects, we
recalculated the Lc spectrum using a modified version
of our NLEHII code [8].
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Fig. 1. Y −Z dependence for data calculated using a
photoionization-model grid for 10 objects selected for the
OP calculations. Both Yp and dY/dZ coincide with the
corresponding values obtained for the entire sample of
objects within the errors (Yp = 0.244 ± 0.004, dY/dZ =
8.8 ± 4.6).
We optimized the resulting Lc spectra to reproduce
the relative intensities of the HeII λ4686/Hβ lines
using the method described in [2]. This yielded the
Lc spectra for the ten selected and two additional (see
below) HII regions (Fig. 2), which we used in the
OP calculations for these objects.

We calculated the photoionization models for
the OP calculations using the CLOUDY 96 pho-
toionization code [4] (http://www.pa.uky.edu/∼gary/
cloudy) and carried out the optimization using the
PHYMIR code [5], which is included as a function in
CLOUDY 96.

We chose as free parameters in the OP calcula-
tions

(1) the total number of ionizing photonsQtot,
(2) the hydrogen density nH (50−1000 cm−3),
(3) the filling factor ε (0.00001−0.1),
(4) He/H (0.05−0.11),
(5) O/H (8.0 × 10−6−1.4 × 10−4),
(6) N/H (3.0 × 10−7−6.5 × 10−6),
(7) Ne/H (2.0 × 10−6−4.0 × 10−5),
(8) S/H (6.0 × 10−7−4.0 × 10−6),
(9) Ar/H (8.0 × 10−8−8.0 × 10−7),
(10) Fe/H.

The ranges of the variations of these parameters are
given in parentheses. We adopted average values
between the maximum and minimum as the initial
values.

The parameters used to calculate χ2 were the Hβ
line luminosity and the relative intensities of the [OII]
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Fig. 2. Lc spectra obtained for the OP calculations for
12 HII regions in BCDGs. All fluxes are given at the inner
boundary of the model HII region.
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Table 2. Free parameters obtained from the OP calculations

Parameter
Objects

0917+527 0926+606 0940+544N 0948+532 1054+365 0723+692B∗

nH , cm−3 116+17
−5 81.5+2.3

−1.9 235+89
−5 179.7+24

−22 494+15
−11 291+33

−13

logQtot 52.37 53.18 51.89 53.87 51.28 50.94

ε 0.0255+0.0005
−0.0017 0.0147+0

−0 0.099+0.001
−0.012 0.0058+0.0004

−0.0003 0.0997+0
−0.0022 0.088+0.004

−0.006

He/H, 10−2 8.31+0.53
−0.48 8.55+0.35

−0.40 8.32+0.00
−0.11 8.40+0.59

−0.71 8.37+0.14
−0.01 8.22+0.46

−0.61

O/H, 10−5 9.43+0.18
−0.20 9.56+0.20

−0.01 4.31+0.00
−0.08 9.52+0.43

−0.45 8.85+0.00
−0.01 7.25+0.18

−0.17

N/H, 10−6 2.78+0.08
−0.09 4.38+0.22

−0.24 1.27+0.22
−0.26 4.40+0.78

−0.68 3.62+0.44
−0.39 2.47+0.46

−0.39

Ne/H, 10−5 1.99+0.06
−0.06 1.80+0.06

−0.07 0.773+0.001
−0.001 1.65+0.09

−0.13 1.50+0.07
−0.07 1.06+0.05

−0.07

S/H, 10−6 3.32+0.13
−0.14 4.00+0.00

−0.08 0.99+0.13
−0.10 3.22+0.22

−0.17 2.56+0.26
−0.16 2.34+0.16

−0.14

Ar/H, 10−7 2.60+0.42
−0.52 3.59+0.35

−0.20 1.28+0.20
−0.24 4.37+0.86

−1.06 4.16+0.25
−0.27 3.12+0.19

−0.21

Fe/H, 10−6 1.20+0.71
−0.44 1.33+0.78

−0.58 0.75+0.46
−0.27 1.26+0.71

−0.47 0.18+0.03
−0.07 0.12+0.03

−0.04

Parameter
Objects

1135+581 1152+579 1211+540 1256+351 1533+574A 0741+535∗

nH , cm−3 124+5.8
−6.6 143+11

−3.36 498+0.0
−19 127+2.7

−0.1 176+9.36
−8.89 284+32

−30

logQtot 52.54 53.92 51.58 52.33 53.10 53.14

ε 0.0321+0.0003
−0.0017 0.0129+0.0010

−0.0002 0.1000+0
−0.0015 0.0769+0.00004

−0.00081 0.0041+0.0001
−0 0.0033+0.0002

−0.0002

He/H, 10−2 8.64+0.22
−0.21 8.71+0.27

−0.27 7.95+0.21
−0.003 8.55+0.11

−0.14 7.94+0.20
−0.20 7.99+0.99

−1.04

O/H, 10−5 8.35+0.18
−0.04 8.54+0.26

−0.13 5.71+0.00
−0.00 9.37+0.06

−0.01 8.99+0.17
−0.04 12.1+0.42

−0.48

N/H, 10−6 3.95+0.10
−0.09 3.72+0.50

−0.48 1.52+0.10
−0.11 4.02+0.09

−0.03 4.18+0.10
−0.11 4.56+0.44

−0.53

Ne/H, 10−5 1.58+0.04
−0.04 1.55+0.08

−0.05 0.96+0.05
−0.06 1.47+0.01

−0.02 1.46+0.04
−0.04 1.90+0.14

−0.15

S/H, 10−6 2.67+0.07
−0.06 2.06+0.15

−0.14 1.51+0.14
−0.11 3.25+0.06

−0.04 3.51+0.07
−0.10 4.00+0.00

−0.14

Ar/H, 10−7 4.47+0.24
−0.34 2.94+0.21

−0.37 1.85+0.12
−0.22 4.27+0.06

−0.08 3.92+0.39
−0.35 4.43+0.64

−0.91

Fe/H, 10−6 2.05+0.23
−0.73 1.61+0.96

−0.59 0.18+0.02
−0.01 2.74+0.05

−0.02 1.58+0.97
−0.61 1.53+0.88

−0.57

∗ Additional objects that are not included in the sample of 10 selected HII regions.
λ3727/Hβ, [NeIII] λ3869/Hβ, [OIII] λ4363/Hβ,
HeI λ4471/Hβ, HeII λ4686/Hβ, [FeIII] λ4658/Hβ,
[OIII] λ4959/Hβ, [OIII] λ5007/Hβ, HeI λ5876/Hβ,
HeI λ6678/Hβ, HeI λ7065/Hβ, [SIII] λ6312/Hβ,
[NII] λ6584/Hβ, [SII] λ6717/Hβ, [SII] λ6731/Hβ,
and [ArIII] λ7136/Hβ lines (i.e., 17 parameters).

To determine the errors in the best-fit parameter
values, we must find the value of ∆χ2, which, as is
known, is determined by the number of degrees of
freedom of the fit [9]. Our fits have 17 − 10 = 7 de-
grees of freedom. However, in the calculations, the
intensity of one of the lines of an ion is related to in-
tensities of all other lines of this ion. Thus, the number
of degrees of freedom of the problem decreases, and
becomes equal to one. In this case, if we calculate
two OP models with identical initial values of the free
ASTRONOMY REPORTS Vol. 49 No. 8 2005
parameters but calculate the χ2 value using all the
above-listed lines in one and using the intensity of
only one line for each ion in the other, the obtained
best-fit free-parameter values in the two OP models
should be the same within the errors. The results of
such calculations are listed in Table 1, from which we
can see that the optimal values of the free parameters
obtained from the calculations of the two OP models
coincide within the errors. Therefore, ∆χ2 = 1 [9].
Thus, the errors of the free parameters obtained in our
OP calculations will be determined from the maxi-
mum deviation of each free parameter from its final
value using the photoionization-model analysis with
χ2 ≤ χ2

min + 1.

The OP calculations for each of the ten objects
yielded the best-fit values of the various free param-
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Table 3. Observed [6, 7] and model relative line intensities and Hβ line luminosities for the HII regions (I(Hβ) = 100).
The observed HeI lines have been corrected for the background stellar absorption

Line 0917+527 0926+606 0940+544N 0948+532 1054+365 0723+692B∗

Observa-
tions

OP
model

Observa-
tions

OP
model

Observa-
tions

OP
model

Observa-
tions

OP
model

Observa-
tions

OP
model

Observa-
tions

OP
model

[O II]λ 3727 Å 188.8 ± 1.4 190.5 178.5 ± 1.2 182.1 57.0 ± 1.3 60.3 136.7 ± 2.4 141.6 106.6 ± 1.0 108.6 157.6 ± 1.5 159.5

[Ne III]λ 3869 Å 50.5 ± 0.6 50.5 44.9 ± 0.5 45.0 37.1 ± 0.8 36.9 48.0 ± 1.1 48.3 50.2 ± 0.6 50.2 32.5 ± 0.6 32.5

[O III]λ 4363 9.2 ± 0.4 7.2 8.3 ± 0.9 7.1 13.5 ± 0.4 9.3 8.3 ± 0.4 8.5 9.5 ± 0.3 10.0 8.2 ± 0.4 7.7

He Iλ 4471 4.1 ± 0.3 3.8 4.1 ± 0.2 3.9 4.1 ± 0.2 3.7 4.1 ± 0.3 3.9 4.2 ± 0.3 3.4 4.3 ± 0.3 3.7

He IIλ 4686 Å 2.3 ± 0.3 2.3 1.6 ± 0.2 1.6 – 0.1 1.0 ± 0.1 1.1 – 0.1 1.4 ± 0.4 1.4

[O III]λ 4959 158.3 ± 1.1 156.4 162.8 ± 1.0 158.8 133.3 ± 1.4 135.1 181.0 ± 2.4 184.6 200.7 ± 1.5 197.7 142.5 ± 1.2 142.4

[O III]λ 5007 Å 468.0 ± 2.8 470.8 477.2 ± 2.6 477.8 398.1 ± 3.6 406.5 563.2 ± 6.4 555.7 594.8 ± 4.0 595.2 430.3 ± 3.1 428.7

He Iλ 5876 Å 10.5 ± 0.3 10.4 10.8 ± 0.2 10.8 10.7 ± 0.3 10.6 11.1 ± 0.4 10.8 11.1 ± 0.3 9.9 11.0 ± 0.3 10.6

He Iλ 6678 Å 3.0 ± 0.2 2.9 3.4 ± 0.2 3.0 2.8 ± 0.1 2.8 2.9 ± 0.2 3.0 3.0 ± 0.2 2.6 3.4 ± 0.2 2.9

He Iλ 7065 Å 2.1 ± 0.2 2.4 2.5 ± 0.1 2.4 3.0 ± 0.2 3.4 2.6 ± 0.3 2.5 2.3 ± 0.2 3.6 1.7 ± 0.2 3.0

[S III]λ 6312 Å 1.5 ± 0.2 3.6 1.9 ± 0.2 4.3 1.1 ± 0.1 1.6 1.9 ± 0.2 3.5 2.1 ± 0.2 3.2 2.2 ± 0.2 3.1

[NII]λ 6584 Å 5.8 ± 0.2 5.8 8.3 ± 0.2 8.4 1.6 ± 0.1 1.6 6.8 ± 0.3 6.8 4.8 ± 0.2 4.7 5.5 ± 0.3 5.4

[S II]λ 6716 Å 16.4 ± 0.3 15.2 18.2 ± 0.3 16.6 4.0 ± 0.2 3.1 13.8 ± 0.5 12.4 9.4 ± 0.3 7.8 11.4 ± 0.3 10.3

[S II]λ 6731 Å 11.4 ± 0.3 11.6 14.6 ± 0.3 12.4 3.2 ± 0.2 2.5 10.3 ± 0.4 9.3 6.5 ± 0.2 7.3 8.2 ± 0.3 8.8

[Ar III]λ 7135 Å 4.8 ± 0.3 4.8 6.6 ± 0.2 6.5 2.9 ± 0.2 3.0 8.0 ± 0.5 8.1 8.0 ± 0.2 8.0 6.4 ± 0.2 6.4

[Fe III]λ 4658 Å 0.9 ± 0.3 0.9 1.0 ± 0.2 0.9 0.4 ± 0.1 0.4 0.7 ± 0.1 0.7 – 0.09 – 0.09

log[L(Hβ)] 39.44 39.44 40.24 40.24 39.99 39.99 40.98 40.97 38.37 38.38 38.02 38.02

χ2(1) – 10.47 – 16.11 – 12.04 – 5.65 – 9.69 – 5.83

χ2(2)∗∗ – 1.92 – 8.54 – 3.88 – 1.79 – 6.43 – 2.34

Line 1135+581 1152+579 1211+540 1256+351 1533+574A 0741+535∗

Observa-
tions

OP
model

Observa-
tions

OP
model

Observa-
tions

OP
model

Observa-
tions

OP
model

Observa-
tions

OP
model

Observa-
tions

OP
model

[O II]λ 3727 Å 134.6 ± 1.3 140.5 88.7 ± 1.4 90.9 64.6 ± 1.3 74.4 110.2 ± 0.2 110.4 245.9 ± 0.2 245.5 291.0 ± 4.0 296.5

[Ne III]λ 3869 Å 47.1 ± 0.6 47.4 55.2 ± 0.9 55.2 38.5 ± 0.7 38.7 44.9 ± 0.2 45.1 35.4 ± 0.2 35.1 37.8 ± 1.0 38.1

[O III]λ 4363 6.9 ± 0.2 8.2 14.0 ± 0.3 10.9 11.6 ± 0.3 9.5 8.9 ± 0.1 9.3 6.7 ± 0.1 5.9 6.8 ± 0.8 5.9

He Iλ 4471 4.1 ± 0.1 3.9 4.0 ± 0.2 3.9 3.9 ± 0.2 3.5 4.1 ± 0.1 3.9 4.1 ± 0.1 3.7 4.0 ± 0.8 3.8

He IIλ 4686 Å 1.9 ± 0.1 1.9 1.2 ± 0.1 1.3 2.6 ± 0.1 2.5 1.1 ± 0.1 1.1 – 0.1 – 0.1

[O III]λ 4959 179.1 ± 1.0 165.6 211.2 ± 1.8 205.8 153.7 ± 1.3 154.6 198.2 ± 0.3 195.7 129.7 ± 0.3 127.0 146.7 ± 2.0 145.5

[O III]λ 5007 Å 476.5 ± 2.4 498.5 604.3 ± 4.5 619.4 464.8 ± 3.4 465.4 580.2 ± 0.9 589.1 380.4 ± 0.9 382.1 440.4 ± 5.4 438.0

He Iλ 5876 Å 11.4 ± 0.2 10.8 11.2 ± 0.2 11.0 10.1 ± 0.2 10.3 10.8 ± 0.1 10.8 10.4 ± 0.1 10.4 10.7 ± 0.6 10.6

He Iλ 6678 Å 3.0 ± 0.1 3.0 2.8 ± 0.1 3.0 2.9 ± 0.2 2.7 3.2 ± 0.1 3.0 3.0 ± 0.1 2.9 3.1 ± 0.4 2.9

He Iλ 7065 Å 2.4 ± 0.1 2.6 3.2 ± 0.2 3.0 2.5 ± 0.2 3.8 2.7 ± 0.1 2.8 2.1 ± 0.1 2.4 2.1 ± 0.5 2.7

[S III]λ 6312 Å 1.5 ± 0.1 3.2 1.6 ± 0.1 2.4 1.5 ± 0.1 2.3 1.7 ± 0.1 3.5 1.8 ± 0.1 3.9 2.2 ± 0.4 3.8

[NII]λ 6584 Å 6.7 ± 0.1 6.7 4.0 ± 0.2 4.0 2.0 ± 0.1 2.0 4.6 ± 0.1 4.7 12.2 ± 0.1 12.0 12.2 ± 0.5 12.4

[S II]λ 6716 Å 11.7 ± 0.2 10.4 6.8 ± 0.2 5.8 5.3 ± 0.2 3.9 9.5 ± 0.1 9.1 23.4 ± 0.1 22.3 21.7 ± 0.7 21.6

[S II]λ 6731 Å 8.3 ± 0.2 8.0 5.4 ± 0.2 4.6 4.2 ± 0.2 3.7 7.1 ± 0.1 7.1 17.0 ± 0.1 17.7 21.1 ± 0.6 18.2

[Ar III]λ 7135 Å 8.4 ± 0.2 8.5 5.4 ± 0.2 5.4 3.6 ± 0.2 3.8 7.6 ± 0.1 7.7 7.6 ± 0.1 7.5 7.9 ± 0.5 7.9

[Fe III]λ 4658 Å 1.1 ± 0.1 1.2 0.7 ± 0.1 0.6 – 0.09 0.5 ± 0.1 1.2 1.7 ± 0.1 1.6 1.6 ± 0.7 1.4

log[L(Hβ)] 39.63 39.62 41.04 41.04 38.67 38.68 39.43 39.42 40.15 40.15 40.18 40.18

χ2(1) – 42.55 – 15.49 – 16.76 – 36.93 – 49.93 – 2.86

χ2(2)∗∗ – 26.96 – 5.28 – 9.33 – 18.17 – 22.11 – 2.07

∗ Additional objects not included in the sample of 10 selected HII regions.
∗∗ The χ2 value has been calculated without the [OIII] λ4363 Å, HeI λ7065 Å, and [SII] λ6312 Å lines.
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Table 4.Optimum values of the free parameters found from
OP models I–III with different sets of initial values of the
free parameters

Parameters
Models

I II III

nH , cm−3 230+43
−30 179+24

−22 80+11
−17

logQtot 53.87 53.87 53.87

ε 0.0050+0.0010
−0.0003 0.0058+0.0004

−0.0003 0.0092+0.0011
−0.0006

He/H, 10−2 8.36+0.80
−0.70 8.40+0.59

−0.71 8.57+0.52
−0.66

O/H, 10−5 9.54+0.30
−0.41 9.52+0.43

−0.45 9.58+0.31
−0.37

N/H, 10−6 4.34+0.42
−0.44 4.40+0.78

−0.68 4.53+0.28
−0.77

Ne/H, 10−5 1.65+0.07
−0.10 1.65+0.09

−0.13 1.66+0.10
−0.13

S/H, 10−6 3.20+0.29
−0.27 3.22+0.22

−0.17 3.28+0.20
−0.28

Ar/H, 10−7 4.37+0.74
−1.07 4.37+0.86

−1.06 4.42+0.91
−0.88

Fe/H, 10−6 1.26+0.50
−0.68 1.26+0.71

−0.47 1.33+0.64
−0.49

eters (Table 2). A comparison of the model parame-
ters and the observed [6, 7] parameters on which the
optimization was based is given in Table 3. We have
corrected the observed values for the HeI lines for
the background stellar absorption. We can see that,
for most of the objects, the model and observed rel-
ative intensities of the HeI, HeII, [OIII], [NeIII], and
[ArIII] lines are consistent, whereas the agreement is
poor for the [SII], [SIII], and [OIII] λ4363 Å lines. To
estimate the effect of the “unreliable” (from the view-
point of atomic data and other factors) [OIII]λ4363 Å,
HeI λ7065 Å, and [SIII] λ6312 Å lines, we list in Ta-
ble 3 the values χ2(1) including these lines and χ2(2)
excluding them. Inmost of the objects, precisely these
lines systematically increase the value of χ2.

When calculating any type of optimized models,
there also arises the question of the uniqueness
(or stability) of the obtained solution. We checked
the uniqueness of the χ2 minimum using the ob-
ject 0948+532 as an example by calculating three
OP models with three different sets of initial values
for the free parameters. In model I, model II, and
model III, the free parameters had initial values values
close to their minimum, mean, and maximum values.
The only initial parameter value that was the same in
all three OP models was Qtot, which was determined
from the calculation of the Lc spectrum of this object.
It would certainly be possible to calculate OP models
with a multitude of other sets of initial free-parameter
values; however, in our opinion, the sets we have
chosen correspond to the most natural values, since,
in an actual BCDG, an increase in the abundance of
one element should be accompanied by an increase
ASTRONOMY REPORTS Vol. 49 No. 8 2005
Table 5. Observed [6, 7] and model relative line intensities
and Hβ line luminosities for an HII region in the BCDG
0948+532 (I(Hβ) = 100). The observed HeI lines have
been corrected for the background stellar absorption

Line Observa-
tions

OP model

I II III

[OII] λ 3727 Å 136.7 ± 2.4 141.8 141.5 141.3

[NeIII]λ 3869 Å 48.0 ± 1.1 48.1 48.0 48.2

[OIII] λ 4363 Å 8.3 ± 0.4 8.6 8.5 8.5

HeI λ 4471 Å 4.1 ± 0.3 3.8 3.8 3.9

HeII λ 4686 Å 1.0 ± 0.1 1.1 1.1 1.1

[OIII] λ 4959 Å 181.0 ± 2.4 182.9 182.7 183.8

[OIII] λ 5007 Å 563.2 ± 6.4 550.5 550.1 553.3

HeI λ 5876 Å 11.1 ± 0.4 10.8 10.8 10.8

HeI λ 6678 Å 2.9 ± 0.2 3.0 3.0 3.0

HeI λ 7065 Å 2.6 ± 0.3 2.9 2.8 2.4

[SIII] λ 6312 Å 1.9 ± 0.2 3.5 3.5 3.5

[NII] λ 6584 Å 6.8 ± 0.3 6.8 6.8 6.8

[SII] λ 6716 Å 13.8 ± 0.5 11.7 12.0 12.4

[SII] λ 6731 Å 10.3 ± 0.4 9.6 9.5 9.3

[ArIII] λ 7135 Å 8.0 ± 0.5 8.0 8.0 8.0

[FeIII] λ 4658 Å 0.7 ± 0.1 0.7 0.7 0.7

log[L(Hβ)] 40.98 40.98 40.98 40.98

χ2 – 5.99 5.80 5.61

in the abundances of other elements, in accordance
with most theories of stellar nucleosynthesis and
chemical evolution. It is difficult, if not impossible, to
find a BCDG that has an extremely high abundance
of, e.g., oxygen and simultaneously an extremely
low abundance of nitrogen. Therefore, in our view,
initializing the OP models using such extremely
different abundances for different elements has no
physical meaning.

The calculation of OP models I, II, and III yielded
the parameter values listed in Table 4. A comparison
of the model parameter and the observed parameters
used to calculate the χ2 values in these OP models is
given in Table 5. We can see that the best-fit values
of the free parameters obtained in OP models I and II
coincide within the errors, whereas the results of OP
model III differ in nH and ε. Nevertheless, all the other
free parameters for OP model III coincide with the
corresponding values for OP models I and II within
the errors. This testifies to the insignificance of the
presence of two χ2 minima when determining the
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Table 6.Optimal values of the free parameters for an HII region in the BCDG 0948+532 obtained in various geometries
using the OP calculations

Parameter
Models

Norm Ri100 CF0.3 Cyl-h100 SinDensFluct

nH , cm−3 179+24
−22 160+39

−10 158+52
−11 259+18

−26 –

logQtot 53.87 53.87 53.89 53.80 53.87

ε 0.0058+0.0004
−0.0003 0.0064+0.0004

−0.0008 0.0059+0.0002
−0.0007 0.0037+0.0007

−0.0001 0.0071+0.0006
−0.0005

He/H, 10−2 8.40+0.59
−0.71 8.44+0.69

−0.72 8.49+0.59
−0.66 8.31+0.59

−0.55 8.45+0.94
−0.84

O/H, 10−5 9.52+0.43
−0.45 9.51+0.18

−0.40 9.10+0.42
−0.30 9.10+0.32

−0.25 9.46+0.35
−0.52

N/H, 10−6 4.40+0.78
−0.68 4.39+0.39

−0.68 4.27+0.45
−0.71 4.16+0.44

−0.27 4.24+0.44
−1.07

Ne/H, 10−5 1.65+0.09
−0.13 1.65+0.14

−0.09 1.56+0.11
−0.10 1.55+0.11

−0.10 1.63+0.11
−0.15

S/H, 10−6 3.22+0.22
−0.17 3.22+0.19

−0.26 3.10+0.23
−0.20 3.11+0.30

−0.20 3.13+0.37
−0.36

Ar/H, 10−7 4.37+0.86
−1.06 4.35+0.84

−1.06 4.24+0.83
−0.67 4.28+0.43

−0.28 4.37+1.48
−1.61

Fe/H, 10−6 1.26+0.71
−0.47 1.26+0.73

−0.47 1.20+0.70
−0.47 1.31+0.24

−0.48 1.25+0.73
−0.46
chemical composition, and, accordingly, the Yp and
dY/dZ values, from the OP calculations for these
objects.

We also studied the effect of deviations of the
HII regions from spherical geometry on the re-
sults of the OP calculations using the same object,
0948+532, as an example. We adopted the corre-
sponding values for model II (see above) as the initial
free parameters in the OP models. We calculated
the Hβ line luminosity (which was compared with
the observed luminosity) separately for OP models
with covering factors differing from unity and in a
cylindrical geometry for this HII region (see Table 7
below).

Earlier, we assumed in the OP calculations an
inner radius for the envelope of Rin = 0.01 pc. There-
fore, we first calculated an OP model with Rin =
100 pc. The results are listed in Tables 6 and 7 in
the columns labeled “Ri100.” For comparison, these
tables also list the results of the OP calculations
for this object obtained above (the column “Norm”).
We can see that the free parameters obtained in the
Ri100 OP calculation coincide with those for the
Norm calculation within the errors. This means that
an increase in the inner radius essentially does not
affect the results of the OP calculations.

The effect of deviations from a spherical geometry
can be studied by specifying a value for the so-called
covering factor (CF) of the ionizing source by the
envelope of the nebula that differs from unity (CF =
Ω/4π, where Ω is the solid angle of the HII region
as seen from its center). Tables 6 and 7 list in the
columns “CF0.3” the results of the OP calculation
with CF = 0.3. As in the previous case, we obtained
optimal values for most of the free parameters that
are close to the data of the Norm model within the
errors. The fact that the value of χ2 is greater than in
the Norm model suggests that the value CF = 1 is,
nevertheless, more realistic for this object.

In addition, we calculated OP models for the
HII region 0948+532 in a cylindrical geometry, with
the cylinder half-height being h = 100 pc. For this
case, we also redetermined the jump at λ = 228 Å
in the Lc spectrum, since the HeII λ4686-Å line is
very sensitive to changes in the geometry. In this
OP model, we also fixed the outer radius of the
HII envelope, since it was necessary to specify an
Hβ line luminosity. The results for this OP model are
listed in Tables 6 and 7 in the columns “Cyl-h100.”
The calculations for this OP models yielded optimal
values of the free parameters nH, ε, and Qtot that dif-
fered from those for the Norm OP caluclation (corre-
sponding to a different minimum of χ2). However, the
elemental abundances coincide within the errors with
those of the Norm and all the other above-mentioned
OP calculations. This indicates that deviation of the
geometries of the actual HII regions from a spherical
geometry will not lead to important changes in the
values of Yp and dY/dZ. Nevertheless, the geometry
is, of course, important in precisionmodeling of actual
objects.

Finally, the volume filling factor of the nebula ε
is responsible for the gas density fluctuations in our
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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Table 7.Observed [6, 7] and model (OPmodels in various geometries) relative line intensities (I(Hβ) = 100) and Hβ line
luminosities for an HII region in the BCDG 0948+532. The observed HeI lines have been corrected for the background
stellar absorption

Lines Observations
OP model

Norm Ri100 CF0.3 Cyl-h100 SinDensFluct

[OII] λ 3727 Å 136.7 ± 2.4 141.5 141.7 141.7 141.1 140.8

[NeIII]λ 3869 Å 48.0 ± 1.1 48.0 48.2 48.2 48.2 48.2

[OIII] λ 4363 Å 8.3 ± 0.4 8.5 8.6 9.0 9.2 8.7

HeI λ 4471 Å 4.1 ± 0.3 3.8 3.9 3.9 3.8 3.9

HeII λ 4686 Å 1.0 ± 0.1 1.1 1.1 1.1 1.1 1.1

[OIII] λ 4959 181.0 ± 2.4 182.7 183.5 183.4 183.9 184.0

[OIII] λ 5007 Å 563.2 ± 6.4 550.1 552.4 552.1 553.5 553.9

HeI λ 5876 Å 11.1 ± 0.4 10.8 10.8 10.8 10.7 10.8

HeI λ 6678 Å 2.9 ± 0.2 3.0 3.0 3.0 2.9 3.0

HeI λ 7065 Å 2.6 ± 0.3 2.8 2.7 2.7 3.0 2.8

[SIII] λ 6312 Å 1.9 ± 0.2 3.5 3.6 3.6 3.4 3.4

[NII] λ 6584 Å 6.8 ± 0.3 6.8 6.8 6.8 6.8 6.8

[SII] λ 6716 Å 13.8 ± 0.5 12.0 12.0 12.1 11.9 12.3

[SII] λ 6731 Å 10.3 ± 0.4 9.5 9.5 9.5 9.9 9.7

[ArIII] λ 7135 Å 8.0 ± 0.5 8.0 8.0 8.0 8.0 8.0

[FeIII] λ 4658 Å 0.7 ± 0.1 0.7 0.7 0.7 0.7 0.7

log[L(Hβ)] (40.98, 40.45, 40.43)∗ 40.98 40.98 40.45 40.43 40.98

χ2 – 5.80 6.02 6.11 5.78 5.10
∗ Values of log[L(Hβ)] calculated from the observed Hβ line flux fitting the Norm+Ri100+SinDensFluct, CF0.3, and Cyl-h100
OP models, respectively.
OP models. Therefore, we decided to check how an-
other representation for the density inhomogeneities
would affect the results of the OP calculations. The
columns “SinDensFluct” in Tables 6 and 7 list the
results of OP calculations in which the hydrogen den-
sity nH changes in the radial direction in accordance
with a sine law, from 100 to 200 cm−3 with a period
of 87.8 pc and zero phase shift relative to the inner
radius of the nebula. It is clear that the value of nH
is no longer a free parameter in this case, and the
number of degrees of freedom becomes equal to two.
Tables 6 and 7 show that, most of the best-fit param-
eter values in this OP model coincide with those for
the NormOPmodel within the errors, testifying to the
insignificant effect of density fluctuations on the final
OP model results. The only exception is the filling
ASTRONOMY REPORTS Vol. 49 No. 8 2005
factor ε. The final value of χ2 in this OPmodel is lower
than in the Norm OP model, suggesting the exis-
tence of density fluctuations of this type (or similar) in
0948+532. Nevertheless, gas-density fluctuations do
not significantly affect the final chemical composition
or, accordingly, Yp and dY/dZ, in contrast to Norm-
type OP models, in which the filling factor alone is
responsible for density fluctuations.

3. PRIMORDIAL HELIUM ABUNDANCE
AND THE RATE OF ITS ENRICHMENT

We used the chemical composition yielded by
the OP calculations (Table 2) to analyze the Y−Z
dependences. In contrast to the chemical composi-
tions derived from our earlier calculations using a
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Fig. 3. Yopt−Zopt dependence for the OP model calcu-
lations for the ten selected objects plus two additional
objects (the latter are marked on the graph).

photoionization-model grid [1, 2], we also obtained
the Fe/H abundance via the optimization modeling.
We designate the values of Y and Z obtained from the
OP modeling as Yopt and Zopt. Here, we adopted the
following formulas for the calculation of Yopt and Zopt:

Yopt =
4He/H(1 − Zopt)

1 + 4He/H
, (2)

Zopt =
Zaopt

1 + 4He/H + Zaopt
,

Zaopt = 14N/H + 16O/H + 20Ne/H

+ 32S/H + 40Ar/H + 56Fe/H,

where the elemental abundances correspond to those
obtained in the OP calculations.

We derived errors for Yopt and Zopt by considering
the maximum errors in the abundances listed in Ta-
ble 2. The Yopt−Zopt dependence is shown in Fig. 3
(“10 HII regions”), where the corresponding values
of Yp and dY/dZ obtained by fitting a linear approx-
imation to this dependence are plotted together with
their errors in both coordinates. The resulting param-
eter values coincide within the errors with those ob-
tained earlier based on ionization-correction factors:

Yp = 0.245 ± 0.004, (3)

dY/dZ = 4.4 ± 3.6. (4)

To analyze the accuracy of this approximation,
we calculated OP models for two additional HII re-
gions, 0723+692B and 0741+535. If we add the
Y andZ values for these objects, which were obtained
based on ionization-correction factors, to the data on
the selected ten objects, we find Yp = 0.249 ± 0.006,
dY/dZ = 3.0 ± 7.0. Thus, adding the Y and Z for
these two objects to the sample of ten HII regions
worsens the reproduction of the Yp value obtained
from the entire sample of the objects (Yp = 0.244 ±
0.004, dY/dZ = 8.8 ± 4.6). The free parameters ob-
tained from OP calculations for the two objects are
listed in Table 2, and the observed and model relative
line intensities and Hβ line luminosities are given in
Table 3 (the two additional objects are labeled in these
tables with asterisks). Here, χ2(1) was calculated for
all the listed observed parameters used in the fitting,
and χ2(2) does not take into account the so-called
unreliable (from the viewpoint of atomic data and for
other physical reasons) [OIII] λ4363 Å, HeI λ7065 Å,
[SIII] λ6312 Å lines. We can see that, for most of the
HII regions, large values of χ2(1) can be explained by
poor fits to precisely these lines.

A linear fit to the Yopt−Zopt dependence including
the OP results for the HII regions 0723+692B and
0741+535 (“10 + 2 HII regions” in Fig. 3) yields

Yp = 0.245 ± 0.004, (5)

dY/dZ = 4.2 ± 3.5, (6)

which coincide within the errors with the OP results
for the ten selected objects, as well as with those
obtained based on ionization-correction factors. This
confirms the accuracy of the linear approximation
for the Yopt−Zopt relationship and suggests that the
results of the OP calculations for other HII regions
in BCDGs will not substantially change the values
of Yp and dY/dZ. Therefore, we have not calculated
OP models for other HII regions in BCDGs (as this
is a demanding task even for modern computers).

4. CONCLUSIONS

We have demonstrated the need to carry out
optimized-photoionization (OP) calculations for
HII regions in BCDGs. We have described our
calculation technique and analyzed the results ob-
tained. The advantage of OP models over the use
of photoionization-model grids is that OP mod-
els are based on reproducing the observed spec-
trum of each of the considered objects and do not
impose the assumptions on which calculations of
photoionization-model grids are based. Therefore,
it was necessary to calculate OP models for at
least a few HII regions in BCDGs if we wished to
refine elemental abundances and the values of Yp

and dY/dZ. However, the OP calculations are quite
demanding (OP calculations for one object require
calculating ≈2000 photoionization models). There-
fore, we have thus far calculated OP models for
only ten selected objects. The selection criterion
was the requirement that the Y−Z relationship
for these objects reproduce within the errors the
Yp and dY/dZ values obtained from the Y−Z de-
pendence for all the analyzed objects [2]. The selected
objects were 0917+527, 0926+606, 0940+544N,
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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0948+532, 1054+365, 1135+581, 1152+579,
1211+540, 1256+351, 1533+574A.

We used spectra obtained by Izotov et al. [6, 7] in
the OP calculations for these objects. We refined their
Lc spectra by deriving an approximation relationship
for determining H+/H0 in these objects. A best-fit
value for the jump at λ = 228 Å was determined from
the calculated Lc spectra. This enabled us to derive
the spectral energy distributions of the ionizing radi-
ation of the cores of the selected HII regions, which
were used in the OP calculations for these objects.

There were ten free input parameters in the
OP calculations. A range of values was specified for
each of the free parameters in order to adequately re-
produce the spectra of the low-metallicity HII regions
in BCDGs. The parameters used to calculate the
χ2 values were the Hβ line luminosity and the relative
intensities of 16 emission lines. For this type of
OP model, the principle of detailed balance operates,
according to which we can use the intensity of one
reliable line of one ion to calculate the intensities
of all other lines of this ion. We have studied the
uniqueness of the χ2 minimum in OP models of this
type. Although there can be several χ2 minima, the
elemental abundances are always determined unam-
biguously by theOPmodels (they are the same within
the errors). This testifies to the insignificance of the
presence of several χ2 minima on the final Yp and
dY/dZ values derived using the OP models. We
also analyzed the effect of deviations from spherical
geometry and of density fluctuations on the final best-
fit values of the free parameters in the OP calculations
and concluded that these deviations are not important
for the final derived Yp and dY/dZ values.

We determined the primordial helium abundance,
Yp, and rate of its enrichment, dY/dZ, using the
OPmodel calculations for the selected objects. A lin-
ear approximation of the Yopt−Zopt relationship yields
the values Yp = 0.245 ± 0.004 and dY/dZ = 4.4 ±
3.6, which coincide within the errors with the values
obtained earlier from a photoionization-model grid
for the HII regions. To check the accuracy of this
ASTRONOMY REPORTS Vol. 49 No. 8 2005
approximation, we calculated OP models for the two
other HII regions 0723+692B and 0741+535, which
do not satisfy the indicated selection criterion. How-
ever, taking into account the relevant data for their
OP models in the Yopt−Zopt approximation yielded
Yp = 0.245 ± 0.004 and dY/dZ = 4.2 ± 3.5, which
coincide within the errors with the results of the OP
models for the other ten objects. This shows that
including other HII regions in the sample used for
the OP calculations will not considerably change the
values of Yp and dY/dZ obtained in this paper.
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Abstract—Equations of motion containing a small parameter µ are derived for stars at the peripheries
of open star clusters. The parameter µ is obtained for six numerical open-cluster models. The general
analytical solution of these equations of motion for µ = 0 is found. An iterative method is used to derive
the frequencies of the stellar motions for first-order expansions in µ of the solutions of the equations of
motion for stars at the cluster periphery. Applications of the results are discussed. c© 2005 Pleiades Pub-
lishing, Inc.
1. INTRODUCTION

According to Danilov and Leskov [1], the trajec-
tories of halo stars in dynamical numerical models of
open clusters with various degrees of nonstationarity
in the regular field have small, positive, maximum
characteristic Lyapunov exponents λ and relatively
simple Fourier spectra. According to [1], the stellar
trajectories at the cluster peripheries have Lyapunov
time scales tλ = λ−1 on the order of 1–10Myr, which
are comparable to Laskar’s [2] estimates for planetary
orbits in the solar system. The three highest ampli-
tude sinusoidal components in the time dependences
of the clustercentric distances r(t) of the stars contain
50–95% of the total energy of the Fourier spectra
for these dependences. The oscillations of the regular
potential in the halos of the models of nonstationary
open clusters of [3] are small and do not exceed 6%
of the regular potential averaged over the oscillation
period. These properties of the stellar trajectories and
gravitational potential in the open-cluster halos make
it possible to apply the methods of perturbation theory
to obtain an approximate description of the motions
of stars at the peripheries of a nonstationary open
cluster. According to Danilov and Leskov [1], the
distributions of the periods for the stellar trajectories
in open-cluster models have sharp peaks at peri-
ods commensurable with the period of oscillations
of the regular field. A comparison of the periods of
these peaks with those derived by applying a small-
parameter analysis to the stellar trajectories in such
systems can be used to identify the main resonances
in the motions of halo stars in open-cluster models.

Periodic oscillations of the size, density, and regu-
lar field of an open cluster are, to a large extent, due to
the motions of halo stars. These oscillations result in
a number of complex processes, which are observed
1063-7729/05/4908-0604$26.00
in numerical simulations of open-cluster dynamics
(transfer of energy from large-scale to small-scale
stellar motions, oscillations of the entropy of the sys-
tem, etc. [4]). It is, therefore, important to understand
the mechanisms forming the trajectories of halo stars
in open clusters.

The aims of this paper are to introduce a small
parameter into the equations of motion for stars in an
open cluster, to analyze the frequencies of the stellar
motions computed in a first-order of expansion on
small parameter of the solutions of the equations of
stellar motion at the cluster periphery, and to identify
the main resonances in the motions of halo stars in
open-cluster models.

2. DESCRIPTION
OF OPEN-CLUSTER MODELS

In this paper, we analyze an open cluster moving
in a circular orbit in the plane of the Galaxy using the
equations of stellar motion [5] written for a rotating
coordinate system ξ, η, ζ. Like Chandrasekhar [5], we
expand the regular potential of the Galaxy in a power
series to quadratic terms in the coordinates ξ, η, ζ.
The integrals of motion of the cluster center of mass
are written in the usual way.

We construct an initial approximation for the tra-
jectories of the halo stars using the following simpli-
fying assumptions.

(1) To estimate the size of the critical zero-velocity
surface of the cluster along the ξ, η, and ζ axes,
we model the cluster as a binary system consisting
of a star of mass m1 = 1m� and a point mass
m2 = M −m1, where M is the mass of the cluster
model (as in our previous paper [1], M = 500m�).
The integrals of motion of the cluster center of mass
c© 2005 Pleiades Publishing, Inc.
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allow the sets of equations of motion of the bodies
with massesm1 andm2 to be decoupled and analyzed
separately. The equations of motion of the stars with
massm1 yield three critical points ξ = η = ζ = 0 and
ξ = ±|ξt|, η = ζ = 0 (the latter two are saddle points
and lie on the critical zero-velocity surface [6, p. 197]),
where |ξt| = (−Gm2/(p2α1))1/3, p = 1 + m1/m2,
and the Jacobi integral is

ε =
V 2 + α1ξ

2 + α3ζ
2

2
− Gm2

p2r
= const, (1)

where V and r are the velocity and clustercentric
distance of the star of mass m1, respectively, α1 =(

1
R

∂Φ
∂R

− ∂2Φ
∂R2

)

0

< 0, and α3 = −
(
∂2Φ
∂Z2

)

0

> 0.

Here, R and Z are the cylindrical coordinates of the
point. The subscripts “0” indicate that the corre-
sponding derivatives of the Galactic potential Φ are
calculated at the point with coordinates R = R0 =
8200 pc and Z = 0. The formula for ξ = ±|ξt| as
m1/m2 → 0 transforms into formula (11.13) for the
tidal radius of the cluster in the Galactic field in
Chandrasekhar’s book [6, p. 198].

We now substitute V = 0 into (1) to derive the
equation for the zero-velocity surface, then substi-
tute ξ = |ξt|, η = ζ = 0 into this equation to find
the critical value of the Jacobi integral that cor-
responds to the critical zero-velocity surface: εt =
−3Gm2/(2p2|ξt|). The distances from the coordinate
origin to this surface measured along the η and ζ axes

are |ηt| =
2
3
|ξt| and |ζt| = |ξt|q1/3[(

√
1 + q + 1)1/3 −

(
√

1 + q − 1)1/3] � 0.5016, respectively. Here, q =
−α1/α3 and α1 and α3 are estimated using the
model Galactic potential of Kutuzov and Osipkov [7].

The relation |ηt| =
2
3
|ξt| can also be found in the

book of Spitzer [8, p. 111], where he discusses
the size of the critical zero-velocity surface of the
cluster in the case when both the Galaxy and the
cluster are modeled as point masses. The numerical
simulations of Terlevich [9] and Danilov [10] point
toward strong flattening of the open-cluster models
in the ζ direction and a triaxial shape of the equal
density and equipotential surfaces of the cluster at
its periphery (the cluster is most extended along the
ξ axis and least extended along the ζ axis). Heggier
and Ramamani [11] obtained the same results when
constructing a stationary collisionless cluster model
with a tidal cutoff of the density and potential at the
critical value of the Jacobi integral. We thus assume
that the adopted model can be used to derive the size
of the critical zero-velocity surface of the cluster along
the ξ, η, and ζ axes.
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(2) The cluster model defined in item (1) and equa-
tion (1) provides only an approximate description of
the stellar motions at the cluster periphery, since most
of the stars are located at the cluster periphery [9, 10].
We therefore assume that the critical zero-velocity
surface of the open-cluster model has the shape of
an ellipsoid with semiaxes a = |ξt|, b = |ηt|, and c =
|ζt| � a/2, and propose to search for the unperturbed
cluster potential in the form

U = U0 − (U0 + U1)r2 + S, (2)

r2 =
(
ξ

a

)2

+
(η
b

)2
+
(
ζ

c

)2

, S =
α1ξ

2 + α3ζ
2

2
.

Here, U0 is the potential at the cluster center (r = 0)
and U1 is the cluster potential at the critical zero-
velocity surface at the points η = ±b and ξ = ζ = 0.
The unperturbed potential (2) corresponds to the ini-
tial approximation for the cluster potential that we use
below to construct the unperturbed trajectories of the
stars in the cluster halo. The potential (2) is equal
to the potential at an inner point of some uniform
ellipsoid of density ρ:

ρ = − ∆U

4πG
(3)

=
2(U0 + U1)(a−2 + b−2 + c−2) − α1 − α3

4πG
.

The equation of the equipotential surface for U given
by formula (2) has the form

γ2 =
(

ξ

au

)2

+
(

η

bu

)2

+
(

ζ

cu

)2

= const, (4)

where au = a/
√

1 − α1a2/s, bu = b, cu =
c/
√

1 − α3c2/s, and s = 2(U0 + U1). Here, au < a
and cu > c, since α1 < 0 and α3 > 0. The surfaces
defined by (4) are closer to spherical than the surfaces
corresponding to r2 = 1.

Using the potential U defined by (2), the equations
of stellar motion in the combined force field of the
cluster and the linearized Galactic field [5, formulas
(5.517)–(5.519)] acquire the form

ξ̈ = −β2
1ξ + 2ωη̇, η̈ = −β2

2η − 2ωξ̇, (5)

ζ̈ = −β2
3ζ,

where ξ̇ =
dξ

dt
, ξ̈ =

dξ̇

dt
and η̇, ζ̇, η̈, and ζ̈ are defined

analogously; β2
1 = 2(U0 + U1)/a2, β2

2 = β2
1a

2/b2,
and β2

3 = β2
1a

2/c2; ω is the angular velocity of the
cluster motion relative to the Galactic center; and
β2

i > 0, since (U0 + U1) > 0 in the open-cluster
models we consider here (see below).
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Parameters of the open-cluster models

No. U0 U1 ν1 ν2 β3 µ

1 0.43618± 0.00684 −0.26109± 0.00496 0.04461 0.10789 0.11329 0.03709

2 0.45341± 0.00854 −0.27200± 0.00619 0.04568 0.10918 0.11532 −0.00982

3 0.48275± 0.00952 −0.29354± 0.00690 0.04696 0.11075 0.11777 −0.06771

4 0.49263± 0.00997 −0.30194± 0.00723 0.04721 0.11104 0.11823 −0.07870

5 0.49656± 0.01066 −0.30204± 0.00773 0.04783 0.11180 0.11941 −0.10713

6 0.48760± 0.00857 −0.29949± 0.00621 0.04678 0.11053 0.11743 −0.05955
We now use the usual notation to write the Jacobi
integral for Eqs. (5) in the form

V 2 + β2
1ξ

2 + β2
2η

2 + β2
3ζ

2

2
= ε = const, ε ≥ 0.

(6)

We then substitute V = 0 into (6) to derive the equa-
tion of the zero-velocity surface for the uniform el-
lipsoid considered here: (U0 + U1)r2 = ε. We can set
r2 = 1 to obtain the critical energy of motion for a
star in the field of a uniform ellipsoid and the Galaxy:
εt = U0 + U1. Thus, the surface of zero stellar veloc-
ity in the combined field of the model potentials of
the cluster and the Galaxy, indeed, has an ellipsoidal
shape and can be defined by the equation r2 = 1
when ε = εt. The mass of the ellipsoid can therefore
be estimated as M0 = 4πabcρ/3. In this case, the
cluster stars completely fill the entire volume below
the critical zero-velocity surface, as can be seen in
the numerical simulations of [9, 10] and in the model
of [11].

When ε = εt, in view of (2), the equation (U0 +
U1)r2 = ε can be simplified to the form U(r = 1) =
−U1 + S. Here, U(r = 1) denotes the U(ξ, η, ζ) val-
ues at the surface r2 = 1. Thus, a boundary con-
dition of the same type as the boundary condition
in model [11] is satisfied at the critical zero-velocity
surface for the potential U .

We apply here the method of Marquardt [12] to
determine U0 and U1 for the six open-cluster models
of [3]. To this end, we use (2) to approximate the
cluster potential U(ξ, η, ζ) averaged over the period of
oscillations of the regular field for a number of points
at the cluster periphery (r ∈ [0.5, 1.2]). See [10] for a
description of the method used to select such points
(ξ, η, ζ). The table lists the calculated model parame-
ters. Column 1 gives numbers identifying the open-
cluster models considered in [3], while columns 2
and 3 give the U0 and U1 values for these models
in (pc/Myr)2.
We used the data listed in the table to calculate the
mean semiaxes au, bu, and cu averaged over the six
models [3]. The ratios of these mean semiaxes, 〈au〉,
〈bu〉, and 〈cu〉, are 〈au〉 : 〈bu〉 : 〈cu〉 ∼ 1 : 0.84 : 0.98.
Thus, the equipotential surfaces of the potential U
in the open-cluster models [3] are close to spheroids
flattened along the η axis (i.e., along the direction of
the cluster motion in the Galaxy).

The third equation in (5) can be integrated in-
dependently of the first two equations. The general
solution of (5) has the form

ξ = C1 cos[ν1(t− t1)] + C2 cos[ν2(t− t2)],

η = AC1 sin[ν1(t− t1)] + BC2 sin[ν2(t− t2)], (7)

ζ = C3 cos[β3(t− t3)],

where A = (β2
1 − ν2

1)/(2ων1), B = (β2
1 −

ν2
2 )/(2ων2); ν1, ν2, and β3 are the eigenfrequencies
of (5); and Ci, ti are constants (i = 1, 2, 3). The
constants ν1 and ν2 can be determined from the
condition that the first two equations of (5) must have
nonzero solutions:

ν1,2 =

√
P

2
(1 ± f2),

P = β2
1 + β2

2 + 4ω2, f2 =

√
1 − 4β2

1β
2
2

P 2
.

Thus, the solution (7) for the coordinates ξ and η
is a two-frequency function (with frequencies ν1

and ν2), while the solution for ζ is a single-frequency
function (with frequency β3). In our models, ν1 <
ν2 < β3. Columns 4, 5, and 6 of the table list the
estimated values of these frequencies (in (Myr)−1)
corresponding to the estimated parameters U0 and U1

from the same table.
Note that the U0 and U1 values derived by ap-

proximating the open-cluster gravitational potential
considered in [3] using formula (2) depend on the
adopted values of α1 and α3. The quantities a and b
depend on α1, and c depends on α1 and α3 (see the
formulas for |ξt|, |ηt|, and |ζt|), implying that the β2

i
in (5) depend on the constants α1 and α3.
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3. THE SMALL PARAMETER
IN THE STELLAR EQUATIONS

OF MOTION

The equations of motion of a star in the combined
gravitational field of the cluster and Galaxy can be
written in Hamiltonian form. We now use the cluster
Lagrangian, L, written with allowance for the La-
grangian [5] for a star moving in the combined grav-
itational field of the cluster and Galaxy, to determine
the generalized momenta of the ith cluster star:

pξi
=

∂L

∂ξ̇i

= mi(ξ̇i − ωηi), (8)

pηi =
∂L

∂η̇i
= mi(η̇i + ω(R0 + ξi)),

pζi
=

∂L

∂ζ̇i

= miζ̇i,

where R0 is the distance between the centers of mass
of the cluster and Galaxy; unlike Chandrasekhar [5],
we chose here signs that ensure that α1 < 0, α3 > 0,
Φ > 0, and U > 0.

We now use (8) and the cluster Lagrangian L to
write the Hamiltonian of the cluster:

H =
1
2

N∑
i=1

mi

{(pξi

mi
+ ωηi

)2

(9)

+
[
pηi

mi
− ω(R0 + ξi)

]2

+
(
pζi

mi

)2

− ω2
[
(R0 + ξi)2 + η2

i

] }
+W −

N∑
i=1

miΦi.

Here, N and W are the number of stars and po-
tential energy of the cluster, respectively, and Φi is
the Galactic potential at the point (ξi, ηi, ζi). The
first sum in (9) is twice the kinetic energy of the
cluster T . In this case, the unperturbed Hamiltonian
of an ellipsoidal cluster can be written in the form
H0 = T0 + W0 − ρ

∫
Q ΦdQ, where the potential Φ is
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integrated over the volume Q of the cluster ellipsoid,
and T0 andW0 are the kinetic and potential energy of
the ellipsoidal cluster, respectively.

Let us now estimate µ. To this end, we determine
the quantity T0 from the condition of virial equilibrium
for the cluster. When calculating T0, we also use
the formula for the integral of the cluster angular
momentum relative to the ζ axis, Lζ . According to
Chandrasekhar [5], this integral of motion exists for
clusters whose mass distributions have their sym-
metry defined by (2). As in the open-cluster models
of [3], we setLζ = 0 here (in this case, the cluster does
not rotate with respect to external galaxies). We use

the formulaΦ � Φ0 −ω2R0ξ−
α1 + ω2

2
ξ2 − ω2

2
η2 −

α3

2
ζ2 to compute

∫
Q ΦdQ. Here, Φ0 is the value of

the potential Φ at the Galactocentric distance R0.
Differentiating this formula with respect to ξ, η, ζ
yields the corresponding components of the Galactic
gravitational field obtained by Chandrasekhar [5].

The lack of the integral of motionLζ in [5] for a star
cluster in the general case (i.e., without the restric-
tions imposed on the cluster symmetry in [5]) is due
to the absence of rotational symmetry in the formula
for the potential Φ in cylindrical coordinates. When
computed using the exact equations of stellar motion
taking into account the rotational symmetry of the
potential Φ in cylindrical coordinates, and without
imposing any constraints on the cluster symmetry,
Lζ can be shown to be an integral of the motion that
does not change with time t and coincides with the
value found by Chandrasekhar [5] when constraints
are imposed on the cluster symmetry.

We now calculate W0 = −1
2
ρ
∫
Q UdQ using the

quantity U from (2). We use the resulting formulas
for T0, W0, and

∫
Q ΦdQ to derive an expression for

the constantH0:
H0 = −M0

(
Φ0 +

ω2R2
0 + U0

2
− (3β2

1 + 4ω2 + α1)a2 + (3β2
2 + 4ω2)b2 + (3β2

3 + α3)c2

20

)
. (10)
We now introduce the small parameter µ =
(H −H0)/H . In this case, H = H0 + µH . The
second term on the right-hand side can be viewed
as a small perturbation of the Hamiltonian H . We
then use formulas (9)–(10) and the parameters U0

and U1 for the six open-cluster models of [3] listed
in the table to calculate the corresponding µ values.
The parameters µ for the cluster models considered
are listed in Column 7 of the table. The |µ| values
are small compared to unity for these open-cluster
models (|µ| ∼ 0.01–0.1), and µ can have different
signs for different models.
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The equations of motion of the ith star with the
Hamiltonian H written in the form H = H0 + µH
and using formula (9) have the form

ṗξi
= −∂H

∂ξi
= (1 + µ)

(
ωpηi + mi

∂Φ
∂ξi

)
(11)

+ mi
∂U

∂ξi
− µ

∂W

∂ξi
,

ṗηi = −∂H

∂ηi
= (1 + µ)

(
−ωpξi

+ mi
∂Φ
∂ηi

)

+ mi
∂U

∂ηi
− µ

∂W

∂ηi
,

ṗζi
= −∂H

∂ζi
= (1 + µ)

(
mi

∂Φ
∂ζi

)
+ mi

∂U

∂ζi
− µ

∂W

∂ζi
;

ξ̇i =
∂H

∂pξi

= (1 + µ)
(
pξi

mi
+ ωηi

)
, (12)

η̇i =
∂H

∂pηi

= (1 + µ)
(
pηi

mi
− ω(R0 + ξi)

)
,

ζ̇i =
∂H

∂pζi

= (1 + µ)
(
pζi

mi

)
.

Differentiating (12) with respect to time, passing to
the Lagrangian equations, and substituting the for-
mulas for Φ, U andW into these equations, we find

ξ̈i = (1 + µ) (13)

×


2ωη̇i − (β2

1 + µα1)ξi + µG
∑
j �=i

fij(ξj − ξi)


 ,

η̈i = (1 + µ)

×


−2ωξ̇i − β2

2ηi + µG
∑
j �=i

fij(ηj − ηi)


 ,

ζ̈i = (1 + µ)

×


−(β2

3 + µα3)ζi + µG
∑
j �=i

fij(ζj − ζi)


 ,

where fij = mj/(r2
ij − e2)3/2, i, j = 1, .., N , r2

ij =
(ξi − ξj)2 + (ηi − ηj)2 + (ζi − ζj)2, and e2 = const is
a small smoothing term added to r2

ij , which we used
in [3] when analyzing the open-cluster models.

Equations (13) become equal to Eqs. (5) when
µ = 0. Introducing the notation ξ̇ = u, η̇ = v, and
ζ̇ = w, we can write the solution of the system (13)
in the form

ξi(t, µ) = ξi(0, 0) +
∫ t

0
ui(t, 0)dt, (14)

ηi(t, µ) = ηi(0, 0) +
∫ t

0
vi(t, 0)dt,

ζi(t, µ) = ζi(0, 0) +
∫ t

0
wi(t, 0)dt,

ui(t, µ) = ui(0, 0) +
∫ t

0
u̇i(t, 0)dt,

vi(t, µ) = vi(0, 0) +
∫ t

0
v̇i(t, 0)dt,

wi(t, µ) = wi(0, 0) +
∫ t

0
ẇi(t, 0)dt.

Here, the second argument of ξ, η, ζ, u, v, w is the
µ value used. We then drop terms proportional to µ2

in (13) to find the solution of system (13) in a first-
order approximation in µ using the method of Picard.
We use the unperturbed solution (7) as a zeroth-
order approximation for ξ, η, ζ, u, v, w. To find the
solution (14), we expand the function fij in a power
series in∆ij = r2

ij − r2
ij(0) and limit it to terms∼∆3

ij :

fij � mj

(
s−3
ij − 3∆ij

2s5
ij

+
15∆2

ij

8s7
ij

−
35∆3

ij

16s9
ij

+ . . .

)
,

(15)

where s2
ij = r2

ij(0) + e2, rij(0) is the initial distance
between the ith and jth stars.

4. FREQUENCIES
OF THE STELLAR MOTIONS

We applied the scheme (14) to solve the sys-
tem (13) in a first-order approximation in µ. Due
to the large number of computations, we could in-
clude in the solution (14) only the zeroth-, first-, and
second-order terms of the power-series expansion
of fij in ∆ij . Since the solution has a very unwieldy
form and is valid only over short time intervals, we
do not present it here. However, we briefly describe
below the frequencies of the harmonic oscillations
corresponding to the solution.

(1) The frequencies we find for the stellar mo-
tions in ζ and w retaining the zeroth- and first-order
terms in the power-series expansion of fij in ∆ij

are±β3,±3β3,±β3 ± ν1 ± ν2,±β3 ± 2ν1,±β3 ± 2ν2
(20 frequencies). The frequencies we find for the mo-
tion along ξ, u and η, v are ±ν1, ±ν2, ±3ν1, ±3ν2,
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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±ν1 ± 2β3,±ν2 ± 2β3,±ν1 ± 2ν2,±ν2 ± 2ν1 (24 fre-
quencies).

(2) For the stellar motions in ζ and w computed
using the zeroth-, first-, and second-order terms of
the power-series expansion of fij in ∆ij , we find
in addition the frequencies ±β3 ± 2ν1 ± 2ν2, ±β3 ±
3ν1 ± ν2, ±β3 ± ν1 ± 3ν2, ±3β3 ± 2ν1, ±3β3 ± 2ν2,
±5β3,±β3 ± 4ν1,±β3 ± 4ν2,±3β3 ± ν1 ± ν2 (50 fre-
quencies). For the corresponding stellar motions in
ξ, u and η, v, we find in addition the frequencies±5ν1,
±5ν2, ±4ν1 ± ν2, ±ν1 ± 4ν2, ±2β3 ± 3ν1, ±2β3 ±
3ν2,±2ν1 ± 3ν2,±3ν1 ± 2ν2,±4β3 ± ν1,±4β3 ± ν2,
±2β3 ± ν1 ± 2ν2, ±2β3 ± 2ν1 ± ν2 (52 frequencies).

The derived frequencies are linear combinations of
the three eigenfrequencies of the stellar motions in the
combined field F of the potential (2) and the Galac-
tic potential. In this paper and in [1], we compared
these frequencies with those derived via a Fourier
analysis of the trajectories of the halo stars [1, 13]
in open-cluster model 1 from [3]. This comparison
enables us to identify several of the most signifi-
cant resonances in the motions of the halo stars

in ζ and w, at the frequencies 2β3 − ν2 � 3
5
ωr, 3β3 −

2ν2 � 5
8
ωr, β3 + 3ν1 − ν2 � 5

7
ωr,

4
7
ωr. Themain res-

onances in the motions of the halo stars in ξ, u in
cluster model 1 from [3] have the frequencies β3 −
3ν1 + ν2 � 2

5
ωr,

4
9
ωr, ν2 � 9

17
ωr, 2ν2 − 3ν1 � 7

17
ωr,

3
8
ωr, whereas the motions in η, v have their main res-

onances at the frequencies −β3 + 2ν2 � 1
2
ωr, 2β3 −

3ν1 � 7
15

ωr, β3 − 3ν1 + ν2 � 2
5
ωr, 3β3 − 2ν2 � 3

5
ωr.

Here, ωr is the oscillation frequency of the regular
field of the cluster. Six to ten (and sometimes up
to 15) halo-star trajectories in cluster model 1 of [3]
are grouped at (or near) these frequencies. The fre-
quencies reported here are rational multiples of the
oscillation frequency of the regular cluster field. The
formation of such groups is most likely due to the
effect of “pulling” or “frequency shifting” during the
synchronization of the oscillations, as is described
in the literature for oscillatory systems with small
or large numbers of degrees of freedom [14, p. 290;
15, p. 348]. As a result of such synchronization,
the system develops a set of frequencies that are
commensurable with the oscillation frequency of the
regular field. Synchronous motion of the stars along
their trajectories (motions with the same frequency)
is observed at some of these frequencies. At the same
time, the system has a set of clustercentric distance
intervals that are preferred by halo stars moving in the
presence of oscillations of the regular field.
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5. CONCLUSIONS

(1) We have constructed a model for the poten-
tial (2), which approximates the gravitational poten-
tial at the peripheries of the numerical dynamic open-
cluster models of [3] and allows analytical solution of
the equations of stellar motion in the combined force
field F produced by the potential (2) and the Galac-
tic potential. The parameters of (2) and the shapes
of its equipotential surfaces and of the zero-velocity
surfaces in the force field F were determined for six
open-cluster models from [3].

(2) We derived equations of motion for the stars
at the periphery of the open clusters containing the
small parameter µ. The µ values were determined for
the six cluster models from [3] using the parameters
of the potential (2) and the Galactic potential. A gen-
eral analytical solution for the equations of the stellar
motions for µ = 0was derived. The motion of a star in
the force field F is a triple-frequency motion (single-
frequency motion in ζ and two-frequency motion in ξ
and η). These frequencies are the eigenfrequencies of
the stellar motions in the combined force field pro-
duced by the potential (2) and the Galactic potential.

(3) A convergence method was used to analyze
the frequencies of the stellar motions in first-order
expansions of the solutions of the equations of the
stellar motions at the cluster peripheries in terms
of the small parameter µ. The resulting frequencies
are linear combinations of the eigenfrequencies of the
stellar motions in the force field F. The coefficients
of these linear combinations are integers. Several
main resonances in the halo-star motions in clus-
ter model 1 from [3] were found. The frequencies
of these resonances are commensurable (or close to
commensurable) with the frequency of oscillations of
the regular field of the cluster.

(4) The formation of small groups of halo-star
trajectories at (or near) these frequencies, which was
pointed out by Danilov and Leskov [1] for cluster
model 1, indicates that the system develops a set of
intervals of clustercentric distances that are preferred
by halo stars moving in the presence of oscillations of
the regular cluster field.
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Abstract—Bolometric light curves for the afterglow resulting from the passage of a gamma-ray burst
through a molecular cloud are computed. The profile and duration of the afterglow light curve depend
strongly on the distribution of matter in the cloud, the degree of collimation of the gamma-ray radiation,
and the observing conditions. The peak can be reached as soon as seven days (the gamma-ray burst is
located at some distance from the center of a molecular cloud with small-scale density enhancements),
or as long as one to three years (the gamma-ray burst is located at the center of a uniform molecular
cloud) after the burst. The bolometric luminosity of the re-radiated signal can reach 6.5× 1042 erg/s.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Studies of the afterglows of prolonged gamma-ray
bursts (GRBs) in the X-ray, optical, and ultraviolet
made it possible to establish their cosmological na-
ture and to estimate the gigantic scale of the asso-
ciated energy released. If the radiation is isotropic,
the gamma-ray energy exceeds the rest energy of the
Sun (GRB 990123 [1]), and supposing collimation
of the gamma-ray beam provides the only means to
avoid the need for such a large-scale, rapid energy
release, which cannot be satisfactorily explained in
any existing model.

Two stages can be traced in observations of op-
tical afterglows. The first stage, in which there is a
comparatively bright optical transient (to 9m in the
case of GRB 990123) with a duration comparable to
that of the GRB itself, is followed by a much more
prolonged (lasting up to a year) and weak stage,
which clearly has a different origin. Several mod-
els have been proposed to explain the light curve
in the prolonged stage, of which the most popular
is the collimated-fireball model [2] (which we will
refer to as the standard model). This phenomeno-
logical model postulates the formation of a fireball
by some unknown mechanism and is able to explain
many, but not all, of the properties of the post-flare
radiation. Examples are provided by GRB 011211
and GRB 030227, whose XMM X-ray observations
cannot be explained by the standard model [3]. The
thermal spectra that were obtained, which correspond
to an optically thin plasma, should not arise in the
fireball model. In addition, observations of X-ray lines
1063-7729/05/4908-0611$26.00
imply high concentrations of nuclei that should be
split into nucleons in a relativistic plasma.

Analysis of the light curves of the afterglows of
various GRBs led to the idea that there might be a
connection between GRBs and very energetic super-
novae (energies >3× 1051 erg, hypernovae) corre-
sponding to type SN 1c. The first such example was
provided by SN 1998bw, which was associated with
the anomalously weak burst GRB 980425. The best
manifestation of a connection between a GRB and a
supernova is probably the bright burst GRB 030329,
in whose afterglow was detected supernova
SN 2003du. The basis for this identification is the
similarity of the spectrum of the afterglow of
GRB 030329 and the spectrum of SN 1998bw, whose
presence was noted a month after the onset of optical
observations of this burst [4, 5].

A connection between GRBs and star-forming
regions was noted based on spectra obtained imme-
diately after the detection of the X-ray and optical
afterglows [6, 7].

Dense material surrounding the region of a GRB
will be heated by the GRB radiation and reradiate the
absorbed radiation in softer spectral regions, giving
rise to prolonged optical and ultraviolet afterglows.

The luminosity and duration of such afterglows
and prospects for their detection depend strongly on
both the properties of the surrounding medium and
the properties of the GRB itself: its power, its colli-
mation, and, to a lesser extent, its spectrum. The first
c© 2005 Pleiades Publishing, Inc.
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computations of heating of a cloud and the resulting
afterglow were carried out in [8, 9].

In these papers we have considered a short, pow-
erful gamma-ray impulse propagating from the center
of a simple, one-dimensional model with a homoge-
neous, spherical cloud. This problem will have a self-
similar solution if we do not include the effects of
cooling of the heated gas [10]. A detailed discussion of
the results of this numerical modeling are presented
in [11]. Computed spectra of the afterglows associ-
ated with the cooling of the gas heated by the GRB
radiation are presented in [12].

It is shown in [11] that cooling of a homogeneous
molecular cloud with a density of 104–105 cm−3 gives
rise to an afterglow in the optical and ultraviolet with a
characteristic plateau lasting 5–20 yrs (for the cloud
parameters used and clouds with sizes of 1.5–10 pc).
In this case, with a density of 105 cm−3, the visual
magnitude over ∼5 yrs reaches 22m for an isotropic
burst with an energy of 1052 erg and a flux at the Earth
of 10−4 erg/cm2.

Such prolonged, comparatively bright optical
transients are not observed for powerful GRBs: their
optical afterglows become undetectable (weaker than
∼25m) within several weeks or months [13, 14].

One reason for this discrepancy could be that the
model of [11] is overidealized. In reality, the burst
might occur at the edge of an inhomogeneous molec-
ular cloud, and the radiation might be anisotropic,
propagating within a fairly narrow cone, as in the
standard model. Studies of a more realistic picture
of the interaction between a GRB and a dense cloud
require at least two-dimensional models; one example
is the two-dimensional numerical simulations of [15].
Computations of the interaction of a GRB and a
dense cloud based on the equations of radiative hy-
drodynamics were carried out for various density dis-
tributions, cone opening angles, and GRB energies.
Rapid heating of the cloud disrupts the hydrostatic
equilibrium and gives rise to motions that lead to the
formation of a shock wave [10]. The role of the shock
in the heated gas is important only in the vicinity
of the GRB itself, while the main process at the
periphery of the cloud is cooling of the gas and the
production of the afterglow.

The main results of computations of the formation
of gas-dynamical flows initiated by a GRB for various
parameters of the GRB and dense cloud are presented
and discussed in [16].

Here, we present the results of computations of the
afterglow due to the heated gas in a formulation that
is more precise than that used in [15]: we have used
the Klein–Nishina cross section to describe Comp-
ton heating, taken into account more accurately (al-
though still only approximately) radiative transfer in
lines during the cooling of the gas, and carried out
computations for more realistic molecular-cloud and
GRB parameters. The resulting light curves aremuch
more varied than those obtained in [11] and can be
meaningfully compared with some observational re-
sults for the optical afterglow ofGRB 030329 [14, 17].

2. FORMULATION OF THE PROBLEM
AND MAIN EQUATIONS

The system of radiative hydrodynamical equations
that were solved for the interaction between a GRB
and a dense cloud is presented in [16]. Let us consider
in more detail the heating and cooling processes in
the cloud, which play an important role in the for-
mation of the spectrum and afterglow light curve.
Since the main thermal processes and the formation
of the afterglow occur in comparatively distant re-
gions, where the hydrodynamical motions are negligi-
bly small (v � vs, where vs is the sound speed behind
the heating front [16]), for the purpose of studying the
light curves, we can restrict our analysis to solving the
thermal-balance equation

∂

∂t
(ρε) = ρHγ − ρCγ . (1)

Here, ρ is the density, ε the internal energy, and
Hγ and Cγ the rates of heating and cooling per unit
mass. We take the matter to be fully ionized. This
is justified by the fact that the matter is heated to
high enough temperatures during the passage of the
gamma-ray front that it will be fully ionized. Because
the speed of sound is small compared to the speed
of light (the speed at which the heating and cooling
fronts propagate; see below), the matter at tempera-
ture jumps does not have time to attain high velocities
(v/vs ∼ vs/c).

Since the time scales of interest (∼105–108 s) are
much longer than the duration of the burst (�100 s),
the GRB itself can be represented as an instanta-
neous impulse with energy Γ:

L = Γδ
(
t− r

c

)
. (2)

For gamma-rays with hν � Ba,i
e , where Ba,i

e is
the binding energy of an electron in an atom or
ion, the cross section for interactions between these
gamma-ray photons and electrons will be essentially
the same whether the electrons are bound or free. The
GRB spectrum is specified in the form

dL

dE
=

L

Emax
e−E/Emax ; (3)
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we also introduce the notationW (E,Emax) =
dL

LdE
.

The rate of heating by the gamma-ray radiation
per unit mass of gas, Hγ , was taken from [18–20]
in the form

Hγ =
L

4πr2

µeσT

mu

Emaxfh(Emax)− 4kTfc(Emax)
mec2

,

(4)

where E is the photon energy, me is the electron
mass, mu is the nucleon mass, µe is the number of
electrons per nucleon, and σT is the Thomson cross
section for interactions between electrons and pho-
tons. The functions

fh(Emax) =
1

Emax

∫ ∞

0
W (E,Emax)s(E)EdE (5)
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and

fc(Emax) =
∫ ∞

0
W (E,Emax)q(E)dE (6)

characterize the spectral-averaged corrections to the
heating (fh) and cooling (fc) of the gas due to Comp-
ton interactions with the GRB radiation. These are
obtained by integrating over the spectrum taking into
account the dependence of the cross section for the
relativistic scattering of a photon on an electron on
the photon energy (the Klein–Nishina cross sec-
tion, σKN ).

Functions taking into account the relativistic cor-
rections for the heating s(E) and cooling q(E) are
calculated in [18]:
s(E) =
3
8E

[(
1
E

− 2
E2

− 3
E3

)
ln (1 + 2E) (7)

+
2
(
−10E4 + 51E3 + 93E2 + 51E + 9

)

3E2 (1 + 2E)3

]

and

q(E) =
3
32

[(
2
3E

− 2
E2

− 13
3E2

)
ln (1 + 2E) (8)

+
−216E6 + 476E5 + 2066E4 + 2429E3 + 1353E2 + 363E + 39

3E2 (1 + 2E)5

]
.

The normalization here was chosen so that fh =
fc = 1 when Emax � mec

2. After substituting (3),
(7), and (8) into (5) and (6), we integrated numerically
for various Emax values and approximated the results
using the formulas (Emax is in MeV)

fh(Emax) = (6.22Emax + 1)−1.07 (9)

and

fc(Emax) = (7.5Emax + 1)−0.65 (10)

in the energy interval 0.01MeV ≤ Emax ≤ 5MeV,
which yielded an accuracy better than 3%. At large
distances from the GRB source, the matter is not
heated to such high temperatures, so that Emax �
4kT , and cooling due to inverse Compton scatter-
ing is negligible. In accordance with (9), the rate of
Compton heating in (4) will be virtually independent
of the hardness of the spectrum if Emax � 1/6MeV.

The rate of cooling due to line and continuum ra-
diation per unit mass of optically thin plasma,Cγ , was
calculated in [21, 22]. The results of these calculations
were approximated by the analytical formula

Cγ =
Λ(T )n2

ρ
, (11)

where
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Λ(T ) =





0, T < 104 К,

10−48.8 T 6.4, 104 K < T < 104.25 K,

10−16.5 T−1.2, 104.25 K < T < 104.5 K,

10−27.48 T 1.24, 104.5 К < T < 105 K,

10−21.03 T−0.05, 105 K < T < 105.4 K,

10−13.6698 T−1.413, 105.4 K < T < 105.86 K,

10−22.8378 T 0.1515, 105.86 K < T < 106.19 K,

10−13.1969 T−1.406, 106.19 K < T < 106.83 K,

10−22.2877 T−0.075, 106.83 K < T < 107.5 K,

10−26.6 T 0.5, 107.5 K < T.

(12)
The solar chemical composition was used for the
interstellar medium (ISM) [23], and it was assumed
that all heavy elements are in gaseous form.

3. MAIN PHYSICAL PROCESSES
AND CONDITIONS

Let us consider the simplifications that we have
adopted and the physical processes that are important
in the formation of the spectrum of a cooling cloud
that was heated by the radiation of a GRB.

3.1. Approximation of a Fully Thermalized,
One-Temperature Plasma

The calculations carried out in [24] showed that, at
each moment during the thermal relaxation, the ion-
ized component of the medium is close to a stationary
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Fig. 1. Relative number density of ions as a function of
time during the thermalization of a plasma that is rapidly
heated to a temperature of Tfin = 109 K from an initial
temperature of Tin = 105 K.
ionization state corresponding to some temperature.
This result is illustrated in Figs. 1 and 2, which are
reproduced from [24]. Figure 2 shows the distribution
of the number densities of some ions in a thermal
plasma at various temperatures, and Fig. 1 the time
dependence of the number densities of these same
ions in a plasma that is heated from a temperature of
Tin = 105 K to a temperature of Tfin = 109 K. It also
follows from the results of [24] that, for a density of the
interstellar material of n ∼ 105 cm−3 and a tempera-
ture on the order of T ∼ 107 K, the time required to
establish ionization balance is close to 106 s, which is
comparable to the time scale we are interested in here.
Let us demonstrate the justification of the one-

temperature approximation for the plasma. We con-
sidered the action of gamma-rays with a flat spectrum
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temperature for a thermalized plasma.
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on an ISM with the normal chemical composition.
For this spectrum and with Emax ∼ 0.6 MeV, the
number density of photons with energies of 4 keV is
approximately a factor of 150 higher than the number
of photons with energies of 0.6 MeV, which means
that the efficiency of primary ionization by the 4 keV
gamma-rays is a factor of ln 150 ≈ 5 higher than the
efficiency of ionization by gamma-rays at the hard end
of the spectrum. We estimate the degree of ionization
for photon energies of Emin = 4 keV, since the cloud
remains optically thin to these photons, and interac-
tions between the photons and atoms are not impor-
tant; i.e., the electrons can be taken to be free and
the interaction cross section is equal to the Thomson
cross section. This enables us to obtain a lower limit
for the degree of ionization of the gas immediately
after the passage of the gamma-ray impulse:

ne

n
∼ min

{
1,

Γ ln(Emax/Emin)
4πr2Emax

σT

}
. (13)

For the radiation fluxes considered, this degree of
ionization in the numerical models in Section 4 is
∼10−4 and ∼1 at the edge and in the central region
of the cloud, respectively.
Since we have a directed flux of gamma-rays, after

Compton scattering on electrons in the medium, we
obtain a directed flux of fast electrons with energies
of several hundreds of keV moving parallel to the
flux of gamma-rays against the background of rel-
atively slow electrons with energies of the order of
several keV. The flux of energetic electrons moving
ASTRONOMY REPORTS Vol. 49 No. 8 2005
throgh the region of low-energy electrons rapidly be-
comes isotropic, and loses energy to the excitation of
plasma turbulence, leading to efficient thermalization
of the plasma. The decay increment for the plasma
oscillations is given by

γ =
√
3
2

(α
2

)1/3
ωpe, ωpe =

(
4πe2ne

me

)1/2

, (14)

where α = nh/ne ∼ 1/100 is the relative number
density of hot electrons with energies of several hun-
dreds of keV in the beam, nh is the number density of
these hot electrons, and ωpe is the plasma frequency.
The characteristic time scale for this thermalization is

τ ∼ 2π
γ

� 1 s (15)

for the densities considered [25–28]. The electrons
thermalized in this way will have temperatures of
109 K, which coincides with the temperature of the
cloud near the GRB source but is one to two or-
ders of magnitude higher than the temperature given
by (1), (4) at a distance of about 0.1–1 pc from the
GRB (Fig. 3).
The cross section for the ionization of atomic hy-

drogen by these electrons is [29]

σ(ε) =
πa2

0(1.07 ln ε+ 5.56)(ε − 1)
ε2 + 1.67ε + 3.57

, (16)

Ee ∼ 100 keV,

where a0 is the Bohr radius of the hydrogen atom,
πa2

0 = 0.88 × 10−16 cm2, and ε = Ee/13.6 eV.



616 BARKOV, BISNOVATYĬ-KOGAN
Knowing the electron-collisional ionization cross
section for hydrogen and the energy of the electrons,
we can estimate the time required for the gas to
become fully ionized; this turns out to be tion =
1/σneve ∼ 4× 103 s for a density of 105 cm−3. In
the case of complete ionization (ne = n), the time
between Coulomb collisions between electrons [30],

τee =
3
√
3me(kT )3/2

8πnLe4

 T

3/2
8

n
× 1010 s (17)

(T8 is the temperature in units of 108 K and L 
 30
is the Coulomb logarithm), becomes so short that,
when n = 105 cm−3, the electron component is ther-
malized over a time of the order of 105 s, and the
temperature is lowered to the values given by (1), (4).
Coulomb collisions are able to fully thermalize the

plasma over a time [30]

τie =
3mi(kT )3/2

8
√
2πmenLe4


 T
3/2
8

n
× 1013 s. (18)

For temperatures of T ∼ 106 K (where the cooling
rate is highest) and densities of 105 cm−3, this time
is about 105 s. Starting from this time, the approxi-
mation of a one-temperature plasma can be applied.
The error brought about by the delay in the thermal-
ization does not exceed 10%. The times presented are
appropriate for gas densities >103 cm−3. According
to the computations of [8], the action of the GRB
on a low-density ISM does not lead to the formation
of a double that could be observed at cosmological
distances using modern telescopes.

3.2. Role of Interstellar Dust

Results of computations of heating of the ISM by
a GRB taking into account the ionization of atoms,
dissociation of molecular hydrogen, and the destruc-
tion of dust due to heating and electrostatic forces are
presented in [31]. In this last case, the dust grains
are torn apart by repulsive Coulomb forces arising
due to the ejection of electrons from the grain during
impacts with energetic photons. For a GRB energy of
the order of 1052 erg, dust can be evaporated out to a
distance of 15 pc from theGRB source [31]. The cool-
ing of the ISM due to interactions with dust at a high
temperature on the order of 108 K is considered in [29].
In this case, the dust is rapidly destroyed. Since the
radiated energy is approximately equal to the binding
energy of the dust (1 eV/atom), the energy radiated
by dust is negligible in our model due to the small
number of heavy elements in the ISM and the low
energy output of this process per unit mass.
The peak of the radiation intensity by dust grains is

in the infrared. The IR energy radiated by dust is two
to three orders of magnitude lower than the energy
radiated by the gas in the ultraviolet and optical. For
the reasons described above, the influence of dust on
the radiation was disregarded.

3.3. Approximation of an Optically Thin Plasma

When computing the luminosity of the cloud, we
assumed that the radiation is produced by an optically
thin plasma. As was shown in [8, 11, 16], at the
densities typical for a molecular cloud, the topology of
the radiating fronts is such that nearly all the radiation
emitted by the heated cloud passes through a region
of thermal material with a temperature of the order of
104 K. In our computations, this region (r0 = 0.2 pc)
is opaque to Lyman line and continuum radiation
right to 1.2–1.5 keV. The most energetic photons
will first collide with heavy ions and be reprocessed
into softer photons. Further, they will be absorbed
by hydrogen atoms and be reradiated as continuum
radiation (an important role is played by two-photon
transitions from the second level) and line radiation
corresponding to transitions to the second and higher
levels. A more detailed analysis can be found in [11,
15]. Thus, a large fraction of the afterglow radiation
will arrive at the Earth in the form of photons with
energies below 13.6 eV.We assumed that all radiation
arrives at the Earth in the form of optical and ultravi-
olet radiation.
Let us consider what volume of cool material (Te ∼

104 K) can be ionized by the hot central region. In our
computations (see case 1 below), the radius of this
hot, central region does not exceed rhot ∼ 1018 cm, or
0.3 pc. The number of photons emitted in this region
with energies higher than the Lyman continuum
energy, νc = 3.29 × 1015 Hz, will be [32]

Nν = 4π

rhot∫

0

∞∫

νc

r2 ε
ff
ν

hν
dνdr, (19)

where

εff
ν = nen

+ 25π2

(6π)3/2

e6

m2
ec

3

(me

kT

)1/2
gνe

− hν
kT (20)

= 1.72× 10−42nen
+

(
1
T7

)1/2

e−
hν
kT

is the volume emission coefficient due to free–free
transitions. It follows from the computations of [11,
15] and our current analysis that the luminosity of
the central region changes only slightly for a long
time, remaining in the cases we have considered of
the order of or lower than 1040 erg/s. The bulk of
the ionizing photons have energies of about 20 eV,
and the total number of photons capable of ioniz-
ing hydrogen emitted per second turns out to be
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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Nν ∼ 3.4× 1050 s−1. We can write the hydrogen
recombination rate Θ in the cloud to all levels higher
than the first in the form

Θ = 4π
∞∑
2

Ci

rhot+δr∫

rhot

nen
+r2dr, (21)

where δr is the thickness of the layer of ionized
hydrogen. The hydrogen recombination coefficient
at a temperature of Te ∼ 104 K is

∑∞
2 Ci = 2.17 ×

10−13 cm3/s.
Assuming that nH ≈ ni = ne, the thickness of

the layer δr, in which hydrogen in the intermediate
cool zone (Fig. 3) will be highly ionized by radiation
from the cooling hot gas in the central region (the
Strömgren zone for an electron temperature of Te ∼
104 K) proves to be much smaller than the size of
the region of hot gas, where the temperature is T �
3× 106 K:

δr =
Nν

4πr2
hotnine

∑∞
2 Ci

≈ 0, 0057
n2

5

pc, (22)

where n5 = n/105 cm−3. We find that the zone of
ionized hydrogen is directly adjacent to the cooling
front of the inner hot region, and essentially merges
with this region.

4. COMPUTATIONAL RESULTS

As we noted above, the computations were car-
ried out in an optically thin approximation; i.e., we
neglected the opacity of the gaseous cloud to its own
radiation, and the observed luminosity was calculated
by integrating the radiative losses over the volume
of the cloud, taking into account the finite speed of
light. Measuring the time t̃ from the time when the
GRB is detected, we obtain the following expression
for the observed time dependences of the afterglow
luminosity, L(t̃):

L(t̃) = 2c

t̃+ R
c∫

max
(

t̃
2
,t̃−R

c

)
dt

π∫

0

dφ (23)

×

min
(
c
√

2tt̃−t̃2,
√

R2−c2(t−t̃)2
)

∫

0

ε(r, z, φ, t, α)zdz,

where ε(r, z, φ, t, α) is the power of the radiation per
unit volume at the point with cylindrical coordinates
(r =

√
c2(t− t̃)2 + z2, z, φ) at the time t after the

GRB, and α is the angle between the symmetry
axis for the problem (a line passing through the
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GRB source and the center of the molecular cloud)
and the direction toward the observer. Formula (23)
generalizes the corresponding expression obtained
in [11] to the case when the observer is not located
along the line joining the GRB and the center of the
molecular cloud. When α �= 0, it is necessary to carry
out a rotation of the coordinate system. We denote Π
to be the plane containing the lines joining the GRB
with the observer and the GRB with the center
of the molecular cloud. We introduce the variable
θ = arccos

(
c(t− t̃)/r

)
, which describes the angle

between the ray from the GRB to the observer and the
projection onto the Π plane of the ray from the GRB
to the integration point. The coordinates of this point
on the Π plane are x = r cos θ, y = r sin θ cosφ. After
performing a rotation through the angle α, projecting
the point onto theGRB–cloud center axis, finding the
distance from the point at the base of the projection
to the GRB source, x′(α) = x cos(α) + y sin(α), and
obtaining the angular coordinate in the frame fixed
to the GRB and the center of the molecular cloud,
θ′(α) = arccos(x′(α)/r), we obtain

ε(r, z, φ, t, α) = Λ
(
T (r, θ′(α), t)

)
n(r, θ′(α), t)2,

(24)

where Λ(T ) is given by (12).
The main results for all the cases we computed

are given in Table 1, which presents (1) a number
identifying each case computed; (2) the logarithm of
theGRB energy, logE, if theGRB is isotropic; (3) the
total energy radiated by the GRB, Etot, taking into
account the collimation of the gamma-ray impulse;
(4) the distance from the GRB source to the cen-
ter of the molecular cloud, R0; (5) the radius of the
quasi-homogeneous central region of the molecular
cloud, r0; (6) a parameter determining the collimation
opening angle, ϑ0; (7) the characteristic size of inho-
mogeneities, r1; (8) the peak bolometric luminosity,
Lmax; (9) the time to reach the peak luminosity after
the arrival of the gamma-ray impulse, tmax; (10) the
duration of the phase during which the luminosity ex-
ceeds half the peak luminosity, t1/2; (11) the duration
of the phase during which the luminosity is lower than
one-tenth the peak luminosity, t1/10; and (12) the
duration of the phase during which the luminosity
exceeds one-hundredth of the peak luminosity, t1/100.
Everywhere, we assumed Emax � 1/6 MeV, so that
the heating rate depends only on the energy of the
GRB pulse and not on Emax.

4.1. Characteristics of the Cases Computed

Case 1 corresponds to an isotropic GRB that oc-
curs in a homogeneous cloud. The density in the
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Table 1.Main parameters of the cases computed

Case
number

logE0

(erg)
Etot,

1049 erg R0, pc r0, pc ϑ0, rad r1, pc
Lmax,

1041 erg/s tmax, days t1/2, days t1/10, days t1/100, days

1 52 103 0 1.5 ∞ – 43 401 1081 2670 3397

2 52 2.5 1 0.5 0.1 – 5.1 11.7 10.2 16.8 43.8

3 52 2.5 1 0.2 0.1 – 2.16 8.5 9.5 18.8 40.1

4 51 0.25 1 0.5 0.1 – 0.0414 7.5 9.1 25.7 96.4

5 53 25 1 0.5 0.1 – 36.5 14.1 17.9 31.5 128

6 53 6.25 1 0.5 0.05 – 12 8.5 12.2 29.2 115

7 53 102 1 0.5 0.2 – 65 27.3 33.9 76.0 245

8 53 25 1 0.5 0.1 0.03 38.7 14.1 17.9 34.8 128

9 52 2.5 2 0.2 0.1 – 0.224 11. 12.6 21.7 47

10 52 2.5 0.5 0.2 0.1 – 2.74 8.2 10.7 21.4 55.9

11 52 2.5 0.5 0.2 0.1 0.02 2.88 6.9 10.7 21.4 55.9

12 52 2.5 0.5 0.2 0.1 0.02 3.02 7.8 12.6 22.0 55.0

13 52 2.5 0.5 0.2 0.1 – 0.0425 19.6 62.8 162 437
cloud is n = 105 particles/cm3, and the GRB energy
is E = 1052 erg.
In cases 2–12, the GRB is anisotropic and occurs

at some distance from the center of the molecular
cloud. The angular distribution of the energy in the
GRB impulse is specified as E = Eoe

−(ϑ/ϑ0)2 (Eo is
the isotropic energy of the GRB; Table 1), and the
density distribution as n = 105e−(r/r0)2 cm−3, where
r is the distance from the center of the molecular
cloud. TheGRB axis is directed from the cloud center.
In cases 8, 11, and 12, various density inhomo-

geneities are added.
Case 8 adds four regions of enhanced density with

the distribution n = 3× 105e
−
(

|r̄−r̄i|
r1

)2

cm−3, where
r̄i is the radius vector to the center of each region.
Three of these are spherical and located along the line
of symmetry of the GRB–cloud-center at distances
of 0.8, 1.0, and 1.2 pc from the GRB source. The
fourth region of enhanced density is located 1.0 pc
from the GRB and 0.2 pc from the symmetry axis.
In our two-dimensional formulation, this last density
enhancement has the form of a torus.
Case 11 adds one spherical region of enhanced

density with its center at the center of the molecular
cloud and with the density distribution n = 3×
105e−(r/r1)2 cm−3, where r is the distance from the
cloud center.
Case 12 adds five spherical regions of

enhanced density with the density distribution
n = 3× 105e
−
(

|r̄−r̄i|
r1

)2

cm−3, where r̄i is the radius
vector of the center of each region. The dense regions
are located along the GRB–cloud axis at distances of
0.4, 0.45, 0.5, 0.55, and 0.6 pc from the GRB.
Case 13 is precisely like case 10, but with the

molecular-cloud density an order of magnitude lower.
Let us now consider these individual cases in more

detail.

4.2. An Isotropic GRB in a Homogeneous
Molecular Cloud

This case is topologically fully analogous to the
case considered in [11]. At the initial time, the passing
GRB impulse heats the central part of the molecular
cloud to temperatures of the order of 109 K; heating to
higher temperatures is prevented by inverse Compton
scattering. Since the material in the central region
is heated to high temperatures (T > 107–108 К), it
rapidly becomes fully ionized, and the dominant ra-
diative losses are associated with free–free transitions
in the plasma. The rate at which energy is lost per
cubic centimeter of the optically thin plasma due to
free–free radiation is proportional to T 1/2; at such
temperatures, the gas can be considered ideal, and
its heat capacity does not depend on the temperature.
We find that, the stronger the heating of the ISM
plasma, the longer its cooling time. Therefore, cooling
of the gas just after the GRB can be neglected, and
the temperature profile will repeat the profile of the
ASTRONOMY REPORTS Vol. 49 No. 8 2005



AFTERGLOW OF A DENSE MOLECULAR CLOUD 619
energy from the GRB impulse absorbed by the ma-
terial; i.e., the temperature goes as T ∼ R−2 (Fig. 3,
curve 1).
As soon as the GRB impulse has traveled to a

distance where it heats the matter only to temper-
atures of the order of several million Kelvin or less,
the cooling rate per volume grows sharply due to
the increase in the efficiency of atomic-line radiation
[formula (12)], and the cooling time becomes less
than the time for the GRB impulse to travel to this
radius: tcool < R/c (Fig. 3, curves 2–5). This leads
to the following picture. At the initial time, the tem-
perature profile formed by the GRB pulse obeys the
dependence T ∼ R−2. After the impulse has reached
some radius (which depends on the GRB energy and
the number density in the molecular cloud), a cutoff
appears in the temperature profile (the temperature of
the matter falls to∼104 K, so that the matter becomes
virtually completely neutral, and the cooling rate falls
sharply). A heating wave (due to the GRB) and two
cooling waves (one in the direction of increasing and
one in the direction of decreasing distance from the
GRB source) travel radially. As a result, at large dis-
tances from the GRB source, the gamma-ray impulse
has become so weak that it is not able to heat the
matter to 104 К, the interstellar material remains neu-
tral, and the cooling wave catches up with the heating
front. Energetic gamma-rays can ionize themmatter,
but, in this case, our approach is not applicable—we
are not considering such a developed stage in this
analysis.
We should note an important detail here: in the

case of a homogeneous density, the phase velocity of
the cooling wave traveling outward is always higher
than the speed of light. The phase velocity of the
wave traveling toward the center rapidly falls, and
this wave moves through the cloud with a velocity of
∼104 km/s, much lower than the speed of light. The
duration of the afterglow is determined by the geo-
metrical dimensions of the radiating region. Hence,
we find the characteristic time for the peak of the “op-
tical” radiation,∆t ≈ 2R/c ≈ 9 yrs (Fig. 4, Table 1).

4.3. An Anisotropic GRB at Some Distance
from the Center of an Inhomogeneous

Molecular Cloud

In the most probable scenario, the GRB source is
anisotropic and is not located precisely at the cen-
ter of an inhomogeneous molecular cloud. Let us
now consider various cases for this general situation
(cases 2–11).
Immediately after the GRB, the temperature dis-

tribution in the cloud close to the GRB axis is fully
determined by the angular distribution of the energy
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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Fig. 4. Time dependence of the optical/ultraviolet lumi-
nosity. The time is measured in years.

in the GRB and the distance from the source. At the
edges of the GRB impulse (far from its axis), the tem-
perature does not reach high values exceeding several
million Kelvin, and thematter rapidly cools to temper-
atures of the order of 104 К (Fig. 5а). As the gamma-
ray front moves into denser regions of the cloud, the
temperature to which it heats the interstellar material
falls and, as a consequence of the increased density,
the cooling rate grows, leading to a thinning of the
region of hot gas (Fig. 5b). At this time, the region of
heated gas divides into two parts. One region, which
follows behind the gamma-ray impulse, decreases its
geometrical thickness and takes on the shape of a
thin meniscus. The second region has the form of
a cylinder with a variable cross section; this region
slowly cools, decreasing its geometrical size as it does
so (Fig. 5c). After the gamma-ray impulse passes
through the center of the molecular cloud, it contin-
ues into regions of decreasing density. The decreasing
density causes the cooling rate to drop, leading to an
increase in the geometrical thickness of the region of
heated gas following behind the gamma-ray impulse
(Fig. 5d).
The dominant flux of radiation from a molecular

cloud heated by a nearby GRB is emitted by re-
gions directly adjacent to the gamma-ray front. As
we showed above, the region that gives rise to the
bulk of the radiation (the region with high density) is
geometrically thin, and there is only amodest increase
in the duration of the impulse of optical radiation
as a consequence of the curvature of the radiating
region, due to the narrow cone of the GRB impulse.
All this means that, for an observer located on the
GRB axis, the duration of the optical impulse at half
its peak intensity is only t1/2 = 10 days, with the
peak intensity being reached 8.5 days after the GRB
(Fig. 6, curve A; Table 1, case 3). Even in the case
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Fig. 5. Distribution of the temperature (gray scale) and contours of equal density for a cloud at various times for case 3.
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of comparable peak fluxes in the optical afterglow,
the duration of the peak is two orders of magnitude
shorter when the GRB is offset from the center of the
molecular cloud thanwhen theGRB is in the center of
a spherically symmetrical cloud with a homogeneous
density. The total energy of an isotropic GRB exceeds
that of an anisotropic GRB by a factor of 40.

Let us consider the main factors influencing the
light curve of the optical afterglow.

1. Let us first compare cases 2 and 3 in Table 1,
which differ in the size of the central region of the
molecular cloud: its mass is nearly a factor of 16
higher in case 2 than in case 3. The maximum lumi-
nosity of the afterglow in case 2 exceeds that in case 3
by a factor of 2.5. This is due to the collimation of the
GRB and the fact that the GRB impulse heats only
a cylindrical part of the molecular cloud. Accordingly,
the volume of heated gas differs due to the height of
the cylinder, which cannot be larger than the diameter
of the cloud. Regions of the molecular cloud that are
far from the GRB–cloud axis do not contribute to the
light curve.
2. Now compare cases 3, 9, and 10 in Table 1. The
main characteristics of the GRB and molecular cloud
coincide in these cases, and only the distance of the
center of the molecular cloud from the GRB source
differs.
The peak luminosities in cases 3 and 10 differ by

only 25%, and the temporal parameters differ only
slightly. This is due to the fact that the center of the
molecular cloud is located half as far from the GRB in
case 10 as in case 3. Accordingly, the matter is heated
to temperatures that are a factor of four higher. How-
ever, due to the collimation of the GRB, not all the
cloud participates in this heating; only a cylindrical
volume lying near the GRB axis is heated, with the
radius of the base being half as large in case 10 as
in case 3. The influences of these two effects nearly
precisely cancel, giving rise to similar light curves.
The peak luminosity in case 3 is an order of mag-
nitude higher than the peak luminosity in case 9;
the duration of the light curve is about 25% longer
in case 9, and the net result is that the integrated
radiated energy is a factor of eight lower in case 9.
This is due primarily to the large distance of the GRB
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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Fig. 6. Light curves for case 3 for an observer located on the GRB–cloud axis (curve A), at an angle of α = 0.1 rad (curve B),
at an angle of α = 0.2 rad (curve C), and at an angle of α = π/2 rad (curve D). The time is measured in days after the GRB.
from the center of the molecular cloud, which means
that dense regions of the molecular cloud are heated
and reradiate much more weakly.
3. Let us now turn to cases 2, 4, and 5. All the

main characteristics of the molecular cloud coincide
in these cases, but the energy of the GRBs differ.
The GRB energy is an order of magnitude higher

in case 5 than in case 2, and the peak luminosities of
the afterglows differ by a factor of seven. Taking into
account the fact that the afterglow is more prolonged
in case 5, the total energy radiated is a factor of 12
higher in case 5 than in case 2. The longer duration
in case 5 comes about because the minimum cooling
time until the peak luminosity is reached is longer in
case 5 than in case 2. In addition, the curvature of the
radiating layer also extends the light-curve plateau
near the maximum luminosity.
The GRB energy is an order of magnitude lower in

case 4 than in case 2; the peak luminosity is a factor
of 120 higher and the total energy radiated a factor
of 100 higher in case 2. This difference of two orders
of magnitude in the total radiated energy is due to the
fact that the material in the molecular cloud is heated
to lower temperatures in case 4 than in case 2; since
matter radiates efficiently only to 104 К, the radiated
fraction of the thermal energy is lower in case 4 than
in case 2. In addition, a smaller part of the cloud is
heated to temperatures above 104 К in case 4.
ASTRONOMY REPORTS Vol. 49 No. 8 2005
4. Let us now consider cases 5, 6, and 7, which
have the same peak luminosities for the gamma-ray
impulse but different collimation angles. We can see
from Table 1 that the ratio of the maximum lumi-
nosities for cases 5 and 6 is three, while this ratio
for cases 7 and 5 is two, although the ratio of the
GRB energies for each pair is equal to four. This is
due to the increase in the size of the radiating layer
with increasing collimation angle, which extends the
time when the heated material radiates. The duration
of the luminosity at the half-peak intensity level can
be estimated as

t1/2 
 (1− cos ϑ0)R0/c+ tcool, (25)

where tcool is the cooling time for the molecular-cloud
material (in our case, tcool ∼ 7 days).
5. As in cases 10, 11, and 12, the difference be-

tween cases 5 and 8 is that cases 8, 11, and 12 include
inhomogeneity in the molecular-cloud density.
The added dense regions in the molecular cloud

lead to a modest growth in the luminosity of the
afterglow and an insignificant shortening of the time
to reach the light-curve maximum.
6. Cases 10 and 13 have different densities and,

accordingly, masses for themolecular cloud. The den-
sity is an order of magnitude lower in case 13 than in
case 10, and the maximum luminosity is lower by a
factor of 64. This is due to the fact that the mass of
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Table 2.Main parameters of case 3 from Table 1 for various viewing angles

Case
number

logE0

(erg)
Etot,

1049 erg R0, pc r0, pc ϑ0, rad α
Lmax,

1041 erg/s tmax, days t1/2, days t1/10, days t1/100, days

3A 52 2.5 1 0.2 0.1 0 2.16 8.5 9.5 18.8 40.1

3B 52 2.5 1 0.2 0.1 0.1 1.2 14.1 18.6 31 59

3C 52 2.5 1 0.2 0.1 0.2 0.677 31 36 59 87

3D 52 2.5 1 0.2 0.1 π/2 0.066 1200 376 724 1000
heated gas is an order of magnitude lower in case 13;
in addition, the radiative time scale for a volume el-
ement of gas is inversely proportional to its density
(the cooling time in case 13 is tcool ∼ 70 days), which
leads to an additional drop of nearly a factor of ten
in the maximum luminosity. The nonstrict adherence
to a quadratic dependence is also associated with
the kinematic extension of the width of the phase of
maximum luminosity.
If the line of sight of the observer is not directed

along the line passing through the GRB source and
the center of the molecular cloud, the shape of the
light curve will change (Fig. 6, left and right plots;
Table 2). Figure 6 presents four light curves for the
cases when the observer is located (A) on the GRB–
cloud-center axis and at angles to this axis of (B) α =
0.1 rad, (C) α = 0.2 rad, and (D) α = π/2 rad. The
peak luminosity for case A is reached 8.5 days after
the arrival of the GRB; the duration of the impulse
at the half-peak level is t1/2 = 9.5 days, and the
luminosity reaches 2.16 × 1041 erg/s. Note that the
peak luminosity falls by approximately a factor of two
from case A to case B and from case B to case C,
but the duration of the peak grows by approximately a
factor of two from case A to case B and from case B to
case C. Thus, the total radiated energy is the same in
all cases. In case D, the peak intensity is reached only
3.5 yrs after the GRB; the duration of the afterglow
at the half-peak level is t1/2 = 376 days, and the flux
itself is a factor of 32 lower than when the observer is
located along the GRB–cloud-center axis.

5. DISCUSSION AND CONCLUSION

The interaction of a cosmological GRB with the
dense material of the host galaxy leads to a number of
interesting effects, some of which can be observed and
verified in practice. The computations show a strong
dependence of the light curve on the parameters of the
GRB and molecular cloud, and on the geometry and
the viewing angle in anisotropic cases. The shape and
duration of the light curve vary over wide intervals.
The peak luminosity can be reached as soon as 7 days
after the GRB (case 11, the GRB is located at some
distance from the center of a molecular cloud with
small-scale density enhancements) or as long as one
to three years after the GRB (case 1, the GRB is
at the center of a homogeneous molecular cloud).
The bolometric luminosity can reach values of 6.5 ×
1042 erg/s (case 7).
Our analysis has revealed a number of impor-

tant patterns in the behavior of the afterglow light
curves. In the case of strongly collimated gamma-
ray impulses, we find a linear growth of the maximum
afterglow luminosity with increase in the linear size
and a quadratic growth with increase in the den-
sity of the cloud. The maximum luminosity initially
depends only weakly on the distance of the GRB
source from the center of the molecular cloud, but a
sharp decrease in the peak luminosity occurs when
the GRB is not able to heat an appreciable fraction
of the molecular cloud to temperatures above 104 К.
The dependence of the maximum afterglow luminos-
ity on the opening angle for the gamma-ray impulse
is initially quadratic, then reaches a plateau when
θ0 > 0.1 rad. The maximum afterglow luminosity for
a given opening angle depends linearly on the GRB
energy, with a cutoff at low energies. TheGRB energy
at which this cutoff occurs depends approximately
quadratically on the distanceR between the GRB and
the center of the molecular cloud, Ecut,52 ∼ 2.2R2 pc
(E52 ≡ E/1052 erg).
When the observer does not detect the gamma-ray

impulse itself (theGRB is anisotropic and the viewing
angle does not coincide with the GRB axis; case D
of case 3), it is still possible to observe an optical
transient (a so-called “orphan”). However, this is
complicated by a number of factors that decrease the
probability of observing orphan optical transients of
this type.
(1) For this to happen, the GRB peak luminosity

must be appreciably weaker (by up to a factor of∼32)
thanwhen the observer is located along theGRB axis.
(2) The maximum luminosity is reached after

about four years, and the duration of the afterglow
is about one to three years. Since the observer
does not detect the gamma-ray impulse, there is no
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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natural starting time, although the long duration at
the maximum luminosity might help facilitate the
detection of orphan optical transients.
(3) When a GRB occurs in a molecular cloud, the

gamma-ray impulse does not vaporize the dust, and
the cloud remains optically thick in the direction of
the observer, making it virtually impossible to observe
such an optical afterglow at cosmological distances.
In this case, the appearance of orphan infrared tran-
sients associated with reradiation by dust is possible.
(4) In view of the fact that dust does not absorb

X-ray radiation [29], observations of the X-ray after-
glows of GRBs without detection of the associated
gamma-ray impulses may be possible if the GRB
source is located in a dense part of the cloud.
Recent observations of GRB 030329 [17, 33] dis-

play a plateau in the R light curve from 64 to 94 days
after the GRB (for technical reasons, it has not been
possible to continue the observations). The existence
of this plateau can be explained by the model con-
sidered here. These observations do not contradict
the temporal or energetic constraints derived in the
computations.
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Abstract—We present the results of monitoring the H2Omasers in the IR sources IRAS 18265–1517 and
IRAS 18277–1516 associated with the cool molecular cloud L 379, which contains high-velocity bipolar
molecular jets. The sources were observed in the 1.35 cm H2O line using the 22-m radio telescope of the
Pushchino Radio Astronomy Observatory (Russia) during 1991–2004. We detected H2Omaser emission
from IRAS 18265–1517 at radial velocities of 17.8 and 18.4 km/s, virtually coincident with the velocity of
the molecular cloud derived fromCO-line observations (18.4 km/s). The maser emission towards the other
source, IRAS 18277–1516, was at higher velocities than the central velocity of the CO molecular cloud.
The H2Omaser spots are most likely associated with a redshifted region of CO emission. Cyclic variability
of the integrated H2Omaser emission that may be related to cyclic activity of the central star was detected
for IRAS 18277–1516. The strongest and most long-lived component (VLSR ≈ 20.6 km/s) displays a
radial-velocity drift, which could be due to deceleration of a dense clump of matter (maser condensation)
in the circumstellar medium during the descending branch of a strong flare. We found numerous emission
features for both IRAS 18265–1517 and IRAS 18277–1516, providing evidence for fragmentation of the
medium surrounding their central objects. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

During the early stages of their formation, stars
are embedded in dense, cool gas and dust clouds,
where the protostar is invisible in the optical due to
the very strong extinction. Its optical light is absorbed
in the protostellar cloud and reradiated in the far IR.
Stars in early evolutionary stages undergo episodes
of very strong ejection, accompanied by the formation
of strong high-velocity bipolar flows of cool molec-
ular gas. At this stage, CH3OH, H2O, and later
OH masers associated with compact far-IR sources
appear in the surrounding cloud, in the vicinity of
the star.

The high-velocity bipolar flows originate in
sources associated with cool IRAS objects located
in dense disks. The IRAS sources emit strongly at
60 and 100 µm. In the radio, they either do not emit
at all or are weak emitters at millimeter wavelengths.

L 379 is an isolated dark molecular cloud that
is not detected at visible wavelengths. Seventeen
IRAS objects were revealed in the cloud, within
±21′ in right ascension and ±10′ in declination
from the point with coordinates α1950 = 18h27m30s,
δ1950 = −15◦19′00′′ [1]. Only three of these have
fluxes exceeding 300 Jy at 100 µm. Maser emission
was found towards two sources: IRS 3 and IRS 2
(in later papers, IRS 3 is designated IRS 1). These
1063-7729/05/4908-0624$26.00
sources also bear the names IRAS 18265–1517 and
IRAS 18277–1516, which we use below. The dis-
tance to the cloud L 379 is estimated to be 2 kpc [2].

The region of IRAS 18265–1517 was mapped
by Hilton et al. [1] in CO line emission with 80′′
angular resolution. They detected a bipolar flow to
the northwest and southeast, within a region 5′ × 7′
in size, with the IR source spatially coincident with
the maximum of the redshifted emission. Hilton
et al. [1] observed a velocity gradient along the
bipolar flow, corresponding to a velocity change by
10 km/s over 10′. The velocity of the CO cloud is
about 18.5 km/s. Hilton et al. [1] present a map of
the central source and its immediate vicinity, together
with a plot of contours of equal velocity. In this ve-
locity range, OH maser emission was found towards
IRAS 18265–1517 [3, 4], and Kalenskii et al. [5]
detected CH3OH (methanol) maser emission.

The bipolar flow’s central source is IRAS 18265–
1517. Hilton et al. [1] found a “hot spot” ∼2′ in
diameter, with its maximumapproximately coincident
with IRAS 18265–1517. The spot is probably a dense
disk around the central source. The methanol masers
are situated near the central source of the bipolar flow,
and are probably projected against the dense disk [5].

IRAS 18265–1517 was mapped with a higher
angular resolution (28′′) in the 12CO (J = 2 → 1) line
c© 2005 Pleiades Publishing, Inc.
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Fig. 1.H2Omaser spectra for the IR source IRAS 18265–1517 obtained in 1991–2004. The vertical arrow indicates the scale
in Jy. The velocity relative to the Local Standard of Rest is plotted along the horizontal axis. For spectra with possible emission
below the noise level, we give the dates of the observations together with upper limits for the possible fluxes in Jy, separated by
a colon.
by Wilking et al. [6], who found that the maxima of
the redshifted and blueshifted emission coincided and
were centered on the IR source. Later, IRAS 18265–
1517 was studied by Kelly and MacDonald [7] in the
J = 2 → 1 transitions of the 12CO, C18O, and 13CO
lines with 22′′–23′′ resolution. These observations
demonstrated that two matter flows were present
ASTRONOMY REPORTS Vol. 49 No. 8 2005
in this region, associated with the northern and
southern components of IRS 1 (IRAS 18265–1517)
and with different alignments. The dust temperatures
in the northern and southern clumps are 22 and
24 K, respectively, and the gas masses (MH2

) are
1000 and 680M�, respectively. Each clump contains
a B0–5 star with a mass of about 15M�. It has been
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Fig. 2. (a) H2Ospectrumacquired on January 28, 2004 in
the direction of IRAS 18265–1517 at negative velocities.
(b) Positions on the VLSR scale of the spectral compo-
nents detected for the H2O maser in IRAS 18265–1517
at VLSR > 0. (c) All the components found in the vicinity
of the source (see text).

suggested that a binary star system is forming in
IRAS 18265–1517 [7].

IRAS 18277–1516 is also located in L 379 and
is associated with the IR source IRS 2. The field
was mapped in the CO (J = 1 → 0) line by Schwartz
et al. [8]. The positions of the maxima of the red-
shifted and blueshifted emission differ in declination
by ≈50′′. A molecular flow with a central velocity of
18.5 km/s is present, but it is not bipolar. The veloc-
ity range for the CO emission is 17 km/s—a factor
of three narrower than for IRAS 18265–1517. The
kinematic value of 2 kpc is adopted for the distance
to IRAS 18277–1516 [8].

The water masers in the cool molecular cloud
L 379 are associated with strong matter outflows
and have wider ranges of emission velocities than the
molecular-gas outflows themselves. To explain the
observed phenomena and devise models for sources
of this type, regular observations covering a wide
velocity range obtained over many years are needed.
This paper presents the results of our many-year
monitoring of the H2O masers in IRAS 18265–1517
and IRAS 18277–1516 in the molecular cloud L 379.
2. OBSERVATIONS AND DATA

Our observations of the H2O maser emission
towards IRAS 18265–1517 (α1950 = 18h26m33s,
δ1950 = −15◦17′51′′) and IRAS 18277–1516
(α1950 = 18h27m43s, δ1950 = −15◦16′14′′) were ac-
quired with the 22-m radio telescope of the Pushchino
Radio Astronomy Observatory, from June 1991 and
December 1996, respectively, until April 2004. The
mean intervals between our observations were about
two and three months for the two sources.

The system included a cooled transistor amplifier
yielding system temperatures of 150–230 K. The ra-
diometer was upgraded in 2000, lowering the system
noise temperature to 100–130 K. The signal was
analyzed using a 96-channel filter spectrum analyzer
(128-channel after June 1997) with a resolution of
7.5 kHz, corresponding to 0.101 km/s in radial ve-
locity in the 1.35 cm line. For an unpolarized point
source, an antenna temperature of 1 K corresponds to
a flux density of 25 Jy.

A catalog of the IRAS 18265–1517 spectra is
presented in Fig. 1. The vertical arrow shows the scale
in Jy. The horizontal axis plots the velocity relative to
the Local Standard of Rest (LSR), and the scale is
the same for all the panels. Spectra for which possible
emission is below the noise level are not shown. The
dates of such observations and upper limits for the
emission are given.

We also observed IRAS 18265–1517 from time to
time at radial velocities near−50 km/s. The spectrum
observed on January 28, 2004 is shown in the upper
part of Fig. 2. To improve the sensitivity (at the cost
of halving the spectral resolution), we averaged pairs
of adjacent channels. The arrowsmark weak emission
at−54.4 and−48.3 km/s with fluxes of 2.6 and 3.5 Jy.

Despite the maser’s low activity, we were able
to identify 27 individual spectral components with
VLSR > 0 that were manifest in some way between
1991 and 2004. Their positions in radial velocity are
shown in Fig. 2b. The lower panel shows all the com-
ponents found in the region of IRAS 18265–1517,
at any radial velocity, in the present study and in the
studies of Xiang and Turner [9] and Furuya et al. [10].

Figure 3 presents a catalog of H2O spectra for
IRAS 18277–1516, which we observed mainly in the
velocity range 14–27 km/s. Because the flux varia-
tions are considerable, the figures have different ver-
tical scales. A superposition of all the spectra shows
that there are three velocity intervals in which H2O
maser emission is observed: 17.6–21.5, 21.5–23.3,
and 23.3–27.2 km/s. For convenience, we will call
these the left, central, and right groups of emission
features.

We calculated integrated fluxes for the total spec-
tra and the three individual sections, whose variability
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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Fig. 3.H2Omaser spectra in the IR source IRAS 18277–1516 obtained in 1996–2003. The scale in Jy is shown by the vertical
arrows. The velocity relative to the Local Standard of Rest is plotted along the horizontal axis.
curves are shown in Fig. 4. The dash–dotted curve in
the upper panel is a polynomial describing the slow
integrated variations for the total spectrum, i.e., for
the whole radial-velocity range. Three deep minima
reaching the zero level are visible. The insert in the
upper panel includes data obtained prior to our moni-
toring. The data point for 1990 was taken from Felli
et al. [11], and we computed the next two points
ASTRONOMY REPORTS Vol. 49 No. 8 2005
using the spectra of Xiang and Turner [9]. We indicate
the radial velocities of the components giving the
largest contribution to the corresponding emission
near some of the peaks in Fig. 3b.

Based on the variability of the integrated flux, we
subdivided the whole period covered by our observa-
tions into four time intervals, which we take to repre-
sent four activity cycles. The boundaries between in-
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Fig. 3. (Contd.)
tervals are shown as vertical arrows. The first cycle is
incomplete; our monitoring started on the descending
branch of the H2O maser activity. We calculated the
mean spectra (Fig. 5) for each of the activity cycles,
except for the last one.

We then identified individual emission features us-
ing all the spectra from our monitoring (Fig. 3) as
well as the mean spectra (Fig. 5). Analysis of the
mean spectra enabled us to identify several emission
features that were not evident in the individual spec-
tra. This provides evidence for the presence of faint,
long-lived components. The total number of identified
spectral features is 22. Their positions in the spectrum
are displayed in the bottom part of Fig. 5. The solid
bars identify the two components that demonstrated
a radial-velocity drift. For this reason, we give their
mean radial velocities. The dotted line indicates the
radial velocity of the CO molecular cloud.
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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Fig. 4. Variations of the integrated H2O maser emission
from IRAS 18277–1516 for (a) the combined spectra
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scribing slow variations of the integrated flux. The vertical
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upper panel presents data for observations prior to our
monitoring (see text).

A radial-velocity drift was found for the strongest
emission feature in IRAS 18277–1516. Figure 6
shows variability curves for its flux and VLSR. Because
of the wide range covered by the flux variations,
an insert for 1999–2001 is presented in the upper
panel. The flux variations can be approximated with
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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Fig. 5.Mean H2O spectra of IRAS 18277–1516 for var-
ious time intervals. The vertical segments in the bottom
panel mark the positions of individual spectral compo-
nents, and the dotted line shows the position of the CO
molecular cloud.

two straight line segments. Their intersection point,
corresponding to the observations of March 25,
1998, is plotted as a large circle. The radial-velocity
variations were also approximated with a second-
order polynomial (the dashed curve). In addition,
two individual intervals, also separated by March 25,
1998, were fitted by two second-order polynomials
(dotted curves), which, together with the straight
segments in Fig. 6a, provide the best description of
the emission variability. The variability of the emission
features in the right group is displayed in Fig. 7.
Radial velocities are indicated for most emission
peaks.
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3. IRAS 18265–1517

3.1. The Region Surrounding IRAS 18265–1517

IRAS 1265–1517 is associated with the cool
molecular cloud L 379, whose temperature is about
40 K. The source is a strong emitter in the far IR. The
flux density is 445 Jy at 60 µm and rises to 1297 Jy
at 100 µm. The radio continuum emission is present
only at short wavelengths, to λmax = 2.7 mm. The
2.7 mm flux is 471 mJy [12].

The OH maser emission was discovered by
Pashchenko and Le Squeren [3, 4] during a survey
of IRAS sources in June 1991 using the Large
Radio Telescope at Nancay (France). Emission in
the 1665 and 1667 MHz lines was observed in right-
circular polarization (RCP), at VLSR = 15.5 and
16 km/s, respectively. There was no strong maser
emission in left-circular polarization (LCP). This
made it possible to observe hydroxyl absorption at
the same velocities (15–16 km/s). The absorption
was not obvious in the RCP spectrum due to inter-
ference from the strong maser emission. Unpolarized
emission at 18–20 km/s was observed in the satellite
OH 1612 MHz line [6]. Thus, the velocities where
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Fig. 7. Variability of the emission features in
IRAS 18277–1516 at radial velocities of 22–27 km/s.

the OHmaser emission was observed are close to the
velocity of the molecular cloud, suggesting that the
OH masers are embedded in the molecular cloud [6].

Attempts to detect H2O maser emission towards
L 379 IRS 1 (IRAS 18265–1517) were undertaken
in 1990–1992. Felli et al. [11] observed this source
in February 1990 at a wide range of radial velocities,
from−118 to 218 km/s. They found no emission with
fluxes exceeding 3 Jy. H2O emission in a direction
close to the source (offset by 34′′ in declination) was
detected by Xiang and Turner [9], whose observa-
tions of February 25, 1990, demonstrated the pres-
ence of three spectral components, at −50.7, −36.6,
and −28 km/s with fluxes of 9.6, 3.3, and 3.1 Jy,
respectively. These velocities differ strongly from the
velocities of the molecular cloud in both CO and OH.

We began our monitoring in June 1991 and found
H2O emission at a velocity close to that of the
cloud on February 9, 1995. The spectrum consisted
of two very close components, at VLSR = 17.8 and
18.4 km/s, with fluxes of 50 and 10 Jy. Weaker
emission was observed at 11.5–14 km/s. In 2003,
Furuya et al. [10] published a catalog of water-maser
spectra associated with youngmassive stellar objects.
The catalog contains spectra of the IRAS 18265–
1517 maser for December 31, 1997 and June 2, 1998.
They observed emission in a wide velocity range, from
−54 to 34 km/s. Furuya et al. [10] adopted a distance
of 2 kpc and assumed that the emission they had
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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detected belonged to L 379–IRS 1 (IRAS 18265–
1517). However, according to Wilking et al. [6], the
bipolar flow in the CO cloud has negative velocities
only at−9 km/s.

3.2. Analysis of the H2OMonitoring Data

The many-year observations of the H2O maser
show that its individual components are very strongly
variable and have low intensities. The exception is
emission observed in February 1995 at 17.8 km/s,
close to the velocity of the molecular cloud, with a flux
of about 50 Jy. We observed strong emission only in
the first half of 2000, when the flux reached 270 Jy at
VLSR = 19.7 km/s. In January of the same year, we
observed strong emission at 16–22 km/s, with two
dominant peaks with similar fluxes, near 80 Jy. The
flux at other velocities did not exceed 20 Jy.

Despite the low general emission level at veloci-
ties of 6–27 km/s, we identified 27 individual emis-
sion features with VLSR > 0 that were manifest in
1991–2003 (Fig. 2b). Most of the components were
short-lived. The intervals between our observations
(one to two months) were not short enough to en-
able us to accurately determine the component life-
times, but we estimate these lifetimes to be one to
six months. The lower value here may be somewhat
too long. With all this in mind, it is likely that the
real number of spectral components that were present
in 1991–2003 is somewhat larger. This provides ev-
idence for strong fragmentation of the medium in
which the H2Omaser emission originates.

3.3. Model of the H2OMaser

Examination of all available observations in the
neighborhood of IRAS 18265–1517 indicates that
H2O maser emission has been observed at velocities
from −55 to 34 km/s (Fig. 2c). The highest con-
centration of emission features (28 components) was
observed at 6–34 km/s, near the radial velocity of
the molecular cloud. The OH maser emission is in
the same velocity range [4]. Like the hydroxyl and
methanol masers, these water-maser emission fea-
tures (“spots”) are associated with the central dou-
ble source in IRAS 18265–1517. In particular, the
masers could be associated with one of the binary
system’s components. The emission at −9 km/s [10]
is at the edge of the CO line [6], and it is possible that
it is associated with IRAS 18265–1517. The velocity
scatter of ≈40 km/s (from −9 to 34 km/s) could be
due to the influence of the high-velocity molecular
flow on the corresponding maser spots.

The remaining emission features, with VLSR <

−9 km/s, are difficult to relate to the bipolar flow.
ASTRONOMY REPORTS Vol. 49 No. 8 2005
However, the velocity scatter—for example, in HH1,
where a high-velocity matter outflow is present—
can reach near 100 km/s. It is quite possible that
the high-velocity features in IRAS 18265–1517 are
related to some other component. The question of
the identification of the emission in IRAS 18265–
1517 at VLSR < −9 km/s can be addressed by high-
angular-resolution observations or monitoring over
the entire radial-velocity range, which would make it
possible to detect (or refute) a correlation between the
emission in the two velocity ranges, VLSR > −9 km/s
and VLSR < −9 km/s.

4. IRAS 18277–1516

4.1. The Region of IRAS 18277–1516

The source IRAS 18277–1516 emits strongly in
the far IR. No radio continuum emission has been
detected. The water-maser emission from this source
was first discovered by Felli et al. [11]. On Febru-
ary 16, 1990, the spectrum consisted of two emission
peaks at 20.6 and 25.6 km/s, with fluxes of about
400 and 25 Jy, respectively. Later (January 25, 1991),
Xiang and Turner [9] also observed a double struc-
ture in the spectrum, but the second component’s
radial velocity was 24 km/s and its flux was 90 Jy.
By April 1992, the flux in the main peak reached
almost 800 Jy, while the second peak had disap-
peared (F < 20 Jy). In December 1997, in addition
to two components at 20.2 and 24.5 km/s, Furuya
et al. [10] observed emission at a negative veloc-
ity, −23.2 km/s. Thus, the range of the H2O maser
emission in IRAS 18277–1516 became considerably
wider.

4.2. Analysis of the H2OMonitoring

Our analysis of themonitoring results reveals con-
siderable differences between the maser emission of
IRAS 18277–1516 and IRAS 18265–1517, despite
the fact that the two sources are located in the same
molecular cloud, L 379:

(1) all the emission features, except for three weak
ones, have velocities exceeding the central velocity of
the COmolecular cloud;

(2) it is clear that there are two radial-velocity
ranges where the maser emission is predominantly
found (17.6–21.5 and 23.3–27.2 km/s);

(3) the integrated flux displays deep minima that
divide our monitoring interval into cycles of maser
activity of unequal duration;

(4) the lifetimes of some features are as long as
several years;
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(5) the strongest and apparently most long-lived
component at VLSR ≈ 20.6 km/s displayed a drift in
radial velocity;

(6) a series of flares of individual components was
observed between early 1997 and mid-1998 at veloc-
ities of 22–26.3 km/s.

The maser-activity cycles derived from the vari-
ability of the integrated flux differ in both the in-
tensity of their maser emission and their duration.
The higher the integrated flux, the longer the activity
cycle. In addition, large differences in the structure of
the mean spectra derived for each activity cycle were
found. There was no emission from the central group
during the first cycle. An exception was late 1996,
when weak emission (F ≈ 15 Jy) was observed at
23.3 km/s. In addition, a strong flare with a flux of
175 Jy occurred at 22.2 km/s towards the end of the
first cycle.

4.3. Individual Components

Our monitoring of IRAS 18277–1516 began dur-
ing the descending branch of the evolution of the
strongest emission feature at VLSR ≈ 20.8 km/s. The
decrease in the the flux from 550 to 90 Jy was almost
linear (Fig. 6a). There was no emission at all in the
second half of 1998. Then, beginning in early 1999,
emission with a flux of about 25 Jy again appeared at
20.6 km/s, which then disappeared by mid-2001. The
flux variations were accompanied by a radial-velocity
drift of this component from 20.85 to 20.35 km/s
(Fig. 6b). During the entire period when this emission
was observed (from late 1996 to mid-2001), a corre-
lation between the flux and radial-velocity variations
was present. Since the flux was decreasing, it is nat-
ural to suppose that the maser spot was decelerating
in the circumstellar medium after the maximum of a
strong flare.

The variability curves for the flux and VLSR do not
provide unambiguous information about the number
of components of the flare (one or two). Our analysis
suggests that there were probably two components
present, with the second initially not observed be-
cause its emission was essentially blocked by the first
component prior to February–March 1998.

The emission maxima for the components in the
right group are delayed in time relative to the main
feature at 20.6 km/s. However, the epoch of the
main feature’s maximum is not known, and we can
only estimate lower limits for the delays. Thus, a
series of consecutive flares of the maser emission of
IRAS 18277–1516 was observed, which displayed
a global character. This series of flares probably
reflected enhanced activity of the central star.
4.4. The Model

According to Schwartz et al. [8], the velocity
of the molecular cloud in the CO line towards
IRAS 18277–1516 is 18.5 km/s, the same as towards
IRAS 18265–1517 (18.4 km/s [6]). The velocities of
all the H2O and CO emission features are higher
than the mean velocity of the L 379 cloud. The
only exceptions are three short-lived features with
fluxes below 30 Jy (Fig. 6). It is natural to suppose
that the maser spots are spatially related to the
redshifted CO emission region. The large number of
emission features provides evidence for fragmentation
of the medium surrounding the central star. Some
fragments (clumps of matter) are stable, and their
lifetimes in the active emission stage could reach
several years. The stability of the component with
VLSR ≈ 20.8 km/s was displayed during its inter-
action with the surrounding medium, via a radial-
velocity drift that was observed over a long time.

The cyclic variability of the integrated flux and the
sequence of strong flares could be associated with
cyclic activity of the central star. The duration of a
cycle depends strongly on its intensity.

As for IRAS 18265–1517, the emission at
−23 km/s [10] is outside the velocity limits for the
CO molecular flow. To elucidate the nature of this
emission, it is desirable to carry out further monitor-
ing of IRAS 18277–1516 over a wider velocity range
than was previously covered.

5. MAIN RESULTS

Let us summarize the most important results of
this study.

1. We have presented a catalog of 1.35-cm H2O
maser spectra for the region of the IR sources
IRAS 18265–1517 (during 1991–2004) and
IRAS 18277–1516 (during 1996–2004).

2. The emission features in IRAS 18265–1517
were mainly short-lived, being observed from one to
six months.

3. We detected 27 individual spectral compo-
nents for IRAS 18265–1517 and 22 components for
IRAS 18277–1516. This suggests the presence of
a strongly fragmented medium in the vicinity of the
central objects.

4. The water-maser emission in the vicinity of
IRAS 18265–1517 was observed at radial velocities
from −55 to 34 km/s. The main group of features
is concentrated at 9–34 km/s, near the molecu-
lar cloud’s velocity. It is natural to suppose that
the maser spots responsible for this emission, and
probably for the emission at −9 km/s as well, are
related to the central sources of the binary system
in IRAS 18265–1517. The velocity scattered of
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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≈40 km/s displayed by the various components is
probably due to the action of the bipolar outflow on
the corresponding maser spots in the source.

5. The variability of the integrated H2O flux in
IRAS 18277–1516 is cyclic. The cycle durations are
one to six years, and depend strongly on the intensity
of the emission.

6. The maser spots responsible for the emission
in IRAS 18277–1516 are most likely associated with
the redshifted region of the CO emission.

7. We observed a radial-velocity drift for the
strongest and most long-lived component (VLSR ≈
20.6 km/s). The highest drift rate, 0.2 km/s per year,
occurred in 1997. This drift may be associated with
deceleration of a clump of material in the circumstel-
lar medium.
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Abstract—We study the rotation of a chemically homogeneous star with a mass of 16M�, assuming that
the angular-momentum distribution in its radiative envelope is determined by hydrodynamical processes—
flows and turbulent diffusion. Meridional circulation and horizontal shear turbulence are the main hydro-
dynamical processes forming the radial distribution of the angular momentum in young massive stars in
the absence of magnetic fields. The rotation of such stars is close to steady-state. The angular velocity of
rotation of the convective core can be ∼5–20% higher than the surface value. Under these conditions, the
characteristic time for the radial transport of angular momentum by meridional flows and shear turbulence
is comparable to the nuclear time scale. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The current standard theory of stellar structure
and evolution assumes spherical symmetry and the
absence of rotation and magnetic fields. This theory
can explain a number of the observed characteristics
of stars [1, 2]. However, detailed studies of the chemi-
cal compositions of stellar atmospheres have revealed
some new properties that cannot be explained without
taking rotation into account. These include, first and
foremost, the helium, nitrogen, and carbon abun-
dances in the atmospheres of massive (M ≥ 10M�),
rapidly rotating main-sequence stars [3–6]. The he-
lium and nitrogen abundances are enhanced and the
carbon abundance reduced compared with the solar
values. These differences may be related to the fact
that products of the CNO hydrogen-burning cycle
can be partly carried out from the convective core
to the radiative envelope of the star, right up to its
surface.

The injection of the products of nuclear burning
into the radiative envelopes of stars can be associated
with both rotation and the presence of a magnetic
field. Rotation is common to all stars; the equato-
rial rotational velocities of massive main-sequence
stars are 100–300 km/s [7]. The direct detection of
magnetic fields in OB main-sequence stars is very
rare (one example is β Cep [8]). Rotation-related
hydrodynamical processes leading to the movement
of chemical elements, such as turbulent diffusion,
can bring about the transport of some products of
hydrogen burning from the convective core to the
radiative envelope of the star. The intensity of this
transport will be determined by the rotation of the
star at the beginning of its nuclear evolution and
the intensity of turbulent diffusion in the horizontal
1063-7729/05/4908-0634$26.00
direction [9]. Here, we consider the role of hydrody-
namical angular-momentum transport in the rotation
of young massive stars.
Rotation stimulates a number of processes that are

not present in a spherically symmetrical nonrotating
star. If the angular velocity of the rotation depends
only on the distance to the rotation axis, the sur-
faces of constant temperature and pressure coincide
with the equipotential surfaces. The condition of lo-
cal radiative equilibrium is not satisfied in a rotating
star. Due to radiative energy transport, some areas
of each equipotential surface should experience small
temperature increases, and others small decreases.
In areas where excess heat energy is accumulated,
the matter will rise and be cooled by expansion; in
the areas where there is cooling, the matter will sink
and be heated by compression. Meridional circula-
tion, i.e., the large-scale motion of matter in a merid-
ional plane, is established in rotating stars [10, 11].
In the steady-state case, the meridional circulation
maintains a constant temperature on an equipotential
surface. On average, meridional circulation does not
bring about any energy transport through the equipo-
tential surface [12]. Thus, the condition of radiative
equilibrium is on average satisfied in a rotating star.
In the steady-state case, the velocity of the merid-

ional circulation can be specified for any law describ-
ing the star’s rotation. In general, it has been assumed
that the rotational angular velocity is constant or
depends only on the distance from the rotation axis.
In the radiative envelopes of stars rotating like rigid
bodies, the circulation of matter occurs in two cells
with opposite directions of the circulation separated
by an equipotential surface [13, 14]. The sign of the
radial component of the meridional circulation veloc-
ity changes in the transition through the equipotential
c© 2005 Pleiades Publishing, Inc.
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surface due to the Gratton–Opik term [13, 14], which
is inversely proportional to the matter density. If the
rotational angular velocity depends on the distance
from the rotation axis, the shapes of cells with differ-
ent circulation directions become more complex [15].
The motion of gas in a meridional plane should be

accompanied by a radial transport of angular momen-
tum. Therefore, the circulation of matter should alter
the rotational angular velocity. In the steady-state
case, the influence of the circulation on the rotation
law is not taken into account. As a result, the velocity
fields for the meridional circulation and the rotation
are not self-consistent [16]. The specified rotation law
and velocity field for the meridional circulation derived
for this law do not satisfy the equation of motion in the
steady-state case.
In the current study, we analyze the steady-state

rotation of a chemically homogeneous star with a
mass of 16M� and with laminar rotation in its
layers [17–20]. We obtained self-consistent velocity
fields for the rotation and meridional circulation for
this state. The possible character of the rotation of
young massive stars is considered.

2. BASIC EQUATIONS

Stellar rotation is manifest in two ways compared
to spherically symmetrical, nonrotating models. First,
rotation alters the mechanical structure of the star.
In a one-dimensional approximation, the impact of
rotation can be taken into account if the mass inside
a constant-pressure (“horizontal”) surface is chosen
as the independent variable [16, 21]. Second, the gas
in a rotating star is in motion due to the rotation. In
addition, the motion of matter in meridional planes
maintains the local thermal equilibrium in a rotating
star. When gas moves, certain instabilities—most
notably, the shear instability—can develop, which do
not have analogs in gas in rest. In a medium with a
homogeneous density, the shear instability develops
on the dynamical time scale.
Meridional circulation that transports angular

momentum facilitates the establishment of a gas flow
in which the rotational angular velocity varies with the
latitude along the constant-pressure surfaces [17]:

Ω∗(r, θ) = Ω(r) + Ω2(r)P2(θ),

where Ω∗(r, θ) is the rotational angular velocity, r the
average distance to a constant-pressure surface, θ the
latitude in spherical coordinates, Ω(r) the average
rotational angular velocity on the constant-pressure
surface, Ω2(r) the amplitude of the variations of
the rotational angular velocity with latitude on the
constant-pressure surface, and P2(θ) the second-
order Legendre polynomial. The shear flow is unstable
in the direction of latitude. A latitude shift of an
ASTRONOMY REPORTS Vol. 49 No. 8 2005
arbitrary element along a constant-pressure surface
may be countered only by viscosity of the gas. Since
the microscopic viscosity is relatively small in stellar
interiors [9], shear instability that leads to turbulent
flow should develop on the dynamical time scale.
Since the turbulent transport of angular momentum
along a constant-pressure surface equilizes the rota-
tional angular velocities on this surface, the rotation
of a constant-pressure surface should be close to
rigid-body. Small deviations from rigid-body rotation,
Ω2(r) � Ω(r), will come about due to the transport
of angular momentum through this surface, driven
by meridional circulation [17]. These small deviations
from rigid-body rotation maintain the turbulent flow
along the constant-pressure surface.
In the presence of a sufficiently high angular-

velocity gradient, the shear flow in the vertical di-
rection (perpendicular to the constant-pressure sur-
faces) may also be turbulent. The turbulent-viscosity
coefficient should be much smaller in the vertical than
in the horizontal direction, since a vertical shift of an
element is countered by the Archimedes buoyance
force, which substantially exceeds the microscopic
viscosity in stellar interiors [9, 17]. The turbulent gas
flows in the radiative envelopes of massive stars are
strongly anisotropic. Therefore, the rotational angular
velocity may depend only on the average distance
from the constant-pressure surface. This is called
“laminar rotation” [17].
The total velocity of an arbitrary fluid element V

in an averaged turbulent flow is a combination of the
rotational velocityVrot and the velocity of the merid-
ional circulation u; note that |u| � |Vrot|. Assum-
ing, in accordance with the Boussinesque hypothesis,
that the turbulent stress tensor is proportional to
the velocity tensor for deformations of the averaged
turbulent flow, we can write the φ component of the
equation of motion in spherical coordinates:

∂(ρ
2Ω)
∂t

+ div(ρ
2Ωu) = div(ρνv

2gradΩ). (1)

Equation (1) describes the transport of angular mo-
mentum in the vertical direction, driven by meridional
circulation and turbulent diffusion. Here, ρ is the den-
sity,
 the distance to the rotation axis, t the time, and
νv the turbulent-viscosity coefficient in the vertical
direction.
Early studies of meridional circulation considered

the steady-state case without viscosity [16], so that
(1) takes the form

ugrad(
2Ω) = 0. (2)

Because the distribution of the rotational angular
velocity was specified arbitrarily (for example, rigid-
body rotation was assumed), Eq. (2) was not used to
determine the velocity of the meridional circulation.
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The derived distribution of this velocity and the spec-
ified distribution of the rotational angular velocity do
not satisfy (2). In general, (2) can be satisfied only for
dynamically unstable types of rotation [16]. Here, we
derive the distributions of the rotational velocity and
the meridional circulation velocity of a star from the
solution of Eq. (1).
The meridional circulation velocity is determined

from the energy equation

ρT
ds

dt
= ρε+ div(χgradT ),

where T is the temperature, s the specific entropy,
ε the rate of energy release per unit mass, and χ the
temperature-conductivity coefficient. In the steady-
state case, this equation takes the form

ρTugrads = ρε+ div(χgradT ).

In the case of laminar rotation, the vertical com-
ponent of the meridional circulation velocity can be
written [17]

Ur(r, θ) = U(r)P2(θ),

where U(r) is the amplitude of the vertical compo-
nent of themeridional circulation velocity. The density
and temperature vary only slightly along constant-
pressure surfaces [17]:

ρ∗(r, θ) = ρ(r) + ρ2(r)P2(θ),

T∗(r, θ) = T (r) + T2(r)P2(θ).

The vertical component of the meridional circula-
tion velocity in a chemically homogeneous star is
then [17]:

U(r) =
P

ρgcPT (∇a −∇)
L

M∗
EΩ. (3)

The quantity EΩ is determined by the
relation [17, 19]

EΩ = 2
(

1 − Ω2

2πGρ

)
g2

g
(4)

− ρm

ρ

{
r

3
d

dr

[
HT

d

dr

(
Θ
δ

)

− χT Θ +
(

1 − 1
δ

)
Θ
]

− 2HT

r

(
1 +

νh

K

) Θ
δ

+
2
3
Θ
}
.

Equation (4) takes into account the fact that the
energy release in massive stars is negligible beyond
the convective core. In (4), G is the gravitational
constant, g is the average gravitational acceleration
on the constant-pressure surface, g2 is the magnitude
of latitude variations of the gravitational acceleration,
Θ = ρ2/ρ, HT is the temperature scale height, ∇ is
the temperature gradient, ∇a is the adiabatic tem-
perature gradient, cP is the specific heat capacity at
constant pressure, L is the energy flowing through
the constant-pressure surface per unit time, ρm is
the average density in the volume of the star beneath
the constant-pressure surface, νh is the turbulent-
viscosity coefficient in the horizontal direction, δ =
(4 − 3β)/β, β is the ratio of the gas pressure and the
total pressure, χT = (∂ lnχ/∂ lnT )P,µ, and µ is the
mean molar mass of the matter. M∗ is given by the
expression

M∗ = M

(
1 − Ω2

2πGρm

)
,

where M is the mass of matter inside the constant-
pressure surface. The following relations are valid
forΘ and g2/g [17]:

Θ =
1
3
r2

g

dΩ2

dr
, (5)

g2

g
=

4
3

Ω2r3

GM
. (6)

Slight variations of density and temperature with
latitude along the constant-pressure surface result
in the appearance of additional (so-called baroclinic)
terms in the expression for the vertical component of
the meridional circulation velocity [in curly brackets
in (4)], compared to the case of rigid-body rotation.
The turbulent-viscosity coefficient in the horizon-

tal direction (along the constant-pressure surface)
and deviations of the rotation of this surface from
rigid-body rotation can be derived by analyzing the
angular-momentum transport and energy dissipa-
tion in the turbulent flow. The deviations of the
constant-pressure surface from rigid-body rotation,
Ω2(r), are specified by the balance between the
angular-momentum transport by meridional circula-
tion, which generates differential rotation in latitude,
and the turbulent diffusion in the horizontal direction,
which tends to re-establish rigid-body rotation [17]:

νhΩ2(r) =
1
5
Ω(r)rU(r) (7)

×
(

1
3
d ln

(
ρr2U

)
d ln r

− 1
2
d ln

(
r2Ω

)
d ln r

)
.

Another relation for νh and Ω2(r) can be obtained
from the rate of dissipation of excess kinetic energy in
the turbulent flow. On the one hand, this dissipation
rate is determined by the relation [22]

εturb = νh

(
∆vλ

λ

)2

,
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where ∆vλ is the characteristic velocity variation on
the scale λ. On the other hand,

εturb =
∆Eλ

∆t
,

where ∆Eλ is the excess kinetic energy and ∆t the
characteristic time for dissipation of this excess.
∆vλ and ∆Eλ are specified by the value of Ω2(r).
Differential rotation in latitude inevitably gives rise to
differential rotation in azimuth. Assuming the char-
acteristic time for the re-establishment of uniform
rotation in azimuth is of the order of one revolution
of the star, we can write [20]

νh =

(
1

160π
r2Ω2

ρ

d
(
ρr2U

)
dr

)3

. (8)

Eliminating Ω2(r) from (7) and (8), we obtain
an expression for the horizontal turbulent-viscosity
coefficient [20]:

νh =
(

3
400π

) 1
3

r
(
rΩ(r)U2(r)

) 1
3 Y, (9)

Y 3 =
1
6
d ln

(
ρr2U

)
d ln r

×
[

1
3
d ln

(
ρr2U

)
d ln r

− 1
2
d ln

(
r2Ω

)
d ln r

]
.

In a similar way, we find for the magnitude of the
differential rotation on the constant-pressure surface
Ω2(r), to order of magnitude,

Ω2

Ω
≈ 80π

3
ν2

h

r3ΩU
. (10)

The turbulent-viscosity coefficient in the vertical
direction is determined by equating the work done by
the gravitational force when two arbitrary fluid ele-
ments exchange places and the kinetic-energy excess
in the flow. The destabilizing role of the exchange of
energy between the element and surrounding matter
due to the reradiation of photons and the horizontal
transport of chemical elements due to the anisotropy
of the turbulence is taken into account. The vertical
turbulent-viscosity coefficient is [18]

νV = 2Ric
K + νh

N2
T

(
dVrot

dz

)2

, (11)

where

K =
4acT 3

3cP ρ2κ
,

the square of the local Brunt–Väisälä frequency is
given by

N2
T =

gδ

Hp
(∇a −∇),
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Fig. 1. The meridional circulation velocity U in the ra-
diative envelope of a star with mass 16 M� and ra-
dius R∗ as a function of r in the case ((Ωc/Ωs)0, J) =

(1, 1.83 × 1052) for times (a) t = 0 yrs (solid curve),
t = 60 yrs (dashed curve), t = 100 yrs (dotted curve),
(b) t = 105 yrs (dotted curve), t = 3 × 105 yrs (dash-
dotted curve), and t = 5 × 105 yrs (dashed curve). The
meridional circulation velocity for steady-state rotation is
plotted by the solid, thick curve.

where Ric is the critical Richardson number, the z axis
is in the vertical direction, a is Stefan’s constant, c is
the speed of light, κ is the opacity of the matter, and
Hp is the pressure scale height.
Substituting (3) into (1), we obtain a fourth-order

equation in the angular velocity Ω(r, t). The hori-
zontal and vertical turbulent-viscosity coefficients are
specified by (9) and (11). The solution of this equa-
tion can be used to trace the time variations of the
vertical distributions of four parameters: the angular
velocity Ω(r, t), the vertical component of the merid-
ional circulation velocity U(r, t), and the horizontal
and vertical turbulent-viscosity coefficients νh(r, t)
and νV (r, t). It is also possible to obtain a steady-
state solution.
In the steady-state solution, the advective and tur-

bulent angular-momentum fluxes are exactly equal at
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Fig. 2. Rotational angular velocity Ω in the radiative envelope of a star with mass 16 M� and radius R∗ as a function of r in
the case ((Ωc/Ωs)0, J) = (1, 1.83 × 1052) for times t = 0 yrs (solid, thin curve), t = 105 yrs (dotted curve), t = 3 × 105 yrs
(dash-dotted curve), and t = 5 × 105 yrs (dashed curve). The case of steady-state rotation is plotted by the solid, thick curve.
The turbulent-viscosity coefficients in the horizontal direction are determined from (a) Eq. (9) and (b) Eq. (12).
each point in the radiative envelope. In this case, the
rotational and meridional circulation velocity fields
are consistent with each other. The deviation of the
rotation of the constant-pressure surface from rigid-
body rotation is specified by (10). An arbitrary vertical
distribution for the rotational angular velocity of the
star is adopted for the initial data. The advective and
turbulent angular-momentum fluxes at the surface of
the star are assumed to be zero.
It is assumed that the convective core and an

adjacent thin radiative layer rotate as a rigid body,
due to the penetration of convective elements be-
yond the boundary of the convective core (overshoot-
ing) [23]. The thickness of this layer is specified to be
much smaller than the pressure scale height. Thus,
the angular momentum of the convective core can
vary with time in accordance with the advective and
turbulent angular-momentum fluxes at the base of
the radiative envelope. The advective and turbulent
angular-momentum fluxes at the center of the star are
assumed to be zero. All calculationswere made for the
critical Richardson number Ric = 1/4 [16].

3. STEADY-STATE ROTATION

We studied the evolution of the rotational-velocity
profile in a chemically homogeneous star with mass
16M�. A linear variation of the rotational angu-
lar velocity with the current mass was specified
as an initial Ω(r) distribution in the radiative
envelope. The solution of (1) was obtained until
steady-state rotation had been established. We
studied the cases ((Ωc/Ωs)0, J) = {(1, 1.83 × 1052),
(2, 1.83 × 1052), (1, 2.75 × 1052), (1.3, 2.75 × 1052)},
where (Ωc/Ωs)0 is the initial ratio of the rotational
angular velocities of the convective core and the
stellar surface and J is the angular momentum of the
star in cgs units.
In the case of initial rigid-body rotation, the cir-

culation of matter in the meridional plane of the ra-
diative envelope of a star with mass 16M� initially
occurs in two cells divided by an equipotential sur-
face, in agreement with the classical results [13, 14].
The vertical component of the meridional circulation
velocity reaches its maximum in layers immediately
beneath the stellar surface and above the convective
core (Fig. 1a). It is precisely in these layers that
the angular-momentum fluxes are highest, and the
angular-velocity distribution varies rapidly.
When the rotation begins to deviate from rigid-

body rotation, the vertical component of the merid-
ional circulation velocity is determined more andmore
by the baroclinic terms. The vertical component of
the meridional circulation velocity decreases in both
the layer above the convective core and the sub-
surface layer. Very soon, baroclinic terms associated
with the density and temperature variations along the
constant-pressure surface begin to dominate in the
relatively rarefied subsurface layers of the star. These
terms first become comparable to, then exceed, the
Gratton–Opik term, and determine both the speed
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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lent angular-momentum fluxes in the radiative envelope
of a star withmass 16M� and radiusR∗ as a function of r
for the case ((Ωc/Ωs)0, J) = (1, 1.83 × 1052) for times
t = 105 yrs (dotted curve), t = 3 × 105 yrs (dash-dotted
curve), t = 5 × 105 yrs (dashed curve), and t = 106 yrs
(solid thin curve). The flux-density ratio for steady-state
rotation is plotted by the thick solid curve.

and the direction of the circulation in subsurface lay-
ers of the radiative envelope. The size of the outer
cell, where matter ascends in the equatorial plane and
descends in circumpolar regions, rapidly decreases,
disappearing after ∼100 yrs (Fig. 1a).
A single circulation direction is established in the

entire radiative envelope, from the stellar surface to
the boundary of the convective core: matter descends
in the equatorial plane and ascends along the rota-
tion axis. In the course of this motion, the angular
momentum of the gas is transported from the outer
to the inner parts of the star. The rotational angu-
lar velocity of the convective core and the adjacent
part of the radiative envelope increases with time,
while the rotational angular velocity of the outer lay-
ers of the radiative envelope decreases until a steady
state has been reached (Fig. 2a). The direction of the
circulation in the radiative envelope remains single
and unchanged. The meridional circulation velocity
decreases with time (Fig. 1b). In the envelope, the
density of the advective angular-momentum flux ap-
preciably exceeds the density of the turbulent flux, and
only in the case of steady-state rotation are these flux
densities equalized (Fig. 3). Thus, the meridional gas
flows dominate in the formation of the star’s rotational
state.
When the rotation is initially rigid-body, the
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tion results for J = 1.83 × 1052 are plotted by the solid
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state of rotation of the star varies in the same way
for the two considered angular-momentum values.
The ratio of the rotational angular velocities of the
convective core and the stellar surface increases as
angular momentum is transported by the meridional
circulation (Fig. 4). After ∼5–7 Myrs, the angular-
momentum fluxes for the turbulent and advective
flows become essentially equal at all points of the
radiative envelope. In the resulting steady state, the
rotational angular velocity and the velocity of the
meridional circulation are correlated. The rotational
angular velocity of the convective core is∼20% higher
than the surface value. The vertical component of
the meridional circulation velocity increases from
∼10−6 cm/s near the convective core to ∼10−4 cm/s
in the subsurface layers (Fig. 1b). The linear rota-
tional velocity at the equator is ∼180 km/s when
J = 1.83 × 1052 g cm2 s−1 and ∼280 km/s when
J = 2.75 × 1052 g cm2 s−1.

The typical vertical and horizontal turbulent-
viscosity coefficients are 106–108 cm2/s and
109–1010 cm2/s (Fig. 5). The turbulence is
anisotropic. For the specified angular momentum
of the star, the variations of the gravitational ac-
celeration on the constant-pressure surface do not
exceed 10% (6) (Fig. 6). The density variations (5)
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on the constant-pressure surface are small (Fig. 6).
The variations of the rotational angular velocity with
latitude (10) are ∼0.1%. Thus, the stellar rotation is
laminar.

If we assume ∼20% variation of the rotational
angular velocity at the constant-pressure surface, we
can use (7) to obtain for the horizontal turbulent-
viscosity coefficient [17]

νh = r |U(r)|
[

1
3
d ln

(
ρr2U

)
d ln r

− 1
2
d ln

(
r2Ω

)
d ln r

]
.

(12)

This expression was used in the calculations for the
rotational angular velocity in models of stars with
masses of 9–30M� [24, 25]. When (12) is used,
steady-state rotation is reached over a shorter time
(Fig. 2b) and is achieved more rapidly in stars with
higher angular momentum (Fig. 4). The horizontal
turbulent-viscosity coefficient calculated using (12)
is substantially smaller than the value calculated us-
ing (9). With lower νh and the same drop between
the rotational angular velocities of the convective core
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of several physical parameters at the constant-pressure
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16 M� and radius R∗ as a function of r in the case
((Ωc/Ωs)0, J) = (1, 1.83 × 1052). Shown are values for
ζ = g2/g (solid curve), ζ = Ω2/Ω (dotted curve), and
ζ = −ρ2/ρ (dashed curve). All distributions are given for
an age of t = 105 yrs.

and stellar surface, the velocity of the meridional cir-
culation is higher [the dependence of U(r) on νh is
given by (4)]. Accordingly, the density of the advective
angular-momentum flux is higher, while the charac-
teristic time for the transport of the angular momen-
tum via meridional circulation decreases. However,
the turbulence is not appreciably anisotropic in the
case of steady-state rotation: the turbulent-viscosity
coefficients in horizontal (12) and vertical directions
are roughly equal. The anisotropy condition is violated
even before the equilibrium solution is reached.

In the case ((Ωc/Ωs)0, J) = (2, 1.83 × 1052), the
flow in the meridional plane initially occurs in two
cells with different directions of motion. In contrast
to the case of initial rigid-body rotation, in the inner
cell, which is adjacent to the convective core, the
matter ascends in the equatorial plane and descends
along the rotation axis. The velocity of the flow is
∼500 m/s and substantially exceeds the circulation
velocity in the outer cell. Meridional flows transport
angular momentum from the convective core to the
central part of the radiative envelope. Variation of the
rotational angular velocity at the base of the radiative
envelope results in a rapid decrease of the circulation
velocity. As soon as after ∼0.2 yrs, the maximum
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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meridional circulation velocity decreases by two or-
ders of magnitude (Fig. 7a). As angular momentum
is transported from the convective core to the central
part of the radiative envelope, the boundary dividing
the two circulation cells shifts outwards. The velocity
of the meridional flows decreases in the inner cell and
increases in the outer cell (Fig. 7b). At this evolution-
ary stage, the outflow of angular momentum from the
outer parts of the star inside the radiative envelope
(i.e., the local increase of Ωc/Ωs with time (Fig. 4))
becomes appreciable. By an age of ∼1300 years, the
outer circulation cell has disappeared, and a single
direction for the circulation in the radiative envelope
has been established: matter ascends in the equatorial
plane and descends along the polar axis.
Meridional flows transport angular momentum

from inner layers of the star outwards. As soon as
after ∼10 000 yrs, the vertical distribution of the rota-
tional angular velocity becomes close to steady state
(Fig. 8). The direction of the meridional circulation
changes at the base of the radiative envelope. An
inner cell is formed where matter descends in the
equatorial plane and ascends along the rotation axis.
The characteristic meridional circulation velocity
decreases to ∼10−3 cm/s in the outer circulation
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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cell. In the inner cell, the characteristic meridional
circulation velocity does not exceed∼10−4 cm/s. The
characteristic time for the angular-momentum trans-
port increases accordingly, and further variations of
the rotational angular velocity occur substantially
more slowly (Fig. 4). The boundary separating the
two circulation cells shifts outwards, and the outer
cell disappears. The steady-state rotation is the same
as in the case ((Ωc/Ωs)0, J) = (1, 1.83 × 1052).
In the case ((Ωc/Ωs)0, J) = (1.3, 2.75× 1052), the

angular-momentum transport occurs qualitatively
in the same way as in the case ((Ωc/Ωs)0, J) =
(2, 1.83 × 1052). As soon as after ∼300 yrs, a single
circulation direction is established in the radiative en-
velope, with matter ascending in the equatorial plane
and descending in circumpolar regions. Meridional
flows transport angular momentum outward from the
inner layers of the star. After ∼3000 years, the excess
of the rotational angular velocity of the convective
core compared to the surface value decreases to
∼10%. The direction of the meridional circulation
changes in the layer adjacent to the convective core,
where an inner circulation cell is formed, in which
matter descends in the equatorial plane and ascends
along the rotation axis. In this cell, meridional flows
transport angular momentum inside the star. The
velocities of the meridional flow are ∼10−4 cm/s in
the inner cell and ∼10−3 cm/s in the outer cell. The
boundary separating the two cells shifts outwards and
the outer cell disappears. The steady-state rotation
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appears the same as in the case ((Ωc/Ωs)0, J) =
(1, 2.75 × 1052).
The steady rotational states obtained for two dif-

ferent values of the angular momentum of the star
vary only a little.

4. THE STATE OF ROTATION
OF YOUNG MASSIVE STARS

Let us consider the characteristic time scale for
angular-momentum transport in the radiative enve-
lope due to the meridional flows,

tadv = ∆r/|U |,
where ∆r is the thickness of the radiative envelope
and U is the characteristic velocity of the meridional
circulation. All variations in the distribution of the
rotational angular velocity can be tentatively divided
into two types: rapid variations occurring on time
scales smaller than the characteristic time scale for
the nuclear evolution (tadv < tnuc), and slow vari-
ations occurring on time scales comparable to or
exceeding the nuclear time scale (tadv ≥ tnuc). The
latter condition is fulfilled when |U | ≤ 10−3 cm/s. In
turn, the characteristic meridional circulation velocity
depends on the ratio of the rotational angular veloc-
ities of the convective core and stellar surface. The
more this ratio deviates from its equilibrium value,
the larger the meridional circulation velocity and the
smaller the characteristic time scale for the angular-
momentum transport. When Ωc/Ωs approaches its
equilibrium value, the meridional circulation veloc-
ity decreases, and the characteristic time scale for
the angular-momentum transport increases. When
considering slow variations of the distribution of the
rotational angular velocity, it is important to take
into account variations in the star’s structure asso-
ciated with variations of the chemical composition
of the matter produced in nuclear reactions. When
the variations are fast, there is not sufficient time
for nuclear reactions to influence the star’s struc-
ture. Precisely such variations determine the verti-
cal angular-momentum distribution in young mas-
sive stars. Thus, young stars may be characterized
by rotation that is close to equilibrium, so that the
characteristic time scale for the angular-momentum
transport is comparable to the nuclear time scale.
In the case of initial rigid-body rotation, themerid-

ional circulation velocity decreases to 10−3 cm/s over
∼100 000 yrs (Fig. 1b), which is 1% of the lifetime
of a star with mass 16M� on the main sequence.
Over this time, the rotational angular velocity of
the convective core increases by ∼5% compared
with the surface value. Further variations of Ωc/Ωs

occur on the nuclear time scale (Fig. 4). When the
initial rotational angular velocity of the convective
core exceeds the surface value by factors of 1.3
and 2, the meridional circulation velocity decreases to
∼10−4–10−3 cm/s after ∼3000 and ∼10 000 years,
respectively. In these cases, the excess of the rota-
tional angular velocity of the convective core over
the surface value decreases to ∼10% and ∼18%,
respectively. Thus, the rotational angular velocities
of the convective cores in young massive stars can
exceed the surface values by ∼5–20%. In this case,
the characteristic time scale for angular-momentum
transport via meridional flows and shear turbulence is
comparable to the nuclear time scale. If the excess
of the rotational angular velocity of the convective
core over the surface value exceeds these limits, the
meridional flows alter the rotation of the star before
nuclear reactions have time to appreciably change the
stellar structure.

5. CONCLUSION

We have analyzed the rotation of a chemically
homogeneous star with a mass of 16M� assum-
ing that the angular-momentum distribution in its
radiative envelope is determined by hydrodynamical
processes—flows and turbulent diffusion. Assuming
laminar rotation of the star [17–20], we have calcu-
lated the vertical component of the meridional circu-
lation velocity, rotational angular velocity, deviations
of the rotation of the constant-pressure surface from
rigid-body rotation, and the horizontal and vertical
turbulent-viscosity coefficients as functions of the av-
erage distance of the constant-pressure surface from
the center of the star and of time.
In the case of steady-state rotation of a massive

star, the advective and turbulent flux densities of the
angular momentum are equal at each point of the
radiative envelope and only weakly depend on the
total angular momentum of the star. Meridional flows
transport angular momentum inside the star. The ad-
vective angular-momentum transport is balanced by
the outward component of the turbulent flow. In this
state, the rotational and meridional circulation veloc-
ity fields are self-consistent. The constant-pressure
surfaces rotate essentially as rigid bodies; the rota-
tional angular velocity of the convective core is∼20%
higher than the surface value. The vertical component
of the meridional circulation velocity increases from
∼10−6 cm/s near the convective core to ∼10−4 cm/s
in subsurface layers.
The turbulence in flows occurring in the ra-

diative envelopes of young massive stars is highly
anisotropic; the horizontal turbulent-viscosity co-
efficient exceeds the vertical coefficient by three to
four orders of magnitude (Fig. 5). Due to the high
efficiency of turbulent angular-momentum transport
in the horizontal direction, the rotational velocity on
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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the constant-pressure surface remains essentially
constant. Deviations of this rotation from rigid-body
rotation do not exceed 0.1% (Fig. 6).
If the rotation of the star deviates from steady-

state, the basic means of angular-momentum trans-
port in the vertical direction is flows in the meridional
plane.When deviations from the steady-state rotation
are appreciable, the velocity of the meridional flows
increases dramatically. For example, if the rotational
angular velocity of the convective core is twice the
surface value, the circulation velocity can reach
500 m/s. With such velocities, the characteristic time
scale for angular-momentum transport in the vertical
direction of the circulation is substantially smaller
than the nuclear time scale.
When the rotation of the star deviates apprecia-

bly from steady-state, the contribution of turbulent
angular-momentum transport to the vertical distri-
bution of the angular velocity is negligible compared
to the contribution of advective angular-momentum
transport (Fig. 3). Thus, the vertical distribution of
the rotational angular velocities of young massive
stars is determined by the meridional flows, on char-
acteristic time scales that are small compared with
the nuclear time scale. Shear turbulence in the hori-
zontal direction ensures an almost constant rotational
angular velocity the constant-pressure surface.
The rotational angular velocity of the convec-

tive core of a young massive star can exceed the
surface value by ∼5–20%. In this case, the char-
acteristic velocity of the meridional circulation is
10−3–10−4 cm/s. This rotation is non-steady-state,
but for such a drop between the rotational angular
velocities of the convective core and stellar surface,
the characteristic time for the transport of angular
momentum in the vertical direction via meridional
flows and shear turbulence is comparable to or ex-
ceeds the nuclear time scale.
The models for young massive stars considered

here can be used as initial models in studies of stellar
evolution on the main sequence taking into account
the hydrodynamical transport of angular momentum
and the concentrations of various chemical elements.
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Abstract—We present the results of population syntheses obtained using our “scenario machine.” The
mass spectra of black holes in X-ray binary systems before and after the stage of accretion from an
optical companion are obtained for various evolutionary scenarios. The results of the model computations
are compared to observational data. The observational data are used to estimate the fraction of a pre-
supernova’s mass that collapses into a black hole. This model can explain the formation of low-mass
(2−4M�) black holes in binary systems with optical companions. We show that the number of low-mass
black holes in the Galaxy is sufficiently high for them to be detected. The population-synthesis results
suggest that the vast majority of low-mass black holes are formed via the accretion-induced collapse of
neutron stars. The percentage of low-mass black holes in binary systems that form due to accretion-
induced collapse is 2–15% of the total number of black holes in binaries, depending on the evolutionary
scenario. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Currently, about a thousand X-ray sources have
been detected in the Milky Way and nearby galax-
ies [1, 2], most of which are close binary systems
in which an optical component supplies matter to a
neutron star or black hole. However, mass estimates
have been derived for only ∼30 neutron stars and
∼20 black holes. This number is not sufficient to
enable firm conclusions about the properties of the
mass spectrum of relativistic objects.

Thus, the mass spectrum of compact objects is
not well known due to poor statistics and insufficient
accuracy in the estimated masses of neutron stars and
black holes. In addition, the lack of compact objects
with masses between 2 and 6M� in the observed
mass distribution for neutron stars and black holes
is striking. This gap is especially surprising in the
light of new data on the masses of the CO cores of
Wolf–Rayet stars at the end of their evolution [3],
which are continuously distributed over a wide range,
MCO = (1−2)−(20−44)M�. Since it is thought that
Wolf–Rayet stars are progenitors of relativistic ob-
jects [4–6], such a large difference between the final
masses of the CO cores of Wolf–Rayet stars and the
masses of the relativistic objects that they are thought
to produce requires an explanation. For this reason,
with the aim of determining the possible masses of
black holes and the shape of the mass spectrum of
compact objects before and after accretion of matter
from the optical companion, we carried out popu-
lation syntheses using the “scenario machine” de-
scribed in [7].
1063-7729/05/4908-0644$26.00
Accretion onto neutron stars and estimates of the
mass accumulated on their surfaces have been ana-
lyzed in detail in [8]. The aim of the present paper is
to model the mass spectrum of black holes in binary
systems with optical components (BH + opt).

2. OBSERVATIONAL DATA

As we noted above, masses have been estimated
for more than 30 neutron stars and about 20 black
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Fig. 1. Observed mass distribution of compact objects.
The open rectangles show the masses of black holes
derived from microlensing experiments [9].
c© 2005 Pleiades Publishing, Inc.
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Table 1.Masses of black holes in binary systems

Name i, deg f(M), M� mBH , M� mopt, M� References

Cyg X-1 31–44 0.2580 ± 0.0007 11.05 ± 2.55 22.0 ± 0.51 [10]

LMC X-1 ∼63 0.14 ± 0.05 7 ± 3 22 ± 4 [2, 11]

LMC X-3 67 ± 3 2.29 ± 0.32 5.94–9.17 3–8 [12–14]

SS 433 90 7.7 ± 1.1 11 ± 5 19 ± 7 [15]

A0620-00 40.75 ± 3 2.72 ± 0.06 11.0 ± 1.9 0.68 ± 0.18 [16]

V404 Cyg 54–64 5.819 ± 0.003 10.65 ± 1.95 0.64 ± 0.12 [17]

GRS 1124-683 54 ± 1.5 3.01 ± 0.15 6.95 ± 0.6 0.75 ± 0.05 [18, 19]

GRS 1915+105 70 ± 2 9.5 ± 3.0 14 ± 4 1.2 ± 0.2 [2, 11]

GS 2000+25 64 ± 1.3 5.01 ± 0.12 7.15–7.78 0.25–0.41 [11]

GRO J0422+32 45 ± 2 1.19 ± 0.02 3.97 ± 0.95 0.46 ± 0.31 [35]

GRO J1655-40 70.2 ± 1.9 2.73 ± 0.09 6.3 ± 0.5 2.4 ± 0.4 [20]

H 1705-250 70 ± 10 4.86 ± 0.13 4.9–7.9 0.26 ± 0.42 [21, 22]

4U 1543-47 20.7 ± 1.5 0.25 ± 0.01 8.45–10.39 2.0–2.5 [11]

GRS 1009-45 ∼78 3.17 ± 0.12 4.4+0.34
−0.76 0.6+0.05

−0.10 [34]

SAX J1819.3-25 75 ± 2 3.13 ± 0.13 6.82–7.42 2.35–3.34 [11]

XTE J1118+480 81 ± 2 6.1 ± 0.3 6.0–7.7 0.09–0.5 [23]

XTE J1550-564 67–77.4 6.86 ± 0.71 9.41+1.35
−1.05 <0.79 [24]

XTE J1859+226 – 7.4 ± 1.1 7.6–12.0 – [25]

GX 339-4 – 5.8 ± 0.5 – – [26]

XTE 1650-500∗ – – ∼8.2 – [27]
∗ Mass estimate obtained from high-frequency quasi-periodic oscillations in the X-ray.
holes. The mass distribution of these relativistic ob-
jects is shown in Fig. 1. The black-hole masses are
listed in Tables 1 and 2. The neutron-star masses
presented in Fig. 1 are already given in [8], and we
do not list them here.

Figure 1 shows that this distribution is
bimodal [3, 28, 29]. The masses of the neutron stars
are confined to a narrow range, with the average
mass being 1.35 ± 0.15M�. The black-hole masses
are distributed over a relatively wide range: mBH =
4−15M�. The average black-hole mass is 6.64 ±
0.77M�.

No candidate black holes with masses of 2−4M�
have been discovered. Only the central masses of
the compact components of the close binary systems
Vela X-1, 4U 1700−37, and J0751+1807 fall in this
range. The compact objects in these systems are
neutron stars with masses close to ∼2M�. As recent
studies have shown [30–32], the estimated masses
ASTRONOMY REPORTS Vol. 49 No. 8 2005
of the compact objects in Vela X-1, 4U 1700−37,
and J0751+1807 are not firm enough to be con-
fident that massive neutron stars (mNS > 1.8M�)
are present in these systems. For this reason, we
placed the masses of the neutron stars in Vela X-1,
4U 1700−37, and J0751+1807 in the 1−2M� bin in
Fig. 1. The method used to estimate the masses of
the neutron stars in these binaries and results based
on these estimates are considered in detail in [33].

Table 2. Masses of black holes based on observations of
microlensing

Name mBH , M� References

MACHO-96-BLG-5 6+10
−3 [9]

MACHO-98-BLG-6 6+7
−3 [9]
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The central mass estimates of the compact com-
ponents in the X-ray binaries GRS 1009-45 and
GRO J0422+32 are in the range 4−6M� (Fig. 1),
making the relativistic objects in these binary sys-
tems candidate low-mass black holes. According
to [34], the mass of the GRS 1009-45 black hole is
4.4+0.34

−0.76 M�; the mass of the GRO J0422+32 black
hole is 3.97 ± 0.95M� [35]. Note that this latter
estimate is not entirely firm. In particular, according
to [36], the mass of this black hole exceeds 9M�. We
have adopted the more recent mass estimate obtained
in [35].

The central mass estimates for the remaining
candidate black holes exceed 6M� (Table 1). The
mass distribution for the candidate black holes with
mBH ≥ 6M� has a broad peak at 6−8M� and a
uniform tail extending to 14M�.

We are predominantly considering mass estimates
for compact objects obtained using dynamical meth-
ods (i.e., from observations of the radial-velocity
curve of the optical companion), which are the most
accurate and reliable. The masses of the candidate
black holes MACHO-96-BLG-5 and MACHO-98-
BLG-6 derived from microlensing observations are
listed in Table 2. Due to their lower accuracy, these
two mass estimates are shown as unfilled entries
in Fig. 1.

Due to the meagre statistics, it is not possible to
determine the shape of the mass spectrum for the ob-
served black holes with confidence (Fig. 1). However,
we can use the existing black-hole mass estimates to
find the ratio of the numbers of low- and high-mass
black holes in binary systems:

R = N(mBH ≤ mmin
BH)/N(mBH > mmin

BH). (1)

Based on the mass estimates listed in Table 1,
we took mmin

BH to be ∼4M�. Accordingly, we took
black holes with masses lower than ∼4M� to be
“low-mass” and black holes with masses greater than
∼4M� to be “high-mass” black holes. The observa-
tional estimates of the black-hole masses in Table 1
yield a ratio of the numbers of low- and high-mass
black holes in binary systems Robs � 1/10. The pa-
rameter R served as a criterion of the adequacy of the
various models in terms of the observational statistics
of the masses of black holes in close binaries.

Another such criterion was that an adequate
model should have at least one Cyg X-1-like system
per Galaxy (per ∼1011 stars). Following [37], we
suppose that Cyg X-1 is not a statistical outlier
and that there may be several such systems in the
Galaxy. Support for this hypothesis is provided by the
existence of similar candidate systems in the Large
Magellanic Cloud: LMC X-1 and LMC X-3. In the
model computations, we considered a binary to be a
Cyg X-1-like system if it contains a massive optical
star (mopt ≥ 10M�) close to Roche-lobe overflow
and a massive black hole (mBH > 4M�) that is
accreting from a disk (for more details see [38]).

The last important requirement of the population-
synthesis calculations was the virtual absence of
black holes in pairs with radio pulsars (BH + PSR
systems). To exclude observational selection effects,
we used the ratio of the numbers of BH + PSR
systems and of all radio pulsars to evaluate this
criterion N (BH + PSR)/N (PSR). According to the
observational data, there are no radio pulsars in
binaries with black holes among the ∼1500 detected
radio pulsars. Thus, in the model Galaxy, the ratio
N (BH + PSR)/N (PSR) should not exceed 1/1500.

The above criteria based on observational infor-
mation enabled us to restrict in advance the model
parameters used in the “scenario machine.”

3. POPULATION SYNTHESIS

General Description of the Model

With the aim of determining the shape of the
black-hole mass spectrum before and after the accre-
tion stage, we carried out population-synthesis com-
putations for 106 binary systems under various as-
sumptions about their evolution using the “scenario
machine” [7]. The computations assumed a Salpeter
initial mass function for the binary components:

f(m) = m−2.35. (2)

The initial component masses were varied from
10M� to 120M�. Population-synthesis computa-
tions were carried out for two distributions of the
initial component-mass ratio f(q) = qαq : uniform
(αq = 0) and quadratic (αq = 2), where q = m2/m1.
We considered masses of the secondary m2 and pri-
mary m1 such that m1 > m2. The distribution of the
binaries over the initial component separation f(a)
was taken to obey the function

f(a) = 1/a (3)

(see [39] for more details). The initial semimajor ax-
is of the orbit could have any value in the range
(10−106)R�.

We selected from the computation results only
black holes with optical companions (BH + opt).
Among the many parameters of the BH + opt sys-
tems that form, we are interested in the masses mBH
and lifetimes of the black holes. Since black holes
undergo an accretion stage during their evolution,
we considered the black-hole mass spectrum in
BH + opt systems both before and after this stage.
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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We assumed that the strengths of the anisotropic
kicks that the nascent black holes receive in superno-
va explosions have a Maxwellian distribution:

f(v) ∼ v2

v2
0

e
− v2

v2
0 , (4)

with all directions having equal probability. However,
the magnitude of the kick after the supernova v0
remains an important but poorly studied parame-
ter. The results of the population synthesis are very
sensitive to v0. A sharp increase of v0 results in a
sharp decrease of the number of systems with rela-
tivistic companions. The v0 value for neutron stars
is 100−180 km/s [40], but the typical value of v0
for black holes formed via collapse is not currently
known.

Taking the typical anisotropic kick velocity for
neutron stars to be v0 = 180 km/s [40] and assuming
that the magnitude of the kick acquired by the neu-
tron star during the collapse depends on the mass of
the ejected envelope, we specified the value of v0 for
black holes using the relation

v0 = 180
mpreSN −mBH

mBH
km/s, (5)

where mpreSN is the mass of the presupernova and
mBH the mass of the nascent black hole.

The mass-loss rate of the optical star ṁ is also a
relatively poorly studied parameter. For this reason,
we carried out model computations for three mass-
loss scenarios during the evolution of a star, which we
label A, B, and C. We also carried out a computation
for the Woosley model of stellar evolution [41, 42]. The
scenario based on the Woosley model is labeled W.

Evolutionary Scenario A

The mass-loss rate in the main-sequence (MS)
stage is described by the classical formula of
de Jager [43]:

ṁ ∼ L/V∞, (6)

where L is the star’s luminosity and V∞ the terminal
velocity of the stellar wind.
ASTRONOMY REPORTS Vol. 49 No. 8 2005
For giants, we used the larger of the values given
by (6) and by the expression of Lamers [44]:

ṁ ∼ L1.42R0.61/m0.99, (7)

where R and m are the radius and mass of the star.
For the red supergiant stage, we used the larger

of the values given by (6) and by the wind model of
Kudritzki and Reimers [45]:

ṁ ∼ LR/m. (8)
The change of the star’s mass ∆m during a single

stage in the model with type-A wind does not exceed
0.1(m −mcore), where m is the mass of the star at
the beginning of this stage and mcore is the mass
of the stellar core. The mass loss in the Wolf–Rayet
stage was parameterized as 0.1mWR, where mWR is
the maximum stellar mass in this stage. We used the
core masses computed in [46–48] to calculate the
parameters of the type-A wind.

In scenario A, the mass lost by a star did not
exceed 30% of its initial mass mopt.

Evolutionary Scenario B

In scenario B, we used the results of the evolu-
tionary computations of [49], which indicate that a
massive star loses up to ∼90% of its initial mass in the
main-sequence, supergiant, and Wolf–Rayet stages
via its stellar wind. Therefore, the presupernova mass
in scenario B was ∼8−10M�, essentially indepen-
dent of the mass of the parent star.

Evolutionary Scenario C

In scenario C, the mass-loss rate in the main-
sequence, supergiant, and Wolf–Rayet stages was
based on the computations of Vanbeveren [50], which
reproduce the observed distribution of Galactic Wolf–
Rayet stars and the stellar-wind mass loss by massive
stars accurately. The computations made use of the
relation

∆m = (m−mcore), (9)

where the stellar core mass mcore is defined as
mcore =





1.62m0.83
opt for MS stars,

10−3.051+4.21 log mopt−0.93(log mopt)2 for supergiants,

0.83m0.36
WR for Wolf–Rayet stars with mWR < 2.5M�,

1.3 + 0.65(mWR − 2.4) for Wolf–Rayet stars with mWR > 2.5M�,

mcore = 3.03m0.342
opt for Wolf–Rayet stars with mopt

max > 20M�.

(10)
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Fig. 2.Dependence of Rcalc/Robs +Robs/Rcalc on mmin

in scenarios A (solid curve) and C (dashed curve); see the
text for more details. The parameter kBH = 0.5.

Evolutionary scenario C has moderate mass loss,
and a mass-loss rate that is lower than in scenario B,
but higher than in scenario A. For example, in sce-
nario C, a star with an initial mass of mopt > 15M�
can lose up to 30% of its initial mass in the main-
sequence, giant, and supergiant stages. We applied
scenario A for the computations of mass loss by
lower-mass stars with mopt < 15M�. A high mass
loss in the Wolf–Rayet stage is typical of scenario C,
with the Wolf–Rayet star losing up to ∼50% of its
initial mass.

Evolutionary Scenario W

Evolutionary scenario W is based on the evo-
lutionary diagram for stars of various masses pub-
lished by Woosley [41, Fig. 16], which represents
the relationship between the mass of the relativistic
remnant and the initial mass of the star. We car-
ried out population-synthesis computations for two
models with W-type stellar winds, which we label
Wb and Wc. In models Wb and Wc, the mass-loss
rates were computed as in scenario B and scenario C,
respectively. The use of these models to calculate
the wind rate in a scenario based on Woosley’s di-
agram [41, Fig. 16] is justified by the fact that sce-
narios B and C are based on the same numerical
expressions for the mass-loss rates from [49–51] that
were used by Woosley in his work (see [7] for more
details).

4. THE MINIMUM BLACK-HOLE MASS

One of the important parameters of the population
syntheses is the minimum mass of the black holes
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Fig. 3. Dependence of the number of Cyg X-1-like sys-
tems in the Galaxy on kBH = 0.5 in model A (for αq = 0,
dashed curve) and model C (for αq = 2, solid curve).

formed in supernovae, mmin. Since this parameter
is not known precisely, we carried out population-
synthesis computations for several values of mmin in
the range 2.5−10M�. We found that the maximum of
the black-hole mass spectrum corresponds to mmin.
We can see from the observational data (Table 1 and
Fig. 1) that the maximum of the black-hole mass
spectrum is in the range 6−8M�; i.e., mmin should
be close to 7M�.

Additional evidence that mmin is close to 7M� is
provided by special model computations carried out
for this purpose. In these computations, we calcu-
lated the parameter Rcalc [the ratio of the numbers
of low- and high-mass black holes; see Eq. (1)] for
mmin = 2, 3, 4, . . . , 10M�. The computations were
carried out for scenarios A and C and assumed that
half of the presupernova mass mpreSN collapses into
a black hole (with massmBH ). Figures (2a, 2b) show
the dependence of Rcalc/Robs +Robs/Rcalc on mmin

in evolutionary scenarios A and C. Recall that we
assumed that the observed ratio of the numbers of
low- and high-mass black holes Robs = 1/10 (Ta-
ble 1). In both cases (Figs. 2a and 2b), the mini-
mum of Rcalc/Robs +Robs/Rcalc, which is related to
Rcalc/Robs, corresponds to mmin � 6−6.5M�.

Given these results, in the subsequent model
computations, we set the minimum mass of a black
hole formed in a supernova to mmin = 7M�. This
does not preclude the formation of black holes with
masses below 7M�. For example, in all the evolu-
tionary scenarios (A, B, C, and W) we allowed for
the accretion-induced collapse of a neutron star into
a black hole if the mass of the neutron star grew
to the Oppenheimer–Volkoff limit, which we took
to be 2M�.
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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5. THE MASS FRACTION
OF PRESUPERNOVA THAT COLLAPSE

INSIDE THE EVENT HORIZON

An important parameter that enters the
population-synthesis algorithm is the fraction of
presupernovae with masses of mpreSN that collapse
into black holes with masses ofmBH . In scenarios A,
B, and C, the mass of the black hole mBH produced
by the explosion of a presupernova with mass mpreSN

was computed as

mBH = kBHmpreSN , (11)

where the constant coefficient kBH is the fraction of
the presupernova mass that collapses inside the event
horizon. In scenario W, kBH was taken to be variable
and to have a value determined by the dependence of
the mass of the compact remnant on the initial mass
of the optical star [41, Fig. 16].

The best-fit value of kBH in scenarios A, B, and C
was searched for. Population syntheses were carried
out for each value of kBH in the range from 0.1
to 1.0 with steps of 0.1. The other population-
synthesis parameters in this set of calculations were
held fixed. When varying the value of kBH , we
monitored the number of Galactic Cyg X-1-like
systems produced in the computations. The results
are presented in Fig. 3. Following [37, 38], we as-
sumed that Cyg X-1-like systems are not statistical
outliers and are always present in the Galaxy. We
assume that approximately one such system should
exist in the Galaxy at any given time. This criterion
yielded kBH values of 0.43 for scenario A (Fig. 3)
and 0.57 for scenario C (Fig. 3). In scenario B, no
Cyg X-1-type systems were produced for any of the
kBH values in the range 0.1–1.0. For this reason, we
rejected scenario B as being unrealistic. Further runs
of the population synthesis code were carried out for
scenarios A, C, and W.

6. BLACK-HOLE MASS SPECTRA
IN MODEL A

For each scenario, a population synthesis was
carried out for 106 initial binaries. For models A
and C, we assumed that the initial distribution of
the component-mass ratios in the binaries was flat
(αq = 0). The results obtained for a quadratic dis-
tribution (αq = 2) did not satisfy the observational
criteria.

The spectrum of initial black-hole masses ob-
tained for scenario A, shown in Fig. 4a, is clearly
bimodal. Most of the black-hole masses are concen-
trated in the range 7−12M�, although there are also
low-mass black holes (mBH = 2−3M�) present in
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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in BH + opt binaries for scenario A (αq = 0 and kBH =
0.43; see the text for more details). (b) The same spectrum
after taking into account observational selection effect
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the spectrum. These low-mass black holes are pro-
duced by collapses of neutron stars whose masses
grow to the Oppenheimer–Volkoff limit [8].

The overwhelming majority of black holes
(∼99.99% of the total number) do not increase their
mass in the course of their evolution due to the
accretion of matter from their optical companion.
Only a negligible fraction (∼0.01% of the total num-
ber) increase their mass by ∆m � 1M�. For this
reason, the shape of the black-hole mass spectrum
in model A is the same before and after the accretion
stage (therefore, we do not show the latter here).
Figure 4b shows the black-hole mass spectrum in the
final stage of the evolution of the optical component,
corrected for selection effects due to differences in the
lifetimes of different binaries in the BH + opt stage.
These were taken into account using the formula

N(mk) =
nk∑
j=0

tj

/
N∑

i=0

ti, (12)
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Table 3.Observational parameters derived via the population syntheses for evolutionary scenarios A, C, and W

Observational parameter Observational data∗ A C Wc

Number of Cyg X-1-type systems in the Galaxy 1 ≈1 ≈1 ≈1
N(BH + PSR)

N(PSR)
<

1
1500

≈ 1
1500

≈ 1.3
1500

≈ 1.5
1500

R =
N(mBH < 4.0M�)
N(mBH ≥ 4.0M�)

∼0.1 ≈0.15 ≈0.03 ≈0.03

∗ See the text for more details.
where N(mk) is the number of black holes
with masses in the range mk + dmk (mk =
1, 2, 3, 4 . . . M�, and dmk = 1M�), nk the number
of black holes in the bin for mass mk, tj the lifetime
of a binary with a black-hole of mass in the interval
mk + dmk, N the total number of model tracks
(N = 106), and ti the lifetime of a binary with a
black hole. We can see that, after correcting for
differences in the stellar lifetimes in the BH + opt
stage, the bimodal structure of the mass spectrum
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Fig. 5. Same as Fig. 4 for scenario C (αq = 0 and kBH =
0.57).
becomes even more pronounced (Fig. 4). Thus, the
population-synthesis results for scenario A suggest
that the masses of the vast majority of black holes
should be confined to 8−15M�. However, the model
computations confirm the possible formation of low-
mass (mBH = 2−4M�) black holes in binary sys-
tems. The number of binaries with low-mass black
holes is fairly high: there should exist one low-mass
(mBH ≤ 4M�) black-hole system for every ∼7 bina-
ries with high-mass (mBH > 4M�) black holes. In
scenario A, low-mass black holes are produced only
by accretion-induced collapse, and they comprise
∼15% of the total number of black holes in binaries.
The numerical criteria characterizing the consistency
of model A with the observational data are presented
in Table 3.

7. BLACK-HOLE MASS SPECTRA
IN MODEL C

Recall that the value of kBH in evolutionary sce-
nario C was set to 0.57, and that the minimum black-
hole mass was set to 7M�. The shape of the ini-
tial black-hole mass spectrum is shown in Fig. 5a.
In contrast to scenario A, the scenario C spectrum
has three peaks (Fig. 5a). Black holes with masses
2−4M� are formed only via the accretion-induced
collapse of neutron stars. In contrast to scenario A,
the fraction of low-mass black holes in scenario C is
∼5% of the total number of all black holes that are
formed in binary systems.

Figure 5a shows that, in scenario C, most
(∼54.5%) black holes have masses of 7−9M� at
the time of formation of the BH + opt system.
All black holes with masses of 7−9M� descend
from Wolf–Rayet stars. Black holes with masses of
10−12M� comprise ∼40.5% of the total number of
black holes (Fig. 5a) and are produced by collapses of
presupernovae that avoided the Wolf–Rayet stage.

Due to the high mass loss in the main-sequence,
supergiant, and Wolf–Rayet stages (up to 50% of
the initial mass), no very massive black holes are
produced in scenario C. Thus, the maximum mass of
black holes in this scenario is 12M� (Fig. 5).
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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As in scenario A, only ∼0.01% of black holes
increase their mass by ∆M � 1M� during the evo-
lution of the binary system. The masses of most black
holes remain unchanged ∼99.99% or increased by
only ∆m � 0.01M� due to accretion. For this reason
we do not show the mass spectrum of the post-
accretion black holes. Figure 5b shows the black-
hole mass spectrum at the end of the evolution of
the optical component, corrected for differences in
the lifetimes of binaries in the BH + opt stage using
formula (12) with dmk = 0.25M�.

Selection effects due to differences in the lifetimes
of binaries in the BH + opt stage had an apprecia-
ble influence on the initial black-hole mass distribu-
tion (Figs. 5a, 5b). In scenario C, black holes with
masses exceeding 12M� should not be observed, and
a considerable fraction of black holes (∼76%) should
have masses ∼10−12M�. Black holes with masses
∼7−9M� comprise ∼21% of the total number of
observed black holes. Note that there are few low-
mass black holes in the “observed” distribution of
black holes produced in scenario C (∼3% of the total
number of black holes). In the total sample, the ratio
of the numbers of low- and high-mass black holes is
R � 0.03. The numerical criteria characterizing the
consistency of model C with the observational data
are presented in Table 3.

8. BLACK-HOLE MASS SPECTRUM
IN SCENARIO W

Scenario Wb did not satisfy the observational cri-
teria: not a single Cyg X-1-like system was produced
in the model Galaxy (1011 stars). For this reason, we
considered scenario Wb to be unrealistic and did not
analyze it further. Scenario Wc fit the required obser-
vational criteria sufficiently well (Table 3), and we,
accordingly, carried out population-synthesis com-
putations for this scenario.

As we noted above, scenario Wc is based on the re-
lation of [41] between the mass of the optical starmopt

and the mass of the compact remnant, as well as
a dependence of the mass loss on mopt similar to
that in scenario C. The maximum black-hole mass
in the model of Woosley [41, Fig. 16] did not exceed
∼11M�. This model assumed that black holes are
produced by stars with initial masses greater than
20.7M�. The initial distribution of the component-
mass ratios was taken to be quadratic: αq = 2. The
hypothesis of a flat initial mass-ratio distribution was
rejected based on the observational criteria: the num-
ber of Cyg X-1-like systems was far greater than one
per model Galaxy.

The initial black-hole mass spectrum obtained for
evolutionary scenario Wc is shown in Fig. 6a. The
masses of∼10% of the produced black holes are in the
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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range 2−7M�, while about 45% of the black holes
have masses of 7.1−7.5M�. The fraction of black
holes with masses exceeding 7.5M� is also ∼45%.

The peak of the histogram at ∼7M� is due to
the nature of the relation between the mass of the
optical star mopt and the mass of the black hole
produced by this star [41, Fig. 16]. Stars with masses
of 20.7−27M� produced low-mass black holes with
mBH � 2−6M�. Due to the low mass of the nascent
black holes and the considerable mass loss in the su-
pernova explosions, the vast majority of binaries could
not remain bound after the collapse. This explains the
deficit of black holes with masses ofmBH � 2−6M�.

According to the evolutionary scheme of [41], op-
tical stars with masses of 27−84M� are the progeni-
tors of ∼7M� black holes. This feature of the scheme
results in the peak in the initial black-hole mass dis-
tribution in the W model (Fig. 6a). Black holes with
masses mBH > 7.5M� are produced by optical stars
with initial masses of �84M�. We do not present the
post-accretion black-hole mass spectrum, since it is
very similar to the initial mass spectrum.
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Figure 6b shows the black-hole mass spectrum
after correcting for differences in the lifetimes of the
BH + opt systems using formula (12) with dmk =
0.25M�. We can see that this selection effect strongly
influences the mass distribution of the black holes.
The group of low-mass black holes (mBH < 4M�)
in BH + opt systems becomes much more prominent:
such black holes comprise ∼3% of all “observed”
black holes in scenario W (see Fig. 6b). About 2%
of the total number of low-mass black holes in binary
systems are produced by accretion-induced collapses
of neutron stars in scenario Wc (Fig. 6). At the same
time, all the low-mass (mBH ≤ 4M�) black holes
in scenarios A and C were produced by accretion-
induced collapses of neutron stars.

The maximum of the black-hole mass distribution
remained at ∼7M�, but the total number around this
peak was reduced to ∼25% of the total number of
black holes in BH + opt binaries. The fraction of black
holes with masses mBH � 7.5−9M� in BH + opt
binaries increased to ∼60% (Fig. 6b). Note that the
maximum mass of an “observed” black hole in a
pair with an optical companion in scenario W is
mBH � 9M�. The numerical criteria characterizing
the consistency of the population-synthesis results
for model Wc with the observational data are pre-
sented in Table 3.

9. CONCLUSION

The formation of BH + opt binaries with low-mass
black holes (mBH = 2−4M�) in all three evolution-
ary scenarios (A, C, and W) is one of the most im-
portant results of our computations. The population-
synthesis results indicate that ∼3−15% of the total
number of black holes in binary systems with optical
companions in scenarios A, C, and W are low-mass
black holes. In other words, according to our compu-
tations, the number of low-mass black holes (mBH =
2−4M�) in binaries with optical companions is suf-
ficiently high to enable their detection in the near fu-
ture. It is not ruled out that the objects GRS 1009-45
and GRO J0422+32 (Table 1), which contain com-
pact objects with estimated masses mBH = 2−4M�
(within current levels of accuracy), are black holes
produced by accretion-induced collapse.

According to the population-synthesis results, ac-
cretion plays a negligible role in the formation of the
mass spectrum of black holes in BH + opt systems.
On the other hand, selection effects related to the
lifetimes of binary systems considerably distort the
intrinsic shape of the mass spectrum (Figs. 4–6).

The poor statistics of black-hole mass estimates
and limited accuracy of these estimates prevent
us from identifying one of the scenarios as being
“correct.” With the current accuracy of the observed
black-hole mass spectrum, all three scenarios (A, C,
and W) satisfy both the observational criteria (Ta-
ble 1) and the observed mass spectrum (Fig. 1).

The population-synthesis results for scenarios A
and W suggest that the masses of the vast majority of
black holes that will be discovered in the future will
be in the range 7−9M�. If scenario C is the most
realistic, the masses of most “new” black holes will
be 10−12M�. According to scenario A, black holes
with masses up to ∼50M� may be present in binary
systems.

To conclude, we note the recent discovery of the
compact object 2S 0921-630, with an estimated
mass of 1.9−2.9M� [53]. The nature of this ob-
ject is not yet known, but, given our population-
synthesis results, we cannot rule out the possibility
that 2S 0921-630 is a low-mass black hole. Recall
that, according to our computations, 3–15% of all
the black holes in binaries may be low-mass black
holes.

We stress that, according to the population-
synthesis computations, the overwhelming majority
of low-mass black holes (2−4M�) are formed via
accretion-induced collapses of neutron stars. There-
fore, we expect that the masses of a high fraction
of low-mass black holes should be very close to the
Oppenheimer–Volkoff limit (∼2.5−3M�).
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Abstract—A new formulation for the phase matrix for the scattering of radiation in a weak magnetic
field is presented. The phase matrix is represented as a product of individual matrices that depend on the
angle of incidence and the scattering angle. It is shown that the Hanle effect is absent in observations
of scattered light in the solar atmosphere when the magnetic field is perpendicular to the atmosphere. In
strong magnetic fields, the phase matrix depends only on the direction of the magnetic field relative to the
basic coordinate system. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In [1], we developed an algorithm for calculating
the phase matrix for the scattering of radiation in a
weak magnetic field. The analysis was based on the
quantum-mechanical formula for the cross section for
resonance scattering [2]. The presence of a magnetic
field was taken into account by introducing magnetic
splitting in the frequency factor for each possible tran-
sition between sublevels of a spectral line.

Analogous approaches to this problem are pre-
sented by Stenflo [3, 4], House [5–7], and others. We
showed in [1] that, when calculating the phase matrix
using this method, it is necessary to obey a certain
sign rule for the various intraline transitions.

Omont et al. [8, 9] developed a rigorous quantum-
mechanical theory for the phase matrix for scattering
in a magnetic field. Landi Degl’Innocenti [10–13]
and M. Landi Degl’Innocenti and E. Landi
Degl’Innocenti [14] applied this theory to calculations
of various types of phase matrices.

We also adopt the phase-matrix theory of Omont
et al. [8, 9] as a basis for the present study. We have
obtained a new representation of the phase matrix
that is fully equivalent to the form given in [14]. Our
formulation of the phase matrix has a block struc-
ture that partially separates the angle of incidence
and the scattering angle. From a theoretical point
of view, this representation of the phase matrix is
preferable over the form given in [14]. In particular, it
becomes evident that the polarization of the scattered
radiation when the magnetic field is normal to the
plane-parallel surface layers of an atmosphere is the
same as the polarization in the absence of a magnetic
field. This conclusion can be drawn in the framework
of the theory of radiative transfer in a homogeneous
medium.
1063-7729/05/4908-0654$26.00
We show that, when the magnetic field is strong,
the phase matrix is independent of the field strength
but depends on the field orientation. A similar con-
clusion is drawn in [13], but that work presents an
expression for the phasematrix in a coordinate system
that is determined by the magnetic field.

Here, we restrict our analysis to case A in the
classification of Omont et al. [9]: the scattering of
light averaged over the absorption and emission fre-
quencies.

2. VECTOR REPRESENTATION
OF THE PHASE MATRIX

In [8, 9], the relationship between the incident and
scattered radiation is essentially determined by two
equations:

ρK
Q =

3∑
n=0

BKQ,n(θ, φ)Sn/
√

2, (1)

Sn/
√

2 =
∑
K,Q

B∗
KQ,n(θ, φ)ρK

Q . (2)

Here, K,Q can take the values K = 0 . . . 2, Q =
−K . . .K, and Sn denotes a Stokes parameter,
S0 = I0, S1 = Q,S2 = U,S3 = V .

The functions BKQ,n(θ, φ) were derived in [9] and
are tabulated there in the form of functions of the co-
ordinates θ, ϕ. For our purposes, it is more convenient
to express them in terms of the functions PK

Q (e1, e2),
c© 2005 Pleiades Publishing, Inc.
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which were also derived in [9]:

BKQ,0(θ, φ) = (PK
Q (e1, e1) + PK

Q (e2, e2))/
√

2, (3)

BKQ,1(θ, φ) = (PK
Q (e1, e1) − PK

Q (e2, e2))/
√

2,

BKQ,2(θ, φ) = (PK
Q (e1, e2) + PK

Q (e1, e2))/
√

2,

BKQ,3(θ, φ) = i(PK
Q (e1, e2) − PK

Q (e2, e1))/
√

2.

In (3), we chose e1 = x, e2 = y, where x,y are
unit vectors perpendicular to the direction of propa-
gation of the incident or scattered beam.

The functions PK
Q are given by

PK
Q (e1, e2) = −

√
(2K + 1)(−1)Q (4)

×
∑
q,q′


1 1 K

q q′ −Q


 (e1)q(e2)q′ .

Here, the subscripts q, q′ can take the values ±1, 0.
The quantities (e1,2)q are projections of the vec-
tors e1,2 onto the vectors vq:

v±1 = (∓i− ij)/
√

2, v0 = k. (5)

In (5), i, j, and k are unit vectors in the basic coordi-
nate system. The values of the 3j symbols in front of
the summation sign in (4) can be found, for example,
in [15].

To write the previous relations in matrix form, we
introduce the vectors

PK
Q (R) =




PK
Q (e1, e1)

PK
Q (e2, e2)

PK
Q (e1, e2)

PK
Q (e2, e1)




, I =




I0

Q

U

V




. (6)

Here, R is a vector characterizing the direction of the
radiation. Using the matrix T,

T =




1 1 0 0

1 −1 0 0

0 0 1 i

0 0 1 −i




(7)

relations (1), (2) can be written in matrix form:

ρK
Q = P̃K

Q (R) · T · I/2, (8)

I =
∑
K,Q

T̃∗ · PK∗
Q (R) · ρK

Q .

Let us now turn to the derivation of a matrix for-
mulation of the phase matrix for scattering in a weak
magnetic field. Omont et al. [9] derived the following
ASTRONOMY REPORTS Vol. 49 No. 8 2005
equation for the case of averaging over the frequencies
of the incident (ω1) and scattered (ω2) radiation:

ρK
Q (ω2) ∼ W (Jf , Ji, Je,K)fKQ

A ρK
Q (ω1). (9)

We can use (8) to write this equation in matrix form:

Is =
∑
KQ

WK · T̃∗ ·PK∗
−Q(Rs) (10)

× fKQ
A · P̃K

−Q(Rf ) · T · If .

Let us now determine certain coefficients in this
expression. WK = W (Jf , Ji, Je,K) is the 6j sym-
bol, which is given, for example, in tabular form
in [12]. However, these quantities can also be ex-
pressed in terms of the Chandrasekhar coefficientsE1

and E3 [16], namely:

W0 = 1, W1 = W (Jf , Ji, Je, 1) = E3, (11)

W2 = W (Jf , Ji, Je, 2) = E1.

In (11), Ji, Je, Jf are the principle quantum numbers
for the initial, intermediate, and final levels, respec-
tively.

The averaged frequency factor fKQ
A for

case A [9] is

fKQ
A ∼ (1 + iγQ)−1, γQ = Q

ωB

γK
e

. (12)

Here, γK
e is the decay constant for the upper level,

which we will assume to be independent of K. The
quantity ωB is

ωB = 2π1.4 × 106geB, (13)

where ge is the Landé factor of the upper level andB is
the magnetic-field strength.

Expression (12) can be written

fKQ
A = cosAQe−iAQ , (14)

sinAQ = γQ/
√

(1 + γ2
Q).

3. TRANSFORMATION
OF THE PHASE MATRIX

INTO AN EXPLICIT DEPENDENCE
ON THE COORDINATES OF THE INCIDENT

AND SCATTERED RADIATION
(WHEN THE MAGNETIC FIELD
IS PARALLEL TO THE Z AXIS)

Expression (10) defines the phase matrix. We can
use this to obtain a more explicit relation that will
enable us relatively easily to make a change of coor-
dinates and see more explicitly the dependence of the
phase matrix on the coordinates of the incident and
scattered beams.



656 RACHKOVSKIĬ
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The figure illustrates the relative positions of the
magnetic-field vector B and the vectors for the inci-
dent and scattered radiation Rf = F and Rs = S.

We will denote the polar coordinates (θ, χ) with
the superscript b if the Z axis is directed along the
vector B: (θb

f,s, χ
b
f,s). The subscripts (f, s) will ev-

erywhere denote the parameters of the incident or
scattered radiation.

We can obtain for the components of the vectors

e(f,s)
1,q , e(f,s)

2,q , i.e., the unit vectors characterizing the
Stokes parameters of the incident or scattered radi-
ation,

e
(n)
1,+1 = − cos θb

ne
iχb

n/
√

2, (15)

e
(n)
1,−1 = cos θb

ne
−iχb

n/
√

2,

e
(n)
1,0 = − sin θb

n, e
(n)
2,+1 = −ieiχb

n/
√

2,

e
(n)
2,−1 = −ie−iχb

n/
√

2, e(n)
2,0 = 0, n = f, s.

Further, we consider all possible forms of the product
PK∗

−Q(S) · P̃K
−Q(F) with all possible values of K,Q,

which we then sum.

As a result, writing the three first Stokes param-
eters as a single vector, Ĩ = (I0, Q,U), we obtain for
the phase matrix

P(θb
sχ

b
s, θ

b
fχ

b
f ) (16)

=
2∑

m=0

Hm(θb
s) · Dm(χb

s, χ
b
f ,B) · Hm(θb

f ) + δ1,1.

Here, Hm(θb
f,s) is a diagonal matrix whose elements

can be presented as follows for the sake of brevity:

H0(θn) = [3 sin2 θn − 2, 3 sin2 θn, 0], (17)

H1(θn) = [sin θn cos θn, sin θn cos θn, 1],

H2(θn) = [sin2 θn, (1 + cos2 θn), 2 cos θn],
n = f, s.

The matrices Dn(χb
s, χ

b
s,H) can be written

D0 =
1
8




1 1 0

1 1 0

0 0 0


 , (18)

D1 = 3W2 cosA1




cs1 cs1 sn1

cs1 cs1 sn1

−sn1 −sn1 cs1


 ,

D2 =
3
8
W2 cosA2




cs2 −cs2 −sn2

−cs2 cs2 sn2

sn2 −sn2 0


 .

Here,

csn = cos
[
n(χb

s − χb
f ) −An

]
, (19)

snn = sin
[
n(χb

s − χb
f ) −An

]
,

An = arcsin
nγn√

1 + n2γ2
n

, n = 1, 2.

We have for the Stokes parameter V

Vs(θs, χs) =
3
2
W1(cos θb

s cos θb
f (20)

+ cosA1 sin θb
s sin θb

fcs1)Vf (θf , χf ).

4. REPRESENTATION
OF THE PHASE MATRIX

IN AN ARBITRARY COORDINATE SYSTEM

Relations (16), (20) are valid for a coordinate
system in which the Z axis is oriented along the
magnetic field B. We will now obtain corresponding
expressions for an arbitrary coordinate system XY Z.
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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We denote the coordinates of the vector B in the
XY Z system θb, χb. We find by considering the
spherical triangles in the figure that

cos θb
m = cos θb cos θm + sin θb sin θm cosχm, (21)

sin θb
m =

√
1 − cos θb

m (θb
m ≤ π),

cosχb
m = −(cos θm − cos θb cos θb

m)/(sin θb sin θb
m),

sinχb
m = sin θm sinχm/ sin θb

m,

m = f, s.

We will assume that the vector e1 determining the
Stokes parameters is directed along a meridian of the
coordinate system and that the vector e2 is directed in
the direction of latitude. Therefore, to obtain the phase
matrix in the XY Z coordinate system, in addition to
expressing the coordinates θb

m, χb
m in terms of θm, χm

[relations (21)], we must carry out a rotation of the
reference vectors e1, e2 for the Stokes parameters of
the incident and scattered radiation.

The transformation of the Stokes parameters I1 =
(I0, Q,U) to some other system I2 with a rotation
by some angle F that is clockwise for an observer
looking opposite to the direction of propagation of the
beam is realized as follows:

I2 = L(F )I1,

where

L(F ) =




1 0 0

0 cos 2F − sin 2F

0 sin 2F cos 2F


 . (22)

We conclude from examining the figure that the
reference unit vectors for the incident radiation must
be rotated by the angle F1, while those for the
scattered radiation must be rotated by the angle S1.
We can make this transformation clearer using the
Stokes parameters of the scattered radiation as an
example. In the coordinate system in which the vec-
tor B is directed along the Z axis, the unit vector e1

is directed along the arc BS, and the unit vector e1

in the XY Z system should be directed along the
arc ZS. Consequently, the Stokes parameters Ixyz

s

in the XY Z system and in the system in which B is
parallel to the Z axis are related by the expression

Ixyz
s = L(S1)Ib

s.

Thus, the phase matrix and the Stokes parameters
I0, Q,U will have the form

P(θsχs, θfχf ) = L(S1) · P(θb
sχ

b
s, θ

b
fχ

b
f ) · L(−F1).

(23)
ASTRONOMY REPORTS Vol. 49 No. 8 2005
The angles S1, F1 are determined from the formulas

sinM = sin θb sinχm/ sin θb
m, (24)

cosM = (cos θb − cos θb
m cos θm)/(sin θb

m sin θm),
M = S1, F1, m = s, f.

When deriving (24), we assumed that χb = 0; i.e., the
vector B lies in the ZX plane.

5. PHASE MATRIX IN THE SYSTEM
WITH UNIT VECTORS ORIENTED

RELATIVE TO THE SCATTERING PLANE

We will now obtain the phase matrix in a coor-
dinate system that is related to the scattering plane.
This could be useful when verifying the algorithm,
since the phase matrix has a very simple form in the
absence of a magnetic field [16]. Let the vector e1 be
directed along the scattering plane and the vector e2

be perpendicular to this direction (the (l, r) subscripts
in the notation of Chandrasekhar [16]). Let θ denote
the angle between the incident and scattered beams.

We have from the definition of the angle θ

cos θ = cos θs cos θf + sin θs sin θf cos(χs − χf ),
(25)

sin θ =
√

1 − cos θ2.

We have for the angles S2, F2, determining the trans-
formation matrix for the Stokes parameters

sinS2 = sin θb
f sin(χb

f − χb
s)/ sin θ, (26)

cosS2 = (cos θb
f − cos θ cos θb

s)/(sin θb
s sin θ),

sinF2 = sin θb
s sin(χb

f − χb
s)/ sin θ,

cosF2 = −(cos θb
s − cos θ cos θb

f )/(sin θb
f sin θ).

In this case, relation (23) acquires the form

P(θsχs, θfχf ) (27)

= L(−S2) ·P(θb
sχ

b
s, θ

b
fχ

b
f ) · L(−(π − F2)).

6. CONCLUSION

As one example of the application of this phase-
matrix theory, let us consider the formation of a res-
onance line in the absence of a magnetic-field that is
normal to the layers of a plane-parallel atmosphere.
Due to the axial symmetry of the problem, the radia-
tion incident onto a certain element of the atmosphere
will also be axially symmetrical. Therefore, we can find
the radiation scattered by this element by integrat-
ing (16) over the angleχf . Themagnetic fieldB drops
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out of the result. The scattered radiation is given by
the expression

Is ∼
[
W2

8


1 − 3µ2

3µ2


 (28)

×
(
1 − 3µ

′2, 3µ
′2
)

+


1 0

0 0



]
If ,

Us = 0, Vs =
3
2
W1µµ

′.

Here, Ĩ = [I0, Q] and µ = cos θs, µ
′ = cos θf .

Let us write the phase matrix that follows
from (28) in the factored form

P0(µ, µ′) =
1
8
β(µ)β̃(µ′). (29)

Here,

β(µ) =




√
W2(1 − 3µ2) 2

√
2 0 0

3
√
W2(1 − µ2) 0 0 0

0 0 0 0

0 0 0
√

3W1µ




. (30)

The magnetic field B is not present in the phase ma-
trix (30), (31); with one exception, this is an ordinary
resonance matrix: the Stokes parameter U vanishes
during the scattering. Thus, we conclude that the
Hanle effect does not affect the Stokes parameter Q
when the magnetic field is normal to the surface of the
solar atmosphere.

In strong magnetic fields, the magnetic field
ceases to influence the polarization of the scattered
radiation. This was first pointed out by M. Landi
Degl’Innocenti and E. Landi Degl’Innocenti [14].
However, as before, the direction of the magnetic
field will determine the polarization. Indeed, in a
strong magnetic field, the angles A1 and A2 will
be approximately equal to π/2 [see (12), (19)], so
that the matrices D1 and D2 will not appear in
expressions (16) and (23). We thus have for the phase
matrix in a strong magnetic field

I0

Q


 =

[
L(S1)H0(θb

s)D0H0(θf ) (31)

× L(−F1) + δ1,1

]

I0

Q


 ,
Us = 0, Vs =
3
2
W1 cos(θb

s) cos(θb
f ).

We can see that the magnetic field does not appear
in this expression. The phase matrix depends only
on the directions of the incident and scattered beams
and the direction of the magnetic field in the chosen
coordinate system. The unit vectors for the Stokes
parameters are oriented along the meridians and par-
allels of the basic coordinate system.

We carried out a series of calculations in order to
estimate the lowest value of the magnetic field for
which the phase matrix will become independent of
the magnetic-field strength. The criterion for this is
the quantity γn [formula (19)]. When γn > 15, the
phase matrix is essentially constant. If the decay con-
stant for the upper level is γn = 108, we find Bmin ∼
100 G. Consequently, in the presence of magnetic
fields higher than this value, point-to-point variations
of the polarization can be due only to a rotation of
the magnetic-field vector and do not depend on the
magnitude of the magnetic field.
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1Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russian Academy of Sciences,
Troitsk, Moscow oblast, 142190 Russia

2Astronomical Institute, Slovak Academy of Sciences, Tatranská Lomnica, 05960 Slovak Republic
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Abstract—The north–south (N–S) asymmetry of the solar activity (A), which reflects differences in the
behavior of the northern and southern hemispheres of the Sun, is studied using data on the brightness of
the coronal green line, the total number and area of sunspots, and the net magnetic flux. The spatial and
temporal distributions and correlations between the A values represented by these indices are considered.
The characteristic time variations in A are similar for all the indices, on both long and short time scales.
Quasibiennial oscillations (QBOs) can be traced in the asymmetries of all four indices. A detailed study
of the QBOs is carried out based on spectral-variation and wavelet analyses. Long-term increases and
decreases occur synchronously in the asymmetries of various indices and are much more pronounced
in A than in the indices themselves. A negative correlation between the power of the QBOs and the
asymmetry of A can be traced; it is most clearly manifest as a substantial diminishing of the QBOs during
the mid-1960s, which coincided with an especially strong increase in A. Our analysis shows that the
N–S asymmetry is probably a fundamental property that controls the coupling and degree of coincidence
between the magnetic-field-generation mechanisms operating in the northern and southern hemispheres.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Over the long period in which solar activity has
been investigated, the Sun has usually been treated
as a single object, without division into hemispheres.
It has been assumed that solar processes occur in
the same manner in the northern and southern hemi-
spheres. Numerous solar-activity indices have been
introduced for the Sun as a whole—the Wolf number,
the number of polar faculae, the full radio flux, etc.
This approach made it possible to reveal the ba-
sic properties of the solar cycle. Nearly synchronous
cyclic variations were detected in the behavior of var-
ious indices reflecting manifestations of activity at
all levels in the solar atmosphere, from the photo-
sphere to corona. Similar cyclic variations were also
traced in interplanetary space and in geomagnetic-
activity indices. Various theoretical concepts, such as
the theory of the differential rotation of the Sun, the
dynamo theory, and helioseismology, were developed
assuming that both solar hemispheres were identical.

However, it gradually became clear that the north-
ern and southern solar hemispheres do not display
quite the same behavior. The time variations in
various solar-activity indices demonstrate phase and
power mismatches between the two hemispheres over
intervals of several months to several years. These
differences are manifest in numerous solar-activity
1063-7729/05/4908-0659$26.00
indices and are commonly described as the north–
south (N–S) asymmetry. The differences represented
by the N–S asymmetry are small compared to
the indices themselves. It is noteworthy that, for a
fairly long time, many investigators were inclined to
consider this asymmetry an artifact resulting from
observational errors and statistically insignificant
fluctuations of measurable quantities. For this reason,
even the recent study [1] opened its list of basic con-
clusions with the statement that the N–S asymmetry
of sunspot areas is indeed statistically meaningful and
represents a real phenomenon.
Although the asymmetry has been studied for a

considerable time, its nature remains unclear, and
the identification of new observational facts reflecting
various aspects of this interesting phenomenon is still
in progress. The sunspot asymmetry has been studied
most thoroughly, using sunspot areas and some
other sunspot indices over various time intervals (see,
e.g., [1–3]. The asymmetries of many other solar-
activity indices describing filaments, prominences,
unsteady solar phenomena, and geomagnetic activity
have also been analyzed. Knaack et al. [4] recently
considered asymmetry in the solar magnetic field.
A fairly detailed review of studies of the asymmetries
in various indices can be found in [1, 3, 5, 6].
A number of characteristic features of the asym-

metry have been revealed. In particular, a number
c© 2005 Pleiades Publishing, Inc.
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of studies have noted that the northern hemisphere
was much more active over a long period during the
second half of the 20th century. Quasiperiodic oscilla-
tions in the wide range of frequencies were detected in
the asymmetries of various solar-activity indices (see,
e.g., [1, 4, 7, 8]). Furthermore, due to the presence
of this asymmetry, the active longitudes do not co-
incide in the northern and southern hemispheres, and
observations even suggest that they are antipodal [9,
p. 264].
Some studies have compared the asymmetries in

different solar-activity indices [2, 10–12]. These re-
sults suggest that the asymmetry behaves similarly
in various indices and on various temporal and spatial
scales. One of our areas of study is the verification and
investigation of this hypothesis.
We consider here the asymmetries in four differ-

ent solar-activity indices over a relatively long time
interval. We have chosen the brightness of the coro-
nal green line I, the total sunspot area Sp, the total
sunspot number Q, and the net magnetic flux Φ for
this study.
We consider
(1) the spatial and temporal distributions of the

N–S asymmetries for various solar-activity indices
and correlations between these asymmetries on both
short and long time scales;
(2) QBOs in the asymmetry of the activity indices

and the spatial and temporal distributions of these
QBOs; comparisons of the QBOs in the asymmetries
with the QBOs in the activity indices themselves;
(3) the relationship between the power of QBOs

in the asymmetry and the magnitude of asymmetry
[itself].
Our results show that the N–S asymmetry is a

very significant and informative parameter of solar ac-
tivity. The Conclusion presents a discussion of prob-
lems related to this phenomenon.

2. CHARACTERIZATION OF THE CHOSEN
ACTIVITY INDICES AND DATABASES

An important property common to the chosen in-
dices is that they all describe the activity of the Sun at
a specific point on its surface. Most other indices are
either integrated and so related to the entire Sun (the
total flux of solar radiation, the total radio flux, etc.)
or characterize nonstationary processes (the number,
intensity, and coordinates of solar flares and coronal
mass ejections), which are beyond the scope of our
consideration. Digitized filtergrams of the solar disk
are not readily available, and high-resolution radio
maps have become available only fairly recently. An-
other important property of the indices we have cho-
sen is that the corresponding series of observational
data are long. The database of coronal green-line
brightness measurements encompasses more than
5.5 activity cycles. Data on sunspot parameters and
numbers are also available for this same period. Infor-
mation on the total magnetic flux reduced to a uniform
system is available starting from 1975 and so covers
2.5 cycles.
The brightness of the FeXIV λ 530.3-nm coronal

green line, I, is a very convenient index that can
be used to study solar activity and its asymmetry in
the corona. An important advantage of the index I
is that it can be determined virtually simultaneously
for all heliographic latitudes. This index provides a
uniform and contiguous digital field for all points of
the disk over a long time interval based on regular
observations. In this respect, it stands out from, for
example, theWolf numbers and sunspot areas (which
emerge at low latitudes only) or the numbers of polar
faculae (which reflect solar activity at high latitudes).
The database used contains green-line intensities for
each day in steps of 5◦ in position angle, referenced to
a 60′′ height over the limb.
Sunspots can be used to study the solar activity

at the photospheric level. The advantage of sunspot
indices is their relatively long data series, which ap-
preciably overlaps with the time covered by green-line
observations. Naturally, these indices can be used to
study the activity of the Sun and its asymmetry in the
equatorial zone only, at latitudes of up to ∼30◦. We
consider here two indices characterizing the sunspot
activity the total area Sp and total number Q of the
sunspots. We emphasize that we used the total num-
ber of sunspots rather than the traditional Wolf num-
ber. As will become clear below, the total sunspot
number is an independent and very interesting in-
dex, which, in many cases, correlates better with the
green-line asymmetry parameters than, for example,
the sunspot areas or Wolf numbers. As follows from
the studies of Kopecký and Kuklin (see the mono-
graph [9] and references therein), the indices Sp andQ
are related to the primary sunspot-formation indices
in different ways.
Like the green-line brightness I, the magnetic

flux Φ can, in principle, be determined for every point
of the solar surface. In contrast to the sunspot-
activity indices, this characteristic of the magnetic
field is a continuous quantity. The magnetic flux is the
main characteristic of the solar magnetic field, which
determines all elements of solar activity, including the
coronal structure and sunspot formation.
We used the following databases in our study.
(1) The brightness of the λ 530.3-nm coronal

green line. This database contains observations ob-
tained at several coronal stations and currently covers
the period 1939–2001. The data of individual stations
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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Fig. 1. Latitude–time diagram for the asymmetries in the net magnetic flux, coronal green-line brightness, and total sunspot
area (from top to bottom). The gray scales for the maps are shown at the top left.
are reduced to a single photometric system; the
technique used to unify the data is described in [13–
15], and a description of the database is also given
in [16, 17].
(2) The total sunspot area. The monthly averages

were calculated from the data of the Greenwich Ob-
servatory obtained via the Internet.
(3) The total sunspot number was also calculated

from data of the Greenwich Observatory available via
the Internet.
(4) The net magnetic flux. Data on the mag-

netic flux at the photospheric level are obtained from
magnetic-field observations carried out at the Kitt
Peak Observatory,
(ftp://argo.tuc.noao.edu/kpvt/synoptic/mag/),
ASTRONOMY REPORTS Vol. 49 No. 8 2005
in the form of synoptic magnetic-field maps, which
cover the interval 1975–2001,

(ftp://nsokp.nso.edu/kpvt/synoptic/).

Direct measurements yield the line-of-sight compo-
nent of the magnetic field. Based on the assumption
that the photospheric magnetic field is radial with
respect to the solar surface, the observed values are
divided by the cosine of the heliographic latitude. We
used here the mean magnetic-flux values for each
Carrington rotation and each 10◦ latitude zone.
Thus, the activity indices whose asymmetry we

consider correspond to different manifestations of
solar activity. Unified statistical-analysis techniques
were applied to all these data. This makes it possible
to compare the results obtained for objects resulting
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Table 1. Correlation coefficients for the asymmetries of
various pairs of indices at latitudes of 0◦−30◦

Indices kA(X,Y )

Sp−Q 0.916 ± 0.006

Sp−I 0.800 ± 0.013

Sp−Φ 0.768 ± 0.024

Q−I 0.860 ± 0.010

Q−Φ 0.800 ± 0.021

I−Φ 0.848 ± 0.016

from completely different magnetic field–matter in-
teractions. Note that we did not include nonstationary
processes in our analysis.
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Fig. 2. Variation of the asymmetries in the four solar-
activity indices in the zone of spot formation, 0◦−30◦.
Smoothing based on a 13th-order polynomial was done
using the Savitzky–Golay technique. The time variations
in the different indices are clearly correlated on short time
scales.
3. VARIATIONS OF THE ASYMMETRY
IN VARIOUS SOLAR-ACTIVITY INDICES
ON SHORT AND LONG TIME SCALES

We determined the asymmetry indices in the stan-
dard way,A = (N − S)/(N + S), whereN and S are
the corresponding activity indices for the northern and
southern hemispheres. For our particular investiga-
tion, we needed the mean asymmetries for specific
intervals of time and latitude. Since A depends
nonlinearly on N and S, we must define the adopted
procedure for averaging A. When deriving the mean
asymmetries, we first found the monthly average (for
the green-line brightness and net magnetic flux) or
monthly summed (for areas or sunspot numbers)
solar-activity indices for the chosen latitude zone in
the northern and southern hemispheres separately,
then calculated A according to the above formula. In
some cases, we also smoothed the resulting asym-
metry values; this will always be specially indicated in
the text.
Normally, the N–S asymmetry refers to the dif-

ference between the entire northern and southern
hemispheres. However, as is well known, the solar
activity exhibits a zonal structure. For this reason,
we found it expedient to use a latitude-dependent
activity index. In doing so, we tookN and S to be the
values of a given index for solar latitude zones placed
symmetrically about the equator.
Figure 1 shows latitude–time diagrams for the

asymmetries in three of the activity indices considered
the net magnetic flux, coronal green-line brightness,
and the total sunspot area. The long-term, large-
scale asymmetry variations are shown here. The up-
per two diagrams were constructed using the semian-
nual mean asymmetry values for 10-degree latitude
zones. The lowest panel was constructed by calcu-
lating the semiannual mean asymmetries for the total
sunspot numbers in the three latitude zones 0◦−10◦,
10◦−20◦, and >20◦, then averaging using a ninth-
order polynomial using the Savitzky–Golay method
(see http://www.mathworks.com). This method sup-
presses noise but preserves high-frequency compo-
nents. This averaging was needed to reveal large-
scale variations in the asymmetry, since the asymme-
tries of areas and sunspot numbers undergo broader
variations than the asymmetries of the other indices
(for example, A can reach ±1 in periods when there
are no sunspots in one hemisphere); thus, the map
would be fairly “noisy” without such averaging.
Figure 1 demonstrates that the asymmetries in

these indices vary similarly over the entire latitude
range (although the A values themselves are differ-
ent). This can be seen from the alternation of dark
and light strips, which is similar in all three dia-
grams in Fig. 1. Note that the asymmetry in the
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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window.A similarity can be noted in the asymmetry variations on long time scales. Right: correlationsbetween the asymmetries
for various pairs of solar-activity indices: (1) the green-line brightness I and the total sunspot numberQ in 10-degree latitude
zones, (2) I and the total sunspot area Sp, (3) I and the magnetic flux Φ in 10-degree zones, (4) Φ andQ, and (5) Φ and Sp.
total sunspot number (which is not presented here)
is virtually identical to the asymmetry in the sunspot
areas (shown in the lowest diagram). During the first
half of the time interval considered, the corona was
generally brighter in the northern than in the southern
hemisphere. The opposite was true during the sec-
ond half of the interval, although the asymmetry was
considerably less pronounced. In other words, pos-
itive asymmetry (with the northern hemisphere ex-
ceeding the southern hemisphere in brightness) was
predominant in 1939–2001. A substantial increase in
the asymmetry was observed in 1965–1968, as has
repeatedly been noted before [11]. The vertical strips
in the latitude–time diagram result from nearly si-
multaneous changes in the asymmetry at all latitudes.
We demonstrated this effect previously for the time
variation of the N–S asymmetry of the green-line
emission in 10-degree latitude zones [18, 19].

We also considered another sunspot-activity in-
dex: the traditional Wolf numbers [19, Fig. 3]. The
cyclic variations in the sunspot number, green-line
brightness, and sunspot area were considered for
the northern and southern hemispheres separately.
The asymmetry indices for these three parameters
increase or decrease nearly simultaneously, and their
variations correlate well in terms of power on both
long and short time intervals. All three parameters
demonstrate that the northern hemisphere dominated
during the first half of the considered time interval and
the southern hemisphere during the second half. This
provides evidence for a long-period wave with a period
of about 40 years in the variations, as has already been
mentioned in some previous studies [1, 7].

Figure 2 shows the variations in the asymmetries
calculated from the four activity indices averaged over
the zone of spot formation, 0◦−30◦. This figure was
ASTRONOMY REPORTS Vol. 49 No. 8 2005
constructed by first calculating monthly mean A val-
ues for all the indices, then smoothing them using the
Savitzky–Golay technique with a 13th-order polyno-
mial. Figure 2 shows that the resulting curves are very
similar, even in specific small details. For example,
an asymmetry increase in 1965–1968, a decrease
near 1983, and a sharp asymmetry outburst in 1986
are clearly visible in all the indices. Table 1 presents
the pair-correlation coefficients for the asymmetries
in the indices; kA(X,Y ) denotes the correlation coef-
ficient for the asymmetries in indicesX and Y .
Figure 3 (left) shows the same asymmetry indices

subjected to a running-averaging procedure with a
49 month window. In contrast to Fig. 2, the high-
frequency component is removed, leaving only the
slowly varying component. We can see from Fig. 3
that the asymmetry curves are likewise similar in
all their large-scale features. This similarity is re-
flected by the very high correlation coefficients for
pairs of indices: kA(Sp, I) = 0.950, kA(Q, I) = 0.960,
kA(Sp, Q) = 0.975. The presence of several maxima
and minima in the left-hand graph in Fig. 3 suggests
the existence of a quasiperiodic wave with a period
of ∼12 yr. It is important to realize that, although
this smoothing procedure reveals the 11-yr cyclic
variations in the activity indices themselves, these
variations do not display a correlation as high as that
for the asymmetry. In particular, while kA(Sp, I) =
0.95, the correlation coefficients for the smoothed
indices themselves taken separately for the northern
and southern hemispheres are 0.76.
The right-hand graph in Fig. 3 represents the pair-

correlation coefficients for the asymmetries in the four
indices as functions of latitude. The green-corona
brightness and magnetic flux are taken for 10-degree
latitude zones, while the area and total number of
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Fig. 4. SVAN diagrams for the asymmetry of the coronal
green-line brightness in 10-degree latitude zones. The
contour increment is 0.065, with black corresponding to
amplitudes exceeding 0.195.

sunspots are calculated for the entire spot-formation
zone. The semiannual mean asymmetry values are
used. The A values for the coronal green-line bright-
ness and the total sunspot number show the best
correlation in all latitude zones; the correlation be-
tween the A values for the green-corona brightness
and the total sunspot area is slightly lower, again
in all latitude zones. The highest correlation of the
asymmetries is observed at latitudes of 10◦−20◦ for
all the pairs of activity indices; the correlation is con-
siderably lower in the polar region. At the same time,
note the following interesting and not fully under-
stood fact: the asymmetry in the green corona at mid-
dle latitudes above 30◦, where virtually no sunspots
emerge, remains well correlated with the asymmetry
in the sunspot areas, which is mainly contributed
by latitudes below 30◦. Note also that the magnetic
flux in the polar zone exhibits a negative, although
weak, correlation with the total number and area of
sunspots. This may suggest that the magnetic flux in
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Fig. 5. Time and latitude distributions of the sum of
the squared amplitudes of oscillations in the green-line
asymmetry. The contour increment is 0.04, with black
corresponding to values in excess of 0.12.

the polar zone is predominantly controlled by large-
scale fields, while the green-corona brightness is sub-
stantially affected by local fields at all latitudes. It
should, however, be kept in mind that we calculated
the magnetic flux using observations of the line-of-
sight magnetic field, which is essentially tangential at
high latitudes.
Thus, the increases and decreases in A for all four

activity indices here are essentially simultaneous and
correlate well in magnitude on both long and short
time intervals.
Our analysis in this section demonstrates that the

asymmetry represents a general phenomenon in the
Sun, which is manifest simultaneously and in nearly
the same way in different indices. It is this property
that substantially distinguishes the asymmetry from
the activity indices themselves. We find evidence that
the asymmetry is a fundamental characteristic of solar
activity, which determines the degree of coincidence
between the processes of magnetic-field generation in
the two hemispheres.

4. QUASIBIENNIAL OSCILLATIONS
IN THE N–S ASYMMETRIES
OF VARIOUS INDICES

The QBOs are among the most interesting peri-
odic oscillations observed in the solar activity. There
have been fairly numerous studies devoted to the
QBOs in recent years (see references in [20]). It has
even been suggested that theQBOphenomenon is no
less important than the 11-year solar cycle. There are
grounds to believe that the QBOs are related to pro-
cesses near the base of the convection zone with simi-
lar periodicities. Obridko and Gaziev [21] have shown
that QBOs are clearly manifest in the asymmetry of
magnetic fields inferred from Hα data. Oscillations in
this frequency range were also detected by Knaack
et al. [4].
ASTRONOMY REPORTS Vol. 49 No. 8 2005



NORTH–SOUTH ASYMMETRY 665

 

15

20

25

30

15

20

25

30

15

20

25

30

35
1940 1950 1960 1970 1980 1990 2000

 

> 0.165
0.110–0.165
0.055–0.110
0–0.055

 

S

 

p

 

> 0.165
0.110–0.165
0.055–0.110
0–0.055

 

Q

 

> 0.210
0.140–0.210
0.070–0.140
0–0.070

 

I

 

Years

Pe
ri

od
, m

on
th

s

Fig. 6. SVAN diagrams for the asymmetries in the sunspot area, total sunspot number, and green-corona brightness over the
spot-formation zone, 0◦−30◦.
The time variations shown in Fig. 2 indicate that
short-period oscillations are present in the asymme-
try variations. Even without a more detailed analysis,
we can see that the characteristic time scale of these
oscillations is about 1.5–3 yr. A Fourier analysis tes-
tifies to the presence of quasibiennial variations in the
spectrum of the asymmetry. Consideration of oscil-
lations with periods ranging from 15 months to 4 yr
for three latitude zones indicated that the oscillations
in the spot-formation zone, 0◦−30◦, are enhanced
in the period range 2.2–2.5 yr. At high latitudes,
60◦−90◦, two peaks can be identified, near 2.5 and
3 yr. At middle latitudes, 35◦−55◦, the oscillations
do not exhibit well-pronounced maxima, suggesting
that, if QBOs are present in this latitude zone, they
are much weaker than at lower and higher latitudes.

We used a spectral-variation analysis (SVAN) to
study the time and latitude dependences of theQBOs.
We employed an original SVAN code, which, in con-
trast to widely used codes described in the literature
(see, e.g., [23]), includes normalization to a standard
value (division by the standard deviation). This nor-
malization reduces all oscillations to a single scale,
with the sum of the squared amplitudes being unity in
any spectrum. This enables us to compare the SVAN
results for processes that are described quantitatively
using different units.

A SVAN consists of successive Fourier decom-
positions over running time intervals. A Fourier de-
composition is calculated for a time window of a
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chosen length, after which this window is shifted by
some time interval and the entire procedure repeated.
The resulting expansions are then used to construct
a general map of the oscillation amplitudes (SVAN
diagram) in time–(oscillation period) coordinates. We
used the mean monthly asymmetries for our analysis,
with a running window of 132 months and a time shift
of 12months. Normalization to the standard deviation
was done in each window. We determined the ampli-
tudes of oscillations with periods of 6–44 months. Al-
though the relative power of any oscillation is charac-
terized by its squared amplitude, analyzing the ampli-
tudes themselves is more convenient in some cases.
Obviously, such a representation of the results cannot
affect the conclusions. We will always specify below
which quantity is presented in figures and tables.

Figure 4 shows SVAN diagrams (oscillation am-
plitudes) for the asymmetry in the coronal green-line
brightness in 10-degree latitude zones. The entire
range of variations in the amplitude of the asymmetry
oscillations is divided into four gradations. Darker
regions correspond to larger amplitudes, with black
used for amplitudes exceeding 0.195 (recall that the
sum of the squared amplitudes over all periods in
any running window is unity). Figure 4 demonstrates
the presence of quasibiennial oscillations (periods of
20–35 months) over most of the time period stud-
ied. QBOs are especially pronounced in the equa-
torial zone after 1970. Longer period harmonics are
manifest at high latitudes, especially in the 1940s
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Fig. 7. Same as Fig. 6 for the indices Sp,Q, and I themselves.
and 1950s. On the other hand, the QBOs are always
weak at latitudes of 50◦−60◦, and QBOs were vir-
tually absent at all latitudes in the 1960s. Note that
the asymmetry was very strong precisely during this
period.
Figure 5 shows maps of the time and latitude

distributions of the squared amplitudes of the QBOs
observed in the asymmetry of the coronal green-line
brightness. We summed the squared amplitudes for
three oscillation periods that roughly correspond to
QBOs (18.86, 22.0, and 26.4 months). Darker areas
correspond to higher amplitudes, with black denoting
values exceeding 0.12. We can clearly see that (a) the
QBOs are enhanced during the second half of the
time interval studied (after 1970), (b) the QBOs are
more pronounced at low than at high and, even more
so, than at middle latitudes, and (c) we can identify
several vertical strips indicating that the QBOs in the
asymmetry are enhanced or weakened at all latitudes

Table 2. Correlation coefficients for the sums of the
squared QBO amplitudes of the asymmetry and the activ-
ity indices themselves

Indices kAs(X,Y ) ks(X,Y )

I−Sp 0.693± 0.099 0.50 ± 0.20

I−Q 0.854± 0.071 0.29 ± 0.13

Sp−Q 0.889± 0.063 0.56 ± 0.11
during certain time intervals. A comparison of Figs. 5
and 1 reveals a general large-scale anticorrelation
between the asymmetry and the power of its QBOs.
This point will be considered in more detail in Sec-
tion 5.
We carried out a wavelet analysis of the asym-

metry in the coronal green-line brightness, again for
10-degree latitude zones [22, Fig. 5]. Thewavelet dia-
grams provide higher time resolutions than the SVAN
diagrams, but at the expense of spectral resolution.
A gradual drift of the QBOs from the equatorial zone
to high latitudes was observed during 1943–1948
(the growth phase of cycle 18) and 1984–1993 (the
growth and maximum phases of cycle 22); this may
somehow be related to the presence of the above-
mentioned ∼40 yr wave in the asymmetry variation.
In other cycles, QBOswere present during some time
intervals over a fairly broad range of latitudes without
any pronounced drift (for example, QBOswere clearly
visible in 1973–1974 at latitudes of 0◦−40◦). As in
the SVAN diagrams, there is a decrease in the QBO
power during the 1960s.
Quasibiennial oscillations are also clearly pro-

nounced in the SVAN and wavelet diagrams for the
magnetic flux. At low and middle latitudes, they are
most intense near 1980 and 1995. By and large,
the characteristic enhancements of the QBOs in the
magnetic-flux asymmetry over the spot-formation
zone, 0◦−30◦, agree in time with the enhancements
revealed in the other indices studied. A 4–6-year
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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Table 3. Sums of the squared oscillation amplitudes for various frequency ranges

Range Periods, months
Asymmetry Indices

Sp I Sp I

I 25.2–12.6 0.06000 0.06278 0.01988 0.01606

II 18.9–37.8 0.06016 0.07270 0.01279 0.01517

III 94.5–189.0 0.03971 0.08942 0.32392 0.36761
(∼1500 day) period can also be identified in the
wavelet diagrams, which is especially pronounced
in the magnetic-flux values near the maximum of
cycle 22 in 1990 [19, Fig. 5].

Figure 6 presents SVAN diagrams for the asym-
metry of the indices Sp, Q, and I at latitudes of
0◦−30◦. The features detected in the asymmetry of
the green-line brightness can also be seen in the
asymmetry of these other activity indices. In partic-
ular, the decrease in the QBO amplitude during the
1960s and the substantial increase during and after
the 1970s can be traced in the asymmetries of the
sunspot area Sp and the total sunspot number Q.
There are also other periods of QBO enhancements in
the spot-formation zone. Of course, the similarity of
the SVAN diagrams for the asymmetries in Sp and Q
is quite natural, although, as is noted above, these in-
dices are not equivalent, and the parameters relating
them are time-dependent [24]. At the same time, the
SVAN diagram for the green corona also exhibits a
general similarity with the other two SVANdiagrams,
although complete agreement could obviously hardly
be expected in this case.

In addition to the SVAN diagrams for the activity-
index asymmetries at latitudes of 0◦−30◦, we con-
structed SVAN diagrams for the indices themselves,
the total sunspot area Sp, total sunspot number Q,
and the green-corona brightness I (Fig. 7). First
and foremost, we note that the SVAN diagrams for
these three solar-activity indices are considerably less
similar than the the SVAN diagrams for the asymme-
tries in these same indices (cf. Fig. 6). However, the
most important difference is that, unlike Fig. 6, these
diagrams do not reveal pronounced QBOs in the
activity indices themselves. A comparison of Figs. 6
and 7 indicates that the QBOs are much more clearly
manifest in the asymmetries than in the solar-activity
indices themselves. In addition, the entire range of
variation of the oscillation amplitudes, indicated on
the right in Figs. 6 and 7, is a factor of 1.5–2 smaller
for the indices than for their asymmetries.

Table 2 compares the correlation coefficients for
the sums of the three squared amplitudes in the QBO
range (periods of 18.86, 22.0, and 26.4 months).
ASTRONOMY REPORTS Vol. 49 No. 8 2005
A pair-wise comparison is presented for the corre-
lation coefficients of the sums of the squared QBO
amplitudes in the spot-formation zone, 0◦−30◦,
obtained for the asymmetry, kAs(X,Y ), and for the
indices themselves, ks(X,Y ).

We can see from Table 2 that (i) the pair-
correlation coefficients for the asymmetry are statis-
tically significant, while the correlation coefficients
for the indices exceed 3σ only in the last row, and
(ii) the correlation coefficients for the asymmetry
are definitely higher than for the activity indices
themselves. This is especially clear when comparing
the asymmetries of the coronal green-line brightness
and the total sunspot number.

It has been repeatedly noted in the literature that
oscillations observed on the Sun include those with
characteristic time scales of one to two years, QBOs,
and the 11-year cycle. The relative contributions of
oscillations within these ranges to the overall spec-
trum for oscillations from 1 month to 63 yr is of
interest. We calculated the sums of the squared am-
plitudes in the spot-formation zone for various fre-
quency ranges in the Fourier spectrum (recall again
that the sum of the squared amplitudes of all oscilla-
tions is unity), then isolated intervals in the observed
spectrum corresponding to oscillations with periods
of about 1–2 yr (range I), 1.5–3 yr (range II), and
8–16 yr (range III) (Table 3).

The 11-year cycle is predominant in the activ-
ity indices. The oscillation power in range III ex-
ceeds 30% of the total power of all the oscillations in
the spectrum. At the same time, the oscillations in
the quasibiennial (II) and high-frequency (I) ranges
are a factor of 20–30 weaker. The situation changes
radically when we consider the asymmetry spectrum.
In range III, the relative power of oscillations in the
asymmetry is a factor of 5–10 lower than the power of
the oscillations in the activity indices. On the other
hand, the oscillations with periods of 1.5–3 yr and
1–2 yr are enhanced by a factor of 3–5, and become
comparably significant to the roughly 11-year oscil-
lations.
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5. RELATION BETWEEN THE ASYMMETRY
AND ITS QUASIBIENNIAL OSCILLATIONS

A comparison of Figs. 5 and 1 suggests the pres-
ence of a general large-scale anticorrelation between
the asymmetry and the power of its QBOs. This is
also supported by other tendencies that can be distin-
guished in these figures. In particular, the interval of
weakened QBOs during the 1960s coincides in time
with an increase in the asymmetries in the green-
corona brightness and the areas and total number
of sunspots. We conclude that a negative correlation
between the QBO power and the asymmetry ampli-
tude A can be traced over the entire time interval and
over all latitudes.

The left-hand graph in Fig. 8 shows the rela-
tionship between the sum of the amplitudes of the
QBOs observed in the green-line brightness asym-
metry for latitudes 0◦−30◦ and with periods from 18.8
to 26.4 months and the mean asymmetry in the run-
ning window of the SVAN analysis. The correlation
coefficient for the negative correlation between these
quantities at these latitudes is 0.82 ± 0.05.

The negative correlation between the relative sum
of the QBO amplitudes and the asymmetry magni-
tude can also be traced in all other latitude zones.
The latitude dependence of the correlation coefficient
is shown in Fig. 8 (right). The highest correlation co-
efficients occur at 10◦−20◦ and 60◦−70◦. These two
regions are separated by a narrow zone (40◦−50◦)
where the correlation coefficient is very low. Note that
the asymmetry in the green line reaches its maxi-
mum in 1965–1968 precisely near this zone (Fig. 1).
Furthermore, high-frequency oscillations disappear
almost completely in this zone. Note as well that the
boundary delimiting the regions of low-latitude and
polar magnetic fields is located in this same zone.
The fact that the relationship between the relative
QBO power and the asymmetry amplitude typified by
the left-hand graph in Fig. 8 holds even in regions
where the southern hemisphere dominates (i.e., the
asymmetry is negative) appears somewhat strange.
It would be more natural to see a similar relationship
between the absolute value of A and the QBO power.
Since there were virtually no intervals with large neg-
ative asymmetries during 1939–2001, we continued
our analysis of this problem using a long series of data
on the areas and total numbers of sunspots cover-
ing the period 1874–2002 [24]. We have shown that
precisely the absolute value of the asymmetry for the
index A is important, and that the QBO power also
decreases with increase in this quantity, in regions
of both negative and positive A values [24, Fig. 4].
Unfortunately, Figs. 2 and 3 in [24], which are similar
to the upper two graphs in Figs. 6 and 7 here but refer
to the longer period of 1874–2002, were spoiled in
printing and cannot be used.

6. CONCLUSION

We have analyzed the north–south asymmetry A
using four different indices characterizing the activity
at various levels of the solar atmosphere: the bright-
ness of the coronal green line, the total sunspot area,
the total sunspot number, and the net magnetic flux.
Our analysis demonstrates that the N–S asymmetry
is a fundamental characteristic of the solar activity,
which displays its own trends and is not directly
controlled by the cyclic behavior of the solar activity.
Thus, the N–S asymmetry is a specific, independent
and very promising tool for analyses of solar-activity
variations.
We have obtained the following main results.
(1) Similar behavior is visible in the time varia-

tions (Fig. 2; Fig. 3, left) of the N–S asymmetry of
ASTRONOMY REPORTS Vol. 49 No. 8 2005
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all the solar-activity indices considered in the spot-
formation zone, 0◦−30◦, on both short (1.5–3 yr)
and long (∼12 yr) time scales. The northern hemi-
sphere dominates during the first half of the time
interval studied (with a well-pronounced maximum
in 1964–1966), and the southern hemisphere in the
second half.

We emphasize that the solar-activity indices we
have considered correspond to completely different
solar phenomena associated with completely different
mechanisms for the interaction between the mag-
netic field and matter. In one case, the magnetic field
controls the convective motions in subphotospheric
layers (sunspots), while, in another, the magnetic field
controls the flux of magnetoacoustic waves (coronal-
heating mechanism). Nevertheless, comparisons be-
tween the results for different formations on the Sun
testify to a surprising similarity in their asymmetries.

(2) We also calculated the quantity A separately
for narrower latitude zones, and considered correla-
tions between pairs of asymmetry values for various
activity indices in these zones. The highest correla-
tion coefficient for any pair is reached at latitudes of
10◦−20◦ (Fig. 3, right). The asymmetry in the green-
corona brightness correlates well with the asymme-
tries in the total sunspot number and the sunspot
area. This correlation remains significant at high lat-
itudes, where sunspots are not observed. We con-
clude that the green-corona-brightness asymmetry
is determined predominantly by a single parameter,
which is related to the local magnetic fields. Con-
versely, the magnetic-flux asymmetry is determined
by two magnetic-field components, as is reflected by
the sign reversal in the corresponding curves for high
latitudes in the right-hand graph of Fig. 3. It seems
most reasonable to suppose that these components
correspond to the local low-latitude fields and large-
scale polar fields.

The high correlation of the high-latitude coro-
nal brightness with the sunspot numbers may not
by itself imply a direct physical relationship between
these two phenomena. Many solar processes give the
impression that the rhythm of the process is more
important than direct energetic control. For exam-
ple, in our case, the sunspot number may reflect
the overall rhythm of the associated solar processes,
which governs both the local magnetic fields and the
coronal-brightness variations. Since the asymmetry
is a difference quantity, it is potentially a sensitive tool
for recognizing this overall rhythm.

(3) Quasibiennial oscillations (QBOs) were de-
tected in the asymmetries of all the activity indices
considered. We studied these QBOs using an original
code for spectral-variation analysis (SVAN), which
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includes normalization to a standard value. We con-
structed SVAN diagrams for the green line and mag-
netic flux in 10-degree latitude zones, which demon-
strate the existence of long periods in which there is a
steady enhancement or weakening of the QBO power
that is virtually simultaneous over a broad range of
latitudes (Fig. 4).
(4) The SVAN diagrams for the spot-formation

zone, 0◦−30◦, show that specific features of the qua-
sibiennial variations displayed in the asymmetry of the
green-line brightness can also be traced in the behav-
ior of the other activity indices. Similar enhancements
can be noted in the QBOs, and coincide in both time
and frequency (Fig. 6). For example, a decrease in
the QBO amplitude can be observed in the asymme-
tries of the sunspot areas and total numbers during
the mid-1960s, followed by an appreciable increase
during and after the 1970s. QBOs are continuously
present in the interval 1970–2000. The correlation
coefficients for the correlations between the sums of
the squared QBO amplitudes for these three indices
reach ∼0.7−0.9. At the same time, the QBOs are
not oscillations with a steady period but are instead
a combination of pulses with a period of 1.5–3 yr.
(5) We carried out a spectral-variation analysis

for the activity indices themselves and compared the
results with the SVAN data for the asymmetries. The
QBOs are much more pronounced in the N–S asym-
metries than in the corresponding activity indices.
The amplitudes of the QBOs in the indices are much
more weakly correlated with one another than are the
amplitudes of the QBOs in the asymmetries: the cor-
relation coefficients for correlations between theQBO
amplitudes are as low as ∼0.3−0.55 in this case.
(6) We have discovered the unexpected effect that

the manifestation of QBOs in the asymmetries of
the studied parameters of solar activity, especially
the green-corona brightness, appears to be in an-
tiphase with the asymmetry itself. For example, the
substantial increase in the asymmetry of all the ac-
tivity indices in the mid-1960s is accompanied by an
appreciable decrease in the QBO amplitude in all our
SVAN diagrams. The negative correlation coefficient
for the negative correlation between the sum of the
three QBO amplitudes and the green-line asymmetry
at latitudes of 0◦−30◦ is 0.82 ± 0.05.
On the whole, the nature of the asymmetry of

the solar indices remains unclear. As a rule, the
most widespread dynamo theories do not include
this asymmetry, instead assuming that both solar
hemispheres are identical. The asymmetry could be
the manifestation of a slowly varying relic magnetic
field, but its existence has not been proven in any
way, and is doubtful from the theoretical standpoint.
To account for the asymmetry, the relic magnetic
field should have fairly unusual properties: it should
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not obey the Hale polarity law and must have a
pronounced asymmetric component. A spherical-
harmonic expansion of the large-scale magnetic field
yields a coefficient that formally corresponds to a
quasimonopole component. However, the nature of
this effect is not understood, and it is quite possible
that this coefficient results from observational errors
(see, e.g., [25]).
We have the impression that the solar activity is

generated largely independently in the two hemi-
spheres, being governed by the differential rotation
and meridional flows in each. However, since the
cyclic variations in the two hemispheres exhibit a
general temporal and energetic similarity, we suggest
that some currently unknown mechanism determines
the degree of similarity of the activity-generating
processes in the two hemispheres. This mechanism
should be superposed on and independent of the basic
generation mechanism. The north–south asymmetry
is apparently a quantitative measure of the properties
of this mechanism. We should recall again in this
context that the degree of similarity between the
time variations and the manifestation of quasibiennial
oscillations in the asymmetries of various indices is
higher than in the original activity indices themselves.
Thus, the asymmetry remains an unresolved problem
in the question of the origin of the solar magnetic field.
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55 (1992).
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17. J. Sýkora and J. Rybák, Adv. Space Res. (2004)

(in press).
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