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Abstract—The results of numerical calculations of the energies of Auger transitions, as well as the angular dis-
tribution (α2) and spin polarization (β2) anisotropy parameters, are presented for transitions in a photoexcited
Kr* atom with two open shells. Matrix elements are calculated by the multiconfigurational Fock–Dirac relativ-
istic method using an intermediate type of coupling. The wavefunctions of the initial and final states of the
Auger transition are calculated with allowance for relaxation effects. The one-electron wavefunction of the con-
tinuous spectrum for an Auger electron is obtained using the single-configuration Fock–Dirac method. The
results are compared with experiment and a new experiment is proposed for identifying the Auger state not only
from the energy, but also from the total angular momentum of the Auger state. © 2004 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Analysis of spin polarization and angular distribu-
tion of electrons makes it possible to obtain complete
information on the dynamics of Auger decay in atoms.
A general theory of the anisotropy in the angular distri-
bution of Auger electrons was developed in [1–5] using
the density matrix formalism. The first theoretical com-
putations of the angular distribution coefficients were
performed by several groups [6–8]. Advances made in
experimental studies, including the realization of a
complete quantum-mechanical experiment for an
Auger process [9, 10], in which the amplitudes of
Auger transitions and the phase differences in the par-
tial waves of Auger electrons were measured, have
stimulated further theoretical investigations.

Here, we employ the theory of angular distribution
of Auger electrons developed in [5–7]. This theory is
generalized to the case of atoms with open valence
shells.

The wavefunctions of the Kr* atom were calculated
using the multiconfigurational Fock–Dirac relativistic
method taking into account relaxation for energy levels
of both the initial and the final states. Such a relaxation
substantially complicates computations since it neces-
sitates the computation of matrix elements of an Auger
transition with nonorthogonal one-electron functions.
As a rule, relaxation effects were disregarded by other
authors. Here, we also calculated the energy levels of
the final state disregarding relaxation to clarify the role
of these effects. In this case, the energy levels of the
1063-7761/04/9906- $26.00 © 21119
final state were calculated by the method of configura-
tional interaction using the frozen one-electron func-
tions obtained for the initial state of the atom.

In multiconfigurational computations, we included
all relativistic configurations corresponding to a
nonrelativistic configuration. For example, for the
excited configuration 3d95p1 of the Kr atom,
this means that four different relativistic configurations

( , , ,

and ) were included in computations.
This computational method in fact implements an inter-
mediate coupling (IC) and leads to more reliable results
as compared to those obtained earlier in our [11] and
other publications in the framework of purely LS or jj
couplings.

The one-electron wavefunction of the continuous
spectrum of an Auger electron was calculated using sin-
gle-configuration Fock–Dirac relativistic method tak-
ing into account nonlocal exchange and nondiagonal
Lagrangian multipliers ensuring that the wavefunction
is orthogonal to the core states of the ion. A detailed
description of the method for calculating the wavefunc-
tion of the continuum is given in [11]. The influence of
relativistic effects in calculations of the wavefunction
of the continuum on the value of the angular distribu-
tion anisotropy parameter α2 might be significant since
the contribution to the values of parameters α2 and β2

(spin polarization anisotropy parameter) is mainly
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determined by the behavior of the function for the con-
tinuum in the atomic core region.

In Section 2, basic relations used for calculating
parameters α2 and β2 are presented and the method for
calculating the matrix elements with nonorthogonal
wavefunctions of the initial and final states is described.
In Section 3, the results of theoretical calculations of
the energies of Auger states 4s–14p–15p, 4s−14p–16p, and
4s–15p of the Kr atom performed in the IC approxima-
tion are considered and compared with the results of
precision experiment [12]. In the same section, the
results of calculations of parameters α2 and β2 are pre-
sented and the possibility of performing an experiment
leading to determination of the total angular momen-
tum of the final state of an atom in an Auger transition
is considered.

2. THEORY

2.1. Parameters of Asymmetry
in the Angular Distribution of Auger Electrons

The parameter of angular distributions and spin
polarization are calculated using a two-stage model of
Auger decay proposed in [1]. The general theory of
Auger decay is described in many publications (see, for
example, [6]). The expression for the angular distribu-
tion of Auger electrons has the form

(1)

where  is the probability of the Auger pro-

cess integrated over the direction of trajectories of
Auger electrons, A20 is the population magnetic sublev-
els of a singly charged ion, α2 is the anisotropy param-
eter of the angular distribution of Auger electrons, P2 is
the quadratic Legendre polynomial, and θ is the angle
between the direction of emission of Auger electrons
and the polarization of radiation. The expressions for
anisotropy parameters of the angular distribution of
Auger electrons and spin polarization are borrowed
from [5, 6]:

(2)

Here, A(KkQ) are the angular distribution coefficients
defined by the expression [6, 11]
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where J1 is the total angular momentum of the initial
state of the A+ ion, J is the total angular momentum of
the final state of the A2+ ion, ε is the free electron
energy, l is the orbital angular momentum, j is the total
angular momentum, and σlj is the phase of the Auger
electron wavefunction.

The above matrix elements 〈J1|| ||(Jj)J1〉  of the

transition operator  are defined for the initial and final
multielectron states of an arbitrary atom. These matrix
elements can be obtained in the general case by using
the Wigner–Eckart theorem if the multielectron wave-
function  of the initial state of the A+(J1) ion, the

wavefunction ΨJ, M of the final state of the A2+(J) ion,
and the one-electron wavefunction ψjm of the Auger
electron are known:

(4)

In calculating matrix elements (amplitudes) of the
transition with orthogonal orbitals, the transition oper-

ator  in the Auger process may be the electron inter-

action operator or operator  – E, where  is the total
Hamiltonian of the system. The equivalence of these
two versions stems from the fact that the initial and the
final states differ in the two-electron excitation; conse-
quently, all one-electron matrix elements vanish (at
least in the single-configuration technique). If the one-
electron functions of the initial and final states are dif-

ferent, we must choose operator  – E as the transition

operator. We will now calculate the amplitude 〈F|  –
E|I〉  of the Auger transition between the initial state I
with quantum numbers J1M1 and the final state F with
quantum numbers JM, jm.

2.2. Calculation of the Matrix Elements 
of the Transition Operator

with Nonorthogonal Functions

The multiconfigurational Fock–Dirac method was
used in all calculations of the multielectron wavefunc-
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tions of a singly charged ion in the initial state and a
doubly charged ion in the final state. The wavefunctions
for the initial and final state in an Auger process are
usually calculated in the frozen orbitals approximation
according to which the one-electron functions of the
initial and final states form a unified set of orthonormal
functions. This computational method is usually called
calculation disregarding relaxation. Allowance for
relaxation necessitates the use of two mutually nonor-
thogonal sets of orbitals of the final and initial states.
Let us consider in greater detail the method for calcu-
lating the matrix elements of an Auger transition with
nonorthogonal orbitals.

In the multiconfigurational Fock–Dirac method, the
wavefunctions ΨI and ΨF of the initial and final states
of an N-electron system can be presented as a linear
combination of the Slater determinants detα con-

structed from one-electron wavefunctions { (x)} and

{ (x)}, respectively:

(5)

For an Auger process in which the total energy of an
atom is conserved during the Auger decay (E = const),
the amplitude of transition from the initial state |I 〉  to
the final state |F〉  has the form

(6)

where the indices α and β enumerate the Slater deter-
minants for the initial and final states, HFI is the matrix

of Hamiltonian  in the basis of the Slater determi-
nants, and BFI is the nonorthogonality matrix in the
same basis.

Matrix BFI is not equal to the unit matrix since the
determinants formed by one-electron wavefunctions of
the initial and final states are not orthogonal. This
matrix can be presented in the form [13]

(7)

where Dαβ is the determinant of the overlap integral
matrix Sαβ in the basis of one-electron orbitals:

(8)

The elements of matrix Sαβ are calculated between two

sets of orbitals { }α and { }β forming the two Slater
determinants α and β, respectively.

The matrix elements of the transition for one-elec-
tron and two-electron operators can be calculated using
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Ĥ

Bαβ
FI detα detβ〈 | 〉 Dαα Dββ( ) 1/2– Dαβ,= =

Dαβ det Si j,
αβ , Si j,

αβ φi
F φj

I〈 | 〉 .= =

φi
F φj

I

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
expressions for one- and two-particle density matrices
of the transition between two states, which are
described by Slater determinants α and β. The expres-
sion for the one-particle density matrix has the form

(9)

The two-particle density matrix can be represented in
terms of the one-particle matrix and is defined by the
expression

(10)

where

(11)

Hamiltonian  can be represented as the sum of one-
and two-particle operators:

(12)

The matrix elements have the form

(13)

Using formulas (9) and (10) for one- and two-particle
density matrices, we obtain

(14)

(15)
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relativistic configurations corresponding to one nonrel-
ativistic configuration were taken into consideration.
Such an approach in fact employs the intermediate type
of coupling. In the nonrelativistic limit, when the veloc-
ity of light tends to infinity, such an intermediate cou-
pling is transformed into a purely LS coupling. It should
be noted that the single-configuration Fock–Dirac
method corresponding to the jj coupling does not possess
a regular relativistic limit for atoms with open shells. For

Table 1.  Energies E of the Auger transitions and anisotropy
coefficients of angular distribution (α2) and spin polarization
(β2) calculated taking into account (+) and disregarding (–)
relaxation for Auger transitions 4s–14p–15p in Kr atom

Final 
state E–, eV E+, eV

4S3/2 47.7 0.565 0.0 44.3 0.565 0.0
4D7/2 47.4 0.673 0.0 44.0 0.673 0.0
4D5/2 47.4 0.608 0.018 43.9 0.604 0.019
4D3/2 47.2 0.565 0.0 43.8 0.565 0.0
2D5/2 47.2 0.437 0.067 43.7 0.419 0.071
4D1/2 47.0 0.0 0.0 43.6 0.0 0.0
2P3/2 46.8 –0.409 –0.068 43.4 –0.390 –0.075
4P5/2 46.8 0.680 –0.026 43.4 0.679 –0.024
4P3/2 46.8 –0.636 0.050 43.3 –0.636 0.050
4D1/2 46.8 –1.351 0.025 43.3 –1.358 0.025
4P1/2 46.7 0.420 –0.023 43.2 0.463 –0.023
2D3/2 46.5 0.703 –0.005 43.1 0.697 –0.004
2S1/2* 46.3 –1.409 0.023 42.9 –1.392 0.021
2S1/2** 40.5 –0.675 0.0 37.0 –0.727 0.0
2D3/2 40.4 0.149 –0.187 37.0 0.033 –0.173
2D5/2 40.3 0.570 0.032 36.9 0.527 0.045
2P1/2 40.1 –0.700 0.0 36.7 –0.706 0.0
2P3/2 40.1 –0.052 –0.159 36.7 0.003 –0.169

Note: * For the initial state 1P1; ** for the initial state 3P2.

α2
– β2

– α2
+ β2

+

Table 2.  Energies E of Auger transitions and anisotropy coef-
ficients of angular distribution (α2) and spin polarization (β2)
calculated for Auger transitions 4s–25p in Kr atom

Final 
state E–, eV E+, eV

2P1/2 24.7 –0.707 0.0 21.5 –0.707 0.0
2P3/2 24.6 –0.530 0.0 21.4 –0.556 0.0

α2
– β2

– α2
+ β2

+
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atoms with closed shells, the approach used by us here is
equivalent to the method developed in [5–7].

3. RESULTS AND DISCUSSION

Tables 1–3 show the results of computation of
energy and parameters α2 and β2 for Auger electrons

formed as a result of decay of states  and

 excited by a single-photon process from the
ground state to the final state 4s–14p–15p of the Kr+ ion.
In our calculations, we used the intermediate coupling
(IC). Two versions of computations are presented. The
first version corresponds to the “frozen core” approxi-
mation. In the second version, relaxation of one-elec-
tron states for both the initial and the final state is taken
into account. It is well known that a comparison of the
results of computations performed in the frozen core
approximation with those performed for nonorthogonal
orbitals of the initial and final states demonstrated that
the relaxation effect weakly influences the value of the
angular distribution anisotropy parameters for Auger
transitions in atoms with filled shells [14] and for atoms
with unfilled shells [15]. It can be seen that for atoms in
the excited state the relaxation effect noticeably modi-
fies the value of the angular distribution anisotropy
parameters and especially the value of the Auger tran-
sition energy. This follows from the results presented in
Tables 1–3. Table 4 is compiled using the experimental
spectrum of the above states given in [12]. States were
identified in [12] on the basis of a relativistic multicon-
figurational computation, and averaging was carried
out over experimentally observed groups of reso-
nances; for this reason, direct comparison with the
results of our computations is difficult in our opinion. A
comparison can be carried out only on the basis of iden-
tification of groups of resonances (see Table 4). Compar-
ison of the experimental data with the results of our com-
putations demonstrates the coincidence of the results of
identification of Auger resonances except for one group
of resonances to which configuration (4p–34d5p) of dou-
ble Auger decay is ascribed in [12]. In our computa-
tions, this energy range of Auger states corresponds to
the results of calculations presented in Table 1.

The identification of Auger states according to the
total angular momentum can be carried out using an
experimental technique based of the selection rules for
three-stage photoexcitation of Auger states by polar-
ized radiation. In this case, Auger states with a certain
total angular momentum are excited depending on the
total angular momentum projection imparted to the
atom by radiation. By varying the combinations of
mutual orientation of polarizations of radiation for
three stages, we can introduce different total angular
projections of the photon momenta for each stage of
excitation and, hence, identify Auger states according
to the total angular momentum. This method can be
used for identifying Auger states of a Ba atom in the

3d5/2
1– 5 p

3d3/2
1– 5 p
AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004



SPIN POLARIZATION AND ANGULAR DISTRIBUTION OF AUGER ELECTRONS 1123
6p7p configuration [16]. The application of this method
will make it possible to compare the results of compu-
tations with experiment more fruitfully.

We calculated the energies and anisotropy parame-
ters of the angular distribution and spin polarization of
Auger electrons for the decay of the 3d–15p state to the

Table 3.  Anisotropy coefficients of angular distribution (α2)
and spin polarization (β2) calculated for Auger transitions
4s–14p–16p for the Kr atom

Final 
state E–, eV E+, eV

4S3/2 45.1 0.706 –0.005 41.8 0.706 –0.005
4D7/2 45.0 0.673 0.0 41.7 0.673 0.0
4D5/2 45.0 0.545 0.040 41.7 0.535 0.043
2D5/2 44.9 0.646 0.0 41.6 –0.768 –0.038
2P3/2 44.9 0.706 –0.006 41.6 0.705 –0.006
2S1/2 44.8 –1.16 0.023 41.5 –1.15 0.023
4D3/2 44.6 0.565 0.0 41.3 –0.666 0.023
4D5/2 44.5 0.672 –0.017 41.2 0.673 –0.018
2D3/2 44.5 0.538 0.0 41.2 –0.667 0.070
4D1/2 44.5 –1.26 0.024 41.2 –1.27 0.024
4P1/2 44.4 –0.845 0.003 41.2 –0.825 0.003
2D3/2 44.2 0.696 –0.004 40.9 0.687 –0.004
2P1/2 40.9 –0.707 0.0 40.9 –0.707 0.0
2S1/2 38.0 0.0 0.0 34.7 –0.707 0.0
2D3/2 38.0 0.563 0.004 34.7 0.564 0.0
2D5/2 38.0 0.546 0.040 34.7 0.515 0.049
2P1/2 37.9 0.0 0.0 34.6 –0.707 0.0
2P3/2 37.9 0.555 0.0 34.6 0.562 0.0

α2
– β2

– α2
+ β2

+

Table 4.  Experimental energies and intensities of Auger
transitions from state 3d15p for the Kr atom [12]

Final state E, eV Intensity, rel. units

4s–14p–1(1P)5p 42–45 ≈4.2

4s–14p–1(1P)6p 39–41 ≈2.0

4p–34d5p (double 
Auger decay)

35–39 ≈3.7

4s–2(1S)5p2P 28–32 ≈4.3
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
final states 4s–14p–15p, 4s–25p, and 4s–14p–16p of the Kr
atom, which are allowed by the selection rules for one-
stage photoexcitation from the ground state. The com-
putations were performed using the relativistic multi-
electron approximation with superposition of the con-
figuration in intermediate coupling taking into account
relaxation. The wavefunctions of an Auger electron are
orthogonal to the core wavefunctions. The exchange
interaction is taken into account. Satisfactory agree-
ment between the calculated energies of Auger decay
and experimental results has been reached.
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Abstract—An analysis is presented of the state that arises after photons have been spontaneously emitted by a
pair of spatially separated excited two-level atoms with spin-1/2 ground and excited states. Selection of possible
decay scenarios conditioned on the helicities of the photons (even on the helicity of the one emitted first) makes
it possible to reveal ground-state spin-projection correlations between atoms. The correlations are due to quan-
tum interference between alternative scenarios (the atom that has emitted a particular photon cannot be identi-
fied). The correlations obtained by the chosen selection method are classical. © 2004 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Growing interest in classification of correlated
states of quantum many-body systems and in methods
for creating them is motivated by the importance of
entanglement, as a special type of correlation, for quan-
tum information processing. The importance of corre-
lations between particles in optics (e.g., their key role in
Dicke superradiance [1]) was realized much earlier.
Entanglement of subsystems of a closed quantum sys-
tem must be explained by their interaction. Entangle-
ment in an open system is a more complicated phenom-
enon: subsystems A and B can be entangled by indirect
interaction via some external system (e.g., common
environment [2]). In [3], a pair of spontaneously emit-
ting atoms in a resonant light field was used as an exam-
ple to show how an entangled state of noninteracting
subsystems of the same system can be prepared. In this
study, we note that the nth-order probability amplitudes
for interaction with an external field (associated with
stimulated transitions involving n photons) provide a
natural basis for representing the state vector of an
atomic system as a superposition of entangled states. In
the case of Λ atoms, certain spontaneous decay events
can be used as physical “filters” for these states, and it
is impossible in principle to attribute a detected sponta-
neous photon to a particular atom. In the context of an
analysis of preparation of entangled states, the phenom-
enon known as entanglement swapping should also be
mentioned [4]. One swapping scenario can be
described as follows. Consider a quantum system con-
sisting of subsystems A, A', B, and B'. Suppose that the

reduced states represented by density matrices ˆ ABζρ
1063-7761/04/9906- $26.00 © 21124
and  are entangled, while subsystems A ∪  B and

A' ∪  B' are uncorrelated, i.e.,

If a post-selective measurement (with a definite out-
come) is now performed on A and A' in the entangled
basis, then the “posterior” state of the subsystem
B ∪  B' corresponding to the given outcome will be

entangled, whereas the prior state  is strictly uncor-
related both before and after the measurement on A ∪
A'. An example of a natural process in which spin cor-
relations are swapped between particles was considered
in [5, 6].

Selection conditioned on the results of interference
between product states leads to entanglement in a sys-
tem of two spatially separated atomic Bose–Einstein
condensates [7] or two photonic modes [8]. An analo-
gous selection plays a key role in the present study of the
correlations induced by spontaneous decay of the excited
states of two spatially separated atoms. The present
model, albeit similar to those considered in [2, 3], takes
into account polarization of the emitted photons and
degeneracy of the atoms with respect to spin direction.
The analysis is focused on characterization of the
induced ground-state spin-projection correlations.

2. DESCRIPTION OF THE MODEL
AND BASIC RELATIONS

Consider a pair of identical atoms A and B with
spin-1/2 ground and excited states. Let the atoms be
localized at points rA and rB within a region much
smaller than the spontaneous emission wavelength.

ˆ A'B'ζρ

ˆ ABA'B' ˆ AB ˆ A'B'.⊗= ζρζρ ζρ

ˆ BB'ζρ
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Suppose that the atoms are heavy enough that their dis-
placement over the decay time is negligible. When pre-
pared in excited states, the atoms can emit two sponta-
neous photons. In this system, alternative decay scenar-
ios interfere in a natural manner: an emitted photon
cannot be attributed to either atom. To examine this
phenomenon in more detail, assume that the emitted
photon is absorbed at a point lying on the perpendicular
bisector of the line segment that joins two two-level
atoms separated by the distance r = |rB – rA| after it has
traveled a distance L (see figure). (Angular momentum
is tentatively ignored.) This geometry corresponds to
optimal conditions for identifying the photon source. It
is clear that the alternative scenarios of emission by A
or B will not interfere if the detector can distinguish
between the transverse recoil momenta pA and pB = –pA
due to absorption. The corresponding quantum uncer-
tainty l in the detector location must satisfy the con-
dition

(1)

where k is the wavevector magnitude characteristic of
the emitted photon (Planck’s constant is set to unity).
However, any difference between pA and pB can arise
only if

(2)

It follows from (1) and (2) that the noninterference con-
dition is

(3)

Accordingly, if

, (4)

then the alternative scenarios of emission by either
atom mutually interfere. This is a necessary condition
for the onset of entanglement in the atom pair. Now,
consider the optical system in which the detector of
spontaneous photons is replaced by a monochromatic
light source with wavelength 2π/k. For this system,
condition (3) means that the distance between the
atoms is many times greater than the Fresnel zone, and
condition (4) implies that both atoms are located within
the first Fresnel zone. Note also that the present analy-
sis is focused on the ground-state spin correlations
induced after two photons have been emitted. Thus, the
intermediate energy-spin-projection entanglement that
arises after the first photon has been detected is not con-
sidered here (see discussion in [3]). It is essential that
the correlations in question arise because the atom that
has emitted a particular photon cannot be identified.

l 1– 2 pA< 2k θ kr
L
-----,≡sin=

l ! r.

r @ 
L
k
---.

r & 
L
k
---
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Now, let us discuss selection of two-atom states con-
ditioned on experimentally distinguishable scenarios of
spontaneous decay. The ideal result of this study would
be the formulation of a simple method for creating
entangled states of the system. The straightforward
argumentation presented below shows that the resulting
prior state (averaged over all spontaneous decay histo-
ries) cannot be entangled if the initial excited state is
isotropic and uncorrelated, i.e., described by the den-

sity matrix (1/4)  ⊗  , where  is the projector on
the excited-state subspace of an atom. (The first and
second multiplicands in tensor products act on the
respective state spaces of A and B.) The atom pair in the
ground state can be treated as a two-qubit system. Its
geometry is defined by the unit vector s = r/r directed

from A to B. In standard notation (  ≡  is the projec-
tor onto the ground-state subspace of an atom), the cor-
responding joint density matrix has the form

,

where “+” and “–” denote the signs of angular-momen-
tum projections on the z axis. It may involve contribu-
tions of the following terms:

The term  ⊗   is not listed here, because it repre-
sents correlations that are isotropic and independent of
s, which cannot be the case. The last three terms (linear
in the components of s) must therefore be discarded by

P̂e P̂e P̂e

1̂ P̂g

σ̂x g+| 〉 g–〈 | g–| 〉 g+〈 | ,+≡

σ̂y i g–| 〉 g+〈 |≡ i g+| 〉 g–〈 | ,–

σ̂z g+| 〉 g+〈 |≡ g–| 〉 g–〈 |–

1̂ 1̂, s ŝ s ŝ,⋅⊗⋅⊗

1̂ s ŝ, s ŝ 1̂, s ŝ×( ) ŝ.⊗⊗⋅⋅⊗

ŝ ŝ

PB PA

L

A Br/2

θ

l

r/2

Schematic setup for distinguishing between photon sources.
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virtue of mirror symmetry, because they are pseudosca-
lar operators. Thus, the most general form of the aver-
aged final density matrix is

(5)

For systems of two spin 1/2 particles, the Peres–Horo-
decki criterion [9, 10] implies that the initial density
matrix involves only classical correlations if and only if
the transpose of (5) with respect to the quantum num-
bers of one of the atoms is positive. It is obvious that
this partial transpose is positive (e.g., in a basis where
the quantization axis z is aligned with s). Therefore,
entanglement cannot be created in this system without
performing selection conditioned on the spontaneous
decay history. It is shown below that the averaged den-
sity matrix does not involve any correlation.

Let us proceed to calculations. Suppose that condi-
tion (4) holds. The Lindblad-type master equation for
the two-particle density matrix  is (e.g., see [11])1 

(6)

It is written in the Heisenberg representation based on
the unperturbed Hamiltonian of the atom pair. Motion
of the atoms, their interactions with external fields, and
the recoil due to emission of photons are neglected. In
this model, the evolution of the density matrix is com-
pletely determined by spontaneous decay. Equation (6)

contains the Lindblad operator (q, n) corresponding
to the emission a photon with helicity q ∈ {±1}  in the
direction of n. These operators (defined on the state
space of the atoms) are the part of the Hamiltonian that
represents interaction between intra-atomic currents
and a spontaneous photon with definite q and n (up to a
factor). Interference between the alternative scenarios
of spontaneous emission by either atom is equivalent to
joint action of both atoms as sources of both photons.
Therefore,

(7)

where

(8)

1 An alternative approach makes use of quantum stochastic differ-
ential equations (e.g., see [3]).

ˆ 1
4
--- 1̂ 1̂ ρs ŝ s ŝ⋅⊗⋅+⊗( ).=ζρ

ζ̂ρ

∂t ˆ d2n L̂ q n,( ) ˆ L̂
†

q n,( )∫
q 1±=

∑=

–
1
2
--- L̂

†
q n,( ) L̂ q n,( ) ˆ,( ){ } + .

ζρ ζρ

ζρ

L̂

L̂ q n,( ) L̂A q n,( ) ikn– rA⋅( )exp=

+ L̂B q n,( ) ikn– rB⋅( ),exp

L̂A q n,( ) d̂ eq* n( ) Î ,⊗⋅=

L̂B q n,( ) Î d̂ eq* n( )⋅⊗=
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are the operators representing the emission of a photon
by A and B, respectively. These definitions involve the

identity operator  in the state space of an atom and the
part of the dipole moment operator responsible for de-
excitation,2 

where eq' denotes the cyclic unit vectors in a laboratory

frame (e0 = ez , e±1 = / ) and

denotes the cyclic unit vectors in a reference frame
where the z axis is aligned with n. The numerical factor

in the expression for  is introduced for convenience.
When condition (4) is violated, Eq. (6) should be rear-
ranged so as to reduce the relative contributions of the
cross terms containing products of operators associated
with different atoms. In the limit of (3), these products
vanish, i.e., the photon sources can be distinguished,
and right-hand side of Eq. (6) is replaced by the sum of
the right-hand sides of the Lindblad equations corre-

sponding to (q, n) and (q, n).

The procedure for selecting different spontaneous
decay histories examined here is conditioned on the
helicities of the emitted photons. Accordingly, consider
the four ensembles defined by the pair of helicities
(q1, q2), where q1 and q2 denote the helicities of the first
and second emitted photons, respectively. The density
matrix corresponding to the emission of photons with
given helicities at instants t1 and t2 is found by solving
Eq. (6):

(9)

where

2 In Eq. (6), time is normalized to the rate constant for spontaneous
decay.

Î

d̂ 3
4π
------=

× gm| 〉 em'〈 | 1
2
---m'

1
2
---1q'

1
2
---m

1
2
--- eq'*,

m m', ±=

∑
q' 0 1±,=

∑

ex iey±( )+− 2

eq n( ) Dq'q
1( ) n( )eq'

q' 0 1±,=

∑=

d̂

L̂A L̂B

ˆ t1 q1; t2 q2,,( ) d2n2 d2n1 L̂ q2 n2,( )∫∫=ζρ

× K̂ t2 t1–( )–[ ] L̂ q1 n1,( ) K̂ t1 t0–( )–[ ] ˆ t0( )expexp

× K̂ t1 t0–( )–[ ] L̂
†

q1 n1,( )exp

ζρ

× K̂ t2 t1–( )–[ ] L̂
†

q2 n2,( ),exp

K̂
1
2
--- d2nL̂

†
q n,( ) L̂ q n,( )∫

q 1±=

∑=
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is the Hermitian operator of evolution of the two-atom
system during the time interval between the acts of
emission (equivalent to Hamiltonian-like evolution in
imaginary time) and (t0) is the initial density matrix
(t0 = 0 hereinafter). The trace of operator (9) defines the
probability distribution of the emission instants and the
helicities of the emitted photons. The integral calcu-
lated over the admissible set of t1 and t2 yields

(10)

The superoperator %q corresponding to the emission
characterized by q is defined as

(11)

in terms of elements of the spectral decomposition

of ,

(12)

Calculation of {λi, } yields the following results if
the z axis is aligned with the line segment that joins the
atoms:

λ0 = 0 corresponds to the projector  =  ⊗  ;

λ1 = 1 + α/3 corresponds to the projector  onto
the subspace

span{|g+〉 ⊗  |e+〉 + |e+〉 ⊗  |g+〉, |g–〉 ⊗  |e–〉 + |e–〉 ⊗  |g–〉};

λ2 = 1 – α/3 corresponds to the projector  onto the
subspace

span{|g+〉 ⊗  |e+〉 – |e+〉 ⊗  |g+〉, |g–〉 ⊗  |e–〉 – |e–〉 ⊗  |g–〉};

λ3 = 1 + (α + β + β*)/3 corresponds to the projector

 onto the subspace

(|g+〉  ⊗  |e–〉  – |e+〉  ⊗  |g–〉  – |g–〉  ⊗  |e+〉  + |e–〉  ⊗  |g+〉)/2;

λ4 = 1 – (α + β + β*)/3 corresponds to the projector

 onto the subspace

(|g+〉  ⊗  |e–〉  + |e+〉  ⊗  |g–〉  – |g–〉  ⊗  |e+〉  – |e–〉  ⊗  |g+〉)/2;

λ5 = 1 + (α – β – β*)/3 corresponds to the projector

 onto the subspace

(|g+〉  ⊗  |e–〉  – |e+〉  ⊗  |g–〉  + |g–〉  ⊗  |e+〉  – |e–〉  ⊗  |g+〉)/2;

λ6 = 1 – (α – β – β*)/3 corresponds to the projector

 onto the subspace

(|g+〉  ⊗  |e–〉  + |e+〉  ⊗  |g–〉  + |g–〉  ⊗  |e+〉  + |e–〉  ⊗  |g+〉)/2;

ζ̂ρ

ˆ q1; q2( )

=  t 2 d 

0

 

∞

 ∫  t 1 ˆ t 1 q 1 ;  t 2 q 2 ,,( ) d  

0

 

t

 

2

 ∫  % q 2 % q 1 ˆ 0 ( )( )[ ] .= 

ζρ

ζρ ζρ

%q ˆ[ ] d2n
L̂ q n,( )P̂i ˆ P̂ j L̂

†
q n,( )

λ i λ j+
-----------------------------------------------------∫

i j,
∑=ζρ ζρ

K̂

K̂ λ i P̂i.
i

∑=

P̂i

P̂0 P̂g P̂g

P̂1

P̂2

P̂3

P̂4

P̂5

P̂6
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 = 2 corresponds to the projector  =  

 

⊗

 

 .

The parameters

(13)

and

(14)

are defined so that  α ( r )  1 and  β ( r )  1 as  r  = 
|

 
r

 

B

 
 – 

 
r

 

A

 
|

 
  0.

3. ANALYSIS OF THE CORRELATED STATE

If the initial state corresponds to uncorrelated isotro-
pic excitation of both atoms,

(15)

then expression (10) yields

(16)

where

Note that the last summand contains the operator (

 

s

 

 

 

×

 

) 

 

⊗

 

  written in a different form. Mirror symmetry
is not violated here, since the operator is multiplied by
the pseudoscalar 

 

q

 

1

 

.

The probability 

 

p

 

(

 

q

 

1

 

, 

 

q

 

2

 

) of emission of a pair of
photons with given helicities is proportional to the coef-
ficient of the first summand in (16):

(17)

The probability of emission of photons having equal
helicities is the highest and reaches a maximum value

P̂7 P̂e P̂e

α α r( ) 3
kr( )sin kr kr( )cos–

kr( )3
------------------------------------------------= =

β β r( )=

=  
3
2
--- kr( )sin

kr
------------------

kr( )sin kr kr( )cos–

kr( )3
------------------------------------------------ 1 ikr–( )–

ˆ 0( ) 1
4
--- P̂e P̂e,⊗=ζρ

ˆ q1; q2( ) 1
16
------ 1

1
2
---q1q2

β β*–( )2

9 α2–
----------------------– 

  1̂ 1̂⊗=ζρ

–
1
32
------q1q2

β β*–( )2

9 α 2
–

----------------------σ̂z σ̂z⊗

+
1
24
------q1

α β β*–( )
9 α 2

–
------------------------ σ̂+ σ̂– σ̂– σ̂+⊗–⊗( ),

σ̂+ g+| 〉 g–〈 | , σ̂– g–| 〉 g+〈 | .≡≡

ŝ ŝ

p q1; q2( ) TrA B,
ˆ q1; q2( ) 1

4
---= =

+  
q
 

1 
q

 
2 

8
---------- 

kr kr ( ) cos
 

kr ( ) sin– [ ]
 

2

 
kr ( )

 

2

 
kr

 
( )

 
6

 
kr kr

 
( )
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( )
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[ ]

 
2

 
–

--------------------------------------------------------------------------. 

ζρ
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of 0.55 at kr ≈ 2.04. The ensuing asymptotic expres-
sions are

(18)

(19)

The ratio (q1; q2)/p(q1; q2) is the (posterior) den-
sity matrix conditioned on given helicities of the emit-
ted photons. The corresponding density matrices of the
respective atoms represent the state characterized by
the maximal spin-projection entanglement:

(20)

The two-particle density matrix averaged over all
admissible helicity values exhibits perfect isotropy and
complete decoherence:

(21)

However, correlation between atomic states is induced
by the last summand in (16) after the helicity of the first
photon has been specified. The correlation induced by
specifying the value of q2 can only be stronger. Note
also that correlations vanish when either kr = 
or the distance between the atoms is much greater than
the spontaneous decay wavelength.

According to the Peres–Horodecki criterion, the
correlations are classical.

4. CONCLUSIONS

The onset of spin-projection entanglement after
spontaneous emission of photons by a pair of atoms is
analyzed. The correlation arises from the fundamental
impossibility to identify the atom that has emitted a par-
ticular photon. The presence of an observer is obvi-
ously not required to establish this impossibility,
because it should be interpreted as the lack of a param-
eter of the environment that is entangled with any par-
ticular history of spontaneous decay (emission of a
photon by a particular atom). This explains the interfer-
ence between alternative scenarios. The example ana-

p q1; q2( ) 1
4
---

q1q2

64
---------- kr( )2, kr ! 1,+

p q1; q2( ) 1
4
---

q1q2

8
---------- kr( )cos

kr
------------------- 

 
2

, kr @ 1.+

ζ̂ρ

ζρ

ζρ
ζρ

ζρ
ζρ

ζρˆ A
TrB

ˆ q1; q2( )
TrA B, ˆ q1; q2( )
-----------------------------------

1
2
--- P̂gA,= =

ˆ B
TrA

ˆ q1; q2( )
TrA B, ˆ q1; q2( )
-----------------------------------

1
2
--- P̂gB.= =

ˆ q1; q2( )
q1 q2,
∑ 1

4
--- P̂g P̂g.⊗=ζρ

kr( )tan
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lyzed here illustrates a general principle: the state of an
open quantum system is determined by the information
received by the environment [12]. The averaged density
matrix does not involve any correlation after the pho-
tons have been emitted, and selection conditioned on
spontaneous-decay history is required to single out a
subensemble in which the ground states of the atoms
are correlated. The present analysis uses the simplest
(discrete) procedure of selection conditioned on the
helicities of the emitted photons. The selection is ame-
nable to a comprehensive analysis, but is not sufficient
to identify entangled states, since the resulting correla-
tions are classical. The possibility of entanglement
under selection conditioned on the emission directions
remains an open question.
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Abstract—We analyze the optical transmittance at normal incidence for an electron gas without losses. The
electron gas is supposed to have a plane parallel slab geometry and its dielectric permittivity is assumed to be
periodically modulated in one direction parallel to the interfaces. Due to surface plasmon polariton mode
excitation, there exist resonance frequencies where the transmittance equals to unity. The number and positions
of peaks are investigated analytically and a comparison with the analytic theory by Dykhne et al. [6] is made.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the past, it had been thought that subwavelength
apertures have a very low transmission efficiency of
light [1]. Recently, however, high transmission efficien-
cies from arrays of subwavelength structures in metal
films have been reported. Since the publication of [2],
many experimental and theoretical studies were carried
out in order to determine the physical origin of the
extraordinarily enhanced transmission. They focused
on the description of complicated electromagnetic
modes of the metal, originating from the interaction
between photons and surface electrons, considering
disordered arrays of holes in a metal film [3], organized
nanoparticles [4] or periodic rough surfaces [5].

In this paper, we restrict ourselves to the case where
the metal film occupying the space

is in a vacuum environment (|z| > d/2, –∞ < x < ∞) and
the dielectric permittivity has the simple form

with some prescribed periodicity a = 2π/q in the 
direction. Only transverse magnetic waves (TM mode)

are considered in the two-wave approximation

z
d
2
---, ∞ x ∞,

y∂
∂< <–< 0=

ε x( ) ε̃0 ε̃1 qx( ),cos+=

x̂

Hy x z,( ) Ex x z,( ) Ez x z,( ), ,( ) iωt–( )exp

F x z,( ) F0 z( ) F1 z( ) qx( ),cos+=

¶ This article was submitted by authors in English.
1063-7761/04/9906- $26.00 © 21129
where a full analytic treatment of the complicated
boundary value problem can be easily done. We follow
the notation and the method of solution outlined in [6]
in order to obtain a clear physical understanding of the
phenomenon of enhanced transmission. We also derive
definite results for the dissipationless free-electron gas
with

(ωp is the electron plasma frequency). In future studies,
these results will be extended to more realistic optical
characteristics of metal films, including the experimen-
tally available data for optical constants [7].

2. GENERAL ANALYTIC FORMULATION
OF THE PROBLEM

We consider the two-dimensional electromagnetic
problem shown schematically in Fig. 1. The magnetic
permeability in the whole space is denoted by µ0 and
the dielectric permittivity of the free space is denoted
by ε0. The physical system considered in this work con-
sists of a vacuum (the relative dielectric permittivity is
ε(ω) = 1) in two regions |z| > d/2 and a metal slab (in the
region |z| < d/2) characterized by the relative dielectric
function

(1)

If the modulation factor g = 0, the dielectric function of
the slab (Eq. (1)) is assumed to be real and to satisfy the
condition n2 > 1 in some frequency range. It is within

ε̃0 1
ωp

2

ω2
------–=

ε ω x,( ) n2 1 g qx( )cos–( ) 1– .–=
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this frequency range that surface-plasmon polaritons
exist. The particular periodic x dependence in (1) facil-
itates the comparison with the analytic results given
in [6]. The Maxwell equations in the linear harmonic
approximation (exp(–iωt)),

(2)

, (3)

are treated for transverse magnetic waves (p polariza-
tion) E(Ex, 0, Ez), H(0, Hy , 0) under the assumption

In the region |z| < d/2, we have

(4)

(5)

where

curlE ω r,( ) iωµ0H ω r,( ),=

curlH ω r,( ) iωε0ε ω x z, ,( )E ω r,( )–=

y∂
∂ 0.=

∂2Hy

∂z2
------------ ε x( )

x∂
∂ 1

ε x( )
---------

∂Hy

∂x
---------+

+ k2ε x( )Hy x z,( ) 0,=

Ex
i

ωε0ε x( )
-------------------

∂Hy

∂z
---------, Ez–

i
ωε0ε x( )
-------------------

∂Hy

∂x
---------,= =

k ω ε0µ0( )1/2 ω
c
----.= =

Fig. 1. A plane wave is incident normally on a modulated
film |z| < d/2. The two arrows show the direction of propa-
gation of the beam incident from z = –∞ and the zero-order
transmitted beam (T0exp(ikz)) at z = ∞. The transmittance is

defined as T = |T0|2.

exp(ikz) T0exp(ikz)

z = –d/2 z = d/2

x

z
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Equations (1) and (4) can be written as

(6)

Neglecting the generation of the cos(lqx) harmonics
with l higher than one and recalling the Floquet theo-
rem, we find

(7)

where

(8)

(9)

In formulas (8) and (9), X1, X2, Y1, and Y2 are arbitrary

constants and  are dimensionless eigenvalues given
by [6]

(10)

where

(11)

A1, A2 and B1, B2 are eigenvectors that satisfy the four
relations

(12)

(13)

(14)

(15)

If the modulation amplitude is small (q ! 1), it is
straightforward to obtain the following expansions up

1 g qx( )cos–[ ]
∂2Hy

∂z2
------------

x∂
∂

1 g qx( )cos–( )
∂Hy

∂x
---------+

– k2n2Hy x z,( ) 0.=

Hy x z
d
2
---<, 

  A1 2A2 qx( )cos+[ ] X[ ]=

+ B1 2B2 qx( )cos+[ ] Y[ ] ,

X[ ] dkn
2

---------λ1 
 sech=

× X1 knzλ1( )cosh X2 knzλ1( )sinh–[ ] ,

Y[ ] dkn
2

---------λ2 
 sech=

× Y1 knzλ2( )cosh Y2 knzλ2( )sinh–[ ] .

λ1 2,
2

λ1
2 2 Q– q1

2+

2 g2–
------------------------, λ2

2 2 Q q1
2+ +

2 g2–
-------------------------,= =

Q2 q1
4 2g2 1 q1

2–( ), q1+
q

kn
------;= =

A1 λ1
2 1–( ) gA2λ1

2– 0,=

gλ1
2A1– 2 λ1

2 1– q1
2–( )A2+ 0,=

B1 λ2
2 1–( ) gB2λ2

2– 0,=

gλ2
2B1– 2 λ2

2 1– q1
2–( )B2+ 0.=
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to the order O(g4):

(16)

(17)

(18)

(19)

(20)

(21)

where

(22)

Because of a misprint or error (reversed signs in ,

), the coefficients in [6] (formula (12)), denoted
with the superscript D here, must be corrected accord-
ing to the relations

(23)

(24)

A1 1 g2

4q1
2

--------
g4

4q1
2

-------- 2F q1
2–+( ),+ +=

A2
g

2q1
2

-------- 1 g2

2q1
2

--------
g2

4
----- 2F q1

2–+( )–– ,–=

B1
g

2q1
2

-------- 1 q1
2 g2

2
----- q1 q1

1–+( )2
–+=

+
g4

4
----- 2F q1

2 q1
2–+ +( ) ,

B2
1
2
--- 1

g2

2q1
2

-------- q1 q1
1–+( )2

+




=

+
g4

4
----- 2F 2 q1

2 q1
2–+ + +( )





,

λ1
2 1 g2

2q1
2

--------
g4

4
----- 2F q1

2–+( ),––=

λ2
2 1 q1

2 g2

2
----- 2 q1

2 q1
2–+ +( )+ +=

+
g4

4
----- 2F 2 q1

2 q1
2–+ + +( ),

F
1 q1

2–+( )2

2q1
2

-----------------------.–=

A2
D

B1
D

A1 A1
D Q q1

2 g2 1 q1
2+( )–+

q1
2 2 g2–( )

----------------------------------------------,= =

A2
D 2A2

g 2 q1
2 Q–+[ ]

q1
2 2 g2–[ ]

--------------------------------,–= =

B1 B1
D g 2 q1

2 Q+ +[ ]
2q1

2 2 g2–[ ]
---------------------------------,–= =

B2
D 2B2

q1
2 Q g2+ +

q1
2 2 g2–( )

---------------------------.= =
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Obviously, Eqs. (5), (7), (8), and (9) imply that the tan-
gential electric field in the slab is given by

(25)

where, analogously to (8) and (9), we have defined the
z-dependent functions

(26)

(27)

In the vacuum regions, we have the following fields: in
the left half-space in Fig. 1,

(28)

(29)

and in the right half-space in Fig. 1,

(30)

where

The continuity condition for the tangential electromag-
netic field on the interfaces z =  leads to the fol-

ωε0

k
---------Ex ex x z

d
2
---<, 

 =

=  
i
n
--- X'[ ] A1 gA2– qx( ) 2A2 gA1–( )cos+( ){

+ Y'[ ] B1 gB2– qx( ) 2B2 gB1–( )cos+( ) } ,

X'[ ] λ 1

dknλ1

2
--------------- 

 sech=

× X1 knzλ1( )sinh X2 knzλ1( )cosh–[ ] ,

Y'[ ] λ 2

dknλ2

2
--------------- 

 sech=

× Y1 knzλ2( )sinh Y2 knzλ2( )cosh–[ ] .

Hy x z
d
2
--- 0<+, 

  ikζ+( )exp=

+ Rp ik γpx βpζ+–( )[ ] ,exp
p 0 1±,=

∑

ζ+ z
d
2
---, γp+ p

q
k
---, R1 R 1– ,= = =

βp 1 γp
2–[ ] 1/2

iV p, Imβp ReV p 0,≥= = =

Hy x z
d
2
--- 0>–, 

 

=  T p ik γpx βpζ–+( )[ ] ,exp
p 0 1+−,=

∑

ζ– z
d
2
--- 0, T1>–≡ T 1– .=

d/2+−
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lowing four equations containing eight unknown quan-
tities X1, X2, Y1, Y2, R0, R1, T0, T1:

(31)

(32)

(33)

(34)

Here, we use the notation

(35)

The introduction of the sech((dkn/2)λ1, 2) coefficients
in (8), (9) and in (26), (27) is not obligatory, but sim-
plifies the calculations because only tanh-terms
defined in (35) then simultaneously appear in all four
equations (31)–(34).

3. CALCULATION 
OF THE RESONANT TRANSMITTANCE 

THROUGH A MODULATED SLAB

It is convenient to first equate the terms proportional
to cos(qx) in (31)–(34) and to eliminate the unknowns
R1 and T1 that are not interesting in this study. Thus we
derive the following two relations between the con-
stants (X1, X2) corresponding to the fundamental beam
and the constants (Y1, Y2) describing the cos(qx) mode:

(36)

(37)

A1 X1 X2t1+[ ] B1 Y1 Y2t2+[ ]+

+ 2 qx( ) A2 X1 X2t1+[ ] B2 Y1 Y2t2+[ ]+[ ]cos

=  1 R0 2 qx( )R1,cos+ +

A1 X1 X2t1–[ ] B1 Y1 Y2t2–[ ]+

+ 2 qx( ) A2 X1 X2t1–[ ] B2 Y1 Y2t2–[ ]+[ ]cos

=  T0 2 qx( )T1,cos+

λ1 A1 gA2–( ) X1t1 X2–[ ] λ 2 B1 gB2–( ) Y1t1 Y2–[ ]+

+ qx( ) λ1 2A2 gA1–( ) X1t1 X2–[ ][cos

+ λ2 2B2 gB1–( ) Y1t2 Y2–[ ] ]
=  inT0– 2nv T1 qx( ),cos+

λ1 A1 gA2–( ) X1t1 X2+[ ] λ 2 B1 gB2–( ) Y1t2 Y2+[ ]+

+ qx( ) λ1 2A2 gA1–( ) X1t1 X2+[ ][cos

+ λ2 2B2 gB1–( ) Y1t2 Y2+[ ] ]
=  in 1 R0–( ) 2nv R1 qx( ).cos+

t1 2, kn
d
2
---λ1 2, 

  ,tanh≡

v
q
k
--- 

 
2

1– , Rev 0.≥=

Y1 k1X1

λ1 2A2 gA1–( )t1 2nv A2–
2nB2v λ2 2B2 gB1–( )t2–
--------------------------------------------------------------X1,= =

Y2 k2X2

λ1 2A2 gA1–( ) 2nv A2t1–
2nB2t2v λ2 2B2 gB1–( )–
--------------------------------------------------------------X2.= =
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We note that these expressions are exact in the accepted
two-mode (F0(z) + 2F1(z)cos(qx)) approximation. We
now equate the zero-order terms in boundary condi-
tions (31)–(34) (the fundamental x-independent mode);
eliminating R0 and T0 from these four equations, we
then have

(38)

(39)

The transmission coefficient is given by

(40)

which can also be written as

(41)

where α(q1) and β(q1) can be written as simple func-
tions of q1, n, t1, t2, k1, k2 using formulas (16)–(21) for
A1, B1, A2, B2, λ1, λ2 with O(g4) terms neglected,

(42)

(43)

We first consider two trivial consequences of formu-
las (42) and (43). If the film thickness vanishes (t1 =
t2 = 0), we have

and therefore

X1

=  
in

inA1 inB1k1 λ1 A1 gA2–( )t1 λ2t2k1 B1 gB2–( )+ + +
---------------------------------------------------------------------------------------------------------------------------,

X2

=  
in

inA1t1 inB1k1t2 λ1 A1 gA2–( ) λ2k2 B1 gB2–( )+ + +
---------------------------------------------------------------------------------------------------------------------------.

T0 X1 A1 k1B1+( ) X2 t1A1 k2t2B1+( ),–=

T0

β q1( ) α q1( )–
1 α q1( )+( ) 1 β q1( )+( )

-----------------------------------------------------,=

α q1( )

=  
t1 1

g2

4
----- q1

2– 2q1
4–+( )+ t2k1g

1 q1
2+

2
------------------q1

2–+

in 1
g2

2
-----q1

4– k1g
2

-------- 1 q1
2–+( )+ +

 
 
 

---------------------------------------------------------------------------------------------------,

β q1( )

=  
1

g2

4
----- q1

2– q1
4–+( ) k2g

g1
2–

2
------- 1 q1

2++ +

in t1 1
g2

2
-----q1

4–+ 
  t2k2g

1 q1
2–+

2
----------------+

 
 
 

---------------------------------------------------------------------------------.

α 0, β ∞,= =

T0 1.=
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If there is no modulation, then

and we have the well-known result

(44)

We next consider the most interesting case of a thick
metal film with thickness d greater than the skin depth,
that is,

(45)

where

(46)

and ζ1 ! 1, ζ2 ! 1. In (46), we approximate λ1, 2
from (20) and (21) as

Moreover, for an SPP resonance,

as we see in what follows, and therefore

and

(47)

In this regime, we derive from the definitions of k1, 2
in (36) and (37) that

(48)

(49)

It is important to note that the general formula (41) con-
sidered in the complex wavenumber plane (Req1, Imq1)

g 0, α
t1

in
-----, β 1

int1
---------,= = =

T0 g 0=( )
2n

2n knd( )cosh im2 knd( )sinh+
-------------------------------------------------------------------------,=

m2 n2 1.–=

t1 1 2ζ1, t2– 1 2ζ2,–= =

ζ1 knd–( ), ζ2exp knd 1 q1
2+–( ),exp= =

λ1 1, λ2 1 q1
2+ .= =

k
q
---

m
n
----, m n2 1– ,= =

q1
1– m=

ζ2 knd 1 1

m2
------+– 

 exp kdn2

m
-----------– 

  .exp= =

k1
2gm n m–( )

2m 1 n2+( )
n2

--------------------------- q1
1– m–( ) 4ζ2– n2g2

2
----------–

---------------------------------------------------------------------------------,=

k2
2gm n m–( )

2m 1 n2+( )
n2

--------------------------- q1
1– m–( ) 4ζ2

n2g2

2
----------–+

---------------------------------------------------------------------------------.=
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has two poles at the points where

With the aid of (48) and (49), we can show that these
complex wavenumbers are given by

(50)

(51)

Two remarks are appropriate to formulas (50) and
(51). The first concerns the absence of terms propor-
tional to ζ1, that is, the limit t1 = 1 is appropriate, but the
finite penetration depth for the cos(qx) mode is crucial
because there is no resonant enhancement of the trans-
mission at ζ2 = 0. The second remark is that we neglect
terms of the order O(g4) in (50) and (51). It is now clear
that if we set

(52)

then for small values of ξ such that terms of the order
ξζ2, ξg2 can be neglected, we have

(53)

where

(54)

From (41), (53), and (54), we derive the transmittance
of a dissipationless film in the form

(55)

α Q1
+( ) β Q1

–( ) –1.= =

Q1
+( ) 1–

m
2n2ζ2

m 1 n2+( )
-----------------------

g2n3

4m 1 n2+( )2
-----------------------------+ +=

× n 1 n2+( ) 2m n m–( ) n m3+( )–[ ] ig2n5 n m–( )
2

2 1 n2+( )
2

------------------------,–

Q1
– ζ2( ) Q1

+ ζ2–( ).=

ξ q1
1– m–( )2m 1 n2+( )

n2
---------------------------=

=  k
q
--- m

n
----– 

  2m 1 n2+( )
n

---------------------------,

α
ξ 4ζ2– g2M1+

in ξ 4ζ2– g2M2+[ ]
----------------------------------------------,=

β
ξ 4ζ2 g2M1+ +

in ξ 4ζ2 g2M2+ +[ ]
-----------------------------------------------,=

M1 m2n n m–( ) n2

2
-----,–=

M2 mn2 n m–( ) n2

2
-----.–=

T T0
2 4g̃4

∆̃ 1–( )2
g̃4+[ ] ∆̃ 2

1+( )
2

g̃4+[ ]
--------------------------------------------------------------------------,= =
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where we have introduced the renormalized modu-
lation

(56)

and the detuning from the surface plasmon polariton
frequency

(57)

Due to the equality

our formulas (56) and (57) are analogous to formulas (33)
and (34) in [6], but ζ2 is given by (47) and not by ζ = ζ1
as defined in [6]. Only in the limit n  ∞ do both for-
mulations coincide,

The physical effects associated with the two small
parameters ζ1 and ζ2 were not discussed in [6].
Although this was not written explicitly, these authors
assumed that n @ 1 in order to consider the influence of
a single small parameter ζ = ζ1 ≈ ζ2. Our treatment of
the strong skin effect in the modulated slab (summa-
rized in formulas (55)–(57)) is free of the restriction
n @ 1, that is, the formulas are valid for all 1 < n < ∞
provided of course that the less restrictive conditions
written after formula (46) are fulfilled. Our new and (as
we believe) more correct analytic formulation (55)–(57)
leads to appreciable differences from the previously
proposed analytic formulation [6] for a concrete plasma
parameterization given in Section 4.

4. TRANSMISSION OF ELECTROMAGNETIC 
WAVES THROUGH A SLAB 

OF COLLISIONLESS PLASMA

As a specific example, we consider the case where

(58)

g̃2 g2n2m n m–( )2

4ζ2 n2 1+( )
-----------------------------------=

∆̃ m 1 n2+( )
2nζ2

----------------------- k
q
--- m

n
----– 

 –=

+
g2n

8ζ2 1 n2+( )
---------------------------- n3 n 2m n m–( ) n3 m+( )–+[ ] .

n m–( )2 n n3 2m+ +( ) n3 n 2m n m–( ) n3 m+( ),–+≡

n
n2

m
-----– 

 
n ∞→
lim 0.=

n2 ωp
2

ω2
------ 1–

2 x2–

x2
-------------,= =

ω
ωp

2
-------x, 0 x 1.< <=
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If we introduce the dimensionless parameters

(59)

the zero-order resonance frequency that follows from
the condition

is equal to the following value of x:

(60)

The value x0(p) is defined for all 0 < p < ∞. In the spe-
cial case where p @ 1, x0(p) is very small, i.e., x0 ≈

/p. On the other hand, if p ! 1, x0 is very close to
one,

It is instructive to note that

(61)

tends to the constant value exp(–D) for small x, but if x
is close to one, then

(62)

whereas

and therefore using the result in [6] for p ! 1 gives sub-
stantial deviations from the present theory. We consider
the number and exact positions of points where the
transmittance T is equal to one. We first note that for-
mula (55) can be represented in the form

(63)

In writing Eq. (63), we have fixed

also bearing in mind the definitions in Eq. (59). The

D
ωpd

c
----------, p

ωp

cq
------,= =

k
q
--- m

n
----=

x0 1 2

p2
----- 1 4

p4
-----+–+ , 0 x0 1.< <=

2

x0 1
p2

8
-----.–≈

ζ2 x( ) D
1 x2/2–

1 x2–
------------------–

 
 
 

exp=

ζ2
D
p
----– 

  ,exp≈

ζ1 x 1=( ) D

2
-------– 

  ,exp=

2 T 1– 1–
∆̃
g̃
--- 

 
2

g̃ 2–– g̃2+ A n p D g, , ,( ).= =

ω ωp/ 1 n2+ ,=
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transcendental equation

(64)

can be solved numerically or approximately by analytic
treatment using the fact that g ! 1 and D is of the order
of one, and hence

(65)

for every n > 1. An analysis of Eq. (64) for the model
in [6] must be based on

(66)

instead of Eq. (65). Using formulas (56) and (57), we
rewrite Eq. (64) as

(67)

where

(68)

(69)

(70)

If we neglect the right-hand side of Eq. (67), we
derive the zero-order solution n0, given by formula (60),
that is,

(71)

If B(n0) > 0, we find two formal maxima of the trans-
mittance (Tmax = 1) at points n±, where

(72)

A n p D g, , ,( ) 0=

ζ2 n( ) Dn2

n4 1–
------------------–exp  ! 1=

ζ1 n( ) Dn

n2 1+
------------------–exp  ! 1=

a2 n( ) 2Dn2

n4 1–
------------------–exp 2g2a n( )b n( )+=

– g4 b2 n( ) c2 n( )+[ ] B n( ),=

a n( )
1 n2+

2n
--------------m

p

1 n2+( )1/2
------------------------ m

n
----– ,=

m2 n2 1,–≡

b n( )
n n m–( )2 n3 n 2m+ +( )

8 1 n2+( )
---------------------------------------------------------,=

c n( )
n2m n m–( )2

4 1 n2+( )
------------------------------.=

n0
p2 p4 4++

2
------------------------------.=

n± n0

2n0
3

1 n0
4+

-------------- B n0( ),±=
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within first-order perturbation theory. The minus sign
in Eq. (72) can lead to a nonphysical solution n– < 1 if
the correction term in (72) is sufficiently large. In the
limiting case where B(n) < 0 for every n, the transmit-
tance never attains a maximum value of one. Neverthe-
less, the transmittance can have maximum values that
are smaller than one (Figs. 2b, 2c). This quantitative
analysis was confirmed by numerical calculations
shown in Fig. 2. Here, D = 1, g = 0.2, and p = 0.1, 1,
and 10 in the respective Figs. 2a–2c. The numerical
results based on formula (66), that is, the Dykhne
model [6], are shown by dashed lines. We see not more
than two maxima in all cases. The Dykhne model pre-
dicts only one peak in the cases p = 0.1 and p = 1,
whereas our model leads to two maxima in these two
cases.

5. CONCLUSIONS

We have presented a method to analytically describe
the resonant transmittance of electromagnetic waves
through periodically modulated films. The phenomeno-
logical description of the medium |z| < d/2 through
Eq. (1) allows complex values of the parameters

n = n1 – in2, g = g1 + ig2,

1.0

0.5

0
1.00 1.04 1.08 1.12 1.16 1.20 1.24 1.28

T

n

(a)

1.0

0.5

0
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

T

n

(b)

1.0

0.5

0
9.90 9.94 9.98 10.02 10.06 10.10

T

n

(c)

Fig. 2. Transmittance as a function of n at D = 1, g = 0.2,
and p = 0.1 (a), 1 (b), 10 (c). Our results—continuous lines;
model [6]—dashed lines.
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but in this paper, we analyze in detail only the dissipa-
tionless case (real values of n and g). In the framework
of the same physical model, it is not difficult to analyze
the more general parameterization

(where both numbers ,  are complex) and to con-
sider oblique incidence of the primary field. The inves-
tigation of the interaction of incident light with surface
plasmon modes complements the study in [6] as well as
the analytical results in [8].
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Abstract—A basis of polarization-dressed states is proposed for atomic energy levels degenerate in the total
angular momentum projections in the case of interaction with elliptically polarized light. It is shown that instead
of selection rules for the magnetic quantum number, the interaction in this basis can be presented as the sum of
direct transitions between corresponding pairs of polarization-dressed states of the upper and lower levels. The
explicit form of the basis is derived for ten possible combinations of dipole transitions between energy levels
with angular momenta J = 0, 1/2, 1, 3/2, and 2. The problem of Rabi oscillations in such a system is considered
as an application. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of interaction of resonant polarized
monochromatic light with an atom whose energy levels
are degenerate in the total angular momentum projec-
tions is one of the central problems in quantum optics;
this problem was solved by many authors in various
approximations [1–5]. Using light polarization (gener-
ally elliptical), it is possible to control both intrinsic
degrees of freedom of atoms (e.g., the anisotropy state
of atoms) and their translatory motion. It is well known
that allowance for degeneracy of atomic levels reduces
the pattern of the nonlinear interaction of polarized
light to a complex multilevel diagram. It is difficult to
obtain an analytic solution to this problem in view of
the large number of equations for magnetic sublevels
associated with the nonlinear interaction with various
components of the light field polarization. The interac-
tion pattern is simplified to a certain extent in particular
cases of purely linear and circular polarization, when a
multilevel system can be reduced to a set of indepen-
dent nondegenerate two-level systems governed by the
magnetic quantum number selection rules. Such a sim-
plification is associated with the appropriate choice of
the quantization axis (which is chosen along the field in
the case of linear polarization and at right angles to the
polarization plane in the case of circular polarization of
light). The appropriate choice of the quantization axis
along the axis of the cylinder whose cross section coin-
cides with the polarization ellipse also simplifies the
analysis of resonant interaction of degenerate atoms
with elliptically polarized light [6].

It should be noted that transitions 1  0, 1  1,
and 1/2  1/2 are preferred in polarization problems
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since these transitions are characterized by only one
effective interaction parameter [7]. In particular, it is
possible in these cases to prove exact integrability of
the Maxwell–Bloch equations and to obtain one- and
two-soliton solutions in problems of propagation of
light pulses in a nonlinear medium [7].

A general formulation of the problem of interaction
of resonant elliptically polarized light with a two-level
system degenerate in the total angular momentum pro-
jections was proposed in [8]. However, only particular
solutions, which are associated with the existence of
stationary coherent states (also referred to as ellipti-
cally dark states) describing the effect of coherent pop-
ulation trapping (CPT), were determined in [8]. As a
continuation of [8] and a series of our subsequent pub-
lications [9–14], here we attempt to obtain all the
remaining analytic solutions to the Schrödinger equa-
tion from the complete orthonormal set of states of a
degenerate atom in elliptically polarized light.

The basic idea of our approach to the problem lies in
determining a basis set of the wavefunctions of the
unperturbed Hamiltonian, in which light-induced
dipole transitions between degenerate energy levels can
be presented as a set of independent nondegenerate
two-level systems (as in the case of purely linear or cir-
cular polarization) and which would take into account
all peculiarities of the interaction with elliptic polariza-
tion of the light field. The determination of such a
polarization-dressed basis is equivalent to representing
the tensor part of the interaction operator in block-diag-
onal form.

It should be noted that the problem of reduction of a
degenerate two-level system to a set of independent non
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degenerate two-level systems was formulated for the
first time in general form in [15], where transition
Ja = 2  Jb = 1 was considered as an example. A basis
of polarization-dressed states was used in [9] in implicit
form in the problem of determining the stationary state
of the density matrix of atoms in an elliptically polar-
ized field. Here, we propose a new basis instead of the
generally accepted Zeeman basis of angular momen-
tum for problems of interaction of resonant elliptically
polarized light with atomic and molecular energy levels
degenerate in angular momentum projections. This
basis, which will be referred to as a polarization-
dressed basis, is defined as the proper basis of optical
shift operators. It is presented as an expansion in the
basis of magnetic sublevels with coefficients depending
only on the light field polarization; i.e., the basis is ini-
tially “tuned” to the field polarization. After the appli-
cation of the light field, the selection rules in the dipole
interaction change: only direct dipole transitions

between states with identical eigenvalues  –  = 0
are realized in the new basis instead of dipole transi-
tions between magnetic sublevels ma – mb = 0, ±1 of the
lower and upper levels. In Section 3, general properties
of the new basis are considered. The explicit analytic
form of new states and their eigenvalues is determined
in Section 5 for ten possible combinations of dipole
transitions between energy levels with angular
momenta J = 0, 1/2, 1, 3/2, and 2; it is shown that the
problem can be presented as the sum of independent
two-level systems. By way of example, the solution of
the problem of Rabi oscillations in a system with
degenerate energy levels is considered in Section 4.

2. FORMULATION OF THE PROBLEM

In the dipole approximation, the Hamiltonian
describing the interaction of an atom degenerate in the
angular momentum projections with a monochromatic
elliptically polarized resonant field can be written in the
form

(1)

where the polarization-angular part

(2)

and field amplitude E0 appearing in the Rabi frequency

are singled out as cofactors. In the coordinate system in
which the principal semiaxes of the polarization ellipse
coincide with the x and y axes and the angular momen-
tum quantization axis z is orthogonal to the ellipse
plane, the circular field components q± can be written in
the form

(3)

where ε is the light ellipticity parameter defined in the

λ i
b λ i

α

Ĥ int Ed̂– ΩV̂ iωt–( )exp h.c.,+= =

V̂ q+d̂1 1–, q–d̂1 +1,+=

Ω E0 Ja d Jb〈 〉 /"–=

q+ ε π/4+( ), q–sin ε π/4+( ),cos= =
JOURNAL OF EXPERIMENTAL
                                          

interval –π/4 ≤ ε ≤ +π/4 and | | is the ratio of the
semiminor axis of the ellipse to the semimajor axis. The
matrix elements of the angular part of the dipole

momentum operator  in the standard basis of the
magnetic sublevels |Ja, ma〉  and |Jb, mb〉  of the lower and
upper levels can be expressed in terms of the Clebsch–
Gordan coefficients

(4)

We seek the solution to the time-dependent
Schrödinger equation

(5)

in the form of an expansion in a certain orthonormal
basis of vectors of state of degenerate lower |(a)j〉  and
upper |(b)k〉  levels:

(6)

Indices k = 1, 2, …, 2Jb + 1, and j = 1, 2, …, 2Ja + 1
label the states of this basis for the upper and lower
energy levels, respectively. The orthonormality condi-
tion indicates that

(7)

Obviously, the generally accepted Zeeman basis of
angular momentum eigenstates |Jb, mb〉 , |Ja, ma〉  is a par-
ticular case of this basis.

The equations for probability amplitudes aj(t) and
bk(t) follow from expressions (5) and (6):

(8)

(9)

In the general case of an arbitrary basis, system of equa-
tions (8), (9) is as complex as in the case of the standard
basis of magnetic sublevels since states with different
values of i ≠ j are entangled. However, this system can
be substantially simplified in a basis in which interac-

tion operators  and  connect only pairs of states
|(a)j〉  and |(b)k〉  of the upper and lower levels. It will be
shown below that such a diagonalization of the tensor
part of the interaction is always possible and the result-
ant eigenstates define the basis which will be referred to

εtan

d̂1 1±,

Jb mb d̂1 1±, Ja ma,,〈 〉 CJa mb; 1 1±,,
Jb mb,

.=

i
∂Ψ
∂t

-------- Ĥ0 Ĥ int+( )Ψ=

Ψ i
Ea

"
-----t– 

  a j t( ) a( ) j| 〉
j 1=

2Ja 1+

∑exp=

+ i
Eb

"
-----t– 

  bk t( ) b( )k| 〉 .
k 1=

2Jb 1+

∑exp

a( )i a( ) j〈 | 〉 δ i j, , b( )i b( ) j〈 | 〉 δ i j, ,= =

a( )i b( ) j〈 | 〉 0.=

ȧk iΩ iδt–( ) a( )k〈 |V̂+
b( )i| 〉

i 1=

2Jb 1+

∑ bi,exp–=

ḃ j iΩ* iδt( ) b( ) j〈 |V̂ a( )k| 〉
k 1=

2Ja 1+

∑ ak.exp–=

V̂ V̂
+
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as the basis of polarization-dressed states (PDS) |(a)i〉
and |(b)j〉 of the lower and upper levels, respectively. This
is because it takes into account peculiarities of interac-
tion with the light field only as regards its polarization
and it can be expanded in the magnetic sublevel basis
with coefficients depending on the field polarization:

(10)

Here, matrices  and  realize a transition from the
magnetic sublevel basis to a new PDS basis. In solving

Eqs. (5), (8), and (9), one encounters operators 

and  which, being bilinear combinations of the
interaction Hamiltonian, describe quadratic Stark shifts
of levels depending on ellipticity. It can be seen that
these operators are Hermitian matrices and, hence, can
always be transformed to diagonal form using appropri-
ate unitary transformations. It will be shown in the next

section that PDSs are eigenstates of operators  and

, which are diagonalized by matrices  and :

(11)

It should be noted that, in the general state of elliptic

polarization, matrices  and  are not rotation opera-
tors, which complicates analysis. The problem of deter-
mination of the proper basis of optical shift operators
was considered earlier in [9, 15, 16]. Proceeding from
these studies, we will consider the properties of the
PDS basis in the general form without determining the

explicit form of matrices  and .

3. PROPERTIES OF THE PDS BASIS

Operator  acts on the lower level and has eigen-

values  in the new orthonormal basis of PDSs, which
can be determined from the equation

(12)

Analogously, operator  acts on states |(b)j〉  of the
upper level:

(13)

Eigenvalues of operators  and  are real non-

negative numbers  ≥ 0 and  ≥ 0. Zero eigenvalues

a( )i| 〉 Ai mα, ε( ) Ja ma,| 〉 ,
ma Ja–=

ma +Ja=

∑=

b( )i| 〉 Bi mb, ε( ) Jb mb,| 〉 .
mb Jb–=

mb +Jb=

∑=

Â B̂

V̂
+
V̂

V̂ V̂
+

V̂
+
V̂

V̂ V̂
+

Â B̂

ÂV̂
+
V̂ Â

+
diag λ i

a{ } ,=

B̂V̂ V̂
+
B̂

+
diag λ i

b{ } .=

Â B̂

Â B̂

V̂
+
V̂

λ i
a

V̂
+
V̂ a( )i| 〉 λ i

a a( )i| 〉 , a( )i a( ) j〈 | 〉 δ i j, .= =

V̂ V̂
+

V̂ V̂
+

b( ) j| 〉 λ j
b b( ) j| 〉 , b( ) j b( )k〈 | 〉 δk j, .= =

V̂
+
V̂ V̂ V̂

+

λ i
a λ j

b
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 = 0 and  = 0 correspond to CPT states at the upper
and lower levels. In our earlier publications [8, 10, 11],
we derived analytic expressions for CPT states for var-
ious types of dipole transitions. It should be noted once
again that CPT states are a part of the complete
orthonormal set of the PDS basis with corresponding
zero eigenvalues.

It can be proved that if we eliminate zero subspaces

from matrices  and  and label eigenvalues at

each sublevel, the sets of eigenvalues of matrices 

and  in the truncated space will coincide. Indeed,
we have

(14)

(15)

Consequently, |(a)i 〉  is an eigenvector of

while |(b)j 〉  is an eigenvector of

Thus, nonzero eigenvalues of  give a set of eigen-
vectors |(a)i〉 , such that

(16)

(17)

It follows hence that the set of eigenvalues of operators

 and  is the same:

(18)

Light-induced transitions combine only i pairs of basis
vectors of different levels corresponding to the same
(nonzero!) eigenvalues. In this case, index i = 1, 2, …,
r labels states in the truncated space (without zero sub-
space). The number r of such transitions in the new
basis is equal to r = 2Ja for transitions Ja = J  Jb = J
(J is an integer), r = 2Ja – 1 for transitions Ja = J 
Jb = J – 1, and r = 2Ja + 1 for transitions Ja = J  Jb =
J + 1 and Ja = J  Jb = J (J is a half-integer). Substi-
tuting now expressions (16) and (17) into (8) and (9),
we find that the interaction matrices on the right-hand
sides of Eqs. (8) and (9) become diagonal with eigen-

λ i
a λ j

b

V̂
+
V̂ V̂ V̂

+

V̂
+
V̂

V̂ V̂
+

V̂ V̂
+( )V̂ a( )i| 〉 λ i

aV̂ a( )i| 〉 ,=

V̂
+
V̂( )V̂

+
b( ) j| 〉 λ j

bV̂
+

b( ) j| 〉 .=

V̂

V̂
+
V̂ V̂ a( )i| 〉 b( )i| 〉 ,∼

V̂
+

V̂ V̂
+

V̂
+

b( ) j| 〉 a( ) j| 〉 .∼

V̂
+
V̂

b( )i| 〉 V̂ a( )i| 〉

a( )i〈 |V̂+
V̂ a( )i| 〉

-----------------------------------------
V̂ a( )i| 〉

λ i
a

-----------------,= =

a( )i| 〉 V̂
+

b( )i| 〉

b( )i〈 |V̂ V̂
+

b( )i| 〉
-----------------------------------------

V̂
+

b( )i| 〉

λ i
b

-------------------.= =

V̂
+
V̂ V̂ V̂

+

λ i
b λ i

a λ i.= =
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values equal to , and the interaction Hamiltonian
can be reduced to the diagonal form:

(19)

The interaction Hamiltonian  presented in such a
form essentially defines the new selection rules

between the states of the upper and lower levels, while

values  themselves can be regarded as new quan-
tum numbers replacing angular momentum and its pro-
jections.

Thus, for preset ellipticity of light and angular
momenta of energy levels, we can first construct a
polarization-dressed basis determined by the polariza-
tion alone and independent of the intensity of light and
then solve the problem of interaction analogous in
many respects to the problem of interaction with a non-
degenerate two-level atom. By way of example of
application of PDSs, we consider the modification of
the solutions to the well-known problem of Rabi oscil-
lations when degeneracy of energy levels is taken into
account.

4. PROBLEM OF RABI OSCILLATIONS
FOR DEGENERATE LEVELS

Substituting expression (19) into Eqs. (8), (9), we
find that the equation for probability amplitudes of an
individual pair of states with identical eigenvalues,
which are coupled by the field in light-induced transi-
tion |(a)j 〉   |(b)j 〉 , can be transformed to the equation
known from the theory of a two-level atom [17, 18]:

(20)

(21)

with renormalized Rabi frequency Ωj

(22)

It can be seen that the dependence on the external field
intensity is contained in Ω and the entire possible
dependence on ellipticity for a specific transition is

contained in factor . The solution to dynamic equa-
tions (20), (21) is well known and its explicit form is
determined by the initial conditions and by the interac-
tion initiation mode. For example, when interaction
appears suddenly, we assume that the atom at instant
t = 0 is at the lower level with an isotropic distribution
over magnetic sublevels, which is also isotropic in the
new basis states

λ j

V̂ λ i a( )i| 〉 b( )i〈 | .
i

∑=

V̂

λ i
b λ i

a– 0=

λ j

ḃ j iΩ j* iδt–( )a j,exp=

ȧ j iΩ j iδt( )b j,exp=

Ω j Ω λ j.=

λ j

a j t 0=( ) 1

2Ja 1+
----------------------, b j t 0=( ) 0.= =
JOURNAL OF EXPERIMENTAL 
Using the normalization condition for the wavefunction
of the atom in the whole,

,

under the chosen initial conditions, we can single out
the normalization for each transition between the upper
and lower PDSs separately,

, (23)

and treat this transition as an independent two-level
system. In this case, the solution to system (20), (21) for
each jth pair of states of the upper and lower levels for-
mally coincides with the solution to the problem of
Rabi oscillations for a two-level atom [17]:

(24)

(25)

Here, ∆j =  is the effective Rabi fre-
quency for the jth transition and δ = ωba – ω is the
detuning of the laser field from the atomic resonance.
The wavefunction of an atom in the field is the sum of
such two-level systems and CPT states that do not inter-
act with light. Consequently, analogously to a conven-
tional two-level system, new states of the upper and
lower levels (except CPT states) are split by the field
and shifted relative to the unperturbed states with ener-
gies Ea and Eb [17]. Substituting solutions (24), (25)
into Eq. (6), we find that the wavefunction Ψ(t) of the
atom is a superposition of 4r stationary states (four
states in each two-level transition) whose quasi-ener-
gies, taking into account of eigenvalues λj determined
above, have the form

(26)

(27)

Thus, a transition to the PDS basis is equivalent to
the reduction of a complex multilevel system to a set of
r independent two-level systems. Energy level splitting
in a two-level system is due to nonzero field amplitude
(Rabi frequency). In addition, the solution should be
supplemented with the corresponding stationary CPT

ai t( ) 2 bi t( ) 2

i 1=

2Jb 1+

∑+
i 1=

2Ja 1+

∑ 1=

ai t( ) 2 bi t( ) 2+ 1
2Ja 1+
-----------------=

a j
iδt/2–( )exp

2Ja 1+
------------------------------ ∆ jt( )cos i

δ
2∆ j

-------- ∆ jt( )sin+ ,=

b j i
1

2Ja 1+
----------------------

Ω j

∆ j

------ iδt
2

------- 
  ∆ jt( ).sinexp–=

δ2/4 λ jΩ
2+

Ea
+ j( ) Ea δ/2 ∆ j,+ +=

Ea
– j( ) Ea δ/2 ∆ j,–+=

Eb
+ j( ) Eb δ/2– ∆ j,+=

Eb
– j( ) Eb δ/2– ∆ j.–=
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(a)
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(b)

1 2
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Fig. 1. Diagram of interaction of elliptically polarized light in the (a) magnetic sublevel and (b) PDS basis for optical transition
Ja = 1  Jb = 0.
    
states with unperturbed energies Ea and Eb , which com-
pletely defines the solution to the dynamic problem for
a two-level degenerate atom in an arbitrarily polarized
resonant field. It should also be noted that such a proper
PDS basis can be used both for stationary problems
with relaxation [9] and for nonstationary problems in
the limit γt ! 1 since the PDS basis is constructed from
the basis of nonsplit magnetic sublevels taking into
account only the tensor part of the interaction. The
main property of the new basis is the absence of coher-
ence between PDSs at each level in density matrix ,

(28)

while Zeeman coherence of the levels in the magnetic
sublevel basis differs from zero.

5. EXAMPLES
OF POLARIZATION-DRESSED STATES

In the general case, a new basis with an explicit
dependence on the ellipticity of eigenstates and eigen-
values can be found using the procedures of diagonal-
ization of matrices, which are well known in linear
algebra [15]. Unfortunately, it is extremely difficult to
derive analytic expressions for eigenvectors and eigen-
values of PDSs for large values of angular momenta.
However, for transitions with small values of the angu-
lar momentum of levels (J = 0, 1/2, 1, 3/2, and 2), we
can easily construct a PDS basis as a linear superposi-
tion of the wavefunctions of magnetic sublevels pro-
ceeding from the explicit form of elliptically dark
states, which must be orthogonal to PDSs since they are

a part of the PDS basis [12]. These states | (a)〉  for

the lower level and | (b)〉  for the upper level can be
determined from the equations

(29)

ρ̂

a( )i〈 |ρ̂aa a( ) j| 〉 a j
2δi j, ,=

b( )i〈 |ρ̂bb b( ) j| 〉 b j
2δi j, ,=

Ψi
NC( )

Ψi
NC( )

V̂ Ψi
NC( ) a( )| 〉 0, V̂

+ Ψi
NC( ) b( )| 〉 0.= =
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The corresponding eigenvalues are

In addition, we observe the following symmetry in
the basis states for reversed pairs of optical transitions
(i.e., for optical transitions that transform into each
other upon the replacement of the upper level by the
lower level, a  b. The PDS basis vectors of reversed
optical transitions can be obtained by changing the
indices a  b and reversing the sign of projection mi

of the Zeeman wavefunctions. Thus, the procedure of
transformation of coefficients in matrices A and B (10)
of basis vectors for reversed optical transitions has the
form

(30)

Bearing this symmetry in mind, we will henceforth for
brevity write the expressions for PDS basis vectors and
their eigenvalues only for one of reversed transitions.

5.1. Transition Ja = 1  Jb = 0
(Ja = 0  Jb = 1) 

In the optical transition Ja = 1  Jb = 0, the excited
level contains only one degenerate state (Fig. 1a) that
also remains unchanged in the new basis,

(31)

The lower level contains two elliptical dark states
which, in accordance with relations (29), are a linear
combination of the wavefunctions of magnetic sublev-
els with coefficients depending only on the polarization
of light and independent of the light intensity:

(32)

(33)

λ i
a λ i

b 0.= =

     

     

Ai m, Jb Ja( ) Bi m–, Ja Jb( ),=

Bi m, Jb Ja( ) Ai m–, Ja Jb( ).=

b( )3| 〉 0 0,| 〉 .≡

a( )1| 〉 Ψ1
NC( ) a( )| 〉≡ 1 0,| 〉 ,=

a( )2| 〉 Ψ2
NC( ) a( )| 〉≡ q+ 1 1–,| 〉 q– 1 +1,| 〉 .–=
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(a)

–3/2

–1/2

+1/2–1/2

(b)

1 2

3

3
a

b
4

4

+1/2

+3/2

Fig. 2. The same for optical transition Ja = 3/2  Jb = 1/2.
               
In this case, the third state associated with light and
orthogonal to these states has the form

(34)

The light field couples only two states in the transition

The corresponding eigenvalues are given by

Figure 1b shows the new diagram of the transition. Fig-
ure 1a all subsequent figures (a) show the diagrams of
the corresponding transitions in the basis of magnetic
sublevels, while figures (b) show the transitions in the
PDS basis. The PDS basis and the eigenvalues for the
optical transition J = 0  J = 1 can be easily found
using the expressions for the PDS basis vectors and
their eigenvalues for the optical transition J = 1  J =
0 and procedure (30).

5.2. Transition Ja = 3/2  Jb = 1/2 
(Ja = 1/2  Jb = 3/2) 

Fig. 2a shows that the lower state of the optical tran-
sition

contains two independent simple Λ links corresponding
to two elliptic dark states [8, 14]:

(35)

(36)

In this case, the remaining part of the PDS basis, which

a( )3| 〉 q– 1 1–,| 〉 q+ 1 +1,| 〉 .+=

a( )3| 〉 b( )3| 〉 .

λ3 1/3, λ1 λ2 0.= = =

Ja 3/2 Jb 1/2= =

a( )1| 〉 Ψ1
NC( ) a( )| 〉≡

=  
3q– 3/2 +1/2,| 〉 q+ 3/2 3/2–,| 〉–

q+
2 3q–

2+( )
-----------------------------------------------------------------------------,

a( )2| 〉 Ψ2
NC( ) a( )| 〉≡

=  
3q+ 3/2 –1/2,| 〉 q– 3/2 +3/2,| 〉–

q–
2 3q+

2+( )
-----------------------------------------------------------------------------.
JOURNAL OF EXPERIMENTAL 
is orthogonal to these dark states, can be constructed in
the following obvious way:

(37)

(38)

Supplementing these states with two renumbered upper
states of the Zeeman basis,

(39)

(40)

we obtain the complete set of states forming the
orthonormal PDS basis; light-induced transitions occur
only between the states

and

The corresponding eigenvalues are given by

(41)

The modified diagram of transitions in the PDS basis is
shown in Fig. 2b. An analogous diagram for the
reversed transition

is presented in Fig. 3.

5.3. Transition Ja = 1  Jb = 2
(Ja = 2  Jb = 1) 

The upper level of the optical transition

a( )3| 〉
q+ 3/2 +1/2,| 〉 3q– 3/2 3/2–,| 〉+

q+
2 3q–

2+( )
-----------------------------------------------------------------------------,=

a( )4| 〉
q– 3/2 –1/2,| 〉 3q+ 3/2 +3/2,| 〉+

q–
2 3q+

2+( )
-----------------------------------------------------------------------------.=

b( )3| 〉 1/2 1/2–,| 〉 ,≡

b( )4| 〉 1/2 +1/2,| 〉 ,≡

a( )3| 〉 b( )3| 〉

a( )4| 〉 b( )4| 〉 .

λ3
1
4
---q–

2 1
12
------q+

2 , λ4+
1
4
---q+

2 1
12
------q–

2,+= =

λ1
a λ2

a 0.= =

Ja 1/2 Jb 3/2= =

Ja 1 Jb 2= =
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(a)
–3/2
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+1/2–1/2
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3

3
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4
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+3/2

Fig. 3. The same for optical transition Ja = 1/2  Jb = 3/2.
contains two CPT states:

(42)

(43)

The corresponding eigenvalues for the CPT states are
given by

The field-coupled orthogonal PDSs can be written in
the form

(44)

(45)

with the eigenvalue

Further, we have the pair of states

(46)

b( )1| 〉 Ψ1
NC( ) b( )| 〉≡ q– 2 1–,| 〉 q+ 2 +1,| 〉 ,–=

b( )2| 〉 Ψ2
NC( ) b( )| 〉≡

=  
q–

2 2 2–,| 〉 6q–q+ 2 0,| 〉– q+
2 2 +2,| 〉+

q+
4 6q–

2q+
2 q–

4+ +
-------------------------------------------------------------------------------------.

λ1 λ2 0.= =

a( )3| 〉 1 0,| 〉 ,=

b( )3| 〉 q+ 2 1–,| 〉 q– 2 +1,| 〉+=

λ3
1
10
------.=

a( )4| 〉 2
2

-------
5 2εsin 25 24 2εcos

2
–+( )

N4
a

------------------------------------------------------------------- 1 1–,| 〉–=

+
2

2
------- 2εcos

N4
a

-------------- 1 +1,| 〉 ,

b( )4| 〉
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(47)

with the eigenvalue

Finally, the last pair of states have the form

(48)

(49)

=  
1 2εsin+( ) 1 6 2ε 25 24 2εcos

2
––sin–( )

N4
b

-------------------------------------------------------------------------------------------------------- 2 2–,| 〉

+ 6
4εsin

N4
b

------------- 2 0,| 〉

+
1 2εsin–( ) 1 6 2ε 25 24 2εcos

2
––sin+( )

N4
b

-------------------------------------------------------------------------------------------------------- 2 +2,| 〉

λ4
7 25 24 2εcos

2
–+
60

------------------------------------------------.=

a( )5| 〉 2
2

-------
5 2εsin 25 24 2εcos

2
––( )

N5
a

------------------------------------------------------------------- 1 1–,| 〉–=

+
2

2
------- 2εcos

N5
a

-------------- 1 +1,| 〉 ,

b( )5| 〉

=  
1 2εsin+( ) 1 6 2ε 25 24 2εcos

2
–+sin–( )

N5
b

---------------------------------------------------------------------------------------------------------

× 2 2–,| 〉 6
4εsin

N5
b

------------- 2 0,| 〉+

+
1 2εsin–( ) 1 6 2ε 25 24 2εcos

2
–+sin+( )

N5
b

--------------------------------------------------------------------------------------------------------- 2 +2,| 〉 ,

λ5
7 25 24 2εcos

2
––
60

------------------------------------------------.=
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Fig. 4. The same for optical transition Ja = 1  Jb = 2.

(a)

–2

–1

0–1

(b)

1 2

3

3

4

4

0

+1 +2

+1

a

b
5

5

Fig. 5. The same for optical transition Ja = 2  Jb = 1.
The normalization factors have the form

(50)

Figure 4 shows the optical transition

in the old and new bases; Fig. 5 shows the correspond-

N4
a 25 24 2εcos

2
–=

+ 5 2ε 25 24 2εcos
2

– ,sin

N4
b 8

3
---= 50 73 2εcos

2
– 24 2εcos

4
+[

+ 10 11 2εcos
2

–( ) 25 24 2εcos
2

– ] ,

N5
a 25 24 2εcos

2
–=

– 5 2ε 25 24 2εcos
2

– ,sin

N5
b 8

3
---= 50 73 2εcos

2
– 24 2εcos

4
+[

– 10 11 2εcos
2

–( ) 25 24 2εcos
2

– ] .

Ja 1 Jb 2= =
JOURNAL OF EXPERIMENTAL 
ing reversed transition

5.4. Transition Ja = 1  Jb = 1 

For this transition, each energy level contains a sin-
gle CPT state [12] (Fig. 6)

(51)

(52)

The orthogonal states interacting with light at the lower
level can be expressed in terms of the magnetic sublevel
states,

(53)

(54)

the corresponding expressions for the states at the
upper level are

(55)

(56)

Ja 2 Jb 1.= =

a( )1| 〉 Ψ1
NC( ) a( )| 〉≡ q+ 1 1–,| 〉 q– 1 +1,| 〉 ,+=

b( )1| 〉 Ψ1
NC( ) b( )| 〉≡ q– – 1 1–,| 〉 q+ 1 +1,| 〉 .–=

a( )2| 〉 1 0,| 〉 ,≡

a( )3| 〉 q– 1 1–,| 〉 q+ 1 +1,| 〉;–=

b( )2| 〉 q+ 1 1–,| 〉– q– 1 +1,| 〉 ,+=

b( )3| 〉 1 0,| 〉 .≡
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Fig. 6. The same for optical transition Ja = 1  Jb = 1.
The system splits into two independent transitions
between PDSs (see Fig. 6b),

in addition, each level contains a CPT state, which is
not coupled by the field. The corresponding eigenval-
ues are given by

It should be noted that, for the given transition in the
new basis, double degeneracy in energy (identical Rabi
frequencies) is preserved for the two PDSs interacting
with the field and exhibiting field splitting which is
independent of ellipticity.

5.5. Transition Ja = 2  Jb = 2 

The lower and upper levels contain one elliptical
dark state each:

(57)

(58)

These states have zero eigenvalues. The states of the
lower and upper levels, which interact with light, are

a( )2| 〉 b( )2| 〉 , a( )3| 〉 b( )3| 〉 ,

λ1
a λ1

b 0, λ2 λ3
1
6
---.= = = =

a( )1| 〉 3
1 2εsin+( )

N1

---------------------------- 2 2–,| 〉 2
2ε )cos

N1

----------------- 2 0,| 〉+=

+ 3
1 2εsin–( )

N1

--------------------------- 2 +2,| 〉 ,

b( )1| 〉 3
1 2εsin–( )

N1

--------------------------- 2 2–,| 〉 2
2ε )cos

N1

----------------- 2 0,| 〉+=

+ 3
1 2εsin+( )

N1

---------------------------- 2 +2,| 〉 .
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defined as

(59)

(60)

The next pair of vectors has the form

(61)

(62)

a( )2| 〉 2ε 1 8 2εcos
2

+–sin

N2

----------------------------------------------------- 2 1–,| 〉=

+
3 2εcos

N2

------------------ 2 +1,| 〉 ,

b( )2| 〉 3 2εcos

N2

------------------ 2 1–,| 〉=

+
2ε 1 8 2εcos

2
+–sin

N2

----------------------------------------------------- 2 +1,| 〉 .

a( )3| 〉

=  
1 2εsin–( ) 3 2 2ε 1 8 2εcos

2
+–sin+( )

N3

--------------------------------------------------------------------------------------------------- 2 2–,| 〉–

+ 2
4εsin

N3

------------- 2 0,| 〉

+
1 2εsin+( ) 3 2 2ε 1 8 2εcos

2
+–sin–( )

N3

--------------------------------------------------------------------------------------------------- 2 +2,| 〉 ,

b( )3| 〉
1 2εsin+( ) 3 2 2ε 1 8 2εcos

2
+–sin–( )

N3

---------------------------------------------------------------------------------------------------=

× 2 2–,| 〉 2
4εsin

N3

------------- 2 0,| 〉+

–
1 2εsin–( ) 3 2 2ε 1 8 2εcos

2
+–sin+( )

N3

--------------------------------------------------------------------------------------------------- 2 +2,| 〉 .
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Fig. 7. The same for optical transition Ja = 2  Jb = 2.
This is followed by the pair of states

(63)

(64)

The last pair of states has the form

(65)

(66)

The normalization coefficients appearing in these for-

a( )4| 〉 2ε 1 8 2εcos
2

++sin

N4

----------------------------------------------------- 2 1–,| 〉=

+
3 2εcos

N4

------------------ 2 +1,| 〉 ,

b( )4| 〉 3 2εcos

N4

------------------ 2 1–,| 〉=

+
2ε 1 8 2εcos

2
++sin

N4

----------------------------------------------------- 2 +1,| 〉 .

a( )5| 〉
1 2εsin–( ) 3 2 2ε 1 8 2εcos

2
++sin+( )

N5

---------------------------------------------------------------------------------------------------–=

× 2 2–,| 〉 2
4εsin

N5

------------- 2 0,| 〉+

+
1 2εsin+( ) 3 2 2ε 1 8 2εcos

2
++sin–( )

N5

--------------------------------------------------------------------------------------------------- 2 +2,| 〉 ,

b( )5| 〉
1 2εsin+( ) 3 2 2ε 1 8 2εcos

2
++sin–( )

N5

---------------------------------------------------------------------------------------------------=

× 2 2–,| 〉 2
4εsin

N5

------------- 2 0,| 〉+

–
1 2εsin–( ) 3 2 2ε 1 8 2εcos

2
++sin+( )

N5

--------------------------------------------------------------------------------------------------- 2 +2,| 〉 .
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mulas are given by

(67)

The corresponding eigenvalues are

It can be seen that nonzero eigenvalues λi for this transi-
tion as well as for transition Ja = 1  Jb = 1 are doubly
degenerate, which is a common property of all transi-
tions J  J (where J is an integer). Figure 7 shows the
diagrams of these transitions in the old and new bases.

Transitions

(J is a half-integer) should be considered separately,
since these transitions do not involve CPT states and the
method used for constructing the new basis becomes
inapplicable. However, the PDS basis for transitions

and

N1 12 4 2ε,cos
2

–=

N2 2 16 2ε 2 2ε 1 8 2εcos
2

+ ,sin–cos
2

+=

N3
8
3
--- 2 15 2εcos

2
8 2εcos

4
–+[=

– 2 2εcos
2

+( ) 1 8 2εcos
2

+ ] ,

N4 2 16 2ε 2 2ε 1 8 2εcos
2

+ ,sin+cos
2

+=

N5
8
3
--- 2 15 2εcos

2
8 2εcos

4
–+[=

+ 2 2εcos
2

+( ) 1 8 2εcos
2

+ ] .

λ1
a λ1

b 0,= =

λ2 λ3
1
12
------

1
60
------ 1 8 2εcos

2
+ ,+= =

λ4 λ5
1
12
------

1
60
------ 1 8 2εcos

2
+ .–= =

Ja J Jb J= =

Ja 1/2 Jb 1/2= =

Ja 3/2 Jb 3/2= =
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can easily be constructed with the help of standard alge-
braic methods in view of the low rank of the system of
linear equations.

5.6. Transition Ja = 1/2  Jb = 1/2 

It follows from the selection rules and the level dia-
gram (Fig. 8) that the interaction for this simplest
degenerate transition has already been diagonalized (to
within a notation); i.e., the eigenstates are given by

(68)

(69)

and the corresponding eigenvalues are

Figure 8 shows the diagrams of these transitions in the
old and new bases.

5.7. Transition Ja = 3/2  Jb = 3/2 

In this transition, the energy levels contain no dark
states and the PDS basis can be determined directly by
solving a system of fourth-degree linear equations. All
states of the lower and upper levels, which explicitly
depend on ellipticity, have the form

(70)

(71)

(72)

b( )1| 〉 1/2 1/2–,| 〉 , b( )2| 〉 1/2 +1/2,| 〉 ,= =

a( )1| 〉 1/2 +1/2,| 〉 , a( )2| 〉 1/2 1/2–,| 〉 ,= =

λ1

q–
2

3
-----, λ2

q+
2

3
-----.= =

a( )1| 〉 2
4

-------–=

×
1 2ε 2 2 2εcos

2
2 2εsin–++sin–( )

N1q–

----------------------------------------------------------------------------------------- 3/2 1/2–,| 〉

+ 6
2
---

q+

N1

---------- 3/2 +3/2,| 〉 ,

a( )2| 〉 2
4

-------–=

×
1 2ε 2 2 2εcos

2
2 2εsin–+–sin–( )

N1q–

---------------------------------------------------------------------------------------- 3/2 1/2–,| 〉

+ 6
2
---

q+

N2

---------- 3/2 +3/2,| 〉 ,

a( )3| 〉 3
2
---

q–

N3

---------- 3/2 3/2–,| 〉 2
4

-------–=

×
1 2ε 2 2 2sin ε 2 2εcos

2
+ ++sin+( )
N3q+

------------------------------------------------------------------------------------------- 3/2 +1/2,| 〉 ,
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(73)

The PDSs for the upper level are given by

(74)

(75)

(76)

(77)

a( )4| 〉 3
2
---

q–

N4

---------- 3/2 3/2–,| 〉 2
4

-------–=

×
1 2ε 2 2 2sin ε 2 2εcos

2
+ +–sin+( )
N4q+

------------------------------------------------------------------------------------------- 3/2 +1/2,| 〉 .

b( )1| 〉 2
4

-------
1 2ε 2 2 2εcos

2
2 2εsin–++sin–( )

N1q–

------------------------------------------------------------------------------------------–=

× 3/2 +1/2,| 〉 6
2
---

q+

N1

---------- 3/2 –3/2,| 〉 ,+

b( )2| 〉 2
4

-------
1 2εsin– 2 2 2εcos

2
2 2εsin–+–( )

N2q–

------------------------------------------------------------------------------------------–=

× 3/2 +1/2,| 〉 6
2
---

q+

N2

---------- 3/2 –3/2,| 〉 ,+

b( )3| 〉 3
2
---

q–

N3

---------- 3/2 +3/2,| 〉=

–
2

4
-------

1 2εsin 2 2 2ε 2 2εcos
2

+sin++ +( )
N3q+

-------------------------------------------------------------------------------------------

× 3/2 –1/2,| 〉 ,

b( )4| 〉 3
2
---

q–

N4

---------- 3/2 3/2,| 〉=

–
2

4
-------

1 2ε 2 2 2ε 2 2εcos
2

+sin+–sin+( )
N4q+

-------------------------------------------------------------------------------------------

× 3/2 –1/2,| 〉 .
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b
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2

Fig. 8. The same for optical transition Ja = 1/2 
Jb = 1/2.
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Fig. 9. The same for optical transition Ja = 3/2  Jb = 3/2.
All eigenvalues are different and have the form

The normalization coefficients are given by

(78)

Figure 9 shows the diagrams of this transition in the old
and new bases. Substituting the eigenvalues λj obtained
in this section into Eqs. (24) and (25), we find that the
probability density for an atom being at certain energy
levels oscillates in time at r independent Rabi frequen-
cies (except for the cases when eigenvalues are degen-
erate). The explicit dependence of these frequencies on
ellipticity is defined by the formulas corresponding to
each specific transition.

6. CONCLUSIONS

Thus, the examples considered above visually dem-
onstrate that the selection rules for light-induced dipole
transitions between the states of the upper and lower
levels change in the new PDS basis. In contrast to the
magnetic sublevel basis, the light-induced coherence
between PDSs of each level is eliminated in this case,
which simplifies analysis of the interaction between

λ1
1
12
------

1
60
------ 2ε 1

30
------ 2 2 2εcos

2
2 2εsin–+ ,+sin+=

λ2
1
12
------

1
60
------ 2ε 1

30
------ 2 2 2εcos

2
2 2εsin–+ ,–sin+=

λ3
1
12
------

1
60
------ 2ε 1

30
------ 2 2 2εcos

2
2 2εsin+ + ,+sin–=

λ4
1
12
------

1
60
------ 2ε 1

30
------ 2 2 2εcos

2
2 2εsin+ + .–sin–=

N1 2 2εsin 1/2 2 2 2εcos
2

2 2εsin–+ ,+ +=

N2 2 2ε 1/2 2 2 2εcos
2

2 2εsin–+ ,–sin+=

N3 2 2εsin 1/2 2 2 2εsin 2 2εcos
2

+ + ,+–=

N4 2 2ε 1/2 2 2 2εsin 2 2εcos
2

+ + .–sin–=
JOURNAL OF EXPERIMENTAL 
elliptically polarized light and atomic levels degenerate
in the angular momentum projections and makes it pos-
sible to use the results obtained for a simple nondegen-
erate two-level model of the atom. In this case, the new
basis is “tuned” only to the polarization of light, it does
not depend on the light intensity, and it can be used
instead of the basis of magnetic sublevels for finding
exact solutions (e.g., for studying the propagation of
ultrashort polarized pulses [19], effects of electromagnet-
ically induced transparency in degenerate systems [20]
and in processes of scattering of resonant polarized
radiation [21], and other problems taking into account
the interaction with additional magnetic and electro-
magnetic fields as a perturbation).

Derivation of the explicit form of the PDS basis for
arbitrary values of angular momenta remains an urgent
problem.
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Abstract—A qualitative model of the dynamics of a multiterawatt radiating Z-pinch with cold start and high
rate of current rise is proposed. The model is used to analyze discharges with currents I ~ 2–5 MA (with
dI/dt > 1013 A/s) through uniform or structured plasma-producing loads, including wire arrays. The most
important consequence of cold start is that spatially nonuniform plasma production is prolonged to almost the
entire current rise time. Under these conditions, the Ampére force begins to play a dominant role in the plasma
dynamics before the plasma-producing load is completely transformed into an accelerated plasma. The results
of computations of wire-array vaporization are presented. A formula is proposed for estimating the highest
attainable velocity of plasma flow into a heterogeneous liner driven by the Ampére force. It is shown that local
imbalance between radial motion of the produced plasma and supply of the plasma-producing substance to be
ionized leads to axially nonuniform breakthrough of magnetic flux into the liner, which precedes plasma col-
lapse. The magnetic-flux breakthrough gives rise to a chaotic azimuthal–axial plasma structure consisting of
radial plasma jets of relatively small diameter, which is called a radial plasma rainstorm. The breaking-through
azimuthal magnetic flux obstructs further current flow in the breakthrough region. Analyses of Z-pinch implo-
sion based on the theory of Rayleigh–Taylor instability or the snowplow model are incorrect under the plasma-
rainstorm conditions. The processes taking place in a stagnant Z-pinch include conversion of the energy carried
by the current-generated magnetic field into turbulent MHD flow of the ion component of the plasma, its con-
vective mixing with magnetic field, heating, energy transfer from ions to electrons, and emission from the
plasma. Under typical experimental conditions, emission plays a key role in the energy balance in an imploding
pinch. Z-pinch is modeled by an electric-circuit component that has a time-dependent nonlinear impedance and
consumes the magnetic energy supplied by a generator through a magnetically insulated transmission line
(MITL). The peak power reached in the circuit is comparable to the peak soft X-ray power output emitted by
the pinch in terms of magnitude and timing. Optimum matching conditions are formulated for the generator–
MITL–pinch circuit. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

The Angara-5-1 facility has been used to study
imploding discharges (fast Z-pinches) for many years.
A considerable amount of experimental data has been
amassed [1–5], and it must be summarized in order to
develop a physical model of these discharges. In the
discharges created in our experiments [1–5], currents
having a strength of I ~ 2–5 MA, with dI/dt > 1013 A/s,
were used to heat axially symmetric homogeneous or
structured plasma-producing loads or their combina-
tions with outer diameters varying between 1 and 3 cm.
Most plasma-producing substances consisted of ele-
ments with high atomic numbers or contained them as
additives. The plasma-producing loads were either het-
erogeneous (thin-wire array, solid-state foam in vac-
uum) or homogeneous (gas puff). The experiments
1063-7761/04/9906- $26.00 © 21150
were conducted under “cold-start” discharge condi-
tions; i.e., the phase transformations of the plasma-pro-
ducing substances (melting, vaporization, dissociation,
ionization) were induced by the main current pulse. The
mass, shape, and dimensions of the plasma sources were
chosen so that the discharge electric power, as well as the
soft X-ray power, varied within several terawatts.

Previous models of the processes involved in fast
Z-pinches were based on the assumption that the cur-
rent-carrying plasma shell formed at the earliest stage
of the discharge implodes as a whole. In particular, the
most comprehensive review of recent studies of fast
Z-pinches presented in [6] begins with an analysis of
the implosion of a perfectly conducting cylindrical
shell. Finite conductivity, emission, instabilities, and
multidimensional compression are introduced as com-
plicating factors in the course of the analysis.
004 MAIK “Nauka/Interperiodica”
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However, the results obtained in our studies [1–5]
show that this model of the dynamics of a multiterawatt
radiating Z-pinch is not valid under the cold-start dis-
charge conditions. Actually, this regime has been
implemented in all terawatt-scale Z-pinch experiments
(not only ours).

Our experiments on discharges with cold start and
high rate of current rise show that the Ampére force
driving the implosion comes into effect after only a
small portion of the plasma-producing load has been
transformed into an accelerated plasma, i.e., at the ear-
liest stage of plasma production. In what follows,
plasma production is interpreted as the entire process of
transformation of the plasma-producing load into an
accelerated plasma. The Ampére force drives the pro-
duced current-carrying plasma out of the region occu-
pied by the plasma-producing material, and the zone of
heat release due to joule heating moves with the cur-
rent-carrying plasma. Thus, the plasma production is
prolonged to almost the entire current rise time.

Furthermore, our observations show that the plasma
production is spatially nonuniform. The current-carry-
ing plasma does not make up a one-piece plasma shell,
being disrupted even at the starting radius. This condi-
tion strongly affects the subsequent development of an
imploding discharge. For this reason, we believe that
the classical models of Z-pinch cannot be used in theo-
retical analysis of such discharges.

To date, prolonged plasma production and turbulent
motion in the stagnant state of a fast Z-pinch were taken
into account in several theoretical models. Relationship
between prolonged plasma production and dynamics of
the produced plasma was analyzed in [3]. The analysis
presented below relies on the conclusions made in that
study. In [7, 8], a model of instability, ablation, and for-
mation of plasma jets was proposed describe wire-array
Z-pinches. In what follows, it is referred to as the model
of [7, 8]. In [9, 10], energy balance in the stagnant state
of a fast Z-pinch was described by the model of MHD
turbulent heating of a Z-pinch with toroidal magnetic
bubbles penetrating to the pinch axis. However, those
studies do not provide sufficient basis for a comprehen-
sive characterization of a multiterawatt radiating
Z-pinch with cold start as a multifactorial phenomenon.
Moreover, some assumptions of the model of [7, 8] dis-
agree with our experimental results.

In this paper, we summarize the broad variety of fac-
tors contributing to the dynamics of a multiterawatt
radiating Z-pinch with cold start and high rate of current
rise. The phenomenological description proposed here
relies on the experimental results reported in [1–5]. We
believe that it can serve as a basis for quantitative math-
ematical modeling of a radiating fast Z-pinch. How-
ever, we understand that this root model must be further
refined to agree with forthcoming experimental data.
Moreover, we realized that our results must be extrapo-
lated to larger scale experiments, including those cur-
rently underway at the Z facility [11] and those planned
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
to be conducted at the ZR [12] and Baikal [13] faci-
lities.

To have a clear perspective, we enumerate the key
factors that determine the dynamics of a radiating fast
Z-pinch in our model in the opening section of the
paper, which briefly summarizes the principal conclu-
sions based on an analysis of experimental data. In sub-
sequent sections, these conclusions are elaborated to
the extent that is currently possible. Some of the con-
clusions should be interpreted as working assumptions
to be verified by additional experiments.

KEY FACTORS CONTRIBUTING 
TO THE DYNAMICS OF MULTITERAWATT 
RADIATING Z-PINCH WITH COLD START

AND HIGH RATE OF CURRENT RISE 
1. COLD START 

OF AN IMPLODING DISCHARGE
1.1. The starting characteristics of the plasma-pro-

ducing materials used in imploding discharges are pre-
determined by the physics of multiterawatt electrical
pulse generation.

1.2. Cold start is inherent in imploding discharges
with high rates of current rise that have been studied to
this day. The main consequence of cold start is that the
plasma production is prolonged to almost the entire
current rise time.

1.3. Heterogeneous structure of plasma-producing
loads is an essential factor, but effects due to cold start
manifest themselves in initially homogeneous plasma-
producing loads as well. Plasma production is spatially
nonuniform in any event.

1.4. Massive electrodes may play the role of an
uncontrollable additional plasma-producing load at
cold start.

1.5. Strong preionization not induced by current is
an unimplemented alternative to cold start.

2. PROLONGED PLASMA PRODUCTION 
AS THE PRINCIPAL CONSEQUENCE 

OF COLD START
2.1. The most important manifestation of prolonged

plasma production is that the Ampére force begins to
play a dominant role in the dynamics of the produced
plasma before the plasma-producing material is used
up. The evolution of the produced plasma is controlled
by the total azimuthal magnetic field due to the total
discharge current.

2.2. Each wire in an electrically heated wire array
turns into a high-density heterogeneous core (consist-
ing of droplets and vapor) surrounded by a plasma of
relatively low density. Our model of the state of the core
describes the evaporation from the droplet surface and
the loss of mass due to vapor flow from the core bound-
ary. The source of energy release in the core is the joule
heating by current flowing through the ionized vapor.
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The current is driven by the voltage drop along the wire
array.

2.3. The rate of plasma production required to sus-
tain a steady radial flow of the tungsten plasma from the
plasma-producing load with a stationary outer bound-
ary is expressed as

2.4. At the plasma-production stage, the current-car-
rying plasma flows into the liner volume.

2.5. A timely termination of plasma production is a
crucial factor that determines a high degree of compres-
sion in a Z-pinch with cold start.

2.6. In contrast to the model of [7, 8], our time-
dependent model of plasma production describes the
penetration of the azimuthal magnetic field into the
liner volume.

3. BREAKTHROUGH OF MAGNETIC FLUX 
ACROSS THE DISRUPTED PLASMA-

PRODUCING REGION 
AND PARTIAL PLASMA TRAPPING

3.1. Experimental Observation of Breakthrough 
of Azimuthal Magnetic Flux across the Wire Array 

Spatially nonuniform breakthrough of magnetic flux
manifests itself by the radial plasma rainstorm discov-
ered and studied in [5].

3.1a. The rapid contraction of the outer pinch
boundary begins with a spatially nonuniform break-
through of magnetic flux toward the pinch axis. The
magnetic-flux breakthrough precedes the subsequent
implosion of the plasma.

3.1b. The magnetic-flux breakthrough gives rise to a
chaotic azimuthal–axial plasma structure consisting of
radial plasma jets of relatively small diameter, which is
called the radial plasma rainstorm.

3.1c. In the course of the implosion toward the wire-
array axis, the plasma jets contract and merge into dis-
tinct plasma-current filaments mostly parallel to the
pinch axis.

3.1d. Due to an early magnetic-flux breakthrough,
an X-ray pulse can be generated before the plasma
completely implodes as a whole. The plasma remains
spatially nonuniform at the instant when a high-power
X-ray pulse is generated by the Z-pinch.

3.1e. The spatial structure of the imploding plasma
is so nonuniform that the wholeness of an imploding
plasma shell is out of question. Under these conditions,
any analysis of Z-pinch implosion based on the theory
of Rayleigh–Taylor instability or the snowplow model
is incorrect under the plasma-rainstorm conditions.

dm
dt
------- µg

cm2 ns
---------------- 0.2

I MA[ ]

R st[ ]
------------ 

 
1.8

.≈
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3.2. Criteria for Breakthrough of Magnetic Flux
into the Liner Volume

at the Final Plasma-Production Stage 

3.2a. The magnetic-flux breakthrough is a conse-
quence of local imbalance between supply and ioniza-
tion of the plasma-producing substance and radial
motion of the produced plasma from the plasma-pro-
duction region driven by the Ampére force.

3.2b. The minimal discharge current Icr at which
magnetic flux can break into the liner volume across an
annular gap of length d is estimated as

where ρ is the plasma density, σ is electrical conductiv-
ity of the plasma, ∆ is the plasma-layer thickness, and
R is the liner radius. If ρ ~ 10–4 g/cm3, σ ~ 1014 CGSE
units, ∆ ≈ d ≈ 0.1 cm, and R ≈ 1 cm, then Icr ≈ 3 MA.

3.2c. The mass of the plasma moving with the
breaking-through frozen-in magnetic flux can be only a
fraction of the mass of the plasma-producing material
occupying the breakthrough region.

3.2d. The breaking-through azimuthal magnetic
field obstructs further current flow in the breakthrough
region.

4. MHD TURBULENT HEATING
AND RADIATIVE COOLING 

OF STAGNANT PLASMA

4.1. MHD Turbulent Heating 

Stagnation is a natural consequence of the mag-
netic-flux breakthrough. In the stagnant pinch, the
energy of the current-generated magnetic field is con-
verted into the turbulent MHD flow of the ion compo-
nent of the stagnant plasma. This process involves con-
vective mixing of the plasma with magnetic field, heat-
ing, energy transfer from ions to electrons, and
emission from the stagnant plasma. The rate of MHD
turbulent heating is estimated as

where I, M, and r are measured in megamperes, micro-
grams per centimeter, and millimeters, respectively [10].

4.2. Energy Balance
in a Radiating Turbulent Pinch 

4.2a. The electron plasma component is heated by
the energy transferred from the ion component. In the
high-density pinch plasmas, the corresponding time
scale is small as compared to the joule heating time for
electrons.

Icr A[ ] 3 1021 ρ
σ

------- R∆
d2
-------,×≈

W th
TW
cm
--------- 0.5I3

rM1/2
-------------,≈
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4.2b. Under the conditions of our experiments, radi-
ation plays a key role in the energy balance of an
imploding pinch. The tendency of the turbulent current-
carrying plasma toward filamentation and transforma-
tion of the radial plasma rainstorm into radial “protu-
berances” observed in our experiments [5] can be
explained by radiative cooling of the imploding spa-
tially nonuniform plasma.

5. EFFECTIVE CONVERSION 
OF STORED MAGNETIC ENERGY

INTO Z-PINCH HEATING 
AND MULTITERAWATT X-RAY EMISSION

5.1. Z-pinch is modeled by an electric-circuit com-
ponent that has a time-dependent nonlinear impedance
and consumes the magnetic energy supplied by a gen-
erator through a magnetically insulated transmission
line (MITL). The MITL couples the load surface to the
water–vacuum interface. In the course of plasma pro-
duction, the magnetic energy is accumulated in the
MITL while the outer current boundary remains at rest.
After the magnetic-flux breakthrough, the energy is
consumed to implode and heat the radiatively cooled
current-carrying plasma. The peak active power Wact is
comparable to the peak soft X-ray power output in
terms of timing.

5.2. The active power produced in the discharge is
sustained by consuming the stored magnetic energy
(Wind) and the power supplied by the generator (Wsuppl).
In experiments, the relative values of Wsuppl and Wind
depend on the initial liner radius and its mass per unit
length.

5.3. At all stages of the implosion (including the
stagnant state), the heat accumulated by the radiating
pinch plasma is low as compared to the magnetic
energy generated by the discharge current. The radia-
tion power emitted by the pinch is determined by the
active power Wact .

5.4. Optimal Matching Conditions 
for the Generator– MITL–Pinch Circuit 

5.4.1. The circuit parameters must ensure that the
magnetic energy accumulated in the MITL reaches its
maximum by the starting moment of the pinch implo-
sion.

5.4.2. The impedance of an stagnant MHD-turbulent
pinch must be much larger than the generator imped-
ance.

5.4.3. The plasma contained between the electrodes
provides a bypass for current leakage in the stagnant
pinch. The rate of the magnetic-field influx that sustains
the pinch may be limited by the plasma passed by the
field on its way toward the pinch. These effects can be
the key factors that determine the peak values of both
discharge power and X-ray emission intensity.
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BASIC CHARACTERISTICS 
OF HIGH-POWER RADIATING IMPLODING 

DISCHARGE WITH COLD START 

1. COLD START 
OF IMPLODING DISCHARGE

1.1. Effect of the Physical Characteristics 
of Multiterawatt Pulse Generation

on the Starting Parameters 
of Plasma-Producing Loads in Imploding Discharges 

The implementation of the multiterawatt pulse gen-
eration technology in Z-pinches has opened new pros-
pects in the physics and engineering of plasma implo-
sion. In particular, the power supplied by the Marx gen-
erator to the fast imploding discharge is higher than the
output from the capacitor banks used to power conven-
tional plasma foci (with microsecond-scale current
pulses) by two orders of magnitude. We should note
here that the conventional and fast power-supply sys-
tems are comparable in terms of stored energy and peak
current. For example, the power of about 40 TW pro-
duced by the generator used in the Z facility at Sandia
National Labs generates a current of 20 MA through a
wire-array having an inductance of 12 nH in about
100 ns [11]. These are the best characteristics obtained
to this day. For comparison, the output characteristics
of the Angara-5-1 facility vary from 2 to 5 MA and
from 2 to 5 TW.

The power boost was achieved by raising the dis-
charging voltage of the Marx generator and using
pulse-forming lines designed to produce shorter pulses.
Figures 1a and 1b show, respectively, a schematized
circuit diagram and typical oscilloscopic traces of the
output voltage pulse V(t), discharge current I, and dI/dt
obtained in the experiments reported in [1–5]. The rap-
idly varying dI/dt trace demonstrates that Z-pinch can
be modeled by a time-dependent nonlinear impedance.

The reduction of the current-rise time from 10 µs to
100 ns implies that the starting radius must be about
1 cm rather than tens of centimeters. This requirement
necessitates the use of the magnetically insulated trans-
mission line for coupling the output from a meter-sized
pulse generator to a centimeter-scale load. The MITL
inductance that couples the load (Z-pinch) surface to
the water–vacuum interface is denoted by L0 in Fig. 1a.
Thus, power supply to a multiterawatt/megavolt dis-
charge is degraded only by a relatively low spurious
inductance (10 to 20 nH). The difference in slope
between the portions of the V(t) and dI/dt traces corre-
sponding to rising current through the inductive load
(see Fig. 1b) is explained by the electron leakage from
the MITL that takes place while the magnetic insulation
of the gaps develops [2]. The corresponding leakage
currents are not shown in Fig. 1a. However, they can
amount to substantial levels.

The MITL accumulates magnetic energy and
thereby ensures high rates of energy conversion at the
implosion and stagnation phases of a Z-pinch. Figure 2
SICS      Vol. 99      No. 6      2004
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schematizes the MITL assembly used in our experi-
ments as one of the numerous variants of the load [1–5].

Current basic and applied studies of multiterawatt
fast Z-pinches are focused on the efficiency of conver-
sion of the energy accumulated in the MITL into a soft
X-ray pulse. To accomplish this task, plasma-produc-
ing materials containing elements with high atomic
numbers must be utilized. The drastic reduction of the
starting diameter of the plasma-producing load, the
stringent constraints imposed on the load geometry, and

(a)

E(t)

Vacuum

L0ρg

V(t)

I(t)

Z(t)

1

2

3

t

60 ns

(b)

Water

Fig. 1. (a) Schematized circuit diagram: E(t) = emf pulse;
V(t) = voltage output from a water-insulated pulse-forming
line; I(t) = discharge current; L0 = MITL inductance; ρg =
total wave impedance of a water-insulated pulse-forming
line; Z(t) = nonlinear total impedance of the load. (b) typical
characteristics of high-power imploding discharge: (1) V(t)
(Vmax ≈ 1.1 MV); (2) dI/dt (dI/dtmax ≈ 4 × 1013 A/s); (3) I(t)
(Imax ≈ 3 MA).

12

3 4

5

6

Fig. 2. Schematic of a MITL: (1) cathode; (2) anode;
(3) outer and inner wire arrays; (4) central load (low-density
foam); (5) weight for wire-array stressing; (6) return current
anodes.
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the changes made in the elemental composition of the
load to achieve the desired spectral characteristics of
the X-ray pulse stimulated the use of nongaseous
plasma-producing media. The typical plasma-produc-
ing substance used in up-to-date experiments is a low-
density heterogeneous material consisting of microme-
ter-sized solid grains or fibers. Wire arrays have been
frequently used in recent studies. The mass per unit
length of the imploding plasma produced from a high-
atomic-number material varies between 0.2 and
10 mg/cm in radiating Z-pinches with currents ranging
from 3 to 20 MA. It is important to ensure that the
plasma-producing load have the strictly required start-
ing geometric parameters and the plasma production be
well controlled.

The loads utilized in most present-day experiments
are fairly consistent with these requirements in terms of
geometry and mass, but the controllability of plasma
production from an initially cold matter is yet to be
improved.

1.2. Cold Start as an Inherent Stage 
of All Imploding Discharges with High Rates

of Current Rise that Have Been Studied to Date 

As mentioned above, the plasma-production process
implemented in every terawatt-scale Z-pinch experi-
ment conducted to this day is initiated by electrical
breakdown of unionized material with a pulse produced
by the generator. This experimental solution, termed
cold start, is dictated by the need to simplify the design
of the power-generating part of the facility. It strongly
affects all processes involved in the subsequent implo-
sion. The plasma production initiated by electrical
breakdown of the plasma-producing material, but is not
completed during the breakdown. Due to the rapid cur-
rent rise (with dI/dt ~ (0.5–2.0) × 1014 A/s) required to
accelerate a mass of 0.1–1.0 mg/cm to a velocity
~3−5 × 107 cm/s over a length of 1 to 2 cm, the pro-
duced plasma is highly nonuniform. As the discharge
current grows, the plasma is accelerated by magnetic
field before the entire load transforms into an acceler-
ated plasma. As the produced low-density plasma and
the current are driven out of the plasma-production
region, the energy required to vaporize and ionize the
plasma-producing substance is released at a decreasing
rate. This trend affects not only the initial stage of the
discharge, but also the implosion and stagnation
phases.

1.3. Heterogeneity of the Plasma-Producing Load 

Heterogeneous structure of plasma-producing loads
is an essential factor, but effects due to cold start mani-
fest themselves in initially homogeneous plasma-pro-
ducing loads as well [2, 3].

Spatially nonuniform plasma production is charac-
teristic of both heterogeneous media (low-density
solid-state foam, wire array) and homogeneous (gas-
 AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004
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1

∅  20 mm

Fig. 3. Time-integrated X-ray photograph of a Z-pinch for wire array with a diameter of 20 mm: (1) cone-shaped cathode plasma
sheath.
eous) substances, even though the respective mecha-
nisms of breakdown and plasma production are differ-
ent. A wire array is azimuthally nonuniform by con-
struction, because the wire spacing (200–1000 µm) is
much greater than the wire diameter (5–15 µm). The
spatial nonuniformity of the plasma produced from a
gas puff manifests itself via plasma instability as azi-
muthal current filamentation followed by axial stratifi-
cation of the produced plasma. The thermal instability
responsible for the filamentation of current-carrying
plasma columns develops in any azimuthally uniform
medium provided that the rate of current rise is suffi-
ciently high.

1.4. Massive Electrodes
as an Additional Plasma-Producing Load

in Z-Pinches with Cold Start 

Since the Z-pinch length is limited by massive elec-
trodes, one has to deal with another problem associated
with cold start: formation of a plasma sheath at the elec-
trodes. In the MITL, which must deliver the current I to
the load located on its axis, the linear current density
jlin = I/2πr increases with decreasing radius r of the cur-
rent-carrying plasma. In a high-power Z-pinch, the
electric power density created in a load with r ~ 1 cm
exceeds 1 TW/cm2. The current density j ~ 108 A/cm2 is
insufficient to vaporize a conductor in 10–20 ns. When
the linear current density exceeds 1 MA/cm, this value
of current density is attained when the skin-layer thick-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ness is δ ~ 0.01 cm. For a conductor with conductivity
σ ~ 1016 CGSE units, the skin-layer relaxation time is
t ~ 4πδ2σ/c2 ~ 10–15 ns, which corresponds to the dura-
tions of the processes involved in our experiments.
Electric vaporization from the current-carrying surface
leads to plasma formation in the electrode gap. The
ensuing uncontrolled nonuniform plasma flow into the
imploding-discharge volume strongly affects the
dynamics of Z-pinch implosion.

These considerations apply equally to both cathode
and anode conductors. However, the effects due to the
cathode plasma are stronger. Figure 3 shows an X-ray
photograph of a Z-pinch clearly demonstrating the
skirt-shaped plasma sheath at the cathode.

The difference in plasma behavior between the
anode and cathode sheaths is poorly understood. The
formation of the near-cathode plasma sheath may be
affected by the effect of electrons involved in the near-
cathode magnetic self-insulation region. The ion current
incident on the cathode may heat its surface to a higher
temperature as compared to the anode surface. However,
the results of the experiments reported in [1–5] may be
explained in technical rather than fundamental terms.
The wire-array cathode is connected to the current-car-
rying conductor by a sliding contact, which is degraded
by azimuthal nonuniformity. The required pinch mass
balance in the pinch may be violated by the erosive
plasma generated in the contact zone at a linear current
SICS      Vol. 99      No. 6      2004
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density higher than 1 MA/cm and ejected into the vol-
ume surrounded by the wire array. Under certain condi-
tions, the uncontrolled plasma flow into the electrode
gap can be prevented by using low-density porous solid
electrodes adjoining the load. They can be rapidly
vaporized, and the resulting plasma can be carried away
from the gap by magnetic field to compensate for the
plasma ejection into the gap.

1.5. Strong Preionization not Induced by Current 
as an Unimplemented Alternative to Cold Start 

Actually, cold start precludes the implementation of
the liner scheme of multiterawatt imploding discharge.
Here, the liner is interpreted as a conducting thin mas-
sive cylindrical shell accelerated to a high velocity so
that its kinetic energy transforms into heat as it hits an
obstacle (the inner shell). In a multiterawatt imploding
discharge, the liner is obviously a plasma shell. The
creation of a compact massive plasma shell with a
kinetic energy of at least 100 kJ is a key problem in
liner design. In fast imploding discharges with cold
start, the desired shell has not been created to this day.

The problem could be resolved by means of strong
preionization of the plasma-producing medium. It is
essential that preionization must not lead to generation
of a spatially nonuniform plasma, as in discharges with
cold start. Implementation of liner preionization not
induced was attempted for less powerful discharges [14].
The much higher power required to implement preion-
ization in multiterawatt discharges entails much higher
costs. Strong preionization by an ion beam (with power
up to ~0.1 TW) may be more efficient. The parameters
of the plasma generated by this method must be chosen
to prevent further ionization processes leading to its fil-
amentation after the main current pulse is fired. An ini-
tial electron temperature of about 10 eV seems suffi-
cient to ensure that the thermal instability leading to fil-
amentation is suppressed by radiative loss. However,
this method has not been implemented because of its
technological complexity and relatively high cost.

Ionization of a foam liner by an auxiliary external
shell would be practicable if it were sufficiently slow
for the filaments to expand and merge together. Some
encouraging results have been obtained in the first
experiments on interaction between a megampere-cur-
rent shell of a microsecond-scale plasma focus with a
foam liner [15]. However, the subsequent coupling of
the generator producing the main current pulse to the
plasma shell obtained by this method has yet to be
investigated.

Strong preionization is indispensable, because it
provides a unique means to implement liner implosion
schemes based on the original ideas put forward in the
early 1980s.
JOURNAL OF EXPERIMENTAL
2. PROLONGED PLASMA PRODUCTION 
AS A MAIN CONSEQUENCE

OF COLD START [2, 3]

Prolonged plasma production is an experimentally
established unquestionable consequence of the cold
start of a fast Z-pinch. Many facets of this phenomenon
characteristic of various plasma-producing materials
have been described in [1–5]. The recently published
results of experiments on wire-array implosion in the
MAGPIE facility [16] suggest a similar phenomenolog-
ical pattern of wire-array discharge, but the theoretical
interpretations of the results presented in [1–5] and [16]
are essentially different. The interpretation of the
MAGPIE experiments proposed by their authors relies
on the model of [7, 8]. Our interpretation is based on the
model of a heterogeneous liner with prolonged plasma
production presented below.

2.1. Phenomenology of Prolonged Plasma Production 
Based on the Experimental Results of [1–5] 
and Physical Model of Plasma Production 

in a Heterogeneous Medium 

Prolonged plasma production in imploding dis-
charges with cold start manifests itself most clearly in
the dominant role played by the Ampére force in the
plasma dynamics until the plasma-producing load com-
pletely transforms into an accelerated plasma. First of
all, the combined effect of the magnetic fields gener-
ated by multiple current-carrying filaments on an indi-
vidual filament drives the filaments and the low-density
plasmoids evolving from wires in the radial direction
before the plasma begins to implode as a whole. The
plasma driven inwards by the total magnetic field gen-
erated by the current that flows through it concentrates
on the axis into a precursor pinch much earlier than
does the wire-array plasma. Moreover, the local mag-
netic field generated by the current flowing through a
current-carrying column (an individual filament or a
vaporized wire) affects the column itself. This can lead
to magnetically driven filamentation of the column
resulting in its axial MHD nonuniformity. It was shown
in [2] that the magnetically driven filamentation easily
occurs in high-atomic-number plasma-producing
gases.

The relative importance of the effects of the total
and local magnetic fields on the dynamics of the plasma
being produced depends on various conditions. How-
ever, experiments demonstrate that the entire pinch
evolution at the plasma-production stage is affected by
the continuing inward flow of new portions of the accel-
erated plasma from the plasma-producing region. The
generated plasma carries part of the current, but the
outer boundary of the plasma remains at the initial outer
radius of the plasma-producing load for a long time.
Under the conditions of our experiments, the outer
plasma boundary remains at rest during the entire inter-
val of current rise. The observed stationarity of the
 AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004
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Fig. 4. Plasma-production configuration (not to scale): (1) heterogeneous plasma-producing load; (2) region of azimuthal magnetic
field pumping into plasma; (3) radial plasma moving with frozen-in magnetic field; (4) precursor pinch. Actual boundaries between
regions are not distinct.
outer plasma boundary implies that the rates of plasma
production and plasma flow driven by the Ampére force
are balanced.

The experimental results reported in [1–5] provide a
basis for a physical model of prolonged plasma produc-
tion. Our approach differs from those developed in the
model of [7, 8] and earlier studies, which were focused
on the azimuthal structure of the wire-array plasma at the
initial stage of the discharge. We also take into account
the azimuthal structure of the plasma-producing load in
estimating the wire-array vaporization (see Section 2.2).
However, we do not consider the azimuthal structure of
the plasma-producing load as the factor that plays the
dominant role in prolonged plasma production.

In our model of plasma production, it is assumed
that the total azimuthal magnetic field B generated by
the current I carried by the heterogeneous plasma-pro-
ducing medium containing a condensed phase plays the
dominant role almost from the very start of the dis-
charge. To simplify our analysis of the basic physical
characteristics of prolonged plasma production, we
assume that the local plasma sources are uniformly dis-
tributed over the plasma-producing region and the
spacing between them is small as compared to the size
of the region. As a suitable model of the medium, we
consider an annular cloud of microscopic dust grains in
vacuum. The spacing between them is assumed to be
much greater than the grain diameter and much smaller
than the thickness of the annulus, which is much
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
smaller than its radius. Figure 4 illustrates the radial
structure of this liner at the stage of prolonged plasma
production.

During the first nanoseconds of the discharge, the
current flowing through region 1 in Fig. 4 (occupied by
dust grains of the plasma-producing material) switches
over to the low-density plasma occupying the space
between the grains. The plasma occupying regions 1
and 2 is heated, its conductivity increases, and the azi-
muthal magnetic field generated by the discharge cur-
rent is frozen into the plasma. Flow 3 of the plasma car-
rying the frozen-in magnetic field is driven by the
Ampére force toward the axis, giving rise to a precursor
pinch. The dust grains are vaporized by heat and radia-
tion fluxes from plasma regions. The corresponding
flux intensities are relatively low, and the vaporization
lasts for tens of nanoseconds; i.e., its duration is com-
parable to the current rise time. In the meantime, the
outer boundary of the region occupied by current and
plasma remains at rest at the location of region 1 until
complete vaporization is achieved. Thus, the plasma
production involves the following processes: vaporiza-
tion and ionization in region 1, diffusive mixing of the
plasma and magnetic field in region 2, and inward
radial motion of the produced plasma driven by the
Ampére force. These processes are discussed below in
more detail. In Section 2.2, we present the results
obtained by computing the wire-array vaporization. In
SICS      Vol. 99      No. 6      2004
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Sections 2.3–2.6, we analyze the dynamics of the
plasma flow into the liner volume.

2.2. Model of Vaporization 
of an Azimuthally Nonuniform Plasma-Producing Load 

In this section, we consider an azimuthally struc-
tured load consisting of many vaporized tungsten wires.
The results obtained by X-ray probing of a vaporized
wire array using an X-pinch [4] demonstrate that each
vaporized wire consists of a dense core surrounded by
a plasma of relatively low density. Since the core spac-
ing is much greater than the core radius, we can con-
sider a single core. Experimental data can be used to
describe the core structure after a relatively long time
tX ≈ 60 ns has passed since the starting instant of current
rise and the total current through the wire array has
reached about 1 MA. For a wire of radius 6 µm, the core
diameter reaches the value 2rc = 18 µm in about 60 ns.
Assuming that the mass per unit length of the wire has
reduced to mc ≈ 2.6 µg/cm, we find that the mean core
density is ρc ~ 1 g/cm3, while the critical density of
tungsten is 4.5 g/cm3. The point in the phase diagram
for tungsten where ρc ~ 1 g/cm3 corresponds to a tem-
perature above 12 × 103 K [17], i.e., a thermal velocity
above 8 × 104 cm/s, whereas the measured velocity of
core expansion is about 1.5 × 104 cm/s. Therefore, the
core should be considered as a volume occupied by a
heterogeneous mixture of ionized vapor and liquid
droplets rather than a homogeneous vapor. In this
model, we take into account both evaporation from the
droplet surface and the loss of mass due to vapor flow
from the core boundary. The source of energy release in
the core is the joule heating by the current J flowing
through the ionized vapor. The current is driven by the
electric field E generated by the voltage drop along the
wire array (region 1 in Fig. 4). The core can also be
heated by the energy fluxes from the outer higher tem-
perature plasma due to radiative transfer and electron
heat conduction. The present model ignores these addi-
tional energy fluxes, even though they can substantially
increase the rate of the liquid-phase evaporation, partic-
ularly at its final stage.

We treat the core as a cylinder of radius rc consisting
of a mixture of vapor with liquid droplets of radius rL
and density ρL characterized by a droplet concentration

NL per unit length and a concentration nL = NL/π  per
unit volume. It is obvious that the liquid mass per unit
length is smaller than the core mass per unit length. The
opacity of the heterogeneous core structure for probing
X-rays from an x-pinch suggests the following estimate
for the droplet concentration. If the probing photons
(with hν ~ 3 keV) are completely absorbed by the drop-

lets, then the core’s opacity implies that NL  > rc .
Neglecting the vapor mass contained in the core, we
have rLρL < rcρc , rL < 0.35 µm and NL > 106 cm–1;

rc
2

rL
2
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hence, nL ~ 3 × 1012 cm–3, which is comparable to the
concentration of defects in a cold metal (on the order of
1012 cm–3 [18]).

The mass and energy balance equations for the core
at a uniform temperature T are written as follows:

(1)

(2)

where m is mass, ε is energy per unit mass, P is pres-
sure, ρt(T) is the saturated vapor density for tungsten,
and V is the core volume; the subscripts L and G refer
to liquid and gas, respectively.

To set the value of E in (2), we use the experimental
fact that the discharge current flowing through a wire
array switches over to the low-density plasma outside
the core at an early stage: i.e., the core carries only a
small fraction of the current: J ! I/N, where I is the
total discharge current and N is the number of wires in
the array. Since J has never been measured directly, we
have to calculate J from (2) for a given E. The electric
field strength at the outer boundary of the plasma-pro-
ducing region is determined by the global characteris-
tics of the discharge, which can be reliably measured.
To find the electric field in region 1, we consider the
motion of a perfectly conducting plasma moving
toward the axis with a drift velocity V at the boundary
between regions 1 and 2 (see Fig. 4). If B is the azi-
muthal magnetic field generated by the discharge cur-
rent I at the outer boundary of region 1, then the mag-
netic field B' at the boundary between regions 1 and 2 is
weaker, because only a fraction of I penetrates into
region 2 with the plasma. In the next section, we show

that B' ~ B/ . The plasma motion across the field with
velocity V generates the electric field E' = 10–8VB',
where E' is measured in volts per centimeter and the
remaining quantities are measured in CGSE units. The
difference between the electric field E in region 1 and
E' is due to induction. If the radial magnetic-field pro-
file is linear across region 1 of small thickness δR ~
0.1Ra (Ra is the array radius) and I < 3 MA, then

mL

ρL
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mG

ρG
-------+ πrc

2
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3
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Fig. 5. Computed evolution of heterogeneous core of constant radius rc = 10 µm for electric field strength E = 30 kV/cm: mL and
mG are the liquid- and vapor-phase masses per unit core length, T is temperature, and J is current through the core.
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Fig. 6. Computed evolution of heterogeneous core with time-dependent radius rc and E increasing with time (see Fig. 5 for
notation).
According to our experimental results, the radial
plasma velocity at the boundary between regions 1 and
2 is V = (1–2) × 107 cm/s. Therefore, if I = 2 to 3 MA
and Ra = 1 cm, then E ~ E' = 20–60 kV/cm.

In our calculations, Eqs. (1) and (2) were supple-
mented with equations of state for liquid and gaseous
tungsten [19]. The current through the core was calcu-

lated as J = π σE, where the conductivity σ of tung-
sten was determined by using a Coulomb logarithm

rc
2
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model [20]. The effect of the liquid-droplet phase on
the current was ignored in view of the condition
mL/ρL < mG/ρG. Figure 5 shows the evolution of a het-
erogeneous core computed for rc = 10 µm and E =
30 kV/cm. Figure 6 shows the evolution of a core with
a linearly growing radius for E increasing with time.

The computed results show that rapid droplet evap-
oration begins only after 60 to 70 ns have passed since
the starting instant of current rise. This agrees with the
SICS      Vol. 99      No. 6      2004
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results of our experiments, where a dense phase was
detected at 70 ns after the starting instant of current rise.
However, quantitative agreement between numerical
and experimental results is not required at this stage of
our study, because our goal was to elucidate the nature
of the process.

The drastic decrease in the mass of the liquid phase
at t ~ 80 ns and the corresponding increase in the vapor
mass inside the core are due to the jump in the core tem-
perature that occurs when the energy consumption
required to vaporize the liquid tungsten ceases. Indeed,
if J ~ 10 A (as in our computations) and E ~ 3 ×
104 V/cm, then JE ~ 3 × 105 W/cm. Assuming that the
power thus produced is consumed entirely to vaporize
the liquid tungsten in the core, we find that the rate of
vaporization is about 0.1 µg/ns per unit length of the
core. This agrees with the numerical results shown in
Fig. 6: dmL/dt ~ 0.1 µg/cm at t ~ 70–80 ns. After the liq-
uid phase has evaporated completely, the vapor mass
contained in the core decreases as the vapor flows out
of the core into the space between the wires. The rate of
vapor-mass loss calculated over the interval from 90 to
100 ns does not exceed 0.05 µg/(ns cm). When N = 50,
the flow rate of the mass to be ionized and accelerated
by the Ampére force is dmG/dt ~ 2.5 µg/(ns cm).

2.3. Plasma Production Rate Required 
to Sustain a Steady Flow of Tungsten Plasma 

from the Plasma-Producing Region 
with a Stationary Boundary 

In this section, we analyze the dynamics of the
material vaporized in region 1 (see Fig. 4). To simplify
analysis, we assume that the local plasma sources are
uniformly distributed over the region. The produced
plasma having a low density ρ and a conductivity σ
occupies region 1 and flows into region 2. Suppose that
the current flowing through the plasma generates an
azimuthal magnetic field B at its boundary. In the
course of plasma production in regions 1 and 2, the azi-
muthal magnetic field is frozen into the produced
plasma. The Ampére force drives the current-carrying
plasma out of region 2 toward the axis with a velocity
on the order of the Alfvén velocity VA ~ B/(4πρ)1/2, giv-
ing rise to a transition layer of thickness ∆ ~ c2/4πσVA.
Suppose that the energy required to maintain the bal-
ance between the rates of plasma outflow and produc-
tion is provided by the heat flux determined by the elec-
tron heat conductivity of the inward-moving plasma.
These simplifying assumptions were used in [3] to
derive an expression for the radial velocity of the
inward-moving plasma under the condition that the
mass rate of production of ionizable material by vapor-
ization of condensed phase in the core is sufficient (see
Section 2.2):

(3)
dm
dt
------- 

µg

cm2 ns
---------------- 0.2

I MA[ ]

R st[ ]
------------ 

 
1.8

.≈
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It should be recalled here that the process is analyzed
by ignoring both axial and azimuthal nonuniformity of
plasma production, which are clearly observed in
experiments. Nonetheless, this simplified analysis
leads to important results discussed below.

2.4. Mathematical Model of Plasma Inflow 
into the Liner Volume at the Plasma-Production Stage 

Following [3], we use a one-dimensional cylindrical
MHD model and assume that thermal-pressure gradi-
ents are weak as compared to the Ampére force. Then,
we have

(4)

(5)

(6)

where B is the azimuthal magnetic field, v  is the radial
plasma velocity, and r is radius. Boundary conditions
are set for prolonged plasma production at r = Rl (liner
radius):

(7)

(8)

(9)

According to boundary condition (8), the newly gener-
ated plasma has zero radial velocity. The magnetic field
at the outer liner boundary is determined by the total
discharge current I(t):

(10)

which is treated as a prescribed function of time. Con-
ditions (7)–(9) imply that a considerable fraction of the
total current flows through the region of plasma produc-
tion inside the liner. In particular, if the inward-moving
plasma has the Alfvén velocity, then the magnetic field

at the inner boundary of the liner is B0/ , i.e., about
40% of the current flows inside the liner.

2.5. One-Dimensional Model of Z-Pinch Evolution 
Allowing for a Finite Interval 

of Decreasing Plasma Production Rate 

Prolonged plasma production must come to an end
before the outer boundary of the current-carrying
plasma begins to contract into a Z-pinch. It is obvious
that the rate of plasma production does not instantly

∂
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drop to zero. Suppose that the plasma production rate
initially increases as (t) = CIµ at t ≤ tq and then
decreases as exp(–(t – tq)/tf). The total mass of the liner
is Ml . To solve Eqs. (4)–(9), we use dimensionless vari-
ables defined in terms of the reference current I0, refer-
ence length R0 ≡ Rl , and reference time t0. The corre-
sponding reference values of velocity, plasma density,
and liner mass per unit length are v 0 = Rl /t0, ρ0 =

/πc2 , and M0 = (I0t0/cRl)2, respectively. To com-
pare computed results with experimental data, we set
I0 = 1 MA, R0 = Rl = 1 cm, and t0 = 100 ns.

Figures 7–10 show the computed results. Figure 7
shows the time-varying current within the liner half-
radius; Figs. 8–10, radial profiles of density, discharge
current, and velocity at several points in time. Panels (a)
and (b) correspond to relatively fast and slow decrease
in (t), respectively.

The computed results demonstrate that discharge
current penetrates into the liner even at an early stage of
plasma production, owing to diffusion of the magnetic
field generated by the current into the produced plasma.
Another important finding is the strong dependence of
basic Z-pinch parameters on (t). When (t) is rela-
tively low, the region inside the liner half-radius carries
less than half the total current, whereas almost the
entire current flows within the half-radius. The rates of

ṁ
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2 Rl
4
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ṁ ṁ
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Fig. 7. Time-varying current within the liner half-radius for
(a) fast and (b) slow decrease in (t).ṁ
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plasma and current concentration near the axis are sev-
eral times higher in the case of high (t) as compared
to low (t). Therefore, timely termination of plasma
production is a crucial factor that determines a high
degree of compression in a Z-pinch with cold start.

2.6. Penetration of Azimuthal Magnetic Flux
into the Liner Volume: Distinction

of the Present Model from the Model of [7, 8] 

In the model of [7, 8], the axially nonuniform struc-
ture of the plasma and magnetic field was analyzed for
each wire, and the plasma flows originating in the gaps
between the wires were not magnetized. For this rea-
son, it was concluded that current concentrates in
around the wires rather than penetrates into the liner
volume at the plasma production stage, and the precur-
sor plasma does not carry any current. We have mea-
sured the azimuthal magnetic field inside the wire array
by means of miniature magnetic probes [5], and there is
no reason to question the reliability of the results
obtained, at least, before the Z-pinch began to contract
as a whole. Figure 11 shows the results of magnetic
probing obtained for a 20-mm diameter array of
80 5-µm diameter wires. It demonstrates that current
begins to flow through the region within a radius of
0.5Rl at the plasma-production stage, amounting to

ṁ
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about 15% of the total current. In this particular case,
less than half the total current was found to flow
through the region within the liner half-radius by the
moment of peak emission from the Z-pinch. Appar-
ently, the parameters of the plasma-producing load
deviated from their optimal values required to achieve
the highest rate of implosion, and the decrease in the
plasma production rate was relatively slow, as illus-
trated by Figs. 7b–10b. However, these results support
one of the basic points of our model: a current-carrying
plasma penetrates into the liner volume at the stage of
prolonged plasma production.

In the model of [7, 8], the assumption of zero current
through the volume inside the wire array at the plasma-
production stage is inferred from the experimental fact
that the precursor seems to be macroscopically stable.
We claim that this assumption is not well grounded.
Indeed, as long as a relatively high rate of plasma pro-
duction is sustained, the outer boundary of the plasma
is tied to the wire-array radius. This observation was
made both in our experiments [4] and in those con-
ducted at the MAGPIE facility [16]. The steadiness of
the outer boundary is conditioned on a sufficiently high
rate of plasma flow into zones where its density drops

0

3.0

3

4

I, arb. units

2

2.0

1.0

(a)

1

2.5

1.5

0.5

0 0.2 0.4 0.8 1.0

34

r/Rl

2

2.0

1.0

1.2

(b)

1

1.5

0.5

0.6

Fig. 9. Computed radial profiles of discharge current at
(1) t = 0.25t0, (2) t = 0.58t0, (3) t = 1.04t0, and (4) t = 1.80t0
for (a) fast and (b) slow decrease in (t).ṁ
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for any reason. Fast plasma production “cures” tran-
sient nonuniformities of plasma density arising at the
boundary. We believe that the stability of the outer
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plasma boundary can ensure the MHD stability of a
current-carrying precursor plasma.

Plasma instabilities develop when balance cannot be
maintained between the radial plasma motion driven by
the Ampére force and plasma supply to zones where
plasma sources are depleted. Magnetic flux breaks
through these zones into the volume encompassed by
the depleted plasma-producing load.

3. BREAKTHROUGH OF MAGNETIC FLUX 
ACROSS THE DISRUPTED 

PLASMA-PRODUCING REGION 
AND PARTIAL PLASMA TRAPPING

The results of detailed experimental investigation of
the magnetic flux breakthrough inside gas and foam lin-
ers, which are azimuthally homogeneous in the initial
state, have been described in [1, 2]. Below, we will con-
sider analogous phenomena in azimuthally nonuniform
systems (wire arrays).

3.1. Experimental Observation of Breakthrough
of Azimuthal Magnetic Flux across a Wire Array 

Evidence of a spatially inhomogeneous magnetic
flux breakthrough is provided by the phenomenon of a
radial plasma rainstorm, which has been discovered
and investigated in our previous work [5]. It was dem-
onstrated that the current-induced implosion in tung-
sten wire arrays gives rise to considerable azimuthal
and axial inhomogeneity of the plasma. The Ampére
forces drive the generated plasma toward the axis in the
form of a plasma rainstorm (multiple plasma jets of rel-
atively small diameter, elongated in the radial direc-
tion). As these jetlike plasmoids move toward the array
axis, they decrease in radial size and merge together to
form isolated plasma current filaments elongated pre-
dominantly along the discharge axis. The plasma in the
thus formed Z-pinch also remains spatially inhomoge-
neous at the time of intense X-ray emission.

Figure 12 shows an example of the time-integrated
pinhole image of the Z-pinch in a double-shell wire
array comprising the outer aluminum wire array with a
diameter of 12 mm and the inner tungsten wire array
with a diameter of 6 mm. The X-ray photograph clearly
reveals the rainstorm of aluminum plasma from the
outer array, whereas virtually no such rainstorm is
observed for the inner array. The qualitative difference
between collapse in the outer and inner arrays is
explained, in particular, by the different conditions of
plasma formation. Indeed, the plasma production in the
inner array is influenced by the plasma flow from the
outer array. These peculiarities of the plasma produc-
tion process in the system under consideration require
further investigation.

As noted above, the spatial inhomogeneity of the
plasma rainstorm is retained upon the onset of intense
X-ray emission from the Z-pinch. The breaking-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
through magnetic flux entrains the plasma in which it is
frozen. The mass of the entrained plasma may account
for only a fraction of the residual mass of the plasma-
producing material. The magnetic flux breakthrough
overtakes the subsequent implosion of the plasma. For
this reason, the X-ray emission pulse may precede the
final collapse of the plasma as a whole. This behavior is
clearly illustrated in Fig. 13, which shows a series of
pinhole images synchronized with the oscilloscopic
trace of the intensity of X-ray emission from tungsten
plasma. The first frame corresponds to the end of the
first stage of plasma production and the onset of the
magnetic flux breakthrough. Here, one can still distin-
guish a pinch precursor (prepinch), whose emission is
masked in the second shot by a superimposed pulse of
emission from the plasma rainstorm filling almost the
entire space inside the wire array. The second and third
frames correspond to the maximum intensity of soft
X-ray emission from the pinch. The time interval
between second and third frames is about 10 ns. During
this period of time, the streams of plasma rainstorm
almost completely reach the paraxial region, and the
intensity of X-ray emission passes through a maximum
and begins to decrease. Note that the image of expand-
ing plasma in the fourth frame has clearer and more
smoothened contour as compared to those of turbulent
jets of the plasma rainstorm observed in the second and
third frames.

The main conclusion following from these experi-
mental results is that the Z-pinch collapse under the
conditions studied begins with a spatially inhomoge-
neous breakthrough of the magnetic flux, followed by
plasma contraction toward the axis. The large-scale
axial inhomogeneity of this flux even at the start is so
pronounced that it is impossible to speak of a continu-
ous plasma current shell. For this reason, it would be
incorrect to treat this phenomenon using the formalism
of the Rayleigh–Taylor instability or in terms of the
classical snowplow model.

Thus, the nonuniform contraction of the outer
boundary of discharge is caused primarily by the inho-
mogeneity of plasma formed at the final stage. On the
whole, the plasma production zone may still contain a
considerable amount of the plasma-producing material.
However, should the plasma production in some parts
of the liner be insufficiently intense, the energy of the
azimuthal magnetic field accumulated outside a thin
cylindrical liner penetrates inside by forming a spatially
inhomogeneous flux of magnetic energy and entrained
plasma—a radial plasma rainstorm—that is in fact the
Z-pinch.

3.2. Criteria for Breakthrough of Magnetic Flux
into the Liner Volume

at the Final Plasma-Production Stage 

As long as the balance between plasma production
and its outflow under the action of the Ampére forces is
SICS      Vol. 99      No. 6      2004
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Fig. 12. Time-integrated X-ray photograph of double-shell implosion for an outer array of starting diameter As = 12 mm (30 alumi-
num wires of diameter 20 µm) and inner array of starting diameter Bs = 6 mm (20 tungsten wires of diameter 6 µm): (1) plasma
rainstorm from the outer array.
ensured, the outer boundary of the current-carrying
plasma is determined by the initial geometry of the
plasma-producing medium. Evidently, the current-car-
rying plasma cannot be azimuthally structured: the cur-
rent channels may feature only the axial local small-
scale inhomogeneities, while the outer plasma bound-
ary remains at rest in the scale of the whole liner. The
plasma-producing medium (in particular, the dense
component of the material of exploding wires), being
converted into the plasma state under the action of a
heat flux and the emission from discharge, is consumed
at a rate of (t) equal to the amount of material
removed from the plasma-production region by the
Ampére force (with the outer boundary of the current–
carrying plasma occurring at rest). An estimate of this
rate was obtained in Section 2.4, where it was in fact

ṁ
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implied that the necessary amount of the plasma-pro-
ducing material is available at each point of the zone of
plasma production. Yet the stock of this material is
exhausted in some time. In addition, the material sup-
ply rate may also decrease, for example, because of the
reduction in area of the particles of plasma-producing
material in the course of their evaporation. The process
of the material stock exhaustion and the material supply
rate decrease is locally inhomogeneous. As a result,
zones will eventually appear in the plasma-producing
medium where the balance of the material supply and
the plasma outflow under the action of the Ampére
forces is shifted toward the latter process. These zones
are featuring uncompensated decrease in the plasma
density and, as a result, admit the breakthrough of the
azimuthal magnetic flux inside the axially inhomoge-
neous cylindrical liner. Now we will provide a simple
 AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004
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1 2 3 4

20 ns
t
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Fig. 13. Pinhole images (exposure time ~2 ns) synchronized with oscilloscopic trace of X-ray intensity for an array of diameter
12 mm (60 tungsten wires of diameter 8 µm) (shot no. 3880): the near-cathode pinch region is not recorded in frames 3 and 4.
evaluation of this process using the scheme depicted in
Fig. 14.

Let an axial gap d deprived of the source of plasma-
producing material to appear in a circular zone of
plasma production with radius R and thickness ∆. The
region of decreased plasma density is supplied with the
material at the expense of plasma diffusion across the
azimuthal magnetic field B from two sides, so that the
total incoming plasma flux is

(11)

At the same time, the plasma outflow at a velocity of VA
(on the order of the Alfvén wave velocity) under the
action of the Ampére forces accounts for the outgoing
radial plasma flux

(12)

Replacing, for the sake of simplicity, ∂ρ/∂z by ρ/z and
assuming that VA = I/5R(4πρ)1/2, we obtain an estimate
for the critical discharge current Icr above which the
magnetic flux penetrates inside the liner via the circular
gap with the axial length (width) d:

(13)

Gd 2
c2

4πσ
---------- 2πR∆( )∂ρ

∂z
------.≈

Gs ρVA 2πRd( ).≈

Icr A[ ] 3 1021 ρ
σ

------- R∆
d

2
-------.×≈
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Assuming ρ ~ 10–4 g/cm3, σ ~ 1014 esu, ∆ ≈ d ≈ 0.1 cm,
and R ≈ 1 cm, we obtain Icr ≈ 3 MA.

Since criterion (13) is obtained under very general
assumptions, the above relations can be used only for
obtaining rough estimates. Nevertheless, weak depen-
dence of the critical current Icr on the density ρ and its

R

d

∆

Gd

Gd

Hϕ

Gs

Fig. 14. Breakthrough of azimuthal magnetic flux into an
axially nonuniform cylindrical liner: R and ∆ are the radius
and width of annular plasma-production region, d is the
axial gap not occupied by plasma-producing material, Gd is
diffusive plasma flux, Gs is radial plasma flow, and Hϕ is
azimuthal magnetic field generated by discharge current.
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strong dependence on the gap width d allow us to make
some general conclusions based on criterion (13).

First, azimuthal variations of the density ρ (which
depend, in particular, on the distance between wires in
the wire array) are not as substantial. Therefore, it is not
as important whether the plasma-producing medium is
azimuthally homogeneous or not (as in a wire array):
the produced plasma will unavoidably break into sepa-
rate coaxial fragments before the complete consump-
tion of the plasma-producing medium.

Second, the most probable are the relatively rough
coaxial gaps with the d values comparable with the
macroscopic size of the liner plasma in the final stage
of plasma production.

The appearance of a circular coaxial gap leads to the
radial outflow of current with the residual plasma from
gap d, which may result in magnetic insulation of the
gap. If the magnetic insulation condition is satisfied, the
current ceases to flow through the gap. The simplest
condition for such a magnetic insulation is smallness of
the Larmor electron radius as compared to the gap
width (rL ! d). For electrons with an energy of
0.5 MeV under the conditions studied, the Larmor
radius is rL ~ 5 × 10–3 cm and, hence, the magnetic insu-
lation of the gap is quite possible.

Now let us obtain another estimate for the condi-
tions under which the current does not flow through the
gap. If the azimuthal magnetic field with a plasma
breaking through the axial circular gap moves at a
velocity close to the Alfvén velocity, an emf is induced
in the gap in the direction opposite to the electric field
exciting the current. The magnitude of this emf can be
estimated as

(14)

For I = 2 × 106 A, r = 0.5 cm, ρ = 3 × 10–5 g/cm3, and
VA ≈ 4 × 107 cm/s, this formula yields Ed ≈ 3.3 ×
105 V/cm. This emf can be sufficient to block the cur-
rent flow through the gap, provided that the gap width
d is not very small. Under such conditions, an electric
power of Wd = EdId is transferred via the gap inside the
liner. Then, using expression (14), we obtain an esti-
mate

(15)

4. MHD TURBULENT HEATING 
AND RADIATIVE COOLING 

OF STAGNANT PLASMA

4.1. MHD Turbulent Heating 

The state of implosion is a natural consequence of
magnetic flux breakthrough into the paraxial region.

Ed 
V
cm
------- 10 8– VAB 4 10 10– I2

r2 4πρ
-------------------.×∼∼

Wd W[ ] 4 10 10– I3 d

r2 4πρ
-------------------.×∼
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Contraction of the magnetic flux and entrained plasma
is followed by the period of stagnant pinch. Spatial
inhomogeneity of the Z-pinch plasma is also retained
upon the onset of stagnation. The characteristic trans-
verse size of jetlike plasmoids in the paraxial zone,
which emit quanta with an energy of 1–2 keV, amounts
to 100–200 µm and the maximum length is several
times as great.

Previously [5], we demonstrated that, by thoroughly
selecting the initial parameters of composite wire
arrays, it is possible to obtain a radiative state of the
pinch in the form of a straight filament with a diameter
of ~400 µm and insignificant spatial inhomogeneity at
a total length of 15 mm. The duration (full width at half
maximum, FWHM) of the emission pulse from such
objects was 6–10 ns at a pulse front width of 1–2 ns.
The magnetic energy dissipated in the discharge at the
stage of intense emission amounts approximately to
4 TW (see Section 5.2).

Thus, our experiment has demonstrated transforma-
tion of a plasma rainstorm with an initial radial size on
the order of 1 cm into a plasma column with a diameter
below 0.5 mm, possessing a fine internal structure and
radiating in a multiterawatt power range. Apparently,
this result has to be explained without recourse to the
concept of liner as a massive, compact cylindrical
plasma shell accelerated by the magnetic field pressure
in the radial direction to a kinetic energy on the order of
100 kJ, since such a shell was never observed in our
experiments. For this reason, we believe that a stagnant,
spatially inhomogeneous pinch features conversion of
the energy of the current-generated magnetic field into
the turbulent MHD flow of the ion component of the
imploded plasma. This process involves convective
mixing of the plasma with magnetic field, heating,
energy transfer from ions to electrons, and X-ray emis-
sion from the stagnant plasma. We have suggested this
scheme [2] for a radiating Z-pinch based on the results
reported by Lovberg et al. [9]. This scheme had been
thoroughly studied [10] and, at present, the MHD tur-
bulent heating model can be considered as most ade-
quately describing the experimental data.

The MHD turbulent heating power introduced in the
form of the current-generated magnetic field energy
into the paraxial region of the pinch can be described by
a formula of type (15), modified so as to include the
parameters controlled in experiment. For a pinch of
radius r [cm] and the current I [A] flowing in the
imploded plasma with a mass per unit length M [g/cm] =
πr2ρ, expression (15) yields the following approximate
formula for the MHD turbulent heating power per unit
length of imploded pinch:

(16)

where χ is a dimensionless factor describing the param-
eters (including the degree of inhomogeneity) of plasma

W th 
W
cm
------- 10 10– χ I3

rM1/2
-------------,=
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in the pinch. This parameter was estimated [9, 10]
assuming that a certain part of the imploded plasma in
the pinch is filled with toroidal magnetic bubbles pene-
trating from the periphery to paraxial region of the
pinch. According to this model, the final approximate
expression for the MHD turbulent heating power can be
written as [10]

(17)

where I, M, and r are measured in megamperes, micro-
grams per centimeter, and millimeters, respectively.

In application to real experiment, the accuracy of
formulas (16) and (17) should not be overstated.
Indeed, inhomogeneities in a plasma rainstorm are rep-
resented by radial plasma jets (exhibiting transforma-
tion in the course of implosion), rather than by toroidal
magnetic bubbles on a homogeneous plasma back-
ground. For this reason, the structure of relatively
coarse, large-scale inhomogeneities developed in the
MHD turbulent plasma rainstorm should be described
using factor χ calculated based on some other assump-
tions. Most reliably, this quantity can be evaluated only
in experiment. It should be noted that strong depen-
dence of the transferred power Wth on the current and
radius of imploded plasma in formulas (16) and (17)
implies the need for detailed information on the radial
distribution of current in the pinch, but such experimen-
tal data are so far not available.

4.2. Energy Balance
in a Radiating Turbulent Pinch 

Let us assume that the MHD turbulent heating
power estimated by formula (17) is transferred to the
ion component of plasma, while electrons are heated by
the energy transferred from the ion component. Evalu-
ation of the energy transfer from ions to electrons
showed that, under the conditions studied, this factor
does not limit the radiation power.

An upper estimate for the radiation power Wrad can
be obtained using the theory developed in [21]. Assum-
ing the mean path of radiation quanta to be lν and the
radiation output to be free, we have

(18)

where σSB is the Stefan–Boltzmann constant. For a
plasma of multicharged ions, the lν value is given by the
formula [21]

(19)

W th 
TW
cm
--------- 0.5

I3

rM1/2
-------------,=

W rad

4VσSBT4

lν
----------------------,=

lν
4.92 10 11– A2T4.5×
Zm Zm 1+( )2Imρ2

-------------------------------------------- cm,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where ρ = M/πr2, Zm is the average ion charge, A is the
atomic weight, Im is the average ionization potential
(corresponding to the plasma density ρ [g/cm3] and
temperature T [eV]), M [g/cm] is the plasma mass per
unit length of the pinch, and r [cm] is the pinch radius.
It should be noted that expressions (18) and (19)
derived using the method proposed in [21] significantly
overstate the contribution of a hard radiation compo-
nent with quantum energies above Im . With neglect of
the hard radiation component in expressions (18) and
(19), the radiation power decreases by factor of three,
which provides for a lower estimate (this estimate of
the radiation power is denoted ).

A comparison of the radiation powers for the MHD
turbulent heating of the pinch (Eq. (17)) and the radia-
tion power (Eqs. (18) and (19)) shows that these values
differently depend on the pinch radius r. Therefore, a
pinch radius may exist for which the two powers are
equal. For a smaller radius of the pinch, the radiation
power estimated using these formulas exceeds the heat-
ing power. Once the pinch has contracted to such an
extent, the subsequent implosion proceeds in the
regime of radiative cooling, and the real radiation
power is determined by the MHD turbulent heating
rate. As an illustration, Fig. 15 demonstrates that the
condition Wrad ,  ~ Wth corresponds to a pinch con-
tracted to a radius of ~1–2 mm when the current is
2.5 MA and the mass per unit length of the tungsten
plasma is 100 µg/cm.

Although the above formulas for the turbulent heat-
ing power (Wth) and the radiation power (Wrad , )
giver only rough estimates, they nevertheless correctly
reflect the relationships between Z-pinch parameters
typical of our experiments. This allows us to draw cer-
tain conclusions that may provide a basis for subse-
quent experiments. In particular, it can be hypothesized

W rad*
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Fig. 15. Radial profiles of turbulent heating rate and X-ray
power output for M = 100 µg/cm and I = 2.6 MA: (1) Wth

given by (17); (2)  for Te = 250 eV; (3)  for Te =

300 eV; (4) Wrad for Te = 200 eV.
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that the condition of approximate equality of the radia-
tion power and heating rate for the Z-pinch in tungsten
plasma holds in a wide range of the degrees of pinch
implosion. In other words, radiation plays a key role in
the energy balance of the imploding pinch under the
conditions of our experiments. Thus, radiative cooling
of the imploding spatially inhomogeneous plasma
explains the formation of radiating filamentous struc-
tures in the turbulent current-carrying plasma and the
transformation of a radial plasma rainstorm into radial
“protuberances” observed in our experiments [5].

5. EFFECTIVE CONVERSION 
OF ACCUMULATED MAGNETIC ENERGY

INTO Z-PINCH HEATING 
AND MULTITERAWATT X-RAY EMISSION

5.1. Z-pinch as a Time-Dependent Nonlinear 
Component of the Discharge Circuit 

Energetic processes in the Z-pinch are closely
related to the magnetic energy supplied from a genera-
tor via a magnetically insulated transfer line. For this
reason, an analysis of the electric processes in the gen-
erator–MITL–Z-pinch circuit is a necessary prerequi-
site for correct understanding of the physics of Z-pinch
and for effective optimization of the pinch parameters.
Z-pinch, as an electric circuit component, is time-
dependent nonlinear impedance that consumes the
energy supplied from the generator creating a magnetic
field in the MITL. The character of the Z-pinch imped-
ance varies depending on the stage of discharge.

In the course of plasma production, which lasts for
almost the entire period of discharge current rise, the
outer current boundary remains at rest. This implies
that the MITL inductance (L0 in Fig. 1) coupling the
load (Z-pinch surface) to the water–vacuum interface
of the generator remains virtually constant. Even
though a fraction of the discharge current is carried by
the load during plasma production, the magnetic energy
transferred to the load is small as compared to that accu-
mulated in the external inductance (L0 ~ 10–20 nH). The
ohmic resistance of the plasma column with a diameter
of 1–2 cm is small as compared to the inductive imped-
ance L0/τ, where τ ~ 100 ns is the current rise time.
Therefore, the discharge in the course of plasma pro-
duction exhibits an inductive character, and the mag-
netic energy accumulated in the inductance L0 outside
the liner can be estimated as EH = 0.5L0I2 ~
100−150 kJ.

At the stage of termination of the plasma produc-
tion, the magnetic flux breakthrough inside the liner
sharply changes the character of the load impedance.
Moving in the radial direction at a velocity of VA (on the
order of the Alfvén velocity), the magnetic flux gener-
ates an emf described by formula (14). From the stand-
JOURNAL OF EXPERIMENTAL
point of the electric circuit, this emf is equivalent to the
active impedance

where r is the radius of the current channel. The accu-
mulated magnetic energy EH is expended to compress
and heat the trapped plasma and drive the magnetic
field into the space within the starting radius of the
array. Upon breakthrough of the magnetic flux with
entrained plasma inside the paraxial region, the mag-
netic flux exhibits implosion and the pinch enters the
stage of stagnation. In this stage, the major part of the
magnetic energy and the energy supplied from the gen-
erator are converted into the MHD turbulent motion of
the ion component of the imploded plasma.

5.2. Experimental Determination of Electric Power
in the Discharge Circuit 

With neglect of the electron losses in the magneti-
cally insulated transfer line, an equation for the current-
carrying (generator–MITL–load) circuit depicted in
Fig. 1a can be written as follows:

(20)

Here, L = L(t) is the total inductance of the circuit and
Ω is the ohmic component of the load impedance Z(t).

Experimentally measured quantities are (i) the volt-
age V(t) = 2E(t) – ρgI(t) applied to the MITL and (ii) the
derivative dI(t)/dt of the total current. Using these val-
ues, it is possible to determine the active power and
some other characteristics in the discharge circuit. To
this end, Eq. (20) can be represented as the differential
equation with respect to the inductance L(t) (with
L(0) = L0), involving the known values of V(t), dI(t)/dt,

and I(t) = dt:

(21)

This differential equation can be numerically solved for
an arbitrarily set form of the Ω(t) function. The L0 value
is chosen such that L0dI/dt ~ V(t) in the current rise
stage (while L(t) ~ L0). In this way, we determine the
value of L(t), dL/dt, and Wsuppl = V(t)I(t) (the power
pumped by the generator into the MITL). In addition, it
is possible to calculate the functions Wind(t) =
L(t)I(t)dI/dt (called inductive power in the discharge
circuit) and the difference Wact = Wsuppl – Wind (called
active power in the discharge circuit). Figure 16 gives
an example of the results of such calculations for
Ω(t) = 0. As can be seen, the active power in the dis-
charge circuit reaches Wact ~ 4 TW, which is about twice
the maximum power supplied from the generator
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dt
------ 2 10 9– VA

r
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Ω
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------- ,×≈

2E ρgI– d LI( )
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--------------– ΩI– 0.=
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(Wsuppl ~ 2 TW) in this particular experiment. On the
time scale, the maximum of Wact is close to the maxi-
mum power of the soft X-ray emission pulse.

Note that it is the current derivative, a quantity dra-
matically changing in the stage of active implosion and
emission from the pinch, that determines the time vari-
ation of the inductive and active power components in
the circuit according to the expression for Wind(t) =
L(t)I(t)dI/dt. At the moments of a sharp change in the
current derivative (see Figs. 1b and 16), the circuit fea-
tures dissipative processes involving multiterawatt
power related to fast implosion of the current-carrying
plasma, heating of the plasma, and X-ray emission
from the pinch. During the entire period of time related
to the current rise, plasma production, and the prepinch
formation, the active power in the discharge circuit is
small as compared to that developed at the moment of
emission from the pinch.

Figure 16 demonstrates that about half the active
power at the moment of maximum Wact is provided by
consuming the previously accumulated magnetic
energy. Indeed, Wind at this moment is negative, and the
other part, Wsuppl , is determined by the operation of the
generator, which continues to pump energy into the
MITL. In experiment, the relation between Wsuppl and
Wind depends on the choice of the load parameters: the
initial radius and mass per unit length of the liner. An
increase in these values leads to a delay in pinch implo-
sion and reduces the power Wsuppl supplied by the gen-
erator. On the contrary, when both radius and mass of
the liner are small (i.e., for an early pinch implosion),
the active power in the circuit is primarily determined
by the generator power output.

In all experiments, the soft X-ray emission pulse is
strictly related on the time scale to the Wact pulse. The
leading and trailing fronts of the emission intensity
pulse are somewhat steeper as compared to those of the
Wact pulse. In experiments, the energy that dissipated in
the circuit, which is defined as

reached a level of ~100 kJ, and the soft X-ray emission
output energy was 50–60 kJ.

5.3. Z-Pinch as an Effective Converter
of Magnetic Energy into Soft X-Ray Radiation 

In order to obtain pulses of soft X-ray emission from
the Z-pinch, it is necessary to provide for a number of
conditions, otherwise this task will not be solved.

Our experience shows that a real multiterawatt
Z-pinch with a cold start is a three-dimensional radiat-
ing object characterized by a high degree of spatial
inhomogeneity. Nevertheless, high-intensity soft X-ray
emission from the Z-pinch was observed in a rather
broad range of the initial parameters of the plasma-pro-

Eact Wact t,d∫=
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ducing material. From this it follows that the high
power and yield of the X-ray emission from the Z-pinch
can be obtained provided that the plasma, albeit spa-
tially inhomogeneous, is capable of accepting and radi-
ating the supplied electromagnetic energy and that the
system of energy transfer and concentration is capable
of delivering this energy from the generator to the
plasma. From the standpoint of plasma physics, the
problem of inhomogeneity of the radiating plasma was
considered in the previous sections. Below, we will
consider in more detail the requirements on the electri-
cal characteristics. Assuming that the properties of the
first component in the generator–MITL–Z-pinch circuit
can be determined independently, we will discuss the
necessary features of matching between the remaining
two components and between each of these and the
generator.

5.4. Optimum Matching between the MITL Inductance 
and the Z-Pinch Impedance 

If the Z-pinch were coupled directly to the genera-
tor, rather than via an inductance (representing the
MITL), the optimum matching condition (ensuring the
maximum transmitted power) between the nonstation-
ary pinch impedance Z(t) and the wave resistance ρg of
the generator would look as follows: Z(t) ~ ρg (for the
Angara-5-1 facility, ρg = 0.25 Ω).

The presence of an MITL with inductance L0 and
the time-dependent behavior of the pinch impedance
Z(t) change the optimum matching conditions for max-
imum energy transfer to the load. In this case, the
parameters of the generator–MITL–Z-pinch circuit
have to obey a complex set of requirements. First, it is
necessary to ensure that the maximum energy would be
accumulated in the MITL by the onset of the effective
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Fig. 16. Computed power characteristics of the discharge
circuit: (1) Wsuppl(t) = V(t)I(t) is the power supplied by the
generator to the MITL, (2) Wind(t) = L(t)I(t)dI/dt is induc-
tive power, (3) Wact(t) = Wsuppl – Wind is active power, and
(4) soft X-ray power output (arbitrary units).
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implosion of the current-carrying plasma. Second, the
pinch impedance after the onset of effective implosion
would increase so as to ensure that the accumulated
magnetic energy be dissipated in the imploded plasma
within the shortest period of time. Finally, the MITL
must ensure the delivery of this energy from the elec-
trode gap to the pinch. Let us consider these require-
ments in more detail.

5.4.1. Optimum value of L0. Using Eq. (20), it is
possible to determine the optimum inductance L0 for
maximum magnetic energy accumulation correspond-
ing to a preset emf E(t) and L(t) = L0. For the Angara-
5-1 facility, E(t) ~ Emsin(πt/T), where T ~ 150 ns. By
solving Eq. (20), one can readily determine the opti-
mum value L0 ~ 20 nH. The existence of this optimum
reflects the fact that ρg ≠ 0. For L0 values below this
optimum, the characteristic current decay time L0/ρg
turns out to be much shorter than T. In this case, the
energy cannot be completely pumped into the MITL
(L0) and is partly reflected back to the generator. The L0
values exceeding the optimum pose limitations on the
current I developed by the generator. In the general
case, for a semisinusoidal shape of the emf pulse E(t),
the optimum L0 value is related to the generator internal
resistance ρg as L0 ≈ θρgT, where θ ≈ 0.5–0.6, T is the
period [ns], and L is the inductance [nH].

5.4.2. Optimum value of pinch impedance Zeff. In
accordance with the results presented in Section 4, the
impedance of a stagnant MHD turbulent Z-pinch is
proportional to the current: Zeff ~ I/(rm1/2). In order to
effectively dissipate the accumulated magnetic energy,
this impedance must be much higher than that of the
generator that pumps magnetic energy into the MITL:

0

103

0.2 0.4 0.6 1.0

ρ, µg/cm3

r, cm

102

10

1

104

0.8

1 2
3

4

Fig. 17. Estimated radial plasma-density profile in the gap
that cannot be exceeded for a given rate of power transfer
Wtr for the starting radius of plasma-producing load r0 =
0.6 cm and I = 3 MA: (1) and (2) are model profiles, (3) and
(4) are computed profiles for Wtr = 5 and 3 TW, respectively.
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Zeff @ ρg. Apparently, a value of Zeff ~ 1 Ω might provide
for a sufficiently high dissipated power (Wact ~ 10 TW) in
the Angara-5-1 facility. It is also important that this
impedance would be switched quite rapidly (within
~10 ns). Our experimental results showed that, under
real conditions, this level has not yet been achieved.
One possible limiting factor, insufficiently high quality
of implosion reducing the active pinch impedance, was
considered in the preceding sections. Another possible
factor responsible for a decrease in Wact can be insuffi-
ciently effective magnetic insulation of the MITL.

5.4.3. Performance of the MITL magnetic insula-
tion. Magnetic insulation of the gap between current-
carrying electrodes has to be effective not only in the
stage of current rise and magnetic energy pumping into
the gap, but at the stage of magnetic energy transfer to
the imploded radiating pinch as well (i.e., ~100 ns after
onset of the current rise). This period is of critical
importance for reaching a high power of energy dissi-
pation and, hence, high-intensity X-ray emission from
the pinch. Indeed, a voltage across the pinch corre-
sponding to Wact ~ 10 TW must exceed 3 MV at a cur-
rent of ~3 MA. Therefore, the electric field strength in
the electrode gap near the pinch (d ~ 1.5 cm) to be hold
by the magnetic insulation exceeds 2 MV/cm. The
experience shows that a high energy density in the liner
system, both at the stage of magnetic energy pumping
and in the stage of its maximum consumption in the
radiating pinch, leads to the appearance of a dense
plasma of the electrode surface material, which moves
inside the gap at a velocity on the order of 107 cm/s. By
the moment of maximum emission from the pinch, the
electrode plasma fills up to one- to two-thirds of the
electrode gap. The presence of a plasma in the gap gives
rise to the leak currents shunting the pinch current in
the imploded state. In addition, the rate of the magnetic
energy supply to the radiating pinch can be controlled
by the plasma through (or with) which the magnetic
flux is delivered to the pinch.

The energy dissipated in the pinch is supplied to the
paraxial region via the plasma with a density profile
ρ(r) in the electrode gap. In the case of delayed plasma
production, the plasma density profile may have a
rather complicated shape (Fig. 17, curve 1). The pinch
plasma density is maximum in the paraxial region car-
rying the current I. Another local density maximum can
be achieved on the radius r0 of the plasma-producing
material. The plasma may also occur in the region of r >
r0 in the magnetically insulated electrode gap, where it
appears as a result of the current-induced surface explo-
sion of the electrodes.

In the region of r < r0 in the electrode gap, the
plasma is frozen in the magnetic field generated by the
current I. For this reason, the velocity of propagation of
the magnetic field frozen in the plasma can be consid-
ered in the MHD approximation as close to the Alfvén
velocity: V(r) ~ VA. Then, by analogy with formulas (14)
and (15), the total power that can be transferred via the
 AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004
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electrode gap of width d filled with a plasma having the
density profile ρ(r) for r < r0 is

(22)

This relation can be also presented in the following
form:

where

is the active nonlinear impedance of the discharge
imploding at the Alfvén velocity. This impedance is
independent of the electric conductivity of imploded
plasma. The nonlinear impedance of the imploded dis-
charge, in contrast to that determined by the Joule
losses in the plasma, depends on the discharge current.
This nonlinear impedance determines the energy spent
to transfer the mass of imploding plasma with the fro-
zen-in magnetic field. At the stage of stagnation of the
MHD turbulent pinch, this impedance characterizes the
energy consumed for turbulent stirring of the magnetic
field and entrained plasma under the conditions of
effective radiative cooling of the plasma.

A criterion of applicability of the MHD approxima-
tion is c/ωpid ! 1, where c is the velocity of light and
ωpi is the ion plasma frequency. In the opposite case,
when c/ωpid @ 1, the motion of the azimuthal magnetic
field determined by the current I has to be described in
the EMHD approximation [22], according to which the
velocity of the magnetic field front propagation in the
plasma is evaluated as VA(c/ωpid) and the motion of
ions is ignored. The EMHD approximation is typically
valid in a gap with the radius r > r0, where the electro-
magnetic power transmitted through the gap is

(23)

For an analysis of energy fluxes in the plasma rain-
storm, that is, in the region of r < r0, let us fix the power
W(r) = Wtr = const in Eq. (22). This value in fact char-
acterizes the energy transmission capacity of the gap
for r < r0. We used Eq. (22) with the experimental set
of parameters, I = 3 MA and Wtr = 3 or 5 TW, and
obtained estimates for the radial profile of plasma den-
sity in the gap, ρ(r) ~ 1/r4, which should not be
exceeded. These profiles are presented in Fig. 17

W r( ) W[ ] H2

8π
------

ρVA
2

2
----------+ 

  2πrd( )VA≈

≈ 4 10 10– I3 d

r2 4πρ
-------------------.×

W I2Zact,=

Zact I r ρ d, , ,( ) Ω[ ] 4 10 10– I
d

r2 4πρ
-------------------×≈

W r( ) W[ ] 2 10 10– I3d 1 c/ωpid+( )
r2 4πρ

----------------------------------× at r r0.>≈
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(curves 3 and 4). For example, let a model plasma-pro-
ducing material array with a starting radius of r0 ~
0.6 cm exhibit a local density maximum ρ(r0) ~
15 µg/cm3 (Fig. 17, curve 1). This density exceeds the
value permitted for a power of Wtr = 5 TW (which there-
fore will not be admitted into the pinch). If the ρ(r) pro-
file has no local maxima (Fig. 17, curve 2), the power
Wtr = 5 TW will be transmitted to the paraxial plasma
region. The power Wtr = 3 TW will be transmitted in
both cases. Thus, a residual plasma (even with a rela-
tively small density) present at the pinch start radius r0
poses a limitation on the level of power that can be
transmitted to the paraxial region of the pinch.

An analogous analysis can also be performed for r >
r0 by using (23) instead of (22). Equations (22) and (23)
predict a very sharp radial variation of the admissible
density not to be exceeded for a given energy transmis-
sion capacity of a magnetically insulated electrode gap:
ρ(r) ~ 1/r4. Therefore, a plasma created in the gap at
r > r0 during the stage of prolonged plasma production
and after the onset of emission from the pinch may con-
trol the peak values of both discharge and emission
power. The model analyses presented above are by no
means quantitatively accurate. Quantitative description
requires further study.

ACKNOWLEDGMENTS

The authors are grateful to the staff of the Angara-5-1
facility for their engineering and technical support of
experiments.

This study was supported by the Russian Founda-
tion for Basic Research, project no. 02-02-17200.

REFERENCES

1. A. V. Branitskiœ, S. A. Dan’ko, A. V. Gerusov, et al., Fiz.
Plazmy 22, 307 (1996) [Plasma Phys. Rep. 22, 277
(1996)].

2. A. V. Branitskiœ, V. V. Aleksandrov, E. V. Grabovskiœ,
et al., Fiz. Plazmy 25, 1060 (1999) [Plasma Phys. Rep.
25, 976 (1999)].

3. V. V. Aleksandrov, A. V. Branitskiœ, G. S. Volkov, et al.,
Fiz. Plazmy 27, 99 (2001) [Plasma Phys. Rep. 27, 89
(2001)].

4. V. V. Alexandrov, I. N. Frolov, M. V. Fedulov, et al.,
IEEE Trans. Plasma Sci. 30, 559 (2002).

5. V. V. Aleksandrov, E. V. Grabovskiœ, G. G. Zukakishvili,
et al., Zh. Éksp. Teor. Fiz. 124, 829 (2003) [JETP 97, 745
(2003)].

6. D. D. Ryutov, M. S. Derzon, and M. K. Matzen, Rev.
Mod. Phys. 72, 167 (2000).

7. M. G. Haines, IEEE Trans. Plasma Sci. 30, 588 (2002).
8. M. G. Haines, S. V. Lebedev, J. P. Chittenden, et al., in

Proceedings of 5th International Conference on Dense
Z-pinches (Albuquerque, New Mexico, 2002); AIP
Conf. Proc. 651, 345 (2002).
SICS      Vol. 99      No. 6      2004



1172 ALEXANDROV et al.
9. R. H. Lovberg, R. A. Raily, and J. S. Shlachter, in Pro-
ceedings of 3rd International Conference on Dense
Z-pinches (London, UK, 1993); AIP Conf. Proc. 299, 59
(1993).

10. L. I. Rudakov, A. L. Velikovich, J. Davis, et al., Phys.
Rev. Lett. 84, 3326 (2000).

11. T. W. L. Sanford, N. R. Roderick, R. C. Mock, et al.,
IEEE Trans. Plasma Sci. 30, 538 (2002).

12. D. H. McDaniel, M. G. Mazarakis, D. E. Bliss, et al., in
Proceedings of 5th International Conference on Dense
Z-pinches (Albuquerque, New Mexico, 2002); AIP
Conf. Proc. 651, 23 (2002).

13. E. A. Azizov, V. V. Alexandrov, S. G. Alikhanov, et al., in
Proceedings of 5th International Conference on Dense
Z-pinches (Albuquerque, New Mexico, 2002); AIP
Conf. Proc. 651, 29 (2002).

14. R. B. Baksht, A. G. Russkikh, and A. A. Chagin, Fiz.
Plazmy 23, 195 (1997) [Plasma Phys. Rep. 23, 175
(1997)].

15. L. Karpinski, M. Scholz, W. Stepnevski, et al., in Pro-
ceedings of 4th International Conference on Dense
Z-pinches (Vancouver, Canada, 1997); AIP Conf. Proc.
409, 169 (1997).
JOURNAL OF EXPERIMENTAL 
16. J. P. Chittenden, S. N. Bland, et al., in Proceedings of 5th
International Conference on Dense Z-pinches (Albu-
querque, New Mexico, 2002); AIP Conf. Proc. 651, 65
(2002).

17. P. R. Levashov, Preprint No. 1-446, OIVT RAN (Joint
Inst. for High Temperatures, Russian Academy of Sci-
ences, Moscow, 2000).

18. Studies of Metals in Liquid and Solid States (to 80-Year
Anniversary of I. P. Bardin) (Nauka, Moscow, 1964) [in
Russian].

19. V. E. Fortov and I. T. Yakubov, Physics of Nonideal
Plasma (Akad. Nauk SSSR, Chernogolovka, 1984) [in
Russian].

20. I. T. Yakubov, Usp. Fiz. Nauk 163 (5), 35 (1993) [Phys.
Usp. 36, 365 (1993)].

21. Ya. B. Zel’dovich and Yu. P. Raœzer, Physics of Shock
Waves and High-Temperature Hydrodynamic Phenom-
ena, 2nd ed. (Nauka, Moscow, 1966; Academic, New
York, 1966 and 1967), Vols. 1 and 2.

22. A. S. Kingsep, Introduction to the Nonlinear Plasma
Physics (Mosk. Fiz.–Tekh. Inst., Moscow, 1996), p. 207
[in Russian].

Translated by A. Betev and P. Pozdeev
AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004



  

Journal of Experimental and Theoretical Physics, Vol. 99, No. 6, 2004, pp. 1173–1182.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 126, No. 6, 2004, pp. 1344–1354.
Original Russian Text Copyright © 2004 by B. B. Zelener, B. V. Zelener, Manykin.

                                                                                                      

PLASMA, 
GASES
Kinetic Processes in a Nonideal Rydberg Matter
B. B. Zelenera,*, B. V. Zelenera, and E. A. Manykinb

aAssociated Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412 Russia
bRussian State Research Center Kurchatov Institute, Moscow, 123182 Russia

*e-mail: bobozel@mail.ru
Received June 18, 2004

Abstract—A kinetic model is developed to describe ultracold nonideal Rydberg plasmas, which allows all
stages of the generation and decay of such a plasma to be sequentially traced. The plasma kinetics is considered
on the basis of available experimental data corresponding to a nonideality parameter of γ ~ 1. The results of
theoretical analysis are in good agreement with experiment. Calculations show evidence of a significantly
decreased recombination rate and, hence, of the possible formation of a metastable structure in the plasma under
consideration. The distribution of the number of excited atoms is determined for the plasma with Ne = Ni = 7 ×
105 and Ee = 9 K. The observed behavior of the number and density of particles as functions of the time and
principal quantum number is explained. It is suggested that the distribution of excited atoms for the given
parameters has a maximum for the state with k = 25. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently, two research groups [1–4] have succeeded
in obtaining ultracold Rydberg plasmas with an elec-
tron temperature of Te = 1–1000 K and a charged parti-
cle density of n = 2ne = 108–1010 cm–3. The nonideality
parameter, defined as

(e is the electron charge and k is the Boltzmann con-
stant), reached 50, while the degeneracy parameter was

where

(" is the Planck constant and me is the electron mass).
Killian et al. [1–3] obtained an ultracold plasma via
complete ionization of cold Xe atoms (Ta ~ 10−4 K) by
laser radiation. Robinson et al. [4] generated a plasma
of alkali metals (Rb, Cs) by adding 1% of excited atoms
(T ~ 300 K) to a cold atomic gas (Ta ~ 10−4 K) excited
to a Rydberg energy level (n = 36–40).

The results of experiments [1–3] showed that the
rate of recombination in the obtained plasma at γ ≥ 1 is
significantly decreased as compared to that in a plasma
with γ ! 1, and the characteristic recombination time is
τrec ~ 10–4 s. Analysis of the experimental data reported
in [1–3] poses a number of questions requiring addi-

γ e2n1/3

kT
-------------=

neλ e
3
 ! 1,

λ e
"

mekT( )1/2
-----------------------=
1063-7761/04/9906- $26.00 © 21173
tional investigations with respect to the following
issues:

(i) low population of excited levels;

(ii) nonmonotonic decrease of the populations with
time;

(iii) inconsistent behavior of populations nk depend-
ing on the principal quantum number from the stand-
point of a usual recombination mechanism;

(iv) anomalous time variation of small populations nk;

(v) decrease followed by increase in the total num-
ber of excited atoms with time;

(vi) sharp decrease in the plasma density with time.

All these issues have been discussed [5–11] and var-
ious kinetic models were proposed to describe the
obtained experimental data. The models can be divided
into two groups. The first group [5–7] proceeds from
the idea that recombination begins in the plasma imme-
diately upon its formation and leads to an increase in
the kinetic energy of electrons. This results in a growth
of the electron temperature Te and the kinetic energy of
ions. The second group [10, 11] assumes that the Cou-
lomb repulsion between ions in the plasma at the
moment of its formation leads to a high positive poten-
tial energy of electrons. As the plasma expands, the
potential energy is converted into kinetic energy.

Below, we will consider the assumptions made
in [5–11] in more detail. Better understanding of the
kinetic processes in ultracold plasmas obtained in [1–4]
can be reached by considering sequential stages from
creation to decay of a Rydberg plasma.
004 MAIK “Nauka/Interperiodica”
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2. PLASMA FORMATION 
AND ELECTRON TEMPERATURE 

ESTABLISHMENT

According to Killian et al. [1–3], a Rydberg plasma
is created within a time of t ~ 10–9 s. Electrons gener-
ated as a result of the multiphoton ionization of atoms
by laser radiation acquire an additional kinetic energy
of Ee = 1–1000 K, while ions remain at a temperature
of Ti = Ta = 10–4 K. The accuracy of determining Ee is
related to a lower limit for the laser line halfwidth
(0.07 cm–1). The obtained plasma was substantially
nonequilibrium, since the equilibrium electron temper-
ature Te is not established and all electrons occur in the
continuum.

The most rapid process in the course of equilibrium
plasma evolution is establishment of the electron tem-
perature. In a slightly nonideal plasma (γ ! 1), the time
of Te establishment is given by the formula [12]

(1)

where Le is the Coulomb logarithm. Under specified
conditions, this quantity is expressed as

(2)

Note that Eqs. (1) and (2) have no physical meaning for

 ≥ 1/4π. Indeed,  = 1/4π makes Le = 0, while
greater γe values correspond to negative Le .

The Coulomb logarithm Le [12] is involved in calcu-
lations of the transport cross section for the interaction
between two charges. For the electron–electron interac-
tion, we have

(3)

where ρ is the impact parameter expressed in units of
βe2 = e2/kT. Logarithmic divergence of the integral in
Eq. (3) determines selection of the finite integration
limits. For a slightly nonideal plasma [12],

,

where

is the Debye radius. With these integration limits, we
obtain expression (2) for Le .

τee

Te( )3/2m1/2

8nee
4Le

--------------------------,≈

Le
1

2 πγe
3/2

-------------------,ln=

γe e2= ne
1/3/kTe.

γe
3 γe

3

Le
ρd
ρ
------,

ρmin

ρmax

∫=

ρmin 1= ρmax

rD

βe2
--------,=

rD 4πneβe2( ) 1/2–
=
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However, this choice of the integration limits in
Eq. (3) becomes senseless even for γe = 1/4π = 0.08. In
this case, the Debye radius is equal to the average dis-
tance between particles,

(4)

Although the plasma is still slightly nonideal, the

expression  can no longer be used for
the upper integration limit.

Calculations of the thermodynamic properties and
correlation functions of plasma [13] showed that the
correlation of particles in a plasma with γ ≥ 0.1
becomes insignificant even at an average distance.
Therefore, the upper integration limit in Eq. (3) in this
case is correctly set at rav/βe2 = γ–1.

The lower integration limit can be chosen at

This value depends on n and T and is equal to unity only
at γ = (1/4π)–1/3 = 0.43. Thus, integration in the region
γ = 0.08–0.43 is performed for the angles on the order
of (but always smaller than) unity.

With this choice of the integration limits, the Cou-
lomb integral Le is expressed as

(5)

Expression (5) (in contrast to (2)) is positive for γe >
0.08 and describes a logarithmic growth of Le with γe .
The region of validity of Eq. (5) corresponds to γe ≤ 1.
However, even extrapolation of this expression to the
region of γe > 1 does not lead to the loss of meaning and
retains the correct trend (whereby the relaxation rate
increases with γe).

Figure 1 shows the Le(γe) curves calculated using
expressions (2) and (5). The estimation of τee in the
region of γe ≤ 1 using formulas (1) and (5) for the
parameters of ultracold plasmas obtained in [1–4]
showed that τee ~ 10–11–10–10 s.

Thus, we may ascertain that, after creation of the
plasma within t ~ 10–9 s [1–3], the electron temperature
Te = (2/3)Ee is established for t ~ 10–11–10–10 s. As was
noted above, the ion temperature is equal to the temper-
ature of atoms because the fraction of kinetic energy
transferred to heavy particles during the ionization and
excitation of atoms is insignificant. Thus, the plasma
becomes two-temperature, although it still remains
nonequilibrium with respect to ionization [14] since the
Saha and Boltzmann distributions are not valid.

rD rav ne
1/3– .= =

ρmax rD/βe2=

rD/βe2 1

2π1/2γ3/2
---------------------.=

Le 2 πγe
1/2( ).ln=
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3. NONEQUILIBRIUM TWO-TEMPERATURE 
RYDBERG PLASMA AND ESTABLISHMENT 

OF THERMAL EQUILIBRIUM 

When the electron temperature Te is established,
electrons begins to populate levels of the discrete spec-
trum. This implies the onset of recombination pro-
cesses. Since all electrons initially occur in the contin-
uum [1–3], recombination begins at the boundary
between the discrete and continuous spectra. The
main mechanism of recombination is via electron col-
lisions [14], while the intensity of radiative transitions
in this region of energies is small. As the binding energy
grows, the role of radiative processes increases. Biber-
man et al. [14] defined a boundary energy,

(6)

(where Te is expressed in eV and ne in cm–3), that
divides the energy spectrum into two regions:

(i) E < ER (where the impact processes dominate);

(ii) E > ER (where the impact excitation is followed
by radiative deexcitation).

In the case of an ultracold Rydberg plasma [1–3],
the initial states of plasma before the onset of expansion
correspond to ER ~ 0.1–1.1 eV, that is, to excitation lev-
els with the principal quantum numbers k = 4–11. In the
course of plasma expansion, ER shifts toward the
boundary of the continuous spectrum because it
depends on ne stronger than on Te .

Thus, electron collisions give the main contribution
to recombination in major part of the discrete spectrum
under the conditions studied. Methods for the calcula-
tion of a nonequilibrium distribution of populations are
described in [14]. The distribution of atoms over levels
under nonequilibrium recombination conditions is
illustrated in Fig. 2. Let us analyze this scheme follow-
ing an approach developed in [14]. In equilibrium, the
curve

drawn through the points corresponding to real atomic
levels is a straight line whose slope is uniquely related
to the temperature. It should be noted that, for temper-
atures in the interval T = 1–10 K, this line is close to the
energy axis. Curve 2 schematically shows the behavior
of populations under nonequilibrium recombination
conditions.

The populations can be conditionally separated into
two groups. The first group includes the upper excited
states occurring in equilibrium with the continuum. The
second group represents all the other excited states
occurring under substantially nonequilibrium condi-
tions. The transition from one group to another is called
a “bottleneck.” The bottleneck position for ER > (3/2)Te

ER

ne

4.5 1013×
----------------------- 

  1/4

Te
1/8–=

nk/gk( )ln f Ek( )=
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is determined by collision processes and, in the case
under consideration, corresponds to the energy

(7)

For example, at Te = 6 K = 5.2 × 10–4 eV, the number of
the Rydberg state determining the bottleneck is

where Ry = 13.6 eV.

Em
3
2
---Te.=

km
Ry
Em

------- 132,= =

E1 E2 E3 E4

ER

I

II

1

2

ln(nk/gk) ln[n(ε)/g(ε)]

E0

Fig. 2. Schematic diagram illustrating the characteristic dis-
tributions of atoms over excited states: (1) equilibrium case
(using a straight line ln(nk/gk) drawn via points E1, E2, …
corresponding to real atomic levels, it is possible to deter-
mine the electron temperature); (2) nonequilibrium recom-
bination regime (dashed curve shows the distribution of
populations in the case when radiative processes are sub-
stantial; branch I corresponds to the group of states in equi-
librium with the continuum; branch II corresponds to the
group of nonequilibrium states; ER is the boundary of the
influence of radiative transitions [14]).

12
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6

4

2

0
0 0.2 0.4 0.6 0.8 1.0

Le

γe

I

II

Fig. 1. Plots of Le(γe) calculated using (I) Eq. (2) and
(II) Eq. (5).
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Methods for the calculation of the nonequilibrium
distribution of populations developed in [14] make use
of the condition of quasi-stationary excitation. In order
to evaluate the relaxation time τk of the kth excited state,
we use the formula [14]

(8)

where Λk is the Coulomb logarithm for the interaction
between a free electron and a weakly bound one, and
∆Ek = |Ek – Ek – 1|. It is also assumed that the probabili-

ties of the radiative transitions do not contribute to .
Strictly speaking, expression (8) is valid only for a
slightly nonideal plasma; yet it can be used to evaluate
τk and follow the qualitative laws of variation of the
relaxation rate. For the Rydberg states, formula (8) can
be rewritten as

(9)

Figure 3 shows the universal dependence of the
Coulomb logarithm as a function of the electron tem-
perature: Λk = f (Te/∆Ek) [14]. As can be seen, Λk varies
within several orders in magnitude depending on
Te/∆Ek , which may significantly influence the estab-
lishment of quasi-stationary low-energy levels at low
Te . For 10–2 < Te/∆Ek < 1, the Coulomb logarithm is
given with quite sufficient accuracy by the expression

(10)

τk
1– 2ne

4 2πe4Ek 1– Λk

Ek Ek 1+–( ) Ek 1– Ek 1+–( ) mTe

-----------------------------------------------------------------------------=

×
Ek Ek 1+–

Te
----------------------- 

  ,exp

τk
1–

τk
1– 2πnee

4Λk

Ry mTe

---------------------------k4 Ry
Te
------- 2

k3
---- 

  .exp=

Λk 0.1
Te

∆Ek

---------.≈

1

10–1

Λk

Te/∆Ek

10–2

10–3

10–1 1 10 102

Fig. 3. Plot of the Coulomb logarithm Λk versus Te/∆Ek [14].
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It should be noted that the accuracy of Λk determi-
nation in the region Te/∆Ek ! 1 is low.

Simultaneously with recombination processes, the
plasma features the process of establishment of the
equilibrium between electrons and ions. In order to
estimate the time τei required for the system to attain
thermodynamic equilibrium, let us use the formula for
a slightly nonideal plasma [12]:

(11)

where ni , Mi , and z are the ion density, mass, and
charge, respectively. Similarly to the evaluation of τee
described above, the Coulomb logarithm Le for the
Debye plasma is calculated using formulas (2), while
that for a non-Debye plasma is given by formula (5).
For γ ~ 1, the characteristic time τei is on the order of a
few microseconds. Thus, the ion temperature in the
ultracold Rydberg plasma obtained in [1–3] becomes
equal to the electron temperature within a time period
of t ≈ 10–6 s. According to our estimates, this time
decreases with increasing nonideality γ.

Now let us use Eqs. (9) and (11) to determine the
levels that are quasi-stationary over the time τei, that is,
the levels for which

(12)

Taking into account the condition of quasi-neutrality
(ne = ni), using formula (10), and accomplishing simple
transformations, we obtain the following approximate
relation for a quasi-stationary level with the minimum
number k:

(13)

Calculations using formula (13) for γ ~ 1 show that
the lowest quasi-stationary level has the number kqs =
24 at Te = 1 K.

Thus, only levels for which the probabilities of tran-
sitions due to electron collisions predominate, while the
radiative transitions are insignificant and are quasi-sta-
tionary at the electron temperatures Te of interest in the
case under consideration. Moreover, the recombination
flow is absent at k < kqs , and the populations nk for such
k tend to zero. The radiative lifetime τrad of these levels
is much greater than 10–6 s. This lifetime is given by the
expression [14]

(14)

where Ak is the probability of the radiative transition
from kth level to the ground state. For example, a radia-
tive lifetime of the level with k = 16 is τrad = 6.55 × 10–5.

τei

Te( )3/2M i

8niz
2e4Le 2πme( )1/2

-----------------------------------------------,=

τei τk.=

2Ry
Te

---------- 1

k3
---- 

 exp
8me

M i
---------Ry

Te
-------

Le

Λkk
7

-----------.≈

τ rad Ak
1– k5

1.6 1010×
----------------------- s,= =
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In order to determine the populations nk of levels
with the numbers above kqs , let us consider a simple
approximation provided by the diffusion approach [14],
which is valid primarily in the case of ∆Ek/T ≤ 1. This
approximation yields the following expression for the
relative populations yk:

(15)

where

(16)

The relative population y(E) is defined as the ratio of
the population of a given energy level and the equilib-
rium population. Let y1 be the relative population of a
level below kqs . Taking this value to be zero, we have

(17)

Taking into account that E1/Te @ 1 for E1 ≥ Eqs and that
χ(x) = 1 for x @ 1, and passing to the absolute popula-
tions, we obtain

(18)

where

gk = 2k2 is the statistical weight of the kth level, and
Σi ≈ 1 is the statistical weight for the ion.

Using formula (18), it is possible to evaluate the
total populations of all discrete levels by integrating
this expression with respect to k from kqs to kn (possible
at a given density and temperature). The main contri-
bution to the total population is due to levels with
Ek/Te ≥ 1, for which

(19)

and

(20)

y E( )
y1χ E/Te( ) ye

2 χ E1/Te( ) χ E/Te( )–[ ]+
χ E1/Te( )

------------------------------------------------------------------------------------------,=

χ x( ) 4

3 π
---------- t3/2e t– t.d

0

x

∫=

y E( ) ye
2 1

χ E/Te( )
χ E1/Te( )
----------------------– .=

nk ne
2gkλ

3

2Σi

---------- Ek/Te( ) 1 χ Ek/Te( )–( ),exp=

λ h

2πmeTe

-----------------------= ,

χ Ek/Te( ) 1 4/3 π( ) Ek/Te( )3/2–≈
× Ek/T–( ),exp

nk
4

3 π
----------ne

2 Ry
T

------- 
 

3/2

λ3 kd
k
-----.

kqs

kn

∫≈∑
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Relation (20) can be approximately rewritten as

(21)

Note that the value of the original in the integral of
Eq. (20) at the upper limit kn is negligibly small and can
be ignored. In order to determine the energy released
upon recombination for t ~ 10–6 s, let us integrate the
product Eknk/Te with respect to k for the levels with
Ek/Te ≥ 1:

(22)

This expression can be approximately rewritten as

(23)

Our estimates for the experimental point with ne =
2 × 109 cm–3 and Ee = 9 K [2, 3] corresponding to the

initial electron temperature Te = 6 K give  = 7 ×
108 cm–3 and u/2ne0 = 2.1. This result indicates that the
number of generated excited states accounts for about
15% of the number of charged particles, and the energy
(per particle) converted from potential to kinetic as a
result of recombination is about 2kT. This value is much
lower than that suggested in [5–9]. For this reason, we
believe that the conclusion made in [5–9] concerning
heating of the plasma is rather questionable.

It should be noted that the estimates obtained for the
aforementioned experimental point [3] using expres-
sions (21)–(23) is overstated for both  and u/2ne .
This is related primarily to the fact that formulas (21)–
(23) are valid for ∆Ek/Te ≤ 1, whereas the case under
consideration corresponds to kqs = 25 and, hence,
∆E25/Te ≈ 3. The tendency to overstatement is strongly
manifested on the passage to still lower temperatures
Te ≈ 1–3 K, where ∆Ek/Te > 5 and the calculated total

population  is several dozen of times greater than
the initial density of charged particles.

We have also attempted to use a more accurate mod-
ified diffusion approach (MDA) [14] within the frame-
work of a slightly nonideal plasma model. The MDA is
based on a solution of the Fokker–Planck equation in
finite differences and retains a discrete character of the
energy space. This attempt was unsuccessful, thus sug-
gesting that it is necessary to take into account the
effects related to nonideality of the plasma (since the
case under consideration corresponds to γ ≥ 1). How-
ever, in the case of γ ~ 1, these effects can be partly
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taken into account using MDA [14], for which expres-
sion (18) acquires the following form:

(24)

An analysis of the sum in the denominator of this
expression shows that the main contribution is due to
the levels with

According to [14], this implies that the energy spectrum
in the course of recombination has a bottleneck at Em ≈
3kTe/2 (see formula (7)). For these k values, we have
Λk ~ 1, exp(–Ry/Te(k + 1)2) ~ 1, and the sum in the
denominator is

The effects of nonideality are related primarily to
the nonrealization of levels whose energies are compa-
rable with or lower than Te . An increase in the density
at Te = const and γ > 1 leads to nonrealization of the lev-
els with dimensions exceeding rav = n–1/3, primarily
those with large orbital moments. We may suggest that,
in this case, gk/2 = 1. Taking into account these effects,
the above sum in the denominator can be written as

and the expression for the populations acquires the fol-
lowing form:

(25)

According to this formula, the values of  at
Te = 1–3 K are within one percent of the number of free
charges and, accordingly, u/2ne0 ≈ kT. The proposed
approach leads to the results coinciding with those pre-
viously obtained by Hahn [11].
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4. EXPANSION OF PLASMA
Recently [15], we calculated the properties of a

plasma with an extremely small number of electrons in
the bound states. The calculations were performed by
the Monte Carlo method within the framework of a
pseudopotential model. The values of the internal
energy per particle obtained for γ ≥ 1 can be approxi-
mated by a simple expression,

(26)

where A = 10 and γ = βe2(ne + ni)1/3. The fact that the
internal energy per particle for γ ≥ 1 is positive has to
be taken into account in an analysis of the plasma
expansion stage.

As the ion temperature increases in the course of
their interaction with electrons, the plasma exhibits
enhanced expansion. During this, the stored positive
potential energy is converted into kinetic energy and the
velocity of expansion exhibits a manifold growth. This
fact is confirmed by experimental data.

The velocity of plasma expansion [2, 3] was deter-
mined using the relation

(27)

Here, V0 is a velocity entering into the expression for
the density of the expanding gas [2, 3]:

, (28)

where N is the number of ions and σ0 = 180 µm is the
rms radius of the plasma cloud at the moment of plasma
formation. It was suggested [2] that the plasma expan-
sion velocity at Ee > 70 K obeys the relation

(29)

where Ee is the kinetic energy of electrons and α = 1.7
is a fitting parameter determined from experimental
data.

Expression (29) with the fitting parameter α can be
also derived theoretically, proceeding from the follow-
ing considerations. According to a description of the
expansion of a spherical gas cloud [16], the average
radial velocity of the gaseous mass asymptotically
tends to a constant limit

where Vmax is the boundary velocity and B is a constant.
An analysis of this problem shows that the velocity
given by expression (29) is related to the boundary

velocity Vmax (Vmax = V0) rather than to the asymp-
totic value V∞ (as was suggested in [3]). In the case of a

E
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gas sphere exhibiting automodel expansion [16] with
an adiabatic exponent of γp = 5/3 and a constant gas
density over the volume (following from (28), we have

B =  and

(30)

In the state of thermal equilibrium, Te = Ti and the
kinetic energy of ions is Ekin = Ee/2, which yields

(31)

As can be seen, expressions (29) and (31) coincide with
good accuracy. In the case of γ ≥ 1 or Ee > 70 K, we will
determine V0 from relation (26). After the establish-
ment of thermal equilibrium and complete energy con-
version from potential to kinetic, the kinetic energy of
ions is

where

In this case, we eventually obtain

(32)

where the coefficient B1 is determined via the Poisson
adiabatic exponent γp . Using the results obtained
in [15], it can be shown [16] that γp = 4/3 for a nonide-

ality parameter on the order of unity. Then, B1 = 
and formula (32) acquires the following final form:

(33)

Figure 4 (reproduced from [2]), shows the plots of
V0 versus Ee for ne = 2 × 109 and 2 × 108 cm–3 in the case
of γ ≥ 1. The dependence of V0 on Ee for γ ~ 1 signifi-
cantly differs from that for γ ! 1. First, the value of V0
in the former case is several times that according to the
formulas obtained for the slightly nonideal plasma
(γ ! 1), in agreement with experiment [3]. Second, the
obtained expression for the velocity (in agreement
with [11]) weakly depends on the electron density (on

the order of ).

In our calculations, it is possible to pass smoothly
from the case of Ee < 70 K to Ee > 70 K because the
internal energy Ei per ion was calculated [15] in the
entire range of γ. This dependence can be effectively

5/3

V0
10Ekin

9M i
---------------.=

V0
Ee

1.8M i
--------------.=

Ekin Ei Ee/2,+=

Ei E/N Ae2 ne ni+( )1/3, Te T i,= = =

ne ni, A 10.= =

V0 B1
2 Ei Ee/2+( )

3M i
------------------------------,=

4/3

V0
8 Ae2 2ne( )1/3 Ee/2+( )

9M i
-----------------------------------------------------.=

ne
1/6
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
introduced via the coefficient A in formula (26), by rep-
resenting it as A = A(γ). For small values of the nonide-
ality parameter γ, we have

and the expansion velocity is given by expression (31);
for γ > 0.5, we have A > 0 and describe the plasma
expansion using formula (33).

It should be noted that, generally speaking, use of
the velocity V0 as a criterion for the comparison of the-
ory and experiment is not quite correct because, as was
demonstrated above, this parameter is rather uncertain.
A more convenient criterion for this purpose is
∆Ee/(Ee/α) [3]. An expression for ∆E/(Ee/α) at γ ≥ 1 can
be written as

(34)

where

is the nonideality parameter used in [2, 3]. Figure 5
shows a plot constructed using Eq. (34). For Γe > 1, the
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Fig. 4. Plot of the plasma expansion velocity V0 versus ini-
tial kinetic energy Ee of electrons for the initial average den-

sity  varied from 6 × 106 to 2.5 × 109 cm–3: (d) 109 ≤ ;

(s) 2 × 108 ≤  < 109; (m)  ≤ 2 × 108; straight line cor-

responds to V0 =  [2]; lines I and II are calcu-

lated using formula (33) for ne = 2 × 109 and 2 × 108 cm–3,
respectively.

n0 n0

n0 n0

Ee/1.7Mi
SICS      Vol. 99      No. 6      2004



1180 ZELENER et al.
results show good coincidence; in the region 0.1 <
Γe < 0.5, the Ei values no longer correspond to rela-
tion (26) and the coefficient effectively decreases; and
in the region 0.5 < Γe < 1, the ratio ∆E/(Ee/α)
approaches to the experimental values.

Let us evaluate the time of complete energy conver-
sion from potential to kinetic. Assuming that particles

10

∆E/(Ee/α)

Γe

1

0.2 0.5 5
0.1

1 20.1

Fig. 5. Plot of the excess energy in expanding plasma versus
nonideality parameter Γe for Ee/kB = 28 (d), 9.2 (h),
3.9 (j), and 1.5 K (n) (experimental data from [2]); solid
line shows the results of calculations using formula (34).
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Fig. 6. Rydberg atom distributions for Ee = 9 K and Ni = 7 ×
105 at various times after photoionization: t = 12 (d), 22 (j),
50 (m), and 125 µs (.); thin solid curve is the equilibrium
Saha distribution for t = 12 µs, Te = 8.5 K [3]; curves I and
II show the distributions of excited atoms calculated using
formula (18) for t = 25 µs, Te25 = 2 K (I) and t = 125 µs,
Te125 = 0.22 K (II). The inset shows the time variation of the
total number of Rydberg atoms (circles) and the density of
heavy particles (solid curve) [3].
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in the plasma are uniformly accelerated, the transition
time is

(35)

where Vst =  is the initial velocity, Vf = V0 is
the final velocity according to formula (33), and L is the
distance over which this transition takes place. The lat-
ter value is determined from the relation

(36)

where γ0 ~  is the initial interaction parameter and

γ1 ~  is the parameter of interaction for Ei = 0. Sub-
stituting relation (36) into expression (35), we obtain

(37)

For n = 2 × 109 cm–3 and Ee = 9 K, this formula yields
τtr ≈ 2 × 10–7 s. The results indicate that the energy con-
version from potential to kinetic after the establishment
of thermal equilibrium (Te = Ti) proceeds much faster
than the process of temperature leveling.

5. RECOMBINATION
IN EXPANDING PLASMA

An increase in the kinetic energy of particles at the
expense of their positive potential energy leads to the
following effects.

(i) Highly excited states formed by that moment
exhibit partial ionization at the expense of increasing
electron temperature Te and decreasing total number of
these states. This is illustrated by experimental data
(points) in Fig. 6, which show that the population of
excited atoms and their total number (see inset)
decreases until t = 25 µs. Starting at t = 25 µs, both the
population and the total number of excited atoms
increase, the electron temperature ceases to grow and
exhibits a decrease, and the recombination process
begins.

(ii) The recombination at t > 25 µs proceeds at a
slow rate, which is related to a large velocity of expan-
sion leading to the “quenching” effect. This effect (see,
e.g., [14, 16]) is caused by the fact that expansion of the
plasma proceeds at a higher rate than its cooling.

It was demonstrated [14, 16] that, if the recombina-
tion coefficient obeys the relation

(38)

the degree of ionization x = ne/n can be described by the
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expression

(39)

According to this formula, x = const provided that

Te ~ , where l1 ≥ 10/9 [16]. The parameter l1 is related
to the adiabatic exponent so that the condition l1 ≥ 10/9
corresponds to the inequality γp < 4/3. As was indicated
above, the nonideality parameter on the order of unity
corresponds to γp = 4/3 < 1.37. This result implies that
the rate of plasma recombination exhibits a decrease.

As can be seen from Fig. 6, the distribution of pop-
ulations for the excited atoms with k = 55–100 changes
rather weakly with time. Therefore, the distribution at
every moment of time can be considered as quasi-sta-
tionary and, using formula (18), we can estimate the
temperature from the distribution of populations.

The results of calculations according to formula (18)
for t = 25 and 125 µs showed (see Fig. 6) that these
moments of time correspond to Te25 = 2 K and Te125 =
0.22 K. The temperature weakly depends on the con-
centration Na of excited atoms (even for a twofold vari-
ation of Na) to within the accuracy comparable with that
in [3]. The data in Fig. 6 show that the electron temper-
ature at t = 25 µs is close to Te at the beginning of
expansion and then decreases with time. It is also seen
that the results of theoretical calculations of the popu-
lation distribution well agree with the experimental
points.

An analysis of the distribution of Rydberg atoms in
Fig. 6 suggests that there is a maximum at k = 25. How-
ever, this assumption requires experimental verifi-
cation.

6. CONCLUSIONS

We have followed the entire sequence of stages in
the formation and degradation of an ultracold Rydberg
plasma. Using the results of our calculations of the ther-
modynamic properties of such plasmas [15], we con-
structed a kinetic model and arrived at the following
conclusions.

In the region of plasma parameters obtained in [1–3],
the electron temperature is established within τee <
10−10 s and the ion temperature Ti becomes equal to the
electron temperature Te within τei ≤ 10–6 s. This circum-
stance allows the plasma to be considered as occurring
in an incomplete thermodynamic equilibrium, whereby
Ti = Te, but the equilibrium populations of the energy lev-
els of excited atoms are not yet reached. The results of
our calculations [15] for the conditions studied in [1–3]
showed that such a system of charged particles featur-
ing no bound states is characterized by strong repul-
sion, which increases with the nonideality parameter γ
(see Eq. (26)). In the stage of plasma expansion, this

x x1 1 2a1x1
2 n2 t( ) td

Te
9/2– t( )
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t1

t
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1/2–
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repulsion favors an increase in the velocity, leads to
ionization of a certain fraction of excited atoms (exist-
ing at the moment of establishment of the thermal equi-
librium), and sets the regime of recombination
“quenching.”

The idea about strong repulsion in such plasmas was
originally formulated (although for ions only) by Hahn
[10, 11]. However, this was made on a level of esti-
mates and left unexplained the role of electrons present
in the system in equal amount with ions.

An analysis of the radiative professes and collisions
in the temperature interval T = 1–5 K for the electron
densities ne = 108–1013 cm–3 showed that, during
plasma evolution up to the establishment of thermal
equilibrium within τei ≤ 10–6, the recombination flow is
quasi-stationary only for the levels with k > 25, while
radiative transitions are substantial only for the levels
with k ≤ 10. The major recombination mechanism in
this stage is via collisions. The radiative lifetime of a
level with k ~ 10 is on the order of 10–5 s, which is much
greater than the characteristic time of the establishment
of thermal equilibrium. This relation indicates that,
within t ~ 10–6 s, the plasma does not lose energy; the
kinetic energy released as a result of recombination is
spent for the ionization of excited atoms (the process
reverse to recombination) and the heating of ions and
electrons.

As was demonstrated above, the former process pre-
dominates at Te = 6 K. This implies that heating of
plasma due to the radiative energy transfer (suggested
in [5–9]) does not take place. The low electron temper-
ature shifts the bottleneck (featuring maximum resis-
tance to the recombination flow) close to the boundary
between the discrete spectrum and continuum. For
γ < 1, there are no levels with Ek ≤ kT above the bottle-
neck; as the nonideality parameter γ increases, nonreal-
ized levels with rav = n–1/3 appear, primarily those with
high orbital moments. All these factors favor a decrease
in the recombination flow, leaving only a very small
number of excited atoms with k > kqs (much smaller than
the number of free electrons and ions). This fact confirms
the assumptions underlying a model used for the calcu-
lation of thermodynamic properties [15].

In this study, the analysis of plasma kinetics was
based on the available experimental data (see Figs. 4–6)
corresponding to a nonideality parameter of γ ~ 1. The
theoretical and experimental data on the plasma expan-
sion velocity V0 and the ratio ∆Ee/(Ee/α) are in good
agreement, although it was pointed out that V0 (being
rather uncertain quantity) is not very convenient for
such a comparison. We determined the number of
excited atoms for Ne = Ni = 7 × 105 and Ee = 9 K and
explained the observed behavior, as well as the particle
number density variation depending on the time and the
principal quantum number. We suggest that there might
a maximum in the distribution of excited atoms (for the
specified parameters) at k = 25.
SICS      Vol. 99      No. 6      2004
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As the nonideality parameter γ increases, it is neces-
sary to take into account the following additional cir-
cumstances.

(i) A decrease in the recombination rate in a non-
ideal plasma (see, e.g., [17, 18]) related to the effects of
strong Coulomb interaction on the density of states and
the electron diffusion coefficient.

(ii) The absence of excited levels, with dimensions
greater than the average distance, below the kmth level,
which leads to an increase in resistance to the recombi-
nation flow.

(iii)The appearance of a long-range order and a
large positive energy of particles, as established in [15].

All these factors (especially the third, if the plasma
state could be stabilized at large γ, for example, by
applying external electromagnetic fields) lead to an
increase in the characteristic recombination time; in the
absence of stabilization, these factors lead to the com-
plete absence of recombination.

The calculations in [15] referred to a plasma with
neglect of the bound states between electrons and ions
for k < 100. Recently [19], we performed calculations
for experimental conditions corresponding to various k
(e.g., for k > 36, see [4]) and determined the energy
per particle, E/NkT, in cases where the dependence on
γ may substantially differ from that described by for-
mula (26). An analysis of the Rydberg plasma kinetics
in such cases is the subject of our subsequent investiga-
tions.
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Abstract—The “interference” contributions from compact groups of scattering centers to the total intensity of
molecular scattering in a liquid are analyzed. The result of the algebra of fluctuating quantities has been restored
for the case of long-range correlations between the groups. The role of short-range correlations is most signif-
icant for moderate deviations (10–3–10–2) of the dimensionless temperature from its critical value. Estimates of
the relative value and temperature peculiarities of the contributions of multiplicity 1.5 proportional to the third-
order moment of the density fluctuations and an analysis of experimental data indicate that they can be partially
observed under conditions deviating from the critical isochore. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In this paper, we explore the question of whether the
effects of molecular scattering of light in liquids attrib-
utable to the third (non-Gaussian) moments of the ther-
modynamic fluctuations can be observed. At present,
the answer to this question is believed to be negative
(see reviews [1, 2]). It should be noted, however, that
this conclusion is based on an analysis of the effects of
the true multiple scattering when the successive reemis-
sion events occur between distant scattering centers
spaced |ri – rj | @ λ * rc apart, where rc is the correlation
length and λ is the wavelength in the medium. In the
corresponding calculations, the electromagnetic field
propagators,

are replaced with their asymptotic expressions for the
wave zone, and standard asymptotic uncouplings are
used in place of multipoint correlation functions. As a
result, a quasi-Gaussian fluctuation model is obtained,
in which the odd-order fluctuation moments are neg-
ligible.

We proceed from the assumption [3] that the inten-
sity I1.5 of the molecular light scattering of multiplicity
1.5 has the largest relative value at a certain distance
from the critical point where all three scattering centers
are spaced |ri – rj | & rc ! λ (i, j = 1, 2, 3) apart. In this
case, the three-point correlation functions cannot be
uncoupled, but the intensity I1.5 can be expressed in
terms of the third-order fluctuation moments. Prelimi-
nary estimates [3] show that the contribution from the
third-order moment of density fluctuations to the per-
mittivity fluctuations in a single-component liquid in
the appropriate temperature and density ranges is com-
parable in magnitude to the corresponding contribution

Tαβ r( ) k2δαβ ∇ α ∇ β+( ) eikr

4πk2r
--------------, k– 2π

λ
------= =
1063-7761/04/9906- $26.00 © 21183
from the Gaussian part of the fourth-order moment. If
the true double scattering for this region is still relatively
weak, then I1.5 should be experimentally measurable.

To single out these contributions from the overall
scattering pattern and to quantitatively estimate them,
we perform a macroscopic analysis of the effects of
molecular light scattering by compact groups of scat-
tering centers. A compact group is interpreted here as
any group of scattering centers in which |ri – rj | ! λ.
From the physical point of view, scattering by such
groups is single, but the corresponding scattering inten-
sities Inm are determined by the correlators 〈[E(n),
H(m)*)]〉  of individual terms in the iterative series E(1) +
E(2) + E(3) + … and H(1) + H(2) + H(3) + … for the electric
and magnetic field strengths in the scattered wave. The
scattering multiplicity defined as (n + m)/2 no longer
corresponds to the iteration step number in solving the
integral equation that describes the propagation and
scattering of a wave in a statistically inhomogeneous
medium.

The fact that the domains of integration variables
where the internal propagators corresponding to
reemissions between the members of a compact group
exhibit singular behavior is crucial in calculating the
contributions Inm . This allows us to use methods of the
theory of generalized functions [4] in our analysis and
to single out the leading-order contributions to the total
intensity I of single polarized scattering in each itera-
tion step. In the immediate vicinity of the critical point,
the expression derived here reduces to the result of the
algebra of fluctuating quantities for systems with a con-
served order parameter [5]; in addition, an explicit form
of the coefficients of the expansion of I in terms of the
algebra elements is established.

In the other limit, when there is no nonlocal correla-
tion between fluctuations, individual terms of the series
expansion of I are determined by the second or higher
004 MAIK “Nauka/Interperiodica”
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order moments of thermodynamic fluctuations. For a
single-component system, the moments of density fluc-
tuations, which play a major role, can be expressed in
terms of isothermal compressibility β and its deriva-
tives by using the grand canonical ensemble. Thus, we
can go beyond the scope of the Gaussian approximation
and simultaneously use the van der Waals equation in
our estimates. These estimates and the appropriate
analysis of experimental data [6] on the depolarization
ratio ∆ for scattered light in xenon indicate that detec-
tion of the contributions due to the third-order moments
of density fluctuations to molecular scattering appears
to be partially possible and is most probable in the tem-
perature range 10–3 & τ & 10–2, τ ≡ |T – Tc|/Tc  by devi-
ating from the critical isochore to lower densities. 

2. ANALYSIS OF THE PECULIARITIES 
OF THE PROPAGATOR 

The most singular contribution to the propagator
Tαβ(r) at small values of the argument comes from the
derivative ∇ α∇ βr–1. To analyze it, let us treat r–1 as a
generalized function and introduce the corresponding
linear continuous functional

(1)

defined on the set of smooth functions ϕ(r) that are con-
stant at zero and are such that

(e.g., according to the Ornstein–Zernicke law |ϕ(r)| 
e–αr/r, α > 0).

Following standard rules [4], let us define the deriv-
ative ∇ α∇ βr–1 as the generalized function associated
with the following functional:

(2)

Here, the integral on the right-hand side is taken over
the three-dimensional space Vε from which the sphere
of a radius ε > 0 centered at the origin was removed.

Double integration by parts yields the following
expression as ε  0:

(3)

F ϕ( ) r
1
r
---ϕ r( )d

V

∫=

ϕ r( ) ∂ϕ r( )/∂r r∂ϕ r( )/∂r 0,, r ∞→

∝
r ∞→

r ∇ α ∇ β
1
r
--- 

  ϕ r( )d

V

∫ r
1
r
--- ∇ α ∇ βϕ r( )( ).d

Vε

∫ε 0→
lim=

r ∇ α ∇ β
1
r
--- 

  ϕ r( )d

V

∫

=  r
4π
3

------δ r( )δαβ–
1

r3
---- 3eαeβ δαβ–( )+

 
 
 

ϕ r( ),d

V

∫
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where δ(r) is the Dirac delta function, δαβ is the Kro-
necker delta, and eα is the α component of the unit vector
e = r/r. Thus, we represent the derivative ∇ α∇ βr−1 as the
expression in the braces in (3). It satisfies the symmetry
requirements and leads to the well-known result ∆r–1 =
–4πδ(r). By analogy, we find the generalized derivative
∇ αr–1 = –eα/r2.

The propagator Tαβ(r) can be represented as

(4)

This representation should be understood in the sense
that the following equality holds for any function ϕ(r)
from the chosen set:

(5)

Thus, we represent propagator (4) as the sum of
three contributions the second of which corresponds to
distant reemissions between the scattering centers. The
second and third terms are nonzero at α ≠ β; their role
in light depolarization due to both true double scatter-
ing and the scattering by a compact pair of scattering
centers, as well as the relationship of the latter depolar-
ization channel to the general depolarization mecha-
nism due to fluctuations of the thermal fluctuation distri-
bution function [7], were discussed in [8, 9]. The isotro-
pic first term in (4) is the most singular at α = β; its
contributions to polarized scattering are analyzed
below.

3. SCATTERING INTENSITY
Given representation (4), the electrodynamic part of

the problem can easily be solved. We assume that per-
mittivity fluctuations δε = ε – ε0 lead to relatively small
frequency shifts relative to the incident wave (Rayleigh
scattering). The equation that describes the wave prop-
agation in such a medium takes the form

(6)

where k0 = k/ . To calculate I, we restrict ourselves
to a static model and write the equivalent integral equ-
ation

(7)

where E0(r) = e0E0exp(ik · r) is the electric field of the
incident wave, and e0 is the unit polarization vector.
Applying an iterative procedure to (7) and replacing all

T̃αβ r( ) 1

3k2
--------δ r( )δαβeikr 1

4πr
--------- δαβ eαeβ–( )eikr–=

+
1

4πk2
----------- 1

r3
---- ik

r2
----– 

  δαβ 3eαeβ–( )eikr.

rT̃αβ r( )ϕ r( )d

V

∫ rTαβ r( )ϕ r( ).d

V

∫=

∆E k2E graddivE–+ k0
2δεE,–=

ε0

E R( ) E0 R( ) k0
2 rT̂ R r,( )δε r( )E r( ),d

V

∫–=
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internal propagators with their most singular parts (the
first terms in (4)), we use a standard method [10] to
obtain the following result for if |R| @ L (L is the size of
the system):

(8)

where  = R/R is the unit vector toward the point R
and q is the change in the wavevector due to the scatter-
ing. The magnetic field of the scattered wave is calcu-
lated by using the relation

its intensity, by using the Poynting vector. We have

(9)

(10)

where the angle brackets denote averaging over the sta-
tistic of fluctuations δε. Taking into account (10) and
the spatial homogeneity of the medium, we obtain

(11)

In what follows, we omit the factor

where I0 is the intensity of the incident wave and V is
the scattering volume.

Thus, the intensity I is determined by the spatial
Fourier transforms of the (irreducible) fluctuation corr-
elators Gnm(r) = 〈〈ε n(r)εm(0)〉〉 .

Strong permittivity fluctuations are mainly due to
fluctuations of the order parameter δϕ,

Therefore, the correlators in (11) reduce to the irreduc-
ible correlators 〈〈ϕ n(r)ϕm(0)〉〉 . Formulas (9) and (11)

E n( ) R( )
eikRk0

2
E0

4πR
-------------------- R̂ R̂ e0×[ ]×[ ]–=

× 1
3ε0
--------– 

  n 1–

r δε r( )( )ne iq r⋅– ,d

V

∫

R̂

H n( ) R( ) i
k0
----curlE n( ) R( );–=

I Inm,
n m 1≥,
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Inm
c

8π
------Re E n( ) R( ) H m( )* R( )×[ ] R̂⋅〈 〉 ,=

Inm
1

3ε0
--------– 

  n m 2–+

∝

× r δε r( )( )n δε 0( )( )m〈 〉 e iq r⋅– .d

V

∫

I0

k0
4V

16π2R2
------------------ 1 R̂ e0⋅( )2

–[ ] , I0
c

8π
------ k

k0
---- E0

2,=

δε ∂ε
∂ϕ
------ 

  δϕ.≈
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directly confirm the hypothesis [5] about the existence
of a complete set (algebra) of fluctuating scalar quanti-
ties in the problem of molecular scattering of light in
liquids; moreover, all coefficients in the expansion of
the intensity in terms of the algebra elements can be
calculated.

The critical exponents for the contributions Inm can
be estimated by using the scaling parameters ∆n of the
algebra elements. Assuming the permittivity and its
derivatives with respect to the order parameter to be
weakly sensitive to the critical point, we may write in
the long-wavelength limit q  0

(12)

The equality of the scaling dimensions for the left-
and right-hand sides of Eq. (12) implies that 

(13)

where ∆τ is the scaling parameter for τ.

The first-order ε-expansion (see [5, 11]) yields

where ε = 4 – d characterizes the deviation of spatial
dimension from 4. Hence, in particular, we find that
µ12 = 1/2 + ε/6, which yields µ12 ≈ 0.67 at ε = 1.

Thus, the derived temperature dependence of the
intensity of multiplicity 1.5 scattering in the fluctuation
region is I1.5 ∝  τ–0.67, which agrees with that obtained
in [5]. However, as further estimates show, this temper-
ature regime is reached in a fairly close neighborhood
of the critical point, where the effects of true multiple
(in particular, double) scattering are more significant.
Multiplicity 1.5 scattering can be detected sufficiently
far from the critical point, where nonlocal correlation
between fluctuations is relatively weak (in the so-called
Rayleigh region).

4. SCATTERING 
IN THE RAYLEIGH REGION

Since the integrand in (11) does not vanish at τ *
10–3 only when |r| & rc ! λ, we may replace the expo-
nential factor with unity and express the remaining
integral in terms of thermodynamic fluctuation
moments [10]. Recalling that the integral in (11) is per-
formed with respect to the difference r = r1 – r2
between the coordinates of fluctuations at distinct

Inm r δϕ r( )( )n δϕ 0( )( )m〈 〉 τ
µnm–

.∝d

V

∫∝

µnm

d ∆n ∆m––
∆τ

---------------------------,=

∆n n
2 ε–

2
----------- n n 1–( )

6
--------------------ε, ∆τ+ 2

ε
3
---,–= =
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points r1 and r2, we change to an integral over these
coordinates. We obtain

(14)

where the symbol  denotes a correlator averaged

over a macroscopic region :

(15)

We define the thermodynamic contributions to the
fluctuations of εn (n = 1, 2, 3, …) as

(16)

For the terms up to the fourth order in δε, we can prove
that 〈(δε)n(δε)m  = 〈(∆ε)n + m〉 .

Indeed, at n = m = 1, this relation follows directly
from (15) and (16) and is well known [10]. For n = 2
and m = 1, we may write

hence, using (15) and (16) we obtain

The remaining relations can be proved in a similar way.

Thus, the intensity Inm of molecular scattering in the
Rayleigh region is determined by the moments of order
n + m of thermodynamic permittivity fluctuations:

(17)

If light is scattered in a single-component system,
where ∆ε is mainly due to fluctuations of the particle
number density n, ∆ε ≈ (∂ε/∂n)∆n, then the moments
〈(∆ε)n〉  can be expressed in terms of moments of fluctu-
ations of the number of particles ∆N in a fixed volume

by using the relation 〈(∆n)n〉  = 〈(∆N)n〉 . Denoting
I1 ≡ I11 (single scattering), I1.5 ≡ I12 + I21 (scattering of
multiplicity 1.5), and I2 ≡ I13 + I22 + I31 (the contribution

Inm
1
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--------– 
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δε r1( )( )2 δε r2( )( )〈 〉
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Ṽ ∆ε( )n m+〈 〉 .∝
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of groups of four closely spaced scattering centers), we
use formulas from [3, 12] to obtain the following for the
first six terms of series (9):

(18)

(19)

(20)

where kB is the Boltzmann constant. Contribution (19)
and the second term in (20) are due to the deviation of
the statistic of fluctuations ∆N from a Gaussian one.

At present, the explicit form of the derivatives of the
compressibility β near the critical point is unknown.
However, in the temperature range under consideration,
the functional structure of the derivative (∂β/∂P)T, V can
be estimated by using the van der Waals equation. Hav-
ing performed appropriate calculations, we find that the
expression in the braces in (19) is

where ω = ρc/ρ – 1, ρ is the density of the liquid, ρc is
its critical value, and Pc is the critical pressure.

We see that I1.5 = 0 on the critical isochore, which
satisfies the conformal invariance condition [13]. Devi-
ating from it by ω, we have the lower limit (β * 1/6Pcτ)

(21)

Assuming that the Gaussian contribution in (20) is
the dominant one, we obtain the following estimate
using formula (21):

For liquids characterized by low values of n∂ε/∂n, the
contribution I1.5 can be decisive. In particular, ε0 ≈ 1.3
and n∂ε/∂n ≈ 0.33 for xenon [6]; therefore, |I1.5/I2| *
4|ω|/τ.

We also provide other data from [6] used below; λ ≈
4.28 × 10–5 cm, rc = 2.2 × 10–8τ–0.63 cm, Pc = 5.84 ×
107 dyn cm–2, ρc = 188.2 Amagat, and Tc = 289.765 K.
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To estimate |I1.5/I1|, we note that the linear size of the

region  far from the critical point must be much larger
than the range of action of intermolecular forces; at the
same time, it can remain small compared to λ [10]. Set-

ting  ≈ 2.5 × 10–19 cm3 for τ * 1 × 10–2 (i.e., for cor-
relation lengths rc & 4 × 10–7 cm) and kBT ≈ 4 ×
10−14 erg, we obtain

which is ~1% at |ω| ≈ τ ≈ 1 × 10–2. Passing from the
compressibility critical exponent γ = 1 used above to

γ ≈ 1.2, slightly reducing , and varying ω and τ, we
can increase this estimate by an order of magnitude.
Note also that the intensity of the double polarized scat-
tering [2, 9] in this region

(L is in cm) and the contribution I1.5 (if |ω| ≈ τ) exhibit
similar temperature dependences, but |I1.5| exceeds Id

for small L:

In a single-component liquid, the contribution due to
fluctuations of the distribution function for thermal
fluctuations (see [7]) can be ignored.

For rc @ 4 × 10–7 cm,  becomes more certain [5]:

 ~ 4π /3. In this case, the pattern of the temperature
dependence of contributions (19) and (20) changes sig-
nificantly. The first term in (20) yields a well-known
result predicted by the Gaussian model for order-
parameter fluctuations: I2 ∝  rc . Approaching the critical
point in such a way that |ω|β = const, we find that
I1.5 ∝  rc , which is close the result [5] of the scaling the-

ory restored in the preceding section. Since I1 ∝  , the
relative role of contributions (19) and (20) in this region
decreases sharply. They are additionally suppressed by
the contribution Id ∝  β2; the growth of the latter as we
pass to a range of τ & 10–4 slows down.

5. OBSERVATION OF 1.5 SCATTERING

As the above estimates show, the most favorable sit-
uation for experimentally detecting the effects of the
molecular scattering of light of multiplicity 1.5 is real-
ized for liquids with low values of the parameter
n∂ε/∂n, with the contribution I1.5 having the largest rel-
ative value in the temperature range 10–3 & τ & 10–2

and at comparable values of ω. The fact that I1.5 < 0,

Ṽ

Ṽ

I1.5

I1
------- n

∂ε
∂n
------

kBTβ ω
ε0Ṽτ

-------------------- * 1.2 10 4– ω τ 2– ,×≈

Ṽ
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2 T2β2/15π∝

I1.5

Id

------- 0.1
ω λ4

τLṼ
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Ṽ
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3

rc
2
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while the contributions I1, I2, Id, the contribution of the
double depolarized scattering Idd (on the order of Id/8 [9]),
and the contribution of the depolarized scattering by the
fluctuations in anisotropy Ia (relatively small in simple
liquids and virtually insensitive to the critical point) are
positive, favors its separation from the total scattering
intensity.

Consider the depolarization ratio ∆ of the scattered
light. Taking into account the contributions for a simple
liquid listed above, we can write

(22)

Let us pass from (22) to the relation

(23)

Given the above temperature dependences for the indi-
vidual contributions, its structure is

(24)

where a, b, and c are positive constants; x ≡ kBTβ; and
the function f is such that f(x) ≈ x for τ * 10–3 and a con-
stant value is approached at τ < 10–4. If the contribution
of I1.5 is zero (a = 0), then the right-hand side of (24) is
a monotonically increasing function of x that rapidly
approaches a linear function as the denominator
decreases and then levels off. The contribution of I1.5 <
0, must violate the monotonic behavior of (24): the ini-
tial increase gives way to a decrease, passage through a
minimum, and then a possible increase and saturation.
No attempts to experimentally test these predictions
have been made so far. 

The depolarization mechanisms of the molecular
scattering of light in xenon were experimentally studied
by Trappeniers et al. [6], who analyzed in detail the
dependence of ∆ on

Using these data, we plotted (see figure) the values of
(D∆)–1 and D–1 for thirty points in the temperature
range from 39.1880°C (τ = 7.8 × 10–2) to 16.6252°C
(τ = 3.5 × 10–5) lying on the isochore ρ = 186.93 Ama-
gat (ω = 6.8 × 10–3); L = 0.547 cm. A maximum and a
minimum are observed at τ = 4.1 × 10–3 and 1.8 × 10–4,
respectively. The qualitative behavior of the plot and
the parameters of its characteristic points are in satis-
factory agreement with our estimates.

∆
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I1 I1.5 I2 Id+ + +
---------------------------------------.=
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1 IaIdd
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x
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1– ωτ 1– x– bf x( )+

1 cx 2–+
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D k0
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Further thorough testing of our conclusions is of
considerable interest. Their confirmation in a specially
planned experiment would imply that information
about the third-order fluctuation moments and related
parameters of the liquid could in principle be obtained
by the methods of molecular spectroscopy.
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Specific Features of the Reflection of Infrared Radiation
by Crystalline Dielectrics in a Magnetic Field
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Abstract—Magnetic-field-induced variations in the reflection spectra R(λ) of the crystalline dielectrics Al2O3,
LiF, and MgO in the infrared band (λ = 2.5–25 µm) are investigated. It is found that the reflection spectra exhibit
specific features in the neighborhood of wavelengths corresponding to the excitation of optical phonon modes in
the above-mentioned crystals and that a magnetic field causes an appreciable variation in the reflectivity at these
wavelengths. To qualitatively describe the effect of a magnetic field on the reflection of light, the magnetoreflection
spectra ∆R/R are investigated. The spectra ∆R/R exhibit sharp peaks in the neighborhood of wavelengths at which
the materials under investigation are characterized by minimal reflectivity. The values of ∆R/R for p-polarized
infrared radiation in a magnetic field of about 12 kOe amount to about 0.5% for Al2O3 at λ ≈ 9.6 µm, 7% for LiF
at λ ≈ 11.1 µm, and 0.07% for MgO at λ ≈ 11.7 µm. © 2004 MAIK “Nauka/Interperiodica”.
Nanocomposite materials containing ferromagnetic
nanosized grains dispersed in dielectric matrices
(Al2O3, HfO2, and MgO) play an important role in the
study of tunnel magnetoresistance (TMR). The magni-
tude of TMR is determined by the type of the magnetic
and oxide materials, the stoichiometry of their compo-
sition, and the shape and concentration of ferromag-
netic inclusions. The recently discovered magnetore-
fractive effect (MRE) [1] has been widely used for scru-
tinizing the details of the physical nature of the TMR.
This effect consists in the dependence of the reflection,
transmission, and absorption coefficients of a material
on the applied magnetic field. It is believed [1] that the
MRE is associated with the spin dependence of the opti-
cal conductivity of materials. The MRE was predicted
theoretically in multilayer [1] and granular [2] metallic
magnetic structures. It was experimentally verified in [3,
4] in magnetorefractive investigations of multilayer
magnetic structures and in experiments with granular
metallic [5, 6] and metal-dielectric [7–12] structures.

Investigations of metal-dielectric nanocomposites [7–
12] revealed peaks in the spectra of MRE in the range
of frequencies close to that where the materials of
dielectric matrices exhibit optical phonon modes. How-
ever, the nature of these peaks has not been determined.
It was also established that the MRE spectra of metal-
dielectric films depend on the polarization of the inci-
dent light [10–12]. It should be noted that the MRE in
reflection experiments attains its maximal value for
p-polarized light when the angle of incidence
approaches the Brewster angle. This is especially
clearly manifested in metal-dielectric structures with
1063-7761/04/9906- $26.00 © 21189
the content of ferromagnetic grains close to the perco-
lation threshold [11, 12]. The authors of these papers
developed a theoretical model to describe the MRE
spectra in similar structures that accounts for the rela-
tion between the MRE, the TMR, and the optical
parameters of the system.

In the present study, we tried to determine the role
of the dispersion properties of the materials of dielec-
tric matrices on the reflection of infrared radiation from
metal-dielectric nanocomposites in a magnetic field.
We measured the infrared reflection spectra of materi-
als frequently used as dielectric matrices in nanocom-
posites. We also investigated the effect of magnetic
field on the reflectivity. The experiments were carried
out under the same conditions as those used when
investigating the magnetorefractive properties of metal-
dielectric films [10].

For magnetooptical measurements, we used the fol-
lowing crystalline samples, were optically polished
from one side: Al2O3 crystals with orientations [1012]
(R-plane) and [1120] (A-plane), a LiF crystal with ori-
entation [001], and a MgO crystal with orientation
[100]. The purity of the crystals produced by Goodfel-
low amounted to 99.99%. The light reflection spectra
R(λ) in the infrared range of wavelengths from 2.5 to
25 µm were recorded on a Nicolet 670 FTIR spectro-
meter with an MCT-B photodetector, which was cooled
by liquid nitrogen. Spectral measurements in polarized
light were carried out with the use of a KRS-5 mesh
polarizer. When measuring the light reflection spectra
as a function of a magnetic field, the mirrors of the
spectrometer were taken outside the device so that
004 MAIK “Nauka/Interperiodica”
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Fig. 1. The reflection spectra of a p-polarized infrared radi-
ation for crystalline dielectrics.
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Fig. 2. The ∆R/R spectra of dielectrics measured in a mag-
netic field of 12.2 kOe.
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infrared radiation could be focused on a sample placed
in the gap of an external electromagnet. The samples
were fixed on a small copper table that prevented them
from being displaced due to the switching on of a mag-
netic field. The incidence angle of light on the samples
was about 65°. This angle was close to the Brewster
angle, which guaranteed the maximal effect [8, 11, 12].
The optical reflection spectra were normalized by the
relevant spectra of thick silver films, whose reflectivity
was about 0.9. Note also that the measurements for
Al2O3 were performed repeatedly for crystals with dif-
ferent crystallographic orientations as well as for poly-
crystalline samples. For the Al2O3 crystal, the effect
was maximal for the reflection from the [1120] plane.
The relevant spectra are discussed below.

By analogy with the MRE in nanocomposites, we
introduce the magnetoreflection (MR) coefficient for
dielectrics, which is defined by the relation

where RH and R0 are the reflection coefficients of a
material in the presence and absence of a magnetic
field, respectively.

The magnetic field was directed perpendicular to the
propagation direction of infrared radiation and parallel
to the surface of the samples.

We have found that the MR spectra strongly depend
both on the polarization of the incident light and on the
magnitude of the magnetic field.

The spectral functions R(λ) and ∆R/R presented in
this paper are obtained by averaging over about 400
scans performed with the FTIR spectrometer. As test
measurements, we determined the reflection spectra
from thick films of pure silver and aluminum in a mag-
netic field. These measurements showed that the reflec-
tion coefficient R(λ) does not depend on the magnetic
field.

In our previous work [10], we showed that the spec-
tra ∆R/R of pure Al2O3 experience variations in a mag-
netic field, which are most clearly manifested near the
wavelengths corresponding to the excitation of phonon
modes in Al2O3 at about λ ≈ 9.6 µm.

To give a clear idea of the physical nature of ∆R/R in
dielectrics, in addition to Al2O3, which is characterized
by covalent dipolar bonds, we measured the reflection
spectra R(λ) and the ∆R/R spectra in the covalent polar
crystal MgO and in the ionic crystal LiF.

Figure 1 shows the spectra of p-polarized infrared
radiation reflected from the surface of bulky crystals of
Al2O3, MgO, and LiF. All the spectra exhibit minima in
the neighborhood of wavelengths of λ ≈ 9–12 µm,
which correspond to the excitation of optical phonon
modes in these materials [13, 14].

Figure 2 shows the ∆R/R spectra in these dielectrics,
measured in a magnetic field of 12.2 kOe. In all these

∆R/R R0 RH–( )/R0,=
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spectra, the MRE manifests itself only in the neighbor-
hood of the wavelength λ0 where the reflection is mini-
mal: λ0 ≈ 9.6 µm for Al2O3, λ0 ≈ 11.7 µm for MgO, and
λ ≈ 11.1 µm for LiF. One can see that, among all the
samples investigated, the greatest value of ∆R/R is
attained in LiF, and the minimal value, in MgO.

Since Al2O3 has found wide application in nano-
composite technology owing to its unique physical
properties, in the present study, we placed special
emphasis on the investigation of magnetoreflection pre-
cisely for this material, the investigations of LiF and
MgO being carried out to demonstrate the universal
character of this phenomenon.

Figure 3 shows the ∆R/R spectra for Al2O3 measured
for different values of the magnetic field. As the mag-
netic field increases from 1 to 12.2 kOe, the absolute
value of ∆R/R increases from 0.15 to 0.57% by a non-
linear law. The minimum of ∆R/R in Al2O3 is attained
at a wavelength of λ0 ≈ 9.6 µm (Fig. 3). We did not
observe any variation in the position of this minimum
as a function of the magnetic field within the measure-
ment accuracy.

Significant dependence of the reflection coefficient
on a magnetic field in Al2O3, MgO, and LiF was
observed only in those spectral regions where R(λ) is
small (Fig. 4). The reflection coefficients of both com-
ponents of a light wave, those polarized in the plane of
incidence and perpendicular to it, are small only in the
frequency domain where the dielectric permittivity of a
substance is characterized by a sharp time dispersion,
more precisely, at wavelengths where the permittivity is
close to unity. In this case, the refractive indices of a
crystal and the surrounding medium become almost
equal and the interface between them has negligible
reflection. Then, the small corrections due to the mag-
netic field against the background of weak reflection
become noticeable and reach a relatively large value.
Naturally, this results in an increase in the MR coeffi-
cient because ∆R in ∆R/R is divided by a small quantity.
However, such sharp spectral dependence of MR
(Fig. 2) is associated exclusively with the character of
variation in the absolute value of ∆R = R0 – RH . To sup-
port this thesis, we present in Fig. 5 the spectral depen-
dence of ∆R for a p-polarized light. When carrying out
these measurements, a magnetic field of 13.5 kOe,
which was the maximum possible value in our experi-
ments, was applied to the samples. Figures 2 and 5
show that the curves of ∆R/R and ∆R exhibit similar
spectral behavior; this confirms the effect of the mag-
netic field on the reflection spectra of the dielectrics
under investigation. It should also be noted that the
effect observed is even with respect to the field because
we did not observe a change in the sign of ∆R under the
reversal of the magnetic field direction. The function
∆R shows a significant variation only in the neighbor-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
hoods of λ ~ 9–12 µm; everywhere outside these
regions, it is constant and close to zero. The ∆R spec-
trum of the ionic crystal LiF exhibits the narrowest and
deepest minimum in the range of wavelengths 11.1–

H = 1.2 kOe
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–0.6
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Fig. 3. The ∆R/R spectra of Al2O3 for p-polarized radiation
for various values of the magnetic field H.
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Fig. 4. Comparison of the reflection spectra R and magne-
toreflection spectra ∆R/R in Al2O3.
SICS      Vol. 99      No. 6      2004



1192 KRAVETS et al.
12.2 µm, whereas for Al2O3, this range is 5.1–10.1 µm,
and for MgO, 8–12.4 µm.

Thus, we have shown that the anomalies in the MRE
spectra of magnetic nanocomposites in a certain fre-
quency region in the infrared band can be attributed to
the dispersion properties of the dielectric matrix. 

REFERENCES

1. J. C. Jacquet and T. Valet, Mater. Res. Soc. Symp. Proc.
384, 477 (1995).

Al2O3

0.01

5 10 20 25

∆R = R0 – RH, %

λ, µm

0

–0.01

–0.02

–0.04

15

MgO
LiF

–0.03

Fig. 5. The ∆R = R0 – RH spectra of dielectrics for p-polar-
ized radiation measured in a magnetic field of 13.5 kOe.
JOURNAL OF EXPERIMENTAL 
2. A. B. Granovskiœ, M. V. Kuzmichev, and J. P. Clerc, Zh.
Éksp. Teor. Fiz. 116, 1762 (1999) [JETP 89, 955 (1999)].

3. S. Uran, M. Grimsditch, E. E. Fullerton, and S. D. Bader,
Phys. Rev. B 57, 2705 (1998).

4. J. van Driel, F. R. de Boer, R. Coehoorn, et al., Phys.
Rev. B 61, 15321 (2000).

5. J. P. Camplin, S. M. Thompson, D. R. Loraine, et al.,
J. Appl. Phys. 87, 4846 (2000).

6. V. G. Kravets, D. Bozec, J. A. D. Matthew, et al., Phys.
Rev. B 65, 054415 (2002).

7. I. V. Bykov, E. A. Gan’shina, A. B. Granovskiœ, and
V. S. Gushchin, Fiz. Tverd. Tela (St. Petersburg) 42, 487
(2000) [Phys. Solid State 42, 498 (2000)].

8. D. Bozec, V. G. Kravets, J. A. D. Matthew, and
S. M. Thompson, J. Appl. Phys. 91, 8795 (2002).

9. A. Granovskiœ, V. Gushchin, I. Bykov, et al., Fiz. Tverd.
Tela (St. Petersburg) 45, 868 (2003) [Phys. Solid State
45, 911 (2003)].

10. V. G. Kravets, A. N. Pogorelyœ, A. F. Kravets, et al., Fiz.
Tverd. Tela (St. Petersburg) 45, 1456 (2003) [Phys. Solid
State 45, 1530 (2003)].

11. A. B. Granovskiœ, M. Inoue, J. P. Clerc, and A. N. Yura-
sov, Fiz. Tverd. Tela (St. Petersburg) 46, 484 (2004)
[Phys. Solid State 46, 498 (2004)].

12. A. B. Granovskiœ, I. V. Bykov, E. A. Gan’shina, et al., Zh.
Éksp. Teor. Fiz. 123, 1256 (2003) [JETP 96, 1104
(2003)].

13. W. Zhu, C. J. Hirschmugl, A. D. Laine, et al., Appl. Phys.
Lett. 78, 3103 (2001).

14. P. Brüesh, R. Kötz, H. Neff, and L. Pietronero, Phys.
Rev. B 29, 4691 (1984).

Translated by I. Nikitin
AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004



  

Journal of Experimental and Theoretical Physics, Vol. 99, No. 6, 2004, pp. 1193–1200.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 126, No. 6, 2004, pp. 1367–1376.
Original Russian Text Copyright © 2004 by Melkov, Dzyapko, Chumak, Slavin.

                                                                                                                      

SOLIDS
Structure
Two-Magnon Relaxation Reversal in Ferrite Spheres
G. A. Melkov*, A. D. Dzyapko, A. V. Chumak, and A. N. Slavin

Taras Shevchenko National University, Kiev, 01680 Ukraine
*e-mail: melkov@univ.kiev.ua

Received April 6, 2004

Abstract—The reversal of two-magnon relaxation associated with linear scattering of oscillations of uniform
magnetization precession from sample nonuniformities is studied theoretically and experimentally in ferrite
spheres of yttrium iron garnet (YIG). Relaxation reversal is performed by parametric phase conjugation of
dipole–exchange spin waves formed as a result of scattering of uniform precession from inhomogeneities. As
a result of two-magnon backward scattering of dipole–exchange spin waves with a certain time delay, magne-
tization oscillations are renewed with an amplitude that could exceed the initial amplitude of uniform preces-
sion. The relaxation reversal is due to crystallographic anisotropy of the sample and is manifested most strongly
when a YIG sphere is magnetized along the intermediate axis [110]. Experiments were carried out on YIG
spheres of diameter 0.65–1.05 mm for a parallel pumping frequency ωp/2π ≈ 9.4 GHz, which is about twice the
uniform precession frequency. The maximal delay time for the restored signal of uniform precession was about
2 µs, while the maximal amplitude exceeded the initial uniform precession amplitude by a factor of about 5.
The “latent” relaxation parameters of ferrites, e.g., the natural ferromagnetic resonance linewidth associated
with many-particle processes and the linewidth associated with two-magnon scattering at bulk nonuniformities,
are determined experimentally. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The main contribution to the ferromagnetic reso-
nance linewidth ∆H even in perfect samples of yttrium
iron garnet (YIG) comes from two-magnon relaxation
processes connected with two-magnon elastic scatter-
ing of magnetization oscillations from bulk and sur-
face nonuniformities in the sample [1]. As a result of
two-magnon scattering, uniform precession of magne-
tization, or a magnon with wavenumber k = 0, excites a
spin wave, or a magnon with wavenumber k' ≠ k = 0
determined by the size a of the nonuniformity. Waves
with k' ~ 2π/a, are excited most intensely. For YIG
single crystal with a typical size a ~ 1 µm of non-
uniformities, this corresponds to excitation of dipole–
exchange spin waves with k' ~ 104 cm–1 by uniform pre-
cession. In addition to the magnetic dipole interaction,
the exchange interaction of magnetic moments propor-
tional to k'2 becomes significant for such waves.

It should be noted that the momentum conservation
law rules out two-magnon scattering and two-magnon
relaxation associated with it in a perfect infinitely large
crystal. This law can be violated only in a crystal con-
taining nonuniformities and boundaries.

Prior to the irreversible transformation into thermal
lattice vibrations, the uniform precession energy is
transformed by two-magnon relaxation first to a system
of dipole–exchange spin waves, where it can exist even
after the termination of uniform precession oscillations,
since the lifetimes Tk = 2/γ∆Hk of dipole–exchange spin
waves are several times longer than the lifetimes T =
1063-7761/04/9906- $26.00 © 21193
2/γ∆H of uniform precession. Here, γ is the gyromag-
netic ratio for electron spin and ∆Hk is the resonance
linewidth of dipole–exchange spin wave with wave-
number k. Before the attainment of the thermal level by
the amplitude of dipole–exchange waves, the energy of
these waves can be transferred back to uniform preces-
sion, which causes reversal of two-magnon relaxation
and partial restoration of the uniform precession of
magnetization.

Several methods for reversal of scattering processes
are known. We will use the method of phase conjuga-
tion by parametric pumping [2]. As applied to the case
considered here, this method consists of the following
stages. First, a signal electromagnetic pulse of duration
τs and frequency ωs close to the ferromagnetic reso-
nance frequency ω0 excited uniform precession. As a
result of interaction with random nonuniformities in the
sample, this precession excites a set of n @ 1 dipole–
exchange spin waves propagating from these nonuni-
formities with different wavevectors kn , frequencies
ωn ~ ωs , and group velocities v n . After the termination
of the signal pulse, uniform precession rapidly dies
away and spin waves continue to move away from the
nonuniformities, attenuating with time at a much lower
rate than uniform precession. Then a uniform paramet-
ric pump pulse of duration τp and frequency ωp ≈ 2ωs is
supplied at instant t = tp . Pumping, first, leads to para-
metric amplification of primary waves (propagating
away from nonuniformities) having frequencies ωn and
wavevectors kn and, second, excites new idler waves of
004 MAIK “Nauka/Interperiodica”
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frequency ωi , whose wavevectors ki satisfy the energy
and momentum conservation laws:

where vector kp is the pump wavevector. In the case of
a uniform pumping (kp = 0), we have ki = –kn; i.e., the
idler wave is an reverse wave relative to the primary
dipole–exchange spin wave, which propagates along
the same path as the primary wave, but in the opposite
direction. Such a behavior of the idler wave can be
interpreted as phase conjugation (or time reversal) of
the primary wave under the action of parametric pulsed
pumping [2]. Thus, for all n idler reverse waves, the
reverse path to nonuniformities will be the same as for
the primary waves and, after the termination of pump-
ing, will take the same time tp as the time of propagation
of primary waves from inhomogeneities to the instant
of pump pulse action irrespective of the wave velocity
v n . Consequently, over a time t = 2tp (for τp ! tp), all
idler waves reach the corresponding nonuniformities at
which they form a restored signal of uniform magneti-
zation precession as a result of backward two-magnon
scattering.

Parametrically enhanced dipole–exchange waves
propagating from inhomogeneities can also make a
contribution to restoration of uniform magnetization
precession [3]. Prior to parametric pumping, the phases
of all spin waves, ϕn = ωnt (ωs – 1/τs < ωn < ωs + 1/τs),
are uniformly distributed with time over an interval
from 0 to 2π; consequently, their total contribution to
uniform magnetization precession is equal to zero in
view of backward two-magnon scattering. After the
pumping is switched on, the process of amplification of
primary spin waves begins. If the pump pulse is long
enough (τp ≤ Tk) and, hence, has a narrow frequency
range, parametric amplification of spin waves caused
by this pulse is characterized by a narrow band: from
the entire set of dipole–exchange spin waves, only
waves with frequencies close to half the pumping fre-
quency ωp/2 will be selectively amplified. Thus, the
coherence of the system of dephased spin waves will be
partially restored and their contribution to uniform pre-
cession will differ from zero [3]. This contribution will
increase during the operation of a phasing pump pulse
and attains its maximal value at the instant of its termi-
nation, i.e., for t = tp + τp and not for t = 2tp as in the case
of phase conjugation for dipole–exchange spin waves.
After the termination of the pump pulse, misphasing of
dipole–exchange spin waves again comes into play and
the contribution of these waves to uniform precession
will decrease until it vanishes completely after the
attainment of a uniform phase distribution of spin
waves (in a time on the order of 1/τs).

We will confine our analysis to reversal of two-mag-
non relaxation associated only with the effect of para-
metric phase conjugation of dipole exchange spin
waves. In accordance with the above arguments, we

ωi ωp ωn, ki– kp kn,–= =
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will use short (τs, τp ! , tp) signal and pump pulses.
First, we will derive theoretical relations describing the
process of two-magnon relaxation reversal, which will
be verified experimentally using parametric pumping
of 3-cm waves at small ferrite spheres with a diameter
from 0.65 to 1.05 mm.

2. THEORY

Oscillations of uniform precession and dipole–
exchange spin waves coupled by crystal nonuniformi-
ties in the presence of parallel parametric pumping can
be written in the form [3, 4]

(1)

(2)

where c0 and ck are the amplitudes of uniform preces-
sion and dipole–exchange spin waves with natural fre-
quencies ω0 and ωk , respectively. Here, hp , hs and ωp ,
ωs are the amplitudes and frequencies of varying mag-
netic field of parallel pumping and the signal exciting
uniform precession, respectively, and Vk is the coupling
coefficient of dipole–exchange spin waves with parallel
pumping [1]; for uniform precession, such a coupling is
absent [1] in Eq. (1); Rkk' is the probability of scattering
of a spin wave (or oscillation) with wavevector k' from
a nonuniformity followed by its transformation into a
new spin wave (or oscillation) with wavevector k ≠ k'.
It was mentioned earlier that the scattering probability
depends on linear size a of a nonuniformity; probability
Rkk' has the maximal value for |k' – k| ~ 2π/a. Finally,
Γ0 = γ∆H0/2 and Γk0 = γ∆Hk0/2 are the parameters of
natural relaxation of uniform precession and spin
waves, respectively, taking into account only intrinsic
multimagnon and magnon–phonon relaxation pro-
cesses, including those with participation of optical
branches. The contributions from two-magnon pro-
cesses to relaxation, which will be denoted by δΓ0 =
γδH0/2 and δΓk = γδHk/2 for uniform precession and
spin waves, respectively, should be determined from
system of equations (1) and (2). As a result, we obtain
the total frequencies of relaxation and total linewidths
in the form

Γ k
1–

∂c0

∂t
-------- iω0c0 Γ0c0+ +

– i R0kck

k 0≠
∑ iγhs iωst–( ),exp–=

∂ck

∂t
-------- iωkck Γ k0ck+ +

– i Rkk'ck'

k' k≠
k 0≠

∑ iVkhp iωpt–( )c k–* ,exp–=

Γ Γ 0 δΓ0, ∆H+ ∆H0 δH0+= =
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for uniform precession and

for dipole–exchange spin waves.
Analysis of the natural oscillations of infinite sys-

tem of equations (1), (2) for a low probability of two-
magnon scattering, |Rkk'| ! Γ0, Γk0 gives for k ≥ 0 [5]

(3)

After supplying an electromagnetic signal of fre-
quency ωs ≈ ω0 to ferrite, the spin wave with k = 0 (i.e.,
uniform precession) will possess the largest amplitude.
Taking this circumstance into account and using
expression (3), we can substantially simplify system of
equations (1), (2):

(4)

(5)

We will write the expression for the coupling
parameter of dipole–exchange spin waves with parallel
pumping Vk taking into account the magnetic crystallo-
graphic anisotropy field Ha . It is well known that, in
spite of its smallness (Ha ! 4πM0, where M0 is the mag-
netization of ferrite) crystallographic anisotropy may
strongly affect the course of nonlinear processes [4]. It
will be shown below that precisely this situation is also
observed in the case considered here. For orientation of

magnetization M0 in the ( ) plane, we have

(6)

where θk and ϕk are the polar and azimuth angles of spin
waves in the reference frame associated with the direc-
tion of the external constant magnetic field H0, θH is the
angle between vector H0 and the [001] axis of the crys-
tal, and ωM = 4πγM0.

We will solve system (4), (5), presuming the follow-
ing sequence of short signal and pump pulses acting on
ferrite (it was mentioned above that τs , τp ! Γ0, Γk , tp).
At instant t = 0, a signal pulse at frequency ωs = ω0 is
switched on, which, in accordance with Eq. (4),
enhances uniform precession to the amplitude

(7)

After the removal of the signal pulse, the amplitude of
uniform precession decays exponentially by transfer-

Γ k Γ k0= δΓk, ∆Hk+ ∆Hk0 δHk+=

δΓk Rkk'
2 Γ k'

Γ k'
2 ωk' ωk–( )2+

--------------------------------------.
k'

∑=

∂c0

∂t
-------- iω0c0 Γc0+ + iγhs iωst–( ),exp–=

∂ck

∂t
-------- iωkck Γ kck+ +

=  i– Rk0c0 iVkhp iωpt–( )c k–* .exp–

110

Vk
1
4
---γ

ωM

ωk

------- θk 2iϕk( )expsin
2

=

–
3
4
---γ2 Ha

ωk

------ θH
3
4
--- 2θHsin

2
–sin

2

 
  ,

c0 A iωst–( ), Aexp iγhsτ s.= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ring partly energy to spin waves. Then, at instant t = tp,
a short pump pulse at frequency ωp = 2ωs = 2ω0 is
switched on. By this time, in accordance with formulas
(5) and (7), the amplitudes of spin waves for Γ @ Γk

attain the values

(8)

After switching on of pumping at t ≥ tp , spin waves
are first built up with initial condition (8); second,
reverse waves propagating in the opposite directions
towards nonuniformities appear. In accordance with

formula (5) their amplitudes  for t ≥ tp have the form

(9)

where  = |Vkhp|2 – (ωk – ω0)2.

After scattering from nonuniformities, all waves (9)
exhibit backward two-magnon scattering, which
restores uniform oscillation of magnetization (7) (natu-
rally, with a different amplitude Arev ≠ A). To determine
Arev, we must use Eq. (1) for hs = 0, substituting Eq. (9)
into it. This gives

(10)

It can be seen from this relation that each spin wave
makes a contribution to uniform precession with its
own phase proportional to exp[–iωk(t – 2tp)]; as a result,
the total contribution from all spin waves averages to
zero in the general case. The sum in (10) differs from
zero only at instant t = 2tp since it is only at this instant
that the phase of all dipole–exchange spin waves is the
same.

The sum in expression (10) for t = 2tp determines the
maximal amplitude Arev(2tp) of uniform precession
restored as a result of the reversal process. We will
obtain an approximate estimate for this sum based on
the fact that parametric pumping excites a narrow wave
packet in the vicinity of frequency ωp/2, which possess
the minimal parametric excitation threshold. Assuming
that the spread in the natural frequencies of excited
dipole–exchange spin waves satisfies the inequality

ck t t p=( ) A
Rk0

ωk ω0–( ) iΓ k–
------------------------------------–=

× iωkt p–( ) Γ kt p–( ).expexp

ck
rev

ck
rev Rk0

2νk

--------
Vkhp

Γ k i ωk ω0–( )–
------------------------------------=

× A* iωk t 2t p–( )[ ] Γ kt–( ) νkt( ),expexpexp

νk
2

Arev iA*
Vkhp

2νk

------------ iωk t 2t p–( )–[ ]exp
k 0>
θk ϕk,

∑=

× νkτ p( ) 2Γ kt p–( )expexp

×
Rk0

2

Γ k i ωk ω0–( )–[ ] Γ k Γ0– i ωk ω0–( )+[ ]
-----------------------------------------------------------------------------------------------.
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|ωk – ωp/2| ! Γ, Γk and the spread in their wavenumbers
is ∆k ! k, we can take out all constant coefficients and
coefficients depending on k from the sum in expres-
sion (10). Summation of ϕk in relation (10) nullifies the
contribution from the first term in expression (6) for Vk
(coupling coefficient of dipole–exchange spin waves
with parametric pumping) in view of symmetry in the
azimuth angle distribution of dipole–exchange spin
waves in the ferrite sphere [4]. Thus, it turns out that the
effect of relaxation reversal in a ferrite sphere (or, in the
general case, in a sample with identical transverse
demagnetizing factors) is due to the influence of the
magnetic crystallographic anisotropy described by the
second term in expression (6) for Vk .

In view of what has been said above and under the
assumption that there is a large amplitude of parametric
pumping, hpVk @ Γk , we eventually obtain the follow-
ing expression for the reversal coefficient K of two-
magnon relaxation, which is equal to the ratio of the
maximal amplitude Arev(2tp) of uniform precession
restored as a result of reversal of dipole–exchange spin
waves to the initial amplitude A excited by input elec-
tromagnetic signal (7):

(11)

(12)

Analysis of expression (12) shows that the reversal
coefficient K attains is maximal value for θH = 90°, i.e.,
for the orientation of the external magnetic field along
the intermediate axis [110] of the crystal. For θH = 0
(hard axis [001]) and θH = 55° (easy axis [111]), we
have K = 0. Reversal is also equal to zero in the absence
of two-magnon scattering (δΓ0 = δΓk = 0); for δΓ0,

K
Arev 2t p( )

A
------------------------,=

K
δΓ0

Γ
--------- hpVkτ p( ) 2Γ kt p–( )expexp=

×
3Ha

8πM0
-------------- θHsin

2 3
4
--- 2θHsin

2
– 

  .

ωs ωpH0

2

4

1

3

Fig. 1. Experimental model: 1—ferrite sphere; 2—loop cou-
pler; 3—coaxial cable of the signal channel; 4—open dielec-
tric pumping resonator; 5—rectangular waveguide of pump-
ing channel. The magnetic microwave field lines of the
dielectric resonator and the waveguide are shown by dashed
lines; H0 is the external constant magnetic field.
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δΓk ! Γk , it increases linearly with the scattering prob-
ability |Rkk'|2; however, for δΓk ~ Γk , it decreases expo-
nentially due to increasing attenuation of dipole–
exchange spin waves, Γk = Γk0 + δΓk . Finally, it should
be noted that the value of K exponentially increases
with amplitude hp and duration τp of the pump pulse
and might exceed unity; in other words, restoration of
the uniform precession signal with an amplitude larger
than its initial amplitude is possible.

3. EXPERIMENT AND DISCUSSION
OF RESULTS

The structure of the experimental model for study-
ing two-magnon relaxation reversal under the action of
parallel pumping is shown in Fig. 1. A signal of fre-
quency ωs/2π ≈ 4.7 GHz was supplied to ferrite sphere 1
and was picked up with the help of loop coupler 2,
which served as a terminal load of 50-Ω coaxial cable 3.
The ferrite sphere was placed in rectangular dielectric
resonator 4 tuned to the pumping frequency ωp/2π ≈
9.4 GHz. The type of resonator oscillations was H11δ,
and the ac magnetic field in the sphere was parallel to
the external constant magnetic field H0; i.e., the case of
parallel pumping of spin-wave instability is realized [1].
The resonator was prepared from a thermostable
ceramic material with a dielectric constant of ε ≈ 80. A
circular hole 1.1 mm in diameter was drilled to accom-
modate the ferrite sphere. The hole was located at an
maximum of magnetic field lines of the resonator and
at the minimum of electric field lines; consequently, the
shift in the natural frequency of the resonator due to the
hole did not exceed 3%. Pumping power Pp with a fre-
quency of ωp ≈ 2ωs was supplied to the dielectric reso-
nator with the help of standard 3-cm waveguide 5 with
a rectangular cross section. The pumping source was a
magnetron oscillator ensuring a power Pp of 6 W for a
pulse duration τp of 80 ns. The signal source of power
Ps was a klystron generator; to avoid saturation, power
Ps did not exceed 10 µW; the duration of signal pulses
was τs = 50 ns. The signal reflected from the ferrite
sphere and the signal emitted by it were supplied from
the coaxial cable via a ferrite circulator to the measur-
ing channel of the signal, which contained a low-fre-
quency filter (for suppressing the pump pulse), a low-
noise semiconductor amplifier, a power amplifier, and
semiconductor detector 1. The signal from detector 1
was fed to the first channel of a double-beam oscillo-
scope. The second channel of this oscilloscope was
used for detecting the pump pulse incident on the
dielectric resonator; this pulse was recorded from semi-
conductor detector 2 coupled with the waveguide
pumping channel via a directional coupler.

Oscillograms of the pulses observed on the screen of
the oscilloscope are shown in Fig. 2. Here, the upper
and the lower beams describe the voltage across detec-
tors 1 (signal channel) and 2 (pumping channel). Fig-
 AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004
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100 ns 100 ns

32
4 2

1

(‡) (b)

Fig. 2. Oscillograms of pulses in the signal channel (upper beam) and pumping channel (lower beam); one division on the horizontal
axis corresponds to 100 ns. (a) Ferromagnetic resonance at the signal frequency: ω0 = ωs; H0 = 1650 Oe. (b) Strong detuning of the
signal frequency from the ferromagnetic resonance frequency: |ω0 – ωs| @ γ∆H, H0 = 2000 Oe; 1 and 4 are pulses reflected from
the loop coupler with ferrite in ferromagnetic resonance and away from it, respectively; 2—incident pumping pulse; 3—output pulse
emitted by the ferrite sphere as a result of two-magnon relaxation reversal. The sample is a YIG sphere (of diameter 1.05 mm; ∆H =
0.5 Oe) magnetized along the intermediate axis; tp = 200 ns.
ure 2a corresponds to resonance tuning of uniform pre-
cession frequency ω0 to the signal frequency, ω0 = ωs .
In this case, the power of the signal is partly absorbed
in the ferrite sphere due to excitation of uniform preces-
sion followed by the excitation of dipole–exchange
spin waves. As a result (and also due to the effect of
transient processes), the shape of the signal pulse
reflected from the loop coupler (see pulse 1 in Fig. 2a)
differs from the rectangular shape of the signal incident
on this loop. After the termination of the signal pulse,
the power absorbed by the sample was accumulated in
the system of dipole–exchange spin waves, on which
pump pulse 2 began to act at instant t = tp . Pumping led
to phase conjugation of spin waves and to restoration of
oscillations of uniform precession, which induced out-
put signal 3 in the loop coupler at instant t ≈ 2tp .

In the other, nonresonant case (ω0 ≠ ωs), power
absorption in ferrite decreases, causing a decrease in
the output signal amplitude, while the power reflected
from the loop coupler increases. The oscillogram in
Fig. 2b corresponds to strong detuning from resonance:
|ω – ω0| @ γ∆H. In this case, the output pulse vanishes,
while pulse 4 reflected from the loop coupler restores
its rectangular shape and becomes equal to the input
signal pulse incident on the ferrite sample. Thus, under
the action of parallel pumping, reversal coefficient K
for two-magnon relaxation (see formula (11)) could be
determined experimentally as the ratio of the output
signal amplitude (see pulse 3 in Fig. 2a) to the reflected
pulse amplitude (pulse 4 in Fig. 2b) for strong detuning
of the constant magnetic field from the ferromagnetic
resonance.

The experimental dependence of reversal coefficient
K of two-magnon relaxation on the crystallographic
orientation of the YIG sphere is shown in Fig. 3. In gen-
eral, this dependence matches the above theory (see
formula (12)): the peak is observed for magnetization
of the sphere along the intermediate axis [110], and the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
minima coincide with the magnetic field direction
along the easy [111] and hard [001] axes. For conve-
nience of comparison of experimental (squares) and
theoretical (solid curve) dependences of the reversal
coefficient on the crystallographic orientation, the the-
oretical curve in Fig. 3 is normalized to the experimen-
tal values obtained for θH = 90°; the absolute value of
reversal coefficient K determined by theoretical depen-
dence (12) will be considered later. The discrepancy
between the theory and experiment observed in Fig. 3

2.0

1.5

1.0

0.5

0 20° 40° 60° 80° 100°

K

[001] [111] [110]

Fig. 3. Dependence of two-magnon relaxation reversal
coefficient K on angle θH between the direction of the con-
stant external magnetic field H0 and the crystallographic

[001] axis in the ( ) plane. The sample is a YIG sphere
of diameter 1.05 mm; ∆H = 0.5 Oe. Squares correspond to
experiment for tp = 180 ns, Pp = 6 W; the solid curve
describes theoretical dependence (12) normalized to exper-
imental values for θH = 90°. The positions of the hard [001],
easy [111], and intermediate [110] crystallographic axes are
indicated on the abscissa axis.

110

θH
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(especially for H0 || [001] and H0 || [111]; in this case,
K = 0 according to the theory, the entire experiment
gives a finite value of K) can be explained by the
approximate nature of the theory (in particular, disre-
gard of the second crystallographic anisotropy con-
stant, magnetoelastic energy, etc.). The error in deter-
mining the crystallographic orientation of the sample
also plays a certain role. We used a simple method of
magnetic orientation [6] whose accuracy was ±3°.
Finally, contribution to the output pulse amplitude may
also come from processes associated with excitation by
the input electromagnetic pulse of not only uniform
precession, but also of the entire set of long-wave mag-
netostatic oscillations whose amplitude may differ
from zero in view of nonuniformity of the magnetic
fields. These processes can be responsible for experi-
mentally observed ferromagnetic echo [7]. In spite of
the fact that a ferromagnetic echo was detected for
transverse pumping at a frequency equal to the signal
frequency, its presence for parallel pumping at double
the frequency also cannot be ruled out in principle,
although this problem requires detailed studies. How-
ever, in spite of the fact that the contribution of ferrite
echo in our experiments with small ferrite spheres must
undoubtedly be small in view of uniformity of the con-
stant external magnetic field. It should be recalled that
enhanced echo was obtained in [7] only for large sam-
ples of an irregular geometrical shape with a specially
produced nonuniformity of the internal constant mag-
netic field.

The results presented in Fig. 3 were obtained for a
high-quality YIG sphere with the total width of the fer-
romagnetic resonance line

equal to 0.5 Oe (at a signal frequency of 4.7 GHz). To
reduce the contribution from surface nonuniformities
and the linewidth ∆H, the sphere was thoroughly pol-
ished with an abrasive paste with a grain size of less
than 1 µm. In this case, the two-magnon relaxation fre-
quency δΓ0 and contribution δH0 to the linewidth asso-
ciated with it were mainly determined by bulk nonuni-
formities such as nonmagnetic inclusions, dislocations,
and vacancies. In contrast to natural relaxation fre-
quency Γ0 (and natural linewidth ∆H0 = 2Γ0/γ), which
is a parameter of the material, two-magnon relaxation
frequency δΓ0 and the corresponding two-magnon lin-
ewidth δH0 = 2δΓ0/γ are parameters of the sample,
which can easily be changed, for example, by introduc-
ing additional nonuniformities on the surface of the
sphere by polishing with a coarse abrasive paste. The
total linewidth ∆H = ∆H0 + δH0 of the sample, which
can easily be measured in experiments, will change in
this case due to an increase in the value of δΓ0 = γδH0/2.
To analyze the effect of the sample surface on reversal
coefficient K of two-magnon relaxation, the ferrite
sphere was polished twice for a short time using an

∆H ∆H0 δH0+ 2 Γ0 δΓ0+( )/γ= =
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abrasive paste with a grain size of 10 µm. As a result of
polishing, ferromagnetic resonance linewidth ∆H was
gradually increased from 0.5 to 0.6 Oe and then to
0.7 Oe. The dependence of two-magnon relaxation
reversal coefficient K on the orientation of constant
magnetic field H0 remained unchanged in this case and
was analogous to the dependence shown in Fig. 3.
However, the absolute value of K increased thereby,
which is completely in accordance with the above the-
ory. The value of K increased on the average by a factor
of 1.6 as compared to that for a polished sample with
∆H = 0.5 Oe for ∆H = 0.6 Oe and by a factor of 1.9 for
∆H = 0.7 Oe. In accordance with formula (12), the
observed increase in coefficient K is associated with an
increase in the first term in expression (12),

(13)

where, as noted earlier, ∆H is the total and ∆H0 is the
natural ferromagnetic resonance linewidth, associated
with natural relaxation processes and δH0 is the ferro-
magnetic resonance linewidth associated with two-
magnon scattering processes. The value ∆H appearing
in formula (13) is measured experimentally. It also fol-
lows from the above results that linewidth δH0 = ∆H –
∆H0 responsible for two-magnon scattering increases
by 0.1 Oe after each polishing. Comparing the above
experimental results on variation of K as a result of pol-
ishing with formula (13), we can also approximately
estimate the values of other relaxation parameters of
the sample and find the corresponding linewidths. To
match the theory with experiment, we must assume that
the natural linewidth of the ferromagnetic resonance for
the ferromagnetic sphere studied here is ∆H0 = 0.35 Oe,
while the two-magnon linewidth associated with the
contribution from bulk nonuniformities only is 0.15 Oe.
The additional contribution from surface nonuniformi-
ties due to polishing gradually increased the two-mag-
non linewidth to 0.25 and 0.35 Oe. The experimentally
obtained results do not contradict the ferromagnetic
relaxation theory. For example, for the natural ferromag-
netic resonance linewidth of YIG single crystals associ-
ated with natural relaxation processes, the theoretical
value of ∆H0 lies in the interval 0.1–0.5 Oe [8, 9].

Figure 4 shows the experimental dependence of the
two-magnon relaxation reversal coefficient on time tp of
switching on of the pump pulse. The time of emergence
of the restored output pulse in this case is 2tp within the
experimental error. In accordance with theoretical
dependence (12), curve K(tp) in Fig. 4 is close to expo-
nential. From the slope of this curve (61 dB/µs), we can
determine parameter ∆Hk of relaxation of waves
excited as a result of scattering of uniform precession
oscillations from nonuniformities: ∆Hk = 0.4 Oe. The
results presented in Fig. 4 correspond to a twice-pol-
ished YIG sphere.

δΓ0

Γ
---------

∆H ∆H0–
∆H

-------------------------
δH0

∆H
----------,= =
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It was found that polishing of the surface affects the
value of ∆Hk noticeably less strongly that the value of
∆H0; the value of ∆Hk for an unpolished sphere was
0.37 Oe; i.e., the change in ∆Hk as a result of polishing
was only 8% against 40% for ∆H. This result is not
unexpected since polishing affects only a small number
of dipole–exchange spin waves excited near the surface
in view of a small mean free path [10]. The values of
∆Hk obtained here are more than twice as high as the
minimal value of the linewidth for spin waves excited
by the parallel pumping method [1]. As a matter of fact,
the value of constant magnetic field H0 in our experi-
ments corresponded to the condition for the emergence
of ferromagnetic resonance at the signal frequency and
was approximately 80 Oe higher than the field Hc cor-
responding to the minimum of the parallel pumping
threshold [1]. The maximal polar angle θk of the spin
waves degenerate with uniform precession did not
exceed θk ≈ 65°. According to [11], the relaxation
parameter for such waves is approximately twice as
large as that for spin waves with θk = 90°, which are
excited for H0 = Hc .

Finally, let us estimate the absolute values of two-
magnon relaxation reversal coefficients K, which fol-
low from theoretical dependence (12) and compare
these values with experimental results. The most com-
plicated problem here is to determine the amplitude hp

of the pumping field in the resonator, which acts on the
ferrite sphere. In view of the exponential dependence
K(hp), even a small error in determining the value of the
pumping field leads to a substantial spread in values of
K. It should be noted that the second exponential factor
in formula (12) can easily be determined from experi-
ment (see Fig. 4).

It is impossible at present to calculate field hp in the
resonator from the value of power Pp incident on it in
view of the absence of an electrodynamic theory of an
open dielectric resonator of rectangular shape with a
central cylindrical hole for accommodation of the fer-
rite sphere. To determine the pumping field amplitude
hp experimentally, we used the calibrated sample
method with a preset value of parametric instability
threshold field hc for parallel pumping [12]. The value
of hc was determined with the help of a rectangular cav-
ity, for which the values of ac magnetic fields can easily
be determined from the incident power, Q factor, and
size of the resonator [13]. The calibrated sample was
placed into a dielectric resonator for which the relation
between hp and the incident power was determined
experimentally from the observation of the parallel
pumping threshold. The maximal amplitude hp of the ac
magnetic field acting on the sample in our measure-
ments was 20 ± 3 Oe.

Substituting the results into formula (12), we can
obtain the theoretically expected value of two-magnon
relaxation reversal coefficient K. For example, for the
situation depicted in Fig. 3, the theory gives values of K
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
varying from 0.5 to 3.0, which does not contradict the
experimental value of K = 2.2. Thus, in spite of their
approximate nature, the theoretical relations derived
here provide a correct qualitative and quantitative
description of reversal of two-magnon relaxation in fer-
rite spheres.

4. CONCLUSIONS

We have studied the reversal of two-magnon relax-
ation of uniform precession of magnetization in a YIG
ferrite sphere using the method of longitudinal para-
metric pumping with a frequency twice as high as the
uniform precession frequency. As a result of pumping,
uniform precession oscillations are restored; the maxi-
mal amplitude of restored oscillations could exceed the
initial amplitude of uniform precession excited by an
external electromagnetic field by a factor of K > 1. The
theoretical expression for reversal coefficient K of two-
magnon relaxation was determined from the system of
two coupled equations of uniform precession and short-
wave dipole–exchange spin waves excited as a result of
scattering of uniform precession oscillations from non-
uniformities. In the case of a YIG sphere with cubic
crystallographic anisotropy, reversal coefficient K has
the maximal value when the magnetization of the crys-
tal coincides with the intermediate axis [110], while
K = 0 for magnetization along the hard [001] and easy
[111] axes. The maximal value of K is attained by
choosing an optimal value for the probability of two-
magnon scattering of uniform precession with the for-
mation of dipole–exchange spin waves; two-magnon
broadening of the natural ferromagnetic resonance line
for this value is nearly equal to the width of this line.
For stronger scattering, the value of K decreases expo-

10

0

–10

–20

100 200 300 400 500 600 700
tp, ns

K, dB

Fig. 4. Dependence of two-magnon relaxation reversal
coefficient K on time tp of switching on of the pump pulse.
The sample is a polished YIG sphere of diameter 1.05 mm;
∆H = 0.7 Oe; Pp = 6 W.
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nentially due to an increase in the damping parameter
of dipole–exchange spin waves, while K = 0 in the
absence of scattering. The reversal coefficient increases
exponentially with the pumping amplitude and duration
and decreases exponentially with increasing the delay
time of the pumping pulse switching on.

Experimental studies of two-magnon relaxation
reversal was carried out on small monocrystalline YIG
spheres of diameters 0.65–1.05 mm for a pumping fre-
quency ωp/2π ≈ 9.4 GHz. The main conclusions of the
theory were confirmed by experiment. In particular, the
maximal value of two-magnon relaxation reversal coef-
ficient was observed for spheres magnetized along the
intermediate axis. For magnetization along the hard and
easy axis, the value of K was minimal, though not equal
to zero.

In accordance with the theory, reversal coefficient K
increased upon a variation of the efficiency of two-
magnon scattering by polishing the spherical surface
with a coarse abrasive paste. A comparison of theory
with experiment led to the values of the natural ferro-
magnetic resonance linewidth and the linewidth associ-
ated with two-magnon scattering at bulk nonuniformi-
ties. These values were found to be 0.35 and 0.15 Oe,
respectively. The relaxation parameters ∆Hk of dipole–
exchange spin waves were measured from the slope of
the curve depicting the dependence of the reversal coef-
ficient K on the delay time.

The experimentally measured value of reversal
coefficient K was found to match the theory to within
the experimental error. For small delay times, the two-
magnon relaxation reversal is accompanied by amplifi-
cation; i.e., K > 1. For a YIG sphere with a diameter of
1.05 mm, a value of K ≈ 5 was attained for tp = 180 ns.
The maximal delay time for the restored signal was
about 2 µs.

Two-magnon relaxation of uniform precession of
magnetization in YIG ferrite spheres caused by longitu-
dinal parametric pumping studied here can be used for
processing microwave information and for measuring
“latent” relaxation times, e.g., the natural linewidth of
JOURNAL OF EXPERIMENTAL 
ferromagnetic resonance and the linewidth associated
with two-magnon scattering from bulk nonuniformi-
ties. In addition, the relaxation reversal effect can be
used for directly measuring the dipole–exchange spin-
wave relaxation times. The knowledge of these relax-
ation times is especially important now for developing
nanosize magnetic memory elements whose natural
excitations are dipole–exchange spin waves.
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Abstract—A Monte Carlo method is applied to simulate the static critical behavior of a cubic-lattice 3D Ising
model for systems with quenched disorder. Numerical results are presented for the spin concentrations of p =
1.0, 0.95, 0.9, 0.8, 0.6 on L × L × L lattices with L = 20–60 under periodic boundary conditions. The critical
temperature is determined by the Binder cumulant method. A finite-size scaling technique is used to calculate
the static critical exponents α, β, γ, and ν (for specific heat, susceptibility, magnetization, and correlation length,
respectively) in the range of p under study. Universality classes of critical behavior are discussed for three-
dimensional diluted systems. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Analysis of the critical behavior of diluted spin sys-
tems with quenched disorder is a topical problem in
condensed matter physics. Systems of this kind have
been the subject of intensive experimental [1–3], theo-
retical [4–13], and computational [14–21] studies. The
Harris criterion formulated in the framework of renor-
malized perturbation theory can be used to obtain qual-
itative predictions of the effects of particular impurities
on critical behavior [4]. According to this criterion,
weak disorder modifies critical behavior only if the spe-
cific-heat critical exponent is positive (α > 0), i.e., if
specific heat is divergent at the critical point. Con-
versely, if α < 0 (specific heat is finite at the transition
point), then weak disorder does not change the critical
behavior. This criterion holds only for systems
described by effective Hamiltonians that are isomor-
phic to the Ising model near the corresponding critical
points.

Modified critical exponents have been reliably
determined for disordered 3D Ising models both in
experiments [1–3] and in theoretical studies [4–13].
Even though they agree with the entire body of avail-
able evidence, it remains unclear if the modified critical
exponents are universal, i.e., whether they are indepen-
dent of the impurity concentration below the percola-
tion threshold or vary continuously with the concentra-
tion along a line of fixed points. Moreover, there are
good reasons to expect that the critical exponents
depend on the realization of disorder in a particular
model. It was found in [19] that the results obtained
when disorder was realized in a canonical ensemble (by
fixing the fraction of magnetic sites) would be different
from those of grand canonical Monte Carlo simulations
(when the fraction of magnetic sites in each particular
impurity configuration is a fluctuating variable). In the
1063-7761/04/9906- $26.00 © 21201
nearest future, accurate analysis of these trends can
only be performed by numerical methods.

The renormalization-group analysis using an
ε-expansion [8] showed that the critical behavior of the
3D Ising model for systems with quenched disorder is
characterized by critical exponents that are different
from those corresponding to the pure Ising model.
However, the asymptotic convergence of the ε-expan-
sion series is even slower than for pure systems, and
predictions obtained by the ε-expansion method are not
reliable [6, 14].

Current experimental studies are impeded by the
difficulties encountered in calculating the critical expo-
nents and determining the universality class of static
behavior for such systems [2, 3]. The results available
from current experiments cannot be used to develop a
complete and self-consistent model of critical behavior
of impure systems. This is explained by strong depen-
dence of experimental results not only on the sample
and the method employed, but also on the procedure
used to prepare the sample (see references in [13]). Fur-
thermore, no experimental studies have been conducted
in which the same method is applied to samples of the
same type containing well-controlled amounts of impu-
rities. For this reason, phase transitions and critical phe-
nomena in diluted systems are the subject of intensive
current studies performed by different versions of the
Monte Carlo (MC) method, including powerful cluster
algorithms [14, 15, 17–21]. To date, cluster MC algo-
rithms were mainly applied to dilute systems modeled
by grand canonical ensembles. Systems represented as
canonical ensembles have been studied to a much lesser
extent.

In this paper, we report the results of MC simula-
tions of the static critical behavior of the cubic-lattice
Ising model performed for systems with quenched dis-
004 MAIK “Nauka/Interperiodica”
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order. The enormous interest in this model is motivated
by the following principal reasons.

First, the weakly diluted 3D Ising model for systems
with quenched disorder is of great practical importance,
because it provides a basis for analyzing disorder-
induced macroscopic effects, which are commonly
found in real materials.

Second, studies of effects of quenched disorder on
universal characteristics of critical behavior are of fun-
damental, as well as of practical, importance [5].

Third, the first attempts to analyze this model
numerically were made at the time when the available
computing resources and MC algorithms were insuffi-
cient to calculate critical exponents to the required
accuracy.

2. ISING MODEL FOR SYSTEMS
WITH QUENCHED DISORDER

The weakly diluted 3D Ising model for systems with
quenched disorder is schematized in Fig. 1. In the
model examined here, the impurity distribution is sim-
ulated by means of a canonical ensemble. The model
relies on the following assumptions.

1. The sites of a cubic lattice are occupied either by
spins Si = ±1 or by nonmagnetic impurities. The non-
magnetic impurities are randomly distributed and
bound to the corresponding lattice sites.

2. The nearest-neighbor coupling energy is |J | if
both sites are occupied by magnetic atoms and zero
otherwise.

The corresponding microscopic Hamiltonian is

(1)

where

H
J
2
--- ρiSiρ jS j,

i j,
∑–=

ρi

1, if  the  site  is  occupied  by  a  spin,

0, otherwise.

 



  

=
                   

Fig. 1. Weakly diluted 3D Ising model with quenched dis-
order.
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The spin concentration is the sum of the absolute
values of spin at all sites:

(2)

The cases of p = 1 and p = 0 correspond to the pure
Ising model and the lattice of impurities, respectively.

3. SIMULATION METHOD

Cluster MC algorithms [22, 23] are very effective
tools for analyzing critical phenomena in various sys-
tems and models [19–21, 24, 25]. The critical expo-
nents based on the results obtained by means of cluster
algorithms are highly accurate and reliable [21, 24, 25].
The most effective cluster MC algorithm was proposed
by Wolff [22]. Its version employed in the present study
consists of the following procedures:

I. The coordinates of a lattice site are taken by gen-
erating three random numbers. If the site is occupied by
a nonmagnetic impurity, then new random numbers are
generated until the coordinates of a spin Si are obtained.

II. The nearest neighbor sites of Si are inspected. If
a neighbor Sj is occupied by a spin Sj and the values of
Si and 

 

S

 

j

 

 are equal for 

 

J

 

 > 0, then the coupling between

 

S

 

i

 

 and 

 

S

 

j

 

 is assigned the probability 

 

P

 

 = 1 – exp(–2

 

K

 

)
with 

 

K

 

 = 

 

J

 

/

 

k

 

B

 

T

 

, where 

 

k

 

B

 

 is Boltzmann’s constant.
Then, the nearest neighbors of 

 

S

 

j

 

 are inspected in a sim-
ilar manner. The process is continued until the bound-
aries of the system are reached.

III. A cluster is defined as the set of coupled spins.

IV. The cluster is flipped with a probability of one.

Computations were performed under periodic
boundary conditions on 

 

L

 

 

 

×

 

 

 

L

 

 

 

×

 

 

 

L 

 

lattices with 

 

L

 

 varied
from 20 to 60 for the spin concentrations 

 

p 

 

= 1.0, 0.95,
0.9, 0.8, and 0.6.

In the starting distributions, all spins were parallel to
the 

 

z 

 

axis. In the case of

 

 p

 

 = 1.0, the equilibrium state of
the system was obtained by discarding the results of the
first 2 

 

×

 

 10

 

6

 

 Monte Carlo steps (here, each MC step cor-
responds to one cluster flip) and averaging the remain-
ing results over five starting distributions. For systems
with 

 

p

 

 = 0.95, 0.9, 0.8, and 0.6, the number of discarded
Monte Carlo steps was 3 

 

×

 

 10

 

6

 

, 4 

 

×

 

 10

 

6

 

, 5 

 

×

 

 10

 

6

 

, and
6 

 

×

 

 10

 

6

 

, respectively, and the results were averaged
over 20 to 80 different distributions. We should note
here that the number of disorder realizations used to
calculate thermodynamic characteristics must increase
with decreasing spin concentration to compensate for
increasing fluctuations in the impurity distribution.

p
1

L3
----- ρi Si .

i 1=

L
3

∑=
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Note also that the complexity of the computations per-
formed for each impurity distribution rapidly increases
with lattice size.

4. RESULTS

The temperature-dependent specific heat and sus-
ceptibility of fluctuating systems were calculated as
follows [26]:

(3)

(4)

where K = |J |/kBT, N = pL3 is the number of magnetic
sites, U is internal energy, m is magnetization, and
angle brackets denote a thermal average.

Figures 2 and 3 show the temperature-dependent
specific heat C and susceptibility χ obtained for p = 1.0,
0.95, 0.9, 0.8, and 0.6. The errors of the results pre-
sented from here on do not exceed the size of symbols
in the corresponding figures. Figure 2 demonstrates that
the peak in the specific heat is smeared, and the peak
value is reduced, by increasing the nonmagnetic-impu-
rity fraction c = 1 – p. This behavior is characteristic of
diluted 3D Ising spin systems [16, 17]. Note also that
the critical behavior of susceptibility is characterized
by sharp peaks at each p (see Fig. 3).

The critical temperature Tc(p) was determined by
the Binder cumulant method [27], with the fourth-order
cumulant UL defined as

(5)

where m is the magnetization for a system on the lattice
of size L. To calculate Tc , we found the temperature
dependence of the cumulant UL(T, p) obtained by aver-
aging over disorder realizations for L1, L2, …, Ln . The
critical point Tc was defined as the temperature at which

(Tc, p) = (Tc, p) = … = (Tc, p). The calcu-
lated critical temperatures are listed in the table. Figure 4
illustrates the temperature dependence of the Binder
cumulant UL(T, p) for systems of different size with p =
0.8. The point of intersection of the curves corresponds
to Tc = 3.4956(6).

According to Fig. 3, the susceptibility peaks for sys-
tems with different values of p correspond to the values
of Tc(p) determined by the Binder cumulant method up
to a numerical error. This demonstrates the high reli-
ability of our calculations of the critical temperature.

C NK2( ) U2〈 〉 U〈 〉 2–( ),=

χ NK( ) m2〈 〉 m〈 〉 2–( ),=

UL T p,( ) 1
m4 T p; L,( )〈 〉

3 m2 T p; L,( )〈 〉 L
2

----------------------------------------,–=

UL1
UL2

ULn
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The static critical exponents α (specific heat), γ (sus-
ceptibility), and β (magnetization) were determined
by applying the following finite-size scaling ansatz

2.0

1.5

1.0

0.5

0 1 2 3 4 5
kBT |J|

p = 1.00
p = 0.95
p = 0.90
p = 0.80
p = 0.60

L = 60

C/kB

Fig. 2. Specific heat versus temperature for diluted 3D Ising
model.

1 2 3 4 5
kBT/ |J|

p = 1.00
p = 0.95
p = 0.90
p = 0.80
p = 0.60

L = 6030

25

20

15

10

5

0

χ

Fig. 3. Susceptibility versus temperature for diluted 3D
Ising model. 

Critical exponents in weakly diluted 3D Ising model for sys-
tems with quenched disorder calculated by using a finite-size
scaling technique

p kBTc/|J| ν α γ β

1.00 4.5106(6) 0.624(2) 0.108(2) 1.236(2) 0.322(2)

0.95 4.2591(4) 0.646(2) –0.010(2) 1.262(2) 0.306(3)

0.90 4.0079(8) 0.664(3) –0.014(3) 1.285(3) 0.308(3)

0.80 3.4956(6) 0.683(4) –0.016(3) 1.299(3) 0.310(3)

0.60 2.4173(9) 0.725(6) –0.093(7) 1.446(4) 0.349(4)
ICS      Vol. 99      No. 6      2004
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proposed for systems with periodic boundary condi-
tions [28]:

(6)

where t = |T – Tc|/Tc , Tc = Tc(L = ∞), and ν is the static
correlation-length critical exponent for L = ∞. Equa-
tion (6) entails analogous equations for specific heat,
susceptibility, and spontaneous magnetization per
spin:

(7)

(8)

(9)

F T L,( ) L d– F0 tL1/ν( ),∝

C T L,( ) Lα /νC0 tL1/ν( ),∝

χ T L,( ) Lγ/νχ0 tL1/ν( ),∝

m T L,( ) L β/ν– m0 tL1/ν( ),∝

L = 60
L = 40
L = 20

Tc

3.480 3.485 3.490 3.495 3.500 3.505 3.510

0.56

0.52

0.48

0.44

0.40

UL

kBT/ |J|

Fig. 4. Cumulant UL averaged over impurity distributions
with different disorder realizations versus temperature for
p = 0.8.

1.7

1.6

1.5

1.4

20 24 28 32 36 40 44 48 52 56 60

L

C/kB

Fig. 5. Specific heat versus lattice size for p = 0.8.
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where the critical exponents α, γ, and β corresponding
to L = ∞ satisfy the hyperscaling relation 2 – α = dν =
2β + γ [29].

In modern theories, an alternative finite-scaling
ansatz is proposed for evaluating ν [30, 31]:

(10)

where  is a constant parameter, and Vn is defined as

(11)

(12)

with β = 1/T.
According to (8) and (9), the susceptibility and mag-

netization for a sufficiently large L × L × L lattice at
T = Tc are

(13)

(14)

We used these expressions to evaluate γ and β. The
corresponding expression for specific heat disagrees
with experimental results, as demonstrated in [24]. The
temperature-dependent specific heat as a function of L
is commonly approximated by different expressions,
for example (see [19, 26]),

(15)

where A is a constant factor.
To evaluate α, β, γ, and ν, we calculated C, m, χ, and

Vn as functions of L. A nonlinear least-squares regres-
sion analysis was performed to determine α/ν, β/ν, γ/ν,
and 1/ν. Then, the values of ν obtained in this study
were used to find α, β, and γ. It should be noted that the
present approach is different from that used in numer-
ous studies where these critical exponents were deter-
mined by invoking various scaling relations. Figures 5
and 6 show log–log plots of C and χ versus L for p =
0.8. According to Fig. 6, the calculated susceptibility
values do not deviate from a line even at small L. Sim-
ilar results were obtained in [19]. The attainment of
asymptotic critical behavior is frequently questioned
when systems of the kind considered here are simu-
lated. Apparently, both the number of impurity distribu-
tions used here to calculate average quantities and the

Vn L1/νgVn
,=

gVn

Vi
miE〈 〉
mi〈 〉

--------------- E〈 〉 i 1 2,=( ),–=

V3
dUL

dβ
----------

1

3 m2〈 〉 2
-----------------= =

× m4〈 〉 E〈 〉 2
m4〈 〉 m2E〈 〉

m2〈 〉 2
----------------------------– m4E〈 〉+ ,

χ Lγ/ν,∝

m L β/ν– .∝

Cmax L( ) Cmax L ∞=( ) ALα /ν,–=
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lattice size (L ≥ 20) were sufficiently large to ensure
that the asymptotic critical behavior of susceptibility
was attained for p = 0.8, as well as in other cases exam-
ined in this study.

As noted above, expression (15) is used instead
of (7) in actual data processing. Figure 5 demonstrates
that the log–log plot of C(L) for p = 0.8 is not a line.

The critical exponents listed in the table were
obtained for several values of p by using the corre-
sponding ν(p) and Wolff’s single-cluster MC algo-
rithm. Their values differ from those corresponding to
the pure Ising model. The weak dependence of the crit-
ical exponents on the impurity concentration revealed
for weakly diluted systems (with p ≥ 0.8) can be attrib-
uted to a crossover from pure to dilute critical behavior.
Note that the sign of α changes in the neighborhood of
p = 0.95, and its value is equal to the theoretical result
obtained in [7] up to a numerical error.

The absolute values of the critical exponents
obtained for the highly diluted system (p = 0.6) are sub-
stantially larger. This can be explained by the existence
of an additional random fixed point (which is difficult
to find in numerical simulations), because the critical
behavior near such a point must be characterized by dif-
ferent values of the scaling exponents. Experimental
evidence supporting this conjecture can be found in [2],
where critical exponents similar to those obtained here
for p = 0.6 were reported for the diluted Ising antiferro-
magnet FepZn1 – pF2 with p = 0.6 and 0.5.

The critical behavior observed for p = 0.6 in this
study is consistent with the influence of an additional
(“percolation”) fixed point hypothesized in [14, 18].
Note also that the values of α, γ, and β obtained here for
p = 1.0 are in excellent agreement with α = 0.109(4),
γ = 1.2396(13), and β = 0.3258(14) obtained in [12] by
resumming the perturbation series in the scalar ϕ4 the-
ory with d = 3 in the absence of disordered structure.

20 24 28 32 36 40 44 48 52 56 60

28

42

56

70
84
98
χ

L

Fig. 6. Susceptibility versus lattice size for p = 0.8.
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5. CONCLUSIONS

The systematic analysis of a weakly diluted 3D
Ising model with canonical disorder performed in this
study by using the same technique demonstrates that

(i) the critical exponents obtained for low impurity
concentrations (p ≥ 0.8) differ from those in the pure
Ising model (p = 1.0) and characterize a distinct univer-
sality class;

(ii) highly diluted systems (p ≤ 0.6) are character-
ized by specific values of the critical exponents corre-
sponding to yet another universality class.

Therefore, the model must exhibit two crossovers:
one between the pure (p = 1.0) and weakly diluted
(p ≥ 0.8) systems and the other between the weakly
(p ≈ 0.8) and highly (p ≤ 0.6) diluted systems. The con-
troversial and mutually inconsistent of most results
obtained for the model in question may be explained by
the existence and substantial width of such crossover
regions.
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Abstract—The helicoid that forms in an external magnetic field in the presence of a point defect is modeled in
the framework of the Landau theory of second-order phase transitions. A general solution to the nonlinear prob-
lem retaining all terms in the Helmholtz free-energy functional is obtained by means of Green functions. The
magnetization distribution in the plane perpendicular to the helicoid axis and to the external field is calculated.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The presence of defects and inhomogeneities in fer-
romagnetic materials can strongly affect critical prop-
erties of magnets. For example, if the local exchange
constant in the vicinity of a defect is greater than that in
the bulk of the material, then a localized magnetic
moment can exist at a temperature above the bulk TC0.
However, this is possible only if the defect parameters
(effective radius and exchange interaction strength) sat-
isfy certain conditions (e.g., see [1, 2]).

The Helmholtz free-energy functional for a magnet
having a noncentrosymmetric crystalline structure con-
tains a term that is linear in spatial derivatives. Owing
to this term, the ground state of the system is stabilized,
and a helicoidal structure forms at a temperature above
the Curie temperature TC0 of the paramagnetic–ferro-
magnetic transition [3]. Helicoidal structures of this kind
were found, for example, in MnSi [4] and FeGe [5].

A theoretical analysis of stationary localized states
at crystalline-structure defects in noncentrosymmetric
cubic magnets was presented in [6]. Solutions describ-
ing two- and three-dimensional localized states were
obtained for temperatures above the paramagnetic–
helicoidal transition point. It was shown that, if the
Helmholtz free-energy functional contains the term
−γM2δ(r) associated with a defect (where M is the local
magnetic moment) and the parameter γ has a certain
small value, then the transition to the helicoidal phase
occurs at a temperature TCL above the critical tempera-
ture TC0 for the paramagnetic–helicoidal transition in a
bulk sample without defects.

The stability of solutions describing nonlinear vec-
tor fields in models characterized by Lifshitz invariants
was examined in [7]. It was shown that the two- and
three-dimensional localized states associated with
relaxation of the field magnitude are radially unstable.
1063-7761/04/9906- $26.00 © 21207
However, the existence of states with lower energies
(i.e., radial instability) was established for a Helmholtz
free-energy functional that did not contain the δ-func-
tion contribution to the energy of the system in the
vicinity of the defect. The predicted behavior drasti-
cally changes when this contribution is taken into
account: stable multidimensional states can be local-
ized at the crystalline-structure defects in a noncen-
trosymmetric cubic paramagnet.

Helicoidal structures are the subject of intensive
ongoing experimental studies. In addition to the long-
known materials MnSi [4] and FeGe [5], helimagnetism
was revealed, for example, in Ba2CuGe2O7 [8, 9] and
K2V3O8 [10]. These materials are of particular interest
for analyzing the Dzyaloshinskii–Moriya exchange
interaction. The formation of incommensurate structures
of new types, including magnetic vortices (skyrmions),
was discussed in [11]. An experimental study of the
influence of the Co2+ impurity concentration x on the
helicoidal structure observed in Ba2(CoxCu1 – x)Ge2O7

was reported in [12]. However, this phenomenon is
poorly understood to this day and should be studied in
more detail.

In this paper, we focus on a model analogous to that
considered in [6]. In the present model, the expression
for the Helmholtz free energy contains an additional
term proportional to M4 and a term representing the
Zeeman energy of a magnetic moment in an external
field. Our goal here is to calculate the stable helicoidal
magnetic state of a system containing a single magnetic
impurity. We show that, in addition to uniform magne-
tization, there exists a localized helicoidal magnetic
state in an external magnetic field at a temperature
above TCL. It can be observed in neutron scattering
experiments.
004 MAIK “Nauka/Interperiodica”
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The problem in question can also be of interest in
view of the fact that structural analogs of helicoids can
be found in various nonlinear models of condensed
matter. Apart from magnets [13, 14], interactions asso-
ciated with invariants that are linear in the first spatial
derivatives (Lifshitz invariants) take place in certain
classes of ferroelectrics and liquid crystals [15]. Another
example of a multidimensional stationary localized state
is the Abrikosov vortex in a superconductor [16]. By
analogy, a term that is linear in spatial derivatives stabi-
lizes two-dimensional localized states in noncentrosym-
metric magnets, and magnetic vortices develop [17].

2. CALCULATION OF THE GROUND STATE 
OF A MAGNET

Consider the Dzyaloshinskii–Moriya-type weak
interaction for a ferromagnet with defect localized at
x = y = z = 0 in an external field. The Helmholtz free-
energy functional of this system is

(1)

where θ is on the order of the Curie temperature TC0, n
is the concentration of magnetic moments, MS is the
maximum possible magnetization at zero temperature,
τ = (T – TC0)/TC0, and Hz is an external magnetic field
parallel to the z axis. The first two terms in (1) represent
the expansion in powers of M about the Curie point
(magnetization M is treated as the order parameter in
the general theory of second-order phase transitions).
Note that TC0 is the Curie temperature for the paramag-
netic–ferromagnetic transition in the absence of the
term proportional to M · curlM. When this term is
taken into account, transition to a helicoidal magnetic
structure occurs at a temperature TC above the Curie
point, i.e., (TC – TC0)/TC0 = τ0 = (λ/2a)2. In a noncen-
trosymmetric cubic crystal, the small term proportional
to λM · curlM (i.e., linear in derivatives) gives rise to a
helicoidal magnetic superstructure modulating the fer-
romagnetic structure. The sign of λ determines the
energy-minimizing rotation of M in a particular mate-
rial. The term proportional to –γM2δ(r) describes a
local increase in the paramagnetic–ferromagnetic tran-
sition temperature near the point defect. The magnetic
stiffness parameter a is comparable in order of magni-
tude to the interatomic distance.

F
nθ
MS

2
------- τM2 b

2
---M4 a2 ∇ Mx( )2+ +

∫=

+ a2 ∇ My( )2 a2 ∇ Mz( )2 λM curlM⋅+ +

---– γM2δ r( ) HMz– 
 r,3d
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The minimum-energy equilibrium state of the sys-
tem is found by solving the Euler–Lagrange equations
associated with functional (1):

(2)

where the operators  = ∆,  = ∆ – 1/ρ2, and  =
∆ – 1/ρ2 are expressed in terms of the Laplacian ∆ writ-
ten in the cylindrical coordinates r = (z, ρcosφ, ρsinφ);

(3)

and

(4)

Here, C = γ(  + H/2τ) with M*z = Mz – H/2τ
(the difference between the total magnetic moment par-
allel to the z axis and its homogeneous spatial part). The
magnetic moment of the defect is parallel to the z axis.

Since Eqs. (2) are difficult to solve analytically, we
make use of the following procedure. First, we find the
eigenvalues and eigenfunctions of (2) with a zero right-
hand side,

(5)

∆̂zz τ– L̂zρ L̂zφ

L̂ρz ∆̂ρρ τ– L̂ρφ

L̂φz L̂φρ ∆̂φφ τ– 
 
 
 
 

r

×
M∗ z

r'( )

Mρ r'( )

Mφ r'( ) 
 
 
 
 
 

f z r( )

f ρ r( )

f φ r( ) 
 
 
 
 

,=

∆̂zz ∆̂ρρ ∆̂φφ

L̂zρ L̂ρz–
λ
ρ
---

φ∂
∂

,= =

L̂ρφ L̂φρ– λ
z∂

∂ 2

ρ2
-----

φ∂
∂

,–= =

L̂φz L̂zφ– λ
ρ2
-----– λ ρ∂

∂
;= =

f z r( ) C
δ ρ( )δ z( )

2πρ
-------------------– bM∗ z

M2,+=

f ρ r( ) bMρM2, f φ r( ) bMφM2.= =

M z 0= ρ 0=,( )
z

∆̂zz τ– L̂zρ L̂zφ

L̂ρz ∆̂ρρ τ– L̂ρφ

L̂φz L̂φρ ∆̂φφ τ– 
 
 
 
 

r

×
M∗ z r'( )α ω σ ν, ,( ),

Mρ r'( )α ω σ ν, ,( ),

Mφ r'( )α ω σ ν, ,( ), 
 
 
 
 
 

0.=
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The result is
τ1 = –(ω2 + σ2),

τ2 = –(ω2 + σ2 + λ ),

(6)

τ3 = –(ω2 + σ2 – λ ),

M1 ω σ ν, ,( ),*
z z ρ φ, ,( )

ω

ω2 σ2+
----------------------Jν σρ( )eiωzeiνφ,=

M1 ω σ ν, ,( ),
ρ z ρ φ, ,( )

iσ

2 ω2 σ2+
------------------------- Jν 1+ σρ( ) Jν 1– σρ( )–( )eiωzeiνφ,=

M1 ω σ ν, ,( ),
φ z ρ φ, ,( )

σ

2 ω2 σ2+
------------------------- Jν 1+ σρ( ) Jν 1– σρ( )+( )eiωzeiνφ.=













ω2 σ2+

M2 ω σ ν, ,( ),*
z z ρ φ, ,( )

1

2
------- σ

ω2 σ2+
----------------------Jν σρ( )eiωzeiνφ,=

M2 ω σ ν, ,( ),
ρ z ρ φ, ,( )

i

2 2
---------- σ2

ω2 σ2+
----------------------

Jν 1+ σρ( )

ω2 σ2+ ω+
--------------------------------

Jν 1– σρ( )

ω2 σ2+ ω–
--------------------------------+

 
 
 

eiωzeiνφ,=

M2 ω σ ν, ,( ),
φ z ρ φ, ,( )

1

2 2
---------- σ2

ω2 σ2+
----------------------

Jν 1+ σρ( )

ω2 σ2+ ω+
--------------------------------

Jν 1– σρ( )

ω2 σ2+ ω–
--------------------------------–

 
 
 

eiωzeiνφ.=















ω2 σ2+

M3 ω σ ν, ,( ),*
z z ρ φ, ,( )

1

2
------- σ

ω2 σ2+
----------------------Jν σρ( )eiωzeiνφ,=

M3 ω σ ν, ,( ),
ρ z ρ φ, ,( ) –

i

2 2
---------- σ2

ω2 σ2+
----------------------

Jν 1+ σρ( )

ω2 σ2+ ω–
--------------------------------

Jν 1– σρ( )

ω2 σ2+ ω+
--------------------------------+

 
 
 

eiωzeiνφ,=

M3 ω σ ν, ,( ),
φ z ρ φ, ,( ) –

1

2 2
---------- σ2

ω2 σ2+
----------------------

Jν 1+ σρ( )

ω2 σ2+ ω–
--------------------------------

Jν 1– σρ( )

ω2 σ2+ ω+
--------------------------------–

 
 
 

eiωzeiνφ.=















It can be shown that  (α = 1, 2, 3) make up a set
of orthonormal functions:

Here, c.c. denotes a complex conjugate. Next, we intro-

Mα*
z ρ φ, ,

σ σ ω Mα ω σ ν, ,( ),
i r1( )

α 1 2 3, ,=

∑d∫d∫
ν
∑

× Mα ω σ ν, ,( ),
j r2( )( )c.c. δ r1 r2–( )δij.=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
duce Green functions of (5),

(7)

Gij r1 r2,( ) σ σd∫
ν
∑=

× ω
Mα ω σ ν, ,( ),

i r1( ) Mα ω σ ν, ,( ),
j r2( )( )c.c.

τα τ–
---------------------------------------------------------------------------,

α 1 2 3, ,=

∑d∫
SICS      Vol. 99      No. 6      2004
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which satisfy the system of equations

(8)

where  is the identity matrix. Thus, the formal solu-
tion to Eqs. (2) has the form

(9)

3. NUMERICAL RESULTS
AND CONCLUSIONS

To compute the spatial distribution of magnetiza-
tion, we solved (9) iteratively for several values of the
external magnetic field.

Solutions to Eqs. (9) for the components of M are
difficult to find in explicit form. However, if we drop
the nonlinear terms in (4), then

(10)

and expressions for the magnetization components can
readily be found by substituting (9) into (10) and using
Green functions:

(11)

Since the system is homogeneous with respect to φ, the
eigenfunctions given by (6) reduce to

∆̂zz τ– L̂zρ L̂zφ

L̂ρz ∆̂ρρ τ– L̂ρφ

L̂φz L̂φρ ∆̂φφ τ– 
 
 
 
 

r

×
Gzz r1 r2,( ) Gzρ r1 r2,( ) Gzφ r1 r2,( )

Gρz r1 r2,( ) Gρρ r1 r2,( ) Gρφ r1 r2,( )

Gφz r1 r2,( ) Gφρ r1 r2,( ) Gφφ r1 r2,( ) 
 
 
 
 
 

 = Îδ r1 r2–( ),

Î

Mi r1( ) r2Gij r1 r2,( ) f j r2( ).d∫
j

∑=

f 0z z ρ φ, ,( ) C
δ ρ( )δ z( )

2πρ
-------------------,–=

f 0ρ z ρ φ, ,( ) 0,=

f 0φ z ρ φ, ,( ) 0,=

M
0*z

z ρ,( ) = C ρ' ρ' z' φ'Gzz r r',( )
δ ρ'( )δ z'( )

2πρ'
----------------------,d∫d∫d∫–

M0ρ z ρ,( ) = C ρ' ρ' z' φ'Gρz r r',( )
δ ρ'( )δ z'( )

2πρ'
----------------------,d∫d∫d∫–

M0φ z ρ,( ) = C ρ' ρ' z' φ'Gφz r r',( )
δ ρ'( )δ z'( )

2πρ'
----------------------.d∫d∫d∫–
JOURNAL OF EXPERIMENTAL
τ1 = –(ω2 + σ2),

τ2 = –(ω2 + σ2 + λ ),

(12)

τ3 = –(ω2 + σ2 – λ ),

Substituting the eigenfunctions from (12) into (7), we
obtain

M1 ω σ,( ),*
z

z ρ,( )
ω

ω2 ρ2+
----------------------J0 σρ( )eiωz,=

M1 ω σ,( ),
ρ z ρ,( )

iσ

ω2 σ2+
----------------------J1 σρ( )eiωz,=

M1 ω σ,( ),
φ z ρ,( ) 0,=










ω2 σ2+

M2 ω σ,( ),
*z

z ρ,( )
1

2
------- σ

ω2 σ2+
----------------------J0 σρ( )eiωz,=

M2 ω σ,( ),
ρ z ρ,( )

iω

2 ω2 σ2+
------------------------------J1 σρ( )eiωz,–=

M2 ω σ,( ),
φ z ρ,( )

1

2
-------J1 σρ( )eiωz,=













ω2 σ2+

M3 ω σ,( ),*
z

z ρ,( )
1

2
------- σ

ω2 σ2+
----------------------J0 σρ( )eiωz,=

M3 ω σ,( ),
ρ z ρ,( )

iω

2 ω2 σ2+
------------------------------J1 σρ( )eiωz,–=

M3 ω σ,( ),
φ z ρ,( )

1

2
-------J1 σρ( )eiωz.–=













Gzz r1 r2,( ) σ σ ωdd∫–=

×
ω2 σ2 τ+ +( )2 λ2ω2–( )J0 σρ1( )J0 σρ2( )e

iω z1 z2–( )

ω2 σ2 τ+ +( ) ω2 σ2 τ+ +( )2 λ2 ω2 σ2+( )–( )
-------------------------------------------------------------------------------------------------------------------,

Gρρ r1 r2,( ) σ σ ωdd∫=

×
ω2 σ2 τ+ +( )2 λ2σ2–( )J1 σρ1( )J1 σρ2( )e

iω z1 z2–( )

ω2 σ2 τ+ +( ) ω2 σ2 τ+ +( )2 λ2 ω2 σ2+( )–( )
------------------------------------------------------------------------------------------------------------------,

Gφφ r1 r2,( ) σ σ ωdd∫–=

×
ω2 σ2 τ+ +( )J1 σρ1( )J1 σρ2( )e

iω z1 z2–( )

ω2 σ2 τ+ +( )2 λ2 ω2 σ2+( )–
------------------------------------------------------------------------------------------,
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(13)

Thus, combining (10) with (13) at the first iterative
step, we obtain

(14)

At the next iterative step, the magnetization compo-
nents are calculated numerically by solving (2) with

Gzρ r1 r2,( ) σ σ ωdd∫=

×
iσωλ2J0 σρ1( )J1 σρ2( )e

iω z1 z2–( )

ω2 σ2 τ+ +( ) ω2 σ2 τ+ +( )2 λ2 ω2 σ2+( )–( )
----------------------------------------------------------------------------------------------------------,

Gρz r1 r2,( ) σ σ ωdd∫=

×
iσωλ2J1 σρ1( )J0 σρ2( )e

iω z1 z2–( )

ω2 σ2 τ+ +( ) ω2 σ2 τ+ +( )2 λ2 ω2 σ2+( )–( )
----------------------------------------------------------------------------------------------------------,

Gzφ r1 r2,( ) σ σ ω
σλJ0 σρ1( )J1 σρ2( )e

iω z1 z2–( )

ω2 σ2 τ+ +( )2 λ2 ω2 σ2+( )–
---------------------------------------------------------------------,dd∫=

Gφz r1 r2,( ) σ σ ω
σλJ1 σρ1( )J0 σρ2( )e

iω z1 z2–( )

ω2 σ2 τ+ +( )2 λ2 ω2 σ2+( )–
---------------------------------------------------------------------,dd∫=

Gρφ φρ( ) r1 r2,( )

=  – σ σ ω
iωλJ1 σρ1( )J1 σρ2( )e

iω z1 z2–( )

ω2 σ2 τ+ +( )2 λ2 ω2 σ2+( )–
---------------------------------------------------------------------.dd∫

M
0*z

z ρ,( ) C σ σ ωd

∞–

+∞

∫d

0

+∞

∫=

× ω2 σ2 τ+ +( )2 ω2λ2–

ω2 σ2 τ+ +( ) ω2 σ2 τ+ +( )2 λ2 ω2 σ2+( )–( )
----------------------------------------------------------------------------------------------------------

× J0 σρ( )eiωz,

M0ρ z ρ,( ) C σ σ ωd

∞–

+∞

∫d

0

+∞

∫=

× iωσλ2–

ω2 σ2 τ+ +( ) ω2 σ2 τ+ +( )2 λ2 ω2 σ2+( )–( )
----------------------------------------------------------------------------------------------------------

× J1 σρ( )eiωz,

M0φ z ρ,( ) C σ σ ωd

∞–

+∞

∫d

0

+∞

∫=

× σλ
ω2 σ2 τ+ +( )2 λ2 ω2 σ2+( )–

---------------------------------------------------------------------J1 σρ( )eiωz.
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nonlinear terms (4). The results have the form

where Izi , Iρi , and Iφi are numerical coefficients obtained
by integrating expressions depending on G0ij and M0i

with respect to ω and σ. To illustrate the results
obtained, we used a Cartesian coordinate system to cal-
culate the components Mx and My of the magnetization
projected onto the plane z = z1 – z2 = 2π perpendicular
to the helicoid axis.

Figure 1 shows the two-dimensional magnetization
pattern obtained in the plane perpendicular to the z axis
for zero external field. This distribution agrees with that
obtained in [6] in the absence of external magnetic field
and nonlinear term bM4/2 in the Helmholtz free-energy
functional.

Figure 2 illustrates the evolution of magnetic struc-
ture. The degree of helicity increases with the strength
of the external magnetic field parallel to the z axis from
Fig. 2a to Fig. 2d as the vortex formation due to the
exchange interaction involves magnetic moments
located at progressively larger distances from the
defect.

The properties of the nonuniform states examined
here are characteristic of a broad class of systems.

Mz H/2τ I1zH I2zbH3,+ +∼

M
ρ

I1ρH I2ρbH3,+∼

Mφ I1φH I2φbH3,+∼

Fig. 1. Magnetization distribution in a plane perpendicular
to the helicoid axis (z = z1 – z2 = 2π) in the absence of exter-
nal magnetic field.
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(a) (b)

(d)(c)

Fig. 2. Magnetization distribution in a plane perpendicular to the helicoid axis (z = z1 – z2 = 2π) at magnetic-field strengths (a) 3,
(b) 4, (c) 5, and (d) 6 (in arbitrary units).
Therefore, both the proposed method for calculating
the response of a system to an external magnetic field
and the results obtained can be used in other areas of
solid-state physics.
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Abstract—The relaxation of the anomalous state, i.e., the return of the growth kinetics to the regime typical of
crystals in the normal state, is studied experimentally in the temperature range 0.48–0.68 K. It is found that the
relaxation process with the growth rate decreasing by two orders of magnitude mainly occurs 1–20 ms after the
termination of the fast growth stage. Slow relaxation to the normal values of the kinetic growth coefficient is
observed subsequently during a time interval equal approximately to 100 ms. © 2004 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

The growth kinetics for helium crystals with small
deviations from equilibrium has been studied in detail
both above the temperature of faceting transitions in the
atomically rough state and below this temperature (in
the atomically smooth state). The main features of the
kinetics can be described using the model of layer
growth of the crystal [1] taking into account the quan-
tum effects described by Andreev and Parshin [2]. The
phenomenon of anomalous growth, which does not fit
this pattern, is manifested in a sharp increase in the
facet growth rate by several orders of magnitude at
strong supersaturation [3]. The conditions for the emer-
gence of this state have been determined [4–6], the
kinetics of its emergence has been studied [7], the
growth rates after a transition to the anomalous state
have been measured [7, 8], and the effect of impurities
on these processes has been investigated [9]. These
experiments have led to the rejection of possible expla-
nations for anomalous growth based on the mecha-
nisms studied on classical crystals (see [1]). However,
the pattern of evolution of the anomalous state
remained incomplete until the reverse process (return
of the crystal to the normal state) was studied experi-
mentally. We apply the term normal state to a state with
a slow growth kinetics controlled by known mecha-
nisms (spiral growth, Frank–Read sources, and two-
dimensional nucleation [1]). In this case, the mobility
of facets is determined by external supersaturation and
is independent of the past history.

After transition to the anomalous state, the crystal
rapidly grows and the pressure in the container drops to
a value close to the phase-equilibrium pressure and is
obviously smaller than the supersaturation pressure
required for the emergence of the anomalous state. It is
known from previous experiments that a second after
this instant, the crystal behaves as a normal crystal [10].
Later, a smaller value equal to 100 ms was estimated for
the return time [5]. These data characterized in general
1063-7761/04/9906- $26.00 © 21214
the return to the normal state. The details of the relax-
ation process were unknown. In particular, it remained
unclear how the reverse process of relaxation occurs:
abruptly, as during the formation of the anomalous
state, or continuously with a monotonic decrease in the
kinetic growth coefficient by several orders of magni-
tude.

A sharp increase in the growth rate for the (0001)
facet free of growth dislocations was observed in the
temperature range 0.002–0.25 K both in our experi-
ments from the pressure jump and in [11], where opti-
cal methods were used. Pressure recording shows that
after the pressure drop (fast growth phase), the pressure
begins to increase, indicating an extremely low growth
rate. Thus, the relaxation to the normal state is detected
in this case also. However, the low time resolution of
the capacitive sensor and optical recording (~1 s) does
not permit the clarification of the details of the relax-
ation process.

Here, we study the relaxation of a helium crystal to
the normal state.

2. EXPERIMENTAL TECHNIQUE

It was known from previous experiments that the
crystals do not differ in appearance from normal crys-
tals prior to the transition to their fast growth and after
its termination [7, 12]. For the time being, the only indi-
cation of the anomaly is the high growth rate for facets,
which exceeds the normal growth rate by several orders
of magnitude. Thus, the process of return to the normal
state (relaxation) can be traced so far only by studying
the facet growth kinetics at weak supersaturation that
does not induce a transition to the anomalous phase. In
our experiments the crystal growth was ensured by a
continuous supply of liquid helium to the container via
a capillary connecting the experimental volume with
the external high-pressure system. Since the mass of
helium in the container and in the pressure system is
004 MAIK “Nauka/Interperiodica”
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constant, we can write the equations connecting the
pressures in both parts of the system:

(1)

where subscripts 1 and 2 correspond to the container
and to the outer part, respectively. Primed parameters
pertain to solid helium, unprimed parameters corre-
spond to liquid helium, Vc is the volume of the helium
crystal, V1 is the internal volume of the container, and Z
is the impedance of the capillary. The volume V2 of the
outer part was changed by compression and extension
of the bellow. Below a temperature of 0.8 K at which
the experiments were performed, the effect of thermal
expansion of helium and the heat of crystallization is
negligibly weak [5]; for this reason, the corresponding
corrections were not taken into account in formulas (1).
Passing to more convenient variables, we obtain the
system of equations

(2)

where Dp0 is the supersaturation beginning from which
the crystal starts growing and kL is the compressibility
of liquid helium. It should be noted that the ratio of time
constants τ1 and τ2 is independent of the impedance of
the inlet capillary and is determined by the ratio of the
helium masses in the container and in the outer part
containing the gas. When the bellow is compressed at a
constant rate, the external pressure exceeds the pressure
in the container by

(3)

After the transition of the crystal to the anomalous
state, it grows upon supersaturation drop over a time
approximately equal to 1 ms ! τ1, 2; consequently, the

M1 M2+ M const,= =

M1 = ρ'Vc ρ p1( ) V1 Vc–( ), M2+ p2V2 t( )
m4

RT
-------,=

dM1

dt
----------

dM2

dt
----------–

p2 p1–
Z

-----------------,= =

d p1

dt
--------- D p0

df
dt
-----+

p2 p1–
τ1

-----------------,=

d p2

dt
---------

p2 p1–
τ1

-----------------– 1
τ1

τ2
----+ 

  d p1

dt
---------

t 0<

,+=

τ1 ZρV1kL, τ2 Z
m4V2

RT
------------,= =

f
Vc

V1
ρ

∆ρ
-------kLD p0

------------------------------= ,

p2 p1 τ1

d p1

dt
---------,

d p1

dt
--------- const.≈+=
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initial conditions for system of equations (2) are given
by

(4)

Here and below, the pressure is measured from the
phase-equilibrium pressure. Substituting the experi-
mentally measured dependence p1(t) into system (2)
with initial conditions (4) and considering that the val-
ues of time constants considerably exceed the time of
the experiment (τ1 = 37 s, τ2 = 30 s, τ1, 2 @ texp ~ 0.2 s),
we obtain the following time dependence for the crystal
volume:

(5)

Note that since this expression contains the difference
between the current and initial pressures, the result
given by formula (5) is insensitive to the value of pres-
sure determined for the phase-equilibrium point.

Pressure measurements in the container and,
accordingly, the determination of the crystal volume
were performed with a step of 64 µs. However, it is pos-
sible to pass from the volume to the size and to deter-
mine the facet growth rate only in the following cases:
(i) a single crystal is formed, (ii) the growth anisotropy
is known, and (iii) the kinetics of closely packed facets
is slower than the kinetics of surfaces with other crys-
tallographic orientations. Then the crystal shape deter-
mined by the mobility of the basal and lateral facets is
a hexagonal prism and the change in the volume is
determined by the growth of the facets. A similar tech-
nique was used earlier for measuring rates at the fast
growth stage [7]. It is clear from the above arguments
that pressure measurements should be supplemented
with direct photography of the crystal in the course of
relaxation. The photographs of the crystal obtained
with a time interval of 20 ms (separation between half-
frames) provide reference points for reconstructing of
the entire process of crystal growth; this allows us to use
relation (5) for time intervals between frames for deter-
mining the growth rates of the facets.

Since the facet growth rate during relaxation
changes by several orders of magnitude, we will disre-
gard the anisotropy in the growth of equivalent facets
and use the linear relation

(6)

for connecting the growth rate with supersaturation;
this relation approximately holds for facets in the atom-

p1 p1 0( ),=

p2 D p0 τ1
d p1

dt
---------

t 0=

,+=

f 1.=

Vc t( ) V1
ρ

∆ρ
-------kL D p0 p1 t( )– p2 0( ) t

τ1
----+ 

  .=

V K
∆ρ
ρρ'
-------- p1=
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ically smooth state also (the applicability of this rela-
tion was discussed in [7]). The error in determining the
coefficient of growth resistance 1/K is the sum of the
errors in measuring the velocity and supersaturation.
The supersaturation is measured from the phase-equi-
librium pressure over the plane surface. In our experi-
ments, this point was determined after termination of
measurement during subsequent melting of the crystal.
The typical radius of curvature of the crystal surface
was approximately 1 mm, which leads to a correction
of about 0.02 mbar. Together with the root mean square
error ~0.07 mbar in pressure measurements, this leads
to an overall indeterminacy of ~ 0.1 mbar. This contri-
bution is significant in the region where supersaturation
is on the same order of magnitude or smaller. To obtain
an independent estimate of pressure in such cases, we
measured the curvature of atomically rough surfaces
from the photographs of the crystals. The error in the
optical method increases with supersaturation and
amounts approximately to 50% at 0.25 mbar. The com-
bination of different techniques has made it possible to
reduce the error of measurements up to 0.03–0.05 mbar
in the entire pressure range.

The experimental technique was described in detail
in a number of publications [5, 7]; we will outline here
only the main points. Crystals were grown from helium
purified by the thermomechanical technique in an opti-
cal container [13] mounted in an optical 3He refrigera-
tor [14]. Nucleation was initiated by a high-voltage
pulse applied to a tungsten needle. The pressure drop
was detected by a capacitive sensor with a band of
25 kHz. The crystal was photographed by a CCD cam-
era; the frames were synchronized with the voltage
pulse, pressure recording, and the pulsed source of light
with a pulse duration of 15 µs.

3. EXPERIMENTAL RESULTS 
AND DISCUSSION

The maximal supersaturation attainable in the
chamber is limited by spontaneous nucleation at the
wall. In optical experiments, this value was 8–10 mbar.
It turned out that the quality and shape of the crystal
substantially depend on the growth regime in the anom-
alous state. For this reason, we determined at the first
stage the growth conditions for crystals satisfying the
criteria described in the previous section and suitable
for measuring relaxation.

3.1. Growth Kinetics and Crystal Shape
during the Fast Growth Phase 

at High Supersaturation 

The crystal growth rate after the transition to the
anomalous state was studied earlier with the help of
optical methods for a supersaturation which does not
exceed ~6 mbar [5, 7]. The photographs of the crystal
showed that the crystal shape during the first ~200 µs
is  close to a hexagonal prism. Small ripples were
JOURNAL OF EXPERIMENTAL 
observed on the facets in the photographs, but the crys-
tal as a whole has clear faceting at this stage, reflecting
the hexagonal symmetry and indicating a slight anisot-
ropy on the order of 1.5–3 in the kinetic growth coeffi-
cient. This conclusion is also confirmed in the present
observations.

The crystals beginning to grow at a supersaturation
exceeding 6 mbar demonstrate strong deviations from
the hexagonal shape (see Fig. 1). It can be seen that the
crystal initially resembles a hexagonal prism. However,
120–200 µs after the transition, the shape of the crystal
is close to a sphere with noticeable “mounds.” Such a
shape is encountered the most frequently, although
quite exotic forms of crystals are also observed some-
times (see Fig. 5c below). Figure 2 shows the region in
which surface turbulence is observed. It can be seen
that the conditional boundary separating the stability
and instability regions (hatched band) lies approxi-
mately at 6 mbar. It should be noted that this graph
reflects only the cases when instability developed dur-
ing the growth over the first 200 µs. Most crystals
grown above the instability boundary have liquid inclu-
sions in the bulk (see Fig. 5c below) as well as extended
defects emerging at the surface; these defects cause
considerable distortion of the crystal surface, which is
especially pronounced in the equilibrium state attained
after the growth stage. This renders these crystals
invalid for relaxation measurements. Thus, the region
in which the return to the normal state can be studied
using the given method is limited by a supersaturation
of approximately 6 mbar from above and by the bound-
ary between the anomalous and normal phases from
below.

3.2. Possible Reasons
for Crystal Shape Distortion 

These observations lead to a new insight at the
results of measurement of crystal growth rates at high
supersaturation (Fig. 3). The method of determining the
crystal growth rate from the ratio of pressure ampli-
tudes is strongly substantiated by the assumption that
the crystal has a convex shape close to a sphere [7]. This
is observed for crystals acquiring a nearly spherical
shape (see Fig. 1). However, for the crystal shown in
Fig. 5c, this assumption is violated and the above-
described computational method leads to elevated val-
ues of the rate and kinetic growth coefficient. Conse-
quently, until the crystal shape above the instability
region is determined, the results of calculating the fast
growth rate based on the given method should be
treated as the upper boundary of the real values. Taking
into account these remarks, we will consider the values
of the average growth rate at the first half-wave of pres-
sure oscillations (in the first ~200 µs) for crystals
with an initial supersaturation of approximately 10 mbar
(Fig. 4). Attenuation of subsequent pressure oscilla-
tions is associated with the growth/melting of atomi-
cally rough regions. The damping decrement makes it
AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004
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Fig. 1. Crystal growth at T = 0.48 K. The vertical arrow marks the instant corresponding to the application of a high-voltage pulse.
At the initial stage, the crystal has a visible kinetic faceting with a slight anisotropy of growth. Instability leads to a nearly spherical
shape of the crystal after about 200 µs.
possible to obtain an order-of-magnitude estimate of
the kinetic growth coefficients for these surfaces for a
supersaturation below 1 mbar (see Fig. 4). These values
give the interval of values from which the return to the
normal state begins.

According to experimental results, the crystal has
well-defined facets prior to the transition to the anoma-
lous state and grows due to mechanisms associated
with defects [5, 7]. At this stage, the pattern of crystal
growth suggests that the basal and lateral facets are in
an atomically smooth state. Saturation as such does not
violate the faceting transition. After a transition to the
anomalous state, kinetic faceting of the crystal is
observed in experiments [8], which only indicates an
anisotropy in the crystal growth. This anisotropy can
emerge during the growth of both atomically smooth
and atomically rough facets. Indeed, the emergence of
flat regions on the surface of a growing crystal was
experimentally observed above the faceting transition
also, when the boundary pertains to the atomically
rough state [5, 15]. Consequently, it remains unclear
whether the crystal surface returns to the atomically
rough state or remains atomically smooth upon a tran-
sition to the anomalous phase.

Andreev [16] studied the stability of an atomically
smooth surface in a tangential flow of a liquid and
proved that the change in the energy of a stage leads to
cylindrical faceting of the crystal. In our case, the liquid
flows on the boundary mainly along the normal, which
differs from the purely tangential flow considered
in [16]. The experiments with a liquid jet directed to the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
basal facet of the crystals revealed that the facet
remains undistorted at flow velocities up to 50 cm/s,
which corresponds to growth rates of about 5 m/s [17].

Fig. 2. Phase diagram of the anomalous state. The solid
curve separates the regions of normal (below the curve) and
anomalous growth. The circles indicate the growth series in
which the instability of the crystal shape did not develop,
while the squares correspond to crystals with a noticeable
deviation from the hexagonal shape; the boundary between
them is shown by the hatched region. The dashed curve
shows the variation of limiting supersaturation for the tan-
gential instability [18, 19].

14

12

10

8

6

4

2

0
0.4 0.5 0.6 0.7 0.8

T, K

Dp0
, mbar
SICS      Vol. 99      No. 6      2004



1218 TSYMBALENKO
5

4

3

2

1

0 5 10 20 30

V, m/s

Dp0
, mbar

15 25

Fig. 3. Dependence of the crystal growth rate on supersatu-
ration immediately after transition to the anomalous state:
T = 0.653 (s), 0.533 (n), 0.421 (e), and 0.206 K (*).
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Fig. 4. Temperature dependence of the kinetic growth coef-
ficient determined from pressure oscillations. The circles
demonstrate the kinetics of the facets during the first
~200 µs after the formation of the fast phase, the squares
show the kinetics of atomically rough surfaces at the final
stage of oscillations. The dashed curve corresponds to the
kinetic coefficient of the growth of atomically rough sur-
faces measured for small deviations from the equilibrium
state by the crystallization wave technique.
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Although the situation in experiments with a jet differs
from the situation of crystal growth on a needle, the
facet stability up to such high velocities speaks in favor
of the conclusion about the stability of the crystal shape
in the atomically smooth state in the case of a fast
growth.

If, however, the transition to the anomalous phase
leads to a transition of the facets to the atomically rough
state, the singularity of the surface rigidity on closely
packed facets disappears, and hydrodynamic instabili-
ties associated either with crystallization waves of with
the Kagan–Nozieres–Uwaha instability become possi-
ble [18, 19]. In the former case, ripples on the crystal
surface could be due to generation and propagation of
crystallization waves since the kinetic growth coeffi-
cients of the facets are quite large. The dispersion rela-
tion for the waves disregarding the gravitational contri-
bution as well as the tangential liquid flow (see below)
has the form [2]

(7)

where ω and k are the frequency and the wavevector of
a crystallization wave and α is the surface rigidity. To
estimate the surface rigidity, we disregard the depen-
dence of the surface energy on the orientation and
assume that the surface energy is about 0.2 erg/cm2. For
a running crystallization wave, the condition

(8)

must be observed; for 1/K ~ 10 cm/s (see Fig. 4), this
condition makes it possible to estimate the minimal
wavevector as k ~ 104 cm–1 and the damping time for
wave damping proportional to exp(–t/τ) as

(9)

These estimates show that the length of crystallization
wave propagating over a facet is on the order of 10–4 cm
and is too short to form the observed distortions on the
facet surface. In addition, these waves must attenuate
over a time two orders of magnitude shorter than the
characteristic growth time. Thus, the excitation of crys-
tallization waves is not responsible for the observed
deformation of the crystal shape.

The stream of liquid flowing over the surface change
the dispersion relation for crystallization waves and,
according to Nozieres and Uwaha [18] and Kagan [19],
may lead to surface instability. These authors observed
an instability similar to the Kelvin–Helmholtz tangen-
tial discontinuity instability and found that a liquid flow
along the normal does not lead to instability.1 In the

1 The conclusion drown in [17] concerning the surface instability
during crystal growth is erroneous. The authors are grateful to
A.Ya. Parshin for pointing out this circumstance.
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case of free crystal growth at the center of the container,
its kinetic faceting in the form of a hexagonal prism
generates a tangential flow of the liquid with velocity v t

in the region of the edges, which might be a source of
instability. In the presence of a tangential liquid flow,
the dispersion relation for crystallization waves has the
form

(10)

The positive imaginary part of frequency leads to an
exponential increase in the perturbation amplitude.
Since the observed instability develops over a time of
approximately 100 µs, the values of the tangential
velocity must be quite large. Assuming that the peak
value of Im(ω) = 104 s–1 and using the kinetic growth
coefficient from Fig. 4, we can numerically calculate
the required values of v t . These values lie in the interval
25–40 cm/s. Assuming that tangential velocities are
proportional to the velocity v n of the normal flow of the
liquid and this relation (geometrical factor) is approxi-
mately constant in the temperature interval studied
here, we can calculate the temperature variation of
supersaturation required for the development of tan-
gential instability (see Fig. 2). The geometrical factor
v t/v n ~ 0.2 is chosen in such a way that the stability
boundary passes through point Dp = 6 mbar at T =
0.4 K. It can be seen that an increase in temperature
leads to a decrease in the kinetic growth coefficient;
consequently, a higher velocity of the liquid flow (and,
hence, a higher pressure) is required. Such a steep
dependence disagrees with the experimental data and
the observed instability is hardly a consequence of the
Kagan–Nozieres–Uwaha tangential instability [18, 19]
developing due to nonuniformity of the helium flow.

The crystal surface distortions are probably associ-
ated with the emergence and development of turbulence
in the liquid flow near the crystal since the flow velocities
are high (see Fig. 3). Our results are insufficient to draw
an unambiguous conclusion concerning this process.

3.3. Relaxation to the Normal State 
in front of the Instability Boundary 

In this region, the crystals correspond to the above-
formulated criteria, contain insignificant defects, and
have the shape of a hexagonal prism. The reconstruc-
tion of the crystal dimensions from the projection intro-
duces an error of about 0.01 mm in the measurement of
linear sizes. The time interval between the shots was
varied from 20 to 100 ms, which sets the lower limit on
a facet growth rate of ~0.01 cm/s. The growth rate is
limited from above by the helium inflow and does not
exceed 0.1 cm/s in our experiments. For supersatura-
tions Dp ≥ 0.1 mbar, the corresponding kinetic growth
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coefficients lie in the region 1/K ≥ 5 m/s. The results for
the growth coefficients for the fastest lateral facets will
be given below. The values of K for the basal facets can
be obtained from these data by multiplying them with
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Fig. 5. Examples of crystal growth at the stage of relaxation
to the normal state at 0.48 K. (a) Relaxation of the crystal
with the initial supersaturation near the boundary of the
anomalous region. (b) Relaxation of the crystal for a resid-
ual pressure of approximately up to 0.25 mbar. (c) The
shape and relaxation of a crystal formed at a high supersat-
uration. 
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the anisotropy coefficient, which lies in the interval
0.3–0.6 at T ~ 0.5 K and in the range 0.05–0.15 at T ~
0.7 K.

Crystal Relaxation at T = 0.48 K 

Let us consider the relaxation of the crystals formed
near the boundary of the anomalous phase (Fig. 5a).
The kinetic coefficient of fast growth, which is deter-
mined from the amplitude ratio, is 1/K = 0.14 m/s. After
completion of the fast growth phase, the pressure in the
container stabilizes at a value exceeding the equilib-
rium pressure by the Laplacian pressure for a plane sur-
face. According to the rounded shape of the crystals in
Fig. 5a, this difference amounts to about 0.07 mbar. The
liquid inflow via the capillary leads to crystal growth
primarily in the region of rounded edges, where the
kinetic growth coefficient is higher than the growth
coefficient for the facets. As long as atomically rough
regions grow, the pressure variation reflects the
increase in the curvature of these regions (dashed curve
in Fig. 5a). Then the observed growth of the facets
begins, and the kinetics of their growth can be deter-
mined using the technique proposed above (Fig. 6). It
can be seen that, beginning at t ~ 100 ms, the kinetic
growth coefficient remains unchanged within the mea-
surement error. For time periods t < 100 ms, the lower
boundary of coefficient 1/K ≤ 10 m/s. Thus, the mobil-
ity of the facets decreases at least by two orders of mag-
nitude approximately 20 ms after the termination of the
fast growth stage.

Crystal growth due to atomically rough regions
increases the delay beginning from which out technique

250

200

150

50

0 0.05 0.10 0.15 0.25
t, s

1/K, m/s

100

0.20

a

b

c

Fig. 6. Variation of the kinetic growth coefficient at the final
stage of relaxation. The notation of the curves corresponds
to the series in Fig. 5. The time is measured from the instant
of pressure jump.
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is applicable. From this standpoint, series of measure-
ments in which the pressure in the container differs
from the equilibrium pressure by a large value (Dp ≥
0.2 mbar) after the termination of the fast growth stage
are preferable. In this case, the curvature of the edges is
small and the growth resource due to atomically rough
regions is exhausted much more rapidly. Figure 5b
shows an example of such a series of measurements.
During the fast growth, the kinetic coefficient is 1/K =
0.14 m/s. It can be seen from the photographs that,
beginning with t ~ 20 ms after the pressure jump, the
crystal increases in size due to facet growth. The corre-
sponding time dependence of the kinetic growth coeffi-
cient is shown in Fig. 6. During the period from 20 to
100 ms, a small (approximately by a factor of three)
relaxation of coefficient K can be observed, which
approaches the value 1/K = 150 ± 24 m/s. Thus, kinetics
relaxation mainly occurs over a time shorter than
20 ms. It remains unclear whether the inverse transition
occurs jumpwise or continuously.

It was noted above that analysis of relaxation for
high supersaturations is limited by the instability of the
crystal shape during the fast growth stage and, as a con-
sequence, the defectiveness and strong distortion of the
crystal facets. However, we managed to detect the
growth of a crystal which, in spite of the above-men-
tioned circumstances, had a shape suitable for such
measurements (see Fig. 5c). During fast growth, the
kinetic coefficient 1/K is 0.097 m/s; i.e., this coefficient
is approximately twice as large as that for the crystals
shown in Figs. 5a and 5b. Liquid inclusions in the crys-
tal do not change their positions. The pressure in the
container at the relaxation stage changes insignificantly
and is equal to 0.1 ± 0.06 mbar. The error in the mea-
surement of the phase-equilibrium pressure may
change the scale of K values by no more than a factor
of two in either direction. Figure 6 shows the values of
the kinetic growth coefficients calculated for Dp =
0.1 mbar as well as relative errors associated with
noise. It can be seen that the kinetic growth coefficient
slowly decreases, remaining approximately an order of
magnitude larger than the equilibrium value, but two
orders of magnitude smaller than the value measured
during fast growth.

Relaxation at T = 0.69 K 

At this temperature, the range of supersaturations at
which the crystals suitable for measurements are
formed is not large (see Fig. 2). However, an important
advantage of experiments in this region is that the time
interval between the instant of crystal formation and its
transition to the anomalous state is quite large (Fig. 7).
This makes it possible to measure the growth kinetics
prior to the transition together with relaxation measure-
ments. Figure 7 shows two series of growth with delays
of 16 ms (a) and 3.6 ms (b). It should be noted that the
crystal volume in series (a) with a high growth anisot-
ropy of 0.053 prior to the jump amounted approxi-
 AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004
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Fig. 7. Relaxation of crystals at 0.69 K for two different values of the initial supersaturation. The kinetic coefficients of crystal
growth before and after the anomalous growth differ by no more than a factor of two. Two-sided arrows indicate the intervals outside
the sensitivity limits of the given technique.
mately to 50% of the final volume; i.e., at the fast
growth stage, the crystal size has increased by just 25%.
For series (b), we managed to determine the fast kinetic
growth coefficient 1/Kfast = 0.22 m/s. The lower curve
shows the variation of the kinetic growth coefficient. It
can be seen that the value of K before the transition dif-
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fers only slightly from the value after the relaxation.
The difference by a factor of two is immaterial since,
according to the observation of the shape of kinetic
faceting in the normal growth regime determined by
defects [5, 10], the growth rates differ by a factor of
several units even for equivalent facets. The values of K
SICS      Vol. 99      No. 6      2004
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at T = 0.68 K are higher than at 0.48 K, which is in agree-
ment with the available experimental data [10, 12].

As at a temperature of 0.48 K, fast relaxation occurs
during approximately 20 ms after the transition and the
kinetic coefficient 1/K assumes values equal to 10–
20 m/s. Subsequently, the kinetics returns to the normal
regime over a time approximately equal to 100 ms.
Comparison of relaxation curves in Figs. 7a and 7b
shows a tendency that can also be observed in Fig. 6:
the time of slow relaxation to the normal state increases
with the initial supersaturation.

4. DISCUSSION

The experiments show that the main (fast) relax-
ation occurs over a time approximately from 1 to 20 ms
after the transition to the anomalous state. This time
interval could not be resolved by our technique; it is
known only that the kinetic growth coefficient 1/K was
in the interval 0.05–0.25 m/s at the initial point of the
transition and dropped to 10–20 m/s at the final point.
It remains unclear whether the main return was jump-
like or continuous. Furthermore, relaxation to normal
values close to the growth coefficient prior to the tran-
sition occurs with a characteristic time of approxi-
mately 100 ms. A tendency towards an increase in the
slow relaxation time (see Figs. 6 and 7) with increasing
initial supersaturation is observed. However, this con-
clusion cannot be regarded as final since a considerable
retardation of relaxation was observed in crystals
formed at high supersaturations (see Figs. 5c and 6). In
these cases, surface growth instability leading to the
emergence of defects in the crystal, the formation of
inclusions and, probably to saturation of the crystal
with vacancies was observed. Observations of the last
stage of the process complete the pattern of the effect.

Processes occurring during a long time and leading
to a sharp increase in the growth rate as well as the fast
growth mechanism itself still remain unclear. The only
phenomenon having common features with the given
effect (the phase diagram, the statistical nature of the
transition, and the effect of impurities) is the effect
described in [11]. A combination of these effect has fur-
ther reduced the list of possible sources of the fast
growth. Since acceleration took place in the latter case
at a perfect facet, sources of the growth must be formed
by the process itself. Two-dimensional nucleation is
ineffective for such small deviations from equilibrium.
A qualitatively new source of the growth was proposed
in [20], where it was proved that collisions of the stages
can lead to their transfer to the next crystallographic
plane, thus ensuring the growth of the perfect facet. An
increase in temperature and the introduction of impuri-
ties decelerates the stages, which requires a high super-
saturation for realizing such a scenario. This picture is
in qualitative agreement with the experiment and it is
perhaps this mechanism that ensures a fast kinetics of
the facets. However, the reason why this mechanisms is
JOURNAL OF EXPERIMENTAL 
not triggered for a long time and the crystal grows in the
conventional slow mode is not clear as yet. The expla-
nation of the fast growth based on a model proposed
in [21] does not agree qualitatively with the experimen-
tal results.
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Abstract—Experimentally observed features of the electrical and noise characteristics of bicrystal junctions of
cuprate superconductors, such as linearity of the critical current density versus square root of the junction trans-
parency and increase in the spectral density of shot noise for small bias voltages (below the superconducting
gap), indicate that the superconducting current in cuprate bicrystal junctions is determined by the passage of
quasi-particles through a potential barrier at the superconductor boundaries. This process involves bound states
appearing as a result of multiple Andreev reflections in superconductors with dominant wavefunction compo-
nents of the  symmetry type. At the same time, interpretation of the experimental current–phase and cur-

rent–magnetic field curves requires that the character of faceting at the bicrystal junctions would be also taken
into account. © 2004 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Shortly after the discovery of the Josephson effect,
according to which Cooper pairs penetrate through a
thin insulator layer (potential barrier) between two
superconductors, it was pointed out [1] that the super-
conducting current IS is proportional to the probability
of electron tunneling, or the barrier transparency D,
averaged over directions of the carrier momentum:
IS ∝  D. Note that this behavior differs from that
expected for a two-particle process, in which case the
current would be proportional to D2. Thus, the super-
conducting current IS is on the same order of magnitude
as the normal (single-particle) current (IN ∝  D). In this
context, it was suggested [1] that the transport of Coo-
per pairs is a complex process proceeding via an “inter-
mediate” electron–hole state in which the pair are dis-
sociated so that the barrier transparency for such a pair
is the same as that for single charge carriers. It was the-
oretically established, first for the superconductor–nor-
mal metal–superconductor (SNS) junctions [2] and
somewhat later (in the 1990s) for the superconductor–
insulator–superconductor (SIS) junctions [3], that these
intermediate states are related to multiple Andreev
reflections in superconductors.

In the case of tunneling junctions with a small trans-
parency of the boundary, the midgap states (called the
Andreev bound states) have energies close to the super-
conducting gap width ∆. In SNS junctions (with
D ≈ 1 [2]), as well as in the tunneling junctions involv-
ing cuprate superconductors with dominating wave-
function components of the  symmetry type

(D-type superconductors), Andreev levels occur near

d
x

2
y

2–
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the Fermi surface (low-energy levels) [4–6]. Since the
superconducting current is determined by the derivative
of the level energy with respect to the phase difference
ϕ of the wavefunctions of superconductors [7], the
behavior of superconducting currents in DID and SNS
junctions differ from that in SIS junctions. In particular,
SNS junctions are characterized by the critical current
Ic(T) linearly increasing in a broad temperature range,
whereas the temperature dependence of the critical cur-
rent in SIS junctions rapidly reaches saturation [8]. In
addition, the behavior of Ic(T) in DID junctions depends
on the orientation of D-type superconductors [5, 9, 10].

The influence of Andreev states on the phase and
temperature dependences of the critical current in bic-
rystal junctions of cuprate superconductors has been
experimentally studied in [11–14]. Alff et al. [12] also
observed peculiarities in the current–voltage character-
istics of such junctions that were caused by the pres-
ence of low-energy Andreev levels. Previously, we have
pointed out certain features in the properties of bicrys-
tal junctions, related to the low-energy Andreev levels
in bicrystal junctions of cuprate superconductors.
These peculiarities were manifested both in the electri-
cal characteristics of junctions [13, 14], and in the
appearance of excess shot noise at small voltages in
such contacts [15–18]. However, despite a large num-
ber of publications on the physical properties of con-
tacts involving metal oxide superconductors with high
critical temperatures (see, e.g., review [19] and refer-
ences therein), no systematic experimental investiga-
tions into the features of shot noise in such systems
have been performed so far. The 1/f type noise in a bic-
rystal junction was studied by Kawasaki et al. [20], but
004 MAIK “Nauka/Interperiodica”
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their data cannot be used to evaluate the effective trans-
ferred charge Q, which requires measurements of the
shot noise to be performed at much higher frequencies.
It should be noted that measurements of the spectral
density of shot noise and the dependence of Q on the
applied voltage provides additional information about
the mechanism of charge transfer in the junction.

This paper presents the results of experimental
investigations of the electrical and noise characteristics
of bicrystal junctions of cuprate superconductors and
considers the influence of low-energy Andreev bound
states on the current transport in such junctions.

2. ANDREEV STATES
IN SYMMETRIC SUPERCONDUCTING 

BICRYSTAL JUNCTIONS

It was theoretically established [2, 3] that, in the
course of multiple Andreev reflections at the bound-
aries of usual (S-type) superconductors, one electron is
reflected as a hole and the Cooper pair passes to a
superconductor. The Andreev bound states are local-
ized within a boundary layer at the interface, which has
a thickness on the order of the coherence length. The
energy of Andreev levels in the junctions between S-
type superconductors can be expressed as

(1)

where ∆ is the superconducting energy gap width.

ESC ∆ 1 D ϕ /2( )sin
2

– ,±=

1.0

0.8

0.6

0.4

0.2

0 0.4 0.8 1.2 1.6 2.0

EMGS

ESC

E(ϕ)/∆(θ)
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Fig. 1. The phase dependence of the energy of Andreev lev-
els in a tunneling junction between S-type superconductors
(solid curve) and the low-energy Andreev levels in a
DαID−α junction (dashed curve) with a transparency of D =
0.1. The inset shows a schematic diagram of the bicrystal
junction between two D-type superconductors with sym-
metric misorientation of the crystallographic axes relative
to the direction of incidence of electrons and holes.
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For junctions with a low transparency of the barrier
(D ! 1), the levels occur near the superconducting gap
(Fig. 1). Most properties of the SIS junctions can be
described both using the tunneling Hamiltonian model
and in terms of the Andreev bound states.

The superconducting order parameter in a D-type
superconductor changes sign when the momentum of a
quasi-particle rotates by 90° (see the inset to Fig. 1). As
a result, the phases of Andreev reflections in the junc-
tions between D-type superconductors may have oppo-
site signs for the incident and mirror-reflected quasi-
particles. The sequence of mirror and Andreev reflec-
tions in the (110) plane leads to the formation of bound
states with the energy EMGS at the Fermi level [4]. On
the current–voltage characteristics of junctions
between a normal metal and a D-type superconductor
(NID contacts), a peak in the density of states is mani-
fested by anomalous conductivity observed at low
applied voltage [21, 22].

The dependence of the energy of Andreev levels on
the phase difference in a junction is determined by the
angles of misorientation (αL(R)) of the crystallographic
axes of D-type superconductors and by the angle of
incidence (θ) of the quasi-particle. For mirror-symmet-
ric (αL = –αR = α) junctions (DαID–α), the energy EMGS
of Andreev states for the angle α = 45° and the energy
gap ∆R(L) = ∆0cos(2θ + 2αL(R)) (where ∆0 = ∆(α = 0)
depend on the phase as [5, 6]

(2)

In contrast to the case described by Eq. (1), Andreev
levels with the energies EMGS(ϕ) occur near the Fermi
level even for D ! 1, and their amplitudes do not

exceed ∆0 .
Figure 2 shows the maximum energy of the Andreev

bound states at ϕ = π as a function of the incidence
angle θ for various misorientation angles α in a sym-
metric junction with the typical transparency D = 10–2.
In the symmetric junction with α = 45°, the low-energy
Andreev states (EMGS) are observed for all incident
quasi-particles. As the misorientation angle decreases
(α < 45°), the angles θ for which the EMGS levels are
observed range within a 2α-wide interval relative to the
directions θ = ±π/4. In other directions, the states with
energies (ESC) close to the energy gap appear. For
α = 0, the situation is close to that in the SIS junction,
where the energies of Andreev states are described by
formula (1).

Since the superconducting current is determined by
the energies of Andreev states,

both contributions (1) and (2) should be taken into
account for 0 < α < 45° by adding the corresponding
current components [6, 7, 11]. It should be noted that

EMGS ∆R L( ) ϕ /2( ) D θ( ).sin±=

D π/4( )

IS dE/ ϕ ,d∝
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the current is proportional to the first power of the trans-
parency D for the states described by formula (1), and
to the square root of D for the states described by for-
mula (2). The cone (angular range) of tunneling, which
determines the fraction of quasi-particles producing the
main contribution to the current, can be either wide
(D(θ) = D0cosθ, D0 = D(θ = 0), for δ-shaped barriers),
or rather narrow (D ∝  exp(–2θ) for thick barriers) [23].
In bicrystal junctions, the case of a thin barrier is more
likely to take place, since the barrier thickness for
superconducting current must not exceed the coherence
length ξ0.

3. METHODS OF PREPARATION 
AND CHARACTERIZATION

OF SUPERCONDUCTING JUNCTIONS

3.1. Sample Preparation 

The Josephson junctions were formed on ( )-

oriented Al2O3 bicrystal substrates with a misorienta-
tion angle of ±12° between the 〈 〉  crystallographic

axes. The epitaxial films of YBa2Cu3Ox (YBCO)
cuprate with a thickness of 100–200 nm were grown
at a substrate temperature of 750–770°C by means of
cathode sputtering in an oxygen atmosphere at a pres-
sure of 4 mbar. The cuprate films were deposited onto
a CeO2 buffer layer that was necessary to prevent the
diffusion of aluminum from the substrate to the YBCO
film at a high growth temperature. The 30-nm-thick
epitaxial CeO2 buffer layer was obtained by RF mag-
netron sputtering of a Ce target at 600–700°C in an
Ar–O2 gas mixture at a total pressure of 0.01 mbar.
The epilayers were grown for the following epitaxial
relations: (001)YBCO/(001)CeO2/( )Al2O3 and

〈110〉YBCO/〈001〉CeO2/〈 〉 Al2O3. Then, 5-µm-

long and 10-µm-wide bridges were formed in the
YBCO film by means of ion-plasma etching and liquid-
phase etching (0.5% Br2 solution in ethanol) via a pho-
toresist mask. In each sample, the bridges crossed the
boundary at various angles γ (within 0–54°) relative to
the normal to the interface. The deposition of CeO2 film
by sputtering a metallic Ce target, as well as the com-
bined (ion-plasma and liquid-phase) etching of YBCO
film, is an important original feature of the proposed
technology [13, 14].

3.2. Methods of Measurements 

The Josephson junctions obtained had the critical
current density within jc = 104–105 A/cm2 and the char-
acteristic voltage V0 = IcRN = 1–2 mV (RN is the junc-
tion resistance in the normal state) at T = 4.2 K. The
current–voltage characteristics of these junctions were
measures in a range of temperatures (4.2 K < T < 77 K),
magnetic fields (H ≤ 100 Oe), and under the action of a

1102

1120

1102

1120
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monochromatic microwave radiation with the fre-
quency fe = 30–100 GHz. In order to reduce the influ-
ence of external electromagnetic fields, all measure-
ments were performed in a shielded room, with signal
filtration in all leads connected to the samples. The crit-
ical temperatures of the superconducting films, as
determined from the results of resistance measurements
at an ac current below 1 µA, fell within Tc = 87–89 K.

The barrier layer transparency D (averaged over the
momentum directions) was defined by the relation

(3)

where pF is the Fermi momentum in YBCO, ρ is the
resistivity of YBCO, l is the mean free path of electrons
in the ab plane, and S is the contact area. For ρl = 4 ×
10–9 Ω cm2 and the typical values of RNS = (1–3) ×
10−7 Ω cm2, we obtain D = (1–3) × 10–2 [20, 22].

Figure 3 shows a schematic diagram of our experi-
mental setup for the noise measurements. The measure-
ments were performed in the decimeter wavelength
range, where 1/f type noise is absent. The setup
employed low-noise high-electron mobility transistors
operating in the frequency range fa = 1–2 GHz, with an
intrinsic noise temperature of TN1 = 8 ± 2 K and a gain
of G1 = 20 dB at T = 4.2 K. The balance input circuit
ensured stable operation in a broad range of loads (10–
100 Ω) and reduced the temperature of a background
radiation reaching the sample via a coaxial cable. The
noise temperature of the measuring circuitry contained
contributions from the second amplification stage

D
2π2

"
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e2 pF
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Fig. 2. Plots of the maximum energy of the Andreev bound
states at ϕ = π versus the quasi-particle incidence angle θ for
various misorientation angles α in a symmetric bicrystal
junction of D-type superconductors with a transparency of
D = 10–2.
SICS      Vol. 99      No. 6      2004
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(which occurred at room temperature and had an intrin-
sic noise temperature of TN2 = 130 K and a gain of G2 =
40 dB) and the coaxial cable (with a damping coeffi-
cient of α1 ≤ 0.2 dB) connecting the sample to the low-
noise amplifier. This amplifier was connected to the
second-stage amplifier occurring at T = 300 K via a
rigid coaxial cable in a stainless-steel braid. This cable
could be considered as consisting of two parts: the first,
with an effective temperature of TT1 ≈ 30 K and a damp-
ing factor of α2 ≤ 1.5 dB, and the second, with α3 ≤
0.5 dB at TT2 = 295 K (see Fig. 3). As a result, the total
noise temperature of the measuring system was

which was on the same order of magnitude as the back-
ground radiation temperature (Tb ≈ 10 K). Under condi-

T0 TN1≈

+
1
G
---- TT1 1 α2

1––( ) TT2 1 α3
1––( )

TN2

α1 α2+
------------------+ + 12 K,=

T = 4.2 KT > 4.2 K

T = 295 K
R = 12 Ω

I

R

F

J

A

G1

SA
V

nV

α1

α2 α3

G2

RR

Microwave

F

Fig. 3. Schematic diagram of the experimental setup for the
noise measurements: (J) sample; (I) dc current source;
(V) low-frequency voltage amplifier; (F) low-frequency fil-
ters; (SA) HP8563A spectrum analyzer; (G1, G2) first- and
second-stage amplifiers; (nV) analog nanovoltmeter; diode
symbol denotes a quadratic detector. Microwave signal is
transmitted via a waveguide with cooled 20-dB attenuator A
eliminating background irradiation of the sample.

Parameters of bicrystal junctions measured at liquid helium
temperature (T = 4.2 K)

Parameter
Sample

BC-9 BC-15 BC-16 BC-21

Misorientation 
angle α

33° 12° 12° 12°

Ic, µA 70 18 55 32

RN, Ω 16 90 40 60

RNS, Ω µm2 10 45 20 30

Qmax/e 10 – 16 15

VQ, µV 300
(H = 0)

– 30
(H = 65 Oe)

10
(H = 45 Oe)

∆V, mV (for Q ~ e) V > 4 25–70 20–60 5–20

 signal
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tions of good impedance matching between the sample
junction and the low-noise amplifier, the accuracy of
noise temperature determination was ±5 K. In order to
minimize the influence of the background radiation
reaching the sample via the rectangular waveguide, we
used a cooled microwave absorber ensuring a 20-dB
attenuation. The noise temperature of the measuring
system was calibrated by varying the temperature of
a 50-Ω-impedance matched load connected instead of
the sample.

The response signal voltage (proportional to the
noise power PN) was measured at the output of a qua-
dratic detector. Simultaneously, the amplitude–fre-
quency characteristic was measured at the amplifier
output. The absence of resonance features on this char-
acteristic in the course of noise measurements was evi-
dence of a good impedance matching between the sam-
ple junction and the measuring circuit. By varying the
inductance of the cable connecting the sample to the
amplifier, it was possible to ensure nonresonance
impedance matching in a broad range of normal resis-
tances of the sample junctions (RN = 15–90 Ω). How-
ever, exact quantitative determination of the spectral
density of current fluctuations SI(V) ∝  PN/Rd (Rd is the
differential resistance of the junction) and the corre-
sponding effective transferred charge Q(V) = SI(V)/2I
was possible only for the junctions with normal resis-
tances within a narrower interval, RN = 20–60 Ω . Data
on the maximum effective transferred charge Qmax, the
range of voltages ∆V where this charge was constant
and equal to the electron charge, and the electric param-
eters of several junctions are presented in the table.

4. RESULTS AND DISCUSSION

4.1. Electrical Properties
of Superconducting Bicrystal Junctions 

Figure 4 shows the typical current–voltage charac-
teristic of a bicrystal junction, which is well described
by a resistive model with two channels of charge trans-
fer, including the current of quasi-particles (V/RN) and
the superconducting current (IS(ϕ) = Icsinϕ). A small
level of the excess current (deviation from the Ohm
law) at voltages above 10 mV is evidence of the
absence of direct (nontunneling) conductivity. How-
ever, the temperature dependence of the critical current
(left inset to Fig. 4) is close to linear (to within the
experimental accuracy), in contrast to a theoretical
curve obtained for the tunneling junctions between
S-type superconductors [8] that exhibits saturation for
kT < ∆. The junctions with direct conductivity, in which
the low-energy Andreev states determine the supercon-
ducting current transport, usually exhibit an almost lin-
ear behavior of Ic(T) in a broad temperature interval.

According to Fig. 2, the states of both types
described by Eqs. (1) and (2) can be observed in the
tunneling DID junctions depending on the incidence
 AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004
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angle of quasi-particles, and the superconducting cur-
rent consists of two parts [6, 11]:

The contribution due to Andreev states near the gap,
which is described by Eq. (1), rapidly increases with the
temperature (in proportion to ∆2(T) according to the
Ambegaokar–Baratoff law [8]) and exhibits saturation
at low temperatures:

The contribution due to states near the Fermi level
increases in proportion to 1/T with decreasing temper-

ature and (for kT ! ∆ ) saturates at

(with the minus sign). Therefore, there must exist a cer-
tain temperature T* at which the Ic(T) curve exhibits a
dip and the IS(ϕ) curve deviates from the sinusoidal law.
For a barrier with the transparency D = 10–2 and an
YBCO superconducting gap of ∆0 = 20 meV, the esti-
mation yields T* = 12 K. The typical experimental curve
of Ic(T) presented in the left inset to Fig. 4 exhibits no
such dip, which is probably related to faceting developed
at the interface during epitaxial growth [19, 22].
Il’ichev et al. [11] studied bicrystal junctions of small
thickness (comparable with the facet size) and observed
a dip in Ic(T) for a temperature at which the current ver-
sus phase curve deviates from the sinusoidal law.
A  nonmonotonic Ic(T) curve was also observed for
junctions of rather large thickness (on the order of sev-
eral microns), but only for asymmetric bicrystal junc-
tions [24].

At high temperatures (Tc – T ! Tc), where the influ-
ence of thermal fluctuations is large, the temperature
dependence of Ic is close to (Tc – T)1/2 [6, 25]. This tem-
perature interval features the most pronounced suppres-
sion of the D-type component of the order parameter
near the bicrystal junction [26].

According to Eqs. (1) and (2), the superconducting
current at T ! Tc depends on the transparency D in the

DID junctions (Ic ∝  ) not in the same manner as in
the SIS junctions (Ic ∝  D). This difference is related to
the fact that low-energy Andreev levels in the DID

junctions occur at the Fermi level (E ~ ∆ , see for-
mula (2)), whereas these levels in S-type superconduc-
tors occur near the gap (E ~ ∆, see formula (1)). The
behavior observed in our experiments seems more like

it obeys the root law: Ic ∝  1/  ∝   (see the right
inset to Fig. 4). Despite a rather large scatter of experi-

IS f( ) ISC ϕ( ) IMGS ϕ( ).+=

ISC D0∆0 2α( ) ϕ .sincos∝

D

IMGS ∆0 2α( )D0
ϕ
2
--- ϕ

2
---sin 

 sgncossin–∝

D

D

RNS D
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mental points (characteristic of the junctions involving
cuprate superconductors [19]), the best fit (minimum

deviation) of Ic(D) was observed for the Ic ∝   curve.
We believe that the observed dependence of the energy
of Andreev levels on the junction transparency is quite
stable to the action of various factors, including the
boundary faceting, which leads to the appearance of
both symmetric (DαID–α) and asymmetric (Dα ID0 junc-
tions). However, the DαID–α junctions according to for-
mula (2) at low temperatures have IS ∝  ∆0D0, whereas

the DαID0 junctions are characterized by IS ∝  ∆0  [5].

Therefore, the superconducting current for D0 < 1 is
determined by the regions with symmetric misorienta-
tion of the crystallographic axes.1 It is not excluded
that, in the case of suppression of the order parameter,
the D-type component may influence the behavior of
Ic(D) [26]. It should be noted that a dependence of the

Ic ∝   type was theoretically predicted for SIS con-
tacts with a thick potential barrier [28]. For such SIS
junctions, the difference of the spectrum of the Andreev
bound states from the spectrum according to Eq. (1)
leads to a different dependence of Ic on the barrier trans-
parency. However, realization of the mechanism
described in [28] requires low transparency of the
boundary (D ≤ 10–8) and weak influence of the depair-
ing factors on the density of states.

1 Inhomogeneity (roughness) of the bicrystal junction on a smaller
scale (on the order of the Fermi wavelength of quasi-particles
(λF ≈ 0.01 µm) breaks the coherence of Andreev reflections for
small incidence angles of quasi-particles (4πη(λ)cosθ > π, where
η is the characteristic size of the junction inhomogeneity in the
direction of current flow [27].)
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Fig. 4. The typical current–voltage characteristic of a
bicrystal junction measured at T = 4.2 K. The left inset
shows the temperature dependence of the critical current Ic
and the resistance R; the right inset shows a plot of the crit-
ical current density versus characteristic normal resistance
(RNS) of the junction.
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4.2. The Dependence of the Critical Current 
on the Magnetic Field 

Figure 5 presents the experimental dependence of
the critical current on the magnetic field, Ic(H), for one
of the bicrystal junctions studied. As can be seen, the
curve is significantly different from the Fraunhofer dif-
fraction pattern typical of junctions with a small char-
acteristic inhomogeneity size, w < λJ (in this case, w is
the width of bridges crossing the bicrystal junction),
where λJ is the Josephson penetration depth [8]. The
observed Ic(H) curve can be related to inhomogeneity
(roughness) of the junction related to faceting at the
interface: previously, such patterns were observed for
the misorientation angles greater than 10° (but smaller
than 45°) [29]. It was demonstrated [30] that the experi-
mental behavior presented in Fig. 5 could be well
described in terms of a system of parallel Josephson junc-
tions with a certain distribution of critical currents. Some
bicrystal junctions exhibited Ic(H) curves in which the
ratio of the critical current to local maximum was below
two and the subsequent Ic(H) peaks weakly decreased
with increasing magnetic field. It was shown [30] that the
junctions of this kind have to be considered with regard
to the presence of facets possessing the properties of
π-contacts [6, 25].

4.3. The Phase Dependence
of the Critical Current 

The phase dependence of the superconducting cur-
rent, IS(ϕ), in a Josephson junction is determined by the
character of conductivity between two superconductors
JOURNAL OF EXPERIMENTAL 
in contact with each other. At relatively high tempera-
tures (Tc – T ! Tc), the IS(ϕ) curve shape is very close
to sinusoidal for the junctions of any type: IS(ϕ) =
Icsinϕ. This dependence is retained in all low-transpar-
ency SIS junctions (D ! 1) at low temperatures (T !
Tc) [1, 5, 8], while in thick SNS junctions (L > hvF/kT)
this law holds for T < Tc. In order to reveal deviations of
the IS(ϕ) curve shape from sinusoidal, we have measured
the current–voltage characteristics of bicrystal junctions
exposed to a monochromatic microwave radiation
Asin(2πfet) in the millimeter range (fe = 40–100 GHz)
[14]. The experiments were performed for the junctions
featuring both symmetric (the bridge was perpendicular
to the interface) and asymmetric current flow (the
bridge was oriented at γ = 0–72° relative to the inter-
face). Previously, the appearance of the subharmonic
Shapiro steps in the junctions with nonsinusoidal IS(ϕ)
curve was used to study the phase dependence of the
critical current of thin tin bridges [31] and hybrid
Pb/Au/YBCO superconducting heterojunctions [32].

Figure 6 presents the dependences of the first (I1(A))
and subharmonic (I1/2(A)) Shapiro steps on the radia-
tion amplitude for the bicrystal junctions with γ = 0 and
54°. The inset to Fig. 6 shows theoretical curves calcu-
lated using a resistive model for fe > 2eIcRN/h. The cal-
culations were performed for the sinusoidal relation 

and for a system with small deviation from the sinu-

IS ϕ( ) Ic ϕsin=
0.06

0.04

0.02

0
–4 –2 0 2 4

Ic, mA

H, rel. units

Fig. 5. Experimental curve of the critical current versus magnetic field applied to a bicrystal junction.
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soidal law:

As can be seen, the difference between the two theoret-
ical and experimental I1(A) curves is relatively small.
However, even a small deviation of the phase depen-
dence from sinusoidal leads to the appearance of
noticeable subharmonic Shapiro steps. The results of
experimental measurements of the amplitude of sub-
harmonic steps as a function of the bridge orientation
angle γ showed the absence of sin(2ϕ) components in
the angular interval γ = 0–36° (to within 5%). For the
angles γ > 40°, the contribution of sin(2ϕ) exhibits
monotonic growth.2 

The deviation of the phase dependence from sinuso-
idal for the bicrystal junctions with asymmetric bias
current is probably related to the current component
along the bicrystal interface, which changes the spec-
trum of low-energy Andreev states. The maximum

energy of Andreev states, ∆0  ≈ 2 meV, is compara-
ble to the value (ε = evFjSλ2 ≈ 5 meV) of the longitudi-
nal component of the superconducting current for jS =
103 A/cm2, vF = 5 × 104 cm/s, and λ = 0.1 µm (here, λ is
the London penetration depth).

4.4. Shot Noise in Bicrystal Junctions 

Indirect evidence for the existence of excess non-
thermal noise in the junctions involving cuprate super-
conductors has been obtained from data on the broaden-
ing of the line of intrinsic Josephson generation [33, 34]
and on the noise characteristics of SQUIDs and electro-
magnetic radiation detectors [35]. However, the 1/f type
fluctuations do not always explain the growth of noise
(in particular, for processes in the microwave frequency
range). From this standpoint, it was of interest to study
the appearance of shot noise—a factor determining
both broadening of the generation line and deteriora-
tion of the device characteristics.

The noise characteristics of junctions were studied
both in the autonomous regime (H = 0, A = 0) and in a
weak magnetic field (H < 100 Oe) sufficient to suppress
the critical current in the junction. Figure 7 shows the
current–voltage characteristic and the noise power as a
function of the bias voltage, PN(V)), in the autonomous
regime.3 In the region of large voltages (V > 30 mV),

2 For a high-frequency external action (fe > 2eIcRN/h), the ratio of
the maximum amplitude of the subharmonic step to the critical
current within the framework of the resistive model is equal to the
ratio of the second and first harmonics in the phase dependence of
the critical current.

3 The noise power is expressed in the temperature units due to the
special features of calibration of the experimental setup described
in Section 3.2.)

IS ϕ( ) 1 δ–( )Ic ϕ δIc 2ϕ( ), δsin+sin 0.2.= =

D0
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the experimental PN(V) curve coincides with the classi-
cal dependence of the shot noise temperature,

,

where Rd is the differential resistance of the junction.
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Fig. 6. Plots of (a) the first and (b) the subharmonic Shapiro
steps versus microwave radiation amplitude (fe = 100 GHz,
T = 4.2 K). Curves show the dependences calculated using
the resistive model for IS(ϕ) = Icsinϕ (dashed) and IS(ϕ) =
(1 – δ)Icsinϕ + δIcsin2ϕ (δ = 0.2) (solid); symbols present
the experimental data for two orientations of bridges. The
inset shows the corresponding IS(ϕ) curves.
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Fig. 7. Symmetric bicrystal junction: (1) current–voltage
characteristic at T = 4.2 K; (2) noise power PN(V) expressed
in kelvins; (3) theoretical shot noise temperature TSH(V) =
(e/2k)I(V)Rd. The inset shows the normalized effective
charge Q(V) = SI(V)/2I.
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Fig. 8. (a) Spectral density of the noise current SI(V) at T = 4.2 K for a bicrystal junction with RN = 18 Ω (squares represent experimental
data; the thick solid curve shows the results of theoretical calculation for a DID junction with D = 0.01 and e∆0 = 5 mV [18]); (b) nor-
malized effective charge Q(V) = SI(V)/2I (squares present experimental data; thick solid curve shows the results of theoretical cal-
culation).
Calculations of Q(V) were performed for the spectral
density of noise SI = 2eI at eV > kT, hf (this condition
was satisfied in the experiment for V > 0.7 mV at T =
4.2 K and the amplifier operating at fa = 1–2 GHz). Pre-
viously, an analogous dependence (similar to the curve
in Fig. 7) of the spectral density of noise in a supercon-
ducting junction was observed for SIS contacts [36–39]
in the region of voltages above ∆/e.

As can be seen from Fig. 7, the junction noise tem-
perature TN exceeds the shot noise temperature TSH(V)
in a broad range of lower voltages (0 < V < 30 mV). In
the region of small voltages (V < 2 mV) the TN(V)
curve exhibits peaks caused by the appearance of the
intrinsic Josephson radiation at the amplifier input. At
small voltages, a sharp increase in the value of Rd(V)
(this dependence is not depicted in Fig. 7) affects
impedance matching between the sample and ampli-
fier. For this reason, below we will consider only the
spectral density of shot noise SI(V) ∝  4kTN/Rd and the
effective charge Q(V) = SI(V)/2I, since these quantities
are independent of Rd . Taking into account variation of
the Rd(V) value, we observe an almost linear increase
in SI(V) at V > 4 mV and a distinct peak at V < 2 mV.
The inset to Fig. 7 shows the effective charge variation
in the same junction, which reveals the growth in Q(V)
that is characteristic of the superconductor structures
featuring multiple Andreev reflections [15–18]. The
ratio Qmax/e exceeded ten (see table).

Figure 8 shows SI(V) and Q(V) curves measured in
the presence of an external constant magnetic field
decreasing Ic and Rd of the junction. At a large bias volt-
age (V > 10 mV), the SI(V) curves observed in the mag-
netic field (Fig. 8a) and at H = 0 (Fig. 7) coincide,
JOURNAL OF EXPERIMENTAL
which allows us to use the noise density calibration per-
formed for SI(V) in the autonomous regime.4 As can be
seen, the Rd variations at small bias voltages do not
influence the shape of the curve of transferred charge
versus voltage (Fig. 8b). The bias voltage in Fig. 8 is
normalized to V = ∆0/e = 5 mV and the experimental
values of SI and Q are expressed in relative units. Solid
curves show the results of theoretical calculations for a
mirror-symmetric junction D45ID–45 with D = 0.1 at a
fixed value of the inelastic scattering parameter
(0.003∆). As can be seen, the experimental data fit to
the theory well taking into account multiple Andreev
reflections in the junctions involving D-type supercon-
ductors [18]. However, the values of the transparency
and gap evaluated for the D-type superconductor using
this comparison to the theory differ from the values
determined using electrical measurements. It should be
also noted that we did not observe subharmonic gap
features on the current–voltage characteristic predicted
in [18], which is probably related to the low transpar-
ency of the junction.

At the same time, the values of VQ for which Q(V) =
Qmax in the magnetic field proved to be much lower than
in the autonomous regime. The measurements for the
autonomous transitions could be performed only for the
junctions with low values of the normal resistance
(RN < 20 Ω), which were poorly impedance-matched to
the measuring amplifier. As a result, the error in these
measurements exhibited a severalfold increase. For such

4 The range of voltages for which the shot noise obeys the classical
relation Q = e changed from one sample to another. The upper
boundary of this range is probably related to the potential barrier
height (see table).
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junctions, comparison of theory and experiment [18]
was performed using normalized dependences.

The fact that the intensity of noise caused by multi-
ple Andreev reflections exceeds the level of thermal
fluctuations explains the experimentally observed
broadening of the Josephson generation line in the
junctions of cuprate superconductors [33–35]. This
result should be taken into account in applications
based on the Josephson effect. Note also that, in the
region of high bias voltages, the Nyquist noise in the
junction is much lower than the shot noise.

5. CONCLUSIONS

The results of our experimental study of the critical
current as a function of the temperature, transparency,
and phase difference between superconducting elec-
trodes, as well as the measured current–voltage charac-
teristics showed that the most probable mechanism of
superconducting current transport in bicrystal junctions
of cuprate superconductors is electron tunneling
through the barrier with participation of the bound
states formed at the superconductor-insulator interface
as a result of multiple Andreev reflections. However,
the shapes of the experimental current–phase and cur-
rent–magnetic field curves cannot be described within
the framework of a homogeneous junction model, with-
out taking into account the roughness caused by face-
ting at the interface in the course of epitaxial layer
growth. At present, there is no consistent theory ade-
quately describing the experimental situation. In the
region of relatively large bias voltages (V > 5 mV), the
junction noise level exceeds the level of thermal fluctu-
ations, in agreement with the voltage dependence of the
shot noise in the junction (analogous to that observed
for the junctions of S-type superconductors). In the
region of small voltages, a noise peak is observed that
is characteristic of superconducting junctions featuring
multiple Andreev reflections.
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Abstract—The longitudinal and transverse spin relaxation through a (generally anisotropic) electron–nucleus
interaction in paramagnetic and magnetically ordered insulators is theoretically studied for nuclei with a
resolved quadrupole structure. Expressions are derived for the relaxation rates of both the transverse nuclear
magnetization components when individual transitions are excited in the quadrupole structure and the total lon-
gitudinal nuclear magnetization component. These expressions are reduced to a form that contains the Fourier
transforms of the time correlation functions only for the electron spins. Given the specific form of these corre-
lation functions corresponding to different phase states of the electron spins and different origins of their fluc-
tuations, the temperature dependences of the nuclear relaxation rates are ascertained in various cases, including
those for dipole and isotropic hyperfine interactions. Calculations are performed for arbitrary electron and half-
integer nuclear spins by taking into account the possible quadrupole splitting of the NMR spectrum without any
restriction on the smallness of the ratio "ωs/kBT (ωs is the resonance frequency of the electron spins). The
derived expressions are compared with available experimental data on the longitudinal and transverse nuclear
relaxation in colossal-magnetoresistance lanthanum manganites in the part of their phase diagram where the
corresponding samples are either paramagnetic or magnetically ordered insulators and near the points of tran-
sition to an ordered state. Interpretations alternative to the existing ones are offered. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In a paramagnetic or magnetically ordered insulator,
the nuclear relaxation is generally attributable to the
fluctuating local magnetic fields generated on the
nuclei by the electron spins. The corresponding relax-
ation rates are well known for nuclei with an equidis-
tant NMR spectrum (nuclei with the spin I = 1/2 or I >
1/2 [1]). On the other hand, generalizing these results to
the case of nuclear spins with a nonequidistant NMR
spectrum, which ensures, for example, a resolved qua-
drupole NMR structure, is of current interest. These
nuclei are exemplified by 139La and 55Mn in
La1 −− xAxMnO3 lanthanum manganites (where A is an
alkali-earth metal; doping gives rise to holes in the eg

state of the Mn3+ ions of the initial LaMnO3 material).
Heightened interest in these materials is aroused by
their unusual magnetic and electric transport properties
(see reviews [2–4]). Studying the temperature depen-
dences of the longitudinal (T1) and transverse (T2)
relaxation times for 139La and 55Mn nuclei is highly
informative for investigating lanthanum manganites.
This is because NMR experiments provide local prob-
ing at a lattice site of the sample where the intensity and
correlation times of the fluctuating local magnetic
fields and the electric field gradients causing nuclear
relaxation [5–12] determine the times T1 and T2. Which
1063-7761/04/9906- $26.00 © 21233
local fields, magnetic or electric, play the dominant role
depends on the composition and temperature of the
sample. Since these local fields for the specific samples
studied were found in several papers [5–7] to be pro-
duced by the interactions of nuclear spins with those of
electrons, the times T1 and T2 in these samples bear an
imprint of the degree of order in the electron spin sys-
tem and the origin of the electron spin fluctuations.
When the experimental nuclear relaxation data [5–7]
are interpreted theoretically, the difference between the
behaviors of the electron spin system in a magnetically
ordered sample and a paramagnet is generally disre-
garded quantitatively. On the other hand, lanthanum
manganites manifest the most interesting and promis-
ing properties precisely near the transition to the ferro-
magnetic state.

Therefore, the goal of this study is to draw attention
to the possibility of different interpretations of the tem-
perature dependences of the times T1 and T2 for differ-
ent degrees of order in a system of localized electron
spins and different origins of their fluctuations. To this
end, we first reduce the problem of calculating the rates
of nuclear relaxation through an arbitrary anisotropic
electron–nucleus interaction to a form that contains the
correlation functions of only the electron spin system.
Subsequently, as an illustration of the results obtained,
we consider the regions of the phase diagram for lan-
004 MAIK “Nauka/Interperiodica”
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thanum manganites (with a hole concentration of 0 ≤
x < 0.15; see [8–14]) where the sample is either a para-
magnetic or magnetically ordered insulator; hence, the
presence of delocalized spins is disregarded in the for-
mulation of the problem. We perform our calculations
for arbitrary electron and half-integer nuclear spins,
taking into account the possible quadrupole splitting of
the NMR spectrum.

2. CALCULATING THE NUCLEAR RELAXATION 
RATES

Let us consider the electron–nucleus system of a
dielectric sample composed of localized electron and
nuclear spins. This can be both a paramagnet and a
ferro- or antiferromagnet in which the magnetic
moments of the sublattices are directed along the corre-
sponding easy axes. To simplify the problem, we
assume that these axes are directed along or opposite to
the crystallographic z axis of the crystal (a collinear
structure) that coincides with the principal axis of the
electric field gradient and the direction of the external
constant magnetic field H0.1 The quantization axes of
the electron and nuclear spins are assumed to coincide.
In addition to the Zeeman energies of the electron (S)
and nuclear (I) spins (the first two terms), the main
Hamiltonian of this system,

(1)

includes the electron-spin exchange energy (J is the
exchange integral of the closest neighboring electron
spins) and the effective quadrupole Hamiltonian of the
nuclei. Here, ωs = (–gµB/")H, where H is the sum of the
external field H0, the demagnetizing field of the sample
surface, and the effective fields of the magnetic anisot-
ropy. The nuclear frequency ωI includes the static shifts
due to the interaction with the electron spins (see
below). The last term in Eq. (1) is the axisymmetric
quadrupole Hamiltonian of the nuclei, where

Q is the quadrupole moment of the nucleus, and eq = Vzz

is the tensor component of the electric field gradient.
Equation (1) also takes into account the fact [16] that,
even for a cubic crystal with ωQ = 0, the virtual pro-
cesses of emission and absorption of a spin wave by the
nucleus of a magnetic ion attributable to hyperfine
interaction at low temperatures (T ! TC, TN, where TC
and TN are the Curie and Néel temperatures, respec-

1 Note that generalizing the problem to other orientations of the
field H0 reduces to renormalizing ωQ (see [15]).

*0 "ωsS
z

"ωI I
z– 2J S j Sk⋅

j k,
∑–=

+
"
2
--- ωQ δωQ+( ) Iz( )2 1

3
--- I I 1+( )– ,

"ωQ
3e2qQ

2I 2I 1–( )
-------------------------,=
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tively) are described by an axisymmetric quadrupole
Hamiltonian with

where A is the isotropic hyperfine coupling constant, ωk

is the frequency of the spin wave with wavevector k,
and Ns is the number of magnetic spins. Below, we con-
sider the case where ωQ + δωQ ! ωI .

Here, we investigate an experimental situation
where the role of the quadrupole Hamiltonian (irre-
spective of its causes) reduces only to the transforma-
tion of equidistant nuclear levels into nonequidistant
ones. In this case, either the frequency difference
between the neighboring NMR transitions is assumed
to be larger than the NMR line width, which ensures a
resolved quadrupole structure (e.g., the multicompo-
nent quadrupole structure in high-quality lanthanum
manganite monocrystals at helium temperatures [8] or
the characteristic powder spectrum in a strong magnetic
field [7]) or the quadrupole structure is unresolved and
one NMR line is observed [5, 6]. In particular, we
exclude from our analysis the case of low hole concen-
trations and temperatures at which the nuclear relaxation
in the state of a ferromagnetic insulator is attributable to
the fluctuations of the electric field gradients on the
nuclei. In the latter case, as was shown in [11–13], the
broad spectrum of the corresponding correlation times
leads to such fast inhomogeneous transverse nuclear
relaxation with a characteristic time  that the signal
from the nuclear spin echo becomes unobservable.

In writing the electron–nucleus interaction *' that
causes the relaxation of the nuclear spins when their
direct coupling with the lattice and the direct or indirect
interaction between themselves are disregarded, we
take into account the fact that the fluctuating part of the
local field generated by the electron spins on the nuclei
causes the relaxation. Therefore, the terms responsible
for the static local field on the nuclei should be sub-
tracted from the total Hamiltonian of the electron–
nucleus interaction (as was noted above, together with
the external field H0, they form the nuclear resonance
frequency ωI):

(2)

where  are the coupling constant between the ith

nuclear spin and the jth electron spin;  =  –

〈 〉 , m, m' = –1, 0, +1; and the following notation [1]
is used:

δωQ
SA2

Ns"
2

----------- ωk
1– ,

k

∑–=

T2*
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Note that the interaction of the nuclear spin only with
the proper electron shell (i = j) or the closest paramag-
netic centers is implied in (2) (e.g., in [6], the sum over
the eight closest Mn ions is taken for the indirect local
field on the 139La nucleus), because the contribution
from each of the centers to the relaxation of nucleus i
rapidly decreases with distance rij . Some of the multi-
particle (electron–electron and nucleus–nucleus) inter-
action effects are mentioned below.

We calculate the transverse nuclear relaxation rate
by the Kubo–Tomita method [17] (see also [1]). In con-
trast to the calculations in [1], we impose no restrictions
on the smallness of the ratio "ωs/kBT in the paramag-
netic region and take into account the fact that the qua-
drupole structure of the NMR spectrum may be
resolved (for I > 1/2). To determine the longitudinal
nuclear relaxation rate, we use the Kubo–Tomita and
Moriya [18] formulas (see also [16]); i.e., we use the
approximation of short correlation times for the elec-
tron correlation functions where these times do not
exceed the reciprocal of the fluctuation amplitude in
frequency units.

For an experimental situation where the resonance
frequency of the electron spins is much higher than the
nuclear frequency, we obtain the following relations for
the width of the M  M + 1 transition in the quadru-
pole NMR structure and for the relaxation rate of the
longitudinal component of the total nuclear magneti-
zation:

(3)

(4)

T2M
1– τ s|| ωs||( ) Dij
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where

the angular brackets denote an equilibrium averaging
with the Hamiltonian *0, and the braces denote the
symmetrized product {AB} = (AB + BA)/2. The quanti-
ties CM = I(I + 1) – M(M + 1) characterize the intensity
of the component of the quadrupole NMR structure
related to the change in the z component of the nuclear
spin M  M + 1. The meaning of the designations ωs||
and ωs⊥  is explained below in each specific case. For-
mulas (3) and (4) are valid for any paramagnetic and
magnetically ordered insulators if the pair interaction
between the electron and nuclear spins is effective in
the nuclear relaxation.

As we see from Eqs. (3) and (4), at fixed electron–
nucleus coupling constants, the nuclear relaxation is
determined by the electron correlation functions, their
physical nature and the specific form of the time depen-
dence, which determine the corresponding correlation
times. Since this all depends on the degree of order in
the electron spin system, the latter clearly shows up in
the nuclear relaxation.

The time dependence of the electron spin operators
is determined by the Hamiltonian H0 with the addition
of any interactions that can cause these operators to
decay in paramagnetic and magnetically ordered insu-
lators. Since we study here the situation where ωQ +
δωQ ! ωI , it was assumed in formulas (3) and (4) that 

The result of this assumption is that the total longitudi-
nal magnetization of a nuclear spin system with split
quadrupole structure approaches equilibrium along a

single exponential with the characteristic rate 
denoted in [6, 7] by 2W and τ–1, respectively. The spin
relaxation of one selected pair of levels in the quadru-
pole-split spectrum (the corresponding transition is
determined by the choice of the frequency of exciting
and reading pulses) experimentally observed in [19–22]
is multiexponential. The corresponding theoretical
analysis was performed in [18–21] in terms of level
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populations, i.e., in a reduced description of the spin
dynamics where the nondiagonal elements of the spin
density matrix were assumed to have decayed by the
time of observation. Experimentally, such a situation in
a spin system with a strong inhomogeneous broadening

of the magnetic resonance with a width δ* @  is

ensured by the condition t @  = (δ*)–1, where t is the
interval between the radio-frequency pulses. In this
time, the precession dephasing of the individual iso-
chromates destroys the transverse magnetization com-
ponents, which is equivalent to the nondiagonal ele-
ments of the density matrix becoming equal to zero. In
this case, the observed multiexponential longitudinal
relaxation is described by the formulas from [19–22]
with 2W (or τ−1) given by Eq. (4) and its versions pre-
sented below. If, however, an experiment records the
total longitudinal magnetization component, then its
relaxation for ωQ + δωQ ! ωI is one-exponential.

If there is no quadrupole structure (i.e., the NMR
signal is of the same form as that at I = 1/2), then we
should set CM = –1/2 = 1, CM + 1 = 0, and CM – 1 = 0 in
Eqs. (3) and (4). Then, as should be in this case [24],

where  is the nonsecular width.

When the isotropic indirect hyperfine interaction
dominates in the local field on the nucleus, we have

the remaining  = 0. Such a situation is also possi-
ble for some of the nuclei of nonmagnetic ions where
the isotropic hyperfine interaction is ensured by the
overlapping of the electron shells [16].

The overlapping of the inner t2g-orbitals of manga-
nese ions with the s-wave functions on the 139La
nucleus in La1 – xCaxMnO3 may serve as an example
(see [6] and, for more detail, [9]). In this case, the
hyperfine field on 139La is insensitive to the eg-state
population in manganese ions.

If the dipole–dipole interaction between the electron
and nuclear spins acts as the anisotropic interaction
(which is most characteristic of the nuclear relaxation
of nonmagnetic ions), then

(5)
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Here, aij = γIγs ; γI and γs are the gyromagnetic ratios
for the nucleus and the electron, respectively; and θij is
the angle that the vector rij indicating the position of the
ith nucleus with respect to the jth electron spin makes
with the z axis. The anisotropic contribution to the local
field on the nucleus can also come from the “proper”
electron shell. For example, the field on the 55Mn
nucleus in Mn3+ ions has a strong anisotropic contribu-
tion from the spin–dipole field of the eg-electron orbital
d(x2 – y2) of the ion [5], while the hyperfine field on the
55Mn nucleus in Mn4+ ions has no such contribution.

In paramagnets, ωs|| = 0, ωs⊥  = ωs , and the following
should be substituted in (3) and (4) [1]:

where at arbitrary temperatures

Bs is the Brillouin function. The quantities 〈(δ )2〉
should be calculated numerically for the specific elec-
tron spin.

In the high-temperature (HT) approximation, i.e.,
at a low ratio "ωs/kBT, when

Eqs. (3) and (4) simplify to
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Here, we use the identity

and the notation

(7)

If the concentration of magnetic ions is low, then the
sample is a diluted paramagnet. LaGa1 – xMnxO3 crys-
tals with 0 ≤ x ≤ 0.2, where most of the magnetic Mn3+

ions are substituted with nonmagnetic Ga3+ ions, may
serve as examples of a magnetically diluted lanthanum
manganite. The NMR and the nuclear spin relaxation of
69Ga and 71Ga in such samples were investigated
in [22].

The correlation functions fs||(t) and fs⊥ (t) for the elec-
tron spin fluctuations in a diluted paramagnet may be
assumed to be simple exponentials [1]. Then, (0) =
τs||, where τs|| is the time constant of the function fs||(t),

where τs⊥  is the time constant of the function fs⊥ (t).

Expression (7) for  at I = 1/2 with such electron cor-
relation functions is identical to the corresponding
expression in [1] for an arbitrary anisotropic electron–
nucleus interaction. If the relaxation rates are domi-
nated by the dipole–dipole interaction and if the terms
with τs⊥ (ωs) are negligible due to the relation ωs @ ωI ,
then expressions (6) and (7) for a magnetically diluted
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sample with a random distribution of paramagnetic
centers (PC) reduce to

(8)

(9)

If, however, the isotropic hyperfine interaction is effec-
tive in the nuclear relaxation, then expressions (6) and
(7) take the form

(10)

(11)

In the limit of long correlation times,  @ 1 (nev-
ertheless, for the method of short correlation times to be
applicable, τs|| = τs⊥  = τs must not exceed "(S(S +

1) /3)–1/2 that we use in our estimation), we
obtain from (10) and (11)

(12)

Under strong-narrowing conditions where  !
1, the line width (10) of an individual transition is pro-
portional to CM , the square of the matrix element of the
dipole transition M  M + 1:

This result seems quite natural for an arbitrary iso-
tropic relaxation mechanism in systems with a quadru-
pole structure attributable to a quadrupole Hamiltonian
of any origin (see, e.g., [23]); it is important that the
Fourier transform of the correlation function for the z
component of the fluctuating spin at a zero frequency is
approximately equal to the spectral density of the cor-
relation functions for the transverse components at its
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resonance frequency. The longitudinal relaxation rate
for the total magnetization is approximately equal to

i.e., the following relation holds:

(13)

In [6], the longitudinal relaxation rate for 139La
nuclei (I = 7/2) was measured by using a stimulated
echo and the recovery of the NMR signal detected by
the spin echo method after saturation. The observed
multiexponential time dependence of the nuclear mag-
netization z component that corresponds to the popula-
tion difference at the detected central transition is dom-
inated by the relaxation rate

According to (6), the transverse relaxation rate mea-
sured by the decay of the spin echo that was also
excited at the central frequency is

In our opinion, Fig. 8 from [6] shows the quantities

(14)

(15)

which differ from 2W1 and 2W2 in expressions (3) from
that paper. Expressions (14) and (15) proposed above
seem to be correct.

For strong NMR line narrowing (T ≥ 300 K), the

equality  =  holds; a corollary of this equal-
ity is 2W1 = 2W2, as observed experimentally. For slow
fluctuations, i.e., at low temperatures, but in the para-

magnetic region (TC < T ≤ 250 K) where  @

, it follows from the theory that 2W1 ! 2W2, in
agreement with the experimental data. In the intermedi-
ate temperature range, the general formulas (14) and

(15) should be used to determine  from data on the
spin-echo decay at the central transition.

On the other hand, it seems that the ordering in the
electron spin system should be taken into account at

T < TC. The fact that  and , attributable to
the involvement of free spin waves in the case where
the external constant magnetic field is negligible com-
pared to the exchange field, become equal to zero may
then be the result of a prohibition from the energy con-
servation law (see below).
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The fluctuations of the electron spin components in
a conventional paramagnet are attributable to its spin–
lattice and (or) spin–spin (dipole–dipole and exchange)
interaction [1]:

(16)

where T1s is the electron spin–lattice relaxation time

and ∆ωs ~ ( ")2cs is the homogeneous EPR line width
(cs is the electron spin concentration). Here, we took
into account the fact that, since the projection operator
of an individual electron spin onto the z axis does not
commute even with the secular part of the dipole–
dipole interaction between the electron spins, the pro-
cesses that lead to a (homogeneous) EPR line broad-
ening also cause relaxation of the z component of the
electron spin [1]. The experimental temperature depen-
dences are successfully fitted theoretically by using the
activation laws of the variations in τs|| and τs⊥  with tem-
perature [6, 24].

A comparison of Eqs. (8), (9) and (10), (11) shows
that the assumption about the effectiveness of a partic-
ular electron–nucleus interaction in the nuclear relax-
ation in the theoretical formulas significantly affects the
quantitative interpretation of the experimental data. For
example, the dependence of T1 for the 139La nuclei in
La1 – xCaxMnO3 (x = 1/3) on the square of the constant
magnetic field shown in Fig. 11 from [7] was inter-
preted by assuming the dipole–dipole interaction to be
effective (formula (9)). The values of 10–8 s and 130 G
were obtained for the correlation time of the electron
spins and the amplitude of the fluctuating local field on
the 139La nuclei, respectively. It is pointed out in [7] that
the measured correlation time proved to be much larger
than its expected value. However, if this plot were inter-
preted in terms of an isotropic hyperfine interaction
(see formula (11)), then the correlation time would be
much shorter, τs⊥  ≈ 10–12 s, while the amplitude of the
local field would be much larger that suggested in [7].
For this interpretation, both these quantities prove to be
within the expected ranges [6] (the spin–spin and spin–
lattice interactions were assumed in [6, 7] to be the
source of fluctuations in the localized electron spins).
The assumption made in [6] about an isotropic pattern
of the fluctuating local field on the 139La nuclei seems
to be more realistic. Therefore, Eqs (3), (4), and (10)
with an isotropic hyperfine interaction should be used
for the width of the detectable (in ceramic samples) rel-
atively narrow central transition –1/2  1/2 in the
quadrupole structure of the NMR signal (it is observed
against the pedestal of merged satellite lines [6, 7]) and

for the longitudinal relaxation rate  measured in
both studies.

The assumption that the electron spin dynamics
slows down in La1 – xCaxMnO3 (x = 1/3) due to the tran-
sition to the spin glass state [25] seems not to be con-
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firmed by the EPR data [26]. It should be noted, how-
ever, that adding nonmagnetic trivalent ions (instead of
bivalent ones) to lanthanum manganites can give rise to
slow electron spin dynamics, as confirmed by a series
of NMR and EPR experiments in LaGa1 – xMnxO3 (x =
0–0.2) [21]. According to [22], the nuclear relaxation
scenario for 69Ga and 71Ga in LaGa1 – xMnxO3 is the fol-
lowing.

The Jahn–Teller static cooperative pulling of the
MnO6 octahedrons related to the orbital ordering, i.e.,
the strictly alternating orbitals d(3x2 – r2) and d(3y2 –
r2) of the Mn3+ ions, takes place in the distorted rhom-
bohedral phase of LaMnO3 at room temperature. A
dilution and a rise in temperature cause a breakdown of
the Jahn–Teller cooperative deformations and a slow
reorientation of the orbitals. As was theoretically sub-
stantiated in [27], thermally activated reorientations of
the Jahn–Teller configurations take place in Mn3+ clus-
ters or near defects. These reorientations are the source
of fluctuations that ensure a relatively slow relaxation
of the Mn3+ spins. According to [16], long electron
relaxation times serve as the source of large τs|| and τs⊥ .
The latter, in turn, ensure the nuclear relaxation of 69Ga
and 71Ga by a mechanism based on the effectiveness of
the dipole–dipole electron–nucleus interaction [22].

In crystals with a high concentration of magnetic
ions, the main type of interactions between them is the
exchange interaction; at T < TC, N, the sample is in an
ordered state, ferromagnetic (FM) or antiferromagnetic
(AFM). The existence of a region corresponding to a
ferromagnetic insulator on the phase diagram for lan-
thanum manganites with a low hole concentration was
proven theoretically [28] and experimentally [29, 30].
According to [8, 10], only the phase of a ferromagnetic
insulator with a spontaneous field of ~3.5 T [12] is
detected in ceramic La1 – xCaxMnO3 samples for T ! TC
and 0 < x ≤ 0.15 by the NMR method, while in pure
LaMnO3 at T ! TN, there is a spontaneous field of
~0.03 T attributable to lattice distortion [8]. The elec-
tron spin components in ordered crystals fluctuate due
to the exchange interactions between themselves. This
pattern at a high concentration of magnetic ions is pre-
served even in the paramagnetic region of a magnetic,
i.e., at T @ TC, N (in this case, ωs|| = 0 and ωs⊥  ≈ 0). As
follows from the results of [18] (see also [16]), the elec-
tron correlation functions are then Gaussian:

It should be noted, however, that when this expression
was derived, the external constant magnetic field was
assumed to be weak compared to the spontaneous field
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of the magnetic; i.e., it was assumed that the exchange
frequency defined by the equality

(17)

(Z is the number of closest neighbors of the electron
spin) was higher than the electron Zeeman frequency.

In this case, τs|| = τs⊥  = /ωE; hence, we obtain for
the paramagnetic (PM) region of a magnetic

(18)

(19)

If we write expressions (18) and (19) for nuclei with
I = 1/2 whose relaxation is dominated by the fluctua-
tions of the isotropic local field, then the longitudinal
and transverse relaxation rates in the paramagnetic
region will be equal:

(20)

This result matches expression (5.35) in [16].
Let us now take into account the fact that the

exchange mechanism of the electron spin fluctuations
in an ordered insulator (sample va.16 with a high Curie
temperature investigated in [6] may serve as an exam-
ple) at low temperatures is effected through the inelas-
tic scatterings of spin waves by the nuclear magnetic
moments [16]. Experiments on the inelastic scattering
of neutrons in La1 – xCaxMnO3 in a zero external field
[30, 31] suggest the presence of spin waves (which are
also interpreted as the coherent waves of magnetic
polarons) with a quadratic dispersion law (both gapless
and with a gap).

The electron spin deviation produced at a certain lat-
tice site of a magnetically ordered crystal propagates in
the crystal as an oscillatory wave of electron magnetic
moments—a spin wave or a magnon. For free spin
waves (i.e., those that do not interact with one another
and with the lattice), the fluctuations of the spin compo-
nents at site j can be roughly written as [16]

(21)
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formulas, we should take the upper sign for FM and the
upper and lower signs for one and the other sublattices,

respectively, for AFM. Let us pass from  and aj to
their spatial Fourier components and take into account
the time dependence of the collective variables,

where ωk is the frequency of a magnon with a wave vec-
tor k. If we now disregard the influence of the constant
magnetic field and make the only assumption that the
NMR frequency (attributable to the local field) is low
compared to the frequency of the homogeneous FM or
AFM resonance, ωFMR, AFMR = ωk = 0 , then we can easily
verify that only the Raman processes involving mag-
nons [16, 32] contribute to the nuclear relaxation. An
elementary act of these processes is the emission of one
magnon by a nucleus and the absorption of another; the
nuclear relaxation results from their energy difference.
As we see from (21), these processes are described by
the correlation function of the electron spin z compo-
nents, which contains exponentials of the form
exp[i(ωk – ωk')t] (ωs|| = ωk – ωk'). However, it is well
known that impurities (e.g., rare-earth ions) and the
interaction between the magnons can cause the spin
wave to be damped out. The nuclear relaxation through
the emission or absorption of one magnon by a nucleus
(ωs⊥  = ωk) then becomes possible. In calculating the
corresponding relaxation rates, we take into account
the fact that, in general, the scattering of spin waves
can ensure the fluctuations of an arbitrary anisotropic
field from the electron spins on the nucleus. For a fer-
romagnet,

where Ns is the total number of localized electron spins,
Γk is the damping of spin waves with a wave vector k,
and the mean (at a given temperature) spin wave
numbers are given by the Bose–Einstein distribution
function

Given the damping of spin waves at T ! TC (the low-
temperature (LT) approximation), the following
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expressions can be derived for the transverse and longi-
tudinal nuclear relaxation rates in FM from (3) and (4):

(22)

(23)

When the damping of spin waves in the sample is neg-
ligible, we should let all Γk in formulas (22) and (23)
tend to zero. Then,
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According to [16], when the isotropic fluctuating local
field on the nucleus dominates, expression (25) becomes
equal to zero. The well-known expression (5.41)
from [16] is obtained for the transverse relaxation rate
at I = 1/2. The physical cause of the longitudinal relax-

ation rate  becoming equal to zero in this case dif-
fers significantly from the cause of the large decrease in

 for slow fluctuations (see formulas (12)). Expres-
sion (25) pertains to the case (pointed out in [17])
where a perturbation (the Hamiltonian of an isotropic
electron–nucleus interaction) cannot produce the
absorption or emission of a nuclear-frequency quan-
tum. Naturally, both the longitudinal relaxation rate and
the nonsecular contribution to the NMR line width then
simultaneously become equal to zero.

However, for the nuclei of nonmagnetic ions, the
dipole fields of the surrounding magnetic ions can con-
tribute significantly to the local field. Expressions (22)
and (23) with the substitution of (5) yield the relaxation
rates in the case where the scattering of spin waves pro-
duces the fluctuations of the dipole field on the nuclei.

To find out how expressions (24) and (25) depend on
temperature, the following should be substituted in
them [16]:

(26)

This expression is valid for a quadratic dispersion law
of spin waves: ωk = ωFMR + ωE(ak)2, where a is the lat-
tice parameter.

For completeness, we provide similar results for a
cubic AFM at T ! TC, N obtained in [16] for an isotropic
local field on the nucleus:

(27)

where C is a constant on the order of unity determined
by the number of spins in an elementary cell and by the
geometry of the latter;

where J1, 2(0) is the Fourier component with k = 0 for
the exchange integral between the AFM sublattices.
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Expression (27) from [16] is valid in the long-wave-
length approximation for spin waves when their spec-
trum in AFM is

Since  ! ωE , it follows from (24), (25), and (27)
that the longitudinal and transverse nuclear relaxation
rates in AFMs will be much larger than those in FMs,
which is observed experimentally [5]. A more detailed
and comprehensive theory of the nuclear spin relax-
ation in AFMs is presented in [33].

At intermediate (IT) temperatures (T ≤ TC, N), the
temperature dependence of the relaxation rates in cubic
crystals in a zero external field is [16, 32]

(28)

where C' ~ 0.1.

Here, it should be noted that formulas (28) are valid
in a very narrow temperature range [16, 32]:

for FMs and

for AFMs. In addition, applying a sufficiently strong
constant magnetic field suppresses (particularly

strongly in FMs) the divergence of  [32] predicted
by expressions (28). Therefore, this effect was not
observed in the experimental works on the nuclear
relaxation in lanthanum manganites under consider-
ation [5–13].

In conclusion, we will describe the role of the mul-
tiparticle nucleus–nucleus interactions that are indirect
in a magnetically ordered crystal and are effected
through the electron spins due to the hyperfine interac-
tion. The indirect interaction between the nuclear spins
of a magnetically ordered crystal through the emission
of a magnon by one nucleus and its absorption by
another (Suhl–Nakamura (SN) interaction) at high con-
centrations of magnetic nuclei can contribute to the line
width of the nuclear quadrupole structure (see [16]). This
contribution is estimated as the square root of the second
moment of the lines. As was shown in [34, p. 443], this

ωk
2 ωAFMR

2 ωE
AFM( )2

ak( )2.+≈

ωE
AFM

T2
1–( )FM

IT
T1

1–( )FM
IT

C' T1
1–( )PM

HT TC

T TC–
--------------- 

 
3/2

,= =

T2
1–( )AFM

IT
T1

1–( )AFM
IT

C' T1
1–( )PM

HT TN

T TN–
---------------- 

 
1/2

,= =

ωI

ωE

------ 
 

1/2

 ! 
T TC N,–

TC N,
-------------------- ! 1

ωI

ωE
AFM

------------- ! 
T TC N,–

TC N,
-------------------- ! 1

T1
1–
SICS      Vol. 99      No. 6      2004



1242 FOKINA, ELIZBARASHVILI
moment for a resolved quadrupole structure changes
from line to line and, for the M  M + 1 transition, is

(29)

Here, NI is the number of magnetic nuclei, and Uij is the
temperature-independent Suhl–Nakamura coupling
constant. In contrast to the Suhl–Nakamura interaction,
the indirect interaction between the nuclear spins
through the electron spins in crystals with a cubic sym-
metry becomes isotropic (scalar) with increasing tem-
perature, when the spontaneous magnetization is absent
or small, and its constant depends on temperature as T−2

[32]. As a result of the scalar form, this interaction will
not contribute to the second moment of the NMR signal
from identical nuclei. On the other hand, for identical
nuclei with a symmetry lower than the cubic one and
for different nuclei with any symmetry, this indirect
interaction will make a contribution to the line width
that will decrease with increasing temperature as T–2. In
the immediate vicinity of the point of transition to an
ordered state, the Moriya theory [32] yields a contribu-
tion to the line width for both FM and AFM that
diverges as (T/|T – TC, N |)1/4.

3. CONCLUSIONS

We calculated the transverse relaxation rates 
for the nuclear magnetization at the frequencies of indi-
vidual transitions of the quadrupole NMR structure and

the relaxation rate  for the total longitudinal magne-
tization component by using methods that assume short
correlation times for the fluctuating local fields gener-
ated on the nuclei by the electron spins. The corre-
sponding formulas were derived for an arbitrary aniso-
tropic electron–nucleus relaxation mechanism and
arbitrary electron and nuclear spins; they are valid for
any ratio "ωs/kBT. The cases of dipole–dipole and iso-
tropic hyperfine relaxation mechanisms were concret-
ized. We discussed the fact noted in [7] that, when the
results of experiments on the relaxation of 139La nuclei
in La1 – xCaxMnO3 are interpreted under the assumption
made in [7] about the effectiveness of the dipole–dipole
electron–nucleus interaction, the correlation times
prove to be unusually long, while the fluctuating local
fields prove to be weak. We showed that these results
interpreted by assuming the isotropic hyperfine interac-
tion to be effective [5, 6] yield correlation times and
local field amplitudes within the ranges expected from
the EPR data. It should be noted that the nuclear relax-
ation model based on the effectiveness of the electron–
nucleus dipole–dipole interaction can yield good
results for magnetically diluted manganites [22].

M2M( )SN 2
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× Uij
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2 1
2
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2 1
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2+ + .
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In a diluted paramagnet, the correlation functions of
the longitudinal (transverse) electron spin components
are simple exponentials with correlation times equal to,
respectively, the spin–lattice and spin–spin electron
relaxation times (a LaMnO3 material strongly diluted
with nonmagnetic Ga3+ ions [22]). In samples with a
high concentration of magnetic ions (e.g., in
La1 − xCaxMnO3), the fluctuations of the electron spins
both below and above the magnetic ordering tempera-
ture are attributable to their exchange interaction. In the

latter case, the formulas for  and  were obtained
by taking into account the well-known Gaussian time
dependence of the electron correlation functions with
the correlation times that are the reciprocals of the
exchange frequency. In magnetically concentrated
samples below the ordering temperature, the nuclear
relaxation could be attributable to the exchange fluctu-
ations of the spatially correlated electron spins, which
is faithfully described in terms of spin waves. Without
allowance for the damping of spin waves, only the
Raman magnon absorption–emission processes, which
contribute only to the transverse nuclear relaxation, are
effective in the nuclear relaxation. Therefore, we might
expect a sharp slowdown of the longitudinal nuclear
relaxation at T < TC, which is attributable in our case to
the energy prohibition on the single-magnon interac-
tion with nuclei rather than to the slowdown of the elec-
tron spin fluctuations. This mechanism can qualita-
tively explain the relation 2W1 ! 2W2 observed in [6] at
T < TC.
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Abstract—A carbonaceous material containing single-wall carbon nanotubes (SWNTs) has been synthesized
by arc-discharge evaporation of graphite with a catalytic additive of nickel and cobalt powders. The synthesized
SWNTs were purified from an amorphous carbon component (soot) and the catalyst particles by boiling in nitric
acid. A comparison of the X-ray fluorescence spectra measured before and after this treatment showed that acid
etching significantly decreased the content of soot in the material. The material enriched with SWNTs is char-
acterized by a reduced threshold for the appearance of the field emission current, which is explained by a
decrease in the screening effect of soot. The current–voltage characteristics of SWNTs exhibit a hysteresis,
which is suggested to be due to the adsorption of molecules and radicals on the surface and at the ends of carbon
nanotubes. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Single-wall carbon nanotubes (SWNTs) are of con-
siderable interest both from the standpoint of basic sci-
ence, being the ideal object for direct observation of the
effects characteristic of low-dimensional structures, and
in view of the possible practical applications [1]. One of
the most impressive features of SWNTs is the cold emis-
sion of electrons at low electric field strengths [2–4],
which provides for a real possibility of creating a new
generation of small-size electronic devices capable of
operating in a broad range of frequencies at high work-
ing currents. The dependence of the tunneling current on
the composition of the environment makes it possible to
develop effective gas sensors based on SWNTs [5].

The field emission properties of SWNTs are deter-
mined by the ratio of the tube length to diameter and by
the structure of the tube surface. Using high-tempera-
ture electric arc, it is possible to obtain carbon nano-
tubes containing a small number of defects, which is an
important factor favoring stability of the emission cur-
rent. The average nanotube diameter is determined by
the catalyst composition [6, 7] and varies within
1.0−1.4 nm. Powdered Ni–Co mixtures with various
ratios of components (sometimes, with additives of rare
earth metals) are among the most effective catalysts for
SWNT synthesis.

In addition to nanotubes combined in bundles, the
as-synthesized material contains amorphous carbon
and residual catalyst particles. For effective utilization
of SWNTs in various devices, it is necessary to remove
1063-7761/04/9906- $26.00 © 21244
these by-products. This can be achieved by a special
chemical treatment of the carbonaceous material, in
particular, by etching in concentrated mineral acids.
However, the chemical treatment also modifies the
structure of carbon nanotubes by opening their ends,
grafting various functional groups, and creating vacan-
cies [8–11]. Evidently, these changes in the chemical
structure of SWNTs must influence their electron struc-
ture and, hence, the field emission characteristics of the
SWNT-containing material.

This study was aimed at determining changes in the
electron structure and field emission properties of an
SWNT-containing carbonaceous material synthesized
by arc-discharge evaporation of graphite and then sub-
jected to a chemical treatment. The electron structure of
the material was studied by ultrasoft X-ray fluorescence
(XRF) spectroscopy, which provides information about
the local partial density of occupied electron states. The
XRF spectra were interpreted based on the results of
quantum-chemical calculations of model structures
using the local density functional approximation. The
dynamic characteristics of the field emission from
SWNTs were studied by varying the frequency of the
applied sawtooth voltage.

2. SYNTHESIS 
OF SWNT-CONTAINING MATERIAL

The SWNT-containing carbonaceous material was
obtained via arc-discharge evaporation of graphite
004 MAIK “Nauka/Interperiodica”
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(‡) (b) (c)

100 nm 15 nm 100 nm

Fig. 1. TEM micrographs of a carbonaceous material synthesized by arc-discharge evaporation of graphite with Ni–Co catalyst
additives: (a, b) before treatment with nitric acid; (c) after the chemical treatment. Magnified image (b) shows the bundles of
SWNTs.
using a setup described in detail elsewhere [12, 13].
The synthesis was carried out in a stainless-steel reactor
with a diameter of 0.5 m and a working volume of about
150 with water-cooled walls. The buffer gas was helium
at a pressure of 1.2 × 105 Pa. The arc discharge was
power supplied from a current generator ensuring a dis-
charge current of about 1000 A at an applied voltage of
35–40 V. The electrodes were arranged in a vertical
geometry. The movable upper electrode (cathode) was
a graphite rod with a diameter of 60 mm. The lower
consumable electrode (anode) was a 200-mm-long
graphite rod with a 14 × 14 mm2 cross section and a
10-mm-diameter axial cavity filled with a catalyst
powder.

In the first stage of synthesis, the anode cavity was
filled with a mixture of powdered graphite, nickel, and
cobalt at a total metal content of 5% (relative to the
electrode weight). Upon the graphite anode evaporation
in the arc discharge, soot was deposited on the water-
cooled reactor walls. The deposit contained metal
nanoparticles and a small proportion of SWNTs (about
1% according to electron microscopy data). This soot
was used to fill the cavity of the evaporated electrode in
the second stage of synthesis. In this stage, the synthe-
sized carbonaceous material was deposited onto a
nickel screen situated at a distance of 100 mm from the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
arc and heated to a temperature of 1200°C. A deposit
formed on this screen had a denser structure than the
soot formed on the water-cooled reactor walls in the
first stage.

3. ELECTRON-MICROSCOPIC EXAMINATION
OF CARBONACEOUS MATERIAL

The structure of a material deposited on the nickel
screen was studied by transmission electron micros-
copy (TEM). The measurements were performed using
a JEM-100CX electron microscope (JEOL, Japan) with
a spatial resolution of 5 Å. The samples were prepared
by ultrasonic dispersion of soot in cavitation-boiling
suspension deposited onto a colloid substrate. The
TEM micrographs showed that the synthesized mate-
rial contained carbon nanotubes, metal particles, and
soot (Fig. 1a). Carbon nanotubes synthesized in the
presence of a Ni–Co catalyst have a diameter of
1.2−1.4 nm and form bundles including up to several
tens of nanotubes (Fig. 1b). The weight fraction of nan-
otubes in the material obtained by two-stage synthesis
was about 50%.

The particles of metal and amorphous carbon were
removed by boiling the carbonaceous material for 2 h
in concentrated nitric acid. As can be seen from Fig. 1c,
SICS      Vol. 99      No. 6      2004
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Fig. 2. The CKα spectra: (a) experimental spectra of an SWNT-containing material (1) before and (2) after purification; (b) theo-
retical spectra constructed using the results of quantum-chemical calculations for model structures of (I) a carbon nanotube,
(II) a stripe of carbon hexagons, and (III) a carbon chain (Fig. 3); spectrum IV shows a sum of curves I, II, and III with a component
ratio of 7 : 1.5 : 1.5.
the material upon this treatment is enriched with carbon
nanotubes. The purified material is characterized by a
significantly lower content of metal particles and soot.
In addition, there appear hollow spherical graphite par-
ticles. Some of the metal particles retained after synthe-
sis are covered by graphite layers. In the case when the
number of such layers is small and they contain defects,
the acid dissolves metal to leave hollow graphite shells.
Since thick and continuous graphite shells prevent acid
penetration, the etched material still contains a certain
fraction of graphite-encapsulated metal particles. The
weight fraction of SWNTs relative to the total carbon
content in the purified material is about 90%.

4. X-RAY FLUORESCENCE SPECTRA 
AND ELECTRON STRUCTURE 

OF CARBONACEOUS MATERIAL

XRF spectra of the SWNT-containing material
before and after boiling in nitric acid were measured
with a laboratory-made spectrometer. The samples
were applied onto a copper substrate and cooled down
to liquid nitrogen temperature in the course of measure-
ments. The X-ray fluorescence was excited using
bremsstrahlung radiation from a copper anode operat-
ing at U = 6 kV, I = 0.5 A. The output radiation was ana-
lyzed by an ammonium biphthalate (NH4AP) single
JOURNAL OF EXPERIMENTAL 
crystal. Because of the phenomenon of anomalous
reflection, the NH4AP crystal exhibits nonuniform
reflectance near the K-edge of carbon absorption [14].
For this reason, the XRF spectra were corrected by
means of a special mathematical algorithm [15]. The
analyzer crystal employed in our setup allowed the CKα
spectra to be obtained with an energy resolution of
0.5 eV and the maximum statistics in a short-wave-
length range (279–285 eV). The XRF spectra were nor-
malized to maximum intensity; the accuracy of deter-
mining spectral line positions on the energy scale was
about 0.3 eV.

Figure 2a compares the CKα spectra of the initial
(as-synthesized) and acid-treated carbonaceous
SWNT-containing material. The XRF spectra exhibit
the main maximum D at an energy of 276.2 eV and a
less intense peak A at 281.0 eV. Such peaks with close
energies of the emitted radiation are characteristic of
the CKα spectra of graphite [16], arc-discharge synthe-
sized multiwall carbon nanotubes [17], and SWNTs
obtained by laser ablation [18]. The XRF fluorescence
spectrum arises when valence electrons occupy the
vacancies created by exciting radiation on the core lev-
els of atoms (1s for carbon). Owing to the dipole selec-
tion rules, the CKα spectrum contains information
about the density of occupied 2p states of a carbon
AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004
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I

II

III

Fig. 3. Calculated fragments of an (8, 8)-armchair-type SWNT (model I), a stripe of graphite carbon hexagons (model II), and a
carbon chain (model III). Large open circles denote carbon atoms; small open circles are hydrogen atoms attached to terminal car-
bon atoms in the nanotube and chain structures. Black circles indicate two structurally nonequivalent carbon atoms in the nanotube
for which the theoretical CKα spectrum was constructed.
atom, which can be compared to the results of quan-
tum-chemical calculations for atoms in the given com-
pound [19]. Based on such a comparison, peaks A and
D in the CKα spectra of our samples were assigned to π
and σ electron systems, respectively. The electrons of
both π and σ systems are also responsible for the inten-
sities of peaks C and B.

The CKα spectrum of a material enriched with carbon
nanotubes is characterized by a decrease in the relative
intensities of high-energy features (Fig. 2a, curve 2).
This spectrum is much like the CKα spectrum of
SWNTs synthesized by laser evaporation of a graphite
target with additives of a Ni–Co catalyst [18], which is
evidence that carbon atoms occur in the like electron
states in the nanotubes of both types. The main differ-
ence of purified material from the initial one is a
decrease in the content of soot. Therefore, it is sug-
gested that the peaks of maximum intensity in the CKα
spectrum of the initial sample are most probably related
to features of the electron state of amorphous carbon.

The structure of soot formed in the course of arc-
discharge evaporation of graphite is undetermined. The
results of measurements using various spectral and
structure-sensitive techniques show that most probable
components in this soot are small graphite fragments
[20] and linear carbon chains [21]. In order to reveal the
differences in electron structure of the carbon atoms
constituting the surface of nanotubes and those entering
into the fragments contained in soot, we have analyzed
three model structures (Fig. 3). Model I is a fragment of
the (8, 8)-armchair-type nanotube configuration. Two
types of bonds can be distinguished in this structure:
(i) perpendicular to the tube axis and (ii) making an
angle with this axis (a bond of this type links atoms
indicated by black circles in Fig. 3). The results of opti-
mization of the nanotube fragment geometry performed
within the framework of the semiempirical MNDO
method [22], showed that the lengths of the bonds of
two types are 1.42 and 1.45 Å at a tube diameter
of 10.9 Å. The shorter bond is perpendicular to the tube
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
axis, in agreement with the results of calculations for
the armchair-type nanotube of a greater diameter
performed using the local electron density functional
approximation [23]. The structure of model II
comprises five carbon hexagons sharing edges, and
model III represents a fragment of the α-carbyne chain
with alternating single and triple bonds [24]. The struc-
tures of these models were calculated within the frame-
work of the local density functional approximation
using the B3LYP method [25], implemented in the
quantum-chemical program package Jaguar [26]. The
calculation was performed using a 3-21G basis set of
atomic orbitals; the dangling bonds at the boundaries of
nanotube and carbyne fragments were saturated with
hydrogen atoms.

The results of quantum-chemical calculations of the
model structures were used to simulate the correspond-
ing theoretical CKα spectra. The X-ray transition
energy was assumed to be equal to the difference
between one-electron energies of the valence (i) and
core (j) levels:

(1)

The X-ray transition intensity was calculated assum-
ing that localization of the C 1s orbitals allows these
transitions to occur within the same carbon atom A.
Then, the line intensity was calculated using the
formula

(2)

where A denotes carbon atoms of the model, and Cjm

and Cin are the weight coefficients with which the 1s
and 2p atomic orbitals enter into the jth and ith molec-
ular orbitals, respectively. Theoretical spectra of the
carbon nanotubes according to model I were calculated
for two structurally nonequivalent carbon atoms indi-

Eij εi ε j.–=

Iij C jm
A Cin

A 2
,

A n m, ,
∑=
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cated in Fig. 3. By considering only these central
atoms, we reduced the influence of the fragment bound-
aries so as to model the electron state of carbon atoms
in a long nanotube. In simulating the spectra of struc-
tures according to models II and III, we took into
account all carbon atoms. Theoretical spectra were con-
structed as the superpositions of 0.6 eV-wide Lorentz-
ian lines and normalized to maxima.

The theoretical CKα spectra of the carbon-based
structures according to models I–III and their sum
(curve IV) are presented in Fig. 2b. The spectrum of the
carbon nanotube (curve I) exhibits the main maximum
D, a shoulder C on the short-wavelength side, and a less
intense component A. The same features are resolved in
the spectrum of purified SWNTs (Fig. 2a, curve 2). The
calculated energies of X-ray transitions are about 12 eV
lower than the corresponding experimental values. This
difference is related to the fact that calculations of the
system in the ground state were performed with neglect
of relaxation processes accompanying the X-ray emis-
sion. The calculated distances between the main spec-
tral features agree well with the experimental values
(see table). The calculation somewhat overstated the
relative intensity of the short-wavelength peak A in
comparison to that in the measured XRF spectra of nan-
otubes, which can be explained by the limitations of
model I and the calculation method employed. The
length of the calculated fragment may be insufficient to
completely exclude the effect of fragment boundaries
on the electron state of central carbon atoms. Indeed,
investigation of the dependence of the density of C 2p
electrons on the length of fragments in a (6, 0)-zigzag-
type nanotube showed that the optimum tube length
corresponds to five hexagons [27]. Moreover, the calcu-
lated tube has a smaller diameter than the SWNTs stud-
ied. High curvature of the graphite cylinder leads to a
significant alternation of bonds in the (8, 8)-armchair-
type nanotube configuration and, as a result, to localiza-
tion of the π electron density. An increase in the length
and diameter of the nanotube fragment (selected taking
into account limitations of the software used in the cal-

Absolute (E) and relative (∆E) energies of peaks in the exper-
imental CKα spectra of SWNT-containing materials and in
the theoretical spectra of model carbon structures

Peak Eexp, eV Etheor, eV ∆Eexp, eV ∆Etheor, eV

A' 282.6 270.9 –1.6 –1.6

A 281.0 269.3 0 0

B 279.0 267.6 2.0 1.7

C 277.6 265.9 3.4 3.4

D 276.2 264.4 4.8 4.9

E 274.0 262.3 7.0 7.0
JOURNAL OF EXPERIMENTAL
culations) might be expected to result in a decrease in
the relative intensity of peak A in the theoretical spec-
trum of the carbon nanotube according to model I.

The CKα spectra of the fragments representing a
stripe of carbon hexagons and a carbon chain (Fig. 2b,
curves II and III, respectively) significantly differ both
from each other and from the spectrum of the carbon
nanotube. The spectrum of fragment II displays two
pronounced features with their maxima at about 265
and 270 eV. As a result, account of the electron state of
condensed carbon hexagons leads to an increase in the
relative intensity of peaks D and A, as well as of the most
short-wavelength feature A' in the total spectrum IV. The
shape of profile III is indicative of a significant delocal-
ization of the electron density in this model. Thus, the
presence of carbon chains in the sample must provide
for an increase in the intensity of peaks C, B, A and a
long-wavelength shoulder E in the total spectrum. All
the above tendencies are observed in the CKα spectrum
of the initial material in comparison to that of the puri-
fied sample. It should be noted that adding only one of
the spectra of models II or III to the spectrum of nano-
tube I does no provide satisfactory reproduction of the
experimental profile.

Thus, the results of modeling show that the particles
of soot must contain both graphite fragments and car-
bon chains. In order to obtain the relative intensities
observed in the spectrum of the initial carbonaceous
material, we constructed the total profile IV with a 70%
contribution of the nanotubes and the remainder distrib-
uted approximately equally between the contributions
of models II and III. As was noted above, the content of
nanotubes in the product of two-stage synthesis accord-
ing to electron microscopy data is about 50%. An addi-
tional contribution may be provided by the graphite
coatings on metal particles. This is confirmed by simi-
larity of the CKα spectra of multilayer polyhedral car-
bon particles and graphite [28]. An increase in the rela-
tive intensities of features A and B in the total profile IV
in comparison to the theoretical spectrum of carbon
nanotube I is due to a high density of states in struc-
tures II and III in the energy interval 267–272 eV
(Fig. 2b). An analysis of the results of quantum-chemi-
cal calculations showed that the electron density profile
in this interval is formed by overlapped atomic orbitals
oriented perpendicularly to the C–C bonds. In contrast
to the case of a graphite cylinder, the carbon chain and
stripe fragments include carbon atoms in the hybridized
sp1 state, which accounts for the increased density of
weakly bound electron states responsible for peak A in
the total profile IV.

5. FIELD ELECTRON EMISSION

The electron emission properties of SWNT-contain-
ing samples were studied in a diode regime. The mea-
surements were performed at room temperature in a
vacuum of 5 × 10–4 Pa. The powdered material was
 AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004
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Fig. 4. Current–voltage characteristics plotted (a, b) as the electron emission current density J versus the electric field strength F
and (c, d) in the Fowler–Nordheim coordinates for an SWNT-containing material (a, c) before and (b, d) after purification. Circles
(triangles) present the data obtained in the course of increase (decrease) of the sawtooth voltage. (a, b) Solid and dashed arrows
indicate the fields at which the emission current appears and disappears, respectively. (c, d) Regions 1 correspond to low-current
field electron emission via an adlayer; region 2 reflects the most significant adsorption–desorption processes on the SWNT surface;
region 3 corresponds to high-current electron emission from heated nanotubes.
pressed into a 0.5-mm-deep 1-mm-diameter cavity on
the surface of a stainless steel cathode. The cavity was
filled with the powder by means of a scraper and lev-
eled flush with the cathode surface. The sample pre-
pared in this way is characterized by a random orienta-
tion of nanotubes relative to each other and to the cath-
ode surface. This may lead to differences in the
threshold voltage for the onset of field emission. The
results of measurements performed on four samples
prepared from the same batch of carbonaceous material
showed the same character of current–voltage curves,
with the scatter of threshold voltages not exceeding 5%
of the mean value. The distance from the cathode to a
flat molybdenum anode was d = 500 ± 5 µm. The value
of the tunneling current as a function of the electric
field strength was measured on applying a sawtooth
voltage with an amplitude of up to U = 1500 V and
a frequency of 0.025 Hz. The discrete character of mea-
surements at small currents is related to a limited sensi-
tivity of the analog-to-digital converter operating in a
broad range of currents. The response had the form of a
periodic signal whose constant amplitude value was
evidence of stable electron emission characteristics.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The data were obtained by averaging over the results of
40 measurements for each sample.

Figures 4a and 4b show the current–voltage (J–F)
characteristics of the carbonaceous SWNT-containing
material in the initial state and after the treatment with
nitric acid, respectively. As can be seen, the two mate-
rials differ in slope of the J–F curves and in values of
the hysteresis loop width and the threshold electric field
strength. Owing to a relatively large area of the sample
(about 1 mm2), hundreds of individual carbon nano-
tubes contribute to the emission current, and the mea-
sured values represent averaged characteristics of the
whole sample.

The field emission of electrons from flat metal cath-
odes is described by the Fowler–Nordheim equation [29]

(3)

where J is the emission current density, F is the electric
field strength, ϕ is the work function of a given cathode

J F( ) e3F2

4 2π( )2ηϕ
------------------------

4 2meϕ
1.5

3ηeF
--------------------------– 

  ,exp=
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material, e and me are the electron charge and mass,
respectively, and η is the field enhancement factor. The
J–F curve of the initial material is typical of SWNTs
[30]. The emission current appears when the field
strength reaches 1.45 V/µm, which is two to three
orders of magnitude lower than the values expected for
carbon-based materials according to Eq. (3). The differ-
ence is explained by the special morphology of carbon
nanotubes. In the ideal case, the applied electric field
strength exhibits local enhancement at the end of a sep-
arate tube as compared to the macroscopic value F ~
U/d. The field enhancement factor η in the hemisphere-
on-rod approximation is given by the ratio of the rod
length to hemisphere radius [31]. For a sloped nano-
tube, the η value is lower, as determined by the projec-
tion of the tube length onto the normal to the sample
surface. The local field enhancement factor further
decreases as a result of the field screening by the neigh-
boring particles. The parameter η plays a determining
role in decreasing the threshold for the emission onset
in materials containing carbon nanotubes.

A comparison of Figs. 4a and 4b shows that the acid
treatment led to an increase in the emission current and
decreased the threshold field strength down to
1.1 V/µm (Fig. 4b). This is related primarily to a
decrease in the screening action of soot particles and an
increase in the content of SWNTs in the material (see
Fig. 1). Indeed, calculation of the densities of occupied
states for the models I–III considered above confirmed
that carbon nanotubes are characterized by a lower ion-
ization potential (see Fig. 2). Higher ionization poten-
tials of the stripes of condensed carbon hexagons and
especially of the carbon chain structures lead to an
increase in the tunneling threshold for the particles of
soot. The field emission from such structures begins at
higher field strengths than the emission from carbon
nanotubes.

In Figs. 4c and 4d, the results of measurements for
the samples with SWNTs are plotted as ln(J/F2) versus
1/F (Fowler–Nordheim coordinates). Using this repre-
sentation, it is possible to determine the work function
ϕ for a given cathode material by measuring the slope
of the linear dependence. The current–voltage charac-
teristics of the initial and purified material plotted in the
Fowler–Nordheim coordinates can be divided into two
and three linear portions, respectively. Breaks in the
characteristics may reflect either changes in the work
function or saturation of the emission current related to
limited density of the conduction electrons, especially
in the case of nonmetallic tubes [32]. The minimum
slope in region 2 of the Fowler–Nordheim plot for the
purified sample could just be indicative of the emission
current saturation, but the subsequent increase in the
slope observed in region 3 of this curve rejects this pos-
sibility. The most probable reasons for the work func-
tion of carbon nanotubes to change in the course of
measurements of the current–voltage characteristics are
adsorption processes. Molecules adsorbed on the sur-
JOURNAL OF EXPERIMENTAL 
face and ends of nanotubes may form either chemical
bonds (chemisorption) or the polarization and van der
Waals contacts (physical adsorption). It was shown that
the adsorption of polar molecules leads to a decrease in
the emission threshold [33] and increases the field
emission properties of nanotubes [34]. The influence of
physically adsorbed molecules on the emission proper-
ties of multiwall nanotubes was confirmed by direct
mass spectrometry measurements, which showed an
increase in the partial densities of H2, H2O, CO, and
CO2 at high field strengths (about 24 V/µm) [35].

The results of measurements of the electron emis-
sion current using sawtooth voltage with a period on the
order of several seconds revealed a hysteresis in the
current–voltage characteristics. The magnitude and
sign of this hysteresis depend on the structure of nano-
tubes, the electron state of emitting surfaces, and the
chemical nature of residual gases. In our experiments,
the threshold electric field strength on the ascending
branch of the current–voltage characteristic was
0.2 V/µm higher than that on the descending branch for
the samples of both initial and purified materials
(Fig. 4). This is evidence of an additional barrier for the
field emission of electrons from unheated nanotubes.
We believe that the barrier can be related to the pres-
ence of functional groups chemically bound to the ter-
minal atoms of carbon nanotubes. An analysis of the
electron structure of SWNT clusters with and without
hydrogen-saturated terminal atoms calculated using the
local density functional approximation showed that the
ionization potential is about 0.5 eV higher for a carbon
nanotube with hydrogen atoms [36], which may
explain the observed increase in the tunneling barrier.
After the onset of electron emission (at a field strength
of about 1 V/µm), the ends of nanotubes begin to clean:
chemically bound molecules are removed first, while
the physically adsorbed molecules influence the field
emission in the fields up to 2.0–2.5 V/µm. It should be
noted that the desorption of a chemisorbed particle is a
single event taking place upon the appearance of tun-
neling current, whereas the physical adsorption–des-
orption process has a dynamical character and continu-
ously influences the field electron emission. At a field
strength above 2.5 V/µm and a high emission current,
the temperature of nanotubes increases up to 1300–
2000 K [37–39]. Under these conditions, the hysteresis
decreases because of a considerable contribution due to
thermoelectron emission that is independent of the
adsorption properties of the emitter material.

6. CONCLUSIONS

We have synthesized an SWNT-containing carbon-
aceous material by arc-discharge evaporation of graph-
ite and studied the electron structure and properties of
this material by methods of ultrasoft XRF, electron
microscopy, and field electron emission measurements.
The CKα spectrum of a sample treated with nitric acid
AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004
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reveals a significant decrease in the density of high-
energy states as compared to that for the initial mate-
rial. According to TEM data, the chemical treatment
leads to partial removal of the amorphous carbon frac-
tion and metal catalyst particles, thus increasing the
SWNT fraction in the material. The CKα spectra were
successfully interpreted based on the results of quan-
tum-chemical calculations for the model carbon struc-
tures performed using the local density functional
approximation. It is established that the amorphous
fraction must include a considerable amount of carbon
in the hybridized sp1 state forming chain structures and
boundaries of graphite fragments. Such carbon atoms
account for the high density of electron states forming
the high-energy maximum in the CKα spectrum of the
initial material.

Carbon nanotubes possess the minimum ionization
potential among the calculated model structures, which
explains the increase in the field electron emission
properties of the material after chemical purification.
The amorphous carbon covering the surface and ends of
nanotubes probably produces a screening action, thus
influencing the appearance of tunneling current. The
current–voltage characteristics of both the initial and
purified samples exhibit deviations from the Fowler–
Nordheim relation, which are probably related to the
influence of adsorbed molecules and functional groups
on the work function of SWNT-containing materials.
The results of measurements in a dynamical regime
revealed a hysteresis in the current–voltage characteris-
tics of samples. More significant changes observed in
the characteristics of purified samples may reflect the
attachment of functional groups (chemisorption) to
defects and ends of the chemically treated carbon nan-
otubes. An increase in the field strength leads to detach-
ment of the adsorbed functional groups, which results
in the corresponding increase in the emission current. A
small hysteresis observed in the current–voltage char-
acteristics at high values of the applied bias voltage
probably reflects the physical adsorption. This dynam-
ical phenomenon can be used for the development of
gas sensors.
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Abstract—Propagation of electromagnetic and spin waves in layered conductors with a quasi-two-dimensional
dispersion law of charge carriers is investigated theoretically in the presence of an external magnetic field with
induction B0 . In layered conductors, the drift velocity vD of electrons along B0 is an oscillatory function of the
angle between the magnetic field direction and the normal to the layers. For certain orientations of the magnetic
field with respect to the layers of the conductor, vD is close to zero. In these directions, there is no collision-free
absorption, and weakly damped waves may propagate even under strong spatial dispersion. In the short-wave-
length limit, there may exist collective modes with frequencies in the neighborhood of resonances for arbitrary
orientation of the wavevector k relative to B0 . Similar types of excitations in quasi-isotropic metals are pos-
sible only when k is perpendicular to the direction of the external magnetic field. © 2004 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION
Layered structures with strongly anisotropic metal-

lic-type electric conductivity have been intensively
studied recently. These structures include a large family
of organic conductors based on tetrathiofulvene,
dichalcogenides of transition metals, graphite, and
other materials. In the absence of an external magnetic
field, the electric conductivity σ|| along the layers in
these materials is several orders of magnitude greater
than the conductivity σ⊥  across the layers. The sharp
anisotropy of the kinetic coefficients of layered conduc-
tors is attributed to the quasi-two-dimensional charac-
ter of the energy spectra of electrons. The maximal
velocity of electrons with Fermi energy εF along the
normal n to the layers, v z = v · n, is much less than the
characteristic velocity of electrons in the plane of lay-
ers, vF, while their energy weakly depends on the
momentum projection pz = p · n and can be represented
as a rapidly divergent series

(1)

The functions εn(px, py, η) rapidly decrease as their
number increases, and the greatest of these functions is
ε1(px, py, η) ~ ηεF. Here, η = (σ⊥ /σ||)1/2 is the quasi-two-
dimensionality parameter of a conductor, p0 = "/a, and
" is the Planck constant. Formula (1) corresponds to the
strong-coupling approximation when the overlapping
of the electron shells of atoms belonging to different
layers is small, while the distance a between them is

ε p( ) ε0 px py,( ) εn px py η, ,( )
n pz

p0
--------.cos

n 1=

∞

∑+=
1063-7761/04/9906- $26.00 © 21253
much greater than the interatomic distance within a
layer. The Fermi surface (FS) ε(p) = εF for charge car-
riers with the dispersion law (1) is an open surface with
small corrugation along axis pz; it may be multisheeted
and consist of topologically different elements, for
example, of cylinders and planes. In what follows, we
will assume that the FS of a layered conductor repre-
sents a weakly corrugated cylinder all of whose sec-
tions by the plane pB = (p · B0)/B0 = pzcosϑ  + pxsinϑ  =
const are closed for π/2 – ϑ  > η, where B0 = (B0sinϑ ,
0, B0cosϑ) is the induction of the external magnetic
field. Numerous experimental investigations of mag-
netic oscillations have shown that a considerable part of
tetrathiofulvene-based organic conductors have such an
FS [1–3].

At low temperatures, various types of weakly
damped Bose-type collective modes (electromagnetic,
acoustic, and spin waves) may exist in normal metals
placed in a magnetic field. There is a large number
works devoted to the study of electromagnetic and spin
waves in quasi-isotropic metals; a survey of the results
of these studies is given, for example, in the mono-
graphs [4, 5]. In the present paper, we consider collec-
tive modes in layered conductors with quasi-two-
dimensional energy spectrum of electrons. Wave pro-
cesses in layered conductors are characterized by a
number of features associated with the topology of the
FS. For certain orientations of the magnetic field with
respect to the layers of a conductor, the projection of
electron velocity onto the direction of B0 , averaged
over the period of motion along a cyclotron orbit, is
negligibly small. There is no collision-free absorption
004 MAIK “Nauka/Interperiodica”
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for these directions of B0 , and weakly damped waves
may propagate even under strong spatial dispersion.

2. SYSTEM OF EQUATIONS
OF THE PROBLEM

The kinetic properties of a system of fermions in an
electromagnetic field are described by the equation for
the density matrix and the Maxwell system of equa-
tions. Consider the quasiclassical case "ωB & T ! ηεF,
when the quantization of the energy levels of charge
carriers in a magnetic field does not have any signifi-
cant effect on the magnitude of magnetization M and
the quantum oscillatory component of the magnetiza-
tion does not exceed its paramagnetic part. Here, ωB is
the cyclotron frequency of conduction electrons and
T is temperature. Under these conditions, the density
matrix in the quasiclassical approximation represents
an operator in the space of spin variables and a quasi-
classical function depending on the coordinates and
momenta. An equation for the one-particle density
matrix is given by

(2)

where [ , ]S is the commutator of matrices in the
space of spin variables, { , } is the classical Poisson

bracket,  is the collision operator, e is the electron
charge, c is the velocity of light, E is electric field, and
B = B0 + B~(r, t), where B~(r, t) is a high-frequency
field. The operator

(3)

is a sum of the energy of a quasiparticle in the one-elec-
tron approximation in a magnetic field and the energy
of a quasiparticle due to electron–electron interaction;
within the Landau–Silin Fermi-liquid theory [6, 7], the
latter energy can be represented as

(4)

Here,

(5)

is the Landau correlation function, δαβ is the Kronecker
delta, µ0 is the magnetic moment of a conduction elec-
tron, s is the Pauli matrix, and  is the nonequilib-
rium component of the density matrix. The term on the
right-hand side of (5) that depends on spin operators
corresponds to the exchange interaction of electrons.

∂ρ̂
∂t
------

i
"
--- ε̂ ρ̂,[ ] S–

1
2
--- ε̂ ρ̂,{ } 1

2
--- ρ̂ ε̂,{ } eE

∂ρ̂
∂p
------⋅+ + +

+
1
2
---e

c
-- ∂ε̂

∂p
------ B× ∂ρ̂

∂p
------⋅ ∂ρ̂

∂p
------ ∂ε̂

∂p
------ B×⋅+ 

  Îcoll,=

ε̂ ρ̂
ε̂ ρ̂

Îcoll

ε̂ ε p( )δαβ µ0s B δε̂ p r t, ,( )+⋅–=

δε̂ p r t, ,( )

=  Trσ'
d

3
p'

2π"( )3
-----------------L p s p' s', , ,( )δρ̂ p' r s' t, , ,( ).∫

L p ŝ p' s'ˆ, , ,( ) L p p',( ) S p p',( )ŝs'ˆ+=

δρ̂
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The ac electric E and magnetic B~(r, t) fields are
determined from the Maxwell equations

(6)

supplemented with the material equation for the density
of current induced in the medium:

(7)

For angles ϑ  between B0 and n that are not too close
to π/2, namely, for π/2 – ϑ  @ η, closed electron orbits
in the momentum space for different values of the
momentum projection onto the magnetic field direction
are nearly indistinguishable, while the area S(ε, pB) of
the cross section of the FS by the plane pB = const and
the components v x and v y of the velocity v = ∂ε(p)/∂p
of conduction electrons in the plane of layers depend
weakly on pB. This means that the energy of quasipar-
ticles in the one-electron approximation, the Landau
correlation function, and the cyclotron frequency can
be expanded into an asymptotic series in the quasi-two-
dimensionality parameter η, and the leading term of the
asymptotics is independent of pB. In the zeroth-order
approximation in η, the functions L(p, p') and S(p, p')
can be represented as the Fourier series

(8)

The integrals of motion of charge carriers in a magnetic
field, ε and pB, as well as the phase of the electron
velocity ϕ = ωBt1, where t1 is the time of motion along
a trajectory ε = εF, pB = const, are chosen as the vari-
ables in the p-space. Due to the symmetry L(p, , p',

) = L(p', , p, ) with respect to the permutation of
arguments, the coefficients in (4) are related by the for-
mulas L–n = Ln and S–n = Sn . Consideration of the sub-
sequent terms of the expansion of the correlation func-
tion in powers of η results in negligibly small correc-
tions to the spectrum of collective modes.

Instead of the matrix equation (2), it is convenient to
consider a system of four equations for the distribution
function

curlB~ 1
c
---∂E

∂t
------- 4π

c
------ j,+=

curlE
1
c
---∂B~

∂t
---------, divB~– 0,= =

j r t,( ) eTrσ
d3 p

2π"( )3
-----------------ρ̂ p r s t, , ,( ) ∂ε̂

∂p
------∫=

+ cµ0curlTrσ
d3 p

2π"( )3
-----------------sρ̂ p r s t, , ,( ).∫

L p p',( ) Ln εF( )ein ϕ ϕ '–( ),
n ∞–=

∞

∑=

S p p',( ) Sn εF( )ein ϕ ϕ '–( ).
n ∞–=

∞

∑=

ŝ
s'ˆ s'ˆ ŝ

f r p t, ,( ) Tr
σ

ρ̂=
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and the spin density

One of these equations is obtained by applying the
operation of taking the trace with respect to the spin
variables to the matrix equation for , while the other
three are obtained by applying the operation Sp to the
original equation (2) multiplied by s. The function
g(r, p, t), together with the second term on the right-
hand side of (7), describes paramagnetic spin waves,
which were predicted by Silin [8] and experimentally
observed by Dunifer and Schultz [9] in alkaline metals.

For small deviations of the electron system from
equilibrium, one can represent the functions f and g as
the respective sums of equilibrium parts and small non-
equilibrium components,

Here, f0(ε) is the Fermi function, and g0(ε) =
−µB0(∂f0/∂ε). The integral of µ0g0(ε) over a unit cell in
the p-space represents the magnetization M0 = χ0B0 in
a uniform constant magnetic field of induction B0 , χ0 =
µ0µν(εF) is the static paramagnetic susceptibility, and
ν(εF) is the density of states at the Fermi level. The non-
equilibrium component of the distribution function sat-
isfies the linearized Boltzmann equation

(9)

while the kinetic equation for the perturbed spin density
in the case when x is perpendicular to B0 is given,
according to [8], by

(10)

where angular brackets denote averaging over the
Fermi surface:

The collision integrals  and  determine the
characteristic relaxation times of momentum, τ1, and

g r p t, ,( ) Tr
σ
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f r p t, ,( ) f 0 ε( ) ψ r p t, ,( )
∂ f 0

∂ε
--------,–=
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∂ f 0

∂ε
--------x r p t, ,( ).–=

∂ψ
∂t
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∂
∂r
-----⋅ e

c
-- v B0×[ ] ∂

∂p
------⋅+ 

  ψ Lψ〈 〉+( )+

+ ev E⋅ Îcoll
1( )

,=

∂x
∂t
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∂
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-----⋅ e

c
-- v B0×[ ] ∂

∂p
------⋅+ 

  x Sx〈 〉+( )+

–
2µ
"

------ B0 x Sx〈 〉+( )×[ ]

– µ0v
∂B~

∂r
---------

2µµ0

"
------------ B0 B~×[ ]+ Îcoll

2( )
,=

Lψ〈 〉 2d3 p'

2π"( )3
-----------------

∂ f 0 ε'( )
∂ε'

-----------------– 
  L p p',( )ψ r p' t, ,( ).∫≡

Îcoll
1( )

Îcoll
2( )
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spin density, τ2 (τ2 @ τ1). Henceforth, we will consider
processes that correspond to the range of frequencies

where the asymptotics of the spectrum of collective
modes is independent of the specific form of the colli-
sion integral and k is the wavevector.

System of equations (6)–(10) describes natural
oscillations of electromagnetic field and spin density in
layered conductors with arbitrary energy spectrum and
correlation function.

3. CYCLOTRON WAVES

The so-called cyclotron waves represent a type of
excitations that is characteristic of both a solid-state
and a gas plasma. These waves, with frequencies in the
neighborhood of the cyclotron resonance ω ≈ nωB, n =
0, 1, 2, …, propagate predominantly in the direction
perpendicular to the external magnetic field under con-
ditions of nonlocal coupling between the current den-
sity and the electric field. In this section, we restrict our
consideration to the one-electron approximation and do
not take into account a Fermi-liquid interaction
between charge carriers.

Assuming that the space–time dependence of all
variable quantities is given by exp(ik · r – iωt), we can
easily derive from the Maxwell equations (6) the dis-
persion equation

(11)

which determines the spectrum ω(k) of natural oscilla-
tions of electromagnetic field. Here,

is the tensor of permittivity, δij is the Kronecker delta,

(12)

is the conductivity tensor,

ω @ τ 1– τ1
1– τ2

1– ,+=

det k2δij kik j–
ω2

c2
------εij ω k,( )– 0,=

εij ω k,( ) δij
4πi
ω

--------σij ω k,( )+=

σij ω k,( ) 2e2

2π"( )3
-----------------=

× pB

m*ωB
1–

1
2πi
ωB

-------- ω k v⋅〈 〉 ϕ–( )exp–
------------------------------------------------------------- ϕv i ϕ( )d

0

2π

∫d∫

× ϕ1v j ϕ ϕ 1–( ) i
ω̃
ωB

------ϕ1 iR ϕ ϕ 1,( )– 
 expd

0

2π

∫

R ϕ ϕ 1,( ) 1
ωB
------ ϕ'k v ϕ'( ),⋅d

ϕ ϕ 1–

ϕ

∫≡
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m* is the cyclotron effective mass of charge carriers,
and

If the wavevector k = (ksinφ, 0, kcosφ) lies in the plane
xz, then, expanding the determinant, we obtain

(13)

where

and φ is the angle between the vectors n and k.
In the case of strong spatial dispersion, kr0 @ 1,

ηkr0 ~ 1, where r0 = vF/ωB is the Larmor radius of con-
duction electrons, the integrals with respect to ϕ and
ϕ1 in (12) are calculated by the stationary phase
method [10]; moreover, if ω ~ ωB, the stationary points
are determined from the equations v x(ϕ) = 0 and
v x(ϕ − ϕ1) = 0. One can easily see that the maximal of
the components σij of the conductivity tensor is σyy ,
which is proportional to (kr0)–1; the expansion of the
components σxj (j = x, y, z), in powers of (kr0)–1 starts
from higher order terms; and the components σzα (α =
x, y), are proportional to η, while σzz ∝  η2. In the main
approximation in the small parameters (kr0)–1 and η, we
obtain the following dispersion equation from (13):

(14)

(15)

k v⋅〈 〉 ϕ
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2π

∫ ω i0.+= =

A
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 
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2
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2+( )= =

+ εxxεxy
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4πi
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--------σyy,=

σyy ω k,( ) = 
e2m*ωB

1–

2π2
"

3
--------------------- pB

1

1 2πi
ω̃ k v⋅〈 〉 ϕ–

ωB
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 exp–

--------------------------------------------------------------d∫

× κ ja( ) det Rϕϕ 1
'' ϕ α( ) ϕ1

α( ),( )( ){ } 1/2–

α
∑

× i
ω̃
ωB
------ϕ1

α( )
iR ϕ α( ) ϕ1

α( ),( )– i
π
4
---s+exp
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The summation is over all stationary points j(α) = (ϕ(α),

); κ(j(α)) = 1 if a stationary point belongs to the

domain of integration 0 < ϕ(α) < 2π, 0 <  < 2π, and
κ(j(α)) = 1/2 if it lies on the boundary of the domain;

and s = (ϕ(α), ) = ν+( ) – ν–( ),

where ν+( ) and ν–( ) are the numbers of posi-

tive and negative eigenvalues of the matrix  ≡

∂2R(ϕ(α), )/∂ϕ∂ϕ1, respectively. The dependence of
the cyclotron frequency on pB should be taken into
account only in the expression kxv x/ωB in the exponent

provided that ηkvF ~ ωB; therefore, we took 
outside the integral.

Outside the domain of values of ω, k corresponding
to the condition

(16)

the integrand in (15) has a pole; after integrating with
respect to pB, the dispersion equation acquires an imag-
inary part that is responsible for a strong absorption of
a wave. In layered conductors, the drift velocity vB =
〈v〉ϕ of electrons along a magnetic field oscillates as the
angle ϑ  between the magnetic field and the normal to
the layers is varied. For certain directions of B0 relative
to the conductor layers, vB is close to zero, and there is
no Landau damping. In this case, the wave attenuation
is determined by collision processes, and collective
modes may exist even under the condition that ηkvF *
ωB. In the range of values of ω and k such that k · vm @
ωB and ω ! k · vm , where vm is the maximal velocity in
the direction k, there exist solutions to the dispersion
equation (14) in the region of the resonance

(17)

where nωB is the frequency corresponding to the cyclo-
tron resonance, n = 1, 2, 3, …, and |∆ω| ranges in the
interval 0 < |∆ω| < ωB.

Let us take into account only the zeroth- and first-
order terms in formula (1) for the dispersion law of
charge carriers. Neglecting the anisotropy in the plane
of layers and assuming that ε1(px, pz) is a constant equal

to ηvFp0 (vF = , m = const is the effective mass
in the plane of layers), we express the energy of a qua-
siparticle as

(18)

The velocity components of a conduction electron
that correspond to the dispersion law (18) satisfy the

ϕ1
α( )

ϕ1
α( )

sgnRϕϕ 1
'' ϕ1

α( ) Rϕϕ 1
'' Rϕϕ 1

''

Rϕϕ 1
'' Rϕϕ 1

''

Rϕϕ 1
''
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m*ωB
1–

ω nωB– max k v⋅〈 〉 ϕ ,>

ω nωB ∆ω,+=

2εF/m

ε p( )
px

2 py
2

+
2m
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pz

p0
-----.cos–=
 AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004



COLLECTIVE MODES IN QUASI-TWO-DIMENSIONAL CONDUCTORS 1257
equations

(19)

Asymptotic (up to terms of order η) solutions to sys-
tem (19) are easily obtained by standard methods of
nonlinear mechanics [11]:

(20)

dv x

dt1
---------

eB0

mc
-------- ϑ v y,cos=

dv y

dt1
---------

eB0

mc
-------- v y– ϑcos v z ϑsin+( ),=

v z ηv F
pB

p0 ϑcos
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  .sin=
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v x
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v x
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t1( ) ηv F ϑ J0 α( ) β ηv F ϑtan–sintan=

×
Jn α( ) β nπ/2–( )sin

n2 1–
------------------------------------------------ nωB β( )t1,cos

n 2=

∞

∑
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Here,

is the cyclotron frequency of quasiparticles with
energy (18) in the field B0 = (B0sinϑ , 0, B0cosϑ),

 = (|e|B0/mc)cosϑ , α = (mvF/p0) , β =
pB/p0cosϑ , Jn(α) is the Bessel function, the initial phase
is chosen so that v y(0) = 0, and

is the amplitude of the first harmonic of v x(t) that is
determined from the condition

For electrons with the dispersion law (18), the com-
ponent σyy of the conductivity tensor is expressed as

v z t1( ) ηv F β α ωB β( )t1cos–( ).sin=

ωB β( ) ωB
0( ) 1

1
2
---η ϑ J1 α( ) βcostan+ 

 =

ωB
0( ) ϑtan

v ⊥ v F 1
v x

1( ) 0( )
v F

-----------------
η p0

mv F
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 =

mv x
2 0( )/2 ηv F p0 pz 0( )/ p0( )cos+ εF.=
(21)σyy ω k,( ) i
e2ν εF( )v F

2

ωBkxr0
------------------------- cot

π
ωB
------ ω̃ k v⋅〈 〉 ϕ–( )

R
π
2
--- π, 

  π
ωB
------ k v⋅〈 〉 ϕ– 

 sin

π
ωB
------ ω̃ k v⋅〈 〉 ϕ–( )sin

-----------------------------------------------------------------–

β

.=
Here, ν(εF) = p0m/π"3 is the density of states of quasi-
particles with energy (18), and

.

Averaging the velocity components of electrons
over a period of their motion along a cyclotron orbit, we
obtain

(22)

For the directions of B0 in which α is equal to one of the
zeros αi = (mvF/p0)  of the Bessel function J0(α),
the average 〈k · v〉ϕ ∝  η2, and the dispersion equation is
rewritten as

(23)

where

…〈 〉 β
1

2π
------ β…d

0

2π

∫=

k v⋅〈 〉 ϕ ηv FJ0 α( ) kx ϑ kz+tan( ) β.sin=

ϑ itan

1 2
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φsin
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ωpv F

ωB
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------------- 
  2 ω

ωB
0( )---------+

×

πω̃
ωB

0( )--------- R ϑ i( )sin〈 〉 β–cos 
 

πω̃
ωB

0( )---------sin
----------------------------------------------------------- 0,=
(24)

where

is the Struwe function, βi = pB/p0cosϑ i , ωp =

 is the plasma frequency, and n0 =

p0m2 /2π"3 is the density of charge carriers.

When

R ϑ i( ) k v ϕ( )⋅
ωB βi( )
------------------- ϕd
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π/2

∫ 2
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ωB βi( )
----------------= =

– πη
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+ η
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∑costan
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 @ 1,
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which can easily be realized in conductors with the den-
sity of charge carriers on the order of one carrier per
atom, the solution to Eq. (23) can be represented as (17)
with

(25)

In the inverse limit case

the spectrum of cyclotron waves is determined by

(26)

In layered conductors, for certain directions of the
external magnetic field with respect to the layers, elec-
tromagnetic waves with frequencies in the neighbor-
hood of the cyclotron resonance may propagate for
arbitrary orientations of the vectors k and B0 . Formu-
las (25) and (26) show that, under strong spatial disper-
sion, the frequencies of cyclotron waves are oscillatory
functions of the projection kx of the wavevector onto the
plane of layers.

4. FERMI-LIQUID MODES

Consider propagation of electromagnetic waves in
the electron Fermi liquid along the normal to the layers.
In the linear approximation (9) with respect to a weak
perturbation of the electron system by the electric field
of the wave,

,

the kinetic equation is transformed into the integral
equation

(27)

where

(28)

∆ω ωB
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ψ Lψ〈 〉+ R̂ ev E iω L p p',( )ψ p'( )〈 〉–⋅{ } ,=
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------ ϕ'g ϕ'( )d

∞–

ϕ
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× i
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r ϕ'( ) r ϕ( )– ϕ''v ϕ''( ).d

ϕ'
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∫–=
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Let us invoke the model representation of the Lan-
dau correlation function in the form

(29)

which quite satisfactorily describes the Fermi-liquid
phenomena in the propagation of electromagnetic
waves with k = (0, 0, k).

Using this expression, we can rewrite a renormal-
ized correction to the distribution function Ψ = ψ +
〈Lψ〉 as

(30)

where χk = 〈v kψ〉/e.
Equating Eqs. (30) and (27), we obtain

(31)

Multiplying formula (31) by v j and averaging the result
over the Fermi surface, we obtain a system of linear
algebraic equations in χj:

(32)

Substituting a solution to this system into the expres-
sion for the current density j = 〈evΦ〉, which, with
regard to (29), is rewritten as

(33)

we obtain the relation between j and E.
Thus, Eqs. (31), combined with the Maxwell equa-

tions for the Fourier components

, (34)

yield a system of six linear algebraic equations in the
functions Ej and χj:

(35)

L p p',( ) Λv v',⋅=

Ψ ψ eΛv kχk,+=

ψ eR̂ v k( )Ek ieωΛR̂ v k( )χk eΛv kχk––{ } .
k
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χ j Λ v jv k〈 〉χ k iωΛ v j R̂ v k( )〈 〉χ k

k

∑+
k

∑+

=  v j R̂ v k( )〈 〉 Ek.
k

∑

ji e2 v i R̂ v k( )〈 〉 Ek iωΛχk–( ),
k

∑=

Ex ζ jx, Ey ζ jy, jz 0= = =

e2χ j e2Λ v iv k〈 〉χ k iωΛ σikχk σikEk–
k

∑+
k

∑+ 0,=

σzk Ek iωΛχk–( )∑ 0,=

Ex ζ σ xk Ek iωΛχk–( )
k

∑– 0,=

Ey ζ σ yk Ek iωΛχk–( )
k

∑– 0.=
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Here,

and the quantities σik = e2〈v i (v k)〉  coincide with the
components of the conductivity tensor in a gas approx-
imation. A condition for the existence of a nontrivial
solution to this system of equations (the vanishing of its
determinant) represents a dispersion equation for
waves. After straightforward calculations, we can rep-
resent it as

(36)

Here,

A peculiar behavior of a layered conductor is asso-
ciated with the fact that the in-plane velocities of charge
carriers are much greater than their projection onto the
normal to the layers (axis z). The in-plane anisotropy
does not produce any appreciable effect on the phenom-
ena associated with the specific feature of the quasi-
two-dimensional energy spectrum of such a conductor,

ζ 4πiω
k2c2 ω2–
----------------------,=

R̂

1 ζ σ̃ xx Λxσ̃xyBxy+( )–
iω
e2
------Λxσ̃xx+

× 1 ζ σ̃ yy Λyσ̃yxBxy+( )–
iω
e2
------Λyσ̃yy+

– ζσ̃ yx
iω
e2
------Λxσ̃yx– ΛxBxy–

× ζσ̃xy
iω
e2
------Λyσ̃xy– ΛyBxy– 0.=

Bαβ v αv β〈 〉 Λ
v αv z〈 〉 v zv β〈 〉
1 Λ v z

2〈 〉+
------------------------------------,–=

σ̃αβ σαβ σα zσzβ( )/σzz, Λα–
Λ

1 ΛBαα+
----------------------,= =

α β, x y.,=
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and we do not take it into account. In this case, Bxy = 0,
Λx = Λy , and one can easily verify that Eq. (36) holds if

(37)

One can easily verify that the quantities  (α, β =
x, y) are mainly determined by the components σαβ
because the components σik that contain index z are
small due to the smallness of the quasi-two-dimension-
ality parameter η.

Assume, for simplicity, that the dispersion law of
charge carriers is given by (18). Calculating σik by the
equation of motion (20) of a charged particle in a mag-
netic field, we can easily verify that, for ϑ  ! 1, Eq. (37)
is rewritten as

(38)

Here, λ = Λx 〈1〉/2 is a dimensionless quantity that
characterizes the Fermi-liquid interaction between
electrons.

If the condition

(39)

holds, then, in the collision-free limit (τ1  ∞), there
exist real solutions to the dispersion equation (38).
They describe collective modes that are associated with
correlation phenomena and are absent in a gas approx-
imation. These excitations exist even for k > kmin =

ωp/c . Application of a magnetic field removes the
degeneracy of the spectrum of electromagnetic oscilla-
tions, thus resulting in two waves with the frequencies

k2c2 ω2– 4πω ω
e2
----Λx





–

– i
σ̃xx σ̃yy σ̃xx σ̃yy–( )2 4σ̃xyσ̃yx+±+

2 σ̃xxσ̃yy σ̃xyσ̃yx–( )
-------------------------------------------------------------------------------------





1–

0.=

σ̃αβ

k2c2 ω2–

–
ωωp

2

ωλ ω̃ ωB
0( )+−( )2

kηv FJ0 α( )( )2––
------------------------------------------------------------------------------------- 0.=

v F
2

ω ωB
0( )+−( )2 λω( )2 ηkv FJ0 α( )( )2 ω ωB

0( )+−( )2< <–

λ

. (40)ω± ηkv FJ0 α( )( )2 ηkv FJ0 α( )( )2 ωB
0( )2

–[ ] λ ω p
2/k2c2–( )–( )

1/2
ωB

0( )±
1 λ ωp

2/k2c2–( )–
------------------------------------------------------------------------------------------------------------------------------------------------------------=
The threshold frequencies of these waves  =

(ωpηvF/c ) ±  may be much lower than ωp; this
provides more favorable conditions for observing
Fermi-liquid modes in layered conductors compared
with ordinary metals.

An increase in the angle between the magnetic field
and the normal to the layers enhances the influence of
the dependence of the electron velocity projection onto

ωmin
±

λ ωB
0( )
the wavevector on its phase on the trajectories. If the

condition ηkvF/  @ 1 holds, then one can apply the
method of stationary phase to calculate σαβ . When

 < πp0/2pF, there may be either two or none of
such points on the electron orbit. However, for a suffi-
ciently large deviation of the magnetic field from the
normal to the layers, there may be a sufficiently large
number of points of stationary phase on the orbits that

ωB
0( )

ϑtan
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intersect several unit cells of the momentum space (see
figure).

After integrating with respect to ϕ and ϕ', the
expression for σαβ in a strong magnetic field (ωBτ1 @ 1)
is rewritten as

(41)

where ϕe are the points on the electron trajectory at
which v z(ϕe) = 0, (ϕe) > 0, ∆ϕe = π – 2ϕe , and ∆ze =
z(π – ϕe) – z(ϕe).

σαβ
ωp

2

4π2kv F
2

------------------=

× β 1
2πi
ωB
-------- ω kv z〈 〉 ϕ–( )exp–

 
 
 

1–

d

0

2π

∫
e

∑

×
v α ϕe( )v β ϕe( )

2 v z' ϕe(
----------------------------------

v α π ϕe–( )v β π ϕe–( )
2 v z' π ϕe–( )

-----------------------------------------------------+




× 1
2πi
ωB
-------- ω kv z〈 〉 ϕ–( )exp+ 

 

+
1

v z' ϕe( )v z' π ϕe–( )( )1/2
----------------------------------------------------- v α ϕe( )v β π ϕe–( )

× i
ω̃
ωB
------∆ϕ– ik∆z i

π
2
--- 2πi

ωB
-------- ω kv z〈 〉 ϕ–( )+ + + 

 exp

+ v α π ϕe–( )v β ϕe( ) i
ω̃
ωB
------∆ϕ ik∆z– i

π
2
---– 

 exp




,

v z'

(a) (b)

Points of stationary phase at which k · v = ω on the electron
orbits (a) for  < πp0/2pF and (b) for  > πp0/2pF.
Thin lines connect the points at which kv z = ω.

ϑtan ϑtan
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In formula (41), ∆ϕ and ∆z are essentially different
on different electron orbits. At certain inclination
angles ϑ = ϑ i of the magnetic field, an electron nearly
ceases to drift along the wavevector, and, in a linear
approximation in the quasi-two-dimensionality parame-
ter, the projection averaged over the period, of the veloc-
ity of a charged particle onto the normal to the layers,

,

vanishes.
The integration of the last two terms of alternating

sign with respect to β significantly reduces the contri-
bution of these terms to the electric conductivity even
for ηkvF/ωB ≈ 1. As a result, for ϑ  = ϑ i , in the range of
frequencies close to the frequency of rotation of charge
carriers along closed trajectories in a magnetic field or
to the multiples of this frequency,

one can neglect the nondiagonal components of the ten-
sor σαβ , while, for the components σαα , one can apply
the following asymptotic expression:

(42)

In this case, the dispersion equation reduces to

(43)

When |∆ω| > ηω, dispersion equation (38) may have
a real solution that describes a cyclotron wave, and the
relation between ∆ω and k in the collision-free limit is
given by

(44)

where

Formula (44) shows that, in the absence of Fermi-
liquid electron correlations, an undamped cyclotron
wave may only exist when ∆ω < 0. The consideration
of Fermi-liquid effects increases the transparency win-
dows of a layered conductor, and a cyclotron wave may
propagate even for ∆ω > 0, i.e., above the cyclotron res-
onance frequency.

5. SPIN WAVES

Paramagnetic spin waves represent space–time per-
turbations of spin density. Oscillations of this type are

v z〈 〉 ϕ ηv FJ0 α( ) βsin=

ω nωB
0( ) ∆ω,+=

σαα
iωp

2

4π2kv F
2

------------------ β
v α

2 ϕe( )
v z' ϕe( )
------------------- πω̃

ωB
-------.cotd

0

2π

∫
e

∑=

k
2
c2 ω2 ωωp

2

ωλ iωp
2
/4πσαα–

----------------------------------------–– 0, α x y.,= =

∆ω
nωB

0( )2

Cαηkv F
-------------------- λ

ωp
2

k2c2 n2ωB
0( )2

–
--------------------------------–

 
 
 

,=

Cα
π2v F

η
------------

βv α
2 ϕe β,( )d

v z' ϕe β,( )
------------------------------

0

2π

∫
e

∑ 
 
 

1–

.=
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attributed to the exchange interactions between elec-
trons and cannot be excited in a gas of noninteracting
particles. In the main approximation in the small
parameter η, the Landau correlation function is given
by (8) and kinetic equation (10) for the spin density can
be substantially simplified. Let us expand the functions
F = x + 〈Sx〉  into Fourier series in the variable ϕ:

applying formula (8), we obtain

(45)

where

Substituting (45) into Eq. (10), we find that the com-
ponents of the renormalized spin density Φ± =  ±
iΦy ∝  exp(ik · r – iωt) of conduction electrons with the
quasi-two-dimensional dispersion law (1) satisfy the
equation

(46)

Here,  = Φxcosϑ  – Φzsinϑ , the axis x1 is perpendic-
ular to the axis y and the vector B0 , Ω = –2µB0/" =

ωs/(1 + ), and ωs = –2µ0B0/" is the spin paramag-

netic resonance frequency. The ac magnetic field  =

 ± iBy induced by spin oscillations is determined
from the equation

(47)

F p( ) Fn εF pB,( )einϕ ,
n ∞–=

∞

∑=

x p( ) xn εF pB,( )einϕ ;
n ∞–=

∞

∑=

x p( ) F p( ) λnFneinϕ ,
n ∞–=

∞

∑–=

λn

Sn
~

1 Sn
~+

--------------,=

Fn
1

2π( )2
------------- ϕe inϕ– βF εF β ϕ, ,( ) e inϕ– F〈 〉 β ϕ, ,≡d

π–

π

∫d

0

2π

∫=

Sn
~ ν εF( )Sn.=

Φx1

∂Φ±

∂ϕ
----------

i
ωB
------ ω k v Ω+−⋅–( )Φ±–

=  i
µ0

ωB
------ k v Ω±⋅( )B±

~

–
iω
ωB

------ λnΦn
±( )

einϕ 1
ωB
------ Icoll

2( ) Φ±( ).+
n ∞–=

∞

∑
Φx1

S0
~

B±
~

Bx1

B~ ω k,( ) 4π M~ ω k,( ) k

k2
---- k M~ ω k,( )⋅( )– 

  ,=
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where M~(ω, k) = µ0〈x(p, ω, k)〉  is the high-frequency
magnetization.

After straightforward transformations, Eq. (46) for
the renormalized spin density is reduced to

(48)

Multiplying Eq. (48) by e–inϕ and integrating the
result with respect to the variables β and ϕ, for the Fou-

rier coefficients  of the function

,

we obtain the following system of linear equations:

(49)

(50)

.

The Fourier coefficients of the smooth function
ν(εF)S(p, p') rapidly decrease as their number increases;
therefore, one may restrict oneself to a finite number of
terms of the series. System of equations (49), combined
with Eq. (47), which links the high-frequency magnetic
field to the magnetization, describes natural oscillations

Φ ±( ) ϕ'
i

ωB
------ ϕ'' ω̃ Ω k v ϕ''( )⋅–+−( )d

ϕ'

ϕ

∫ 
 
 

expd

∞–

ϕ

∫=

× i
µ0

ωB
------ k v ϕ'( )⋅ Ω±( )B±

~ i
ω
ωB
------ λpΦp

±( )
eipϕ'

p ∞–=

∞

∑–
 
 
 

.

Φn
±( )

Φ ±( )〈 〉 β
1

2π
------ βΦ ±( ) εF β ϕ, ,( )d

0

2π

∫=

δnp λp
ω
ωB
------ f np β( )〈 〉 β– 

  Φp
±( )
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∞

∑

=  µ0B±
~ 1

2πi
-------- 1 2πi

ω̃ k v⋅〈 〉 ϕ Ω+−( )–
ωB

-------------------------------------------- 
 exp–

 
 
 

1–

–

× ϕ ϕ1 k v ϕ ϕ 1–( )⋅ Ω+−( )dd

0

2π

∫
0

2π

∫

 × i p n–( )ϕ ipϕ1 i
ω̃ Ω+−

ωB
--------------ϕ1 iR ϕ ϕ 1,( )–+– 

 exp
β

,

f np β( ) 1
2πi
-------- 1 2πi

ω̃ k v⋅〈 〉 ϕ Ω+−( )–
ωB

-------------------------------------------- 
 exp–

 
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× ϕ ϕ1dd
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∫
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of spin density in layered conductors with arbitrary
energy spectrum and correlation function. It is obvious
that, to determine the spectrum of spin waves, it suffices
to use the homogeneous system of equations corre-
sponding to (49). Let us neglect the small nonhomoge-

neous parameter in (49), which is proportional to µ0

and takes into account the effect of the self-consistent

field . The dispersion equation of “free” oscillations
of spin density is given by [12]

(51)

The frequency ω of natural oscillations of magnetiza-
tion coincides, up to the terms proportional to χ0 ~

ν(εF), with the frequency ω(0) of free oscillations of
spin density. At this frequency, the magnetic suscepti-
bility has a sharp maximum and the determinant
D(ω, k) is equal to χ0 in order of magnitude.

The condition that there is no collision-free attenua-
tion of spin waves reduces to the inequality

(52)

B±
~

B±
~

D ω 0( ) k,( ) det δnp λp
ω 0( )

ωB
--------- f np β( )〈 〉 β–≡ 0.=

µ0
2

ω nωB Ω+−– max k v⋅〈 〉 ϕ .>
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Under strong spatial dispersion, k · vm @ ωB, ω  Ω !
k · vm , for the directions of B0 relative to the conductor
layers such that vB is close to zero, there exist solutions
to the dispersion equation (51) in the neighborhood of
the resonance

(53)

The correction to the resonance frequency can be rep-
resented as

(54)

where γi are the roots of the equation

(55)

where

+−

ω n1ωB Ω ∆ω,+±=

∆ω ! ωB, n1 0 1 2 …., , ,=

∆ω
n1ωB Ω±

πkxr0
-----------------------γi,=

det δnp λpγi
1– Inp β( )〈 〉 β– 0,=
(56)Inp β( ) κ jα( )
iR ϕ α( ) ϕ1

α( ),( )– i n p–( )ϕ α( ) ipϕ1
α( ) i

π
4
---s++–exp

det Rϕϕ 1
'' ϕ α( ) ϕ1

α( ),( )( ) 1/2
--------------------------------------------------------------------------------------------------------------------------.

α
∑=
The summation is over all stationary points determined
from the equations v x(ϕ) = 0 and v x(ϕ – ϕ1) = 0. By ωB

in (51), (53), and (54), we mean the zeroth-order term
in the expansion of the cyclotron frequency in powers
of η.

In a model where the energy of conduction electrons
is defined by (18) and the velocity components are
defined by (20), asymptotic expressions for the coeffi-
cients fnp(β) are given by

(57)

and Eq. (55) reduces to

f np β( ) 1
kxr0
--------- π ω̃ Ω+−( )

ωB
----------------------- π

2
--- n p–( )coscot







=

+

R ϑ i( ) π
2
--- n p+( )+ 

 sin

π ω̃ Ω+−( )
ωB

-----------------------sin
-------------------------------------------------------







(58)

When the correlation function is defined by the zeroth
and first Fourier harmonics,

Eq. (58) is reduced to a quadratic equation whose roots
are given by

(59)

det δnp λpγi
1– π

2
--- n p–( ) cos

–

+ 1–( )
n1 R ϑ i( ) π

2
--- n p+( )+ 

 sin
β
 0.=

S p p',( ) S0 2S1 ϕ ϕ '–( ),cos+=

γ1 2,
1
2
--- λ0 2λ1 1–( )

n1 λ0 2λ1–( )g+ +
=

± λ0 2λ1 1–( )
n1 λ0 2λ1–( )g+ +( )

2
{

+ 8λ0λ1 1– g2 h2+ +( ) } 1/2


 ,
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where g = 〈sinR(ϑ i)〉β and h = 〈sinR(ϑ i)〉β.
In the short-wavelength limit, for certain directions

of the external magnetic field, there exist spin waves
with frequencies (53) close to the resonance frequen-
cies ωr = nωB ± Ω . An analogous type of excitations in
quasi-isotropic metals occurs only when the wavevec-
tor k is perpendicular to B0 .
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Abstract—We analyze the peculiarities of the superconducting state (s- and d-wave paring) in the model of the
pseudogap state induced by Heisenberg antiferromagnetic short-range order spin fluctuations. The model is
based on the pattern of strong scattering near hot spots at the Fermi surface. The analysis is based on the micro-
scopic derivation of the Ginzburg–Landau expansion with the inclusion of all Feynman diagrams of perturba-
tion theory for the interaction of an electron with short-range order fluctuations and in the ladder approximation
for the scattering by normal (nonmagnetic) impurities. We determine the dependence of the critical supercon-
ducting transition temperature and other superconductor characteristics on the pseudogap parameters and the
degree of impurity scattering. We show that the characteristic shape of the phase diagram for high-temperature
superconductors can be explained in terms of the model under consideration. © 2004 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

One of the most important problems in the physics
of high-temperature superconductors (HTSCs) based
on copper oxides is the theoretical description of the
characteristic shape of their phase diagram [1]. Eluci-
dating the nature of the pseudogap state that is observed
over wide ranges of temperatures and carrier concentra-
tions [2] and that undoubtedly plays the central role in
shaping the properties of the normal and superconduct-
ing states of these systems arouses particular interest.
Despite ongoing discussions, the pseudogap formation
scenario based on the pattern of strong scattering of
current carriers by antiferromagnetic1 (AFM, SDW)
short-range order spin fluctuations seems to be pre-
ferred [2, 3]. In the momentum space, this scattering
takes place with the transfer of the wavevectors of order
Q = (π/a, π/a) (a is the two-dimensional lattice con-
stant) and leads to precursors of the rearrangement of
the electron spectrum that arises when a long-range
AFM order is established (the period doubles). This
results in a non-Fermi liquid behavior (dielectrization)
of the spectral characteristics near the so-called hot
spots at the Fermi surface that emerge at the points of
intersection of this surface with the boundaries of the
“future” antiferromagnetic Brillouin zone [2].

A simplified model of the pseudogap behavior [4, 5]
in which the scattering by real (dynamical) spin fluctu-
ations was replaced (which is valid at fairly high tem-

1 The role of similar charge (CDW) fluctuations cannot be ruled
out either.
1063-7761/04/9906- $26.00 © 21264
peratures) with a static Gaussian random field of
pseudogap fluctuations with a characteristic wavevec-
tor from the vicinity of Q whose width is determined by
the inverse correlation length of the short-range order
κ = ξ–1 has been intensively studied in terms of this
approach. An overview of the works, as applied to the
properties of the normal state and for simple models of
the influence of pseudogap fluctuations on supercon-
ductivity, can be found in [2].

In our recent paper [6], based on the microscopic
derivation of the Ginzburg–Landau expansion,2 we
have studied the influence of pseudogap fluctuations in
the hot spot model on the basic characteristics of the
superconducting state (s- and d-type pairing) that forms
against the background of these fluctuations. We con-
sidered a slightly simplified version of the model where
the Heisenberg spin fluctuations were replaced with
Ising or spin-independent charge CDW fluctuations.
These pseudogap fluctuations of a “dielectric” nature
were shown to generally suppress conductivity, causing
a decrease in superconducting transition temperature, a
reduction in the jump in specific heat, and several other
anomalies of the superconductor characteristics. We
found two possible types of interaction between the
superconducting order parameter and pseudogap fluc-
tuations that lead to distinctly different scales of their
influence on superconductivity.

The goal of this work is to generalize the approach
proposed in [6] to the “realistic” case of Heisenberg

2 A similar analysis was performed in [7] on the basis of Gorkov’s
equations.
004 MAIK “Nauka/Interperiodica”
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spin fluctuations and to calculate the influence of (non-
magnetic) impurities (disorder) on superconductivity in
the pseudogap state. We show that the typical phase dia-
gram for a HTSC can be semiquantitatively modeled in
terms of the model under consideration.

2. THE HOT SPOT MODEL
AND THE RECURRENCE PROCEDURE 

FOR CALCULATING THE GREEN FUNCTIONS
AND THE VERTEX PARTS

The basic ideas of the hot spot model under consid-
eration and the method for calculating the single-elec-
tron Green function were presented in detail in [4, 5];
the methods for determining the vertex parts of interest
were described previously [6, 8]. Therefore, in this sec-
tion, we provide only the basic equations and introduce
the necessary notation by briefly describing the
changes required to allow for the spin structure of the
interaction in the Heisenberg model of antiferromag-
netic fluctuations.

An effective interaction between electrons and spin
fluctuations is introduced in the model of an “almost
antiferromagnetic” Fermi liquid [4]. This interaction is
described by the dynamical susceptibility characterized
by the correlation length ξ of the spin fluctuations and
their characteristic frequency ωsf to be determined
experimentally, which can depend significantly on the
carrier concentration (and, for ξ, on the temperature).
This dynamical susceptibility together with the effec-
tive interaction have (in momentum representation) a
maximum in the vicinity of Q = (π/a, π/a), which gives
rise to two types of quasi-particles: hot quasi-particles
whose momenta lie near the points of the Fermi surface
coupled by the scattering vector of order Q and cold
quasi-particles whose momenta lie near the regions of
the Fermi surface surrounding the diagonals of the Bril-
louin zone [2, 4, 5].

At high temperatures, 2πT @ ωsf , the spin dynamics
may be disregarded [4]. The interaction with spin
(pseudogap) fluctuations then reduces to the scattering
of electrons by the corresponding static Gaussian ran-
dom field. In this model, we can suggest a simplified
form of the effective interaction (the correlator of the
random fluctuation field) [4, 5] that allows full summa-
tion of the Feynman series of perturbation theory,
which gives rise to the following recurrence procedure
for determining the single-electron Green function:

(1)

(2)

This is shown in the form of a symbolic Dyson equation
in Fig. 1a, where the following function is introduced:

(3)

Gk εn p,( ) 1
iεn ξk p( )– ikv kκ Σk εn p,( )–+
---------------------------------------------------------------------------,=

Σk εn p,( ) W2s k 1+( )Gk 1+ εn p,( ).=

G0k εn p,( ) 1
iεn ξk p( )– ikv kκ+
-----------------------------------------------.=
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Here, κ = ξ–1 is the inverse correlation length of the
pseudogap fluctuations; εn = 2πT(n + 1/2) (to be spe-
cific, we assume that εn > 0);

(4)

(5)

v(p) = ∂ξp/∂p is the velocity of a free quasi-particle
with the spectrum ξp that is taken in standard form [4]:

(6)

t and t' are the transfer integrals between the closest
neighbors and between the second closest neighbors on
the square lattice, respectively; a is the lattice constant;
and µ is the chemical potential.

The parameter W has the dimensions of energy. It
defines the effective pseudogap width and can be writ-
ten in the model of Heisenberg spin fluctuations as [4]

(7)

where g is the coupling constant between electrons and

spin fluctuations, 〈 〉  is the mean square of the spin at
the lattice site, and ni↑ and ni↓ are the particle number
operators at the site with the corresponding spin projec-
tions. Clearly, like the correlation length ξ, the parame-
ter W in the semiphenomenological approach [4, 5] is
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( )+ for  even   k ; 
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W2 g2 Si
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3
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Fig. 1. Recurrence equations for (a) the Green function and
(b) the triangular vertex.
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also a function of the carrier concentration (and temper-
ature) to be determined experimentally.

The factor s(k) is determined by the Feynman dia-
gram combinatorics and is

(8)

in the simplest case of commensurable short-range order
charge (CDW) fluctuations, while for the most interest-
ing case of Heisenberg spin (SDW) fluctuations [4],3 

(9)

The validity conditions for the approximation under
consideration were discussed in detail in [4, 5].

A remarkable feature of the model under consider-
ation is the possibility of full summation of the entire
series of Feynman diagrams4 for the vertex functions
that describe the response of the system to an arbitrary
external perturbation. This was considered in detail
in [8]. Here, we immediately give the recurrence equa-
tions for the “triangular” vertices in the Cooper channel
that arise in the corresponding analysis. These equa-
tions are similar to those derived in [6] and describe the
response to an arbitrary fluctuation of the supercon-
ducting order (gap) parameter,

(10)

where the symmetry factor that determines the type
(symmetry) of pairing is taken in the form

(11)

and it is implied that the pairing is singlet in spin. It is

3 The Feynman diagram combinatorics for the model of Heisen-
berg fluctuations is analyzed in detail in the Appendix.

4 Including all of the diagrams with crossing interaction lines.
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The choice of the sign in the recurrence procedure for the
vertex part
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SDW (Heisenberg)
fluctuations
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d – + –
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convenient to write the vertex of interest as

(12)

Γp(εn, –εn, q) is then defined by the recurrence proce-
dure

(13)

which is shown as graphs in Fig. 1b. The “physical”
vertex corresponds to Γp
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 = 0
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, –

 

ε
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q

 

). The additional
combinatorial factor is 

 

r

 

(

 

k

 

) = 

 

s

 

(

 

k

 

) for the simples case
of charge (or Ising spin) pseudogap fluctuations consid-
ered in [6]. For the most interesting case of Heisenberg
spin (SDW) fluctuations considered below, this factor
is [4] (see also the Appendix)

(14)

The choice of the sign of 

 

W

 

2

 

 on the right-hand side of
Eq. (13) depends on the symmetry of the superconduct-
ing order parameter and the type of pseudogap fluctua-
tions [6] (for details, see the Appendix). The corre-
sponding cases are listed in the table. In particular, we
see from this table that in the most interesting case of

 

d

 

-type pairing and Heisenberg pseudogap fluctuations,
we should take the minus, so the recurrence procedure
for the vertex part becomes an alternating one. At the
same time, for the case of 

 

s

 

-wave paring and fluctua-
tions of the same type, we should take the plus, and the
recurrence procedure becomes a constant-sign one. It
was shown in [6] (using other examples from the table)
that this difference in the types of recurrence procedure
leads to two qualitatively different behaviors of all
basic superconductor characteristics.

3. THE INFLUENCE OF IMPURITIES

The influence of the scattering by normal (nonmag-
netic) impurities can be easily taken into account in the
self-consistent Born approximation by writing the
Dyson equation shown graphically in Fig. 2a for the
single-electron Green function. Compared to Fig. 1a,
the standard contribution from the impurity scattering
to the intrinsic-energy part [9] was added to this figure.

Γ εn εn p p q+–, ,–,( ) Γp εn εn q,–,( )e p( ).≡

Γpk 1– εn εn q,–,( )

=  1 W2r k( )Gk εn p, q+( )Gk εn– p,( )±

× 1
2ikκv k

Gk
1– εn p q+,( ) Gk

1– εn– p,( )– 2ikκv k–
--------------------------------------------------------------------------------------------+

× Γpk εn εn q,–,( ),

r k( )
k for  even   k , 

k

 

2+
9

------------ for  odd   k . 




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=
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(a)

(b)
Gk G0k

= + +
G0k G Gk G0k Gk + 1 Gk

,

Γk – 1 Γ Γk∆qe(p) = ∆qe(p) + ∆qe(p) + r(k) ∆qe(p).

Gk – 1

Gk – 1

G

G Gk 

Gk 

ρU2 W2 s(k + 1)

Fig. 2. Recurrence equations for (a) the Green function and (b) the triangular vertex including the impurity scattering
As a result, the recurrence equation for the Green func-
tion can be written as

(15)

where ρ is the impurity concentration with a point
potential U and the “impurity” intrinsic-energy part
includes the full Green function G(εn, q) = Gk = 0(εn, p),
which must generally be determined in a self-consistent
way by using the written procedure. The contribution
from the real part of the Green function to this intrinsic-
energy part typically reduces [9] to an insignificant
renormalization of the chemical potential, so Eq. (15)
takes the form

(16)

Therefore, compared to the impurity-free case, the fol-
lowing substitution (renormalization) actually takes
place:

(17)

(18)

If no full self-consistent calculation is performed for
the intrinsic-energy part of the impurity scattering, then

Gk εn p,( ) G0k
1– εn p,( ) ∑=

– ρU2 G εn p,( ) W2s k 1+( )Gk 1+ εn p,( )–
p

∑
1–

,

Gk εn p,( ) i εn ρU2 ImG εn p,( ) kv kκ+
p

∑–
 
 
 

=

∑ – ξk p( ) W2s k 1+( )Gk 1+ εn p,( )–

1–

.

εn εn ρU2 ImG εn p,( ) εnηe,≡
p

∑–

ηe 1
ρU2

εn

---------- ImG εn p,( ).
p

∑–=
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we have in the simplest approximation

(19)

(20)

where γ0 = πρU2N0(0) is the standard Born impurity
scattering frequency [9] (N0(0) is the density of state of
the free electrons at the Fermi level).

For the triangular vertices of interest, the recurrence
equation that includes the impurity scattering is shown
as a graph in Fig. 2b. For the vertex that describes the
interaction with the fluctuation of the superconducting
order parameter (10) with d-wave symmetry (11), this
equation simplifies significantly, because the contribu-
tion of the second diagram in the right-hand part of
Fig. 2b is virtually equal to zero in view of the condi-
tion  = 0 (cf. the discussion of a similar situa-
tion in [10]). The recurrence equation for the vertex
then has the form (13), where the expressions derived
from (15) and (16), i.e., the “dressed” (by the impurity
scattering) Green functions defined by Fig. 2a, should
be used as Gk(±εn , p). For the vertex that describes the
interaction with the fluctuation of the order parameter
with s-wave symmetry, we have the equation

(21)

εn εn ρU2 ImG00 εn p,( )
p

∑–

≡ εnηe εn γ0 εn,sgn+=

ηe 1
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-------,+=
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p
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± W2r k( )Gk εn p q+,( )Gk εn– p,( )

× 1
2ikκv k

Gk
1– εn p q+,( ) Gk

1– εn– p,( )– 2ikκv k–
--------------------------------------------------------------------------------------------+

 
 
 

× Γpk εn εn– q, ,( ),
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where expressions (15) and (16) should again be used
as Gk(±εnp) and the sign of W 2 is determined by the
above rules. The difference between this vertex and the
vertex of the interaction with d-wave symmetry fluctu-
ations lies in the appearance of the second term on the
right-hand side of Eq. (21), i.e., in the substitution

(22)

Therefore, the self-consistent calculation procedure
now looks as follows. Starting from the zero approxi-
mation G = G00 and Γp = 1, we then have in Eqs. (16)
and (21)

We run the corresponding recurrence procedures (start-
ing from a certain value of k) and determine the new
values of G = Gk = 0 and Γp = Γk = 0 . We again calculate
ηε and ηΓ using (18) and (22), use these values in (16)
and (21), and so on until convergence is achieved.

When considering the vertex of the d-wave symme-
try, we should set ηΓ = 1 at all steps of our calculations.
In this case, there is actually no particular need to per-
form full self-consistent impurity scattering calcula-
tion, because it leads to relatively small corrections to
the results of non-self-consistent calculation using the
simplest substitution (19) [7].

4. CALCULATING THE SUPERCONDUCTING 
TRANSITION TEMPERATURE 

AND THE GINZBURG–LANDAU COEFFICIENTS

The critical superconducting transition temperature
is defined by the normal-phase Cooper instability equa-
tion

(23)

where the generalized Cooper susceptibility is indi-

1 ηΓ 1 ρU2 G εn p q+,( )
p

∑+=

× G εn– p,( )Γp ε εn– q, ,( ).

ηε ηΓ 1
ρU2

εn ImG00 εn p,( )
p

∑
--------------------------------------------.–= =

1 Vχ 0; T( )– 0,=

Fig. 3. Diagram for the generalized susceptibility χ(q) in
the Cooper channel.

εn, p + q

–εn, –p

χ(q) = e(p) e(p')Γ
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cated by the graph in Fig. 3 and is

(24)

The pairing interaction constant V, which is nonzero in
a layer 2ωc in width around the Fermi level, determines
the seed transition temperature Tc0 in the absence
of  pseudogap fluctuations by means of the standard
BCS equation:5 

(25)

where  = [ωc/2πTc0] is the dimensionless cutoff
parameter of the Matsubara frequency sum. As in [6],
all of our calculations were performed for the typical
spectrum (6) of quasi-particles in HTSCs for various
relations between t, t', and µ. By arbitrarily choosing
ωc = 0.4t and Tc0 = 0.01t, we can easily find a value of
the pairing parameter V in (25) that yields this value of
Tc0 for different types of pairing. In particular, we
obtain V/ta2 = 1 and V/ta2 = 0.55 for s-type and -

type pairing, respectively.

The fact that the Cooper susceptibility at q = 0 is
required to calculate Tc significantly simplifies the cal-
culations [6]. In general, for example, knowledge of
χ(q; T) at arbitrary (small) q is required to calculate the
Ginzburg–Landau expansion coefficients.

The Ginzburg–Landau expansion for the difference
between the free energy densities of the superconduct-
ing and normal states can be written in standard form:

; (26)

it is defined by the loop expansion for the free energy in
the fluctuation field of the order parameter (10).

It is convenient to normalize the Ginzburg–Landau
coefficients A, B, and C to their values in the absence of
pseudogap fluctuations by writing them as [6]

(27)

5 We do not discuss the microscopic nature of this interaction; it
can be associated with the exchange by the same antiferromag-
netic spin fluctuations, phonons, or a combination of the elec-
tron–phonon and spin–fluctuation interactions.
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p
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---------- px py
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where

(28)

the angular brackets denote an ordinary averaging over
the Fermi surface:

and N0(0) is the state density at the Fermi surface for
free electrons.

We then obtain the following general expressions [6]:

(29)

(30)

(31)

which were used for our direct numerical calculations.

In the presence of impurities, all of the Green func-
tions and the vertices appearing in these expressions
should be calculated using Eqs. (16) and (21) written
above.

Knowledge of the Ginzburg–Landau expansion
coefficients allows all of the basic superconductor char-
acteristics near the transition temperature Tc to be deter-
mined. The coherence length is defined as

(32)

where ξBCS(T) is the value of this length in the absence
of a pseudogap. For the magnetic-field penetration
depth, we have

(33)

where this quantity was also normalized to its value of
λBCS(T) in the absence of pseudogap fluctuations.
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32π2Tc
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-------------- e4 p( )〈 〉 ;=
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The normalized slope of the upper critical field
near Tc ,

(34)

and the relative jump in specific heat at the transition
point,

, (35)

are determined in a similar way.

5. RESULTS OF CALCULATIONS

The results of calculations for the charge (CDW)
and spin (SDW) Ising fluctuations of the short-range
order were presented in [6]. Here, we focus on the anal-
ysis of the most important and interesting case of
Heisenberg spin (SDW) fluctuations and on the discus-
sion of the role of impurity scattering (disorder). Since
the case of d-type pairing is of particular importance in
the physics of HTSCs based on copper oxides, we pay
slightly more attention to this case.

We performed all of the calculations in this section
for the typical parameters of the initial electron spec-
trum t'/t = –0.4 and µ/t = –1.3 and took κa = 0.2 for the
inverse correlation length. To save space, we do not
present the results of our calculations for the dimen-
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pairing for three impurity scattering frequencies: γ0/Tc0 =
0 (1), 0.18 (2), and 0.64 (3). The inverse correlation length
is κa = 0.2.
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sionless Ginzburg–Landau expansion coefficients KA ,
KB , and KC , but immediately show the typical depen-
dences for the basic physical parameters.

When considering the dependences on the
pseudogap width and the impurity scattering frequency
γ0, we give all of the characteristics normalized to their
values, respectively, at T = Tc0 and T = Tc0(W), i.e., at the
seed transition temperature at a given W, but in the
absence of impurity scattering (γ0 = 0).

5.1. The d-Type Paring 

In Fig. 4, the superconducting transition tempera-
ture Tc is plotted against the effective pseudogap width
W for several impurity scattering frequencies. We see
that pseudogap fluctuations lead to noticeable suppres-
sion of superconductivity; in the presence of finite dis-
order, a critical value of W at which Tc becomes zero
arises. This suppression of Tc is naturally related to the
partial dielectrization of the electron spectrum near hot
spots [4, 5].

Similar dependences are shown in Fig. 5 for the
coherence length and the magnetic-field penetration
depth and in Fig. 6 for the slope of the temperature
dependence of the upper critical field and the jump in
specific heat at the transition point. The latter supercon-
ductor characteristics are rapidly suppressed by
pseudogap fluctuations.
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Fig. 5. Square of the coherence length (a) and magnetic-
field penetration depth (b) versus effective pseudogap width
W for d-type pairing for three impurity scattering frequen-
cies: γ0/Tc0 = 0 (1), 0.18 (2), and 0.64 (3)
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The dependence on the correlation length of the
short-range order fluctuations is slower: in all cases, the
increase in ξ (the decrease in parameter κ) enhances the
pseudogap fluctuation effect.
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Fig. 6. Slope of the upper critical field and jump in specific
heat at the transition point versus effective pseudogap width
for d-type pairing for three impurity scattering frequencies:
γ0/Tc0 = 0 (1), 0.18 (2), and 0.64 (3).

Fig. 7. Tc versus impurity scattering (disorder) frequency
for d-type pairing for three effective pseudogap widths:
W/Tc0 = 0 (1), 2.8 (2), and 5.5 (3).
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In Fig. 7, the superconducting transition tempera-
ture is plotted against the impurity scattering frequency
γ0 for several effective pseudogap widths. We see that,
in the presence of pseudogap fluctuations, the suppres-
sion of Tc with growing disorder is appreciably faster
that in their absence (W = 0) when the dependence
Tc(γ0) for d-type paring is described by the standard
Abrikosov–Gorkov curve [10, 11]. Similar depen-
dences are shown in Fig. 8 for the coherence length and
the penetration depth and in Fig. 9 for the slope of the
Hc2(T) curve and the jump in specific heat. We again see
that impurity scattering (disorder) causes the last two
parameters to rapidly decrease; i.e., it enhances the
pseudogap fluctuation effect.

The derived dependences on the pseudogap param-
eters are qualitatively similar to those obtained in [6]
for the case of charge (CDW) pseudogap fluctuations
where, as in the case considered here, an alternating
recurrence procedure arises for the vertex part. At the
same time, certain quantitative differences associated
with different diagram combinatorics also arise. The
dependences on the impurity scattering (disorder) fre-
quency have not been studied previously in this model.6 

The dependences found are in qualitative agreement
with most of the data from the experiments aimed at
studying the superconductivity in the domain of exist-
ence of the pseudogap (the underdoped region in the

6 The corresponding dependences of Tc were considered in [7] for
the constant-sign recurrence procedure that arises in the case of
Ising SDW fluctuations where the suppression of superconductiv-
ity is much slower.
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Fig. 8. Square of the coherence length (a) and magnetic-
field penetration depth (b) versus impurity scattering fre-
quency γ0 for d-type pairing for three effective pseudogap
widths: W/Tc0 = 0 (1), 2.8 (2), and 5.5 (3).
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cuprate phase diagram). Below, we show that the
results obtained can be used to directly model the typi-
cal phase diagram for HTSC cuprates.
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Fig. 9. Slope of the upper critical field and jump in specific
heat at the transition point versus impurity scattering fre-
quency γ0 for d-type pairing for three effective pseudogap
widths: W/Tc0 = 0 (1), 2.8 (2), and 5.5 (3).

Fig. 10. Tc versus effective pseudogap width W for s-type
pairing for two impurity scattering frequencies: γ0/Tc0 =
0 (1) and 20 (2). The inverse correlation length is κa = 0.2.
The insert shows the characteristic behavior of the jump in
specific heat for similar parameters.

100 20 30 40
W/Tc0

0.2

0.4

0.6

0.8

1.0
Tc/Tc0

100 20 30 40
W/Tc0

0.2

0.4

0.6

0.8

1.0

∆C

1

2

1

2

ICS      Vol. 99      No. 6      2004



1272 KULEEVA et al.
5.2. The s-Type Pairing 

The s-type pairing is mainly of interest in revealing
the characteristic differences from the d-type pairing.
There are virtually no experimental data on the s-type
conductivity in systems with a pseudogap, although it
may well be that the corresponding systems will be dis-
covered in the future.

Our calculations indicate that pseudogap fluctua-
tions suppress appreciably the superconducting transi-
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γ0/Tc0(W)

0.8

1.0

1.2

Tc/Tc0(W)

1

2

3

Fig. 11. Superconducting transition temperature Tc versus
impurity scattering (disorder) frequency γ0 for s-type pair-
ing for three pseudogap widths: W/Tc0 = 0 (1), 8 (2), and
15 (3).
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Fig. 12. Square of the coherence length (a) and magnetic-
field penetration depth (b) versus impurity scattering (disor-
der) frequency γ0 for s-type pairing for two effective
pseudogap widths: W/Tc0 = 0 (1) and 15 (2).
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tion temperature in this case as well (Fig. 10), although
the scale length of these fluctuations required for signif-
icant suppression of superconductivity is much larger
than that for the d-type pairing. This result has already
been obtained in [6]. Note, however, that in the case of
Heisenberg SDW fluctuations under consideration,
there is no characteristic “shelf” on the Tc(W) curve that
is present in the case of scattering by CDW pseudogap
fluctuations [6]. The jump in specific heat at the super-
conducting transition point is also significantly sup-
pressed on the same scale of W, as shown in the insert
to Fig. 10. The corresponding dependences for the
coherence length and the penetration depth are similar
to those obtained previously in [6] and are not given
here. Figure 11 shows the calculated dependence of Tc

on the impurity scattering (disorder) frequency. Apart
from the relatively weak suppression of Tc by disorder
related [7] to the state density smearing at the Fermi
level, a weak effect of increase in Tc with γ0 that is prob-
ably related to the smearing of the pseudogap in the
state density by impurity scattering can also be
observed.

Figure 12 shows how impurity scattering (disorder)
affects the coherence length and the magnetic-field
penetration depth in the case of s-type pairing.

Finally, Fig. 13 shows how impurity scattering
(disorder) affects the slope of the upper critical field
and the jump in specific heat. The jump in specific
heat is significantly suppressed by disorder, and the
behavior of the slope of Hc2(T) qualitatively differs
from that in the case of d-type pairing: the growth of
disorder causes this parameter to increase appreciably,
as in the standard theory of “dirty” superconductors
[20], while pseudogap fluctuations increase the slope
of Hc2(T). In the absence of pseudogap fluctuations,
similar differences in the behavior of the slope of
the Hc2(T) curve for disorder have been pointed out [10].

6. MODELING THE PHASE DIAGRAM

The described model of the influence of pseudogap
fluctuations on superconductivity allows the typical
phase diagram for HTSC cuprates to be modeled.7

Modeling of this kind, based on an extremely simplified
version of our model, was originally attempted in [13].
The main idea is to identify the parameter W with the
experimentally observed effective pseudogap width
(the temperature of the crossover to the pseudogap
region of the phase diagram), Eg ≈ T*, determined from
many experiments [1–3]. This parameter is known to
decrease almost linearly with increasing dopant (cur-
rent carriers) concentration from values of ~103 K,
becoming zero at a certain critical concentration xc ≈

7 We ignore the existence of a narrow region of antiferromagnetic
ordering in the state of a Mott insulator that exists in the range of
low dopant concentrations by restricting our analysis to the wide
domain of existence of a “bad” metal.
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0.19–0.22 that slightly exceeds the “optimal value”
xopt ≈ 0.15–0.17 [1, 14]. Accordingly, we may take8

 a
similar concentration dependence of our pseudogap
width parameter W(x). In this sense, the dependence
W(x) may be considered to be determined directly from
experiments. The only parameter to be determined is
then the concentration dependence of the seed supercon-
ducting transition temperature Tc0(x) that would exist in
the absence of pseudogap fluctuations. Its knowledge
will allow the concentration behavior of the actual tran-
sition temperature Tc(x) to be determined by solving the
equations of our model. Unfortunately, as was pointed
out in [6], the dependence Tc0(x) is generally unknown
and cannot be determined from experiments, remaining
a fitting parameter of the theory.

Assuming, as was done in [13], that Tc0(x) can be
described by a linear function of x that becomes zero at
x = 0.3 and choosing Tc0(x = 0) to obtain the desired
Tc(x = xopt), we can calculate the form of the “observed”
dependence Tc(x). As an example, the results of such
calculations for d-type pairing and the scattering by
charge (CDW) pseudogap fluctuations [6] using a typi-
cal dependence W(x) are shown in Fig. 14. We see that,
even under such arbitrary assumptions, the hot spot
model yields a dependence Tc(x) close to the experi-
mentally observed one. Similar calculations for the
Ising model of the interaction with spin fluctuations (a
constant-sign procedure for the vertex part [6]) indicate
that reasonable values of Tc(x) can be obtained only at
nonrealistic values of W(x) that are about an order of
magnitude larger than the observed values.

In the BCS model for the seed temperature Tc0 under
consideration, the assumption of a noticeable concen-
tration dependence of this parameter seems rather unre-
alistic.9 Therefore, we assume that Tc0 does not depend
on the carrier concentration x at all, but take into
account the fact that doping inevitably gives rise to
impurity scattering (internal disorder), which can be
described by the corresponding linear function γ(x). Let
us assume that this growth of disorder leads to total sup-
pression of the d-type pairing at x = 0.3 in accordance
with the standard Abrikosov–Gorkov dependence [11].
The phase diagram for a La2 – xSrxCuO4 system calcu-
lated in our model for Heisenberg pseudogap fluc-
tuations by taking into account the described role of
impurity scattering is shown in Fig. 15. The parameters
of the problem for this system used in our calculations
are given in Fig. 15. The “experimental” values of
Tc(x) indicated in this figure (as well as in Fig. 14) by

8 Naturally, this identification can be made to the unknown propor-
tionality factor of the order of unity.

9 In this approach, the dependence Tc0(x) may be attributable only
to the corresponding relatively weak dependence of the state den-
sity at the Fermi level.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
0 10 20

γ0/Tc0(W)

2

4

6

8

10

12

|dHc2/dT |

(a) (b)

1

2

10 200

γ0/Tc0(W)

0.2

0.4

0.6

0.8

1.0

∆C

1

2

Fig. 13. Slope of the upper critical field and jump in specific
heat at the transition point versus impurity scattering (disor-
der) frequency γ0 for s-type pairing for two effective
pseudogap widths: W/Tc0 = 0 (1) and 15 (2).
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Fig. 14. Model phase diagram for the scattering by charge
(CDW) pseudogap fluctuations (d-type pairing) and the
seed superconducting transition temperature Tc0 that is a
linear function of the carrier concentration. The diamonds
represent the “experimental” data; W(x = 0) = 708 K;
Tc0(x = 0) = 90 K; κa = 0.2; Tc(x = 0.17) = 36 K.
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diamonds were obtained by using the empirical for-
mula [14, 15]

(36)

This formula satisfactorily describes the concentration
behavior of Tc for a number of HTSC cuprates. We see
that our model gives an almost ideal description of the
“experimental” data at reasonable values of W(x) in the
entire underdoped region. The description becomes
poorer at the end of the overdoped region. It should be
borne in mind, however, that formula (36) does not
yield satisfactory results either; in addition, our super-
conductivity suppression model in the overdoped
region is clearly very crude, and no special parameter
fitting that would improve the agreement with the data
in this region has been performed.

It is interesting to consider the behavior of the super-
conducting transition temperature Tc for additional dis-
ordering of the system for various compositions (carrier
concentrations). There are many experimental works in
which such disordering was achieved by doping [16, 17]
or by fast neutron [18] and electron [19, 20] irradiation.

Tc x( )
Tc x xopt=( )
---------------------------- 1 82.6 x xopt–( )2.–=

0 0.1 0.2 0.3
x

50

100

150

200

T, K

1 2

W

Tc

Tc0

γ

Fig. 15. Model phase diagram for the scattering by Heisen-
berg (SDW) pseudogap fluctuations (d-type pairing) and the
seed superconducting transition temperature Tc0 that does
not depend on the carrier concentration with the inclusion of
internal disorder γ(x) that is linear in dopant concentration.
The diamonds represent the “experimental” data; γ0 =
0.15Tc0 (curve 1), γ0 = 0.25Tc0 (curve 2); Wm(x = 0) =
580 K; Tc0 = 70 K; t'/t = –0.25; µ/t = –0.8; κa = 0.2;
Tmax(x = 0.16) = 39 K.
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The role of the additional disorder was discussed in the
context of the existence of a pseudogap state only
in [17].

In our model, this disordering can be simulated by
introducing the additional impurity scattering parame-
ter γ0 that is added to the internal disorder parameter
γ(x). The calculated superconducting transition temper-
ature for two values of this parameter is also shown in
Fig. 15. We see that, in close agreement with the exper-
iment [17], doping (disorder) causes the domain of
existence of superconductivity to narrow rapidly. Also
in close agreement with the conclusion drawn above
from Fig. 7 and with the experimental data [17, 18], the
suppression of superconductivity by disorder in the
underdoped region (the pseudogap region) is much
faster than that for the optimal composition. It might be
expected that “normal” disorder, which clearly causes
the pseudogap in the state density to slightly decrease,
could lead to a certain “delay” of the decrease in Tc , but
this effect is absent for d-type pairing.

However, the problem is that, in all cases, the
decrease in Tc is faster than that implied by the standard
Abrikosov–Gorkov curve for d-type pairing [11]. At the
same time, attempts to properly process most of the
experimental data on disordering in HTSC cuprates
[16, 19, 20] lead to the conclusion that this decrease is
actually much slower than that predicted by the Abriko-
sov–Gorkov dependence. This as yet unsolved problem
is among the main problems in the theory of high-tem-
perature superconductors [12]. One way to solve this
problem may be associated with a consistent descrip-
tion of the role of disorder in superconductors located
in the transition region from “loose” pairs of the BCS
theory to “compact” pairs that emerge in the limit of
strong coupling [21]. Another interesting possibility of
explaining this delay of the decrease in Tc is related to
the anisotropy of elastic impurity scattering considered
in detail in [10, 22]. This effect can be included
relatively easily in our calculations. It seems particu-
larly interesting in connection with the established
strong anisotropy of elastic scattering (with d-type
symmetry) observed in ARPES experiments on a
Bi2Sr2CaCuO8 + δ system [23, 24]. The corresponding
scattering frequency varies over the range 20–60 meV
[24], which is almost an order of magnitude higher than
the maximum value of γ(x) used in our calculations and
points once again to the unusual stability of the d-type
pairing in cuprates against static disorder. It should be
noted that our model for the intrinsic-energy part of the
electron actually describes a similar anisotropy of elas-
tic scattering that corresponds to its increase near hot
spots. However, no delay of the decrease in Tc was
observed in our calculations.

The results show that, despite the obvious crudeness
of our assumptions, the hot spot model gives a reason-
able (occasionally even semiquantitative) description
of the domain of existence of superconductivity on the
 AND THEORETICAL PHYSICS      Vol. 99      No. 6      2004
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phase diagram for HTSC cuprates.10
 The significant

uncertainty in the formation scenario for the concentra-
tion dependence of the seed superconducting transition
temperature remains a major shortcoming in the
approach.

7. CONCLUSIONS

Our analysis shows that the pseudogap state model
based on the concept of hot spots can provide a fairly
consistent description of the basic properties of the
superconducting phase for HTSC cuprates and their
phase diagram with a relatively small number of fitting
parameters most of which can be determined from
independent experiments.

It should be emphasized that our analysis was per-
formed entirely under the standard assumption [12]
about the self-averaging of the superconducting order
(gap) parameter in the field of random impurities and
pseudogap fluctuations. This assumption is generally
justified for superconductors whose coherence length
(the Cooper pair size) is much larger than other micro-
scopic lengths in the system, such as the mean free path
or the correlation length ξ of the pseudogap fluctuations.
In the class of pseudogap state models under consider-
ation, this is not necessarily the case, and significant non-
self-averaging effects [25, 26] that lead to the qualitative
picture of an inhomogeneous superconducting state with
superconducting-phase drops existing at temperatures
T > Tc can arise. In principle, there are direct experimen-
tal data that confirm this picture of inhomogeneous
superconductivity in HTSC cuprates [27–29]. Of course,
we are far from asserting that these real experiments con-
firm the picture that has been theoretically developed by
using simplified models in [25, 26]. Nevertheless, these
results emphasize the importance of a consistent analy-
sis of the non-self-averaging effects in relatively realis-
tic pseudogap state models, such as the hot spot model
considered above.11 
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APPENDIX

DIAGRAM COMBINATORICS IN THE MODEL 
OF HEISENBERG PSEUDOGAP FLUCTUATIONS

To analyze the diagram combinatorics, let us con-
sider the limit of an infinite correlation length of spin
fluctuations. In this case, the spin density by which an
electron is scattered can be expressed as

(A.1)

and averaging over Gaussian spin fluctuations reduces
to ordinary integration [4]:

. (A.2)

Consequently, in this limit, we can first solve the prob-
lem of an electron in the coherent field of the spin den-
sity (A.1) and then perform averaging (A.2) over its
fluctuations. For the subsequent analysis, it is conve-

nient to introduce the fluctuating field d = (g/ )S,
the potential by which an electron is scattered. Averag-
ing (A.2) over the spin fluctuations then reduces to
averaging over the fluctuations of this field:

(A.3)

Thus, there are two fluctuating fields by which free car-
riers are scattered: the real longitudinal field δl =

(g/ )Sz and the complex transverse field dt with
amplitude |dt| and phase ϕ that is associated with the
two transverse components of the vector S.

This averaging gives rise to a diagram technique
with two types of effective interactions [4]: one is rep-
resented by the dashed line,

(A.4)

where the minus refers to the case of a change in spin
projection under this line (e.g., when the dashed line
encloses an odd number of spin flip operators S+ and
S−); the other is represented by the wavy line,

(A.5)

The means 〈S+S+〉  and 〈S–S–〉  are equal to zero due to the
phase averaging in (A.3).
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Let us now solve the problem of an electron in the
coherent field of the spin density (A.1). In this case, the
matrix single-particle Green function has four indepen-
dent components12 that can be determined from the
system of equations

(A.6)

where we use the short designations (εn, p)  1,
(εn, p + Q)  2 and

It thus follows that

(A.7)

where |d| =  is the amplitude of the field d.

In this case, the fluctuation-averaged single-particle
Green function is

(A.8)

12The components that differ from these by the change of sign of
all spin projections can be obtained by the substitution δl 
−δl and δt  .     δt

*

G1↑ ; 1↑ G1 G1δlG2↑ ; 1↑ G1δtG2↓ ; 1↑ ,+ +=

G2↑ ; 1↑ G2δlG1↑ ; 1↑ G2δtG1↓ ; 1↑ ,+=

G2↓ ; 1↑ G– 2δlG1↓ ; 1↑ G2δt*G1↑ ; 1↑ ,+=

G1↓ ; 1↑ G– 1δlG2↓ ; 1↑ G1δt*G2↑ ; 1↑ ,+=

G1
1

iεn ξp–
------------------, G2

1
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G2
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G1
1– G2

1– d 2–
-------------------------------,=

G2↑ ; 1↑
δl

G1
1– G2

1– d 2–
-------------------------------,=

G1↓ ; 1↑ 0, G2↓ ; 1↑
δt*

G1
1– G2

1– d 2–
-------------------------------,= =

δl
2 dt

2+

G G1↑ ; 1↑〈 〉 2
π
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3
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------- 
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× d d 2 3 d 2

2W2
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Fig. 16. Two-particles vertices with different diagram com-
binatorics.
JOURNAL OF EXPERIMENTAL
                                           

This integral representation can be easily written [4] as
the continued fraction (1), (2) with κ = 0 and the com-
binatorial coefficients s(k) defined by Eq. (9).

The combinatorial coefficients r(k) for the two-par-
ticle vertices are slightly more difficult to determine.
Four types of vertices (see Fig. 16) may be considered.
For all four types of vertices, the recurrence procedure
has the form (13), but the signs in the procedure and the
combinatorial coefficients r(k) can be different. Let us
consider all vertices in the coherent field δ.

(1) The charge vertex (the spin projection is con-
served at the vertex) in the diffusion channel (particle–
hole), Fig. 16a:

(A.9)

where i and σ take on values of 1, 2 and ↑ , ↓ , and the
designations ( , p')  1'), ( , p' + Q)  2'), and
dδ = [(G1G2)–1 – |d|2][(G1'G2')–1 – |d|2] are used.

(2) The charge vertex in the Cooper channel (parti-
cle–particle),13 Fig. 16b:

(A.10)

(3) The spin vertex (the spin projection changes sign
at the vertex) in the diffusion channel (particle–hole),
Fig. 16c:

(A.11)

(4) The spin vertex in the Cooper channel (particle–
particle), Fig. 16d:

(A.12)

The physical vertices can be obtained from these verti-
ces with the coherent field δ by averaging (A.3) over the
fluctuations of the corresponding field.

Thus, we see that the vertex  is defined by
Eq. (A.9), while all of the other vertices have the
form14 

(A.13)

13 It emerges when the triplet pairing is described.
14This form is equivalent to (A.10)–(A.12) when averaged.
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where the plus corresponds to the vertices  and ,

and the minus corresponds to the vertex .

Obviously, r(k) = s(k) for the vertex . Indeed, the

expansion for the physical vertex 〈 〉  can be obtained
by inserting the corresponding free vertex in all the
electron lines of an arbitrary diagram for the single-par-
ticle Green function. Inserting this vertex changes nei-
ther the direction of the electron line nor the spin pro-
jection; accordingly, the diagram combinatorics does
not change either.

In the limit of an infinite correlation length, any
skeleton diagram for the vertex differs from the ladder
diagram of the same order with the interaction
(W2/3)δ(q – Q) only by the sign and the factor 2p,
where p is the number of wavy lines. Thus, the sum of
all skeleton diagrams of a given order may be replaced
with the corresponding ladder diagram with the interac-
tion (W2/3)δ(q – Q) multiplied by the combinatorial
factor, which we call the number of skeleton diagrams
of a given order.

The first term in Eqs. (A.9)–(A.12) is the same for
all vertices and generates the numbers of skeleton dia-
grams of even (in W2) order when averaged (since this
term corresponds to the terms with i = 1 in these equa-
tions). Thus, the numbers of skeleton diagrams of even
order are the same for all four vertices. The second term
in these equations generates the numbers of diagrams
of odd order (it corresponds to the terms with i = 2).
Consequently, the numbers of skeleton diagrams of odd
order for all three vertices defined by (A.13) are ±1/3 of

the corresponding numbers of for the vertex . The

minus corresponding to the vertex  can be offset by
changing the sign in the recurrence procedure for this
vertex. Consequently, the sign of the second term
in (A.13) determines the sign in the recurrence proce-
dure (13) for these vertices, and the combinatorial coef-
ficients r(k) are the same for these three vertices.

The number of skeleton diagrams of order L is15 

(A.14)

Thus, we obtain

(A.15)

15The factor 3L emerges, because the recurrence procedure (13)
and the combinatorial coefficients r(k) correspond to the expan-
sion in a power series of W2, while the number of skeleton dia-
grams was determined for the expansion in a power series of
W2/3.

Γ c
ch Γ c

sp

Γd
sp

Γd
ch

Γd
ch

Γd
ch

Γd
sp

3L r k( ).
1 k L≤ ≤
∏

r k( )
1 k 2n≤ ≤
∏ s k( )

1 k 2n≤ ≤
∏=
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for even L = 2n + 1 and

(A.16)

for odd L = 2n + 1; whence, given (9), follows (14).
In this paper, we were mainly interested in the ver-

tex . The above analysis shows that a constant-sign
procedure emerges for this vertex for the case of s-type
paring where the symmetry factor e(p), which must
appear in the vertex, is equal to unity. In contrast, in the
case of d-type paring where the superconducting gap
when switching over to Q changes sign (i.e., e(p) =
−e(p + Q)), the sign of the recurrence procedure must
be reversed [6], and the procedure becomes an alternat-
ing one. For the Ising spin fluctuations considered
in [6], the situation with the sign of the recurrence pro-
cedure for the vertex is reverse. This somewhat surpris-
ing result can be easily understood from Eq. (A.12) for

the vertex . The two transverse components (i.e., the
field δt) vanish in the Ising model, causing the sign of
the second term in (A.12) and, hence, in the recurrence
procedure to change.
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Abstract—An analysis of spin dynamics is presented for semiconductor systems without inversion symmetry
that exhibit spin splitting. It is shown that electron–electron interaction reduces the rate of the Dyakonov–Perel
(precession) mechanism of spin relaxation both via spin mixing in the momentum space and via the Hartree–
Fock exchange interaction in spin-polarized electron gas. The change in the Hartree–Fock contribution with
increasing nonequilibrium spin polarization is analyzed. Theoretical predictions are compared with experimen-
tal results on spin dynamics in GaAs/AlGaAs-based quantum-well structures. The effect of electron–electron
collisions is examined not only for two-dimensional electron gas in a quantum well, but also for electron gas in
a bulk semiconductor and a quantum wire. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Spin dynamics in semiconductors and semiconduc-
tor heterostructures is the subject of intensive ongoing
research in view of possible applications in spintron-
ics [1–5]. There exist four principal mechanisms of free-
electron spin relaxation in semiconductors (see [6–8] and
references therein). In the Elliott–Yafet mechanism,
spin flip due to electron–electron scattering is explained
by admixture of valence-band states to the conduction-
band wave functions. In the Dyakonov–Perel (DP)
mechanism, spin polarization decays during intervals
between successive collisions, rather than in collisions
(as in the Elliott–Yafet mechanism), owing to wavevec-
tor-dependent spin splitting of the conduction band [9].
In p-type structures, electrons are spin-depolarized as
they are scattered by holes (the Bir–Aronov–Pikus
mechanism). In samples with paramagnetic impurities,
spin flip is partly due to the exchange interaction
between free electrons and electrons bound to para-
magnetic impurities.

For two-dimensional n-type quantum-well struc-
tures, the DP mechanism, also known as the precession
mechanism (due to spin splitting in systems without
inversion symmetry), is the most likely scenario of spin
depolarization in wide ranges of carrier temperature
and concentration [10–21]. Spin splitting is equivalent
to spin precession in magnetic field, with a Larmor fre-
quency Wk depending on the magnitude and direction
of the electron wavevector k. The spin relaxation rate
can be estimated as

where the angle brackets denote averaging over the
electron energy distribution and τ is a microscopic

τ s
1– Wk

2τ〈 〉 ,∝
1063-7761/04/9906- $26.00 © 21279
relaxation time. We were the first to note [22] that the
inverse relaxation time τ–1 is the sum of contributions
due not only to various momentum-scattering mecha-
nisms (which control the carrier mobility), but also to
electron–electron collisions (which do not change the
mean electron quasimomentum). Indeed, it does not
matter whether a change in k (and the corresponding
change in the axis of Larmor precession) is due to the
scattering by a static defect or a phonon, or due to cyclo-
tron motion of free carriers in magnetic field [11, 23], or
it is caused by a collision with another electron. In par-
ticular, this implies that there exists a natural upper
limit of spin relaxation rate in high-quality structures:

 ≤ 〈 〉 , where the time scale  characteriz-
ing the electron–electron collision frequency can be
found by solving an equation for the component δsk of
the spin density matrix that is an odd function of k. The
important role played by electron–electron scattering
was demonstrated experimentally in [24], where spin
dynamics were studied for optically oriented electrons
in n-type GaAs/AlGaAs-based quantum wells.

In [22, 25],  was calculated for a nondegenerate
two-dimensional electron system by solving a master
equation for the spin density matrix. In [26], the theory
was extended to the case of a bulk crystal, when elec-
tron–electron collisions can be described in the quasi-
elastic approximation [27]. Extensions of kinetic the-
ory from nondegenerate to arbitrary electron statistics
were outlined in [28]. The contribution of electron–
electron collisions to spin dynamics was allowed for in
the theoretical study presented in [29], where the Har-
tree–Fock corrections to the one-electron energy in a
spin-polarized electron gas introduced in [16, 17] were
also taken into account. The numerical results pre-

τ s
1– Wk

2 τee
s( ) τee

s( )

τee
s( )
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sented in [29] were obtained for only one value of two-
dimensional quantum-well electron concentration in
nonzero magnetic field at temperatures above 120 K.
They cannot be used to evaluate the relative contribu-
tions of electron–electron and electron–phonon scatter-
ing and distinguish between the effects due to Hartree–
Fock corrections to electron energy and electron–elec-
tron collisions.

In this paper, we present a kinetic theory of spin
relaxation of conduction electrons that takes into
account the contribution of electron–electron interac-
tion for arbitrary degrees of degeneracy and spin polar-
ization of the electron system. We calculate the spin
relaxation time for a two-dimensional electron gas at
temperatures ranging from low values to 120 K in the
case when electron–phonon interaction weakly affects
spin relaxation. The results obtained are compared with
experiment [24] (see preliminary comparison in [30]).
We find conditions under which the Hartree–Fock cor-
rections are negligible as compared to the effect of elec-
tron–electron collisions on spin dynamics. The effect of
these collisions on the Dyakonov–Perel mechanism is
analyzed for systems with dimensions varying from
d = 3 to d = 1.

The paper is organized as follows. In Section 2, we
derive a master equation for spin-polarized electrons
that takes into account electron–electron interaction. In
Section 3, a general expression is obtained for the ten-
sor of inverse spin-relaxation times. In Section 4, we
calculate the spin relaxation time for a quantum well. In
Section 5, the spin relaxation time is calculated for a
bulk semiconductor and a quantum wire.

2. MASTER EQUATION
FOR THE SPIN DENSITY MATRIX

In the kinetic theory of the electron gas, the joint dis-
tribution of the wavevector k and spin is described by a
2-by-2 density matrix that can be represented in terms
of basis matrices as

(1)

Here, s is the vector whose components are the Pauli
matrices, fk = Tr[ρk/2] is the spin-averaged electron dis-
tribution function, and sk = Tr[ρk(s/2)] is the spin per
k-state electron (the 2-by-2 identity matrix is omitted in
this representation). The master equation for the den-
sity matrix ρk can be written as

(2)

Here, *SO(k) is the contribution of spin-dependent
terms to the effective one-electron Hamiltonian, and
VC(k) is the Hartree–Fock contribution to the effective
one-electron Hamiltonian due to the exchange interac-

ρk f k sk s.⋅+=

dρk

dt
---------

i
"
--- *SO k( ) VC k( ) ρk,+[ ] Q̂k ρ{ }+ + 0.=
JOURNAL OF EXPERIMENTAL 
tion between the spin-polarized electron gas and an
electron in the k-state [16, 17, 29, 31]:

(3)

The last term on the left-hand side is the collision inte-
gral. The electron–electron scattering processes that do
not conserve the total spin are ignored in this study.

To derive an expression for the contribution of elec-
tron–electron interaction to the collision integral

{ρ}, we apply the standard Keldysh diagram tech-
nique and use the fact that the matrix element associ-
ated with the electron–electron scattering process k,
sk + k', sk'  p, sp + p', sp' can be represented as

(4)

where sk, sk' , … denote projections of spin ±1/2 on the
z axis and Vq is a Fourier component of the Coulomb
potential V(r) in a d-dimensional space. We can use (4)
to write the matrix element for arbitrary spin orienta-
tions in the initial and final states. Expression (4) can be
rewritten in a convenient invariant matrix form by
assigning index 1 to the spin states sk and sp of electrons
with wavevectors k and p, respectively, and index 2 to
the spin states sk' and sp' . Furthermore, Eq. (4) can be
written in the following operator form in terms of the 2-
by-2 identity matrices I(1) and I(2) and the Pauli matrices

 and  (α = x, y, z):

(5)

where

(6)

This expression for , as well as the starting expres-
sion (4), has a simple form because the scattering pro-
cesses that do not conserve the total spin are ignored in
this study. We write out the following useful expression

for the squared operator :

The matrix  is then used to rewrite the collision
integral in (2) in compact form as

(7)

where a matrix depending on the spin indices 1 and 2 is

VC k( ) 2 Vk' k– sk' s⋅( ).
k'

∑=

Q̂k

M p sp; p' sp', k sk; k' sk',,,( )

=  Vk p– δsp sk, δsp' sk', Vk p'– δsp sk', δsp' sk', ,–

σα
1( ) σα

2( )

M̂ AI 1( )I 2( ) Bs 1( ) s 2( ),⋅+=

A Vk p–
1
2
---Vk p'– , B–

1
2
---Vk p'– .–= =

M̂

M̂

M̂
2

A2 3B2+( )I 1( )I 2( ) 2B A B–( )s 1( ) s 2( ).⋅+=

M̂

Q̂k ρ{ } π
2"
------ δk k' p p'+,+ δ Ek Ek' Ep Ep'––+( )

k' p p', ,
∑=

× Tr2G p p'; k k',,( ),
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introduced,

(8)

and Tr2 denotes the sum of diagonal matrix elements
with index 2. The equation for the density matrix is
equivalent to the following system of scalar and
(pseudo)vector equations for fk and sk , respectively:

(9)

(10)

Here, the angular frequencies are defined by the rela-
tions

(11)

the scalar and vector collision integrals, by the relations

Performing the operations Tr1 and Tr2, we obtain

(12)

G p p'; k k',,( ) M̂ I 1( ) ρp
1( )–( ) I 2( ) ρp'

2( )–( )M̂ρk
1( )ρk'

2( )=

+ ρk
1( )ρk'

2( )M̂ I 1( ) ρp
1( )–( ) I 2( ) ρp'

2( )–( )M̂

– M̂ρp
1( )ρp'

2( )M̂ I 1( ) ρk
1( )–( ) I 2( ) ρk'

2( )–( )

– I 1( ) ρk
1( )–( ) I 2( ) ρk'

2( )–( )M̂ρp
1( )ρp'

2( )M̂,

d f k

dt
--------- Qk f s,{ }+ 0,=

dsk

dt
-------- sk Wk WC k,+( ) Qk s f,{ }+×+ 0.=

*SO k( ) "
2
---Wk s, WC k,⋅≡ 2

"
--- Vk' k– sk' ,

k'

∑=

Qk f s,{ } π
4"
------ δk k'+ p p'+, δ Ek Ek' Ep Ep'––+( )

k' p p', ,
∑=

× Tr1Tr2 G p p'; k k',,( )[ ] ,

Qk s f,{ } π
4"
------ δk k'+ p p'+, δ Ek Ek' Ep Ep'––+( )

k' p p', ,
∑=

× Tr1Tr2 s 1( )G p p'; k k',,( )[ ] .

Qk f s,{ } 2π
"

------=

× δk k'+ p p'+, δ Ek Ek' Ep Ep'––+( )
k' p p', ,
∑

× 2Vk p–
2 Vk p– Vk p'––( ){

× f k f k' 1 f p f p'––( ) f p f p' 1 f k f k'––( )–[ ]

+ 2 Vk p–
2 Vk p– Vk p'––( )

× f p f k–( ) sk' sp'⋅( ) f p' f k'–( ) sk sp⋅( )+[ ]

– Vk p– Vk p'– f k f k'+( ) sp sp'⋅( )[

– f p f p'+( ) sk sk'⋅( ) ] } ,
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(13)

where

(14)

When the terms of third order in f and s can be
neglected for a nondegenerate electron system, the vec-
tor collision integral reduces to [22]

(15)

The case when all spins are oriented along a certain axis
and the case of weak spin polarization (|sk| ! fk) were
discussed in [26]. The contributions to (12) and (13)

proportional to  and Vk – pVk – p' represent direct
Coulomb interaction and exchange interaction between
electrons, respectively. A kinetic equation for spin-
polarized electron gas taking into account electron–
electron interaction was discussed in a series of papers
[16, 17, 29, 31]. The Hartree–Fock term in (9) is con-
sistent with analogous terms in the equations for spin
density-matrix components discussed in [16, 17]. Note
that the electron–electron collision integral considered
in [29, 31] did not include exchange interaction. More-
over, the expressions for Qk, x{s, f} and Qk, y{s, f} that
follow from (13) substantially differ from the corre-
sponding collision integral (∂ρk/∂t)scatt for ρk = skx – isky

used in [29, 31]. In the case of a nondegenerate electron

system, the term  in (15) is multiplied by sk fk' –
sp fp' , whereas the corresponding multiplicand in [29, 31]
is proportional to

,

Qk s f,{ } 2π
"

------=

× δk k'+ p p'+, δ Ek Ek' Ep Ep'––+( )
k' p p', ,
∑

× 2Vk p–
2 Vk p– Vk p'––( ){

× skF k'; p p',( ) spF p'; k k',( )–[ ]

– Vk p– Vk p'– sk'F k; p p',( ) spF p'; k k',( )–[

– sk' sk–( ) sp sp'⋅( ) ]

+ 2 Vk p–
2 Vk p– Vk p'––( ) sp sk–( ) sk' sp'⋅( ) } ,

F k1; k2 k3,( ) f k1
1 f k2

f k3
––( ) f k2

f k3
.+=

Qk s f,{ } 2π
"

------=

× δk k' p p'+,+ δ Ek Ek' Ep Ep'––+( )
k' p p', ,
∑

× 2 Vk p–
2 Vk p– Vk p'––( ) sk f k' sp f p'–( )[

+ Vk p– Vk p'– sk f k' sk' f k–( ) ] .

Vk p–
2

Vk p–
2

sk α, 2 f p f k' f p'+ +( ) sp α, 2 f k f k' f p'+ +( )–
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where α = x, y. Note also the wavevectors k, k', p, and p'
are used here instead of k, k' – q, k – q, and k' in [29, 31],
respectively. Both analysis of (15) and general consid-
erations show that the collision integral corresponding
to the latter combination of wavevectors is incorrect,
because it does not vanish for the spin-polarized elec-
tron gas characterized by the Maxwell–Boltzmann
equilibrium distribution of kinetic energy in each spin
branch.

The Larmor frequencies due to spin–orbit interac-
tion can be expressed for specific semiconductors as
follows. The valence-band spin-orbit splitting in a bulk
semiconductor with zinc-blende-type lattice scales
with the electron wavevector cubed. The corresponding
Larmor frequency is

(16)

where α ≈ 0.07 is the Dresselhaus constant, Eg is the

band gap, m is the effective electron mass, κz = kz(  –

), and the remaining components of k are obtained
by cyclic permutation of indices (the x, y, and z axes are
aligned with the [100], [010], and [001] directions,
respectively) [32].

For a [001]-grown quantum well that has symmetric
interfaces and is symmetric under the point group D2d ,
spin splitting is due to bulk inversion asymmetry. It is
represented by the Dresselhaus term [10]

(17)

obtained by averaging the three-dimensional Hamilto-
nian *SO(k), with Wk given by (16), over the size-quan-
tized states of an electron moving along the growth

axis; here, β1 ∝  α〈 〉 .

For an asymmetric quantum well that is symmetric
under the point group C2v , spin splitting involves an
additional contribution (represented by the Rashba
term) due to the inversion asymmetry of the hetero-
structure-confining potential (see [8] and references
therein):

(18)

where β2 is a constant factor.

In the principal axes of the C2v group, x' || [ ],
y' || [110], and z || [001], the Larmor frequency corre-
sponding to these contributions to spin splitting has the
components

(19)

where β± = 2(β2 ± β1).

Wk
α"

2

2m3Eg

--------------------k,=

kx
2

ky
2

*SO k( ) β1 σyky σxkx–( ),=

kz
2

*SO k( ) β2 σxky σykx–( ),=

110

Ωk x', β–ky'/", Ωk y', β+kx'/",–= =

Ωk z, 0,=
JOURNAL OF EXPERIMENTAL 
For a quantum wire, the Larmor frequency can be
expressed as follows [33–35]:

(20)

where the constant vector l determines the splitting and
the direction of the spin precession axis.

Thus, the angle dependence of the Larmor-fre-
quency components Ωk, α is described by the third-
order spherical harmonics Y3, m(k/k) for zinc-blende-
based bulk crystals, by the first-order harmonics cosϕk
and sinϕk and terms linear in the two-dimensional
wavevector k for quantum-well structures (ϕk is the azi-
muthal angle of k), and by the function  for
quantum wires.

3. SPIN RELAXATION TIME

We consider the DP mechanism of spin relaxation in
the case when the spin splitting "Ωk is small as com-
pared to "/τ, where τ is the electron wavevector relax-
ation time; i.e., Ωkτ ! 1 can be used as the small param-
eter in perturbation theory. When spin splitting is
neglected, it is assumed that the electron energy distri-
bution is uniform and the spins of all electrons are par-
allel to a unit vector os . Therefore, the zeroth-approxi-

mation spin density matrix  is diagonal in the basis
of spin states with spin projection on the os direction,
and its diagonal elements are the Fermi–Dirac func-
tions

,

where µ+ and µ– are chemical potentials, Ek = "2k2/2m
is the kinetic energy of an electron, kB is Boltzmann’s
constant, and T is temperature. In the basis of states
with spin projection on the z axis, a quasi-equilibrium
density matrix can be represented as follows [9]:

where the mean occupation  and mean spin  for
k-state electrons are expressed in terms of fk, ± as

Introducing the quasi-equilibrium components of sk
and WC, k , we write

Wkz
lkz,=

kz{ }sgn

ρk
0

f k ±,
Ek µ±–

kBT
----------------- 

 exp 1+
1–

=

ρk
0 f k

0 sk
0 s,⋅+=

f k
0 sk

0

f k
0 1

2
--- f k +, f k –,+( ), sk

0 1
2
--- f k +, f k –,–( )os.= =

sk sk
0 δsk, WC k,+ WC k,

0 δWC k, ,+= =
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where

(21)

The first-order perturbative correction does not modify
the distribution function fk , while δsk is proportional to
the spin splitting. Note that the order of the angular har-
monic associated with sk is preserved by the collision
operator Qk{s, f 0} and operator (3); i.e., the angle-
dependent components δsk, α and δΩC, k, α involve the

same harmonics as does Wk . Note also that  || os

and WC, k = 0.

Taking the sum of (10) over k, we obtain a balance

equation for the total spin S0 = :

(22)

Retaining the terms in (10) depending on the orienta-
tion of k, we derive the following equation for the non-
equilibrium correction:

(23)

where

and the function Hk is defined by the relation

In addition to the electron–electron collision operator
Qk , we introduce a term in Lk that represents the
momentum scattering characterized by a constant
time τp . The momentum scattering time is used as an
additional parameter in the theory developed below.

The contribution of the time derivative dδsk/dt
to (23) is neglected here, because it is a quantity of
higher order in Ωkτ. Since the collision integral must

vanish for , the expression for

WC k,
0 2

"
--- Vk' k– sk'

0 ,
k'

∑=

δWC k,
2
"
--- Vk' k– δsk' .

k'

∑=

WC k,
0

δk∑

sk
0

k∑
dS0

dt
-------- δsk Wk×

k

∑+ 0.=

Lk δs{ } S0 Wk,×–=

Lk δs{ } Qk s f 0,{ } Gk Hk–( )δsk sk
0 δsk

τ p

-------,+×+=

Gk
1
"
--- Vk' k–

f k' +, f k' –,–
S0

-------------------------
k'

∑=

2
"
--- Vk' k– δsk'

k'

∑ Hkδsk.=

ρk
0

Qk s f 0,{ } Qk s0 δs f 0,+{ }=
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can be substantially simplified by introducing an oper-
ator Qk{δs, s0, f 0} linear in δsk . An analysis of the sym-
metry of Lk shows that δsk ⊥  S0. Therefore, we can
replace sk , sk' , and sp with δsk , δsk' , and δsp , respec-
tively, in the summands in (13) that are linear in the spin
density matrix. Moreover, we can perform the follow-
ing change in the cubic terms:

Then, the solution to Eq. (23) can be represented as

(24)

where F1k(S0) and F2k(S0) are even functions of S0
depending on k = |k|. Figure 1a illustrates the equilib-
rium distribution for a nondegenerate electron system,
the nonequilibrium spin distribution in the absence of
splitting, and the correction δsk due to precession with
Wk ⊥  z in the case of S0 || z and spin splitting linear in
the wavevector. If spin splitting is controlled by the
Rashba term (18), then δsk is parallel to k (see
Fig. 1b). When the dominant role is played by
Dresselhaus term (17), the angle dependence of δsk has
a more complicated form (see Fig. 1c).

Substituting the nonequilibrium correction given
by (24) into (22), we find that the decay of the total spin
is governed by the equation

If there exists a coordinate system in which the angle-
averaged product 〈Ωk, αΩk, β〉  is proportional to δα, β,
then we can rewrite the balance equation for spin as

where εαβγ is the Levi-Civita permutation symbol and

(25)

When S0 is parallel to a coordinate axis α, the contribu-
tion proportional to F2k vanishes, and spin relaxation
can be described in terms of ταα only.

sk' sk–( ) sp sp'⋅( ) δsk' δsk–( ) sp
0 sp'

0⋅( ).

δsk α, F1k S0( )S0= Wk×
+ F2k S0( ) S0 S0 Wk×( )×[ ] ,

dS0

dt
-------- F1k S0( ) S0 Wk

2 Wk S0 Wk⋅( )–[ ]{
k

∑+

+ F2k S0( ) S0 Wk⋅( ) S0 Wk×( ) } 0.=

dS0 α,

dt
------------

S0 α,

ταα
--------- F2kεαβγ Ωk β,

2〈 〉 S0 β, S0 γ,

k

∑+ + 0,=

1
ταα
------- F1k S0( ) Wk

2 Ωk α,
2–( ).

k

∑=
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4. SPIN RELAXATION 
OF CONDUCTION ELECTRONS

IN A QUANTUM WELL

Consider conduction electrons occupying the
ground size-quantized subband (e1) in a [001]-grown
zinc-blende-based quantum-well structure. In view of
the quasi-two-dimensional form of the wavefunction
envelope ϕe1(z) and the effect of screening, the Fourier
transform of the Coulomb potential has the following
form (see [25]):

(26)

where q is a two-dimensional vector with components
qx and qy ,

is the inverse screening length [36], µ is the chemical
potential, and the sample area in the interface plane is
unity. The form factor

describes the spread of the electron wavefunction in a
quantum well and strongly depends on the quantum-
well width a. In the strictly two-dimensional limit,
when a  0 and the well is infinitely deep, H(q) tends
to unity. In a well of finite width, H(q) < 1; when qa ! 1

Vq
2πe2

κ q qs+( )
----------------------H q( ),=

qs 2me2 κ"
2 1 µ/kBT–( )exp+[ ]{ } 1–

=

H q( ) q z z'––( )ϕe1
2 z( )ϕe1

2 z'( ) z z'ddexp∫∫=
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(distances between electrons are relatively large),
H(q)  1; when qa @ 1 (for relatively small distances
between electrons), the form factor is inversely propor-
tional to q and Vq ∝  q–2 (if screening is neglected), as in
the case of a three-dimensional electron gas.

The contribution of the Hartree–Fock field to the DP
spin relaxation mechanism is controlled by the param-
eter ΩCτ, where ΩC is the mean value of the frequency
ΩC, k defined in (11), and τ is the relaxation time of the
electron wavevector in any collision. The spin-preces-
sion frequency controlled by the Hartree–Fock
exchange interaction can be estimated as

where "  is the mean electron quasimomentum, N is
the two-dimensional electron concentration, and P =
2S0/N is the degree of spin polarization. The time τ can

be estimated by using the relation τ–1 =  + ,
where the time τee characterizes the frequency of elec-
tron–electron collisions. For the Boltzmann gas,

(27)

In the case of a highly degenerate electron system,
when the thermal energy kBT is much smaller than the

ΩC
e2

"κk
----------PN ,∼

k

τ p
1– τee

1–

τee
1– c1e4N

"κ2kBT
-------------------.=
–1.5 0–1.0 –0.5 0.5 1.0 1.5
ky/kT

–0.2

0

0.2

0.4

0.6

0.8

1.0
f(k), s(k)

1

2

3

Fig. 1. (a) Electron distributions in the k space: (1) Maxwell–Boltzmann distribution, (2) quasi-equilibrium distribution of electrons
with spin parallel to the z axis, and (3) nonequilibrium correction δsk, x due to spin splitting; (b) spin orientation controlled by the
Rashba field in the (x, y) plane of a quantum well; (c) spin orientation controlled by the Dresselhaus field in the (x, y) plane of a
quantum well.

(a) (b)

(c)
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Fermi energy EF, we can use the estimate

(28)

where c1 ~ π2/2 [37, 38] and c2(T) is a slowly varying
function of temperature, which behaves as
(π/4)ln(EF/kBT) for a Fermi-level electron [39–42].

In what follows, we separately analyze the case of
low degree of spin polarization, when ΩCτ ! 1 and the
Hartree–Fock field can be neglected, and the case of
relatively high P, when the frequency ΩC is at least
comparable to the inverse time τ–1.

4.1. Weakly Polarized Electron Gas 

In the case of a two-dimensional electron gas, the
quasi-elastic approximation cannot be applied to colli-
sion integral (13) [37, 38, 43, 44]. Indeed, the energy
transferred in an electron–electron collision is on the
order of kBT; i.e., the relative change in energy is com-

parable to those in  and δsk . For this reason, Eq. (23)
for the nonequilibrium correction was solved numeri-
cally.

When ΩCτ ! 1, we neglect the contributions of Har-
tree–Fock exchange interaction (3) and cubic in sk
terms to the collision integral by taking the limits of
ΩC, k  0 and Qk{δs, s0, f 0}  Qk{δs, s0 = 0, f 0}.
In this case, the tensor of inverse spin-relaxation times
given by (25) is independent of the total spin, and its
nonzero components in the C2v principal axes are

(29)

Here, the collision time τ that controls DP spin relax-
ation is defined as

(30)

with F1k(S) defined in (24) and a reference wavevector
k0 introduced to simplify the analysis of the dimensions
of individual multiplicands in expressions for spin
relaxation times. In the cases of nondegenerate and
degenerate electron systems, reasonable estimates for
k0 are given by the “thermal” wavevector kT =

/" and the Fermi wavevector  = 
(T = 0), respectively.
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For nondegenerate electron gas, τ was calculated
in [22, 25, 26] without allowance for momentum scat-
tering. In this case, k0 = kT and

(31)

where the constant factor  is approximately 35.7 (for
strictly two-dimensional gas), i.e., several times greater
than c1 in (27). For degenerate (low-temperature) elec-

trons, the function (T) calculated in this study can
be accurately approximated as follows:

,

where  ≈ 3.4. This expression does not contain the
factor c2(T), because its presence in (28) is due to the
assumption that the electron energy relative to the
Fermi level is small as compared to kBT. Thus, we have

 ∝  T–2 at low temperatures and linear growth with
temperature at high temperatures (when the chemical

potential is negative); i.e., (T) is a nonmonotonic

function. The minimum value of  corresponds to the
point of transition between the degenerate and nonde-
generate statistics at T ~ EF/kB.

Now, we focus on the case when spin splitting in a
quantum well is controlled by only one of the terms that
are linear in k (either β1 or β2 is zero). If β2 = 0, then the
Larmor frequency is independent of ϕk (Ωk = |β1|k).
Therefore, we can represent ταα as

(32)

where "Ω0 = β1  is the spin splitting for Fermi-level
electrons at T = 0.

Figure 2 compares our theoretical results with the
experiment reported in [24] (see also the preliminary
comparison in [30]). Here, the time τ in (32) is used as
the ordinate to simplify presentation. Squares and cir-
cles represent the values of τ and τp measured in an
n-type GaAs/AlGaAs-based quantum-well structure
characterized by a high carrier mobility [24, 30], with a
concentration of 1.86 × 1011 cm–2, a well width of 100 Å,
a barrier height of 250 MeV, an effective mass of m =
0.067m0 (m0 is the free-electron mass), and κ = 13. All
values of τ, except for that at T = 1.8 K, were deter-
mined by measuring τzz and using (32). At T = 1.8 K, the
condition Ω0τ ! 1 corresponding to the collision-dom-
inated regime was violated in the sample (Ω0τ ~ 2) and

τ 1– τee
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τee
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an oscillatory spin-polarization decay was observed
(see [45]):

The corresponding result (τ = 6 ps at T = 1.8 K) is the
open square in Fig. 2.

Calculated results are represented in Fig. 2 by four
curves. The dotted curve was calculated by neglecting

electron–electron collisions (  = 0) and retaining
both linear and cubic in wavevector contributions to
spin splitting [6, 8]. It disagrees with the drop in τ
observed experimentally at T > 5 K. The remaining three
curves were calculated for three models with β1 ≠ 0 and
β2 = 0. The dashed curve corresponds to two-dimen-
sional electron–electron collisions in the absence of

momentum scattering (  ≠ 0,  = 0). Curves 1
and 2 were calculated for two-dimensional and quasi-

S0 z, t( ) e t /2τ– Ω0t.cos∝

τee
s( ) 1–

τee
s( ) 1– τ p

1–

1

2

0.1 1 10 100
T, K

0.1

1

10

τ, ps

Fig. 2. Temperature dependence of microscopic collision
time τ that controls spin relaxation according to (32) and
transport time τp that controls carrier mobility for an
n-GaAs/AlGaAs quantum-well structure. Experimental
values of τ and τp are represented by circles and squares,
respectively [24, 30]. Dashed and dotted curves represent
the time τ calculated, respectively, by neglecting momen-
tum scattering and electron–electron collisions. Solid
curves are obtained by taking into account both electron–
electron collisions and momentum scattering with τp =
10 ps for strictly two-dimensional (curve 1) and quasi-two-
dimensional (curve 2) electrons.
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two-dimensional electron wavefunctions (in a quantum
well with H(q) < 1), respectively, by taking into account
both electron–electron collisions and momentum scat-
tering with τp = 10 ps. The parameter values used in the
calculations correspond to the experimental conditions.
The figure demonstrates that our results are in good
agreement at temperatures up to 80 K. This means that
the reduction of the DP spin relaxation rate in the
experiment reported in [24] was dominated by elec-
tron–electron collisions at T > 5 K.

4.2. Highly Polarized Electron Gas 

When the degree of spin polarization is high, kinetic
equation (23) for δsk contains two contributions pro-
portional to the total spin: the Hartree–Fock term (Gk –

Hk)S0 and the terms quadratic in  in the linearized
collision integral Qk{δs, s0, f 0}. Estimates show that
these terms can be neglected for P below 20% consid-
ered here; i.e., the collision integral Qk{δs, s0 = 0, f 0}
can be used in this case as well. For this reason, we
examine how the field induced by the Hartree–Fock
interaction modifies the results presented in the preced-
ing subsection when S0 ≠ 0. It follows from (21) that the
average Hartree–Fock field is parallel to S0. It gives rise
to precession of δsk about the vector S0; i.e., it reduces
the rate of spin relaxation (by analogy with Larmor pre-
cession in external magnetic field [23]). To be specific,
we henceforth assume that the spin polarization is par-
allel to the growth axis of the quantum well (os || z) in
the case of β1 ≠ 0 and β2 = 0 (i.e., linear in wavevector
splitting of the subband e1 due to the Dresselhaus
term).

First, we calculate the effect of the Hartree–Fock
field on spin relaxation in the case of T  0, when
electron–electron collisions are ruled out by the Pauli
exclusion principle and spin relaxation is due to elastic
carrier scattering by defects of quantum-well inter-
faces, which is characterized by a momentum relax-
ation time τp satisfying the condition Ω0τp ! 1. The
result can be obtained in analytical form by assuming
that the difference between µ+ and µ– is small for elec-

trons with sz = ±1/2. The corresponding  and δsk can
be approximated by delta functions of the magnitude
of k:

where P = (µ+ – µ–)/2 ,  = (µ+ + µ–)/2, and the con-
stant vectors Ac and As lie in the (x, y) plane. The Har-
tree–Fock contribution to (23) can be rewritten as

sk
0

sk
0

sk
0 Pµδ Ek µ–( )os,=

δsk Ac ϕkcos As ϕksin+( )δ Ek µ–( ),=

µ µ

Gk   H k –  ( )δ s k S 0 × δ s k W C , × =                             
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where the frequency of spin precession in the exchange
field generated by the spin-polarized electron gas is
expressed as

(33)

with V(q) ≡ Vq , the constant rs = me2/κ"2  charac-
terizes the Coulomb-to-kinetic energy ratio, and (see
[46, 47])

The relaxation time for the spin parallel to the growth
axis is obtained by using general expression (25):

(34)

It follows that (ΩCτp)2 ≈ 0.4 for P = 1% and N = 1.86 ×
1011 cm–2.

Figure 3 shows the spin relaxation rates calculated
numerically versus P for the same parameters of the
electron gas as those used in calculating curve 1 in
Fig. 2 (N = 1.86 × 1011 cm–2 and τp = 10 ps). The reduc-
tion of spin relaxation rate due to increase in degree of
spin polarization is qualitatively consistent with the
results of a numerical analysis of spin dynamics in an
external magnetic field [29].

Figure 3 demonstrates that, if the starting degree of
spin polarization is held constant, the effect of the Har-
tree–Fock field decreases as the electron–electron col-
lision frequency increases with temperature according
to (28). We conclude that the experimental conditions
in [24] correspond to the regime of weak spin polariza-
tion considered in Section 4.1.

5. EFFECT OF ELECTRON–ELECTRON 
COLLISIONS IN SYSTEMS 

OF DIFFERENT DIMENSIONS
It is interesting to compare the effects of electron–

electron collisions on the reduction of the spin relax-
ation rate in semiconductor-based systems of different
dimensions: a bulk semiconductor, a quantum well, and
a quantum wire. In this section, we compare the DP
spin relaxation times calculated for a bulk semiconduc-

WC
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tor and a quantum wire by allowing only for electron–
electron collisions with those due to the elastic scatter-
ing by ionized impurities whose concentration is equal
to the electron concentration. The calculations are sim-
plified by assuming that spin polarization is weak,
which makes it possible to ignore the spin-dependent
Hartree–Fock corrections to the electron energy.

5.1. Spin Relaxation in a Bulk Semiconductor 

When the three-dimensional nondegenerate electron
gas satisfies the condition

where rD = (κkBT/4πe2N)1/2 is the Debye screening
radius, electron–electron collisions can be treated as
quasi-elastic [27, 28, 48]. This means that the wavevec-
tor q = p – k exchanged in the collision transforming a
(k, k') state into a (p, p') state is small as compared to
the “thermal” wavevector. In this case, electrons diffuse
in the momentum space, and the collision integral can
be represented as the divergence of the electron flux
density in this space [27]. Moreover, we can use the fol-
lowing differential operator (see [28]):

(35)

with the spin flux density in the k space defined as

(36)

e2

κrD
--------- 1

kBT
--------- ! 1,

∂
∂t
-----δsk l, 

 
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Qk δsl f,{ }≡ ∂
∂ki
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Fig. 3. Reduction of the rate of spin relaxation in strongly
polarized electron gas at T = 0 (1), 10 (2), 20 (3), and
40 K (4).
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and Ai(k) and Dij(k) expressed as

The inverse electron–electron collision times [48]

characterize the spread in the momentum space along
the vector k and in the perpendicular plane, respec-
tively; the scattering time is

where Λ is the Coulomb logarithm; x = E/kBT; and

µ(x) = erf( ) – 2 e–x.

Numerically solving Eq. (23) with collision opera-
tor (35), we obtain the following final expression for the
principal values of the tensor of inverse spin relaxation
times:

(37)
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2mkBT
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Fig. 4. Dimensionless parameter ζ in (40) versus tempera-
ture for spin relaxation in a quantum wire controlled by
electron–electron collisions only (solid curve) and scatter-
ing by ionized impurities localized at the center of the wire
(curve 1) and uniformly distributed over the wire cross sec-
tion (curve 2).
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where α is defined by (16) and

(38)

5.2. Spin Relaxation of Conduction Electrons
in a Quantum Wire 

For electron–electron collisions in a one-dimen-
sional system schematized as k + k'  p + p', the
energy and momentum conservation laws imply that
either p = k and p' = k' or p = k' and p' = k [49]. There-
fore, collisions do not change the state of a pair of elec-
trons having equal spins. Otherwise, collisions can
result in spin exchange, as in the process

(k, 1/2) + (k', –1/2)  (k', 1/2) + (k, –1/2). 

Thus, electron–electron collisions in a quantum wire
can reduce the DP spin relaxation rate in a quantum
wire, as in two- and three-dimensional systems.

In a cylindrical quantum wire characterized by weak
spin polarization and arbitrary degree of degeneracy of
the electron system, the electron–electron collision
integral for sk reduces to

(39)

Here,  = (me4/π"3κ), the function F(k'; p, p') is
defined by (14), and the Fourier transform of the
dimensionless quasi-one-dimensional potential of elec-
tron–electron interaction [50],

is expressed in terms of the quantum-wire radius R0 and
the Bessel and Macdonald functions I3(x) and K3(x).
Effects of Luttinger-liquid behavior on spin dynamics in
one-dimensional systems were considered in [34, 51].
Analogous effects on DP spin relaxation are left outside
the scope of the present analysis.

The spin component parallel to the vector l in linear
relation (20) is preserved, whereas the decay of the spin
component in the perpendicular plane is characterized
by the rate constant

(40)
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The solid curve and dotted curves in Fig. 4 represent the
dimensionless factors ζ(T) calculated, respectively, for
electron–electron collisions in a quantum wire with N =
3.2 × 105 cm–1 and R0 = 100 Å and for the scattering of
electrons by ionized impurities whose concentration is
equal to the electron concentration. These results dem-
onstrate that the effect of electron–electron collisions is
stronger in a wide temperature range.

According to (37) and expression (3.40) in [32], the
ratio of the respective spin relaxation times due to elec-
tron–electron collisions and the elastic scattering by
ionized impurities whose concentration is equal to the

electron concentration, / , is about 2.5 for an unde-
formed bulk semiconductor; i.e., the effect of electron–
electron collisions is stronger. For a two-dimensional
electron gas, the ratio is 3.6 [26, 28]. Curve 2 in Fig. 4
demonstrates that the effect of electron–electron colli-
sions is stronger than that due to the elastic scattering
by ionized impurities uniformly distributed over the
wire cross section by an order of magnitude at T =
100 K. Thus, the effect of electron–electron collisions
on the DP spin relaxation rate increases with decreasing
dimension.

6. CONCLUSIONS

A theoretical analysis of the effect of electron–elec-
tron interactions on the Dyakonov–Perel spin relax-
ation is presented. It is shown that this mechanism of
spin relaxation is controlled by electron–electron colli-
sions to an extent comparable to the effect of other elec-
tron scattering processes. In the case of strong spin
polarization, the Hartree–Fock field additionally
reduces the rate of spin relaxation. The results obtained
here agree with experimental studies of spin dynamics
in n-type quantum-well structures characterized by
high carrier mobility.
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Abstract—It is shown that the problem of instantons in ferromagnetic materials in a large-spin model is
reduced to an exactly integrable dynamical system with a finite number of variables. For a rather wide class of
models, there exists a continuum of instanton paths that form a one-parameter family of paths with essentially
different shapes but with the same value of the Euclidean action. On the basis of the formalism developed, exact
instanton solutions are constructed that describe macroscopic quantum tunneling for a small ferromagnetic par-
ticle with uniaxial or biaxial quadratic anisotropy in the presence of a magnetic field applied perpendicularly to
the easy axis. These solutions are valid for any relations between the anisotropy parameters and for any mag-
nitude of the magnetic field and its direction in the base plane. Based on the solutions obtained, the principles
of macroscopic quantum tunneling in high-spin-molecule-type magnetic particles are described. Tunneling
regimes of two types are obtained: (1) regimes that are characterized by destructive interference of instanton
trajectories and oscillatory dependence of the transition probability on the magnitude of the magnetic field and
(2) regimes in which all instantons have the same purely real value of the Euclidean action and there is no
destructive interference. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION AND FORMULATION
OF THE MODEL

In the last decade, the problems of macroscopic
quantum tunneling in macroscopic (or, more precisely,
mesoscopic) magnetic systems have been intensively
studied both experimentally and theoretically (see sur-
veys [1, 2]). In the physics of magnetism, these systems
include small magnetic particles, magnetic clusters,
and high-spin molecules. Special attention has been
focused on the phenomenon of coherent macroscopic
quantum tunneling between energy equivalent but
physically different states in systems with discrete
degeneracy of the ground state. In such systems, a typ-
ical effect of coherent quantum tunneling consists in
the mixing of two equivalent classical states that corre-
spond to two identical minima of the anisotropy energy
(see [1, 2]). The mixing results in the tunnel splitting of
these states, which are degenerate in the classical case.
Interest in this phenomenon is due to the two following
reasons. First, mesoscopic objects that exhibit quan-
tum-mechanical properties are of interest as potential
elements of quantum computers (see [3, 4]). Second,
these problems involve fine and beautiful effects of
interference between instanton trajectories. In ferro-
magnetic particles, these effects lead to the suppression
of tunneling for systems with half-integer total spin in
the absence of a magnetic field [5, 6], as well as to the
oscillatory dependence of the tunnel splitting of levels
1063-7761/04/9906- $26.00 © 21291
on external parameters, first of all, on the magnetic
field. In the case of H ≠ 0, tunneling was theoretically
studied (by an instanton method) by Garg, who discov-
ered an interesting interference phenomenon: oscilla-
tions of the splitting of levels as a function of a mag-
netic field applied along the hard axis [7]. The effects of
coherent macroscopic quantum tunneling can be
observed experimentally by the resonance absorption
of electromagnetic waves by tunnel-split levels. The
controllability of the tunneling phenomena (the switch-
ing on and off of tunneling) is an important factor for
the application of magnetic elements in quantum com-
puters [3, 4].

The first studies in the theory of quantum tunneling
[8–10] were performed for small ferromagnetic parti-
cles under the assumption that all spins in a particle are
parallel to each other (a large-spin model). For these
systems, the effects of destructive interference of
instanton trajectories and suppression of tunneling due
to interference were predicted in [5, 6]. Then, it was
long believed that antiferromagnets are more conve-
nient objects for the experimental observation of tun-
neling because they are characterized by higher tunnel-
ing probability and less stringent temperature con-
straints compared with ferromagnets [11–14]. It is
worth noting that the effects of coherent quantum tun-
neling were first observed, by resonance methods, in
004 MAIK “Nauka/Interperiodica”
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antiferromagnetic particles of ferritin of biological ori-
gin [15].

In recent years, there has been increased interest in
tunneling in ferromagnets and, hence, in large-spin
models. This interest has been stimulated by experi-
mental investigations of tunneling phenomena in ori-
ented single-crystals of high-spin molecules (see the
survey by Wernsdorfer [16]). In fact, the synthesis and
investigation of high-spin molecules have started a new
period in the study of macroscopic quantum phenom-
ena. The main advantage of these objects, which
include both ferromagnets (in fact, high-spin molecules
or molecular magnets) and antiferromagnets (spin
rings), is their well-defined magnetic structure [17].
The total magnetic moment of high-spin molecules
amounts to 26 Bohr magnetons [18]. The states of the
most thoroughly studied high-spin molecules, which
are denoted for brevity by Fe8 and Mn12, are well
described under the assumption that all spins of a mol-
ecule are coupled by a strong exchange interaction and
form a total spin of S = 10. There also exist high-spin
molecules with half-integer spin, which include Mn4

complexes with the spin 9/2 [19]. In these systems, tun-
neling phenomena were observed both between excited
levels, which have greater splitting [20, 21], and in the
ground state [22–26]. Actually, a system of such mole-
cules represents an ensemble of identical particles (in
contrast, for example, to the particles of ferritin, in
which the number of magnetic ions in a particle may
range from 20 to 30, i.e., about one percent of the total
number of ions, which is on the order of 3500). More-
over, it is possible to produce high-quality single crys-
tals of high-spin molecules with exactly oriented
anisotropy axes. This made it possible to pose the ques-
tion concerning the observation of tunnel-splitting
oscillations, predicted by Garg [7], as a function of an
external magnetic field applied along the hard axis of a
magnetic particle. Such oscillations were observed by
Wernsdorfer and Sessoli in Fe8 [24] and by Wernsdorfer
and coauthors in Mn12 [25]; experiments were also car-
ried out on systems with half-integer spin [26]. The
measurements of the relaxation time at low tempera-
tures showed that this quantity periodically depends on
a magnetic field when the field is directed along the
hard axis of such high-spin molecules.

The observation of these beautiful phenomena stim-
ulated new theoretical investigations of the problem of
tunneling for ensembles of oriented ferromagnetic par-
ticles [27, 28]. The states of high-spin molecules are
well described under the assumption that all spins in a
molecule are coupled by a strong exchange interaction,
so that the total spin of a molecule is S. Thus, we arrive
at a model of large spin S in the presence of single-ion
magnetic anisotropy in a magnetic field H. In all the
works devoted to this problem that we are aware of, the
JOURNAL OF EXPERIMENTAL 
dynamics of high-spin molecules is described by a
Hamiltonian

(1)

Here, K1 and K2 are constants of rhombic anisotropy,

the term with  corresponds to tetragonal anisotropy
that exists in the case of Mn12, Sx and Sy are components
of the spin operator, S± = Sx ± iSy , g is the gyromagnetic
ratio, and µB is the modulus of the Bohr magneton. The

constants K1, K2, and  are positive; i.e., the z axis is

the easy axis for the spin. The magnitude of  is small:

 ! K1, K2; its contribution is significant only for an
undeformed Mn12 molecule, which has no natural
rhombic anisotropy. For Fe8 molecules, as well as for
deformed Mn12 complexes, the main contribution to
anisotropy is made by the first two terms in (1), i.e., by
rhombic anisotropy. In what follows, we restrict our

consideration to the case of  = 0.

The simplest way to analyze the tunneling between
different classically degenerate ground states m(+) and
m(–) of a system and to determine the tunnel splitting of
energies of these states is to apply the instanton formal-
ism (see, for example, [29, 30]). For the classical mag-
netization m, we have to pass to imaginary time in the
classical Landau–Lifshits equations by the formula t =
iτ and find instanton solutions m = m(τ) to these equa-
tions such that the magnetization tends to two different
ground states, m(τ)  m(±), as τ  ±∞. This
approach can be applied more carefully within the for-
malism of coherent spin states [30]. Within this
approach, a magnetization vector m of constant magni-
tude represents a dynamical variable. Taking into
account that the magnetization is antiparallel to the
spin, we write m = –S/S. It is convenient to parameter-
ize the vector m in terms of angular variables θ and ϕ:
mx + imy = sinθexp(iϕ) and mz = cosθ. Instantons cor-
respond to the extrema of the Euclidean action AE[m]
and represent solutions to the Euler–Lagrange equa-
tions for the Euclidean version of the Lagrangian of a
ferromagnet. Only equivalent trajectories that have the
minimal value of the real part of the Euclidean action
AE[m] contribute to splitting. This contribution is propor-
tional to the tunneling exponential exp{–ReAE[m]/"}.
The Euclidean action can be represented in terms of the
magnetization vector m as follows:

(2)

where W(m) is the energy of a ferromagnet that
includes the ferromagnetic anisotropy energy and the

Ĥ
1
2
--- K1Sx

2 K2Sy
2+( )=

+ gµBH S K̃ S +( )
4 S –( )

4+[ ] .+⋅

K̃

K̃

K̃

K̃

K̃

AE m[ ] τ i"S
n m m/ τdd×[ ]

1 m n⋅+
-----------------------------------– W m( )+ ,d∫=
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Zeeman energy of a spin in an external magnetic field.
The first term in the case of real time determines the
dynamics of magnetization; variation of it gives the
well-known Landau–Lifshits equations. The dynamical
part of the Lagrangian (2) has a singularity at m · n =
−1. The origin of this singularity and possible ways to
remove it become clear when we pass to the variable
M = Mm, which is not subject to the condition M2 =
const. In terms of M, the expression for the Lagrangian
can be written as

(3)

where the vector A has a singularity on the line (n, M) =
–M. The dynamical part of Lagrangian (1), represented
in terms of M and ∂M/∂t, formally coincides with the
Lagrangian of a charged particle with coordinate M in
a magnetic field with the vector potential A. It can eas-
ily be shown that the vector B = curlA = "SM/M3 has
no singularities when M ≠ 0. Thus, expression (2) for A
describes the vector potential of a magnetic monopole
situated at the origin. The vector potential A for a
monopole certainly has a singularity on the line (the
Dirac string) that starts at the location point of the mono-
pole and goes to infinity [30]. The admissible transforma-
tions (2) or (3) are reduced to gauge transformations, in
particular, to changing the orientation of the Dirac string.
The singularities of the Lagrangian are closely related to
the so-called Berry phase (see [5, 6, 30]), i.e., to the total
time derivative in the Lagrangians (2) or (3), which
does not manifest itself in the equations of motion but
is responsible for the interference of instanton trajecto-
ries. The nontrivial contribution of the Berry phase to
the tunneling probability is determined by the integral

 along a closed contour and can be transformed

into a two-dimensional integral of B = curlA over a sur-
face bounded by this contour, whereby the result should
not depend on calibration [5, 6, 30].

Usually, the Lagrangian of a ferromagnet is
expressed in angular variables. When n || ez , the Euclid-
ean action acquires the well-known form

The dynamical part of the Lagrangian in this form also
contains singularities associated with the nondifferen-
tiability of the azimuth ϕ at the points θ = 0, π. How-
ever, we will use more general expression (2) because
the calculation of the Euclidean action can often be sig-
nificantly simplified by an appropriate choice of the
direction of the Dirac string (see Section 4).

It has often been pointed out that instantons are for-
mally similar to domain-wall-type solitons. Some-
times, this similarity is quite striking; for instance, in
Lorentz-invariant models, the analysis of solutions for

L iA∂M/∂τ– W m( ),+=

A "S n M×[ ] /M M n M⋅+[ ] ,=

A Md∫°

AE θ ϕ,( ) τ i"S 1 θcos–( )δϕ/ τ W θ ϕ,( )+d–[ ] .d∫=
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instantons is analogous to that for domain walls. How-
ever, we will show that, for a ferromagnet, there is a
fundamental difference between the analyses of instan-
tons and domain walls. In contrast to the problem of a
moving domain wall, which is integrable only in a few
particular cases, the construction of an instanton solu-
tion in a ferromagnet is reduced to an exactly integrable
dynamical problem.

The Euclidean version of the equations for magneti-
zation dynamics has an obvious integral of motion
W(θ, ϕ) = const; within the instanton formalism, the
value of this constant should be chosen so that
W(θ(±), ϕ(±)) = 0 for the equilibrium states θ = θ(±), ϕ =
ϕ(±) between which the tunneling is considered. Hence,
W(θ, ϕ) = 0 on the instanton solution; therefore, for a
ferromagnet, the quantity AE[θ, ϕ] is determined only
by the first term in the Lagrangians (2) or (3), i.e., by its
dynamical part. This, in particular, implies that the
instanton solution cannot be real because the realiza-
tion of the quasiclassical dynamics requires that the
Euclidean action must have a considerable real part of
AE (2).

2. A MODEL 
OF A PURELY UNIAXIAL FERROMAGNET
AND SOME GENERAL CONSIDERATIONS

We begin the analysis with the case of a purely
uniaxial magnet by setting

in (1). In this case, equations for the angular variables
are expressed as

(4)

where h = H/Ha = gµBH/KS is a characteristic dimen-
sionless field, Ha = KS/gµB has the meaning of the
anisotropy field, and "ω0 = KS. If we assume that cosθ
and ϕ may take complex values, the system of equa-
tions (4) represents a dynamical system with two
degrees of freedom. It is convenient to introduce
dimensionless imaginary time by changing τ  τω0.
Next, instead of the first equation, we can use the first
integral W(θ, ϕ) = const of this system. The equation
W(θ, ϕ) = 0 yields sinθ = hexp(iσϕ), where σ = ±1.
Using this formula, we can eliminate ϕ from the equa-
tion for d(cosθ)/dτ and obtain a first-order equation for
the quantity P = cosθ in the following form:

(5)

Here and below, a dot denotes a derivative with respect
to dimensionless τ. It is clear that the presence of a dis-
crete parameter σ = ±1 in this problem corresponds to

K1 K2 K= =

θ ϕ/ τddsin ω0 θ θ h ϕcos–sin( ),cos=

θcos( )/dτd +h θ ϕ,sinsin=

2Ṗ σ 1 h2 P2––( ).=
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the invertibility of the original equations with respect to
the imaginary time τ. Obviously, the replacement of σ
by –σ corresponds to the replacement of τ by –τ, i.e., of
an instanton by an anti-instanton; henceforth, we can
set σ = 1.

Taking into account that P in an instanton may be
complex, we write P = P1 + iP2. Separating the real and
imaginary parts, we arrive at a system of two real equa-
tions:

(6)

These equations have two singular points on the

phase plane (P1, P2), P1 = ±  and P2 = 0. A sim-
ple analysis shows that both these points are degenerate
nodes. For σ = +1 (see above), one has an unstable node

at P1 = –  and a stable node at P1 =  (see
Fig. 1). Hence, all phase trajectories that emanate from

the point P1 = – , P2 = 0 reach the point P1 =

, P2 = 0, and Eqs. (5) or (6) describe a continu-
ous one-parameter family of instantons in which m 

hey – ez  as τ  –∞ and m  hey +

ez  as τ  +∞. Similarly, when σ < 0, one
obtains an analogous family of anti-instantons. The
general instanton solution of Eqs. (6) can explicitly be
expressed as

(7)

2Ṗ1 1 h2 P1
2

– P2
2, Ṗ2+– P1P2.–= =

1 h2–

1 h2– 1 h2–

1 h2–

1 h2–

1 h2–

1 h2–

P1 1 h2–
ωτsinh

ωτcosh ψcos+
--------------------------------------,=

P2 1 h2–
ψsin

ωτcosh ψcos+
--------------------------------------,=

P

–1 –P0
P0 P1

P2

Fig. 1. Phase trajectories of the system of equations (6) with
σ = +1 on the plane of complex variable P = P1 + iP2. The
circle denotes a pole (at the point P = –1) of the integrand
of (8), which determines the value of the Euclidean action.
JOURNAL OF EXPERIMENTAL 
where ω = ω0 and the arbitrary real parameter
ψ takes values 0 ≤ ψ ≤ 2π.

The presence of a continuous family of separatrix
trajectories is a usual property of integrable Hamilto-
nian systems with two degrees of freedom [31]. One
should expect that this situation is also realized in our
case, i.e., that system (4) with two degrees of freedom
is integrable. Below, we will show that all instanton
problems in ferromagnets are exactly integrable. Now,
we discuss the properties of the family of solutions (7).

For a particular case ψ = 0, we have P2 = 0; i.e., cosθ
is real, while ϕ is purely imaginary. Such solutions
were discussed by Garg in [7]; but he considered only
discontinuous solutions, i.e., those that have jumps near
equilibrium positions. Among solutions (7), there is a
discontinuous solution, which corresponds to ψ = π.

At first sight, instantons of type (7) with different
values of ψ are essentially inequivalent. For example,
when ψ = π, a solution has a singularity. However, it
turns out that all such solutions have the same value of
the Euclidean action. One can easily verify this fact by
applying formula (2) and expressing  in terms of θ by
the formula hexp(iϕ) = sinθ obtained above. The latter
formula implies that isinθdϕ = cosθdθ, and the Euclid-
ean action is represented as the contour integral

(8)

in the complex plane P, i.e., on the plane (P1, P2)
depicted in Fig. 1 above. Since all the contours that
determine the integration path for different ψ ≠ π do not
intersect the real axis and the only pole at the point P =
–1 does not fall within the domain bounded by the tra-
jectory with ψ = 0 and a trajectory with a certain ψ ≠ 0,
π, the value of AE is the same for all these contours,

Analyzing the improper integral, one can easily verify
that the special case ψ = π leads to the same expression
for AE. Hence, there exist an infinite number of instan-
ton paths in this problem that possess different struc-
tures but have the same value of the Euclidean action.

To explain this, at first sight strange, result, one
should notice that all solutions (7) can actually be
rewritten using a complex shift of the argument of a sin-
gle real solution. Indeed, taking a real solution derived

from (7) for ψ = 0 and writing P =  +
iψ), we arrive at (7). A question arises as to whether the
possibility of such a proliferation of instanton solutions
is a specific property of model (5) or continuous fami-

1 h2–

ϕ̇

AE
P Pd
1 P+
-------------

1 h
2––

1 h
2–

∫=

AE

"S
------ 2 1 h2––

1 1 h2–+

1 1 h2––
---------------------------.ln+=

1 h2– ωτ/2(tanh
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lies of instantons that are characteristic of integrable
dynamical systems also exist in other models of a fer-
romagnet.

To answer this question, we express the equation of
motion for P = cosθ and Q = ϕ, without specifying the
form of the ferromagnet energy W(θ, ϕ), as complex
Hamilton equations

(9)

Let us write W = H1 + iH2, where H1 and H2 are real-
valued functions and—assuming that P and Q are com-
plex, P = P' + iP'' and Q = Q' + iQ''—separate the real
and imaginary parts of Eqs. (9). As a result, we obtain
a system of four real equations whose right-hand sides
contain the derivatives of H1 and H2 with respect to the
variables P', P'', Q', and Q''. However, if we require that
the function W be an analytic function of complex vari-
ables P and Q, i.e., that the function W should indepen-
dently satisfy the Cauchy–Riemann conditions with
respect to these variables, then the right-hand sides can
be rewritten in terms of the derivatives of H1 or H2
alone. As a result, this system of equations becomes a
Hamiltonian system. In particular, choosing the pairs of
canonical variables as

(10)

we can rewrite the system as  = –∂H1/∂qi,  =
∂H1/∂pi, i.e., as a Hamiltonian system with two degrees
of freedom, with the Hamilton function H1 = H1(p1, q1,
p2, q2) and an additional integral of motion H2. Again,
using solely the Cauchy–Riemann condition for W, one
can show that the Poisson bracket for H1 and H2, calcu-
lated in terms of the canonical variables pi and qi , van-
ishes. Thus, we can conclude that any model of a ferro-
magnet with energy W that is analytic with respect to
cosθ and ϕ in the above sense is reduced to an exactly
integrable dynamical system and in fact admits the con-
struction of an infinite system of instanton trajectories.

A concrete procedure for solving this problem can
be substantially facilitated when one takes into account
the fact that the canonical pairs of variables (10) consist
of one real and one imaginary part of the complex vari-
ables P and Q. Therefore, one can seek a partial solu-

tion in which only one pair of variables, p1 = (τ),

q1 = (τ), is changed, while the other pair is identi-
cally zero, p2 = 0, q2 = 0. As we have seen above, this
condition corresponds to a solution of the form (7) with
ψ = 0; in this case, the value of ϕ is purely imaginary (or
ϕ = 0). Further, using a complex shift of the argument,

we can obtain a general solution with p1, 2, q1, 2 ≠ 0. Par-
tial solutions in which some of the variables are real and

iṖ
∂W
∂Q
--------, iQ̇–

∂W
∂P
--------.= =

p1 P', q1 Q'', p2 P'', q2 Q',= = = =

ṗi q̇i

p1
0( )

q1
0( )

P τ( ) p1
0( ) τ iψ+( ), Q τ( ) iq1

0( ) τ iψ+( ),= =
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others are either purely imaginary or zero are known
to occur in many models of magnets (see, for exam-
ple, [32]). Below, we will demonstrate the efficiency of
this technique as applied to many physically interesting
models of a ferromagnet.

One may have the impression that the condition for
the analyticity of energy W with respect to both com-
plex variables P = cosθ and Q = ϕ is rather stringent.
For instance, energy of the form (5) does not satisfy this

requirement because it contains sinθ =  and
branching points with respect to the variable P. How-
ever, this problem can be resolved by an appropriate
choice of the polar axis in a coordinate system. Indeed,
the energy of a ferromagnet includes the energy of
magnetic anisotropy Wa and the Zeeman energy WH =
gµBH · S in an external magnetic field H. Choosing the
polar axis along H, we obtain WH = –gµBHScosθ =
g|µB|HSP. The anisotropy energy represents a polyno-
mial in even powers of the spin components and, for
magnets with symmetry no lower than that of rhombic
crystals, contains only the squares of the spin compo-
nents (except for rhombohedral magnets, whose energy
contains an invariant of the form sin3θcosθcos3ϕ).
Thus, for all magnets with symmetry no lower than that
of rhombic crystals, except for rhombohedral magnets,
the condition for the analyticity of energy W is fulfilled
when the magnetic field is directed along the symmetry
axes. We think that this constraint on the choice of a
model is not very stringent. Moreover, it seems that the
existence of a finite number of branching-point-type
singularities does not impede the manifestation of inte-
grability properties, in particular, the existence of
degenerate families of instantons and the possibility of
constructing them. Below, in Section 4, we verify this
fact by a concrete example, where we construct such
families of instantons in the case when the direction of
a magnetic field is different from a symmetry axis of a
crystal. However, since the analysis of this case is
rather cumbersome, it is expedient to begin with the
simpler case of a rhombic ferromagnet in a magnetic
field parallel to a certain symmetry axis; this will be
done in the following section.

3. ANALYSIS OF A FERROMAGNETIC MODEL 
WITH A MAGNETIC FIELD DIRECTED
ALONG RHOMBIC ANISOTROPY AXES

Consider instanton solutions for a magnet with

rhombic anisotropy assuming that  = 0 in (1). We
begin with the simple case when the field is directed
along one of the symmetry axes and W(cosθ, ϕ) is an
analytic function of its arguments in the entire domain
of their definition. In what follows, it is convenient to
assume that the magnetic field is always directed along
the same axis, say, along the y axis. Let us introduce a
dimensionless parameter λ = K1/K2; the case λ < 1 cor-
responds to the situation when the y axis is the hard axis

1 P2–

K̃
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of a ferromagnet and the x axis is an intermediate axis;
when λ > 1, the classification of axes is reversed. Thus,
by varying the parameter λ, we can obtain all interest-
ing cases: when λ < 1, the magnetic field is directed
along the hard anisotropy axis, whereas, when λ > 1,
the magnetic field is parallel to an intermediate axis.
While constructing instantons and calculating the
Euclidean action, it suffices to consider only those val-
ues of magnetization for which W = 0; therefore, we
will omit the coefficient K2/2 in the expression for
energy and the parameter ω0 = K2S/" in a solution.
Choose a reference point of energy so that W = 0 in the
ground state. Then, the energy of a ferromagnet in the
dimensionless form is expressed as

(11)

where h = gµBH/K2S.
In this model of a ferromagnet, the system of equa-

tions for instantons has the form

(12)

and instanton solutions are situated on the level sur-
faces of the integrals

Hence, my – h = iσ mx , where σ = ±1; i.e., the rela-
tion between mx and my in an instanton solution is lin-
ear. The system of equations (12) has an exact class of
solutions

(13)

where x, y, and z are real variables. Then, we obtain the
following system of real equations for x, y, and z:

(14)

Note that we may not restrict the analysis to real
solutions of (14); we can consider the substitutions (13)
simply as a change of variables assuming that x, y, and
z are complex variables. Actually, one should do so
when constructing a general instanton solution that
belongs to a one-parameter family. However, as we
pointed out in the preceding section, for the simplest
case of a uniaxial ferromagnet, it is much more conve-
nient to first construct a certain simple symmetric solu-

W m( ) λ
2
---mx

2 1
2
--- my h–( )2,+=

dmx

dτ
--------- i my h–( )mz,

dmy

dτ
--------- iλmxmz,–= =

dmz

dτ
--------- i λ 1–( )my h+[ ] mx,=

λmx
2

my h–( )2
+ 0 and mx

2
my

2 mz
2+ + 1.= =

λ

mx ix, my y, mz z,= = =

dx
dτ
------ y h–( )z,=

dy
dτ
------ λxz,=

dz
dτ
----- λ 1–( )y h+[ ] x.–=
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tion with real x, y, and z and then continue it by an imag-
inary shift along the independent variable τ. A similar
procedure of shifting along τ applies to the case of a
rhombic ferromagnet.

The instanton solutions of interest are situated on
the level surfaces of the first integrals

(15)

whereby one obtains a linear relation between the vari-

ables x and y, y – h = σ x, where σ = ±1, and a simple
relation between the variables x and z,

(16)

This analysis of a real class of solutions clearly shows
that the variation of the parameters of the problem gives
rise to bifurcations. Equation (16) describes various
second-order curves on the plane (x, y): when λ > 1, one
has an ellipse, whereas when λ < 1, one has a system of
hyperbolas that belong to different sectors of the plane

(x, y) for small and large fields, h2 < 1 – λ =  and
1 − λ < h2 < 1, respectively. In the limit cases when

λ = 1 (a uniaxial ferromagnet) or h2 = , Eq. (16)
describes a parabola or two intersecting straight lines,
respectively. Naturally, all these curves pass through
the points that correspond to equilibrium positions, z =

± , x = 0; however, they exhibit essentially dif-
ferent behavior (see below). Taking into account the
fact that the ground state is not degenerate for h2 > 1 and
tunneling is impossible, we obtain three different
domains for instantons. We will show below that
instanton solutions possess essentially different proper-
ties in these three domains. In particular, the value of hc
coincides with the critical value of the field (which was
introduced earlier by Garg [7] and then by the authors
of [27, 28]) above which the effects of destructive inter-
ference vanish. However, the authors of the cited works
obtained this value of hc from other considerations;
namely, they assumed that there are no continuous
instanton solutions for h > hc and that one should intro-
duce either discontinuous instantons [27] or instantons
that partially proceed in ordinary real time [28]. It is
quite possible that such exotic instanton paths will be
useful for certain other tunneling problems. However,
we will show that, within the ferromagnetic model (1),
taking into account the existence of an infinite family of
instantons obtained by a complex shift of the type
described above, there exist continuous standard
instanton solutions with purely real τ for all domains
indicated above. In fact, only the solutions with certain
specific values of the complex shift parameter ψ are
discontinuous. This fact is most easily illustrated by an
example of the case 1 – h2 < λ < 1, when the magnetic

λ x2 y h–( )2– 0 and x2– y2 z2+ + 1,= =

λ

λ 1–( ) x
σh λ
λ 1–
--------------+ 

 
2

z2+ 1
h2

λ 1–
------------.+=

hc
2

hc
2

1 h2–
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field is small, h2 <  = 1 – λ, and λ < 1, i.e., the mag-
netic field is applied along the hard axis of a magnet.

A Weak Field Parallel to the Hard Axis 

It is this case that was considered in detail by Garg [7]
and for which oscillations of the transition probability
as a function of a field were predicted and experimen-
tally observed [16–26]. The instanton paths used in [7]
do not satisfy the assumption that my and mz are real and
mx is purely imaginary. However, we begin with seek-
ing precisely such solutions in order to obtain general
solutions by a complex shift of the argument. In partic-
ular, we obtain instantons similar to those of [7] in this
way. Let us rewrite (16) in the canonical form:

(17)

where

(18)

The branches of the hyperbola described by this
equation are the integral curves of the system of equa-
tions (14). For real x, y, and z, these curves do not con-
nect points corresponding to different equilibrium posi-

tions, i.e., the point x = 0, z =  with the point

x = 0, z = – , in a finite domain of the plane
(x, z). However, there does exist an instanton solution
that connects these points. To construct this solution,
we introduce a parametrization x = x0 + a , z =
b  and, using the first equation of system (14),
obtain the following equation for φ:

A solution to this equation can easily be expressed in
explicit form:

(19)

In this formula, ψ is an arbitrary complex number;
this clearly indicates the possibility of both a complex
and a real shift of the argument. Explicit expressions for

hc
2

x x0–( )2

a2
--------------------– z2

b2
-----+ 1,=

x0
σh λ
1 λ–
--------------, a2 1

1 λ–
------------ 1 h2

1 λ–
------------– 

  ,= =

b2 1 λ– h2–
1 λ–

-----------------------.=

1 h
2

–

1 h
2

–

φsinh
φcosh

a
dφ
dτ
------ σ λ x0 a φsinh+( )b.=

φ
2
---tanh γ γ 1

2
--- ξ iψ+( ) ,tanhcosh+sinh=

ξ σλ 1/2 1 h2–( )1/2 τ τ 0–( ),=

γsinh
σ 1 λ–( )1/2 1 h2–( )1/2

hλ1/2
---------------------------------------------------.=
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the spin components in an instanton are rather lengthy;
however, after trivial calculations, they can be simpli-
fied by shifting the argument by the real quantity γ
introduced above. Henceforth, we use the notation  =
ωτ + γ + iψ with the characteristic frequency ω =

ω0λ1/2(1 – h2)1/2 = (S/") . This yields

(20)

(From this point on, we omit the bar over ξ, thus admit-
ting arbitrary shifts of the argument, both real and com-
plex.) Then, we immediately obtain, in particular, that
a solution has the above-mentioned singularity only for
certain specific values of ψ, namely, for ψ = 0 and π.
For all other values ofψ, a solution has no singularity;
more precisely, the singularity moves to the complex
plane and does not manifest itself for real values of the
imaginary time τ. It is interesting to note that, when the
polar axis is chosen along a magnetic field (y axis), the
azimuth ϕ of magnetization, which is purely imaginary
in solutions of the form (13),

becomes real for ψ = π/2, when  + iπ/2) 
i . When ψ = π/2, the angle ϕ ranges from zero to
π through π/2 as τ varies from ∞ to –∞; in this case, the
angle θ, as well as all components of the magnetization,
are complex. The structure of the solution for ψ = π/2
resembles that of the instanton path that was used by
Garg in [7]. For all other values of ψ, both θ and ϕ are
complex; moreover, the real part of the angle ψ does not
reach π/2.

Thus, we have arrived at a very complicated struc-
ture of instanton paths, with complex values of all spin
components or angular variables θ and ϕ for magneti-
zation. Among the solutions obtained, there are singu-
lar ones as well. However, the situation with a physi-
cally interesting quantity, the Euclidean action AE,
turns out to be very simple and clear just as in the pre-
ceding section. Here as before, the Euclidean action can
conveniently be calculated in terms of contour inte-
grals. However, it is more convenient to use the com-
plex variable ξ and choose the direction of a singular
ray (the Dirac string) along the negative direction of the

ξ

K1K2 1 h2–( )

mz σ 1 h
2

–
ξcosh

1/ γsinh ξsinh–
---------------------------------------,=

mx i
1 h2–

1 λ– h2–( )1/2
--------------------------------- 1

1/ γsinh ξsinh–
---------------------------------------,=

my
σλ1/2

1 λ– h2–( )1/2
--------------------------------- h ξsinh–

1
1/ γsinh ξsinh–
---------------------------------------.=

ϕtan
mx

mz

------ iσ 1 h2–( )1/2

1 λ– h2–( )1/2
--------------------------------- 1

ξcosh
--------------,= =

ξ(cosh
ξsinh
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axis my . The point is that the case involving the integra-
tion over a complex plane P for a rhombic ferromagnet
is not so clear and simple as the purely uniaxial case
JOURNAL OF EXPERIMENTAL
considered above because, when λ ≠ 1, branching
points arise in the plane P. As a result, the Euclidean
action is represented as the integral
(21)AE σ"S
1 h2–( )3/2

1 h+( ) 1 λ h2––( )1/2
--------------------------------------------------- ξ ξ iψ+( )sinh

ξ iψ+( )sinh σ/h γsinh⋅( )–[ ] ξ iψ+( )sinh σ/ γsinh–[ ]
----------------------------------------------------------------------------------------------------------------------------------------,d

∞–

∞

∫=
where we have restored a complex shift along ξ. This
integral can be considered as an integral along a certain
contour L in the complex plane z = ξ,

(22)

where the contour L represents a straight line in the
complex plane that is parallel to the real axis (Imz = ψ)
and passes at a distance of ψ from it. Hence, it is clear
that one can easily find a difference between the Euclid-
ean actions AE for different values of ψ via a simple
integral along a closed contour (see Fig. 2).

Let us fix two values ψ1 and ψ2, ψ1 < ψ2. Consider
a contour (rectangle) ABCD, where A = –R + iψ1, B =
R + iψ1, C = R + iψ2, D = –R + iψ2, and R is a real num-
ber. It is obvious that

as R  ∞, so that

AE "S zF z( ),d

L

∫=

F z( ) σ 1 h2–( )3/2

1 h+( ) 1 λ– h2–( )1/2
---------------------------------------------------=

× zsinh
z σ/h γsinh⋅( )–sinh[ ] z σ/ γsinh–sinh[ ]

----------------------------------------------------------------------------------------------------,

F z( ) z 0 and F z( ) z 0,d

DA

∫d

BC

∫

2π

D

A

C

B
0

π

z

λ < 1, h < hc

λ < 1, h > hc

λ > 1

Fig. 2. Complex plane z, integration contour ABCD, and the
arrangement of poles of the function F(z). Closed circles
correspond to the case of a weak field considered in this sec-
tion; other symbols correspond to other domains of the
problem parameters λ and h that are considered below.
 

and this limit is determined by the integral along a
closed contour that encloses the rectangle ABCD.
Hence, the difference

between the Euclidean actions for different ψ is
expressed in terms of the sum of residues of the func-
tion F(z) that fall within this rectangle (the strip ψ1 <
ψ2). Thus, the Euclidean action is independent of ψ in
certain intervals of ψ, and the function AE(ψ) changes
stepwise as the contour ABCD crosses a pole as ψ var-
ies. Since the function F(z) is periodic in ψ with period
2π, the function AE(ψ) is also periodic; therefore, it suf-
fices to consider a variation in AE(ψ) in a strip of width
2π. It is obvious that this strip contains four poles of the
function F(z) and the sum of all these four residues
equals zero. Note also that the integral (22) does not
change under the substitutions ψ  ψ + π and σ 
–σ, so that one can restrict the consideration to a certain
one sign of σ, say, σ = 1. This is also valid for other
relations between the values of the parameters h and λ
of the problem (see below), but the properties of the res-
idues will be different, which results in a variation in
the dependence of AE on ψ.

In the case considered here, of a weak field applied

along the hard axis, h2 <  = 1 – λ, λ < 1, two poles of
the function F(z), z1 and z2, lie on the real axis at the
points z1 = ζ1 and z2 = ζ2, where ζ1 and ζ2 are real solu-
tions of the equations  = 1/  and  =

1/(h ), while the other two poles lie at the points
z3 = –ζ1 + iπ and z4 = –ζ2 + iπ. The sums of residues at
the pairs of points z1, z3 and z2, z4 are equal to zero,
whereas the sums of residues at the pairs of points z1, z2
and z3, z4 with different values of ζ are real; for exam-

ple, Res[F(z1)] + Res[F(z2)] = 1 – h/ . Hence,
when the parameter ψ passes through the values 0, π,
2π, etc., the Euclidean action AE(ψ) acquires a purely

imaginary term ±2πi"S[1 – h/ ]. For a certain
concrete value of ψ, one can easily calculate the quan-
tity AE (it is convenient to take ψ = π/2). Then, taking

F z( ) z F z( ) zd

DC

∫R ∞→
lim–d

AB

∫R ∞→
lim F z( ) zd

ABCD

∫°=

AE ψ1( ) AE ψ2( )– "S F z( ) zd

ABCD

∫°=

hc
2

ζ1sinh γsinh ζ2sinh

γsinh

1 λ–

1 λ–
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into account the above-described properties of AE, we
arrive at the expression

(23)

Thus, we have found that, for the case of a weak
field directed along the hard axis, the real part of the
Euclidean action is independent of ψ, and all instanton
trajectories, either regular or singular, real or complex,
make identical contributions to the tunneling exponen-
tial factor exp(–Re[AE]/"). In this case, the imaginary
part of AE depends only on sinψ/|sinψ|. This means that
all trajectories for which the parameter ψ lies in differ-
ent strips of the same width π behave identically and
that interference occurs between instanton trajectories
for which the values of ψ lie in these neighboring strips.

Below, we will analyze instanton solutions in two
other cases that arise when the external magnetic field
is directed along symmetry axes. In the case of a strong
field, 1 – λ < h2 < 1, directed along the hard axis for
λ < 1, as well as when the field is directed along an
intermediate axis, i.e., λ > 1, the integral curves of the
system of equations (14) connect points corresponding
to different but equivalent equilibrium positions for real
x, y, and z. This means that there exist nonsingular
instantons with real x, y, and z in these two cases. How-
ever, taking into account the complex nature of instan-
tons, one cannot observe any fundamental difference in
the structure of general instanton solutions.

Instantons in the Case of a Strong Field 
Directed along the Hard Axis 

Instanton solutions for a strong field h2 > 1 – λ > 0
are analyzed in virtually the same way as in the preced-
ing subsection. Just as for a weak field, the integral

AE "S
1 h2– λ+

1 h2– λ–
---------------------------

h

1 λ–
----------------–ln=

× 1 h2–( ) 1 λ–( ) h λ+

1 h2–( ) 1 λ–( ) h λ–
---------------------------------------------------------ln

+
iπ"S

1 λ–
---------------- ψsin

ψsin
--------------- 1 λ– h–( ),

h2 hc
2< 1 λ .–=
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curves of the system (14) are second-order curves with
the parameters defined by formulas of type (18). When
1 – λ < h2 < 1, one has a hyperbola of the form (x –
x0)2/a2 – z2/b2 = 1, where the expression for x0 is the
same as in the case of a weak field (see (18)) and
expressions for a2 and b2 differ in sign from those given
in (18). To construct an instanton solution that connects
equilibrium points, we introduce a parametrization x =
x0 + a , z = b . Then, using the first equation
of system (14), we obtain the following equation for φ:

Its convenient to seek a solution to this equation in the
form

where the variable ξ is similar to that used in the case
of a weak field (see (19)). Next, we can write explicit
expressions for the spin components in the instanton:

(24)

where z = ξ + iψ. The Euclidean action can easily be
represented as an integral of the same type as (21)
or (22),

,

with the only difference that now the function F(z) is
defined by

φcosh φsinh

a
dφ
dτ
------ σ λ x0 a φcosh+( )b.=

φ
2
---tanh

h λ σ h2 λ 1–+( )1/2
+

1 h2–( ) 1 λ–( )( )1/2
-------------------------------------------------------tanh

1
2
--- ξ iψ+( ) ,=

mz σ 1 h
2

–( )
1/2 h

2 λ 1–+( )
1/2

zsinh

σhλ1/2 h2 λ 1–+( )1/2
zcosh–

-----------------------------------------------------------------------,=

mx
iσ 1 h2–( )

hλ1/2 σ h2 λ 1–+( )1/2
zcosh–

-----------------------------------------------------------------------,=

my
λ1/2 hσ h2 λ 1–+( )1/2

zcosh–

hλ1/2 σ h2 λ 1–+( )1/2
zcosh–

-----------------------------------------------------------------------,=

AE "S zF z( )d

L

∫=
(25)F z( ) 1 h–( ) 1 h2–( )1/2 λ h2 1–+( )1/2
zcosh

λ h2 1–+( )1/2
z σλ1/2

h–cosh[ ] λ h2 1–+( )1/2
z σλ1/2

–cosh[ ]
----------------------------------------------------------------------------------------------------------------------------------------------------.=
Instantons for a Field Directed 
along an Intermediate Axis 

Now, consider the final case when the field is
directed along an intermediate axis, i.e., when λ > 0. In
this case, the integral curve is the ellipse (x – x0)2/a2 +
z2/b2 = 1 with the same x0 and with a2 and b2 given by
a2 = (λ + h2 – 1)/(λ – 1)2 and b2 = (λ + h2 – 1)/(λ – 1).
We choose a parametrization of a solution in the form
SICS      Vol. 99      No. 6      2004
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x = x0 + acosφ, z = bsinφ, where φ is described by the
equation

Like the formulas for the spin components, the solu-
tion to this equation can easily be expressed in explicit
form. However, we will not write out these cumber-
some expressions since they can be obtained from for-
mulas (24). To this end, it suffices to note that the con-
stant λ of rhombic anisotropy enters formulas (24) for
the spin components, as well as the expression for the
Euclidean action in terms of the integral (25), only as

 and , and the combination (1 – λ),
whose sign distinguishes these two cases, does not
appear under the square-root sign. In this situation, one
should expect that the corresponding formulas for the
two domains of parameter values will be equivalent.
Hence, the expressions for the spin components and for
the function F(z) in the case λ > 1 coincide with (24)
and (25), respectively, provided that σ is replaced by −σ
in the latter formulas. Since such a substitution is
equivalent to a complex shift of the argument by iπ, i.e.,
to the substitution ψ  ψ + π, both cases can be con-
sidered using the same expression for the function F(z),
which we choose as

(26)

where

Formula (26) is valid both in the case of a strong
field directed along the hard axis and in the case of an
arbitrary magnitude of a magnetic field directed along
an intermediate axis. However, we will see that the
behavior of the Euclidean action as a function of ψ in
these two cases is essentially different and is also dif-
ferent from the case of a weak field directed along the
hard axis, which was considered at the beginning of this
section.

Calculation of the Euclidean Action 
for h2 > 1 – λ 

The inequality h2 > 1 – λ involves both cases dis-
cussed above: a strong field directed along the hard axis
and an arbitrary field directed along an intermediate
axis. To calculate the Euclidean action, we apply the

a
dφ
dτ
------ σ λ x0 a φcos+( )b.–=

h2 1– λ+ λ

F z( ) 1 h2–( )3/2

1 h+( ) 1 λ– h2–( )1/2
---------------------------------------------------=

× zcosh
zcosh βcosh+[ ] zcosh h βcosh+[ ]

------------------------------------------------------------------------------------,

βcosh
λ1/2

h2 λ 1–+( )1/2
----------------------------------.=
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same method as that used above in the case of a weak
field. For a function of the form (26), there are no sin-
gular points on the real axis for ψ = 0, and the value of
the integral is real; it can readily be calculated in an
explicit form (see formula (27) below). Next, the values
of AE(ψ) for ψ ≠ 0 are expressed in terms of the contour
integral along the rectangle ABCD, and the difference
between the values AE(ψ) and AE(0) is determined by
the sum of residues of the poles that fall within the cor-
responding strip.

Note that, in both cases of interest, h2 > 1 – λ and
 > 1; i.e., β is real. Therefore, two of the four

poles contained in the strip 0 ≤ ψ < 2π lie at the points
z1, 2 = iπ ± β. The sum of residues at these points is equal
to zero, and the value of AE(ψ) is not changed when the
contour crosses the line z = iπ. Next, for a strong field

applied along the hard axis,  < h2 < 1 for λ < 1, we

have h  > 1, and the second pair of poles also lies
on the same line z3, 4 = iπ ± β', where β' is real. For this
pair of poles, the sum of residues is also zero. Hence, in
the case of a strong field applied along the hard axis, AE
is independent of ψ, AE(ψ) = AE(0). Since AE(0) is real,
the imaginary part of the Euclidean action is equal to
zero, and there is no interference. The vanishing of
interference as the field increases is in agreement with
the experiment of [24, 25] (see also the survey [16]) and
with the results of calculations performed with the use
of discontinuous instanton solutions or test functions
[27, 28]. Note that, in our calculations for the case of a
strong field, solutions with discontinuities for real τ
only exist for ψ = π; but these solutions are not distin-
guished among other trajectories of the infinite one-
parameter family. Thus, in the case of a strong magnetic
field applied along the hard axis, the real part of AE is
independent of ψ,

(27)

and all instanton trajectories with parameter ψ in the
strip 0 ≤ ψ < 2π make equal contributions to AE.

In the case of a field directed parallel to an interme-
diate axis, the two poles of the function F(z), z1 and z2,
again lie on the axis Im(z) = π at the points z1, 2 = iπ ±
β. However, in the case of λ > 1, we have h  < 1,
and the two other poles move away from the line
Im(z) = π; they are situated at the points z3 = i(π – b) and

βcosh

hc
2

βcosh

AE "S
λ 1 h2–+

λ 1 h2––
---------------------------ln

h

1 λ–
----------------–=

× h λ 1 h2–( ) 1 λ–( )+

h λ 1 h2–( ) 1 λ–( )–
---------------------------------------------------------ln ,

0 1 λ–< hc
2

h2,<=

βcosh
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z4 = i(π + b), where b is a real solution to the equation
cosb = hcoshβ < 1. The values of the residues at these
points are purely imaginary; they have equal absolute

values but opposite signs: Res[F(z3)] = –ih/  and

Res[F(z4)] = +ih/ . Thus, just as in the case of a
weak field, the Euclidean action AE(ψ) depends on ψ. It
changes stepwise when the contour ABCD passes
through a pole under the variation of ψ. However, when
λ > 1, the jump ∆AE(ψ) of the function is real and
occurs at ψ = π – b and ψ = π + b, i.e., at values of ψ
that depend on the parameters of the problem. Thus, in
the strip 0 ≤ ψ ≤ π – b, the Euclidean action is indepen-

dent of ψ and attains its minimal value ,

(28)

at ψ = π – b, it increases stepwise to the value

and remains equal to this value in the entire strip π – b ≤
ψ ≤ π + b; at ψ = π + b, the Euclidean action returns

stepwise to the value  and remains equal to this
value as ψ increases further up to 2π, i.e., in the strip
π + β ≤ ψ ≤ 2π. In the spirit of the instanton approach,
we have to take into account only paths with the mini-
mal value of the Euclidean action. Hence, such behav-
ior of AE(ψ) under the variation of a field results in a
continuous variation in the relative weight of instanton
paths that guarantees the minimal value of the exponen-
tial factor exp(–Re[AE]/") and make a contribution to
the tunneling. The relative width (π – β)/π of this inter-
val tends to 1/2 as h  0 and attains its maximal value
of unity when h  1. The emergence of an additional
coefficient, associated with this factor, in the expression
for the probability of tunneling transition is a remark-
able result of the structure of instanton paths. This

λ 1–

λ 1–

AE
min( )

AE
min( )

"S
λ 1 h2–+

λ 1 h2––
---------------------------ln

4h

λ 1–
----------------–=

× 1 h2–( ) 1 λ–( )

h λ h2 λ 1–++
--------------------------------------------arctan ,

AE
max( ) AE

min( ) 2π"Sh/ 1 λ– ,+=

AE
min( )
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structure, namely, the presence of one-parameter fami-
lies of instanton trajectories instead of a finite number
of instantons in the standard theory, is indicated by the
present authors for the first time. We will discuss this
question in greater detail in the final section of the
paper.

4. INSTANTON SOLUTIONS
UNDER AN ARBITRARY ORIENTATION

OF A FIELD IN THE BASE PLANE

In [24, 25], the tunnel splitting of levels was mea-
sured both under the variation of the magnitude of the
external magnetic field and under the rotation of the
field in the base plane of a magnet. Therefore, the anal-
ysis of the case with an arbitrary orientation of the field
in the plane (x, y) perpendicular to the easy axis of a
magnet is important for the interpretation of experi-
mental data. However, this case has not been studied by
theoreticians. To our knowledge, [33] is the only work
in which the analysis of instantons was carried out on
the basis of an approximate reduction of the Lagrangian
to the problem on the dynamics of a particle with a cer-
tain effective mass; however, this technique is certainly
inapplicable to the most interesting case of λ ~ 1.
Below, we will show that the method developed in this
paper allows the construction of exact instanton solu-
tions in this complicated case too.

In the case of an arbitrary orientation of a field, the
condition that energy is equal to its minimal value
yields the relation λ(mx – hx/λ)2 + (my – hy)2 = 0. There-
fore, there is a linear relation between mx and my on the
instanton solution as well; in complex terms (13), we
have

however, all magnetization components are now com-
plex. But this fact does not prevent us from choosing a
parametrization in terms of φ of the same type as
before, writing an equation for φ, and solving it. As a
result, we obtain rather cumbersome formulas for the
function φ = φ(τ) in the solution and a few less cumber-
some expressions for the magnetization components,

y σx λ hy ihxσ/ λ ;–+=
(29)

mx

hx/λ( ) H1
2 λ 1–+( )1/2

zcosh iσ 1 hyH1–( )–

σH2λ
1/2 H1

2 λ 1–+( )1/2
zcosh+

--------------------------------------------------------------------------------------------------------,=

my

hy H1
2 λ 1–+( )1/2

z σλ1/2 1 iσhxH1/λ3/2–( )+cosh

σH2λ
1/2 H1

2 λ 1–+( )1/2
zcosh+

----------------------------------------------------------------------------------------------------------------------,=

mz σ 1 H0
2–( )1/2 H1

2 λ 1–+( )1/2
zsinh

σH2λ
1/2 H1

2 λ 1–+( )1/2
+ zcosh

----------------------------------------------------------------------------.=
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Here,

and z = ξ + iψ as before; the last equation allows us to
take into account a complex shift of the variable τ in the
solution.

The value H0 = 1 corresponds to the main bifurca-
tion in the problem. The effects of degeneracy of the
classical ground state, tunneling, and instantons mani-
fest themselves only for H0 < 1. The symmetry of this
solution is lower than that in the case of a symmetric
orientation of a field considered above; therefore, the
expression for the Euclidean action with a standard
choice of the Dirac string n along the hard axis turns out
to be rather cumbersome. However, choosing n to be
antiparallel to the magnetic field normalized by a local
value of the anisotropy filed, i.e., in the form n =
(exhx/λ + eyhy)/H0, one can significantly simplify this
expression and represent the Euclidean action as

(30)

where

As before, this integral is taken along the contour L,
i.e., along a straight line z on the complex plane, that is
parallel to the real axis. This fact allows us to take into
account a complex shift along the argument ξ in the
instanton solution. Next, we can calculate AE for a cer-
tain value of ψ (it is convenient to take ψ = 0) and deter-
mine the difference between the values of AE for differ-
ent ψ. The function AE = AE(ψ) is determined by the
position of the poles of the integrand (30), which are
situated at the points

where ζ1 and ζ2 are the roots of the equations  =

R and  = H0R, respectively, where k is integer.
The analysis is significantly simplified if we take into

H1 hy ihxσ/λ1/2, H2– hy ihxσ/λ3/2,–= =

H0 hy
2

hx
2/λ2+( )

1/2
,=

AE "S zF z( ),d

L

∫=

F z( )
H1 1 H0

2
–( )

3/2

H0 1 H0+( ) λ 1– H1
2+( )1/2

----------------------------------------------------------------=

× zcosh
zcosh R+[ ] zcosh H0R+[ ]

-----------------------------------------------------------------,

R
σλ1/2

H0 λ 1– H1
2+( )1/2

------------------------------------------H2.=

z1 2iπk iπ ζ1, z2±+ 2iπk iπ ζ2,±+= =

ζ1cosh

ζ2cosh
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account the fact that, for our choice of the Dirac string,
the residues of the function F(z) at appropriate poles are
given by simple expressions. The residues at points of
the type z1 do not depend on the parameters of the prob-
lem and are equal to ±1, while the residues at points of

the type z2 are equal to / . Here, the pairs of
poles corresponding to the signs ± at ζ1 or ζ2 are char-
acterized by opposite signs of the residues.

To investigate the effect of the field rotation in the
plane (x, y), we represent its components as

For definiteness, assume that λ < 1 and that the angle
χ = 0 corresponds to the field orientation along the hard
axis of a particle. Since ζ1, 2 are complex, the positions
of poles could not be found analytically; the corre-
sponding numerical data are given in Fig. 3. As
expected, the poles exhibit essentially different behav-

ior in a weak (h < hc = ) and a strong (hc < h <
1) field under the rotation of the field.

We begin with the most interesting case of a weak
field (see Fig. 3a). In this case, for χ = 0, the poles lie
on the lines Imz = π/2 and Imz = 3π/2 symmetrically
with respect to the point z = iπ. (Note that the picture
here differs from that presented in Fig. 2 in the preced-
ing section because of the different choice of the refer-
ence point for ψ.) As χ increases, the poles move
toward each other, so that, as χ  π/2, the points of
type z1 with the residues Res[F(z1)] = ±1 lie on the axis
Imz = π, while the points of type z2 with the residues
equal to ±H1/hc lie on the imaginary axis Res = 0.
Expressing the positions of poles in the strip 0 ≤
Imz < 2π as

where A1, 2 and B1, 2 are positive real numbers, we can
easily verify that B1(χ) < B2(χ) for any 0 ≤ χ < π/2.
Therefore, the function AE(ψ) and a classification of
contributions of paths with different ψ turn out to be as
follows.

When the reference point for ψ is chosen as at the
beginning of this section, the minimal value of the real

part of AE, equal to , is attained at ψ = 0, 2π. This
value remains minimal for ψ in the two strips 0 < ψ <
π – B2 and π + B2 < ψ < 2π. The boundaries of these
strips are determined by the condition that the integra-
tion path passes through poles of the type z2. Since the
residue at the point z2 equals ±H1/(1 – λ)1/2, the value of
AE increases stepwise by 2πi"SH1/(1 – λ)1/2 when the
integration path passes through these poles. Note that,

H1+− 1 λ–

hy h χ , hxcos h χ .sin= =

1 λ–

z1 iπ A1 χ( ) iB1 χ( )+[ ] ,±=

z2 iπ A2 χ( ) iB2 χ( )+[ ] ,±=

AE
min( )
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in this case, the real part of AE increases stepwise by
2πhx"S/hc , and, for appreciable values of hx , the contri-
bution of this strip should be neglected. This value of AE

is preserved in the two strips π – B2 < ψ < π – B1 and
π + B1 < ψ < π + B2. When the trajectory enters into the
central part of the domain (0, 2π), i.e., into the strip π –
B1 < ψ < π + B1, the value of AE again varies stepwise,
but now by a purely imaginary value of 2πi"S.

Thus, the contribution of instanton paths to the tun-
neling amplitude is determined by the following princi-
ples. The paths with the minimal value of ReAE contrib-
ute with a relative weight of 1 – B2/π. The remaining
paths, whose relative weight is B2/π ≤ 1/2, make a con-
tribution with the exponentially small coefficient
exp(−∆AE/"), ∆AE = 2πhxS"/hc , as well as with various
phase coefficients. In the spirit of the instanton
approach, we should take into account only the paths
with the minimal value of AE, except, maybe, the case
∆AE/" ≤ 1. In our case, this inequality is satisfied only
for extremely small angles of deviation from the hard
axis, hx ≤ hc/2πS. For h ≥ 0.5hc , this fact corresponds to
χ ≤ 1/πS, which amounts to several degrees for S ≈ 10.
For smaller fields, the critical value of the angle
increases. This fact corresponds to the experimentally
observed tunneling pattern in which the tunnel splitting
exhibits nonmonotonic behavior only for small χ;
moreover, even for small but nonzero angles, the oscil-
lations are smoothed out as the field increases.

In the most interesting case of small hx ! hy , one can
carry out a quite comprehensive analysis of the prob-
lem. In this case, the values of B1 and B2 are close
to π/2,

(31)

The difference B1 – B2 is small, and, in the first approx-
imation in hx , the contribution of strips of the type π ±
B2 < ψ < π ± B1, whose width is proportional to hx , i.e.,
containing an additional power of a small parameter,
can be neglected. Then, the tunnel splitting ∆ of levels
versus the angle χ (recall that ∆ is proportional to the
sum of tunneling exponential factors over all paths),

,

B1
π
2
--- hx

1 λ–

λhy 1 λ– hy
2

–( )
------------------------------------- 1 hy

2
–( )

1/2
,–=

B2
π
2
--- hx

1 λ–( )1/2

λ 1 λ– hy
2–( )

------------------------------- 1 hy
2

–( )
1/2

.–=

∆
AE

"
------– 

 exp
ψ
∑∝
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is described by the approximate expression

For hx = hsinχ = 0, this expression gives the earlier
obtained result

e
AE/"–

ψ
∑ 1

2
---

AE
min( )

"
-------------– 

 exp≈

× 1
2πhxS

1 λ–
----------------– 2πiS 1

hy

1 λ–
----------------– 

 +exp+ .

∆
AE

min( )

"
-------------– 

  πS 1
hy

1 λ–
----------------– 

 cos .exp≈

0
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(b)

h < hc
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z1

2π
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π

Fig. 3. The dynamics of the poles of the function F(z) under
the rotation of a magnetic field in the basal plane for various
values of its magnitude |h| = h. The dots indicate successive
positions of poles as the angle χ between the field direction
and the axis y increases from χ = 0 to χ = π/2; to improve
clarity, the indicated positions of points correspond to the
values of χ that differ by π/10. The arrows show the direc-
tion of motion as χ increases starting from χ = 0. For spe-
cific numerical calculations, the following values of the
parameters are chosen: λ = 0.73, which approximately cor-
responds to Fe8, (a) h/hc = 0.6, and (b) h/hc = 1.35.
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For small but nonzero hx ≠ 0, incomplete destructive
interference occurs when the tunnel splitting is propor-
tional to

(32)

When hx ≠ 0, this expression does not vanish for any
value of hy .

In the case of a strong field, h > hc , the arrangement
of poles is different (see Fig. 3b). When h || ey , i.e., χ =
0, all poles lie on the line Imz = π In this case, they do
not contribute to the function AE(ψ) (see the previous
section). When the direction of the field deviates from
the hard axis, the poles move away from this line and
two strips with different values of AE are formed near
the line Res = π. Again, as ψ deviates from the value
ψ = 0, a pole of type z2 is the first one traversed by ψ,
and the real part of the Euclidean action increases step-
wise. However, when h > hc , there is an essential differ-
ence from the case of a weak field: for small hx , when
it is expedient to consider the contribution of paths with
large values of ReAE, the width of an appropriate strip
is small and proportional to hx . Accordingly, the
relative weight of a trajectory with a different value of
the phase factor, which could contribute to interference,
is small. When hx are not small, the contribution of such
paths is suppressed by the exponential factor
exp(−∆AE/"). Therefore, when h > hc , there are no
effects of partial interference for any orientation of the
field, which agrees with the experiment of [16].

5. DISCUSSION OF THE RESULTS 
AND CONCLUDING REMARKS

We have considered two problems, a general and a
specific one. Specifically, we have given a full descrip-
tion of quantum tunneling between levels correspond-
ing to the ground state of a Fe8-type high-spin molecule
(which are degenerate in the classical case) with rhom-
bic anisotropy in a magnetic field directed arbitrarily in
the plane perpendicular to the easy axis of the mole-
cule. As far as we are concerned, we are the first to con-
struct exact instanton solutions for this model for arbi-
trary values and orientations of the magnetic field. To
our knowledge, the results obtained describe all basic
features of the experimental behavior of tunnel splitting
∆ of levels as a function of the magnitude and orienta-
tion of a magnetic field. In the case of a magnetic field
parallel to the hard axis, our analysis yields either (1)

e
AE/"–

ψ
∑ AE

min( )

"
-------------– 

 exp≈

× 1
4
--- 1

2πhxS
hc

---------------– 
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  2 2πhxS
hc
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

× πS 1
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 cos
2


 1/2
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the interference pattern, predicted by Garg [7], with a
nonmonotonic variation of the splitting ∆ of levels and
the vanishing of ∆ at certain values of weak field H <

Hc = S /gµB, or (2) the absence of inter-
ference and a monotonic increase of ∆(H) in the entire
domain of admissible values of the field Hc < H <
KS/gµB. To our knowledge, the results of our calcula-
tions made it possible to describe, for the first time, par-
tial interference on the basis of exact instanton solu-
tions, i.e., to describe the nonmonotonic behavior of
∆(H) without vanishing of ∆ for a small deviation of the
field from the hard axis by an angle of χ < χc ≈ 1/πS and
a monotonic behavior of ∆(H) for all other orientations
of the field.

Such a full description of this specific problem has
become possible owing to analysis of the general prob-
lem concerning the structure of instanton paths in fer-
romagnets. We could reduce the problem of searching
for instanton paths for a wide class of ferromagnetic
models to an exactly integrable problem of Hamilto-
nian dynamics. We have established that, for nearly all
physically meaningful ferromagnetic models, instanton
paths form a system of continuous one-parameter fam-
ilies. Each instanton belonging to a certain family is
characterized by its own function m(τ), but the value of
the Euclidean action AE is the same for all instantons in
this family. We have established that all instanton paths
are characterized by a single real parameter ψ that var-
ies in the interval 0 ≤ ψ < 2π, while the Euclidean action
is a periodic, with period 2π, stepwise function of ψ.
This picture is fundamentally different from that usu-
ally described in the literature, which involves a finite
number of instanton paths.

Depending on the situation, our scheme may give
different results: those that can, in principle, be reduced
to a standard scenario where certain families of instan-
tons with the same AE can be represented by a single
path, and those that cannot by described by such a sim-
plified scheme. Examples of such a “reducible” prob-
lem are given by the model of a purely uniaxial ferro-
magnet, considered in Section 2, in which all instanton
paths with 0 ≤ ψ < 2π have the same value of AE, or by
a more complicated model with rhombic anisotropy
and a field exactly parallel to the hard axis. In the latter
case, two families of instantons with equal real parts of
AE but different imaginary parts of AE correspond to two
strips with the same width ∆ψ = π. In this case, each
family of paths can be represented by a single equiva-
lent instanton. However, a full description of the exper-
imental results requires the use of “irreducible” prob-
lems. A clear example of such problems is obtained
from the analysis of the effect of deviation of a mag-
netic field from the hard axis. In this case, both for H <
Hc and H > Hc , there exist instanton solutions with

slightly different values of ReAE, such that  –

 = ∆AE ! , and significantly different imagi-

K2 K2 K1–( )

AE
2( )

AE
1( ) AE

1 2,( )
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nary parts of AE. If the problem consisted only in the
existence of two different instantons, it would be diffi-
cult to account for the different behavior of the system
in these two cases. The result, namely, the fact that the
splitting of levels is significantly different for H < Hc
and H > Hc , is associated precisely with the concept of
continuous families of instantons that exist in the inter-
vals ∆ψ. In the specific case H < Hc , the characteristic

intervals ∆ψ1, 2 for instantons with  and  are on
the same order of magnitude, which results in partial
interference of type (32), whereas, for H > Hc , the
width of one of the intervals is small, and no interfer-
ence occurs.

Here, it is relevant to note that the picture of instan-
ton families that depend on a continuous parameter
admits a realization of more general tunneling scenar-

ios that do not occur in the simple model (1) with  =
0 considered here, i.e., in a model in which the anisot-
ropy energy is quadratic in the spin components. Sup-
pose that, in a certain model of a ferromagnet, there are
two instanton families that have different imaginary
parts but the same real parts of AE and are realized in
different intervals ∆ψ. Then, one can obtain a different
form of partial interference, without exponential sup-
pression. Another interesting scenario could occur if,
for a certain value of the external parameter, the interval
width for instantons with the minimal value of AE
would tend to zero. Then, in the neighborhood of this
value of the parameter, the tunneling would be deter-
mined by paths with nonminimal AE. This, as well as
many other possibilities, cannot be excluded a priori.
However, the analysis of more complicated ferromag-

netic models, including model (1) with  ≠ 0, falls out-
side the scope of this paper. There are no fundamental
difficulties here: the function W(cosθ, ϕ) in model (1)

with  ≠ 0 is analytic; however, the analysis of this
model requires the solution of complicated algebraic
equations, which can only be done numerically.

As was pointed out above, the presence of instanton
families is associated with the admissibility of complex
values for magnetization m (or for angular variables θ
and ϕ) in an instanton and can be described by a com-
plex shift of the reference point of imaginary time in the
instanton solution, m(τ)  m(τ + iψ). These proper-
ties are closely related to the analyticity of the classical
energy of a ferromagnet with respect to the variables
cosθ and ϕ. Many authors pointed out that it is neces-
sary to take into account complex values of magnetiza-
tion. In the clearest form, this property of instantons
was formulated in the works [34], which are devoted to
the analysis of the mathematical nature of integrals
along instanton paths in ferromagnets. However, the
authors of these works used a parametrization of mag-
netization in terms of a complex stereographic projec-
tion, w = (mx + imy)/(1 + mz). Under such a parametri-
zation, the energy of a ferromagnet contains nonana-

AE
1( ) AE

2( )

K̃

K̃

K̃
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lytic multipliers of the type |w|2 for which the Cauchy–
Riemann conditions are violated on the entire complex
plane w rather than at certain specific singular points.
Therefore, the integrability of the problem in these vari-
ables, as well as the possibility of using a complex shift
of the argument for obtaining solutions with the same
value of AE, is not obvious a priori.
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