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Abstract—Two principles are used to determine a canonical profile: the principle of the minimum of free
plasma energy with the constraint that the total current is conserved and the principle of profile consistency. A
second-order differential equation for the canonical profile of the function µ = 1/q is deduced in the natural
coordinate system. Soft and hard boundary conditions are proposed to find an unambiguous solution to this
equation. The range of their applicability is discussed. Numerical calculations show that the half-width of the
canonical profile increases with decreasing aspect ratio, increasing plasma elongation, and decreasing qa value.
The canonical profiles obtained make it possible to determine the critical gradients for the heat and particle
fluxes in transport models. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As early as 1980, Coppi [1] pointed out that the
electron temperature profiles in tokamaks tend to con-
serve their shape in response to an external action on
the plasma. This effect, which was called “the profile
consistency,” was confirmed in many devices. Taylor
[2] supposed that the magnetic field evolves during the
discharge to a certain “relaxed” state determined by the
principle of the minimum of free plasma energy with
the constraint that the helicity is conserved. He success-
fully applied this idea to describing the plasma behav-
ior in reversed field pinches. During the relaxation, total
magnetic reconnection occurs, and the magnetic field
profiles at the final (relaxed) state of the discharge are
always the same.

In 1986, Kadomtsev [3] and other authors [4, 5]
published papers in which they analyzed the problem of
relaxed states in tokamaks. In this case, total magnetic
reconnection occurs either in spatially localized regions
(e.g., in the case of sawtooth oscillations) or during fail-
ures (such as major disruptions). In a usual quasi-
steady state, total reconnection does not occur and the
plasma is in or near a certain intermediate relaxed state.
To describe this state, the principle of the minimum of
free plasma energy with the constraint that the total cur-
rent is conserved was proposed in [3–6]. To complete
the problem, they used the effect of profile consistency.
The solution to this problem is called the canonical pro-
file. Other ideas that lead to self-consistent profiles
were discussed in [7, 8].

The canonical profile model defines an ultimate
state to which the plasma relaxes. However, it does not
propose the possible physical mechanisms and ways to
achieve this state. The creators of the canonical profile
theory (CPT) were aware of this gap and tried to fill it.
1063-780X/02/2811- $22.00 © 0887
Kadomtsev [6] proposed that the relaxation to the min-
imum of free plasma energy is the result of the excita-
tion of potential and magnetic fluctuations in the
plasma; the generation of chains of magnetic islands; a
partial destruction of the magnetic surfaces in the vicin-
ity of these chains; and, as a consequence, an increase
in the effective transport coefficients. It was assumed
that, if the free energy strongly deviates from a mini-
mum, these processes are more intense. As a result, the
effective transport coefficients are not only functions of
the local plasma parameters, but also depend on the
profiles of parameters as a whole.

Later, independently of the CPT, numerous theoret-
ical and experimental papers were published in which
the origins of anomalous transport in the plasma were
analyzed [9–11]. These origins were associated with
the development of some types of drift instabilities.
They include instabilities induced by the ion tempera-
ture gradient (ITG mode), electron temperature gradi-
ent (ETG mode), trapped electrons (TEM mode), and
others. The solution of multidimensional gyro kinetic
and gyro fluid equations allowed the study of the
plasma behavior during the linear and nonlinear phases
of instability together with the features of the resulting
turbulence and the mechanisms of anomalous transport.

From the viewpoint of the CPT, the investigations
performed partially filled the aforementioned gap
between the initial and relaxed plasma states. As a
result, the understanding of mechanisms for plasma
relaxation was improved. Now it is possible to compare
the profiles of the plasma parameters and the critical
gradients in both transient relaxation states (defined by
gyro equations) and the relaxed state (defined by the
CPT).
2002 MAIK “Nauka/Interperiodica”
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In [3], the problem of a canonical profile in a circu-
lar plasma cylinder was considered. Some partial solu-
tions in the form of rational functions were found,
which is equivalent to the condition that the solution
tends to zero at infinity. This boundary condition for the
canonical profile corresponds to the assumption that the
processes at the edge only slightly influence the relaxed
state. We will refer to such boundary conditions as
“soft” ones. The solution obtained in [3] for the canon-
ical profile of µc = 1/qc (i.e., for the poloidal magnetic
field) with soft boundary conditions has the form

(1)

where ρ is the radial coordinate, a is the radius of the
cylinder, and aj is the current radius. We will refer to
this solution as the Kadomtsev canonical profile and
will denote it by the superscript K.

As early as in the mid 1990s, however, experiments
with a strong impact on the plasma boundary were per-
formed [12]. At a certain instant, various impurities
were injected into the plasma. The response of the
plasma core was unexpected: after some delay τd,
which is much less than the energy confinement time
τE , the temperature of the plasma core begins to rise.
Such plasma behavior may naturally be associated with
a change of the relaxed state due to the change of the
boundary conditions. New “stiff” boundary conditions
for the canonical profiles, more strongly related to phys-
ical conditions at the edge, were introduced in [13].

The aim of this paper is to formulate and solve the
problem of the relaxed states (canonical profiles) for a
toroidal plasma with an arbitrary cross section. In this
way, we need to overcome some difficulties. First, it is
desirable to retain the one-dimensional character of the
canonical profile problem, as was done in the case with
a circular cylinder. This means that we should choose as
an independent variable a certain variable related to the
magnetic surfaces. However, after such a choice, if we
want to find an analogue of Kadomtsev solution (1),
another difficulty associated with the definition of the
boundary condition at infinity arises. For a toroidal
plasma with an elongated cross section, the magnetic
surfaces are always surrounded by a separatrix, beyond
which these surfaces are not closed and a unified radial
coordinate does not exist. Therefore, the boundary con-
ditions, which in the cylindrical case were defined at
infinity, should be reformulated at the last closed mag-
netic surface (for a limiter plasma) or at the separatrix.

In [14–17], a transport model with critical gradients
determined by canonical profile (1) was developed. We
applied this model to the analysis of the energy balance
in various tokamaks with circular and noncircular cross
sections. Reasonable agreement between the calculated
and experimental profiles of the temperature and pres-
sure leads to the conclusion that the canonical profiles
for a noncircular toroidal plasma only slightly differ
from the profiles used in Eq. (1). However, as a rule, the
calculated electron and ion temperature profiles were

µc = µc
K

 = µ0/ 1 ρ2
/a j

2
+( ), a j

2
 = a

2
q0/ qa q0–( ),
slightly more peaked than the experimental ones. This
was pointed out in [15], where “corrected,” slightly
broader canonical profiles were introduced into the
model and a better agreement between calculations and
experiment was obtained. Such a correction was usu-
ally justified because the Zeff profile was unknown, the
boundary conditions at infinity were formulated inade-
quately, and toroidal effects might be significant. Of
course, such an intuitive correction of the model always
raises a number of questions. Thus, the solution of the
problem of canonical profiles for a toroidal plasma is of
significant interest both from the standpoint of the gen-
eralization of the problem and as a tool for the verifica-
tion of the canonical profile transport model (CPTM),
which uses the corrected canonical profiles for a circu-
lar cylinder. In particular, in this paper, we will show
that the canonical profiles for a toroidal plasma are
slightly broader than the canonical profiles for a circu-
lar cylinder. Thereby, we justify the use of corrected
canonical profiles in [15–17].

The paper is organized as follows. In Section 2,
using natural coordinates related to the calculated equi-
librium, we deduce a second-order equation for the
canonical profile; this equation is the Euler equation for
the free energy functional with the constraint of current
conservation. Section 3 is devoted to the formulation of
the boundary conditions for the canonical profiles.
Here, we construct the soft and stiff boundary condi-
tions and discuss the range of their applicability. The
canonical profile evolution caused by the change of the
boundary conditions is discussed in Section 4. In Sec-
tion 5, we discuss the results of the calculations. Here,
we show the dependences of the canonical profile half-
width on the aspect ratio and other parameters. In Sec-
tion 6, the relation between the canonical profiles and
transport models is considered. In the Conclusion, we
summarize the results obtained.

2. EQUATION FOR A CANONICAL PROFILE

Let us suppose that, for given pressure and current
distributions in a toroidal plasma with an arbitrary cross
section, we have solved the equilibrium problem (the
Grad–Shafranov equation with respect to the magnetic
flux ψ) with some boundary conditions. Then, the equa-
tion ψ = const defines the magnetic surfaces.

We denote the polar coordinates by r, z, and ϕ with
the main axis coinciding with the axis of symmetry of
the torus. We also consider the natural coordinates ρ, θ,
and ζ, where ρ is the coordinate of the magnetic surface
defined by the toroidal magnetic field flux Φ:

(2)

Here, B0 is the vacuum toroidal field in the chamber
center, θ is the poloidal angle, and ζ = rϕ. At the plasma
edge, we have ρ = ρmax = a, where a is the effective
plasma radius. At a low plasma pressure and large

πρ2
B0 Φ, Φ B

S

∫ S.d⋅= =
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aspect ratio, we can write a = am, where am is the
minor plasma radius and k is the elongation of the
plasma cross section. We also denote by the angular
brackets 〈…〉  the operation of averaging along the mag-
netic surface:

(3)

where g is the determinant of the metric tensor of the
assumed coordinate system, and 

(4)

As in [3–5], we also assume that the canonical pro-
files of the tokamak plasma are determined by the min-
imum of the free energy functional

(5)

Here, Bpol = (|—ρ|/2π)∂ψ/∂ρ is the poloidal magnetic
field, p is the plasma pressure, and λ1 is a Lagrangian
multiplier. The last term in functional (5) describes the

constraint that the total plasma current dS = Ip is

conserved.
To reduce the problem of the minimum of functional

(5) to a one-dimensional problem, we will use, as in [3],
self-consistency conditions for a circular cylinder,
assuming that they should also be satisfied for a toroidal
plasma:

(6)

where

(7)

jϕ is the averaged plasma current density, and A is a pro-
portionality coefficient. The equation µ = const also
defines the magnetic surfaces. Conditions (6) are to be
satisfied for the total class of functions in which the
minimum of functional (5) is sought; of course, they are
not obligatory for real current and pressure profiles.
The relation between canonical and real profiles is dis-
cussed in Section 6.

Let us represent functional (5) as a sum of one-
dimensional integrals

(8)

where [14]

(9)

k

f〈 〉 2π/V ' g f θ,d

0

2π

∫=

g r
D r z,( )
D ρ ϑ,( )
-------------------.=

F Bpol
2 /8π p/ γ 1–( )+( )d3x λ1 jϕ S.d

S

∫+

V

∫=

jϕS∫

p p µ( ), jϕ jϕ µ( ), jϕ µ( ) A p µ( ),= = =

µ ∂ψ/∂Φ 1/ 2πB0ρ( )∂ψ/∂ρ,= =

F FB Fp F j,+ +=

FB Bpol
2 /8πd3x(

V

∫=

=  
1

8π
------ V' ∂ψ/∂ρ( )2G/ 4π2R2( ) ρ,d

0

a

∫
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(11)

Here, 

(12)

V is the plasma volume, V ' and

(13)

are the metric coefficients (the coefficient G is dimen-
sionless), and R is the plasma major radius. From Max-
well’s equation, we obtain

(14)

where µ00 is the vacuum magnetic permeability. For a
plasma with a circular cross section and large aspect
ratio [the so called circular cylinder approximation
(CCA)], we have V  2π2Rρ2, V'  4π2Rρ, G  1,
and G2 = GV '  4π2Rρ.

Let us treat the potential Ψ as an independent argu-
ment in the functional F and carry out the variation of
F over this argument. By virtue of conditions (6) and
(7), we have

(15)

Integrating δF by parts, we obtain

(16)

Using Eq. (6), we find the Euler equation for functional
(16)

(17)

Using expression (14) and again renormalizing λ, we
obtain the third-order equation with respect to µ

(18)

Here, µ' = ∂µ/∂ρ. The parameter λ2 corresponds to the
notation of [13]. It will be defined below by using the
boundary conditions.

Fp V' p/ γ 1–( ) ρ,d

0

a

∫=

F j λ11 V' jϕ ρ, λ11d

0

a

∫ λ1/ 2πR0( ).= =

V' ρ( ) dV /dρ≡ 2π g θ,d

0

2π

∫=

G R2 —ρ( )2/r2〈 〉=

jϕ B0/ µ00V'R( )∂/∂ρ V'Gρµ( ),(=

δp ∂p/∂µδµ, δ jϕ ∂ jϕ /∂µδµ,= =

δµ 1/ 2πB0ρ( )∂/∂ρδψ.=

δF δψ∂/∂ρ V'/ρ B0
2ρ2/ 4πR2( )Gµ({

0

ρmax

∫–=

+ ∂p/∂µ/ γ 1–( ) λ11∂ jϕ /∂µ ) } dρ+ 0.=

∂/∂ρ V'/ρ B0
2ρ2/ 4πR2( )Gµ λ12∂ jϕ /∂µ+( ){ } 0,=

λ12 λ11
1

A γ 1–( )
---------------------.+=

∂/∂ρ V'/ ρµ'( ) ρ2G∂µ2/∂ρ[{
+ λ2/2( )∂/∂ρ 1/V'( )∂/∂ρ G2ρµ( )( ) ] } 0;=
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Note that in the CCA, Eq. (18) takes the form

(19)

After integrating Eq. (18), we obtain the Euler equation
in the form of a second-order equation with an arbitrary
constant C:

(20)

or

(21)

where

(22)

The constant of integration C should be defined so that,
at the point ρ = 0 (on the axis), the derivative ∂µ/∂ρ van-
ishes.

Assuming that the solution to Eq. (20) at ρ = 0 is
limited (µ(0) = µ0 and µ'(0) = ∂µ/∂ρ(ρ = 0) = 0), we
expand it in the vicinity of this point in powers of ρ:

(23)

Moreover, we have

(24)

The first term, L1, in Eq. (21) has a higher order of
smallness over ρ near ρ = 0; therefore, we can neglect
it when choosing the constant of integration. The sec-
ond term, L2, in Eq. (21) can be presented as a sum of
three terms:

(25)

Substituting expressions (23) and (24) into formula
(21), omitting L1, and taking account expression (25),
we obtain

(26)

∂/∂ρ 1/ µ'( ) ρ2∂µ2/∂ρ[{

+ λ2/2( )∂/∂ρ 1/ρ( )∂ ρ2µ( )/∂ρ( ) ] } 0.=

ρ2G∂µ2/∂ρ λ2/2( )∂/∂ρ 1/V'( )∂/∂ρ G2ρµ( )( )+

=  Cρµ'/V',

L1 µ[ ] λ 2/2( )L2 µ[ ]+ λ2/2( )L3 µ[ ] ,=

L1 µ[ ] ρ 2G∂µ2/∂ρ,=

L2 µ[ ] ∂ /∂ρ 1/V'( )∂/∂ρ G2ρµ( )( ),=

L3 µ[ ] C/ λ2/2( )( )ρµ'/V'.=

µ/µ0 1 α2ρ
2,+=

µ'/µ0 2α2ρ,=

µ''/µ0 2α2.=

V' V'' 0( )ρ 1 O ρ2( )+( ).=

L2 µ[ ] µ∂ /∂ρ 1/V'( )∂/∂ρ G2ρ( )[ ]=

+ µ' ∂/∂ρ Gρ( ) 1/V'( )∂/∂ρ G2ρ( )+[ ] µ ''Gρ.+

λ2/2( ) ∂/∂ρ 1/V'( )∂/∂ρ G2ρ( )[ ]{
+ 2α2ρ ∂/∂ρ Gρ( ) 1/V'( )∂/∂ρ G2ρ( )+[ ]

+ 2α2Gρ } Cρ · 2α2ρ/V'.=
For ρ  0, we have

(27)

Equating coefficients by the same powers of ρ, we
obtain

(28)

(29)

In the CCA, we have G = const; therefore, G'(0) = 0 and
G''(0) = 0. Numerical calculations show that these
equalities are valid in the general case of a toroidal
plasma. As a result, Eq. (28) is satisfied automatically
and Eq. (29) becomes homogenous in α2. The value of
C should be chosen from the condition α2 ≠ 0. It is sat-
isfied when

(30)

Substituting expression (30) into formulas (22) and
(23), we obtain the final equation for a canonical
profile:

(31)

In the CCA, Eq. (31) takes the form

(32)

or

(33)

and can be integrated analytically.

3. BOUNDARY AND MATCHING CONDITIONS 
FOR CANONICAL PROFILES

We will distinguish two types of µ(ρ) functions. The
canonical profiles, which are the solutions to Eqs. (31)
or (32), will be denoted as µc(ρ). The “real” profiles of
these functions, which are the solutions to the set of
transport equations, we will denote as µ(ρ) without
indices. When formulating the problem in [3], besides
Eq. (32), the following boundary conditions were
implicitly used

(34)

Here, µ0 ~ 1 and µa is the boundary condition for µ(ρ).
In the CCA, we have µa = RBθ/aB0 = 0.2RIp/a2B0. The
last of boundary condition (34) assumes that the real

∂/∂ρ 1/V '( )∂/∂ρ G2ρ( )[ ] 3G ' 0( ) ρG '' 0( ),+

∂/∂ρ Gρ( ) 1/V '( )∂/∂ρ G2ρ( ) 3G 0( ) 2ρG' 0( ),+ +

ρ/V ' 1/V '' 0( ).

3G ' 0( ) 0 ρ0( ),=

λ2/2( ) 8α2G 0( ) G '' 0( )+( ) = 2α2C/V '' 0( ) ρ1( ).

C 4 λ2/2( )G 0( )V '' 0( ).=

L µ[ ] ρ 2
G∂µ2

/∂ρ≡
+ λ2/2( )∂/∂ρ 1/V '( )∂/∂ρ V 'Gρµ( )( )

– 4 λ2/2( )G 0( )V '' 0( )ρµ'/V ' 0.=

ρ2∂µ2
/∂ρ λ2/2( ) –∂µ/∂ρ ρ∂2µ/∂ρ2

+( )+ 0=

ρ2∂/∂ρ µ2 λ2∂µ/∂ρ2
+( ) 0=

µc 0( ) µ0,=

µc a( ) µ a( ) µa,≡=

lim µc ρ ∞( ) 0.=
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boundary conditions at the plasma edge do not influ-
ence the choice of the canonical profile. Such a type of
boundary conditions is naturally called “soft.” In the
Introduction, we called problem (32) with boundary
conditions (34) the Kadomtsev problem [3] and
denoted its solution by the superscript K. The solution
to the Kadomtsev problem has form (1).

In the general case of a toroidal plasma with a non-
circular cross section, the region with closed magnetic
surfaces is localized and the “radial” coordinate ρ can-
not be defined over a half-infinite interval. So, the third
Kadomtsev boundary condition (34) should be refor-
mulated for the plasma surface. This is convenient to do
using the impedance of solution (1). For a toroidal
plasma, the first-order impedance can be written in the
following form:

(35)

where i = i(ρ) is the dimensionless current,

(36)

Note that, in the CCA, we have Ga = 1 and, for the
Kadomtsev problem, we obtain

(37)

In the CCA, instead of conditions (34), the follow-
ing equivalent boundary conditions can be used:

(38)

Here, we have no condition at infinity. We will also
assume that, in the general case of a toroidal plasma,
the special Kadomtsev-type solutions to Eq. (31) are
defined by soft boundary conditions (38) at the plasma
edge or at the separatrix.

To determine the Lagrange factor λ2, we rewrite
Eq. (31) using expression (36):

(39)

where i ' = ∂i/∂ρ. Turning ρ to a in Eq. (39), we find the
formal relation between λ2 and the boundary values of
µ, i, and their derivatives:

(40)

where

(41)

is the second-order impedance and ξ = aV''(0)/  (ξ ≥ 1).

For boundary conditions (38), the derivative (a) is

X ia/ 2Gaµa( ),=

i µ00R/B0( ) jϕ 1/V '( )∂/∂ρ V 'Gρµ( ),= =

ia i ρ = a( ).=

X
K µa/µ0.=

µc 0( ) µ0,=

µc a( ) µ a( ) µa,≡=

Xc X
K µa/µ0.= =

ρ2
G∂µ2

/∂ρ λ2/2( )i '+

– 4 λ2/2( )G 0( )V '' 0( )ρµ'/V ' 0,=

λ λ 2/ a
2µa( ) G a( )

ξ 1 Y–( )
--------------------,= =

Y ia' / 4ξµa'( )=

Va'

µc'
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defined by the boundary condition Xc = XK. Therefore,
to solve the boundary problem for Eq. (31), we can use
the shooting method, by fitting the parameter λ =
λ2/a2µa . Note that, in the CCA, Eq. (40) takes the form
[13]

(42)

and, for solution to Kadomtsev problem (1), we have

(43)

Let us now consider a plasma that undergoes a
strong external action that leads to a change of the
plasma boundary temperature and density and the
intensity of periphery radiation. Examples of such an
action are pulsed gas puffing, impurity injection,
periphery injection of hydrogen pellets, and surface
current drive. It is obvious that boundary conditions
(38) do not reflect such processes. On the other hand,
many experiments show a fast plasma reaction over the
entire plasma cross section as a response to the periph-
ery action. Apparently, the boundary conditions for the
canonical profiles should be related to the boundary
conditions for the other plasma parameters. An exam-
ple of such a relation that does not contradict CPTMs is
presented in [13], where the following “stiff” boundary
conditions for the CCA were proposed:

(44)

In contrast to conditions (38), all boundary conditions
(44) are defined at the plasma surface. Usually, such a
problem is referred to as the Cauchy problem. 

We assume that conditions (44) are also suitable for
a toroidal plasma with an arbitrary cross section. The
physical sense of conditions (44) is as follows. It is
implicitly supposed that, in a thin periphery layer, the
canonical profiles µc(ρ) satisfy not only Maxwell equa-
tion (14), but also Ohm’s law, because the function µ(ρ)
satisfies these equations over the entire cross section
and, at the boundary, the first and second derivatives of
µc(ρ) and µ(ρ) are the same.

Boundary conditions (44) can be written in terms of
the surface impedances similarly to conditions (38):

(45)

Here, X and Y are defined by formulas (35) and (41) and
can be calculated through derivatives of µ(ρ), and λ is
defined by Eq. (40).

The third of boundary conditions (45) contains the
second spatial derivative of µ(ρ), i.e. the third derivative
of ψ(ρ) at the edge. In transport codes, a parabolic

λ 4/ 1 aµa''/µa'–( ),=

λK
1/ 1 µa/µ0–( ).=

µc a( ) µ a( ),=

µc' a( ) µ' a( ),=

µc'' a( ) µ'' a( ).=

µc a( ) µa,=

Xc X ,=

Yc Y .=
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equation of the second order with respect to ψ is typi-
cally used. Hence, the computation of the third deriva-
tive is an ill-posed problem. To regularize this process,
it is possible to use Ohm’s law

(46)

where σ is the plasma conductivity, and the assumption
of a quasi-steady character of current diffusion near the
edge,

(47)

where E is the toroidal electric field. This assumption is
true when the electron temperature in the vicinity of the
edge is small and the rate at which the total plasma cur-
rent changes is not large. From Eqs. (46) and (47), we
have

(48)

Hence, we obtain an approximate expression for the
second-order impedance,

(49)

This expression does not contain third-order derivatives
and can be used in boundary conditions (45).

In [15], the following criterion for the transition
from soft boundary conditions (34) to stiff conditions
(45) in the CCA was proposed:

(50)

This criterion was used in the CPTM to describe the
L−RI mode transition in TEXTOR with a circular cross
section [18]. In the general case of a toroidal plasma,
criterion (50) needs experimental verification. In view
of expression (49), this criterion can be written in the
form

(51)

Let us now discuss in more detail the plasma evolu-
tion to the relaxed state in the core and the behavior of
the canonical profile in this region. If the peakedness of
the current profile is high enough, then a region where
µ(ρ) > 1 appears. A magnetic surface with the coordi-
nate ρ = ρS , where µ(ρS) = 1, is usually called the reso-
nant surface. Sawtooth oscillations with a total mag-
netic reconnection usually arise inside the resonant sur-
face. The total reconnection means that the magnetic
shear is absent and µ = const in this region. The value
of current inside the resonant surface ρ < ρS is not con-
served (a part of this current is thrown out from this
region); hence, the minimum of functional (5) in this
region does not correspond to a more deeply relaxed
state µ(ρ) = const. The effective canonical profile of the
µ(ρ) function, which corresponds to the total relaxation
in the region ρ < ρS and the limited relaxation [defined

j σE,=

∂E/∂ρ a( ) 0,=

ja' / ja ia' /ia σa' /σa.≈=

Y ia' / 4γµa'( ) σa' /σa( ) ia/4ξµa'( ).≈=

Y Y
K< µa/µ0.=

σa' /σa( )ia/ 4ξµa'( ) µa/µ0.<
by the minimum of functional (5)] in the region ρ > ρS,
can be described as follows:

(52)

Here, the first condition is the matching condition. At
the point ρ = ρS, function (52) is continuous but under-
goes a jump of the derivative due to a partial ejection of
the current from the region ρ < ρS. The value of the total
current does not depend on the position of the point ρS,
because it is determined by the boundary condition

µc(a) = µa. We emphasize that the profile (ρ)
exactly defines the possible relaxed plasma state. Dur-
ing the plasma evolution, the possible relaxed state also
changes.

4. EVOLUTION OF CANONICAL PROFILES

Boundary conditions (38) and (45) and matching
conditions (52) are not stationary. Moreover, a transi-
tion from soft conditions to stiff ones, and vice versa, is
possible. Therefore, the canonical profiles are evolving
in time. Since Eq. (31) is of an elliptical type, the evo-
lution may be described by the diffusion equation

(53)

where the operator L[µc] is defined by Eq. (31) and τc

is the characteristic time of the canonical profile evolu-
tion. Apparently, τc ~ τd, where τd is the characteristic
time delay of the plasma core response from the edge
action. Experiments [12, 19, 20] show that τc ~ 1–5 ms,
which is considerably (by 1–2 orders) less than the
energy confinement time τE .

5. RESULTS OF THE CANONICAL PROFILE 
CALCULATIONS

To find a canonical profile, we should carry out a
series of calculations. First, we should establish the cur-
rent and pressure distributions and solve the Grad–
Shafranov equation with respect to the magnetic flux
function ψ for chosen boundary conditions. Next, using
the solution obtained, we should find the metric coeffi-
cients V '(ρ) and G(ρ); the boundary values of µ; and, if
necessary, its derivatives. After this, we can determine
the boundary conditions and the coefficients entering
into the equation for the canonical profile.

As an example, we consider a plasma with the fol-
lowing parameters:

(54)

Here, R and am are the major and minor plasma radii, B0
is the toroidal magnetic field, Ip is the plasma current,
and k and δ are the elongation and triangularity of the

µc
eff const µc ρS( ) for ρ ρS,<=

µc ρ( ) for ρ ρS.>



=

µc
eff

τc∂µc/∂t L µc[ ] ,=

R 3 m, am 1 m, A R/am 3,= = = =

B0 = 2.8 T, I p = 2 MA, k = 1.7, δ = 0.3.
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cross section. The calculations were performed with the
ASTRA code [21].

We take reasonable (close to parabolic) profiles of
the electron and ion temperatures and the plasma den-
sity. Using Ohm’s law, we calculate the current density.
Then, these data are used in the equilibrium block to
calculate the positions of the magnetic surfaces and the
function ψ. Figure 1 shows the results of calculations of
the normalized metric coefficients  = V '(ρ)/(4π2Ra)
and G(ρ) for different aspect ratios. Here, qa = 7. It can
be seen that, in the central zone, G ≈ const = 1 and

V1'
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0 0.2 0.4 0.6 0.8 1.0

G
0
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2

3

Fig. 1. Profiles of the metric coefficients (a)  = V '/4π2Ra

and (b) G for qa = 7 and different aspect ratios A = R/a =
(1) 5, (2) 3, and (3) 1.5.

V1'
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(ρ) ≈ ρ. At the edge, G(ρ) increases by several times

and the function (ρ) deviates from a straight line.

If we know the metric coefficients, we can move to
the solution of the boundary problem for Eq. (31). Let
us first consider soft boundary conditions (38), assum-
ing µ0 = 1.2. Figure 2 shows the results of the calcula-
tions for the canonical profile of µc(ρ) for a plasma with
parameters (54). For comparison, the Kadomtsev

canonical profile (ρ) and the µ(ρ) profile of the ini-
tial transport problem are also shown. We note two
main features of the resulting profiles:

(i) The canonical profile µc(ρ) for a toroidal plasma
is broader than the Kadomtsev canonical profile
derived for a circular cylindrical plasma.

(ii) In the initial transport problem, µ(ρ) > 1 at the
center; this should lead to sawtooth oscillations inside
the resonant surface. This means that the resulting
canonical profile µc(ρ) should be corrected to the effec-
tive canonical profile defined by Eq. (51). The corrected
profile is shown by the heavy line in Fig. 2.

When the plasma geometry and the parameter qa are
varied, the first feature is retained. To quantitatively

estimate the difference between µc(ρ) and (ρ) pro-

V1'

V1'
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K

µc
K
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0 0.2 0.4 0.6 0.8 1.0
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µÒ
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µÒ
ä
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Fig. 2. Canonical profile µc determined from Eq. (31),

Kadomtsev canonical profile , and the effective canoni-

cal profile  with allowance for sawtooth oscillations for

R = 3 m, a = 1 m, B0 = 2.8 T, Ip = 2 MA, k = 1.6, δ = 0.3,
and qa = 7. The µ profile shows the initial profile, determin-
ing the plasma geometry and the position of the resonant
surface q = 1/µ = 1.

µc
K

µc
eff

µ
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files, we denote by ∆can and ∆K the half-widths of these
profiles, which are determined by the relationships

µc(∆can) = 0.5µ0 and (∆K) = 0.5µ0. For Kadomtsevµc
K

µ0

ρ/a

µ
1.5

1.0

0.5

0 0.2 0.4 0.6 0.8 1.0

µÒ

µÒ
ä

Fig. 3. Canonical profiles µc and  for the same parame-

ters as in Fig. 2, but for R = 1.5 m (A = 1.5).
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Fig. 4. (a) Half-width ∆can of the canonical profile and (b)
the ratio of this half-width to the half-width of the Kadomt-
sev canonical profile, Θ = ∆can/∆K, as functions of the
aspect ratio A = R/a for k = 1.6, δ = 0.3, and different values
of qa.
profile (1), the half-width is equal to the current radius:
∆K = aj .

We choose parameters (54) as initial ones and vary
the major radius R in the range R = 1.5–5, so that the
aspect ratio is varied in the range A = 1.5–5. Also, in
order to keep a constant value of qa, we simultaneously
vary the current Ip.

Figure 3 shows the profiles µc(ρ) and (ρ) for the
aspect ratio A = 1.5. We can see that the profile µc(ρ) is

appreciably broader than the profile (ρ). Figure 4a
shows the dependences of the half-width ∆can on the
aspect ratio A for qa = 15, 7.5, and 3.8. It is seen that the
half-width ∆can slowly increases with decreasing A. At
qa ~ 4, the value of ∆can attains a value of (0.85–0.9)a;
i.e., the canonical profiles for spherical tokamaks are
very flat. Figure 4b shows the half-widths ratio Θ =
∆can/∆K as a function of the aspect ratio A for the same

values of qa. Since  defined by expression (1) is
independent of the aspect ratio, the value of ∆K is also
independent of this ratio. For moderate and high aspect
ratios (A ~ 3–5), the ratio Θ varies slowly in the range
Θ = 1.2–1.3. For small A ~ 1.5 (for spherical tokamaks),
this ratio increases to Θ = 1.5–1.8.

Now we discuss the behavior of ∆can and Θ when
other geometrical factors are varied. Figure 5 shows the
dependences of these quantities on the elongation k at
A = 3 and different values of qa. As k increases, the
canonical profiles becomes flatter as compared to the
Kadomtsev profiles. Figure 6 shows the dependences of
the same quantities on the triangularity δ for k = 1.6 and
A = 3, keeping other parameters of set (54) fixed. We
can see that the canonical profiles weakly depend on the
triangularity.

Next, we consider stiff boundary conditions. This
type of boundary conditions corresponds to a strong
cooling of the edge plasma, when the current density
and the radial derivative of the current density near the
boundary are small and condition (49) or the equivalent
condition (50) is satisfied. To describe this process, we
consider reasonable parabolic profiles of the ion tem-
perature Ti(ρ) and plasma density n(ρ) and the follow-
ing model profile of the electron temperature:

.

The current profile does not depend explicitly on the
profiles of Ti(ρ) and n(ρ); therefore, the details of these
profiles are inessential. As an example, we choose the
following plasma parameters: R = 5 m, am = 1 m, A =
R/am = 5, B0 = 2.8 T, k = 1, and δ = 0.

Solving the Grad–Shafranov equation, we find the
equilibrium, the function µ(ρ), and the impedances X
and Y [see expressions (35) and (41)]. The dependence
of the impedance Y on the power exponent α for Tea =

µc
K

µc
K

µc
K

Te ρ( ) Tea T0 1 ρ2
/a

2
–( )

α
+=
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40 eV is shown in Fig. 7. The value of this impedance
for the Kadomtsev profile (YK = µa/µ0 = 0.26) is also
shown. We can see that, for α > 1.45, inequality (50) is
satisfied; hence, in the transport model with canonical
profiles, we should change soft boundary conditions to
stiff ones.

Figure 8 shows the transformation of the shape of
the canonical profiles. We can see here the canonical
profile µc(ρ) for stiff boundary conditions (44) with α =
1.25, 1.5, 1.75, and 2.0, keeping other plasma parame-
ters fixed. For comparison, we show here the canonical

profile (ρ) obtained with soft boundary conditions
(38) (this profile is almost independent of α) and the
profile µ(ρ) of the initial transport problem. We can see
that, as α increases and the impedance Y approaches the
critical value YK, the profile µc(ρ) begins to peak. How-
ever, if we take into account sawtooth oscillations, the

(ρ) profile for α < 1.25 remains close to the (ρ)
profile. As α increases further and Y decreases, condi-
tion (50) is satisfied and the µc(ρ) profile peaks dramat-

ically. In this case, even a flatter (ρ) profile (with a

plateau at ρ < ρs) becomes more peaked than (ρ).
In transport models with canonical profiles, such a
change leads to a substantial decrease in the effective
transport coefficients and an increase in the temperature

in the region where (ρ) > (ρ).

µc
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soft
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eff
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Ä = 3

Fig. 5. Same as in Fig. 4, but as functions of the elongation
k for A = 3, δ = 0.3, and different values of qa.
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6. CANONICAL PROFILES 
AND TRANSPORT MODELS

In transport models, the canonical profiles deter-
mine the critical gradients above which the heat and
particle fluxes substantially increase; however, expres-
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Fig. 6. Same as in Fig. 4, but as functions of the triangularity
δ for A = 3, k = 1.6, and different values of qa .
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Fig. 7. Second-order impedance Ya as a function of the
power exponent α of the model temperature profile Te(ρ) =

Tea + T0(1 – ρ2/a2)α for A = 5, k = 1, δ = 0, Tea = 40 eV, and
T0 = 1 keV. The horizontal line shows the impedance for the

Kadomtsev canonical profile, YK = µa/µ0.
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 for soft boundary condition and the initial µ profile,

determining the plasma geometry and the position of the
resonant surface µ = 1, are also shown.
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and δ = 0.3; and (3) A = 1.5, k = 1.6, and δ = 0.3.

aTc'
sions for these fluxes are not defined unambiguously. In
[14–17], the simplest linear model was considered. For
example, the heat flux was described as

(55)

where Tc is the canonical profile for the temperature, Q1
is the heat flux that is not related to the canonical pro-
file, the prime stands for the derivative with respect to
ρ, κ is the stiffness of the profile (which is proportional
to T1/2), n is the plasma density, and the logarithmic
derivative of the canonical temperature profile plays the
role of a critical gradient. Flux (55) explicitly contains
the thermal pinch effect. To avoid this pinch, many
authors [9–11] use the following strongly nonlinear
expression for the heat flux:

(56)

where

(57)

ζ is a dimensional factor, α ~ 1, and H(x) is the Heavi-
side step function (H(x) = 1 for x > 0 and H(x) = 0 for
x < 0). There are still no reliable experimental data
allowing us to choose between models (55) and (56).

If we know the canonical profile µ(ρ), we can create
the canonical profile for the temperature Tc(ρ) using the
following arguments. In a relaxed quasi-steady state,
the profiles of the current and electron temperature are
close to the canonical profiles

(58)

At the same time, the jϕ(ρ) and Te(ρ) profiles are related
to each other by Ohm’s law:

(59)

By virtue of the consistency of profile (6) and profiles
(58) and (59), we have

(60)

hence,

(61)

and the dimensionless relative critical gradients of the
temperature and density are determined by the follow-
ing expressions:

(62)

where

(63)

are the dimensionless logarithmic derivatives of the
canonical profiles. Later, we will refer to expressions
(62) and (63) as basic formulas.

Q nκT T '/T Tc' /Tc–( )– Q1,+=

Q nχT '– Q1,+=

χ ζκ T
α

T '/T Tc' /Tc–( )–( )
α

=

× H T '/T Tc' /Tc–( )–( ),

jϕ ρ( ) jc ρ( ), Te ρ( ) Tc ρ( ).≈ ≈

jϕ ρ( ) Te
3/2 ρ( ).∼

pc ρ( ) nc ρ( )Tc ρ( ) jc ρ( ) Te
3/2

Tc
3/2

;∼ ∼ ∼=

Tc jc
2/3

, nc Tc
1/2

jc
1/3

,∼ ∼ ∼

aTc' /Tc 2/3Ω j, anc' /nc 1/3Ω j,= =

Ω j a jc' / jc, Ωµ aµc' /µc= =
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The profiles of the critical temperature gradient
/Tc calculated from basic formulas (62) and (63)

for three sets of plasma parameters (A = 1.5, k = 1.6,
and δ = 0.3; A = 3, k = 1.6, and δ = 0.3; and A = 5, k = 1,
and δ = 0 at qa = 7) are shown in Fig. 9. It is seen that
inside the gradient region (0.3 < ρ/a < 0.7) the value of

/Tc changes only slightly. The experimental gradi-
ents of the electron temperature in several tokamaks
show a similar behavior [11]. However, the absolute
values of /Tc depend on the plasma parameters.

Figure 10 shows the dependence of the /Tc value at
the point ρ/a = 0.5 on the parameters qa for k = 1.6, δ =
0.3, and two values of the aspect ratio (A = 1.5 and 3).
It is seen that the critical gradient increases with
increasing qa and A. This leads to an increase in the
peakedness of the temperature profiles calculated by
the transport model.

The structure of the full model describing the trans-
port processes in tokamaks is shown in Fig. 11. The
model consists of three parts. The first part is a proper
transport model determining the electron and ion tem-
peratures Te and Ti , the plasma density n, the function
µ, and the current density j. These data are used in the
second part to solve the Grad–Shafranov equation and
to find the magnetic surface geometry, the natural coor-
dinate ρ, and the metric coefficients V ' and G. Finally,
in the third part, the functions µc and jc and the critical
gradients /Tc are found by solving Eq. (31). In our
previous papers, it was assumed that the critical gradi-
ents were the same for the electrons and ions.

Besides formulas (62), other forms of critical gradi-
ents are possible. For example, for the Kadomtsev
problem [3], we have

(64)

therefore,

(65)

and, in the right-hand side of Eq. (62) we can use 2

instead of . In the general case of a toroidal plasma,
equality (64) is not strictly satisfied. Figure 12a shows
the profiles of ( jc/jc(0))2/3 and (µc/µ0)4/3 for the parame-
ters A = 3, k = 1.6, and δ = 0.3 at qa ~ 7. Here, the expo-
nential power for the current is chosen in accordance

with expressions (61). It is seen that the  profile is

slightly broader than the  profile. Figure 12b shows
the profiles of Ωj and 2Ωµ for the same geometric fac-
tors. We see that almost over the entire radius, the val-
ues of Ωj and 2Ωµ are close to each other. Substituting
2Ωµ instead of Ωj in formulas (62), we obtain

(66)

aTc'

aTc'

aTc'

aTc'

Tc'

jc
K µc

K( )
2
,∼

Ω j
K

a jc
K( ) '/ jc

K≡ 2a µc
K( ) '/µc

K
2Ωµ

K
,≡=

Ωµ
K

Ω j
K

jc
2/3

µc
4/3

aTc' /Tc 4/3Ωµ, anc' /nc 2/3Ωµ A 2.5>( ).==
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At smaller values of A, the difference between Ωj and
2Ωµ rapidly increases; therefore, formulas (66) are
valid only for A > 2.5. For smaller aspect ratios, we
should use basic formulas (62).

In [14], it was supposed that the Kadomtsev canon-

ical profiles (ρ) can be used in Eq. (66) because the
canonical profiles for toroidal plasmas were unknown.
However, this supposition resulted in the calculated
temperature profiles that were more peaked than the
experimental ones [15]. Therefore, in [15–17], it was
proposed to use, instead of Eq. (66), a slightly corrected
formula for the critical gradients

(67)

µc
K

aTc' /Tc Ωµ
K

, anc' /nc 1/2Ωµ
K

.= =

1
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Fig. 10. The critical gradient /Tc at ρ = a/2 as a function

of the edge safety factor qa for k = 1.6, δ = 0.3, and two
aspect ratios A = 3 (JET) and A = 1.5 (MAST).
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Fig. 11. The flow chart of the CPTM.
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Now, knowing the canonical profiles for toroidal
plasmas, we may estimate the validity of expressions
(67) by comparing them with basic formulas (62). Fig-
ure 12c shows the profiles of the parameters (2/3)Ωj and

 entering into the right-hand sides of Eqs. (62) and
(67). They are rather close to each other in the gradient
zone (ρ/a < 0.7). Note that the difference at the edge has
a weak effect on fluxes (55) and (56). Hence, an intui-
tive-empirical choice of Eqs. (67) for the temperature in
[15] is confirmed by the theoretical account of the tor-
oidal effects investigated in the presented paper. Appar-
ently, an inverse statement is also valid. As far as the
transport model with Eqs. (67) reasonably describes the
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Fig. 12. Profiles of (a) ( jc/jc(0))2/3 and (µc/µ0)4/3, (b) the gra-
dients Ωj and 2Ωµ, and (c) the “true” critical temperature
gradient 2/3Ωj and the “corrected” Kadomtsev critical tem-

perature gradient  from our previous transport models
for A = 3, k = 1.6, δ = 0.3, and qa ~ 7.

Ωµ
K

experimental temperature profiles [15–17], the model
with basic formulas (62) should give the same results.
However, one needs to verify this conclusion by com-
paring the calculated results with the experiments in
tokamaks with different aspect ratios.

Now we discuss when the conditions of the profile
consistency (6) may be violated. The last of conditions
(6) does not take into account that the boundary values
of functions p(µ) and jϕ(µ) are not self-consistent.
Therefore, it would be more logical to use the condi-
tions of profile consistency in the form proposed in [8]:

(68)

The profiles of jϕ(µ) and p(µ) defined by Eqs. (6) and
(68) differ by a constant that is important only near the
plasma boundary. Therefore, the critical gradients cal-
culated by Eq. (6) or (68) will be different only in this
region. As was mentioned above, transport fluxes (55)
or (56) change slightly in this case.

Finally, we will comments the application of the
canonical profiles theory to spherical tokamaks. In
modern spherical tokamaks, the discharge duration is
not long and the steady state is not established. More-
over, the current profile is distorted by sawtooth oscil-
lations. As a result, the validity of profile consistency
conditions (6) for spherical tokamaks is not yet con-
firmed. It is not clear whether Ohm’s law can be used to
separate out the canonical profiles of the temperature
and density when the canonical profile for the pressure
is determined. The point is that, at A ~ 1.5–2, the frac-
tion of trapped particles dramatically increases. It is
widely assumed that the trapped particles do not con-
tribute to the current and, thus, to the plasma conductiv-
ity. In this case, Ohm’s law has the form

(69)

where σSp is the Spitzer conductivity, which is propor-

tional to /Zeff, and f = f(ε, , Zeff) is a rapidly
decreasing function of the radius ρ, which is equal to
unity at ρ = 0 and has a minimum at ρ ~ 0.85a. For typ-
ical experiments in START [17], the minimum value of
f is about 1/6. Hence, the current density should be
strongly peaked in the steady state. As a result, formu-
las (59)–(61), which relate the steady-state current den-
sity and the electron temperature, may fail. Our experi-
ence of the transport model application to spherical
tokamaks [17] shows that the canonical pressure profile
determined by Eq. (31) is apparently rather reliable.
However, one should take care when using Ohm’s law
to separate the canonical profiles of the temperature and
pressure. Moreover, such a separation may be nonu-
nique and may depend on some discharge parameters
that are still unknown.

jϕ µ( )/ jϕ µ0( )( )' p µ( )/ p µ0( )( )'.=

j σneo
E, σneo σSp

f ,= =

Te
3/2 νe*
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7. CONCLUSION

In this paper, we have solved the problem of the
canonical profiles for a tokamak plasma with an arbi-
trary cross section. The canonical profiles are treated as
an ultimate state to which the plasma relaxes. The solu-
tion is based on the principle of the free energy mini-
mum with the constraint that the total current is con-
served and the relaxed profiles of the pressure and cur-
rent density are self-similar (the profile self-
consistency). We have constructed a differential Euler
equation for the canonical profile of the µ function and
have discussed the possible boundary conditions. Two
types of boundary conditions (soft and stiff conditions)
have been discussed. The soft conditions correspond to
the absence of strong action on the plasma boundary.
They are analogous to the Kadomtsev conditions stated
at infinity for a circular cylindrical plasma. Under
strong action on the plasma boundary, we should use
stiff conditions describing the close relation between
the real and canonical profiles in the edge region.

The obtained canonical profiles allow us to calculate
the critical temperature and pressure gradients and to
construct a transport model. Calculations have shown
that, as the aspect ratio decreases, the canonical profiles
become flatter. The same effect takes place when the
elongation of the cross section increases. The canonical
profiles become more peaked with increasing parame-
ter qa. Similar tendencies for the real profiles of the
electron temperature were pointed out in our previous
papers where we analyzed experiments in JET and
START.

Note that our interpretation of the profile consis-
tency assumes that the real profiles of the ion and elec-
tron temperatures differ from their canonical profiles.
The heat fluxes are proportional to the distances
between the real and canonical profiles in a certain met-
rics defined through the critical gradients. In this sense,
our approach is equivalent to a traditional approach in
which the fluxes are described through the critical gra-
dients. The difference is that the CPTM proposes an
algorithm for finding the critical gradients, whereas in
traditional models, the critical gradients should be
found by independent methods based on additional
assumptions.
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Abstract—Results are presented from theoretical and experimental studies of the influence of ponderomotive
effects on the operation of a two-wire plasma microwave resonator probe. It is shown that the nonlinear regime
of probe operation can be used to measure not only the plasma density, but also the plasma temperature. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Highly sensitive resonator probes are successfully
used to diagnose various natural and artificial media,
including plasma. In such measurements, most of the
information is derived from the modification of the
probe resonance curve, first of all, its displacement and
broadening. It is usually required that the probe intro-
duce minimal perturbations into the ambient medium;
however, an analysis of these perturbations can also
provide additional information about the properties of
an object under study.

In this paper, we consider a two-wire plasma micro-
wave resonator probe.1 Such probes are frequently used
to measure the charged particle density in both isotro-
pic and magnetoactive plasmas [2, 3]. The probe oper-
ation is based on the dependence of the resonance fre-
quency on the permittivity of a medium filling the space
between the wires of a double line. The probe is usually
employed in a transparent plasma at frequencies sub-
stantially exceeding the critical frequency for a given
plasma density. For simplicity, in calculations, it is usu-
ally assumed that the plasma is uniform over the reso-
nator segment of the double line.

A characteristic feature of the microwave probe
under consideration is a relatively low threshold for
nonlinear effects. In a weakly collisional plasma, these
effects are mainly of a ponderomotive nature. Under the
action of the electromagnetic field, the plasma is
pushed away from the resonator wires, thereby substan-
tially affecting the resonance characteristics of the
probe [4]. In the present paper, it is shown that the non-
linear regime of probe operation can be successfully
used to diagnose plasmas, in particular, to measure the
electron temperature. The paper is organized as fol-
lows. In Section 2, a theory of a nonlinear two-wire
microwave probe is developed, and, in Section 3, we
discuss the experimental results and compare them with
the results of theoretical calculations.

1 Note that the resonant properties of this probe are not related to
the plasma resonance [1].
1063-780X/02/2811- $22.00 © 20900
2. THEORY OF A MICROWAVE 
RESONATOR PROBE

Figure 1 shows a schematic of the microwave reso-
nator probe used in [2, 3] and in the experiments
described below. Two identical coaxial cables are
ended with magnetic-coupling loops; the shorted end of
the double line of length , is placed symmetrically
between the loops. On the other side, the line is open.
The distance d between the wires substantially exceeds
the wire radius a (a/d ! 1) and coincides with the diam-
eter of the coupling loops.

The inductive reactance of the coupling loops,
ωLc/c2, is negligibly small as compared to the imped-
ance of the coaxial cables, ρc. The coefficients of
mutual induction between the coupling loops (M2, 3)
and between the coupling loops and the double line
(M2, 1 and M3, 1) are close to Lc. It is assumed that M2, 1 =
M3, 1 = M and that the impedance ρ of the double line is
on the order of ρc . It follows from here that

(1)

If a probing wave with the current amplitude I0 and
voltage U0 = ρcI0 is excited in cable 2, then, in the non-
resonant regime, this wave reflects from the cable end
as from a load with an almost zero resistance. In this
case, the current I2 in coupling loop 2 is close to 2I0,
whereas the current I3 in loop 3 and the current I1 in the

1

c
2

----ωLc ! ρc,
1

c
2

----ωM ! ρ.

12

3

Fig. 1. (1) Quarter-wave resonator and (2) exciting and
(3) receiving lines.
002 MAIK “Nauka/Interperiodica”
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shorted double-line segment are negligibly low (|I1|,
|I3| ! |I0|). On the other hand, under resonance condi-
tions, when the segment , matches a quarter of the
wave propagating through a long line, the current I1 can
attain a fairly high value and its influence on the cur-
rents I2 and I3 cannot be ignored. Writing the emf

induced in cables 2 and 3 as – ωMI1, we obtain the

following expressions for I2 and I3:

(2)

The current I(z) and the voltage U(z) in long line 1 (the
z coordinate is counted from the shorted end) satisfy the
telegraph equations

(3)

with the boundary conditions

(4)

where  and  are the inductance and capacitance per

unit length of line 1, E = – ωM(I2 + I3) is the mutual-

induction emf at the shorted end (z = 0), δ(z + 0) is the

delta function ( (z + 0)dz = 1), and I1 = I(0).

Plasma diagnostics commonly use frequencies ω
substantially exceeding the electron plasma frequency
ωpe and the electron gyrofrequency ωHe. In this case, the
electrodynamic characteristics of the plasma differ only
slightly from those in a vacuum. As a result, it may be

assumed that  =  ≈ 4ln(d/a), and  = (1 + δC),

where  ≈ , |δC| ! 1, and  and  are the

inductance and capacitance per unit length of line 1 in

a vacuum (  = 1). In nonlinear media, δC is deter-
mined by the field in the line and smoothly (on the
length d) varies with the z coordinate.

At frequencies ω close to the vacuum resonance fre-

quency ω0 =  (ω = ω0 + ∆ω, ω0 @ |∆ω|), the solution

to problem (3) and (4) can be sought as an asymptotic
expansion in a small parameter

(5)

i

c
2

----

I2 2I0
i

c
2ρc

----------ωMI1, I3–
i

c
2ρc

----------ωMI1.–= =

dU
dz
-------

i

c
2

----ωL̃I– Eδ z 0+( ),+=

dI
dz
----- iωC̃U–=

U 0( ) 0, I z = ,( ) 0,= =

L̃ C̃
i

c
2

----

δ
0

,∫

L̃ L̃0 C̃ C̃0

C̃0
1

4 d/a( )ln
---------------------- L̃0 C̃0

L̃0C̃0

π
2
--- c

,
---

ν max
∆ω
ω0

----------- δC
ωM

c
2ρ

--------- 
  2 ωM

c
2ρc

---------- 
  2 I0

I1
----, , , ,

 
 
 

 ! 1.∼
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We can write

(6)

where I ( j ) and U ( j ) are the ν j terms of the asymptotic
expansions for the current and voltage in powers of ν.
Substituting expressions (6) into Eqs. (3) and taking
into account boundary conditions (4), in the zeroth
order of ν, we have

(7)

In the first order of ν, we obtain the following equation
for I (1):

(8)

where

with the boundary conditions

Here, δω = , α = , and αc =  are the small

parameters of the problem.
According to the Fredholm theorem of an alterna-

tive, boundary problem (8) has a solution if the right-
hand side of F1(z) is “orthogonal” to the eigensolution
of the homogeneous equation, i.e., when

(9)

Substituting F1(z) into Eq. (9) and integrating over z,
we obtain

(10‡)

with the parameter

(10b)

If the microwave probe is in a vacuum and δC = 0,
then, at the frequency ω = ω0 (δω = 0), coaxial cable 2

I I
0( )

I
1( ) …, U+ + U

0( )
U

1( ) …,+ += =

I
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I
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2
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,
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is matched with coaxial cable 3, accurate to terms on
the order of ν. In this case, the current amplitudes in
coupling loops 2 and 3 are equal to the current I0 (I2 =
−I3 = I0), the microwave power from coaxial cable 2 is
completely transmitted into coaxial 3, and the quantity

 reaches its maximum:

(11)

where Q0 is the vacuum resonance Q-factor, which is
almost completely determined by the coupling between
the resonator and coaxial cables 2 and 3 (the label “0”
stands for δC = 0).

In the presence of a plasma, the current amplitude in
the line [see formula (10)] depends not only on Q0, but
also on the parameter q. We introduce a transmission

factor β = ; then, using relationships (2), (7), (10),

and (11), it is easy to find that

(12)

It can be seen from expression (12) that the real part of
the parameter q determines the frequency shift δωm of
the maximum of the resonance curve β(δω), whereas
the imaginary part of q gives the value of this maxi-
mum:

(13)

As an example, we consider the case of a collision-
less plasma, assuming its permittivity to be

(14)

where N is the plasma density, me is the electron mass,
and e is the electron charge.

Under steady-state conditions, the ponderomotive
effect can be described by the following dependence of
the plasma density on the electric field strength
Eexp(iωt) [5]:

(15)

where Ec =  is the characteristic

ponderomotive field and Te and Ti are the electron and
ion temperatures, respectively.
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1/2
We have chosen the probing frequency such that the
inequality N/Nc ! 1 holds. Hence, when calculating the
perturbation of the capacitance per unit length δC in
expression (15) accurate to terms linear in N/Nc, we can
assume that the spatial distribution of the field E is the
same as in a vacuum. As a result, we find

(16)

where g =  = , Ea  is the magnitude of the

electric field strength on the wire surfaces in line 1,  is
the amplitude of the microwave current in resonator 1,

and Ic =  is the critical value of  at which the pon-

deromotive effects come into play. The parameter g can
be expressed through the transmission factor β(δω):

(17)

In this case, according to (10b), we have

(18)

In the linear regime, which is characterized by a
small value of the parameter gm (gm ! 1), we have

N ≈ N0 and expression (18) takes the form q ≈ – . In

this case, the resonance curve β(ω) is the same as in a
vacuum, but the curve itself shifts as a whole along the
frequency axis by the value

(19)

Relationship (19) relates the value of the unperturbed
plasma density N0 and ∆ωm.

Nonlinear properties of the microwave resonator,
including hysteresis effects, manifest themselves when
gm > 1. Figure 2 shows the resonance curves β(δω) cal-
culated for a line with d/a = 20 in a plasma with a den-

sity satisfying the values (a) n =  = 50 and (b) n =

100 for different values of the parameter gm = 0.1, 1, 10,
50, and 400 (curves 1–5, respectively). For gm = 0.1, we
have the linear regime. For gm ≥ 1, the resonance curve
is substantially modified. At the segments of the reso-
nance curve between the “jump” points (at which
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1
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 = ∞), there are three values of the transmission

factor β corresponding to the same frequency shift δω
(the central value corresponds to an unstable solution).
Such a system possesses a hysteresis effect. If the fre-
quency is decreased after reaching the upper jump point
lying near the maximum of the resonance curve, then
β(δω) decreases stepwise. In contrast, if δω is
increased, then, at the lower jump point, β jumps from
the lower to upper branch of the resonance curve. At
sufficiently high values of gm (gm > d2/a2), the plasma is
entirely displaced by a strong microwave field from the
region between the resonator wires (q  0) and the
resonance curve β(δω) in the vicinity of its maximum,
positioned near δω = 0, becomes independent of the
plasma density and almost coincides with the reso-
nance curve in a vacuum (N/Nc = 0).

In experiments, the situation is often met where the
frequency δω is fixed, whereas the plasma density var-
ies with time (e.g., it falls after the plasma source is
switched off). In this case, instead of the resonance
curves β(δω)|N = const, it is more convenient to analyze
the dependences β(N)|δω = const. These dependences for

dβ
dδω
----------

0.2

0
0

0.2

0
0

20 40 60

0.4

0.6

0.8

1.0

–20

1/2δω Q0

β

12345

0.4

0.6

0.8

1.0

–50 50 100 150

12345

(a)

(b)

Fig. 2. Resonance curves β(δω) calculated for a line with

d/a = 20 in a plasma with (a) n =  = 50 and (b) n = 100

for different values of gm = (1) 0.1, (2) 1, (3) 10, (4) 50, and
(5) 400.

Q0

4
------

N0

Nc
------
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(a) Ω =  = 50 and (b) Ω = 100 are presented in

Fig. 3.

It can be easily seen that, when gm lies within the

range 1 < gm < , the value of g = gmβ at the

lower jump point n = nb is below unity (g < 1). In this
case, we obtain the following formula relating the
bifurcation value n = nb to gm (and, consequently, to the
plasma temperature):

(20)

This formula makes it possible to use the above probe
to measure the plasma temperature.

Q0

2
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3Ω
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----------------- 

 
1/2

nb Ω–
3Ωgm

2 d/aln
----------------- 

 
1/3

.≈

0.2

100
0

0.4

0.6

0.8

1.0

120 140 16080

β

n

0.2

60
0

0.4

0.6

0.8

1.0

80 10040 120

1 2

3

4

1 2 3

4

(a)

(b)

Fig. 3. Resonance curves β(n) (where n = ) calcu-

lated for a line with d/a = 20 at fixed values of (a) Ω =

δω = 50 and (b) Ω = 100 for different values of the

parameter gm = (1) 0.1, (2) 1, (3) 10, and (4) 50.
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3. MEASUREMENTS OF THE PLASMA 
PARAMETERS WITH A MICROWAVE 

RESONATOR PROBE

The above two-wire microwave resonator probe was
used to measure the plasma parameters in the KROT
experimental device. The vacuum chamber of the
device is 3 m in diameter and 10 m long. The plasma is
produced by an inductive RF breakdown (f = 5 MHz,
τpulse ≈ 1.6 ms, and H ≈ 200 Oe) in argon at a pressure
of 5 × 10–4 torr. The experiments were carried out in the
decaying plasma; i.e., after the RF source was switched
off. Figure 4a shows the time behavior of the density;
the characteristic plasma decay time is about 10 ms.

The microwave resonator (a quarter-wave segment
of a double line shorted on one side and open on the
other) was made from a silvered copper wire 8 mm long
and 0.2 mm in diameter. The distance between the res-
onator wires was 2 mm. For exciting the resonator and
receiving its response, we used magnetic-coupling
loops 2 mm in diameter (Fig. 1). In the absence of a
plasma, the minimum eigenfrequency of the resonator
was f0 = 8 GHz and its Q-factor was Q0 ≈ 100. Esti-
mates showed that the Q-factor was determined by the
coupling with the exciting and receiving lines.

Figure 4b shows a response signal from the micro-
wave resonator probe in a decaying plasma at a low
level of the input microwave power. The higher the sig-
nal frequency, the higher the plasma density for which
the resonance occurs. By varying δω and using rela-
tionship (19), we could reconstruct the time depen-
dence of the density.

An increase in the microwave power input to the
probe results in the deformation of the shape of the
response signal. Figure 5 shows the waveforms of the
output signals for three values of the microwave power.
It is seen that, when the plasma density reaches a cer-
tain critical value (which depends on the input power),
the output signal increases sharply and then falls
smoothly. As the input power increases, the position of

30

t, ms

A
, a

rb
. u

ni
ts

N
e,

 1
010

 c
m

–3

20

10

(a)

(b)
fres = 9.33 GHz fres = 8.33 GHz

16131074

Fig. 4. (a) Time behavior of the plasma density and (b) typ-
ical waveforms obtained from a microwave probe for two
resonance frequencies.
the jump N = Nb (in accordance with the nonlinear the-
ory considered in Section 2) shifts toward the higher
plasma densities (see Fig. 3 and the comment on it in
the text), or, in other words, the jump is observed at ear-
lier times after the plasma source is switched off.

From the dependence of Nb on P and relationship
(20), we can determine the electron temperature Te

(Te @ Ti) with good accuracy. Figure 6 shows the
results of the electron temperature measurements with
a microwave probe and with a double probe. It is seen
that the results are in good agreement.

To directly observe the hysteresis effects in the
microwave resonator probe, we performed an experi-
ment under conditions such that the plasma density var-
ied nonmonotonically over a certain time interval: first,
it grew and, then, fell. In this case, with a properly cho-
sen δω, resonance condition (19) can be satisfied twice
(when the plasma density increases, and when it
decreases).

Figure 7a shows the time dependence of the plasma
density measured with a microwave probe operating in
the nonlinear regime. Figure 7b shows the waveforms
of the output signals for different input powers (P1 <
P2 < P3 < P4). The behavior of these signals can be
explained based on the nonlinear resonance curves
given in Fig. 3. First, the density increases and the oper-
ating point moves along the resonance curve to the
upper jump point. After a certain period of time, the
plasma density begins to fall and reaches the value cor-
responding to the lower jump point. By comparing
curves 1 and 2, we can see that, in accordance with the-
oretical predictions, the hysteresis jumps shift toward
the higher plasma densities as the input power
increases. However, at a sufficiently high power, the
upper jump point may be unattainable even at the max-
imum density. This case corresponds to curves 3 and 4.

The characteristic times over which nonlinear
effects in the plasma develop were measured with the

100

0

200

300

400

500

600

240 480 720 960 1200

A, arb. units

t, µs

P1

P2

P3

Fig. 5. Waveforms of the output signal from a microwave
probe in a decaying plasma at a fixed frequency for three
values of the input power (P1 > P2 > P3).
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help of the amplitude modulation of the input micro-
wave signal applied to the resonator probe. 100% mod-
ulation was achieved by applying rectangular pulses
with a repetition period of T = 30 µs and rise and fall
times of ~10–5 s. In the course of the experiment, it was
revealed that the plasma density inside the microwave
resonator was redistributed during a time interval

3.0
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4.5

5.0

2.5

–40

1

–20

0

40

80

–80
2 3 4 5 6 7

N, 1011 cm–3

–60

20

60

t, ms

(a)

(b)

1 2 3 4

0

A, arb. units

Fig. 7. (a) Nonmonotonic time behavior of the plasma den-
sity and (b) typical waveforms of the output signal from a
microwave probe for four values of the input power: P1 <
P2 < P3 < P4.
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1.1 1.2 1.3 1.4 1.5 1.60.9
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Fig. 6. Measurements of the time behavior of the electron
temperature with the help of a double probe (squares) and a
microwave probe (circles).
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shorter than 10 µs. Estimates of the time of the ponder-
omotive displacement of the plasma from the resonator
show that this time is no longer than τs ≤ d/Vs = 1 µs,
where d is the distance between the double-line wires and
Vs is the ion acoustic velocity. The characteristic times
over which other nonlinear (heating and ionization) pro-
cesses develop are substantially longer than 10 µs.

4. CONCLUSION

We have shown that theoretical calculations of the
nonlinear regime of a two-wire microwave resonator
probe adequately describe the experimental data. This
allows us to conclude that the nonlinear effects
observed are ponderomotive in nature and can be used
to measure the plasma electron temperature. The
plasma density and temperature determined with the
microwave detector under study agree well with the
results of measurements by means of conventional sin-
gle and double probes.

Of course, the theory developed does not pretend to
completely describe all of the effects occurring in the
plasma surrounding the microwave probe. In particular,
the double-line segment itself, even in the absence of a
microwave field, perturbs the plasma density because
of the appearance of charged-particle fluxes onto the
wire surface. The calculations (or at least estimates) of
these perturbations will make it possible to improve the
accuracy of determining the plasma parameters. Note,
however, that the higher the microwave field, the more
strongly the plasma is pushed away from the wires and
the less important are the flux effects.
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Abstract—Eigenmodes of an axisymmetric plasma column that is uniform along the magnetic field are inves-
tigated. It is shown that, as the plasma density increases, eigenmodes with frequencies close to the electron
gyrofrequency tend to localize at the plasma periphery. This effect is likely to restrict the electron density at
which the plasma can be heated by means of such modes. A theory is developed for the excitation of the eigen-
modes of a plasma column in a weakly nonuniform magnetic field by an external antenna. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The distinguishing feature of helicon waves (heli-
cons) is their ability to propagate in a plasma whose
density exceeds the critical density, which is defined by
the relationship ωpe = ω (where ωpe is the electron
plasma frequency). This effect makes it possible to cre-
ate and heat plasmas with comparatively high densities
(see, e.g., [1–5]). Since the frequency range of the hel-
icons is broad (ωi ! ω < ωe, where ωj is the gyrofre-
quency of the particles of species j = i, e), they can be
used for electron-cyclotron-resonance (ECR) plasma
heating by the “magnetic beach” method. In this
method, the eigenmodes of the plasma column are
excited at a certain distance from the ECR region and
then approach it along the magnetic field. As the ECR
region is approached, the longitudinal component N|| of
the refractive index for the helicons increases sharply.
Oscillations with |N||| @ 1 are difficult to excite by an
antenna positioned in vacuum, because their transverse
refractive index is imaginary and is large in absolute
value: ImN⊥  ≈ N|| @ 1. Consequently, the electromag-
netic field of the antenna should be the strongest in its
vicinity and should fall off exponentially toward the
plasma column. The necessity of placing the antenna at
a large distance from the ECR region leads automati-
cally to a magnetic beach configuration.

Although the magnetic field variations can substan-
tially change the eigenvalues of N||, they have an insig-
nificant impact on the spatial structure of the eigen-
modes. The plasma density variations affect the oscilla-
tions in a different way. In this paper, it is shown that,
as the plasma density increases, the lowest radial modes
with comparatively small eigenvalues of N|| tend to
localize near the boundary of the plasma column, while
the central (highest density) region of the column
becomes opaque to eigenmodes. Presumably, this
effect is a manifestation of a general feature peculiar to
helicons with frequencies close to the electron gyrofre-
quency. This feature was pointed out in my earlier
1063-780X/02/2811- $22.00 © 0906
paper [6], which was aimed at investigating the ray tra-
jectories of helicons in an inhomogeneous plasma in an
open confinement system. It was found that, as a result
of refraction, the ray trajectories escape from the cen-
tral region of the plasma to the plasma periphery.

As the plasma density increases, the tendency for
the helicons to localize near the plasma boundary
becomes more pronounced. Presumably, it is this effect
that will impose a limit on the electron density at which
the plasma can be heated by helicons. However, it
should be noted that the effect is weaker for a plasma in
which the radial density profile is flat in the central
region and decreases abruptly near the boundary.

Microwave discharges (especially those used in
technological applications) are often initiated in com-
paratively weak magnetic fields (with strengths of
about 100 G). In this case, the vacuum wavelength of
electromagnetic oscillations with ω ≈ ωe is much larger
than the length of the system. Such oscillations can be
excited by antennas of the same type as ion-cyclotron-
resonance (ICR) heating antennas (see, e.g., [5]). Note
that, although the magnetic fields required for fusion
experiments are much stronger than those indicated
above, they can weaken substantially at high plasma
pressures.

The objective of this paper is to analyze the excita-
tion of the eigenmodes of a plasma column in a nonuni-
form magnetic field by an antenna placed outside the
plasma (in a vacuum). The distribution of the antenna
electric current over the longitudinal coordinate is
expanded in a Fourier integral over N||. An individual
Fourier harmonic of the antenna current with a certain
value of N|| resonantly transfers its energy to the eigen-
modes in the vicinity of the point at which the eigen-
value of the longitudinal wavenumber is exactly equal
to N||. The power expended by the antenna to excite the
eigenmodes of the plasma column is calculated.
2002 MAIK “Nauka/Interperiodica”
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2. EIGENMODES OF THE PLASMA COLUMN

We assume that the parameters of the system vary in
the longitudinal direction over distances much larger
than the radius of the plasma column. In this case, the
eigenmode parameters can be determined in the uni-
form plasma column approximation, and the longitudi-
nal nonuniformity of the column can be taken into
account by varying the parameters of the problem. In
this model, we consider a one-dimensional problem,
assuming that the axisymmetric plasma column is infi-
nitely long and is uniform along the magnetic field. In
accordance with the symmetry of the problem, the per-
turbed quantities can be described by the spatiotempo-
ral dependence ∝ f(r)exp(–i(ωt + mθ + N||z)) in cylin-
drical coordinates consistent with the geometry of the
column.

The set of Maxwell’s equations for the oscillations
in question has the form

(1)

where ε = 1 – , g = , ε|| = 1 – , ωpe

is the electron plasma frequency, and ωe is the electron
gyrofrequency. The plasma is assumed to be cold, and
the ion contribution to the plasma dielectric response is
neglected. Equations (1) are written in terms of the
dimensionless length rω/c  r. The radial plasma
density profile is chosen to be n0(r) =

n0(r0) , which is close to a Gaussian

profile when ∆ @ r0 and to a smeared step function
when ∆ ! r0. It is also assumed that, at r = rB, the
plasma is bounded by a perfectly conducting wall.

When integrating Eqs. (1), the value Bz(0) at the axis
of the plasma column was specified; the value Ez(0) and
the eigenvalue of N|| were adjusted by a shooting
method so as to satisfy the condition that the tangential
components Eθ and Ez of the electric field vanish at
r = rB. Equations (1) imply that, in the vicinity of the
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origin of the coordinate system, the electromagnetic
field components depend on the radius according to the
laws Er, Eθ, Br, Bθ ∝  r|m| – 1 and Ez, Bz ∝  r|m|. We introduce
the quantities eθ(0), bθ(0), bz(0), and ez(0) through the
relationships Eθ  r|m| – 1eθ(0), Bθ  r|m| – 1bθ(0),
Ez  r |m |ez(0), and Bz  r |m |bz(0). In order to inte-
grate Eqs. (1), it is necessary to express the quantities
eθ(0) and bθ(0) in terms of ez(0) and bz(0), which can
also be done by means of Eqs. (1):

(2)

where we have introduced the notation

The results of integrating Eqs. (1) are illustrated in
the figures presented below. Figure 1 shows the radial
profiles of the electric field components of the first
radial mode of the oscillations (n = 1), whose spatial
scale in the case at hand is the longest. Note that the
mode that can be regarded as the zeroth one is a surface
mode (see below). We consider oscillations rotating
azimuthally in the same direction as the electrons and
having the smallest azimuthal wavenumber m = 1. We
also assume that the plasma density is only several
times higher than the critical density, (ωpe/ω)2 = 3. In
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Fig. 1. Radial profiles of the electric field components
(1) E–, (2) E||, and (3) E+ of the (n = 1, m = 1) eigenmode of
the plasma column. The computation parameters are
(ωpe/ω)2 = 3, ωe/ω = 1.5, r0 = 3, ∆ = 2, and rB = 7, the eigen-
value being N|| = 3.2.
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the central region of the plasma column, the electric
field is right-polarized, is perpendicular to the main
magnetic field, and rotates in the same direction as the

electrons: E ≈ E–, where E– = (Er – iEθ)/ . In the
peripheral plasma region in which ωpe ≈ ω, the electric
field has a significant longitudinal component. The
electromagnetic oscillations are coupled with the
potential plasma electron oscillations. The conversion
of electromagnetic oscillations into plasma electron
oscillations propagating along the magnetic field is
most efficient for short-wavelength oscillations, which
can be described in the quasiclassical approximation
[7].

The larger the ratio r0/∆ (which corresponds to the
transition from a Gaussian profile to a smeared step
function), the greater the tendency for the longitudinal
and left-polarized components of the electric field, E||

and E+ = (Er + iEθ)/ , to localize near the plasma
boundary. In the main part of the plasma column, where
the plasma density is approximately constant, there
remains only the right-polarized electric field compo-
nent (Fig. 2). Of course, the refractive index for such
oscillations can be described with good accuracy by the
familiar expression

(3)

Thus, for the plasma parameters of Fig. 2, the eigen-
values of N|| differ by no more than 15% from those
described by expression (3) when the ratio ωe/ω
changes in the range from 1.5 to 1.15. Note that,
although the eigenvalues of N|| change sharply as ωe

approaches ω, the shape of the eigenfunctions changes
only slightly. This conclusion can also be derived on the

basis of expression (8) for  (see below).
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Fig. 2. Same as in Fig. 1, but for (ωpe/ω)2 = 5, ωe/ω = 1.5,
r0 = 3, ∆ = 0.5, and rB = 6 and for the eigenvalue N|| = 4.6.
The amplitudes of the right-polarized and longitudi-
nal electric fields of the higher radial modes are approx-
imately the same regardless of the shape of the radial
profile of the plasma density; moreover, the longitudi-
nal electric field is strong in the regions where the right-
polarized electric field is weak, and vice versa (Fig. 3).

It should be noted that, in the cold plasma approxi-
mation, the number of radial eigenmodes is infinitely
large. In spatially bounded systems, the wavelength of
the oscillations decreases to zero as the radial wave-
number increases; hence, an infinitely high “confining”
potential is required to localize such oscillations. In the
case under consideration, an infinitely high potential is
provided by a singularity that arises in the wave equa-
tion because of the coupling of the oscillations in ques-
tion to the potential oscillations, which are also called
the Trivelpiece–Gould (TG) modes. Because of the sin-
gularity in the wave equation, the characteristic wave-
length of the TG modes in a cold plasma tends to zero.
The coupling of the helicon waves to the TG modes was
pointed out, in particular, in [1, 4, 5]. The above plasma
electron oscillations can be regarded as a particular
case of the TG modes (namely, those with N⊥  = 0). In a
homogeneous plasma, the TG modes propagate at a
certain angle θ = θres (the angle at the vertex of the so-
called resonant cone) to the magnetic field:

(4)

For a high-density (ωpe @ ω) plasma, expression (4)
yields

(5)

The problem under discussion differs substantially
from those of the eigenmodes of the plasma in a rectan-
gular waveguide. However, if we set Nr ≈ nπ/r0 and
Nθ = m/r0, then we can see that the dependence of
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Fig. 3. Same as in Fig. 1, but for the (n = 2, m = 1) eigen-
mode and for the eigenvalue N|| = 3.88.
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the  eigenvalues of the longitudinal wavenumber on n
and m,

(6)

which follows from relationship (5), agrees in general
with the dependence obtained by solving the wave
equation (Fig. 4). The agreement is better for the high-
est radial modes, which convert into the potential TG
modes.

As the plasma density decreases, the lowest radial
modes also convert into potential modes. In fact, as was
noted above, the electromagnetic oscillations convert
into plasma electron oscillations in the vicinity of the
critical surface, at which ωpe = ω. The lower the plasma
density, the smaller the transparency region (ωpe(r) > ω)
and, consequently, the larger the effective transverse
wavenumber. As a result, the boundary region where
ωpe ≈ ω plays an increasingly important role, and the
oscillations convert into TG modes. Relationship (3)
implies that, as ε||  0, the longitudinal wavenumber
of these modes should increase sharply. This conclu-
sion is confirmed by the results of calculations (Fig. 5).

Note that, in the opposite case of a high-density
plasma (ωpe @ ω), the lowest radial modes also acquire
the nature of TG modes and simultaneously tend to
localize near the boundary of the plasma column. In
order to analyze these phenomena at a qualitative level,
we use the following familiar dispersion relation for
helicons (see, e.g., [2]):

(7)

The refractive index of a high-density plasma for
electromagnetic oscillations propagating in it is large,
N ≥ ωpe/ω @ 1. On the other hand, the transverse com-
ponent of the refractive index for the lowest radial
modes is comparatively small, N⊥  ≈ π/r0 ≤ 1. These
lowest modes satisfy the condition θ ! 1, which puts
dispersion relation (7) in the form

(8)

Here, as in numerical analysis, we assume that the con-
dition 2 > ωe/ω > 1 holds.

Dispersion relation (8) implies that, for an inhomo-
geneous plasma, the condition N⊥  ! N|| can be satisfied

only in a small region where  ≈ . This

region should lie at the edge of the plasma column,
while the inner plasma region where N⊥  ≈ N|| is opaque

to the oscillations under consideration (  < 0). In the
boundary region, we have ε||  0, which makes it pos-
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sible to satisfy condition (4) for the lowest radial
modes.

The above conclusions are confirmed by numerical
calculations (see Figs. 1, 2, 6, 7). The numerical results
show that, in a plasma with a sufficiently high density,
the lowest radial modes are actually expelled to the
plasma periphery, where they acquire the nature of sur-
face modes. In the case of short-wavelength oscillations
whose propagation can be described in the ray approx-
imation, this effect corresponds to the escape of the ray
trajectories of helicons to the peripheral plasma region.
This latter effect was pointed out in my earlier paper
[6], in which the approximate analysis of the ray trajec-
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Fig. 4. Eigenvalues of the longitudinal refractive index vs.
radial mode number: (1) calculations from Eqs. (1) and (2)
calculations from expression (6). The only physically
meaningful values are the integer values of the mode num-
ber. The computation parameters are (ωpe/ω)2 = 5, ωe/ω =
1.5, r0 = 3, ∆ = 2, and rB = 5.5.
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Fig. 5. Eigenvalues of the longitudinal refractive index vs.
plasma density for ωe/ω = 1.5, r0 = 3, ∆ = 2, rB = 7, and n =
m = 1.
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tories was carried by means of a dispersion relation
analogous to relation (8).

In addition to the internal modes considered above,
there also exists a mode that can be referred to as the
surface mode of the plasma column or the fundamental
mode of the entire radial interval 0 < r < rB in question.
This mode is localized in the boundary region where
ωpe ≈ ω. The refractive index of the plasma for this
mode is substantially smaller than that for the internal
modes (cf. the captions in Figs. 1, 3, 8). As a result, the
electromagnetic field of the surface mode penetrates
deeper into vacuum in comparison with the fields of the
internal modes (Fig. 8). Note that, in contrast to the
internal modes, the longitudinal refractive index for the
surface mode changes slightly with increasing plasma
density.

1
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Fig. 6. Same as in Fig. 1, but for (ωpe/ω)2 = 2 and for the
eigenvalue N|| = 2.84.
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Fig. 8. Same as in Fig. 1, but for the (n = 0, m = 1) surface
mode and for the eigenvalue N|| = 1.47.
If the plasma column is separated from the chamber
wall by a vacuum gap, then there exist higher order
modes of the gap. Thus, for the above radial profile of
the plasma density, the next mode arises when the
radius of the perfectly conducting wall is about rB ≈ 9.5.
Note that, at this radius, the longitudinal wavenumber
of the mode is zero.

We have thoroughly discussed oscillations that
rotate in the same direction as the electrons (m > 0). The
general features of oscillations with m ≤ 0 are essen-
tially the same. The most profound difference between
these types of oscillations is in their polarization at
r  0. At the axis of the plasma column, only the left-
polarized electric-field component of the modes rotat-
ing in the same direction as the ions is nonzero, while
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Fig. 7. Same as in Fig. 6, but for (ωpe/ω)2 = 5 and for the
eigenvalue N|| = 3.62.
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Fig. 9. Same as in Fig. 1, but for the (n = 1, m = 0) mode and
for the eigenvalue N|| = 3.64.
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the only nonzero electric-field component of the modes
with m = 0 is the longitudinal one (Figs. 9, 10).

3. EXCITATION OF EIGENMODES

In order for plasma heating by means of helicons to
hold promise for practical applications, the helicons
should be efficiently excited by an antenna placed out-
side the plasma. Let us analyze this heating process.

We consider an axisymmetric magnetic field and
assume that (as is commonly the case) the plasma col-
umn lies entirely in the axial region of the device. In
this situation, the radial nonuniformity of the magnetic
field across the column is of little importance, whereas
the longitudinal magnetic-field nonuniformity can play
a significant role. The nonzero longitudinal gradient of
the magnetic field is characteristic of open magnetic
confinement systems and also of a broad variety of gas-
discharge devices in which plasma is used for techno-
logical applications.

The eigenvalues of the longitudinal refractive index
for helicons depend on ωe (see above). Consequently,
as the helicons propagate along a nonuniform magnetic
field, the longitudinal refractive index for them
changes. As a function of the longitudinal coordinate,
the electric current flowing in an antenna can be
expanded in a Fourier integral. Each individual Fourier
harmonic of the antenna current interacts efficiently
with the eigenmode only in the vicinity of the resonant

point zs, at which the equality N|| = (zs) is satis-
fied. As will be shown below, the length of the interac-

tion interval along the plasma axis (l ≈ ) is short in
comparison with the characteristic length scale L|| on
which the magnetic field varies in the longitudinal
direction. (Recall that all of the quantities having the
dimension of length are nondimensionalized by multi-
plying by c/ω.) Calculations show that the radial depen-
dence of the electromagnetic fields remains essentially
unchanged even when the longitudinal variations in the
magnetic field are substantial. This fact, together with
the short length of the region where the antenna field
interacts efficiently with the plasma, allows us to
assume that the radial profile of the eigenmodes
remains unchanged and to represent their spatially
varying complex amplitude in the form Ei(r) =

exp(imθ + iN||z) (r) (z) and Bi(r) = exp(imθ +

iN||z) (r) (z). We also assume that the character-
istic length scale L|| on which the magnetic field varies
is much larger than the plasma radius. In this case, in
calculating the eigenmodes of the plasma column (i.e.,

in determining the radial dependences (r) and

(r)), the magnetic field can be treated as a slowly
varying parameter.
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Outside the plasma, as the ECR region is
approached, the electromagnetic fields tend to localize
in the vicinity of the antenna. This effect is associated
with an increase in N|| and is described by the approxi-
mate equality ImNr ≈ N||, which is valid for N|| @ 1.
Consequently, during ECR plasma heating in devices
with a longitudinally nonuniform magnetic field (such
as open magnetic systems), the eigenmodes should be
excited far from the ECR region, specifically, in the
region where they can efficiently interact with the field
of the antenna located outside the plasma. It is precisely
in this way that electromagnetic oscillations are gener-
ated during ICR plasma heating by the magnetic beach
method. Note that, in contrast to the case under discus-
sion, the transparency region for the eigenmodes
shrinks toward the axis of the plasma column as the
ICR region is approached [8].

We assume that the electric current generating hel-
icons flows along a cylindrical surface of radius rA

(rA < rB). In order to describe the dependence of the
current on the spatial coordinates, we expand it in a
Fourier integral in the longitudinal coordinate z and in
a Fourier series in the azimuthal coordinate θ.

The electric field excited by an individual Fourier
harmonic of the current can be described by the follow-
ing set of equations derived in [8]:

(9)
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Fig. 10. Same as in Fig. 1, but for the (n = 1, m = –1) mode
and for the eigenvalue N|| = 4.36.
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and j is the Fourier harmonic of the current. The sub-
scripts m and N|| in the Fourier harmonics of the current
and the electromagnetic field are omitted.

Note that the set of homogeneous equations (9) is
equivalent the set of Maxwell’s equations (1). However,
Eqs. (9) cannot be used in numerical calculations
because the coefficient in front of the second derivative

vanishes at the points at which the equalities ε –  = ±g
hold. In numerical integration, these points manifest
themselves as singular points. Meanwhile, the analysis
carried out in [9] shows that, because of some special
relationships between the coefficients in Eqs. (9), the
solution at these points is regular (in the terminology of
[9], these points are fictitious singular points).

We multiply the first and second of Eqs. (2) by

(r) and F(1)(r), respectively, and integrate the result-
ing equations over the radius. As a result, we arrive at
the following algebraic equations

(10)

where
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the angular brackets denote averaging over the radial
coordinate, Iθ is the θ-component of the surface current

density, h1 = rA( (rA) , and h2 =

− F(1)(rA). When deriving Eqs. (10), we

took into account the current continuity equation

Iθ + N||I|| = 0.

Equations (10) are equivalent to the equalities

(11)

where D = a11a22 – .

For the eigenvalues N|| = , the quantity D van-
ishes, which indicates that the plasma is in resonance
with the antenna current. If the magnetic field varies in

the longitudinal direction, then the eigenvalues 
are functions of the z coordinate. Therefore, the eigen-
mode is in resonance with the Fourier harmonic of the
antenna current only in a neighborhood of a certain

point zs, at which N|| = (zs). In order to analyze the
process of the excitation of eigenmodes by an external
current, we turn to the general method for deriving

equations for the envelopes (z) and (z). Specif-
ically, we consider the quantity D on the left-hand sides
of relationships (11) as the operator

In this way, the first of Eqs. (11) becomes

(12)

where P = /  and Q1 = (h1a22 – h2a12)/ . The
second of Eqs. (11) can be reduced to a form similar to
Eq. (12) with the replacement of Q1 by Q2 = (h2a11 –

h1a12)/ .

Equation (12) has the solution

(13)

where J(z) = exp(–iP(z – zs)2/2) exp(iP(z' –

zs)2/2).

Using expression (13) and an analogous expressions
for F(2)(z), we can determine the power expended by the
antenna current to excite the eigenmode. To do this, we
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turn to the following relationships, which are valid in
the vacuum region:

in which case we have

(14)

We also exploit the condition D = a11a22 –  = 0,
which is valid for eigenmodes. As a result, we obtain
the following spatial distribution of the work done by
the current on exciting an individual eigenmode:

where s1 = sgn(a11 ) and s2 = sgn(a11a12).

The total power lost by a Fourier harmonic of the
current is equal to

Integrating by parts readily yields

Then, we obtain

(15)

The same result can also be derived in a simpler
(“heuristic”) way. From the first of Eqs. (11), we find
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The second of Eqs. (11) gives a similar expression
for F (2).
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grals  and , which in turn are pro-

portional to Im . The last expression is satisfied

in the vicinity of the resonant point zs, at which N|| is

equal to the eigenvalue . Following the Landau
circumvention rule, we represent the quantity D in this

vicinity in the form D ≈ iν  + (z – zs) , where
ν  0. Using this representation, we obtain

(17)

From the relationship  = – , we can see

that, for the oscillations propagating in the positive

direction along the z-axis, the quantities  and 
have opposite signs. Taking into account this circum-
stance and using expressions (14), (16), and (17), we
again arrive at expression (15) for W (n, m)(N||).

The quantity W (n, m)(N||) should be positive. I failed
to prove this assertion in the general case. However, in
the Appendix, this assertion is proved for oscillations
whose electric field is dominated by the right-polarized
circular component and which offer the greatest prom-
ise for ECR plasma heating.

In the case of propagation along a nonuniform mag-

netic fields, the eigenvalue  changes and eigen-
modes come into resonance with different Fourier har-
monics of the antenna current. The total power
expended by the antenna to excite the (n, m) mode is
equal to

In order of magnitude, this power is

(18)

where  is the minimum value of  over the
interval between the antenna and the ECR region, ∆A is
the distance from the antenna to the plasma boundary
(to the critical surface), and all of the quantities having
the dimension of length are again nondimensionalized
by multiplying by c/ω.

According to estimate (18), the power expended on
the excitation of eigenmodes falls off sharply with

increasing . Since the eigenvalues increase with
n and m, most of the antenna power should be spent on
the excitation of the lowest mode (or several lowest
modes).
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Since the power expended on the excitation of
eigenmodes depends nonmonotonically on the plasma
density, it is expected that plasmas with densities far
above the critical density will be difficult to maintain.
The fact that the central part of a high-density plasma
column is opaque to eigenmodes is also unfavorable for
the maintenance of such plasmas.

4. CONCLUSION

Hence, in this paper, the suitability of helicon waves
for ECR plasma heating in a magnetic beach configura-
tion has been analyzed. The results of the analysis make
it possible to conclude that this method can be used to
heat plasmas with densities that are several times higher
than the critical density. The heating of higher-density
plasmas is hindered by the tendency of the eigenmodes
of the plasma column to localize near the plasma
boundary. The power expended by the antenna on excit-
ing the eigenmodes of the plasma column in a longitu-
dinally nonuniform magnetic field has been calculated.
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APPENDIX

For ECR plasma heating, it is expedient to use oscil-
lations whose electric fields are dominated by the right-
polarized circular component. These are oscillations
rotating azimuthally in the same direction as the elec-
trons and having the azimuthal wavenumber m = 1. The
left-polarized circular component of the electric field of
such oscillations is small over the entire radial interval
under consideration. Their longitudinal electric-field
component is also small in the central part of the
plasma column but becomes comparable to the right-
polarized circular component in the peripheral region,
where the plasma density passes through the critical
value. An approximate analysis of these oscillations
can be carried out by assuming that E+ = (Er +

iEθ)/  = 0, in which case the set of Maxwell’s equa-
tions (1) can be reduced to the following two second-
order equations, whose general structure is similar to
that of Eqs. (11):

(A.1)

2
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4πi
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4πi
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-------- jz,–=
where L11 =  –  + 2(ε – g – ), L12 =

N||  + , L21 = –N||  – , and L22 = 

–  + ε||.

As in Section 3, we represent the components Eθ and

Ez in the form Eθ(r) = (r) (z) and Ez(r) =

(r) (z). We multiply the first and second of

Eqs. (A.1) by r (r) and r (r), respectively, and
integrate over the radius. As a result, we obtain

where a a11 = –  +

2〈r(ε – g – )( )2〉 , a12 = ,

and a22 = –  + 〈rε||( )2〉 .

Using the same method as in Section 3, we arrive at
the following expression for the work done by the
antenna current on exciting an eigenmode of the plasma
column in a nonuniform magnetic field:

The quantity Q = a11 , which determines the

sign of W (n, m)(N||), can be represented as

The first term in parentheses is positive, while the sign
of the second term remains undetermined.

For a radial plasma density profile in the form of a
smeared step function with r0 @ ∆ (see Section 2), the
longitudinal electric field is localized at the plasma–
vacuum interface and varies radially on a characteristic
scale of about ≈∆. Hence, we arrive at the following

order-of-magnitude estimates: a11 ≈ , a12 ≈ N||r0, and
a22 ≈ r0. If r0 @ 1, then the first term in parentheses is
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larger in absolute value than the second term; as a
result, we have Q < 0 and, accordingly, W (n, m)(N||) > 0.
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Abstract—A theoretical study is made of the dispersion properties of electromagnetic surface waves with arbi-
trary azimuthal mode numbers and with a small axial wavenumber in cylindrical metal waveguides entirely
filled with a radially inhomogeneous, cold, magnetized plasma. The frequency ranges in which the extraordi-
nary polarized waves under analysis can exist are found, and the conditions for their resonant interaction with
an ordinary bulk wave are determined. The eigenfrequency of these surface waves is investigated as a function
of the plasma parameters, the axial wavenumber, and the azimuthal mode number. Simple analytic expressions
are derived for the eigenfrequencies of the surface waves under study propagating in a homogeneous plasma
waveguide. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In order to choose optimum conditions for the gen-
eration of oscillations in plasma-filled waveguides, it is
necessary to know the waveguide eigenfrequencies,
because it is precisely at frequencies close to them that
the plasma interaction with charged particle beams [1]
or with an external alternating electric field [2] is most
efficient. Filling a waveguide with plasma expands the
range of the waveguide eigenfrequencies. The disper-
sion properties of plasma waveguides began to be
investigated using the simplest models [3] and are still
being studied for the cases of gaseous [4–10] and solid-
state [11–13] plasmas.

The dispersion properties of electromagnetic waves
propagating strictly in the azimuthal direction in cylin-
drical metal waveguides entirely filled with a homoge-
neous plasma—the so-called azimuthal surface waves
(ASWs)—were investigated in [14] and, in the poten-
tial approximation, in [15]. In [16, 17], it was shown
that ASWs can be generated as a result of beam–plasma
instability or dissipative instability. One of the main
advantages of the oscillators based on ASWs is their
relative compactness in the axial direction. A useful
property of ASWs is that they propagate in only one
direction along the plasma–metal boundaries. This phe-
nomenon is well known for surface waves propagating
across the external magnetic field in waveguide struc-
tures with the Voight geometry [15]. During the excita-
tion of such waves, the reflected signal in the system is
absent, which may turn out to be very helpful in some
cases.

Over the past decade, interest in the eigenmodes of
plasma waveguides has increased in connection with
their use in sustaining gas discharges [10, 18–21].
Plasma sources that are based on surface waves (SWs)
1063-780X/02/2811- $22.00 © 20916
find wide application in plasma technology; e.g., they
are used to process solid-state plates with large working
surfaces [20, 21].

In [19], it was shown that ASWs can be employed to
sustain low-pressure gas discharges that are used in
modern-day plasma microtechnologies. The properties
of gas discharges sustained by axisymmetric (m = 0)
and dipole (m = ±1) SWs propagating along the axis of
a cylindrical chamber were investigated experimentally
in [18, 22, 23]. The possibility of sustaining gas dis-
charges in a magnetized plasma column by quadrupole
(m = ±2) and octopole (m = ±3) SWs was studied
numerically in [10, 24].

The dispersion properties of electromagnetic SWs
with small axial wavenumbers at cylindrical plasma–
metal boundaries have not yet been studied. For arbi-
trary values of the parameters of a magnetized plasma
system, the azimuthal mode number m, and the axial
wavenumber kz, the dispersion properties of SWs can
be investigated only numerically. For long axial wave-
lengths, the problem can be solved by means of pertur-
bation theory, in which case ASWs are used as a zeroth
approximation [14]. The objective of our work is to
investigate the dispersion properties of long-wave-
length SWs.

Our paper is organized as follows. In Section 2, we
describe the waveguide model and write out the basic
equations. In Section 3, we derive a second-order dis-
persion relation for long-wavelength magnetoplasma
SWs in a cylindrical metal waveguide entirely filled
with a plasma with a radially nonuniform density pro-
file. We also investigate the limiting case of a plasma
with a radially uniform density profile. In Section 4, we
solve the dispersion relation for SWs with positive azi-
muthal mode numbers, and, in Section 5, we solve the
002 MAIK “Nauka/Interperiodica”
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same relation for SWs with negative azimuthal mode
numbers. In Section 6, we show that the dispersion
properties of long-wavelength, high-frequency SWs
can be affected in a resonant fashion by the value of kz.
In the Conclusion, we summarize the main results of
our study.

2. FORMULATION OF THE PROBLEM

We consider a perfectly conducting, circular cylin-
drical metal waveguide of radius a filled entirely with a
plasma that is assumed to be homogeneous in the cylin-
drical coordinates z and ϑ . The external magnetic field
is directed along the waveguide axis (H0 || z).

The electrodynamic properties of a cold, weakly
collisional, magnetized plasma are described by the
dielectric tensor (see, e.g., [3–5])

(1)

In this case, the components of the wave electromag-
netic field, which are assumed to be proportional to
∝ expi(kzz + mϑ  – ωt), are described by the following
Maxwell’s equations:

(2)

(3)

(4)

(5)

(6)

(7)

Here and below, Nz = ckz/ω is the axial refractive index
and Nϑ = cm/(ωr) is the azimuthal refractive index.

For ASWs propagating strictly in the azimuthal
direction (kz = 0), the set of Maxwell’s equations (2)–
(7) splits into two independent subsets of equations.
The subset consisting of Eqs. (4)–(6) describes an H-
wave, having the field components Ez , Br , and Bϑ. The
subset consisting of Eqs. (2), (3), and (7) describes an
E-wave, having the field components Er, Eϑ, and Bz.
Hence, ASWs of the E- and H-types propagate indepen-
dently of one another. For long-wavelength SWs with a
small but finite axial wavenumber kz, the coupling
between the E- and H-waves is weak. The dispersion
properties of such waves can be studied by means of
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perturbation theory and by using the theory of ASWs as
a zeroth approximation [14].

We restrict ourselves to considering a high-density

plasma such that  @  (where ωpe is the electron
plasma frequency and ωce is the electron cyclotron fre-
quency). This inequality always holds for an n-semi-
conductor plasma and can be satisfied for a gas plasma
in a weak magnetic field under laboratory conditions. It
is precisely the limiting case of a high-density plasma
that is most interesting for plasma technologies [18].
Note also that the dispersion properties of ASWs in

cylindrical, strongly magnetized (  < ) plasma
waveguides were investigated in [25].

The fields of an SW satisfy the following boundary
conditions: the wave field amplitudes are finite over the
waveguide volume and the tangential component of the
electric field vanishes at the inner surface of the metal
chamber.

3. LONG-WAVELENGTH SURFACE WAVES
IN A RADIALLY INHOMOGENEOUS PLASMA

If we neglect the terms of second order and higher,
we can reduce Eqs. (2)–(7) to the following two sec-
ond-order differential equations for the axial compo-
nents of the electric and magnetic fields in a radially
inhomogeneous plasma:

(8)

(9)

The small right-hand sides of Eqs. (8) and (9) have the
form

(10)

(11)

The penetration depth  for an H-wave field (with

ordinary polarization) and the penetration depth  for
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an E-wave (with extraordinary polarization) are defined
in terms of the tensor elements εik as follows:

(12)

In [26], the set of coupled equations for the longitu-
dinal components Ez and Bz of the wave electromag-
netic field was derived for arbitrary values of kz and for
a radially homogeneous plasma in an axial magnetic
field.

Equations (8) and (9) can be solved by the method
of varying a constant:

(13)

(14)

Here, ψ(r) and ϕ(r) are such solutions to Eqs. (8) and
(9) with zero on the right-hand sides that are finite at the
waveguide axis (at r = 0) and the functions (r) and

(r) are solutions to the same equations that are lin-
early independent of ψ and ϕ. Solutions (13) and (14)
contain two integration constants A1 and A2. The
remaining two integration constants have already been
determined from the condition that the field compo-
nents Ez and Bz are finite at the waveguide axis, where
the functions  and  have singularities. The Wron-
skian of the functions ψ(r) and (r) is equal to

(15)

and the Wronskian of the functions ϕ(r) and (r) is
inversely proportional to the radial coordinate r:

(16)

According to Eqs. (2)–(7), the azimuthal component of
the electric field is expressed in terms of Ez and Bz as
follows (see, e.g., [4]):

(17)

The above boundary conditions for Eϑ and Ez at the
inner surface of a metal waveguide make it possible to
write the dispersion relation for long-wavelength SWs
in the form

A12A21 = A11A22, (18)
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where

(19)

(20)

(21)

(22)

It should be noted that dispersion relation (18) is, on the
one hand, a generalization of the dispersion relation
obtained in [14] to small values of kz, and, on the other,
a particular case of the general dispersion relation that
was derived in [8] in order to determine the spectra of
the eigenfrequencies of a coaxial plasma waveguide in
a finite magnetic field. Let us discuss the structure of
dispersion relation (18), which is similar to the struc-
ture of the dispersion relations for weakly coupled
oscillations. In such an approach, the condition A12 = 0
plays the role of the dispersion relation for extraordi-
nary ASWs (an E-wave), and the solution ω0 to the dis-
persion relation is assumed to be known. The variable
sign of this coefficient in the frequency ranges where
the waves under consideration can exist (in [14], these
ranges were determined for the case of an ASW)
ensures that Eq. (18) has solutions. The condition
A21 = 0 could be the dispersion relation for ASWs (H-
waves); however, under the given conditions, its solu-
tions describe only bulk waves. The right-hand side of
dispersion relation (18) is quadratic in the small axial
wavenumber kz, which serves as the parameter of the
weak coupling between E- and H-waves. These circum-
stances allow us to conclude that the correction ∆ω to
the eigenfrequency of the long-wavelength SWs is qua-

dratic in the axial wavenumber, ∆ω ∝ . We stress that
the axial wavenumber also enters the left-hand side of
dispersion relation (18) through the penetration depth

 of the SWs into the plasma.

4. LONG-WAVELENGTH, LOW-FREQUENCY 
SURFACE WAVES IN A HOMOGENEOUS 

PLASMA WAVEGUIDE

In what follows, we restrict ourselves to analyzing
the model with a uniform radial plasma density profile.
The reasons for this are twofold. First, this model pro-
vides a good description of solid-state plasmas. Sec-
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ond, the radial density variations can be neglected when
the plasma density changes insignificantly over dis-
tances on the order of the penetration depth of the wave
into the plasma; for a gas discharge sustained by an SW,
it is precisely at these distances that the plasma density
is maintained at a constant level.

For a radially homogeneous plasma, Eqs. (8) and (9)
for Ez and Bz are inhomogeneous Bessel equations. The
solutions to the corresponding homogeneous equations
that are finite at the waveguide axis are modified Bessel
functions of the first kind:

(23)

The solutions to Eqs. (8) and (9) that are linearly inde-
pendent of solutions (23) are modified Bessel functions
of the second kind:

(24)

Solutions (23) and (24) are valid for  > 0 and

 > 0. It is the latter condition,  > 0, that deter-
mines the frequency ranges in which SWs can exist and
which, in the limit kz = 0, coincide with the ranges
where ASWs exist [14]: SWs with positive azimuthal
mode numbers m exist in the low-frequency (LF) range

(25)

and SWs with negative azimuthal mode numbers m
exist in the high-frequency (HF) range

(26)

The property of SWs to propagate in only one direction
across the external magnetic field is well known for
waveguides in which the plasma is in contact with the
metal wall [3, 15]. This property, which is called “uni-
directionality,” can be especially useful in various radio
engineering devices in which it is necessary to ensure
that the reflected signal be absent.

In frequency ranges (25) and (26), the quantity 

has different signs, namely  > 0 in the LF range and

 < 0 in the HF range.

For a uniform density profile, expressions (10) and
(11) for the right-hand sides of Eqs. (8) and (9) can be
significantly simplified:

(27)

ψ Im kHr( ), ϕ Im k0r( ).= =

ψ̃ Km kHr( ), ϕ̃ Km k0r( ).= =

k0
2

kH
2

kH
2

ωce

ωpi
2

c
2
kz

2
+

ωpe
2 ωce

2
+

------------------------ ω ωce ,< <

ωce
2 ωpe

2
c

2
kz

2
+ + ω 1

2
--- ωce< <

+
1
4
---ωce

2 ωpe
2

c
2
kz

2
+ + .

k0
2

k0
2

k0
2

K̂Ez iNz

µε3

NH
2

--------Ez, M̂Bz– iNzµ
ω2

c
2

------Bz,= =
PLASMA PHYSICS REPORTS      Vol. 28      No. 11      2002
in which case dispersion relation (18) can be written in
a fairly simple explicit form:

(28)

(29)

A21 = Im(k0a), (30)

(31)

(32)

Taking into account the small axial wavenumber kz

leads to an additional (in comparison with the case of
ASWs) solution to the dispersion relation. This addi-
tional solution describes the wave that will be referred
to as a slow mode. In the LF range, the frequency ω– of
the slow mode is approximately proportional to kz; i.e.,
the frequency ω– approaches the cutoff frequency as
kz  0 (Fig. 1). The group velocity of the slow mode
is always positive, ∂ω–/∂kz > 0, and in absolute value
exceeds the group velocity of the fast mode.

The fast mode can be described as follows. In the
limit kz  0, its frequency ω+ approaches the fre-
quency of the ASW. For very small kz values, there
exists a portion of the dispersion curve of the fast mode
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Fig. 1. Frequency of an LF SW with extraordinary polariza-
tion, normalized to the absolute value of the electron cyclo-
tron frequency, as a function of the product of the axial
wavenumber and the waveguide radius. The calculations
were carried out for the azimuthal mode number m = 3,
ωpe = 5|ωce |, and a = 10δ.
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Table

Quantity Limit  a ! |m|δ Limit  a @ |m|δ

ω0 ≈ (34) |ωce|mδ/a (36)

∆ω ≈ (35) (3/8)(kza/m)2ω0 (37)

ωce 1 a2

2m2δ2
---------------–

 
 
 

1
2
--- a

2δ m 1+( )
------------------------- 

  2 kza

m
------- 

 
2

ω0
over which the dispersion is normal, ∂ω+/∂kz > 0. When
the small value of the axial wavenumber is taken into
account, the frequency of the SW is slightly higher than
the frequency of the ASW. This allows us to calculate
the frequency of the fast mode of the SW by the method
of successive approximations, i.e., by representing it in
the form ω+ = ω0 + ∆ω, and by using the theory of
ASWs as a zeroth approximation [14], according to
which ω0 is the frequency of the ASW in the waveguide
under consideration. In this way, the small correction
∆ω to the frequency is quadratic in kz:

(33)

Simple analytic solutions to dispersion relation (18)
can be obtained only in the two limiting cases of a wide
(a @ |m |δ) and a narrow (a ! |m |δ) waveguide for an
SW with the given azimuthal mode number m (here and
below, δ = c/Ωe is the skin depth).

For the benefit of our readers, the results of our ana-
lytic investigation are summarized in the table (for
expressions 34–37, see the table).

An analysis of expressions (35) and (37) shows that
the method of successive approximations can be used to
study the dispersion properties of the fast mode of a
long-wavelength low-frequency SW in a fairly wide
range of axial wavenumbers. For wide waveguides, this
range is determined by the inequality

(38)

For narrow waveguides, the analytic solution is valid
over a wider range:

(39)

For larger values of kz, the frequency ω+ increases to
its maximum value; then, the dispersion becomes
anomalous, ∂ω+/∂kz < 0, over a certain portion of the
dispersion curve (Fig. 1). As the axial wavenumber kz fur-
ther increases, the frequencies of the fast and slow modes
approach one another and, at a certain value kz = km, the
modes have the same frequency ωm. It turns out that the
group velocity ∂ω/∂kz of the SWs increases without
bound as their frequencies approach ωm; as a result,
the notion of group velocity becomes meaningless.

∆ω = 
A11A22
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kz
2
 ! 8 m m 1+( )δ/a

2( )
2
.

This circumstance can be interpreted as follows. For
an SW whose frequency and axial wavenumber are
close to ωm and km, respectively, the above represen-
tation of the electromagnetic perturbation in the form
of a single harmonic, ∝ exp[i(kzz + mϑ  – ωt)], is incor-
rect. Near the point in question, the dispersion curve
kz(ω) can be approximately described by the squared
parabola

(40)

where km = kz(ωm) and α is a constant having the dimen-
sion of acceleration (m/s2). In this case, an electromag-
netic pulse with the field ∝ exp(–t2/(2τ2))cos(kmz – ωmt)
(where τ is the pulse duration) spreads out from the
point at which it was originally formed in the axial
direction over a distance of about ατ2/2.

Now we compare the results of an analytic investi-
gation of dispersion relation (18) with the results of its
numerical solution. Figure 1 illustrates the dependence
ω(kz) for an SW in the LF range (25). The abscissa is
the product kza of the axial wavenumber times the
waveguide radius, and the ordinate is the frequency
normalized to the absolute value of the electron cyclo-
tron frequency. The parameters of the wave and of the
plasma column were chosen to be m = 3, ωpe = 5 |ωce |,
and a = 10δ. Recall that, in the case at hand, the appli-
cability of our approach is restricted to the values of the
product kza that satisfy the inequality kza < m. The solid
line is the dispersion curve of the fast mode, and the
dashed line is for the slow mode. The dotted line with
open circles indicates the boundary of the LH range
(25). The dotted line with crosses was calculated from
asymptotic formulas (36) and (37).

In Fig. 1, we do not plot the dispersion curve for a
narrow waveguide, because, in the case at hand, the
dependence ∆ω(kz) is very weak [see expression (35)].

5. LONG-WAVELENGTH, HIGH-FREQUENCY 
SURFACE WAVES IN A HOMOGENEOUS 

PLASMA WAVEGUIDE

It is known that bulk H-waves exist under conditions
corresponding to the HF range (26). In this case, the

kz ω( ) km ω ωm–( )2
/α ,–=
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solutions to Eq. (9) with zero on the right-hand side can
be represented as

(41)

where Jm is the Bessel function and Nm is the Neumann
function [27]. In dispersion relation (18) for HF SWs
with negative azimuthal mode numbers, the coefficient
A12 is, as before, described by expression (29) and the
other coefficients Aij are given by

(42)

(43)

(44)

An analysis of dispersion relation (18) shows that
HF ASWs cannot propagate in narrow waveguides. The
radius of the waveguide in which HF ASWs exist can be
estimated analytically from the inequality a/δ >
ωpe|m/ωce|. For ωpe = 3|ωce|, the analytic estimate shows
that HF ASWs with the azimuthal mode number m = −2
can propagate only in waveguides whose radius is
larger than the skin depth by a factor of six or more.
Numerical analysis also shows that the dispersion rela-
tion A12 = 0 for ASWs has a solution when a > 5δ,
which justifies the validity of analytic calculations.

For wide waveguides, the eigenfrequency of HF
ASWs can be roughly estimated as

(45)

which leads to the following estimate for the argument
k1a of the Bessel function in the coefficient A21:

(46)

If the applied magnetic field is not too strong and the
waveguide dimensions are not too large,

(47)

then the azimuthal ordinary bulk eigenmodes cannot
exist in such a waveguide. Here, j|m |, s is the sth root of
the |m |th order Bessel function and J|m |( j|m |, s) = 0. In this
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case, the finite axial wavenumber gives rise to a positive
correction to the frequency of HF SWs:

(48)

The results of a numerical solution of dispersion
relation (18) for SWs with the azimuthal mode number
m = –2 are illustrated in Fig. 2. The abscissa and ordi-
nate are the same as in Fig. 1. The computations were
carried out for the waveguide parameters ωpe = 3|ωce |
and a = 7δ. The boundaries of the HF range (26) are
indicated by the dotted line with open circles. The dot-
ted line with crosses was calculated from asymptotic
formulas (45) and (48). Note that, for the chosen
parameters of the wave and the plasma, all of the eigen-
frequencies of an ordinary bulk mode, which are deter-
mined from the condition

(49)

lie above the HF range (26).
It seems worthwhile to try to compare our results

with the results obtained in other papers (e.g., in papers
by Azarenkov et al. [10, 24]) in which a thorough
numerical analysis of the dispersion properties of the
quadrupole and octopole modes of SWs was carried
out. The dispersion curves presented in [24] contain an
error: there are points at which the wave group velocity
is infinite. Although our analysis is restricted to small
values of the axial wavenumber, the interval of kz values
in Figs. 1 and 2 is more than half of the interval consid-
ered in [24]. Unfortunately, our results cannot be com-
pared with the results of [24] even at a qualitative level,
because, in that paper, a study was made of a plasma
cylinder in an infinite empty space.

The objective of [10] was to numerically investigate
the dispersion properties of SWs, in particular, of the

∆ω 1
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Fig. 2. Same as in Fig. 1, but for the HF SW; the azimuthal
mode number is m = –2, ωpe = 3|ωce |, and a = 7δ.
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waves with a small axial wavenumber (up to kza = 0.1),
in waveguides, including those with a narrow vacuum
gap (up to (a – apl) = 0.1a, where apl is the radius of the
plasma cylinder). At first glance, it might be expected
that the dispersion properties of the SWs described in
[10] would be very similar to those of ASWs at the
plasma–metal boundary. However, in [28], it was
shown that, in order for a vacuum gap between the
metal waveguide wall and the plasma to be ignored in
the investigation of the dispersion properties of ASWs,
the gap width should be small enough to satisfy the ine-
quality

(50)a apl–  ! ωce a/ 2 m ωpe( ).

ω/|ωce|

kza

2.895

2.890

2.885

2.880

2.875

0.2 0.4 0.6 0.8 1.0 1.20

Fig. 3. Frequency of an HF SW with extraordinary polariza-
tion, normalized to the absolute value of the electron cyclo-
tron frequency, as a function of the product of the axial
wavenumber and the waveguide radius under the conditions
of resonant interaction with an ordinary bulk wave. The cal-
culations were carried out for the azimuthal mode number
m = –1, ωpe = 2.695|ωce |, and a = 10δ.

ω/|ωce|

kza

2.885

2.880

2.875

2.870

2.865

0.2 0.4 0.6 0.8 1.0 1.20

Fig. 4. Same as in Fig. 3, but for the azimuthal mode num-
ber m = –1, ωpe = 2.686|ωce |, and a = 10δ.
In [10], the computations were carried out for a wide
range of waveguides (with vacuum gaps of different
widths), but in all cases condition (50) was not satisfied.
Consequently, none of the plots presented in [10] are
suitable for comparison with the results of our study.
On the other hand, the results obtained in [10] from a
numerical solution of the dispersion relation in the
long-wavelength limit agree well with the results of
[28], where the dispersion properties of ASWs were
investigated in a waveguide with a vacuum gap between
the plasma cylinder and the metal wall. Judging from
the description of the plots in [10], it appears that the
radius of the plasma column exceeds the radius of the
metal chamber, while the formulation of the problem
implies that the column is inside the chamber. However,
it seems that the source of this mistake lies not in com-
putational errors but rather in inaccurate description of
the plots.

6. RESONANT EFFECT OF THE AXIAL 
WAVENUMBER ON THE DISPERSION 

PROPERTIES OF SURFACE WAVES

The eigenfrequencies of an extraordinary ASW and
an ordinary azimuthal bulk wave can be brought into
coincidence by increasing the waveguide radius ‡
and/or the magnetic field. The conditions under which
this can be done may be estimated from formula (47)
with the equality sign in place of the relation “less
than.” Under these conditions, dispersion relation (18)
reduces to a quadratic equation for the correction ∆ω:

(51)

In solving Eq. (51), we can neglect the first term in
parentheses on the left-hand side, because this term is
quadratic in the axial wavenumber, while the second
term is linear in kz. In this case, the solution to Eq. (51)
has the form ω = ω0 + ∆ω, where

(52)

(53)

with the mean value  = Q1kH/(aIm(kHa)).

Under the above conditions, the small axial wave-
number has a stronger effect on the eigenfrequency
of an SW: the correction ∆ω (52) introduced by the
small axial wavenumber kz is directly proportional to it,

∆ω ∝  . For this reason, it is natural to call these con-
ditions the resonance conditions. The magnetic field sat-
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isfying the resonance conditions is minimum for a wave
with the azimuthal mode number m = –1. For this wave,

condition (47) becomes a2 /c2 =  – 1 ≈ 13.68. The
magnetic field H0 and the waveguide radius a with
which to satisfy this relationship can be estimated as
aH0 ≈ 6000 G cm. Consequently, for a waveguide of
radius a ≈ 20 cm, the magnetic field satisfying the res-
onance condition is not too strong, H0 ≈ 300 G. For
wide waveguides of radius a = 10δ, the resonance con-
dition is satisfied with ωpe = 2.7|ωce |. Numerical analy-
sis of dispersion relation (18) confirms that this esti-
mate is very accurate: the solutions to the equations

 = 0 and A21 = 0 for the frequency coincide

with good accuracy (to within three significant decimal
digits) in the range ωpe = (2.686–2.695)|ωce |.

Figure 3 illustrates the results of a numerical analy-
sis of dispersion relation (18) for waves with the azi-
muthal mode number m = –1 under the resonance con-
ditions a = 10δ and ωpe = 2.695|ωce |. The solid line indi-
cates the dispersion curve of an SW, and the dotted line
is for the dispersion curve of an ordinary bulk wave. For
magnetic fields slightly stronger than the resonant field
and for small axial wavenumbers, the dispersion curves
of an SW and an ordinary bulk wave trade places with
one another in comparison with the case shown in
Fig. 3. Figure 4 illustrates a numerical solution to dis-
persion relation (18) for a waveguide with ωpe =
2.686|ωce |, the other parameters of the waveguide and
the wave being the same as those in Fig. 3.

For stronger magnetic fields, the dependence of the
wave frequency on the small axial wavenumber begins
to deviate from being linear (Fig. 5). The magnetic field
for which the dispersion curves in Fig. 5 were calcu-
lated was chosen to be stronger than that in Fig. 4 by
2% (ωpe = 2.636|ωce |) and the other parameters of the
waveguide and wave were the same as in Fig. 3.

For magnetic fields slightly weaker than the reso-
nant field, the frequency dependence of the axial wave-
number is also seen to be nonlinear. This is illustrated
in Fig. 6, in which the dispersion curves were calcu-
lated for ωpe = 2.754|ωce |, all other parameters of the
waveguide and wave being the same as in Fig. 3.

Since the roots j|m|, s of the Bessel functions are irra-
tional, the resonant values of the parameters of a plasma
waveguide with the SWs in question are related by irra-
tional numbers. That is why, in order to capture all pos-
sible physical solutions and to not obtain physically
meaningless ones, we investigated the resonant effect
of the axial wavenumber on the dispersion properties of
SWs by carrying out preliminary numerical estimates
before solving dispersion relation (18) numerically.
From a methodological point of view, this approach
seems to be more appropriate than that in which a
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“detailed” numerical analysis is performed without any
preliminary analytic investigation.

7. CONCLUSION

We have shown theoretically that SWs with an arbi-
trary azimuthal mode number m and a small axial
wavenumber kz can propagate along the boundary
between a cold, magnetized plasma and a metal wall
with a finite radius of curvature a. We have derived dis-
persion relation (18) for such waves propagating in a
waveguide entirely filled with a plasma with a radially
nonuniform density profile. For a radially uniform
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Fig. 5. Frequency of an HF SW with extraordinary polariza-
tion, normalized to the absolute value of the electron cyclo-
tron frequency, as a function of the product of the axial
wavenumber and the waveguide radius under conditions
such that the constant magnetic field is slightly stronger
than the resonant field. The calculations were carried out for
the azimuthal mode number m = –1, ωpe = 2.636|ωce |, and
a = 10δ.
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Fig. 6. Same as in Fig. 5, but for conditions such that the
constant magnetic field is slightly weaker than the resonant
field; the azimuthal mode number is m = –1, ωpe =
2.754|ωce |, and a = 10δ.
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plasma density profile, this dispersion relation has been
investigated analytically in the two frequency ranges
(25) and (26) by the method of successive approxima-
tions, in which the theory of ASWs is used as a zeroth
approximation. In the general case, the correction to the
eigenfrequency of SWs introduced by the small axial
wavenumber is quadratic in kz , ∆ω ∝ . The results of
a numerical solution of the dispersion relation agree
well with the analytic expressions for the eigenfre-
quency. We have also determined the resonance condi-
tions under which the correction to the eigenfrequency
of SWs introduced by the small axial wavenumber is

linear in kz: ∆ω ∝ .
In conclusion, we point out a difference between our

work and the studies by Azarenkov et al. [10, 24], who
investigated the propagation of SWs in waveguides in
which the magnetized plasma column is separated from
the metal chamber by a vacuum gap of finite [10] and
infinite [24] width. In those papers, the dispersion prop-
erties of SWs were studied only numerically and the
analysis was carried out only for some values of the azi-
muthal mode number. In contrast, in our paper, simple
analytic expressions were obtained for the eigenfre-
quencies of SWs with arbitrary azimuthal mode num-
bers. Simple analytic solutions (34)–(37), (45) and (48)
make it possible to significantly simplify the search for
a numerical solution to dispersion relation (18). With
these analytic solutions, the dispersion relation can be
numerically analyzed on conventional personal com-
puters with the help of standard software packages. The
analytic solutions have been obtained in the following
limiting cases. First, we have investigated the case of
SWs with positive azimuthal mode numbers m and with
long axial wavelengths restricted by conditions (38)
and (39). Second, we have derived asymptotic expres-
sions (34)–(37), (45) and (48) for the frequencies of
SWs in a narrow and a wide waveguide.
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Abstract—Results are presented from a detailed study of the behavior of the electron temperature during the
evolution of a current sheet by comparing the data from spectral measurements with the spatiotemporal evolu-
tion of the emission intensities of the atomic and ionic lines of the working gas (He) and impurities (C, O) cal-
culated in the collisional–radiative model. It is shown that the electron temperature in the center of the sheet
attains a value of Te = 110 ± 40 eV; under these conditions, taking into account metastable states affects the
calculated results only slightly. The spatial profiles of the electron temperature and the plasma emission in the
spectral lines of various atoms and ions across the plasma sheet are calculated as functions of time. It is shown
that as the electron temperature grows most of the spectral lines of atoms and ions of the working gas and impu-
rities are depleted in the center of the sheet and the emission region shifts toward the periphery of the sheet. The
results obtained confirm the previous conclusion that, in this regime, a hot plasma is formed in the center of the
sheet. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Studies of the heating processes in current sheets
occupy an important place in research of the problem of
magnetic reconnection in plasma [1]. For this reason, in
recent years, spectroscopic measurements of the elec-
tron temperature have been conducted in current sheet
devices at the Institute of General Physics of the Rus-
sian Academy of Sciences under various operating con-
ditions. In experiments carried out in the CS-3 device,
successive emission bursts in helium, carbon, nitrogen,
and oxygen lines were observed during the current
sheet evolution [2]. A hydrodynamic interpretation of
these observations [3] led to the conclusion that a high-
temperature region was produced in current sheets
formed in the nonlinear regimes and that the electron
temperature in this region reached a value of Te ≈
100 eV by the beginning of the impulsive phase of
magnetic reconnection [1, 4, 5].

Similar methods for measuring the plasma electron
temperature from the observed emission in the spectral
lines of impurity ions are widely used in controlled
fusion experiments [6–9], in particular, in experiments
conducted in the L-2M stellarator [10]. Numerical
codes developed for interpreting these observations
made it possible to reconstruct in detail the spatiotem-
poral evolution of the electron temperature Te by using
a collisional–radiative model incorporating the pro-
cesses of ionization, excitation, and transport of ions, as
well as the metastable states of some ions.

In this paper, we study the behavior of the electron
temperature during the evolution of a current sheet by
comparing the data from spectral measurements [2, 4]
with the spatiotemporal evolution of the emission
1063-780X/02/2811- $22.00 © 20925
intensities of the atomic and ionic lines of the working
gas (He) and impurities (C, O) calculated in the colli-
sional–radiative model.

2. EXPERIMENTAL DEVICE AND THE SCHEME 
OF SPECTRAL MEASUREMENTS

The measurements were conducted in the CS-3
experimental device (Fig. 1), which included a system
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Fig. 1. CS-3 device (end view): (1) vacuum chamber, (2)
conductors for creating a quadrupole magnetic field with a
null line, (3) current sheet (the arrows near the sheet surface
indicate the positions and orientations of magnetic probes),
and (4) central region from which plasma emission is col-
lected.
002 MAIK “Nauka/Interperiodica”



 

926

        

VORONOV 

 

et al

 

.

                                                                                                                                                                                   
for creating a quasi-steady magnetic field with a null
line, a system for producing a plasma in this field, and
a system for exciting an electric current and a plasma
flow to form a current sheet (3). A two-dimensional
quadrupole field with a null line (x = 0, y = 0) was pro-
duced by eight straight conductors (2), the magnetic-
field gradient being 0.54 kG/cm. The null line coin-
cided with the axis of a 10-cm-diameter cylindrical vac-
uum chamber (1). A plasma was produced in the vac-
uum chamber by the breakdown of helium at a pressure
of p0 = 50 mtorr; the initial electron density was (1–2) ×
1015 cm–3. The plasma electron current directed along
the null line of the magnetic field (the z-axis) was gen-
erated by a pulsed voltage applied between two elec-
trodes inserted into the chamber from both ends; the
distance between the electrodes was 40 cm. A maxi-
mum current of 60 kA was reached by the time t =
1.4 µs; the half-period of the current pulse was T/2 =
4.4 µs.

Time-resolved spectral measurements of emission
from the current-sheet plasma were performed by using
a two-channel optical scheme that allowed simulta-
neous observations of two different spectral lines. The
plasma emission was divided into two identical chan-
nels with the help of a semitransparent mirror placed
behind one of the device ends. In each channel, the
same region near the center of the vacuum chamber, 2–
2.5 cm in diameter and 40 cm long (4), was imaged
with the help of an objective onto a bundle of quartz
fibers 0.3 mm in diameter and 10 m long. Then, the
plasma emission was transmitted onto the entrance slits
of a DFS-24 and an MDR-3 monochromators. Signals
from the exit slits of the monochromators were detected
by low-noise FEU-79 photomultipliers in combination
with an oscillograph (see [5] for details).

3. DETERMINATION OF THE ELECTRON 
TEMPERATURE OF THE CURRENT-SHEET 
PLASMA BY MEANS OF A COLLISIONAL–

RADIATIVE MODEL

In calculations, we used a 1.5-dimensional model of
a planar current sheet. The electron density and temper-
ature were assumed to be nonuniform across the sheet
(in the y-direction), whereas all the plasma parameters
were assumed to be uniform over the sheet width (in the
x-direction). The distribution of the plasma parameters
and impurity ions across the sheet were computed on a
47-cell mesh. The heat and particle losses along the
sheet were simulated by limiting the particle lifetime
within 1–2 µs. In calculations, we specified the time
behavior of the electron temperature and calculated the
evolutions of the intensities of the chosen spectral lines
and the electron density with allowance for both the
ionization of the working gas and the plasma transport
due to constant-velocity MHD flows in the current
sheet. Then, the results of calculations were compared
with the data from spectral measurements and the
results of electron-density measurements by holo-
graphic interferometry [5, 11]. The profile of Te across
the sheet was specified to be Gaussian with a character-
istic length ∆y ~ 0.6 cm fitted from the two-dimensional
electron-density distributions in the sheet [5, 11].

The current-sheet plasma formed in the nonlinear
regime [5] is characterized by the following parame-
ters. The maximum electron density in the sheet is ne =
(1–2) × 1016 cm–3, the maximum electron temperature is
Te ≈ 100 eV, and the characteristic time of variations in
the plasma parameters in the sheet is tc ≈ 10–6 s. Under
these conditions, the emission of atoms and ions in the
current-sheet plasma, (as well as in the L-2M stellara-
tor) is most adequately described by the collisional–
radiative model. Note that, for current-sheet and stellar-
ator plasmas, the dimensionless parameters character-
izing the problem under study, namely, neStc , Atc , and
νtc (where ne is the electron density, S is the ionization
or excitation rate, A are the probabilities of optical tran-
sitions, ν is the ion collision rate, and tc is the character-
istic duration of the process), either have the same order
of magnitude or satisfy the same inequalities. Indeed, in
the current sheet, the plasma density (ne ~ 1016 cm–3) is
three orders higher than in the stellarator (ne ~ 1013 cm–3),
while the characteristic process duration (tc ~ 10–6 s) is
three orders lower; hence, the quantity neStc for the cur-
rent-sheet plasma is of the same order of magnitude as
that for the stellarator. Two other parameters for the
current-sheet plasma are estimated at At ~ 108 × 10–6 ~
102 and νt ~ 3 × 108 × 10–6 ~ 3 × 102; i.e., as for the stel-
larator, these parameters are much greater than unity.

In calculations, we took into account the following
main processes: electron-impact ionization and excita-
tion of atoms and ions, emission, and diffusive and con-
vective transport. The characteristic recombination
time for light ions (He, C, O) is tr ≈ 10–4 s @ tc; hence,
recombination can be neglected. Then, the equations
for the ion densities of the working gas and impurities
can be written in the form

(1)

where NKZ is the density of the ions of species K in the
ionization state Z; Z is the ion spectroscopic symbol
(Z = 1 for neutral atoms); SKZ is the ionization rate for
the corresponding atoms and ions (for fully ionized
atoms, e.g., HeIII, the ionization rate is taken to be
SKZ = 0); D is the diffusion coefficient; Vy is the convec-
tive transport rate along the y-axis (across the sheet);
and τ is the particle lifetime in the sheet, which is lim-
ited by the particle loss along the x-axis toward the wall
of the vacuum chamber.

The initial conditions of the problem are

∂NKZ

∂t
-------------

∂
∂y
----- D

∂NKZ

∂y
------------- VyNKZ– 

 =

– neNKZSKZ neNZ 1– SK Z 1–

NKZ

τ
---------,–+
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Table 1

Ion ∆E, eV A p X k1 k2

HeI 19.82 2.44 × 10–8 0 0.544 0.1 1

HeII 54.418 2.05 × 10–9 1 0.265 0.25 1

CI 11.3 6.85 × 10–8 0 0.193 0.25 1

CII 24.4 1.86 × 10–8 1 0.286 0.24 1

CIII 47.9 1.41 × 10–8 0 0.427 0.30 0.8

CIV 64.5 1.50 × 10–9 1 0.416 0.13 1

CV 392.1 6.26 × 10–10 0 0.604 0.25 0.95

CVI 490 1.23 × 10–10 1 0.620 0.16 1

OI 13.6 3.65 × 10–8 0 0.128 0.26 1.05

OII 35.1 3.01 × 10–8 0 0.232 0.35 0.92

OIII 54.9 1.71 × 10–8 0 0.112 0.51 0.75

OIV 77.4 6.94 × 10–9 0 0.079 0.54 0.75

OV 113.9 4.30 × 10–9 0 0.659 0.28 0.75

OVI 138.1 1.58 × 10–9 0 0.636 0.24 0.90

OVII 739.3 2.48 × 10–10 0 0.641 0.24 0.95
NHeI(y, 0) = 1016 cm–3, NëI(y, 0) = 0.02 × NHeI(0),

NOI(y, 0) = 0.02 × NHeI(y, 0), NKZ > 1(Y, 0) = 0, (2)

Ne(0) = 1016 cm–3,

and the boundary conditions are

NHeI(a, t) = NHeI(y, 0), NHeII(a, t) = Ne(0),

where a = 1.4 cm is the coordinate of the boundary of
the calculation region.

The He neutral flux is FHeI = NHeI(a, t) × Vy, and the
impurity neutral flux is FKI = 0.02 × FHeI.

In the center of the sheet (y = 0), we set

 = 0. (3)

The ionization and excitation rates were calculated
using the data of [12, 13]. The ionization rates of atoms
and ions were calculated by the formula [12]

(4)

where ∆E is the ionization energy, and Te is the electron
temperature.

Table 1 shows the values of ∆E, A, p, X, k1, and k2
for helium, carbon, and oxygen calculated in [12] for
the plasma density ne = 1016 cm–3 taking into account
the contribution from metastable states.

∂NKZ 0 t,( )
∂y

-------------------------

SKZ
A 1 p β+( )β

k1

X β
k2+( )

------------------------------------e
β–

cm
2
/s[ ] ,=

β ∆E
Te

-------,=
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The radiation characteristics of the levels corre-
sponding to the given emission lines were taken from
the NIST database [14] (see Table 2, where ∆E* is the
excitation energy).

The diffusion coefficients in a dense current-sheet
plasma, in which ions are weakly magnetized and the
collision frequencies are high [1], were estimated in the

gas-kinetic approximation: D = 1/3λiv i = /3νi. In this
approximation, the diffusion coefficient of helium ions
is equal to 4 × 103 cm2/s at a characteristic temperature
of Ti = 10 eV; in calculations, the maximum estimate
D = 3 × 104 cm2/s was used for all of the ions. In this
case, the characteristic diffusion length falls in the

v i
2

Table 2

Ion λ, nm Transition ∆E*, eV

HeI 587.6 2p3P – 3d3D 20.29

HeII 468.6 3 – 4 51.02

CII 392.0 3p22P0 – 4s2S 19.49

CIII 464.7 3s3S – 3p3P 32.2

OII 464.9 3s4P – 3p4D 25.66

OIII 559.2 3s1P – 3p1P 36.074

OIV 479.8 2p2P – 3d4D 61.98

OV 493.1 6 – 7 106.95

OVI 529.0 7 – 8 130.46
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range δ =  ≈ 0.06–0.16 cm, which is much shorter
than the sheet thickness 2∆y = 1.2 cm. Consequently,
the D value in the current-sheet plasma is very low and
cannot substantially affect the results of calculations.
However, for the sake of generality (for the purpose of
refining the model in further experiments), we retained
the diffusion term in the numerical code.

The convective transport velocity along the y-axis
(across the sheet) and the particle lifetime in the sheet
were taken as Vy = 106 cm/s and τ = 1 µs, respectively;
both these estimates are based on the results of previous
spectroscopic measurements [5].

Equations (1) with the initial and boundary condi-
tions (2) and (3) were integrated numerically by an
implicit difference scheme with an appropriate choice
of the time step ∆t. The profiles of the plasma emission
intensity along the y-axis in various spectral lines were
computed within the limits of 1.4 cm about the central
plane of the current sheet. This distance was divided
into 47 cells, each having the width ∆y = 0.03 cm. The
program allowed us to trace the evolution of the tem-
peratures and densities of the electrons and the work-
ing-gas and impurity ions, as well as their emission
intensities up to the time t = 2.4 µs with a time step of
0.001 s.

Dtc

0 0.4 0.8 1.2 1.6 2.0 2.4

120

100

80

60
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Te, eV

2.4
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0.8

0.4

ne, 1016 cm–3

ne(0)

Te(0)

Fig. 2. Calculated evolution of the electron density ne(0)
and electron temperature Te(0) in the center of the current
sheet in the nonlinear regime; the crosses indicate the mea-
sured values of ne(0) [5, 11].

Table 3

k 0 1 2 3 4 5

Ak 0 22 68 –18.5 –9.7 3.1
4. CALCULATIONS OF THE SPATIOTEMPORAL 
EVOLUTION OF PLASMA EMISSION 

FROM THE CURRENT SHEET

Figure 2 shows the results of calculations of the time
evolution of the electron density and temperature along
with the data from independent measurements of the
electron density in the center of the sheet [5, 11]. The
best agreement between the calculations and the exper-
iment was achieved by fitting the coefficients of a fifth-
degree polynomial describing the time dependence of
the electron temperature Te0 in the center of the sheet:

(5)

The polynomial coefficients Ak are listed in Table 3.
The electron temperature profile across the sheet,

Te(y, t), was given in the form

(6)

where the characteristic length determining the rate at
which Te decreased along the y-axis was assumed to be
equal to the half-width of the current sheet ∆y = 0.6 cm
[5, 11]. When solving Eqs. (1), the electron density
ne(y, t) was calculated from the quasineutrality condi-
tion:

ne = NHeII + 2NHeIII (7)

and, consequently, was self-consistent with the behav-
ior of Te(y, t) given by Eqs. (4) and (5).

It is seen in Fig. 2 that the calculated values of the
electron density almost coincide with the measured
ones [5, 11] at t ≥ 0.9 µs. The electron temperature in
the center of the current sheet reaches the value Te ≈
110 eV at t ≈ 1.8–2.0 µs (at the end of the metastable
stage). The calculated evolution of the electron temper-
ature is determined by the intensities of the working-
gas and impurity spectral lines. The time behavior of
the normalized (to the maximum values) intensities of
helium, carbon, and oxygen lines is shown in Figs. 3
and 4. When calculating the intensity, the location and
size of the observation region were taken into consider-
ation. The instants corresponding to the maximum
measured intensities are indicated by closed circles.
The ionization energies of the CII (24 eV), CIII
(49 eV), OII (35 eV), and OIII (55 eV) ions are less
than or comparable with the ionization energy of the
HeII ion (54 eV); however, the maximum intensities of
these ions were observed at later times than that for the
helium line. In view of this fact, it is clear that, in addi-
tion to the initial impurity concentration in the sheet, it
is necessary to take into account the carbon and oxygen
impurities coming in the plasma in the course of the
sheet formation. In the calculations, the velocity of
incoming impurities was assumed to be equal to the
thermal ion velocity at a temperature of 10 eV, which

Te0 t( ) Akt
k
.

k 0=
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follows from the time delay in the appearance of impu-
rity emission in the center of the sheet.

Note that the behavior of the line intensities of
weakly ionized CII, CIII, OII, and OIII ions is deter-
mined by sequential ionization. Experiments show that
the lines of highly ionized oxygen atoms OV and OVI
reach their maximum intensities at nearly the same time
t ≈ 1.8–2 µs. To simulate such a behavior, we had to
substantially decrease the growth rate of Te after the
time t ≈ 2 µs. This can be explained by the fact that the
plasma motion in the sheet changes abruptly at this time
because the sheet becomes unstable.

To find out to which extent metastable levels affect
the results, we performed calculations in which only
the ground levels of CIII and CIV ions were taken into
account in the excitation and ionization processes. Fig-
ure 5 shows the time dependence of the line intensity of
carbon ions calculated with and without taking into
account the contribution from metastable levels. It is
seen that the difference does not exceed 20–30% and
the time at which the intensity is maximum varies only
slightly.

Figures 6–8 show the calculated profiles of the elec-
tron density and the emission intensities of helium
atoms and helium and oxygen ions in different ioniza-
tion states. It is seen that, as the electron temperature
increases, the regions where each spectral line is the
most intense are displaced from the sheet center toward
the periphery, following the regions where the electron
temperatures characteristic of these lines are localized.
The values of these characteristic temperatures depend
on the ion ionization energy and the excitation energy
of the corresponding line. Figure 9 shows the electron
temperature profile across the sheet (along the y-axis).
The figure also shows the measured positions of the
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CII

HeII

HeI

Fig. 3. Calculated time evolution of the plasma emission
intensities in the HeI 667.8-nm, HeII 468.6-nm, CII 426.7-nm,
and CIII 464.7-nm spectral lines; the closed circles indicate
the times corresponding to the maximum measured intensi-
ties of the given lines.
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maximums of the helium, carbon, and oxygen spectral
line intensities at t = 2 µs. It is from these positions that
the localization regions of the corresponding character-
istic temperatures were determined for this instant. It is
seen that, even for an oxygen ion with the charge num-
ber equal to 5 (the ionization energy is ~138 eV), the
localization region of its characteristic temperature is
shifted from the midplane toward the periphery of the
current sheet. At the same time, an appreciable fraction
of plasma emission in the OVI 529.1-nm line is radiated
from the central region of the sheet (Fig. 8e). This fea-
ture distinguishes the OVI ion from the other oxygen
ions, which have lower ionization energies and whose
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Fig. 4. Calculated time evolution of the plasma emission
intensities in the OII 464.9-nm, OIII 59.2-nm, OIV 479.8-
nm, OV 559.8-nm, and OVI 529.1-nm spectral lines; the
closed circles indicate the times corresponding to the max-
imum measured intensities of the given lines.
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930 VORONOV et al.
1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

0.3

0.6

0.9

1.2

0

1

2

t, µ
s

y, cm

n Â
, 1

016
 c

m
–

3

Fig. 6. Time evolution of the electron density profile across the current sheet.
emission is mainly concentrated at the periphery of the
sheet (Figs. 8, 9).

5. DISCUSSION OF RESULTS

The technique used in this study to estimate the
electron temperature from time-resolved measurements
of the emission lines of the working-gas and impurity
ions is based on the strong dependence of the ionization
and excitation cross sections on Te: S ~ S0exp(–∆E/Te).
The energy ∆E is usually known with a high accuracy,
and the preexponential factor S0 is usually known
within 20–30%. When deducing the electron tempera-
ture from this relation, the dependence of Te on the
value of the cross section appears to be rather weak
(logarithmic). For this reason, an errors of 20– 30% in
the cross-section value insignificantly affect the accu-
racy in determining Te.

Besides the ionization and excitation cross sections,
the problem contains some additional parameters that
are known with insufficient accuracy. These are the dif-
fusion coefficients, the plasma convection velocity, the
sheet thickness 2∆y, and the particle lifetime τ deter-
mined by the loss of particles from the sheet along the
magnetic field lines (along the x-axis). To estimate how
the uncertainty in these parameters affects the accuracy
in determining Te, we varied these parameters in calcu-
lations. As a result, it was shown that, when diffusion
was ignored (see Section 3), an uncertainty in the listed
parameters led to a total error of ~40% in determining
Te. Hence, the electron temperature in the center of the
sheet at the end of the metastable stage (t = 1.8–2 µs) is
Te = 110 ± 40 eV.

We emphasize that the correct modeling of the
metastable stage of the current-sheet evolution is
impossible if the convection is ignored. This was
revealed already at the initial stage of calculations of Te,
when it became clear that it was impossible to achieve
an agreement between the solution to Eqs. (1) and the
experimental results if convection was ignored. Indeed,
since the convection velocity under our experimental
conditions amounts to Vy = 106 cm/s, the size of the
region involved in convection, Vtc ~ 106 × 10–6 ~ 1 cm,
is comparable with the sheet thickness 2∆y = 1.2 cm.

Calculations show that a transition from the meta-
stable stage of the sheet evolution to the impulsive
phase of magnetic reconnection can be traced in the
behavior of the OVI 529.1-nm line. Indeed, if we
assume that Te continues to grow after the time t = 2 µs,
then the intensity of the OVI line will grow as well,
which contradicts to the experiment. To describe the
observed decrease in the intensity of the OVI 529.1-nm
PLASMA PHYSICS REPORTS      Vol. 28      No. 11      2002
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line after t ~ 2.0 µs, we artificially introduced either a
substantially lower growth rate or even a decrease in Te

after this moment. On the other hand, as follows from
magnetic probe measurements (Fig. 1) conducted
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Fig. 9. Electron-temperature distribution across the sheet
(along the y-axis) at t = 2 µs. The closed circles indicate the
positions of the maximum intensities of the OVI 529.1-nm,
OV 559.8-nm, OIV 479.8-nm, OIII 559.2-nm, OII
464.9-nm, CIV 580.1-nm, CIII 464.7-nm, and CII 426.7-nm
spectral lines.
simultaneously with spectroscopic measurements (see
[4, 5] for details), the impulsive phase of magnetic
reconnection in this regime began at t ≥ 1.8–2 µs, when
the transverse plasma equilibrium in the magnetic field
was disturbed and the sheet began to expand [4, 5]. This
process should apparently be accompanied by a
decrease in Te; we used this fact to describe the
observed decrease in the intensity of the OVI 529.1-nm
line at t ~ 2.0 µs.

6. CONCLUSION

The evolution of the plasma electron temperature in
a current sheet formed in the nonlinear regime has been
calculated by using the collisional–radiative model. It is
shown that the electron temperature in the center of the
sheet reaches a value of Te = 110 ± 40 eV by the time
t ≈ 1.8–2.0 µs, i.e., by the end of the metastable stage of
the current-sheet evolution, just before the disruption of
the sheet and the transition to the impulsive phase of
magnetic reconnection. The results obtained confirm
the previous conclusion that, in this regime, a hot
plasma is formed in the center of the sheet.

A specific feature of the code used in this study is
that it takes into account the metastable states of some
emitting carbon and oxygen ions. It is shown that,
under these conditions, metastable states only slightly
affect the dynamics of the electron temperature in the
sheet.
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The spatial profiles of the electron temperature and
plasma emission in the spectral lines of various atoms
and ions across the plasma sheet have been calculated
as functions of time. It is shown that, as the electron
temperature grows, most of the spectral lines of the
atoms and ions of the working gas and impurities are
depleted in the center of the sheet and the emission
region shifts toward the periphery of the sheet. This
conclusion agrees qualitatively with the results of mea-
surements of the spatial profiles of the emission in the
spectral lines of helium and impurities in the vicinity of
the current sheet [4, 5, 15].
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Abstract—Nonlinear inverse bremsstrahlung absorption is investigated for a plasma photoionized in the Bethe
regime of suppression of the ionization barrier, in which case the electron velocity distribution coincides with
the distribution of atomic electrons. A comparison is made between the characteristic features of absorption in
the cases where atomic electrons before ionization are in the ns and np states. It is established that, in the case
of np states, the effective high-frequency conductivity is always nonlinear; in particular, for weak pump fields,
it is proportional to the square of the pump field strength. The maximum plasma conductivity associated with
p electrons is one order of magnitude lower than the maximum effective conductivity associated with s elec-
trons, which creates conditions for less efficient plasma heating through inverse bremsstrahlung absorption.
© 2002 MAIK “Nauka/Interperiodica”.
1. Nonlinear inverse bremsstrahlung absorption in a
plasma began to be theoretically studied in [1]. The
approach developed in that paper provides a more exact
description of electron–ion collisions than those involv-
ing the Boltzmann collision integral or the approximate
Landau collision integral, which is derived from the
Boltzmann collision integral. The approach of [1],
which is based on the classical mechanics of the motion
of interacting plasma particles in an alternating electric
field, was then generalized in [2] to include quantum-
mechanical effects. The results obtained in [2] demon-
strate that nonlinear inverse bremsstrahlung absorption
has a rich variety of properties. However, all this variety
shows up in various logarithmic dependences, differing
from the Coulomb logarithm in the Landau collision
integral. Recall that the Coulomb logarithm is defined
as the logarithm of the ratio of the maximum and min-
imum impact parameters, which characterize the region
of efficient collisions (see, e.g., [3]). In particular, this
indicates that the main dependence (except for the log-
arithmic corrections) of the inverse bremsstrahlung
absorption can be obtained using the Landau collision
integral. Moreover, in describing inverse bremsstrahl-
ung absorption, small quantities on the order of the
electron-to-ion mass ratio can be neglected because
they are significant for energy transfer from electrons to
heavy particles but are unimportant for the momentum
transfer, which governs inverse bremsstrahlung absorp-
tion. Hence, the Landau collision integral required for
further analysis can be written in the form

(1.1)Jei f[ ]
2πe

2
ei

2
NiΛ

m
2

--------------------------- ∂
∂Vk

---------
V

2δkj VkV j–

V
3

------------------------------ ∂f
∂V j

---------,=
1063-780X/02/2811- $22.00 © 20936
where f is the electron distribution function, e and m are
the charge and mass of an electron, ei is the charge of an
ion, and Ni is the ion density.

In this paper, expression (1.1) serves as the basis for
analyzing inverse bremsstrahlung absorption in a pho-
toionized plasma of hydrogen-like atoms. We consider
photoionization in the Bethe regime of suppression of
the photoionization barrier, i.e., under the Bethe condi-
tion [4–6]

(1.2)

where the electric field of radiation E, the ionization
energy IZ, and the charge number Z of the nucleus of a
hydrogen-like atom are all expressed in atomic units.
The ionization energy is described by the expression
IZ = Z2/(2n2), where the principal quantum number n
determines the energy of an electronic state of a hydro-
gen-like atom. This expression makes it possible to
write the Bethe condition for the intensity of the pump
field in the form

(1.3)

Our interest in inverse bremsstrahlung absorption in
a plasma that is produced under the Bethe condition and
is characterized by different values of the principal
quantum number stems from the fact that such a plasma
is a convenient object for studying the generation of
harmonics of the pump field. Thus, in 2000, it was
shown theoretically that, in a plasma produced through
the photoionization of a gas of hydrogen-like atoms
whose electrons are in the ns states, the efficiency of the
higher harmonic generation increases by several orders
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of magnitude with increasing principal quantum num-
ber [7]. In the same year, the generation of the third har-
monic of laser radiation in a gas preionized by a single
laser pulse was studied experimentally [8]. The plasma
produced during the prepulse recombined, and then the
generation of the third harmonic of the laser frequency
during the next laser pulse was observed. As was shown
in [8], the preionization of a gas followed by the recom-
bination of the plasma produced increases the effi-
ciency of the third-harmonic generation by orders of
magnitude. This phenomenon was interpreted on the
basis of the hypothesis that, after the recombination, the
gas atoms are in excited states. A theoretical analysis
carried out in [9] for the particular case of the third-har-
monic generation showed that, in a plasma produced by
the photoionization of a gas with atoms in the excited
electronic ns states with the principal quantum number
n, the third-harmonic generation efficiency increases in
proportion to the tenth power of the principal quantum
number. In [10], it was shown that the efficiency of the
fifth-harmonic generation obeys a similar dependence.

The regular features established in [7, 9, 10] are
closely associated with the fact that the electrons for
which the Bethe condition is satisfied are almost freely
ejected from the atoms. In this case, the electron veloc-
ity spread is determined by the electron wave function
of the hydrogen-like atom under consideration [11, 12]:

(1.4)

Here, the eigenfunctions Ylm(θ, ϕ) of the angular
momentum are normalized to unity and

(1.5)

, (1.6)

where aB = ("2/me2) is the Bohr radius and F(α, β; x) is
a degenerate hypergeometric function.

According to [13, 14], the probability distribution of
electrons over momenta in a spatially homogeneous
plasma is determined by the square of the electron wave
function, anlm(p), in momentum space,

(1.7)

which “remembers” the distribution of electrons in an
atom before its photoionization. However, this distribu-
tion of atomic electrons is violated by electron–electron
collisions; as a result, the electrons evolve from distri-
bution (1.7) to a Maxwellian distribution. The charac-
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teristic time scale of such Maxwellianization of the
electron distribution is

(1.8)

where Ne and Te are the electron density and electron
temperature in a photoionized plasma. When the relax-
ation time of electron distribution (1.7) is short enough
for the electrons to be heated to any significant extent,
we obtain the following relationship for a photoionized
plasma [7]:

(1.9)

where VZ = Ze2/" ≡ ZVa is the Coulomb velocity unit
[11]. In [9], it was shown that, after the relaxation to a
Maxwellian distribution with temperature (1.9), the
harmonic generation efficiency in a plasma produced
by the photoionization of a gas with atoms in the ns
states is proportional to the sixth (rather than tenth)
power of the principal quantum number. In other words,
the harmonic generation efficiency decreases. Accord-
ing to relationships (1.8) and (1.9), this occurs on the
time scale

(1.10)

where Zi is the ion charge number and Ni is the ion den-
sity. However, the harmonic generation efficiency
decreases in this manner only when the generation time
is too short for the plasma electrons to be heated by
inverse bremsstrahlung absorption. The fact that an
increase in the electron temperature lowers the har-
monic generation efficiency makes it necessary to study
inverse bremsstrahlung absorption in a plasma photo-
ionized in the Bethe regime of suppression of the ion-
ization barrier.

Preliminary results of the investigation of inverse
bremsstrahlung absorption in a plasma produced
through the photoionization of excited atoms in the ns
states were published in [9]. In the present paper, we are
going to deepen the understanding developed in [9].
However, our main objective here is to consider the
absorption in a plasma produced by the photoionization
of atoms in excited states with a nonzero orbital quan-
tum number. We thoroughly examine the case of np
states. First, we show that inverse bremsstrahlung
absorption is always nonlinear. Second, we demon-
strate the possibility of a substantial nonlinear reduc-
tion in the intensity of inverse bremsstrahlung absorp-
tion and obtain the scaling of the absorption intensity
with the principal quantum number. We also point out
that an analogous nonlinear effect can take place for
states with large orbital quantum numbers and show
that the larger the orbital quantum number, the more
pronounced the effect.
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2. For a pump electric field of the form

, (2.1)

the Boltzmann kinetic equation, which is the basic
equation for our analysis, can be written as

(2.2)

The particular form of the electron–electron collision
integral Jee[ f, f ] is unimportant for further analysis. We
only need the relationship

(2.3)

which stems from the electron momentum conservation
in electron–electron collisions. In the dipole approxi-
mation, we can neglect the dependence of the electric
field on the coordinates. We can also neglect the corre-
sponding coordinate-dependence of the distribution
function. Then, from Eq. (2.2), we obtain the equation

(2.4)

where

(2.5)

is the electric current density and δj is the contribution
of collisions to the current density. In order to deter-
mine this contribution, we assume that it is small
(which corresponds to a pump field with a frequency
much higher than the collision frequency) and turn to
the approximate distribution function f0(V, t) for which
the collisions are ignored:

(2.6)

where

(2.7)

is the electron velocity in an alternating electric field
and, in the case at hand, F(V) is the velocity distribution
(1.7) of atomic electrons. As a result, using formulas
(2.4)–(2.7), we can write

(2.8)

With the electron–ion collision integral of the form
(1.1), Eq. (2.8) becomes

(2.9)

Using the relationship
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we can represent Eq. (2.9) as

(2.11)

where

(2.12)

In what follows, we will assume that the functions F(V)
and Φ(q) depend only on the absolute values of their
arguments.

We direct the z-axis along the vector E, in which
case Eq. (2.11) yields

(2.13)

where

(2.14)

are nonlinear partial conductivities.

In formula (2.14), we have introduced the following
notation for the effective nonlinear collision frequen-
cies:

(2.15)

where Jn(z) is a Bessel function and VE = |eE|/mω is the
amplitude of the electron oscillatory velocity in the
pump field.

Inverse bremsstrahlung absorption of the pump field
at the fundamental frequency is described by setting
N = 0 in formula (2.13). So, in what follows, we will
work with the expression

(2.16)

3. Further analysis will be based on the following
expressions for the electron wave function in a hydro-
gen-like atom in momentum space. For ns states, we
use a compact general formula (see Appendix 1):
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For np states, we use the following four expressions,
which refer to n = 2, 3, 4, and 5:

(3.2)

where θp is the angle between the vector p and the polar
axis and

(3.3)

 

Note that, in the limit p  0, the above wave func-
tions behave asymptotically as

(3.4)

(3.5)

Formula (3.2) implies that the distribution function for
np states is proportional to cos2θp. Assuming that the
electrons are unpolarized, we can replace cos2θp with
1/3.

We normalize the distribution functions for ns and
np states to unity; 

(3.6)

and

(3.7)

For further analysis, it is expedient to present the Fou-
rier transform of expression (2.12):
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where the Fourier coefficients for ns states have the
form

(3.9)

and, for np states, they are equal to

, (3.10)

4. In accordance with formula (3.8), the effective
collision frequency (2.16) for states with the principal
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quantum number n can be represented as

(4.1)

According to formula (6.611.1) in [15], we have

which allows us to rewrite formula (4.1) as

(4.2)

where

(4.3)

(4.4)

with

Figure 1 shows the dependence that was obtained from
formula (4.2) and is representative of the inverse
bremsstrahlung absorption of radiation in the case of
1s state. In the figure, the ordinate is the function H[1,
1s, VE /VZ] and the abscissa is the ratio VE/VZ .

In order to gain insight into the regular features
described by formula (4.2), it is necessary to under-
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Fig. 1. Function H[1, s, VE /VZ] vs. VE /VZ.

H[1, s, VE /VZ]
 stand the properties of the functions H[1, ns(p), VE/VZ].
First, note that formula (4.4) gives

(4.5)

Here,

(4.6)

where P4n[1, ns(p), x] are 4nth-degree polynomials com-
prising even powers of the argument x. In explicit form,
the polynomials for ns states are presented in Appendix
2, and the polynomials for np states are presented in
Appendix 3. In the limit x = ∞, for s states, we have

and, for p states, we have

In this limit, formula (4.5) becomes

(4.7)

Consequently, since, for x @ 1, the term a[1, ns(p), ∞]
is small as compared to the logarithmic term, we arrive
at the following unified scaling:

(4.8)

This scaling applies to atoms in both ns and np states,
which are characterized only by the principal quantum
number. The dependence on the principal quantum
number is seen to be weak (logarithmic).

The situation with comparatively weak pump fields
is radically different. In such fields, the electron oscil-
latory energy is insufficiently high as compared to the
electron energy at the corresponding Rydberg level of
an atom:

(4.9)

On the one hand, inequality (4.9) justifies the use of the
function A[1, ns(p), nVE /VZ]. On the other hand, under
this inequality, a peculiar situation exists in which the
properties of the n and p states manifest themselves in
very different ways. This can be readily seen in Figs. 2,
3, 4, and 5, which compare the functions H[1, ns, VE/VZ]
and H[1, np, VE /VZ] for the four states with n = 2, 3, 4,
and 5. Specifically, for high-intensity pump fields, these
functions coincide, which accords with asymptotic
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scaling (4.8); in contrast, at low intensities, these func-
tions are qualitatively different. We make the difference
even more pronounced by plotting the functions in
Figs. 2–5 on different scales.

In order to understand the causes for such a sharp
difference, we consider the following consequence of
Eq. (2.9) in the first-order approximation in the electric
field strength:

(4.10)

which immediately yields

(4.11)

From the distribution function (3.6) for ns states, we
find
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hence,

(4.12)

Relationship (4.12) shows that, for small values of the
argument, the functions A[1, ns, nVE /VZ] behave asymp-
totically as ~n2. This asymptotic behavior partially jus-
tifies the use of the function

(4.13)

for comparatively weak pump fields, in which case,
instead of formula (4.2), we have

(4.14)

That the use of the argument y = n2VE /VZ is justified is
clear from Fig. 6, which depicts the plots of functions
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(4.13). We can see that, for comparatively small values
of the argument, functions (4.13) approach each other
as the principal quantum number increases. This corre-
sponds to the unified scaling describing inverse
bremsstrahlung absorption in the case of ns states. Note
that formula (4.13) corrects for the inaccurate formula
(2.16) in [9], in which preliminary results on the subject
were reported.

Now we again turn to the discussion of Figs. 2–5.
Recall that these figures demonstrate how the proper-
ties of inverse bremsstrahlung absorption in a plasma
produced through the photoionization of a gas of
hydrogen-like atoms in the np states differ from the
above-described absorption properties of the plasma in
the case of ns states. Note that this difference can be
readily understood on the basis of the equality fnp(0) = 0,
which holds for np states and indicates that, for weak
pump fields and for a plasma produced through the pho-
toionization of a gas of hydrogen-like atoms in the
np states, there is no linear law relating the current den-
sity to the pump field strength. In fact, for small values
of V, we use formulas (3.7) and (3.3) to obtain from for-
mula (3.5) the following distribution function for the
first four np states:

(4.15)

Expanding the right-hand side of Eq. (2.9) in powers of
the pump field strength and retaining terms up to third
order, we can write

(4.16)

It is easy to guess that, for atomic states whose orbital
quantum number l is larger than unity, the nonlinear
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dependence of the current density on the pump field
strength is even stronger (~E2l + 1). This indicates that,
in a plasma produced by photoionization from the
excited electronic states of the gas atoms in the Bethe
regime of suppression of the photoionization barrier,
the high-frequency conductivity is always nonlinear.

Although the quantities given by formulas (4.10),
(4.12), and (4.16) depend on the principal quantum
number in different ways, we simplify a comparison
between the results obtained for ns and np states by
using the function

(4.17)

in which case the effective nonlinear collision fre-
quency can be described by an expression analogous to
formula (4.14):

(4.18)

From Fig. 7, which shows the functions Ψ[1, np, y] for
2p, 3p, 4p, and 5p states, we see that there is an almost
direct proportionality (~n) to the principal quantum
number. This stronger dependence on the principal
quantum number for p states, as compared to the corre-
sponding dependence for s states, can be understood by
comparing formulas (3.4) and (3.5).

Hence, we have shown the following qualitative dif-
ference between the absorption properties of plasmas
produced by the photoionization of gas atoms in the
np states and ns states. In the case of s-states, the effec-
tive collision frequency decreases monotonically with
increasing intensity of the radiation heating the plasma.
In contrast, in the case of p states, the effective nonlin-
ear collision frequency at low intensities of the heating
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radiation increases with increasing radiation intensity;
reaches its maximum value; and then decreases,
approaching unified scaling (4.8).

5. Recall that, in order to directly compare the effec-
tive nonlinear collision frequencies that govern inverse
bremsstrahlung absorption of radiation in plasmas pro-
duced by the photoionization of gas atoms in different
electronic states, it is convenient to use formula (4.2).
The functions H[1, ns(p), VE /VZ] give an explicit
dependence of the collision frequencies on the pump
field intensity. For the 1s state, the corresponding func-
tion is depicted in Fig. 1. The functions corresponding
to the four ns and np states are displayed in Figs. 2–5 (in
which the ordinate is the value of the function and the
abscissa is the ratio VE /VZ). When comparing the corre-
sponding dependences for s and p states, it should be
kept in mind that the amounts by which the functions
H[1, ns(p), VE /VZ] referring to these states vary are very
different. That is why the functions in Figs. 2–5 are
plotted on different vertical scales. Specifically, the
ratios of the maximum values of the functions for s and
p states are approximately equal to

A relatively insignificant absorption in the case of p
states stems from the fact that the higher the velocities
of the plasma particles, the lower the efficiency of the
inverse bremsstrahlung effect. In the case of s states, the
absorption efficiency is comparatively high because
electron distribution function (3.6) is maximum for
V  0. The case of p states is radically different: as
V   0, distribution function (3.7) approaches zero
according to law (4.15), thereby indicating that the
absorption is relatively weak.

We emphasize that the pump fields of comparatively
low intensities may be of particular importance. In fact,
Bethe’s condition (1.2) can be rewritten as

where IH is the ionization energy of a hydrogen atom.
Accordingly, we can say that the regions of compara-
tively small values of the arguments of the functions
shown in Figs. 1–7 (i.e., the regions for which the val-
ues of the principal quantum number are characteristi-
cally not small) are of great practical interest.

In conclusion, let us summarize the results obtained
in this paper. In order to characterize nonlinear inverse
bremsstrahlung absorption in a plasma produced by
photoionization in the Bethe regime of suppression of
the photoionization barrier, we have derived the nonlin-
ear dependences of the high-frequency conductivity on
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the pump field intensity. We have established that, in
the case of the photoionization of gas atoms with elec-
trons in the s states, the nonlinearity shows up in suffi-
ciently intense pump fields (which is characteristic of a
plasma with a Maxwellian electron distribution), pro-
vided that the electron oscillatory energy in the pump
field is not low as compared to the energy of the atomic
electrons. In contrast, in the case of atoms in electronic
states with a nonzero orbital momentum, the plasma
conductivity is nonlinear even in a low-intensity pump
field. As a result, the plasma conductivity is reduced,
indicating the possibility of the less efficient heating of
plasmas produced through the photoionization of gas
atoms in the excited electronic states with a nonzero
orbital momentum. We have also derived the scalings
characterizing inverse bremsstrahlung absorption in
photoionized plasmas.

The reviewer of this paper recommended that we
clarify two points. The first is associated with our
choice of np states in developing the theory of inverse
bremsstrahlung absorption. In this context, we empha-
size that this choice was dictated by the fact that these
are the simplest states for which the dependence of the
effective nonlinear collision frequency, governing the
inverse bremsstrahlung absorption efficiency, on the
intensity of the weak pump field is essentially nonlin-
ear. This property is clearly demonstrated in Figs. 1–5
and by formula (4.16). We have mentioned that such a
nonlinearity in weak pump fields is also peculiar to
electronic states with large values of the orbital quan-
tum number. Of course, the referee rightly noted that, in
this case, the following circumstance should be kept in
mind: the nonlinear phenomenon under discussion can
occur only when the “mixing” electron–electron colli-
sions do not cause Maxwellianization of the electron
velocity distribution in velocity space. In other words,
studies of the phenomenon in question should be
restricted to time scales shorter than the electron colli-
sion time [see formulas (1.8) and (1.10)]. The second
point to be clarified is the so-called parabolic quantiza-
tion [16], which is often used to solve the Coulomb
problem in the case of a nonzero electric field and to
consider the corresponding radiative processes. In this
connection, it should be stressed that, in the parabolic
quantization description, the eigenfunctions of the dis-
continuous spectrum of a hydrogen-like atom can be
represented as a linear superposition of the functions
resulting from quantization in spherical coordinates
[4]. Hence, it is evident that the approach developed
here can be adapted to the parabolic quantization, with
an appropriate change in the operators D. We are grate-
ful to the reviewer for his suggestions.
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APPENDIX 1

Here, we present the derivation of formula (3.6). We
start by writing the wave function for ns states in terms
of coordinates:

(A1.1)

In order to solve for the wave function

(A1.2)

in momentum space, we integrate it over the angles:

(A1.3)

Then, using the relationship

(A1.4)

we obtain
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(A1.5)

Since

(A1.6)

the wave function (A1.5) takes the form

(A1.7)

which immediately yields distribution function (3.6).

APPENDIX 2

The polynomials P4n[1, ns, x] for the first five ns
states have the form
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(A2.1)

(A2.2)

(A2.3)

(A2.4)

(A2.5)
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APPENDIX 3

The polynomials P4n[1, np, x] for the first four np states (p = 2, 3, 4, 5) have the form

(A3.1)

(A3.2)

(A3.3)

(A3.4)
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Abstract—The time characteristics of grain charging, namely, the relaxation time of the steady grain charge
and the charge fluctuations of grains of different sizes, are computed from particle simulations. The results
obtained are compared with some theoretical predictions (primarily those derived from the drift–diffusion
model). The simulations are carried out for nonmoving and moving two-temperature argon plasmas. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, dusty plasmas have been actively
studied both experimentally and theoretically (see, e.g.,
[1–3]). Under actual experimental conditions, the elec-
tron temperature in a collisional gas-discharge plasma
is usually governed by the energy input from an exter-
nal source (microwave radiation, electric current, pho-
toionization, etc.), whereas the ions are in thermal equi-
librium with the cold atoms of a buffer gas. Also, an ion
flux directed toward the electrode forms in the electrode
sheath. As a result, under certain conditions, the grain
can be in equilibrium (or, in other words, it can levitate)
because of the balance between an electric force, a
gravitational force, and a frictional force in the ion flux
[4]. However, experiments show that this equilibrium
may be unstable [5–7] and some analytic models sug-
gest that the instability may be driven, in particular, by
fluctuations of the dust grain charge [7, 8].

In this paper, which is a continuation of [9–11], we
describe the results of numerical experiments carried
out to investigate different kinetic parameters of dust
grains of micron size in a plasma. Numerical simula-
tions were aimed, in particular, at calculating the
dynamics of charging an initially uncharged grain
(which was assumed to absorb all plasma electrons and
ions striking its surface) and the kinetic parameters of
the steady (established) state. We describe numerical
results obtained for a nonmoving two-temperature
plasma and a moving plasma and investigate the statis-
tical properties of the grain charge fluctuations.

Most simulations were based on the particle-in-cell
(PIC) method. Newton’s equations of motion for a sys-
tem of charged point particles (plasma electrons and
ions) were solved in a cubic cell with a heavy macro-
particle (grain) at its center. The reflection of electrons
and ions from the cube faces was described using elec-
tron and ion velocity distribution functions at large dis-
tances from the grain. As usual, we used Maxwellian
1063-780X/02/2811- $22.00 © 20946
distribution functions, possibly with different electron
and ion temperatures. These boundary conditions allow
us to refer to the cube faces as thermostatic walls. A
moving plasma was modeled by using other boundary
conditions for the ions: the plasma with an ion influx
was described by a shifted Maxwellian ion distribution
and the cube faces were assumed to perfectly absorb the
ions leaving the computation region.

Most simulations were carried out with the help of a
simplified model in which the particle trajectories were
computed with allowance for only the interaction of a
grain with plasma particles and the screening effect.
Although the model is rather crude, it provides fairly
exact calculations of the kinetic parameters of a grain in
a nonmoving plasma, which is confirmed by comparing
its results not only with available theoretical predic-
tions, but also with the results from more precise simu-
lations based on the molecular dynamic (MD) method.
For a moving plasma, however, the simplified model
yields larger errors; in this case, it was checked only by
more laborious MD simulations.

2. GENERAL FORMULATION OF THE PROBLEM 
AND SOLUTION METHODS

Computer simulations based on ab initio principles
are widely used in solving various plasma problems
[12]. The main advantage of this approach is that, in a
computer model, it is necessary to specify only the
shape of the potential of the interaction between parti-
cles.

The results presented here were obtained from both
MD and PIC simulations of systems consisting of only
several tens of thousands of particles. The plasma was
assumed to consist of ions with mass mi and positive
charge e and electrons with mass me and charge –e. We
simulated the dynamics of a system of ne electrons and
ni ions in a cube at the center of which there is a heavy
002 MAIK “Nauka/Interperiodica”
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spherical absorbing body with radius R and charge Q =
Z0 e < 0. The number of electrons and ions was chosen
so that the entire plasma system was electrically neu-
tral, ni – ne + Z0 = 0. With this choice, the electron den-
sity in the cube was lower than the ion density because
of the negative charge of the grain.

The particle trajectories in such a system were cal-
culated by solving Newton’s equations of motion

(1)

In the MD method, the force acting on any particle in
the system is determined as a sum of forces from the
remaining particles:

(2)

where rk(t) is the position vector of the kth particle with
mass mk and charge qk, rg(t) is the position vector of a
grain with charge Q, and np is the total number of par-
ticles. In order to remove singularities, the Coulomb
forces of the interaction between the particles that
occur at short distances from each other were modeled
by the forces of the interaction between uniformly
charged, completely interpenetrating spheres with a
very small radius [12]. Equations (1) and (2) were
solved using a fourth-order Runge–Kutta method. In
contrast to [9], where the dynamics of a grain dragged
by an ion flux was taken into account, we modeled an
infinitely heavy (i.e., immobile) grain.

The PIC method differs from the MD method in that
it uses cruder approximations for the forces acting on
the particles, which clearly provides faster calculations.
As in the MD method, we computed particle trajecto-
ries by solving Newton’s equations of motion (1), but
the force acting on plasma particles was calculated in a
different way:

(3)

where rkg = rk – rg and the summation is over all parti-
cles that are closer to the grain than the kth particle.
This way of calculating the force acting on the particles
makes it possible to take into account the screening
effect of the ion–electron cloud surrounding the grain.
The force acting on the grain was determined from
Newton’s third law. Formula (3) corresponds to an
exact solution for a spherically symmetric plasma dis-
tribution, i.e., to the case in which, according to Gauss’s
theorem, the field on a spherical surface is determined
exclusively by the total charge inside the sphere. In a
spherically symmetric problem, the field is independent
of the radial distribution of charges inside the sphere.
An analogous method was applied by Zobnin et al. [13]
to calculate the electric field around a charged grain.

d
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In order to determine the extent to which the model
is adequate, we compared the results of our simulations
with the results obtained from Eqs. (1) and (2) in the
MD method and from Eqs. (1) and (3) in the PIC
method. An analysis of the results shows that it is com-
pletely justified to use formula (3) to describe a non-
moving plasma. This makes it possible to calculate the
fluctuation dynamics of grain charging on a long time
scale by performing computations with a large number
of particles for an actual electron-to-ion mass ratio. For
a moving plasma, this approach also yields fairly exact
results, although it leads to somewhat larger errors.

A necessary (but not always sufficient) condition for
the PIC simulation results to be adequate is that the
number of particles in the volume to be modeled should
be much larger than the number of particles inside the
Debye sphere. In experiments on dusty plasmas, the
characteristic parameter values are the following: the
ion density is Ni = 109 cm–3, the electron temperature is
Te = 1 eV, and the ion temperature is Ti = 0.025 eV. For
these parameter values, there are approximately 106

plasma particles inside a Debye sphere. Since the num-
ber of arithmetic operations per time step in MD simu-
lations is proportional to the square of the particle num-
ber, even modern parallel computers are incapable of
performing such an enormous amount of calculations.
That is why it is necessary to refer to scalings for phys-
ical parameters and to use simplified models, which
reduce the amount of computer calculations.

In dusty plasmas, an important role is played by
grain charging processes and grain charge fluctuations.
One of the general problems in plasma simulations is
that the ion and electron masses are very different. For
this reason, the slow processes associated with ion
motion should be calculated on a difference grid whose
time steps are determined by the fast electron time
scales. A possible approach to overcoming this problem
is to use models in which the electron-to-ion mass ratio
is increased in order to reduce the difference between
the characteristic ion and electron time scales [10, 12]
or the electrons are described by a Boltzmann distribu-
tion [13]. However, these approaches are inapplicable
for calculating the grain charge fluctuations.

In this paper, the main simplifying assumption that
makes it possible to compute the fluctuation parameters
of the grain charge is the assumption of a spherical
symmetry of the charge density around the grain. This
assumption, under which forces (3) were calculated,
actually indicates that the plasma particles interact with
each other only through the radius-averaged grain
charge fluctuations and the charge acquired by the
grain.

3. GRAIN CHARGING AND GRAIN CHARGE 
FLUCTUATIONS IN A PLASMA

In an ideal gas, the mean number ∆N of atoms col-
liding with a grain during the time interval t is propor-
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tional to the surface area of a grain, the atom flux den-
sity, and the time interval itself. Accordingly, for a ball
in a gas with a Maxwellian distribution of atoms, the
number of collisions is equal to

(4)

where JM = (Te/2πm)1/2n is the density of the atom flux
onto the ball surface in a Maxwellian gas and n is the
atom density. Formula (4) describes the charging of an
initially uncharged grain to values that are small in
comparison with its mean charge.

If the mean grain charge in a steady-state plasma is
equal to , then the time dependence of the deviation

∆Q(t) = Q(t) –  of the grain charge from its mean
value is usually described by the equation [14]

(5)

This equation is based on the assumption that the rate at
which the grain charge relaxes to its mean value is pro-
portional to the deviation from it, provided that the
deviation by itself is small.

The characteristic relaxation time is usually chosen
to be the characteristic time τf of the grain charge fluc-
tuations. For a Maxwellian plasma, the definition of
this time in the drift–diffusion approximation was given
in [14]:

(6)

where v i = (8Ti /πM)1/2 is the mean ion thermal velocity

and  = – /R is the height of the energy barrier. As
usual, the characteristic fluctuation time is also
assumed to be the characteristic time of the exponen-
tial decrease in the autocorrelation function of the
grain charge fluctuations, 〈∆Q(t + τ)∆Q(t)〉  =
〈∆Q2〉exp(−τ/τf).

In the Fokker–Planck approximation, the mean
square of the amplitude of the grain charge fluctuations
is determined by the ratio of the fluctuation time to the
mean time τc between collisions of plasma particles
with the grain:

(7)

Cui and Goree [15] derived the following approxi-
mate dependence of the mean square deviation of the
grain charge from its mean value:

(8)

where Z is the grain charge expressed in units of the
electron charge. The coefficient cσ was also calculated
from the data obtained in our numerical experiments,

∆N t( ) 4πR
2
JMt,=

Q

Q

d∆Q/dt ∆Q/τ f .–=

τ f

4rDi
2

v iR
---------- 

  1
1 Ti/Te ϕ /Te+ +
---------------------------------------,=

ϕ eQ

σ2 ∆Q
2〈 〉 /e

2 τ f /2τc.= =

σ cσZ
1/2

, cσ 1/2,= =
namely, from the mean grain charge and the amplitude
of the grain charge fluctuations:

(9)

Another approximate dependence of the mean
square deviation of the grain charge from its mean
value was obtained by Matsoukas and Russel [14]:

(10)

When analyzing the results of numerical simulations,
we described the grain charging process by the approx-
imate function

(11)

Note that we chose the time interval to be shorter than
the run time of the code. Specifically, we removed a
certain initial time during which Eq. (5) fails to hold
from consideration because of the large deviation of the
grain charge from its mean value; on the other hand, we
chose the initial deviation to be much larger than the
fluctuation amplitude.

4. RESULTS FROM SIMULATIONS
OF A NONMOVING TWO-TEMPERATURE 

PLASMA

First, we consider the results obtained for a two-
temperature argon plasma with z = 1 and Ni = 2 ×
1012 cm–3, the ion and electron temperatures being Ti =
0.025 eV and Te = 1 eV. In terms of the characteristic
distance between the ions, the electron Debye radius

rDe = (Te/4πe2 )1/2 is equal to rDe  = 6.6, in which
case there are 1220 electrons within the Debye sphere.
We can see that the conditions for both the electron and
ion plasma components to be ideal are well satisfied.

Initially, the electrons and ions were uniformly dis-
tributed inside the cube, and their velocity distributions
were chosen to be Maxwellian distributions at infinity.
Depending on the initial distance to the grain, the Max-
wellian distribution over the absolute value of the
velocity was shifted by the energy of the interaction
with the grain. The initial velocity distributions of the
electrons and ions were chosen to be isotropic. Hence,
the initial distributions correspond to the absence of
electrons and ions that are trapped by the grain and,
under certain conditions, may greatly distort the grain
kinetic parameters.

An initially uncharged, infinitely heavy grain with
prescribed dimensions was assumed to be located at the
center of the cube and to absorb all plasma electrons
and ions incident on its surface. In our previous simula-
tions, the number of electrons and ions in the cube was
fixed. Consequently, because of the grain charge fluctu-
ations, the system was, on the average, electrically neu-
tral only on sufficiently long time intervals; this situa-

cσ σ/Z
1/2

.=

σ2

e
2
RTe

-------------- 1
1

1 Ti/Te ϕ /Te+ +
---------------------------------------.–=

Q t( ) Q ∆Q 0( ) t/τ f–( ).exp+=

Ne
2

Ni
1/3
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tion (at best) could be achieved by appropriately choos-
ing the number of ions and electrons in the system on
the basis of the results from preliminary computations.

We applied, for the first time, an algorithm that
made it possible to strictly preserve the electrical neu-
trality of the entire system, specifically, the particle
injection algorithm. When a plasma particle was
absorbed by the grain, the neutrality of the system (of
course, with allowance for the grain charge) was main-
tained by injecting the required number of particles into
the plasma volume from a random point at the cube
faces. The essence of the algorithm can be described as
follows. When an electron was absorbed by the grain,
the number of electrons in the system decreased; how-
ever, when an ion was absorbed, an electron–ion pair
was injected into the system from a cube face. As a
result, the number of ions was maintained constant,
while the number of electrons was varied in time so as
to ensure plasma neutrality. The reflection of electrons
from the cube faces was described by the boundary
conditions corresponding to thermostatic walls. This
allowed us to describe the electrons by a Maxwell–
Boltzmann distribution function and to model the
appearance of electrons whose kinetic energy is high
enough for them to overcome the potential barrier. Such
a formulation of the problem provides a self-consistent
description of both the charging of a grain and of the
fluctuations of its charge.

Hence, our model assumes that the number of ions
in the system is constant while the number of electrons
may decrease because of the electron absorption by the
grain. This indicates that the mean electron density in
the system may become substantially lower than the ion
density. The amount by which the electron density
decreases can be estimated using the ratio of the grain
charge to the number of ions in the system. The situa-
tion when the electron density is substantially lower
than the ion density corresponds to a plasma with dust
clouds or dust crystals. In our problem of the calcula-
tion of the grain charge fluctuations, a decrease in the
mean electron density did not change the kinetic
parameters of the entire system because it was electri-
cally neutral. That this is the case was checked by car-
rying out test simulations with a much larger number of
plasma particles.

Figures 1 and 2 show how the charges of spherical
grains of different radii and the number of electrons and
ions absorbed by them change with time. In all figures
presented in this paper, the time is normalized to the ion
plasma frequency ωi = (4πe2Ni /M)1/2 (where M is the

mass of an ion), the ion plasma period being τi =  =
3.4 ns. The system evolution was followed over the
time t0 = 1.7 × 10–7 s, which was much longer than both
the ion plasma period (2.14 × 10–8 s) and the character-
istic time scale on which the grain was charged. For
convenience, all figures present the results obtained for

ωi
1–
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Fig. 1. Time evolution of the charges Q of absorbing spher-
ical grains with the radii r = (1) 0.25, (2) 0.5, (3) 1, and
(4) 2 µm in a nonmoving two-temperature plasma with Ti =
1/40 eV.
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Fig. 2. Time evolution of the number of (1) electrons and (2)
ions absorbed by spherical grains with the radii r = (a) 0.25
and (b) 2 µm in a nonmoving two-temperature plasma with
Ti = 1/40 eV. The dashed curves are calculated from the
dependence Q(t) = SJM(t).



950 MAŒOROV et al.
an initial time interval comparable with the characteris-
tic period of the grain charge fluctuations.

Figure 1 illustrates the results of four series of com-
putations, specifically, the time evolution of the charges
of initially uncharged spherical grains with the radii r =
0.25, 0.5, 1, and 2 µm (the larger the radius of the grain,
the larger the charge acquired by it). The initial number
of ions in the system was taken to be 15000 (this num-
ber was constant in the course of a run), and the initial
number of electrons was also taken to be 15000 (this
number changed in the course of a run); on the whole,
the system always remained electrically neutral. The
size of the computation region (the cube edge) was
19 µm.

Figure 2 shows how the number of electrons and
ions absorbed by spherical grains with the radii r = 0.25
and 2 µm changes in time. The dashed curves were cal-
culated from the dependence Q(t) = SJMt, following

–250
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40
–300
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–50
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t

Fig. 3. Deviation ∆Q of the charge of an absorbing spherical
grain with the radius r = 0.25 µm from its mean charge in a
nonmoving two-temperature plasma with Ti = 1/40 eV. The
solid curve shows the deviation of the grain charge from its
mean value, the dashed curve is the approximation of this
deviation by formula (11), and the dotted curve shows the
deviation of the calculated grain charge from approximating
dependence (11).
from formula (4). The number of absorbed electrons is
always larger than the number of absorbed ions.

Figure 3 illustrates the way of determining the mean
grain charge, the amplitude of grain charge fluctua-
tions, and the characteristic fluctuation time. The plots
in Fig. 3 were obtained in the calculations of the evolu-
tion of the charge of a grain with the radius r = 0.25 µm.
The solid curve shows how the grain charge deviates
from its mean value as time elapses, the dashed curve is
the approximation of this deviation by formula (11),
and the dotted curve refers to the deviation of the calcu-
lated grain charge from approximating dependence
(11).

An interesting effect revealed in simulations is that
the charge of a grain with the largest radius increases
nonmonotonically. An analysis of the time evolution of
the ion current shows that this nonmonotonic behavior
stems from the fact that the relaxation time of the
screening ion cloud around the grain is longer than that
of the grain charge. Accordingly, the larger the steady-
state grain charge, the more pronounced this effect.

Table 1 presents the results of an analysis of the cal-
culated data and the corresponding theoretical results.
Note that the calculated fluctuation time is much longer
than the theoretically predicted time (it may be even
said that the calculated time is anomalously long,
because it substantially exceeds the calculation error).
A detailed analysis of this circumstance goes beyond
the scope of our study. Note only that the fluctuation
time differs, in principle, from the time during which
the grain charge relaxes to its steady-state value (see
also [14]); this difference was, in fact, revealed in our
numerical experiments, in which the grain charge
relaxation was found to be nonmonotonic.

5. RESULTS FROM SIMULATIONS
OF A MOVING PLASMA

Here, we consider the results obtained for a moving
plasma, which is most often encountered in experi-
ments. The formulation of the problem was analogous
to that described in the previous section, the only differ-
Table 1.  Parameters of the charging of grains of different sizes in a two-temperature plasma with Ti = 0.025 eV: the mean
grain charge and its mean square deviation from the approximating curve, the fluctuation times obtained numerically and
those obtained theoretically for a Maxwellian plasma, and the height of the potential barrier

R, µm 0.25 0.5 1 2

Mean charge Q 556 1172 2517 5157

Charge fluctuations σ (numerical calculations) 10.5 17.4 27.1 31.2

Charge fluctuations σ (calculated by (10)) 11.5 16.4 26.4 33.1

cσ (calculated by (9)) 0.446 0.507 0.528 0.434

cσ (calculated by (10)) 0.488 0.479 0.465 0.461

Charge relaxation time τ, ns (calculated by (11)) 17.6 17.9 16.8 11.9

fluctuation time τ, ns (calculated by (6)) 6.7 3.2 1.5 0.75

Potential barrier ϕ, V 3.21 3.38 3.63 3.72
PLASMA PHYSICS REPORTS      Vol. 28      No. 11      2002
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ence being that each ion was assigned an initial directed
velocity corresponding to the kinetic energy Ki = 2 eV.
The remaining physical and computational parameters
were the same as those in simulations of a nonmoving
two-temperature plasma.

In analogy with Fig. 1, Fig. 4 illustrates the results
from calculations of the time evolution of the charges of
initially uncharged spherical grains with the radii r =
0.25, 0.5, 1, and 2 µm.

In analogy with Fig. 2, Fig. 5 shows the time evolu-
tions of the number of electrons and ions absorbed by
spherical grains with the radii r = 0.25 and 2 µm,
respectively. The dashed curves were calculated from
the dependence Q(t) = SJMt, following from formula
(4). The number of absorbed electrons is always larger
than the number of absorbed ions.

Table 2 summarizes the results of an analysis of the
calculated data. The fluctuation times were calculated
from formula (6) for Ti = 1 eV, because the mean
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Fig. 4. Time evolution of the charges of absorbing spherical
grains with the radii r = (1) 0.25, (2) 0.5, (3) 1, and (4) 2 µm
in a moving two-temperature plasma with Ti = 1/40 eV; the
kinetic energy of the directed ion motion is 2 eV.
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kinetic energy of Maxwellian ions at the grain surface
is equal to
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Fig. 5. Time evolution of the number of (1) electrons and
(2) ions absorbed by spherical grains with the radii r =
(a) 0.25 and (b) 2 µm in a moving two-temperature plasma
with Ti = 1/40 eV; the kinetic energy of the directed ion
motion is 2 eV. The dashed curves are calculated from the
dependence Q(t) = SJMt.
Table 2.  Same as in Table 1, but for a moving plasma with the ion kinetic energy Ki = 2 eV, corresponding to argon atoms

R, µm 0.25 0.5 1 2

Mean charge Q 751 1590 3276 7084

Charge fluctuations σ (numerical calculations) 9.9 19.7 23.4 33.4

Charge fluctuations σ (calculated by (10)) 12.1 17.2 24.3 34.5

cσ (calculated by (9)) 0.352 0.494 0.408 0.396

cσ (calculated by (10)) 0.441 0.430 0.425 0.410

Charge relaxation time τ, ns (calculated by (11)) 30.3 15.4 8.9 5.9

fluctuation time τ, ns (calculated by (6)) 28.3 13.6 6.7 3.2

Potential barrier ϕ, V 4.33 4.58 4.72 5.10
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where fM(v ) = v 2exp(–mv 2/2T) and K(v ) = mv 2/2.
Accordingly, the energy of ions with the kinetic energy
Ki = 2 eV is equal to the mean kinetic energy of an ion
flux with Ti = 1 eV.

Note that the computed grain-charge fluctuation
times agree fairly well (within a factor of about two)
with the theoretically predicted times, in contrast to the
case of a nonmoving two-temperature plasma, in which
the calculated fluctuation times differ from those
obtained theoretically from formula (6) by more than
one order of magnitude.

Since the accuracy of the calculations of the ampli-
tude of the grain charge fluctuations depends on the
ratio of the time during which the grain charging pro-
cess is followed to the fluctuation time, the computa-
tional errors are the largest for small grains, for which
the charge fluctuation times are the longest.

Presumably, numerical errors in determining the
fluctuation times for large grains are also associated
with the fact that, in the computational scheme used in
our simulations, the number of electrons becomes com-
parable with the grain charge number; as a result, the
electron density becomes substantially lower than the
ion density.

6. CONCLUSION

The results of our numerical simulations can be used
to analyze the kinetic parameters of the grain charging
processes in plasmas, to check theoretical models, and
to model the processes occurring in laboratory experi-
ments. The PIC numerical method developed here
makes it possible to investigate a wide scope of prob-
lems associated with the charging of dust grains and
their behavior under various conditions in dusty plas-
mas. In particular, we have calculated the time charac-
teristics of the relaxation of the grain charge and the
amplitude of its fluctuations as functions of the grain
size and the parameters of a nonmoving and moving
plasma. These results are of interest for predicting the
processes in experimental devices and, in particular, for
analyzing the problems associated with the stability of
the levitation of dust grains.
ACKNOWLEDGMENTS

We are grateful to the Australian Research Council
for supporting this work. S.A. Maœorov also acknowl-
edges the financial support of the Netherlands Organi-
zation for Scientific Research (NWO).

REFERENCES
1. H. Tomas and G. Morfill, Nature (London) 379, 806

(1996).
2. V. N. Tsytovich, Usp. Fiz. Nauk 167, 57 (1997) [Phys.

Usp. 40, 53 (1997)].
3. A. M. Ignatov, Fiz. Plazmy 24, 731 (1998) [Plasma Phys.

Rep. 24, 677 (1998)].
4. S. V. Vladimirov and N. F. Cramer, Phys. Rev. E 62, 2754

(2000).
5. S. Nunomura, T. Misawa, N. Ohno, and S. Takamura,

Phys. Rev. Lett. 83, 1970 (1999).
6. A. A. Samarian, B. W. James, S. V. Vladimirov, and

N. F. Cramer, Phys. Rev. E 64, 025402(R) (2001).
7. O. S. Vaulina, A. P. Nefedov, O. F. Petrov, et al.,

Zh. Éksp. Teor. Fiz. 120, 1369 (2001) [JETP 93, 1184
(2001)].

8. A. V. Ivlev, U. Konopka, and G. Morfill, Phys. Rev. E 62,
2739 (2000).

9. S. V. Vladimirov, N. F. Cramer, and S. A. Maœorov,
Kratk. Soobshch. Fiz., No. 9, 33 (2000).

10. S. A. Maiorov, S. V. Vladimirov, and N. F. Cramer, Phys.
Rev. E 63, 17401 (2001).

11. S. V. Vladimirov, S. A. Maiorov, and N. F. Cramer, Phys.
Rev. E 63, 045401 (2001).

12. R. Hockney and J. Eastwood, Computer Simulation
Using Particles (McGraw-Hill, New York, 1984; Mir,
Moscow, 1987).

13. A. V. Zobnin, A. P. Nefedov, V. A. Sinel’shchikov, and
V. E. Fortov, Zh. Éksp. Teor. Fiz. 118, 554 (2000) [JETP
91, 483 (2000)].

14. T. Matsoukas and M. Russel, Phys. Rev. E 55, 991
(1997).

15. C. Cui and G. Goree, IEEE Trans. Plasma Sci. 22, 151
(1994).

Translated by G. V. Shepekina
PLASMA PHYSICS REPORTS      Vol. 28      No. 11      2002



  

Plasma Physics Reports, Vol. 28, No. 11, 2002, pp. 953–964. Translated from Fizika Plazmy, Vol. 28, No. 11, 2002, pp. 1032–1045.
Original Russian Text Copyright © 2002 by Aleksandrov, Bazelyan, Drabkin, Carpenter, Raizer.

    

LOW-TEMPERATURE 
PLASMA

                             
Corona Discharge at the Tip of a Tall Object in the Electric Field 
of a Thundercloud

N. L. Aleksandrov1, E. M. Bazelyan2, M. M. Drabkin3, 
R. B. Carpenter, Jr.3, and Yu. P. Raizer4

1 Moscow Institute of Physics and Technology, Institutskiœ per. 9, Dolgoprudnyœ, Moscow oblast, 141700 Russia
2 Krzhizhanovsky Power Engineering Institute, Leninskiœ pr. 19, Moscow, 117927 Russia

3 LEC Inc., Boulder, Colorado, USA
4 Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, Moscow, 117526 Russia

Received April 18, 2002

Abstract—Characteristics of a positive transient corona discharge near the tip of a tall solitary grounded object
in the electric field of a thundercloud are studied analytically and numerically. The time evolution of the dis-
charge current and the space distribution of the total electric field are simulated for different growth rates of the
external field and the dimensions and geometry of the stressed electrode. The effect of aerosol ions is shown to
be negligible at a short duration of the corona. The developed simplified analytical approach agrees with numer-
ical simulations. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Both the processes in a thundercloud and those at
ground level are of interest in studies of discharge phe-
nomena in a strong atmospheric electric field. On the
ground, an upward leader can initiate upward lightning
or attach to downward lightning. Quasi-steady corona
discharges characterized by much lower current densi-
ties are also important. Flowing through a large area
and for a long time (minutes), a relatively low corona
current saturates the atmosphere with electric space
charge. The injected charge changes the distribution of
the electric field near the ground and affects the condi-
tions of the initiation and development of an upward
leader near different tall objects, including lightning-
rods and protected structures [1, 2]. In particular, this is
supported by the observations [3] that it is easier to ini-
tiate triggered lightning from a high-velocity rocket
lifting a grounded wire than lightning from a stationary
object of the same height. In the former case, there is no
shielding effect from the space charge, because, at a
velocity of about 100 m/s, the rocket advances the ions
injected by the corona discharge near the rocket tip. In
contrast, a corona discharge near the tip of a stationary
object has time to form a cloud of space charge above
it. Therefore, to study corona discharge near a tall
object in a strong atmospheric electric field is of funda-
mental and applied significance.

Studies of corona discharges in the atmosphere usu-
ally consider the formation of the total space charge
over a large area of the earth surface [4, 5]. In this case,
the discharge is ignited at the extremities of a great
number of relatively low grounded objects (twigs of
trees and bushes, grass, etc.) and is characterized by a
low current (<1 µA for a solitary object). These phe-
1063-780X/02/2811- $22.00 © 20953
nomena can be simulated by using one-dimensional
models in which the sources of the corona current are
averaged over a large area and an effective atmospheric
electric field of corona ignition is introduced.

The purpose of this work is to study the peculiarities
of a positive corona discharge near the tip of tall soli-
tary objects like towers, masts, and lightning-rods in the
electric field of a thundercloud. Here, as distinct from
previous works [4, 5], the system under consideration is
a two-dimensional one and the discharge current can
reach ~1 mA, leading to a density of injected charged
particles greater than the unperturbed density of atmo-
spheric ions by 3–5 orders of magnitude. Our work dif-
fers greatly also from laboratory studies [6] of a corona
discharge in much shorter gaps, where the process
reaches a steady state very quickly. In a thundercloud–
ground gap, the corona discharge is a fundamentally
unsteady process. First, the external electric field varies
with time and a lightning stroke regains its initial value
only after about 1–10 s. Second, the discharge has no
time to reach a steady state because the front of the
space charge does not reach the thundercloud in a typi-
cal period of time between lightning strokes during an
intense thunderstorm.

Analytical and numerical methods were used in this
work to study the transient regimes of a corona dis-
charge in the electric field of a thundercloud. An analyt-
ical approach establishes the general relationships in
the considered problem, which includes many parame-
ters. However, an analytical solution can be obtained
only by using significant simplifications. A numerical
simulation can calculate any characteristic of the
corona discharge and test the validity of the analytical
theory; however, at the scale of a thundercloud–earth
002 MAIK “Nauka/Interperiodica”
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gap, it needs an inappropriately long running time.
Undertaking the present study, we tried to combine the
advantages of analytical and numerical approaches.

2. SIMPLIFIED ANALYTICAL DESCRIPTION 
OF THE TRANSIENT CORONA DISCHARGE

A quasi-steady glow corona is ignited at a steady or
slowly varying (for seconds) applied voltage. In this
type of discharge, ionization occurs only in a thin layer
near an electrode and the voltage drop along the ioniza-
tion layer is much less that the total voltage drop along
the discharge gap. In our physical model, the ionization
zone is assumed to coincide with the stressed electrode
surface and is considered as an ion source of unlimited
productivity. As a result, the electric field E(r0) (where
r0 is the electrode radius) on the electrode surface is
maintained at the threshold field Ei, which is deter-
mined from the Townsend criterion for self-sustained
discharge ignition. Observations and simulations of a
corona discharge confirm the stabilization of the elec-
tric field on the electrode surface with a high degree of
accuracy [6, 7].

The current–voltage characteristic of a corona dis-
charge can be obtained from the expression for the den-
sity j of the discharge current,

, (1)

and Poisson’s equation for electric field,

(2)

Here, e is the charge of a singly charged ion, ni and µ
are the ion density and mobility, ρ is the space charge
density, and ε0 is the permittivity of a vacuum.

Equations (1) and (2) with the boundary condition
E(r0) = Ei = const can be analytically solved for a steady
process, when the current and voltage are time indepen-
dent. This gives the simplified Townsend formula [8, 9]

i = BU(U – Uc) 

for the current–voltage characteristic of the corona dis-
charge. Here, Uc is the voltage of corona ignition and B
is the proportionality constant, which linearly depends
on the ion mobility and changes with gap geometry.

In order to theoretically describe the transient
regime of the corona discharge, it is necessary to take
into account the evolution in time of the electric field
due to the electric charge injected into the gap. The
problem reduces to a system of integro-differential
equations that cannot be solved analytically even for
the simplest geometry of the gap. The sole exception is
the transient corona discharge at a constant current
[10]. To realize this regime, the applied voltage U(t)
must rise in time in a specific way. From the current sta-
bilization and the boundary condition E(r0) = Ei =
const, it follows that the distribution of space charge
and electric field do not vary in time in the gap between
the stressed electrode and the front of the space charge;

j r( ) µE r( )eni=

div E r( ) ρ/ε0.=
i.e., each new charge injected into the gap is spent on
charging new regions during the propagation of the
front of the space charge. Under these conditions, the
problem was solved analytically for coaxial spheres
and cylinders and for plane electrodes [10].

Interest in this abstract problem stems from the fact
that a similar regime of corona discharge can occur at
an arbitrary, sufficiently slow evolution in time of the
applied voltage, when the relationship between i(t) and
U(t) at any instant depends only slightly on the preced-
ing temporal evolution of the voltage. In this case, the
electric field distribution E(r) and space charge distri-
bution ρ(r) follow the slowly varying current. At any
instant, these magnitudes correspond to an instanta-
neous value of i(t) as though the current were constant.
This quasi-stationary model is also useful in establish-
ing the basic relationships between the current and
other parameters of the transient corona discharge. As
we will see subsequently, this simplified approach
agrees quantitatively with a more consistent numerical
simulation under some practically important condi-
tions. Although this model was previously described in
[2, 10, 11], we will present its main points, which will
facilitate the interpretation of the results obtained in
this paper.

We consider a solitary spherical stressed electrode
with the radius r0. With the boundary condition E(r0) =
Ei = const, the electric field at the front of the space
charge with the radius rf is given by

(3)

Here, i is the discharge current and t is the current dura-
tion time. The first term in formula (3) is the electric
field of the electrode charge and the second one is that
of the space charge in the gap. Note that, if the quantity
qsp(r) is treated as the space charge inside a sphere of
radius r, then formula (3) also defines the distribution of
the electric field in the space charge layer:

In the case of a corona with a constant current, the
charge behind the front of space charge does not
change; hence, we have qsp(r) = it(r), where t(r) is the
time during which the front propagates to the radius r.
Since the ions at the front of space charge drift with the
velocity v  = drf /dt = µE(rf), where µ is the ion mobility,
integration over time with allowance for formula (3)
yields the following expression for the front radius:

(4)
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For a well developed discharge (rf(t) @ r0), expression
(4) reduces to

(5)

With allowance for the above relationships, it is easy to
find the voltage across the gap as a function of the
corona current i and the time t during which the corona
exists. Indeed, for a well developed corona, we have

(6)

Here, the first term on the right-hand side describes the
contribution from the constant electrode charge (Uc =
r0Ei); the second term describes the voltage drop across
the space charge layer,

and the third term describes the voltage drop across the
region r > rf , which is yet free of space charge. Substi-
tuting function t(r), which can be found from formula
(5) at rf = r, and integrating Eq. (6) over r, we obtain

For low, but arbitrary voltage variations, the last expres-
sion can be rewritten in the form

(7)

Numerical calculations [2] with allowance for time
dependence of the discharge current show that, in cases
that are of interest from the practical standpoint, the
inaccuracy introduced by the assumption of a constant
current, used in deriving formula (7), is no higher than
30%. Note that formula (7) is applicable only to a well
developed corona; however, in applied problems con-
cerning atmospheric discharges, of most interest is just
this regime of a well developed corona capable of satu-
rating large volumes of air above the earth surface.

An analysis of formula (7) leads to the following
conclusions. First, the current of the transient corona
discharge depends on the ion mobility as i ~ µ1/2; it is a
weaker dependence than that for a stationary corona,
for which this dependence is close to linear [8]. This
stems from the fact that the current in a transient dis-
charge is controlled by the ion drift velocity v  = µE(rf)
in the front of space charge, which is proportional to the
local electric field. The value of this field decreases
with increasing rf , which is longer for a higher ion
mobility [see formula (5)]. The weakening of the
dependence i(µ) is favorable for a numerical simulation
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of long transient processes in corona discharge, when
ion–molecule reactions leading to a variation in the ion
mobility can be important. The obtained weak depen-
dence can allow a simplification of ion kinetics.

Second, in order to maintain a constant or rising dis-
charge current, it is necessary to increase the applied
voltage. Differentiating formula (7) with respect to U
gives the necessary condition for the transient corona at
a nondecreasing current

(8)

The critical value of AU decreases with time tending to
zero. From formula (7), it follows that, at a linearly ris-
ing voltage difference U(t) – Uc = AUt, the current of a
transient corona also increases linearly and that, at a
fixed applied voltage U, the current decreases in time as
i(t) ~ t–1/2.

It also follows from formula (7) that a variation in the
electrode radius affects the current of the transient dis-
charge only through the ignition voltage Uc. When the
values of U and Uc are not too different, this effect is
strong because the current is proportional to (U – Uc)3/2

(instead of U – Uc, as in the case with a stationary
corona discharge). At a fixed voltage, the discharge cur-
rent can be affected only through the variation in Uc. In
this case, it is more reasonable to change the threshold
field Ei , rather than the electrode radius.

It should be noted that only the simplest geometry of
a solitary spherical electrode, whose field is propor-
tional to r–2, was analyzed analytically. In order to
study the discharge for a more complex geometry, we
need to use numerical simulation. A numerical
approach should be used also to test the applicability of
the simplified analytical method for a description of the
discharge with time-dependent current.

Finally, numerical calculations would be useful in
studying the differences between discharge on a labora-
tory scale and that in the cloud–ground gap. In the latter
case, the applied voltage is generally unknown and the
input parameter is the thundercloud electric field E0 at
the ground level. This field induces an electric charge
opposite in sign to the thundercloud charge on the sur-
face of a grounded electrode, and the corona discharge
is ignited in the electric field of the induced charge.
Assuming that the undisturbed value of E0 does not
vary noticeably over the height from the ground to the
electrode tip (this is true because the distance between
the earth and cloud Hcl is much higher that the electrode
height h), we have the potential U0 = E0h near the elec-
trode tip. Inducing the charge in the grounded conduc-
tive electrode leads to zero potential of the total electric
field on the electrode surface. Hence, only a small part
(U0 = E0h) of the voltage drop along the cloud–earth
gap is used to maintain the electric field that initiates a
corona discharge. Nevertheless, the effective voltage
U0 should not be directly identified with the value of U

AU
dU
dt
------- 2

3t
----- U Uc–( ).>=



956 ALEKSANDROV et al.
in formulas (7) and (8), especially at a considerable dis-
tance from the electrode tip, where the electric field of
the induced charge and that of space charge are compa-
rable with the external electric field E0. Numerical sim-
ulation will show the appropriateness of the simplified
analytical approach for the description of a transient
corona discharge.

3. SIMULATION MODEL

The theory of transient corona discharge is based on
Poisson’s equation (2) and the time-dependent continu-
ity equations

(9)

where nj and µj are the number density and mobility of
charged particles of species j, respectively, and S is a
source term describing ion–molecule reactions that
affect the ion composition and, hence, the transport of
charged particles. The density of space charge in Pois-
son’s equation is ρ = .

The ion composition in atmospheric air is a complex
one [12]. Therefore, it is of importance to develop a
proper model of ion kinetics which could quantitatively
describe the processes in a transient corona discharge
and be sufficiently simple in order to avoid time-con-
suming calculations.

A numerical analysis of ion–molecular reactions in
humid air under standard conditions shows that the
dominant species of positive ions changes in time (after
producing a primary ion) in the following way [13–15]

        H2O 

 H3O+  H3O+H2O  H3O+(H2O)2 

 H3O+(H2O)3  H3O+(H2O)4 

 H3O+(H2O)5  H3O+(H2O)6  A+.

Here, A+ denotes aerosol and  · X · Y ions.
It is of interest to understand how the changes in the

ion composition affect the ion mobility, which deter-
mines ion transport and electrical conductivity in a
corona discharge. Reliable measured mobility data are
now available for about 300 ion–gas combinations [12,
16], but there is little or no information for ion mobility
measured in air. Therefore, in order to obtain the mobil-
ity data for given ion species in air, one usually uses
simple models [12] that agree well with the available
experimental data in pure gases.

Estimates based on the simple models show that the
evolution in time of the composition of light ions in
ambient air leads only to a 25% variation in the average
ion mobility. Owing to a weak sensitivity of the mobil-
ity of light ions to the ion mass, it would be reasonable
in a study of a corona discharge to consider only one
light ion species with a mass and mobility correspond-

∂n j

∂t
-------- div n jµ jE( )+ S,=

e n j∑

N2
+

N4
+

O2
+

O4
+

O2
+

NH4
+

ing to an H3O+(H2O)6 ion. In addition, this simplifica-
tion is justified because all light ions, except
H3O+(H2O)6, exist at t < 10–5 s, when the drifting ions
can cover only ~1 cm. Therefore, a good approximation
to the positive-ion kinetics is to consider only
H3O+(H2O)6 ions and aerosol ions and to take into
account only the reaction

H3O+(H2O)6 + Ç  Ä+,

where B is a neutral aerosol particle. This approxima-
tion will be used in our simulation.

The mobility of the H3O+(H2O)6 ions is assumed to
be µe = 1.5 cm2 V–1 s–1. The kinetics, properties, and
density of aerosol ions in ambient air are poorly under-
stood. Therefore, in this work, the effect of aerosol ions
is modeled by a single component Ä+ with the effective
ion mobility µa = 2.3 × 10–3 cm2 V–1 s–1 and the rate coef-
ficient ka = 1.5 × 10–6 cm3 s–1 for the conversion of light
ions into aerosol ions; i.e., we assume S = –kanilnia in
Eq. (9) for the density nil of light ions and S = kanilnia in
Eq. (9) for the density nia of aerosol ions. A similar
kinetic model was used previously in [4, 5] to simulate
the formation of the space charge layer above the
ground.

4. ALGORITHM OF THE SIMULATION MODEL

A simulation was carried out for two types of
grounded electrodes; these are a grounded rod with a
hemispherical tip and a grounded hemisphere that is at
a height h above the ground. The electric field from a
charged hemisphere decreases more strongly with dis-
tance than that from a rod electrode.

The wave front of the charge, which is injected into
the gap by a stressed electrode, does not remain geo-
metrically similar to the electrode surface during the
front propagation. Therefore, in a strict sense, the sim-
ulation of a corona discharge near the suggested elec-
trode must be a two-dimensional one. However, any
two-dimensional computational model is very time-
consuming when a corona discharge is considered in a
gap many tens of meters in length. From estimates, we
obtain the number N ~ 100 of nodes in the one-dimen-
sional computational domain, and N ~ 104 in the two-
dimensional domain.

A computational time step has to be shorter or equal
to the time of ion drift along the minimum computa-
tional space step

where w is the ion drift velocity. In the immediate vicin-
ity of the stressed electrode, where w = µEi , the mobil-
ity of light ions is µ ≈ 1.5 × 10–4 m2 V–1 s–1, and Ei ≈
3 MV/m, we have ∆t ≈ 2 × 10–6 s under normal condi-

∆t
∆xmin

w
-------------,≤
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tions. Hence, in order to simulate a corona discharge for
t ~ 1–10 s, it is necessary to cycle a computational loop
of Nt = t/∆t ~ 2 × (106–107) time steps, each for every
space mesh and ion species considered in the used
kinetic model.

There is little sense in performing this time-consum-
ing calculation for those rough input parameters that
can be used at present to describe thunderstorm activity
(for instance, the evolution in time of the undisturbed
electric field in the cloud–ground gap). Our model of
corona discharge uses the only simplifying assumption;
it is assumed that the space charge layers created near
the hemispherical electrode surface hold a hemispheri-
cal shape when expanding from the electrode. This
would be precisely true when the vector of the electric
field strength E and the radius vector r drawn from the
center of the hemisphere have the same direction and
when the absolute value of the electric field depends
only on the absolute value of the radius vector. The con-
sidered condition is adequately satisfied at r ! h; some
violation of this condition away from the electrode is of
little importance.

The considered assumption significantly simplifies
the calculation by reducing the problem to one-dimen-
sional one. Now, to obtain the average propagation
velocity of the hemispherical charge layer, we need
only to calculate an electric field at some point of this
layer (preferably on a vertical axis). It is also important
that, in this case, there is no need to numerically solve
Poisson’s equation. The electric field at any point of the
gap may be imagined as a superposition of the electric
fields created by the charge of the grounded electrode
(including the induced charges), by the space charge
layers in the gap, and by the image of these charges in
the earth. Analytical formulas can be suggested to cal-
culate every component of the field (see the Appendix).

The calculation of the induced discharge on a
grounded electrode (especially on a rod electrode) is
not a simple matter. Estimates show that an efficient
tool for solving this problem is the method of equiva-
lent charges [17]. We assume a linear dependence of the
charge per unit length of the rod on the distance z from
the earth surface (z = h): τ(z) = ατz. It is also assumed
that the charge of the rod tip qt, being a point charge, is
located in the center of the rod tip. A test calculation
shows that an error in an electric field introduced by
these assumptions under the considered conditions
does not exceed 2–3% in comparison with a fully con-
sistent calculation demanding a tens of times longer
computational time. To calculate the tip charge qt and
the proportionality factor ατ in the expression for τ(z),
at every calculation step we need to solve the system of
equations, which gives the potential on the rod tip (a
zero potential in our case) and at some different point,
e.g., in the middle of the rod at z = h/2 (see the Appen-
dix). After obtaining the induced charge, we calculate
the electric field on the boundaries of the layers of
space charge in the gap, the velocity of the boundaries
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(separately for light and aerosol ions), and a new elec-
tric charge that is inserted into the gap from the stressed
electrode at the next computational step (see the
Appendix). Simultaneously, we correct the ion compo-
sition, which changes in time in accordance with the
accepted kinetic model.

The described algorithm is a stable one for up to a
few minutes for the measured rise rates of the atmo-
spheric electric field.

5. RESULTS OF NUMERICAL SIMULATIONS

5.1. Effect of Ion Composition

Numerically, we studied the effect of aerosol ions on
the characteristics of a corona discharge in the atmo-
spheric electric field. The undisturbed density of aero-
sol neutral particles was assumed to be na = 105 cm–3,
which is typical for urban regions. Figure 1 shows the
distribution of the densities of light and aerosol ions
with height at t = 5 and 10 s (time is counted from the
instant of corona ignition). The calculation was carried
out for a grounded rod electrode with a height of h =
50 m and radius of r0 = 5 cm. A corona discharge was
ignited at the electric field Ei = 34.5 kV cm–1 near the
rod tip. This was obtained when the external thunder-
cloud electric field rose up to E0c = 53.5 V cm–1. We
assume that the external field rises linearly up to a value
of E0 max = 100 V/cm for 5 s after corona ignition and
then is constant.
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Fig. 1. Space distribution of light and aerosol ions over the
grounded rod with a height of h = 50 m and radius of r0 =
5 cm. The external electric field increases linearly from the
magnitude corresponding to the ignition threshold to the
maximum value of E0 max = 100 V/cm for tf = 5 s and then
does not change.
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It can be seen that the density of aerosol ions is
much less than the density of light ions. It is evident that
the density of aerosol ions cannot exceed the density of
neutral aerosols, which is equal to 105 cm–3, whereas
the maximum density of light ions is around 107 cm–3.
In addition, the effect of the removal of aerosol parti-
cles from the region near the rod tip is obtained. Owing
to the upward drift of aerosol ions, the length of the
aerosol-particle-free region exceeds 1 m at t = 10 s.

5

20 4 6 8 10

10

15

20

25

30

35

0.05

0.10

0.20

0.25

0.15

0

Current, µA Charge, mC

Time, s

Fig. 2. Evolution in time of the discharge current and
injected charge when aerosol ions are taken into account
(solid curves) or neglected (dashed curves). The curves cor-
respond to the same conditions as those in Fig. 1.
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Fig. 3. Ratio of the calculated discharge currents at the ion
mobilities µ = 3.2 and 0.8 cm2 V–1 s–1. The curve corre-
sponds to a grounded rod with h = 50 m and r0 = 5 cm. The
external electric field increases linearly from the magnitude
corresponding to the ignition threshold to the maximum
value of E0 max = 100 V/cm for tf = 1 s and then does not
change.
Figure 2 shows the evolution in time of the dis-
charge current i(t) through the electrode and of the
space charge q(t). The calculations were carried out by
considering (solid curves) and neglecting (dashed
curves) aerosol ions. Taking into account aerosol ions
only changes the peak value of the current by 8% and
the value of the injected charge at t = 10 s by 11%. This
is due to the removal of aerosol particles from the
region near the stressed electrode and due to the low
density of neutral aerosols. From this result, it follows
that under the considered conditions the effect of aero-
sol ions can be neglected. However, this is valid only
for a short period of time. Our calculation showed that
aerosol ions become important when the corona occurs
for tens of seconds. In this case, the radius of the
injected space charge is tens of meters and the density
of aerosol ions and that of light ions are of the same
order of magnitude. Taking into account aerosol ions
decelerates an increase in time of the discharge current;
this changes the discharge current by about 25% at t =
30 s and by 100% at t = 60 s.

Numerical calculations were also used to verify the
slight dependence of the current of transient corona dis-
charge on the ion mobility (i ~ µ1/2), which follows from
the simplified analytical approach. Figure 3 shows a
relative change in the discharge current at a fourfold
increase in the ion mobility (we varied µ from 0.8 to
3.2 cm2 V–1 s–1). The discrepancy between the calcula-
tion and the analytical approach is only within 10% at
t < 1 s. Thereafter, when the external electric field is
time independent, the ratio of the currents correspond-
ing to µ = 3.2 and 0.8 cm2 V–1 s–1 increases, but no
higher than I3.2/I0.8 = 2.7 (Fig. 3). However, the linear
dependence of the discharge current on the ion mobility
which follows from the Townsend formula for a steady
regime is not obtained in a transient corona discharge.

5.2. Dependence of the Discharge Current 
on the Thundercloud Electric Field

Figure 2 gives some information about the relation
between the discharge current and the external electric
field. The current increases with increasing thunder-
cloud electric field and decreases immediately after the
field stabilization. The curve i(t) shows a bend for a lin-
early rising external electric field E0(t). Analytical for-
mula (8) gives approximately a linear time-dependence
of the current of transient corona discharge for the lin-
early rising voltage impulse U = AUt at U @ Uc. Figure 2
shows the same for the discharge current through the
grounded rod electrode at the linearly rising external
electric field E0 = E0c + AE t, where E0c is the undis-
turbed electric field of thundercloud and AE = (E0 max –
E0c)/tf is the rate of the field rise up to the maximum
value E0 max. A linearly proportional relationship
between the current of a transient discharge and lin-
early rising thundercloud electric field is obtained over
a wide range of parameters.
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When the value of E0 rises with a decreasing rate,
the current of a transient corona discharge recovers
from the rise earlier than the electric field does, as fol-
lows from formula (8). This is supported by Fig. 4,
which shows the results of the calculation for the expo-
nentially rising thundercloud electric field E0(t) = E0c +
(E0 max – E0c)(1 – e–βt).

At a constant thundercloud electric field, the dis-
charge current and the rate of its change decrease with
time. Figure 5 shows that, in the time interval from 1 to
9 s, the current decreases from 290 to 100 µA in agree-
ment with the analytical approach, which gives i ~ t1/2

[see formula (7)].

Figure 6 compares the evolution in time of the dis-
charge current at the fixed value of E0 max = 200 V cm–1

and different values of the rise time. The calculation
carried out for a rod electrode with a height of 50 m and
radius of 5 cm shows that, at E0 max = 200 V/cm, the
peak current decreases from 290 to 120 µA as the value
of tf increases from 1 to 10 s. A decrease in the current
at a fixed instant of time with increasing tf is more pro-
nounced. Thus, for t = 1 s, the corona current is 290 µA
for the shortest front, and it is only 15 µA for the long-
est front. These results qualitatively agree with formula
(7) which shows that the peak discharge current is pro-

portional to  when the voltage rises linearly to the
amplitude value, whereas the current at a fixed instant

is proportional to  because

U(t) = Uc + (Umax – Uc)t/tf .
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Fig. 4. Evolution in time of the discharge current and the
exponentially rising external electric field. The curves cor-
respond to the same electrode as that in Fig. 1.
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The effect of the maximum thundercloud electric
field on the discharge current is also pronounced. This
follows from Table 1, which shows the results of the
calculation for a rod electrode with a radius of 1 cm and
height of 30 m. Under the considered conditions, the
corona discharge was ignited in the external field E0c ≈
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Fig. 5. Evolution in time of the discharge current for the
case when the external electric field increases linearly from
the magnitude corresponding to the ignition threshold to the
maximum value of E0 max = 200 V/cm for tf = 1 s and then
does not change. The electrode parameters are the same as
in Fig. 1.
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Fig. 6. Evolution in time of the discharge current for the
case when the external electric field increases linearly from
the magnitude corresponding to the ignition threshold to the
maximum value of E0 max = 200 V/cm for different rise
times tf . The electrode parameters are the same as in Fig. 1.
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The effect of the maximum thundercloud electric field on the discharge current
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23 V cm–1, which increased linearly from E0c to the
peak value E0 max over 1 s.

The discrepancy between the calculation of the
maximum discharge current and formula (7), according
to which the maximum discharge current is propor-
tional to (E0 max – E0c)3/2, is within only 20%. Thus, the
simplified analytical approach gives not only qualita-
tive relationships between the external field and corona
discharge current in the transient regime, but can make
quantitative estimates as well.

5.3. Effect of the Dimensions and Geometry
of the Stressed Electrode

The intensity of a corona discharge increases with
increasing height h of the stressed electrode and
decreasing its radius r0. The first parameter affects the
effective voltage U0 = E0h of the external electric field,
whereas the latter parameter affects the ignition field
E0c and, consequently, the ignition voltage Uc = E0ch.
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Fig. 7. Discharge current as a function of the rod height h at
h/r0 = 1000 for t = (1) 1 and (2) 2 s. The external electric
field increases linearly from the magnitude corresponding
to the ignition threshold to the maximum value of E0 max =
200 V/cm for tf = 1 s and then does not change.
There is no geometrical similarity in the results of the
calculation of discharge current at different dimensions
of the stressed electrode.

Figure 7 shows that, at a fixed value of h/r0 and a
fixed external electric field, the discharge current
increases with increasing the electrode height; the cur-
rent increases from 3.5 to 810 µA as the height of the
grounded electrode increases from 2 to 100 m at h/r0 =
1000, E0 max = 200 V/cm, and tf = 1 s. Such a strong
dependence i(h) for geometrically similar electrodes is
caused by a weak effect of the rod radius on the current;
a variation in the rod radius affects the current only
indirectly through a change in the value of the ignition
field Ei . According to Peek’s formula, the ignition field
depends only slightly on the rod radius in the practi-
cally interesting range (r0 > 1 cm) [9].

It is of interest to compare the characteristics of a
transient corona discharge near a rod electrode and
those near a hemispherical electrode of the same
dimensions because the electrode geometry affects the
nonuniformity of the electric field distribution in the
gap. Figure 8 shows that, under the same conditions, the
discharge current for a hemispherical electrode is dis-
tinctly higher than that for a rod electrode. At tf = 5 s,
we have a twofold difference in the values of the maxi-
mum discharge current and space charge. The higher
discharge current in the case of a hemisphere electrode
is explained by a twofold increase in the ignition field
E0c (all other things being the same) and by a more non-
uniform distribution of the external electric field in
comparison with the case of a rod electrode.

In order to study these factors separately, the corona
discharge near a rod electrode was simulated under the
assumption that the discharge is ignited at the external
electric field E0c, which corresponds to the ignition of a
discharge near a solitary hemispherical electrode. In
practice, this can be obtained through a decrease in the
rod radius (from 10 cm to 4.9 cm) or through a change
in the local geometry of the rod tip (for instance, by the
mounting of short needles that rises the electric field).
A local heating of the thin air layer in the immediate
vicinity of the electrode can also be used because the
threshold field Ei and, consequently, E0c are approxi-
mately proportional to the gas number density which
decreases with isobaric heating. By using the different
ways of decreasing the value of E0c down to that corre-
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sponding to a hemispherical electrode, the calculations
gave the same result: the current from the rod increases,
but it is 35–40% lower than that obtained for a solitary
hemispherical electrode. This discrepancy is due to a
more nonuniform distribution of the external electric
field in the case of a hemispherical electrode.

A solitary hemispherical electrode is an abstraction.
A similar effect can be obtained by using a hemisphere
with the radius 

 

r

 

0

 

, which is much greater than the radius
of its carrying rod 

 

r

 

rod

 

. However, in this case, it would
be difficult to directly use such an electrode at 

 

r

 

0

 

 ~ 1

 

 m
because too high a voltage would be required for initi-
ating a corona. The problem can be solved if the igni-
tion electric field 

 

E

 

0

 

c

 

 would be decreased by the mount-
ing of sharp needles on the hemisphere surface. In this
case, a corona discharge is initiated in a higher electric
field near the needle tips. At a relatively uniform distri-
bution of the needles over the hemisphere surface, the
characteristics of the well developed corona discharge
will be close to those obtained for a smooth electrode at
the corresponding decrease in the value of the threshold
field. This engineering solution was proposed and suc-
cessively realized previously in [18].

 

5.4. Distribution of the Electric Field in the Gap 
and near the Ground

 

It is known from the theory of quasi-steady corona
discharge that the distribution of the electric field in a
gap is smoothed under the action of the space charge.
The electric field in the immediate vicinity of a stressed
electrode equals 

 

E

 

i

 

 and does not change when the exter-
nal electric field 

 

E

 

0

 

 increases. The space charge
“moves” the region of a high electric field into the gap.
The scale of this region is controlled by the total space
charge, which is around a few mC and is a few orders
of magnitude less than the charge of a thundercloud.
Therefore, the dimension of the region in which the
injected space charge disturbs the electric field is of the
same order of magnitude as the height of a stressed
electrode and is much shorter than the cloud–ground
gap.

Figure 9 shows the space distribution of the electric
field near the electrode. According to the boundary con-
dition, the electric field equals 

 

E

 

i

 

 (34.5 kV/cm in the
case under consideration) near the electrode surface. In
the absence of a corona, this field would be 80 kV/cm
due to the electric charge induced by an external elec-
tric field of 200 V/cm on a grounded rod with a height
of 30 m and radius of 5 cm. At 

 

t

 

 = 20 s, the injected
space charge was 0.8 mC and the front of the space
charge was at a distance of 85 m from the rod tip. The
injection of the charge smoothed the distribution of the
total electric field in the electrode region in which the
total field was equal to the field in the absence of a
corona already at a distance of 1 m from the rod tip. The
total electric field increased with the distance from the
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tip, and, at the front of the space charge, it was 1.5 times
higher than the external electric field E0.

In order to consider the effect of the injected space
charge on the electric field at the ground level, the cal-
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Fig. 8. Evolution in time of the discharge current and the
electric charge injected by a grounded rod electrode (h =
100 m, r0 = 10 cm) and a hemispherical electrode at the
same values of h and r0. The external electric field increases
linearly from the magnitude corresponding to the ignition
threshold to the maximum value of E

 

0 max

 

 = 100 V/cm for

 

t

 

f

 

 = 5 s.

 

20

0.10 0.2 0.3 0.4 0.5

40

60

80

 

Without corona

Corona

Distance, m

Electric field, kV/cm

 

Fig. 9.

 

 Space distribution of the electric field over a rod
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increases linearly from the magnitude corresponding to the
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 =
200 V/cm for 5 s.
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culation was carried out for a solitary hemisphere. In
this case, we eliminated the shielding effect for a con-
ductive rod and studied the effect of the space charge in
the pure state. It was assumed that the discharge was
ignited in an external electric field of ~30 V/cm near a
grounded hemisphere with a radius of 1 m due to an
increase in the electric field on local sharp elements.
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Fig. 10. Electric field at the ground level as a function of the
distance to the axis of a grounded hemispherical electrode
(h = 50 m, r0 = 1 m) for t = (1) 5, (2) 10, (3) 20, (4) 30,
(5) 65, and (6) 120 s. The external electric field increases
linearly from the magnitude corresponding to the ignition
threshold to the maximum value of E0 max = 200 V/cm for
tf = 5 s and then does not change. The discharge is ignited at
Ei = 1.47 kV/cm near the electrode surface.
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Fig. 11. Evolution in time of the injected electric charge.
The curves correspond to the same parameters as in Fig. 10.
            

Clearly, this model fails to describe the distribution of
the electric field on a scale comparable in length with
the sharp elements. It is not important because the max-
imum size of the sharp elements is at least one order of
magnitude smaller than the hemisphere radius.

Figure 10 shows that the region in which an electric
field is decreased is comparable in length with the
height (50 m in the case under consideration) of the
mounting of the hemisphere. The shielding effect
becomes more pronounced as the injected space charge
increases. Figure 11 shows that most of the charge is
injected into the gap upon stabilization of the external
electric field over a period of around a minute in spite
of decreasing discharge current. Over this period of
time, the electric field in the center of an ion cloud is
halved. Over the second minute, this field decreases by
only 20%; i.e., the saturation is observed. A similar
decrease in electric field will be obtained also for
ground-level objects placed in the neighborhood of the
stressed electrode.

It should be remembered that the calculation simu-
lates the injection of a space charge into the gap under
the assumption that the ion transport is controlled only
by the drift in the atmospheric electric field. Our simu-
lation shows that the greater part of the space charge is
located in the region in which the total electric field is
much lower than 1 kV/cm; i.e., a typical ion drift veloc-
ity no higher than several m/s. This is comparable to the
velocity of a moderate wind which can lead to a long
lateral displacement of the charged cloud and to a great
change in the shielding effect for a given region on the
earth surface. The developed model does not consider
the influence of wind ion transport on the characteris-
tics of a corona discharge.

We studied only the positive polarity of the stressed
electrode. However, the transport properties of negative
ions in ambient air are similar to those of positive ions.
Therefore, the characteristics of a corona discharge
near a stressed electrode in the electric field of a thun-
dercloud are expected to be similar to those which were
obtained in this work for a positive discharge.

6. CONCLUSION

Our numerical simulations and a simplified analyti-
cal treatment of a positive transient corona discharge
near the tip of a high solitary grounded object in the
electric field of thundercloud give the following results:

At a short duration of a corona (

 

t

 

 < 10 s), the effect
of aerosol ions is negligible and the density of light ions
injected by the corona into the gap is a few orders of
magnitude greater than the background ion density.
However, the effect of aerosol ions is important when
the discharge lasts for minutes.

The simulations demonstrate a weak dependence
(

 

i

 

 ~ 

 

µ

 

0.5

 

 instead of 

 

i

 

 ~ 

 

µ

 

 for a steady corona) of the dis-
charge current on the ion mobility and an approxi-
mately linear time dependence of the current for the lin-
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early rising voltage impulse. At a constant thunder-
cloud electric field, the discharge current decreases
with time. The peak discharge current is inversely pro-

portional to  (where tf is the rise time of the external
field) at a fixed peak value of the thundercloud electric
field; at a fixed instant of time, the current is inversely

proportional to . The peak value of the discharge
current is proportional to (E0 max – E0c)1.5 (instead of
E0 max(E0 max – E0c) for a steady corona), where E0c is the
threshold thundercloud electric field at which the
corona is initiated.

The intensity of a corona discharge increases with
increasing height h and decreasing radius r0 of the
stressed electrode. The height parameter affects the
effective voltage U0 = E0h of the external electric field,
whereas the radius affects the ignition field E0c and,
consequently, the ignition voltage Uc = E0ch. Under the
same conditions, the discharge current for a hemispher-
ical electrode is markedly higher than that for a rod
electrode. This is explained by an increase in the value
of E0c and by a more nonuniform distribution of the
external electric field in the case of a hemispherical
electrode.

The dimension of the region in which the injected
space charge disturbs an electric field is of the same
order of magnitude as the height of a stressed electrode.
The injection of the charge smoothes the space distribu-
tion of the total electric field; as a result, the total elec-
tric field is lower near the electrode and higher at a dis-
tance of 1 m. At a distance of tens of meters from the
rod tip, this field is 50% higher than the external electric
field.

APPENDIX

The following expressions are used in the calcula-
tions.

The point electric charge qt located at height h above
the ground creates at the z-axis the electric field

(A.1)

where the z-axis is pointing upward from the charge.

The electric charge distributed along a rod creates at
its axis the electric field

(A.2)

where τ(z) = aτz is the rod charge per unit length and
h @ r0.
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A thin solitary uniformly charged hemisphere with
a radius R and charge Q creates at the z-axis the electric
field

(A.3)

(A.4)

where the z-axis is pointing upward from the hemi-
sphere center.

The total potential (zero potential in our case) of the
tip of a grounded rod, which is determined by the tip
charge qt, the distributed surface charge τ(z) = ατz, the
corona space charge Us, and the thundercloud electric
field (U0(h) = hE0), can be written as

(A.5)

A similar equation for the point in the middle of the
grounded rod is written as

(A.6)

A thin, uniformly charged hemispherical layer with
an average radius R creates at the z-axis the potential

(A.7)

where the z-axis is pointing upward from the hemi-
sphere center and Q is the total charge of the layer.

The equation for the new space charge ∆Q1

injected into the gap in the computational time step ∆t
is written as

(A.8)
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where

(A.9)

R1 is the average radius of the first computational
charged layer adjacent to the electrode, Es(r0) is the
total electric field created by all the computational
space charge layers except for the first one, and Ec is the
field of corona ignition. In order to obtain the values of
∆Q1, ατ, and qt at the current computational step, it is
necessary to solve equations (A5), (A6), and (A8).
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Abstract—The electron energy distribution function in nitrogen afterglow is simulated using different avail-
able sets of cross sections for electron scattering by vibrationally excited molecules. The calculations are per-
formed for two types of molecular distribution over vibrational levels, namely, for the Boltzmann and Treanor–
Gordiets distributions. It is shown that the calculated values of the electron temperature in nitrogen afterglow
depend strongly on the set of cross sections used and on the type of molecular distribution over vibrational lev-
els. The validity of comparison between theoretical and experimental results is discussed. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

There is a large number of theoretical and experi-
mental studies of the electron energy distribution func-
tion (EEDF) in the nitrogen afterglow plasma [1–12]. A
characteristic feature of the EEDF formation in this
plasma is that the electrons are primarily heated via
superelastic collisions with vibrationally excited mole-
cules. As a result, the EEDF is strongly related to the
degree of vibrational excitation of nitrogen. The degree
of vibrational excitation is usually characterized by the
vibrational temperature Tv , assuming that the popula-
tion of the lower vibrational levels is close to the Bolt-
zmann distribution. As to the electron energy spectrum,
it can be characterized by the effective temperature Te =
2/3um, where um is the average electron energy. At
present, there is no complete understanding of the rela-
tion between Tv and Te in nitrogen afterglow.

Detailed probe measurements of the EEDF in the
nitrogen afterglow plasma of a repetitive discharge
were carried out in [4, 5]. In this case, the time delay
between the end of the pulse and the measurements was
substantially longer than the EEDF relaxation time and
shorter than the characteristic time of variations in the
quasi-steady distribution of nitrogen molecules over
vibrational levels. It was shown that the EEDF was
characterized by the presence of two Maxwellian com-
ponents (at u < 1 eV and 1.6 < u < 3.6 eV) with different
local temperatures. The temperature of the low-energy
(u < 1 eV) EEDF component (Te ≈ 1100 K) was nearly
equal to the effective electron temperature. The authors
of [4, 5] believe that the local temperature in the energy
range 1.6–3.6 eV is equal to the vibrational temperature
1063-780X/02/2811- $22.00 © 20965
of nitrogen molecules, because the excitation and deex-
citation cross sections for vibrational levels are maxi-
mum in this energy range and the EEDF is primarily
formed due to these processes. The vibrational tem-
perature estimated in this way was found to be Tv ≈
3000 ä > Te .

Subsequent measurements [6] showed that Te

depends on the discharge current: the higher the cur-
rent, the higher the electron temperature in the after-
glow. At the highest current (in the current range under
study), the steady-state value of Te was close to Tv . At
the same time, the vibrational temperature estimated
from the EEDF in the energy range 1.6–3.6 eV was
equal to Tv ≈ 2900 K and only slightly depended on the
discharge current. The EEDF was also measured in the
decaying plasmas of pulsed RF discharges in pure
nitrogen and N2/He mixtures [7]. In that paper, very
high values of the electron temperature were reported:
Te ≈ 4500–8000 K, which is higher than the vibrational
temperature Tv ≈ 3100–4200 K. In this case, the vibra-
tional temperature was estimated independently of the
EEDF measurements, assuming the molecular distribu-
tion over vibrational levels to be close to the Boltzmann
distribution. We also note the paper [9], in which the
electron temperature was measured in an Ar/N2 after-
glow plasma and the vibrational temperature was esti-
mated independently of the measured EEDF. It was
found that, at a certain instant after the end of the dis-
charge pulse, the electron temperature decreased
abruptly from Te ~ Tv ≈ 4000 K to Te ≈ 1000 K, whereas
the vibrational temperature changed only slightly.
002 MAIK “Nauka/Interperiodica”
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Numerical calculations of the Boltzmann equation
for the EEDF also yield different results. Thus, the
authors of [2, 3] arrived at the conclusion that, at mod-
erate vibrational temperatures (Tv ≤ 3500 K), the elec-
tron temperature in nitrogen afterglow is approximately
equal to the vibrational temperature (Te ≈ Tv). In this
case, the molecular distribution over vibrational levels
was calculated by solving a set of differential equations
for the level populations, whereas Tv was estimated
from the relative population of the first vibrational
level. In contrast, in [8], it was found that Te ≈ 1100 K
for Tv = 3000 K, which agrees well with the experimen-
tal results of [5]. We note, however, that this result was
obtained by assuming the Boltzmann distribution of
molecules over vibrational levels and by choosing a
specific set of cross sections for the electron scattering
by vibrationally excited N2 molecules. In [9, 10], under
the same assumptions, it was shown that, when elec-
tron–electron (e–e) collisions are taken into account,
the calculated electron temperature depends strongly
on the electron density (the degree of ionization). At
low degrees of ionization, Te is substantially lower than
Tv and slightly depends on the electron density,
whereas at high degrees of ionization, Te is close to Tv .
Moreover, in a certain range of the vibrational temper-
ature and the degree of ionization, the Boltzmann equa-
tion for the EEDF in the discharge afterglow in an
Ar/N2 mixture [9] and pure N2 [10, 11] can have two
stable solutions with very different values of Te .

The results of numerical calculations depend on the
adopted set of cross sections for electron scattering by
nitrogen molecules. There is no generally accepted set
of cross sections in the literature, and different authors
use different sets. For example, so far, there have been
different opinions about the normalization of the cross
sections for the excitation of vibrational levels of nitro-
gen molecules from the ground state. However, the
most uncertain cross sections are those for the transi-
tions between vibrational levels. Note that these transi-
tions play an important role in the EEDF formation in
the afterglow plasma. There is also an arbitrariness in
choosing the type of distribution of nitrogen molecules
over vibrational levels when simulating a specific
experiment. Experiments usually allows one to esti-
mate only a certain average vibrational temperature
(see, e.g., [9]) characterizing the populations of the
lower vibrational states. Simulations of vibrational
kinetics also fail to provide reliable results. The prob-
lem is that, in simulations (under conditions typical of
the EEDF measurements), the quenching of vibrational
excitation on the discharge chamber wall must be taken
into account, whereas the corresponding accommoda-
tion coefficients are known only roughly.

In this paper, we examine how the calculated values
of the electron temperature in nitrogen afterglow
depend on the adopted set of cross sections for the elec-
tron scattering by vibrationally excited nitrogen mole-
cules and on the type of nitrogen molecular distribution
over vibrational states.

2. NUMERICAL MODEL

The problem was investigated by numerically solv-
ing the following steady-state Boltzmann equation for
the EEDF:

(1)

Here, the terms on the left-hand side are the collision
integrals for the elastic and inelastic collisions, super-
elastic vibrational collisions, superelastic electron col-
lisions, and e–e collisions, respectively. A detailed
description of all the terms in Eq. (1) is given in [8].
Note that, under the given conditions, we can use the
steady-state Boltzmann equation because the electron
thermalization time is substantially shorter than the
characteristic times during which the plasma parame-
ters (such as the population of vibrational levels and the
plasma density) vary. Equation (1) was solved by the
iteration method (see [8] for details).

Calculations were performed for a gas temperature
of T  = 300 K and pressure of 0.5 torr. These conditions
are typical of experimental studies of the EEDF in
nitrogen afterglow [6]. The population of all the elec-

tron levels (except for ) was assumed to be zero.

The particle density at the  level was set at 1.6 ×
1011 cm–3 (i.e., the degree of excitation was 10–5, which
corresponded to the conditions of [5, 6]). The electron
density ne was specified as an independent parameter.

3. CHOICE OF CROSS SECTIONS

The transport cross section and the excitation cross
sections for the rotational and electronic levels of nitro-
gen molecules were taken the same as in [8], in which
the principle for the choice of these cross sections is
described in detail.

As for the cross sections for the excitation of vibra-
tional levels from the ground state,

(2)

in all our previous studies [8–10], we used the same set
of cross sections (see [8] for details), which was based
on the experimental data presented in [13]. In particu-
lar, in [13], the near-threshold excitation cross sections
for three lower levels were measured in detail. The res-
onant component of the cross sections was normalized
according to [14]. This normalization allowed us to
obtain a good agreement between the calculated and
experimental dependences of the electron drift velocity
on the reduced electric field in both pure nitrogen (see
[8]) and nitrogen–argon mixtures [14, 15].
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We note that the energy dependence of the cross sec-
tions for the excitation of vibrational levels from the
ground state is fairly well known. At the same time, dif-
ferent authors use different normalizations for these
cross sections. Thus, many authors use the cross sec-
tions for electron scattering by nitrogen molecules from
the well-known set of Phelps and Pitchford [16]. The
normalization factor for the cross sections from the set
of [16] is 1.4 times higher than that for the cross sec-
tions used by us. For this reason, in the present paper,
processes (2) were described by using two versions of
the cross sections: our traditional set (symbolized by
the letter D) and a set (symbolized by the letter P) in
which our cross sections are increased by a factor of
1.4.

The interaction of electrons with vibrationally
excited nitrogen molecules was described by the pro-
cesses

(3)

Since there is a lack of experimental data on the cross
sections for these processes in the literature, the elec-
tron kinetics in nitrogen was simulated by using the cal-
culated cross sections. The problem is additionally
complicated by the fact that, in order to solve the Bolt-
zmann equation, it is necessary to have the full matrix
of cross sections (3), whereas many theoretical papers
give information on the cross sections only for individ-
ual transitions. In this paper, we use the following avail-
able sets of cross sections for processes (3):

(I) A set from [17] calculated by a semiempirical
method by Mihajlov and Pivovar [18]. In that paper, the
cross sections for processes (3) were calculated by
using the cross sections for the excitation of vibrational
levels from the ground state that were taken from the set
of Phelps and Pitchford. Therefore, in order to use the
cross sections of [17] simultaneously with set D, the
normalization factor should be decreased by 1.4 times.

(II) A set in which the cross section Qi → j(u) for the
transition from the ith vibrational level to the jth level is
taken to be the cross section for the transition from the
ground state to the (j–i)th level with a corresponding
change dij in the threshold,

Set II is organized in such a way that the normalizing
factor for the cross sections changes automatically
when the normalization of cross sections (2) changes.
This set was used in [8].

(III) A set used by Capitelli et al. (University of
Bari, Italy). This set is based on the cross sections cal-
culated in [19] by using the so-called “boomerang
method.” In [19], the cross section for the transition
v  = 1  v  = 0 was calculated; thus, by using the prin-

N2 X
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ciple of detailed balance, we can calculate the cross
section for the direct process. An analysis shows that
the cross section for the direct transition v  = 0  v  =
1 is close to a similar cross section from the set of
Phelps and Pitchford. Thus, we may suppose that the
normalization of cross sections from set III agrees with
the normalization of cross sections P. Accordingly,
when using simultaneously with set D, the cross sec-
tions of set III were decreased by a factor of 1.4.

(IV) A set from [20], where the cross sections were
calculated by Chen’s method [21]. The normalization
factor for the cross sections was chosen such that the
cross section for the transition v  = 0  v  = 1 calcu-
lated by similar formulas agreed with the cross section
used (P or D).

Below, the combination of the cross sections used in
calculations will be denoted by a letter and a Roman
numeral (e.g., DI, PIII, and so on), keeping in mind that
the normalization factors in the cross sections for pro-
cesses (2) and (3) are brought into accordance.

Figure 1a shows the cross sections for the excitation
of three lower vibrational levels from the ground state
(set P), and Figs. 1b–1d show the cross sections for
transitions between some vibrational levels (the values
of the cross sections agree with set P). In order to not
overload the figures, the cross sections from set II are
omitted in Figs. 1b–1d; the values of these cross sec-
tions can be judged from Fig. 1a (see the description of
set II). As follows from Fig. 1, the cross sections from
different sets differ in their values and energy depen-
dences. In particular, we note a substantial difference in
the behavior of the cross sections at low energies. The
cross sections for superelastic collisions were calcu-
lated from the principle of detailed balance. Accord-
ingly, a similar difference will also exist for the cross
sections for superelastic collisions.

4. CHOICE OF THE TYPE OF NITROGEN 
MOLECULAR DISTRIBUTION 
OVER VIBRATIONAL LEVELS

As was mentioned above, different authors use dif-
ferent types of molecular distribution over vibrational
levels. In the simplest version, the distribution is
assumed to be a Boltzmann distribution with a given
vibrational temperature. In other papers, this distribu-
tion is calculated by numerically solving a set of differ-
ential equations. Under conditions typical of the EEDF
measurements (e.g., in [6], the tube radius was 1.7 cm
and the pressure was 0.5 torr), it is necessary to take
into account the quenching of vibrational excitation on
the tube wall when calculating the vibrational distribu-
tion. Accordingly, the results of calculations depend on
the accommodation coefficient used.

Since this study was not aimed at describing a spe-
cific experiment, we did not calculate the vibrational
distributions under given experimental conditions and
used two conventional distributions, namely, the Boltz-
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mann distribution with the temperature Tv = 3000 K
and the so-called Treanor–Gordiets distribution [22].
The latter distribution is convenient because it is unam-
biguously determined by the gas temperature and the
local vibrational temperature of the first vibrational
level, T01. We note that the measured populations of the
vibrational levels of nitrogen in He/N2 mixtures [23]
are well described by this distribution. In calculations,
we used a Treanor–Gordiets distribution for T01 = 3000 K
and T = 300 K; i.e., T01 was chosen such that the local
vibrational temperature of the first vibrational level
coincided with the vibrational temperature of the Bolt-
zmann distribution. Figure 2 illustrates both of the dis-
tributions used. It can be seen from the figure that the
relative population of the vibrational levels v  = 3–8 for
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Fig. 1. Cross sections for transitions between some vibra-
tional levels of N2 molecules. Numerals denote the numbers
of sets from which the cross sections are taken (see the text).
The normalization of all the cross sections corresponds to
set P.
the Trinor–Gordiets distribution is substantially higher
than that for the Boltzmann distribution.

5. RESULTS AND DISCUSSION

Figure 3 shows the calculated EEDFs in nitrogen
afterglow for ne = 2 × 1010 cm–3 and the Boltzmann dis-
tribution over vibrational levels. It can be seen from
Fig. 3 that the EEDFs calculated with different sets of
cross sections have the same local temperature (approx-
imately equal to the vibrational temperature) in the
energy range 1 < u < 2.5 eV and different local temper-
atures at u < 1 eV. Further, for ease of comparison, the
EEDF will be characterized by the effective electron
temperature Te, which is approximately equal to the
temperature of the low-energy Maxwellian component
of the EEDF. We note that the local maximum of the
EEDF at u ≈ 5 eV is due to superelastic collisions with
electronically excited molecules.

Figure 4 shows the calculated dependences of Te on
the electron density for the Boltzmann distribution over
vibrational levels. The curves were calculated by using
different combinations of the sets of cross sections. Let
us consider in detail the results of calculations with
cross sections P (Fig. 4a). It can be seen from the figure
that the values of Te obtained for different sets differ
markedly at low electron densities (ne ≈ 109 cm–3). The
highest value of Te (close to Tv ) is obtained for set IV.
This fact is, apparently, a consequence of the energy
dependence of the corresponding cross sections (in par-
ticular, the high values of these cross sections near the
threshold). For other sets of cross sections, the calcu-

1

10 2 3 4 5 6 7 8

0.1

0.01

0.001

1

2

i

N2 (v = i)/N2 (v  = 0)

Fig. 2. Model distributions of nitrogen molecules over
vibrational levels: (1) Boltzmann distribution with Tv  =
3000 ä and (2) Treanor–Gordiets distribution with T01 =
3000 K and T = 300 K.
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lated values of Te are much lower than the vibrational
temperature.

The electron temperature increases with increasing
ne. This fact can be explained as follows. The electrons
in nitrogen afterglow are heated due to superelastic col-
lisions with vibrationally excited molecules. At low
values of ne, the EEDF in this plasma consists of two
Maxwellian components with different local tempera-
tures: Te < Tv for u = 1 eV and  ≈ Tv for 1 < u < 3 eV
(Fig. 3). Electron–electron collisions result in the mix-
ing of these two components. At high ne values, this
leads to the thermalization of the EEDF throughout the
entire energy range under study; in this case, the tem-
perature of this Maxwellian EEDF should be close to
the vibrational temperature in order to be in equilibrium
with the heat source. We note that, at Te ≈ Tv , the elec-
tron energy loss by elastic collisions and by the excita-
tion of rotational levels is small as compared to the
energy spent on the excitation of vibrational levels. It
can be seen from Fig. 4a that, as the electron density
increases, Te increases and approaches Tv in different
ways for different sets of cross sections. Thus, for set
III, Te increases smoothly, whereas for set I and, espe-
cially, set II, the electron temperature increases more
abruptly as the electron density approaches a level of
ne ≈ 1011 cm–3.

With the use of cross sections D (Fig. 4b), the values
of Te calculated for low electron densities somewhat
decrease. The behavior of the Te(ne) dependences for

Te*
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Fig. 3. Calculated EEDFs in nitrogen afterglow with a Bolt-
zmann distribution of molecules over vibrational levels
(Tv = 3000 K) and ne = 2 × 1010 cm–3 for sets (1) PI, (2) DII,
and (3) PIII.
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sets III and IV is qualitatively the same as in Fig. 4a,
whereas it is essentially different for sets I and II. For
both sets I and II, at electron densities of ne ≈ 4 × 1011–
1012 cm–3, the Boltzmann equation has two stable solu-
tions with different electron temperatures.

The possibility of this effect (the EEDF bistability)
has already been studied theoretically for afterglow
plasmas in nitrogen [10, 11] and Ar/N2 mixtures [9].
Hence, we do not dwell on a detailed description of this
effect. We note, however, that it is e–e collisions (along
with the specific energy dependences of the cross sec-
tions used) that ensure the nonlinearity of the Boltz-
mann equation (the property required for the appear-
ance of two stable solutions).

Figure 4 also shows the experimental data of [5, 6].
It can be seen that the results of different experiments
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Fig. 4. Calculated electron temperature in nitrogen after-
glow with a Boltzmann distribution of molecules over
vibrational levels (Tv = 3000 K) as a function of the electron
density for sets (a) P and (b) D. The Roman numerals by the
curves correspond to the numbers of the used sets of cross
sections for processes (3). The circles show the experimen-
tal data of [6], and the rhombuses show the experimental
data of [5]. The experiment of [5] was carried out at p =
0.3 torr. The values of ne presented in the figure are recalcu-
lated to the degree of ionization used in [5].
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are somewhat contradictory. When the calculated data
are compared with the results of [5], the best fit is
obtained with set DII. It is this set that was proposed in
[8] to achieve agreement with the experimental data of
[5]. The minimum value Te from the data of [6] also lies
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Fig. 5. Calculated EEDFs in nitrogen afterglow with a Tre-
anor–Gordiets distribution of molecules over vibrational
levels (T01 = 3000 K) and ne = 2 × 1010 cm–3 for sets
(1) PI, (2) DII, and (3) PIII.
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Fig. 6. Calculated electron temperature in nitrogen after-
glow with a Treanor–Gordiets distribution of molecules
over vibrational levels (T01 = 3000 K) as a function of the
electron density for sets (1) PI, (2) DII, and (3) PIII.
well on curve II. We note that none of the calculated
curves describe the experimental dependence Te(ne) [6]
as a whole.

However, the experimental data of [6], with which
we make a comparison, raise some doubts. In particu-
lar, for all of the investigated regimes (discharge cur-
rents), the vibrational temperature estimated from the
EEDF in the energy range 1.6 < u < 3.6 eV appears to
be nearly the same. Actually, under the condition of a
repetitive discharge [6], the degree of vibrational exci-
tation should depend on the time-averaged energy dep-
osition into vibrational levels. Estimates show that the
average energy depositions at the minimum and maxi-
mum currents (corresponding to the minimum and
maximum values of Te in Fig. 4) differ by a factor of 5.
Because of this difference, the degrees of vibrational
excitation should also be different. In addition, it is
unlikely that the molecular distribution over vibrational
levels under the experimental conditions is a purely
Boltzmann distribution.

Figures 5 and 6 show the results of calculations per-
formed with the use of a Treanor–Gordiets vibrational
distribution (Fig. 2). Figure 5 shows the EEDFs calcu-
lated for three sets of cross sections. As follows from
the figure, the average local temperature of the EEDF in
the energy range 1.6 < u < 3.6 eV is ≈4000 K, which is
noticeably higher than the local vibrational temperature
of the first vibrational level, T01 = 3000 K. In other
words, the local temperature of the EEDF in this energy
range is an average characteristic of the degree of vibra-
tional excitation.

Figure 6 shows the dependences Te(ne) calculated
for three sets of cross sections. It can be seen from the
figure that the values of Te at low electron densities are
considerably higher than in the case of a Boltzmann
distribution over vibrational levels (see the correspond-
ing curves in Fig. 4). As ne increases, the electron tem-
perature tends to the value Te ≈ 4000 K. We note that Te

does not increase monotonically, but passes through a
maximum, whose value (depending on the set of cross
sections used) can substantially exceed the limiting
value. Note that the limiting value coincides with the
local temperature of the EEDF in the energy range
1.6 < u < 3.6 eV (Fig. 5). A comparison of Figs. 4 and
6 shows that, for a Treanor–Gordiets distribution, the
transition from low to high Te values occurs at substan-
tially lower electron densities. In addition, we do not
observe the bistability of the EEDF (at least for T01 =
3000 K) in this case.

The above analysis shows that the calculated values
of the electron temperature in nitrogen afterglow
depend strongly on the set of cross sections for electron
scattering by vibrationally excited molecules, as well as
on the type of molecular distribution over vibrational
levels. At present, there is no reliable method to deter-
mine which of these sets of cross sections is the most
realistic. In principle, to verify the cross sections, we
PLASMA PHYSICS REPORTS      Vol. 28      No. 11      2002
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can compare the calculations with experimental results
from the EEDF measurements in the afterglow plasma.
However, in this case, it is necessary to experimentally
measure not only the EEDF, but also the distribution
over vibrational levels, which may be used in calcula-
tions (we note that it should be detailed measurements,
rather than estimates of the vibrational temperature of
the lower level).

We also note that, under typical experimental condi-
tions (see, e.g., [6]), the radius of the discharge tube is
comparable with the characteristic length over which
the EEDF is established. It may turn out that, under
these conditions, the effects of the EEDF nonlocality
and the polarization electric field caused by ambipolar
diffusion should be taken into account for a correct the-
oretical modeling of the EEDF.

6. CONCLUSION

The cross sections for electron scattering by vibra-
tionally excited nitrogen molecules used by different
authors substantially differ in both the value and the
energy dependence. We have shown that the calcula-
tions of the electron temperature in nitrogen afterglow
with the use of these different sets of cross sections
yield very different results. We have also shown that the
calculated electron temperature depends on the type of
molecular distribution over vibrational levels. Hence, it
is hardly possible to correctly compare the calculated
results with the experimental data because, in experi-
ments on determining the EEDF in nitrogen afterglow,
detailed measurements of the molecular distribution
over vibrational levels have not yet been performed.

ACKNOWLEDGMENTS

We thank Prof. M. Capitelli (University of Bari,
Italy) and Prof. Z. Petrovi  (Institute of Physics, Bel-
grade, Serbia) for providing us with the data on the sets
of cross sections for resonant electron scattering by
nitrogen molecules. This work was supported by the
Russian Foundation for Basic Research, project
no. 00-02-17662.

REFERENCES

1. M. Capitelli, C. Gorse, and A. Ricard, Nonequilibrium
Oscillatory Kinetics, Ed. by M. Capitelli (Springer-Ver-
lag, New York, 1986; Mir, Moscow, 1989).

ć
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In Memory of Semen Samoœlovich Moiseev
(November 23, 1929–June 5, 2002)
Professor Semen Samoœlovich Moiseev, a well-
known theoretical physicist; a prominent Russian sci-
entist in the fields of plasma physics, theory of turbu-
lence, and processes of self-organization in nonequilib-
rium media; and a principal researcher at the Institute of
Space Research of the Russian Academy of Sciences
died in his 73rd year on June 5, 2002, after an extended
illness.

S.S. Moiseev was born on November 23, 1929.
After graduating in 1952 with honors from Kharkov
State University (KSU), he worked as a teacher in
Slavyansk and Poltava. However, his inquisitive intel-
lect craved new knowledge. Therefore, in 1960, he
moved to Novosibirsk, where he began to work in the
field of controlled fusion research at the Institute of
Nuclear Physics of the Siberian Division of the USSR
Academy of Sciences. There, he obtained pioneering
results, which were reported at the largest international
conferences and were the basis for his candidate’s and
doctoral theses. Among those results, it is worth noting
the solution of the problem of anomalous Bohm diffu-
sion in fusion devices, the studies on low-frequency
instabilities in inhomogeneous plasmas and transfor-
mation of electromagnetic waves in nonsteady and
inhomogeneous plasmas, and the development of prin-
ciples of novel plasma diagnostics based on the gener-
ation of higher harmonics in plasma resonance layers.
1063-780X/02/2811- $22.00 © 20972
It should be noted that the versatile scientific activ-
ity of Moiseev resulted in the development of a number
of important directions in plasma physics, hydrody-
namics, and nuclear energetics. His works, which were
always in the vanguard of scientific research, gained
worldwide recognition in the scientific community.

In 1968, Moiseev moved to the Kharkov Institute for
Physics and Technology (KIPT). There, he further
developed his earlier studies on plasma stability and
plasma heating as applied to beam–plasma systems and
proposed new, original ideas in other fields of plasma
physics, among them, a model of the nonlocal transfer
of electromagnetic signals in inhomogeneous plasmas
(the effect of kinetic transparency of wave barriers),
new mechanisms for the generation of electromagnetic
radiation associated with the wave conversion in the
presence of plasma density gradients, the focusing and
channeling of radiation in a plasma, and the resonant-
cone effect in the excitation of electromagnetic waves
by small-size sources. He also developed new
approaches to the theory of strong hydrodynamic turbu-
lence and to the formation of nonequilibrium power-
law distributions of charged particles in collisional
media. The results of these studies were published in
Reviews of Plasma Physics and Usp. Fiz. Nauk (Sov.
Phys. Uspekhi). For these results, which were very
important for practical applications, Moiseev received
a series of inventor’s certificates. For works on the
kinetic transparency of wave barriers in a plasma, Moi-
seev and his colleagues were awarded the 1979 Ukrai-
nian SSR State Prize in Science and Technology.

In 1980, Moiseev began to work in Moscow at the
Institute of Space Research of the USSR Academy of
Sciences. There, he developed new approaches toward
increasing the efficiency of absorption of high-power
laser radiation in an inhomogeneous plasma via the
channeling and self-focusing of laser beams. The results
of his long-term studies on the mechanisms for the gen-
eration of electromagnetic radiation in a plasma were
published in the monograph Nonequilibrium and Reso-
nant Processes in Plasma Radiophysics (Nauka, Mos-
cow, 1982), written together with his colleagues. For his
research in plasma physics, Moiseev was awarded the
1987 USSR State Prize in Science and Technology.

Simultaneously, he worked in the field of hydrody-
namics. An important result of these investigations was
the discovery of a helical mechanism for the generation
of large-scale tropical vortices. This made it possible to
develop a new approach to the important problems of
002 MAIK “Nauka/Interperiodica”



        

IN MEMORY OF SEMEN SAMO

 

Œ

 

LOVICH MOISEEV 973

                            
forecasting hurricanes, typhoons, and extratropical
cyclones and monitoring cyclogenesis zones. Based on
these theoretical results, two expeditions to the Pacific
Ocean were organized to carry out in situ measure-
ments in the zones of intensive cyclogenesis. The the-
ory developed at the Institute of Space Research
allowed Moiseev to elaborate a system of physical pre-
cursors and indicators of tropical cyclones. These stud-
ies laid the theoretical foundations of the contemporary
methods for forecasting large-scale crisis processes in
the atmosphere, such as typhoons and extratropical
cyclones. The experimental data from the expeditions
showed that these indicators may be abnormal fluctua-
tions of the background atmospheric parameters, such
as infrasonic activity, the dynamics of fractal parame-
ters, and the helicity of atmospheric turbulence. Later,
he and his pupils investigated this field of research in
more detail: they analyzed the formation of non-Kol-
mogorov turbulent spectra, examined the structural
properties of hydrodynamic turbulence and the mecha-
nisms for helicity generation, and studied the influence
of turbulence helicity on the particle and energy trans-
port. In essence, he founded a new line of investiga-
tion—the helical dynamics of nonlinear media. The
results of his studies in the fields of plasma physics and
hydrodynamics were published in the monographs
Nonlinear Instabilities in Plasmas and Hydrodynamics
(IOP, Bristol, 1999), written together with V.N. Orae-
vsky and V.G. Pungin, and Turbulence and Structures.
Chaos, Fluctuations, and Helical Self-Organization in
Nature and the Laboratory (Academic, New York,
1999), written together with H. Branover, A. Eidelman,
and E. Golbraikh.

Along with these studies, Moiseev, together with his
colleagues from KIPT and KSU, prolonged investiga-
tions of nonequilibrium power-law particle distribu-
tions in solid-state plasmas and developed the princi-
ples of their applications for direct and more efficient
nuclear-to-electric energy conversion. In particular,
based on theoretical and experimental results, they pro-
posed a new secondary-emission radioisotope current
source, which has obvious advantages (with respect to
the efficiency, lifetime, environmental safety, etc.) in
comparison with available nuclear batteries. The cre-
ation of a prototype of such a battery will stimulate the
development of prospective future technologies of fab-
ricating multilayer thin-metal-film structures.

In recent years, Moiseev investigated very interest-
ing chiral effects, which play an important role, e.g., in
producing new materials with unusual electrodynamic
characteristics. These studies are related to another
promising area of investigation—the electrodynamics
of bianisotropic media.

For his major contribution to science and the train-
ing of qualified specialists, Moiseev was awarded the
title of an Honored Scientist of the Russian Federation.

Due to Moiseev’s talent for intuiting new, promising
directions in physics, his works stimulated a number of
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new lines of investigations, which have been further
developed by his pupils and colleagues. Many of his
results were confirmed experimentally and gained
worldwide recognition. Although Moiseev was a theo-
rist, he always tried to initiate the experimental testing
of the results obtained.

His style of work, kindness, sociability, respect for
the scientific opponent’s opinion, and striking spiritual
power deeply impressed those around him. Under his
supervision, many of his pupils have defended doctoral
theses, achieved great success, and gained wide recog-
nition in the scientific community. Now, they constitute
Moiseev’s scientific school, continuing the studies ini-
tiated by him and developing his ideas.

Moiseev spent a great deal of time and energy on the
development of international collaboration. He worked
at various renowned science centers, such as the MHD
Research Center of Ben-Gurion University (Israel) and
the Nieuwegein Institute of Plasma Physics (Nether-
lands). For a long time, Moiseev convened one of the
sections of the General Assemblies of the European
Geophysical Society; he was a member of the organiz-
ing committees of several large international confer-
ences.

The memory of Semen Samoœlovich Moiseev, a scien-
tist caught up in his work; a skillful organizer; an exclu-
sively reliable person; and a modest, friendly, kind, and
cheerful man with a sense of humor will always remain in
the hearts of his friends, colleagues, and pupils.
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