Plasma Physics Reports, Vol. 28, No. 11, 2002, pp. 887-899. Trandlated from Fizika Plazmy, Vol. 28, No. 11, 2002, pp. 963-976.
Original Russian Text Copyright © 2002 by Yu. Dnestrovskij, A. Dnestrovskij, Lysenko, Cherkasov.

TOKAMAKS

Canonical Profilesin Tokamak Plasmas
with an Arbitrary Cross Section

Yu. N. Dnestrovskij, A. Yu. Dnestrovskij, S. E. Lysenko, and S. V. Cherkasov
Nuclear Fusion Institute, Russian Research Centre Kurchatov I nstitute, Moscow, 123182 Russia

e-mail: dnyn@nfi.kiae.ru
Received April 18, 2002

Abstract—Two principles are used to determine a canonical profile: the principle of the minimum of free
plasma energy with the constraint that the total current is conserved and the principle of profile consistency. A
second-order differential equation for the canonical profile of the function p = 1/q is deduced in the natural
coordinate system. Soft and hard boundary conditions are proposed to find an unambiguous solution to this
equation. The range of their applicability is discussed. Numerical calculations show that the half-width of the
canonica profileincreases with decreasing aspect ratio, increasing plasma el ongation, and decreasing g, value.
The canonical profiles obtained make it possible to determine the critical gradients for the heat and particle
fluxesin transport models. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

As early as 1980, Coppi [1] pointed out that the
electron temperature profiles in tokamaks tend to con-
serve their shape in response to an external action on
the plasma. This effect, which was called “the profile
consistency,” was confirmed in many devices. Taylor
[2] supposed that the magnetic field evolves during the
dischargeto acertain “relaxed” state determined by the
principle of the minimum of free plasma energy with
the constraint that the helicity is conserved. He success-
fully applied this idea to describing the plasma behav-
ior in reversed field pinches. During therelaxation, total
magnetic reconnection occurs, and the magnetic field
profiles at the final (relaxed) state of the discharge are
aways the same.

In 1986, Kadomtsev [3] and other authors [4, 5]
published papersin which they analyzed the problem of
relaxed states in tokamaks. In this case, total magnetic
reconnection occurs either in spatially localized regions
(e.g., inthe case of sawtooth oscillations) or during fail-
ures (such as major disruptions). In a usual quasi-
steady state, total reconnection does not occur and the
plasmaisin or near acertain intermediate relaxed state.
To describe this state, the principle of the minimum of
free plasmaenergy with the constraint that the total cur-
rent is conserved was proposed in [3-6]. To complete
the problem, they used the effect of profile consistency.
The solution to this problem is called the canonical pro-
file. Other ideas that lead to self-consistent profiles
were discussed in [7, §].

The canonical profile model defines an ultimate
state to which the plasma relaxes. However, it does not
propose the possible physical mechanisms and ways to
achieve this state. The creators of the canonical profile
theory (CPT) were aware of this gap and tried to fill it.

Kadomtsev [6] proposed that the relaxation to the min-
imum of free plasma energy is the result of the excita-
tion of potential and magnetic fluctuations in the
plasma; the generation of chains of magnetic idands; a
partial destruction of the magnetic surfacesin thevicin-
ity of these chains; and, as a consequence, an increase
in the effective transport coefficients. It was assumed
that, if the free energy strongly deviates from a mini-
mum, these processes are more intense. As aresult, the
effective transport coefficients are not only functions of
the local plasma parameters, but also depend on the
profiles of parameters as awhole.

Later, independently of the CPT, numerous theoret-
ical and experimental papers were published in which
the origins of anomalous transport in the plasma were
analyzed [9-11]. These origins were associated with
the development of some types of drift instabilities.
They include instabilities induced by the ion tempera-
ture gradient (ITG mode), electron temperature gradi-
ent (ETG mode), trapped electrons (TEM mode), and
others. The solution of multidimensional gyro kinetic
and gyro fluid equations allowed the study of the
plasma behavior during the linear and nonlinear phases
of instability together with the features of the resulting
turbulence and the mechanisms of anomal oustransport.

From the viewpoint of the CPT, the investigations
performed partially filled the aforementioned gap
between the initia and relaxed plasma states. As a
result, the understanding of mechanisms for plasma
relaxation wasimproved. Now it is possible to compare
the profiles of the plasma parameters and the critical
gradients in both transient rel axation states (defined by
gyro equations) and the relaxed state (defined by the
CPT).
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In[3], the problem of acanonical profilein acircu-
lar plasma cylinder was considered. Some partial solu-
tions in the form of rational functions were found,
which is equivalent to the condition that the solution
tendsto zero at infinity. Thisboundary condition for the
canonical profile correspondsto the assumption that the
processes at the edge only slightly influence the relaxed
state. We will refer to such boundary conditions as
“soft” ones. The solution obtained in [3] for the canon-
ical profile of u. = 1/q. (i.e., for the poloidal magnetic
field) with soft boundary conditions has the form

K= He = Ho/(L+p/a]), & =a’qy/(da—0o), (1)

where p is the radial coordinate, a is the radius of the
cylinder, and g is the current radius. We will refer to
this solution as the Kadomtsev canonical profile and
will denote it by the superscript K.

Asearly asin the mid 1990s, however, experiments
with a strong impact on the plasma boundary were per-
formed [12]. At a certain instant, various impurities
were injected into the plasma. The response of the
plasma core was unexpected: after some delay T,
which is much less than the energy confinement time
Tg, the temperature of the plasma core begins to rise.
Such plasma behavior may naturally be associated with
a change of the relaxed state due to the change of the
boundary conditions. New “stiff” boundary conditions
for the canonical profiles, more strongly related to phys-
ical conditions at the edge, were introduced in [13].

The aim of this paper is to formulate and solve the
problem of the relaxed states (canonical profiles) for a
toroidal plasma with an arbitrary cross section. In this
way, we heed to overcome some difficulties. First, it is
desirable to retain the one-dimensional character of the
canonical profile problem, as was donein the case with
acircular cylinder. Thismeansthat we should choose as
an independent variable a certain variable related to the
magnetic surfaces. However, after such a choice, if we
want to find an analogue of Kadomtsev solution (1),
another difficulty associated with the definition of the
boundary condition at infinity arises. For a toroidal
plasma with an elongated cross section, the magnetic
surfaces are always surrounded by a separatrix, beyond
which these surfaces are not closed and a unified radial
coordinate does not exist. Therefore, the boundary con-
ditions, which in the cylindrical case were defined at
infinity, should be reformulated at the last closed mag-
netic surface (for alimiter plasma) or at the separatrix.

In[14-17], atransport model with critical gradients
determined by canonical profile (1) was devel oped. We
applied this model to the analysis of the energy balance
in various tokamakswith circular and noncircular cross
sections. Reasonable agreement between the cal culated
and experimental profiles of the temperature and pres-
sure leads to the conclusion that the canonical profiles
for a noncircular toroidal plasma only dightly differ
from the profilesused in Eg. (1). However, asarule, the
calculated electron and ion temperature profiles were
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dlightly more peaked than the experimental ones. This
was pointed out in [15], where “corrected,” dightly
broader canonical profiles were introduced into the
model and a better agreement between cal culations and
experiment was obtained. Such a correction was usu-
ally justified because the Z 4 profile was unknown, the
boundary conditions at infinity were formulated inade-
quately, and toroidal effects might be significant. Of
course, such an intuitive correction of the model always
raises a number of gquestions. Thus, the solution of the
problem of canonical profilesfor atoroidal plasmais of
significant interest both from the standpoint of the gen-
eralization of the problem and as atool for the verifica-
tion of the canonical profile transport model (CPTM),
which uses the corrected canonical profiles for a circu-
lar cylinder. In particular, in this paper, we will show
that the canonical profiles for a toroidal plasma are
slightly broader than the canonical profiles for a circu-
lar cylinder. Thereby, we justify the use of corrected
canonical profilesin [15-17].

The paper is organized as follows. In Section 2,
using natural coordinates related to the cal culated equi-
librium, we deduce a second-order equation for the
canonical profile; this equation isthe Euler equation for
the free energy functional with the constraint of current
conservation. Section 3 is devoted to the formulation of
the boundary conditions for the canonical profiles.
Here, we construct the soft and stiff boundary condi-
tions and discuss the range of their applicability. The
canonical profile evolution caused by the change of the
boundary conditions is discussed in Section 4. In Sec-
tion 5, we discuss the results of the calculations. Here,
we show the dependences of the canonical profile half-
width on the aspect ratio and other parameters. In Sec-
tion 6, the relation between the canonical profiles and
transport models is considered. In the Conclusion, we
summarize the results obtained.

2. EQUATION FOR A CANONICAL PROFILE

Let us suppose that, for given pressure and current
distributionsin atoroidal plasmawith an arbitrary cross
section, we have solved the equilibrium problem (the
Grad—Shafranov eguation with respect to the magnetic
flux W) with some boundary conditions. Then, the equa-
tion Y = const defines the magnetic surfaces.

We denote the polar coordinates by r, z, and ¢ with
the main axis coinciding with the axis of symmetry of
the torus. We al so consider the natural coordinates p, 6,
and ¢, where p isthe coordinate of the magnetic surface
defined by the toroidal magnetic field flux ®:

MpPB, = ®, & = J'B us. )
S

Here, B, is the vacuum toroidal field in the chamber
center, B isthe poloidal angle, and { =r¢. At the plasma
edge, we have p = p,,.x = & Where a is the effective
plasma radius. At a low plasma pressure and large
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aspect ratio, we can write a = fkam where a, is the
minor plasma radius and k is the elongation of the
plasma cross section. We also denote by the angular
brackets [1..[the operation of averaging along the mag-
netic surface:

21

i 2n/v"[[gfde, 3)
0

where g is the determinant of the metric tensor of the
assumed coordinate system, and

_ b2
9= 1508y

Asin[3-5], we aso assume that the canonical pro-
files of the tokamak plasma are determined by the min-
imum of the free energy functional

F= I(Bf,o|/8n+ p/(y—l))d3x+)\1j'j¢d8. 5)
\Y S

C))

Here, B, = ([Vpl2moyy/op is the poloidal magnetic
field, p Is the plasma pressure, and A, is a Lagrangian
multiplier. The last term in functional (5) describes the
constraint that the total plasma current J’Sj¢d8: lpis

conserved.

To reduce the problem of the minimum of functional
(5) toaone-dimensional problem, wewill use, asin[3],
self-consistency conditions for a circular cylinder,
assuming that they should also be satisfied for atoroidal
plasma:

p = p(W),
where

Jo = Jo(K)s  Jo(K) = Ap(W), (6)

L= dQ/dd = 1/(2mByp)dw/dp, @)

jo isthe averaged plasmacurrent density, and Aisapro-
portionality coefficient. The equation 1 = const also
defines the magnetic surfaces. Conditions (6) are to be
satisfied for the total class of functions in which the
minimum of functional (5) issought; of course, they are
not obligatory for rea current and pressure profiles.
The relation between canonical and real profilesis dis-
cussed in Section 6.

Let us represent functional (5) as a sum of one-

dimensional integrals
F=Fg+F,+F, 8)

where [14]
Fg = I( Bro/8Tid’x
\Y

. ©)
— i 1 2 2
= STJV(alleap) G/(4T°R)dp,
0
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a

Fp = J’V' p/(y-1)dp, (10)
0

Fi = )\11J'V'j¢dp, A = M/(2TR,). (11)
0
Here,
21

V'(p) =dV/dp = 2nJ’[gde, (12)
0

Visthe plasmavolume, V' and
G = R°Vp)*Ir'D (13)

are the metric coefficients (the coefficient G is dimen-
sionless), and Risthe plasmamajor radius. From Max-
well’s equation, we obtain

Jo = (Bo/(HooV'R)A/0p(V'Gpp), (14)

where | is the vacuum magnetic permeability. For a
plasma with a circular cross section and large aspect
ratio [the so called circular cylinder approximation
(CCA)],wehaveV — 212Rp?, V' —= 4TPRp, G —~ 1,
and G, = GV' —» 41PRp.

Let ustreat the potential W as an independent argu-
ment in the functional F and carry out the variation of
F over this argument. By virtue of conditions (6) and
(7), we have

op = dp/oudy, dj, = 9j,/0udY,
O = 1/(2mByp)o/opdy.
Integrating OF by parts, we obtain

(15)

Prmax

5F = — I 3Walap{ V'/p(Bp’I(4TR®) G (6)
0

+0p/op/(y—1) +A,0j4/0u)}dp = 0.
Using Eqg. (6), we find the Euler equation for functional
(16)
0/0p{ V'/p(Bop”/ (4TIR') G + A 1,0, /0W)} = O,
1 (17)
+ .
A(y-1)
Using expression (14) and again renormalizing A, we
obtain the third-order equation with respect to |t
0/0p{ V'/(pW)[P*GOK"/9p
+(A2/2)010p((1/V")0/0p(Gopu)) ]} = O;

Here, U' = d/0p. The parameter A, corresponds to the
notation of [13]. It will be defined below by using the
boundary conditions.

Az = Ay

(18)
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Note that in the CCA, Eq. (18) takes the form

d/9p{ 1/(w)[pap’lap
+(A,12)010p((1/p)a(p’)/ap)]} = O.

After integrating Eq. (18), we obtain the Euler equation
in theform of asecond-order equation with an arbitrary
constant C:

(19)

p°Gap®19p + (A,12)813p((1/V)0/9p(G,pW))

(20)
= Cpu'/V/,
or
La[u] + A o/2)Lo[u] = (A/2)L4[H], (21)
where
Li[ul = p°Gop®/ap,
Lo[u] = 0/0p((1/V')0/0p(G,pH)), (22)

Lalul = (C/(A/2))pu/ V.

The constant of integration C should be defined so that,
at the point p = 0 (ontheaxis), the derivative dp/0p van-
ishes.

Assuming that the solution to Eqg. (20) at p =0 is
limited (U(0) = Y, and Y'(0) = ou/dp(p = 0) = 0), we
expand it in the vicinity of this point in powers of p:

WHo = 1+ayp’,

H/Ho = 2a5,p, (23)
H'/Ho = 20,
Moreover, we have
V' = V'(0)p(1+O(p?)). (24)

The first term, L;, in Eq. (21) has a higher order of
smallness over p near p = 0; therefore, we can neglect
it when choosing the constant of integration. The sec-
ond term, L,, in Eq. (21) can be presented as a sum of
three terms:

Lo[H] = pna/ap[(1/V')a/ap(G.p)]

25
+W013p(Gp) + (UV)31ap(Gop)] +H"Gp.

Substituting expressions (23) and (24) into formula
(21), omitting L, and taking account expression (25),
we obtain

(A2/2){0/9p[(1/V")0/9p(G.p)]

+20,p[0/0p(Gp) + (1/V')0/0p(G2p)]
+2a,Gp} = Cp - 2a,p/V'.

(26)
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For p — 0, we have

0/0p[(1/V')0/9p(Gyp)] — 3G'(0) + pG"(0),

0/0p(Gp) + (/V*)0/0p(G,p) —=3G(0) + 2pG'(0),
p/V'— 1/V"(0).

Equating coefficients by the same powers of p, we
obtain

(27)

3G'(0) =0 (p%), (28)

(A2/2)(80,G(0) + G"(0)) = 2a,C/V"(0)  (p"). (29)

Inthe CCA, we have G = const; therefore, G'(0) =0 and
G"(0) =0. Numerical calculations show that these
equalities are valid in the general case of a toroidal
plasma. As a result, Eq. (28) is satisfied automatically
and Eq. (29) becomes homogenousin a,. The value of
C should be chosen from the condition a, # 0. It is sat-
isfied when

C = 4(N,/2)G(0)V"(0). (30)

Substituting expression (30) into formulas (22) and
(23), we obtain the final equation for a canonical
profile:

L[u] =p”Gap’/ap
+ (A,12)810p((1/IV")819p(V'GpH))
—4(\,/2)G(0)V"(0)pp'/V' = 0.
Inthe CCA, Eq. (31) takesthe form
p2Op*1ap + (N,/2)(=0u/dp + pd°uidp®) = 0 (32)
or

(1)

p°9/0p(K’ +A,0u/9p%) = 0
and can be integrated analytically.

(33)

3. BOUNDARY AND MATCHING CONDITIONS
FOR CANONICAL PROFILES

We will distinguish two types of p(p) functions. The
canonical profiles, which are the solutions to Egs. (31)
or (32), will be denoted as p(p). The “real” profiles of
these functions, which are the solutions to the set of
transport equations, we will denote as p(p) without
indices. When formulating the problem in [3], besides
Eq. (32), the following boundary conditions were
implicitly used

Hc(0) = Mo,
He(a) = H(a) = Ha,
limpe(p —= ) = 0.

(34)

Here, 4, ~ 1 and |, is the boundary condition for pu(p).
In the CCA, we have [, = RBy/aB, = 0.2Rl,/a’B,,. The
last of boundary condition (34) assumes that the real
PLASMA PHYSICS REPORTS  Vol. 28
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boundary conditions at the plasma edge do not influ-
ence the choice of the canonical profile. Such atype of
boundary conditions is naturally called “soft.” In the
Introduction, we called problem (32) with boundary
conditions (34) the Kadomtsev problem [3] and
denoted its solution by the superscript K. The solution
to the Kadomtsev problem has form (1).

In the general case of atoroidal plasmawith a non-
circular cross section, the region with closed magnetic
surfacesislocalized and the “radia” coordinate p can-
not be defined over ahalf-infinite interval. So, the third
Kadomtsev boundary condition (34) should be refor-
mulated for the plasmasurface. Thisis convenient to do
using the impedance of solution (1). For a toroidal
plasma, the first-order impedance can be written in the
following form:

X = 1,/(2GaHa), (35)
wherei =i(p) is the dimensionless current,
I = (HoR/Bo)jy = (1/V')0/0p(V'GpH), 36)

= i(p = a).
Note that, in the CCA, we have G, = 1 and, for the
Kadomtsev problem, we obtain

la

X = Halbo. (37)
In the CCA, instead of conditions (34), the follow-
ing equivalent boundary conditions can be used:
H(0) = Mo,
He(a) = U(a) =Ha,,
X, = X = pa/p,.

Here, we have no condition at infinity. We will also
assume that, in the general case of atoroidal plasma,
the special Kadomtsev-type solutions to Eq. (31) are
defined by soft boundary conditions (38) at the plasma
edge or at the separatrix.

To determine the Lagrange factor A,, we rewrite
Eq. (31) using expression (36):

p’Gap’/ap + (A,/2)i"
—4(\,/2)G(0)V"(0)pu/V' = 0,

wherei' = 0i/0p. Turning p to ain Eq. (39), wefind the
formal relation between A, and the boundary values of
M, i, and their derivatives:

(38)

(39)

A =A@, = E(ﬁ(_al()’ (40)
where
MERNICTH (41)

isthe second-order impedanceand € = av"(0)/V, (£ = 1).
For boundary conditions (38), the derivative p (a) is
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defined by the boundary condition X, = XK. Therefore,
to solve the boundary problem for Eq. (31), we can use
the shooting method, by fitting the parameter A =
A\, /a’u,. Note that, in the CCA, Eq. (40) takesthe form
[13]

A = 4/(1-ap,/u,),
and, for solution to Kadomtsev problem (1), we have
A= 1(L-paluo). (43)

Let us now consider a plasma that undergoes a
strong external action that leads to a change of the
plasma boundary temperature and density and the
intensity of periphery radiation. Examples of such an
action are pulsed gas puffing, impurity injection,
periphery injection of hydrogen pellets, and surface
current drive. It is obvious that boundary conditions
(38) do not reflect such processes. On the other hand,
many experiments show afast plasmareaction over the
entire plasma cross section as a response to the periph-
ery action. Apparently, the boundary conditions for the
canonical profiles should be related to the boundary
conditions for the other plasma parameters. An exam-
ple of such arelation that does not contradict CPTMsis
presented in [13], where the following “ stiff” boundary
conditions for the CCA were proposed:

(42)

He(a) = u(a),
He(a) = w'(a), (44)
He(a) = p'(a).

In contrast to conditions (38), all boundary conditions
(44) are defined at the plasma surface. Usually, such a
problem is referred to as the Cauchy problem.

We assume that conditions (44) are also suitable for
atoroidal plasma with an arbitrary cross section. The
physical sense of conditions (44) is as follows. It is
implicitly supposed that, in athin periphery layer, the
canonical profiles . (p) satisfy not only Maxwell equa-
tion (14), but also Ohm’slaw, because the function p(p)
satisfies these equations over the entire cross section
and, at the boundary, the first and second derivatives of
H(p) and u(p) are the same.

Boundary conditions (44) can be written in terms of
the surface impedances similarly to conditions (38):

He(@) = Has
X, = X, 45)
Y. =Y.

Here, Xand Y are defined by formulas (35) and (41) and
can be calculated through derivatives of p(p), and A is
defined by Eq. (40).

The third of boundary conditions (45) contains the
second spatial derivative of pu(p), i.e. thethird derivative
of Y(p) at the edge. In transport codes, a parabolic
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equation of the second order with respect to U is typi-
cally used. Hence, the computation of the third deriva-
tiveis an ill-posed problem. To regularize this process,
it is possible to use Ohm's law

j = oE, (46)
where o isthe plasma conductivity, and the assumption
of aquasi-steady character of current diffusion near the
edge,

dE/op(a) = 0, 47)

where E isthetoroidal electricfield. Thisassumptionis
true when the electron temperature in the vicinity of the
edgeis small and the rate at which the total plasma cur-
rent changes is not large. From Egs. (46) and (47), we
have

jalia = ialiy=0,l0,. (48)
Hence, we obtain an approximate expression for the
second-order impedance,

Y = a/(4Y Ka) = (02/0,) (1a/481,).

Thisexpression does not contain third-order derivatives
and can be used in boundary conditions (45).

In [15], the following criterion for the transition
from soft boundary conditions (34) to stiff conditions
(45) in the CCA was proposed:

(49)

Y <Y = p/ue. (50)
This criterion was used in the CPTM to describe the
L-RI modetransitionin TEXTOR with acircular cross
section [18]. In the general case of a toroidal plasma,
criterion (50) needs experimental verification. In view
of expression (49), this criterion can be written in the
form
(Gélo-a)la/(él{u;) < p'a/p-O' (51)
Let us now discussin more detail the plasma evolu-
tion to the relaxed state in the core and the behavior of
the canonical profilein thisregion. If the peakedness of
the current profile is high enough, then a region where
M(p) > 1 appears. A magnetic surface with the coordi-
nate p = pg, Where p(ps) = 1, isusually called the reso-
nant surface. Sawtooth oscillations with a total mag-
netic reconnection usually arise inside the resonant sur-
face. The total reconnection means that the magnetic
shear is absent and L = const in this region. The value
of current inside the resonant surface p < psis not con-
served (a part of this current is thrown out from this
region); hence, the minimum of functional (5) in this
region does not correspond to a more deeply relaxed
state u(p) = const. The effective canonical profile of the
K(p) function, which corresponds to the total relaxation
in the region p < pgand the limited relaxation [defined

DNESTROVSKIJ et al.

by the minimum of functional (5)] intheregionp > pg,
can be described as follows:

of _ [Lonst = U(ps) for p<ps,
He = 0O (52)
Hc(p) for p>ps

Here, the first condition is the matching condition. At
the point p = pg, function (52) is continuous but under-
goes ajump of the derivative due to apartial gjection of
the current from the region p < ps. The value of thetotal
current does not depend on the position of the point pg,
because it is determined by the boundary condition

H.(@) = M- We emphasize that the profile pf ' P

exactly defines the possible relaxed plasma state. Dur-
ing the plasmaevolution, the possible relaxed state also
changes.

4. EVOLUTION OF CANONICAL PROFILES

Boundary conditions (38) and (45) and matching
conditions (52) are not stationary. Moreover, a transi-
tion from soft conditions to stiff ones, and viceversa, is
possible. Therefore, the canonical profiles are evolving
intime. Since Eq. (31) is of an eliptical type, the evo-
lution may be described by the diffusion equation

TOH/Ot = L[p], (53)

where the operator L[] is defined by Eqg. (31) and T,
isthe characteristic time of the canonical profile evolu-
tion. Apparently, T, ~ 14, where 1, is the characteristic
time delay of the plasma core response from the edge
action. Experiments[12, 19, 20] show that T, ~ 1-5 ms,
which is considerably (by 1-2 orders) less than the
energy confinement time t¢.

5. RESULTS OF THE CANONICAL PROFILE
CALCULATIONS

To find a canonical profile, we should carry out a
seriesof calculations. First, we should establish the cur-
rent and pressure distributions and solve the Grad—
Shafranov equation with respect to the magnetic flux
function | for chosen boundary conditions. Next, using
the solution obtained, we should find the metric coeffi-
cients V'(p) and G(p); the boundary values of ; and, if
necessary, its derivatives. After this, we can determine
the boundary conditions and the coefficients entering
into the equation for the canonical profile.

As an example, we consider a plasma with the fol-
lowing parameters:
R=3m, a,=1m, A=R/a,=3,
(54)
Bo=28T, I,=2MA, k=17, 8=03.

Here, Rand a,,, are the major and minor plasmaradii, B,
is the toroidal magnetic field, |, is the plasma current,
and k and & are the elongation and triangularity of the
PLASMA PHYSICS REPORTS  Vol. 28
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(a)

(b)

3
4 —
2r 2
]
0 02 04 06 08 1.0
pla

Fig. 1. Profiles of the metric coefficients (8) V; = V'/4TRa

and (b) G for g, = 7 and different aspect ratios A = Rla =
(1)5,(2) 3,and (3) 1.5.

cross section. The calcul ationswere performed with the
ASTRA code[21].

We take reasonable (close to parabolic) profiles of
the electron and ion temperatures and the plasma den-
sity. Using Ohm'’slaw, we calculate the current density.
Then, these data are used in the equilibrium block to
calculate the positions of the magnetic surfaces and the
function . Figure 1 showstheresults of cal culations of

the normalized metric coefficients V; = V'(p)/(4TPRa)

and G(p) for different aspect ratios. Here, g, = 7. It can
be seen that, in the central zone, G = const = 1 and
No. 11
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Fig. 2. Canonica profile p, determined from Eq. (31),

Kadomtsev canonical profile u'c( , and the effective canoni-

cal profile uf f with allowance for sawtooth oscillationsfor
R=3m,a=1m,B,=28T,1,=2MA, k=1.6,8=03,
and g, = 7. The u profile showstheinitial profile, determin-

ing the plasma geometry and the position of the resonant
surfaceq = 1/u = 1.

V; (p) = p. At the edge, G(p) increases by several times
and the function V; (p) deviates from a straight line.

If we know the metric coefficients, we can move to
the solution of the boundary problem for Eq. (31). Let
us first consider soft boundary conditions (38), assum-
ing W, = 1.2. Figure 2 shows the results of the calcula-
tionsfor the canonical profileof p.(p) for aplasmawith
parameters (54). For comparison, the Kadomtsev

canonical profile uff (p) and the p(p) profile of the ini-

tial transport problem are aso shown. We note two
main features of the resulting profiles:

(i) The canonical profile p(p) for atoroidal plasma
is broader than the Kadomtsev canonical profile
derived for acircular cylindrical plasma.

(ii) In the initial transport problem, u(p) > 1 at the
center; this should lead to sawtooth oscillations inside
the resonant surface. This means that the resulting
canonical profile u.(p) should be corrected to the effec-
tive canonical profiledefined by Eq. (51). The corrected
profileis shown by the heavy linein Fig. 2.

When the plasma geometry and the parameter g, are
varied, the first feature is retained. To quantitatively

estimate the difference between p(p) and ucK (p) pro-
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Fig. 3. Canonical profiles . and uCK for the same parame-
tersasinFig. 2, but for R=1.5m (A=1.5).
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Fig. 4. (a) Half-width A, of the canonical profile and (b)
theratio of this half-width to the half-width of the Kadomt-
sev canonical profile, © = A_,,/AX, as functions of the
a?pect ratio A= R/afor k= 1.6, 5= 0.3, and different values
of gq.

files, we denote by A, and A the half-widths of these
profiles, which are determined by the relationships

U(A.,) = 0.5, and Pl (&%) = 0.5, For Kadomtsev

DNESTROVSKIJ et al.

profile (1), the half-width is equal to the current radius:
A¥ =4,

We choose parameters (54) as initial ones and vary
the major radius R in the range R = 1.5-5, so that the
aspect ratio is varied in the range A = 1.5-5. Also, in
order to keep a constant value of g,, we simultaneously
vary the current |,

Figure 3 shows the profiles pu(p) and u: (p) for the
aspect ratio A = 1.5. We can see that the profile p(p) is

appreciably broader than the profile pf (p). Figure 4a
shows the dependences of the half-width A.,, on the
aspect ratio Afor g, =15, 7.5, and 3.8. It isseen that the
half-width A, Slowly increases with decreasing A. At
g, ~ 4, the value of A, attains a value of (0.85-0.9)a;
i.e., the canonical profiles for spherical tokamaks are
very flat. Figure 4b shows the half-widths ratio © =
A.,,/AF as afunction of the aspect ratio A for the same
values of g, Since pf defined by expression (1) is
independent of the aspect ratio, the value of AX is also
independent of thisratio. For moderate and high aspect
ratios (A ~ 3-5), the ratio © varies slowly in the range
© =1.2-1.3. For small A~ 1.5 (for spherical tokamaks),
thisratio increasesto © = 1.5-1.8.

Now we discuss the behavior of A, and ® when
other geometrical factorsare varied. Figure 5 showsthe
dependences of these quantities on the elongation k at
A = 3 and different values of g,. As k increases, the
canonical profiles becomes flatter as compared to the
Kadomtsev profiles. Figure 6 shows the dependences of
the same quantities on the triangularity o for k= 1.6 and
A = 3, keeping other parameters of set (54) fixed. We
can seethat the canonical profilesweakly depend onthe
triangularity.

Next, we consider stiff boundary conditions. This
type of boundary conditions corresponds to a strong
cooling of the edge plasma, when the current density
and the radia derivative of the current density near the
boundary are small and condition (49) or the equivalent
condition (50) is satisfied. To describe this process, we
consider reasonable parabolic profiles of the ion tem-
perature T;(p) and plasma density n(p) and the follow-
ing model profile of the electron temperature:

Te(P) = Teat To(1-p/a’)".

The current profile does not depend explicitly on the
profiles of T;(p) and n(p); therefore, the details of these
profiles are inessential. As an example, we choose the
following plasma parameters: R=5m, a,,=1m, A=
Ra,=5,B,=28T,k=1,and d=0.

Solving the Grad—Shafranov equation, we find the
equilibrium, the function p(p), and the impedances X
and Y [see expressions (35) and (41)]. The dependence
of the impedance Y on the power exponent a for T, =

PLASMA PHYSICS REPORTS  Vol. 28
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Fig. 5. Same asin Fig. 4, but as functions of the elongation
kfor A=3, 6= 0.3, and different values of q,.

40 eV isshown in Fig. 7. The value of this impedance
for the Kadomtsev profile (YK = p,/u, = 0.26) is also
shown. We can see that, for a > 1.45, inequality (50) is
satisfied; hence, in the transport model with canonical
profiles, we should change soft boundary conditionsto
stiff ones.

Figure 8 shows the transformation of the shape of
the canonical profiles. We can see here the canonical
profile p(p) for stiff boundary conditions (44) with a =
1.25, 1.5, 1.75, and 2.0, keeping other plasma parame-
ters fixed. For comparison, we show here the canonical

profile p2° " (p) obtained with soft boundary conditions
(38) (this profile is amost independent of a) and the
profile p(p) of theinitial transport problem. We can see
that, as a increases and the impedance Y approachesthe
critical value YK, the profile p(p) beginsto peak. How-
ever, if we take into account sawtooth oscillations, the

soft

uf” (p) profilefor a < 1.25remainsclosetothe u. (p)

profile. As a increases further and Y decreases, condi-
tion (50) is satisfied and the p(p) profile peaks dramat-

ically. In this case, even aflatter pff (p) profile (with a

plateau at p < pJ) becomes more peaked than p.” " (P).

In transport models with canonical profiles, such a
change leads to a substantial decrease in the effective
transport coefficientsand an increasein the temperature

soft

in the region where uff P> He (P)-
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6. CANONICAL PROFILES
AND TRANSPORT MODELS

In transport models, the canonical profiles deter-
mine the critical gradients above which the heat and
particle fluxes substantially increase; however, expres-

Y
0.4 Y,
YK
0.2+
0 1 1 1 1 |
1.0 1.2 1.4 1.6 1.8 2.0

a

Fig. 7. Second-order impedance Y, as a function of the
power exponent o of the model temperature profile Ty(p) =
Tea + To(1 - p*/a®)® for A=5,k=1,5=0, T, =40 eV, and
Ty = 1 keV. The horizontal line shows theimpedance for the
Kadomtsev canonical profile, YK = pa/u,.
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Fig. 8. Canonical profiles for different power exponents of
the model temperature profile a (the other parameters are
thesameasin Fig. 7). For comparison, the canonical profile

uso ft for soft boundary condition and the initial p profile,

determining the plasma geometry and the position of the
resonant surface . = 1, are also shown.

atl,/ T,
5 —
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Fig. 9. Profiles of the critical dimensionless temperature
gradient aT /T, for g, = 7 and three sets of the plasma
parameters. (1) A=5,k=1,and6=0; (2) A=3, k=16,
andd=0.3;and (3) A=15k=16,and56=0.3.
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sionsfor these fluxes are not defined unambiguously. In
[14-17], the simplest linear model was considered. For
example, the heat flux was described as

Q = —nkT(TIT-TT) +Q, (55)

where T, isthe canonical profilefor the temperature, Q,
is the heat flux that is not related to the canonical pro-
file, the prime stands for the derivative with respect to
p, K isthe stiffness of the profile (which is proportional
to T¥2), n is the plasma density, and the logarithmic
derivative of the canonical temperature profile playsthe
role of acritical gradient. Flux (55) explicitly contains
the therma pinch effect. To avoid this pinch, many
authors [9-11] use the following strongly nonlinear
expression for the heat flux:

= —nxT'+Q, (56)
where
X = LTHATIT=TLUT))"
x H(—(T'/T =TUTL)),

( isadimensional factor, a ~ 1, and H(x) isthe Heavi-
side step function (H(x) = 1 for x> 0 and H(x) = O for
x< 0). There are till no reliable experimental data
allowing us to choose between models (55) and (56).

If we know the canonical profile u(p), we can create
the canonical profile for the temperature T.(p) using the
following arguments. In a relaxed quasi-steady state,
the profiles of the current and electron temperature are
close to the canonical profiles

Jo(P)=]c(P), Te(p)=Tc(p). (58)

Atthesametime, thej,(p) and T(p) profilesarerelated
to each other by Ohm’s law:

io(P) OT*(p). (59)

By virtue of the consistency of profile (6) and profiles
(58) and (59), we have

P(P) = Nu(P)Te(P) Djc(P)D TeB1 T3 (60)
hence,

(57)

T.0i°, nOTH j° 61)

and the dimensionless relative critical gradients of the
temperature and density are determined by the follow-
ing expressions:

aT,/T, = 2/3Q;,

where

an./n, = 1/3Q;, (62)

Qj = aj::/jm Qp = ap'(I:/p'c (63)
are the dimensionless logarithmic derivatives of the
canonical profiles. Later, we will refer to expressions
(62) and (63) as basic formulas.

PLASMA PHYSICS REPORTS Vol. 28 No. 11 2002
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The profiles of the critical temperature gradient
aT. /T, calculated from basic formulas (62) and (63)
for three sets of plasma parameters (A = 1.5, k= 1.6,
andd=0.3;A=3,k=1.6,andd=0.3;andA=5,k=1,
andd=0atg,=7) areshown in Fig. 9. It is seen that
inside the gradient region (0.3 < p/a < 0.7) the value of
aT, /T, changes only dlightly. The experimental gradi-
ents of the electron temperature in several tokamaks
show a similar behavior [11]. However, the absolute

values of aT. /T, depend on the plasma parameters.

Figure 10 shows the dependence of the aT /T, vaue at

the point p/a= 0.5 on the parameters g, for k=1.6, 0 =
0.3, and two values of the aspect ratio (A = 1.5 and 3).
It is seen that the critical gradient increases with
increasing g, and A. This leads to an increase in the
peakedness of the temperature profiles calculated by
the transport model.

The structure of the full model describing the trans-
port processes in tokamaks is shown in Fig. 11. The
model consists of three parts. The first part is a proper
transport model determining the electron and ion tem-
peratures T, and T,, the plasma density n, the function
, and the current density j. These data are used in the
second part to solve the Grad—Shafranov equation and
to find the magnetic surface geometry, the natural coor-
dinate p, and the metric coefficients V' and G. Finally,
in the third part, the functions . and j, and the critical

gradients T, /T, are found by solving Eq. (31). In our
previous papers, it was assumed that the critical gradi-
ents were the same for the electrons and ions.

Besides formulas (62), other forms of critical gradi-
ents are possible. For example, for the Kadomtsev
problem [3], we have

N (64)

therefore,

=a(j¢)js = 2a(ue)ue =29,

of

i (65)

and, in the right-hand side of Eg. (62) we can use2Q:f

instead of Q. Inthe general case of atoroidal plasma,
equality (64) is not strictly satisfied. Figure 12a shows
the profiles of (j./j.(0))** and (u./My)*? for the parame-
tersA=3,k=1.6,and d=0.3 at g, ~ 7. Here, the expo-
nential power for the current is chosen in accordance

with expressions (61). It is seen that the jf’3 profileis

dlightly broader than the ufB profile. Figure 12b shows
the profiles of Q; and 2Q,, for the same geometric fac-
tors. We see that almost over the entire radius, the val-
ues of Q; and 2Q,, are close to each other. Substituting
2Q, instead of Q; in formulas (62), we obtain

aT,/T. = 43Q,, any/n,=2/3Q, (A>25). (66)
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Fig. 11. The flow chart of the CPTM.

At smaller values of A, the difference between Q; and
2Q, rapidly increases; therefore, formulas (66) are
valid only for A > 2.5. For smaller aspect ratios, we
should use basic formulas (62).

In[14], it was supposed that the Kadomtsev canon-

ical profiles u? (p) can be used in Eq. (66) because the
canonical profiles for toroidal plasmas were unknown.
However, this supposition resulted in the calculated
temperature profiles that were more peaked than the
experimental ones [15]. Therefore, in [15-17], it was
proposed to use, instead of Eq. (66), aslightly corrected
formulafor the critical gradients

aT,T. = QF, ani/n, = 1/2Q. 67)
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Fig. 12. Profilesof (a) (j/j(0))*> and (/i) *>, (b) thegrar
dients Q; and 20, and (c) the “true” critical temperature
gradient 2/3Q; and the * corrected” Kadomtsev critical tem-

perature gradient Q:f from our previous transport models
forA=3,k=1.6,0=0.3,andqg, ~ 7.

Now, knowing the canonical profiles for toroidal
plasmas, we may estimate the validity of expressions
(67) by comparing them with basic formulas (62). Fig-
ure 12c showsthe profiles of the parameters (2/3)Q; and

Q. entering into the right-hand sides of Egs. (62) and
(67). They are rather close to each other in the gradient
zone (p/a<0.7). Notethat the difference at the edge has
aweak effect on fluxes (55) and (56). Hence, an intui-
tive-empirical choice of Egs. (67) for thetemperaturein
[15] is confirmed by the theoretical account of the tor-
oidal effectsinvestigated in the presented paper. Appar-
ently, an inverse statement is also valid. As far as the
transport model with Egs. (67) reasonably describesthe

DNESTROVSKIJ et al.

experimental temperature profiles [15-17], the model
with basic formulas (62) should give the same results.
However, one needs to verify this conclusion by com-
paring the calculated results with the experiments in
tokamaks with different aspect ratios.

Now we discuss when the conditions of the profile
consistency (6) may be violated. The last of conditions
(6) does not take into account that the boundary values
of functions p(u) and j4(K) are not self-consistent.
Therefore, it would be more logical to use the condi-
tions of profile consistency in the form proposed in [8]:

(e ()71 (Ho))" = (P(W)/P(Ko))"

The profiles of j,(1) and p(u) defined by Egs. (6) and
(68) differ by a constant that isimportant only near the
plasma boundary. Therefore, the critical gradients cal-
culated by Eq. (6) or (68) will be different only in this
region. As was mentioned above, transport fluxes (55)
or (56) change dightly in this case.

(68)

Finally, we will comments the application of the
canonical profiles theory to spherical tokamaks. In
modern spherical tokamaks, the discharge duration is
not long and the steady state is not established. More-
over, the current profile is distorted by sawtooth oscil-
lations. As a result, the validity of profile consistency
conditions (6) for spherical tokamaks is not yet con-
firmed. Itisnot clear whether Ohm’slaw can be used to
separate out the canonical profiles of the temperature
and density when the canonical profile for the pressure
is determined. The point isthat, at A ~ 1.5-2, the frac-
tion of trapped particles dramatically increases. It is
widely assumed that the trapped particles do not con-
tribute to the current and, thus, to the plasma conductiv-
ity. Inthis case, Ohm's law hasthe form
o™ E, o™ = o™f,

j= (69)

where o is the Spitzer conductivity, which is propor-
tiona to T2?/Z., and f = f(e, V¥, Z) is a rapidly
decreasing function of the radius p, which is equal to
unity at p = 0and hasaminimum at p ~ 0.85a. For typ-
ical experimentsin START [17], the minimum value of
f is about 1/6. Hence, the current density should be
strongly peaked in the steady state. As aresult, formu-
las (59)—(61), which relate the steady-state current den-
sity and the electron temperature, may fail. Our experi-
ence of the transport model application to spherical
tokamaks[17] showsthat the canonical pressure profile
determined by Eq. (31) is apparently rather reliable.
However, one should take care when using Ohm’s law
to separate the canonical profiles of the temperature and
pressure. Moreover, such a separation may be nonu-
nigque and may depend on some discharge parameters
that are still unknown.
PLASMA PHYSICS REPORTS  Vol. 28
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7. CONCLUSION

In this paper, we have solved the problem of the
canonical profiles for a tokamak plasma with an arbi-
trary cross section. The canonical profilesare treated as
an ultimate state to which the plasmarelaxes. The solu-
tion is based on the principle of the free energy mini-
mum with the constraint that the total current is con-
served and the relaxed profiles of the pressure and cur-
rent density are sdf-similar (the profile self-
consistency). We have constructed a differential Euler
equation for the canonical profile of the u function and
have discussed the possible boundary conditions. Two
types of boundary conditions (soft and stiff conditions)
have been discussed. The soft conditions correspond to
the absence of strong action on the plasma boundary.
They are analogous to the Kadomtsev conditions stated
at infinity for a circular cylindrica plasma. Under
strong action on the plasma boundary, we should use
stiff conditions describing the close relation between
the real and canonical profilesin the edge region.

The obtained canonical profilesallow usto calculate
the critical temperature and pressure gradients and to
construct a transport model. Calculations have shown
that, asthe aspect ratio decreases, the canonical profiles
become flatter. The same effect takes place when the
elongation of the cross section increases. The canonical
profiles become more peaked with increasing parame-
ter g,. Similar tendencies for the real profiles of the
electron temperature were pointed out in our previous
papers where we analyzed experiments in JET and
START.

Note that our interpretation of the profile consis-
tency assumes that the real profiles of theion and elec-
tron temperatures differ from their canonical profiles.
The heat fluxes are proportional to the distances
between thereal and canonical profilesin acertain met-
rics defined through the critical gradients. In this sense,
our approach is equivalent to a traditional approach in
which the fluxes are described through the critical gra-
dients. The difference is that the CPTM proposes an
algorithm for finding the critical gradients, whereasin
traditional models, the critical gradients should be
found by independent methods based on additional
assumptions.
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Abstract—Results are presented from theoretical and experimental studies of the influence of ponderomotive
effects on the operation of atwo-wire plasma microwave resonator probe. It is shown that the nonlinear regime
of probe operation can be used to measure not only the plasmadensity, but al so the plasmatemperature. © 2002
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1. INTRODUCTION

Highly sensitive resonator probes are successfully
used to diagnose various natural and artificial media,
including plasma. In such measurements, most of the
information is derived from the modification of the
probe resonance curve, first of al, its displacement and
broadening. It is usually required that the probe intro-
duce minimal perturbations into the ambient medium;
however, an analysis of these perturbations can aso
provide additional information about the properties of
an object under study.

In this paper, we consider atwo-wire plasmamicro-
wave resonator probe.1 Such probes are frequently used
to measure the charged particle density in both isotro-
pic and magnetoactive plasmas [2, 3]. The probe oper-
ation is based on the dependence of the resonance fre-
guency on the permittivity of amedium filling the space
between thewires of adoubleline. The probeisusualy
employed in a transparent plasma at frequencies sub-
stantialy exceeding the critical frequency for a given
plasmadensity. For simplicity, in calculations, it is usu-
ally assumed that the plasma is uniform over the reso-
nator segment of the double line.

A characteristic feature of the microwave probe
under consideration is a relatively low threshold for
nonlinear effects. In aweakly collisiona plasma, these
effectsare mainly of aponderomotive nature. Under the
action of the electromagnetic field, the plasma is
pushed away from the resonator wires, thereby substan-
tially affecting the resonance characteristics of the
praobe [4]. In the present paper, it is shown that the non-
linear regime of probe operation can be successfully
used to diagnose plasmas, in particular, to measure the
electron temperature. The paper is organized as fol-
lows. In Section 2, a theory of a nonlinear two-wire
microwave probe is developed, and, in Section 3, we
discussthe experimental resultsand compare them with
the results of theoretical calculations.

I Note that the resonant properties of this probe are not related to
the plasma resonance [1].

2. THEORY OF A MICROWAVE
RESONATOR PROBE

Figure 1 shows a schematic of the microwave reso-
nator probe used in [2, 3] and in the experiments
described below. Two identical coaxial cables are
ended with magnetic-coupling loops; the shorted end of
the double line of length € is placed symmetrically
between the loops. On the other side, the line is open.
The distance d between the wires substantially exceeds
thewireradiusa (a/d < 1) and coincideswith the diam-
eter of the coupling loops.

The inductive reactance of the coupling loops,
wlL,/c?, is negligibly small as compared to the imped-
ance of the coaxia cables, p.. The coefficients of
mutual induction between the coupling loops (M, ;)
and between the coupling loops and the double line
(M, ,and M; ) arecloseto L. Itisassumed that M, | =
M; , = M and that the impedance p of the doublelineis
on the order of p.. It follows from here that

1

1
C—Z(A)LC < Pe C_ZwM <p. (D)

If a probing wave with the current amplitude |, and
voltage U, = p.l,, isexcited in cable 2, then, in the non-
resonant regime, this wave reflects from the cable end
as from a load with an almost zero resistance. In this
case, the current 1, in coupling loop 2 is close to 2,
whereasthe current | inloop 3 and the current |, inthe

/\ ]

0
%

Fig. 1. (1) Quarter-wave resonator and (2) exciting and
(3) receiving lines.

N

2

|

3

/
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shorted double-line segment are negligibly low (JI,],
I5] <€ [I,])- On the other hand, under resonance condi-
tions, when the segment € matches a quarter of the
wave propagating through along line, the current |, can
attain a fairly high value and its influence on the cur-
rents |, and |; cannot be ignored. Writing the emf

induced in cables 2 and 3 as—lzo)Mll, we obtain the
c

following expressionsfor |, and | 5:

—— @My, I3 = ——wMI,.
P CPe

l, = 2l5— ()

The current 1(2) and the voltage U(2) inlong line 7 (the
zcoordinate is counted from the shorted end) satisfy the
telegraph equations

du - _Loii+Es(z+0),
dz c?
di 3)
d_Z = —|(A)CU
with the boundary conditions
Uu) =0, I(z=¢) =0, 4)

where L and C aretheinductance and capacitance per

unit length of line 1, E =—'—2 WM(l, + I5) is the mutual-
c

induction emf at the shorted end (z= 0), &(z + 0) isthe
deltafunction (J'éo(z+ 0)dz=1),and |, = 1(0).

Plasma diagnostics commonly use frequencies w
substantially exceeding the electron plasma frequency
Wy and the electron gyrofrequency w. Inthiscase, the
electrodynamic characteristics of the plasmadiffer only
dightly from those in avacuum. As aresult, it may be

assumed that L = ﬂo = 4In(d/a), and C-= (30(1 + 0C),

where Co = |6C| < 1, and Lo and Co arethe

_1
4In(d/a)’
inductance and capacitance per unit length of line 7 in

avacuum (I~_0(~:o =1). In nonlinear media, oC is deter-
mined by the field in the line and smoothly (on the
length d) varies with the z coordinate.

At frequenci es w close to the vacuum resonance fre-
quency @, =

to problem (3) and (4) can be sought as an asymptotic
expansion in asmall parameter

Y DmaxaA—w |6C], BDMD

((o Wy + Aw, Wy, > |Aw), the solution

DwMD
q:z

E<1 &)
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We can write

| = @40,

u=u2+u+ (6)
where 1) and U1 are the vi terms of the asymptotic
expansions for the current and voltage in powers of v.
Substituting expressions (6) into Egs. (3) and taking
into account boundary conditions (4), in the zeroth
order of v, we have

I(O) = IcosE’TZD U(O) = Ustmj

(b [her
- - (N
U :—ipl',p=1 %
O CNCO

In the first order of v, we obtain the following equation
for 1V

d2 2
1 OO - R, ®)

where

F]_:

%Csn

- 06(ocos
c

. Wy Wy
=2i o aaco(z)} -2 c aly0(2)

with the boundary conditions

d @, _q — @, _ _
dZI (z=0) =0, I'(z=¢) =0.

A(}) _(A)()M
==

Here, 6= —
(A)O C p

parameters of the problem.

According to the Fredholm theorem of an alterna-
tive, boundary problem (8) has a solution if the right-
hand side of F,(2) is “orthogonal” to the eigensolution
of the homogeneous equation, i.e., when

weM
ando, = ——
C Pc

arethesmall

J’ F.(z) cos eDdZ = 0. 9)
Substituting F,(2) into Eq. (9) and integrating over z,
we obtain

4
] n
= = : (10a)
| 4
-dw—-q+i-0a,
T
with the parameter
(4
-1 212,
eIéCsn EQ{D (10b)

If the microwave probe isin avacuum and o6C = 0,
then, at the frequency w = w, (dw= 0), coaxia cable 2
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is matched with coaxial cable 3, accurate to terms on
the order of v. In this case, the current amplitudes in
coupling loops 2 and 3 are equal to the current I, (I, =
-1; = 1)), the microwave power from coaxial cable2 is
completely transmitted into coaxial 3, and the quantity

111 reaches its maximum:

(11)

where Q, is the vacuum resonance Q-factor, which is
almost completely determined by the coupling between
the resonator and coaxial cables 2 and 3 (the label “0”
stands for 6C = 0).

In the presence of a plasma, the current amplitudein
the line [see formula (10)] depends not only on Q,, but
also on the parameter g. We introduce a transmission

Isl

0
and (11), it is easy to find that

B = 1 S (12)

2Q4(Bw+Req)” + H +2Q,Imd]

It can be seen from expression (12) that the real part of
the parameter g determines the frequency shift dwy,, of
the maximum of the resonance curve B(dw), whereas
the imaginary part of g gives the value of this maxi-
mum:

factor B = ; then, using relationships (2), (7), (10),

1

1 P
i+ 5QoImey
As an example, we consider the case of a collision-
less plasma, assuming its permittivity to be

ow, = —-Req, maxp = (13)

2
wm
€= 1—ﬁ, N, = —,
N 4me
where N is the plasma density, m, is the electron mass,
and e isthe electron charge.

Under steady-state conditions, the ponderomotive
effect can be described by the following dependence of
the plasma density on the electric field strength
Eexp(iwt) [5]:

(14)

N = Noexp[-}—l H
0E

(15)

C

(T +T 7"
+T.
Bwﬂ is the characteristic

0 e 0

ponderomotive field and T, and T, are the electron and
ion temperatures, respectively.

where E; =

KONDRAT’EV et al.

We have chosen the probing frequency such that the
inequality N/N. < 1 holds. Hence, when calculating the
perturbation of the capacitance per unit length 8C in
expression (15) accurate to termslinear in N/N., we can
assume that the spatial distribution of the field E is the
same asin avacuum. As aresult, we find

d/a
-1 DQ 2TUZ]
C= N, Is SN ogds (16
whereg— 2 = || 5 » Ea Smif isthe magnitude of the
12

C Cc

electric field strength onthe wire surfacesinline 7, I is
the amplitude of the microwave current in resonator 1,

andl. = C—;EC isthecritical valueof I at which the pon-

deromotive effects comeinto play. The parameter g can
be expressed through the transmission factor (0w):

2

|
g = gnB(dW), gy = 2‘;2-

c'c

(17)
In this case, according to (10b), we have

_ 2[!1213
q= In(d/a) N e,[
(18)

J’ expD gmB(éw)snzg?a

In the Imear regime, which is characterized by a
small value of the parameter g, (g, < 1), we have

No
N = N, and expression (18) takestheform q= —%N— In
Cc
this case, the resonance curve B(w) isthe sameasin a
vacuum, but the curve itself shifts as awhole along the

frequency axis by the value
1N
Aw, = iﬂgwo' (19)

Relationship (19) relates the value of the unperturbed
plasmadensity N, and Ay,

Nonlinear properties of the microwave resonator,
including hysteresis effects, manifest themselves when
Om> 1. Figure 2 shows the resonance curves 3(dw) cal-
culated for aline with d/a =20 in a plasmawith a den-

QN —2 =50and (b) n=

4 N,

100 for different values of the parameter g,,= 0.1, 1, 10,
50, and 400 (curves /-5, respectively). For g,,= 0.1, we
have the linear regime. For g,, > 1, the resonance curve
is substantially modified. At the segments of the reso-

nance curve between the “jump” points (at which

sity satisfying thevalues (a) n=

PLASMA PHYSICS REPORTS Vol. 28 No. 11 2002
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B (a)
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Fig. 2. Resonance curves 3(dw) calculated for a line with
N
d/a=20inaplasmawith (@) n= %)N—O =50and (b) n=100
Cc

for different values of g, = (1) 0.1, (2) 1, (3) 10, (4) 50, and
(5) 400.

daB
dow
factor 3 corresponding to the same frequency shift dw
(the central value corresponds to an unstable solution).
Such a system possesses a hysteresis effect. If the fre-
guency isdecreased after reaching the upper jump point
lying near the maximum of the resonance curve, then
B(dw decreases stepwise. In contrast, if ow is
increased, then, at the lower jJump point, B jumps from
the lower to upper branch of the resonance curve. At
sufficiently high values of g, (g,,> d%a2), the plasmais
entirely displaced by astrong microwave field from the
region between the resonator wires (q —= 0) and the
resonance curve 3(dw) in the vicinity of its maximum,
positioned near dw = 0, becomes independent of the
plasma density and almost coincides with the reso-
nance curve in avacuum (N/N. = 0).

= o), there are three values of the transmission

In experiments, the situation is often met where the
frequency dwis fixed, whereas the plasma density var-
ies with time (e.g., it falls after the plasma source is
switched off). In this case, instead of the resonance
curves B(OW)|y - const» it 1S More convenient to analyze
the dependences B(N)|se- const- ThESE dependences for
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Fig. 3. Resonance curves [3(n) (where n = TN_) calcu-
C

lated for a line with d/a = 20 at fixed values of () Q =
Q-2—06w =50 and (b) Q = 100 for different values of the
parameter g, = (1) 0.1, (2) 1, (3) 10, and (4) 50.

@ Q= %’6@ =50 and (b) Q = 100 are presented in
Fig. 3.

It can be easily seen that, when g, lies within the
D SQ D1/2
[DInd/d]
lower jump point n=n, is below unity (g < 1). In this
case, we obtain the following formula relating the

bifurcation value n = n, to g, (and, consequently, to the
plasma temperature):

rangel<g,< , thevalue of g=g,3 at the

_03Q0gm 1"

o= Q= g7

(20)

This formula makes it possible to use the above probe
to measure the plasma temperature.



3

30

7 (@)

E
520
=)

~ 10f

P4

= (b)

S [ Jres=933GHz fres = 8.33 GHz
o]

8 L

<

4 7 10 13 16

t, ms

Fig. 4. (a) Time behavior of the plasma density and (b) typ-
ical waveforms obtained from a microwave probe for two
resonance frequencies.

3. MEASUREMENTS OF THE PLASMA
PARAMETERS WITH A MICROWAVE
RESONATOR PROBE

The above two-wire microwave resonator probe was
used to measure the plasma parameters in the KROT
experimental device. The vacuum chamber of the
deviceis3min diameter and 10 m long. The plasmais
produced by an inductive RF breakdown (f = 5 MHz,
Touse = 1.6 Ms, and H = 200 Oe) in argon at a pressure
of 5 x 10~ torr. The experiments were carried out in the
decaying plasma; i.e., after the RF source was switched
off. Figure 4a shows the time behavior of the density;
the characteristic plasma decay timeis about 10 ms.

The microwave resonator (a quarter-wave segment
of a double line shorted on one side and open on the
other) was made from asilvered copper wire8 mmlong
and 0.2 mm in diameter. The distance between the res-
onator wires was 2 mm. For exciting the resonator and
receiving its response, we used magnetic-coupling
loops 2 mm in diameter (Fig. 1). In the absence of a
plasma, the minimum eigenfrequency of the resonator
was f, = 8 GHz and its Q-factor was Q, = 100. Esti-
mates showed that the Q-factor was determined by the
coupling with the exciting and receiving lines.

Figure 4b shows a response signal from the micro-
wave resonator probe in a decaying plasma at a low
level of the input microwave power. The higher the sig-
nal frequency, the higher the plasma density for which
the resonance occurs. By varying dw and using rela-
tionship (19), we could reconstruct the time depen-
dence of the density.

An increase in the microwave power input to the
probe results in the deformation of the shape of the
response signal. Figure 5 shows the waveforms of the
output signalsfor three values of the microwave power.
It is seen that, when the plasma density reaches a cer-
tain critical value (which depends on the input power),
the output signal increases sharply and then falls
smoothly. As the input power increases, the position of

KONDRAT’EV et al.

A, arb. units
600

500
400
300
200
100

1
0 240

]
1200
t, Us

1 1 1
480 720 960

Fig. 5. Waveforms of the output signal from a microwave
probe in a decaying plasma at a fixed frequency for three
values of the input power (P} > P, > P3).

the jump N = N, (in accordance with the nonlinear the-
ory considered in Section 2) shifts toward the higher
plasma densities (see Fig. 3 and the comment on it in
thetext), or, in other words, thejump is observed at ear-
lier times after the plasma source is switched off.

From the dependence of N, on P and relationship
(20), we can determine the electron temperature T,
(Te> T;) with good accuracy. Figure 6 shows the
results of the electron temperature measurements with
a microwave probe and with a double probe. It is seen
that the results are in good agreement.

To directly observe the hysteresis effects in the
microwave resonator probe, we performed an experi-
ment under conditions such that the plasmadensity var-
ied nonmonotonically over acertain timeinterval: first,
it grew and, then, fell. In this case, with aproperly cho-
sen dw resonance condition (19) can be satisfied twice
(when the plasma density increases, and when it
decreases).

Figure 7a shows the time dependence of the plasma
density measured with a microwave probe operating in
the nonlinear regime. Figure 7b shows the waveforms
of the output signals for different input powers (P, <
P, < P; < P,). The behavior of these signals can be
explained based on the nonlinear resonance curves
giveninFig. 3. First, the density increases and the oper-
ating point moves along the resonance curve to the
upper jump point. After a certain period of time, the
plasmadensity beginsto fall and reaches the value cor-
responding to the lower jump point. By comparing
curves / and 2, we can seethat, in accordance with the-
oretical predictions, the hysteresis jumps shift toward
the higher plasma densities as the input power
increases. However, at a sufficiently high power, the
upper jump point may be unattainable even at the max-
imum density. This case corresponds to curves 3 and 4.

The characteristic times over which nonlinear
effects in the plasma develop were measured with the
PLASMA PHYSICS REPORTS  Vol. 28
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Fig. 6. Measurements of the time behavior of the electron
temperature with the help of adouble probe (squares) and a
microwave probe (circles).
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Fig. 7. (8 Nonmonotonic time behavior of the plasma den-
sity and (b) typical waveforms of the output signal from a
microwave probe for four values of the input power: P; <

P2< P3 < P4.

help of the amplitude modulation of the input micro-
wave signal applied to the resonator probe. 100% mod-
ulation was achieved by applying rectangular pulses
with a repetition period of T = 30 ps and rise and fall
times of ~1073 s. In the course of the experiment, it was
revealed that the plasma density inside the microwave
resonator was redistributed during a time interval
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shorter than 10 us. Estimates of the time of the ponder-
omoative displacement of the plasmafrom the resonator
show that this time is no longer than 1< d/V, = 1 s,
wheredisthe distance between the double-line wires and
V, is the ion acoudtic velocity. The characteristic times
over which other nonlinear (heating and ionization) pro-
cesses develop are substantially longer than 10 ps.

4. CONCLUSION

We have shown that theoretical calculations of the
nonlinear regime of a two-wire microwave resonator
probe adequately describe the experimental data. This
allows us to conclude that the nonlinear effects
observed are ponderomotive in nature and can be used
to measure the plasma electron temperature. The
plasma density and temperature determined with the
microwave detector under study agree well with the
results of measurements by means of conventional sin-
gle and double probes.

Of course, the theory devel oped does not pretend to
completely describe all of the effects occurring in the
plasma surrounding the microwave probe. In particular,
the double-line segment itself, even in the absence of a
microwave field, perturbs the plasma density because
of the appearance of charged-particle fluxes onto the
wire surface. The calculations (or at |east estimates) of
these perturbationswill makeit possible to improve the
accuracy of determining the plasma parameters. Note,
however, that the higher the microwave field, the more
strongly the plasmais pushed away from the wires and
the less important are the flux effects.

ACKNOWLEDGMENTS

This work was supported in part by the Russian
Foundation for Basic Research (project nos. 00-02-
17321, 01-02-16536, and 01-02-16578) and the Minis-
try of Industry, Science, and Technologies of the Rus-
sian Federation under the Program of Supporting of
Unique Devices (registration no. 01-18).

REFERENCES

1. M. A. Hedld and C. B. Wharton, Plasma Diagnostics
with Microwaves (Wiley, New York, 1965; Atomizdat,
Moscow, 1968).

2. R. L. Stenzel, Rev. Sci. Instrum. 47, 603 (1976).

3. A.V. Kaostrov, A. V. Strikovskii, Yu. V. Chugunov, et al.,
Preprint No. 510 (Inst. of Applied Physics, Russ. Acad.
Sci., Nizhni Novgorod, 1999).

4. V. G. Denisov, V. A. Isaev, and A. |I. Smirnov, Fiz.
Plazmy 13, 229 (1987) [Sov. J. Plasma Phys. 13, 130
(1987)].

5. A.V. Gaponov and M. A. Miller, Zh. Eksp. Teor. Fiz. 34,
242 (1958) [Sov. Phys. JETP 7, 168 (1958)].

Trandated by N. F. Larionova



Plasma Physics Reports, Vol. 28, No. 11, 2002, pp. 906-915. Translated from Fizika Plazmy, Vol. 28, No. 11, 2002, pp. 984-993.

Original Russian Text Copyright © 2002 by Timofeev.

PLASMA OSCILLATIONS

AND WAVES
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Abstract—Eigenmodes of an axisymmetric plasma column that is uniform along the magnetic field are inves-
tigated. It is shown that, as the plasma density increases, eigenmodes with frequencies close to the electron
gyrofrequency tend to localize at the plasma periphery. This effect is likely to restrict the electron density at
which the plasma can be heated by means of such modes. A theory is developed for the excitation of the eigen-
modes of a plasma column in a weakly nonuniform magnetic field by an externa antenna. © 2002 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

The distinguishing feature of helicon waves (heli-
cons) is their ability to propagate in a plasma whose
density exceedsthe critical density, which is defined by
the relationship = w (where is the electron
plasma frequency). This effect makesit possibleto cre-
ate and heat plasmas with comparatively high densities
(see, eg., [1-5]). Since the frequency range of the hel-
icons is broad (v < w < w,, where ) is the gyrofre-
guency of the particles of speciesj =i, €), they can be
used for electron-cyclotron-resonance (ECR) plasma
heating by the “magnetic beach” method. In this
method, the eigenmodes of the plasma column are
excited at a certain distance from the ECR region and
then approach it along the magnetic field. As the ECR
region is approached, the longitudinal component N of
the refractive index for the helicons increases sharply.
Oscillations with [N;| > 1 are difficult to excite by an
antenna positioned in vacuum, because their transverse
refractive index is imaginary and is large in absolute
value: ImNj = N, > 1. Consequently, the electromag-
netic field of the antenna should be the strongest in its
vicinity and should fall off exponentialy toward the
plasma column. The necessity of placing the antenna at
a large distance from the ECR region leads automati-
cally to a magnetic beach configuration.

Although the magnetic field variations can substan-
tialy change the eigenvalues of N, they have an insig-
nificant impact on the spatia structure of the eigen-
modes. The plasma density variations affect the oscilla
tions in a different way. In this paper, it is shown that,
asthe plasmadensity increases, thelowest radial modes
with comparatively small eigenvalues of N, tend to
localize near the boundary of the plasma column, while
the central (highest density) region of the column
becomes opague to eigenmodes. Presumably, this
effect isamanifestation of ageneral feature peculiar to
helicons with frequencies close to the electron gyrofre-
guency. This feature was pointed out in my earlier

paper [6], which was aimed at investigating theray tra-
jectories of heliconsin an inhomogeneous plasmain an
open confinement system. It was found that, as aresult
of refraction, the ray trajectories escape from the cen-
tral region of the plasmato the plasma periphery.

As the plasma density increases, the tendency for
the helicons to localize near the plasma boundary
becomes more pronounced. Presumably, it is this effect
that will impose alimit on the electron density at which
the plasma can be heated by helicons. However, it
should be noted that the effect isweaker for aplasmain
which the radial density profile is flat in the central
region and decreases abruptly near the boundary.

Microwave discharges (especially those used in
technological applications) are often initiated in com-
paratively weak magnetic fields (with strengths of
about 100 G). In this case, the vacuum wavelength of
electromagnetic oscillations with w= w, ismuch larger
than the length of the system. Such oscillations can be
excited by antennas of the same type as ion-cyclotron-
resonance (ICR) heating antennas (see, e.g., [5]). Note
that, although the magnetic fields required for fusion
experiments are much stronger than those indicated
above, they can weaken substantially at high plasma
pressures.

The objective of this paper is to analyze the excita-
tion of the eigenmodes of a plasmacolumn in anonuni-
form magnetic field by an antenna placed outside the
plasma (in a vacuum). The distribution of the antenna
electric current over the longitudinal coordinate is
expanded in a Fourier integra over N;. An individual
Fourier harmonic of the antenna current with a certain
value of N, resonantly transfers its energy to the eigen-
modes in the vicinity of the point at which the eigen-
value of the longitudinal wavenumber is exactly equal
to N;. The power expended by the antennato excite the
eigenmodes of the plasma column is calculated.

1063-780X/02/2811-0906$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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2. EIGENMODES OF THE PLASMA COLUMN

We assume that the parameters of the systemvary in
the longitudinal direction over distances much larger
than the radius of the plasma column. In this case, the
eigenmode parameters can be determined in the uni-
form plasma column approximation, and the longitudi-
nal nonuniformity of the column can be taken into
account by varying the parameters of the problem. In
this model, we consider a one-dimensional problem,
assuming that the axisymmetric plasma column isinfi-
nitely long and is uniform along the magnetic field. In
accordance with the symmetry of the problem, the per-
turbed quantities can be described by the spatiotempo-
ral dependence Lf(rexp(-i(wt + MmO + N;2)) in cylin-
drical coordinates consistent with the geometry of the
column.

The set of Maxwell’'s equations for the oscillations
in question has the form

N||Be—n?182 = ¢E, +igE,,
dB, .
N”Br+|W = IgE, —¢E,,
id m, _
FaFrBe‘}'?Br - 8||EZV
m (1
TE—NjE = By,
dE,
NJE, +i—* = By,
id
LMe
rar' £o E B
w W, W 0’
wheree=1-—=5.g= 5. g=1- 3 G
W —w; W — W, w

is the electron plasma frequency, and w, is the electron
gyrofrequency. The plasma is assumed to be cold, and
theion contribution to the plasmadielectric responseis
neglected. Equations (1) are written in terms of the
dimensionless length rw/c — r. The radia plasma
density profile is chosen to be nyr) =

Ny(ro) %L tanh = ET

profile when A > r, and to a smeared step function
when A < r,. It is also assumed that, at r = rg, the
plasmais bounded by a perfectly conducting wall.
When integrating Egs. (1), the value B0) at the axis
of the plasma column was specified; the value E(0) and
the eigenvalue of N, were adjusted by a shooting
method so as to satisfy the condition that the tangential
components E, and E, of the éectric field vanish at
r = rg. Equations (1) imply that, in the vicinity of the

2
ADD ,whlchlsclosetoaGaussan
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Fig. 1. Radia profiles of the electric field components
(1) E, (2) Ej, and (3) E, of the (n=1, m= 1) eigenmode of
the plasma column. The computation parameters are
(0pe/00)? =3, We/w= 15,19 =3, A=2, and rg = 7, the eigen-
valuebeing N, =3.2.

origin of the coordinate system, the electromagnetic
field components depend on the radius according to the

lawsE,, Eq, B,, By O rM-1and E,, B, O ™. Weintroduce
the quantities gy(0), by(0), b(0), and e/(0) through the
relationships Eg — rM-'ey(0), By — riM-"hy(0),
E, —¢ r'™eL0), and B, — r™b,(0). In order to inte-
grate Egs. (1), it is necessary to express the quantities
€,(0) and by(0) in terms of e,(0) and b,(0), which can
also be done by means of Egs. (1):
€s(0) = —Im((i("¢(0) + s%(0))b,(0)
+ N (9(0) + s€(0))e,(0)),
be(0) = [mN;(—(%6(0) +sé(0))b,(0)
+iN(€(0) +s%(0))e,(0)) +ilme,0),

where we have introduced the notation

2

.s(r)—N|2|
(e(r)-ND)*— g
Y(r) = o).

(e(r) =N} = g*(r)

The results of integrating Egs. (1) are illustrated in
the figures presented below. Figure 1 shows the radial
profiles of the eectric field components of the first
radial mode of the oscillations (n = 1), whose spatial
scale in the case at hand is the longest. Note that the
mode that can be regarded asthe zeroth oneisasurface
mode (see below). We consider oscillations rotating
azimuthally in the same direction as the electrons and
having the smallest azimuthal wavenumber m= 1. We
also assume that the plasma density is only severa
times higher than the critical density, (w,/w)* = 3. In

é(r) = ,
(r)

s =m/|m.
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Fig. 2. Same asin Fig. 1, but for (oope/w)2 =5, we/w=15,
ro=3,A=0.5,and rg = 6 and for the eigenvalue N“ =4.6.

the central region of the plasma column, the electric
field is right-polarized, is perpendicular to the main
magnetic field, and rotates in the same direction as the

electrons: E = E, where E_ = (E, — iEp)/+/2. In the
peripheral plasma region in which w, = w, the electric
field has a significant longitudinal component. The
electromagnetic oscillations are coupled with the
potential plasma electron oscillations. The conversion
of electromagnetic oscillations into plasma electron
oscillations propagating along the magnetic field is
most efficient for short-wavel ength oscillations, which
can be described in the quasiclassical approximation

[7].

The larger the ratio r,/A (which corresponds to the
transition from a Gaussian profile to a smeared step
function), the greater the tendency for the longitudinal
and left-polarized components of the electric field, E;

and E, = (E, + iEg)/+/2, to localize near the plasma
boundary. In the main part of the plasmacolumn, where
the plasma density is approximately constant, there
remains only the right-polarized electric field compo-
nent (Fig. 2). Of course, the refractive index for such
oscillations can be described with good accuracy by the
familiar expression

2

2 __ 2 __ wpe

N"=N;=1 o(o- @) 3)

Thus, for the plasmaparameters of Fig. 2, the eigen-
values of N, differ by no more than 15% from those
described by expression (3) when the ratio w./w
changes in the range from 1.5 to 1.15. Note that,
although the eigenvalues of N, change sharply as w,
approaches w, the shape of the eigenfunctions changes
only dlightly. Thisconclusion can also be derived onthe

basis of expression (8) for Né (see below).

Fig. 3. Same asin Fig. 1, but for the (n = 2, m= 1) eigen-
mode and for the eigenvalue N = 3.88.

The amplitudes of the right-polarized and longitudi-
nal electric fields of the higher radial modes are approx-
imately the same regardless of the shape of the radial
profile of the plasma density; moreover, the longitudi-
nal electric field isstrong in the regions where theright-
polarized electric field isweak, and vice versa (Fig. 3).

It should be noted that, in the cold plasma approxi-
mation, the number of radial eigenmodes is infinitely
large. In spatially bounded systems, the wavelength of
the oscillations decreases to zero as the radial wave-
number increases; hence, an infinitely high “confining”
potential isrequired to localize such oscillations. Inthe
case under consideration, an infinitely high potential is
provided by a singularity that arises in the wave equa-
tion because of the coupling of the oscillationsin ques-
tion to the potential oscillations, which are also called
the Trivel piece-Gould (TG) modes. Because of the sin-
gularity in the wave eguation, the characteristic wave-
length of the TG modesin a cold plasmatends to zero.
The coupling of the helicon wavesto the TG modeswas
pointed out, in particular, in[1, 4, 5]. The above plasma
electron oscillations can be regarded as a particular
case of the TG modes (namely, those with N; =0). Ina
homogeneous plasma, the TG modes propagate at a
certain angle 6 = 6, (the angle at the vertex of the so-
called resonant cone) to the magnetic field:
0&0”

a -

For a high-density (w,. > w) plasma, expression (4)
yields

&)

The problem under discussion differs substantially
from those of the eigenmodes of the plasmain arectan-
gular waveguide. However, if we set N, = n17r, and
Ng = myr,, then we can see that the dependence of

0, = arccos(w/wy).
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the eigenvalues of the longitudina wavenumber on n

and m,
_1 ()’ m’
Fonl (wy/0)> =1

which follows from relationship (5), agrees in general
with the dependence obtained by solving the wave
equation (Fig. 4). The agreement is better for the high-
est radial modes, which convert into the potential TG
modes.

As the plasma density decreases, the lowest radial
modes al so convert into potential modes. In fact, aswas
noted above, the electromagnetic oscillations convert
into plasma electron oscillations in the vicinity of the
critical surface, at which w,. = w. Thelower the plasma
density, the smaller the transparency region (w,(r) > w)
and, consequently, the larger the effective transverse
wavenumber. As a result, the boundary region where
Wpe = W plays an increasingly important role, and the
oscillations convert into TG modes. Relationship (3)
impliesthat, as g, — 0, the longitudinal wavenumber
of these modes should increase sharply. This conclu-
sion is confirmed by the results of calculations (Fig. 5).

Note that, in the opposite case of a high-density
plasma (W, > w), the lowest radial modes also acquire
the nature of TG modes and simultaneously tend to
localize near the boundary of the plasma column. In
order to analyze these phenomena at a qualitative level,
we use the following familiar dispersion relation for
helicons (see, e.g., [2]):

N ™ (©6)

2
2 __ wpe

"~ w(w,cos0 —w)’ )

The refractive index of a high-density plasma for
electromagnetic oscillations propagating in it is large,
N = wy,e/w > 1. On the other hand, the transverse com-
ponent of the refractive index for the lowest radial
modes is comparatively small, N5 = 17r, < 1. These
lowest modes satisfy the condition 6 < 1, which puts
dispersion relation (7) in the form

(w/w—1) %\1
(1-—w/20)071 w( (qg (o)D
Here, asin numerical analysis, we assume that the con-
dition 2 > w./w > 1 holds.

Dispersion relation (8) implies that, for an inhomo-

geneous plasma, the condition N; < N, can be satisfied

2
(JO

(we W)
region should lie at the edge of the plasma column,
while the inner plasmaregion where N = N” is opague
to the oscillations under consideration (ND <0). Inthe
boundary region, we haveg; — 0, which makesit pos-

NZ =

®)

only in a small region where N|2| = This
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Fig. 4. Eigenvalues of the longitudinal refractive index vs.
radial mode number: (1) calculations from Egs. (1) and (2)
calculations from expression (6). The only physically
meaningful values are the integer values of the mode num-

ber. The computation parameters are (oope/oo)2 =5, We/w=
1.5,rp=3,A=2,andrg=55.
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Fig. 5. Eigenvalues of the longitudina refractive index vs.
plasmadensity for we/w=1.5,r5=3,A=2,rg=7,andn=
m=1.

sible to satisfy condition (4) for the lowest radia
modes.

The above conclusions are confirmed by numerical
calculations (see Figs. 1, 2, 6, 7). The numerical results
show that, in a plasma with a sufficiently high density,
the lowest radial modes are actually expelled to the
plasma periphery, where they acquire the nature of sur-
face modes. In the case of short-wavel ength oscillations
whose propagation can be described in the ray approx-
imation, this effect corresponds to the escape of the ray
trajectories of heliconsto the peripheral plasmaregion.
This latter effect was pointed out in my earlier paper
[6], in which the approximate analysis of theray trajec-
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Fig. 6. Same asin Fig. 1, but for (oope/co)2 = 2 and for the
eigenvalue N = 2.84.
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Fig. 8. Same asin Fig. 1, but for the (n = 0, m= 1) surface
mode and for the eigenvalue N = 1.47.

tories was carried by means of a dispersion relation
analogous to relation (8).

In addition to the internal modes considered above,
there also exists a mode that can be referred to as the
surface mode of the plasma column or the fundamental
mode of the entireradial interval 0 <r < rg in question.
This mode is localized in the boundary region where
Wpe = w. The refractive index of the plasma for this
mode is substantially smaller than that for the internal
modes (cf. the captionsin Figs. 1, 3, 8). Asaresult, the
electromagnetic field of the surface mode penetrates
deeper into vacuum in comparison with the fields of the
internal modes (Fig. 8). Note that, in contrast to the
internal modes, the longitudinal refractive index for the
surface mode changes dlightly with increasing plasma
density.

TIMOFEEV
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Fig. 7. Same asin Fig. 6, but for (oope/co)2 =5 and for the
eigenvalue N = 3.62.
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Fig. 9. SameasinFig. 1, but for the (n= 1, m=0) mode and
for the eigenvalue N = 3.64.

If the plasma column is separated from the chamber
wall by a vacuum gap, then there exist higher order
modes of the gap. Thus, for the above radial profile of
the plasma density, the next mode arises when the
radius of the perfectly conductingwall isabout rg =9.5.
Note that, at this radius, the longitudinal wavenumber
of the mode is zero.

We have thoroughly discussed oscillations that
rotate in the same direction asthe electrons(m> 0). The
general features of oscillations with m< 0 are essen-
tially the same. The most profound difference between
these types of oscillations is in their polarization at
r — 0. At the axis of the plasmacolumn, only the left-
polarized electric-field component of the modes rotat-
ing in the same direction as the ions is nonzero, while
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the only nonzero el ectric-field component of the modes
with m= 0 isthelongitudinal one (Figs. 9, 10).

3. EXCITATION OF EIGENMODES

In order for plasma heating by means of heliconsto
hold promise for practical applications, the helicons
should be efficiently excited by an antenna placed out-
side the plasma. Let us analyze this heating process.

We consider an axisymmetric magnetic field and
assume that (as is commonly the case) the plasma col-
umn lies entirely in the axial region of the device. In
this situation, the radial nonuniformity of the magnetic
field across the column is of little importance, whereas
the longitudinal magnetic-field nonuniformity can play
asignificant role. The nonzero longitudinal gradient of
the magnetic field is characteristic of open magnetic
confinement systems and also of abroad variety of gas-
discharge devices in which plasmais used for techno-
logical applications.

The eigenvalues of the longitudina refractive index
for helicons depend on w, (see above). Consequently,
as the helicons propagate along a nonuniform magnetic
field, the longitudina refractive index for them
changes. As a function of the longitudinal coordinate,
the electric current flowing in an antenna can be
expanded in a Fourier integral. Each individual Fourier
harmonic of the antenna current interacts efficiently
with the eigenmode only in the vicinity of the resonant

point z, at which the equality N, = (” " (2) is satis-
fied. Aswill be shown below, the Iength of the interac-
tion interval along the plasma axis (I = JE|) isshortin
comparison with the characteristic length scale L, on
which the magnetic field varies in the longitudinal
direction. (Recal that all of the quantities having the
dimension of length are nondimensionalized by multi-
plying by ¢/w.) Calculations show that the radial depen-
dence of the electromagnetic fields remains essentially
unchanged even when the longitudinal variationsin the
magnetic field are substantial. This fact, together with
the short length of the region where the antenna field
interacts efficiently with the plasma, alows us to
assume that the radial profile of the eigenmodes
remains unchanged and to represent their spatially
varying complex amplitude in the form Ej(r) =

exp(imd + iIND E(NEP(2) and B/(r) = exp(im +
iN2) Bi(l)(r) Bi(z)(z). We also assume that the character-
istic length scale L, on which the magnetic field varies

is much larger than the plasma radius. In this case, in
calculating the eigenmodes of the plasma column (i.e.,

in determining the radial dependences Ei(l)(r) and

Bi(l)(r)), the magnetic field can be treated as a slowly
varying parameter.
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Fig. 10. Sameasin Fig. 1, but for the (n= 1, m=-1) mode
and for the eigenvalue N; = 4.36.

Outside the plasma, as the ECR region is
approached, the electromagnetic fields tend to localize
in the vicinity of the antenna. This effect is associated
with anincrease in N, and is described by the approxi-
mate equality ImN, = N, which is valid for N, > 1.
Consequently, during ECR plasma heating in devices
with alongitudinally nonuniform magnetic field (such
as open magnetic systems), the eigenmodes should be
excited far from the ECR region, specificaly, in the
region where they can efficiently interact with the field
of the antennalocated outside the plasma. It isprecisely
in this way that electromagnetic oscillations are gener-
ated during ICR plasma heating by the magnetic beach
method. Note that, in contrast to the case under discus-
sion, the transparency region for the eigenmodes
shrinks toward the axis of the plasma column as the
ICR region is approached [8].

We assume that the electric current generating hel-
icons flows along a cylindrical surface of radius rp
(ra< rg). In order to describe the dependence of the
current on the spatial coordinates, we expand it in a
Fourier integral in the longitudinal coordinate z and in
aFourier seriesin the azimuthal coordinate 6.

The electric field excited by an individua Fourier
harmonic of the current can be described by the follow-
ing set of equations derived in [8]:

LB,—L,F+B, = 201

X ]z
-1

1 4n 1 .
R
Np T ONgNG -1

®
LlF - LZBZ +

where

%g Em:l% md(.Q

. _1d
F=iNE, I‘1__d dr GrO Tdr’
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and j is the Fourier harmonic of the current. The sub-
scriptsmand N, in the Fourier harmonics of the current
and the electromagnetic field are omitted.

Note that the set of homogeneous equations (9) is
equivalent the set of Maxwell’s equations (1). However,
Egs. (9) cannot be used in numerica calculations
because the coefficient in front of the second derivative
vanishes at the points at which the equalitiese - N|2| =g
hold. In numerical integration, these points manifest
themselves as singular points. Meanwhile, the analysis
carried out in [9] shows that, because of some specia
relationships between the coefficients in Egs. (9), the
solution at these pointsisregular (in the terminology of
[9], these points arefictitious singular points).

We multiply the first and second of Egs. (2) by

Bil)(r) and F(r), respectively, and integrate the result-
ing equations over the radius. As a result, we arrive at
the following algebraic equations

alle) + ale(Z) hyle,

hzle,

(10)

a, Bf) +ay F®

where

1 2
{r%mﬂBz 0,00

pis (B(l))q]>
+ m<‘fjif’(8§”)2> + (81T

(1)
a, = { 8B dF BIFUD
I dr OO gr D OO0

dé€ . (1)
m<dl’B F

_ odFY | e e\
3 = {r%m arotoo(F g

d$, .o mdF MELE PGS
m<dr(F )> <EDer oo (F)o
L e, (FY)
Nj

TIMOFEEV

the angular brackets denote averaging over the radial
coordinate, |4 isthe 6-component of the surface current

densty, h, = T—=r, B ), and h, =
“@1-N; ’
4HL 5 F(r»). When deriving Egs. (10), we
@ (1-NpN;j

took into account the current continuity equation

m -
Equations (10) are equivalent to the equalities
DB(Z) = (hya, —hyag)le, (11
DF? =

(hy,ay; —hjag)l,

whereD = a;,a,, — afz .

For the eigenvalues N = N{™™ , the quantity D van-
ishes, which indicates that the plasma is in resonance
with the antenna current. If the magnetic field variesin
the longitudinal direction, then the eigenvalues N{"™
are functions of the z coordinate. Therefore, the eigen-
mode is in resonance with the Fourier harmonic of the
antenna current only in a neighborhood of a certain
point z, at which Ny= N{" ™ (). In order to analyze the
process of the excitation of eigenmodes by an external
current, we turn to the general method for deriving
equations for the envel opes Ei(z) (2 and Bi(z) (2). Specif-
ically, we consider the quantity D on the left-hand sides
of relationships (11) as the operator

D =i}, (Ny 2 & + (- Z)Di(Ny, 2).

In thisway, the first of Egs. (11) becomes

2
o *iP(z-2)B,” = iQul,

(12)

Where P = D;/D;\l“ aIld Ql = (h18.22 — hzalz)/D;\‘H . The

second of Egs. (11) can be reduced to aform similar to
Eqg. (12) with the replacement of Q, by Q, = (h,a,, -

hlalz)/D;\I“ .
Equation (12) has the solution
B (2) = iQuJ(2),

exp(-iP(z — z)%/2) J‘;dz' exp(iP(Z —

(13)

where J(2) =

2)*/2).
Using expression (13) and an anal ogous expressions

for F?)(z), we can determine the power expended by the
antenna current to excite the eigenmode. To do this, we
PLASMA PHYSICS REPORTS  Vol. 28
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turn to the following relationships, which are valid in
the vacuum region:

i 0B, m
= I 24
= 1_N|2|Ddr I‘FE’
i
E, = —F,
©N
in which case we have
_ i pgdB,, m 47T, 4
EQ* = 1252, M =E. (19)
1-NHdr N2 0

|| r=rpa

We also exploit the condition D = a;;a,, — afz =0,
which is valid for eigenmodes. As a result, we obtain
the following spatial distribution of the work done by
the current on exciting an individual eigenmode:

81° Ser||9|2

wW"™(z, N,) = —Re(E 0*) = — : —
w |Dz|(1—N||)

C e, MS, Zni
x Ha(B (1), 2" + —’\I—ZF‘”(rA)Ianl H Red(),
I
where s, = sgn(a,, D;\‘”) and S, = sgn(ay,a,,).

The total power lost by a Fourier harmonic of the
current is equal to

W m(Ny) = Ide("' "(z N,).
Integrating by partsreadily yields

o

J = ReJ’dzJ(z) =

|2

T

Then, we obtain

8rec Ser||9|2‘D|l\1”‘

VV(mn)(l\lll) = 2 12 2.2
w (D) (1-Ny)

(15)

. ms, 2
X %A(Bﬁl)(rA))rA|a22|”2 + FF(l)(rANalﬂw% .
Il

The same result can aso be derived in a simpler
(“heuristic”) way. From the first of Egs. (11), wefind

Dl
B = Q;D“‘Jle. (16)
The second of Egs. (11) gives a similar expression

for F@,

The work done by the current on exciting the eigen-
mode is proportional to the imaginary parts of the inte-
2002
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grals J‘:o dzB? and J‘:o dzF® , which in turn are pro-

portional to ImJ‘io dz% . Thelast expression is satisfied
in the vicinity of the resonant point z, at which N, is

equal to the eigenvalue N{"™ . Following the Landau
circumvention rule, we represent the quantity D in this
vicinity in the foom D = ivD,, + (z - z)D,, where
v — 0. Using this representation, we obtain

00

1 T '
Im [dz=z = ———sgnD,,. (17)
1% = To]
_ . dw _ 0dD/ON;
From the relationship N, - ~3Dae Ve can see

that, for the oscillations propagating in the positive
direction along the z-axis, the quantities D;\,‘I and D,
have opposite signs. Taking into account this circum-
stance and using expressions (14), (16), and (17), we
again arrive at expression (15) for W™ ™(N,).

The quantity W™ ™(N,) should be positive. | failed
to prove this assertion in the general case. However, in
the Appendix, this assertion is proved for oscillations
whose electric field is dominated by the right-polarized
circular component and which offer the greatest prom-
ise for ECR plasma heating.

In the case of propagation along a nonuniform mag-
netic fields, the eigenvalue Ni™™ changes and eigen-
modes come into resonance with different Fourier har-
monics of the antenna current. The total power

expended by the antenna to excite the (n, m) mode is
equal to

(n,m) _ (n, m)
w = IdNHW (Np-
In order of magnitude, this power is
3 2
Lir _onmm N
W(n, m) ~ 8T[ C ||I'A 2N||,m|nA ||e|21

wz (N(n’ m))3

[l, min

(18)

(n, m) (n, m)

where Nj min isthe minimum value of N" ™ over the
interval between the antenna and the ECR region, A, is
the distance from the antenna to the plasma boundary
(to the critical surface), and all of the quantities having
the dimension of length are again nondimensionalized
by multiplying by c/w.

According to estimate (18), the power expended on
the excitation of eigenmodes falls off sharply with

increasing N{™™ . Since the eigenval ues increase with

n and m, most of the antenna power should be spent on
the excitation of the lowest mode (or severa lowest
modes).
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Since the power expended on the excitation of
eigenmodes depends nonmonotonically on the plasma
density, it is expected that plasmas with densities far
above the critical density will be difficult to maintain.
The fact that the central part of a high-density plasma
column is opagqueto eigenmodesis also unfavorablefor
the maintenance of such plasmas.

4. CONCLUSION

Hence, in this paper, the suitability of helicon waves
for ECR plasmaheating in a magnetic beach configura-
tion has been analyzed. Theresults of the analysis make
it possible to conclude that this method can be used to
heat plasmaswith densitiesthat are several times higher
than the critical density. The heating of higher-density
plasmas is hindered by the tendency of the eigenmodes
of the plasma column to localize near the plasma
boundary. The power expended by the antennaon excit-
ing the eigenmodes of the plasma column in alongitu-
dinally nonuniform magnetic field has been calculated.
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APPENDIX

For ECR plasmaheating, it is expedient to use oscil-
lations whose el ectric fields are dominated by the right-
polarized circular component. These are oscillations
rotating azimuthally in the same direction as the elec-
trons and having the azimuthal wavenumber m=1. The
left-polarized circular component of the electric field of
such oscillations is small over the entire radial interval
under consideration. Their longitudinal electric-field
component is aso small in the central part of the
plasma column but becomes comparable to the right-
polarized circular component in the peripheral region,
where the plasma density passes through the critical
value. An approximate analysis of these oscillations
can be carried out by assuming that E, = (E +

iEg)/+/2 = 0, in which case the set of Maxwell’s equa-
tions (1) can be reduced to the following two second-

order equations, whose general structure is similar to
that of Egs. (11):

4T .
LinEe—LoE, = —Kle,
. (A.1)
Tu .
LyEe—LxE, = _UJP

TIMOFEEV

1d d (m—1)2
wherelL,,= =—r— — *——*~ +2(e-g- NZ ),Lip=
U7 rdr dr 2 =2 =
d - mg d m-1g 1d_d
Nicgr * 7ol =Nicgy — 7 0@l =T g

Asin Section 3, we represent the components Ey and
E, in the form Eyr) = E” NEY (@ and Efr) =
E(l) r) Eﬁz) (2. We multiply the first and second of

Egs. (A.1) by rE(l) (r) and rEil) (r), respectively, and
integrate over the radius. As aresult, we obtain

4T[I
raES (ra)le,

(2) (2)
a; B +ag,kE,

rEs ()L

(E(”)Zﬂ> +

20(e— g Nll)(E(l))ZDa12=<rEél)gjd ?E§1%>,
108, g (E(l))ZD> + ey (E)0

a“da22:‘< g 0 F o0

Using the same method asin Section 3, we arrive at
the following expression for the work done by the
antennacurrent on exciting an eigenmode of the plasma
column in anonuniform magnetic field:

ATi
apES +ax,E —%

gD 2

mfEs O L =15

where a a;; = <E|]er 07 o

8T[ cSr 12,2
|E>A(' £ Dau| " + 5,16E6 (1 )2z
: oD . .
The quantity Q = Q3N which determines the
[

sign of W™ ™(N,), can be represented as

Q= —2a125\'u T(ES) D+ 2

2

The first term in parentheses is positive, while the sign
of the second term remains undetermined.

For aradia plasma density profile in the form of a
smeared step function with r, > A (see Section 2), the
longitudinal electric field is localized at the plasma—
vacuum interface and varies radially on a characteristic
scale of about =A. Hence, we arrive at the following

order-of-magnitude estimates: a,; = r§, a;; = Njry, and
ay,, =1, If ry > 1, then the first term in parentheses is
PLASMA PHYSICS REPORTS  Vol. 28
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larger in absolute value than the second term; as a
result, we have Q < 0 and, accordingly, W™ ™(N,) > 0.

REFERENCES

1. F F. Chen, Phys. Plasmas 3, 1783 (1996).

2. B.M. Harvey and C. N. Lashmore-Davis, Phys. FluidsB
5, 3864 (1993).

3. A. Ganguli, M. K. Akhtar, and R. D. Tarey, Phys. Plas-
mas 5, 1178 (1998).

4. S. Shinohara and K. P. Shamrai, Plasma Phys. Con-
trolled Fusion 42, 865 (2000).

PLASMA PHYSICS REPORTS Vol. 28 No. 11 2002

5

6.

. V. E.Virko, G. S. Kirichenko, and K. P. Shamrai, Plasma
Sources Sci. Technol. 11, 10 (2002).

A. V. Timofeev, Fiz. Plazmy 27, 131 (2001) [Plasma
Phys. Rep. 27, 119 (2001)].

A. V. Timofeev, Fiz. Plazmy 26, 874 (2000) [Plasma
Phys. Rep. 26, 820 (2000)].

A. V. Zvonkov and A. V. Timofeev, Fiz. Plazmy 13, 282
(1987) [Sov. J. Plasma Phys. 13, 158 (1987)].

A. V. Timofeev and K. Yu. Kharitonov, Fiz. Plazmy 15,
674 (1989) [Sov. J. Plasma Phys. 15, 389 (1989)].

Trandated by O. E. Khadin



Plasma Physics Reports, Vol. 28, No. 11, 2002, pp. 916-924. Translated from Fizika Plazmy, Vol. 28, No. 11, 2002, pp. 994-1003.

Original Russian Text Copyright © 2002 by V. Girka, |. Girka.

PLASMA OSCILLATIONS

AND WAVES

Asymmetric Long-Wavelength Surface Wavesin Magnetized
Plasma Waveguides Entirely Filled with Plasma

V. O. Girkaand . O. Girka
Karazin National University, pl. Svobody 4, Kharkiv, 61077 Ukraine
e-mail: girkai @pht.univer.kharkov.ua
Received April 3, 2002

Abstract—A theoretical study ismade of the dispersion properties of el ectromagnetic surface waves with arbi-
trary azimuthal mode numbers and with a small axial wavenumber in cylindrical metal waveguides entirely
filled with a radially inhomogeneous, cold, magnetized plasma. The frequency ranges in which the extraordi-
nary polarized waves under analysis can exist are found, and the conditions for their resonant interaction with
an ordinary bulk wave are determined. The eigenfrequency of these surface wavesisinvestigated as afunction
of the plasma parameters, the axial wavenumber, and the azimuthal mode number. Simple analytic expressions
are derived for the eigenfrequencies of the surface waves under study propagating in a homogeneous plasma

waveguide. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In order to choose optimum conditions for the gen-
eration of oscillationsin plasma-filled waveguides, itis
necessary to know the waveguide eigenfrequencies,
becauseit is precisely at frequencies close to them that
the plasma interaction with charged particle beams [1]
or with an external alternating electric field [2] is most
efficient. Filling a waveguide with plasma expands the
range of the waveguide eigenfrequencies. The disper-
sion properties of plasma waveguides began to be
investigated using the simplest models [3] and are still
being studied for the cases of gaseous[4-10] and solid-
state [11-13] plasmas.

The dispersion properties of electromagnetic waves
propagating strictly in the azimuthal direction in cylin-
drical metal waveguides entirely filled with a homoge-
neous plasma—the so-called azimutha surface waves
(ASWs)—were investigated in [14] and, in the poten-
tial approximation, in [15]. In [16, 17], it was shown
that ASWs can be generated as aresult of beam—plasma
instability or dissipative instability. One of the main
advantages of the oscillators based on ASWs is their
relative compactness in the axial direction. A useful
property of ASWs is that they propagate in only one
direction along the plasma—metal boundaries. Thisphe-
nomenon is well known for surface waves propagating
across the external magnetic field in waveguide struc-
tures with the Voight geometry [15]. During the excita-
tion of such waves, the reflected signal in the systemis
absent, which may turn out to be very helpful in some
cases.

Over the past decade, interest in the eigenmodes of
plasma waveguides has increased in connection with
their use in sustaining gas discharges [10, 18-21].
Plasma sources that are based on surface waves (SWs)

find wide application in plasma technology; e.g., they
are used to process solid-state plates with large working
surfaces [20, 21].

In[19], it was shown that ASWs can be employed to
sustain low-pressure gas discharges that are used in
modern-day plasma microtechnologies. The properties
of gas discharges sustained by axisymmetric (m = 0)
and dipole (m= +1) SWs propagating along the axis of
acylindrical chamber were investigated experimentally
in [18, 22, 23]. The possibility of sustaining gas dis-
chargesin amagnetized plasma column by quadrupole
(m = £2) and octopole (m = £3) SWs was studied
numerically in [10, 24].

The dispersion properties of electromagnetic SWs
with small axial wavenumbers at cylindrical plasma—
metal boundaries have not yet been studied. For arbi-
trary values of the parameters of a magnetized plasma
system, the azimuthal mode number m, and the axial
wavenumber k,, the dispersion properties of SWs can
be investigated only numerically. For long axial wave-
lengths, the problem can be solved by means of pertur-
bation theory, in which case ASWs are used as a zeroth
approximation [14]. The objective of our work is to
investigate the dispersion properties of long-wave-
length SWs.

Our paper is organized as follows. In Section 2, we
describe the waveguide model and write out the basic
equations. In Section 3, we derive a second-order dis-
persion relation for long-wavelength magnetoplasma
SWs in a cylindrical metal waveguide entirely filled
with a plasma with aradially nonuniform density pro-
file. We also investigate the limiting case of a plasma
with aradially uniform density profile. In Section 4, we
solve the dispersion relation for SWs with positive azi-
muthal mode numbers, and, in Section 5, we solve the

1063-780X/02/2811-0916$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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same relation for SWs with negative azimuthal mode
numbers. In Section 6, we show that the dispersion
properties of long-wavelength, high-frequency SWs
can be affected in aresonant fashion by the value of k..
In the Conclusion, we summarize the main results of
our study.

2. FORMULATION OF THE PROBLEM

We consider a perfectly conducting, circular cylin-
drical metal waveguide of radiusa filled entirely with a
plasmathat is assumed to be homogeneousin the cylin-
drical coordinates z and 9. The external magnetic field
is directed along the waveguide axis (H, || z).

The electrodynamic properties of a cold, weakly
collisional, magnetized plasma are described by the
dielectric tensor (see, e.g., [3-5])

E g, ig, OE
[l [l

O 0 0 g0O

In this case, the components of the wave electromag-
netic field, which are assumed to be proportiona to
Oexpi(k,z+ md — wt), are described by the following
Maxwell’'s equations:

ler+i82E8 = _N{)BZ+NZB{)’ (2)
. coB
—ig,E, +¢,E5 = —NZBr+Ea—rz, 3)
aEz—iE—a—(rB)+NB @
3z (JL)I'aI' b 3P
Br = NSEZ_NZES- &)
_ c OE,
Bﬁ - NZEr_i(L)ar ’ (6)
c 0
2 = irgr TEs) ~NoEr. @)

Here and below, N, = ck,/wisthe axial refractive index
and Ny = crmy(wr) isthe azimuthal refractive index.

For ASWSs propagating strictly in the azimuthal
direction (k, = 0), the set of Maxwell’s equations (2)—
(7) splits into two independent subsets of equations.
The subset consisting of Egs. (4)—<6) describes an H-
wave, having the field components E,, B,, and By. The
subset consisting of Egs. (2), (3), and (7) describes an
E-wave, having the field components E,, Eg, and B,.
Hence, ASWsof the E- and H-types propagate indepen-
dently of one another. For long-wavelength SWswith a
small but finite axial wavenumber k, the coupling
between the E- and H-waves is weak. The dispersion
properties of such waves can be studied by means of
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perturbation theory and by using the theory of ASWsas
a zeroth approximation [14].

We restrict ourselves to considering a high-density

plasma such that wﬁe > wfe (where wy, is the electron

plasma frequency and wy is the electron cyclotron fre-
guency). This inequality aways holds for an n-semi-
conductor plasma and can be satisfied for a gas plasma
in aweak magnetic field under laboratory conditions. It
is precisely the limiting case of a high-density plasma
that is most interesting for plasma technologies [18].
Note aso that the dispersion properties of ASWSs in

cylindrical, strongly magnetized (ooie < wfe) plasma
waveguides were investigated in [25].

The fields of an SW satisfy the following boundary
conditions: the wave field amplitudes are finite over the
waveguide volume and the tangential component of the
electric field vanishes at the inner surface of the metal
chamber.

3. LONG-WAVELENGTH SURFACE WAVES
IN A RADIALLY INHOMOGENEOUS PLASMA

If we neglect the terms of second order and higher,
we can reduce Egs. (2)—7) to the following two sec-
ond-order differential equations for the axial compo-
nents of the electric and magnetic fields in a radialy
inhomogeneous plasma:

rory? or r2K2 rarq(aﬂ
1 a aEz 2 mZD N
Farﬁ—a(o'i'FDEz = MBZ )

The small right-hand sides of Egs. (8) and (9) have the
form

e _ oy Mo 9nip Wkeo | 0 up9E
KEZ—lNZBFEZar 0+ E+ 50 20 rD,(10)
. O 0B
MBZ=|NZD%‘3—‘Jl 2
ONZ ror
(11)
W . monlp pmanun|, O
+H SUt—=aSa - A B,O

The penetration depth kgl for an H-wave field (with
ordinary polarization) and the penetration depth k;l for
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an E-wave (with extraordinary polarization) are defined
in terms of the tensor elements ¢;, as follows:

kX = —(wlc)’es, ki = (w/C)°N7,

G = (8NP -1), W= el(e-

In [26], the set of coupled equations for the longitu-
dinal components E, and B, of the wave electromag-
netic field was derived for arbitrary values of k, and for
a radially homogeneous plasma in an axial magnetic
field.

Equations (8) and (9) can be solved by the method
of varying a constant:

(12)
N2).

0 qu Kq)er lp kZK¢dr
8 = EAZ IW(w 5o 1‘” W, 5y
q)MLpdr ¢Mlpdr
w1 2¢IW(¢,¢) 14

Here, Y(r) and ¢(r) are such solutions to Egs. (8) and
(9) with zero on theright-hand sidesthat arefinite at the
waveguide axis (at r = 0) and the functions { (r) and
$ (r) are solutions to the same equations that are lin-
early independent of ) and ¢. Solutions (13) and (14)
contain two integration constants A, and A,. The
remaining two integration constants have already been
determined from the condition that the field compo-
nents E, and B, are finite at the waveguide axis, where

the functions § and (J have singularities. The Wron-
skian of the functions i(r) and () (r) is equal to

anqu

W, §) = w3r-b5" (15)
and the Wronskian of the functions ¢(r) and ¢ (r) is
inversely proportional to the radial coordinater:

w(o,$) = 922 -2 0 (16

According to Egs. (2)—(7), the azimuthal component of
the electric field is expressed in terms of E, and B, as
follows (see, e.g., [4]):

ic a_Bz+iuN3
wNZ Or N

N,cOE,
iy

N,N
B,+ IGZSEZ
H

Ey =

The above boundary conditions for Eg and E, at the
inner surface of a metal waveguide make it possible to
write the dispersion relation for long-wavelength SWs
in the form

ApAy = AAy, (18)

V. O. GIRKA, I. O. GIRKA

where

ic oy LIJkH Kodr
N2 ot W B

L UN,Coo

, (20)

(19)

||1N,9~ qu K(l)dr N,Njg
IW(llJ o N

r=a

A12 -

= ¢(a), 21)

= §( )j“"v"“dr 22)

W(9,0)

It should be noted that dispersion relation (18) is, onthe
one hand, a generalization of the dispersion relation
obtained in [14] to small values of k,, and, on the other,
a particular case of the general dispersion relation that
was derived in [8] in order to determine the spectra of
the eigenfrequencies of a coaxia plasmawaveguide in
a finite magnetic field. Let us discuss the structure of
dispersion relation (18), which is similar to the struc-
ture of the dispersion relations for weakly coupled
oscillations. In such an approach, the condition A, = 0
plays the role of the dispersion relation for extraordi-
nary ASWs (an E-wave), and the solution w, to the dis-
persion relation is assumed to be known. The variable
sign of this coefficient in the frequency ranges where
the waves under consideration can exist (in [14], these
ranges were determined for the case of an ASW)
ensures that Eqg. (18) has solutions. The condition
A,, =0 could be the dispersion relation for ASWs (H-
waves); however, under the given conditions, its solu-
tions describe only bulk waves. The right-hand side of
dispersion relation (18) is quadratic in the small axia
wavenumber k,, which serves as the parameter of the
weak coupling between E- and H-waves. These circum-
stances alow us to conclude that the correction Aw to
the eigenfreguency of the long-wavelength SWsis qua-

draticin the axial wavenumber, Aw O kz2 .We stressthat

the axial wavenumber also enters the left-hand side of
dispersion relation (18) through the penetration depth

k' of the SWsinto the plasma.

4. LONG-WAVELENGTH, LOW-FREQUENCY
SURFACE WAVES IN A HOMOGENEOUS
PLASMA WAVEGUIDE

In what follows, we restrict ourselves to analyzing
the model with auniform radial plasmadensity profile.
The reasons for this are twofold. First, this model pro-
vides a good description of solid-state plasmas. Sec-
PLASMA PHYSICS REPORTS  Vol. 28
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ond, theradial density variations can be neglected when
the plasma density changes insignificantly over dis-
tances on the order of the penetration depth of the wave
into the plasma; for agas discharge sustained by an SW,
it is precisely at these distances that the plasma density
is maintained at a constant level.

For aradially homogeneous plasma, Egs. (8) and (9)
for E, and B, are inhomogeneous Bessel equations. The
solutions to the corresponding homogeneous equations
that arefinite at the waveguide axis are modified Bessel
functions of the first kind:

W= In(kar), ¢ = Tn(kor). (23)

The solutions to Egs. (8) and (9) that are linearly inde-
pendent of solutions (23) are modified Bessel functions
of the second kind:

b = Kn(kar), & = Kp(kor).

Solutions (23) and (24) are valid for kf) > 0 and

k% > 0. It is the latter condition, ki, > 0, that deter-
mines the frequency rangesin which SWscan exist and
which, in the limit k, = 0, coincide with the ranges
where ASWs exist [14]: SWs with positive azimuthal
mode numbers mexist in the low-frequency (LF) range

(24)

mz- + czk2
|0ed [ <w<|w, (25)
pe ce

and SWs with negative azimuthal mode numbers m
exist in the high-frequency (HF) range

Joofo+ e+ A <w <3
(26)

1 2
«/4(*) +(o +ck

The property of SWsto propagate in only one direction
across the external magnetic field is well known for
waveguides in which the plasmais in contact with the
metal wall [3, 15]. This property, which is called “ uni-
directionality,” can be especially useful invariousradio
engineering devices in which it is necessary to ensure
that the reflected signal be absent.

In frequency ranges (25) and (26), the quantity kf)
has different signs, namely k§ >0intheLF range and

ké <0inthe HF range.

For a uniform density profile, expressions (10) and
(11) for the right-hand sides of Egs. (8) and (9) can be
significantly simplified:

2
- HES N )
KE, = -iN,S~E,, MB, = iNuSB, (27)
H c
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Fig. 1. Frequency of an LF SW with extraordinary polariza-
tion, normalized to the absolute value of the electron cyclo-
tron frequency, as a function of the product of the axial
wavenumber and the waveguide radius. The calculations
were carried out for the azimuthal mode number m = 3,

Wpe = 5|0e|, and a = 100.

in which case dispersion relation (18) can be written in
afairly smple explicit form:

Ay = NzukéaQ[ Kin(kpa) + B2 (K )}
NG
Lk (28)
+ 21 (Ko )+ —211(kod),
H kH
Ag, = ?[NHI;(kHa)WNSIrn(kHa)], (29)
H
Ay = I(kod), (30)
2
A, = -5 NpaK(kya)Q, (31)
= (K2 = k) [Kol (K@) ! L (K
Q = (ko —ki)[kol m(kya)lm(kod) (32)

— kil (ko) Im(kp@)].

Taking into account the small axial wavenumber k,
leads to an additional (in comparison with the case of
ASWSs) solution to the dispersion relation. This addi-
tiona solution describes the wave that will be referred
to asaslow mode. In the LF range, the frequency w_ of
the slow mode is approximately proportional tok,; i.e.,
the frequency w_ approaches the cutoff frequency as
k,— 0 (Fig. 1). The group velocity of the slow mode
is always positive, dw /dk, > 0, and in absolute value
exceeds the group velocity of the fast mode.

The fast mode can be described as follows. In the
limit k, — 0, its frequency w, approaches the fre-
guency of the ASW. For very small k, values, there
exists aportion of the dispersion curve of the fast mode
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Table
Quantity Limit a << |m|d Limit a> |m|d
| \El ﬂaz - (34) o Jmd/a (36)
= (.0 —_
(*JO cel D 2m26 el
- 1g _a  rfrkay >
Aw 2055(m+ 1)) OmLl Wy (35 (3/8)(k,a/m)“wy (37)

over which the dispersionisnormal, 0w, /0k, > 0. When
the small value of the axial wavenumber is taken into
account, the frequency of the SW isdlightly higher than
the frequency of the ASW. This allows us to calculate
thefreguency of the fast mode of the SW by the method
of successive approximations, i.e., by representing it in
the form w, = w, + Aw, and by using the theory of
ASWSs as a zeroth approximation [14], according to
which wy, isthe frequency of the ASW in the waveguide
under consideration. In this way, the small correction
Aw to the frequency is quadratic in k;:

(A A A -1
Ao = R 2 0 kﬁ["iﬁ } OKZ. (33)
D 21 akz w= o I:l aw W= 0y

Simple analytic solutionsto dispersion relation (18)
can be obtained only in the two limiting cases of awide
(a > |m|®) and a narrow (a << |m|d) waveguide for an
SW with the given azimuthal mode number m (here and
below, & = ¢/Q, is the skin depth).

For the benefit of our readers, the results of our ana-
Iytic investigation are summarized in the table (for
expressions 34-37, see the table).

An analysis of expressions (35) and (37) shows that
the method of successive approximations can be used to
study the dispersion properties of the fast mode of a
long-wavelength low-frequency SW in a fairly wide
range of axial wavenumbers. For wide waveguides, this
range is determined by the inequality

k> < 8(m/a)°. (38)

For narrow waveguides, the analytic solution is valid
over awider range:

k? < 8(m(m+ 1)3/a%)’, (39)

For larger values of k,, the frequency w, increasesto
its maximum value; then, the dispersion becomes
anomalous, dw,/dk, < 0, over a certain portion of the
dispersion curve (Fig. 1). Astheaxial wavenumber k; fur-
ther increases, the frequencies of the fast and dow modes
approach one another and, at a certain value k, = k,, the
modes have the same frequency w,,. It turns out that the
group velocity dw/ok, of the SWs increases without
bound as their frequencies approach wy, as a result,
the notion of group velocity becomes meaningless.

This circumstance can be interpreted as follows. For
an SW whose frequency and axial wavenumber are
close to wy, and k,, respectively, the above represen-
tation of the electromagnetic perturbation in the form
of asingle harmonic, Oexp[i (k,z+ md — wt)], isincor-
rect. Near the point in guestion, the dispersion curve
k(w) can be approximately described by the squared
parabola

k(w) = kp— (00— )/, (40)

wherek,, = k() and a isaconstant having the dimen-
sion of acceleration (m/s?). In this case, an el ectromag-
netic pulsewith thefield Oexp(-t%/(21%))cos(K,Z— Wit)
(where T is the pulse duration) spreads out from the
point at which it was originally formed in the axial
direction over adistance of about ot?/2.

Now we compare the results of an analytic investi-
gation of dispersion relation (18) with the results of its
numerical solution. Figure 1 illustrates the dependence
w(k,) for an SW in the LF range (25). The abscissais
the product k,a of the axial wavenumber times the
waveguide radius, and the ordinate is the frequency
normalized to the absolute value of the electron cyclo-
tron frequency. The parameters of the wave and of the
plasma column were chosen to be m= 3, Wy, = 5|W|,
and a = 100. Recall that, in the case at hand, the appli-
cability of our approach isrestricted to the values of the
product k,a that satisfy the inequality k,a< m. The solid
line is the dispersion curve of the fast mode, and the
dashed lineis for the slow mode. The dotted line with
open circles indicates the boundary of the LH range
(25). The dotted line with crosses was calculated from
asymptotic formulas (36) and (37).

In Fig. 1, we do not plot the dispersion curve for a
narrow waveguide, because, in the case at hand, the
dependence Awxk,) is very weak [see expression (35)].

5. LONG-WAVELENGTH, HIGH-FREQUENCY
SURFACE WAVES IN A HOMOGENEOUS
PLASMA WAVEGUIDE

Itisknown that bulk H-waves exist under conditions
corresponding to the HF range (26). In this case, the
PLASMA PHYSICS REPORTS  Vol. 28
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solutionsto Eq. (9) with zero on the right-hand side can
be represented as

0 = Jn(kar), & = Np(ker), ki = —k5>0, (41)

where J,,isthe Bessel function and N, is the Neumann
function [27]. In dispersion relation (18) for HF SWs
with negative azimuthal mode numbers, the coefficient
A, is, as before, described by expression (29) and the
other coefficients A; are given by

K (kya N
Ay = _Nzukal[ (e, )"' UN_gKm(kHa)}
" (42)
#Neflog g ay+ By ki),
H H
Ay = Jn(kia), (43)
i’
Ap = E—ENzuNm(kla)le
c
a (44)

Q = Ier(klr)Im(kHr)dr.
0

An analysis of dispersion relation (18) shows that
HF ASWSs cannot propagate in narrow waveguides. The
radius of thewaveguidein which HF ASWsexist can be
estimated analytically from the inequality &/d >
Wpe M/ |- FOT 1Y = 3|e|, the analytic estimate shows
that HF ASWswith the azimuthal mode number m= -2
can propagate only in waveguides whose radius is
larger than the skin depth by a factor of six or more.
Numerical analysis also shows that the dispersion rela
tion A, = 0 for ASWs has a solution when a > 59,
which justifies the validity of analytic calculations.

For wide waveguides, the eigenfrequency of HF
ASWs can be roughly estimated as

Wy = NJ0he + 00 + (M'C’/a’),

(45)
which leads to the following estimate for the argument
k,a of the Bessel function in the coefficient A,;:

1
k,a= (m2 + mfeazlcz)z. (46)
If the applied magnetic field is not too strong and the
waveguide dimensions are not too large,

azmgelc2 < jﬁn‘,s—mz, 47)
then the azimutha ordinary bulk eigenmodes cannot
exist in such awaveguide. Here, j ., s is the sth root of

the |m|th order Bessel function and Jy(jm, ) = 0. Inthis
PLASMA PHYSICS REPORTS  Vol. 28
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Fig. 2. Same asin Fig. 1, but for the HF SW; the azimuthal
mode number is m= -2, e = 3|uxe|, and a=79.

case, thefinite axial wavenumber givesriseto apositive
correction to the frequency of HF SWs:

Aw = %wao + gl m| NfJ"m‘( m’ + a’we./c”)
(48)

2 2 2 2
X Ny (4/mM” + a"wge/C7) .

The results of a numerical solution of dispersion
relation (18) for SWswith the azimuthal mode number
m= -2 areillustrated in Fig. 2. The abscissa and ordi-
nate are the same as in Fig. 1. The computations were
carried out for the waveguide parameters wye = 3|wy|
and a = 78. The boundaries of the HF range (26) are
indicated by the dotted line with open circles. The dot-
ted line with crosses was calculated from asymptotic
formulas (45) and (48). Note that, for the chosen
parameters of the wave and the plasma, all of the eigen-
frequencies of an ordinary bulk mode, which are deter-
mined from the condition

kla = j\m\,sa

lie above the HF range (26).

It seems worthwhile to try to compare our results
with the results obtained in other papers (e.g., in papers
by Azarenkov et al. [10, 24]) in which a thorough
numerical analysis of the dispersion properties of the
guadrupole and octopole modes of SWs was carried
out. The dispersion curves presented in [24] contain an
error: there are points at which the wave group velocity
isinfinite. Although our analysis is restricted to small
values of the axial wavenumber, theinterval of k, values
inFigs. 1 and 2 ismore than half of the interval consid-
ered in [24]. Unfortunately, our results cannot be com-
pared with the results of [24] even at aqualitative level,
because, in that paper, a study was made of a plasma
cylinder in an infinite empty space.

The objective of [10] wasto numerically investigate
the dispersion properties of SWSs, in particular, of the

(49)
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Fig. 3. Frequency of an HF SW with extraordinary polariza-
tion, normalized to the absolute value of the electron cyclo-
tron frequency, as a function of the product of the axial
wavenumber and the waveguide radius under the conditions
of resonant interaction with an ordinary bulk wave. The cal-
culations were carried out for the azimuthal mode number
M= —1, Wpe = 2.695|0xe|, and a = 103.

w/|ay|
2.885

2.880

2.875

2.870 F T

2.865 7

1.0

1.2
ka

Fig. 4. Same asin Fig. 3, but for the azimuthal mode num-
ber m=—1, wye = 2.686|uxe|, and a= 103.

waves with asmall axial wavenumber (up to k,a = 0.1),
in waveguides, including those with a narrow vacuum
gap (upto (a—ay) = 0.1a, where a, isthe radius of the
plasma cylinder). At first glance, it might be expected
that the dispersion properties of the SWs described in
[10] would be very similar to those of ASWs at the
plasma—metal boundary. However, in [28], it was
shown that, in order for a vacuum gap between the
metal waveguide wall and the plasmato be ignored in
the investigation of the dispersion properties of ASWSs,
the gap width should be small enough to satisfy theine-
quality

Na—ap < |(*)ce| '\/a/(zf\/mwpe)-

(50)
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In [10], the computations were carried out for a wide
range of waveguides (with vacuum gaps of different
widths), but in al cases condition (50) was not satisfied.
Consequently, none of the plots presented in [10] are
suitable for comparison with the results of our study.
On the other hand, the results obtained in [10] from a
numerical solution of the dispersion relation in the
long-wavelength limit agree well with the results of
[28], where the dispersion properties of ASWs were
investigated in awaveguide with avacuum gap between
the plasma cylinder and the metal wall. Judging from
the description of the plots in [10], it appears that the
radius of the plasma column exceeds the radius of the
metal chamber, while the formulation of the problem
impliesthat the column isinside the chamber. However,
it seems that the source of this mistake lies not in com-
putational errors but rather in inaccurate description of
the plots.

6. RESONANT EFFECT OF THE AXIAL
WAVENUMBER ON THE DISPERSION
PROPERTIES OF SURFACE WAVES

The eigenfrequencies of an extraordinary ASW and
an ordinary azimuthal bulk wave can be brought into
coincidence by increasing the waveguide radius a
and/or the magnetic field. The conditions under which
this can be done may be estimated from formula (47)
with the equality sign in place of the relation “less
than.” Under these conditions, dispersion relation (18)
reduces to a quadratic equation for the correction Acw:

E?lzﬁ K2+ 9P Aw%%%l Aw
Dakz 0= 0w |w= w U N
= A A, (51D

In solving Eq. (51), we can neglect the first term in
parentheses on the left-hand side, because this term is
quadratic in the axial wavenumber, while the second
termislinear ink,. In this case, the solution to Eq. (51)
has the form w = wy, + Aw, where

R .2 2,2
Wy = wpe+1\m\,sc la )

(52)

=

m R
Aw = “—L%NzNaEmJ\m\,sN\m(J\m\,s)J\mH , (53)

with the mean value Jjn = Q,ky/(al(kya)).

Under the above conditions, the small axial wave-
number has a stronger effect on the eigenfrequency
of an SW: the correction Aw (52) introduced by the
small axial wavenumber k, isdirectly proportional toit,

Aw O kzl . For thisreason, it is natural to call these con-
ditionsthe resonance conditions. The magnetic field sat-
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isfying the resonance conditionsis minimum for awave
with the azimuthal mode number m=—1.. For thiswave,

condition (47) becomes a2 w;,/c? = ji 1—1=13.68.The
magnetic field H, and the waveguide radius a with
which to satisfy this relationship can be estimated as
aH, = 6000 G cm. Consequently, for a waveguide of
radius a = 20 cm, the magnetic field satisfying the res-
onance condition is not too strong, H, = 300 G. For
wide waveguides of radius a = 109, the resonance con-
dition is satisfied with . = 2.7|w,|- Numerical analy-
sis of dispersion relation (18) confirms that this esti-
mate is very accurate: the solutions to the equations

A12|k1:0 = 0 and A,; = 0 for the frequency coincide

with good accuracy (to within three significant decimal
digits) in the range wye = (2.686-2.695)| (|-

Figure 3 illustrates the results of a numerical analy-
sis of dispersion relation (18) for waves with the azi-
muthal mode number m = —1 under the resonance con-
ditionsa= 106 and . = 2.695|w|. The solid lineindi-
cates the dispersion curve of an SW, and the dotted line
isfor thedispersion curve of an ordinary bulk wave. For
magnetic fields slightly stronger than the resonant field
and for small axia wavenumbers, the dispersion curves
of an SW and an ordinary bulk wave trade places with
one another in comparison with the case shown in
Fig. 3. Figure 4 illustrates a numerical solution to dis-
persion relation (18) for a waveguide with @y, =
2.686|w.|, the other parameters of the waveguide and
the wave being the same asthosein Fig. 3.

For stronger magnetic fields, the dependence of the
wave frequency on the small axial wavenumber begins
to deviate from being linear (Fig. 5). The magnetic field
for which the dispersion curves in Fig. 5 were calcu-
lated was chosen to be stronger than that in Fig. 4 by
2% (Wype = 2.636]1[) and the other parameters of the
waveguide and wave were the same asin Fig. 3.

For magnetic fields slightly weaker than the reso-
nant field, the frequency dependence of the axial wave-
number is also seen to be nonlinear. Thisis illustrated
in Fig. 6, in which the dispersion curves were calcu-
lated for w,. = 2.754|w|, al other parameters of the
waveguide and wave being the same asin Fig. 3.

Since the roots j ., s of the Bessel functions areirra-
tional, the resonant values of the parameters of aplasma
waveguide with the SWsin question arerelated by irra-
tional numbers. That iswhy, in order to capture all pos-
sible physical solutions and to not obtain physically
meaningless ones, we investigated the resonant effect
of the axial wavenumber on the dispersion properties of
SWs by carrying out preliminary numerical estimates
before solving dispersion relation (18) numerically.
From a methodological point of view, this approach
seems to be more appropriate than that in which a
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Fig. 5. Frequency of an HF SW with extraordinary polariza-
tion, normalized to the absol ute value of the electron cyclo-
tron frequency, as a function of the product of the axial
wavenumber and the waveguide radius under conditions
such that the constant magnetic field is slightly stronger
than the resonant field. The calculationswere carried out for
the azimuthal mode number m = —1, Wye = 2.636|Gel, and
a=10d.
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Fig. 6. Same as in Fig. 5, but for conditions such that the

constant magnetic field is dightly weaker than the resonant
field; the azimuthal mode number is m = -1, Wpe =

2.754| 0|, and a = 100.

“detailed” numerical analysisis performed without any
preliminary analytic investigation.

7. CONCLUSION

We have shown theoretically that SWswith an arbi-
trary azimuthal mode number m and a small axial
wavenumber k, can propagate along the boundary
between a cold, magnetized plasma and a metal wall
with afinite radius of curvature a. We have derived dis-
persion relation (18) for such waves propagating in a
waveguide entirely filled with a plasmawith aradially
nonuniform density profile. For a radialy uniform
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plasmadensity profile, this dispersion relation has been
investigated anayticaly in the two frequency ranges
(25) and (26) by the method of successive approxima-
tions, in which the theory of ASWSsis used as a zeroth
approximation. In the general case, the correction to the
eigenfrequency of SWs introduced by the small axial

wavenumber isquadratic in k,, Aw [ kf . Theresults of
a numerical solution of the dispersion relation agree
well with the analytic expressions for the eigenfre-
quency. We have a so determined the resonance condi-
tions under which the correction to the eigenfrequency
of SWs introduced by the small axial wavenumber is
linear ink,: Aw OK; .

In conclusion, we point out adifference between our
work and the studies by Azarenkov et al. [10, 24], who
investigated the propagation of SWs in waveguides in
which the magnetized plasmacolumn is separated from
the metal chamber by a vacuum gap of finite [10] and
infinite[24] width. Inthose papers, the dispersion prop-
erties of SWs were studied only numerically and the
analysiswas carried out only for some values of the azi-
muthal mode number. In contrast, in our paper, simple
analytic expressions were obtained for the eigenfre-
guencies of SWs with arbitrary azimuthal mode num-
bers. Simple analytic solutions (34)—(37), (45) and (48)
make it possible to significantly simplify the search for
a humerical solution to dispersion relation (18). With
these analytic solutions, the dispersion relation can be
numerically analyzed on conventional personal com-
puterswith the help of standard software packages. The
analytic solutions have been obtained in the following
limiting cases. First, we have investigated the case of
SWswith positive azimuthal mode numbers mand with
long axial wavelengths restricted by conditions (38)
and (39). Second, we have derived asymptotic expres-
sions (34)—37), (45) and (48) for the frequencies of
SWsin anarrow and a wide waveguide.
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Abstract—Results are presented from a detailed study of the behavior of the electron temperature during the
evolution of acurrent sheet by comparing the data from spectral measurements with the spatiotemporal evolu-
tion of the emission intensities of the atomic and ionic lines of the working gas (He) and impurities (C, O) cal-
culated in the collisional—radiative model. It is shown that the electron temperature in the center of the sheet
attains a value of T, = 110 + 40 eV; under these conditions, taking into account metastable states affects the
calculated results only slightly. The spatial profiles of the electron temperature and the plasma emission in the
spectral lines of various atoms and ions across the plasma sheet are cal culated as functions of time. It is shown
that asthe electron temperature grows most of the spectral lines of atoms and ions of the working gas and impu-
rities are depleted in the center of the sheet and the emission region shiftstoward the periphery of the sheet. The
results obtained confirm the previous conclusion that, in thisregime, ahot plasmaisformed in the center of the

sheet. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Studies of the heating processes in current sheets
occupy animportant placein research of the problem of
magnetic reconnection in plasma[1]. For thisreason, in
recent years, spectroscopic measurements of the elec-
tron temperature have been conducted in current sheet
devices at the Institute of General Physics of the Rus-
sian Academy of Sciences under various operating con-
ditions. In experiments carried out in the CS-3 device,
successive emission bursts in helium, carbon, nitrogen,
and oxygen lines were observed during the current
sheet evolution [2]. A hydrodynamic interpretation of
these observations [ 3] led to the conclusion that ahigh-
temperature region was produced in current sheets
formed in the nonlinear regimes and that the electron
temperature in this region reached a value of T, =
100 eV by the beginning of the impulsive phase of
magnetic reconnection [1, 4, 5].

Similar methods for measuring the plasma electron
temperature from the observed emission in the spectral
lines of impurity ions are widely used in controlled
fusion experiments [6-9], in particular, in experiments
conducted in the L-2M stellarator [10]. Numerical
codes developed for interpreting these observations
made it possible to reconstruct in detail the spatiotem-
poral evolution of the electron temperature T, by using
a collisional—radiative model incorporating the pro-
cesses of ionization, excitation, and transport of ions, as
well as the metastable states of someions.

In this paper, we study the behavior of the electron
temperature during the evolution of a current sheet by
comparing the data from spectral measurements [2, 4]
with the spatiotempora evolution of the emission

intensities of the atomic and ionic lines of the working
gas (He) and impurities (C, O) calculated in the colli-
sional—radiative model.

2. EXPERIMENTAL DEVICE AND THE SCHEME
OF SPECTRAL MEASUREMENTS

The measurements were conducted in the CS-3
experimental device (Fig. 1), which included a system

y

IF

Fig. 1. CS-3 device (end view): (/) vacuum chamber, (2)
conductors for creating a quadrupole magnetic field with a
null line, (3) current sheet (the arrows near the sheet surface
indicate the positions and orientations of magnetic probes),
and (4) central region from which plasma emission is col-
lected.

1063-780X/02/2811-0925$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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for creating a quasi-steady magnetic field with a null
line, a system for producing a plasmain this field, and
a system for exciting an electric current and a plasma
flow to form a current sheet (3). A two-dimensional
guadrupole field with anull line (x = 0, y = 0) was pro-
duced by eight straight conductors (2), the magnetic-
field gradient being 0.54 kG/cm. The null line coin-
cided with the axis of a10-cm-diameter cylindrical vac-
uum chamber (1). A plasma was produced in the vac-
uum chamber by the breakdown of helium at a pressure
of p, =50 mtorr; theinitial electron density was (1-2) x
10" cm3. The plasma electron current directed along
the null line of the magnetic field (the z-axis) was gen-
erated by a pulsed voltage applied between two elec-
trodes inserted into the chamber from both ends; the
distance between the electrodes was 40 cm. A maxi-
mum current of 60 kA was reached by the time t =
1.4 ps; the half-period of the current pulse was T/2 =
4.4 ps.

Time-resolved spectral measurements of emission
from the current-sheet plasmawere performed by using
a two-channel optical scheme that allowed simulta-
neous observations of two different spectral lines. The
plasma emission was divided into two identical chan-
nels with the help of a semitransparent mirror placed
behind one of the device ends. In each channel, the
same region near the center of the vacuum chamber, 2—
2.5 cm in diameter and 40 cm long (4), was imaged
with the help of an objective onto a bundle of quartz
fibers 0.3 mm in diameter and 10 m long. Then, the
plasma emission was transmitted onto the entrance dlits
of a DFS-24 and an MDR-3 monochromators. Signals
from the exit dlits of the monochromators were detected
by low-noise FEU-79 photomultipliers in combination
with an oscillograph (see [5] for details).

3. DETERMINATION OF THE ELECTRON
TEMPERATURE OF THE CURRENT-SHEET
PLASMA BY MEANS OF A COLLISIONAL-

RADIATIVE MODEL

In calculations, we used a 1.5-dimensional model of
aplanar current sheet. The electron density and temper-
ature were assumed to be nonuniform across the sheet
(in the y-direction), whereas al the plasma parameters
were assumed to be uniform over the sheet width (inthe
x-direction). The distribution of the plasma parameters
and impurity ions across the sheet were computed on a
47-cell mesh. The heat and particle losses along the
sheet were simulated by limiting the particle lifetime
within 1-2 ps. In calculations, we specified the time
behavior of the el ectron temperature and calculated the
evolutions of the intensities of the chosen spectral lines
and the electron density with allowance for both the
ionization of the working gas and the plasma transport
due to constant-velocity MHD flows in the current
sheet. Then, the results of calculations were compared
with the data from spectral measurements and the
results of electron-density measurements by holo-
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graphic interferometry [5, 11]. The profile of T, across
the sheet was specified to be Gaussian with a character-
isticlength Ay ~ 0.6 cm fitted from the two-dimensional
electron-density distributions in the sheet [5, 11].

The current-sheet plasma formed in the nonlinear
regime [5] is characterized by the following parame-
ters. The maximum electron density in the sheet isn, =
(1-2) x 10' cm3, the maximum el ectron temperatureis
T. =100 eV, and the characteristic time of variationsin
the plasma parameters in the sheet ist, = 10 s. Under
these conditions, the emission of atoms and ionsin the
current-sheet plasma, (as well asin the L-2M stellara-
tor) is most adequately described by the collisional—
radiative model. Notethat, for current-sheet and stellar-
ator plasmas, the dimensionless parameters character-
izing the problem under study, namely, n,S., At,, and
vt. (where n, is the electron density, Sis the ionization
or excitation rate, A are the probabilities of optical tran-
sitions, v istheion collision rate, and t.. isthe character-
istic duration of the process), either have the same order
of magnitude or satisfy the sameinequalities. Indeed, in
the current sheet, the plasmadensity (n, ~ 10'° cm) is
three orders higher than in the stellarator (n, ~ 10'3 cm™),
while the characteristic process duration (t; ~ 10 s) is
three orderslower; hence, the quantity n,S, for the cur-
rent-sheet plasmais of the same order of magnitude as
that for the stellarator. Two other parameters for the
current-sheet plasma are estimated at At ~ 108 x 1076 ~
10?and vt~ 3 x 103 x 10° ~ 3 x 10?%; i.e., asfor the stel-
larator, these parameters are much greater than unity.

In calculations, we took into account the following
main processes. electron-impact ionization and excita-
tion of atoms and ions, emission, and diffusive and con-
vective transport. The characteristic recombination
time for light ions (He, C, O) ist, = 10* s > t; hence,
recombination can be neglected. Then, the equations
for the ion densities of the working gas and impurities
can be written in the form

aNKZ _ a aNKZ D
ot 6yED oy ~VyNkzg
N (1)
_neNKzSKz‘*'neNz—lSr(z—l——T‘Kz,

where Ny isthe density of theions of speciesK in the
ionization state Z; Z is the ion spectroscopic symbol
(Z=1for neutral atoms); Sz is the ionization rate for
the corresponding atoms and ions (for fully ionized
atoms, e.g., Helll, the ionization rate is taken to be
Sz =0); D isthediffusion coefficient; V, isthe convec-
tive transport rate along the y-axis (across the sheet);
and 1 is the particle lifetime in the sheet, which islim-
ited by the particleloss along the x-axis toward the wall
of the vacuum chamber.

Theinitial conditions of the problem are

PLASMA PHYSICS REPORTS Vol. 28 No. 11 2002
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Tablel

lon AE, eV A p X kq k,
Hel 19.82 244 %1078 0 0.544 0.1 1
Hell 54.418 2.05%107° 1 0.265 0.25 1
cl 11.3 6.85x 1078 0 0.193 0.25 1
cl 24.4 1.86 x 1078 1 0.286 0.24 1
Clll 47.9 1.41x 1078 0 0.427 0.30 0.8
Clv 64.5 1.50 x 107° 1 0.416 0.13 1
cv 392.1 6.26 x 10710 0 0.604 0.25 0.95
cvI 490 1.23x 10710 1 0.620 0.16 1
ol 13.6 3.65x10° 0 0.128 0.26 1.05
oll 35.1 3.01x10°8 0 0.232 0.35 0.92
olll 54.9 1.71x 1078 0 0.112 0.51 0.75
olv 774 6.94 x 107° 0 0.079 0.54 0.75
oV 113.9 430%107° 0 0.659 0.28 0.75
ovI 138.1 1.58 x 107° 0 0.636 0.24 0.90
oVl 739.3 2.48 x 10710 0 0.641 0.24 0.95

Nizer(ys 0) = 10" cm™,  Ney(y, 0) = 0.02 X Nye(0),
Noi(y, 0) = 0.02 X Nii(Y, 0),  Ngz»1(Y,0)=0, (2)
Ng(0) = 106 cm3,
and the boundary conditions are
Nier(@, 1) = Nier(Ys 0), Nien(@, 1) = Ne(0),

where a = 1.4 cm is the coordinate of the boundary of
the calculation region.

The He neutral flux is Fy; = Ny (a, t) x V,, and the
impurity neutral flux isFy; = 0.02 % Fy,;.

In the center of the sheet (y = 0), we set
ONkz(0, t)
L)
oy
The ionization and excitation rates were calculated
using the data of [12, 13]. Theionization rates of atoms
and ions were calculated by the formula[12]
kl
L= AL+ p./B)B
k2
(X+B7)
AE
B=7F.

e

3)

ef [cm2/ s],

“

where AE istheionization energy, and T, isthe electron
temperature.

Table 1 shows the values of AE, A, p, X, k;, and k,
for helium, carbon, and oxygen calculated in [12] for
the plasma density n, = 10'® cm™ taking into account
the contribution from metastable states.
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The radiation characteristics of the levels corre-
sponding to the given emission lines were taken from
the NIST database [14] (see Table 2, where AE* isthe
excitation energy).

The diffusion coefficients in a dense current-sheet
plasma, in which ions are weakly magnetized and the
collision frequenciesare high [1], were estimated in the

gas-kinetic approximation: D = 1/3A\,v; = vi2/3vi. Inthis
approximation, the diffusion coefficient of helium ions

isequal to 4 x 10° cm?/s at a characteristic temperature
of T; = 10 eV; in calculations, the maximum estimate

D=3 x 10* cm?'s was used for all of the ions. In this
case, the characteristic diffusion length fals in the

Table2

lon A, nm Transition AE*, eV
Hel 587.6 2p°P —3d°D 20.29
Hell 468.6 3-4 51.02
Cll 392.0 3p?°PP — 45°S 19.49
CllI 464.7 3s3S-3p°P 32.2
all 464.9 35'P-3p*D 25.66
Qlll 559.2 3s'P—3p'P 36.074
olv 479.8 2p?P —3d'D 61.98
ov 493.1 6-7 106.95
ovi 529.0 7-8 130.46
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Fig. 2. Calculated evolution of the electron density ng(0)
and electron temperature Tg(0) in the center of the current

sheet in the nonlinear regime; the crosses indicate the mea-
sured values of ng(0) [5, 11].

range 6= ,/Dt, =0.06-0.16 cm, which is much shorter

than the sheet thickness 2Ay = 1.2 cm. Consequently,
the D value in the current-sheet plasmais very low and
cannot substantially affect the results of calculations.
However, for the sake of generality (for the purpose of
refining the model in further experiments), we retained
the diffusion term in the numerical code.

The convective transport velocity aong the y-axis
(across the sheet) and the particle lifetime in the sheet
were taken as V,, = 10° cm/s and T = 1 ps, respectively;
both these estimates are based on the results of previous
Spectroscopic measurements [5].

Equations (1) with the initial and boundary condi-
tions (2) and (3) were integrated numerically by an
implicit difference scheme with an appropriate choice
of the time step At. The profiles of the plasmaemission
intensity along the y-axis in various spectral lines were
computed within the limits of 1.4 cm about the central
plane of the current sheet. This distance was divided
into 47 cells, each having the width Ay = 0.03 cm. The
program allowed us to trace the evolution of the tem-
peratures and densities of the electrons and the work-
ing-gas and impurity ions, as well as their emission
intensities up to the timet = 2.4 us with atime step of
0.001s.

Table3

k 0
Ay 0o | 22 | 68

-185| 9.7

VORONOV et al.

4. CALCULATIONS OF THE SPATIOTEMPORAL
EVOLUTION OF PLASMA EMISSION
FROM THE CURRENT SHEET

Figure 2 showsthe results of calculations of thetime
evolution of the electron density and temperature along
with the data from independent measurements of the
electron density in the center of the sheet [5, 11]. The
best agreement between the cal culations and the exper-
iment was achieved by fitting the coefficients of afifth-
degree polynomial describing the time dependence of
the electron temperature T, in the center of the sheet:

5
To(t) = Y A" 5)
k=0

The polynomial coefficients A, are listed in Table 3.

The electron temperature profile across the sheet,
T4y, t), was given in the form

2
Te(y, ) = Teo(t)expL1, (©)
Ay
where the characteristic length determining the rate at
which T, decreased along the y-axis was assumed to be
equal to the half-width of the current sheet Ay = 0.6 cm
[5, 11]. When solving Egs. (1), the electron density
n.(y, t) was calculated from the quasineutrality condi-

tion:
Ne = Nyerr + 2Ngem

)

and, consequently, was self-consistent with the behav-
ior of T.(y, t) given by Egs. (4) and (5).

It is seen in Fig. 2 that the calculated values of the
electron density almost coincide with the measured
ones [5, 11] at t = 0.9 ps. The electron temperature in
the center of the current sheet reaches the value T, =
110 eV at t = 1.8-2.0 ps (at the end of the metastable
stage). The calculated evolution of the electron temper-
ature is determined by the intensities of the working-
gas and impurity spectra lines. The time behavior of
the normalized (to the maximum values) intensities of
helium, carbon, and oxygen lines is shown in Figs. 3
and 4. When calculating the intensity, the location and
size of the observation region were taken into consider-
ation. The instants corresponding to the maximum
measured intensities are indicated by closed circles.
The ionization energies of the CIl (24 V), CllI
(49 eV), Oll (35 eV), and Olll (55 eV) ions are less
than or comparable with the ionization energy of the
Hell ion (54 eV); however, the maximum intensities of
these ions were observed at later times than that for the
helium line. In view of thisfact, it isclear that, in addi-
tion to the initial impurity concentration in the sheet, it
is necessary to take into account the carbon and oxygen
impurities coming in the plasma in the course of the
sheet formation. In the calculations, the velocity of
incoming impurities was assumed to be equal to the
thermal ion velocity at a temperature of 10 eV, which
No. 11

PLASMA PHYSICS REPORTS  Vol. 28 2002



MODELING OF ELECTRON HEATING AND THE SPATIOTEMPORAL EVOLUTION

Intensity, rel. units
1.2

Hel Hell CII CIII

1.0 e Experiment

0.8 CIII

0.6

0.4

0.2

2.4
t, Us

Fig. 3. Calculated time evolution of the plasma emission
intensitiesinthe Hel 667.8-nm, Hell 468.6-nm, ClI 426.7-nm,
and Cll1 464.7-nm spectral lines; the closed circlesindicate
the times corresponding to the maximum measured intensi-
ties of the given lines.

follows from the time delay in the appearance of impu-
rity emission in the center of the sheet.

Note that the behavior of the line intensities of
weakly ionized ClI, CllI, Oll, and Olll ions is deter-
mined by sequential ionization. Experiments show that
the lines of highly ionized oxygen atoms OV and OV
reach their maximum intensities at nearly the sametime
t = 1.8-2 us. To simulate such a behavior, we had to
substantially decrease the growth rate of T, after the
timet =2 ps. This can be explained by the fact that the
plasmamotion in the sheet changes abruptly at thistime
because the sheet becomes unstable.

To find out to which extent metastable levels affect
the results, we performed calculations in which only
the ground levels of ClIl and CIV ions were taken into
account in the excitation and ionization processes. Fig-
ure 5 shows the time dependence of the lineintensity of
carbon ions calculated with and without taking into
account the contribution from metastable levels. It is
seen that the difference does not exceed 20-30% and
the time at which the intensity is maximum varies only
dlightly.

Figures 6-8 show the calculated profiles of the elec-
tron density and the emission intensities of helium
atoms and helium and oxygen ions in different ioniza-
tion states. It is seen that, as the electron temperature
increases, the regions where each spectral line is the
most intense are displaced from the sheet center toward
the periphery, following the regions where the electron
temperatures characteristic of these lines are localized.
The values of these characteristic temperatures depend
on the ion ionization energy and the excitation energy
of the corresponding line. Figure 9 shows the electron
temperature profile across the sheet (along the y-axis).
The figure also shows the measured positions of the

PLASMA PHYSICS REPORTS  Vol. 28
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Intensity, rel. units
1.2
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Fig. 4. Calculated time evolution of the plasma emission
intensities in the Oll 464.9-nm, OIlIl 59.2-nm, OIV 479.8-
nm, OV 559.8-nm, and OVI 529.1-nm spectral lines; the
closed circles indicate the times corresponding to the max-
imum measured intensities of the given lines.

maximums of the helium, carbon, and oxygen spectral
lineintensitiesat t = 2 ps. It isfrom these positions that
the localization regions of the corresponding character-
istic temperatures were determined for thisinstant. Itis
seen that, even for an oxygen ion with the charge num-
ber equal to 5 (the ionization energy is ~138 eV), the
localization region of its characteristic temperature is
shifted from the midplane toward the periphery of the
current sheet. At the same time, an appreciable fraction
of plasmaemissioninthe OVI 529.1-nmlineisradiated
from the central region of the sheet (Fig. 8¢e). Thisfea-
ture distinguishes the OVI ion from the other oxygen
ions, which have lower ionization energies and whose

Intensity, rel. units

1.0t
0.8f
— CIV
0.4l — CIII (met.)
< CIII
0.2f
of
0 0.5 1.0 1.5 2.0 2.5
t, Us

Fig. 5. Cdculated time evol ution of the intensities of the ClI1
464.7-nm and CIV 580.1-nm carbon ion lines with and with-
out allowance for the contribution from metastable levels.
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Fig. 6. Time evolution of the electron density profile across the current sheet.

emission ismainly concentrated at the periphery of the
sheet (Figs. 8, 9).

5. DISCUSSION OF RESULTS

The technique used in this study to estimate the
electron temperature from time-resolved measurements
of the emission lines of the working-gas and impurity
ionsis based on the strong dependence of the ionization
and excitation cross sectionson T: S~ §yexp(-AE/Ty).
The energy AE is usually known with a high accuracy,
and the preexponential factor S, is usually known
within 20-30%. When deducing the electron tempera-
ture from this relation, the dependence of T, on the
value of the cross section appears to be rather weak
(logarithmic). For this reason, an errors of 20— 30% in
the cross-section value insignificantly affect the accu-
racy in determining T,.

Besides the ionization and excitation cross sections,
the problem contains some additional parameters that
are known with insufficient accuracy. These are the dif-
fusion coefficients, the plasma convection velocity, the
sheet thickness 2Ay, and the particle lifetime 1 deter-
mined by the loss of particles from the sheet along the
magnetic field lines (along the x-axis). To estimate how
the uncertainty in these parameters affects the accuracy

in determining T,, we varied these parametersin calcu-
lations. As a result, it was shown that, when diffusion
wasignored (see Section 3), an uncertainty in the listed
parameters led to a total error of ~40% in determining
T.. Hence, the electron temperature in the center of the
sheet at the end of the metastable stage (t = 1.8-2 us) is
T.=110 £ 40 eV.

We emphasize that the correct modeling of the
metastable stage of the current-sheet evolution is
impossible if the convection is ignored. This was
revealed already at theinitial stage of calculationsof T,
when it became clear that it was impossible to achieve
an agreement between the solution to Egs. (1) and the
experimental resultsif convection wasignored. Indeed,
since the convection velocity under our experimental
conditions amounts to V,, = 10° cm/s, the size of the
region involved in convection, Vt, ~ 10° x 10°° ~ 1 cm,
is comparable with the sheet thickness2Ay = 1.2 cm.

Calculations show that a transition from the meta-
stable stage of the sheet evolution to the impulsive
phase of magnetic reconnection can be traced in the
behavior of the OVI 529.1-nm line. Indeed, if we
assume that T, continuesto grow after thetimet =2 s,
then the intensity of the OVI line will grow as well,
which contradicts to the experiment. To describe the
observed decrease in the intensity of the OVI 529.1-nm
PLASMA PHYSICS REPORTS  Vol. 28
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559.2-nm, (c) OIV 479.8-nm, (d) OV 493.1-nm, and (€) OVI 529.0-nm oxygen spectrd lines.
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line after t ~ 2.0 us, we artificially introduced either a
substantially lower growth rate or even adecreasein T,
after this moment. On the other hand, as follows from
magnetic probe measurements (Fig. 1) conducted

T, eV
120

T

100
80
60
40

20

Fig. 9. Electron-temperature distribution across the sheet
(along the y-axis) at t = 2 ys. The closed circlesindicate the
positions of the maximum intensities of the OVI 529.1-nm,
OV 559.8-nm, OIV 479.8-nm, OIlll 559.2-nm, Oll
464.9-nm, CIV 580.1-nm, Cl11 464.7-nm, and Cl| 426.7-nm
spectral lines.

simultaneously with spectroscopic measurements (see
[4, 5] for details), the impulsive phase of magnetic
reconnection in thisregime began at t = 1.8-2 us, when
the transverse plasma equilibrium in the magnetic field
was disturbed and the sheet began to expand [4, 5]. This
process should apparently be accompanied by a
decrease in T, we used this fact to describe the
observed decrease in the intensity of the OVI 529.1-nm
lineatt~2.0ps.

6. CONCLUSION

The evolution of the plasma electron temperature in
acurrent sheet formed in the nonlinear regime has been
calculated by using the collisional—radiative model. Itis
shown that the electron temperature in the center of the
sheet reaches avalue of T,= 110 £ 40 €V by the time
t=1.8-2.0 ys, i.e., by the end of the metastabl e stage of
the current-sheet evol ution, just before the disruption of
the sheet and the transition to the impulsive phase of
magnetic reconnection. The results obtained confirm
the previous conclusion that, in this regime, a hot
plasmaisformed in the center of the sheet.

A specific feature of the code used in this study is
that it takes into account the metastable states of some
emitting carbon and oxygen ions. It is shown that,
under these conditions, metastable states only sightly
affect the dynamics of the electron temperature in the
sheet.

No. 11 2002
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The spatial profiles of the electron temperature and
plasma emission in the spectral lines of various atoms
and ions across the plasma sheet have been calculated
as functions of time. It is shown that, as the electron
temperature grows, most of the spectral lines of the
atoms and ions of the working gas and impurities are
depleted in the center of the sheet and the emission
region shifts toward the periphery of the sheet. This
conclusion agrees qualitatively with the results of mea-
surements of the spatial profiles of the emission in the
spectral lines of helium and impuritiesin the vicinity of
the current sheet [4, 5, 15].
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PHENOMENA

Nonlinear Inverse Bremsstrahlung Absor ption
in a Photoionized Plasma
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Abstract—Nonlinear inverse bremsstrahlung absorption isinvestigated for a plasma photoionized in the Bethe
regime of suppression of the ionization barrier, in which case the electron velocity distribution coincides with
the distribution of atomic electrons. A comparison is made between the characteristic features of absorption in
the cases where atomic electrons before ionization are in the ns and np states. It is established that, in the case
of np states, the effective high-frequency conductivity is always nonlinear; in particular, for weak pump fields,
it is proportional to the square of the pump field strength. The maximum plasma conductivity associated with
p electrons is one order of magnitude lower than the maximum effective conductivity associated with s elec-
trons, which creates conditions for less efficient plasma heating through inverse bremsstrahlung absorption.

© 2002 MAIK “ Nauka/Interperiodica” .

1. Nonlinear inverse bremsstrahlung absorptionin a
plasma began to be theoretically studied in [1]. The
approach devel oped in that paper provides amore exact
description of electron—on collisionsthan thoseinvolv-
ing the Boltzmann collision integral or the approximate
Landau collision integral, which is derived from the
Boltzmann caollision integral. The approach of [1],
which isbased on the classical mechanics of the motion
of interacting plasma particlesin an alternating electric
field, was then generalized in [2] to include quantum-
mechanical effects. The results obtained in [2] demon-
strate that nonlinear inverse bremsstrahlung absorption
hasarich variety of properties. However, all thisvariety
shows up in various logarithmic dependences, differing
from the Coulomb logarithm in the Landau collision
integral. Recall that the Coulomb logarithm is defined
as the logarithm of the ratio of the maximum and min-
imum impact parameters, which characterizetheregion
of efficient collisions (see, e.g., [3]). In particular, this
indicates that the main dependence (except for the log-
arithmic corrections) of the inverse bremsstrahlung
absorption can be obtained using the Landau collision
integral. Moreover, in describing inverse bremsstrahl-
ung absorption, small quantities on the order of the
electron-to-ion mass ratio can be neglected because
they are significant for energy transfer from electronsto
heavy particles but are unimportant for the momentum
transfer, which governsinverse bremsstrahlung absorp-
tion. Hence, the Landau collision integral required for
further analysis can be written in the form

2me’e’NA 9 V5~V af
m2 aVk V3 aV] '

Jai[ f] = (1.1)

wheref isthe electron distribution function, eand mare
the charge and mass of an electron, g isthe charge of an
ion, and N, istheion density.

In this paper, expression (1.1) serves asthe basisfor
analyzing inverse bremsstrahlung absorption in a pho-
toionized plasma of hydrogen-like atoms. We consider
photoionization in the Bethe regime of suppression of
the photoionization barrier, i.e., under the Bethe condi-
tion [4—6]

E

E217
where the electric field of radiation E, the ionization
energy |, and the charge number Z of the nucleus of a
hydrogen-like atom are all expressed in atomic units.
The ionization energy is described by the expression
|, = Z%/(2r?), where the principal quantum number n
determines the energy of an electronic state of a hydro-
gen-like atom. This expression makes it possible to
write the Bethe condition for the intensity of the pump
fieldin the form

(1.2)

6
o 5|2 137 10145-8.

cm

(1.3)

Our interest in inverse bremsstrahlung absorption in
aplasmathat is produced under the Bethe condition and
is characterized by different values of the principal
guantum number stems from the fact that such aplasma
is a convenient object for studying the generation of
harmonics of the pump field. Thus, in 2000, it was
shown theoretically that, in a plasma produced through
the photoionization of a gas of hydrogen-like atoms
whose el ectrons are in the ns states, the efficiency of the
higher harmonic generation increases by several orders

1063-780X/02/2811-0936$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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of magnitude with increasing principal quantum num-
ber [7]. Inthe same year, the generation of thethird har-
monic of laser radiation in agas preionized by asingle
laser pulse was studied experimentally [8]. The plasma
produced during the prepul se recombined, and then the
generation of the third harmonic of the laser frequency
during the next laser pul se was observed. Aswas shown
in[8], the preionization of agasfollowed by the recom-
bination of the plasma produced increases the effi-
ciency of the third-harmonic generation by orders of
magnitude. This phenomenon was interpreted on the
basis of the hypothesisthat, after the recombination, the
gas atoms are in excited states. A theoretical analysis
carried out in [9] for the particular case of the third-har-
monic generation showed that, in a plasma produced by
the photoionization of a gas with atoms in the excited
electronic ns states with the principal quantum number
n, the third-harmonic generation efficiency increasesin
proportion to the tenth power of the principal quantum
number. In [10], it was shown that the efficiency of the
fifth-harmonic generation obeys a similar dependence.

The regular features established in [7, 9, 10] are
closely associated with the fact that the electrons for
which the Bethe condition is satisfied are almost freely
g ected from the atoms. In this case, the electron veloc-
ity spread is determined by the electron wave function
of the hydrogen-like atom under consideration [11, 12]:

l-|Jnlm(r) = YIm(el ¢)Fnl(r)-

Here, the eigenfunctions Y,(8, ¢) of the angular
momentum are normalized to unity and

(1.4)

24w . 221
F.() = Nm[haBDFD—nH+1.2I +2; nag]
. (1.5)
0 4rg
X exXp na

(n+|)! j|1/2[|£|:|312

_ 1
Not = (2|+1)![2n(n—|—1)! -hagl

(1.6)

where ag = (£?/me?) isthe Bohr radius and F(a, B; X) is
a degenerate hypergeometric function.

According to[13, 14], the probability distribution of
electrons over momenta in a spatially homogeneous
plasmaisdetermined by the square of the electron wave
function, a,;,,(p), in momentum space,

fnlm(p) = |anlm(p)|2Nev

which “remembers’ the distribution of electronsin an
atom before its photoionization. However, this distribu-
tion of atomic electronsisviolated by electron—electron
collisions; as a result, the electrons evolve from distri-
bution (1.7) to a Maxwellian distribution. The charac-

1.7
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teristic time scale of such Maxwellianization of the
electron distribution is

_ 3mﬂ2(K BTe)sl2
421" NA

where N, and T, are the electron density and electron
temperature in a photoionized plasma. When the rel ax-
ation time of electron distribution (1.7) is short enough
for the electrons to be heated to any significant extent,
we obtain the following relationship for a photoionized
plasma[7]:

(1.8)

ee

2
mV;
3n’

where V, = Ze’/h = ZV, is the Coulomb velocity unit
[11]. In[9], it was shown that, after the relaxation to a
Maxwellian distribution with temperature (1.9), the
harmonic generation efficiency in a plasma produced
by the photoionization of a gas with atoms in the ns
states is proportional to the sixth (rather than tenth)
power of the principal quantum number. In other words,
the harmonic generation efficiency decreases. Accord-
ing to relationships (1.8) and (1.9), this occurs on the
time scale

KglTe = (1.9)

—13

10102°  10°s
3

n°HALZ, (N,/10% cm_s)’

where Z; istheion charge number and N; istheion den-
sity. However, the harmonic generation efficiency
decreasesin this manner only when the generation time
is too short for the plasma electrons to be heated by
inverse bremsstrahlung absorption. The fact that an
increase in the electron temperature lowers the har-
monic generation efficiency makesit necessary to study
inverse bremsstrahlung absorption in a plasma photo-
ionized in the Bethe regime of suppression of the ion-
ization barrier.

Preliminary results of the investigation of inverse
bremsstrahlung absorption in a plasma produced
through the photoionization of excited atoms in the ns
stateswere published in [9]. Inthe present paper, we are
going to deepen the understanding developed in [9].
However, our main objective here is to consider the
absorption in aplasma produced by the photoionization
of atomsin excited states with a nonzero orbital quan-
tum number. We thoroughly examine the case of np
states. First, we show that inverse bremsstrahlung
absorption is always nonlinear. Second, we demon-
strate the possibility of a substantial nonlinear reduc-
tion in the intensity of inverse bremsstrahlung absorp-
tion and obtain the scaling of the absorption intensity
with the principal quantum number. We aso point out
that an analogous nonlinear effect can take place for
states with large orbital quantum numbers and show
that the larger the orbital quantum number, the more
pronounced the effect.

= (1.10)

tee



938

2. For apump electric field of the form
E(t) = Ecoswt, 2.1

the Boltzmann kinetic equation, which is the basic
equation for our analysis, can be written as
of oF of
3 +Va_r += Ecosoota—v = Jeof f, f] + [ f]. (2.2)
The particular form of the electron—€lectron collision
integral J.[ f, f]isunimportant for further analysis. We
only need the relationship
J'dVVJee[f, f] =0, (2.3)
which stemsfrom the el ectron momentum conservation
in electron—electron collisions. In the dipole approxi-
mation, we can neglect the dependence of the electric
field on the coordinates. We can a so neglect the corre-
sponding coordinate-dependence of the distribution
function. Then, from Eq. (2.2), we obtain the equation

2
dj _ €Ne |
i m Ecoswt+IdVeVJe,[f(V,t),V], 2.4)
where
2

j = J’dVer(V t)_ eESH'I(x)t+6]

(2.5)

is the electric current densty and 9j isthe contribution
of collisions to the current density. In order to deter-
mine this contribution, we assume that it is smal
(which corresponds to a pump field with a frequency
much higher than the collision frequency) and turn to
the approximate distribution function fy(V, t) for which
the collisions are ignored:

fo(V,t) = F(V —ug(t)), (2.6)

where

_ eEg
ug(t) = mwsnmt 2.7)
is the electron velocity in an aternating electric field
and, inthecase at hand, F(V) isthevelocity distribution
(1.7) of atomic electrons. As a result, using formulas
(2.4)—2.7), we can write

d5]

= [dVeVI,[F(V ~ug(t), V1. 2.8)

With the electron-ion collision integral of the form
(1.1), Eq. (2.8) becomes

i 4 N;A
doj _ _KJ’W—F(V Ue(t)).  (2.9)
dt
Using the relationship
VA dg 4n
v avv I( exp(lq V),  (2.10)
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we can represent Eg. (2.9) as

2eeN/\N

doj _ —J'dq s®(q)exp(iq Cug(t)),

dt 2.11)

where

N.®(q) = J'dVF(V)exp(iq o). (2.12)
Inwheat follows, we will assume that the functions F(V)
and ®(qg) depend only on the absolute values of their
arguments.

We direct the z-axis along the vector E, in which
case Eq. (2.11) yields

8j.= Y CN*DE cos[ (2N + 1) wt] (2.13)
N=0
where
e’N
O_(2N+1) — Zev(2N+l)(E) (214)
maw

are nonlinear partial conductivities.

Informula(2.14), we have introduced the following
notation for the effective nonlinear collision frequen-
cies:

(2N +1)

(E)

1
16€” e N AN (2.15)
- mVE(ZN + l)J-dqcD(q)qJ-XdX‘JZN+l(qXVE)

where J(2) isaBessel function and Vg = [eE|//mwisthe
amplitude of the electron oscillatory velocity in the
pump field.

Inverse bremsstrahlung absorption of the pump field
at the fundamental frequency is described by setting
N = 0 in formula (2.13). So, in what follows, we will
work with the expression

1

16 N /\
L jdqq><q)q fxdxal(qva) 2.16)

v(E) =

3. Further analysis will be based on the following
expressions for the electron wave function in a hydro-
gen-like atom in momentum space. For ns states, we
use a compact general formula (see Appendix 1):

anOO( p)
J2nsin(2narctan[np/mV,] )
m(mV,)**(p/mV,)[1 + (np/mV,)?7

3.1)

n-1

= (-1)
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For np states, we use the following four expressions,
whichreferton=2, 3,4, and 5:

an1o(P)
_ cosBpr n (2 PCa(P)
m Pmv,O [(1/4)+(np/2sz)2]3’

where 8, isthe angle between the vector p and the polar
axisand

cAp) =1, cp) = J/BH -

(3.2)

1 0
2[(V4) + (3pl2mV,)

6
(p) = ~20H1—
(P) J_%l 5[(1/4) + (2p/mV,)]?

3 O
+ 2,22
10[(1/4) + (2p/mV,)?]
21
= J90HL -
cs(P) %l 10[(1/4) + (5p/2sz)2]

(3.3)

6
5[(1/4) + (5p/2mV,)?]

+

_ 1 0
5[(1/4) + (5p/2mV,)] 0

Note that, in the limit p —= 0, the above wave func-
tions behave asymptotically as

%252
3noo(p —0) = ———;, (3.4
m(mVy)
cosH 3_2(n2 B 1)ﬂ2n7/2

ano(p— 0) = —=L(-1)"p [Z—"—.

’ m 3 (mvy)* 33)
Formula (3.2) implies that the distribution function for
np states is proportional to cos*8,. Assuming that the
electrons are unpolarized, we can replace cos?6, with
3.

We normalize the distribution functions for ns and
np states to unity;

2n{ sin(2narctan[np/mV,] )} 2
PV (VIV,) 1+ (nVIV,)]

frs(V) = (3.6)

and

2 2
1pgnr? Voc,(mV)
3PlvH [(1/4) + (nV/2V,)7] °

For further analysis, it is expedient to present the Fou-
rier transform of expression (2.12):

cDn:;(p)((q) = Dns(p)exp{_q(vzln)b} |b:ll

fap(V) =

(3.7)

(3.8)
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where the Fourier coefficients for ns states have the
form

., d . 1d
Dy = 1_db+3db2’
2 4
D23 = 1_£+1'd_+id_,
db 3gp? 15gp*
D :1_£+1'd_2+£d_4+£d_5+id_6
3s db  3gp? 154p* 454p° 3154p°¢
2 4 5 6
D4s: _£+l'd_+1'd_+£d_+£d_ (3.9)
db 3gp®> Sdb* 15dp° 45dp°
,2d 1 d
3154’ 2835gp®’
. d . 1d° 4d 4ad 4
Ds: = 1-35* 3y " gy * By o’
db db db db
7 8 9 10
+__4_ d 16 d 2 d + 2 d

106’ * 283548 | 4725gp° 155925 gpi®’

and, for np states, they are equal to

15754 5254’ 47254p8’ (3.10)

d,1d* 2d 1

20T By By By’

p

3154p® 189yp’ 567gp® 141754p°

4 d°
467 TT5qp™

4. In accordance with formula (3.8), the effective
collision frequency (2.16) for states with the principal



HI[1, s, VE/V7]

VelV7
Fig. 1. Function H[1, s, Vg /VZ] vs. VE/V7.

guantum number n can be represented as
16€°e’N.An d

(€]
v(nE) =
meVey, o db

4.1)

1 00

x J’ xdequl(quE) exp E—qvfl%
0 0

b=1

According to formula (6.611.1) in [15], we have

[

J'dxexp(—a x)J1(Bx) =
0

B e
which allows us to rewrite formula (4.1) as

v(l)(n, E) = vZH[l, ns(p), x—E}

= vzngA[l, ns(p), []—\-/—E} 4.2)
Vz
where
16€°e’N.A
V2= = (4.3)
m-V,
1
A[l, ns( p), X] = X_g[Dns(p)a[ll bv X]] b=1 (4‘4)
with
d oo
a[l,b,x] = —[parcsinh=].
dbg b5

Figure 1 shows the dependence that was obtained from
formula (4.2) and is representative of the inverse
bremsstrahlung absorption of radiation in the case of
Is state. In the figure, the ordinate is the function H[ 1,
1s, Ve/V,] and the abscissais the ratio Vg/V5.

In order to gain insight into the regular features
described by formula (4.2), it is necessary to under-

V. P. SILIN, P. V. SILIN

stand the properties of the functions H[ 1, ns(p), Ve/V].
First, note that formula (4.4) gives

All,ns(p), x| = X%{ arcsinhx + a[ 1, ns(p), X} .(4

Here,

XP4n[1! nS( p)! X]
2.2n+(12) !

(1+X7)

where P, [1, ns(p), X] are 4nth-degree polynomial s com-
prising even powers of the argument x. In explicit form,
the polynomialsfor ns states are presented in Appendix
2, and the polynomials for np states are presented in
Appendix 3. In the limit x = o, for s states, we have

a[l,1s,0] = (1/3), a[l,2s,0] = (11/15),
a1, 3s,»] = (27/35), a[l,4s,o] = (55/63),
a1, 5s,»] = (89/99),

and, for p states, we have
a[l, 2p, o] = (U5), a[l,3p, o] = (17/35),
a[l,4p, o] = (13/21), a[l,5p, o] = (23/33).
In thislimit, formula (4.5) becomes

a[1,ns(p),x] =

(4.6)

AlLns(p). 2 = L{Inx+a[1 ns(p), o]} . (4.7)
X

Consequently, since, for x > 1, the term a[ 1, ns(p), o]
is small as compared to the logarithmic term, we arrive
at the following unified scaling:
3 nv
v (n, E) = v, 2 |nEVe]

Vo "Ov, o

This scaling applies to atoms in both ns and np states,
which are characterized only by the principal quantum
number. The dependence on the principal quantum
number is seen to be weak (logarithmic).

The situation with comparatively weak pump fields
is radicaly different. In such fields, the electron oscil-
latory energy is insufficiently high as compared to the
electron energy at the corresponding Rydberg level of
an atom:

(4.8)

mVE < mV§
2 2n’’

On the one hand, inequality (4.9) justifies the use of the
function A[1, ng(p), NVe/V,]. On the other hand, under
this inequality, a peculiar situation exists in which the
properties of the n and p states manifest themselves in
very different ways. This can bereadily seenin Figs. 2,
3, 4, and 5, which comparethefunctionsH[ 1, ns, Vg/V,]
and H[1, np, Vg/V;] for the four stateswithn = 2, 3, 4,
and 5. Specifically, for high-intensity pump fields, these
functions coincide, which accords with asymptotic

4.9)
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H[1, 2s, VENZ]’ HI1, 2p’ VE/VZ]

80
60}
40}
20}
1 i R T b ] |
0.5 1.0 1.5 2.0
ViV,

Fig. 2. Functions H[1, 2s, Vg/Vz] (dashed curve) and
10H[1, 2p, Vg /V] (solid curve) vs. Vg /Vz.

H[1, 4s, Vg /Vz], 10H[1, 4p, Vg /V7]
3500

3000
2500}
2000
1500
1000

500

0.6 0.7

VelV7

Fig. 4. Functions H[1, 4s, VE/Vz] (dashed curve) and
10H[1, 4p, Ve /V7] (solid curve).

scaling (4.8); in contrast, at low intensities, these func-
tionsare qualitatively different. We make the difference
even more pronounced by plotting the functions in
Figs. 2-5 on different scales.

In order to understand the causes for such a sharp
difference, we consider the following consequence of
Eq. (2.9) in thefirst-order approximation in the electric
field strength:

dj, _ 4me'e’N;A V( dF(V)
e — uE,J-J'de3 " (4.10)
which immediately yields
. 16T’ NAE? N
5 = LSRR PO € Bey(n g)E. (4.11)
3m mw mw

From the distribution function (3.6) for ns states, we
find

f.(0) = (8n°ITFVY),
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H[1, 3s, Vg /V], 10H[1, 3p, Ve /VZ]
700 |

600
5001
400
300 F
200+
100+

0.8
VilVy

Fig. 3. Functions H[1, 3s, Vg/Vz] (dashed curve) and
10H[1, 3p, VE/V7] (solid curve).

HI1, 5s, VE/VZ], 10H[1, 5p, Ve/V7l

10000 -
8000 -
6000 -
4000 -
2000 .
‘| : el 1
0.1 0.2 0.3 0.4 0.5
VelV,

Fig. 5. Functions H[1, 5s, VE/Vz] (dashed curve) and
10H[1, 5p, VE/V7] (solid curve).

hence,

v(n, 0) = v,(8/3)n°. (4.12)

Relationship (4.12) shows that, for small values of the
argument, the functions A[1, ns, nVe/V-] behave asymp-
totically as ~n?. This asymptotic behavior partialy jus-
tifies the use of the function

W[1,ns,y] = %A[l, ns, ﬂ (4.13)
n

for comparatively weak pump fields, in which case,
instead of formula (4.2), we have

2

nv
vP(n,E) = vznsw[l, ns, E}.
V;

(4.14)

That the use of the argument y = n*Vg/V; isjustified is
clear from Fig. 6, which depicts the plots of functions



Fig. 6. Comparison of the functions W[1, ns, nszNz]: the
long dashes arefor n = 1, theintermediate-length dashes are
for n = 2, the short dashes are for n = 3, the dotted curveis
for n =4, and the solid curveisfor n=5.

(4.13). We can see that, for comparatively small values
of the argument, functions (4.13) approach each other
as the principal quantum number increases. This corre-
sponds to the unified scaling describing inverse
bremsstrahlung absorption in the case of nsstates. Note
that formula (4.13) corrects for the inaccurate formula
(2.16) in[9], inwhich preliminary results on the subject
were reported.

Now we again turn to the discussion of Figs. 2-5.
Recall that these figures demonstrate how the proper-
ties of inverse bremsstrahlung absorption in a plasma
produced through the photoionization of a gas of
hydrogen-like atoms in the np states differ from the
above-described absorption properties of the plasmain
the case of ns states. Note that this difference can be
readily understood on the basis of the equality f,,,(0) =0,
which holds for np states and indicates that, for weak
pump fieldsand for a plasma produced through the pho-
toionization of a gas of hydrogen-like atoms in the
np states, thereisno linear law relating the current den-
sity to the pump field strength. In fact, for small values
of V, we use formulas (3.7) and (3.3) to obtain from for-
mula (3.5) the following distribution function for the
first four np states:

2

fop(V) = 3—22V—5n7(n2—1) v (4.15)
3V,

Expanding the right-hand side of Eq. (2.9) in powers of

the pump field strength and retaining terms up to third

order, we can write

2

2
e'N \
=8y, n'(n’— 1)~£E.
Vv

me’ 15

(4.16)

2
z

It is easy to guess that, for atomic states whose orbital
guantum number | is larger than unity, the nonlinear

V. P. SILIN, P. V. SILIN

W1, np, n?Vg/Vy]
0.35

0.30
0.25
0.20
0.15
0.10
0.05

Fig. 7. Comparison of the functions W[ 1, np, nZVE Nzl the
solid curve is for n = 5, the dotted curve is for n = 4, the
shorter dashes are for n = 3, and the longer dashes are for
n=2.

dependence of the current density on the pump field
strength is even stronger (~E? +1). This indicates that,
in a plasma produced by photoionization from the
excited electronic states of the gas atoms in the Bethe
regime of suppression of the photoionization barrier,
the high-frequency conductivity is always nonlinear.

Although the quantities given by formulas (4.10),
(4.12), and (4.16) depend on the principal quantum
number in different ways, we smplify a comparison
between the results obtained for ns and np states by
using the function

-1 y
W1, np,y] nzA[l, np, n}, (4.17)

in which case the effective nonlinear collision fre-
guency can be described by an expression analogous to
formula (4.14):

2

n-v
vP(n, E) = vZnS‘P[l, np, E}.
Vz

(4.18)

From Fig. 7, which shows the functions W[1, np, y] for
2p, 3p, 4p, and 5p states, we see that there is an amost
direct proportionality (~n) to the principa quantum
number. This stronger dependence on the principal
guantum number for p states, as compared to the corre-
sponding dependencefor s states, can be understood by
comparing formulas (3.4) and (3.5).

Hence, we have shown the following qualitative dif-
ference between the absorption properties of plasmas
produced by the photoionization of gas atoms in the
np states and ns states. In the case of s-states, the effec-
tive collision frequency decreases monotonically with
increasing intensity of the radiation heating the plasma.
In contrast, in the case of p states, the effective nonlin-
ear collision frequency at low intensities of the heating
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radiation increases with increasing radiation intensity;
reaches its maximum value;, and then decreases,
approaching unified scaling (4.8).

5. Recall that, in order to directly compare the effec-
tive nonlinear collision frequencies that govern inverse
bremsstrahlung absorption of radiation in plasmas pro-
duced by the photoionization of gas atoms in different
electronic states, it is convenient to use formula (4.2).
The functions H[1, ns(p), Ve/V;] give an explicit
dependence of the collision frequencies on the pump
field intensity. For the 1s state, the corresponding func-
tion is depicted in Fig. 1. The functions corresponding
tothefour nsand np statesaredisplayed in Figs. 2-5 (in
which the ordinate is the value of the function and the
abscissaistheratio Vg/V). When comparing the corre-
sponding dependences for s and p states, it should be
kept in mind that the amounts by which the functions
H[1, ns(p), Ve/V,] referring to these states vary are very
different. That is why the functions in Figs. 2-5 are
plotted on different vertical scales. Specificaly, the
ratios of the maximum values of the functionsfor sand
p states are approximately equal to

35 for n =2

H(L, ns,Ve/V,) 0.3 for n = 3
H(L, ps,Ve/V,) 7.9 for n = 4
E'7.3 for n = 5.

A relatively insignificant absorption in the case of p
states stems from the fact that the higher the velocities
of the plasma particles, the lower the efficiency of the
inverse bremsstrahlung effect. In the case of sstates, the
absorption efficiency is comparatively high because
electron distribution function (3.6) is maximum for
V — 0. The case of p states is radically different: as
V — 0, distribution function (3.7) approaches zero
according to law (4.15), thereby indicating that the
absorption is relatively weak.

We emphasize that the pump fields of comparatively
low intensities may be of particular importance. In fact,
Bethe's condition (1.2) can be rewritten as
Ve S Z° 1y

V; p*8hw’

where | is the ionization energy of a hydrogen atom.
Accordingly, we can say that the regions of compara-
tively small values of the arguments of the functions
shown in Figs. 1-7 (i.e., the regions for which the val-
ues of the principal quantum number are characteristi-
cally not small) are of great practical interest.

In conclusion, et us summarize the results obtained
in this paper. In order to characterize nonlinear inverse
bremsstrahlung absorption in a plasma produced by
photoionization in the Bethe regime of suppression of
the photoionization barrier, we have derived the nonlin-
ear dependences of the high-frequency conductivity on

PLASMA PHYSICS REPORTS  Vol. 28

No. 11 2002

943

the pump field intensity. We have established that, in
the case of the photoionization of gas atoms with elec-
trons in the s states, the nonlinearity shows up in suffi-
ciently intense pump fields (which is characteristic of a
plasma with a Maxwellian electron distribution), pro-
vided that the electron oscillatory energy in the pump
fieldis not low as compared to the energy of the atomic
electrons. In contrast, in the case of atomsin electronic
states with a nonzero orbital momentum, the plasma
conductivity is nonlinear even in alow-intensity pump
field. As aresult, the plasma conductivity is reduced,
indicating the possibility of the less efficient heating of
plasmas produced through the photoionization of gas
atoms in the excited electronic states with a nonzero
orbital momentum. We have also derived the scalings
characterizing inverse bremsstrahlung absorption in
photoionized plasmas.

The reviewer of this paper recommended that we
clarify two points. The first is associated with our
choice of np states in developing the theory of inverse
bremsstrahlung absorption. In this context, we empha
size that this choice was dictated by the fact that these
are the simplest states for which the dependence of the
effective nonlinear collision frequency, governing the
inverse bremsstrahlung absorption efficiency, on the
intensity of the weak pump field is essentialy nonlin-
ear. This property is clearly demonstrated in Figs. 1-5
and by formula (4.16). We have mentioned that such a
nonlinearity in weak pump fields is also peculiar to
electronic states with large values of the orbital quan-
tum number. Of course, therefereerightly noted that, in
this case, the following circumstance should be kept in
mind: the nonlinear phenomenon under discussion can
occur only when the “mixing” electron—electron colli-
sions do not cause Maxwellianization of the electron
velocity distribution in velocity space. In other words,
studies of the phenomenon in question should be
restricted to time scales shorter than the electron colli-
sion time [see formulas (1.8) and (1.10)]. The second
point to be clarified is the so-called parabolic quantiza-
tion [16], which is often used to solve the Coulomb
problem in the case of a nonzero electric field and to
consider the corresponding radiative processes. In this
connection, it should be stressed that, in the parabolic
guantization description, the eigenfunctions of the dis-
continuous spectrum of a hydrogen-like atom can be
represented as a linear superposition of the functions
resulting from quantization in spherical coordinates
[4]. Hence, it is evident that the approach developed
here can be adapted to the parabolic quantization, with
an appropriate change in the operators D. We are grate-
ful to the reviewer for his suggestions.
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APPENDIX 1 o (o) = i(_l)n—lmﬂ—aﬁmjﬁ
Here, we present the derivation of formula(3.6). We " 4mp [2AZ]
start by writing the wave function for ns statesin terms 2
of coordinates: Dl_| pnag " _, iﬁﬁﬂ " (A1.5)
8 >~ 2nz0 " "2az0
_ 1 DZZD 0 2710 L. [pna 2 n+l :
r Fln+1.2; - 2|
llJnOO( ) «/_mj o0 aBD Dl+|:2ﬁz:|D
(ALl)
X exp %_nZ?rEE_ Since
1, PNy
In order to solve for the wave function 2 2nz0]
4 rpna pna (AL6)
- Dlpr = —+[ B} exp[;tlarctan E‘%
anoo(P) (2T[ﬁ)3l2j. D 7 Dwnoo(r) (A1.2) 7] 247 U4Z
in momentum space, we integrate it over the angles: the wave function (A1.5) takes the form
'(_l)n—l
J2m maED ﬁ Anoo(P) =i 4T
anOO(p) = 3/2D22D
(2mh) P O na t na,
© tD [Pnas (A1.3) exp[inarctan %%Z—B% —expjnarctan %%Z—E%
O 0
J’dttF( n+1.2; t)eXpDz] 577, 9 _ . '
el N
Uhae! Al.7
Then, using the relationship nagl 4" [ 2rZ (Aal7)
which immediately yields distribution function (3.6).
c-1 —C ].D_a
F(a c; - =T —=
It (a c exp(=stidt (©)s %L ! ’(A14) APPENDIX 2
0 .
The polynomials P, [1, ns, x] for the first five ns
we obtain states have the form
2 4
P,[1, 15 %] = _3+++X (A2.1)
_ —15+95x" +36x" +42x°+ 11x°
Pg[1,2s,x] = 15 , (A2.2)
2 4 6 8 10 12
P,[1 35 % = —105 + 1855x" —2023x " + 3538x + 1017x +513x™ + 87X (A23)

P16[ 1, 4S, X] = 6_3

Pyl[1,5s X = 195

105 ’

L (Z63 +2163x° — 8106x" + 20628x° — 8930x + 6094x™° + 1320x™ + 436x™ + 55x°),

(A2.4)

( —495 + 27885x° — 211959x" + 919908x° — 1375682X" + 123597

(A2.5)

—295050x " + 104000x™* + 17925x'° + 4425x™° + 445x°°).
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APPENDIX 3
The polynomials P4, [1, np, X] for the first four np states (p = 2, 3, 4, 5) have the form
2 4 6 8
P.[1,2p, X = —15-65x"—-12x + 6x + 3X , (A3.1)
15
2 4 6 8 10 12

PL[1,3p,x] = 105665 +2261x" 341" + 531" + 279" + 51x" (A32)

105

Pis[1, 4p, X]
= Tcl)_s(" 105 —875x° + 10234x" — 17316x° + 16530x° + 930x™ + 1560x ™~ + 500x™ + 65x™%),  (A3.3)
Pol1,5p, X = %(— 165 — 1705x" + 44847x" — 184 239x° + 364056X° — 234108x™°

+ 97650 + 6375 + 4725x"° + 1125x"° + 115x”). (A3.4)
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Abstract—The time characteristics of grain charging, namely, the relaxation time of the steady grain charge
and the charge fluctuations of grains of different sizes, are computed from particle simulations. The results
obtained are compared with some theoretical predictions (primarily those derived from the drift—diffusion
model). The simulations are carried out for nonmoving and moving two-temperature argon plasmas. © 2002

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, dusty plasmas have been actively
studied both experimentally and theoreticaly (see, e.g.,
[1-3]). Under actual experimental conditions, the elec-
tron temperature in a collisional gas-discharge plasma
is usually governed by the energy input from an exter-
nal source (microwave radiation, electric current, pho-
toionization, etc.), whereastheionsarein thermal equi-
librium with the cold atoms of abuffer gas. Also, anion
flux directed toward the el ectrode formsin the electrode
sheath. As aresult, under certain conditions, the grain
can bein equilibrium (or, in other words, it can levitate)
because of the balance between an electric force, a
gravitational force, and africtional forcein theion flux
[4]. However, experiments show that this equilibrium
may be unstable [5-7] and some analytic models sug-
gest that the instability may be driven, in particular, by
fluctuations of the dust grain charge[7, 8].

In this paper, which is a continuation of [9-11], we
describe the results of numerical experiments carried
out to investigate different kinetic parameters of dust
grains of micron size in a plasma. Numerical simula-
tions were aimed, in particular, at calculating the
dynamics of charging an initially uncharged grain
(which was assumed to absorb all plasma electrons and
ions striking its surface) and the kinetic parameters of
the steady (established) state. We describe numerical
results obtained for a nonmoving two-temperature
plasma and a moving plasma and investigate the statis-
tical properties of the grain charge fluctuations.

Most simulations were based on the particle-in-cell
(PIC) method. Newton's equations of motion for asys-
tem of charged point particles (plasma electrons and
ions) were solved in a cubic cell with a heavy macro-
particle (grain) at its center. The reflection of electrons
and ions from the cube faces was described using elec-
tron and ion velocity distribution functions at large dis-
tances from the grain. As usual, we used Maxwellian

distribution functions, possibly with different electron
and ion temperatures. These boundary conditions allow
us to refer to the cube faces as thermostatic walls. A
moving plasma was modeled by using other boundary
conditions for the ions; the plasma with an ion influx
was described by a shifted Maxwellian ion distribution
and the cube faces were assumed to perfectly absorb the
ions leaving the computation region.

Most simulations were carried out with the help of a
simplified model in which the particle trgjectorieswere
computed with allowance for only the interaction of a
grain with plasma particles and the screening effect.
Although the model is rather crude, it provides fairly
exact calculations of the kinetic parametersof agrainin
anonmoving plasma, which is confirmed by comparing
its results not only with available theoretical predic-
tions, but also with the results from more precise simu-
lations based on the molecular dynamic (MD) method.
For a moving plasma, however, the smplified model
yields larger errors; in this case, it was checked only by
more laborious MD simulations.

2. GENERAL FORMULATION OF THE PROBLEM
AND SOLUTION METHODS

Computer simulations based on ab initio principles
are widely used in solving various plasma problems
[12]. The main advantage of this approach is that, in a
computer model, it is necessary to specify only the
shape of the potential of the interaction between parti-
cles.

The results presented here were obtained from both
MD and PIC simulations of systems consisting of only
severa tens of thousands of particles. The plasma was
assumed to consist of ions with mass m and positive
charge e and electrons with mass m, and charge—e. We
simulated the dynamics of a system of n, electrons and
n; ionsin acube at the center of which thereis a heavy
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spherical absorbing body with radius R and charge Q =
Z, €< 0. The number of electrons and ions was chosen
so that the entire plasma system was electrically neu-
tral, n, — ny + Z, = 0. With this choice, the electron den-
sity in the cube was lower than the ion density because
of the negative charge of the grain.

The particle tragjectories in such a system were cal-
culated by solving Newton's equations of mation
d’r/dt* = F/m,, k=1,2,...,n, (1)
In the MD method, the force acting on any particle in
the system is determined as a sum of forces from the
remaining particles:

kQ(rk

Fe = ()

zm,k_12

I#£k

where rk(t) |sthe position vector of the kth particlewith
mass m, and charge gy, r(t) is the position vector of a
grain with charge Q, and nj, is the total number of par-
ticles. In order to remove singularities, the Coulomb
forces of the interaction between the particles that
occur at short distances from each other were modeled
by the forces of the interaction between uniformly
charged, completely interpenetrating spheres with a
very smal radius [12]. Equations (1) and (2) were
solved using a fourth-order Runge-Kutta method. In
contrast to [9], where the dynamics of a grain dragged
by an ion flux was taken into account, we modeled an
infinitely heavy (i.e., immobile) grain.

The PIC method differsfrom the MD method in that
it uses cruder approximations for the forces acting on
the particles, which clearly providesfaster calculations.
Asin the MD method, we computed particle trajecto-
ries by solving Newton’s equations of motion (1), but
the force acting on plasma particleswas calculated in a
different way:

r
F = QKQ kg_'_qk Mg Z a. =12,..., p,(3)

| kgl | kg| Mg<Tig

where ryg = r — rq and the summation is over al parti-
cles that are closer to the grain than the kth particle.
Thisway of calculating the force acting on the particles
makes it possible to take into account the screening
effect of the ion—electron cloud surrounding the grain.
The force acting on the grain was determined from
Newton's third law. Formula (3) corresponds to an
exact solution for a spherically symmetric plasma dis-
tribution, i.e., to the casein which, according to Gauss's
theorem, the field on a spherical surface is determined
exclusively by the total charge inside the sphere. In a
spherically symmetric problem, thefield isindependent
of the radial distribution of charges inside the sphere.
An analogous method was applied by Zobnin et al. [13]
to calculate the electric field around a charged grain.
PLASMA PHYSICS REPORTS  Vol. 28
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In order to determine the extent to which the model
is adeguate, we compared the results of our simulations
with the results obtained from Egs. (1) and (2) in the
MD method and from Egs. (1) and (3) in the PIC
method. An analysis of the results shows that it is com-
pletely justified to use formula (3) to describe a non-
moving plasma. This makes it possible to calculate the
fluctuation dynamics of grain charging on along time
scale by performing computations with alarge number
of particlesfor an actual electron-to-ion massratio. For
amoving plasma, this approach also yields fairly exact
results, although it leads to somewhat larger errors.

A necessary (but not always sufficient) condition for
the PIC simulation results to be adequate is that the
number of particlesin the volumeto be modeled should
be much larger than the number of particles inside the
Debye sphere. In experiments on dusty plasmas, the
characteristic parameter values are the following: the
ion density isN; = 10° cm3, the electron temperatureis
T.=1eV, and theion temperatureis T, = 0.025 eV. For

these parameter values, there are approximately 10°
plasma particles inside a Debye sphere. Since the num-
ber of arithmetic operations per time step in MD simu-
lationsis proportional to the square of the particle num-
ber, even modern parallel computers are incapable of
performing such an enormous amount of calculations.
That iswhy it is necessary to refer to scalings for phys-
ical parameters and to use simplified models, which
reduce the amount of computer calculations.

In dusty plasmas, an important role is played by
grain charging processes and grain charge fluctuations.
One of the general problems in plasma simulations is
that the ion and electron masses are very different. For
this reason, the dow processes associated with ion
motion should be calculated on adifference grid whose
time steps are determined by the fast electron time
scales. A possible approach to overcoming this problem
isto use modelsin which the electron-to-ion massratio
isincreased in order to reduce the difference between
the characteristic ion and electron time scales [10, 12]
or the electrons are described by a Boltzmann distribu-
tion [13]. However, these approaches are inapplicable
for calculating the grain charge fluctuations.

In this paper, the main simplifying assumption that
makesit possible to compute the fluctuation parameters
of the grain charge is the assumption of a spherical
symmetry of the charge density around the grain. This
assumption, under which forces (3) were calculated,
actually indicates that the plasma particlesinteract with
each other only through the radius-averaged grain
charge fluctuations and the charge acquired by the
grain.

3. GRAIN CHARGING AND GRAIN CHARGE
FLUCTUATIONS IN A PLASMA

In an ideal gas, the mean number AN of atoms col-
liding with a grain during the time interval t is propor-
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tional to the surface area of a grain, the atom flux den-
sity, and the time interval itself. Accordingly, for aball
in a gas with a Maxwellian distribution of atoms, the
number of collisionsis equa to
AN(t) = 4TIR®J,t, 4
where Jy, = (T/21mm)'”n is the density of the atom flux
onto the ball surface in a Maxwellian gas and n is the
atom density. Formula (4) describes the charging of an

initially uncharged grain to values that are small in
comparison with its mean charge.

If the mean grain charge in a steady-state plasmaiis
equal to Q, then the time dependence of the deviation
AQ(t) = Q(t) — Q of the grain charge from its mean
value is usually described by the equation [14]

dAQ/dt = —-AQ/T,. (5)

This equation is based on the assumption that therate at
which the grain charge relaxes to its mean value is pro-

portional to the deviation from it, provided that the
deviation by itself issmall.

The characteristic relaxation time is usually chosen
to be the characteristic time t; of the grain charge fluc-
tuations. For a Maxwellian plasma, the definition of
thistimein the drift—diffusion approximation was given
in[14]:

_ o 1
PRI+ T /T + /T,

T (6)

where v, = (8T, /M) isthe mean ion thermal velocity

and ¢ =-eQ/Risthe height of the energy barrier. As
usual, the characteristic fluctuation time is aso
assumed to be the characteristic time of the exponen-
tial decrease in the autocorrelation function of the
grain charge fluctuations, AQ(t + TAQM)O =
DAQ*Bxp(—T1/1¢).

In the Fokker—Planck approximation, the mean
sguare of the amplitude of the grain charge fluctuations
is determined by the ratio of the fluctuation time to the
mean time t. between collisions of plasma particles
with the grain:

2
o =

mQZD’e2 = 14/21,. @
Cui and Goree [15] derived the following approxi-
mate dependence of the mean square deviation of the
grain charge from its mean value:
o=c,z2"% ¢, =12, 8)
where Z is the grain charge expressed in units of the
electron charge. The coefficient ¢, was also calculated
from the data obtained in our humerical experiments,

MAIOROV et al.

namely, from the mean grain charge and the amplitude
of the grain charge fluctuations:

¢, = 0/z”, ©)

Another approximate dependence of the mean
square deviation of the grain charge from its mean
value was obtained by Matsoukas and Russel [14]:

o’ 1

FRT. L IRTIT AT,

(10)

When analyzing the results of numerical simulations,
we described the grain charging process by the approx-
imate function

Q(t) = Q+AQ(0)exp(~t/ty). (11)

Note that we chose the time interval to be shorter than
the run time of the code. Specifically, we removed a
certain initial time during which Eg. (5) fails to hold
from consideration because of the large deviation of the
grain charge from its mean value; on the other hand, we
chose the initial deviation to be much larger than the
fluctuation amplitude.

4. RESULTS FROM SIMULATIONS
OF A NONMOVING TWO-TEMPERATURE
PLASMA

First, we consider the results obtained for a two-
temperature argon plasma with z=1 and N, = 2 x
10'2 cm?, the ion and electron temperatures being T, =
0.025 eV and T, = 1 V. In terms of the characteristic
distance between the ions, the electron Debye radius

I'oe = (To/4TE N§ )2 isequal to rDeNil/3 = 6.6, inwhich
case there are 1220 electrons within the Debye sphere.

We can see that the conditions for both the el ectron and
ion plasma components to be ideal are well satisfied.

Initially, the electrons and ions were uniformly dis-
tributed inside the cube, and their velocity distributions
were chosen to be Maxwellian distributions at infinity.
Depending on theinitial distanceto the grain, the Max-
wellian distribution over the absolute value of the
velocity was shifted by the energy of the interaction
with the grain. The initial velocity distributions of the
electrons and ions were chosen to be isotropic. Hence,
the initial distributions correspond to the absence of
electrons and ions that are trapped by the grain and,
under certain conditions, may greatly distort the grain
Kinetic parameters.

An initially uncharged, infinitely heavy grain with
prescribed dimensions was assumed to belocated at the
center of the cube and to absorb all plasma electrons
and ionsincident on its surface. In our previous simula-
tions, the number of electrons and ions in the cube was
fixed. Consequently, because of the grain charge fluctu-
ations, the system was, on the average, electrically neu-
tral only on sufficiently long time intervals; this situa-
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tion (at best) could be achieved by appropriately choos-
ing the number of ions and electrons in the system on
the basis of the results from preliminary computations.

We applied, for the first time, an agorithm that
made it possible to strictly preserve the electrical neu-
trality of the entire system, specifically, the particle
injection algorithm. When a plasma particle was
absorbed by the grain, the neutrality of the system (of
course, with allowance for the grain charge) was main-
tained by injecting the required number of particlesinto
the plasma volume from a random point at the cube
faces. The essence of the algorithm can be described as
follows. When an electron was absorbed by the grain,
the number of electrons in the system decreased; how-
ever, when an ion was absorbed, an electron-ion pair
was injected into the system from a cube face. As a
result, the number of ions was maintained constant,
while the number of electrons was varied in time so as
to ensure plasma neutrality. The reflection of electrons
from the cube faces was described by the boundary
conditions corresponding to thermostatic walls. This
allowed us to describe the electrons by a Maxwell—-
Boltzmann distribution function and to model the
appearance of electrons whose kinetic energy is high
enough for them to overcome the potential barrier. Such
aformulation of the problem provides a self-consi stent
description of both the charging of a grain and of the
fluctuations of its charge.

Hence, our model assumes that the number of ions
in the system is constant while the number of electrons
may decrease because of the electron absorption by the
grain. This indicates that the mean electron density in
the system may become substantially lower than theion
density. The amount by which the electron density
decreases can be estimated using the ratio of the grain
charge to the number of ions in the system. The situa-
tion when the electron density is substantially lower
than the ion density corresponds to a plasma with dust
clouds or dust crystals. In our problem of the calcula-
tion of the grain charge fluctuations, a decrease in the
mean electron density did not change the Kinetic
parameters of the entire system because it was electri-
cally neutral. That thisis the case was checked by car-
rying out test simulations with amuch larger number of
plasma particles.

Figures 1 and 2 show how the charges of spherical
grainsof different radii and the number of electronsand
ions absorbed by them change with time. In all figures
presented in this paper, thetimeisnormalized to theion
plasma frequency w = 4Te’N, /M) (where M is the

mass of an ion), theion plasma period being T, = wi_l =
3.4 ns. The system evolution was followed over the
timet,=1.7 x 107 s, which was much longer than both
theion plasma period (2.14 x 10-® s) and the character-
istic time scale on which the grain was charged. For
convenience, all figures present the results obtained for
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Fig. 1. Time evolution of the charges Q of absorbing spher-
ical grains with the radii r = (1) 0.25, (2) 0.5, (3) 1, and
(4) 2 pmin anonmoving two-temperature plasmawith T, =
140 eV.
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Fig. 2. Timeevolution of the number of (1) electronsand (2)
ions absorbed by spherical grainswith the radii r = (a) 0.25
and (b) 2 um in anonmoving two-temperature plasmawith
T; = 1/40 eV. The dashed curves are calculated from the

dependence Q(t) = SJy (t).
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Fig. 3. Deviation AQ of the charge of an absorbing spherical
grain with the radiusr = 0.25 um from its mean chargein a
nonmoving two-temperature plasmawith T; = 1/40 eV. The

solid curve shows the deviation of the grain charge from its
mean value, the dashed curve is the approximation of this
deviation by formula (11), and the dotted curve shows the
deviation of the calculated grain charge from approximating
dependence (11).

aninitial timeinterval comparable with the characteris-
tic period of the grain charge fluctuations.

Figure 1 illustrates the results of four series of com-
putations, specifically, thetime evolution of the charges
of initially uncharged spherical grainswith the radii r =
0.25, 0.5, 1, and 2 um (the larger the radius of the grain,
the larger the charge acquired by it). Theinitial number
of ionsin the system was taken to be 15000 (this num-
ber was constant in the course of arun), and the initial
number of electrons was also taken to be 15000 (this
number changed in the course of arun); on the whole,
the system always remained electrically neutral. The
size of the computation region (the cube edge) was
19 pm.

Figure 2 shows how the number of electrons and
ions absorbed by spherical grainswith theradii r =0.25
and 2 um changesin time. The dashed curves were cal-
culated from the dependence Q(t) = SJyt, following
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from formula (4). The number of absorbed electronsis
always larger than the number of absorbed ions.

Figure 3illustratesthe way of determining the mean
grain charge, the amplitude of grain charge fluctua-
tions, and the characteristic fluctuation time. The plots
in Fig. 3 were obtained in the calculations of the evolu-
tion of the charge of agrainwith theradiusr = 0.25 pum.
The solid curve shows how the grain charge deviates
from its mean value astime el apses, the dashed curveis
the approximation of this deviation by formula (11),
and the dotted curve refersto the deviation of the calcu-
lated grain charge from approximating dependence
(12).

An interesting effect revealed in simulations is that
the charge of a grain with the largest radius increases
nonmonotonically. An analysis of the time evolution of
the ion current shows that this nonmonotonic behavior
stems from the fact that the relaxation time of the
screening ion cloud around the grain islonger than that
of the grain charge. Accordingly, the larger the steady-
state grain charge, the more pronounced this effect.

Table 1 presents the results of an analysis of the cal-
culated data and the corresponding theoretical results.
Note that the cal cul ated fluctuation timeis much longer
than the theoretically predicted time (it may be even
said that the calculated time is anomalously long,
because it substantially exceeds the calculation error).
A detailed analysis of this circumstance goes beyond
the scope of our study. Note only that the fluctuation
time differs, in principle, from the time during which
the grain charge relaxes to its steady-state value (see
also [14]); this difference was, in fact, revealed in our
numerical experiments, in which the grain charge
relaxation was found to be nonmonotonic.

5. RESULTS FROM SIMULATIONS
OF A MOVING PLASMA

Here, we consider the results obtained for amoving
plasma, which is most often encountered in experi-
ments. The formulation of the problem was analogous
to that described in the previous section, the only differ-

Table 1. Parameters of the charging of grains of different sizesin a two-temperature plasma with T; = 0.025 eV: the mean
grain charge and its mean sguare deviation from the approximating curve, the fluctuation times obtained numerically and
those obtained theoretically for aMaxwellian plasma, and the height of the potential barrier

R, pm

Mean charge Q

Charge fluctuations o (numerical calculations)
Charge fluctuations o (calculated by (10))

Cy (calculated by (9))

Cy (calculated by (10))

Charge relaxation time 1, ns (calculated by (11))
fluctuation time 1, ns (calculated by (6))
Potential barrier ¢, V

0.25 05 1 2
556 1172 2517 5157
10.5 174 271 31.2
115 16.4 264 331
0.446 0.507 0.528 0.434
0.488 0.479 0.465 0.461
17.6 17.9 16.8 11.9
6.7 3.2 15 0.75
321 3.38 3.63 3.72
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Fig. 4. Time evolution of the charges of absorbing spherical
grainswith theradii r = (1) 0.25, (2) 0.5, (3) 1, and (4) 2 um
in a moving two-temperature plasmawith T; = 1/40 eV; the
kinetic energy of the directed ion motion is2 eV.

ence being that each ion was assigned aninitial directed
velocity corresponding to the kinetic energy K; = 2 eV.
The remaining physical and computational parameters
were the same as those in simulations of a nonmoving
two-temperature plasma.

In analogy with Fig. 1, Fig. 4 illustrates the results
from cal culations of thetime evolution of the charges of
initially uncharged spherical grains with the radii r =
0.25,0.5, 1, and 2 um.

In analogy with Fig. 2, Fig. 5 shows the time evolu-
tions of the number of electrons and ions absorbed by
spherical grains with the radii r = 0.25 and 2 pm,
respectively. The dashed curves were calculated from
the dependence Q(t) = Siyt, following from formula
(4). The number of absorbed electrons is always larger
than the number of absorbed ions.

Table 2 summarizes the results of an analysis of the
calculated data. The fluctuation times were calculated
from formula (6) for T, = 1 eV, because the mean
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Fig. 5. Time evolution of the number of (1) electrons and
(2) ions absorbed by spherical grains with the radii r =
(a) 0.25 and (b) 2 um in a moving two-temperature plasma
with T; = 1/40 eV; the kinetic energy of the directed ion
motion is 2 eV. The dashed curves are calculated from the
dependence Q(t) = S t.

Kinetic energy of Maxwellian ions at the grain surface
isequal to

00 00

(KO = J'vfM(v)Kdv/J'vfM(v)dv = 2T,
0 0

Table2. Sameasin Table 1, but for amoving plasmawith theion kinetic energy K; = 2 €V, corresponding to argon atoms

R, pm 0.25 05 1 2
Mean charge Q 751 1590 3276 7084
Charge fluctuations o (numerical calculations) 9.9 19.7 234 334
Charge fluctuations o (calculated by (10)) 121 17.2 24.3 345
Cy (calculated by (9)) 0.352 0.494 0.408 0.396
Cy (calculated by (10)) 0.441 0.430 0.425 0.410
Charge relaxation time 1, ns (calculated by (11)) 30.3 154 89 5.9
fluctuation time 1, ns (calculated by (6)) 28.3 13.6 6.7 32
Potential barrier ¢, V 4.33 4,58 4.72 5.10
PLASMA PHYSICS REPORTS Vol. 28 No. 11 2002
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where fy(v) = vZexp(-mv?/2T) and K(v) = mv?/2.
Accordingly, the energy of ionswith the kinetic energy
K; =2 eV isequal to the mean kinetic energy of anion
flux with T, = 1 eV.

Note that the computed grain-charge fluctuation
times agree fairly well (within a factor of about two)
with the theoretically predicted times, in contrast to the
case of anonmoving two-temperature plasma, in which
the calculated fluctuation times differ from those
obtained theoretically from formula (6) by more than
one order of magnitude.

Since the accuracy of the calculations of the ampli-
tude of the grain charge fluctuations depends on the
ratio of the time during which the grain charging pro-
cess is followed to the fluctuation time, the computa-
tional errors are the largest for small grains, for which
the charge fluctuation times are the longest.

Presumably, numerical errors in determining the
fluctuation times for large grains are also associated
with the fact that, in the computational scheme used in
our simulations, the number of electrons becomes com-
parable with the grain charge number; as a result, the
electron density becomes substantially lower than the
ion density.

6. CONCLUSION

Theresultsof our numerical simulations can be used
to analyze the kinetic parameters of the grain charging
processes in plasmas, to check theoretical models, and
to model the processes occurring in laboratory experi-
ments. The PIC numerical method developed here
makes it possible to investigate a wide scope of prob-
lems associated with the charging of dust grains and
their behavior under various conditions in dusty plas-
mas. In particular, we have calculated the time charac-
teristics of the relaxation of the grain charge and the
amplitude of its fluctuations as functions of the grain
size and the parameters of a nonmoving and moving
plasma. These results are of interest for predicting the
processesin experimental devicesand, in particular, for
analyzing the problems associated with the stability of
the levitation of dust grains.
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Abstract—Characteristics of apositive transient coronadischarge near thetip of atall solitary grounded object
in the electric field of athundercloud are studied anaytically and numerically. The time evolution of the dis-
charge current and the space distribution of the total electric field are simulated for different growth rates of the
external field and the dimensions and geometry of the stressed electrode. The effect of aerosol ionsis shown to
be negligible at ashort duration of the corona. The devel oped simplified analytical approach agreeswith numer-
ical simulations. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Both the processes in a thundercloud and those at
ground level are of interest in studies of discharge phe-
nomena in a strong atmospheric electric field. On the
ground, an upward leader can initiate upward lightning
or attach to downward lightning. Quasi-steady corona
discharges characterized by much lower current densi-
ties are also important. Flowing through a large area
and for along time (minutes), a relatively low corona
current saturates the atmosphere with electric space
charge. The injected charge changes the distribution of
the electric field near the ground and affects the condi-
tions of the initiation and development of an upward
leader near different tall objects, including lightning-
rods and protected structures[1, 2]. In particular, thisis
supported by the observations [3] that it is easier to ini-
tiate triggered lightning from a high-velocity rocket
lifting a grounded wire than lightning from a stationary
object of the same height. Inthe former case, thereisno
shielding effect from the space charge, because, a a
velacity of about 100 m/s, the rocket advances the ions
injected by the corona discharge near the rocket tip. In
contrast, a corona discharge near the tip of a stationary
object has time to form a cloud of space charge above
it. Therefore, to study corona discharge near a tal
object in astrong atmospheric electric field is of funda-
mental and applied significance.

Studies of corona dischargesin the atmosphere usu-
aly consider the formation of the total space charge
over alarge area of the earth surface[4, 5]. In this case,
the discharge is ignited at the extremities of a great
number of relatively low grounded objects (twigs of
trees and bushes, grass, etc.) and is characterized by a
low current (<1 pA for a solitary object). These phe-

nomena can be simulated by using one-dimensional
models in which the sources of the corona current are
averaged over alarge area and an effective atmospheric
electric field of coronaignition is introduced.

The purpose of thiswork isto study the peculiarities
of a positive corona discharge near the tip of tall soli-
tary objectslike towers, masts, and lightning-rodsin the
electric field of a thundercloud. Here, as distinct from
previousworks|4, 5], the system under considerationis
a two-dimensional one and the discharge current can
reach ~1 mA, leading to a density of injected charged
particles greater than the unperturbed density of atmo-
sphericions by 3-5 orders of magnitude. Our work dif-
fersgreatly also from laboratory studies[6] of acorona
discharge in much shorter gaps, where the process
reaches a steady state very quickly. In athundercloud—
ground gap, the corona discharge is a fundamentally
unsteady process. First, the external electric field varies
with time and alightning stroke regainsitsinitial value
only after about 1-10 s. Second, the discharge has no
time to reach a steady state because the front of the
space charge does not reach the thundercloud in atypi-
cal period of time between lightning strokes during an
intense thunderstorm.

Analytical and numerical methods were used in this
work to study the transient regimes of a corona dis-
chargeintheelectric field of athundercloud. An analyt-
ical approach establishes the general relationships in
the considered problem, which includes many parame-
ters. However, an analytical solution can be obtained
only by using significant simplifications. A numerical
simulation can caculate any characteristic of the
corona discharge and test the validity of the analytical
theory; however, at the scale of a thundercloud—earth
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gap, it needs an inappropriately long running time.
Undertaking the present study, we tried to combine the
advantages of analytical and numerical approaches.

2. SIMPLIFIED ANALYTICAL DESCRIPTION
OF THE TRANSIENT CORONA DISCHARGE

A quasi-steady glow coronaisignited at a steady or
slowly varying (for seconds) applied voltage. In this
type of discharge, ionization occurs only in athin layer
near an €l ectrode and the voltage drop along theioniza-
tion layer is much less that the total voltage drop along
the discharge gap. In our physical model, theionization
zoneis assumed to coincide with the stressed el ectrode
surface and is considered as an ion source of unlimited
productivity. As aresult, the electric field E(r,) (where
r, is the electrode radius) on the electrode surface is
maintained at the threshold field E, which is deter-
mined from the Townsend criterion for self-sustained
discharge ignition. Observations and simulations of a
corona discharge confirm the stabilization of the elec-
tric field on the electrode surface with a high degree of
accuracy [6, 7].

The current—voltage characteristic of a corona dis-
charge can be obtained from the expression for the den-
sity j of the discharge current,

j(r) = pE(r)en;,
and Poisson’s equation for electric field,
divE(r) = ple,. 2)

Here, e is the charge of asingly charged ion, n; and
are the ion density and mobility, p is the space charge
density, and g, is the permittivity of a vacuum.

Equations (1) and (2) with the boundary condition
E(r,) = E = const can be analytically solved for asteady
process, when the current and voltage are timeindepen-
dent. This givesthe simplified Townsend formula[8, 9]

i =BUU - Uy

for the current—voltage characteristic of the coronadis-
charge. Here, U, isthe voltage of coronaignition and B
is the proportionality constant, which linearly depends
on the ion mobility and changes with gap geometry.

In order to theoretically describe the transient
regime of the corona discharge, it is necessary to take
into account the evolution in time of the electric field
due to the electric charge injected into the gap. The
problem reduces to a system of integro-differential
equations that cannot be solved analytically even for
the simplest geometry of the gap. The sole exceptionis
the transient corona discharge at a constant current
[10]. To redlize this regime, the applied voltage U(t)
must risein timein aspecific way. From the current sta-
bilization and the boundary condition E(ry) = E =
congt, it follows that the distribution of space charge
and electric field do not vary in timein the gap between
the stressed el ectrode and the front of the space charge;

1)
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i.e., each new charge injected into the gap is spent on
charging new regions during the propagation of the
front of the space charge. Under these conditions, the
problem was solved analytically for coaxial spheres
and cylinders and for plane electrodes [10].

Interest in this abstract problem stems from the fact
that a similar regime of corona discharge can occur at
an arbitrary, sufficiently slow evolution in time of the
applied voltage, when the relationship between i (t) and
U(t) at any instant depends only slightly on the preced-
ing temporal evolution of the voltage. In this case, the
electric field distribution E(r) and space charge distri-
bution p(r) follow the slowly varying current. At any
instant, these magnitudes correspond to an instanta-
neous value of i(t) asthough the current were constant.
This quasi-stationary model is also useful in establish-
ing the basic relationships between the current and
other parameters of the transient corona discharge. As
we will see subsequently, this simplified approach
agrees quantitatively with a more consistent numerical
simulation under some practicaly important condi-
tions. Although this model was previously described in
[2, 10, 11], we will present its main points, which will
facilitate the interpretation of the results obtained in
this paper.

We consider a solitary spherical stressed electrode
with the radius r,,. With the boundary condition E(r) =
E, = const, the electric field at the front of the space
charge with the radiusr; is given by

2

r q .
E(ry) = 5E+—25, qyp = it.

I ATEy ¢

3)

Here, i isthe discharge current and t isthe current dura-
tion time. The first term in formula (3) is the electric
field of the electrode charge and the second one is that
of the space chargein the gap. Note that, if the quantity
Osp(r) is treated as the space charge inside a sphere of
radiusr, then formula(3) al so definesthe distribution of
the electric field in the space charge layer:

for . Gsp(r)
E(r) = SE + ==,
r 4TUE,r

In the case of a corona with a constant current, the
charge behind the front of space charge does not
change; hence, we have qg,(r) = it(r), where t(r) isthe
time during which the front propagates to the radiusr.
Sincetheionsat the front of space charge drift with the
velocity v = dr;/dt = pE(r;), where pn istheion mobility,
integration over time with alowance for formula (3)
yields the following expression for the front radius:

.2
It
ro(t) = er3+3uB§Eit+m%. 4
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For awell developed discharge (r;(t) > r,), expression

(4) reducesto
_ /3uit2
I’f(t) ~3 8]'[&) .

With alowance for the above relationships, it iseasy to
find the voltage across the gap as a function of the
coronacurrent i and the time t during which the corona
exists. Indeed, for awell developed corona, we have

(&)

U(D) = [E()dr=U,+ [Eg(r)er + L

4Trer () ©)

Here, the first term on the right-hand side describes the
contribution from the constant electrode charge (U, =
roE;); the second term describes the voltage drop across
the space charge layer,

(1) _ _it(r) .
4T[£0I‘2 4n§)r2’

Eop(r) =

and the third term describes the voltage drop across the
regionr > r;, which is yet free of space charge. Substi-
tuting function t(r), which can be found from formula
(5) at r;=r, and integrating Eq. (6) over r, we obtain

9i’t
UM = U+ g
8 e

For low, but arbitrary voltage variations, the last expres-
sion can be rewritten in the form

i = 2f$‘)ﬁ(u —uy)*

Numerical calculations [2] with allowance for time
dependence of the discharge current show that, in cases
that are of interest from the practical standpoint, the
inaccuracy introduced by the assumption of a constant
current, used in deriving formula (7), is no higher than
30%. Note that formula (7) is applicable only to awell
developed corona; however, in applied problems con-
cerning atmospheric discharges, of most interest isjust
thisregime of awell devel oped corona capable of satu-
rating large volumes of air above the earth surface.

An analysis of formula (7) leads to the following
conclusions. First, the current of the transient corona
discharge depends on theion mobility asi ~ u'?; itisa
weaker dependence than that for a stationary corona,
for which this dependence is close to linear [8]. This
stems from the fact that the current in a transient dis-
chargeis controlled by the ion drift velocity v = pE(ry)
inthefront of space charge, whichisproportional to the
local electric field. The value of this field decreases
with increasing r;, which is longer for a higher ion
mobility [see formula (5)]. The weakening of the
dependencei () isfavorable for anumerical simulation

)
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of long transient processes in corona discharge, when
ion—molecule reactions leading to avariation in theion
mobility can be important. The obtained weak depen-
dence can alow a simplification of ion kinetics.

Second, in order to maintain aconstant or rising dis-
charge current, it is necessary to increase the applied
voltage. Differentiating formula (7) with respect to U
givesthe necessary condition for the transient corona at
anondecreasing current

_du,2
Av = at 3t ®)

The critical value of A, decreases with time tending to
zero. From formula (7), it followsthat, at alinearly ris-
ing voltage difference U(t) — U, = Ayt, the current of a
transient corona also increases linearly and that, at a
fixed applied voltage U, the current decreasesintime as
i(t) ~t12

It also followsfrom formula(7) that avariation in the
electrode radius affects the current of the transient dis-
charge only through the ignition voltage U.. When the
values of U and U, are not too different, this effect is
strong because the current is proportional to (U — U,)%?
(instead of U — U,, as in the case with a stationary
coronadischarge). At afixed voltage, the discharge cur-
rent can be affected only through the variation in U.. In
this case, it is more reasonable to change the threshold
field E;, rather than the electrode radius.

It should be noted that only the simplest geometry of
a solitary spherical electrode, whose field is propor-
tional to r~2, was analyzed analytically. In order to
study the discharge for a more complex geometry, we
need to use numerical simulation. A numerical
approach should be used a so to test the applicability of
the simplified analytical method for a description of the
discharge with time-dependent current.

Finally, numerical calculations would be useful in
studying the differences between discharge on alabora-
tory scale and that in the cloud—ground gap. In the latter
case, the applied voltage is generally unknown and the
input parameter is the thundercloud electric field E, at
the ground level. This field induces an electric charge
opposite in sign to the thundercloud charge on the sur-
face of a grounded electrode, and the corona discharge
is ignited in the electric field of the induced charge.
Assuming that the undisturbed value of E, does not
vary noticeably over the height from the ground to the
electrode tip (thisis true because the distance between
the earth and cloud H,, is much higher that the electrode
height h), we have the potential U, = Ejh near the elec-
trode tip. Inducing the charge in the grounded conduc-
tive electrode leads to zero potential of the total electric
field on the electrode surface. Hence, only a small part
(U, = Ejh) of the voltage drop along the cloud—earth
gap is used to maintain the electric field that initiates a
corona discharge. Nevertheless, the effective voltage
U, should not be directly identified with the value of U

(U-U,).
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informulas (7) and (8), especially at aconsiderabledis-
tance from the electrode tip, where the electric field of
the induced charge and that of space charge are compa-
rable with the external electric field E,. Numerical sim-
ulation will show the appropriateness of the simplified
analytical approach for the description of a transient
corona discharge.

3. SSIMULATION MODEL

The theory of transient coronadischarge is based on
Poisson’s equation (2) and the time-dependent continu-
ity equations

on.

d_tJ +div(ny,E) = S,
where n; and |; are the number density and mobility of
charged particles of species j, respectively, and Sis a
source term describing ion—molecule reactions that
affect the ion composition and, hence, the transport of
charged particles. The density of space charge in Pois-
son’'sequationisp = ez n;.

Theion composition in atmospheric air isacomplex
one [12]. Therefore, it is of importance to develop a
proper model of ion kinetics which could quantitatively
describe the processes in a transient corona discharge
and be sufficiently simple in order to avoid time-con-
suming calculations.

A numerical analysis of ion—molecular reactionsin
humid air under standard conditions shows that the
dominant species of positiveions changesin time (after
producing a primary ion) in the following way [13-15]

N, — N; — O, — O, — O, H,0
— H;0* — H;0"H,0 — H;0*(H,0),
— H;0"(H,0); — H;0%(H,0),
— H;0"(H,0); — H;0"(H,0) — A™.

©))

Here, A* denotes aerosol and NH, - X - Y ions.

It isof interest to understand how the changesin the
ion composition affect the ion mobility, which deter-
mines ion transport and electrical conductivity in a
corona discharge. Reliable measured mobility data are
now available for about 300 ion—gas combinations [12,
16], but thereislittle or no information for ion mobility
measured in air. Therefore, in order to obtain the mobil-
ity data for given ion species in air, one usualy uses
simple models [12] that agree well with the available
experimental datain pure gases.

Estimates based on the simple models show that the
evolution in time of the composition of light ions in
ambient air leads only to a25% variation in the average
ion mobility. Owing to aweak sensitivity of the mobil-
ity of light ions to the ion mass, it would be reasonable
in a study of a corona discharge to consider only one
light ion species with a mass and mobility correspond-
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ing to an H;0*(H,O), ion. In addition, this simplifica-
tion is judtified because all light ions, except
H;0*(H,0),, exist at t < 107 s, when the drifting ions
can cover only ~1 cm. Therefore, agood approximation
to the positive-ion kinetics is to consider only
H;0*(H,0), ions and aerosol ions and to take into
account only the reaction

H,0*(H,0), + B —= A*,

where B is a neutral aerosol particle. This approxima-
tion will be used in our simulation.

The mobility of the H;O0*(H,0), ions is assumed to
be Y. = 1.5 cm? V-! s, The kinetics, properties, and
density of aerosol ionsin ambient air are poorly under-
stood. Therefore, in thiswork, the effect of aerosol ions
ismodeled by asingle component A* with the effective
ion mobility p,=2.3 x 10 cm?V~! s and the rate coef-
ficient k,= 1.5 x 10° cm? s™! for the conversion of light
ions into aerosol ions; i.e., we assume S= —k,nn,, in
Eq. (9) for thedensity n; of light ionsand S= k,n; n;, in
Eqg. (9) for the density n;, of aerosol ions. A similar
kinetic model was used previoudly in [4, 5] to simulate
the formation of the space charge layer above the
ground.

4. ALGORITHM OF THE SIMULATION MODEL

A simulation was carried out for two types of
grounded electrodes; these are a grounded rod with a
hemispherical tip and a grounded hemisphere that is at
a height h above the ground. The electric field from a
charged hemisphere decreases more strongly with dis-
tance than that from arod electrode.

The wave front of the charge, which isinjected into
the gap by a stressed electrode, does not remain geo-
metrically similar to the electrode surface during the
front propagation. Therefore, in a strict sense, the sim-
ulation of a corona discharge near the suggested elec-
trode must be a two-dimensional one. However, any
two-dimensional computational model is very time-
consuming when a corona discharge is considered in a
gap many tens of metersin length. From estimates, we
obtain the number N ~ 100 of nodes in the one-dimen-
siona computational domain, and N ~ 10* in the two-
dimensional domain.

A computational time step hasto be shorter or equal
to the time of ion drift along the minimum computa-
tional space step

At < %,
wherew istheion drift velocity. Intheimmediate vicin-
ity of the stressed electrode, where w = PE;, the mobil-
ity of lightionsisp = 1.5 x 10* m?V~*s?, and E =
3 MV/m, we have At =2 x 10 s under normal condi-
PLASMA PHYSICS REPORTS  Vol. 28
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tions. Hence, in order to simulate acoronadischarge for
t~ 1-10 s, it is necessary to cycle a computational loop
of N, = t/At ~ 2 x (10°-107) time steps, each for every
space mesh and ion species considered in the used
kinetic model.

Thereislittle sensein performing thistime-consum-
ing calculation for those rough input parameters that
can be used at present to describe thunderstorm activity
(for instance, the evolution in time of the undisturbed
electric field in the cloud—ground gap). Our model of
coronadischarge usesthe only simplifying assumption;
it is assumed that the space charge layers created near
the hemispherical electrode surface hold a hemispheri-
cal shape when expanding from the electrode. This
would be precisely true when the vector of the electric
field strength E and the radius vector r drawn from the
center of the hemisphere have the same direction and
when the absolute value of the electric field depends
only on the absol ute value of the radius vector. The con-
sidered condition is adequately satisfied at r << h; some
violation of thiscondition away from the electrodeis of
little importance.

The considered assumption significantly simplifies
the calculation by reducing the problem to one-dimen-
siona one. Now, to obtain the average propagation
velocity of the hemispherical charge layer, we need
only to calculate an electric field at some point of this
layer (preferably on avertical axis). It isalso important
that, in this case, there is no need to numerically solve
Poisson’s equation. The electric field at any point of the
gap may be imagined as a superposition of the electric
fields created by the charge of the grounded electrode
(including the induced charges), by the space charge
layersin the gap, and by the image of these chargesin
the earth. Analytical formulas can be suggested to cal-
culate every component of the field (see the Appendix).

The calculation of the induced discharge on a
grounded electrode (especialy on a rod electrode) is
not a simple matter. Estimates show that an efficient
tool for solving this problem is the method of equiva-
lent charges[17]. We assume alinear dependence of the
charge per unit length of the rod on the distance z from
the earth surface (z= h): 1(2) = a,z It is also assumed
that the charge of the rod tip q;, being a point charge, is
located in the center of the rod tip. A test calculation
shows that an error in an electric field introduced by
these assumptions under the considered conditions
does not exceed 2—3% in comparison with afully con-
sistent calculation demanding a tens of times longer
computational time. To calculate the tip charge g, and
the proportionality factor a, in the expression for 1(2),
at every calculation step we need to solve the system of
equations, which gives the potential on the rod tip (a
zero potential in our case) and at some different point,
e.g., inthe middle of therod at z= h/2 (see the Appen-
dix). After obtaining the induced charge, we calculate
the electric field on the boundaries of the layers of
space charge in the gap, the velocity of the boundaries
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Density, cm™
108

107

t=5s

100 Light ions

Fig. 1. Space distribution of light and aerosol ions over the
grounded rod with a height of h = 50 m and radius of ry =
5 cm. The external eectric field increases linearly from the
magnitude corresponding to the ignition threshold to the
maximum value of Ej ., =100 V/cm for t; = 5 s and then

does not change.

(separately for light and aerosol ions), and a new elec-
tric charge that isinserted into the gap from the stressed
electrode at the next computational step (see the
Appendix). Simultaneously, we correct the ion compo-
sition, which changes in time in accordance with the
accepted kinetic model.

The described algorithm is a stable one for up to a
few minutes for the measured rise rates of the atmo-
spheric electric field.

5. RESULTS OF NUMERICAL SIMULATIONS
5.1. Effect of lon Composition

Numerically, we studied the effect of aerosol ionson
the characteristics of a corona discharge in the atmo-
spheric electric field. The undisturbed density of aero-
sol neutral particles was assumed to be n, = 10° cm 3,
which is typical for urban regions. Figure 1 shows the
distribution of the densities of light and aerosol ions
with height at t = 5 and 10 s (time is counted from the
instant of coronaignition). The calculation was carried
out for a grounded rod electrode with a height of h =
50 m and radius of r, = 5 cm. A corona discharge was
ignited at the electric field E; = 34.5 kV cm™ near the
rod tip. This was obtained when the externa thunder-
cloud electric field rose up to E,. = 53.5V cm™. We
assumethat the external field riseslinearly up to avalue
of Eymax = 100 V/em for 5 s after corona ignition and
then is constant.
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Fig. 2. Evolution in time of the discharge current and
injected charge when aerosol ions are taken into account
(solid curves) or neglected (dashed curves). The curves cor-
respond to the same conditions asthose in Fig. 1.
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Fig. 3. Ratio of the calculated discharge currents at theion

mobilities g = 3.2 and 0.8 cm? V~! s, The curve corre-
sponds to agrounded rod withh=50mandry =5 cm. The

external electric field increases linearly from the magnitude
corresponding to the ignition threshold to the maximum
value of Ej .« = 100 V/cm for t; = 1 s and then does not

change.

It can be seen that the density of aerosol ions is
much lessthan the density of light ions. It isevident that
the density of aerosol ions cannot exceed the density of
neutral aerosols, which is equal to 10° cm, whereas
the maximum density of light ionsis around 107 cm=.
In addition, the effect of the removal of aerosol parti-
clesfrom the region near the rod tip is obtained. Owing
to the upward drift of aerosol ions, the length of the
aerosol-particle-free region exceeds 1 matt = 10 s.
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Figure 2 shows the evolution in time of the dis-
charge current i(t) through the electrode and of the
space charge g(t). The calculations were carried out by
considering (solid curves) and neglecting (dashed
curves) aerosol ions. Taking into account aerosol ions
only changes the peak value of the current by 8% and
the value of theinjected charge at t = 10 sby 11%. This
is due to the removal of aerosol particles from the
region near the stressed electrode and due to the low
density of neutral aerosols. From this result, it follows
that under the considered conditions the effect of aero-
sol ions can be neglected. However, this is valid only
for ashort period of time. Our calculation showed that
aerosol ions become important when the corona occurs
for tens of seconds. In this case, the radius of the
injected space charge is tens of meters and the density
of aerosol ions and that of light ions are of the same
order of magnitude. Taking into account aerosol ions
decelerates an increase in time of the discharge current;
this changes the discharge current by about 25% at t =
30sand by 100% at t =60 s.

Numerical calculations were also used to verify the
dlight dependence of the current of transient coronadis-
charge on theion mobility (i ~ u'/?), which followsfrom
the simplified analytical approach. Figure 3 shows a
relative change in the discharge current at a fourfold
increase in the ion mobility (we varied y from 0.8 to
3.2 cm? V1 7). The discrepancy between the calcula
tion and the analytical approach is only within 10% at
t < 1 s. Thereafter, when the externa electric field is
time independent, the ratio of the currents correspond-
ing to p = 3.2 and 0.8 cm? V s increases, but no
higher than 15,/1,¢ = 2.7 (Fig. 3). However, the linear
dependence of the discharge current on the ion mobility
which follows from the Townsend formula for a steady
regime is not obtained in atransient corona discharge.

5.2. Dependence of the Discharge Current
on the Thundercloud Electric Field

Figure 2 gives some information about the relation
between the discharge current and the external electric
field. The current increases with increasing thunder-
cloud electric field and decreases immediately after the
field stabilization. The curvei(t) showsabend for alin-
early rising external electric field Ey(t). Analytical for-
mula (8) gives approximately alinear time-dependence
of the current of transient corona discharge for the lin-
early rising voltageimpulse U = Ajtat U > U... Figure 2
shows the same for the discharge current through the
grounded rod electrode at the linearly rising externa
electric field E, = E,. + Agt, where E, is the undis-
turbed electric field of thundercloud and Az = (B jax —
Eqo)/t: is the rate of the field rise up to the maximum
value E),... A linearly proportional relationship
between the current of a transient discharge and lin-
early rising thundercloud electric field is obtained over
awide range of parameters.
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Fig. 4. Evolution in time of the discharge current and the
exponentialy rising external electric field. The curves cor-
respond to the same electrode as that in Fig. 1.

When the value of E; rises with a decreasing rate,
the current of a transient corona discharge recovers
from the rise earlier than the electric field does, as fol-
lows from formula (8). This is supported by Fig. 4,
which shows the results of the calculation for the expo-
nentially rising thundercloud electric field Ey(t) = E,. +

(EO max EOC)(l - e_Bt)

At a constant thundercloud electric field, the dis-
charge current and the rate of its change decrease with
time. Figure 5 showsthat, in the timeinterval from 1 to
9 s, the current decreases from 290 to 100 pA in agree-
ment with the analytical approach, which givesi ~ t'?
[seeformula (7)].

Figure 6 compares the evolution in time of the dis-
charge current at the fixed value of E;,,,, =200V cm
and different values of the rise time. The calculation
carried out for arod el ectrode with aheight of 50 m and
radius of 5 cm shows that, at E,,,,, = 200 V/cm, the
peak current decreases from 290 to 120 pA asthevaue
of t; increases from 1 to 10 s. A decrease in the current
at afixed instant of time with increasing t; is more pro-
nounced. Thus, for t = 1 s, the coronacurrent is 290 A
for the shortest front, and it is only 15 pA for the long-
est front. These results qualitatively agree with formula
(7) which shows that the peak discharge current is pro-

portional to t}m when the voltage rises linearly to the
amplitude value, whereas the current at a fixed instant

is proportional to t}3'2 because
Ut) = U + (U, — U/t
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Fig. 5. Evolution in time of the discharge current for the
case when the external electric field increases linearly from
the magnitude corresponding to theignition threshol d to the
maximum value of Ej .« = 200 V/em for t; = 1 s and then

does not change. The electrode parameters are the same as
inFig. 1.

The effect of the maximum thundercloud electric
field on the discharge current is aso pronounced. This
follows from Table 1, which shows the results of the
calculation for arod electrode with aradius of 1 cm and
height of 30 m. Under the considered conditions, the
corona discharge was ignited in the external field E;. =

Current, A
300

250
200
150

10
100

50

1 ]
0 2 4 6 8 10
Time, s

Fig. 6. Evolution in time of the discharge current for the
case when the external electric field increases linearly from
the magnitude corresponding to theignition threshold to the
maximum value of Ey .« = 200 V/cm for different rise

timest; . The electrode parameters are the same asin Fig. 1.
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The effect of the maximum thundercloud electric field on the discharge current
Eg max, V/cm 200 140
Eo max — Eoe, V/CM 177.1 117.1
I max» HA 163 86.4
[,EO max E0d:|3/2
0200 —E_ £y, U 1.0 0.536
i max! 1max (Eo max = 200) 1.0 0.530

80 53 40.6

57.1 30 17.7

294 121 6.0
0.181 0.0697 0.0316
0.180 0.0742 0.0368

23 V cm?, which increased linearly from E, to the
peak value E, ,,, over 1s.

The discrepancy between the calculation of the
maximum discharge current and formula (7), according
to which the maximum discharge current is propor-
tional to (E; .x — Ego)¥?, iswithin only 20%. Thus, the
simplified analytical approach gives not only qualita-
tive relationships between the external field and corona
discharge current in the transient regime, but can make
guantitative estimates as well.

5.3. Effect of the Dimensions and Geometry
of the Stressed Electrode

The intensity of a corona discharge increases with
increasing height h of the stressed electrode and
decreasing itsradius r,,. The first parameter affects the
effective voltage U, = Ejh of the external electric field,
whereas the latter parameter affects the ignition field
E,. and, consequently, the ignition voltage U, = E,:h.

Current, pA
10° ¢

107

10"t

60

| |
80 100
Rod height, m

Fig. 7. Discharge current as afunction of therod height h at
h/ro = 1000 for t = (1) 1 and (2) 2 s. The external electric

field increases linearly from the magnitude corresponding
to the ignition threshold to the maximum value of Ey ., =

200 V/cm for t; = 1 s and then does not change.

There is no geometrical similarity in the results of the
calculation of discharge current at different dimensions
of the stressed electrode.

Figure 7 shows that, at a fixed value of h/r, and a
fixed externa electric field, the discharge current
increases with increasing the el ectrode height; the cur-
rent increases from 3.5 to 810 pA as the height of the
grounded electrode increases from 2 to 100 m at h/r, =
1000, E;,.x = 200 V/cm, and t; = 1 s. Such a strong
dependence i(h) for geometrically similar electrodesis
caused by aweak effect of therod radius on the current;
a variation in the rod radius affects the current only
indirectly through a change in the value of theignition
field E;. According to Peek’s formula, theignition field
depends only dlightly on the rod radius in the practi-
caly interesting range (r, > 1 cm) [9].

It is of interest to compare the characteristics of a
transient corona discharge near a rod €electrode and
those near a hemispherical electrode of the same
dimensions because the electrode geometry affects the
nonuniformity of the electric field distribution in the
gap. Figure 8 showsthat, under the same conditions, the
discharge current for a hemispherical electrode is dis-
tinctly higher than that for arod electrode. At t; =5,
we have atwofold difference in the values of the maxi-
mum discharge current and space charge. The higher
discharge current in the case of a hemisphere electrode
is explained by a twofold increase in the ignition field
E, (a8l other things being the same) and by a more non-
uniform distribution of the externa electric field in
comparison with the case of arod e ectrode.

In order to study these factors separately, the corona
discharge near arod electrode was simulated under the
assumption that the discharge is ignited at the external
electric field E,;, which correspondsto the ignition of a
discharge near a solitary hemispherical electrode. In
practice, this can be obtained through a decrease in the
rod radius (from 10 cm to 4.9 cm) or through a change
in the local geometry of the rod tip (for instance, by the
mounting of short needles that rises the electric field).
A local heating of the thin air layer in the immediate
vicinity of the electrode can also be used because the
threshold field E; and, consequently, E,. are approxi-
mately proportiona to the gas number density which
decreases with isobaric heating. By using the different
ways of decreasing the value of E,. down to that corre-
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sponding to a hemispherical el ectrode, the calculations
gave the sameresult: the current from therod increases,
but it is 35—40% lower than that obtained for a solitary
hemispherical electrode. This discrepancy is due to a
more nonuniform distribution of the external electric
field in the case of a hemispherical electrode.

A solitary hemispherical electrodeis an abstraction.
A similar effect can be obtained by using a hemisphere
with theradiusr,, which is much greater than theradius
of its carrying rod r,.4. However, in this case, it would
be difficult to directly use such an electrodeat r,~ 1 m
because too high a voltage would be required for initi-
ating a corona. The problem can be solved if the igni-
tion electric field E,. would be decreased by the mount-
ing of sharp needles on the hemisphere surface. In this
case, a coronadischargeisinitiated in a higher electric
field near the needle tips. At arelatively uniform distri-
bution of the needles over the hemisphere surface, the
characteristics of the well developed corona discharge
will be close to those obtained for a smooth electrode at
the corresponding decrease in the value of the threshold
field. This engineering solution was proposed and suc-
cessively realized previously in [18].

5.4. Distribution of the Electric Field in the Gap
and near the Ground

It is known from the theory of quasi-steady corona
discharge that the distribution of the electric field in a
gap is smoothed under the action of the space charge.
Theelectric field in theimmediate vicinity of astressed
electrode equal s E; and does not change when the exter-
nal electric field E, increases. The space charge
“moves’ the region of a high electric field into the gap.
The scale of thisregion is controlled by the total space
charge, which is around afew mC and is a few orders
of magnitude less than the charge of a thundercloud.
Therefore, the dimension of the region in which the
injected space charge disturbs the electric field is of the
same order of magnitude as the height of a stressed
electrode and is much shorter than the cloud—-ground

gap.

Figure 9 shows the space distribution of the electric
field near the electrode. A ccording to the boundary con-
dition, the electric field equals E; (34.5 kV/cm in the
case under consideration) near the electrode surface. In
the absence of a corona, this field would be 80 kV/cm
due to the electric charge induced by an external elec-
tric field of 200 V/cm on a grounded rod with a height
of 30 m and radius of 5 cm. At t = 20 s, the injected
space charge was 0.8 mC and the front of the space
charge was at a distance of 85 m from the rod tip. The
injection of the charge smoothed the distribution of the
total electric field in the electrode region in which the
total field was egqual to the field in the absence of a
coronaalready at adistance of 1 mfromtherodtip. The
total electric field increased with the distance from the
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Fig. 8. Evolution in time of the discharge current and the
electric charge injected by a grounded rod electrode (h =
100 m, r = 10 cm) and a hemispherical electrode at the

samevalues of handr. The external electric field increases

linearly from the magnitude corresponding to the ignition
threshold to the maximum vaue of E; ., = 100 V/cm for

tf:SS.

Electric field, kV/cm
80r

60

Without corona

Distance, m

Fig. 9. Space distribution of the electric field over a rod
electrode (h = 30 m, ro = 5 cm) in the absence of a corona

and at t = 5 safter coronaignition. The external electricfield
increases linearly from the magnitude corresponding to the
ignition threshold to the maximum value of Ey .. =
200V/cmfor 5.

tip, and, at thefront of the space charge, it was 1.5 times
higher than the external electric field E,,.

In order to consider the effect of the injected space
charge on the éectric field at the ground level, the cal-
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Fig. 10. Electric field at the ground level asafunction of the
distance to the axis of a grounded hemispherical electrode
(h=50m,ry=1m)fort=(1) 5, (2) 10, (3) 20, (4) 30,
(5) 65, and (6) 120 s. The external electric field increases
linearly from the magnitude corresponding to the ignition
threshold to the maximum value of E; ., = 200 V/cm for

ts = 5 sand then does not change. The dischargeisignited at
E; = 1.47 kV/cm near the electrode surface.
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Fig. 11. Evolution in time of the injected electric charge.
The curves correspond to the same parametersasin Fig. 10.

culation was carried out for a solitary hemisphere. In
this case, we eliminated the shielding effect for a con-
ductive rod and studied the effect of the space chargein
the pure state. It was assumed that the discharge was
ignited in an externa electric field of ~30 V/cm near a
grounded hemisphere with a radius of 1 m due to an
increase in the electric field on local sharp elements.

ALEKSANDROV et al.

Clearly, this model fails to describe the distribution of
the electric field on a scale comparable in length with
the sharp elements. It is not important because the max-
imum size of the sharp elementsis at |east one order of
magnitude smaller than the hemisphere radius.

Figure 10 shows that the region in which an electric
field is decreased is comparable in length with the
height (50 m in the case under consideration) of the
mounting of the hemisphere. The shielding effect
becomes more pronounced as the injected space charge
increases. Figure 11 shows that most of the charge is
injected into the gap upon stabilization of the external
electric field over a period of around a minute in spite
of decreasing discharge current. Over this period of
time, the electric field in the center of an ion cloud is
halved. Over the second minute, this field decreases by
only 20%; i.e., the saturation is observed. A similar
decrease in electric field will be obtained aso for
ground-level objects placed in the neighborhood of the
stressed electrode.

It should be remembered that the calculation simu-
lates the injection of a space charge into the gap under
the assumption that the ion transport is controlled only
by the drift in the atmospheric electric field. Our simu-
lation shows that the greater part of the space chargeis
located in the region in which the total electric field is
much lower than 1 kV/cm; i.e., atypical ion drift veloc-
ity no higher than several m/s. Thisiscomparableto the
velocity of a moderate wind which can lead to along
lateral displacement of the charged cloud and to a great
change in the shielding effect for a given region on the
earth surface. The developed model does not consider
the influence of wind ion transport on the characteris-
tics of a corona discharge.

We studied only the positive polarity of the stressed
electrode. However, the transport properties of negative
ionsin ambient air are similar to those of positiveions.
Therefore, the characteristics of a corona discharge
near a stressed electrode in the electric field of athun-
dercloud are expected to be similar to those which were
obtained in this work for a positive discharge.

6. CONCLUSION

Our numerical simulations and a simplified analyti-
cal treatment of a positive transient corona discharge
near the tip of a high solitary grounded object in the
electric field of thundercloud give the following results:

At a short duration of a corona (t < 10 s), the effect
of aerosol ionsisnegligible and the density of light ions
injected by the corona into the gap is a few orders of
magnitude greater than the background ion density.
However, the effect of aerosol ions is important when
the discharge lasts for minutes.

The simulations demonstrate a weak dependence
(i ~ % instead of | ~ u for a steady corona) of the dis-
charge current on the ion mobility and an approxi-
mately linear time dependence of the current for thelin-
PLASMA PHYSICS REPORTS  Vol. 28
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early rising voltage impulse. At a constant thunder-
cloud electric field, the discharge current decreases
with time. The peak discharge current isinversely pro-

portional to t?‘s (wheret; isthe rise time of the external

field) at afixed peak value of the thundercloud electric
field; at afixed instant of time, the current is inversely

proportional to tfl'5. The peak value of the discharge

current is proportional to (Ey ... — Epo)'” (instead of
Eo max(Eo max — Eoo) fOr asteady corona), where E. isthe
threshold thundercloud electric field at which the
coronaisinitiated.

The intensity of a corona discharge increases with
increasing height h and decreasing radius r, of the
stressed electrode. The height parameter affects the
effective voltage U, = Eyh of the external electric field,
whereas the radius affects the ignition field E,. and,
consequently, the ignition voltage U, = E,ch. Under the
same conditions, the discharge current for a hemispher-
ical electrode is markedly higher than that for a rod
electrode. Thisis explained by an increase in the value
of E,. and by a more nonuniform distribution of the
external electric field in the case of a hemispherical
electrode.

The dimension of the region in which the injected
space charge disturbs an electric field is of the same
order of magnitude asthe height of astressed electrode.
Theinjection of the charge smoothesthe space distribu-
tion of the total electric field; as aresult, the total elec-
tric field islower near the electrode and higher at adis-
tance of 1 m. At a distance of tens of meters from the
rodtip, thisfield is50% higher than the external electric
field.

APPENDIX

The following expressions are used in the calcula-
tions.

The point electric charge g, located at height h above
the ground creates at the z-axis the electric field

G L 1
dng?  (oh+z)H

Ei(2) = (A1)

where the z-axis is pointing upward from the charge.

The electric charge distributed along arod creates at
its axis the electric field

_ % [2h(h+2z) , 2h D}
E,(2) = —‘[——In £+, (A2)
) A&l ohz+ 7 Uz 0
where 1(2) = a,z is the rod charge per unit length and
h>r,.
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A thin solitary uniformly charged hemisphere with
aradius Rand charge Q creates at the z-axis the electric
field

g
R {]

O
E(2) = Q a+
R + 7

4T[%22D

(A.3)
at (Z> R)v

£ = L5 R

ane, 2’ 0/R% + 7

a (z<R),

|

(A4)

where the z-axis is pointing upward from the hemi-
sphere center.

Thetotal potential (zero potential in our case) of the
tip of a grounded rod, which is determined by the tip
charge q;, the distributed surface charge 1(2) = a,z, the
corona space charge U, and the thundercloud e ectric
field (Uy(h) = hE,), can be written as

a.h rqy,..2h . 1 0
4”50[%'-+ hﬂlnﬁ_z} Tanet, 2herd) (As)

+Ug(h+rg) +Ug(h+r1p) = 0.

A similar equation for the point in the middle of the
grounded rod is written as

O‘_Th[md?» - h_1}+&mim
41g, Mo 41e, (BRI

+Uy(h/2) + Uy(h/2) = 0.

(A.6)

A thin, uniformly charged hemispherical layer with
an average radius R creates at the z-axis the potential

2
U = g -1 1+ 2

where the z-axis is pointing upward from the hemi-
sphere center and Q isthe total charge of the layer.

(A7)

The equation for the new space charge AQ,
injected into the gap in the computational time step At
iswritten as

AQ,
_4nsoD ¥

G 1 [
A& TS (2h+19)"

(A.8)

h
+ -+ B Er) = o

o, [Zh(h+ro)
ATt&l 2hry +rp
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where

R

1, 1 R,

ro (2h+10)° 1224+ R?
R,
(2h+1o)°JR + (2h +1)°

is the average radius of the first computational

D =
(A9)

charged layer adjacent to the electrode, E(r,) is the
total eectric field created by all the computational
space chargelayers except for thefirst one, and E. isthe
field of coronaignition. In order to obtain the values of
AQ,, a,, and g, at the current computational step, itis
necessary to solve equations (A5), (A6), and (A8).

4.

5.
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Abstract—The electron energy distribution function in nitrogen afterglow is simulated using different avail-
able sets of cross sections for electron scattering by vibrationally excited molecules. The calculations are per-
formed for two types of molecular distribution over vibrational levels, namely, for the Boltzmann and Treanor—
Gordiets distributions. It is shown that the calculated values of the electron temperature in nitrogen afterglow
depend strongly on the set of cross sections used and on the type of molecular distribution over vibrational lev-
els. The validity of comparison between theoretical and experimental results is discussed. © 2002 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

There is a large number of theoretical and experi-
mental studies of the electron energy distribution func-
tion (EEDF) inthe nitrogen afterglow plasma[1-12]. A
characteristic feature of the EEDF formation in this
plasma is that the electrons are primarily heated via
superelastic collisions with vibrationally excited mole-
cules. As aresult, the EEDF is strongly related to the
degree of vibrational excitation of nitrogen. The degree
of vibrational excitation isusually characterized by the
vibrational temperature T,, assuming that the popula-
tion of the lower vibrational levelsis close to the Bolt-
zmann distribution. Asto the el ectron energy spectrum,
it can be characterized by the effective temperature T, =
2/3u,,, where u,, is the average electron energy. At
present, there is no complete understanding of therela-
tion between T, and T, in nitrogen afterglow.

Detailed probe measurements of the EEDF in the
nitrogen afterglow plasma of a repetitive discharge
were carried out in [4, 5]. In this case, the time delay
between the end of the pulse and the measurementswas
substantially longer than the EEDF rel axation time and
shorter than the characteristic time of variations in the
quasi-steady distribution of nitrogen molecules over
vibrational levels. It was shown that the EEDF was
characterized by the presence of two Maxwellian com-
ponents(atu<1eV and 1.6 <u< 3.6 eV) with different
local temperatures. The temperature of the low-energy
(u<1eV) EEDF component (T, = 1100 K) was nearly
equal to the effective el ectron temperature. The authors
of [4, 5] believe that the local temperature in the energy
range 1.6-3.6 eV isequal to the vibrational temperature

of nitrogen molecules, because the excitation and deex-
citation cross sections for vibrational levels are maxi-
mum in this energy range and the EEDF is primarily
formed due to these processes. The vibrational tem-
perature estimated in this way was found to be T, =
3000 K > T.

Subsequent measurements [6] showed that T,
depends on the discharge current: the higher the cur-
rent, the higher the electron temperature in the after-
glow. At the highest current (in the current range under
study), the steady-state value of T, was closeto T, . At
the same time, the vibrational temperature estimated
from the EEDF in the energy range 1.6-3.6 €V was
equal to T, = 2900 K and only dlightly depended on the
discharge current. The EEDF was also measured in the
decaying plasmas of pulsed RF discharges in pure
nitrogen and N,/He mixtures [7]. In that paper, very
high values of the electron temperature were reported:
T.=4500-8000 K, which is higher than the vibrational
temperature T, = 31004200 K. In this case, the vibra-
tional temperature was estimated independently of the
EEDF measurements, assuming the molecular distribu-
tion over vibrationa levelsto be closeto the Boltzmann
distribution. We aso note the paper [9], in which the
electron temperature was measured in an Ar/N, after-
glow plasma and the vibrational temperature was esti-
mated independently of the measured EEDF. It was
found that, at a certain instant after the end of the dis-
charge pulse, the electron temperature decreased
abruptly fromT,~ T, = 4000 K to T,= 1000 K, whereas
the vibrational temperature changed only dightly.

1063-780X/02/2811-0965$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Numerical calculations of the Boltzmann equation
for the EEDF also yield different results. Thus, the
authors of [2, 3] arrived at the conclusion that, at mod-
erate vibrational temperatures (T, < 3500 K), the elec-
tron temperature in nitrogen afterglow is approximately
equal to the vibrational temperature (T, = T,). In this
case, the molecular distribution over vibrational levels
was cal culated by solving aset of differential equations
for the level populations, whereas T, was estimated
from the relative population of the first vibrational
level. In contrast, in [8], it was found that T, = 1100 K
for T, = 3000 K, which agreeswell with the experimen-
tal results of [5]. We note, however, that this result was
obtained by assuming the Boltzmann distribution of
molecules over vibrational levels and by choosing a
specific set of cross sections for the electron scattering
by vibrationally excited N, molecules. In[9, 10], under
the same assumptions, it was shown that, when elec-
tron—electron (e-€) collisions are taken into account,
the calculated electron temperature depends strongly
on the electron density (the degree of ionization). At
low degrees of ionization, T, is substantially lower than
T, and dlightly depends on the electron density,
whereas at high degrees of ionization, T.iscloseto T, .
Moreover, in a certain range of the vibrational temper-
ature and the degree of ionization, the Boltzmann equa-
tion for the EEDF in the discharge afterglow in an
Ar/N, mixture [9] and pure N, [10, 11] can have two
stable solutions with very different values of T..

The results of numerical calculations depend on the
adopted set of cross sections for electron scattering by
nitrogen molecules. There is no generally accepted set
of cross sections in the literature, and different authors
use different sets. For example, so far, there have been
different opinions about the normalization of the cross
sections for the excitation of vibrational levels of nitro-
gen molecules from the ground state. However, the
most uncertain cross sections are those for the transi-
tions between vibrational levels. Note that these transi-
tions play an important role in the EEDF formation in
the afterglow plasma. There is also an arbitrariness in
choosing the type of distribution of nitrogen molecules
over vibrational levels when simulating a specific
experiment. Experiments usually allows one to esti-
mate only a certain average vibrational temperature
(see, eqg., [9]) characterizing the populations of the
lower vibrational states. Simulations of vibrational
kinetics also fail to provide reliable results. The prob-
lemisthat, in simulations (under conditions typical of
the EEDF measurements), the quenching of vibrational
excitation on the discharge chamber wall must be taken
into account, whereas the corresponding accommoda:
tion coefficients are known only roughly.

In this paper, we examine how the calculated values
of the electron temperature in nitrogen afterglow
depend on the adopted set of cross sectionsfor the elec-
tron scattering by vibrationally excited nitrogen mole-
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cules and on the type of nitrogen molecular distribution
over vibrational states.

2. NUMERICAL MODEL

The problem was investigated by numerically solv-
ing the following steady-state Boltzmann equation for
the EEDF:

Ie—M+Iin+(SUP)v+(SUP)e+Ie—e = 0. (1)

Here, the terms on the left-hand side are the collision
integrals for the elastic and inelastic collisions, super-
elastic vibrational collisions, superelastic electron col-
lisons, and e—e collisions, respectively. A detailed
description of all the terms in Eq. (1) is given in [8].
Note that, under the given conditions, we can use the
steady-state Boltzmann equation because the electron
thermalization time is substantially shorter than the
characteristic times during which the plasma parame-
ters (such asthe population of vibrational levelsand the
plasma density) vary. Equation (1) was solved by the
iteration method (see [8] for details).

Calculations were performed for a gas temperature
of T = 300K and pressure of 0.5 torr. These conditions
are typical of experimental studies of the EEDF in
nitrogen afterglow [6]. The population of all the elec-

tron levels (except for A?’ZJ ) was assumed to be zero.

The particle density at the A’S, level was set at 1.6 x

10" cm™ (i.e., the degree of excitation was 10, which
corresponded to the conditions of [5, 6]). The electron
density n, was specified as an independent parameter.

3. CHOICE OF CROSS SECTIONS

The transport cross section and the excitation cross
sectionsfor the rotational and electronic levels of nitro-
gen molecules were taken the same asin [8], in which
the principle for the choice of these cross sections is
described in detail.

Asfor the cross sections for the excitation of vibra-
tional levels from the ground state,

No(X'Z4, v =0) + e —= Ny(X'Z5, v =) +e,
i=1..,8,

in all our previous studies [8-10], we used the same set
of cross sections (see [8] for details), which was based
on the experimenta data presented in [13]. In particu-
lar, in [13], the near-threshold excitation cross sections
for three lower levels were measured in detail. The res-
onant component of the cross sections was normalized
according to [14]. This normalization allowed us to
obtain a good agreement between the calculated and
experimental dependences of the electron drift velocity
on the reduced €electric field in both pure nitrogen (see
[8]) and nitrogen—argon mixtures [14, 15].

2)
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We notethat the energy dependence of the cross sec-
tions for the excitation of vibrational levels from the
ground state isfairly well known. At the sametime, dif-
ferent authors use different normalizations for these
cross sections. Thus, many authors use the cross sec-
tionsfor electron scattering by nitrogen moleculesfrom
the well-known set of Phelps and Pitchford [16]. The
normalization factor for the cross sections from the set
of [16] is 1.4 times higher than that for the cross sec-
tions used by us. For this reason, in the present paper,
processes (2) were described by using two versions of
the cross sections: our traditional set (symbolized by
the letter D) and a set (symbolized by the letter P) in
which our cross sections are increased by a factor of
14.

The interaction of electrons with vibrationally
excited nitrogen molecules was described by the pro-
Cesses

Ny (X'Eg, v =i)+e—=Ny(X'S;, v =) +e
i=1,..,7;

Since there is alack of experimental data on the cross
sections for these processes in the literature, the elec-
tron kineticsin nitrogen was simulated by using the cal-
culated cross sections. The problem is additionally
complicated by the fact that, in order to solve the Bolt-
zmann equation, it is necessary to have the full matrix
of cross sections (3), whereas many theoretical papers
give information on the cross sections only for individ-
ual transitions. In this paper, we usethefollowing avail-
able sets of cross sections for processes (3):

() A set from [17] calculated by a semiempirical
method by Mihajlov and Pivovar [18]. In that paper, the
cross sections for processes (3) were caculated by
using the cross sections for the excitation of vibrational
levelsfrom the ground state that were taken from the set
of Phelps and Pitchford. Therefore, in order to use the
cross sections of [17] simultaneously with set D, the
normalization factor should be decreased by 1.4 times.

(11) A set in which the cross section Q' - i(u) for the
transition from theith vibrational level tothejthlevel is
taken to be the cross section for the transition from the
ground state to the (j—i)th level with a corresponding
change d; in the threshold,

QW =Q Murdy) i=1,..

i<j<8.

3)

i<j<8.

7

Set Il is organized in such away that the normalizing
factor for the cross sections changes automatically
when the normalization of cross sections (2) changes.
Thisset wasused in [8].

(1) A set used by Capitelli et al. (University of
Bari, Italy). This set is based on the cross sections cal-
culated in [19] by using the so-called “boomerang
method.” In [19], the cross section for the transition
v =1 — v =0wascalculated; thus, by using the prin-
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ciple of detailed balance, we can calculate the cross
section for the direct process. An anaysis shows that
the cross section for the direct transitionv =0 — v =
1 is close to a similar cross section from the set of
Phelps and Pitchford. Thus, we may suppose that the
normalization of cross sectionsfrom set |11 agreeswith
the normalization of cross sections P. Accordingly,
when using simultaneously with set D, the cross sec-
tions of set |11 were decreased by afactor of 1.4.

(IV) A set from [20], where the cross sections were
calculated by Chen’'s method [21]. The normalization
factor for the cross sections was chosen such that the
cross section for the transition v=0 — v = 1 calcu-
lated by similar formulas agreed with the cross section
used (P or D).

Below, the combination of the cross sectionsused in
calculations will be denoted by a letter and a Roman
numeral (e.g., DI, PIII, and so on), keeping in mind that
the normalization factors in the cross sections for pro-
cesses (2) and (3) are brought into accordance.

Figure 1ashowsthe cross sections for the excitation
of three lower vibrational levels from the ground state
(set P), and Figs. 1b—1d show the cross sections for
transitions between some vibrational levels (the values
of the cross sections agree with set P). In order to not
overload the figures, the cross sections from set Il are
omitted in Figs. 1b-1d; the values of these cross sec-
tions can be judged from Fig. 1a (see the description of
set 11). Asfollows from Fig. 1, the cross sections from
different sets differ in their values and energy depen-
dences. In particular, we note asubstantial differencein
the behavior of the cross sections at low energies. The
cross sections for superelastic collisions were calcu-
lated from the principle of detailed balance. Accord-
ingly, a similar difference will also exist for the cross
sections for superelastic collisions.

4. CHOICE OF THE TYPE OF NITROGEN
MOLECULAR DISTRIBUTION
OVER VIBRATIONAL LEVELS

As was mentioned above, different authors use dif-
ferent types of molecular distribution over vibrational
levels. In the simplest version, the distribution is
assumed to be a Boltzmann distribution with a given
vibrational temperature. In other papers, this distribu-
tionis calculated by numerically solving aset of differ-
ential equations. Under conditions typical of the EEDF
measurements (e.g., in [6], the tube radius was 1.7 cm
and the pressure was 0.5 torr), it is necessary to take
into account the quenching of vibrational excitation on
the tube wall when calculating the vibrational distribu-
tion. Accordingly, the results of calculations depend on
the accommodation coefficient used.

Since this study was not aimed at describing a spe-
cific experiment, we did not calculate the vibrational
distributions under given experimental conditions and
used two conventional distributions, namely, the Boltz-
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Fig. 1. Cross sections for transitions between some vibra-
tional levels of N, molecules. Numeral s denote the numbers
of setsfrom which the cross sections are taken (seethetext).
The normalization of all the cross sections corresponds to
set P.

mann distribution with the temperature T, = 3000 K
and the so-called Treanor—-Gordiets distribution [22].
Thelatter distribution is convenient becauseit is unam-
biguoudly determined by the gas temperature and the
local vibrational temperature of the first vibrational
level, T,,. We note that the measured populations of the
vibrational levels of nitrogen in He/N, mixtures [23]
are well described by this distribution. In calculations,
we used a Treanor—Gordiets distribution for T, = 3000 K
and T = 300 K; i.e,, Ty, was chosen such that the local
vibrational temperature of the first vibrational level
coincided with the vibrational temperature of the Bolt-
zmann distribution. Figure 2 illustrates both of the dis-
tributions used. It can be seen from the figure that the
relative population of the vibrational levels v = 3-8 for
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N, (v =i)/N, (v=0)
1

0.1

0.01

0.001 ;
0

Fig. 2. Model distributions of nitrogen molecules over
vibrational levels: (/) Boltzmann distribution with T, =

3000 K and (2) Treanor—Gordiets distribution with Ty, =
3000K and T =300 K.

the Trinor—Gordiets distribution is substantially higher
than that for the Boltzmann distribution.

5. RESULTS AND DISCUSSION

Figure 3 shows the calculated EEDFs in nitrogen
afterglow for n,=2 x 10'° cm= and the Boltzmann dis-
tribution over vibrationa levels. It can be seen from
Fig. 3 that the EEDFs calculated with different sets of
cross sections have the samelocal temperature (approx-
imately equal to the vibrational temperature) in the
energy range 1 <u< 2.5 eV and different local temper-
atures at u < 1 eV. Further, for ease of comparison, the
EEDF will be characterized by the effective electron
temperature T, which is approximately equal to the
temperature of the low-energy Maxwellian component
of the EEDF. We note that the local maximum of the
EEDF at u=5 eV isdue to superelastic collisions with
electronically excited molecules.

Figure 4 shows the cal culated dependences of T, on
the electron density for the Boltzmann distribution over
vibrational levels. The curves were calculated by using
different combinations of the sets of cross sections. Let
us consider in detail the results of calculations with
cross sections P (Fig. 44). It can be seen from thefigure
that the values of T, obtained for different sets differ
markedly at low electron densities (n, = 10° cm). The
highest value of T, (closeto T,) is obtained for set IV.
This fact is, apparently, a consequence of the energy
dependence of the corresponding cross sections (in par-
ticular, the high values of these cross sections near the
threshold). For other sets of cross sections, the calcu-
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Fig. 3. Calculated EEDFsin nitrogen afterglow with aBolt-
zmann distribution of molecules over vibrationa levels

(T, =3000K) and ng=2 x 10' cm™ for sets (/) PL, (2) DII,
and (3) PIII.

lated values of T, are much lower than the vibrational
temperature.

The electron temperature increases with increasing
Ne. This fact can be explained as follows. The electrons
in nitrogen afterglow are heated due to superelastic col-
lisons with vibrationally excited molecules. At low
values of n,, the EEDF in this plasma consists of two
Maxwellian components with different local tempera-
tures. T,< T, foru=1eVand T} =T, forl<u<3eV
(Fig. 3). Electron—electron collisions result in the mix-
ing of these two components. At high n, values, this
leads to the thermalization of the EEDF throughout the
entire energy range under study; in this case, the tem-
perature of this Maxwellian EEDF should be close to
thevibrational temperaturein order to beinequilibrium
with the heat source. We note that, at T,= T, the elec-
tron energy loss by elastic collisions and by the excita-
tion of rotational levels is small as compared to the
energy spent on the excitation of vibrational levels. It
can be seen from Fig. 4a that, as the electron density
increases, T, increases and approaches T, in different
ways for different sets of cross sections. Thus, for set
[11, T, increases smoothly, whereas for set | and, espe-
cially, set 1, the electron temperature increases more
abruptly as the electron density approaches a level of
ne= 10" cm=.

With the use of cross sections D (Fig. 4b), the values
of T, calculated for low electron densities somewhat
decrease. The behavior of the T,(n,) dependences for
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Fig. 4. Calculated electron temperature in nitrogen after-
glow with a Boltzmann distribution of molecules over
vibrational levels (T, = 3000 K) asafunction of the electron

density for sets(a) P and (b) D. The Roman numerals by the
curves correspond to the numbers of the used sets of cross
sections for processes (3). The circles show the experimen-
tal data of [6], and the rhombuses show the experimental
data of [5]. The experiment of [5] was carried out at p =
0.3 torr. The values of ng presented in the figure are recal cu-

lated to the degree of ionization used in [5].

sets 11 and 1V is qualitatively the same as in Fig. 4a,
whereas it is essentially different for sets | and I1. For
both sets| and |1, at electron densitiesof n,= 4 x 10!
10'? cm3, the Boltzmann equation has two stable solu-
tions with different electron temperatures.

The possibility of this effect (the EEDF bistability)
has aready been studied theoretically for afterglow
plasmas in nitrogen [10, 11] and Ar/N, mixtures [9].
Hence, we do not dwell on a detailed description of this
effect. We note, however, that it is e—e collisions (along
with the specific energy dependences of the cross sec-
tions used) that ensure the nonlinearity of the Boltz-
mann equation (the property required for the appear-
ance of two stable solutions).

Figure 4 aso shows the experimental data of [5, 6].
It can be seen that the results of different experiments
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Fig. 5. Calculated EEDFsin nitrogen afterglow with a Tre-
anor—Gordiets distribution of molecules over vibrational

levels (Ty; = 3000 K) and ng= 2 x 10'0 cm™ for sets
(1) PI, (2) DI, and (3) PIII.
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Fig. 6. Caculated electron temperature in nitrogen after-
glow with a Treanor—Gordiets distribution of molecules
over vibrational levels (Ty; = 3000 K) as a function of the

electron density for sets (1) PI, (2) DIl, and (3) PIII.

are somewhat contradictory. When the calculated data
are compared with the results of [5], the best fit is
obtained with set DII. It is this set that was proposed in
[8] to achieve agreement with the experimental data of
[5]. The minimum value T, from the data of [6] alsolies

DYATKO et al.

well on curve Il. We note that none of the calculated
curves describe the experimental dependence T.(n,) [6]
asawhole.

However, the experimental data of [6], with which
we make a comparison, raise some doubts. In particu-
lar, for al of the investigated regimes (discharge cur-
rents), the vibrational temperature estimated from the
EEDF in the energy range 1.6 < u < 3.6 eV appears to
be nearly the same. Actually, under the condition of a
repetitive discharge [6], the degree of vibrational exci-
tation should depend on the time-averaged energy dep-
osition into vibrational levels. Estimates show that the
average energy depositions at the minimum and maxi-
mum currents (corresponding to the minimum and
maximum values of T, in Fig. 4) differ by afactor of 5.
Because of this difference, the degrees of vibrational
excitation should also be different. In addition, it is
unlikely that the molecular distribution over vibrational
levels under the experimental conditions is a purely
Boltzmann distribution.

Figures 5 and 6 show the results of calculations per-
formed with the use of a Treanor—Gordiets vibrational
distribution (Fig. 2). Figure 5 shows the EEDFs calcu-
lated for three sets of cross sections. As follows from
thefigure, the averagelocal temperature of the EEDF in
the energy range 1.6 <u< 3.6 eV is=4000 K, whichis
noticeably higher than thelocal vibrational temperature
of the first vibrationa level, T,, = 3000 K. In other
words, thelocal temperature of the EEDF in thisenergy
rangeisan average characteristic of the degree of vibra-
tional excitation.

Figure 6 shows the dependences T.(n,) calculated
for three sets of cross sections. It can be seen from the
figure that the values of T, at low electron densities are
considerably higher than in the case of a Boltzmann
distribution over vibrational levels (see the correspond-
ing curvesin Fig. 4). As n, increases, the electron tem-
perature tendsto the value T, = 4000 K. We notethat T,
does not increase monotonically, but passes through a
maximum, whose value (depending on the set of cross
sections used) can substantially exceed the limiting
value. Note that the limiting value coincides with the
local temperature of the EEDF in the energy range
16<u<3.6¢eV (Fig. 5). A comparison of Figs. 4 and
6 shows that, for a Treanor—Gordiets distribution, the
transition from low to high T, values occurs at substan-
tialy lower electron densities. In addition, we do not
observe the bistability of the EEDF (at least for T,, =
3000 K) in this case.

The above analysis shows that the calculated values
of the electron temperature in nitrogen afterglow
depend strongly on the set of cross sectionsfor electron
scattering by vibrationally excited molecules, aswell as
on the type of molecular distribution over vibrational
levels. At present, there is no reliable method to deter-
mine which of these sets of cross sections is the most
realistic. In principle, to verify the cross sections, we
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can compare the calcul ations with experimental results
from the EEDF measurementsin the afterglow plasma.
However, in this casg, it is necessary to experimentally
measure not only the EEDF, but also the distribution
over vibrational levels, which may be used in calcula-
tions (we note that it should be detailed measurements,
rather than estimates of the vibrational temperature of
the lower level).

We also note that, under typical experimental condi-
tions (see, e.g., [6]), the radius of the discharge tube is
comparable with the characteristic length over which
the EEDF is established. It may turn out that, under
these conditions, the effects of the EEDF nonlocality
and the polarization electric field caused by ambipolar
diffusion should be taken into account for a correct the-
oretical modeling of the EEDF.

6. CONCLUSION

The cross sections for electron scattering by vibra-
tionaly excited nitrogen molecules used by different
authors substantialy differ in both the value and the
energy dependence. We have shown that the calcula-
tions of the electron temperature in nitrogen afterglow
with the use of these different sets of cross sections
yield very different results. We have al so shown that the
calculated electron temperature depends on the type of
molecular distribution over vibrational levels. Hence, it
is hardly possible to correctly compare the calculated
results with the experimental data because, in experi-
ments on determining the EEDF in nitrogen afterglow,
detailed measurements of the molecular distribution
over vibrational levels have not yet been performed.
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OBITUARY

In Memory of Semen Samoilovich M oiseev
(November 23, 1929-June 5, 2002)

Professor Semen Samoilovich Moiseev, a well-
known theoretical physicist; a prominent Russian sci-
entist in the fields of plasma physics, theory of turbu-
lence, and processes of self-organization in nonequilib-
rium media; and aprincipal researcher at the I nstitute of
Space Research of the Russian Academy of Sciences
diedin his 73rd year on June 5, 2002, after an extended
illness.

S.S. Moiseev was born on November 23, 1929.
After graduating in 1952 with honors from Kharkov
State University (KSU), he worked as a teacher in
Slavyansk and Poltava. However, his inquisitive intel-
lect craved new knowledge. Therefore, in 1960, he
moved to Novosibirsk, where he began to work in the
field of controlled fusion research at the Institute of
Nuclear Physics of the Siberian Division of the USSR
Academy of Sciences. There, he obtained pioneering
results, which were reported at the largest international
conferences and were the basis for his candidate’s and
doctoral theses. Among those results, it is worth noting
the solution of the problem of anomalous Bohm diffu-
sion in fusion devices, the studies on low-frequency
instabilities in inhomogeneous plasmas and transfor-
mation of electromagnetic waves in nonsteady and
inhomogeneous plasmas, and the development of prin-
ciples of novel plasma diagnostics based on the gener-
ation of higher harmonicsin plasma resonance layers.

It should be noted that the versatile scientific activ-
ity of Moiseev resulted in the development of anumber
of important directions in plasma physics, hydrody-
namics, and nuclear energetics. His works, which were
always in the vanguard of scientific research, gained
worldwide recognition in the scientific community.

In 1968, M oiseev moved to the Kharkov Institutefor
Physics and Technology (KIPT). There, he further
developed his earlier studies on plasma stability and
plasma heating as applied to beam—plasma systems and
proposed new, original ideas in other fields of plasma
physics, among them, a model of the nonlocal transfer
of electromagnetic signals in inhomogeneous plasmas
(the effect of kinetic transparency of wave barriers),
new mechanisms for the generation of electromagnetic
radiation associated with the wave conversion in the
presence of plasma density gradients, the focusing and
channeling of radiation in a plasma, and the resonant-
cone effect in the excitation of electromagnetic waves
by small-size sources. He aso developed new
approachesto thetheory of strong hydrodynamic turbu-
lence and to the formation of nonequilibrium power-
law distributions of charged particles in collisional
media. The results of these studies were published in
Reviews of Plasma Physics and Usp. Fiz. Nauk (Sov.
Phys. Uspekhi). For these results, which were very
important for practical applications, Moiseev received
a series of inventor's certificates. For works on the
kinetic transparency of wave barriersin aplasma, Moi-
seev and his colleagues were awarded the 1979 Ukrai-
nian SSR State Prize in Science and Technology.

In 1980, Moiseev began to work in Moscow at the
Ingtitute of Space Research of the USSR Academy of
Sciences. There, he developed new approaches toward
increasing the efficiency of absorption of high-power
laser radiation in an inhomogeneous plasma via the
channdling and self-focusing of laser beams. The results
of hislong-term studies on the mechanisms for the gen-
eration of electromagnetic radiation in a plasma were
published in the monograph Nonequilibrium and Reso-
nant Processes in Plasma Radiophysics (Nauka, Mos-
cow, 1982), written together with his colleagues. For his
research in plasma physics, Moiseev was awarded the
1987 USSR State Prize in Science and Technol ogy.

Simultaneously, he worked in the field of hydrody-
namics. Animportant result of these investigations was
the discovery of ahelical mechanism for the generation
of large-scaletropical vortices. This madeit possibleto
develop a new approach to the important problems of
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forecasting hurricanes, typhoons, and extratropical
cyclones and monitoring cyclogenesis zones. Based on
these theoretical results, two expeditions to the Pacific
Ocean were organized to carry out in situ measure-
ments in the zones of intensive cyclogenesis. The the-
ory developed at the Ingtitute of Space Research
allowed Moiseev to elaborate a system of physical pre-
cursors and indicators of tropical cyclones. These stud-
ieslaid the theoretical foundations of the contemporary
methods for forecasting large-scale crisis processes in
the atmosphere, such as typhoons and extratropical
cyclones. The experimental data from the expeditions
showed that these indicators may be abnormal fluctua-
tions of the background atmospheric parameters, such
as infrasonic activity, the dynamics of fractal parame-
ters, and the helicity of atmospheric turbulence. Later,
he and his pupils investigated this field of research in
more detail: they analyzed the formation of non-Kol-
mogorov turbulent spectra, examined the structural
properties of hydrodynamic turbulence and the mecha
nisms for helicity generation, and studied the influence
of turbulence helicity on the particle and energy trans-
port. In essence, he founded a new line of investiga
tion—the helical dynamics of nonlinear media. The
results of his studiesin the fields of plasma physics and
hydrodynamics were published in the monographs
Nonlinear Instabilitiesin Plasmas and Hydrodynamics
(IOP, Bristal, 1999), written together with V.N. Orae-
vsky and V.G. Pungin, and Turbulence and Structures.
Chaos, Fluctuations, and Helical Self-Organization in
Nature and the Laboratory (Academic, New York,
1999), written together with H. Branover, A. Eidelman,
and E. Golbraikh.

Along with these studies, M oiseev, together with his
colleagues from KIPT and KSU, prolonged investiga-
tions of nonequilibrium power-law particle distribu-
tions in solid-state plasmas and developed the princi-
ples of their applications for direct and more efficient
nuclear-to-electric energy conversion. In particular,
based on theoretical and experimental results, they pro-
posed a new secondary-emission radioisotope current
source, which has obvious advantages (with respect to
the efficiency, lifetime, environmental safety, etc.) in
comparison with available nuclear batteries. The cre-
ation of a prototype of such abattery will stimulate the
development of prospective future technologies of fab-
ricating multilayer thin-metal-film structures.

In recent years, Moiseev investigated very interest-
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