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Abstract—Theresults of numerical calculations of the energies of Auger transitions, aswell asthe angular dis-
tribution (a,) and spin polarization (B,) anisotropy parameters, are presented for transitions in a photoexcited
Kr* atom with two open shells. Matrix elements are calculated by the multiconfigurational Fock—Dirac relativ-
istic method using an intermediate type of coupling. The wavefunctions of the initial and final states of the
Auger transition are cal cul ated with allowance for relaxation effects. The one-electron wavefunction of the con-
tinuous spectrum for an Auger electron is obtained using the single-configuration Fock—Dirac method. The
results are compared with experiment and anew experiment is proposed for identifying the Auger state not only
from the energy, but also from the total angular momentum of the Auger state. © 2004 MAIK “ Nauka/Interpe-

riodica” .

1. INTRODUCTION

Analysis of spin polarization and angular distribu-
tion of electrons makes it possible to obtain complete
information on the dynamics of Auger decay in atoms.
A general theory of the anisotropy in the angular distri-
bution of Auger electrons was developed in [1-5] using
the density matrix formalism. Thefirst theoretical com-
putations of the angular distribution coefficients were
performed by several groups [6-8]. Advances made in
experimental studies, including the redlization of a
complete quantum-mechanical experiment for an
Auger process [9, 10], in which the amplitudes of
Auger transitions and the phase differences in the par-
tial waves of Auger electrons were measured, have
stimulated further theoretical investigations.

Here, we employ the theory of angular distribution
of Auger electrons developed in [5-7]. This theory is
generalized to the case of atoms with open vaence
shells.

The wavefunctions of the Kr* atom were calculated
using the multiconfigurational Fock—Dirac relativistic
method taking into account relaxation for energy levels
of both theinitial and the final states. Such arelaxation
substantially complicates computations since it neces-
sitates the computation of matrix elements of an Auger
transition with nonorthogonal one-electron functions.
As arule, relaxation effects were disregarded by other
authors. Here, we also calculated the energy levels of
the final state disregarding relaxation to clarify therole
of these effects. In this case, the energy levels of the

final state were calculated by the method of configura-
tiona interaction using the frozen one-electron func-
tions obtained for the initial state of the atom.

In multiconfigurational computations, we included
all relativistic configurations corresponding to a
nonrelativistic configuration. For example, for the
excited configuration 3d%p! of the Kr atom,
this means that four different relativistic configurations

(3dg,23dg,25pi,2, 3d§,23dg,25pi,2, 3d§,23d§,25pé,2,

and 3d3,,3d5,5p3,) Were included in computations.

This computational method in fact implementsan inter-
mediate coupling (IC) and leadsto morereliable results
as compared to those obtained earlier in our [11] and
other publications in the framework of purely LS or jj
couplings.

The one-electron wavefunction of the continuous
spectrum of an Auger electron was cal culated using sin-
gle-configuration Fock—Dirac relativistic method tak-
ing into account nonlocal exchange and nondiagonal
Lagrangian multipliers ensuring that the wavefunction
is orthogonal to the core states of the ion. A detailed
description of the method for cal cul ating the wavefunc-
tion of the continuum is given in [11]. The influence of
relativistic effects in calculations of the wavefunction
of the continuum on the value of the angular distribu-
tion anisotropy parameter a, might be significant since
the contribution to the values of parameters a, and 3,
(spin polarization anisotropy parameter) is mainly

1063-7761/04/9906-1119$26.00 © 2004 MAIK “Nauka/ Interperiodica’



1120

determined by the behavior of the function for the con-
tinuum in the atomic core region.

In Section 2, basic relations used for calculating
parameters a, and [3, are presented and the method for
calculating the matrix elements with nonorthogonal
wavefunctionsof theinitial and final statesisdescribed.
In Section 3, the results of theoretical calculations of
the energies of Auger states 4s'4p—5p, 4s4p16p, and
4s715p of the Kr atom performed in the |C approxima-
tion are considered and compared with the results of
precision experiment [12]. In the same section, the
results of calculations of parameters a, and 3, are pre-
sented and the possibility of performing an experiment
leading to determination of the total angular momen-
tum of the final state of an atom in an Auger transition
is considered.

2. THEORY

2.1. Parameters of Asymmetry
in the Angular Distribution of Auger Electrons

The parameter of angular distributions and spin
polarization are calculated using a two-stage model of
Auger decay proposed in [1]. The genera theory of
Auger decay is described in many publications (see, for
example, [6]). The expression for the angular distribu-
tion of Auger electrons has the form

dW + 2+ sz+ 2+ .
gdA = ZT;A [1+0,A%P,(sinB)], (1)
where dWi+ _ 2 Isthe probability of the Auger pro-

cess integrated over the direction of trajectories of
Auger electrons, A, isthe population magnetic sublev-
elsof asingly charged ion, a, is the anisotropy param-
eter of the angular distribution of Auger electrons, P, is
the quadratic Legendre polynomial, and 6 is the angle
between the direction of emission of Auger electrons
and the polarization of radiation. The expressions for
anisotropy parameters of the angular distribution of
Auger electrons and spin polarization are borrowed
from [5, 6]:

_ A(200)

A(211)
o2 = A(ooo)' P2 = 5!

73 A(000)°

Here, A(KkQ) are the angular distribution coefficients
defined by the expression [6, 11]

)

A(KkQ) = Z-—}TpJ(zK D) (2k+ 1)

x i epli(o -0 § (1)
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where J; is the total angular momentum of the initial
state of the A* ion, J is the total angular momentum of
the final state of the A% ion, ¢ is the free electron
energy, | isthe orbital angular momentum, j is the total
angular momentum, and gj; is the phase of the Auger
electron wavefunction.

The above matrix elements [J,||V |[Jj)J,0of the

transition operator V aredefined for theinitial and final
multielectron states of an arbitrary atom. These matrix
elements can be obtained in the general case by using
the Wigner—Eckart theorem if the multielectron wave-

function W, . of theinitial state of theA*(J,) ion, the

wavefunction W, \, of the final state of the A2*(J) ion,
and the one-electron wavefunction (;, of the Auger
electron are known:

3, €l'j) 3, |IV| 3,0= “2‘]1 1DJM imV]3,M,0 (4)
CJM jm

In calculating matrix elements (amplitudes) of the
transition with orthogonal orbitals, the transition oper-

ator V in the Auger process may be the electron inter-

action operator or operator H —E, where H isthetotal
Hamiltonian of the system. The equivalence of these
two versions stems from the fact that theinitial and the
final states differ in the two-electron excitation; conse-
quently, al one-electron matrix elements vanish (at
least in the single-configuration technique). If the one-
electron functions of the initial and final states are dif-

ferent, we must choose operator H — E asthetransition

operator. We will now calculate the amplitude [F|H —
E|IUof the Auger transition between the initial state |
with quantum numbers J;M; and the final state F with
guantum numbers JM, jm.

2.2. Calculation of the Matrix Elements
of the Transition Operator
with Nonorthogonal Functions

The multiconfigurational Fock—Dirac method was
used in all calculations of the multiel ectron wavefunc-
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tions of a singly charged ion in the initial state and a
doubly chargedion inthefinal state. The wavefunctions
for the initial and final state in an Auger process are
usually calculated in the frozen orbital s approximation
according to which the one-electron functions of the
initial and final statesform a unified set of orthonormal
functions. This computational method is usually called
calculation disregarding relaxation. Allowance for
relaxation necessitates the use of two mutually nonor-
thogonal sets of orbitals of the final and initial states.
Let us consider in greater detail the method for calcu-
lating the matrix elements of an Auger transition with
nonorthogonal orbitals.

In the multiconfigurational Fock—Dirac method, the
wavefunctions W' and WF of the initial and final states
of an N-électron system can be presented as a linear
combination of the Slater determinants det, con-

structed from one-electron wavefunctions { (p} (¥} and
{ @ (9}, respectively:

W=y Codeto{ 9 (%) .
i (5)
W= S Codeto{ 9] (%)} -

For an Auger process in which the total energy of an
atom is conserved during the Auger decay (E = const),
the amplitude of transition from the initial state |l Cito
the final state [F[has the form

FA-EID= 3 CJCyHy—EBR),  (6)
ap

where the indices a and 3 enumerate the Slater deter-
minants for the initial and final states, H™ isthe matrix
of Hamiltonian H in the basis of the Slater determi-

nants, and B is the nonorthogonality matrix in the
same basis.

Matrix B is not equal to the unit matrix since the
determinants formed by one-electron wavefunctions of
the initial and final states are not orthogonal. This
matrix can be presented in the form [13]

-1/
Bep = [detydetgd= (DgoDgg) ™" *Dyg, )

where Dgg is the determinant of the overlap integral
matrix S* in the basis of one-electron orbitals:

Do = det|S®, S = @fjen ©)

The elements of matrix P are calcul ated between two

setsof orbitals{ ¢ }, and{ @, } s forming the two Slater
determinants a and 3, respectively.

The matrix elements of the transition for one-elec-
tron and two-€electron operators can be cal culated using
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expressions for one- and two-particle density matrices
of the transition between two states, which are
described by Slater determinants a and (3. The expres-
sion for the one-particle density matrix has the form

p1 (% X)
h B
_ a, L
= (DaaDge) " “Dap Y (S7)i'i @ (X)q] (X).
i
The two-particle density matrix can be represented in

terms of the one-particle matrix and is defined by the
expression

P3P (Xy, Xo| Xy, X5) = (Dgq Dpg) ™2

a * ] * ] 1
x 3 D% g ) DA 06), (19
i
where
Dio,([j},m = DGBSi,ksj,l
x[(SHT (SR -(SHShHL @)
- L, i<k,
T HY sk

Hamiltonian H can be represented as the sum of one-
and two-particle operators:

N
Z ﬁi+Z\7H.

H = (12)
i=1,N i %]
The matrix elements have the form
Hep = @IABO= Tr(hps®) + Tr(vps?).  (13)

Using formulas (9) and (10) for one- and two-particle
density matrices, we obtain

@y AiIBC= (Dog D) ™ *Deg
i

) (14)
x Y (S0, BOIVIIO
Q%]
~ -1/2
[a| z Vi iIBCE (Dgq Dgp)
B (15)
x D .0, jlU]k, 10

It was mentioned above that the multiconfigura-
tional Fock—Dirac method was used in this study. All
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Table 1. Energies E of the Auger transitions and anisotropy
coefficients of angular distribution (a,) and spin polarization

(B,) calculated taking into account (+) and disregarding (-)
relaxation for Auger transitions 4s24p15p in Kr atom

i N A
Sy, | 477 ] 0565 | 00 | 443 | 0565 0.0
‘Dy, | 474 | 0673 | 00 | 440 | 0673 | 00
‘Dg, | 47.4 | 0608 | 0.018 | 439 | 0.604 | 0.019
“Dy, | 472 0565 | 00 | 438 | 0565 | 0.0
2Dy, | 47.2 | 0437 | 0.067 | 43.7 | 0.419 | 0.071
Dy, | 470 0.0 00 | 436 | 00 0.0
Py, | 46.8 |-0.409 |-0.068 | 43.4 |-0.390 |-0.075
Py, | 46.8 | 0.680 [-0.026 | 43.4 | 0.679 |-0.024
Py, | 46.8 |-0.636 | 0.050 | 43.3 |-0.636 | 0.050
‘Dy, | 46.8 |-1.351 | 0.025 | 43.3 |-1.358 | 0.025
‘P, | 46.7 | 0420 |-0.023 | 43.2 | 0.463 |-0.023
Dy, | 465 | 0.703 |-0.005 | 43.1 | 0.697 |-0.004
2S,,* | 46.3 [-1.409 | 0.023 | 429 |-1.392 | 0.021
2S,,,** | 40.5 [-0.675 | 0.0 37.0 |-0.727 | 0.0
Dy, | 40.4 | 0.149 |-0.187 | 37.0 | 0.033 |-0.173
2Dy, | 40.3 | 0570 | 0.032 | 369 | 0527 | 0.045
2P, | 40.1 [-0.700 | 0.0 36.7 |-0.706 | 0.0
Py, | 40.1 [-0.052 |-0.159 | 36.7 | 0.003 |-0.169

Note: * For theinitial state 'P;; ** for theinitial state 3P,.

Table 2. Energies E of Auger transitions and anisotropy coef-
ficients of angular distribution (a,) and spin polarization ([3,)
calculated for Auger transitions 4s25p in Kr atom

Final _ - _

tate ELeV| a B, E*, eV a; B;
°Py, | 247 |-0.707| 0.0 215 [-0.707| 0.0
2P3/2 246 |-0.530| 0.0 21.4 |-0.556| 0.0

relativistic configurations corresponding to one nonrel-
ativistic configuration were taken into consideration.
Such an approach in fact employs the intermediate type
of coupling. Inthe nonrelativistic limit, when the veloc-
ity of light tends to infinity, such an intermediate cou-
pling istransformed into a purely LS coupling. It should
be noted that the single-configuration Fock-Dirac
method corresponding to the jj coupling does not possess
aregular relativistic limit for atomswith open shells. For
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atomswith closed shdlls, the approach used by ushereis
equivaent to the method developed in [5-7].

3. RESULTS AND DISCUSSION

Tables 1-3 show the results of computation of
energy and parameters o, and 3, for Auger electrons

formed as a result of decay of states 3d§,125p and

3d§,125p excited by a single-photon process from the

ground state to the final state 4s'4p~5p of the Kr* ion.
In our calculations, we used the intermediate coupling
(IC). Two versions of computations are presented. The
first version corresponds to the “frozen core” approxi-
mation. In the second version, relaxation of one-elec-
tron states for both the initial and the final state istaken
into account. It iswell known that a comparison of the
results of computations performed in the frozen core
approximation with those performed for nonorthogonal
orbitals of theinitial and final states demonstrated that
the relaxation effect weakly influences the value of the
angular distribution anisotropy parameters for Auger
transitionsin atomswith filled shells[14] and for atoms
with unfilled shells[15]. It can be seen that for atomsin
the excited state the relaxation effect noticeably modi-
fies the value of the angular distribution anisotropy
parameters and especially the value of the Auger tran-
sition energy. Thisfollowsfrom the results presented in
Tables 1-3. Table 4 is compiled using the experimental
spectrum of the above states given in [12]. States were
identified in [12] on the basis of arelativistic multicon-
figurational computation, and averaging was carried
out over experimentally observed groups of reso-
nances; for this reason, direct comparison with the
results of our computations is difficult in our opinion. A
comparison can be carried out only on the basis of iden-
tification of groups of resonances (see Table 4). Compar-
ison of the experimental datawith the results of our com-
putations demonstrates the coincidence of the results of
identification of Auger resonances except for one group
of resonances to which configuration (4p=24d5p) of dou-
ble Auger decay is ascribed in [12]. In our computa:
tions, this energy range of Auger states corresponds to
the results of calculations presented in Table 1.

The identification of Auger states according to the
total angular momentum can be carried out using an
experimental technique based of the selection rules for
three-stage photoexcitation of Auger states by polar-
ized radiation. In this case, Auger states with a certain
total angular momentum are excited depending on the
total angular momentum projection imparted to the
atom by radiation. By varying the combinations of
mutual orientation of polarizations of radiation for
three stages, we can introduce different total angular
projections of the photon momenta for each stage of
excitation and, hence, identify Auger states according
to the total angular momentum. This method can be
used for identifying Auger states of a Ba atom in the
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Table 3. Anisotropy coefficients of angular distribution (o)
and spin polarization (3,) calculated for Auger transitions
4s4p16p for the Kr atom

Y A A
4Sy, | 45.1 | 0.706 |—0.005 | 41.8 | 0.706 | -0.005
‘D,,| 450 | 0.673| 00 | 417 | 0673 | 0.0
‘Dg,| 450 | 0.545| 0.040 | 41.7 | 0535 | 0.043
Dy, | 449 | 0646 | 00 | 41.6 |-0.768 | —0.038
2Py, | 449 | 0.706 |-0.006 | 41.6 | 0.705 | -0.006
%S, | 448 | -1.16 | 0.023| 415 |-1.15 | 0.023
‘Dgy,| 446 | 0565| 00 | 413 |-0.666| 0.023
Dy, | 445 | 0672 |-0.017 | 412 | 0.673 |-0.018
?D,,| 445 | 0538 | 0.0 | 41.2 [-0.667| 0.070
‘Dy,| 445 |-1.26 | 0024 | 41.2 | -1.27 | 0.024
Py, | 444 |-0.845| 0.003 | 41.2 |-0.825| 0.003
2Dy, | 442 | 0.696 |-0.004 | 40.9 | 0.687 | —0.004
2P, | 409 |-0.707 | 0.0 | 409 |-0.707 | 0.0
’S,,| 380 | 00 0.0 347 |-0.707 | 0.0
2Dy, | 380 | 0563 | 0.004 | 347 | 0564 | 0.0
?Dg,| 380 | 0546 | 0.040 | 34.7 | 0.515| 0.049
2Py, | 379 | 00 00 | 346 [-0.707| 0.0
2Py, | 379 | 0555 | 0.0 346 | 0562 | 0.0

Table 4. Experimental energies and intensities of Auger
transitions from state 3d,5p for the Kr atom [12]

Final state E, eV Intensity, rel. units
4s%4p~(1P)5p 42-45 =4.2
4s14p7(*P)6p 39-41 =2.0
4p~34d5p (double 35-39 =3.7
Auger decay)
4s2(19)5p°P 28-32 =4.3

6p7p configuration [ 16]. The application of this method
will make it possible to compare the results of compu-
tations with experiment more fruitfully.

We calculated the energies and anisotropy parame-
ters of the angular distribution and spin polarization of
Auger electrons for the decay of the 3d-15p state to the
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final states 4s'4p15p, 4s25p, and 4s*4p~t6p of the Kr
atom, which are allowed by the selection rules for one-
stage photoexcitation from the ground state. The com-
putations were performed using the relativistic multi-
electron approximation with superposition of the con-
figuration in intermediate coupling taking into account
relaxation. The wavefunctions of an Auger electron are
orthogonal to the core wavefunctions. The exchange
interaction is taken into account. Satisfactory agree-
ment between the calculated energies of Auger decay
and experimental results has been reached.
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Abstract—An analysisis presented of the state that arises after photons have been spontaneously emitted by a
pair of spatially separated excited two-level atomswith spin-1/2 ground and excited states. Selection of possible
decay scenarios conditioned on the helicities of the photons (even on the helicity of the one emitted first) makes
it possible to reveal ground-state spin-projection correlations between atoms. The correlations are due to quan-
tum interference between alternative scenarios (the atom that has emitted a particular photon cannot be identi-
fied). The correlations obtained by the chosen selection method are classical. © 2004 MAIK “ Nauka/Interpe-

riodica” .

1. INTRODUCTION

Growing interest in classification of correlated
states of quantum many-body systems and in methods
for creating them is motivated by the importance of
entanglement, asa special type of correlation, for quan-
tum information processing. The importance of corre-
lations between particlesin optics (e.g., their key rolein
Dicke superradiance [1]) was redlized much earlier.
Entanglement of subsystems of a closed quantum sys-
tem must be explained by their interaction. Entangle-
ment in an open system isamore complicated phenom-
enon: subsystems A and B can be entangled by indirect
interaction via some externa system (e.g., common
environment [2]). In [3], a pair of spontaneously emit-
ting atomsin aresonant light field was used as an exam-
ple to show how an entangled state of noninteracting
subsystems of the same system can be prepared. In this
study, we note that the nth-order probability amplitudes
for interaction with an external field (associated with
stimulated transitions involving n photons) provide a
natural basis for representing the state vector of an
atomic system as a superposition of entangled states. In
the case of A atoms, certain spontaneous decay events
can be used as physical “filters’ for these states, and it
isimpossiblein principleto attribute a detected sponta-
neous photon to a particular atom. In the context of an
analysisof preparation of entangled states, the phenom-
enon known as entanglement swapping should also be
mentioned [4]. One swapping scenario can be
described as follows. Consider a quantum system con-
sisting of subsystemsA, A', B, and B'. Suppose that the

reduced states represented by density matrices @AB

and paw are entangled, while subsystems A O B and
A' [0 B' areuncorrelated, i.e.,

éABA'B' = éAB O éA'B'-

If a post-selective measurement (with a definite out-
come) is now performed on A and A’ in the entangled
basis, then the “posterior” state of the subsystem
B O B' corresponding to the given outcome will be

entangled, whereasthe prior state P8e' isstrictly uncor-
related both before and after the measurement on A [J
A'. An example of a natural process in which spin cor-
relations are swapped between particleswas considered
in[5, 6].

Selection conditioned on the results of interference
between product states leads to entanglement in a sys-
tem of two spatially separated atomic Bose-Einstein
condensates [7] or two photonic modes [8]. An analo-
gous selection playsakey rolein the present study of the
correlationsinduced by spontaneous decay of the excited
states of two spatialy separated atoms. The present
model, abeit similar to those considered in [2, 3], takes
into account polarization of the emitted photons and
degeneracy of the atoms with respect to spin direction.
The analysis is focused on characterization of the
induced ground-state spin-projection correlations.

2. DESCRIPTION OF THE MODEL
AND BASIC RELATIONS

Consider a pair of identical atoms A and B with
spin-1/2 ground and excited states. Let the atoms be
localized at points r, and rg within a region much
smaller than the spontaneous emission wavelength.
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Suppose that the atoms are heavy enough that their dis-
placement over the decay time is negligible. When pre-
pared in excited states, the atoms can emit two sponta-
neous photons. In this system, alternative decay scenar-
ios interfere in a natural manner: an emitted photon
cannot be attributed to either atom. To examine this
phenomenon in more detail, assume that the emitted
photon is absorbed at apoint lying on the perpendicular
bisector of the line segment that joins two two-level
atoms separated by the distancer = |rg—r »| after it has
traveled adistance L (see figure). (Angular momentum
is tentatively ignored.) This geometry corresponds to
optimal conditions for identifying the photon source. It
is clear that the alternative scenarios of emission by A
or B will not interfere if the detector can distinguish
between the transverse recoil momentap, and pg = —a
due to absorption. The corresponding quantum uncer-
tainty | in the detector location must satisfy the con-
dition

1™ <2|p,| = 2ksin95k—Lr, (1)
where k is the wavevector magnitude characteristic of
the emitted photon (Planck’s constant is set to unity).
However, any difference between p, and pg can arise
only if

| <r. @)

It followsfrom (1) and (2) that the noninterference con-

ditionis
L
r> ﬁ 3

= 'ﬁ 4)

Accordingly, if

then the dternative scenarios of emission by either
atom mutually interfere. Thisis a necessary condition
for the onset of entanglement in the atom pair. Now,
consider the optical system in which the detector of
spontaneous photons is replaced by a monochromatic
light source with wavelength 21vk. For this system,
condition (3) means that the distance between the
atomsis many times greater than the Fresnel zone, and
condition (4) impliesthat both atoms are located within
the first Fresnel zone. Note also that the present analy-
sis is focused on the ground-state spin correlations
induced after two photons have been emitted. Thus, the
intermediate energy-spin-projection entanglement that
arises after thefirst photon has been detected isnot con-
sidered here (see discussion in [3]). It is essential that
the correlations in question arise because the atom that
has emitted a particular photon cannot be identified.
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Schematic setup for distinguishing between photon sources.

Now, let us discuss sel ection of two-atom states con-
ditioned on experimentally distinguishabl e scenarios of
spontaneous decay. Theideal result of this study would
be the formulation of a simple method for creating
entangled states of the system. The straightforward
argumentation presented bel ow shows that the resulting
prior state (averaged over al spontaneous decay histo-
ries) cannot be entangled if the initial excited state is
isotropic and uncorrelated, i.e., described by the den-
sity matrix (1/4) Pe O Pe, where Pe isthe projector on
the excited-state subspace of an atom. (The first and
second multiplicands in tensor products act on the
respective state spaces of A and B.) The atom pair inthe
ground state can be treated as a two-qubit system. Its
geometry is defined by the unit vector s = r/r directed

fromA to B. In standard notation (1 = P, isthe projec-
tor onto the ground-state subspace of an atom), the cor-
responding joint density matrix has the form

Gy = lg+g- + |g—- Mg+,

Gy =ilg-0g+ —ilg+09,

6, =g+0g+ —|g-09 ,
where“+” and “—" denote the signs of angular-momen-
tum projections on the z axis. It may involve contribu-

tions of the following terms:
101, s 0Oso,

10s6, sO1, (sxo)06.

Theterm ¢ O & is not listed here, because it repre-
sents correlations that are isotropic and independent of
s, which cannot be the case. The last three terms (linear
in the components of s) must therefore be discarded by
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virtue of mirror symmetry, because they are pseudosca-
lar operators. Thus, the most general form of the aver-
aged final density matrix is

@=%(1Di+psE6'DsE8'). (5)

For systems of two spin 1/2 particles, the PeresHoro-
decki criterion [9, 10] implies that the initial density
matrix involvesonly classical correlationsif and only if
the transpose of (5) with respect to the quantum num-
bers of one of the atoms is positive. It is obvious that
this partial transpose is positive (e.g., in a basis where
the quantization axis z is aligned with s). Therefore,
entanglement cannot be created in this system without
performing selection conditioned on the spontaneous
decay history. It is shown below that the averaged den-
sity matrix does not involve any correlation.

Let us proceed to calculations. Suppose that condi-
tion (4) holds. The Lindblad-type master equation for

the two-particle density matrix E) is(eg., see[ll])1

0w=y J’dzn[ﬂ(q,n)éf(q,n)
= ©)
1, 1 - -
-5(L @mi(an).py - |

It is written in the Heisenberg representation based on
the unperturbed Hamiltonian of the atom pair. Motion
of the atoms, their interactions with external fields, and
the recoil due to emission of photons are neglected. In
this model, the evolution of the density matrix is com-
pletely determined by spontaneous decay. Equation (6)

contains the Lindblad operator L (g, n) corresponding
to the emission a photon with helicity g (+1} inthe
direction of n. These operators (defined on the state
space of the atoms) are the part of the Hamiltonian that
represents interaction between intra-atomic currents
and a spontaneous photon with definiteqand n (upto a
factor). Interference between the alternative scenarios
of spontaneous emission by either atom is equivalent to
joint action of both atoms as sources of both photons.
Therefore,

L(g,n) = La(q, n)exp(—ikn t,)
+ Lg(q, n)exp(-ikn [Iy), 0

where
La(g,n) = dE(n)OT,

. . ()
Le(q,n) =1 OdL&(n)

1 An alternative approach makes use of quantum stochastic differ-
ential equations (e.g., see [3]).
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are the operators representing the emission of a photon
by A and B, respectively. These definitions involve the

identity operator | in the state space of an atom and the
part of the dipole moment operator responsible for de-

excitation,
~_ |3
g - @T

X |gmm'|< %m‘%lq"%m%>e§,

qg=0Imm==%

where g, denotes the cyclic unit vectorsin alaboratory
frame (e, =€, €, = F(e, tig,)/4/2) and

gy(n) = z Dé.lé(n)eq.

q=0=1

denotes the cyclic unit vectors in a reference frame
wherethe zaxisisaligned with n. The numerical factor

in the expression for d isintroduced for convenience.
When condition (4) is violated, Eq. (6) should be rear-
ranged so as to reduce the relative contributions of the
cross terms containing products of operators associated
with different atoms. In the limit of (3), these products
vanish, i.e., the photon sources can be distinguished,
and right-hand side of Eq. (6) isreplaced by the sum of
the right-hand sides of the Lindblad equations corre-

sponding to La (g, n) and L (g, n).

The procedure for selecting different spontaneous
decay histories examined here is conditioned on the
helicities of the emitted photons. Accordingly, consider
the four ensembles defined by the pair of hdlicities
(a1, 9,), Where g, and g, denote the helicities of thefirst
and second emitted photons, respectively. The density
matrix corresponding to the emission of photons with
given helicities at instantst; and t, is found by solving

Eq. (6):
é(tb O t2 O) = J'dznzj-dznﬂ:(%’ n,)

X eXp[—R(tz—tl)] L(Ql’ ny) eXp[—R(tl—to)] @(to) ©)
x exp[-R (t, ~to)] L' (a, ny)

x exp[—K (t,—t,)] L'z ),
where

K = % Z IdZnI:T(q,n)li(q,n)

gq==1

2In Eq. (6), timeis normalized to the rate constant for spontaneous
decay.
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is the Hermitian operator of evolution of the two-atom
system during the time interval between the acts of
emission (equivalent to Hamiltonian-like evolution in

imaginary time) and @ (to) istheinitial density matrix
(t, = O hereinafter). Thetrace of operator (9) definesthe
probability distribution of the emission instants and the

helicities of the emitted photons. The integral calcu-
lated over the admissible set of t; and t, yields

E)(Ch; d2)

° i (10)
:Idtzjd@ (t, ap; 1, @p) = %qZ[%qu (oN1.

The superoperator €, corresponding to the emission
characterized by g is defined as

A

€fl = 3 fon ACHL ;"i L@n

in terms of eements of the spectral decomposition
of K,

(12)

R = Z)\ilsi.

Calculation of {)\;, P;} yields the following results if
the z axisis aligned with the line segment that joins the
atoms:

Ao = O corresponds to the projector Py = Py O Py;
A, = 1 + a/3 corresponds to the projector P; onto

the subspace

spar{ |g+L1 |e+D+ e+ [gr+ LoD |e-C3 [e-L10 |g—13:;
A\, =1—a/3 correspondsto the projector P, ontothe

subspace

span{ [g+[L) e+~ [e+LD] [g+Lljg—L1) [e-3-[e-L10 g-03;;
A3 =1+ (a + B+ [3*)/3 corresponds to the projector

Ps onto the subspace

(lg+[ |e-[ e+ g |g-T1J |e+CH |e-[11 |g+0y/2;
As=1—(a + B+ *)/3 corresponds to the projector

P4 onto the subspace

(lo+tOd e |e+] |g-0- |g—1J |e+ 3~ |e-00 |g+0V/2;
As =1+ (o — B —B*)/3 corresponds to the projector

Ps onto the subspace

(lg+[0 |e-C e+ |g-CH gL |e+ - |e-[11 [g+0y/2;
Ag=1—(a —B—[B*)/3 corresponds to the projector

Ps onto the subspace

(lo+J |le-[H |e+[D |g-H |g-[1 |e+[H |e-[10 |g+0V/2;
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A, = 2 corresponds to the projector P; = Pe O Pe.
The parameters
3sin(kr) —kr cos(kr)

a=a(r) = o (13)
and
B = B(r)
_ 3[sin(kr) sin(kr) —krcos(kr) . . (14
= 2[ i )’ (1 |kr)}

are defined so that a(r) — 1and B(r) — lasr =
Irg —ral —= 0.

3. ANALY SIS OF THE CORRELATED STATE

If theinitial state correspondsto uncorrelated isotro-
pic excitation of both atoms,

p(0) = %IseD Pe, (15)
then expression (10) yields
Bla o) = seH - 2Q1Q2(Bg (B=B)Tip 5
q a2 B-P") B*) 06, (16)
9-a’
+ 1 G(B B*)
24 - - 2(6,06_-6_00,),
where
=lg+0g-, G6-=|g-Tg+H.

Note that the last summand contains the operator (s x

6) O ¢ written in adifferent form. Mirror symmetry
is not violated here, since the operator is multiplied by
the pseudoscalar g .

The probability p(q;, g,) of emission of a pair of
photonswith given helicitiesis proportional to the coef-
ficient of the first summand in (16):

~ l
P(dy; d2) = Traep(ds; Qo) = 5

quz [krcos(kr) — sm(kr)] (kr) (17)

8 (kr)®—[krcos(kr)—sin(kr)]?

The probability of emission of photons having equal
helicities is the highest and reaches a maximum value
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of 0.55 at kr = 2.04. The ensuing asymptotic expres-
sonsare

1
p(ay; qz)aquﬁ?z(kr)z, kr<1, (18
. 1, QuGzrpos(kr)y? s

POy %) — 3+~ 0 1 0 K>1 (19

Theratio @(ql; o)/p(qy; Q) is the (posterior) den-

sity matrix conditioned on given helicities of the emit-
ted photons. The corresponding density matrices of the
respective atoms represent the state characterized by
the maximal spin-projection entanglement:

~ TrBé(ql; Q) _ 1'|5
Pr = ——=— < = 5 9A,
Tra sP(d1; O2)

A Trap(ds; 92) _1
Tra,s0(01; d2) 2

(20)
ﬁ)gB.
The two-particle density matrix averaged over all

admissible helicity values exhibits perfect isotropy and
complete decoherence:

- 1a =
Z p(as; G2) = Zpg U Pg.

A1, A2

(21)

However, correlation between atomic states is induced
by the last summand in (16) after the helicity of thefirst
photon has been specified. The correlation induced by
specifying the value of g, can only be stronger. Note

also that correlations vanish when either kr = tan(kr)
or the distance between the atomsis much greater than
the spontaneous decay wavel ength.

According to the Peres-Horodecki criterion, the
correlations are classical.

4. CONCLUSIONS

The onset of spin-projection entanglement after
spontaneous emission of photons by a pair of atomsis
analyzed. The correlation arises from the fundamental
impossibility toidentify the atom that has emitted a par-
ticular photon. The presence of an observer is obvi-
ously not required to establish this impossibility,
because it should be interpreted as the lack of a param-
eter of the environment that is entangled with any par-
ticular history of spontaneous decay (emission of a
photon by a particular atom). This explainsthe interfer-
ence between alternative scenarios. The example ana-
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lyzed hereillustrates a genera principle: the state of an
open quantum system is determined by the information
received by the environment [12]. The averaged density
matrix does not involve any correlation after the pho-
tons have been emitted, and selection conditioned on
spontaneous-decay history is required to single out a
subensemble in which the ground states of the atoms
are correlated. The present analysis uses the simplest
(discrete) procedure of selection conditioned on the
helicities of the emitted photons. The selection is ame-
nable to a comprehensive analysis, but is not sufficient
to identify entangled states, since the resulting correla-
tions are classical. The possibility of entanglement
under selection conditioned on the emission directions
remains an open question.
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Abstract—We analyze the optical transmittance at normal incidence for an electron gas without losses. The
electron gasis supposed to have a plane parallel slab geometry and its dielectric permittivity is assumed to be
periodically modulated in one direction paralel to the interfaces. Due to surface plasmon polariton mode
excitation, there exist resonance frequencies where the transmittance equal s to unity. The number and positions
of peaks are investigated anal ytically and a comparison with the analytic theory by Dykhneet al. [6] is made.

© 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In the past, it had been thought that subwavelength
apertures have a very low transmission efficiency of
light [1]. Recently, however, high transmission efficien-
cies from arrays of subwavelength structures in metal
films have been reported. Since the publication of [2],
many experimental and theoretical studieswere carried
out in order to determine the physical origin of the
extraordinarily enhanced transmission. They focused
on the description of complicated electromagnetic
modes of the metal, originating from the interaction
between photons and surface electrons, considering
disordered arrays of holesin ametal film [3], organized
nanoparticles [4] or periodic rough surfaces[5].

In this paper, we restrict ourselves to the case where
the metal film occupying the space
9
ay

isin avacuum environment (|2 > d/2, —0 < x < ) and
the dielectric permittivity has the simple form

|z|<g, —00 <X <00, =0

g(X) = £+ &;,00s(gx),

with some prescribed periodicity a = 217/q in the X
direction. Only transverse magnetic waves (TM mode)

(Hy(X, 2), EX, 2), E/X, 2)) exp(—iwt)
are considered in the two-wave approximation

F(x,2) = Fo(2) + Fy(2)cos(ax),

T This article was submitted by authorsin English.

where a full analytic treatment of the complicated
boundary value problem can be easily done. We follow
the notation and the method of solution outlined in [6]
in order to obtain a clear physical understanding of the
phenomenon of enhanced transmission. We also derive
definite results for the dissipationless free-electron gas
with

2
(0V)

EO =1-=P
2
W

(wy, isthe electron plasma frequency). In future studies,
these results will be extended to more realistic optical
characteristics of metal films, including the experimen-
tally available datafor optical constants[7].

2. GENERAL ANALYTIC FORMULATION
OF THE PROBLEM

We consider the two-dimensional electromagnetic
problem shown schematically in Fig. 1. The magnetic
permeability in the whole space is denoted by |, and
the dielectric permittivity of the free space is denoted
by €,. The physical system consideredin thiswork con-
sists of avacuum (the relative dielectric permittivity is
€(w) =1) intworegions |z > d/2 and ametal dab (inthe
region |z < d/2) characterized by the relative dielectric
function

g(w, X) = —n°(1—gcos(gx)) . 1)

If the modulation factor g = 0, the dielectric function of
thedlab (Eq. (1)) isassumed to bereal and to satisfy the
condition n? > 1 in some frequency range. It is within

1063-7761/04/9906-1129$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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=

A
7
7
exp(ikz) /{/ Toexp(ikz)
,,,,, /,r ---3
Y.
7
z=-dJ2 /. z=4dJ2

Fig. 1. A plane wave is incident normally on a modulated
film |z] < d/2. The two arrows show the direction of propa-
gation of the beam incident from z = —o and the zero-order
transmitted beam (Toexp(ikz)) at z= . The transmittanceis

defined as T = [Ty%.

this frequency range that surface-plasmon polaritons
exist. The particular periodic x dependencein (1) facil-
itates the comparison with the analytic results given
in[6]. The Maxwell equations in the linear harmonic
approximation (exp(—wt)),

curlE(w, r) = iwpyH(w, r), 2
curlH(w, r) = —iwgye(w, X, 2E(w, r), 3

are treated for transverse magnetic waves (p polariza-
tion) E(E,, 0, E), H(O, Hy, 0) under the assumption

9

ay=0.

In the region |7 < d/2, we have

2
9 l_;y + g(x)i[i%}
97 OXx[&(x) 9x (4)
+Ke()H,(x, 2 = 0
X WEE(X) 02" °  WgE(X) ox’
where
k = (e = 2.
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Equations (1) and (4) can be written as

2

11-goos(@) 3¢+ 2. (1-geos(a0) G|

(6)
~Kn*H,(x,2) = 0.

Neglecting the generation of the cos(lgx) harmonics
with | higher than one and recalling the Floquet theo-
rem, we find

Hytk 2 <3 = [A, + 2A,cos(ax)] [X]

(7)
+[B, + 2B,cos(gx)][ Y],
where

rdkn, O

[X] = hD > )‘1D ®
x [ X;cosh(knzA ;) — X,sinh(knzA,)],

_ rdkn, O

[Y] = SeChDT)\ZD ©

x [Y,cosh(Knz\,) — Y,sinh(knz\,)] .

In formulas (8) and (9), X;, X5, Y3, and Y, are arbitrary

constants and )\i , aredimensionless eigenvalues given
by [6]

R FR L
2-¢° 2-g
where
Q" = gi+2g’(1-a), @=L (1)

A,, A, and B, B, are eigenvectors that satisfy the four
relations

AN —1)—gA\N; = 0, (12)

—g\A +2(M—1-q)A, = 0, (13)
B,(A5—1) —gB,A5 = 0, (14)
—gA3B,+2(\o—1-f)B, = 0. (15)

If the modulation amplitude is small (g < 1), it is

straightforward to obtain the following expansions up
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to the order O(g*):
2 4
A= 145+ L 2F + ), (16)
4. 40q;
9/, & & 2
A, = ———{1————(2F+qz )}, (17)
2q;  2q; 4
2
8, = L 1+ ai-F o+ i)’
" (19
+S@F +ai+a) |
B, = 11+ L (0, o)’
2 7 5 o o\M1 1
20 2q;
(19)
4
+@F 42+ +67) 0
U
2 4
A = 1—59;——2—%(2F+q12). (20)
1
2
Ao = 1400+ (2461 +q))
) (21)
+ T (2F +2+ 07+ ),
where
2.2
ECLLN 22)
2q;

Because of a misprint or error (reversed signsin A2D :

BlD), the coefficients in [6] (formula (12)), denoted

with the superscript D here, must be corrected accord-
ing to the relations

_Q+gi-g'(1+q)

A = A
qi(2-g%) -
2
AD = 2p, = _9[22+ ql—ZQ]
qi[2-97]
2
B, = BY = —g—gzs[-;l-'-z?],
gil1£—9
24
D q2+Q+92 &9
82 = ZBZ = 12—2
d:1(2-9°)
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Obviously, Egs. (5), (7), (8), and (9) imply that the tan-
gential electric field in the dab is given by

we_ &
& Ex= ex%(’ Iz < 7]

i 25
= LX) (A-gA, + cos(@)(2A,-gA)

+[Y](B,—9gB, + cos(gx)(2B,-gB,))},

where, analogoudly to (8) and (9), we have defined the
z-dependent functions

[X] = A, sech8KOAD

020 (26)
x [ Xysinh(knzA,) — X,cosh(knzA,)],
e [HkNAL
[Y] —)\zszechD >0 @7

x [Y,sinh(knz\,) — Y,cosh(Knz\,)] .

In the vacuum regions, we have the following fields: in
the left half-spacein Fig. 1,

Hyk 2+ 5 < = exp(ik.)

(28)
+ S Ryexplik(ypx—ByZ.)],
p=0%1
d
¢ = Z+§’ Yp = p% R, = Ry,
(29)
B, = [1-yJ" =iV, ImB, = ReV,>0,
and in the right half-spacein Fig. 1,
d
Hy%(,z—§>fg
(30)
= Toexplik(ypx+Bpl)],
p=07+1
where
d
(-=z-3>0, T, =T,

The continuity condition for the tangential electromag-
netic field on the interfaces z = ¥d/2 leads to the fol-
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lowing four equations containing eight unknown quan-
tities Xy, X5, Y1, Yo, Ry, Ry, T, T4

A [ X1+ Xotg] + B[ Y1+ Yoty

+2c0s(gx)[ Ao Xy + Xotg] + B[ Y, + Y, t,]]  (31)
= 1+ Ry+2cos(gx)Ry,
A[ X =Xoty] + B[ Y1 =Yt
+2c0s(gX)[Ax[ X, = Xoty] + B[ Y1 =Y5t,]]  (32)
= T+ 2cos(gx) Ty,
A (A —gA)[ Xty = X5] +A (B —gBy)[ Y1t — Y7
+ CoS(gX)[A1(2A; —gA;)[ X1ty — X, (33)
+A,(2B,—0gBy)[ Y1t — Y]]
= —inTy+ 2nv T, cos(gx),
A(A = gA)[ Xty + Xo] +A (B —gB,)[Yit, + Y]
+ Cos(gX)[A1(2A, —gA) [ Xity + X)] (34)
+A,(2B, —gBy)[Yit, + Y, ]
= in(1-Ry) + 2nv R, cos(gx).
Here, we use the notation
t; , =tanh Bmg)\ly :E
(35)

2
v = /% -1, Rev=0.

The introduction of the sech((dkn/2)A, ,) coefficients
in (8), (9) and in (26), (27) is not obligatory, but sim-
plifies the calculations because only tanh-terms
defined in (35) then simultaneously appear in all four
equations (31)—(34).

3. CALCULATION
OF THE RESONANT TRANSMITTANCE
THROUGH A MODULATED SLAB

Itisconvenient to first equate the terms proportional
to cos(gx) in (31)—(34) and to eliminate the unknowns
R; and T, that are not interesting in this study. Thus we
derive the following two relations between the con-
stants (X;, X,) corresponding to the fundamental beam
and the constants (Y;, Y,) describing the cos(gx) mode:

Vo= kX = 2n52v—>\2(282—g81)t2x1’ (36)
A(2A;,—gA;)) —2nv At
Y, = kX, = 1(2A; —gA,) —2nv 21y (37)

2nth2V - )\2(282 - gBl)
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We note that these expressions are exact in the accepted
two-mode (Fo(2) + 2F,(2)cos(gx)) approximation. We
now equate the zero-order terms in boundary condi-
tions (31)—(34) (the fundamental x-independent mode);
eliminating R, and T, from these four equations, we
then have

% (38)

_ in
iNA; +inBiky + A (A — gAYt + Atk (B —gBy)’
X (39)

_ in
inAgt; +inBKity + A (A —gA,) + AKy(B;—0By)’

The transmission coefficient is given by

To = Xi(A; +Kk;By) = X,(t;A; + Kot,By), (40)

which can also be written as
B(dy) —a(ay) (1)

To = T+ a(@))(1+ plaD)’

where a(g,) and [3(g,) can be written as smple func-
tionsof g;, n, t;, t5, k;, k, using formulas (16)—21) for
A, By, Ay, By, Mg, A, with O(g?) terms neglected,

a(ay)

A1 C|1 -2

2
t1|:1 + %‘(QIZ + ZQT‘)} + 1,k 0——0q;

(42)

O 2 .0
infL+ %qf+ %g(lwf)m
0 0

B(a)
2 —2
1+ %(q12+ 6r") + ko2 1+ %

Q1
D

(43)

mﬂl%l- 5 5 Q1 0t tzkzg

We first consider two trivial consegquences of formu-
las (42) and (43). If the film thickness vanishes (t; =
t, = 0), we have
a =0, B = o,
and therefore
To =1
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If there is no modulation, then

_ _hL _ 1
9=0, a= B_intl’

and we have the well-known result

2n
Tog=0) = > ,
2ncosh(knd) +im“sinh(knd)  (44)
m = n*—1.

We next consider the most interesting case of athick
metal film with thickness d greater than the skin depth,
that is,

t, =1-20,, t, = 1-20, (45)

where

2, = exp(-knd), Z, = exp(-knd/1+q;), (46)

and (; < 1, (; < 1. In (46), we approximate A; ,
from (20) and (21) as

AN=1, A= J1+0
Moreover, for an SPP resonance,

k _m _
___, m_

q n

aswe see in what follows, and therefore

n2—1,

1
g, =m

and

1 kdn?
¢, = et 1+ 1 = eqfdnh

In this regime, we derive from the definitions of k; ,
in (36) and (37) that

(47)

_ 2gm(n—m)
ky = 2 2 2! (48)
20 (g ) - ag, -
2gm(n—m)
= (49)
2 2.2
20 (g ) + 42, - 2

Itisimportant to note that the general formula(41) con-
sidered in the complex wavenumber plane (Req;,, Ima;)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

1133

has two poles at the points where

a(Q) = BQ) = -1.

With the aid of (48) and (49), we can show that these
complex wavenumbers are given by

2 2.3
(QI)_l = m+ 2n Z22 2.0 2.2
m(1+n%) 4m(1+n)"  (50)
5 2
x [n(1+ ) = 2m(n—m)(n+ m)] ~ig" L=
2(1+n%)
Q@) = Qi-L). (51)

Two remarks are appropriate to formulas (50) and
(51). The first concerns the absence of terms propor-
tiona to {4, that is, thelimit t; = 1 isappropriate, but the
finite penetration depth for the cos(gx) mode is crucial
because there is no resonant enhancement of the trans-
mission at {, = 0. The second remark is that we neglect

terms of the order O(g*) in (50) and (51). It isnow clear
that if we set

£ = (g -m)2mLrn)
" (52)
_ tk_np2m(1+n%)
g0 n

then for small values of & such that terms of the order
&L, &0 can be neglected, we have

§—40,+9’'M,
in[€ 42, +g°M,]’
E+40,+g°M,
in[€ +42,+g’M,]’

(53)

where

2

2 n
m°n(n—m) — 5
2
2 n
mn“(n—m) — >

M,

(54)

M,

From (41), (53), and (54), we derive the transmittance
of adissipationless film in the form

4g"
[(B-1)"+§[A%+1)" +§7]

2004

T =T =

(55)
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where we have introduced the renormalized modu-
|ation

-2 _ g’n’m(n—m)*

56
4,(n* +1) (%9

and the detuning from the surface plasmon polariton
frequency

(57)

gzn > [n3+ n—2m(n—m)(n3+ m)] .

+—
8,(1+n°)

Due to the equality
(n—m)z(n +n’+ 2m) = n’+ n—2m(n—m)(n3 +m),

our formulas (56) and (57) are analogousto formulas (33)
and (34) in[6], but ¢, isgiven by (47) and not by { = (;
asdefined in[6]. Only in thelimit n — o do both for-
mulations coincide,

- N _
fim g~ = ©

The physical effects associated with the two small
parameters ¢; and {, were not discussed in [6].
Although this was not written explicitly, these authors
assumed that n > 1 in order to consider the influence of
asingle small parameter { = {; = {,. Our treatment of
the strong skin effect in the modulated slab (summa-
rized in formulas (55)—(57)) is free of the restriction
n> 1, that is, the formulas are valid for all 1 <n< o
provided of course that the less restrictive conditions
written after formula (46) are fulfilled. Our new and (as
we believe) more correct analytic formulation (55)—57)
leads to appreciable differences from the previously
proposed analytic formulation [6] for aconcrete plasma
parameterization given in Section 4.

4. TRANSMISSION OF ELECTROMAGNETIC
WAVES THROUGH A SLAB
OF COLLISIONLESS PLASMA

As a specific example, we consider the case where

(58)
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If we introduce the dimensionless parameters

D:Q)_pd p:wp

c v (59)

the zero-order resonance frequency that follows from
the condition

K
q
isequa to the following value of x:

XOZ/\/1+E)2—2— /1+§2, 0<x<1.  (60)

The value Xy(p) is defined for all 0 < p < 0. In the spe-
cial case where p > 1, Xy(p) is very smal, i.e, X, =

J21p. On the other hand, if p < 1, X, is very close to
one,

Si3

2
onl_%.

It isinstructive to note that

D _ 2
2,0 = expaDLi=X!2
0 11_X2|:|

tends to the constant value exp(-D) for small x, but if x
is close to oneg, then

(61)

%= el (62)

whereas

DO
G(x=1) = expD———— ,
and therefore using theresult in [6] for p < 1 gives sub-
stantial deviationsfrom the present theory. We consider
the number and exact positions of points where the

transmittance T is equal to one. We first note that for-
mula (55) can be represented in the form

sl
g0

In writing Eq. (63), we have fixed

W= /1 +n?

also bearing in mind the definitions in Eq. (59). The

2T -1 = g°+9° = A, p,D,g). (63)
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transcendental equation

A, p,D,g) =0 (64)

can be solved numerically or approximately by analytic
treatment using the fact that g < 1 and D is of the order
of one, and hence

Dn’ }
<1
Jnt—1

for every n > 1. An analysis of Eq. (64) for the model
in [6] must be based on

(o(n) = exp[— (65)

Dn

n“+1

(66)

Cy(n) = exp[— } <1

instead of Eq. (65). Using formulas (56) and (57), we
rewrite Eq. (64) as

2Dn?
n‘-1

a’(n) = exp[— }+ 2g%a(n)b(n)

(67)
~g'Tb*(n) + c*(n)] = B(n),

where

1+n° p m
" )
2n La+ny™ 0t

m’=n®-1,

an) =
(68)

n(n—m)(n®+ n + 2m)

b =
") 8(1+n’)

(69)

n’m(n—m)’

o) = 41+n%)

(70)

If we neglect the right-hand side of Eq. (67), we
derive the zero-order solution n,, given by formula (60),

thatis,
_ /pz+dp4+4
Ny = > .

If B(ng) > 0, wefind two formal maximaof thetrans-
mittance (T, = 1) at pointsn,, where

(71)

3
Mo /B(ng),

1+n,

n, = Nyt

(72)
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Fig. 2. Transmittance asafunctionof nat D =1, g = 0.2,
andp=0.1(a), 1 (b), 10 (c). Our results—continuous lines;
model [6]—dashed lines.

within first-order perturbation theory. The minus sign
in Eq. (72) can lead to anonphysical solution n_< 1 if
the correction term in (72) is sufficiently large. In the
limiting case where B(n) < O for every n, the transmit-
tance never attains a maximum vaue of one. Neverthe-
less, the transmittance can have maximum values that
are smaller than one (Figs. 2b, 2¢). This quantitative
analysis was confirmed by numerical calculations
shownin Fig. 2. Here, D=1,g= 0.2, and p=0.1, 1,
and 10 in the respective Figs. 2a—2c. The numerical
results based on formula (66), that is, the Dykhne
model [6], are shown by dashed lines. We see not more
than two maximain all cases. The Dykhne model pre-
dicts only one peak in the cases p = 0.1 and p = 1,
whereas our model leads to two maxima in these two
Cases.

5. CONCLUSIONS

We have presented amethod to analytically describe
the resonant transmittance of electromagnetic waves
through periodically modul ated films. The phenomeno-
logical description of the medium |z < d/2 through
Eqg. (1) alows complex values of the parameters

n=n—in, g=g;+ig,
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but in this paper, we analyze in detail only the dissipa-
tionless case (real values of n and g). In the framework
of the same physical model, it is not difficult to analyze
the more general parameterization

g(X) = €, + &,00s(gX)

(where both numbers €,, €; are complex) and to con-
sider ablique incidence of the primary field. Theinves-
tigation of the interaction of incident light with surface
plasmon modes complementsthe study in [6] aswell as
the analytical resultsin [8].
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Abstract—A basis of polarization-dressed states is proposed for atomic energy levels degenerate in the total
angular momentum projectionsin the case of interaction with elliptically polarized light. It isshown that instead
of selection rules for the magnetic quantum number, the interaction in this basis can be presented as the sum of
direct transitions between corresponding pairs of polarization-dressed states of the upper and lower levels. The
explicit form of the basisis derived for ten possible combinations of dipole transitions between energy levels
with angular momentaJ =0, 1/2, 1, 3/2, and 2. The problem of Rabi oscillationsin such asystemis considered
as an application. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The problem of interaction of resonant polarized
monochromatic light with an atom whose energy levels
are degenerate in the total angular momentum projec-
tionsis one of the central problems in quantum optics;
this problem was solved by many authors in various
approximations [1-5]. Using light polarization (gener-
aly dlliptical), it is possible to control both intrinsic
degrees of freedom of atoms (e.g., the anisotropy state
of atoms) and their tranglatory motion. It iswell known
that allowance for degeneracy of atomic levels reduces
the pattern of the nonlinear interaction of polarized
light to a complex multilevel diagram. It is difficult to
obtain an analytic solution to this problem in view of
the large number of equations for magnetic sublevels
associated with the nonlinear interaction with various
components of the light field polarization. The interac-
tion pattern issimplified to acertain extent in particular
cases of purely linear and circular polarization, when a
multilevel system can be reduced to a set of indepen-
dent nondegenerate two-level systems governed by the
magnetic quantum number selection rules. Such asim-
plification is associated with the appropriate choice of
the quantization axis (which is chosen adong thefield in
the case of linear polarization and at right angles to the
polarization plane in the case of circular polarization of
light). The appropriate choice of the quantization axis
along the axis of the cylinder whose cross section coin-
cides with the polarization ellipse also simplifies the
analysis of resonant interaction of degenerate atoms
with elliptically polarized light [6].

It should be noted that transitions1~— 0,1 — 1,
and 1/2 — 1/2 are preferred in polarization problems

since these transitions are characterized by only one
effective interaction parameter [7]. In particular, it is
possible in these cases to prove exact integrability of
the Maxwell-Bloch equations and to obtain one- and
two-soliton solutions in problems of propagation of
light pulsesin anonlinear medium [7].

A general formulation of the problem of interaction
of resonant elliptically polarized light with a two-level
system degenerate in the total angular momentum pro-
jections was proposed in [8]. However, only particular
solutions, which are associated with the existence of
stationary coherent states (also referred to as elipti-
cally dark states) describing the effect of coherent pop-
ulation trapping (CPT), were determined in [8]. As a
continuation of [8] and a series of our subsequent pub-
lications [9-14], here we attempt to obtain al the
remaining analytic solutions to the Schrodinger equa-
tion from the complete orthonormal set of states of a
degenerate atom in elliptically polarized light.

Thebasicideaof our approach to the problemliesin
determining a basis set of the wavefunctions of the
unperturbed Hamiltonian, in which light-induced
dipoletransitions between degenerate energy levelscan
be presented as a set of independent nondegenerate
two-level systems (asin the case of purely linear or cir-
cular polarization) and which would take into account
all peculiarities of theinteraction with elliptic polariza-
tion of the light field. The determination of such a
polarization-dressed basis is equivalent to representing
thetensor part of the interaction operator in bl ock-diag-
onal form.

It should be noted that the problem of reduction of a
degenerate two-level systemto aset of independent non
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degenerate two-level systems was formulated for the
first time in general form in [15], where transition
J,=2— J,=1wasconsidered asan example. A basis
of polarization-dressed stateswasused in[9] inimplicit
form in the problem of determining the stationary state
of the density matrix of atomsin an elliptically polar-
ized field. Here, we propose a new basis instead of the
generally accepted Zeeman basis of angular momen-
tum for problems of interaction of resonant elliptically
polarized light with atomic and molecular energy levels
degenerate in angular momentum projections. This
basis, which will be referred to as a polarization-
dressed basis, is defined as the proper basis of optical
shift operators. It is presented as an expansion in the
basis of magnetic sublevelswith coefficients depending
only on the light field polarization; i.e., the basisisini-
tially “tuned” to the field polarization. After the appli-
cation of the light field, the selection rulesin the dipole
interaction change: only direct dipole transitions

between states with identical eigenvalues A> — A" =0
are realized in the new basis instead of dipole transi-
tions between magnetic sublevelsm, —m, =0, +1 of the
lower and upper levels. In Section 3, general properties
of the new basis are considered. The explicit analytic
form of new states and their eigenvalues is determined
in Section 5 for ten possible combinations of dipole
transitions between energy levels with angular
momentaJ = 0, 1/2, 1, 3/2, and 2; it is shown that the
problem can be presented as the sum of independent
two-level systems. By way of example, the solution of
the problem of Rabi oscillations in a system with
degenerate energy levelsis considered in Section 4.

2. FORMULATION OF THE PROBLEM

In the dipole approximation, the Hamiltonian
describing the interaction of an atom degenerate in the
angular momentum projections with a monochromatic
elliptically polarized resonant field can bewritteninthe
form

Aix = —Ed = QVexp(-iwt) + hc, 1)
where the polarization-angular part
V = q+al,—l + q_al,+l (2

and field amplitude E, appearing in the Rabi frequency
Q = —Eo[D,/|d[[ 3T

are singled out as cofactors. In the coordinate systemin
which the principal semiaxes of the polarization ellipse
coincide with the x and y axes and the angular momen-
tum quantization axis z is orthogonal to the ellipse
plane, the circular field components g, can bewrittenin

the form
g. = sin(e+14), q_ = cos(e+1U4), 3

where € isthe light elipticity parameter defined in the
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interval —1v4 < € < +174 and |tang | is the ratio of the
semiminor axisof the ellipseto the semimajor axis. The
matrix elements of the angular part of the dipole

momentum operator ds :1 in the standard basis of the
magnetic sublevels |J,, m,Cand |J,, m,Cof the lower and

upper levels can be expressed in terms of the Clebsch—
Gordan coefficients

Jp My

D-]bi mb|alyil|‘]ai maD = CJa, my; 1, +1+ (4)

We seek the solution to the time-dependent
Schrddinger equation

iaa—L-:J = (|:|o+ |:|int)LP 5)

in the form of an expansion in a certain orthonormal
basis of vectors of state of degenerate lower |(a)jCand
upper |(b)k(evels:

23,+1
_ 0. Ea .
W = expD—lglg Zl a,(t))(a)jD
-
E 2J,+1 (6)
+ expH f% S b()I(b)kL
k=1

Indicesk=1,2,...,2),+1,andj=1,2,...,2),+1
label the states of this basis for the upper and lower
energy levels, respectively. The orthonormality condi-
tion indicates that

[a)il(a)j0=3;;, Wb)il(b)jO=d;;,
[a)i|(b)j0= 0.
Obvioudly, the generally accepted Zeeman basis of
angular momentum eigenstates |J,, my[J|J,, m,Cisapar-
ticular case of this basis.
The equations for probability amplitudes a(t) and
b, (t) follow from expressions (5) and (6):

(7)

23,+1

& = —iQexp(-idt) H Qa)V'|(b)id;, ()

bj = -iQ* exp(idt) > [qb)jIVI(a)kR.  (9)
k=1

Inthegeneral caseof an arbitrary basis, system of equa-
tions (8), (9) isascomplex asin the case of the standard
basis of magnetic sublevels since states with different
values of i # | are entangled. However, this system can
be substantially simplified in a basis in which interac-

tion operators V and V" connect only pairs of states
|(a)jCand [(b)kof the upper and lower levels. It will be
shown below that such a diagonalization of the tensor
part of the interaction is aways possible and the result-
ant eigenstates define the basiswhich will bereferred to
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as the basis of polarization-dressed states (PDS) |(a)iC] A{ =0and }\? =0 correspond to CPT states at the upper

and |(b)j Cof thelower and upper levels, respectively. This
is because it takes into account peculiarities of interac-
tion with the light field only as regards its polarization
and it can be expanded in the magnetic sublevel basis
with coefficients depending on the field pol arization:

m, =+J,
|(a)i[|: Z Ai,ma(s)l‘]ai maD

m, =-J,

(10
(B)iD=" %" Bim(€)1Jp ML

my, = -J;,

Here, matrices A and B redlize a transition from the
magnetic sublevel basisto anew PDS basis. In solving

Egs. (5), (8), and (9), one encounters operators V'V

and VV" which, bei ng bilinear combinations of the
interaction Hamiltonian, describe quadratic Stark shifts
of levels depending on elipticity. It can be seen that
these operators are Hermitian matrices and, hence, can
always betransformed to diagonal form using appropri-
ate unitary transformations. It will be shown in the next

section that PDSs are eigenstates of operators V'V and
VV", which are diagonalized by matrices A and B

A4 A

AV'VA" = diag{\},

BUV'B" = diag{\} .

It should be noted that, in the general state of eliptic

polarization, matrices A and B are not rotation opera-
tors, which complicates analysis. The problem of deter-
mination of the proper basis of optical shift operators
was considered earlier in [9, 15, 16]. Proceeding from
these studies, we will consider the properties of the
PDS basisin the general form without determining the

explicit form of matrices A and B.

(11)

3. PROPERTIES OF THE PDS BASIS

Operator V'V actson thelower level and haseigen-

values )\ia in the new orthonormal basis of PDSs, which

can be determined from the equation
V'V|(a)i0= Af(a)i0 [a)il(a)j0=8;;. (12

Analogously, operator YV acts on states |(b)jCof the
upper level:

VW' ((b)j0= Aji(b)j0 @b)jl(b)kDI= 8 ;. (13)

Eigenvalues of operators V'V and VV" are real non-
negative numbers A7 > 0 and )\? = 0. Zero eigenvalues
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and lower levels. In our earlier publications [8, 10, 11],
we derived analytic expressions for CPT states for var-
ioustypes of dipoletransitions. It should be noted once
again that CPT dtates are a part of the complete
orthonormal set of the PDS basis with corresponding
zero eigenval ues.

It can be proved that if we eliminate zero subspaces
from matrices V'V and VV" and label eigenvalues at
each sublevel, the sets of eigenvalues of matrices V'V

and VV" in the truncated space will coincide. Indeed,
we have

(WHVI(@)i0= ANV|(a)il) (14)

(VV)V|(b)jO= AV |(b) O (15)

Consequently, V |(a)i Cis an eigenvector of
V'V — V|(a)iD|(b)i[)
while V" |(b)j Cis an eigenvector of
VW' — V'|(b)jM|(a)j0]

Thus, nonzero eigenvalues of V'V give a set of eigen-
vectors |(a)il) such that

V(@io  _ V@il

[(b)iO= ) (16)
NHa)ilV'V|(a)iO e
(a)i0= Vio  _ Vb)io 17)

Jaoyv o A

It follows hence that the set of eigenvalues of operators
V'V and WV isthe same;

A = A = A, (18)
Light-induced transitions combine only i pairs of basis
vectors of different levels corresponding to the same
(nonzero!) eigenvalues. In thiscase, indexi =1, 2, ...,
r labels states in the truncated space (without zero sub-
space). The number r of such transitions in the new
basisisequal tor = 2J, for transitions J,=J — J,=J
(Jisaninteger), r = 2J, — 1 for transitions J, = J —
Jy=J-1,andr =2J,+ 1for transitionsJ,=J — J, =
J+1landJ,=J — J,=J (Jisahaf-integer). Substi-
tuting now expressions (16) and (17) into (8) and (9),
we find that the interaction matrices on the right-hand
sides of Egs. (8) and (9) become diagonal with eigen-
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values equal to /A, and the interaction Hamiltonian
can be reduced to the diagonal form:

V=S A(2)imb)i. (19)

The interaction Hamiltonian V presented in such a
form essentially defines the new selection rules

AN-A =0
between the states of the upper and lower levels, while

values J)\_, themselves can be regarded as new quan-

tum numbers replacing angular momentum and its pro-
jections.

Thus, for preset elipticity of light and angular
momenta of energy levels, we can first construct a
polarization-dressed basis determined by the polariza-
tion alone and independent of the intensity of light and
then solve the problem of interaction analogous in
many respects to the problem of interaction with anon-
degenerate two-level atom. By way of example of
application of PDSs, we consider the modification of
the solutions to the well-known problem of Rabi oscil-
lations when degeneracy of energy levelsistaken into
account.

4. PROBLEM OF RABI OSCILLATIONS
FOR DEGENERATE LEVELS

Substituting expression (19) into Egs. (8), (9), we
find that the equation for probability amplitudes of an
individual pair of states with identical eigenvalues,
which are coupled by the field in light-induced transi-
tion|(a)j O |(b)j Clcan betransformed to the equation
known from the theory of atwo-level atom [17, 18]:

bj = iQ} exp(-idt)ay, (20)
a; = 1Q;exp(idt)b, (21)

with renormalized Rabi frequency Q;
Q; = Q. (22)

It can be seen that the dependence on the external field
intensity is contained in Q and the entire possible
dependence on dlipticity for a specific transition is

contained in factor ,/A; . The solution to dynamic equar

tions (20), (21) is well known and its explicit form is
determined by theinitial conditions and by the interac-
tion initiation mode. For example, when interaction
appears suddenly, we assume that the atom at instant
t=0isat the lower level with an isotropic distribution
over magnetic sublevels, which is also isotropic in the
new basis states

1

23, +1

a;(t=0) =

by(t=0) = 0.
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Using the normalization condition for the wavefunction
of the atom in the whole,

23,+1 23,+1

Y @+ Y b =1,

i=1

under the chosen initial conditions, we can single out
the normalization for each transition between the upper
and lower PDSs separately,

1

2 2 _
lay(t)]” + [ (1)|” = 2341’

(23)

and treat this transition as an independent two-level
system. Inthis case, the solution to system (20), (21) for
each jth pair of states of the upper and lower levelsfor-
mally coincides with the solution to the problem of
Rabi oscillations for atwo-level atom [17]:

_ exp(—i6t/2)[ L0 }
.= —————2| coS(A;t) + I—sIn(A;t) |, 24
] 2Ja+1 ( ]) ZAJ ( ]) ( )
1 Qj

0% gn (A 1).

J23,+14; T H20

Here, & = /8°/4+ ), Q% is the effective Rabi fre-
guency for the jth transition and 0 = w,, — W is the
detuning of the laser field from the atomic resonance.
The wavefunction of an atom in the field is the sum of
such two-level systemsand CPT statesthat do not inter-
act with light. Consequently, analogously to a conven-
tional two-level system, new states of the upper and
lower levels (except CPT states) are split by the field
and shifted relative to the unperturbed states with ener-
gies E, and E, [17]. Substituting solutions (24), (25)
into Eq. (6), we find that the wavefunction W(t) of the
atom is a superposition of 4r stationary states (four
states in each two-level transition) whose quasi-ener-
gies, taking into account of eigenvalues A; determined
above, have the form

b, = i

(25)

Ea(j) = Eo+8/2+4,,
E.(j) = E.+8/2-4,,

(26)

Eo(j) = E,—d/2+A4,,
Eo(j) = E,—d/2-A,.

(27)

Thus, atransition to the PDS basis is equivalent to
the reduction of acomplex multilevel system to a set of
r independent two-level systems. Energy level splitting
in atwo-level system is due to nonzero field amplitude
(Rabi frequency). In addition, the solution should be
supplemented with the corresponding stationary CPT
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(b)
3

—
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1 2 3

Fig. 1. Diagram of interaction of elipticaly polarized light in the (a) magnetic sublevel and (b) PDS basis for optical transition

Jp=1—=J,=0.

states with unperturbed energies E, and E,,, which com-
pletely defines the solution to the dynamic problem for
atwo-level degenerate atom in an arbitrarily polarized
resonant field. It should also be noted that such a proper
PDS basis can be used both for stationary problems
with relaxation [9] and for nonstationary problems in
the limit yt < 1 sincethe PDS basisis constructed from
the basis of nonsplit magnetic sublevels taking into
account only the tensor part of the interaction. The
main property of the new basisis the absence of coher-

ence between PDSs at each level in density matrix p,

[Ma)ilpaal(a)j 0= |ay|?s; |,

- : 2 (28)
[@b)ilPesl(D) jO= |bj[ "3, ;,

while Zeeman coherence of the levels in the magnetic

sublevel basis differs from zero.

5. EXAMPLES
OF POLARIZATION-DRESSED STATES

In the genera case, a new basis with an explicit
dependence on the dlipticity of eigenstates and eigen-
values can be found using the procedures of diagonal-
ization of matrices, which are well known in linear
algebra [15]. Unfortunately, it is extremely difficult to
derive analytic expressions for eigenvectors and eigen-
values of PDSs for large values of angular momenta.
However, for transitions with small values of the angu-
lar momentum of levels (J =0, 1/2, 1, 3/2, and 2), we
can easily construct a PDS basis as a linear superposi-
tion of the wavefunctions of magnetic sublevels pro-
ceeding from the explicit form of dliptically dark
states, which must be orthogonal to PDSs sincethey are

apart of the PDS basis [12]. These states | W (a)For

thelower level and |l+'i(NC) (b)For the upper level can be
determined from the equations

Vw@o= o0, VW mo=o0. (29
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The corresponding eigenvalues are

In addition, we observe the following symmetry in
the basis states for reversed pairs of optical transitions
(i.e., for optical transitions that transform into each
other upon the replacement of the upper level by the
lower level, a<— b. The PDS basis vectorsof reversed
optical transitions can be obtained by changing the
indicesa~——+ b and reversing the sign of projection m
of the Zeeman wavefunctions. Thus, the procedure of
transformation of coefficients in matrices A and B (10)
of basis vectors for reversed optical transitions has the
form

Ai,m(‘Jb4> ‘]a) = Bi,—m(‘]a4> Jb)1

(30)
Bi, m('Jb - ‘Ja) = Ai,—m(‘-]a - Jb)-
Bearing this symmetry in mind, we will henceforth for
brevity write the expressions for PDS basis vectors and
their eigenvalues only for one of reversed transitions.

5.1. TransitionJ,=1— J,=0
(Ja=0—3%=1)

Intheoptical transitionJ,=1 — J, =0, theexcited
level contains only one degenerate state (Fig. 1a) that
also remains unchanged in the new basis,

|(b)3C= |0, 00 (3D
The lower level contains two elliptical dark states
which, in accordance with relations (29), are a linear
combination of the wavefunctions of magnetic sublev-
elswith coefficients depending only on the polarization
of light and independent of the light intensity:

(@)1= |W{"(a)D= |1, 00 (32)

l()2C= W99 (a) 0= q.,|1, -10-q |1, +10  (33)
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Fig. 2. The same for optical transition J, = 3/2 — J,, = 1/2.

In this case, the third state associated with light and
orthogonal to these states has the form

|(a)30= q_[1, -1+ q,|1, +101 (39

Thelight field couples only two states in the transition
|(a)30— |(b)30
The corresponding eigenvalues are given by
A =1/3, A=A, =0.

Figure 1b showsthe new diagram of thetransition. Fig-
ure la all subsequent figures (a) show the diagrams of
the corresponding transitions in the basis of magnetic
sublevels, while figures (b) show the transitions in the
PDS basis. The PDS basis and the eigenvalues for the
optical transition J = 0 — J = 1 can be easily found
using the expressions for the PDS basis vectors and
their eigenvaluesfor theoptical transitionJ=1 — J =
0 and procedure (30).

5.2. Transition J, = 3/2 — J,= 1/2
Q=12 —J,=3/2)
Fig. 2ashowsthat the lower state of the optical tran-
sition
J,=3/2—J, =1/2

containstwo independent simple A links corresponding
to two elliptic dark states [8, 14]:

(a)1C= W' (a)O

_ 30|32, +1/203-q,[3/2, -3/20 (35)
J(GE +30%) |
I(a)20= [W§"(a)0
_ J3q,[3/2, -1/203-q_|3/2, +3/20 (36)

J(d? +3q3)

In this case, the remaining part of the PDS basis, which
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is orthogonal to these dark states, can be constructed in
the following obvious way:

(a)30= q.13/2, +1/20+ /3q_|3/2, =3/20

(9% +30%)

(37)

q.13/2, =1/20+ /3q,[3/2, +3/20
J(@+300)

Supplementing these states with two renumbered upper

states of the Zeeman basi's,

[(b)3=11/2, -1/20) (39)

|(b)4= [1/2, +1/20) (40)

we obtain the complete set of states forming the
orthonormal PDS basis; light-induced transitions occur
only between the states

|(a)30— |(b)3C

(a)40= (38)

and
(@)4C— |(b)4L]
The corresponding eigenvalues are given by
A = %qf"' 1—12615, Ay = %qff"' 1_12an (1)
A =2A;=0.
The maodified diagram of transitionsin the PDS basisis

shown in Fig. 2b. An anaogous diagram for the
reversed transition

J, =12~ J, =32
ispresented in Fig. 3.

5.3. TransitionJ, =1 — J,= 2
(Ja=2-—3=1)

The upper level of the optical transition
J,=1—-J,=2
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() (b)
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Fig. 3. The same for optical transition J, = 1/2 — J,, = 3/2.

tains two CPT states:
comansiwo = _ (L+ sin2e)(1-6sin2e - /25-24c05'26) ,
b T
(b)10= W{'(b) 0= q 2, -10-q.[2, +10)  (42) IN; )
sinde
+/6==2,00
|(b)20= W5 (b)D NG

P2, 20 /60,012, 00 5|2, +20  (43)

q; +6q°q; +q’ L (1—sin2e)(1 + 6sin2e — y 25 — 24cos’ 2¢)

[2,+20
IN;
The corresponding eigenvalues for the CPT states are . )
given by with the eigenvalue
AL = A, = 0. - 7 + 25— 24cos’2¢
4 60 '
The field-coupled orthogonal PDSs can be written in _ _
the form Finally, the last pair of states have the form
(2)30= [1, 00 (44)  |a)50= Aéé(Ssts— 25— 24cos 2£)|1. 10
(b)30= .| | (45) e (49)
30= q.|2,-10+ q_|2, +10 45
N %Zcoskll’ +10
with the eigenvalue Ns
1 |(b)5C
)\3 = Ié- 2
_ (1+sin2e)(1-6sin2¢e + 425 —24cos 2¢)
Further, we have the pair of states m (49)
sinde
x [2, 20+ J/6=—=|2, 00
in2¢ + /25— 24c05°2 b
(2)40= A/2§(55m € JS_ cos e)ll, 0 NINE
Na
N (46) +(1—sin2€)(1+63in2£+A/25—2400322£)|2 4200
. £2C0528|1’ +10 N :
2 JRF 5
4
s = 7—+/25—24cos’2¢
|(b)4D ° 60 '
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Fig. 4. The samefor optical transitionJ; =1 — J, = 2.

(a)
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(b)
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Fig. 5. The samefor optical transitionJ; =2 — J, = 1.

The normalization factors have the form
N2 = 25— 24cos 2¢

+58in284/25 — 24cos 2¢,

NS = 2[50—73005228 + 24cos' 2¢

+ (10— 11cos’2¢) /25 — 24cos’2¢ ],
N2 = 25— 24cos 2¢

—5sin2¢4/25 - 24c0s 2¢,
NS = 2[50—73c03228 + 24cos' 2¢

—(10- 11c05228)A/25 - 24008228] .

Figure 4 shows the optical transition

(50)

=1 -»J,=2

in the old and new bases; Fig. 5 shows the correspond-
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ing reversed transition

J.=2 =3, =1

54. TransitionJ,=1— J,=1

For this transition, each energy level containsasin-
gle CPT state [12] (Fig. 6)

(@)1= W{"9(a)0= q,[1, 10+ q |1, +10  (51)

I()1cE |WwN(b)O= —q |1, -10-q.|1, +10  (52)

The orthogonal statesinteracting with light at the lower
level can be expressed in terms of the magnetic sublevel
states,

|(a)2= |1, OC) (53

I(2)30= q|1, -10-q.[1, +10] (54)

the corresponding expressions for the states at the
upper level are

|(b)20= —q.[1, -10+ g_[1, +10) (55)
(b)3C= |1, OO (56)
No. 6 2004
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()
-1 0 +1

-1 0 +1

Fig. 6. The samefor optical transitionJ; =1 — J, = 1.

The system splits into two independent transitions
between PDSs (see Fig. 6b),
(2)20— |(b)20] |(a)30— |(b)3L]
in addition, each level contains a CPT state, which is

not coupled by the field. The corresponding eigenval-
ues are given by

M =A=0 A=A =i
6

It should be noted that, for the given transition in the

new basis, double degeneracy in energy (identical Rabi

frequencies) is preserved for the two PDSs interacting

with the field and exhibiting field splitting which is

independent of elipticity.

5.5. TransitionJ,=2 — J, = 2

The lower and upper levels contain one €lliptical
dark state each:

+ sin2¢)

(a)10= 34
N

(1—sin2e)
+ 32, +2
3 N 2, +20]

1

0S2¢€)

2, 20+ /22252802 o]
JIN

(57)

—sin2¢g)

(by10= 34 2, 208 J259528) » o

Ny Mo g

+ Jé(lvs'_—”ze)p, +20]

1

These states have zero eigenvalues. The states of the
lower and upper levels, which interact with light, are
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(b)
1 2 3
I BN N )
I W
1 2 3
defined as
. 2
(2)20= sin2e —A/1+ 8cos 28I2’ 10
3C052€|2 +10
JN,
(b)20= 30032£|2 10
N, -
. 2
+ sin2e — /1 + 8cos 28I2’ +10
N,
The next pair of vectors has the form
|(a)3C
_ (1—sin25)(3+23in28—A/l+8c05228)|2 .
s.|n4£I2 o0l
N3
(1+ sin2£)(3—25in2£—A/1+8005228)
+ [2, +2[]
JN;
I(b)3C= (1+sin2¢)(3—-2sin2e — 1+ 8c0322£)
JN;
x 2, —20% 2304815 o (62)
JN;
(1—sin2£)(3+25in28—A/1+8005228)|2 o]
JINg |
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Fig. 7. The samefor optical transitionJ; =2 — J, = 2.

Thisisfollowed by the pair of states

(a)40= sin2g + /1 + 8cos 2¢
JIN,
+3C0828|2, +10)
4

12, -10
(63)

3c0s2¢

N,

. 2
+ sin2¢ + A/_/1N+ 8cos 2£|2’ +10
4

The last pair of states has the form

(1-sin2¢)(3+2sin2e + /1 + 8008228)

(b)400=

12,-10
(64)

|(a)5C=

JN;
x 2, 20+ 2304 > o1 (65)
JN;
, (L+ sin2e)(3-2sin2e + J1+8cos'2e) ) ).

JNs
(1+sin2€)(3—-2sin2e + 41+ 8C05228)

I(b)50=
JN;
x 2, 20+ 2304 > on) (66)
5
(1-sin2e)(3+2sn2e + J1+80052¢) ,

N

The normalization coefficients appearing in these for-
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mulas are given by

N, = 12 —4cos 2¢,
N, = 2+16C05228—28in28/\/1+8008228,

N; = g[2+ 15c0s’2¢ — 8cos 2¢

—(2+ cosZZs)A/l + 8c0322£],
N, = 2+ 16cos’ 2¢ + 2sin2e./1 + 8cos’ 2¢,

8
N5=§

+(2+ cosZZe)A/l + 8008228] .

The corresponding eigenvalues are

(67)

[2+ 15¢0s’ 2¢ —8CoS 2¢

A=A = 0,
Ay = A3 = —1—+—1—A/1+8005228,
12 60
“r=L_1 2
Ay = A = 80 1+ 8cos 2¢.

It can be seen that nonzero eigenvalues A, for thistransi-
tionaswell asfor trangition J,=1 — J, = 1 aredoubly
degenerate, which is a common property of al transi-
tionsJ — J (where Jis an integer). Figure 7 showsthe
diagrams of these transitions in the old and new bases.

Transitions
J,=J—J, =1

(J is a haf-integer) should be considered separately,
since these transitions do not involve CPT states and the
method used for constructing the new basis becomes
inapplicable. However, the PDS basis for transitions

Jo= 12 =3, =1/2

and

3/2

J.=3/2-~1,
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can easily be constructed with the help of standard alge-
braic methodsin view of the low rank of the system of
linear equations.

5.6. Transition J,= 1/2 — J, = 1/2

It follows from the selection rules and the level dia-
gram (Fig. 8) that the interaction for this simplest
degenerate transition has already been diagonalized (to
within a notation); i.e., the eigenstates are given by

|(b)10= [1/2,-1/2[] |(b)20= [1/2,+1/2[) (68)
[((a)10= [1/2,+1/20) |(a)20= |1/2,-1/2[]) (69)
and the corresponding eigenvalues are
2 2
A, = %—, A, = 931.

Figure 8 shows the diagrams of these transitionsin the
old and new bases.

5.7. Transition J, = 3/2 — J, = 3/2

In this transition, the energy levels contain no dark
states and the PDS basis can be determined directly by
solving a system of fourth-degree linear equations. All
states of the lower and upper levels, which explicitly
depend on dllipticity, have the form

2
(@)10= =
. 2 .
N (1-sin2e + A/2+ 2cos 28—25|n28)|3/2’ _1/20
JINLa (70)
6 O.
13/2, +3/20)
B
_ 2
|(a)20= 2
. 2 .
><(1—s|n2£—A/2+2cos 28—28”'128)'3/2’_1/2D
«/qu_ (72)
6 O«
13/2, +3/2[)
g0
(a)30= @im/z —3/2[4—“/2
N -
. . 2
N (1+sin2e+ JZJJrWanZS +2cos 25)|3/2, +1/20
3q+
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-
BN
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Fig. 8. The same for optical transition J; = 1/2 —
‘]b =1/2.

(2)40= f’ 4 32, —3/2Drﬁ

2, /N,
in2e — /2 + 2sin2e + 2005’2 7
><(1+sm €—4/2+2sin2¢ + 2cos 8)|3/2,+1/2D
JNa.

The PDSsfor the upper level are given by

J2(1—sin2e + J2 + 2008 2¢ —2sin2s)

(b)10=
4
JINLa 4
x[3/2, +1/20+ |23 312, _3/27;
2N,
(b)20= J2(1—sin2e — /2 + 2cos’2¢ — 2sin2¢)
T4
NOE 75)
x 312, +1/20 |23 312, —3/20)
2
3.0
(b)30= [- 13/2, +3/200
2 /N,
J2(1+ sin2¢e + J2+2sin2¢ + 2cos’ 2€)
-7 (76)
JINa,
x [3/2, ~1/2[]
3 q
(b= f-—wz 3/20
2N,
J2(L1+ sin2e — /2 + 2sin2¢ + 2c08"2¢) an
4 JNLa,
x [3/2, ~1/2(]
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Fig. 9. The same for optical transition J, = 3/2 — J,, = 3/2.

All eigenvalues are different and have the form

_ 1,1 1

AL = 12+603m2£+ J2+2cos 2e —29n2¢,
1,1 1

A, = 1 605m2£ A/2+Zcos 2 —-2sin2¢,
_1 1 1

A; = 12—605m2£ J2+2cos 2e +29in2¢,

Ay = 1 —lane —J2+2cos 2e +2sin2¢.

12 60

The normalization coefficients are given by

N, = 2+ sin2e + 1/2,/2 + 2c0s?2¢ — 2sin2s,
N, = 2+sin28—1/2A/2+200522£—Zsin28, 78)
Ny = 2—sin2e + 1/2./2 + 2sin2¢ + 2cos’2¢,

N, = 2—sin2e—1/2,/2 + 2sin2¢ + 2005 2¢.

Figure 9 showsthe diagrams of thistransitioninthe old
and new bases. Substituting the eigenvalues A; obtained
in this section into Egs. (24) and (25), we find that the
probability density for an atom being at certain energy
levels oscillatesin time at r independent Rabi frequen-
cies (except for the cases when eigenvalues are degen-
erate). The explicit dependence of these frequencies on
ellipticity is defined by the formulas corresponding to
each specific transition.

6. CONCLUSIONS

Thus, the examples considered above visually dem-
onstrate that the selection rulesfor light-induced dipole
transitions between the states of the upper and lower
levels change in the new PDS basis. In contrast to the
magnetic sublevel basis, the light-induced coherence
between PDSs of each level is eliminated in this case,
which simplifies analysis of the interaction between

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

elliptically polarized light and atomic level s degenerate
in the angular momentum projections and makesit pos-
sible to use the results obtained for a simple nondegen-
erate two-level model of the atom. In this case, the new
basisis“tuned” only to the polarization of light, it does
not depend on the light intensity, and it can be used
instead of the basis of magnetic sublevels for finding
exact solutions (e.g., for studying the propagation of
ultrashort polarized pulses[19], effects of €lectromagnet-
icaly induced transparency in degenerate systems [20]
and in processes of scattering of resonant polarized
radiation [21], and other problems taking into account
the interaction with additional magnetic and electro-
magnetic fields as a perturbation).

Derivation of the explicit form of the PDS basis for
arbitrary values of angular momenta remains an urgent
problem.
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Abstract—A qualitative model of the dynamics of a multiterawatt radiating Z-pinch with cold start and high
rate of current rise is proposed. The model is used to analyze discharges with currents | ~ 2-5 MA (with
di/dt > 10'3 A/s) through uniform or structured plasma-producing loads, including wire arrays. The most
important consequence of cold start is that spatially nonuniform plasma production is prolonged to almost the
entire current rise time. Under these conditions, the Ampére force beginsto play adominant role in the plasma
dynamics before the plasma-producing load is completely transformed into an accelerated plasma. The results
of computations of wire-array vaporization are presented. A formula is proposed for estimating the highest
attainable velocity of plasma flow into a heterogeneous liner driven by the Ampére force. It is shown that local
imbal ance between radial motion of the produced plasma and supply of the plasma-producing substance to be
ionized leads to axially nonuniform breakthrough of magnetic flux into the liner, which precedes plasma col-
lapse. The magnetic-flux breakthrough gives rise to a chaotic azimuthal—axial plasma structure consisting of
radial plasmajets of relatively small diameter, whichiscalled aradial plasma rainstorm. The breaking-through
azimuthal magnetic flux obstructs further current flow in the breakthrough region. Analyses of Z-pinch implo-
sion based on the theory of Rayleigh—Taylor instability or the snowplow model are incorrect under the plasma-
rainstorm conditions. The processes taking place in astagnant Z-pinch include conversion of the energy carried
by the current-generated magnetic field into turbulent MHD flow of the ion component of the plasma, its con-
vective mixing with magnetic field, heating, energy transfer from ions to electrons, and emission from the
plasma. Under typical experimental conditions, emission playsakey rolein the energy balancein animploding
pinch. Z-pinch is modeled by an electric-circuit component that has atime-dependent nonlinear impedance and
consumes the magnetic energy supplied by a generator through a magnetically insulated transmission line
(MITL). The peak power reached in the circuit is comparable to the peak soft X-ray power output emitted by
the pinch in terms of magnitude and timing. Optimum matching conditions are formulated for the generator—
MITL—pinch circuit. © 2004 MAIK “ Nauka/l nterperiodica” .

INTRODUCTION

The Angara-5-1 facility has been used to study
imploding discharges (fast Z-pinches) for many years.
A considerable amount of experimental data has been
amassed [1-5], and it must be summarized in order to
develop a physical model of these discharges. In the
discharges created in our experiments [1-5], currents
having a strength of | ~2-5 MA, with dI/dt > 102 A/s,
were used to heat axially symmetric homogeneous or
structured plasma-producing loads or their combina-
tions with outer diameters varying between 1 and 3 cm.
Most plasma-producing substances consisted of ele-
ments with high atomic numbers or contained them as
additives. The plasma-producing loads were either het-
erogeneous (thin-wire array, solid-state foam in vac-
uum) or homogeneous (gas puff). The experiments

were conducted under “cold-start” discharge condi-
tions, i.e., the phase transformations of the plasma-pro-
ducing substances (melting, vaporization, dissociation,
ionization) were induced by the main current pulse. The
mass, shape, and dimensions of the plasma sources were
chosen so that the discharge el ectric power, aswell asthe
soft X-ray power, varied within several terawetts.

Previous models of the processes involved in fast
Z-pinches were based on the assumption that the cur-
rent-carrying plasma shell formed at the earliest stage
of the discharge implodes as awhole. In particular, the
most comprehensive review of recent studies of fast
Z-pinches presented in [6] begins with an analysis of
the implosion of a perfectly conducting cylindrical
shell. Finite conductivity, emission, instabilities, and
multidimensional compression are introduced as com-
plicating factors in the course of the analysis.
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However, the results obtained in our studies [1-5]
show that thismodel of the dynamics of amultiterawatt
radiating Z-pinch is not valid under the cold-start dis-
charge conditions. Actualy, this regime has been
implemented in all terawatt-scale Z-pinch experiments
(not only ours).

Our experiments on discharges with cold start and
high rate of current rise show that the Ampére force
driving the implosion comes into effect after only a
small portion of the plasma-producing load has been
transformed into an accelerated plasma, i.e., at the ear-
liest stage of plasma production. In what follows,
plasmaproduction isinterpreted asthe entire process of
transformation of the plasma-producing load into an
accelerated plasma. The Ampére force drives the pro-
duced current-carrying plasma out of the region occu-
pied by the plasma-producing material, and the zone of
heat release due to joule heating moves with the cur-
rent-carrying plasma. Thus, the plasma production is
prolonged to almost the entire current rise time.

Furthermore, our observations show that the plasma
production is spatially nonuniform. The current-carry-
ing plasma does not make up a one-piece plasma shell,
being disrupted even at the starting radius. This condi-
tion strongly affects the subsequent devel opment of an
imploding discharge. For this reason, we believe that
the classical models of Z-pinch cannot be used in theo-
retical analysis of such discharges.

To date, prolonged plasma production and turbulent
motion in the stagnant state of afast Z-pinch weretaken
into account in several theoretical models. Relationship
between prolonged plasma production and dynamics of
the produced plasmawas analyzed in [3]. The analysis
presented below relies on the conclusions made in that
study. In[7, 8], amodel of instability, ablation, and for-
mation of plasmajetswas proposed describe wire-array
Z-pinches. Inwhat follows, it isreferred to asthe model
of [7, 8].In[9, 10], energy balance in the stagnant state
of afast Z-pinch was described by the model of MHD
turbulent heating of a Z-pinch with toroidal magnetic
bubbles penetrating to the pinch axis. However, those
studies do not provide sufficient basis for acomprehen-
sive characterization of a multiterawatt radiating
Z-pinchwith cold start asamultifactorial phenomenon.
Moreover, some assumptions of the model of [7, 8] dis-
agree with our experimental results.

In this paper, we summarize the broad variety of fac-
tors contributing to the dynamics of a multiterawatt
radiating Z-pinch with cold start and high rate of current
rise. The phenomenological description proposed here
relies on the experimenta results reported in [1-5]. We
believethat it can serve asabasisfor quantitative math-
ematical modeling of a radiating fast Z-pinch. How-
ever, we understand that thisroot model must be further
refined to agree with forthcoming experimental data.
Moreover, we realized that our results must be extrapo-
lated to larger scale experiments, including those cur-
rently underway at the Z facility [11] and those planned
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to be conducted at the ZR [12] and Baikal [13] faci-
lities.

To have a clear perspective, we enumerate the key
factors that determine the dynamics of a radiating fast
Z-pinch in our model in the opening section of the
paper, which briefly summarizes the principa conclu-
sions based on an analysis of experimental data. In sub-
sequent sections, these conclusions are elaborated to
the extent that is currently possible. Some of the con-
clusions should be interpreted as working assumptions
to be verified by additional experiments.

KEY FACTORS CONTRIBUTING
TO THE DYNAMICS OF MULTITERAWATT
RADIATING Z-PINCH WITH COLD START
AND HIGH RATE OF CURRENT RISE

1. COLD START
OF AN IMPLODING DISCHARGE

1.1. The starting characteristics of the plasma-pro-
ducing materials used in imploding discharges are pre-
determined by the physics of multiterawatt electrical
pulse generation.

1.2. Cold start is inherent in imploding discharges
with high rates of current rise that have been studied to
this day. The main consequence of cold start isthat the
plasma production is prolonged to almost the entire
current rise time.

1.3. Heterogeneous structure of plasma-producing
loads is an essential factor, but effects due to cold start
manifest themselves in initially homogeneous plasma:
producing loads as well. Plasma production is spatially
nonuniform in any event.

1.4. Massive electrodes may play the role of an
uncontrollable additional plasma-producing load at
cold start.

1.5. Strong preionization not induced by current is
an unimplemented alternative to cold start.

2. PROLONGED PLASMA PRODUCTION
AS THE PRINCIPAL CONSEQUENCE
OF COLD START

2.1. The most important manifestation of prolonged
plasma production is that the Ampére force begins to
play a dominant role in the dynamics of the produced
plasma before the plasma-producing material is used
up. The evolution of the produced plasmais controlled
by the total azimuthal magnetic field due to the total
discharge current.

2.2. Each wire in an electrically heated wire array
turns into a high-density heterogeneous core (consist-
ing of droplets and vapor) surrounded by a plasma of
relatively low density. Our model of the state of the core
describes the evaporation from the droplet surface and
the loss of mass due to vapor flow from the core bound-
ary. The source of energy releasein the coreisthejoule
heating by current flowing through the ionized vapor.
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The current isdriven by the voltage drop along thewire
array.

2.3. The rate of plasma production required to sus-
tain asteady radial flow of the tungsten plasmafromthe
plasma-producing load with a stationary outer bound-
ary isexpressed as

9'L" J 0. 25'——1“”’* y
cm n RigH

2.4. At the plasma-production stage, the current-car-
rying plasma flowsinto the liner volume.

2.5. A timely termination of plasma production is a
crucial factor that determines ahigh degree of compres-
sion in a Z-pinch with cold start.

2.6. In contrast to the model of [7, 8], our time-
dependent model of plasma production describes the
penetration of the azimuthal magnetic field into the
liner volume.

3. BREAKTHROUGH OF MAGNETIC FLUX
ACROSS THE DISRUPTED PLASMA-
PRODUCING REGION
AND PARTIAL PLASMA TRAPPING

3.1. Experimental Observation of Breakthrough
of Azimuthal Magnetic Flux across the Wire Array

Spatially nonuniform breakthrough of magnetic flux
manifests itself by the radial plasma rainstorm discov-
ered and studied in [5].

3.1a. The rapid contraction of the outer pinch
boundary begins with a spatially nonuniform break-
through of magnetic flux toward the pinch axis. The
magnetic-flux breakthrough precedes the subsequent
implosion of the plasma.

3.1b. The magnetic-flux breakthrough givesriseto a
chaotic azimuthal—axial plasma structure consisting of
radial plasmajets of relatively small diameter, whichis
called the radial plasma rainstorm.

3.1c. Inthe course of the implosion toward the wire-
array axis, the plasma jets contract and merge into dis-
tinct plasma-current filaments mostly paralel to the
pinch axis.

3.1d. Due to an early magnetic-flux breakthrough,
an X-ray pulse can be generated before the plasma
completely implodes as a whole. The plasma remains
spatially nonuniform at the instant when a high-power
X-ray pulseis generated by the Z-pinch.

3.1e. The gpatia structure of the imploding plasma
is so nonuniform that the wholeness of an imploding
plasmashell isout of question. Under these conditions,
any analysis of Z-pinch implosion based on the theory
of Rayleigh-Taylor instability or the snowplow model
isincorrect under the plasma-rainstorm conditions.
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3.2. Criteria for Breakthrough of Magnetic Flux
into the Liner Volume
at the Final Plasma-Production Stage

3.2a. The magnetic-flux breakthrough is a conse-
quence of local imbalance between supply and ioniza-
tion of the plasmaproducing substance and radia
motion of the produced plasma from the plasma-pro-
duction region driven by the Ampére force.

3.2b. The minimal discharge current |, at which
magnetic flux can break into the liner volume across an
annular gap of length dis estimated as

I, [A] =3 x 1021@

o g*’

where p isthe plasmadensity, o iselectrical conductiv-
ity of the plasma, A is the plasma-layer thickness, and
Ristheliner radius. If p ~ 10 g/cm3, o ~ 10** CGSE
units, A=d=0.1cm, and R=1cm, thenl, =3 MA.

3.2c. The mass of the plasma moving with the
breaking-through frozen-in magnetic flux can be only a
fraction of the mass of the plasma-producing material
occupying the breakthrough region.

3.2d. The breaking-through azimuthal magnetic
field obstructs further current flow in the breakthrough
region.

4. MHD TURBULENT HEATING
AND RADIATIVE COOLING
OF STAGNANT PLASMA

4.1. MHD Turbulent Heating

Stagnation is a natural consequence of the mag-
netic-flux breakthrough. In the stagnant pinch, the
energy of the current-generated magnetic field is con-
verted into the turbulent MHD flow of the ion compo-
nent of the stagnant plasma. This process involves con-
vective mixing of the plasmawith magnetic field, heat-
ing, energy transfer from ions to electrons, and
emission from the stagnant plasma. The rate of MHD
turbulent heating is estimated as

il

where |, M, and r are measured in megamperes, micro-
grams per centimeter, and millimeters, respectively [10].

0.51°
I,Ml/z’

4.2. Energy Balance
in a Radiating Turbulent Pinch

4.2a. The electron plasma component is heated by
the energy transferred from the ion component. In the
high-density pinch plasmas, the corresponding time
scaleissmall as compared to the joule heating time for
electrons.
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4.2hb. Under the conditions of our experiments, radi-
ation plays a key role in the energy balance of an
imploding pinch. Thetendency of the turbulent current-
carrying plasma toward filamentation and transforma-
tion of the radial plasma rainstorm into radia “protu-
berances’” observed in our experiments [5] can be
explained by radiative cooling of the imploding spa-
tially nonuniform plasma.

5. EFFECTIVE CONVERSION
OF STORED MAGNETIC ENERGY
INTO Z-PINCH HEATING
AND MULTITERAWATT X-RAY EMISSION

5.1. Z-pinch is modeled by an electric-circuit com-
ponent that has a time-dependent nonlinear impedance
and consumes the magnetic energy supplied by a gen-
erator through a magnetically insulated transmission
line (MITL). The MITL couples the load surface to the
water—vacuum interface. In the course of plasma pro-
duction, the magnetic energy is accumulated in the
MITL whilethe outer current boundary remains at rest.
After the magnetic-flux breakthrough, the energy is
consumed to implode and heat the radiatively cooled
current-carrying plasma. The peak active power W, is
comparable to the peak soft X-ray power output in
terms of timing.

5.2. The active power produced in the discharge is
sustained by consuming the stored magnetic energy
(Wing) and the power supplied by the generator (Wep)-
In experiments, the relative values of Wy, and Wiy
depend on the initial liner radius and its mass per unit
length.

5.3. At al stages of the implosion (including the
stagnant state), the heat accumulated by the radiating
pinch plasma is low as compared to the magnetic
energy generated by the discharge current. The radia-
tion power emitted by the pinch is determined by the
active power W,

5.4. Optimal Matching Conditions
for the Generator— MITL—Pinch Circuit

5.4.1. The circuit parameters must ensure that the
magnetic energy accumulated in the MITL reaches its
maximum by the starting moment of the pinch implo-
sion.

5.4.2. Theimpedance of an stagnant MHD-turbulent
pinch must be much larger than the generator imped-
ance.

5.4.3. The plasma contained between the electrodes
provides a bypass for current leakage in the stagnant
pinch. Therate of the magnetic-field influx that sustains
the pinch may be limited by the plasma passed by the
field on its way toward the pinch. These effects can be
the key factors that determine the peak values of both
discharge power and X-ray emission intensity.
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BASIC CHARACTERISTICS
OF HIGH-POWER RADIATING IMPLODING
DISCHARGE WITH COLD START

1. COLD START
OF IMPLODING DISCHARGE

1.1. Effect of the Physical Characteristics
of Multiterawatt Pulse Generation
on the Sarting Parameters
of Plasma-Producing Loads in Imploding Discharges

The implementation of the multiterawatt pulse gen-
eration technology in Z-pinches has opened new pros-
pects in the physics and engineering of plasma implo-
sion. In particular, the power supplied by the Marx gen-
erator to the fast imploding discharge is higher than the
output from the capacitor banks used to power conven-
tional plasma foci (with microsecond-scale current
pulses) by two orders of magnitude. We should note
here that the conventional and fast power-supply sys-
temsare comparable in terms of stored energy and peak
current. For example, the power of about 40 TW pro-
duced by the generator used in the Z facility at Sandia
National Labs generates a current of 20 MA through a
wire-array having an inductance of 12 nH in about
100 ns[11]. These are the best characteristics obtained
to this day. For comparison, the output characteristics
of the Angara-5-1 facility vary from 2 to 5 MA and
from2to 5TW.

The power boost was achieved by raising the dis-
charging voltage of the Marx generator and using
pulse-forming lines designed to produce shorter pulses.
Figures 1a and 1b show, respectively, a schematized
circuit diagram and typical oscilloscopic traces of the
output voltage pulse V(t), discharge current I, and di/dt
obtained in the experiments reported in [1-5]. The rap-
idly varying dl/dt trace demonstrates that Z-pinch can
be modeled by a time-dependent nonlinear impedance.

The reduction of the current-rise time from 10 psto
100 ns implies that the starting radius must be about
1 cm rather than tens of centimeters. This requirement
necessitates the use of the magnetically insulated trans-
mission line for coupling the output from a meter-sized
pulse generator to a centimeter-scale load. The MITL
inductance that couples the load (Z-pinch) surface to
the water—vacuum interface is denoted by L, in Fig. 1a.
Thus, power supply to a multiterawatt/megavolt dis-
charge is degraded only by a relatively low spurious
inductance (10 to 20 nH). The difference in slope
between the portions of the V/(t) and dI/dt traces corre-
sponding to rising current through the inductive load
(see Fig. 1b) is explained by the electron leakage from
the MITL that takes place while the magnetic insulation
of the gaps develops [2]. The corresponding leakage
currents are not shown in Fig. 1a. However, they can
amount to substantial levels.

The MITL accumulates magnetic energy and
thereby ensures high rates of energy conversion at the
implosion and stagnation phases of a Z-pinch. Figure 2
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Fig. 1. (8) Schematized circuit diagram: E(t) = emf pulse;
V/(t) = voltage output from a water-insulated pulse-forming
line; 1(t) = discharge current; Lo = MITL inductance; py =
total wave impedance of a water-insulated pulse-forming
line; Z(t) = nonlinear total impedance of theload. (b) typical
characteristics of high-power imploding discharge: (1) V(t)
(Vinax = L1MV); (2) di/dt (dI/dt, = 4 x 1013 A/9); (3) I(1)
(Imax =3 MA).

S
707000,
] —
2 1 5

Fig. 2. Schematic of a MITL: (1) cathode; (2) anode;
(3) outer andinner wire arrays; (4) central load (low-density
foam); (5) weight for wire-array stressing; (6) return current
anodes.

schematizes the MITL assembly used in our experi-
ments as one of the numerous variants of theload [1-5].

Current basic and applied studies of multiterawatt
fast Z-pinches are focused on the efficiency of conver-
sion of the energy accumulated in the MITL into a soft
X-ray pulse. To accomplish this task, plasma-produc-
ing materials containing elements with high atomic
numbers must be utilized. The drastic reduction of the
starting diameter of the plasma-producing load, the
stringent constraintsimposed on the load geometry, and
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the changes made in the elemental composition of the
load to achieve the desired spectral characteristics of
the X-ray pulse stimulated the use of nongaseous
plasma-producing media. The typical plasma-produc-
ing substance used in up-to-date experimentsis a low-
density heterogeneous material consisting of microme-
ter-sized solid grains or fibers. Wire arrays have been
frequently used in recent studies. The mass per unit
length of the imploding plasma produced from a high-
atomic-number material varies between 0.2 and
10 mg/cm in radiating Z-pinches with currents ranging
from 3 to 20 MA. It is important to ensure that the
plasma-producing load have the strictly required start-
ing geometric parameters and the plasma production be
well controlled.

The loads utilized in most present-day experiments
arefairly consistent with these requirementsin terms of
geometry and mass, but the controllability of plasma
production from an initially cold matter is yet to be
improved.

1.2. Cold Sart as an Inherent Stage
of All Imploding Discharges with High Rates
of Current Rise that Have Been Sudied to Date

Asmentioned above, the plasma-production process
implemented in every terawatt-scale Z-pinch experi-
ment conducted to this day is initiated by electrical
breakdown of unionized material with a pul se produced
by the generator. This experimental solution, termed
cold start, isdictated by the need to simplify the design
of the power-generating part of the facility. It strongly
affects al processes involved in the subsequent implo-
sion. The plasma production initiated by electrical
breakdown of the plasma-producing material, but is not
completed during the breakdown. Due to the rapid cur-
rent rise (with dl/dt ~ (0.5-2.0) x 10** A/s) required to
accelerate a mass of 0.1-1.0 mg/cm to a velocity
~3-5x 107 cm/s over a length of 1 to 2 cm, the pro-
duced plasma is highly nonuniform. As the discharge
current grows, the plasma is accelerated by magnetic
field before the entire load transforms into an acceler-
ated plasma. As the produced low-density plasma and
the current are driven out of the plasma-production
region, the energy required to vaporize and ionize the
plasma-producing substance is released at adecreasing
rate. This trend affects not only the initial stage of the
discharge, but also the implosion and stagnation
phases.

1.3. Heterogeneity of the Plasma-Producing Load

Heterogeneous structure of plasma-producing loads
is an essential factor, but effects due to cold start mani-
fest themselves in initially homogeneous plasma-pro-
ducing loads aswell [2, 3].

Spatialy nonuniform plasma production is charac-
teristic of both heterogeneous media (low-density
solid-state foam, wire array) and homogeneous (gas-
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| O 20 mm |

Fig. 3. Time-integrated X-ray photograph of a Z-pinch for wire array with a diameter of 20 mm: (1) cone-shaped cathode plasma

sheath.

eous) substances, even though the respective mecha-
nisms of breakdown and plasma production are differ-
ent. A wire array is azimuthally nonuniform by con-
struction, because the wire spacing (2001000 pm) is
much greater than the wire diameter (515 um). The
spatial nonuniformity of the plasma produced from a
gas puff manifests itself via plasma instability as azi-
muthal current filamentation followed by axial stratifi-
cation of the produced plasma. The thermal instability
responsible for the filamentation of current-carrying
plasma columns develops in any azimuthally uniform
medium provided that the rate of current rise is suffi-
ciently high.

1.4. Massive Electrodes
as an Additional Plasma-Producing Load
in Z-Pinches with Cold Sart

Since the Z-pinch length is limited by massive elec-
trodes, one hasto deal with another problem associated
with cold start: formation of aplasmasheath at the el ec-
trodes. Inthe MITL, which must deliver the current | to
the load located on its axis, the linear current density
Jiin = /211 increases with decreasing radiusr of the cur-
rent-carrying plasma. In a high-power Z-pinch, the
electric power density created in aload withr ~1 cm
exceeds 1 TW/cm?. The current density j ~ 108 A/lcn? is
insufficient to vaporize a conductor in 10-20 ns. When
the linear current density exceeds 1 MA/cm, thisvalue
of current density is attained when the skin-layer thick-
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nessis ® ~ 0.01 cm. For a conductor with conductivity
o ~ 10% CGSE units, the skin-layer relaxation time is
t ~4n&o/c? ~ 10-15 ns, which correspondsto the dura-
tions of the processes involved in our experiments.
Electric vaporization from the current-carrying surface
leads to plasma formation in the electrode gap. The
ensuing uncontrolled nonuniform plasma flow into the
imploding-discharge volume strongly affects the
dynamics of Z-pinch implosion.

These considerations apply equally to both cathode
and anode conductors. However, the effects due to the
cathode plasma are stronger. Figure 3 shows an X-ray
photograph of a Z-pinch clearly demonstrating the
skirt-shaped plasma sheath at the cathode.

The difference in plasma behavior between the
anode and cathode sheaths is poorly understood. The
formation of the near-cathode plasma sheath may be
affected by the effect of electronsinvolved in the near-
cathode magnetic self-insulation region. Theion current
incident on the cathode may heat its surface to a higher
temperature as compared to the anode surface. However,
the results of the experiments reported in [1-5] may be
explained in technical rather than fundamental terms.
The wire-array cathode is connected to the current-car-
rying conductor by adiding contact, which is degraded
by azimuthal nonuniformity. The required pinch mass
balance in the pinch may be violated by the erosive
plasma generated in the contact zone at alinear current
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density higher than 1 MA/cm and g ected into the vol-
ume surrounded by the wire array. Under certain condi-
tions, the uncontrolled plasma flow into the electrode
gap can be prevented by using low-density porous solid
electrodes adjoining the load. They can be rapidly
vaporized, and the resulting plasmacan be carried away
from the gap by magnetic field to compensate for the
plasma gjection into the gap.

1.5. Strong Preionization not Induced by Current
as an Unimplemented Alter native to Cold Sart

Actually, cold start precludes the implementation of
the liner scheme of multiterawatt imploding discharge.
Here, the liner isinterpreted as a conducting thin mas-
sive cylindrical shell accelerated to a high velocity so
that its kinetic energy transforms into heat as it hits an
obstacle (the inner shell). In a multiterawatt imploding
discharge, the liner is obviously a plasma shell. The
creation of a compact massive plasma shell with a
kinetic energy of at least 100 kJ is a key problem in
liner design. In fast imploding discharges with cold
start, the desired shell has not been created to this day.

The problem could be resolved by means of strong
preionization of the plasma-producing medium. It is
essential that preionization must not lead to generation
of a spatialy nonuniform plasma, as in discharges with
cold start. Implementation of liner preionization not
induced was attempted for less powerful discharges[14].
The much higher power required to implement preion-
ization in multiterawatt discharges entails much higher
costs. Strong preionization by anion beam (with power
up to ~0.1 TW) may be more efficient. The parameters
of the plasma generated by this method must be chosen
to prevent further ionization processes leading to itsfil-
amentation after the main current pulseisfired. Anini-
tial electron temperature of about 10 eV seems suffi-
cient to ensure that the thermal instability leading to fil-
amentation is suppressed by radiative loss. However,
this method has not been implemented because of its
technological complexity and relatively high cost.

lonization of a foam liner by an auxiliary external
shell would be practicable if it were sufficiently slow
for the filaments to expand and merge together. Some
encouraging results have been obtained in the first
experiments on interaction between a megampere-cur-
rent shell of a microsecond-scale plasma focus with a
foam liner [15]. However, the subsequent coupling of
the generator producing the main current pulse to the
plasma shell obtained by this method has yet to be
investigated.

Strong preionization is indispensable, because it
provides a unigue means to implement liner implosion
schemes based on the original ideas put forward in the
early 1980s.
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2. PROLONGED PLASMA PRODUCTION
AS A MAIN CONSEQUENCE
OF COLD START [2, 3]

Prolonged plasma production is an experimentally
established unguestionable consequence of the cold
start of afast Z-pinch. Many facets of this phenomenon
characteristic of various plasma-producing materials
have been described in [1-5]. The recently published
results of experiments on wire-array implosion in the
MAGPIE facility [16] suggest asimilar phenomenol og-
ical pattern of wire-array discharge, but the theoretical
interpretations of the results presented in [1-5] and [ 16]
are essentially different. The interpretation of the
MAGPIE experiments proposed by their authors relies
onthemodel of [7, 8]. Our interpretation isbased on the
model of a heterogeneous liner with prolonged plasma
production presented bel ow.

2.1. Phenomenol ogy of Prolonged Plasma Production
Based on the Experimental Results of [ 1-5]
and Physical Model of Plasma Production
in a Heterogeneous Medium

Prolonged plasma production in imploding dis-
charges with cold start manifests itself most clearly in
the dominant role played by the Ampére force in the
plasmadynamics until the plasma-producing load com-
pletely transforms into an accelerated plasma. First of
all, the combined effect of the magnetic fields gener-
ated by multiple current-carrying filaments on an indi-
vidual filament drivesthe filaments and the low-density
plasmoids evolving from wires in the radia direction
before the plasma begins to implode as a whole. The
plasma driven inwards by the total magnetic field gen-
erated by the current that flows through it concentrates
on the axis into a precursor pinch much earlier than
does the wire-array plasma. Moreover, the local mag-
netic field generated by the current flowing through a
current-carrying column (an individual filament or a
vaporized wire) affects the column itself. This can lead
to magnetically driven filamentation of the column
resulting initsaxial MHD nonuniformity. It was shown
in [2] that the magnetically driven filamentation easily
occurs in high-atomic-number plasma-producing
gases.

The relative importance of the effects of the total
and local magnetic fields on the dynamics of the plasma
being produced depends on various conditions. How-
ever, experiments demonstrate that the entire pinch
evolution at the plasma-production stage is affected by
the continuing inward flow of new portions of the accel-
erated plasma from the plasma-producing region. The
generated plasma carries part of the current, but the
outer boundary of the plasmaremainsat theinitial outer
radius of the plasma-producing load for a long time.
Under the conditions of our experiments, the outer
plasma boundary remains at rest during the entire inter-
val of current rise. The observed stationarity of the
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1

Fig. 4. Plasma-production configuration (not to scale): (1) heterogeneous plasma-producing load; (2) region of azimuthal magnetic
field pumping into plasma; (3) radial plasma moving with frozen-in magnetic field; (4) precursor pinch. Actual boundaries between

regions are not distinct.

outer plasma boundary implies that the rates of plasma
production and plasmaflow driven by the Ampére force
are balanced.

The experimental resultsreported in [1-5] provide a
basisfor a physical model of prolonged plasma produc-
tion. Our approach differs from those developed in the
model of [7, 8] and earlier studies, which were focused
on the azimuthal structure of thewire-array plasmaat the
initial stage of the discharge. We a so take into account
the azimuthal structure of the plasma-producing load in
estimating the wire-array vaporization (see Section 2.2).
However, we do not consider the azimuthal structure of
the plasma-producing load as the factor that plays the
dominant role in prolonged plasma production.

In our model of plasma production, it is assumed
that the total azimuthal magnetic field B generated by
the current | carried by the heterogeneous plasma-pro-
ducing medium containing a condensed phase playsthe
dominant role amost from the very start of the dis-
charge. To simplify our analysis of the basic physica
characteristics of prolonged plasma production, we
assume that the local plasmasources are uniformly dis-
tributed over the plasma-producing region and the
spacing between them is small as compared to the size
of the region. As a suitable model of the medium, we
consider an annular cloud of microscopic dust grainsin
vacuum. The spacing between them is assumed to be
much greater than the grain diameter and much smaller
than the thickness of the annulus, which is much
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smaller than its radius. Figure 4 illustrates the radia
structure of this liner at the stage of prolonged plasma
production.

During the first nanoseconds of the discharge, the
current flowing through region 1 in Fig. 4 (occupied by
dust grains of the plasma-producing material) switches
over to the low-density plasma occupying the space
between the grains. The plasma occupying regions 1
and 2 is heated, its conductivity increases, and the azi-
muthal magnetic field generated by the discharge cur-
rent isfrozen into the plasma. Flow 3 of the plasma car-
rying the frozen-in magnetic field is driven by the
Ampéreforcetoward the axis, giving rise to a precursor
pinch. The dust grains are vaporized by heat and radia-
tion fluxes from plasma regions. The corresponding
flux intensities are relatively low, and the vaporization
|asts for tens of nanoseconds; i.e., its duration is com-
parable to the current rise time. In the meantime, the
outer boundary of the region occupied by current and
plasma remains at rest at the location of region 1 until
complete vaporization is achieved. Thus, the plasma
production involves the following processes. vaporiza-
tion and ionization in region 1, diffusive mixing of the
plasma and magnetic field in region 2, and inward
radial motion of the produced plasma driven by the
Ampére force. These processes are discussed below in
more detail. In Section 2.2, we present the results
obtained by computing the wire-array vaporization. In
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Sections 2.3-2.6, we anayze the dynamics of the
plasma flow into the liner volume.

2.2. Model of Vaporization
of an Azimuthally Nonuniform Plasma-Producing Load

In this section, we consider an azimuthally struc-
tured load consi sting of many vaporized tungsten wires.
The results obtained by X-ray probing of a vaporized
wire array using an X-pinch [4] demonstrate that each
vaporized wire consists of a dense core surrounded by
aplasmaof relatively low density. Since the core spac-
ing is much greater than the core radius, we can con-
sider a single core. Experimental data can be used to
describe the core structure after a relatively long time
ty = 60 ns has passed since the starting instant of current
rise and the total current through the wire array has
reached about 1 MA. For awire of radius 6 um, the core
diameter reaches the value 2r, = 18 um in about 60 ns.
Assuming that the mass per unit length of the wire has
reduced to m, = 2.6 pg/cm, we find that the mean core
density is p. ~ 1 g/cm?, while the critical density of
tungsten is 4.5 g/cm?. The point in the phase diagram
for tungsten where p, ~ 1 g/cm? corresponds to a tem-
perature above 12 x 10° K [17], i.e., athermal velocity
above 8 x 10* cm/s, whereas the measured velocity of
core expansion is about 1.5 x 10* cm/s. Therefore, the
core should be considered as a volume occupied by a
heterogeneous mixture of ionized vapor and liquid
droplets rather than a homogeneous vapor. In this
model, we take into account both evaporation from the
droplet surface and the loss of mass due to vapor flow
from the core boundary. The source of energy releasein
the core is the joule heating by the current J flowing
through the ionized vapor. The current is driven by the
electric field E generated by the voltage drop along the
wire array (region 1 in Fig. 4). The core can also be
heated by the energy fluxes from the outer higher tem-
perature plasma due to radiative transfer and electron
heat conduction. The present model ignores these addi-
tional energy fluxes, even though they can substantially
increase therate of the liquid-phase evaporation, partic-
ularly at itsfinal stage.

Wetreat the core asacylinder of radiusr, consisting
of a mixture of vapor with liquid droplets of radius r
and density p, characterized by adroplet concentration

N, per unit length and a concentration n, = N, /rtr> per
unit volume. It is obvious that the liquid mass per unit
length is smaller than the core mass per unit length. The
opacity of the heterogeneous core structure for probing
X-raysfrom an x-pinch suggests the following estimate
for the droplet concentration. If the probing photons
(with hv ~ 3 keV) are completely absorbed by the drop-

lets, then the core’s opacity implies that Ner > re.
Neglecting the vapor mass contained in the core, we
have r p, < repe, . < 0.35 um and N, > 10° cm;

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

ALEXANDROV et al.

hence, n, ~ 3 x 102 cm3, which is comparable to the
concentration of defectsin acold metal (on the order of
10%? cmr3 [18]).

The mass and energy balance equations for the core
at auniform temperature T are written as follows:

m Mg _ _ 2 _ /3 m_
—+t— =T 1 r = 3/7 ’
P Pc ¢ - 41N p.

ke T
T 2TB[M’ P.(T,pL) = Ps(T, pg),
1
dm,
=0 = ~4miNLU(P(T) =),
dim, +m
( Ldt G) = _ancqu&
de, deg dm,

M =+ Mo~ — 5 (Ee—&) + PV = JE, @

V = 2mr.uy, J = TrioE,

where mis mass, € is energy per unit mass, P is pres-
sure, py(T) is the saturated vapor density for tungsten,
and V is the core volume; the subscripts L and G refer
to liquid and gas, respectively.

To set the value of E in (2), we use the experimental
fact that the discharge current flowing through a wire
array switches over to the low-density plasma outside
the core at an early stage: i.e., the core carries only a
small fraction of the current: J < I/N, where | is the
total discharge current and N is the number of wiresin
the array. Since J has never been measured directly, we
have to calculate J from (2) for a given E. The electric
field strength at the outer boundary of the plasma-pro-
ducing region is determined by the global characteris-
tics of the discharge, which can be reliably measured.
To find the electric field in region 1, we consider the
motion of a perfectly conducting plasma moving
toward the axis with a drift velocity V at the boundary
between regions 1 and 2 (see Fig. 4). If B is the azi-
muthal magnetic field generated by the discharge cur-
rent | at the outer boundary of region 1, then the mag-
netic field B' at the boundary between regions1and 2is
weaker, because only a fraction of | penetrates into
region 2 with the plasma. In the next section, we show

that B' ~ B/ /3. The plasmamotion acrossthefield with
velocity V generates the electric field E' = 108VvB/,
where E' is measured in volts per centimeter and the
remaining quantities are measured in CGSE units. The
difference between the electric field E in region 1 and
E' is due to induction. If the radial magnetic-field pro-
file is linear across region 1 of small thickness R ~
0.1R, (R,isthearray radius) and | < 3 MA, then

5Rdl _ g kv

Radt<5_

E-E=2x10" .
cm
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Fig. 5. Computed evolution of heterogeneous core of constant radiusr, = 10 um for electric field strength E = 30 kV/cm: m_and
mg are the liquid- and vapor-phase masses per unit core length, T istemperature, and J is current through the core.
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Fig. 6. Computed evolution of heterogeneous core with time-dependent radius r. and E increasing with time (see Fig. 5 for

notation).

According to our experimental results, the radial
plasma velocity at the boundary between regions 1 and
2isV = (1-2) x 10" cm/s. Therefore, if | = 2to 3 MA
and R, =1 cm, then E ~ E' = 2060 kV/cm.

In our calculations, Egs. (1) and (2) were supple-
mented with equations of state for liquid and gaseous
tungsten [19]. The current through the core was cal cu-
lated as J = Ttir2 oF, where the conductivity o of tung-
sten was determined by using a Coulomb logarithm
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model [20]. The effect of the liquid-droplet phase on
the current was ignored in view of the condition
m /p. < mg/pgs. Figure 5 shows the evolution of a het-
erogeneous core computed for r, = 10 um and E =
30 kV/cm. Figure 6 shows the evolution of a core with
alinearly growing radius for E increasing with time.

The computed results show that rapid droplet evap-
oration begins only after 60 to 70 ns have passed since
the starting instant of current rise. This agrees with the
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results of our experiments, where a dense phase was
detected at 70 nsafter the starting instant of current rise.
However, quantitative agreement between numerical
and experimental resultsis not required at this stage of
our study, because our goal was to elucidate the nature
of the process.

The drastic decrease in the mass of the liquid phase
at t ~ 80 nsand the corresponding increase in the vapor
massinsidethe coreare dueto the jumpinthe coretem-
perature that occurs when the energy consumption
required to vaporize the liquid tungsten ceases. Indeed,
if J ~ 10 A (as in our computations) and E ~ 3 x
10*V/cm, then JE ~ 3 x 10° W/cm. Assuming that the
power thus produced is consumed entirely to vaporize
the liquid tungsten in the core, we find that the rate of
vaporization is about 0.1 pg/ns per unit length of the
core. This agrees with the numerical results shown in
Fig. 6: dm_/dt ~ 0.1 pg/cm at t ~ 70-80 ns. After thelig-
uid phase has evaporated completely, the vapor mass
contained in the core decreases as the vapor flows out
of the coreinto the space between the wires. Therate of
vapor-mass |oss calculated over the interval from 90 to
100 ns does not exceed 0.05 ug/(nscm). When N = 50,
the flow rate of the mass to be ionized and accelerated
by the Ampére force is dmg/dt ~ 2.5 pg/(ns cm).

2.3. Plasma Production Rate Required
to Sustain a Seady Flow of Tungsten Plasma
from the Plasma-Producing Region
with a Sationary Boundary

In this section, we analyze the dynamics of the
material vaporized in region 1 (see Fig. 4). To simplify
analysis, we assume that the local plasma sources are
uniformly distributed over the region. The produced
plasma having a low density p and a conductivity o
occupies region 1 and flowsinto region 2. Suppose that
the current flowing through the plasma generates an
azimuthal magnetic field B at its boundary. In the
course of plasmaproduction in regions 1 and 2, the azi-
muthal magnetic field is frozen into the produced
plasma. The Ampére force drives the current-carrying
plasma out of region 2 toward the axis with a velocity
on the order of the Alfvén velocity V, ~ B/(4Ttp)¥2, giv-
ing rise to atransition layer of thickness A ~ ¢?/41toV, .
Suppose that the energy required to maintain the bal-
ance between the rates of plasma outflow and produc-
tion is provided by the heat flux determined by the elec-
tron heat conductivity of the inward-moving plasma.
These simplifying assumptions were used in [3] to
derive an expression for the radial velocity of the
inward-moving plasma under the condition that the
mass rate of production of ionizable material by vapor-
ization of condensed phase in the core is sufficient (see
Section 2.2):

am J ozE'—Ml*J . ©)
cm n URg U
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It should be recalled here that the process is analyzed
by ignoring both axial and azimuthal nonuniformity of
plasma production, which are clearly observed in
experiments. Nonetheless, this simplified analysis
leads to important results discussed bel ow.

2.4. Mathematical Model of Plasma Inflow
into the Liner Volume at the Plasma-Production Stage

Following [3], we use aone-dimensional cylindrical
MHD model and assume that thermal-pressure gradi-
ents are weak as compared to the Ampére force. Then,
we have

a a3 1 9(Br)°
atv Varv B 8T[r2p al’ (4)
0
atB+—(vB) =0, (5)
95+ vy = 0, (6)
at rar

where B is the azimuthal magnetic field, v isthe radial
plasma velocity, and r is radius. Boundary conditions

are set for prolonged plasma production at r = R, (liner
radius):
(PV)]; =g = —M(1), ()
_ [Bo(®)I”
EDV +8TDr R - 8m (8)
Bl
—V|, g < | : )
SJATIP|r =R

According to boundary condition (8), the newly gener-
ated plasma has zero radial velocity. The magnetic field
a the outer liner boundary is determined by the total
discharge current I(t):

21(t)

Bolt) = TR’

which is treated as a prescribed function of time. Con-
ditions (7)—(9) imply that a considerable fraction of the
total current flowsthrough the region of plasma produc-
tion inside theliner. In particular, if the inward-moving
plasma has the Alfvén velocity, then the magnetic field

at the inner boundary of the liner is Bolﬁ, i.e., about
40% of the current flows inside the liner.

(10)

2.5. One-Dimensional Model of Z-Pinch Evolution
Allowing for a Finite Interval
of Decreasing Plasma Production Rate

Prolonged plasma production must come to an end
before the outer boundary of the current-carrying
plasma begins to contract into a Z-pinch. It is obvious
that the rate of plasma production does not instantly
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Fig. 7. Time-varying current within the liner half-radius for
(a) fast and (b) slow decreasein m (t).

drop to zero. Suppose that the plasma production rate
initially increases as m(t) = CI* a t < t; and then
decreases as exp(—(t — t,)/t;). The total mass of the liner
isM,. To solve Egs. (4)—(9), we use dimensionless vari-
ables defined in terms of the reference current |, refer-
ence length R, = R, and reference time t,. The corre-
sponding reference values of velocity, plasma density,
and liner mass per unit length are v, = R/ty, py =

12t2 /2R, and My = (I4t,/CR)?, respectively. To com-
pare computed results with experimental data, we set
l,b=1MA,Ry=R =1cm, andt, = 100 ns.

Figures 7—10 show the computed results. Figure 7
shows the time-varying current within the liner half-
radius; Figs. 8-10, radial profiles of density, discharge
current, and velocity at several pointsintime. Panels(a)
and (b) correspond to relatively fast and slow decrease
in m(t), respectively.

The computed results demonstrate that discharge
current penetratesinto the liner even at an early stage of
plasma production, owing to diffusion of the magnetic
field generated by the current into the produced plasma.
Another important finding is the strong dependence of
basic Z-pinch parameters on m(t). When m(t) isrela-
tively low, theregion inside the liner half-radius carries
less than half the total current, whereas almost the
entire current flows within the half-radius. The rates of
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Fig. 8. Computed radial profiles of plasmadensity at (1) t =
0.25ty, (2) t = 0.58tg, (3) t = 1.04ty, and (4) t = 1.80t, for
(a) fast and (b) slow decreasein m (t).

plasma and current concentration near the axis are sev-
eral times higher in the case of high m(t) as compared

to low m(t). Therefore, timely termination of plasma
production is a crucia factor that determines a high
degree of compression in a Z-pinch with cold start.

2.6. Penetration of Azimuthal Magnetic Flux
into the Liner Volume: Distinction
of the Present Model from the Model of [7, 8]

In the model of [7, 8], the axialy nonuniform struc-
ture of the plasma and magnetic field was analyzed for
each wire, and the plasma flows originating in the gaps
between the wires were not magnetized. For this rea
son, it was concluded that current concentrates in
around the wires rather than penetrates into the liner
volume at the plasma production stage, and the precur-
sor plasma does not carry any current. We have mea-
sured the azimuthal magnetic field inside the wire array
by means of miniature magnetic probes[5], and thereis
no reason to question the reliability of the results
obtained, at least, before the Z-pinch began to contract
as a whole. Figure 11 shows the results of magnetic
probing obtained for a 20-mm diameter array of
80 5-um diameter wires. It demonstrates that current
begins to flow through the region within a radius of
0.5R, at the plasma-production stage, amounting to
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Fig. 9. Computed radial profiles of discharge current at
(1) t = 0.25t, (2) t = 0.58t, (3) t = 1.04ty, and (4) t = 1.80t,

for (a) fast and (b) Slow decreasein m(t).

about 15% of the total current. In this particular case,
less than half the total current was found to flow
through the region within the liner half-radius by the
moment of peak emission from the Z-pinch. Appar-
ently, the parameters of the plasma-producing load
deviated from their optimal values required to achieve
the highest rate of implosion, and the decrease in the
plasma production rate was relatively slow, as illus-
trated by Figs. 7b—10b. However, these results support
one of the basic points of our model: a current-carrying
plasma penetrates into the liner volume at the stage of
prolonged plasma production.

Inthemodel of [7, 8], the assumption of zero current
through the volume inside the wire array at the plasma-
production stage is inferred from the experimental fact
that the precursor seems to be macroscopically stable.
We claim that this assumption is not well grounded.
Indeed, aslong as arelatively high rate of plasma pro-
duction is sustained, the outer boundary of the plasma
is tied to the wire-array radius. This observation was
made both in our experiments [4] and in those con-
ducted at the MAGPIE facility [16]. The steadiness of
the outer boundary is conditioned on a sufficiently high
rate of plasma flow into zones where its density drops
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Fig. 10. Computed radial velocity profiles: (a) fast decrease
in m(t), (1) t = 0.22ty, (2) t = 0.50tg, (3) t = 0.91ty, and
(4) t= 1.58ty; (b) slow decrease in m(t), (1) t = 0.25ty,
(2) t=0.58ty, (3) t = 1.04ty, and (4) t = 1.80tg.

for any reason. Fast plasma production “cures’ tran-
sient nonuniformities of plasma density arising at the
boundary. We believe that the stability of the outer

1,106 A
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Fig. 11. Currents within the radii (1) 55 mm, (2) 30 mm,
(3) 30 mm (two probes), (4) 5 mm, and (5) 5 mm (two
probes) and (6) soft X-ray intensity (arbitrary units) for
awire array of radius 10 mm.

0
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plasma boundary can ensure the MHD stability of a
current-carrying precursor plasma.

Plasmainstabilities devel op when balance cannot be
maintai ned between theradial plasma motion driven by
the Ampére force and plasma supply to zones where
plasma sources are depleted. Magnetic flux breaks
through these zones into the volume encompassed by
the depleted plasma-producing load.

3. BREAKTHROUGH OF MAGNETIC FLUX
ACROSS THE DISRUPTED
PLASMA-PRODUCING REGION
AND PARTIAL PLASMA TRAPPING

The results of detailed experimental investigation of
the magnetic flux breakthrough inside gasand foam lin-
ers, which are azimuthally homogeneous in the initia
state, have been described in[1, 2]. Below, we will con-
sider anal ogous phenomenain azimuthally nonuniform
systems (wire arrays).

3.1. Experimental Observation of Breakthrough
of Azimuthal Magnetic Flux across a Wire Array

Evidence of a gspatially inhomogeneous magnetic
flux breakthrough is provided by the phenomenon of a
radial plasma rainstorm, which has been discovered
and investigated in our previous work [5]. It was dem-
onstrated that the current-induced implosion in tung-
sten wire arrays gives rise to considerable azimuthal
and axial inhomogeneity of the plasma. The Ampére
forces drive the generated plasmatoward the axisin the
form of aplasmarainstorm (multiple plasmajets of rel-
atively small diameter, elongated in the radial direc-
tion). Asthese jetlike plasmoids move toward the array
axis, they decrease in radial size and merge together to
form isolated plasma current filaments elongated pre-
dominantly along the discharge axis. The plasmain the
thus formed Z-pinch also remains spatially inhomoge-
neous at the time of intense X-ray emission.

Figure 12 shows an example of the time-integrated
pinhole image of the Z-pinch in a double-shell wire
array comprising the outer aluminum wire array with a
diameter of 12 mm and the inner tungsten wire array
with adiameter of 6 mm. The X-ray photograph clearly
reveals the rainstorm of aluminum plasma from the
outer array, whereas virtually no such rainstorm is
observed for the inner array. The qualitative difference
between collapse in the outer and inner arrays is
explained, in particular, by the different conditions of
plasmaformation. Indeed, the plasma production in the
inner array is influenced by the plasma flow from the
outer array. These peculiarities of the plasma produc-
tion process in the system under consideration require
further investigation.

As noted above, the spatial inhomogeneity of the
plasma rainstorm is retained upon the onset of intense
X-ray emission from the Z-pinch. The breaking-
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through magnetic flux entrainsthe plasmainwhichitis
frozen. The mass of the entrained plasma may account
for only afraction of the residual mass of the plasma-
producing material. The magnetic flux breakthrough
overtakes the subsequent implosion of the plasma. For
this reason, the X-ray emission pulse may precede the
final collapse of the plasmaasawhole. Thisbehavior is
clearly illustrated in Fig. 13, which shows a series of
pinhole images synchronized with the oscilloscopic
trace of the intensity of X-ray emission from tungsten
plasma. The first frame corresponds to the end of the
first stage of plasma production and the onset of the
magnetic flux breakthrough. Here, one can still distin-
guish a pinch precursor (prepinch), whose emission is
masked in the second shot by a superimposed pulse of
emission from the plasma rainstorm filling almost the
entire space inside the wire array. The second and third
frames correspond to the maximum intensity of soft
X-ray emission from the pinch. The time interval
between second and third framesis about 10 ns. During
this period of time, the streams of plasma rainstorm
almost completely reach the paraxial region, and the
intensity of X-ray emission passes through a maximum
and begins to decrease. Note that the image of expand-
ing plasma in the fourth frame has clearer and more
smoothened contour as compared to those of turbulent
jets of the plasmarainstorm observed in the second and
third frames.

The main conclusion following from these experi-
mental results is that the Z-pinch collapse under the
conditions studied begins with a spatially inhomoge-
neous breakthrough of the magnetic flux, followed by
plasma contraction toward the axis. The large-scale
axial inhomogeneity of this flux even at the start is so
pronounced that it isimpossible to speak of a continu-
ous plasma current shell. For this reason, it would be
incorrect to treat this phenomenon using the formalism
of the Rayleigh-Taylor instability or in terms of the
classical snowplow model.

Thus, the nonuniform contraction of the outer
boundary of discharge is caused primarily by the inho-
mogeneity of plasmaformed at the final stage. On the
whole, the plasma production zone may still contain a
considerable amount of the plasma-producing material.
However, should the plasma production in some parts
of the liner be insufficiently intense, the energy of the
azimuthal magnetic field accumulated outside a thin
cylindrical liner penetratesinside by forming aspatially
inhomogeneous flux of magnetic energy and entrained
plasma—a radial plasma rainstorm—that isin fact the
Z-pinch.

3.2. Criteria for Breakthrough of Magnetic Flux
into the Liner Volume
at the Final Plasma-Production Sage

As long as the balance between plasma production
and its outflow under the action of the Ampéreforcesis
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Fig. 12. Time-integrated X-ray photograph of double-shell implosion for an outer array of starting diameter Ag= 12 mm (30 alumi-
num wires of diameter 20 um) and inner array of starting diameter B = 6 mm (20 tungsten wires of diameter 6 pm): (1) plasma

rainstorm from the outer array.

ensured, the outer boundary of the current-carrying
plasma is determined by the initial geometry of the
plasma-producing medium. Evidently, the current-car-
rying plasma cannot be azimuthally structured: the cur-
rent channels may feature only the axial local small-
scale inhomogeneities, while the outer plasma bound-
ary remains at rest in the scale of the whole liner. The
plasma-producing medium (in particular, the dense
component of the material of exploding wires), being
converted into the plasma state under the action of a
heat flux and the emission from discharge, is consumed
a a rate of m(t) equa to the amount of materia
removed from the plasma-production region by the
Ampére force (with the outer boundary of the current—
carrying plasma occurring at rest). An estimate of this
rate was obtained in Section 2.4, where it was in fact
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implied that the necessary amount of the plasma-pro-
ducing material isavailable at each point of the zone of
plasma production. Yet the stock of this material is
exhausted in some time. In addition, the material sup-
ply rate may also decrease, for example, because of the
reduction in area of the particles of plasma-producing
material in the course of their evaporation. The process
of the material stock exhaustion and the material supply
rate decrease is locally inhomogeneous. As a result,
zones will eventualy appear in the plasma-producing
medium where the balance of the material supply and
the plasma outflow under the action of the Ampére
forces is shifted toward the latter process. These zones
are featuring uncompensated decrease in the plasma
density and, as a result, admit the breakthrough of the
azimuthal magnetic flux inside the axially inhomoge-
neous cylindrical liner. Now we will provide a simple
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Fig. 13. Pinhole images (exposure time ~2 ns) synchronized with oscilloscopic trace of X-ray intensity for an array of diameter
12 mm (60 tungsten wires of diameter 8 um) (shot no. 3880): the near-cathode pinch region is not recorded in frames 3 and 4.

evaluation of this process using the scheme depicted in
Fig. 14.

Let an axial gap d deprived of the source of plasma-
producing material to appear in a circular zone of
plasma production with radius R and thickness A. The
region of decreased plasma density is supplied with the
material at the expense of plasma diffusion across the
azimuthal magnetic field B from two sides, so that the
total incoming plasmaflux is

2
~2 O op
Gy=2 4n0_(2]TRA) 37 (11
At the sametime, the plasma outflow at avelocity of V,
(on the order of the Alfvén wave velocity) under the
action of the Ampére forces accounts for the outgoing
radial plasmaflux

G = pV4(21Rd). (12
Replacing, for the sake of simplicity, dp/dz by p/z and
assuming that \V, = I/5R(41tp)V2, we obtain an estimate
for the critical discharge current I, above which the

magnetic flux penetratesinside the liner viathe circular
gap with the axial length (width) d:

L [A] =3x 1021@3—?. (13)
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Assuming p ~10“ g/cm3, 0 ~ 10" esu, A=d = 0.1 cm,
and R=1cm, weobtain |, = 3 MA.

Since criterion (13) is obtained under very genera
assumptions, the above relations can be used only for
obtaining rough estimates. Nevertheless, weak depen-
dence of the critical current I, on the density p and its

J J“J /

Fig. 14. Breakthrough of azimuthal magnetic flux into an
axially nonuniform cylindrical liner: Rand A are the radius
and width of annular plasma-production region, d is the
axial gap not occupied by plasma-producing material, Gy is
diffusive plasma flux, Gg is radial plasma flow, and Hy is
azimuthal magnetic field generated by discharge current.
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strong dependence on the gap width d allow usto make
some general conclusions based on criterion (13).

First, azimuthal variations of the density p (which
depend, in particular, on the distance between wiresin
thewirearray) are not as substantial. Therefore, itisnot
as important whether the plasma-producing mediumis
azimuthally homogeneous or not (as in a wire array):
the produced plasma will unavoidably break into sepa-
rate coaxial fragments before the complete consump-
tion of the plasma-producing medium.

Second, the most probable are the relatively rough
coaxial gaps with the d values comparable with the
macroscopic size of the liner plasma in the final stage
of plasma production.

The appearance of acircular coaxia gap leadsto the
radial outflow of current with the residual plasmafrom
gap d, which may result in magnetic insulation of the
gap. If the magneticinsulation condition is satisfied, the
current ceases to flow through the gap. The simplest
condition for such amagnetic insulation is smallness of
the Larmor electron radius as compared to the gap
width (r, < d). For electrons with an energy of
0.5MeV under the conditions studied, the Larmor
radiusisr, ~5 x 103 cm and, hence, the magnetic insu-
lation of the gap is quite possible.

Now let us obtain another estimate for the condi-
tions under which the current does not flow through the
gap. If the azimuthal magnetic field with a plasma
breaking through the axial circular gap moves a a
velocity close to the Alfvén velocity, an emf isinduced
in the gap in the direction opposite to the electric field
exciting the current. The magnitude of this emf can be
estimated as

V -8 0 12
Eq [Cm}mo VaB D4 X107

Forl =2x10°A,r=0.5cm, p =3 x 10° g/cm?, and
V, = 4 x 107 cm/s, this formula yields E; = 3.3 x
10°V/cm. This emf can be sufficient to block the cur-
rent flow through the gap, provided that the gap width
d is not very small. Under such conditions, an electric
power of W, = E4ld istransferred viathe gap inside the
liner. Then, using expression (14), we obtain an esti-
mate

(14

d
r2.Jamp

W, [W] 04 x 107°)° (15)

4. MHD TURBULENT HEATING
AND RADIATIVE COOLING
OF STAGNANT PLASMA

4.1. MHD Turbulent Heating

The state of implosion is a natural consequence of
magnetic flux breakthrough into the paraxial region.
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Contraction of the magnetic flux and entrained plasma
is followed by the period of stagnant pinch. Spatial
inhomogeneity of the Z-pinch plasma is aso retained
upon the onset of stagnation. The characteristic trans-
verse size of jetlike plasmoids in the paraxial zone,
which emit quanta with an energy of 1-2 keV, amounts
to 100-200 um and the maximum length is several
times as great.

Previoudy [5], we demonstrated that, by thoroughly
selecting the initial parameters of composite wire
arrays, it is possible to obtain a radiative state of the
pinch in the form of a straight filament with a diameter
of ~400 um and insignificant spatial inhomogeneity at
atotal length of 15 mm. The duration (full width at half
maximum, FWHM) of the emission pulse from such
objects was 6-10 ns at a pulse front width of 1-2 ns.
The magnetic energy dissipated in the discharge at the
stage of intense emission amounts approximately to
4 TW (see Section 5.2).

Thus, our experiment has demonstrated transforma-
tion of a plasmarainstorm with an initial radial size on
the order of 1 cm into a plasma column with adiameter
below 0.5 mm, possessing a fine internal structure and
radiating in a multiterawatt power range. Apparently,
this result has to be explained without recourse to the
concept of liner as a massive, compact cylindrical
plasma shell accelerated by the magnetic field pressure
intheradial direction to akinetic energy on the order of
100 kJ, since such a shell was never observed in our
experiments. For thisreason, we believe that astagnant,
spatially inhomogeneous pinch features conversion of
the energy of the current-generated magnetic field into
the turbulent MHD flow of the ion component of the
imploded plasma. This process involves convective
mixing of the plasma with magnetic field, heating,
energy transfer from ionsto electrons, and X-ray emis-
sion from the stagnant plasma. We have suggested this
scheme [2] for aradiating Z-pinch based on the results
reported by Lovberg et al. [9]. This scheme had been
thoroughly studied [10] and, at present, the MHD tur-
bulent heating model can be considered as most ade-
guately describing the experimental data.

The MHD turbulent heating power introduced in the
form of the current-generated magnetic field energy
into the paraxial region of the pinch can be described by
a formula of type (15), modified so as to include the
parameters controlled in experiment. For a pinch of
radius r [cm] and the current | [A] flowing in the
imploded plasmawith amass per unit length M [g/cm] =
Tr?p, expression (15) yields the following approximate
formula for the MHD turbulent heating power per unit
length of imploded pinch:

3
] - 07
cm rM

(16)

where x isadimensionlessfactor describing the param-
eters (including the degree of inhomogeneity) of plasma
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in the pinch. This parameter was estimated [9, 10]
assuming that a certain part of the imploded plasmain
the pinch isfilled with toroidal magnetic bubbles pene-
trating from the periphery to paraxial region of the
pinch. According to this model, the final approximate
expression for the MHD turbulent heating power can be
written as [10]

3
|

TW1 _
W, [—C—rﬂ = 05—

(17)

where |, M, and r are measured in megamperes, micro-
grams per centimeter, and millimeters, respectively.

In application to real experiment, the accuracy of
formulas (16) and (17) should not be overstated.
Indeed, inhomogeneitiesin aplasmarainstorm are rep-
resented by radia plasma jets (exhibiting transforma-
tion in the course of implosion), rather than by toroidal
magnetic bubbles on a homogeneous plasma back-
ground. For this reason, the structure of relatively
coarse, large-scale inhomogeneities developed in the
MHD turbulent plasma rainstorm should be described
using factor X calculated based on some other assump-
tions. Most reliably, this quantity can be evaluated only
in experiment. It should be noted that strong depen-
dence of the transferred power W, on the current and
radius of imploded plasma in formulas (16) and (17)
implies the need for detailed information on the radial
distribution of current in the pinch, but such experimen-
tal data are so far not available.

4.2. Energy Balance
in a Radiating Turbulent Pinch

Let us assume that the MHD turbulent heating
power estimated by formula (17) is transferred to the
ion component of plasma, while el ectrons are heated by
the energy transferred from the ion component. Evalu-
ation of the energy transfer from ions to electrons
showed that, under the conditions studied, this factor
does not limit the radiation power.

An upper estimate for the radiation power W, 4 can
be obtained using the theory developed in [21]. Assum-
ing the mean path of radiation quanta to be |, and the
radiation output to be free, we have

_ AVogT!

Wrad - ' (18)

ly

where 0g is the Stefan-Boltzmann constant. For a
plasmaof multichargedions, thel, valueisgiven by the
formula[21]

_ 492 x 107 AT
Zo(Zon+ 1)*1p”

cm, (29

ly
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Fig. 15. Radial profiles of turbulent heating rate and X-ray
power output for M = 100 pg/cm and | = 2.6 MA: (1) W,
given by (17); (2) Wy for To=250eV; (3) Wiy, for To=
300 eV; (4) W,qq for T = 200 eV.

where p = M/Trr?, Z,,isthe average ion charge, A isthe
atomic weight, 1, is the average ionization potential
(corresponding to the plasma density p [g/cm?] and
temperature T [eV]), M [g/cm] is the plasma mass per
unit length of the pinch, and r [cm] is the pinch radius.
It should be noted that expressions (18) and (19)
derived using the method proposed in [21] significantly
overstate the contribution of a hard radiation compo-
nent with quantum energies above I,,,. With neglect of
the hard radiation component in expressions (18) and
(29), the radiation power decreases by factor of three,
which provides for a lower estimate (this estimate of

the radiation power is denoted Wy, ).

A comparison of the radiation powers for the MHD
turbulent heating of the pinch (Eq. (17)) and the radia-
tion power (Egs. (18) and (19)) shows that these values
differently depend on the pinch radius r. Therefore, a
pinch radius may exist for which the two powers are
equal. For a smaller radius of the pinch, the radiation
power estimated using these formulas exceeds the heat-
ing power. Once the pinch has contracted to such an
extent, the subsequent implosion proceeds in the
regime of radiative cooling, and the real radiation
power is determined by the MHD turbulent heating
rate. As an illustration, Fig. 15 demonstrates that the

condition W4, W, ~ W, corresponds to a pinch con-
tracted to a radius of ~1-2 mm when the current is
2.5 MA and the mass per unit length of the tungsten
plasmais 100 pg/cm.

Although the above formulas for the turbulent heat-
ing power (W,,) and the radiation power (W, Wiy)
giver only rough estimates, they nevertheless correctly
reflect the relationships between Z-pinch parameters
typical of our experiments. This alows usto draw cer-
tain conclusions that may provide a basis for subse-
guent experiments. In particular, it can be hypothesized
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that the condition of approximate equality of the radia-
tion power and heating rate for the Z-pinch in tungsten
plasma holds in a wide range of the degrees of pinch
implosion. In other words, radiation plays akey rolein
the energy balance of the imploding pinch under the
conditions of our experiments. Thus, radiative cooling
of the imploding spatially inhomogeneous plasma
explains the formation of radiating filamentous struc-
tures in the turbulent current-carrying plasma and the
transformation of aradia plasma rainstorm into radial
“protuberances’ observed in our experiments [5].

5. EFFECTIVE CONVERSION
OF ACCUMULATED MAGNETIC ENERGY
INTO Z-PINCH HEATING
AND MULTITERAWATT X-RAY EMISSION

5.1. Z-pinch as a Time-Dependent Nonlinear
Component of the Discharge Circuit

Energetic processes in the Z-pinch are closely
related to the magnetic energy supplied from a genera-
tor via a magnetically insulated transfer line. For this
reason, an analysis of the electric processes in the gen-
erator—MITL—Z-pinch circuit is a necessary prerequi-
site for correct understanding of the physics of Z-pinch
and for effective optimization of the pinch parameters.
Z-pinch, as an electric circuit component, is time-
dependent nonlinear impedance that consumes the
energy supplied from the generator creating amagnetic
field in the MITL. The character of the Z-pinch imped-
ance varies depending on the stage of discharge.

In the course of plasma production, which lasts for
almost the entire period of discharge current rise, the
outer current boundary remains at rest. This implies
that the MITL inductance (L, in Fig. 1) coupling the
load (Z-pinch surface) to the water—vacuum interface
of the generator remains virtually constant. Even
though a fraction of the discharge current is carried by
the load during plasma production, the magnetic energy
transferred to the load is small as compared to that accu-
mulated in the external inductance (L, ~ 10-20 nH). The
ohmic resistance of the plasma column with a diameter
of 1-2 cmissmall as compared to the inductive imped-
ance Ly/t, where T ~ 100 ns is the current rise time.
Therefore, the discharge in the course of plasma pro-
duction exhibits an inductive character, and the mag-
netic energy accumulated in the inductance L, outside

the liner can be estimated as Ey = 0.5Ly2%2 ~
100—-150 kJ.

At the stage of termination of the plasma produc-
tion, the magnetic flux breakthrough inside the liner
sharply changes the character of the load impedance.
Movingintheradial direction at avelocity of V,, (onthe
order of the Alfvén velocity), the magnetic flux gener-
ates an emf described by formula (14). From the stand-
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point of the electric circuit, thisemf is equivalent to the
active impedance

dL o x109Ya [3}

dt r Lcm
where r is the radius of the current channel. The accu-
mulated magnetic energy E,, is expended to compress
and heat the trapped plasma and drive the magnetic
field into the space within the starting radius of the
array. Upon breakthrough of the magnetic flux with
entrained plasma inside the paraxial region, the mag-
netic flux exhibits implosion and the pinch enters the
stage of stagnation. In this stage, the major part of the
magnetic energy and the energy supplied from the gen-
erator are converted into the MHD turbulent motion of
the ion component of the imploded plasma.

5.2. Experimental Determination of Electric Power
in the Discharge Circuit

With neglect of the electron losses in the magneti-
cally insulated transfer line, an equation for the current-
carrying (generator—-MITL—oad) circuit depicted in
Fig. 1a can be written asfollows:

PG BT
2E—pyl —== -0l = 0.

(20)
Here, L = L(t) isthe total inductance of the circuit and
Q isthe ohmic component of the load impedance Z(t).
Experimentally measured quantities are (i) the volt-
age V() = 2E(t) — pgyl (t) applied to the MITL and (ii) the
derivative dI(t)/dt of the total current. Using these val-
ues, it is possible to determine the active power and
some other characteristics in the discharge circuit. To
this end, Eq. (20) can be represented as the differential
equation with respect to the inductance L(t) (with
L(0) = Ly), involving the known values of V(t), dl(t)/dt,

and I(t) = [(dl/dt)

dL . di B
Ia+aL+(Q|—V) = 0.

(21)
Thisdifferential equation can be numerically solved for
an arbitrarily set form of the Q(t) function. The L, value
is chosen such that Lydl/dt ~ V(t) in the current rise
stage (while L(t) ~ Lo). In this way, we determine the
value of L(t), dL/dt, and W,y = V()I(t) (the power
pumped by the generator into the MITL). In addition, it
is possible to calculate the functions W (t) =
L(t)I(t)dlI/dt (called inductive power in the discharge
circuit) and the difference W, = Wgpy — Wing (called
active power in the discharge circuit). Figure 16 gives
an example of the results of such calculations for
Q(t) = 0. As can be seen, the active power in the dis-
chargecircuit reaches W, ~ 4 TW, which isabout twice
the maximum power supplied from the generator

No. 6 2004



CHARACTERISTICS OF HIGH-POWER RADIATING IMPLODING DISCHARGE

(Wgypp = 2 TW) in this particular experiment. On the
time scale, the maximum of W, is close to the maxi-
mum power of the soft X-ray emission pulse.

Note that it is the current derivative, a quantity dra-
matically changing in the stage of active implosion and
emission from the pinch, that determines the time vari-
ation of the inductive and active power componentsin
the circuit according to the expression for W, 4(t) =
L(®)I(t)dl/dt. At the moments of a sharp change in the
current derivative (see Figs. 1b and 16), the circuit fea-
tures dissipative processes involving multiterawatt
power related to fast implosion of the current-carrying
plasma, heating of the plasma, and X-ray emission
from the pinch. During the entire period of time related
to the current rise, plasma production, and the prepinch
formation, the active power in the discharge circuit is
small as compared to that developed at the moment of
emission from the pinch.

Figure 16 demonstrates that about half the active
power at the moment of maximum W, is provided by
consuming the previousy accumulated magnetic
energy. Indeed, W4 at this moment is negative, and the
other part, Wy, IS determined by the operation of the
generator, which continues to pump energy into the
MITL. In experiment, the relation between Wy, and
W, 4 depends on the choice of the load parameters: the
initial radius and mass per unit length of the liner. An
increasein these valuesleadsto adelay in pinch implo-
sion and reduces the power Wy, supplied by the gen-
erator. On the contrary, when both radius and mass of
the liner are small (i.e., for an early pinch implosion),
the active power in the circuit is primarily determined
by the generator power output.

In al experiments, the soft X-ray emission pulseis
strictly related on the time scale to the W, pulse. The
leading and trailing fronts of the emission intensity
pulse are somewhat steeper as compared to those of the
W, pulse. In experiments, the energy that dissipated in
the circuit, which is defined as

B = [Wastl,

reached alevel of ~100 kJ, and the soft X-ray emission
output energy was 5060 kJ.

5.3. Z-Pinch as an Effective Converter
of Magnetic Energy into Soft X-Ray Radiation

In order to obtain pul ses of soft X-ray emission from
the Z-pinch, it is necessary to provide for a number of
conditions, otherwise this task will not be solved.

Our experience shows that a real multiterawatt
Z-pinch with a cold start is athree-dimensional radiat-
ing object characterized by a high degree of spatia
inhomogeneity. Nevertheless, high-intensity soft X-ray
emission from the Z-pinch was observed in a rather
broad range of theinitial parameters of the plasma-pro-
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Fig. 16. Computed power characteristics of the discharge
circuit: (1) Wegpoi(t) = V(1)I(t) is the power supplied by the
generator to the MITL, (2) Wi q(t) = L(t)I(t)dl/dt is induc-
tive power, (3) Wa(t) = Wgypp — Wing is active power, and
(4) soft X-ray power output (arbitrary units).

ducing material. From this it follows that the high
power and yield of the X-ray emission from the Z-pinch
can be obtained provided that the plasma, abeit spa-
tially inhomogeneous, is capable of accepting and radi-
ating the supplied electromagnetic energy and that the
system of energy transfer and concentration is capable
of delivering this energy from the generator to the
plasma. From the standpoint of plasma physics, the
problem of inhomogeneity of the radiating plasmawas
considered in the previous sections. Below, we will
consider in more detail the requirements on the electri-
cal characteristics. Assuming that the properties of the
first component in the generator-MITL—Z-pinch circuit
can be determined independently, we will discuss the
necessary features of matching between the remaining
two components and between each of these and the
generator.

5.4. Optimum Matching between the MITL Inductance
and the Z-Pinch Impedance

If the Z-pinch were coupled directly to the genera-
tor, rather than via an inductance (representing the
MITL), the optimum matching condition (ensuring the
maximum transmitted power) between the nonstation-
ary pinch impedance Z(t) and the wave resistance p, of
the generator would look as follows: Z(t) ~ p, (for the
Angara-5-1 facility, p, = 0.25 Q).

The presence of an MITL with inductance L, and
the time-dependent behavior of the pinch impedance
Z(t) change the optimum matching conditions for max-
imum energy transfer to the load. In this case, the
parameters of the generator-MITL—Z-pinch circuit
have to obey a complex set of requirements. First, it is
necessary to ensure that the maximum energy would be
accumulated in the MITL by the onset of the effective
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Fig. 17. Estimated radial plasma-density profile in the gap
that cannot be exceeded for a given rate of power transfer
W, for the starting radius of plasma-producing load rg =

0.6 cmand | =3 MA: (1) and (2) are model profiles, (3) and
(4) are computed profilesfor W, =5 and 3 TW, respectively.

implosion of the current-carrying plasma. Second, the
pinch impedance after the onset of effective implosion
would increase so as to ensure that the accumulated
magnetic energy be dissipated in the imploded plasma
within the shortest period of time. Finaly, the MITL
must ensure the delivery of this energy from the elec-
trode gap to the pinch. Let us consider these require-
ments in more detail.

5.4.1. Optimum value of L,. Using Eqg. (20), it is
possible to determine the optimum inductance L, for
maximum magnetic energy accumulation correspond-
ing to a preset emf E(t) and L(t) = L. For the Angara-
5-1 facility, E(t) ~ E,,sin(tt/T), where T ~ 150 ns. By
solving Eq. (20), one can readily determine the opti-
mum value L, ~ 20 nH. The existence of this optimum
reflects the fact that py # 0. For L, values below this
optimum, the characteristic current decay time Ly/p,
turns out to be much shorter than T. In this case, the
energy cannot be completely pumped into the MITL
(Lo) and is partly reflected back to the generator. Thel,,
values exceeding the optimum pose limitations on the
current | developed by the generator. In the genera
case, for a semisinusoidal shape of the emf pulse E(t),
the optimum L, value isrelated to the generator internal
resistance p, as L, = 6p,T, where 6 = 0.5-0.6, T isthe
period [ng], and L is the inductance [nH].

5.4.2. Optimum value of pinch impedance Z. In
accordance with the results presented in Section 4, the
impedance of a stagnant MHD turbulent Z-pinch is
proportional to the current: Zy ~ 1/(rm?). In order to
effectively dissipate the accumulated magnetic energy,
this impedance must be much higher than that of the
generator that pumps magnetic energy into the MITL:

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

ALEXANDROV et al.

Zygt > pg. Apparently, avalue of Zg ~ 1 Q might provide
for asufficiently high dissipated power (W, ~10TW) in
the Angara-5-1 facility. It is also important that this
impedance would be switched quite rapidly (within
~10 ns). Our experimental results showed that, under
real conditions, this level has not yet been achieved.
One possible limiting factor, insufficiently high quality
of implosion reducing the active pinch impedance, was
considered in the preceding sections. Another possible
factor responsible for a decrease in W, can be insuffi-
ciently effective magnetic insulation of the MITL.

5.4.3. Performanceof theMITL magneticinsula-
tion. Magnetic insulation of the gap between current-
carrying electrodes has to be effective not only in the
stage of current rise and magnetic energy pumping into
the gap, but at the stage of magnetic energy transfer to
the imploded radiating pinch aswell (i.e., ~100 ns after
onset of the current rise). This period is of critical
importance for reaching a high power of energy dissi-
pation and, hence, high-intensity X-ray emission from
the pinch. Indeed, a voltage across the pinch corre-
sponding to W, ~ 10 TW must exceed 3 MV at a cur-
rent of ~3 MA. Therefore, the electric field strength in
the electrode gap near the pinch (d ~ 1.5 cm) to be hold
by the magnetic insulation exceeds 2 MV/cm. The
experience shows that a high energy density in theliner
system, both at the stage of magnetic energy pumping
and in the stage of its maximum consumption in the
radiating pinch, leads to the appearance of a dense
plasma of the electrode surface material, which moves
inside the gap at avelocity on the order of 107 cm/s. By
the moment of maximum emission from the pinch, the
electrode plasma fills up to one- to two-thirds of the
electrode gap. The presence of aplasmainthe gap gives
rise to the leak currents shunting the pinch current in
theimploded state. In addition, the rate of the magnetic
energy supply to the radiating pinch can be controlled
by the plasma through (or with) which the magnetic
flux is delivered to the pinch.

The energy dissipated in the pinch is supplied to the
paraxia region via the plasma with a density profile
p(r) inthe electrode gap. In the case of delayed plasma
production, the plasma density profile may have a
rather complicated shape (Fig. 17, curve 1). The pinch
plasma density is maximum in the paraxial region car-
rying the current I. Another local density maximum can
be achieved on the radius r, of the plasma-producing
material. The plasmamay aso occur intheregionof r >
ro in the magnetically insulated electrode gap, where it
appearsasaresult of the current-induced surface explo-
sion of the electrodes.

In the region of r < ry in the electrode gap, the
plasmais frozen in the magnetic field generated by the
current |. For thisreason, the velocity of propagation of
the magnetic field frozen in the plasma can be consid-
ered in the MHD approximation as close to the Alfvén
velocity: V(r) ~ V. Then, by analogy with formulas (14)
and (15), the total power that can be transferred viathe
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el ectrode gap of width d filled with aplasmahaving the
density profile p(r) forr <ryis

2 V2
W(r) [W] = Eg—n+ pTAE(and)VA

. d (22)

r2.Jamp

This relation can be also presented in the following
form:

=4x107

W = 1°Z,,

where

d
r’.JaTp

is the active nonlinear impedance of the discharge
imploding at the Alfvén velocity. This impedance is
independent of the electric conductivity of imploded
plasma. The nonlinear impedance of the imploded dis-
charge, in contrast to that determined by the Joule
losses in the plasma, depends on the discharge current.
This nonlinear impedance determines the energy spent
to transfer the mass of imploding plasma with the fro-
zen-in magnetic field. At the stage of stagnation of the
MHD turbulent pinch, thisimpedance characterizesthe
energy consumed for turbulent stirring of the magnetic
field and entrained plasma under the conditions of
effective radiative cooling of the plasma.

A criterion of applicability of the MHD approxima-
tion is c/w,d < 1, where c is the velocity of light and
Wy is the ion plasma frequency. In the opposite case,
when ¢/wy;d > 1, the motion of the azimuthal magnetic
field determined by the current | has to be described in
the EMHD approximation [22], according to which the
velocity of the magnetic field front propagation in the
plasma is evaluated as Vj(c/w, d) and the motion of
ionsisignored. The EMHD approximation is typically
valid in agap with the radius r > r,, where the electro-
magnetic power transmitted through the gap is

Z.(1,r,p,d) [Q] =4x 107

_10| 3d(1 + C/(}Opid)
r®JATp

For an analysis of energy fluxes in the plasmarain-
storm, that is, intheregion of r <r, let usfix the power
W(r) = W, = const in EQ. (22). Thisvalue in fact char-
acterizes the energy transmission capacity of the gap
for r <ry. We used Eqg. (22) with the experimental set
of parameters, | = 3 MA and W, = 3 or 5 TW, and
obtained estimates for the radial profile of plasma den-
sity in the gap, p(r) ~ 1/r4, which should not be
exceeded. These profiles are presented in Fig. 17

W(r) [W] =2x 10 a r>rg (23)
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(curves 3 and 4). For example, let amodel plasma-pro-
ducing material array with a starting radius of ry ~
0.6cm exhibit a loca density maximum p(rg) ~
15 pg/em?® (Fig. 17, curve 1). This density exceeds the
value permitted for apower of W, =5TW (which there-
forewill not be admitted into the pinch). If the p(r) pro-
file has no local maxima (Fig. 17, curve 2), the power
W, = 5 TW will be transmitted to the paraxia plasma
region. The power W, = 3 TW will be transmitted in
both cases. Thus, aresidual plasma (even with arela
tively small density) present at the pinch start radiusr,
poses a limitation on the level of power that can be
transmitted to the paraxial region of the pinch.

An analogous analysis can al so be performed for r >
ro by using (23) instead of (22). Equations (22) and (23)
predict a very sharp radia variation of the admissible
density not to be exceeded for a given energy transmis-
sion capacity of amagnetically insulated el ectrode gap:
p(r) ~ 1/r%. Therefore, a plasma created in the gap at
r > r, during the stage of prolonged plasma production
and after the onset of emission from the pinch may con-
trol the peak values of both discharge and emission
power. The model analyses presented above are by no
means quantitatively accurate. Quantitative description
requires further study.

ACKNOWLEDGMENTS

The authors are grateful to the staff of the Angara-5-1
facility for their engineering and technical support of
experiments.

This study was supported by the Russian Founda-
tion for Basic Research, project no. 02-02-17200.

REFERENCES

1. A.V.Branitskii, S. A. Dan’ko, A. V. Gerusov, €t al ., Fiz.
Plazmy 22, 307 (1996) [Plasma Phys. Rep. 22, 277
(1996)].

2. A. V. Branitskii, V. V. Aleksandrov, E. V. Grabovskii,
et al., Fiz. Plazmy 25, 1060 (1999) [Plasma Phys. Rep.
25, 976 (1999)].

3. V. V. Aleksandrov, A. V. Branitskii, G. S. Volkov, et al.,
Fiz. Plazmy 27, 99 (2001) [Plasma Phys. Rep. 27, 89
(2001)].

4. V. V. Alexandrov, |. N. Frolov, M. V. Fedulov, €t al.,
|EEE Trans. Plasma Sci. 30, 559 (2002).

5. V.V.Aleksandrov, E. V. Grabovskii, G. G. Zukakishvili,
etal., Zh. Eksp. Teor. Fiz. 124, 829 (2003) [JETP 97, 745
(2003)].

6. D. D. Ryutov, M. S. Derzon, and M. K. Matzen, Rev.
Mod. Phys. 72, 167 (2000).
7. M. G. Haines, IEEE Trans. Plasma Sci. 30, 588 (2002).

8. M. G. Haines, S. V. Lebedev, J. P. Chittenden, et al., in
Proceedings of 5th International Conference on Dense
Z-pinches (Albuguerque, New Mexico, 2002); AIP
Conf. Proc. 651, 345 (2002).

No. 6 2004



1172

9.

10.

11

12.

13.

14.

15.

R. H. Lovberg, R. A. Raily, and J. S. Shlachter, in Pro-
ceedings of 3rd International Conference on Dense
Z-pinches (London, UK, 1993); AIP Conf. Proc. 299, 59
(1993).

L. I. Rudakov, A. L. Velikovich, J. Davis, et al., Phys.
Rev. Lett. 84, 3326 (2000).

T. W. L. Sanford, N. R. Roderick, R. C. Mock, et al.,
IEEE Trans. Plasma Sci. 30, 538 (2002).

D. H. McDaniel, M. G. Mazarakis, D. E. Bliss, et al., in
Proceedings of 5th International Conference on Dense
Z-pinches (Albuquerque, New Mexico, 2002); AIP
Conf. Proc. 651, 23 (2002).

E.A.Azizov, V. V. Alexandrov, S. G. Alikhanov, etal., in
Proceedings of 5th International Conference on Dense
Z-pinches (Albuguerque, New Mexico, 2002); AIP
Conf. Proc. 651, 29 (2002).

R. B. Baksht, A. G. Russkikh, and A. A. Chagin, Fiz.
Plazmy 23, 195 (1997) [Plasma Phys. Rep. 23, 175
(1997)].

L. Karpinski, M. Scholz, W. Stepnevski, et al., in Pro-
ceedings of 4th International Conference on Dense
Z-pinches (Vancouver, Canada, 1997); AIP Conf. Proc.
409, 169 (1997).

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

16.

17.

18.

19.

20.

21.

22.

ALEXANDROV et al.

J. P. Chittenden, S. N. Bland, et al., in Proceedings of 5th
International Conference on Dense Z-pinches (Albu-
querque, New Mexico, 2002); AIP Conf. Proc. 651, 65
(2002).

P. R. Levashov, Preprint No. 1-446, OIVT RAN (Joint
Inst. for High Temperatures, Russian Academy of Sci-
ences, Moscow, 2000).

Sudies of Metalsin Liquid and Solid States (to 80-Year
Anniversary of |. P. Bardin) (Nauka, Moscow, 1964) [in
Russian].

V. E. Fortov and I. T. Yakubov, Physics of Nonideal
Plasma (Akad. Nauk SSSR, Chernogolovka, 1984) [in
Russian].

I. T. Yakubov, Usp. Fiz. Nauk 163 (5), 35 (1993) [Phys.
Usp. 36, 365 (1993)].

Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock
Waves and High-Temperature Hydrodynamic Phenom-
ena, 2nd ed. (Nauka, Moscow, 1966; Academic, New
York, 1966 and 1967), Vols. 1 and 2.

A. S. Kingsep, Introduction to the Nonlinear Plasma
Physics (Mosk. Fiz—Tekh. Inst., Moscow, 1996), p. 207
[in Russian].

Trandated by A. Betev and P. Pozdeev

No. 6 2004



Journal of Experimental and Theoretical Physics, Vol. 99, No. 6, 2004, pp. 1173-1182.

Trangated from Zhurnal Eksperimental’ noi i Teoreticheskor Fiziki, Vol. 126, No. 6, 2004, pp. 1344-1354.

Original Russian Text Copyright © 2004 by B. B. Zelener, B. V. Zelener, Manykin.

PLASMA,
GASES

Kinetic Processesin a Nonideal Rydberg Matter

B.B. Zelener®* B.V. Zeener? and E. A. Manykin®
aAssociated Ingtitute for High Temperatures, Russian Academy of Sciences, Moscow, 125412 Russia
bRussian Sate Research Center Kurchatov | nstitute, Moscow, 123182 Russia
*e-mail: bobozel @mail.ru
Received June 18, 2004

Abstract—A kinetic model is developed to describe ultracold nonideal Rydberg plasmas, which alows all
stages of the generation and decay of such aplasmato be sequentially traced. The plasmakineticsis considered
on the basis of available experimental data corresponding to a nonideality parameter of y ~ 1. The results of
theoretical analysis are in good agreement with experiment. Calculations show evidence of a significantly
decreased recombination rate and, hence, of the possible formation of ametastable structure in the plasmaunder
consideration. The distribution of the number of excited atomsis determined for the plasmawith No= N; = 7 x

10° and E, = 9 K. The observed behavior of the number and density of particles as functions of the time and
principal quantum number is explained. It is suggested that the distribution of excited atoms for the given
parameters has a maximum for the state with k = 25. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Recently, two research groups[1-4] have succeeded
in obtaining ultracold Rydberg plasmas with an elec-
tron temperature of T, = 1-1000 K and a charged parti-
cle density of n = 2n, = 108-10% cm=. The nonideality
parameter, defined as

B ean/3
L

(e is the electron charge and k is the Boltzmann con-
stant), reached 50, while the degeneracy parameter was

ne)\z <1,
where

- __
° (mkT)Y?

(% is the Planck constant and m is the electron mass).
Killian et al. [1-3] obtained an ultracold plasma via
complete ionization of cold Xe atoms (T, ~ 1074 K) by
laser radiation. Robinson et al. [4] generated a plasma
of alkali metals (Rb, Cs) by adding 1% of excited atoms
(T ~ 300 K) to acold atomic gas (T, ~ 10 K) excited
to aRydberg energy level (n = 36-40).

The results of experiments [1-3] showed that the
rate of recombination in the obtained plasmaaty= 1is
significantly decreased as compared to that in a plasma
withy < 1, and the characteristic recombination timeis
T,ec ~ 107 s. Analysis of the experimental data reported
in [1-3] poses a number of questions requiring addi-

tional investigations with respect to the following
issues:

(i) low population of excited levels;

(if) nonmonotonic decrease of the populations with
time;

(i) inconsistent behavior of populations n, depend-
ing on the principal quantum number from the stand-
point of ausual recombination mechanism;

(iv) anomal oustime variation of small populationsn,;

(v) decrease followed by increase in the total num-
ber of excited atoms with time;

(vi) sharp decrease in the plasma density with time.

All these issues have been discussed [5-11] and var-
ious kinetic models were proposed to describe the
obtained experimental data. The models can be divided
into two groups. The first group [5-7] proceeds from
the ideathat recombination beginsin the plasmaimme-
diately upon its formation and leads to an increase in
the kinetic energy of electrons. Thisresultsin agrowth
of the electron temperature T, and the kinetic energy of
ions. The second group [10, 11] assumes that the Cou-
lomb repulsion between ions in the plasma at the
moment of its formation leads to a high positive poten-
tial energy of electrons. As the plasma expands, the
potential energy is converted into kinetic energy.

Below, we will consider the assumptions made
in[5-11] in more detail. Better understanding of the
kinetic processesin ultracold plasmasobtained in [1-4]
can be reached by considering sequential stages from
creation to decay of a Rydberg plasma.

1063-7761/04/9906-1173$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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2. PLASMA FORMATION
AND ELECTRON TEMPERATURE
ESTABLISHMENT

According to Killian et al. [1-3], a Rydberg plasma
is created within atime of t ~ 10° s. Electrons gener-
ated as a result of the multiphoton ionization of atoms
by laser radiation acquire an additional kinetic energy
of E, = 1-1000 K, while ions remain at a temperature
of T; = T, = 10 K. The accuracy of determining E. is
related to a lower limit for the laser line halfwidth
(0.07 cm™). The obtained plasma was substantially
nonequilibrium, since the equilibrium electron temper-
ature T, is not established and all electrons occur in the
continuum.

The most rapid process in the course of equilibrium
plasma evolution is establishment of the electron tem-
perature. In aslightly nonideal plasma(y < 1), thetime
of T, establishment is given by the formula[12]

3/2 _1/2

. =T)7m
* sne'L,

where L, is the Coulomb logarithm. Under specified
conditions, this quantity is expressed as

)

Le = |n;/2,
2./my; )

Ve = €n3/KT...

Note that Egs. (1) and (2) have no physical meaning for
y2 = 141 Indeed, y2 = 1/4m makes L, = 0, while
greater y, values correspond to negative L.

The Coulomb logarithm L [12] isinvolved in calcu-
lations of the transport cross section for the interaction
between two charges. For the electron—electron interac-
tion, we have

pmax
_

Le= [ =, 3
e > (©)

pmm
where p is the impact parameter expressed in units of
Be? = €?/KT. Logarithmic divergence of the integral in
Eqg. (3) determines selection of the finite integration

limits. For adlightly nonideal plasma[12],

b

min — 1’ max — T
p p Bez

where

rp = (4mmn pe?) ™’

is the Debye radius. With these integration limits, we
obtain expression (2) for L.
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However, this choice of the integration limits in
Eq. (3) becomes senseless even for y, = 1/411=0.08. In
this case, the Debye radius is equal to the average dis-
tance between particles,

_ _ -3
rD - ratv - ne . (4)

Although the plasma is till dlightly nonideal, the
eXpression P, = rD/Be2 can no longer be used for
the upper integration limit.

Calculations of the thermodynamic properties and
correlation functions of plasma [13] showed that the
correlation of particles in a plasma with y > 0.1
becomes insignificant even at an average distance.
Therefore, the upper integration limit in Eq. (3) in this
caseiscorrectly set at r,, /Be? =y

The lower integration limit can be chosen at

Thisvalue dependsonnand T and isequal to unity only
at y = (1/4m~Y2 = 0.43. Thus, integration in the region
y = 0.08-0.43 is performed for the angles on the order
of (but always smaller than) unity.

With this choice of the integration limits, the Cou-
lomb integral L. isexpressed as

L. = In(2J/mys). (5)

Expression (5) (in contrast to (2)) is positive for y, >
0.08 and describes a logarithmic growth of L, with y,.
The region of validity of Eg. (5) correspondstoy, < 1.
However, even extrapolation of this expression to the
region of y,> 1 does not |ead to the loss of meaning and
retains the correct trend (whereby the relaxation rate
increases with y,).

Figure 1 shows the L4(y,) curves calculated using
expressions (2) and (5). The estimation of T4 in the
region of y, < 1 using formulas (1) and (5) for the
parameters of ultracold plasmas obtained in [1-4]
showed that T, ~10-10"1s,

Thus, we may ascertain that, after creation of the
plasmawithint ~ 10° s[1-3], the el ectron temperature
T, = (2/3)E, is established for t ~ 1011-10° s, Aswas
noted above, theion temperatureis equal to the temper-
ature of atoms because the fraction of kinetic energy
transferred to heavy particles during the ionization and
excitation of atoms is insignificant. Thus, the plasma
becomes two-temperature, athough it still remains
nonequilibrium with respect to ionization [ 14] sincethe
Saha and Boltzmann distributions are not valid.
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3. NONEQUILIBRIUM TWO-TEMPERATURE
RYDBERG PLASMA AND ESTABLISHMENT
OF THERMAL EQUILIBRIUM

When the electron temperature T, is established,
el ectrons begins to populate levels of the discrete spec-
trum. This implies the onset of recombination pro-
cesses. Since all eectronsinitially occur in the contin-
uum [1-3], recombination begins at the boundary
between the discrete and continuous spectra. The
main mechanism of recombination is via electron col-
lisions [14], while the intensity of radiative transitions
inthisregion of energiesissmall. Asthe binding energy
grows, the role of radiative processes increases. Biber-
man et al. [14] defined aboundary energy,

0 Ne s
= Dawio) ©

(where T, is expressed in eV and n, in cm3), that
divides the energy spectrum into two regions:

() E < Eg (where the impact processes dominate);

(i) E > Eg (where the impact excitation is followed
by radiative deexcitation).

In the case of an ultracold Rydberg plasma [1-3],
theinitial statesof plasmabeforethe onset of expansion
correspond to Eg ~0.1-1.1 eV, that is, to excitation lev-
elswith the principal qguantum numbersk=4-11. Inthe
course of plasma expansion, Eg shifts toward the
boundary of the continuous spectrum because it
depends on n, stronger than on T..

Thus, electron collisions give the main contribution
to recombination in major part of the discrete spectrum
under the conditions studied. Methods for the calcula-
tion of anonequilibrium distribution of populations are
described in [14]. The distribution of atoms over levels
under nonequilibrium recombination conditions is
illustrated in Fig. 2. Let us analyze this scheme follow-
ing an approach developed in [14]. In equilibrium, the
curve

In(n/a) = F(E

drawn through the points corresponding to real atomic
levelsis astraight line whose slope is uniquely related
to the temperature. 1t should be noted that, for temper-
aturesintheinterval T=1-10K, thislineiscloseto the
energy axis. Curve 2 schematically shows the behavior
of populations under nonequilibrium recombination
conditions.

The populations can be conditionally separated into
two groups. The first group includes the upper excited
states occurring in equilibrium with the continuum. The
second group represents al the other excited states
occurring under substantially nonequilibrium condi-
tions. Thetransition from one group to another is called
a“bottleneck.” The bottleneck position for Ex > (3/2) T,
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Fig. 1. Plots of Lg(ye) calculated using (I) Eq. (2) and
(1) Eq. (5).

In(ny/gy) In[n(e)/g(€)]

II
—”/’ I N

T

E, E, E;E, 0 E

Fig. 2. Schematic diagram illustrating the characteristic dis-
tributions of atoms over excited states: (1) equilibrium case
(using a straight line In(n,/g) drawn viapoints E, E,, ...
corresponding to real atomic levels, it is possible to deter-
mine the electron temperature); (2) nonequilibrium recom-
bination regime (dashed curve shows the distribution of
populations in the case when radiative processes are sub-
stantial; branch | corresponds to the group of statesin equi-
librium with the continuum; branch Il corresponds to the
group of nonequilibrium states; Eg is the boundary of the

influence of radiative transitions[14]).

is determined by collision processes and, in the case
under consideration, corresponds to the energy

Te. (7)

For example, at T,=6 K =5.2 x 10 eV, the number of
the Rydberg state determining the bottleneck is

- Ry _
km—J;n 132,

whereRy = 13.6 eV.
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Fig. 3. Plot of the Coulomb logarithm A versus TJ/AE, [14].

Methods for the calculation of the nonequilibrium
distribution of populations developed in [14] make use
of the condition of quasi-stationary excitation. In order
to evaluate therelaxation time T, of the kth excited state,
we use the formula[14]

4./2ne’E, A,
e
(BEx—Exs 1) (Ex1— By 1) ymT,

Ev.
xexpEEka 1%

where A, is the Coulomb logarithm for the interaction
between a free electron and a weakly bound one, and
AE, = |E,— E,_4]. It isalso assumed that the probabili-

ties of the radiative transitions do not contribute to T;l :
Strictly speaking, expression (8) is valid only for a
dlightly nonideal plasma; yet it can be used to evaluate
T, and follow the qualitative laws of variation of the
relaxation rate. For the Rydberg states, formula (8) can
be rewritten as

= J2mnge /\kk [Ry 25 9)
Ry, /mT,

Figure 3 shows the universal dependence of the
Coulomb logarithm as a function of the electron tem-
perature: A\, = f (TJ/AE,) [14]. As can be seen, A, varies
within several orders in magnitude depending on
TJAE,, which may significantly influence the estab-
lishment of quasi-stationary low-energy levels at low
T.. For 10?2 < TJAE, < 1, the Coulomb logarithm is
given with quite sufficient accuracy by the expression

T.
“AE,

-1
T, =2n

(8

(10)
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It should be noted that the accuracy of A, determi-
nation in the region TJ/AE, < 1islow.

Simultaneously with recombination processes, the
plasma features the process of establishment of the
equilibrium between electrons and ions. In order to
estimate the time t required for the system to attain
thermodynamic equilibrium, let us use the formula for
adlightly nonideal plasma[12]:

(T)**M,
8n,Ze’L (2mm,)"*

where n;, M;, and z are the ion density, mass, and
charge, respectively. Similarly to the evaluation of T
described above, the Coulomb logarithm L, for the
Debye plasma is calculated using formulas (2), while
that for a non-Debye plasma is given by formula (5).
For y ~ 1, the characteristic time 14 is on the order of a
few microseconds. Thus, the ion temperature in the
ultracold Rydberg plasma obtained in [1-3] becomes
equal to the electron temperature within a time period
of t = 10 s. According to our estimates, this time
decreases with increasing nonideality .

Now let us use Egs. (9) and (11) to determine the
levelsthat are quasi-stationary over thetime 1y, that is,
the levels for which

(11)

el —

To = Ty (12
Taking into account the condition of quasi-neutrality
(ne=n,), using formula (10), and accomplishing simple
transformations, we obtain the following approximate
relation for a quasi-stationary level with the minimum
number k:

expl2RY 10 8MeRy Le
0T 1 7 M Tea K

(13)

Calculations using formula (13) for y ~ 1 show that
the lowest quasi-stationary level has the number Ky =
24aT,=1K.

Thus, only levelsfor which the probabilities of tran-
sitions dueto electron collisions predominate, whilethe
radiative transitions are insignificant and are quasi-sta-
tionary at the electron temperatures T, of interest in the
case under consideration. Moreover, the recombination
flow is absent at k < ky, and the populations n, for such
k tend to zero. Theradiative lifetime 1,4 of these levels
ismuch greater than 106 s. Thislifetimeis given by the
expression [14]

k5
[ S,
1.6 x 10"

where A, is the probability of the radiative transition
from kth level to the ground state. For example, aradia-
tive lifetime of the level withk = 16isT,,4 = 6.55 x 10,

T = A = (14)

No. 6 2004



KINETIC PROCESSES IN A NONIDEAL RYDBERG MATTER

In order to determine the populations n, of levels
with the numbers above kg, let us consider a smple
approximation provided by the diffusion approach [14],
which isvalid primarily in the case of AE/T < 1. This
approximation yields the following expression for the
relative populations y;:

YiX(E/Te) + YaIX(E4/To) =X (E/To)]

HE) = X (T - (19
where
x(X) = 4 g, (16)
3[11!

The relative population y(E) is defined as the ratio of
the population of a given energy level and the equilib-
rium population. Let y; be the relative population of a
level below k. Taking this value to be zero, we have

_X(EITY)
XE)

Taking into account that E,/T, > 1 for E; = E, and that
X(X) =1 for x > 1, and passing to the absolute popula-
tions, we obtain

y(E) = yé[l (17)

7\
N, = nzgzk exp(EdT)(1-X(EJTe)).  (18)
where
)\ - L
/aneTe’

gk = 2k? is the statistical weight of the kth level, and
>, = 1isthe statistical weight for theion.

Using formula (18), it is possible to evaluate the
total populations of all discrete levels by integrating
this expression with respect to k from ks to k, (possible
at a given density and temperature). The main contri-
bution to the total population is due to levels with
E/T.= 1, for which

X(EJdTo) = 1—(4/3JT)(E/T.)?

x exp(-E/T), (19)
and
Kn
3 ne= —ni%ﬁyg A dei( (20)
Kgs
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Relation (20) can be approximately rewritten as
5=z 55@’% Ak 21)

Note that the value of the original in the integral of
Eq. (20) at the upper limit k,, isnegligibly small and can
be ignored. In order to determine the energy released
upon recombination for t ~ 107° s, let us integrate the
product Exn/T, with respect to k for the levels with
E/T.= 1

K,
2[Ry|j Aadk
3ﬁJ

u= 070 Mk

(22)

This expression can be approximately rewritten as

2Ry

u =
3/\/.,_.[ eDTD

. (23)
2k§s

Our estimates for the experimental point with n, =
2x10° cm and E, = 9 K [2, 3] corresponding to the

initial electron temperature T,= 6 K give Y n, =7 x

108 cm2 and u/2ny, = 2.1. Thisresult indicates that the
number of generated excited states accounts for about
15% of the number of charged particles, and the energy
(per particle) converted from potential to kinetic as a
result of recombination isabout 2KT. Thisvalueismuch
lower than that suggested in [5-9]. For this reason, we
believe that the conclusion made in [5-9] concerning
heating of the plasmais rather questionable.

It should be noted that the estimates obtained for the
aforementioned experimental point [3] using expres-

sions (21)—(23) is overstated for both an and u/2n,.

Thisisrelated primarily to the fact that formulas (21)—
(23) are valid for AE,/T, < 1, whereas the case under
consideration corresponds to kqs = 25 and, hence,
AE,/T, = 3. The tendency to overstatement is strongly
manifested on the passage to still lower temperatures
T.= 1-3 K, where AE, /T, > 5 and the calculated total

population ) n, issevera dozen of times greater than
theinitial density of charged particles.

We have also attempted to use amore accurate mod-
ified diffusion approach (MDA) [14] within the frame-
work of adlightly nonideal plasmamodel. The MDA is
based on a solution of the Fokker—Planck equation in
finite differences and retains a discrete character of the
energy space. This attempt was unsuccessful, thus sug-
gesting that it is necessary to take into account the
effects related to nonideality of the plasma (since the
case under consideration correspondsto y = 1). How-
ever, in the case of y ~ 1, these effects can be partly
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taken into account using MDA [14], for which expres-
sion (18) acquires the following form:

2
negk)\
ex
2 PO @

e

ng =

izeXDRYD

p 24
LOAKD T DTk + )Y @)

2 R '
oot B
ky = kqs—zgki/\klkl Te(k;+1)

An analysis of the sum in the denominator of this
expression shows that the main contribution is due to

the levels with
- Ry
k>k, = —Em.

According to[14], thisimpliesthat the energy spectrum
in the course of recombination has a bottleneck at E, =
3KTJ/2 (see formula (7)). For these k values, we have
A~ 1, exp(-Ry/T(k + 1)? ~ 1, and the sum in the
denominator is

ky = =ZJRyT
The effects of nonideality are related primarily to
the nonrealization of levels whose energies are compa-
rable with or lower than T,. An increase in the density
at T, = const and y > 1 leadsto nonrealization of thelev-
els with dimensions exceeding r,, = n3, primarily
those with large orbital moments. We may suggest that,
inthis case, g/2 = 1. Taking into account these effects,
the above sum in the denominator can be written as

.Z%_IH

and the expression for the populations acquires the fol -
lowing form:

) nggk}\sk%expg Ry
6 B
” (25)
z Ry [
- 9, /\k K P To(ky + 1)

1

According to this formula, the values of  n, at

T, = 1-3 K are within one percent of the number of free
charges and, accordingly, u/2ny, = KT. The proposed
approach leads to the results coinciding with those pre-
viously obtained by Hahn [11].
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4. EXPANSION OF PLASMA

Recently [15], we calculated the properties of a
plasmawith an extremely small number of electronsin
the bound states. The calculations were performed by
the Monte Carlo method within the framework of a
pseudopotential model. The values of the internd
energy per particle obtained for y = 1 can be approxi-
mated by a simple expression,

E _
NKT - AY

where A = 10 and y = Be(n, + n))Y3. The fact that the
internal energy per particle for y = 1 is positive has to
be taken into account in an analysis of the plasma
expansion stage.

As the ion temperature increases in the course of
their interaction with electrons, the plasma exhibits
enhanced expansion. During this, the stored positive
potential energy isconverted into kinetic energy and the
velocity of expansion exhibits a manifold growth. This
fact is confirmed by experimental data.

The velocity of plasma expansion [2, 3] was deter-
mined using the relation

(26)

3
2
Here, V; is a velocity entering into the expression for
the density of the expanding gas[2, 3]:
_ N
n= , (28)
[4m( &+ V2t3)

where N is the number of ions and g, = 180 um is the
rmsradius of the plasmacloud at the moment of plasma
formation. It was suggested [2] that the plasma expan-
sion velocity at E, > 70 K obeysthe relation

E.
aM;’

where E, is the kinetic energy of electronsand a = 1.7
is a fitting parameter determined from experimental
data.

Expression (29) with the fitting parameter a can be
also derived theoretically, proceeding from the follow-
ing considerations. According to a description of the
expansion of a spherical gas cloud [16], the average
radial velocity of the gaseous mass asymptotically
tends to a constant limit

— '2Ekin - Vmax
Voo - M - B ]

whereV,,., isthe boundary velocity and B isa constant.
An analysis of this problem shows that the velocity
given by expression (29) is related to the boundary

velocity Vi (Ve = ~/3 Vo) rather than to the asymp-
totic value V,, (aswas suggested in [3]). Inthe case of a

Edn = 5M; V. (27)

(29)

0:
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gas sphere exhibiting automodel expansion [16] with
an adiabatic exponent of y, = 5/3 and a constant gas
density over the volume (following from (28), we have

B=./5/3 and

10E,;,
Vo = [—Xn,
0 9M,

In the state of thermal equilibrium, T, = T, and the
kinetic energy of ionsis E;, = EJ/2, which yields

(30)

Ee
1.8M,°

Vo = (31)

As can be seen, expressions (29) and (31) coincide with
good accuracy. Inthecaseof y= 1 or E,> 70K, we will
determine V, from relation (26). After the establish-
ment of thermal equilibrium and complete energy con-
version from potential to kinetic, the kinetic energy of
ionsis

Edn = Ei + EJ2,

where

E = E/N = Aé’(n,+n)"?,

A = 10.
In this case, we eventually obtain

2(E, + E/2)
-

where the coefficient B, is determined via the Poisson
adiabatic exponent y,. Using the results obtained
in[15], it can be shown [16] that y, = 4/3 for a nonide-

ality parameter on the order of unity. Then, B, = /4/3
and formula (32) acquires the following final form:

8(Ae’(2n,)"° + E42)
V, = v .

Figure 4 (reproduced from [2]), shows the plots of
V, versusE, for n,=2 x 10° and 2 x 108 cm2 inthe case
of y = 1. The dependence of V, on E, for y ~ 1 signifi-
cantly differs from that for y < 1. First, the value of V,
in the former caseis several timesthat according to the
formulas obtained for the dlightly nonidea plasma
(y < 1), in agreement with experiment [3]. Second, the
obtained expression for the velocity (in agreement
with [11]) weakly depends on the electron density (on

the order of n'®).

In our calculations, it is possible to pass smoothly
from the case of E, < 70 K to E, > 70 K because the
internal energy E; per ion was calculated [15] in the
entire range of y. This dependence can be effectively

To =T,

Ne = N;,

Vo = (32

(33)
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Fig. 4. Plot of the plasma expansion velocity V versusini-
tial kinetic energy E of electronsfor theinitial average den-
sity i, varied from 6 x 10%t0 2.5 x 10% cm™>: (@) 10°< Ay ;
(0)2x108< R, < 10% (a) Ry < 2 x 108, straight line cor-

responds to Vg = ,/E/L.7M; [2]; lines | and Il are calcu-
lated using formula (33) for ng = 2 x 10% and 2 x 10% cm 3,
respectively.

introduced viathe coefficient Ain formula(26), by rep-
resenting it as A = A(y). For small values of the nonide-
ality parameter y, we have

=y,

and the expansion velocity is given by expression (31);
for y > 0.5, we have A > 0 and describe the plasma
expansion using formula (33).

It should be noted that, generally speaking, use of
the velocity V,, as a criterion for the comparison of the-
ory and experiment is not quite correct because, aswas
demonstrated above, this parameter is rather uncertain.
A more convenient criterion for this purpose is
AEJ(EJa) [3]. An expression for AE/(EJa) aty=1can
be written as

AE _ E-E/Ja _ @ _ 2Ay
EJa EJ/a E. 3/2
= 4 Al = 1.08AT" *
3x128" "¢ e
where
r Be’

° 7 (4mny3) ™

is the nonideality parameter used in [2, 3]. Figure 5
shows a plot constructed using Eq. (34). For ', > 1, the
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AE/(E./a)
10k .
o
i
I . ﬁ“ E
0.1 e L
0.1 0.2 0.5 1 2 5
e

Fig. 5. Plot of the excess energy in expanding plasmaversus
nonideality parameter ', for Eg/kg = 28 (@), 9.2 (O),
3.9 (m), and 1.5 K (») (experimental data from [2]); solid
line shows the results of calculations using formula (34).

Number of atoms
1800/ '

1200

Number of atoms, 10*
S N B~ O ©

600

1
55 70 85

1
100
Principal quantum number

Fig. 6. Rydberg atom distributionsfor E;=9K and N; = 7 x

10° at varioustimes after photoionization: t = 12 (e), 22 (m),
50 (), and 125 ps (v); thin solid curve is the equilibrium
Sahadistribution for t = 12 ps, T, = 8.5 K [3]; curves | and
I show the distributions of excited atoms calculated using
formula (18) for t = 25 ps, Teps = 2 K (1) and t = 125 ps,
Te125=0.22 K (I1). Theinset showsthetime variation of the

total number of Rydberg atoms (circles) and the density of
heavy particles (solid curve) [3].

results show good coincidence; in the region 0.1 <
. < 0.5, the E; values no longer correspond to rela-
tion (26) and the coefficient effectively decreases; and
in the region 0.5 < I, < 1, the ratio AE/(EJa)
approaches to the experimental values.

Let us evaluate the time of complete energy conver-
sion from potential to kinetic. Assuming that particles
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in the plasma are uniformly accelerated, the transition
timeis
2L

Ty = —,
" Vst+Vf

(35
where Vg = ,/4E./9M; istheinitia velocity, V; =V, is
thefinal velocity according to formula(33), and L isthe

distance over which this transition takes place. The lat-
ter value is determined from the relation

(36)

wherey, ~ ny° istheinitial interaction parameter and

y; ~ ni? isthe parameter of interaction for E; = 0. Sub-
dtituting relation (36) into expression (35), we obtain

o 2Yo-vi)Be’
tr = .
Y1Yo(J4Ee/OM; + V)

For n=2 x 10° cm3 and E, = 9 K, this formulayields
T, = 2 x 107" s. Theresults indicate that the energy con-
version from potential to kinetic after the establishment
of thermal equilibrium (T, = T;) proceeds much faster
than the process of temperature leveling.

(37)

5. RECOMBINATION
IN EXPANDING PLASMA

Anincrease in the kinetic energy of particles at the
expense of their positive potential energy leads to the
following effects.

(i) Highly excited states formed by that moment
exhibit partial ionization at the expense of increasing
electron temperature T, and decreasing total number of
these states. This is illustrated by experimental data
(points) in Fig. 6, which show that the population of
excited atoms and their total number (see inset)
decreases until t = 25 us. Starting at t = 25 us, both the
population and the total number of excited atoms
increase, the electron temperature ceases to grow and
exhibits a decrease, and the recombination process
begins.

(ii) The recombination at t > 25 us proceeds at a
slow rate, which isrelated to alarge velocity of expan-
sion leading to the “ quenching” effect. This effect (see,
e.g., [14, 16]) is caused by thefact that expansion of the
plasma proceeds at a higher rate than its cooling.

It was demonstrated [14, 16] that, if the recombina-
tion coefficient obeys the relation

—9/2

a =aT, ", (38)

the degree of ionization x = n/n can be described by the
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expression

t 2 -1/2
X = xl{1+2alej’—rl—(gg£} .

T4(t) (39

ty
According to this formula, x = const provided that

T~ £, wherel, > 10/9[16]. The parameter |, isrelated
to the adiabatic exponent so that the condition |, = 10/9
correspondsto the inequality y, < 4/3. Aswas indicated
above, the nonideality parameter on the order of unity
corresponds to y, = 4/3 < 1.37. This result implies that
the rate of plasma recombination exhibits a decrease.

As can be seen from Fig. 6, the distribution of pop-
ulations for the excited atoms with k = 55-100 changes
rather weakly with time. Therefore, the distribution at
every moment of time can be considered as quasi-sta-
tionary and, using formula (18), we can estimate the
temperature from the distribution of populations.

The results of calculations according to formula (18)
for t = 25 and 125 ps showed (see Fig. 6) that these
moments of time correspond to Tes = 2 K and Tgyp5 =
0.22 K. The temperature weakly depends on the con-
centration N, of excited atoms (even for atwofold vari-
ation of N,) to within the accuracy comparable with that
in[3]. The datain Fig. 6 show that the electron temper-
ature at t = 25 psis close to T, at the beginning of
expansion and then decreases with time. It is al'so seen
that the results of theoretical calculations of the popu-
lation distribution well agree with the experimental
points.

An analysis of the distribution of Rydberg atomsin
Fig. 6 suggeststhat thereisamaximum at k = 25. How-
ever, this assumption requires experimental verifi-
cation.

6. CONCLUSIONS

We have followed the entire sequence of stagesin
the formation and degradation of an ultracold Rydberg
plasma. Using theresults of our cal culations of the ther-
modynamic properties of such plasmas [15], we con-
structed a kinetic model and arrived at the following
conclusions.

In the region of plasma parameters obtained in [1-3],
the electron temperature is established within T <
1071° s and the ion temperature T; becomes equal to the
electron temperature T, within 14 < 106s. Thiscircum-
stance allows the plasma to be considered as occurring
in an incompl ete thermodynamic equilibrium, whereby
T, = T,, but the equilibrium popul ations of the energy lev-
els of excited atoms are not yet reached. The results of
our caculations [15] for the conditions studied in [1-3]
showed that such a system of charged particles featur-
ing no bound states is characterized by strong repul-
sion, which increases with the nonideality parameter y
(see Eq. (26)). In the stage of plasma expansion, this
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repulsion favors an increase in the velocity, leads to
ionization of a certain fraction of excited atoms (exist-
ing at the moment of establishment of the thermal equi-
librium), and sets the regime of recombination
“quenching.”

Theideaabout strong repulsion in such plasmaswas
originaly formulated (although for ions only) by Hahn
[10, 11]. However, this was made on a level of esti-
mates and left unexplained the role of electrons present
in the system in equal amount with ions.

An analysis of the radiative professes and collisions
in the temperature interval T = 1-5 K for the electron
densities n, = 10810 cm= showed that, during
plasma evolution up to the establishment of thermal
equilibrium within 1t < 107°, the recombination flow is
quasi-stationary only for the levels with k > 25, while
radiative transitions are substantial only for the levels
with k< 10. The mgjor recombination mechanism in
this stage is via collisions. The radiative lifetime of a
level withk ~10isontheorder of 10° s, whichismuch
greater than the characteristic time of the establishment
of thermal equilibrium. This relation indicates that,
within t ~ 1078 s, the plasma does not lose energy; the
kinetic energy released as a result of recombination is
spent for the ionization of excited atoms (the process
reverse to recombination) and the heating of ions and
electrons.

Aswas demonstrated above, the former process pre-
dominates at T, = 6 K. This implies that heating of
plasma due to the radiative energy transfer (suggested
in [5-9]) does not take place. The low electron temper-
ature shifts the bottleneck (featuring maximum resis-
tance to the recombination flow) close to the boundary
between the discrete spectrum and continuum. For
y <1, there are no levels with E, < KT above the bottle-
neck; asthe nonideality parameter yincreases, nonreal -
ized levels with r,, = ™Y appear, primarily those with
high orbital moments. All these factors favor adecrease
in the recombination flow, leaving only a very small
number of excited atomswith k > ks (much smaller than
the number of free electronsand ions). Thisfact confirms
the assumptions underlying a model used for the calcu-
lation of thermodynamic properties[15].

In this study, the analysis of plasma kinetics was
based on the available experimental data (see Figs. 4-6)
corresponding to a nonideality parameter of y ~ 1. The
theoretical and experimental data on the plasma expan-
sion velocity V, and the ratio AE/(EJa) are in good
agreement, although it was pointed out that V, (being
rather uncertain quantity) is not very convenient for
such a comparison. We determined the number of
excited atoms for N, = N; =7 x 10° and E, = 9 K and
explained the observed behavior, aswell asthe particle
number density variation depending on the time and the
principal quantum number. We suggest that there might
amaximum in the distribution of excited atoms (for the
specified parameters) at k = 25.
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Asthe nonideality parameter y increases, it is neces-
sary to take into account the following additional cir-
cumstances.

(i) A decrease in the recombination rate in a non-
ideal plasma(see, e.g., [17, 18]) related to the effects of
strong Coulomb interaction on the density of states and
the electron diffusion coefficient.

(ii) The absence of excited levels, with dimensions
greater than the average distance, below the k,th level,
which leads to an increase in resistance to the recombi-
nation flow.

(ii)The appearance of a long-range order and a
large positive energy of particles, asestablished in[15].

All these factors (especially the third, if the plasma
state could be stabilized at large y, for example, by
applying external electromagnetic fields) lead to an
increase in the characteristic recombination time; in the
absence of stabilization, these factors lead to the com-
plete absence of recombination.

The calculations in [15] referred to a plasma with
neglect of the bound states between electrons and ions
for k < 100. Recently [19], we performed calculations
for experimental conditions corresponding to various k
(e.g., for k > 36, see [4]) and determined the energy
per particle, E/NKT, in cases where the dependence on
y may substantially differ from that described by for-
mula (26). An analysis of the Rydberg plasma kinetics
in such casesisthe subject of our subsequent investiga-
tions.
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Abstract—The “interference” contributions from compact groups of scattering centersto the total intensity of
molecular scatteringinaliquid are analyzed. Theresult of the algebra of fluctuating quantities has been restored
for the case of long-range correlations between the groups. The role of short-range correlations is most signif-
icant for moderate deviations (10-3~1079) of the dimensionless temperature from its critical value. Estimates of
the relative value and temperature peculiarities of the contributions of multiplicity 1.5 proportional to the third-
order moment of the density fluctuations and an analysis of experimental dataindicate that they can be partially
observed under conditions deviating from the critical isochore. © 2004 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

In this paper, we explore the question of whether the
effects of molecular scattering of light in liquids attrib-
utable to the third (non-Gaussian) moments of the ther-
modynamic fluctuations can be observed. At present,
the answer to this question is believed to be negative
(see reviews [1, 2]). It should be noted, however, that
this conclusion is based on an analysis of the effects of
the true multiple scattering when the successive reemis-
sion events occur between distant scattering centers
spaced |ri —r;| > A = r, apart, wherer  isthe correlation
length and A is the wavelength in the medium. In the
corresponding calculations, the electromagnetic field
propagators,

2 et 21
Te(r) = (K0 + 0,0p)—, k==
GB( ) ( opf a B)4T[k2r A

are replaced with their asymptotic expressions for the
wave zone, and standard asymptotic uncouplings are
used in place of multipoint correlation functions. As a
result, a quasi-Gaussian fluctuation model is obtained,
in which the odd-order fluctuation moments are neg-
ligible.

We proceed from the assumption [3] that the inten-
sity I, 5 of the molecular light scattering of multiplicity
1.5 has the largest relative value at a certain distance
from the critical point where all three scattering centers
arespaced |ri—r;j| s r. < A (i, ] = 1, 2, 3) apart. Inthis
case, the three-point correlation functions cannot be
uncoupled, but the intensity I, can be expressed in
terms of the third-order fluctuation moments. Prelimi-
nary estimates [3] show that the contribution from the
third-order moment of density fluctuations to the per-
mittivity fluctuations in a single-component liquid in
the appropriate temperature and density ranges is com-
parable in magnitude to the corresponding contribution

from the Gaussian part of the fourth-order moment. If
the true double scattering for thisregion is still relatively
weak, then |, 5 should be experimentally measurable.

To single out these contributions from the overall
scattering pattern and to quantitatively estimate them,
we perform a macroscopic analysis of the effects of
molecular light scattering by compact groups of scat-
tering centers. A compact group is interpreted here as
any group of scattering centers in which |rj —r;| < A.
From the physical point of view, scattering by such
groupsissingle, but the corresponding scattering inten-
sities |, are determined by the correlators [JE®,
H™M=*)] Cof individual termsin the iterative series E® +
E@+E®+ ... andHO +H@ +H® + _ for theelectric
and magnetic field strengths in the scattered wave. The
scattering multiplicity defined as (n + m)/2 no longer
corresponds to the iteration step number in solving the
integral equation that describes the propagation and
scattering of a wave in a statistically inhomogeneous
medium.

The fact that the domains of integration variables
where the internal propagators corresponding to
reemissions between the members of a compact group
exhibit singular behavior is crucia in calculating the
contributions I ,,,. This allows us to use methods of the
theory of generalized functions [4] in our analysis and
to single out the leading-order contributions to the total
intensity | of single polarized scattering in each itera-
tion step. In theimmediate vicinity of the critical point,
the expression derived here reduces to the result of the
algebraof fluctuating quantitiesfor systemswith acon-
served order parameter [5]; in addition, an explicit form
of the coefficients of the expansion of | in terms of the
algebra elementsis established.

Inthe other limit, when thereis no nonlocal correla-
tion between fluctuations, individual terms of the series
expansion of | are determined by the second or higher
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order moments of thermodynamic fluctuations. For a
single-component system, the moments of density fluc-
tuations, which play a major role, can be expressed in
terms of isothermal compressibility 3 and its deriva-
tives by using the grand canonical ensemble. Thus, we
can go beyond the scope of the Gaussian approximation
and simultaneously use the van der Waals equation in
our estimates. These estimates and the appropriate
analysis of experimental data[6] on the depolarization
ratio A for scattered light in xenon indicate that detec-
tion of the contributions due to the third-order moments
of density fluctuations to molecular scattering appears
to be partially possible and is most probablein the tem-
perature range 107° < 1 < 1072, 1 = [T — T /T, by devi-
ating from the critical isochore to lower densities.

2. ANALY SIS OF THE PECULIARITIES
OF THE PROPAGATOR

The most singular contribution to the propagator
Tap(r) at small values of the argument comes from the

derivative O,0gr . To analyze it, let us treat r* as a
generalized function and introduce the corresponding
linear continuous functional

F(9) = [drio(m) )

defined on the set of smooth functions¢(r) that are con-
stant at zero and are such that

o(r),0¢(r)/or,rad(r)/or ——~0

(e.g., according to the Ornstein—Zernicke law |d(r)| 0.
e /r,a>0).
Following standard rules [4], let us define the deriv-

ative 0,r ™ as the generalized function associated
with the following functional:

J'dr%]uDB%E(I)(r) = ligmofdr%(mamﬁq)(r)). @)

Here, the integral on the right-hand side is taken over
the three-dimensional space V, from which the sphere
of aradius € > O centered at the origin was removed.

Double integration by parts yields the following
expressionase — 0:

Jor oo )
o e
= Idrg—%”é(r)éawr—lg,(SeaeB—%)%d)(r),

\Y
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where &(r) is the Dirac delta function, &g is the Kro-
necker delta, and e, isthe o component of the unit vector
e=r/r. Thus, we represent the derivative [, gr* as the
expression in the bracesin (3). It satisfiesthe symmetry
requirements and leads to the well-known result Ar-1 =
—41d(r). By analogy, wefind the generalized derivative
Ogrt=—e,/r
The propagator T,s(r) can be represented as
i kr

~ 1 ikr 1
Tag(r) = s—kzé(r)6we —4—m(6aB—eaeB)e
(4)

1 M i i
+ oy 5—3 - r—lg(éaﬁ —3e,e,)€.

This representation should be understood in the sense
that the following equality holds for any function ¢(r)
from the chosen set:

_[drfus(f)¢(r) = IdrTaB(r)q)(r). ()

Thus, we represent propagator (4) as the sum of
three contributions the second of which corresponds to
distant reemissions between the scattering centers. The
second and third terms are nonzero at a # (3; their role
in light depolarization due to both true double scatter-
ing and the scattering by a compact pair of scattering
centers, aswell asthe relationship of the latter depolar-
ization channel to the general depolarization mecha
nism due to fluctuations of the thermal fluctuation distri-
bution function [7], were discussed in [8, 9]. Theisotro-
pic first term in (4) is the most singular at a = (3; its
contributions to polarized scattering are analyzed
below.

3. SCATTERING INTENSITY

Given representation (4), the electrodynamic part of
the problem can easily be solved. We assume that per-
mittivity fluctuations o€ = € — g, lead to relatively small

frequency shiftsrelative to the incident wave (Rayleigh
scattering). The equation that describes the wave prop-
agation in such a medium takes the form

AE + K°E —graddivE = —k_S€E, (6)

where k, = K/ /€, . To calculate |, we restrict ourselves

to a static model and write the equivalent integral equ-
ation

E(R) = EO(R)—k(Z)Idr'T'(R,r)6s(r)E(r), @)

\Y
where E(r) = e exp(ik - r) isthe electric field of the
incident wave, and €, is the unit polarization vector.
Applying an iterative procedure to (7) and replacing all
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internal propagators with their most singular parts (the
first terms in (4)), we use a standard method [10] to
obtain the following result for if |R| > L (L isthe size of
the system):

kR, 2

KoEor s
T LR X [Rxe]

E(n)(R) - _

(8)

x E_Si Idr(és(r))” e,

where R = R/R is the unit vector toward the point R
and g isthe change in the wavevector due to the scatter-
ing. The magnetic field of the scattered wave is calcu-
lated by using the relation

HO(R) = — curIE(”)(R)

itsintensity, by using the Poynting vector. We have

S o ©

nm=1

lom = a=Re[JE™(R) x H™*(R)] (RO

8m (10)

where the angle brackets denote averaging over the sta-
tistic of fluctuations d¢. Taking into account (10) and
the spatial homogeneity of the medium, we obtain

D 1 |:|n+m—2
Inm 0 D_£J:|
(12)
><J'dr [{(3e(r))"(d¢(0)) ="

In what follows, we omit the factor
kOV
T[2 2

where |, is the intensity of the incident wave and V is

the scattering volume.

Thus, the intensity | is determined by the spatial
Fourier transforms of the (irreducible) fluctuation corr-
glators G,,(r) = I8"(r)e™(0)

Strong permittivity fluctuations are mainly due to
fluctuations of the order parameter &¢,

[1-(R )T,

lo= 8nk |E°|

_ [PE0
de= EB¢56¢'

Therefore, the correlatorsin (11) reduce to the irreduc-
ible correlators 0 "(r)¢™(0) Formulas (9) and (11)
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directly confirm the hypothesis [5] about the existence
of acomplete set (algebra) of fluctuating scalar quanti-
ties in the problem of molecular scattering of light in
liquids; moreover, all coefficients in the expansion of
the intensity in terms of the algebra elements can be
calculated.

The critical exponents for the contributions I,,,, can
be estimated by using the scaling parameters A, of the
algebra elements. Assuming the permittivity and its
derivatives with respect to the order parameter to be
weakly sensitive to the critical point, we may write in
the long-wavelength limitq — 0

|an_[dr [3¢(r)"(do(O)™M k™™ (12)

The equality of the scaling dimensions for the left-
and right-hand sides of Eq. (12) implies that

d-A,—A,

o 13)

Mom =

where A, isthe scaling parameter for T.
The first-order e-expansion (see [5, 11]) yields

2—s+ n(n—1)

- -_¢
2 tTe & MT2

A, =n 3
where € = 4 — d characterizes the deviation of spatial
dimension from 4. Hence, in particular, we find that
Ui, = 12 + €/6, which yields i, = 0.67 at € = 1.

Thus, the derived temperature dependence of the
intensity of multiplicity 1.5 scattering in the fluctuation
region is |, 5 00 1%, which agrees with that obtained
in [5]. However, asfurther estimates show, thistemper-
ature regime is reached in afairly close neighborhood
of the critical point, where the effects of true multiple
(in particular, double) scattering are more significant.
Multiplicity 1.5 scattering can be detected sufficiently
far from the critical point, where nonlocal correlation
between fluctuationsisrelatively weak (in the so-called

Rayleigh region).

4. SCATTERING
IN THE RAYLEIGH REGION

Since the integrand in (11) does not vanish at T =
108 only when |r| =< r, < A, we may replace the expo-
nential factor with unity and express the remaining
integral in terms of thermodynamic fluctuation
moments [10]. Recalling that the integral in (11) is per-
formed with respect to the difference r = r; — r,
between the coordinates of fluctuations at distinct
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points r, and r,, we change to an integral over these
coordinates. We obtain

n+m-2.

1L 00U 5" (5)™,

Dg(ﬁ

where the symbol [1..[} denotes acorrelator averaged

(14)

over amacroscopic region V:

[(3¢)"(8e)",

_ 1, (15)
= \7] Idrzﬂ&(h)) "(8g(r,))0

We define the thermodynamic contributions to the
fluctuationsof e"(n=1,2, 3, ...) as

ny _ n_:] — 1 n
Ae) = € —¢ \N/{dré(e (r)). (16)

For the terms up to the fourth order in &g, we can prove
that [(5€)"(de)™[y = [(Ae)"* ™MLl

Indeed, at n = m = 1, this relation follows directly
from (15) and (16) and is well known [10]. For n=2
and m= 1, we may write

[{(3e(r,))*(3e(r,))0
= [B(SZ(r 1)) OE(r,)0— 28 [de(r,)0g(r,)8

hence, using (15) and (16) we obtain

(3e)X(3e)y = £°—3ee2+28° = Ae)D

The remaining relations can be proved in asimilar way.

Thus, theintensity | ,,, of molecular scattering in the
Rayleigh region is determined by the moments of order
n + mof thermodynamic permittivity fluctuations:

“Vrne) ™ (17)

|:][]__l_[]n+m
nm D 38(:4]

If light is scattered in a single-component system,
where A¢ is mainly due to fluctuations of the particle
number density n, Ae = (d/on)An, then the moments
[{Ag)"[can be expressed in terms of moments of fluctu-
ations of the number of particles AN in afixed volume

by using the relation [{An)"O= v [(AN)"C] Denoting
I, =14, (single scattering), 1,5 = 15 + |, (scattering of
multiplicity 1.5), and |, = 1,5 + |, + 13, (the contribution
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of groups of four closely spaced scattering centers), we
useformulasfrom[3, 12] to obtain thefollowing for the
first six terms of series (9):

2
1,0 Epg—fg ks TB, (18)
aﬂmgka HD O

150 Beo. O (19
15 ] v EQB \E (19)

BHO:-;D“EBk 5T o, ks T
, (20)

o ,@PB 1=

<8+ 7885, , * e )

where kg is the Boltzmann constant. Contribution (19)
and the second term in (20) are due to the deviation of
the statistic of fluctuations AN from a Gaussian one.

At present, the explicit form of the derivatives of the
compressibility 3 near the critical point is unknown.
However, in the temperature range under consideration,
the functional structure of the derivative (0p/0P);  can
be estimated by using the van der Waal s equation. Hav-
ing performed appropriate cal culations, we find that the
expression in the bracesin (19) is

30(3w+2)'[B* + 6P (1 + w) "B,

where w = pJ/p — 1, p isthe density of the liquid, p. is
its critical value, and P, is the critical pressure.
We see that 1,5 = 0 on the critical isochore, which

satisfies the conformal invariance condition [13]. Devi-
ating fromiit by w, we have thelower limit (3 = 1/6P.1)

3k
el = 5 Tl g2 (21)

6rDVT

Assuming that the Gaussian contribution in (20) is
the dominant one, we obtain the following estimate
using formula (21):

el = Eol@
| (ndg/on)T’

For liquids characterized by low values of nde/on, the
contribution I, 5 can be decisive. In particular, g, = 1.3
and nde/on = 0.33 for xenon [6]; therefore, |1, 5/1,] =
4 wfT.

We also provide other datafrom [6] used below; A =
428 x 10° cm, r, = 2.2 x 1081798 ¢cm, P, = 5.84 x
107 dyn cm, p, = 188.2 Amagat, and T, = 289.765 K.
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To estimate |1, ¢/1,|, we note that the linear size of the

region V far fromthecritical point must be much larger

than the range of action of intermolecular forces; at the
sametime, it can remain small compared to A [10]. Set-

tingV =25x 109 cm3for t = 1 x 1072 (i.e., for cor-
relation lengths r, < 4 x 1077 cm) and kgT = 4 x
107# erg, we obtain

0eks TBlw
on gVt

IIL-S = 1.2x 10w 77,

which is ~1% at |w|= T = 1 x 102 Passing from the
compressibility critical exponent y = 1 used above to
y= 1.2, dightly reducing V, and varying w and 1, we
can increase this estimate by an order of magnitude.
Note also that the intensity of the double polarized scat-
tering [2, 9] in thisregion

Iy 0 (nde/on)* LKk T*B?/15m
(L isin cm) and the contribution |4 5 (if |w|= T) exhibit

similar temperature dependences, but |l 5| exceeds |4
for small L:

4
<01 WA gl
1LV TL

lis

lq

In a single-component liquid, the contribution due to
fluctuations of the distribution function for thermal
fluctuations (see [7]) can be ignored.

For r,> 4 x 107" cm, V' becomes more certain [5]:

V ~ 4nrf /3. Inthis case, the pattern of the temperature
dependence of contributions (19) and (20) changes sig-
nificantly. The first term in (20) yields a well-known
result predicted by the Gaussian model for order-
parameter fluctuations: I, O r.. Approaching the critical
point in such a way that |w|B = const, we find that
I,5 0rc, whichisclosethe result [5] of the scaling the-

ory restored in the preceding section. Sincel, [ ri , the
relative role of contributions (19) and (20) in thisregion
decreases sharply. They are additionally suppressed by
the contribution |4 O B?; the growth of the latter as we
pass to arange of T < 10~ slows down.

5. OBSERVATION OF 1.5 SCATTERING

Asthe above estimates show, the most favorable sit-
uation for experimentally detecting the effects of the
molecular scattering of light of multiplicity 1.5 isreal-
ized for liquids with low values of the parameter
nds/on, with the contribution |, 5 having the largest rel-

ative value in the temperature range 10° < 1 < 107
and at comparable values of w. The fact that 1,5 < O,
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while the contributions I4, 1, 14, the contribution of the
double depolarized scattering | 4 (on the order of 1,/8[9]),
and the contribution of the depolarized scattering by the
fluctuations in anisotropy |, (relatively small in smple
liquids and virtually insensitive to the critical point) are
positive, favors its separation from the total scattering
intensity.

Consider the depolarization ratio A of the scattered
light. Taking into account the contributionsfor asimple
liquid listed above, we can write

_ lat lgg
SR EIET (22
Let us pass from (22) to therelation
lag o L+ lasli+ (19150 23

-1
1A 1+1,0g4

Given the above temperature dependences for the indi-
vidual contributions, its structureis

x _1—aV @t X+ bf(x)
=0 , 24
A 1+cx? )
where a, b, and c are positive constants; x = kgT[3; and
the function f issuch that f(x) = xfor T = 10 and acon-
stant valueis approached at T < 1074, If the contribution
of I, siszero (a=0), then theright-hand side of (24) is
a monotonically increasing function of x that rapidly
approaches a linear function as the denominator
decreases and then levels off. The contribution of |, 5 <
0, must violate the monotonic behavior of (24): theini-
tial increase gives way to a decrease, passage through a
minimum, and then a possible increase and saturation.
No attempts to experimentally test these predictions
have been made so far.

The depolarization mechanisms of the molecular
scattering of light in xenon were experimentally studied
by Trappeniers et al. [6], who analyzed in detail the
dependence of A on

_ -4 (Eg—=1)(& +2) 2 4
D = k; [%} (ks TB) ™ O x™.

Using these data, we plotted (see figure) the values of
(DA)™ and D for thirty points in the temperature
range from 39.1880°C (T = 7.8 x 107?) to 16.6252°C
(1 =3.5 % 107) lying on the isochore p = 186.93 Ama-
gat (w=6.8 x 10%); L = 0.547 cm. A maximum and a
minimum are observed at T = 4.1 x 102 and 1.8 x 1074,
respectively. The qualitative behavior of the plot and
the parameters of its characteristic points are in satis-
factory agreement with our estimates.
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Specific Features of the Reflection of Infrared Radiation
by Crystalline Dielectricsin a Magnetic Field
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Abstract—Magnetic-field-induced variations in the reflection spectra R(A) of the crystalline dielectrics Al,O5,
LiF, and MgO in theinfrared band (A = 2.5-25 pm) are investigated. It isfound that the reflection spectra exhibit
specific features in the neighborhood of wavel engths corresponding to the excitation of optical phonon modesin
the above-mentioned crystals and that a magnetic field causes an appreciable variation in the reflectivity at these
wavelengths. To qualitatively describethe effect of amagnetic field on thereflection of light, the magnetoreflection
spectraAR/R areinvestigated. The spectra AR/R exhibit sharp peaks in the neighborhood of wavelengths at which
the materials under investigation are characterized by minimal reflectivity. The values of AR/R for p-polarized
infrared radiation in a magnetic field of about 12 kOe amount to about 0.5% for Al,O5 a A = 9.6 pum, 7% for LiF
aA=11.1pm, and 0.07% for MgO at A = 11.7 um. © 2004 MAIK * Nauka/Interperiodica” .

Nanocomposite materials containing ferromagnetic
nanosized grains dispersed in dielectric matrices
(Al,04, HfO,, and MgO) play an important role in the
study of tunnel magnetoresistance (TMR). The magni-
tude of TMR is determined by the type of the magnetic
and oxide materials, the stoichiometry of their compo-
sition, and the shape and concentration of ferromag-
netic inclusions. The recently discovered magnetore-
fractive effect (MRE) [1] hasbeen widely used for scru-
tinizing the details of the physical nature of the TMR.
This effect consistsin the dependence of the reflection,
transmission, and absorption coefficients of a material
on the applied magnetic field. It is believed [1] that the
MRE is associated with the spin dependence of the opti-
cal conductivity of materials. The MRE was predicted
theoreticaly in multilayer [1] and granular [2] metallic
magnetic structures. It was experimentally verified in [3,
4] in magnetorefractive investigations of multilayer
magnetic structures and in experiments with granular
metalic [5, 6] and metal-dielectric [7-12] structures.

Investigations of metal-dielectric nanocomposites [7—
12] revealed peaks in the spectra of MRE in the range
of frequencies close to that where the materias of
dielectric matrices exhibit optical phonon modes. How-
ever, the nature of these peaks has not been determined.
It was also established that the MRE spectra of metal-
dielectric films depend on the polarization of the inci-
dent light [10-12]. It should be noted that the MRE in
reflection experiments attains its maximal value for
p-polarized light when the angle of incidence
approaches the Brewster angle. This is especialy
clearly manifested in metal-dielectric structures with

the content of ferromagnetic grains close to the perco-
lation threshold [11, 12]. The authors of these papers
developed a theoretical model to describe the MRE
spectrain similar structures that accounts for the rela-
tion between the MRE, the TMR, and the optical
parameters of the system.

In the present study, we tried to determine the role
of the dispersion properties of the materials of dielec-
tric matrices on the reflection of infrared radiation from
metal-dielectric nanocomposites in a magnetic field.
We measured the infrared reflection spectra of materi-
als frequently used as dielectric matrices in nanocom-
posites. We aso investigated the effect of magnetic
field on the reflectivity. The experiments were carried
out under the same conditions as those used when
investigating the magnetorefractive properties of metal-
dielectric films[10].

For magnetooptical measurements, we used the fol-
lowing crystalline samples, were optically polished
from one side: Al,O; crystals with orientations [1012]
(R-plane) and [1120] (A-plane), aLiF crystal with ori-
entation [001], and a MgO crystal with orientation
[100]. The purity of the crystals produced by Goodfel-
low amounted to 99.99%. The light reflection spectra
R(A) in the infrared range of wavelengths from 2.5 to
25 um were recorded on a Nicolet 670 FTIR spectro-
meter with an MCT-B photodetector, which was cooled
by liquid nitrogen. Spectral measurementsin polarized
light were carried out with the use of a KRS-5 mesh
polarizer. When measuring the light reflection spectra
as a function of a magnetic field, the mirrors of the
spectrometer were taken outside the device so that
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Fig. 1. The reflection spectra of a p-polarized infrared radi-

ation for crystalline dielectrics.
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Fig. 2. The AR/R spectra of dielectrics measured in a mag-

netic field of 12.2 kOe.
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infrared radiation could be focused on a sample placed
in the gap of an externa electromagnet. The samples
were fixed on a small copper table that prevented them
from being displaced due to the switching on of amag-
netic field. The incidence angle of light on the samples
was about 65°. This angle was close to the Brewster
angle, which guaranteed the maximal effect [8, 11, 12].
The optical reflection spectra were normalized by the
relevant spectra of thick silver films, whose reflectivity
was about 0.9. Note also that the measurements for
Al,O; were performed repeatedly for crystals with dif-
ferent crystallographic orientations as well as for poly-
crystalline samples. For the Al,O; crystal, the effect
was maximal for the reflection from the [1120] plane.
The relevant spectra are discussed below.

By analogy with the MRE in nanocomposites, we
introduce the magnetoreflection (MR) coefficient for
dielectrics, which is defined by the relation

AR/R = (Ry—Ry)/Ry,

where R, and R, are the reflection coefficients of a
material in the presence and absence of a magnetic
field, respectively.

The magnetic field was directed perpendicular to the
propagation direction of infrared radiation and parallel
to the surface of the samples.

We have found that the MR spectra strongly depend
both on the polarization of the incident light and on the
magnitude of the magnetic field.

The spectral functions R(A) and AR/R presented in
this paper are obtained by averaging over about 400
scans performed with the FTIR spectrometer. As test
measurements, we determined the reflection spectra
from thick films of pure silver and aluminum in amag-
netic field. These measurements showed that the reflec-
tion coefficient R(A) does not depend on the magnetic
field.

In our previous work [10], we showed that the spec-
tra AR/R of pure Al,O4 experience variations in a mag-
netic field, which are most clearly manifested near the
wavel engths corresponding to the excitation of phonon
modesin Al,O; at about A = 9.6 pm.

To give aclear ideaof the physical nature of AR/Rin
dielectrics, in addition to Al,O5, which is characterized
by covalent dipolar bonds, we measured the reflection
spectra R(A) and the AR/R spectrain the covalent polar
crystal MgO and in theionic crystal LiF.

Figure 1 shows the spectra of p-polarized infrared
radiation reflected from the surface of bulky crystals of
Al,O5, M@0, and LiF. All the spectraexhibit minimain
the neighborhood of wavelengths of A = 9-12 um,
which correspond to the excitation of optical phonon
modes in these materials [13, 14].

Figure 2 showsthe AR/R spectrain these dielectrics,
measured in a magnetic field of 12.2 kOe. In all these
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spectra, the MRE manifestsitself only in the neighbor-
hood of the wavelength A, where the reflection is mini-
mal: Ag = 9.6 umfor Al,O3, Ag=11.7 um for MgO, and
A =111 pum for LiF. One can see that, among all the
samples investigated, the greatest value of AR/R is
attained in LiF, and the minimal value, in MgO.

Since Al,O; has found wide application in nano-
composite technology owing to its unique physica
properties, in the present study, we placed specid
emphasis on theinvestigation of magnetoreflection pre-
cisely for this material, the investigations of LiF and
MgO being carried out to demonstrate the universal
character of this phenomenon.

Figure 3 showsthe AR/R spectrafor Al,O; measured
for different values of the magnetic field. As the mag-
netic field increases from 1 to 12.2 kOe, the absolute
value of AR/R increases from 0.15 to 0.57% by a non-
linear law. The minimum of AR/R in Al,O; is attained
at a wavelength of Ay = 9.6 pm (Fig. 3). We did not
observe any variation in the position of this minimum
as afunction of the magnetic field within the measure-
ment accuracy.

Significant dependence of the reflection coefficient
on a magnetic field in Al,O;, MgO, and LiF was
observed only in those spectral regions where R(A) is
small (Fig. 4). The reflection coefficients of both com-
ponents of alight wave, those polarized in the plane of
incidence and perpendicular to it, are small only in the
frequency domain where the dielectric permittivity of a
substance is characterized by a sharp time dispersion,
more precisely, at wavelengthswhere the permittivity is
close to unity. In this case, the refractive indices of a
crystal and the surrounding medium become almost
equal and the interface between them has negligible
reflection. Then, the small corrections due to the mag-
netic field against the background of weak reflection
become noticeable and reach a relatively large value.
Naturally, this results in an increase in the MR coeffi-
cient because AR in AR/Risdivided by asmall quantity.
However, such sharp spectra dependence of MR
(Fig. 2) is associated exclusively with the character of
variation in the absolute value of AR=R,—R,,. To sup-
port thisthesis, we present in Fig. 5 the spectral depen-
dence of AR for a p-polarized light. When carrying out
these measurements, a magnetic field of 13.5 kOe,
which was the maximum possible value in our experi-
ments, was applied to the samples. Figures 2 and 5
show that the curves of AR/R and AR exhibit similar
spectral behavior; this confirms the effect of the mag-
netic field on the reflection spectra of the dielectrics
under investigation. It should aso be noted that the
effect observed is even with respect to the field because
we did not observe a changein the sign of AR under the
reversal of the magnetic field direction. The function
AR shows a significant variation only in the neighbor-
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Fig. 3. The AR/R spectra of Al,O5 for p-polarized radiation
for various values of the magnetic field H.
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Fig. 4. Comparison of the reflection spectra R and magne-
toreflection spectra AR/R in Al,O3.

hoods of A ~ 9-12 um; everywhere outside these
regions, it is constant and close to zero. The AR spec-
trum of theionic crystal LiF exhibits the narrowest and
deepest minimum in the range of wavelengths 11.1—
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Fig. 5. The AR = Ry — Ry spectra of dielectrics for p-polar-
ized radiation measured in amagnetic field of 13.5 kOe.

12.2 pm, whereas for Al,Os, thisrangeis 5.1-10.1 pm,

and for MgO, 8-12.4 um.

Thus, we have shown that the anomaiesin the MRE
spectra of magnetic nanocomposites in a certain fre-
guency region in the infrared band can be attributed to

the dispersion properties of the dielectric matrix.
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Abstract—The reversal of two-magnon relaxation associated with linear scattering of oscillations of uniform
magnetization precession from sample nonuniformities is studied theoretically and experimentally in ferrite
spheres of yttrium iron garnet (Y1G). Relaxation reversal is performed by parametric phase conjugation of
dipole—exchange spin waves formed as a result of scattering of uniform precession from inhomogeneities. As
aresult of two-magnon backward scattering of dipole-exchange spin waves with a certain time delay, magne-
tization oscillations are renewed with an amplitude that could exceed the initial amplitude of uniform preces-
sion. Therelaxation reversal is dueto crystallographic anisotropy of the sample and is manifested most strongly
when aYIG sphere is magnetized along the intermediate axis [110]. Experiments were carried out on YIG
spheres of diameter 0.65-1.05 mm for aparallel pumping frequency w,/2mt= 9.4 GHz, which is about twicethe
uniform precession frequency. The maximal delay time for the restored signal of uniform precession was about
2 us, while the maximal amplitude exceeded the initial uniform precession amplitude by a factor of about 5.
The “latent” relaxation parameters of ferrites, e.g., the natural ferromagnetic resonance linewidth associated
with many-particle processes and the linewidth associated with two-magnon scattering at bulk nonuniformities,

are determined experimentally. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The main contribution to the ferromagnetic reso-
nance linewidth AH even in perfect samples of yttrium
iron garnet (Y1G) comes from two-magnon relaxation
processes connected with two-magnon el astic scatter-
ing of magnetization oscillations from bulk and sur-
face nonuniformities in the sample [1]. As a result of
two-magnon scattering, uniform precession of magne-
tization, or amagnon with wavenumber k = O, excitesa
spin wave, or a magnon with wavenumber k' # k = 0
determined by the size a of the nonuniformity. Waves
with k' ~ 217a, are excited most intensely. For YIG
single crystal with a typical size a ~ 1 um of non-
uniformities, this corresponds to excitation of dipole—
exchange spin waveswith k' ~ 10* cmr® by uniform pre-
cession. In addition to the magnetic dipole interaction,
the exchange interaction of magnetic moments propor-
tional to k? becomes significant for such waves.

It should be noted that the momentum conservation
law rules out two-magnon scattering and two-magnon
relaxation associated with it in a perfect infinitely large
crystal. Thislaw can be violated only in a crystal con-
taining nonuniformities and boundaries.

Prior to the irreversible transformation into thermal
lattice vibrations, the uniform precession energy is
transformed by two-magnon relaxation first to a system
of dipole—exchange spin waves, whereit can exist even
after the termination of uniform precession oscillations,
sincethelifetimes T, = 2/yAH, of dipole-exchange spin
waves are several times longer than the lifetimes T =

2/lyAH of uniform precession. Here, y is the gyromag-
netic ratio for electron spin and AH, is the resonance
linewidth of dipole-exchange spin wave with wave-
number k. Before the attainment of the thermal level by
the amplitude of dipole-exchange waves, the energy of
these waves can be transferred back to uniform preces-
sion, which causes reversal of two-magnon relaxation
and partial restoration of the uniform precession of
magnetization.

Several methods for reversal of scattering processes
are known. We will use the method of phase conjuga-
tion by parametric pumping [2]. As applied to the case
considered here, this method consists of the following
stages. First, asignal electromagnetic pulse of duration
T, and frequency w; close to the ferromagnetic reso-
nance frequency wy excited uniform precession. As a
result of interaction with random nonuniformitiesin the
sample, this precession excites a set of n > 1 dipole-
exchange spin waves propagating from these nonuni-
formities with different wavevectors k,,, frequencies
W, ~ W, and group velocities v,,. After the termination
of the signal pulse, uniform precession rapidly dies
away and spin waves continue to move away from the
nonuniformities, attenuating with time at a much lower
rate than uniform precession. Then a uniform paramet-
ric pump pulse of duration T, and frequency w, = 20 is
supplied at instant t = t,. Pumping, first, leads to para-
metric amplification of primary waves (propagating
away from nonuniformities) having frequencies w, and
wavevectors k, and, second, excites new idler waves of
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frequency wy, whose wavevectors k; satisfy the energy
and momentum conservation laws:
W = Wy—w, ki =kp—ky,

where vector k, is the pump wavevector. In the case of
auniform pumping (k, = 0), we have k; = k,; i.e,, the
idler wave is an reverse wave relative to the primary
dipole—exchange spin wave, which propagates along
the same path as the primary wave, but in the opposite
direction. Such a behavior of the idler wave can be
interpreted as phase conjugation (or time reversal) of
the primary wave under the action of parametric pulsed
pumping [2]. Thus, for al n idler reverse waves, the
reverse path to nonuniformities will be the same as for
the primary waves and, after the termination of pump-
ing, will take the sametimet, asthetime of propagation
of primary waves from inhomogeneities to the instant
of pump pulse action irrespective of the wave velocity
v,,. Consequently, over atimet = 2t, (for 1, < t), al
idler waves reach the corresponding nonuniformities at
which they form arestored signal of uniform magneti-
zation precession as a result of backward two-magnon
scattering.

Parametrically enhanced dipole-exchange waves
propagating from inhomogeneities can also make a
contribution to restoration of uniform magnetization
precession [3]. Prior to parametric pumping, the phases
of all spinwaves, ¢, = w,t (W, — U1 < ), < s+ 1Y),
are uniformly distributed with time over an interva
from O to 21T, consequently, their total contribution to
uniform magnetization precession is equal to zero in
view of backward two-magnon scattering. After the
pumping is switched on, the process of amplification of
primary spin waves begins. If the pump pulse is long
enough (1, < Ty) and, hence, has a narrow frequency
range, parametric amplification of spin waves caused
by this pulse is characterized by a narrow band: from
the entire set of dipole-exchange spin waves, only
waves with frequencies close to half the pumping fre-
quency w,/2 will be selectively amplified. Thus, the
coherence of the system of dephased spin waveswill be
partially restored and their contribution to uniform pre-
cession will differ from zero [3]. This contribution will
increase during the operation of a phasing pump pulse
and attains its maximal value at the instant of its termi-
nation, i.e., fort:tp +rpand notfort:2tpasinthecase
of phase conjugation for dipole-exchange spin waves.
After the termination of the pump pulse, misphasing of
dipole—exchange spin waves again comes into play and
the contribution of these waves to uniform precession
will decrease until it vanishes completely after the
attainment of a uniform phase distribution of spin
waves (in atime on the order of 1/t).

We will confine our analysisto reversal of two-mag-
non relaxation associated only with the effect of para
metric phase conjugation of dipole exchange spin
waves. In accordance with the above arguments, we
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will use short (T, T, < I';l , ;) signal and pump pulses.
First, we will derive theoretical relations describing the
process of two-magnon relaxation reversal, which will
be verified experimentally using parametric pumping
of 3-cm waves at small ferrite spheres with a diameter
from 0.65 to 1.05 mm.

2. THEORY

Oscillations of uniform precession and dipole—
exchange spin waves coupled by crystal nonuniformi-
tiesin the presence of parallel parametric pumping can
be written in the form [3, 4]

0c | .
——0 + |w0CO + roco

ot

(€

—1 > Roc = -iyhsexp(-wd),

k#0
%c% 1@y + I ioCy
. . o )
—i z ReCe = —iVihpexp(—iwpt)ch,
k'#k
k#0

where ¢, and ¢, are the amplitudes of uniform preces-
sion and dipole-exchange spin waves with natural fre-
quencies wy, and wy, respectively. Here, hy, hs and wy,
w are the amplitudes and frequencies of varying mag-
netic field of parallel pumping and the signal exciting
uniform precession, respectively, and V, isthe coupling
coefficient of dipole-exchange spin waveswith parallel
pumping [1]; for uniform precession, such acouplingis
absent [1] in Eq. (1); R isthe probability of scattering
of aspin wave (or oscillation) with wavevector k' from
a nonuniformity followed by its transformation into a
new spin wave (or oscillation) with wavevector k # k'
It was mentioned earlier that the scattering probability
dependson linear size a of anonuniformity; probability
R has the maximal value for [k' — k| ~ 2rva. Finaly,
My = YAHy/2 and 'y = YAH,/2 are the parameters of
natural relaxation of uniform precession and spin
waves, respectively, taking into account only intrinsic
multimagnon and magnon—phonon relaxation pro-
cesses, including those with participation of optical
branches. The contributions from two-magnon pro-
cesses to relaxation, which will be denoted by oI, =
ydHy/2 and &I, = ydH,/2 for uniform precession and
spin waves, respectively, should be determined from
system of equations (1) and (2). As aresult, we obtain
the total frequencies of relaxation and total linewidths
in the form

[ =To+80, AH = AH,+8H,
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for uniform precession and
M=Tetolr, AH, = AH,,+0H,

for dipole-exchange spin waves.
Analysis of the natural oscillations of infinite sys-

tem of equations (1), (2) for alow probability of two-
magnon scattering, |Rye| < o, Mo givesfor k= 0[5]

8r, = 2|Rkk| e 3

rk + (wk wk)z

After supplying an electromagnetic signal of fre-
guency w, = wy, to ferrite, the spinwavewithk =0 (i.e.,
uniform precession) will possess the largest amplitude.
Taking this circumstance into account and using
expression (3), we can substantially simplify system of
equations (1), (2):

D0t + M6y = -yhep-ind), (4

+iwc, + T cy
at (5)

= —iRyoCo—iVih,exp(—iw,t)c.

We will write the expression for the coupling
parameter of dipole—exchange spin waves with parallel
pumping V, taking into account the magnetic crystallo-
graphic anisotropy field H,. It is well known that, in
spite of itssmallness (H, < 41iM,,, where M, isthe mag-
netization of ferrite) crystallographic anisotropy may
strongly affect the course of nonlinear processes [4]. It
will be shown below that precisely this situation isalso
observed in the case considered here. For orientation of

magnetization M, in the (110) plane, we have

1 Wy . .
Vie = Zv, Sin 0,exp(2i0y)

3 2H (6)

-2 wk%m GH— sin 29@

where 8, and ¢, arethe polar and azimuth angles of spin
waves in the reference frame associated with the direc-
tion of the external constant magneticfield H,, 8, isthe
angle between vector H, and the [001] axis of the crys-
tal, and wy = 4TTyM,.

Wewill solve system (4), (5), presuming the follow-
ing sequence of short signal and pump pulses acting on
ferrite (it was mentioned above that T, T, < g, 'y, tp).
Atinstantt = 0, asignal pulse at frequency w, = wy is
switched on, which, in accordance with Eq. (4),
enhances uniform precession to the amplitude

A = iyhgt,. @)

After the removal of the signal pulse, the amplitude of
uniform precession decays exponentially by transfer-

Co = Aexp(-iwgt),
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ring partly energy to spin waves. Then, at instant t =t
a short pump pulse a frequency w, = 2w = 2wy Is
switched on. By thistime, in accordance with formulas
(5) and (7), the amplitudes of spin waves for ' > I,
attain the values

RkO
(@ — ) =il (8)
x exp(-i wktp) exp(—rktp).

c(t=t,) = -A

After switching on of pumping at t = t,, spin waves
are first built up with initial condition (8); second,
reverse waves propagating in the opposite directions
towards nonuniformities appear. In accordance with

formula (5) their amplitudes ¢, for t > t, havetheform

rev &) thp
“ 2v, [ =i (0 — ) 9

x A* expliwy(t—2t,)] exp(- ) exp(vid),

where Vi = [Vihl2 — (6 — ).

After scattering from nonuniformities, all waves (9)
exhibit backward two-magnon scattering, which
restores uniform oscillation of magnetization (7) (natu-
rally, with adifferent amplitude A" # A). To determine
A, we must use Eq. (1) for hy = 0, substituting Eq. (9)
into it. This gives

A% = jA* z 2khpexp[—|ook(t—2t )]

k>0
By, Ok

x exp(ViTp) exp(=2r,t,) (10)

IRed”
W)l [ =T o+ i(wy—

i (@ ol

It can be seen from this relation that each spin wave
makes a contribution to uniform precession with its
own phase proportional to exp[—iw(t —2t,)]; asaresult,
the total contribution from all spin waves averages to
zero in the general case. The sum in (10) differs from
zero only at instant t = 2t, sinceit isonly at thisinstant
that the phase of all dipole—exchange spin wavesisthe
same.

Thesumin expression (10) for t = 2t, determinesthe
maximal amplitude A®(2t)) of uniform precession
restored as a result of the reversal process. We will
obtain an approximate estimate for this sum based on
the fact that parametric pumping excites a narrow wave
packet in the vicinity of frequency w,/2, which possess
the minimal parametric excitation threshold. Assuming
that the spread in the natura frequencies of excited
dipole-exchange spin waves satisfies the inequality
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Fig. 1. Experimental model: 1—ferrite sphere; 2— oop cou-
pler; 3—coaxial cableof thesignal channel; 4—open dielec-
tric pumping resonator; 5—rectangular waveguide of pump-
ing channel. The magnetic microwave field lines of the
dielectric resonator and the waveguide are shown by dashed
lines; Hg isthe external constant magnetic field.

|0 —wy/2| < T, T and the spread in their wavenumbers
isAk < k, we can take out all constant coefficients and
coefficients depending on k from the sum in expres-
sion (10). Summation of ¢, inrelation (10) nullifiesthe
contribution from the first term in expression (6) for V,
(coupling coefficient of dipole-exchange spin waves
with parametric pumping) in view of symmetry in the
azimuth angle distribution of dipole—-exchange spin
wavesin theferrite sphere[4]. Thus, it turnsout that the
effect of relaxation reversal in aferrite sphere (or, inthe
general case, in a sample with identical transverse
demagnetizing factors) is due to the influence of the
magnetic crystallographic anisotropy described by the
second term in expression (6) for V,.

In view of what has been said above and under the
assumption that thereisalarge amplitude of parametric
pumping, hVy > T, we eventually obtain the follow-
ing expression for the reversal coefficient K of two-
magnon relaxation, which is egqual to the ratio of the
maximal amplitude A®(2t)) of uniform precession
restored as aresult of reversal of dipole—exchange spin
waves to the initial amplitude A excited by input elec-
tromagnetic signa (7):

_ |A*(2t)
K = A (11)
dr
K = ?Oexp(hpvkrp)exp(—Zl'ktp)
3H 3 (12)
a . 2 _ 94 2 |:|
X[S_HM(E% 0, 4sm 26 }

Analysis of expression (12) shows that the reversal
coefficient K attainsis maximal value for 8, =90°, i.e.,
for the orientation of the external magnetic field along
the intermediate axis [110] of the crystal. For 8,, = 0
(hard axis [001]) and 6, = 55° (easy axis [111]), we
have K = 0. Reversal isalso equal to zero in the absence
of two-magnon scattering (oI, = o, = 0); for oI,
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ol < I, itincreaseslinearly with the scattering prob-
ability |R|% however, for I, ~ Iy, it decreases expo-
nentially due to increasing attenuation of dipole—
exchange spin waves, I', = I, + oI",.. Findly, it should
be noted that the value of K exponentially increases
with amplitude h, and duration T, of the pump pulse
and might exceed unity; in other words, restoration of
the uniform precession signal with an amplitude larger
than itsinitial amplitude is possible.

3. EXPERIMENT AND DISCUSSION
OF RESULTS

The structure of the experimental model for study-
ing two-magnon relaxation reversal under the action of
paralel pumping is shown in Fig. 1. A signa of fre-
quency wy2m= 4.7 GHz was supplied to ferrite sphere 1
and was picked up with the help of loop coupler 2,
which served asaterminal load of 50-Q coaxia cable 3.
The ferrite sphere was placed in rectangular dielectric
resonator 4 tuned to the pumping frequency w,/2m =
9.4 GHz. The type of resonator oscillations was H 45,
and the ac magnetic field in the sphere was parallel to
the external constant magnetic field Hy; i.e., the case of
paralel pumping of spin-wave instability is realized [1].
The resonator was prepared from a thermostable
ceramic material with adielectric constant of € = 80. A
circular hole 1.1 mm in diameter was drilled to accom-
modate the ferrite sphere. The hole was located at an
maximum of magnetic field lines of the resonator and
at the minimum of electricfield lines; consequently, the
shift in the natural frequency of the resonator dueto the
hole did not exceed 3%. Pumping power P, with afre-
quency of w, = 2w, was supplied to the dielectric reso-
nator with the help of standard 3-cm waveguide 5 with
arectangular cross section. The pumping source was a
magnetron oscillator ensuring a power P, of 6 W for a
pulse duration 1, of 80 ns. The signal source of power
P, was a klystron generator; to avoid saturation, power
P, did not exceed 10 uW; the duration of signal pulses
was Tg = 50 ns. The signal reflected from the ferrite
sphere and the signal emitted by it were supplied from
the coaxial cable via a ferrite circulator to the measur-
ing channel of the signal, which contained a low-fre-
quency filter (for suppressing the pump pulse), a low-
noise semiconductor amplifier, a power amplifier, and
semiconductor detector 1. The signal from detector 1
was fed to the first channel of a double-beam oscillo-
scope. The second channel of this oscilloscope was
used for detecting the pump pulse incident on the
dielectric resonator; this pul se was recorded from semi-
conductor detector 2 coupled with the waveguide
pumping channel viaadirectional coupler.

Oscillograms of the pul ses observed on the screen of
the oscilloscope are shown in Fig. 2. Here, the upper
and the lower beams describe the voltage across detec-
tors 1 (signal channel) and 2 (pumping channel). Fig-
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Fig. 2. Oscillograms of pulsesin the signal channel (upper beam) and pumping channel (lower beam); one division on the horizontal
axis corresponds to 100 ns. (a) Ferromagnetic resonance at the signal frequency: wyg = wg Hg = 1650 Oe. (b) Strong detuning of the
signal frequency from the ferromagnetic resonance frequency: |oy — wg > yAH, Hy = 2000 Oe; 1 and 4 are pulses reflected from

theloop coupler with ferritein ferromagnetic resonance and away fromiit, respectively; 2—incident pumping pul se; 3—output pulse
emitted by theferrite sphere asaresult of two-magnon relaxation reversal. The sampleisaY |G sphere (of diameter 1.05 mm; AH =

0.5 Oe) magnetized along the intermediate axis; t, = 200 ns.

ure 2a corresponds to resonance tuning of uniform pre-
cession frequency wy, to the signal frequency, wy, = ;.
In this case, the power of the signal is partly absorbed
intheferrite sphere dueto excitation of uniform preces-
sion followed by the excitation of dipole—exchange
spin waves. As a result (and also due to the effect of
transient processes), the shape of the signal pulse
reflected from the loop coupler (see pulse 1 in Fig. 2a)
differsfrom the rectangular shape of the signal incident
on this loop. After the termination of the signal pulse,
the power absorbed by the sample was accumulated in
the system of dipole-exchange spin waves, on which
pump pulse 2 began to act at instant t = t,. Pumping led
to phase conjugation of spin waves and to restoration of
oscillations of uniform precession, which induced out-
put signal 3 in the loop coupler at instant t = 2t,,.

In the other, nonresonant case (wy, # W), power
absorption in ferrite decreases, causing a decrease in
the output signal amplitude, while the power reflected
from the loop coupler increases. The oscillogram in
Fig. 2b corresponds to strong detuning from resonance:
|w— x| = yAH. In this case, the output pulse vanishes,
while pulse 4 reflected from the loop coupler restores
its rectangular shape and becomes equal to the input
signal pulse incident on the ferrite sample. Thus, under
the action of parallel pumping, reversal coefficient K
for two-magnon relaxation (see formula (11)) could be
determined experimentally as the ratio of the output
signal amplitude (see pulse 3in Fig. 2a) to the reflected
pulse amplitude (pulse 4 in Fig. 2b) for strong detuning
of the constant magnetic field from the ferromagnetic
resonance.

The experimental dependence of reversal coefficient
K of two-magnon relaxation on the crystallographic
orientation of theY |G sphereisshowninFig. 3. Ingen-
eral, this dependence matches the above theory (see
formula (12)): the peak is observed for magnetization
of the sphere along the intermediate axis[110], and the
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minima coincide with the magnetic field direction
along the easy [111] and hard [001] axes. For conve-
nience of comparison of experimental (squares) and
theoretical (solid curve) dependences of the reversal
coefficient on the crystallographic orientation, the the-
oretical curvein Fig. 3 isnormalized to the experimen-
tal values obtained for 8, = 90°; the absolute value of
reversal coefficient K determined by theoretical depen-
dence (12) will be considered later. The discrepancy
between the theory and experiment observed in Fig. 3

K T T T T T T T T T

2.0

1.0r

VA I
L 60° 80°
[111]

40° 100°

[110] 64

Fig. 3. Dependence of two-magnon relaxation reversal
coefficient K on angle 6, between the direction of the con-

stant external magnetic field Hgp and the crystallographic

[001] axisin the (110) plane. The sampleisaY|G sphere
of diameter 1.05 mm; AH = 0.5 Oe. Squares correspond to
experiment for t, = 180 ns, P, = 6 W; the solid curve
describes theoretical dependence (12) normalized to exper-
imental valuesfor 6, = 90°. The positions of the hard [001],

easy [111], and intermediate [110] crystallographic axesare
indicated on the abscissa axis.
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(especially for Hy || [001] and Hy || [111]; in this case,
K = 0 according to the theory, the entire experiment
gives a finite value of K) can be explained by the
approximate nature of the theory (in particular, disre-
gard of the second crystallographic anisotropy con-
stant, magnetoelastic energy, etc.). The error in deter-
mining the crystallographic orientation of the sample
also plays a certain role. We used a simple method of
magnetic orientation [6] whose accuracy was +3°.
Finally, contribution to the output pulse amplitude may
also come from processes associated with excitation by
the input electromagnetic pulse of not only uniform
precession, but also of the entire set of long-wave mag-
netostatic oscillations whose amplitude may differ
from zero in view of nonuniformity of the magnetic
fields. These processes can be responsible for experi-
mentally observed ferromagnetic echo [7]. In spite of
the fact that a ferromagnetic echo was detected for
transverse pumping at a frequency equal to the signal
frequency, its presence for parallel pumping at double
the frequency also cannot be ruled out in principle,
although this problem requires detailed studies. How-
ever, in spite of the fact that the contribution of ferrite
echo in our experiments with small ferrite spheres must
undoubtedly be small in view of uniformity of the con-
stant external magnetic field. It should be recalled that
enhanced echo was obtained in [7] only for large sam-
ples of an irregular geometrical shape with a specially
produced nonuniformity of the internal constant mag-
netic field.

The results presented in Fig. 3 were obtained for a
high-quality Y1G sphere with the total width of the fer-
romagnetic resonance line

AH = AHg+8H, = 2(T o+ 8lp)ly

equal to 0.5 Oe (at a signal frequency of 4.7 GHz). To
reduce the contribution from surface nonuniformities
and the linewidth AH, the sphere was thoroughly pol-
ished with an abrasive paste with a grain size of less
than 1 um. In this case, the two-magnon relaxation fre-
guency oI, and contribution dH, to the linewidth asso-
ciated with it were mainly determined by bulk nonuni-
formities such as nonmagnetic inclusions, dislocations,
and vacancies. In contrast to natura relaxation fre-
quency Iy (and natural linewidth AHy = 21 yly), which
is a parameter of the material, two-magnon relaxation
frequency oI, and the corresponding two-magnon lin-
ewidth dH, = 20l y/y are parameters of the sample,
which can easily be changed, for example, by introduc-
ing additional nonuniformities on the surface of the
sphere by polishing with a coarse abrasive paste. The
total linewidth AH = AH, + dH, of the sample, which
can easily be measured in experiments, will changein
thiscase dueto anincreasein the value of &Ny = ydHy/2.
To analyze the effect of the sample surface on reversal
coefficient K of two-magnon relaxation, the ferrite
sphere was polished twice for a short time using an
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abrasive paste with agrain size of 10 um. Asaresult of
polishing, ferromagnetic resonance linewidth AH was
gradually increased from 0.5 to 0.6 Oe and then to
0.7 Oe. The dependence of two-magnon relaxation
reversal coefficient K on the orientation of constant
magnetic field H, remained unchanged in this case and
was analogous to the dependence shown in Fig. 3.
However, the absolute value of K increased thereby,
which is completely in accordance with the above the-
ory. Thevalue of K increased on the average by afactor
of 1.6 as compared to that for a polished sample with
AH = 0.5 Oefor AH = 0.6 Oe and by afactor of 1.9 for
AH = 0.7 Oe. In accordance with formula (12), the
observed increase in coefficient K is associated with an
increase in the first term in expression (12),

3M, _ AH—AH, _ 8H,

T AH  ~ AH’

(13)
where, as noted earlier, AH is the total and AH, is the
natural ferromagnetic resonance linewidth, associated
with natural relaxation processes and 0H is the ferro-
magnetic resonance linewidth associated with two-
magnon scattering processes. The value AH appearing
in formula (13) is measured experimentally. It also fol-
lows from the above results that linewidth dH, = AH —
AH, responsible for two-magnon scattering increases
by 0.1 Oe after each polishing. Comparing the above
experimental resultson variation of K asaresult of pol-
ishing with formula (13), we can also approximately
estimate the values of other relaxation parameters of
the sample and find the corresponding linewidths. To
match the theory with experiment, we must assume that
the natural linewidth of the ferromagnetic resonancefor
the ferromagnetic sphere studied hereisAH, = 0.35 Oe,
while the two-magnon linewidth associated with the
contribution from bulk nonuniformitiesonly is0.15 Oe.
The additional contribution from surface nonuniformi-
ties due to polishing gradually increased the two-mag-
non linewidth to 0.25 and 0.35 Oe. The experimentally
obtained results do not contradict the ferromagnetic
relaxation theory. For example, for the natural ferromag-
netic resonance linewidth of Y1G single crystal's associ-
ated with natural relaxation processes, the theoretical
value of AH, liesin theinterval 0.1-0.5Oe|[8, 9].

Figure 4 shows the experimental dependence of the
two-magnon relaxation reversal coefficient ontimet, of
switching on of the pump pulse. Thetime of emergence
of the restored output pulsein this caseis 2t, within the
experimental error. In accordance with theoretica
dependence (12), curve K(t,) in Fig. 4 is close to expo-
nential. From the slope of this curve (61 dB/us), we can
determine parameter AH, of relaxation of waves
excited as a result of scattering of uniform precession
oscillations from nonuniformities: AH, = 0.4 Oe. The
results presented in Fig. 4 correspond to a twice-pol-
ished Y1G sphere.
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It was found that polishing of the surface affectsthe
value of AH, noticeably less strongly that the value of
AH,; the value of AH, for an unpolished sphere was
0.37 Oe; i.e., the changein AH, as aresult of polishing
was only 8% against 40% for AH. This result is not
unexpected since polishing affects only asmall number
of dipole—exchange spin waves excited near the surface
in view of a small mean free path [10]. The values of
AH, obtained here are more than twice as high as the
minimal value of the linewidth for spin waves excited
by the parallel pumping method [1]. Asamatter of fact,
the value of constant magnetic field Hy in our experi-
ments corresponded to the condition for the emergence
of ferromagnetic resonance at the signal frequency and
was approximately 80 Oe higher than the field H,, cor-
responding to the minimum of the parallel pumping
threshold [1]. The maximal polar angle 6, of the spin
waves degenerate with uniform precession did not
exceed 6, = 65°. According to [11], the relaxation
parameter for such waves is approximately twice as
large as that for spin waves with 8, = 90°, which are
excited for Hy = H...

Finaly, let us estimate the absolute values of two-
magnon relaxation reversal coefficients K, which fol-
low from theoretical dependence (12) and compare
these values with experimental results. The most com-
plicated problem here is to determine the amplitude h,
of the pumping field in the resonator, which acts on the
ferrite sphere. In view of the exponential dependence
K(hy), even asmall error in determining the value of the
pumping field leads to a substantial spread in values of
K. It should be noted that the second exponential factor
in formula (12) can easily be determined from experi-
ment (see Fig. 4).

Itisimpossible at present to calculate field hy in the
resonator from the value of power P, incident on it in
view of the absence of an electrodynamic theory of an
open dielectric resonator of rectangular shape with a
central cylindrical hole for accommodation of the fer-
rite sphere. To determine the pumping field amplitude
h, experimentally, we used the calibrated sample
method with a preset value of parametric instability
threshold field h, for parallel pumping [12]. The value
of h, was determined with the help of arectangular cav-
ity, for which the values of ac magnetic fields can easily
be determined from the incident power, Q factor, and
size of the resonator [13]. The calibrated sample was
placed into a dielectric resonator for which the relation
between h, and the incident power was determined
experimentally from the observation of the parallel
pumping threshold. The maximal amplitude h, of the ac
magnetic field acting on the sample in our measure-
mentswas 20 + 3 Oe.

Substituting the results into formula (12), we can
obtain the theoretically expected value of two-magnon
relaxation reversal coefficient K. For example, for the
situation depicted in Fig. 3, the theory givesvauesof K
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Fig. 4. Dependence of two-magnon relaxation reversal
coefficient K on time t,, of switching on of the pump pulse.

The sampleis apolished YIG sphere of diameter 1.05 mm;
AH=0.7 Og; P, = 6 W.

varying from 0.5 to 3.0, which does not contradict the
experimental value of K = 2.2. Thus, in spite of their
approximate nature, the theoretical relations derived
here provide a correct qualitative and quantitative
description of reversal of two-magnon relaxation in fer-
rite spheres.

4. CONCLUSIONS

We have studied the reversal of two-magnon relax-
ation of uniform precession of magnetizationin aY1G
ferrite sphere using the method of longitudinal para-
metric pumping with a frequency twice as high as the
uniform precession frequency. As a result of pumping,
uniform precession oscillations are restored; the maxi-
mal amplitude of restored oscillations could exceed the
initial amplitude of uniform precession excited by an
external electromagnetic field by afactor of K > 1. The
theoretical expression for reversal coefficient K of two-
magnon relaxation was determined from the system of
two coupled equations of uniform precession and short-
wave dipole-exchange spin waves excited as aresult of
scattering of uniform precession oscillations from non-
uniformities. In the case of aYIG sphere with cubic
crystallographic anisotropy, reversal coefficient K has
the maximal value when the magnetization of the crys-
tal coincides with the intermediate axis [110], while
K = 0 for magnetization along the hard [001] and easy
[111] axes. The maxima vaue of K is attained by
choosing an optimal value for the probability of two-
magnon scattering of uniform precession with the for-
mation of dipole-exchange spin waves; two-magnon
broadening of the natural ferromagnetic resonance line
for this value is nearly equal to the width of this line.
For stronger scattering, the value of K decreases expo-
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nentially due to an increase in the damping parameter
of dipole-exchange spin waves, while K = 0 in the
absence of scattering. Thereversal coefficient increases
exponentially with the pumping amplitude and duration
and decreases exponentially with increasing the delay
time of the pumping pulse switching on.

Experimental studies of two-magnon relaxation
reversal was carried out on small monocrystallineY1G
spheres of diameters 0.65-1.05 mm for a pumping fre-
quency wy/21= 9.4 GHz. The main conclusions of the
theory were confirmed by experiment. In particular, the
maximal value of two-magnon relaxation reversal coef-
ficient was observed for spheres magnetized along the
intermediate axis. For magnetization along the hard and
easy axis, the value of K was minimal, though not equal
to zero.

In accordance with the theory, reversal coefficient K
increased upon a variation of the efficiency of two-
magnon scattering by polishing the spherical surface
with a coarse abrasive paste. A comparison of theory
with experiment led to the values of the natural ferro-
magnetic resonance linewidth and the linewidth associ-
ated with two-magnon scattering at bulk nonuniformi-
ties. These values were found to be 0.35 and 0.15 Oe,
respectively. The relaxation parameters AH, of dipole—
exchange spin waves were measured from the slope of
the curve depi cting the dependence of the reversal coef-
ficient K on the delay time.

The experimentally measured value of reversal
coefficient K was found to match the theory to within
the experimental error. For small delay times, the two-
magnon relaxation reversal is accompanied by amplifi-
cation; i.e., K> 1. For aY1G sphere with a diameter of
1.05 mm, avalue of K = 5 was attained for t, =180 ns.
The maximal delay time for the restored signal was
about 2 ps.

Two-magnon relaxation of uniform precession of
magnetization inY |G ferrite spheres caused by longitu-
dinal parametric pumping studied here can be used for
processing microwave information and for measuring
“latent” relaxation times, e.g., the natural linewidth of
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ferromagnetic resonance and the linewidth associated
with two-magnon scattering from bulk nonuniformi-
ties. In addition, the relaxation reversal effect can be
used for directly measuring the dipole—exchange spin-
wave relaxation times. The knowledge of these relax-
ation times is especially important now for developing
nanosize magnetic memory elements whose natural
excitations are dipol e-exchange spin waves.
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Abstract—A Monte Carlo method is applied to simulate the static critical behavior of a cubic-lattice 3D Ising
model for systems with quenched disorder. Numerical results are presented for the spin concentrations of p =
1.0, 0.95, 0.9, 0.8, 0.6 on L x L x L lattices with L = 20-60 under periodic boundary conditions. The critical
temperature is determined by the Binder cumulant method. A finite-size scaling technique is used to calculate
the static critical exponentsa, 3, y, and v (for specific heat, susceptibility, magnetization, and correlation length,
respectively) in the range of p under study. Universality classes of critical behavior are discussed for three-
dimensional diluted systems. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Analysis of the critical behavior of diluted spin sys-
tems with quenched disorder is a topical problem in
condensed matter physics. Systems of this kind have
been the subject of intensive experimental [1-3], theo-
retical [4-13], and computational [14-21] studies. The
Harris criterion formulated in the framework of renor-
malized perturbation theory can be used to obtain qual-
itative predictions of the effects of particular impurities
on critical behavior [4]. According to this criterion,
weak disorder modifiescritical behavior only if the spe-
cific-heat critical exponent is positive (a > 0), i.e, if
specific heat is divergent at the critical point. Con-
versely, if a <0 (specific heat isfinite at the transition
point), then weak disorder does not change the critical
behavior. This criterion holds only for systems
described by effective Hamiltonians that are isomor-
phic to the Ising model near the corresponding critical
points.

Modified critical exponents have been reliably
determined for disordered 3D Ising models both in
experiments [1-3] and in theoretical studies [4-13].
Even though they agree with the entire body of avail-
able evidence, it remains unclear if the modified critical
exponents are universal, i.e., whether they are indepen-
dent of the impurity concentration below the percola
tion threshold or vary continuously with the concentra-
tion aong a line of fixed points. Moreover, there are
good reasons to expect that the critical exponents
depend on the redlization of disorder in a particular
model. It was found in [19] that the results obtained
when disorder wasrealized in acanonical ensemble (by
fixing the fraction of magnetic sites) would be different
from those of grand canonical Monte Carlo simulations
(when the fraction of magnetic sites in each particular
impurity configuration is a fluctuating variable). In the

nearest future, accurate analysis of these trends can
only be performed by numerical methods.

The renormalization-group analysis using an
g-expansion [8] showed that the critical behavior of the
3D Ising model for systems with quenched disorder is
characterized by critical exponents that are different
from those corresponding to the pure Ising model.
However, the asymptotic convergence of the e-expan-
sion series is even dower than for pure systems, and
predictions obtained by the e-expansion method are not
reliable [6, 14].

Current experimental studies are impeded by the
difficulties encountered in calculating the critical expo-
nents and determining the universality class of static
behavior for such systems [2, 3]. The results available
from current experiments cannot be used to develop a
complete and self-consistent model of critical behavior
of impure systems. This is explained by strong depen-
dence of experimental results not only on the sample
and the method employed, but also on the procedure
used to prepare the sample (seereferencesin[13]). Fur-
thermore, no experimental studies have been conducted
in which the same method is applied to samples of the
same type containing well-controlled amounts of impu-
rities. For thisreason, phasetransitionsand critical phe-
nomena in diluted systems are the subject of intensive
current studies performed by different versions of the
Monte Carlo (MC) method, including powerful cluster
algorithms [14, 15, 17-21]. To date, cluster MC ago-
rithms were mainly applied to dilute systems modeled
by grand canonical ensembles. Systems represented as
canonical ensembles have been studied to amuch lesser
extent.

In this paper, we report the results of MC simula-
tions of the static critical behavior of the cubic-lattice
Ising model performed for systems with quenched dis-
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Fig. 1. Weakly diluted 3D Ising model with quenched dis-
order.

order. The enormous interest in this model is motivated
by the following principal reasons.

First, theweakly diluted 3D Ising model for systems
with quenched disorder isof great practical importance,
because it provides a basis for analyzing disorder-
induced macroscopic effects, which are commonly
found in real materials.

Second, studies of effects of quenched disorder on
universal characteristics of critical behavior are of fun-
damental, aswell as of practical, importance [5].

Third, the first attempts to analyze this model
numerically were made at the time when the available
computing resources and MC algorithms were insuffi-
cient to calculate critical exponents to the required
accuracy.

2. ISSNG MODEL FOR SYSTEMS
WITH QUENCHED DISORDER

Theweakly diluted 3D Ising model for systemswith
quenched disorder is schematized in Fig. 1. In the
model examined here, the impurity distribution is sim-
ulated by means of a canonical ensemble. The model
relies on the following assumptions.

1. The sites of a cubic lattice are occupied either by
spins § = =1 or by nonmagnetic impurities. The non-
magnetic impurities are randomly distributed and
bound to the corresponding lattice sites.

2. The nearest-neighbor coupling energy is |J] if
both sites are occupied by magnetic atoms and zero
otherwise.

The corresponding microscopic Hamiltonian is

J
H = _ézpispjsja (1)
i j
where
_ 01, if thesiteis occupied by aspin,
P EO otherwise.
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The spin concentration is the sum of the absolute
values of spin at al sites:

L3
1
p = [;,leiISI- 2

The cases of p =1 and p = 0 correspond to the pure
Ising model and the lattice of impurities, respectively.

3. SSIMULATION METHOD

Cluster MC algorithms [22, 23] are very effective
tools for analyzing critical phenomena in various sys-
tems and models [19-21, 24, 25]. The critical expo-
nents based on the results obtained by means of cluster
algorithms are highly accurate and reliable[21, 24, 25].
The most effective cluster MC agorithm was proposed
by Wolff [22]. Itsversion employed in the present study
consists of the following procedures:

I. The coordinates of alattice site are taken by gen-
erating three random numbers. If the siteis occupied by
anonmagnetic impurity, then new random numbers are
generated until the coordinates of aspin S are obtained.

I1. The nearest neighbor sites of S are inspected. If
aneighbor § is occupied by aspin § and the values of
§ and § are equal for J > O, then the coupling between
S and § is assigned the probability P = 1 — exp(—2K)
with K = J/kgT, where kg is Boltzmann's constant.
Then, the nearest neighbors of § areinspectedinasim-
ilar manner. The process is continued until the bound-
aries of the system are reached.

I11. A cluster is defined as the set of coupled spins.
IV. The cluster isflipped with a probability of one.

Computations were performed under periodic
boundary conditionson L x L x L latticeswith L varied
from 20 to 60 for the spin concentrations p = 1.0, 0.95,
0.9, 0.8, and 0.6.

Inthe starting distributions, all spinswere parallel to
thezaxis. Inthe case of p = 1.0, the equilibrium state of
the system was obtained by discarding the results of the
first 2 x 10° Monte Carlo steps (here, each MC step cor-
responds to one cluster flip) and averaging the remain-
ing results over five starting distributions. For systems
withp=0.95, 0.9, 0.8, and 0.6, the number of discarded
Monte Carlo steps was 3 x 10°, 4 x 105, 5 x 106, and
6 x 106, respectively, and the results were averaged
over 20 to 80 different distributions. We should note
here that the number of disorder realizations used to
calculate thermodynamic characteristics must increase
with decreasing spin concentration to compensate for
increasing fluctuations in the impurity distribution.
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Note also that the complexity of the computations per-
formed for each impurity distribution rapidly increases
with lattice size.

4. RESULTS

The temperature-dependent specific heat and sus-
ceptibility of fluctuating systems were calculated as
follows[26]:

C = (NK?)(WD- b, ©)

X = (NK)(Om'D- i), (4)

where K = |J|/kgT, N = pL2 is the number of magnetic
sites, U is internal energy, m is magnetization, and
angle brackets denote athermal average.

Figures 2 and 3 show the temperature-dependent
specific heat C and susceptibility x obtained for p=1.0,
0.95, 0.9, 0.8, and 0.6. The errors of the results pre-
sented from here on do not exceed the size of symbols
inthe corresponding figures. Figure 2 demonstrates that
the peak in the specific heat is smeared, and the peak
value is reduced, by increasing the nonmagnetic-impu-
rity fraction ¢ = 1 —p. This behavior is characteristic of
diluted 3D Ising spin systems [16, 17]. Note also that
the critical behavior of susceptibility is characterized
by sharp peaks at each p (see Fig. 3).

The critical temperature T,(p) was determined by
the Binder cumulant method [27], with the fourth-order
cumulant U, defined as

(T, p; L)O

U(T.p) = 1- ,
(T.P) 30(T, p; L)L

()

where misthe magnetization for asystem on the lattice
of size L. To calculate T, we found the temperature
dependence of the cumulant U, (T, p) obtained by aver-
aging over disorder realizations for Ly, L,, ..., L,. The
critical point T, was defined asthe temperature at which
U, (T p) =U, (T, p) = ... = U (T, p). The calcu-
lated critical temperatures arelisted in thetable. Figure 4
illustrates the temperature dependence of the Binder
cumulant U, (T, p) for systems of different sizewithp =

0.8. The point of intersection of the curves corresponds
to T, = 3.4956(6).

According to Fig. 3, the susceptibility peaksfor sys-
temswith different values of p correspond to the values
of T.(p) determined by the Binder cumulant method up
to a numerical error. This demonstrates the high reli-
ability of our calculations of the critical temperature.
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Fig. 2. Specific heat versustemperature for diluted 3D Ising
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Fig. 3. Susceptibility versus temperature for diluted 3D
Ising model.

Thestatic critical exponentsa (specific heat), y (sus-
ceptibility), and B (magnetization) were determined
by applying the following finite-size scaling ansatz

Critical exponentsin weakly diluted 3D Ising model for sys-
tems with quenched disorder calculated by using afinite-size
scaling technique

P | keTc/M| v a y B

1.00 | 45106(6) | 0.624(2) | 0.108(2) | 1.236(2) | 0.322(2)
0.95 | 4.2591(4) | 0.646(2) |-0.010(2) | 1.262(2) | 0.306(3)
0.90 | 4.0079(8) | 0.664(3) |-0.014(3) | 1.285(3) | 0.308(3)
0.80 | 3.4956(6) | 0.683(4) |—-0.016(3) | 1.299(3) | 0.310(3)
0.60 | 2.4173(9) | 0.725(6) | -0.093(7) | 1.446(4) | 0.349(4)
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proposed for systems with periodic boundary condi-
tions [28]:

F(T, L) OLF,(tL™), (6)

wheret = |T—T|/T;, T.=Ty(L = o), and v isthe static
correlation-length critical exponent for L = c. Equa-
tion (6) entails analogous equations for specific heat,
susceptibility, and spontaneous magnetization per
spin:

C(T, L) OLYCy(tL™), 7)
X(T, L) O L™ xe(tL™), ®
m(T, L) O L™ my(tL™"), ©)
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where the critical exponents a, y, and 3 corresponding
to L = oo satisfy the hyperscaling relation 2 —a = dv =
2B +y[29].

In modern theories, an alternative finite-scaling
ansatz is proposed for evaluating v [30, 31]:

Vv, = L"g,, (10)

where g, isaconstant parameter, and V,, is defined as

vi= B e i=1,2), (11)
0
du, 1
V, = — = ———
TR 3t
[0 ED (12
x | Thn'OED- 22— ="+ Omn'EC]|,

i8]

with 3 = UT.

According to (8) and (9), the susceptibility and mag-
netization for a sufficiently large L x L x L lattice at
T=T.are

x oL, (13)

mO L. (14)

We used these expressions to evaluate y and 3. The
corresponding expression for specific heat disagrees
with experimental results, as demonstrated in [24]. The
temperature-dependent specific heat as a function of L
is commonly approximated by different expressions,
for example (see[19, 26]),

Crax(L) = Cra(L = @) = AL, (15)

where A is a constant factor.

Toevauateq, 3,y, andv, wecalculated C, m, ¥, and
V, as functions of L. A nonlinear |east-squares regres-
sion analysis was performed to determine a/v, B/v, y/v,
and 1/v. Then, the values of v aobtained in this study
wereusedto find a, 3, and y. It should be noted that the
present approach is different from that used in numer-
ous studies where these critical exponents were deter-
mined by invoking various scaling relations. Figures 5
and 6 show log—-og plots of C and x versus L for p =
0.8. According to Fig. 6, the calculated susceptibility
values do not deviate from aline even at small L. Sim-
ilar results were obtained in [19]. The attainment of
asymptotic critical behavior is frequently questioned
when systems of the kind considered here are smu-
lated. Apparently, both the number of impurity distribu-
tions used here to calculate average quantities and the
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Fig. 6. Susceptibility versus lattice size for p=0.8.

lattice size (L = 20) were sufficiently large to ensure
that the asymptotic critical behavior of susceptibility
was attained for p = 0.8, aswell asin other cases exam-
ined in this study.

As noted above, expression (15) is used instead
of (7) in actual data processing. Figure 5 demonstrates
that the log-og plot of C(L) for p=0.8isnot aline.

The critical exponents listed in the table were
obtained for several values of p by using the corre-
sponding v(p) and Wolff's single-cluster MC algo-
rithm. Their values differ from those corresponding to
the pure Ising model. The weak dependence of the crit-
ical exponents on the impurity concentration revealed
for weakly diluted systems (with p = 0.8) can be attrib-
uted to a crossover from pureto dilute critical behavior.
Note that the sign of a changesin the neighborhood of
p =0.95, and its value is equal to the theoretical result
obtained in [7] up to anumerical error.

The absolute values of the critical exponents
obtained for the highly diluted system (p = 0.6) are sub-
stantially larger. This can be explained by the existence
of an additional random fixed point (which is difficult
to find in numerical simulations), because the critical
behavior near such apoint must be characterized by dif-
ferent values of the scaling exponents. Experimental
evidence supporting this conjecture can befoundin 2],
where critical exponents similar to those obtained here
for p=0.6 werereported for the diluted Ising antiferro-
magnet Fe,Zn, _,F, withp = 0.6 and 0.5.

The critical behavior observed for p = 0.6 in this
study is consistent with the influence of an additional
(“percolation”) fixed point hypothesized in [14, 18].
Note also that the values of a, y, and 3 obtained herefor
p = 1.0 are in excellent agreement with a = 0.109(4),
y = 1.2396(13), and 3 = 0.3258(14) obtained in [12] by
resumming the perturbation series in the scalar ¢* the-
ory with d = 3 in the absence of disordered structure.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

1205

5. CONCLUSIONS

The systematic analysis of a weakly diluted 3D
Ising model with canonical disorder performed in this
study by using the same technigque demonstrates that

(i) the critical exponents obtained for low impurity
concentrations (p = 0.8) differ from those in the pure
Ising model (p = 1.0) and characterize adistinct univer-
sality class;

(ii) highly diluted systems (p < 0.6) are character-
ized by specific values of the critical exponents corre-
sponding to yet another universality class.

Therefore, the model must exhibit two crossovers:
one between the pure (p = 1.0) and weakly diluted
(p=0.8) systems and the other between the weakly
(p=0.8) and highly (p < 0.6) diluted systems. The con-
troversial and mutually inconsistent of most results
obtained for the model in question may be explained by
the existence and substantial width of such crossover
regions.
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Abstract—The helicoid that formsin an external magnetic field in the presence of a point defect ismodeled in
the framework of the Landau theory of second-order phasetransitions. A general solution to the nonlinear prob-
lem retaining al terms in the Helmholtz free-energy functional is obtained by means of Green functions. The
magnetization distribution in the plane perpendicular to the helicoid axis and to the external field is cal culated.

© 2004 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

The presence of defects and inhomogeneitiesin fer-
romagnetic materials can strongly affect critical prop-
erties of magnets. For example, if the local exchange
constant in thevicinity of adefect isgreater thanthat in
the bulk of the material, then a localized magnetic
moment can exist at a temperature above the bulk Tg.
However, thisis possible only if the defect parameters
(effective radius and exchange interaction strength) sat-
isfy certain conditions (e.g., see[1, 2]).

The Helmholtz free-energy functional for a magnet
having a noncentrosymmetric crystalline structure con-
tains aterm that is linear in spatial derivatives. Owing
to thisterm, the ground state of the system is stabilized,
and a helicoidal structure forms at atemperature above
the Curie temperature T, of the paramagnetic—ferro-
magnetic transition [3]. Helicoidal structures of thiskind
were found, for example, in MnSi [4] and FeGe [5].

A theoretical analysis of stationary localized states
at crystalline-structure defects in noncentrosymmetric
cubic magnets was presented in [6]. Solutions describ-
ing two- and three-dimensional localized states were
obtained for temperatures above the paramagnetic—
helicoidal transition point. It was shown that, if the
Helmholtz free-energy functional contains the term
—yM29(r) associated with adefect (where M isthelocal
magnetic moment) and the parameter y has a certain
small value, then the transition to the helicoidal phase
occurs at atemperature T, above the critical tempera-
ture T, for the paramagnetic-helicoidal transitionin a
bulk sample without defects.

The stability of solutions describing nonlinear vec-
tor fields in models characterized by Lifshitz invariants
was examined in [7]. It was shown that the two- and
three-dimensional localized states associated with
relaxation of the field magnitude are radially unstable.

However, the existence of states with lower energies
(i.e., radia instability) was established for a Helmholtz
free-energy functional that did not contain the &-func-
tion contribution to the energy of the system in the
vicinity of the defect. The predicted behavior drasti-
cally changes when this contribution is taken into
account: stable multidimensional states can be local-
ized at the crystalline-structure defects in a noncen-
trosymmetric cubic paramagnet.

Helicoidal structures are the subject of intensive
ongoing experimental studies. In addition to the long-
known materials MnSi [4] and FeGe [5], helimagnetism
was reveded, for example, in Ba,CuGe, O, [8, 9] and
K,V 30g [10]. These materias are of particular interest
for analyzing the Dzyaloshinskii-Moriya exchange
interaction. The formation of incommensurate structures
of new types, including magnetic vortices (skyrmions),
was discussed in [11]. An experimental study of the
influence of the Co?* impurity concentration x on the
helicoidal structure observed in Bay,(Co,Cu; _,)Ge,0;
was reported in [12]. However, this phenomenon is
poorly understood to this day and should be studied in
more detail.

In this paper, we focus on amodel analogous to that
considered in [6]. In the present model, the expression
for the Helmholtz free energy contains an additional
term proportional to M4 and a term representing the
Zeeman energy of a magnetic moment in an external
field. Our goa hereisto calculate the stable helicoidal
magnetic state of asystem containing asingle magnetic
impurity. We show that, in addition to uniform magne-
tization, there exists a localized helicoidal magnetic
state in an external magnetic field at a temperature
above T, . It can be observed in neutron scattering
experiments.

1063-7761/04/9906-1207$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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The problem in question can also be of interest in
view of the fact that structural analogs of helicoids can
be found in various nonlinear models of condensed
matter. Apart from magnets [13, 14], interactions asso-
ciated with invariants that are linear in the first spatia
derivatives (Lifshitz invariants) take place in certain
classes of ferroelectricsand liquid crystals[15]. Another
example of amultidimensiona stationary localized state
is the Abrikosov vortex in a superconductor [16]. By
anadogy, aterm that is linear in spatia derivatives stabi-
lizes two-dimensional localized states in noncentrosym-
metric magnets, and magnetic vortices develop [17].

2. CALCULATION OF THE GROUND STATE
OF A MAGNET

Consider the Dzyaoshinskii—-Moriyatype weak
interaction for a ferromagnet with defect localized at
x=y=2z=0inan externa field. The Helmholtz free-
energy functional of this systemis

_ n@ 2. by,a, 2 2
F= M—ZJ%M +3M*+2%(0M,)
+a*(OM,)* +a*(OM,)* + AM [eurlM )

—yM?3(r) —H MZ%ISr,

where 0 is on the order of the Curie temperature Ty, N
is the concentration of magnetic moments, Mg is the
maximum possible magnetization at zero temperature,
T = (T =T/ T, and H, is an external magnetic field
paralel tothe zaxis. Thefirst twotermsin (1) represent
the expansion in powers of M about the Curie point
(magnetization M is treated as the order parameter in
the general theory of second-order phase transitions).
Note that T, isthe Curie temperature for the paramag-
netic—ferromagnetic transition in the absence of the
term proportional to M - curl M. When this term is
taken into account, transition to a helicoidal magnetic
structure occurs at a temperature T above the Curie
point, i.e., (Tc — Teo)/Teo = To = (A/2a)2. In a noncen-
trosymmetric cubic crystal, the small term proportional
toAM - curl M (i.e., linear in derivatives) givesriseto a
helicoidal magnetic superstructure modulating the fer-
romagnetic structure. The sign of A determines the
energy-minimizing rotation of M in a particular mate-
rial. The term proportional to —-yM23(r) describes a
local increase in the paramagnetic—ferromagnetic tran-
sition temperature near the point defect. The magnetic
stiffness parameter a is comparable in order of magni-
tude to the interatomic distance.
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The minimum-energy equilibrium state of the sys-
tem is found by solving the Euler—L agrange equations
associated with functional (1):

EAZZ_T I:zp |:ch E
E |:—pz ApAp—T ) I:p(P E
0 Lz Lop Dgp—T 0

r

- - )
oM D 31 H
oM 07 50 g
0 0
oMy g Hf%nU
wherethe operators Az, = A, App =A—1/p?, and Ay =

A — 1/p? are expressed in terms of the Laplacian A writ-
teninthe cylindrical coordinatesr = (z, pcos®, psing);

I %i(p
~ ~ 0 20
Lop = —Lop = 6_2_;2%’ 3
- - A 0
Loz = —Lzg—— = A5,
¢: ? pz ap
and
f4(r) = —CM+bM[FM2
21p | (@)

f°(r) = bM°M?, %) = bM*M?.
Here, C = y(M(,- o - ) + H/2T) with M*2= M?— H/2t
(the difference between the total magnetic moment par-

allel to the zaxisand its homogeneous spatial part). The
magnetic moment of the defect is parallel to the z axis.

Since Egs. (2) are difficult to solve analytically, we
make use of the following procedure. First, we find the
eigenvalues and eigenfunctions of (2) with azero right-
hand side,

~

AZZ_T I:zp qu)
LP(P

Lop Dgp—T

oz Dpp—T

L(pz

I I
—
[

r

(5)

o 0
U MD(I’ )u,(w, g, V) U
XE MP(r)a, (@, 0, v) E
0 MA()a @ 0w O

=0.
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Theresultis

-[1:_((*)2*_0-2),
O W iwz |vq)
0 Lo owzp @ = ——==J,(op)e
% - Jo + 07
O i i wz |v<p

M , av(z P, (p) - —(Jv+ (Gp) ‘Jv 1(0p))e
¢ ) 1
0 2A/w2+0
O
OMS (16,92 0, @) = ————(J,,4(0p) + J,_y(0p))€ """,
, (@, 0, S M v+1 v-1

% 2w + o?

T, =~ + 02+ AJw” + 07),

Wz |v<p

0
N 2(m0v)(zp (p)

1_9 ;pe
«/QA/(oZHr

2

Y D ‘]v+1(0p) + v 1(0p) O mozel\)(p

i
2.2 Jo? +02E1/oo +0%+w Jw'+ao? (d] ©6)

O0on.

DM g (w, o, V)(Z, [oF (p) =

.

02 D ‘]v+1(0p) _ v 1(0p) O IwZeIV(p

N +02E1/oo +0’+w Ji+o’ (d]

M w, O,V =
Ovl2, Wz P, 9 = 2@

0O

T3 =R + 0% —AJw’ +07),

M3 002 P, 0) = = —2—3,(0p)ed™,
(oo g, V) v
% 3 «/éA/co2+0
O 2 D .
OM3 6 0,9z 0, @ = i o Jv+1(0p) . Jv-a(0p) 0 jorgvo
2'\/2/\/0\) +0'2|:L/(x) +O' — A/(k)2+0'2+u£|

o o

02 D Jv+1(0p) _ Jv—l(cp) %eicozeiwp

2’\/2«/0\) +02El/oo +0°—w N +0°+ ]

DM (3p (w, g, V)(Z, p, (p) =

o™

It can be shown that M**®® (a = 1,2, 3) makeupaset  duce Green functions of (5),
of orthonormal functions:

ZIO_dO_J—dw Micx,(oo, 5 v)(r l) Gij(r 1 rz) = ZJ’O-dO'
a=123 ) ' . (7)
X (ML 0 oT)°C = 8(r1=12)5;. . Mo, (0.0, ) (Ma, 0, 0.0(F2) ™
( (w, o, )( 2)) (ry—rp) i Id(,o Z e ,

Here, c.c. denotes acomplex conjugate. Next, weintro-
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which satisfy the system of equations

gAZZ—T Lo Lo g
E Loz Bpp—T Lpg E
a |:<pz chp Acpcp—TDr
U 2z 2p P20 [l ®)
G (ryury) G(ry,r) GH(ry,r)) g
X5G(ry, 1) G(ry, 1) Gy, 1) 0= 10(1=T2),

U O
O0GM(ry,ry) G™ryry) G*Mry,r) 0

where [ is the identity matrix. Thus, the formal solu-
tion to Egs. (2) hasthe form

M) = 3 [droG(ra, 1) (o). (9)
i

3. NUMERICAL RESULTS
AND CONCLUSIONS

To compute the spatial distribution of magnetiza-
tion, we solved (9) iteratively for several values of the
external magnetic field.

Solutions to Egs. (9) for the components of M are
difficult to find in explicit form. However, if we drop
the nonlinear termsin (4), then

"z 0,9 = -2,
1%z, p, @) = 0, (10
%z p, 9 = 0,

and expressions for the magnetization components can
readily be found by substituting (9) into (10) and using
Green functions:

Tap=—< [p'dp[dZ [dgG7r, ) AL3@)

2np
Op(z p) = _CJ'p dp J’dZ-J'd(p GPZ(r r )5(2)652'),(11)
o"’(z p) = CJ'p dp J’dz' Id(p G*(r, r)5(F2)1)_[5F§z').

Since the system is homogeneous with respect to ¢, the
eigenfunctions given by (6) reduceto
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1, =W + 09,
w Wz
Mo o@ ) = Jo(op)e
- o
io Wz
((.o c)(z p) = 1(0p)e
%vll (o, c)(z p)
~WP+ 02+ AJW +0%),
oM} ©o@p) = Jy(ap)e”,
Plaoln?) = Gt
O i ([AY4
DMS (w, 0)(21 p) = - > 1(Gp)e
0 2w +0°
0
MS 0 0 P) = “=Jy(p)e”,
Il 2, (w, o)\&
a3 J2

T3= WP+ 02— AJ’ + 0%),

J2] ' + o?

iz

g(w 0)(2 p) - _75‘] (Gp)e

%DDI%:IDDED

G (ry,r, = —chodw

(12)

Wz

z 1 0' elwz
(u) 0)( p) /\/ém (Op)
(w, 0)(2, p) = - IS 1(Gp)e

Substituting the eigenfunctions from (12) into (7), we
obtain

i0(z,-2,)

(0 + 0"+ )" - N*6) I(0p) Io(0p)e

(0 + 02+ 1) (W2 + 02 +1)°

G(ry,r,) = Iododoo

~A(w’+0%)

iw(2,-2))

(@ +0%+1)°~2%0%) 3,(0p)) Jy(ap)e

(02 + 02+ 1) (W2 + 02+ 1)° = A (w* + 0%))

G*%r,r,) = —fododw

100(2, — 25)

(@' + 0"+ 1) Jy(0p) Ji(opy)e
(02 + 02 +1)° A} (W + 0?)
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G*(ry,r, = J’ ododw
(13)

iw(z, -z
e (21-2))

iO(A))\ZJo(Upl)J1(Gp2)

(W + 2+ T) (WP + 02+ 1) = A3 (P + %))
G™r,r,) = Iodcdw

iw(z,-2)

icwN 3, (0py)Je(opy)e

(W2 + 02+ T) (0P + 02+ 1) = A3 (P + 69))

i0(2,-2,)

oAJy(0p,)Ji(op,)e
(0 + 0%+ 1)° =AY (w? + 0?)

GHryr,) = J'odod(o

iw(z,-2))

oA J,(ap;)Jo(apy)e
(02 + 02 +1)° A} (W + 0?)

G*r,r,) = J’ododw

Po(9p
G (rurp)

iw(z,-2,)

iwAJ,(0p,)J (0p,)e
(0 + 02 +1)° =AY (W + 0?)

= - J’ ododw

Thus, combining (10) with (13) at the first iterative
step, we obtain

+o00 +0o0
0%z

M (z p) =CJ’0d0J'd(o
0 —oo0

(2 + 02 +1)° — wA\?
(02 + 02 + 1) (W2 + 02+ 1)° = A3(w* + 0%))

X

i wz

x Jo(ap)e™,

+o00 +o00

M%®z p) = C J’ odo J’ dw
0 —o0

—ioN (14)

(02 + 0%+ 1) (W2 + 0% + 1) = A3(w? + 6?))

X

Wz

xJi(op)e ™,

+o00 +o00

Mz, p) = C [odo [ dw
Joe]

x g)‘ J(op)e”.
(W +0°+1) =N\ (w* + 0

At the next iterative step, the magnetization compo-
nents are calculated numerically by solving (2) with
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Fig. 1. Magnetization distribution in a plane perpendicular
to the helicoid axis (z= z; —z, = 211) in the absence of exter-
nal magnetic field.

nonlinear terms (4). The results have the form

M?OH/2T + | ,H + 1,,bH®,
MP® Ol 3,H + 1 ,,bH°,

M® 01 3H + 1,,bH?,

wherel;, I, and | ; are numerical coefficients obtained
by integrating expressions depending on G% and M
with respect to w and o. To illustrate the results
obtained, we used a Cartesian coordinate system to cal-
culate the components M* and MY of the magnetization
projected onto the plane z = z; — z, = 21t perpendicular
to the helicoid axis.

Figure 1 shows the two-dimensional magnetization
pattern obtained in the plane perpendicular to the zaxis
for zero external field. Thisdistribution agreeswith that
obtained in [6] in the absence of external magnetic field
and nonlinear term bM#/2 in the Helmholtz free-energy
functional.

Figure 2 illustrates the evolution of magnetic struc-
ture. The degree of helicity increases with the strength
of the external magnetic field paralld to the zaxisfrom
Fig. 2a to Fig. 2d as the vortex formation due to the
exchange interaction involves magnetic moments
located at progressively larger distances from the
defect.

The properties of the nonuniform states examined
here are characteristic of a broad class of systems.
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Fig. 2. Magnetization distribution in a plane perpendicular to the helicoid axis (z = z; — z, = 2m) at magnetic-field strengths (a) 3,

(b) 4, (c) 5, and (d) 6 (in arbitrary units).

Therefore, both the proposed method for calculating
the response of a system to an external magnetic field
and the results obtained can be used in other areas of
solid-state physics.
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Abstract—The relaxation of the anomalous state, i.e., the return of the growth kinetics to the regime typical of
crystalsin the normal state, is studied experimentally in the temperature range 0.48-0.68 K. It is found that the
relaxation process with the growth rate decreasing by two orders of magnitude mainly occurs 1-20 ms after the
termination of the fast growth stage. Slow relaxation to the normal values of the kinetic growth coefficient is
observed subsequently during atime interval equal approximately to 100 ms. © 2004 MAIK “ Nauka/ I nter pe-

riodica” .

1. INTRODUCTION

The growth kinetics for helium crystals with small
deviations from equilibrium has been studied in detail
both above the temperature of faceting transitionsin the
atomically rough state and below this temperature (in
the atomically smooth state). The main features of the
kinetics can be described using the model of layer
growth of the crystal [1] taking into account the quan-
tum effects described by Andreev and Parshin [2]. The
phenomenon of anomalous growth, which does not fit
this pattern, is manifested in a sharp increase in the
facet growth rate by several orders of magnitude at
strong supersaturation [3]. The conditions for the emer-
gence of this state have been determined [4-6], the
kinetics of its emergence has been studied [7], the
growth rates after a transition to the anomalous state
have been measured [7, 8], and the effect of impurities
on these processes has been investigated [9]. These
experiments have led to the rejection of possible expla-
nations for anomalous growth based on the mecha-
nisms studied on classical crystals (see [1]). However,
the pattern of evolution of the anomaous state
remained incomplete until the reverse process (return
of the crystal to the normal state) was studied experi-
mentally. We apply the term normal stateto astate with
a slow growth kinetics controlled by known mecha-
nisms (spiral growth, Frank—Read sources, and two-
dimensional nucleation [1]). In this case, the mobility
of facets is determined by external supersaturation and
isindependent of the past history.

After transition to the anomalous state, the crystal
rapidly grows and the pressure in the container dropsto
a value close to the phase-equilibrium pressure and is
obviousdy smaller than the supersaturation pressure
required for the emergence of the anomalous state. It is
known from previous experiments that a second after
thisinstant, the crystal behavesasanormal crystal [10].
Later, asmaller value equal to 100 mswas estimated for
the return time [5]. These data characterized in general

the return to the normal state. The details of the relax-
ation process were unknown. In particular, it remained
unclear how the reverse process of relaxation occurs:
abruptly, as during the formation of the anomalous
state, or continuously with a monotonic decreasein the
kinetic growth coefficient by several orders of magni-
tude.

A sharp increase in the growth rate for the (0001)
facet free of growth dislocations was observed in the
temperature range 0.002-0.25 K both in our experi-
ments from the pressure jump and in [11], where opti-
cal methods were used. Pressure recording shows that
after the pressure drop (fast growth phase), the pressure
begins to increase, indicating an extremely low growth
rate. Thus, the relaxation to the normal state is detected
in this case also. However, the low time resolution of
the capacitive sensor and optical recording (~1 s) does
not permit the clarification of the details of the relax-
ation process.

Here, we study the relaxation of a helium crystal to
the normal state.

2. EXPERIMENTAL TECHNIQUE

It was known from previous experiments that the
crystals do not differ in appearance from normal crys-
tals prior to the transition to their fast growth and after
itstermination [7, 12]. For thetime being, the only indi-
cation of the anomaly isthe high growth rate for facets,
which exceedsthe normal growth rate by several orders
of magnitude. Thus, the process of return to the normal
state (relaxation) can be traced so far only by studying
the facet growth kinetics at weak supersaturation that
does not induce a transition to the anomalous phase. In
our experiments the crystal growth was ensured by a
continuous supply of liquid helium to the container via
a capillary connecting the experimental volume with
the external high-pressure system. Since the mass of
helium in the container and in the pressure system is
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constant, we can write the equations connecting the
pressuresin both parts of the system:

M;+M, = M = congt,

m,
M; =p'V.+p(p)(Vi—Vo), M, = p2V2(t)§%, (1

dMm, - dM, _ p.—ps

dt A

where subscripts 1 and 2 correspond to the container
and to the outer part, respectively. Primed parameters
pertain to solid helium, unprimed parameters corre-
spond to liquid helium, V, is the volume of the helium
crystal, V, istheinternal volume of the container, and Z
is the impedance of the capillary. The volume V, of the
outer part was changed by compression and extension
of the bellow. Below a temperature of 0.8 K at which
the experiments were performed, the effect of thermal
expansion of helium and the heat of crystallization is
negligibly weak [5]; for this reason, the corresponding
corrections were not taken into account in formulas (1).
Passing to more convenient variables, we obtain the
system of equations

dpl df _ P2—Ps
dt * Dpog; = T,

d_p2 = _ pl % + ]Dd pl
dt dt t<0 (2)
m,V,

Tl = valkL1 T2 = Z'_R-_I-_—,

Ve

p
Apk DpO

where Dp, is the supersaturation beginning from which
the crystal starts growing and k; is the compressibility
of liquid helium. It should be noted that theratio of time
constants 1, and T, is independent of the impedance of
the inlet capillary and is determined by the ratio of the
helium masses in the container and in the outer part
containing the gas. When the bellow is compressed at a
constant rate, the external pressure exceedsthe pressure
in the container by

dp, dpl

P, = Pt Tig, b= const. ©

After the transition of the crystal to the anomalous
state, it grows upon supersaturation drop over a time
approximately equal to 1 ms < 1, ,; consequently, the
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initial conditions for system of equations (2) are given
by

p1 = p1(0),
P, = Dpo"'Tld—p1 , (4)
t=0
f =1

Here and below, the pressure is measured from the
phase-equilibrium pressure. Substituting the experi-
mentally measured dependence p,(t) into system (2)
with initial conditions (4) and considering that the val-
ues of time constants considerably exceed the time of
the experiment (1, =375, 1,=30S, Ty , > t, ~ 0.2 9),
we obtain the following time dependence for the crystal
volume:

V() = Vigki Dpo- () + PO H ()

Note that since this expression contains the difference
between the current and initial pressures, the result
given by formula (5) isinsensitive to the value of pres-
sure determined for the phase-equilibrium point.

Pressure measurements in the container and,
accordingly, the determination of the crysta volume
were performed with astep of 64 us. However, it is pos-
sible to pass from the volume to the size and to deter-
mine the facet growth rate only in the following cases:
(i) asingle crystal isformed, (ii) the growth anisotropy
isknown, and (iii) the kinetics of closely packed facets
is slower than the kinetics of surfaces with other crys-
tallographic orientations. Then the crystal shape deter-
mined by the mobility of the basal and lateral facetsis
a hexagonal prism and the change in the volume is
determined by the growth of the facets. A similar tech-
nique was used earlier for measuring rates at the fast
growth stage [7]. It is clear from the above arguments
that pressure measurements should be supplemented
with direct photography of the crystal in the course of
relaxation. The photographs of the crystal obtained
with atime interval of 20 ms (separation between half-
frames) provide reference points for reconstructing of
the entire process of crystal growth; thisallows usto use
relation (5) for time intervals between frames for deter-
mining the growth rates of the facets.

Since the facet growth rate during relaxation
changes by several orders of magnitude, we will disre-
gard the anisotropy in the growth of equivalent facets
and use the linear relation

V =K—=p, (6)

for connecting the growth rate with supersaturation;
thisrelation approximately holdsfor facetsin the atom-
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ically smooth state also (the applicability of this rela-
tion was discussed in [7]). The error in determining the
coefficient of growth resistance /K is the sum of the
errors in measuring the velocity and supersaturation.
The supersaturation is measured from the phase-equi-
librium pressure over the plane surface. In our experi-
ments, this point was determined after termination of
measurement during subsequent melting of the crystal.
The typica radius of curvature of the crystal surface
was approximately 1 mm, which leads to a correction
of about 0.02 mbar. Together with the root mean square
error ~0.07 mbar in pressure measurements, this leads
to an overal indeterminacy of ~ 0.1 mbar. This contri-
bution is significant in the region where supersaturation
is on the same order of magnitude or smaller. To obtain
an independent estimate of pressure in such cases, we
measured the curvature of atomicaly rough surfaces
from the photographs of the crystals. The error in the
optical method increases with supersaturation and
amounts approximately to 50% at 0.25 mbar. The com-
bination of different techniques has made it possible to
reduce the error of measurements up to 0.03-0.05 mbar
in the entire pressure range.

The experimental technique was described in detail
in a number of publications[5, 7]; we will outline here
only the main points. Crystals were grown from helium
purified by the thermomechanical technique in an opti-
cal container [13] mounted in an optical He refrigera-
tor [14]. Nucleation was initiated by a high-voltage
pulse applied to a tungsten needle. The pressure drop
was detected by a capacitive sensor with a band of
25 kHz. The crystal was photographed by a CCD cam-
era; the frames were synchronized with the voltage
pulse, pressure recording, and the pul sed source of light
with a pulse duration of 15 ps.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

The maxima supersaturation attainable in the
chamber is limited by spontaneous nucleation at the
wall. In optical experiments, this value was 8-10 mbar.
It turned out that the quality and shape of the crystal
substantially depend on the growth regime in the anom-
alous state. For this reason, we determined at the first
stage the growth conditions for crystals satisfying the
criteria described in the previous section and suitable
for measuring relaxation.

3.1. Growth Kinetics and Crystal Shape
during the Fast Growth Phase
at High Supersaturation

The crystal growth rate after the transition to the
anomalous state was studied earlier with the help of
optical methods for a supersaturation which does not
exceed ~6 mbar [5, 7]. The photographs of the crystal
showed that the crystal shape during the first ~200 ps
is close to a hexagona prism. Small ripples were
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observed on the facets in the photographs, but the crys-
tal as awhole has clear faceting at this stage, reflecting
the hexagonal symmetry and indicating a slight anisot-
ropy on the order of 1.5-3 in the kinetic growth coeffi-
cient. This conclusion is also confirmed in the present
observations.

The crystals beginning to grow at a supersaturation
exceeding 6 mbar demonstrate strong deviations from
the hexagonal shape (see Fig. 1). It can be seen that the
crystal initially resembles ahexagonal prism. However,
120-200 us after the transition, the shape of the crystal
is close to a sphere with noticeable “mounds.” Such a
shape is encountered the most frequently, although
quite exatic forms of crystals are also observed some-
times (see Fig. 5¢c below). Figure 2 showstheregion in
which surface turbulence is observed. It can be seen
that the conditional boundary separating the stability
and instahility regions (hatched band) lies approxi-
mately at 6 mbar. It should be noted that this graph
reflects only the cases when instability developed dur-
ing the growth over the first 200 pus. Most crystals
grown above the instability boundary have liquid inclu-
sionsinthebulk (see Fig. 5¢ below) aswell as extended
defects emerging at the surface; these defects cause
considerable distortion of the crystal surface, which is
especially pronounced in the equilibrium state attained
after the growth stage. This renders these crystals
invalid for relaxation measurements. Thus, the region
in which the return to the normal state can be studied
using the given method is limited by a supersaturation
of approximately 6 mbar from above and by the bound-
ary between the anomalous and normal phases from
below.

3.2. Possible Reasons
for Crystal Shape Distortion

These observations lead to a new insight at the
results of measurement of crystal growth rates at high
supersaturation (Fig. 3). The method of determining the
crystal growth rate from the ratio of pressure ampli-
tudes is strongly substantiated by the assumption that
the crystal hasaconvex shape closeto asphere[7]. This
is observed for crystals acquiring a nearly spherical
shape (see Fig. 1). However, for the crystal shown in
Fig. 5c, this assumption is violated and the above-
described computational method leads to elevated val-
ues of the rate and kinetic growth coefficient. Conse-
quently, until the crystal shape above the instability
region is determined, the results of calculating the fast
growth rate based on the given method should be
treated as the upper boundary of thereal values. Taking
into account these remarks, we will consider the values
of the average growth rate at thefirst half-wave of pres-
sure oscillations (in the first ~200 ps) for crystals
with an initial supersaturation of approximately 10 mbar
(Fig. 4). Attenuation of subsequent pressure oscilla-
tions is associated with the growth/melting of atomi-
cally rough regions. The damping decrement makes it
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Dp, mbar

1217

3 4 5
t, ms

Fig. 1. Crystal growth at T = 0.48 K. The vertical arrow marks the instant corresponding to the application of a high-voltage pulse.
At theinitia stage, the crystal hasavisiblekinetic faceting with aslight anisotropy of growth. Instability leadsto anearly spherical

shape of the crystal after about 200 ps.

possible to obtain an order-of-magnitude estimate of
the kinetic growth coefficients for these surfaces for a
supersaturation below 1 mbar (seeFig. 4). Thesevalues
give the interval of values from which the return to the
normal state begins.

According to experimental results, the crystal has
well-defined facets prior to the transition to the anoma-
lous state and grows due to mechanisms associated
with defects [5, 7]. At this stage, the pattern of crystal
growth suggests that the basal and lateral facets are in
an atomically smooth state. Saturation as such does not
violate the faceting transition. After a transition to the
anomalous state, kinetic faceting of the crysta is
observed in experiments [8], which only indicates an
anisotropy in the crystal growth. This anisotropy can
emerge during the growth of both atomically smooth
and atomically rough facets. Indeed, the emergence of
flat regions on the surface of a growing crystal was
experimentally observed above the faceting transition
also, when the boundary pertains to the atomically
rough state [5, 15]. Consequently, it remains unclear
whether the crystal surface returns to the atomically
rough state or remains atomically smooth upon a tran-
sition to the anomal ous phase.

Andreev [16] studied the stability of an atomically
smooth surface in a tangentia flow of a liquid and
proved that the change in the energy of a stage leads to
cylindrical faceting of the crystal. In our case, theliquid
flows on the boundary mainly along the normal, which
differs from the purely tangential flow considered
in [16]. The experimentswith aliquid jet directed to the
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basal facet of the crystals revealed that the facet
remains undistorted at flow velocities up to 50 cm/s,
which corresponds to growth rates of about 5 m/s[17].

Dpo, mbar

14

12

10

|
0.4 0.5 0.6 0.7 0.8

T,K

Fig. 2. Phase diagram of the anomalous state. The solid
curve separates the regions of normal (below the curve) and
anomal ous growth. The circlesindicate the growth seriesin
which the instability of the crystal shape did not develop,
while the squares correspond to crystals with a noticeable
deviation from the hexagonal shape; the boundary between
them is shown by the hatched region. The dashed curve
shows the variation of limiting supersaturation for the tan-
gential instability [18, 19].
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Fig. 3. Dependence of the crystal growth rate on supersatu-

ration immediately after transition to the anomalous state:
T =0.653 (0), 0.533 (»), 0.421 (<), and 0.206 K (*).
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Fig. 4. Temperature dependence of the kinetic growth coef-
ficient determined from pressure oscillations. The circles
demonstrate the kinetics of the facets during the first
~200 s after the formation of the fast phase, the squares
show the kinetics of atomically rough surfaces at the final
stage of oscillations. The dashed curve corresponds to the
kinetic coefficient of the growth of atomically rough sur-
faces measured for small deviations from the equilibrium
state by the crystallization wave technique.
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Although the situation in experiments with ajet differs
from the situation of crystal growth on a needle, the
facet stability up to such high velocities speaksin favor
of the conclusion about the stability of the crystal shape
in the atomically smooth state in the case of a fast
growth.

If, however, the transition to the anomalous phase
leadsto atransition of thefacetsto the atomically rough
state, the singularity of the surface rigidity on closely
packed facets disappears, and hydrodynamic instabili-
ties associated either with crystallization waves of with
the Kagan—Nozieres-Uwaha instability become possi-
ble [18, 19]. In the former case, ripples on the crystal
surface could be due to generation and propagation of
crystallization waves since the kinetic growth coeffi-
cients of the facets are quite large. The dispersion rela-
tion for the waves disregarding the gravitational contri-
bution as well as the tangential liquid flow (see below)
has the form [2]

o +i2 P k- 2R3 = o, 0
Knp™™  hp

where w and k are the frequency and the wavevector of
acrystallization wave and a is the surface rigidity. To
estimate the surface rigidity, we disregard the depen-
dence of the surface energy on the orientation and
assumethat the surface energy isabout 0.2 erg/cm?. For
arunning crystallization wave, the condition

1 popf
k> K20 Ehd] (€]

must be observed; for /K ~ 10 cm/s (see Fig. 4), this
condition makes it possible to estimate the minimal
wavevector as k ~ 10* cm= and the damping time for
wave damping proportional to exp(-t/t) as

r<aKk®2 0T (140 9

p'Chp™ ©
These estimates show that the length of crystallization
wave propagating over afacet ison the order of 10 cm
and is too short to form the observed distortions on the
facet surface. In addition, these waves must attenuate
over atime two orders of magnitude shorter than the
characteristic growth time. Thus, the excitation of crys-
tallization waves is not responsible for the observed
deformation of the crystal shape.

The stream of liquid flowing over the surface change
the dispersion relation for crystalization waves and,
according to Nozieres and Uwaha[18] and Kagan [19],
may lead to surface instability. These authors observed
an instability similar to the Kelvin—Helmholtz tangen-
tial discontinuity instability and found that allqwd flow
along the normal does not lead to instability.! In the

1 The conclusion drown in [17] concerning the surface instability
during crystal growth is erroneous. The authors are grateful to
A.Ya. Parshin for pointing out this circumstance.
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case of free crystal growth at the center of the container,
its kinetic faceting in the form of a hexagona prism
generates atangential flow of theliquid with velocity v,
in the region of the edges, which might be a source of
instability. In the presence of a tangential liquid flow,
the dispersion relation for crystallization waves has the
form

w +B pp mk+2vt DFE
(10)

+ K S/t A Fﬂ Ap2 = 0.

The positive imaginary part of frequency leads to an
exponential increase in the perturbation amplitude.
Since the observed instability develops over atime of
approximately 100 ps, the values of the tangentia
velocity must be quite large. Assuming that the peak
value of Im(w) = 10* s and using the kinetic growth
coefficient from Fig. 4, we can numerically calculate
therequired values of v,. Thesevalueslieintheinterval
25-40 cm/s. Assuming that tangential velocities are
proportional to the velocity v, of the normal flow of the
ligquid and this relation (geometrical factor) is approxi-
mately constant in the temperature interval studied
here, we can calculate the temperature variation of
supersaturation required for the development of tan-
gential instability (see Fig. 2). The geometrical factor
vdv, ~ 0.2 is chosen in such a way that the stability
boundary passes through point Dp = 6 mbar a T =
0.4 K. It can be seen that an increase in temperature
leads to a decrease in the kinetic growth coefficient;
consequently, a higher velocity of the liquid flow (and,
hence, a higher pressure) is required. Such a steep
dependence disagrees with the experimental data and
the observed instability is hardly a consequence of the
Kagan—Nozieres-Uwaha tangential instability [18, 19]
developing due to nonuniformity of the helium flow.

The crystal surface distortions are probably associ-
ated with the emergence and development of turbulence
intheliquid flow near the crystal sincetheflow velocities
are high (see Fig. 3). Our results are insufficient to draw
an unambiguous conclusion concerning this process.

3.3. Relaxation to the Normal Sate
in front of the Instability Boundary

In this region, the crystals correspond to the above-
formulated criteria, contain insignificant defects, and
have the shape of a hexagonal prism. The reconstruc-
tion of the crystal dimensions from the projection intro-
duces an error of about 0.01 mm in the measurement of
linear sizes. The time interval between the shots was
varied from 20 to 100 ms, which setsthe lower limit on
a facet growth rate of ~0.01 cm/s. The growth rate is
limited from above by the helium inflow and does not
exceed 0.1 cm/s in our experiments. For supersatura-
tions Dp = 0.1 mbar, the corresponding kinetic growth
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Fig. 5. Examples of crystal growth at the stage of relaxation
to the normal state at 0.48 K. (a) Relaxation of the crystal
with the initial supersaturation near the boundary of the
anomalous region. (b) Relaxation of the crystal for aresid-
ual pressure of approximately up to 0.25 mbar. (¢) The
shape and relaxation of a crystal formed at a high supersat-
uration.

coefficientslieintheregion YK = 5m/s. Theresultsfor
the growth coefficients for the fastest |ateral facets will
be given below. The values of K for the basal facets can
be obtained from these data by multiplying them with
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Fig. 6. Variation of the kinetic growth coefficient at thefinal
stage of relaxation. The notation of the curves corresponds
tothe seriesin Fig. 5. Thetimeis measured from the instant
of pressure jump.

the anisotropy coefficient, which lies in the interval
0.3-06aT~05Kandintherange 0.05-0.15at T ~
0.7K.

Crystal Relaxationat T= 0.48 K

Let us consider the relaxation of the crystals formed
near the boundary of the anomalous phase (Fig. 5a).
The kinetic coefficient of fast growth, which is deter-
mined from theamplituderatio, is /K = 0.14 m/s. After
completion of the fast growth phase, the pressurein the
container stabilizes at a value exceeding the equilib-
rium pressure by the Laplacian pressure for a plane sur-
face. According to the rounded shape of the crystalsin
Fig. 5a, thisdifference amountsto about 0.07 mbar. The
liquid inflow via the capillary leads to crystal growth
primarily in the region of rounded edges, where the
kinetic growth coefficient is higher than the growth
coefficient for the facets. As long as atomically rough
regions grow, the pressure variation reflects the
increasein the curvature of these regions (dashed curve
in Fig. 5a). Then the observed growth of the facets
begins, and the kinetics of their growth can be deter-
mined using the technique proposed above (Fig. 6). It
can be seen that, beginning at t ~ 100 ms, the kinetic
growth coefficient remains unchanged within the mea-
surement error. For time periods t < 100 ms, the lower
boundary of coefficient 1/K < 10 m/s. Thus, the mobil-
ity of the facets decreases at |east by two orders of mag-
nitude approximately 20 ms after the termination of the
fast growth stage.

Crystal growth due to atomicaly rough regions
increasesthe delay beginning from which out technique
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is applicable. From this standpoint, series of measure-
ments in which the pressure in the container differs
from the equilibrium pressure by a large value (Dp 2
0.2 mbar) after the termination of the fast growth stage
are preferable. In this case, the curvature of the edgesis
small and the growth resource due to atomically rough
regions is exhausted much more rapidly. Figure 5b
shows an example of such a series of measurements.
During the fast growth, the kinetic coefficient is VK =
0.14 m/s. It can be seen from the photographs that,
beginning with t ~ 20 ms after the pressure jump, the
crystal increases in size due to facet growth. The corre-
sponding time dependence of the kinetic growth coeffi-
cient is shown in Fig. 6. During the period from 20 to
100 ms, a small (approximately by a factor of three)
relaxation of coefficient K can be observed, which
approachesthevalue 1/K = 150 + 24 m/s. Thus, kinetics
relaxation mainly occurs over a time shorter than
20 ms. It remains unclear whether theinversetransition
OCCUrs jumpwise or continuously.

It was noted above that analysis of relaxation for
high supersaturationsis limited by the instability of the
crystal shape during the fast growth stage and, asa con-
sequence, the defectiveness and strong distortion of the
crystal facets. However, we managed to detect the
growth of a crystal which, in spite of the above-men-
tioned circumstances, had a shape suitable for such
measurements (see Fig. 5¢). During fast growth, the
kinetic coefficient 1/K is0.097 m/s; i.e., this coefficient
is approximately twice as large as that for the crystals
shownin Figs. 5aand 5b. Liquid inclusionsin the crys-
tal do not change their positions. The pressure in the
container at the relaxation stage changes insignificantly
and is equal to 0.1 £ 0.06 mbar. The error in the mea-
surement of the phase-equilibrium pressure may
change the scale of K values by no more than a factor
of two in either direction. Figure 6 shows the values of
the kinetic growth coefficients calculated for Dp =
0.1 mbar as well as relative errors associated with
noise. It can be seen that the kinetic growth coefficient
slowly decreases, remaining approximately an order of
magnitude larger than the equilibrium value, but two
orders of magnitude smaller than the value measured
during fast growth.

Relaxation at T= 0.69 K

At this temperature, the range of supersaturations at
which the crystals suitable for measurements are
formed is not large (see Fig. 2). However, an important
advantage of experimentsin thisregion isthat the time
interval between the instant of crystal formation and its
transition to the anomalous state is quite large (Fig. 7).
This makes it possible to measure the growth kinetics
prior to the transition together with relaxation measure-
ments. Figure 7 shows two series of growth with delays
of 16 ms (a) and 3.6 ms (b). It should be noted that the
crystal volume in series (a) with a high growth anisot-
ropy of 0.053 prior to the jump amounted approxi-
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Fig. 7. Relaxation of crystals at 0.69 K for two different values of the initial supersaturation. The kinetic coefficients of crystal
growth before and after the anomal ous growth differ by no more than afactor of two. Two-sided arrowsindicate theintervals outside

the sensitivity limits of the given technique.

mately to 50% of the final volume; i.e., at the fast
growth stage, the crystal size hasincreased by just 25%.
For series (b), we managed to determine the fast kinetic
growth coefficient /K. = 0.22 m/s. The lower curve
shows the variation of the kinetic growth coefficient. It
can be seen that the value of K before the transition dif-
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fers only dlightly from the value after the relaxation.
The difference by a factor of two isimmaterial since,
according to the observation of the shape of kinetic
faceting in the normal growth regime determined by
defects [5, 10], the growth rates differ by a factor of
severa unitseven for equivalent facets. The values of K
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at T=0.68K arehigher than at 0.48 K, whichisin agree-
ment with the available experimental data[10, 12].

Asat atemperature of 0.48 K, fast relaxation occurs
during approximately 20 ms after the transition and the
kinetic coefficient 1/K assumes values equal to 10—
20 m/s. Subsequently, the kinetics returnsto the normal
regime over a time approximately equal to 100 ms.
Comparison of relaxation curves in Figs. 7a and 7b
shows a tendency that can also be observed in Fig. 6:
the time of slow relaxation to the normal state increases
with the initial supersaturation.

4. DISCUSSION

The experiments show that the main (fast) relax-
ation occurs over atime approximately from 1to 20 ms
after the transition to the anomalous state. This time
interval could not be resolved by our technique; it is
known only that the kinetic growth coefficient 1/K was
in the interval 0.05-0.25 m/s at the initial point of the
transition and dropped to 10-20 m/s at the final point.
It remains unclear whether the main return was jump-
like or continuous. Furthermore, relaxation to normal
values close to the growth coefficient prior to the tran-
sition occurs with a characteristic time of approxi-
mately 100 ms. A tendency towards an increase in the
slow relaxation time (see Figs. 6 and 7) with increasing
initial supersaturation is observed. However, this con-
clusion cannot be regarded asfinal since aconsiderable
retardation of relaxation was observed in crystals
formed at high supersaturations (see Figs. 5¢ and 6). In
these cases, surface growth instability leading to the
emergence of defects in the crystal, the formation of
inclusions and, probably to saturation of the crystal
with vacancies was observed. Observations of the last
stage of the process complete the pattern of the effect.

Processes occurring during a long time and leading
to asharp increase in the growth rate aswell asthe fast
growth mechanism itself still remain unclear. The only
phenomenon having common features with the given
effect (the phase diagram, the statistical nature of the
transition, and the effect of impurities) is the effect
describedin[11]. A combination of these effect hasfur-
ther reduced the list of possible sources of the fast
growth. Since acceleration took place in the latter case
at a perfect facet, sources of the growth must be formed
by the process itself. Two-dimensional nucleation is
ineffective for such small deviations from equilibrium.
A qualitatively new source of the growth was proposed
in[20], whereit was proved that collisions of the stages
can lead to their transfer to the next crystallographic
plane, thus ensuring the growth of the perfect facet. An
increase in temperature and the introduction of impuri-
ties decel erates the stages, which requires a high super-
saturation for realizing such a scenario. This pictureis
in qualitative agreement with the experiment and it is
perhaps this mechanism that ensures a fast kinetics of
the facets. However, the reason why this mechanismsis
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not triggered for along time and the crystal growsinthe
conventional slow mode is not clear as yet. The expla-
nation of the fast growth based on a model proposed
in [21] does not agree qualitatively with the experimen-
tal results.
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Abstract—Experimentally observed features of the electrical and noise characteristics of bicrystal junctions of
cuprate superconductors, such aslinearity of thecritical current density versus square root of the junction trans-
parency and increase in the spectral density of shot noise for small bias voltages (below the superconducting
gap), indicate that the superconducting current in cuprate bicrystal junctions is determined by the passage of
guasi-particles through a potential barrier at the superconductor boundaries. This processinvolves bound states
appearing as a result of multiple Andreev reflections in superconductors with dominant wavefunction compo-

nents of the dX2 _y symmetry type. At the sametime, interpretation of the experimental current—phase and cur-

rent—-magnetic field curves requires that the character of faceting at the bicrystal junctions would be also taken

into account. © 2004 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

Shortly after the discovery of the Josephson effect,
according to which Cooper pairs penetrate through a
thin insulator layer (potential barrier) between two
superconductors, it was pointed out [1] that the super-
conducting current |5 is proportional to the probability
of electron tunneling, or the barrier transparency D,
averaged over directions of the carrier momentum:
IsOD. Note that this behavior differs from that
expected for a two-particle process, in which case the
current would be proportional to D?. Thus, the super-
conducting current Igison the same order of magnitude
as the normal (single-particle) current (1, O D). In this
context, it was suggested [1] that the transport of Coo-
per pairsisacomplex process proceeding viaan “inter-
mediate” electron-hole state in which the pair are dis-
sociated so that the barrier transparency for such a pair
isthe same asthat for single charge carriers. It was the-
oretically established, first for the superconductor—nor-
mal metal—superconductor (SNS) junctions [2] and
somewhat later (in the 1990s) for the superconductor—
insulator—superconductor (SIS) junctions[3], that these
intermediate states are related to multiple Andreev
reflections in superconductors.

In the case of tunneling junctionswith asmall trans-
parency of the boundary, the midgap states (called the
Andreev bound states) have energies close to the super-
conducting gap width A. In SNS junctions (with
D =1[2]), aswell asin the tunneling junctions involv-
ing cuprate superconductors with dominating wave-

function components of the dxz_yz symmetry type
(D-type superconductors), Andreev levels occur near

the Fermi surface (low-energy levels) [4-6]. Since the
superconducting current is determined by the derivative
of the level energy with respect to the phase difference
¢ of the wavefunctions of superconductors [7], the
behavior of superconducting currentsin DID and SNS
junctionsdiffer fromthat in SISjunctions. In particular,
SNS junctions are characterized by the critical current
I(T) linearly increasing in a broad temperature range,
whereas the temperature dependence of the critical cur-
rent in SIS junctions rapidly reaches saturation [8]. In
addition, the behavior of 1 (T) in DID junctions depends
on the orientation of D-type superconductors[5, 9, 10].

The influence of Andreev states on the phase and
temperature dependences of the critical current in bic-
rystal junctions of cuprate superconductors has been
experimentally studied in [11-14]. Alff et al. [12] also
observed peculiaritiesin the current—voltage character-
istics of such junctions that were caused by the pres-
ence of low-energy Andreev levels. Previoudly, we have
pointed out certain features in the properties of bicrys-
tal junctions, related to the low-energy Andreev levels
in bicrystal junctions of cuprate superconductors.
These peculiarities were manifested both in the electri-
cal characteristics of junctions [13, 14], and in the
appearance of excess shot noise at small voltages in
such contacts [15-18]. However, despite a large num-
ber of publications on the physical properties of con-
tacts involving metal oxide superconductors with high
critical temperatures (see, e.g., review [19] and refer-
ences therein), no systematic experimental investiga-
tions into the features of shot noise in such systems
have been performed so far. The 1/f type noise in abic-
rystal junction was studied by Kawasaki et al. [20], but
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Fig. 1. The phase dependence of the energy of Andreev lev-
elsin atunneling junction between S-type superconductors
(solid curve) and the low-energy Andreev levels in a
Dyl D_q junction (dashed curve) with atransparency of D =

0.1. The inset shows a schematic diagram of the bicrystal
junction between two D-type superconductors with sym-
metric misorientation of the crystallographic axes relative
to the direction of incidence of electrons and holes.

their data cannot be used to eval uate the effective trans-
ferred charge Q, which requires measurements of the
shot noise to be performed at much higher frequencies.
It should be noted that measurements of the spectral
density of shot noise and the dependence of Q on the
applied voltage provides additional information about
the mechanism of charge transfer in the junction.

This paper presents the results of experimental
investigations of the electrical and noise characteristics
of bicrystal junctions of cuprate superconductors and
considers the influence of low-energy Andreev bound
states on the current transport in such junctions.

2. ANDREEV STATES
IN SYMMETRIC SUPERCONDUCTING
BICRYSTAL JUNCTIONS

It was theoretically established [2, 3] that, in the
course of multiple Andreev reflections at the bound-
aries of usual (S-type) superconductors, one electronis
reflected as a hole and the Cooper pair passes to a
superconductor. The Andreev bound states are local-
ized within aboundary layer at the interface, which has
a thickness on the order of the coherence length. The
energy of Andreev levels in the junctions between S
type superconductors can be expressed as

Eec = +A4/1-Dsin’(¢/2), 1)

where A is the superconducting energy gap width.
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For junctions with alow transparency of the barrier
(D < 1), thelevels occur near the superconducting gap
(Fig. 1). Most properties of the SIS junctions can be
described both using the tunneling Hamiltonian model
and in terms of the Andreev bound states.

The superconducting order parameter in a D-type
superconductor changes sign when the momentum of a
quasi-particle rotates by 90° (seetheinset to Fig. 1). As
a result, the phases of Andreev reflections in the junc-
tions between D-type superconductors may have oppo-
site signs for the incident and mirror-reflected quasi-
particles. The sequence of mirror and Andreev reflec-
tionsin the (110) plane leads to the formation of bound
states with the energy E,,qs at the Fermi level [4]. On
the current-voltage characteristics of junctions
between a norma metal and a D-type superconductor
(NID contacts), a peak in the density of states is mani-
fested by anomalous conductivity observed at low
applied voltage [21, 22].

The dependence of the energy of Andreev levels on
the phase difference in ajunction is determined by the
angles of misorientation (o) of the crystallographic
axes of D-type superconductors and by the angle of
incidence (0) of the quasi-particle. For mirror-symmet-
ric (a, =—0g=a) junctions (D,ID_,), the energy Eycs
of Andreev states for the angle a = 45° and the energy
gap Agy) = HoCos(20 + 20y ) (Where Ay = A(a = 0)
depend on the phase as [5, 6]

Emes = *Agq,Sin(¢/2)/D(86). (2

In contrast to the case described by Eq. (1), Andreev
levels with the energies E,,g5(¢) occur near the Fermi
level even for D < 1, and their amplitudes do not

exceed Ay /D (1U4) .

Figure 2 shows the maximum energy of the Andreev
bound states at ¢ = 11 as a function of the incidence
angle 6 for various misorientation angles a in a sym-
metric junction with the typical transparency D = 102
In the symmetric junction with o = 45°, the low-energy
Andreev states (Eygs) are observed for all incident
guasi-particles. As the misorientation angle decreases
(a < 45°), the angles 8 for which the Ey g5 levels are
observed range within a 2a-wideinterval relativeto the
directions 6 = +174. In other directions, the states with
energies (Egc) close to the energy gap appear. For
a =0, the situation is close to that in the SIS junction,
where the energies of Andreev states are described by
formula (1).

Since the superconducting current is determined by
the energies of Andreev states,

|« 0 dE/dd,

both contributions (1) and (2) should be taken into
account for 0 < a < 45° by adding the corresponding
current components [6, 7, 11]. It should be noted that
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the current is proportional to thefirst power of thetrans-
parency D for the states described by formula (1), and
to the square root of D for the states described by for-
mula (2). The cone (angular range) of tunneling, which
determines the fraction of quasi-particles producing the
main contribution to the current, can be either wide
(D(B) = DycosB, Dy, = D(0 =0), for d-shaped barriers),
or rather narrow (D O exp(—26) for thick barriers) [23].
In bicrystal junctions, the case of athin barrier is more
likely to take place, since the barrier thickness for
superconducting current must not exceed the coherence
length &.

3. METHODS OF PREPARATION
AND CHARACTERIZATION
OF SUPERCONDUCTING JUNCTIONS

3.1. Sample Preparation

The Josephson junctions were formed on (1102)-

oriented Al,O; bicrystal substrates with a misorienta-
tionangle of +12° between the [1120crystallographic

axes. The epitaxia films of YBa,Cu;O, (YBCO)
cuprate with a thickness of 100200 nm were grown
at a substrate temperature of 750—770°C by means of
cathode sputtering in an oxygen atmosphere at a pres-
sure of 4 mbar. The cuprate films were deposited onto
a CeO, buffer layer that was necessary to prevent the
diffusion of aluminum from the substrateto theYBCO
film at a high growth temperature. The 30-nm-thick
epitaxial CeO, buffer layer was obtained by RF mag-
netron sputtering of a Ce target at 600—700°C in an
Ar—0, gas mixture at a total pressure of 0.01 mbar.
The epilayers were grown for the following epitaxial

relations: (001)YBCO/(001)CeO,/(1102)Al,0; and
[1100Y BCO/[001[CeO,/[1120[AI,03. Then, 5-pm-

long and 10-um-wide bridges were formed in the
Y BCO film by means of ion-plasma etching and liquid-
phase etching (0.5% Br, solution in ethanol) via a pho-
toresist mask. In each sample, the bridges crossed the
boundary at various anglesy (within 0-54°) relative to
thenormal to theinterface. The deposition of CeO, film
by sputtering a metallic Ce target, as well as the com-
bined (ion-plasma and liquid-phase) etching of YBCO
film, is an important original feature of the proposed
technology [13, 14].

3.2. Methods of Measurements

The Josephson junctions obtained had the critical
current density within j. = 10°-10° A/cm? and the char-
acteristic voltage V, = IRy = 1-2 mV (R, is the junc-
tion resistance in the normal state) at T = 4.2 K. The
current—voltage characteristics of these junctions were
measuresin arange of temperatures (4.2K < T<77K),
magnetic fields (H < 100 Oe), and under the action of a
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Fig. 2. Plots of the maximum energy of the Andreev bound
statesat ¢ = miversusthe quasi-particleincidence angle 6 for
various misorientation angles a in a symmetric bicrystal
junction of D-type superconductors with a transparency of

D=102

monochromatic microwave radiation with the fre-
guency f, = 30-100 GHz. In order to reduce the influ-
ence of external electromagnetic fields, all measure-
ments were performed in a shielded room, with signal
filtration in al leads connected to the samples. The crit-
ica temperatures of the superconducting films, as
determined from the results of resistance measurements
at an ac current below 1 pA, fell within T, = 87-89 K.

The barrier layer transparency D (averaged over the
momentum directions) was defined by the relation

D = __—_anhs_.l_ = 2p|
&p RS 3RS

3)

where pe is the Fermi momentum in YBCO, p is the
resistivity of YBCO, | isthe mean free path of electrons
in the ab plane, and Sis the contact area. For pl = 4 x
10° Q cm? and the typical values of RS = (1-3) x
107 Q c¢cm?, we obtain D = (1-3) x 102 [20, 22].
Figure 3 shows a schematic diagram of our experi-
mental setup for the noi se measurements. The measure-
ments were performed in the decimeter wavelength
range, where 1/f type noise is absent. The setup
employed |ow-noise high-electron mobility transistors
operating in the frequency range f, = 1-2 GHz, with an
intrinsic noise temperature of Ty; =8+ 2K and again
of G; =20dB at T = 4.2 K. The balance input circuit
ensured stable operation in a broad range of loads (10—
100 Q) and reduced the temperature of a background
radiation reaching the sample via a coaxia cable. The
noise temperature of the measuring circuitry contained
contributions from the second amplification stage
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Fig. 3. Schematic diagram of the experimental setup for the
noise measurements: (J) sample; (1) dc current source;
(V) low-frequency voltage amplifier; (F) low-frequency fil-
ters; (SA) HP8563A spectrum analyzer; (G4, Gy) first- and
second-stage amplifiers; (nV) analog nanovoltmeter; diode
symbol denotes a quadratic detector. Microwave signal is
transmitted viaawaveguide with cooled 20-dB attenuator A
eliminating background irradiation of the sample.

(which occurred at room temperature and had an intrin-
sic hoise temperature of Ty, =130K andagainof G, =
40 dB) and the coaxial cable (with a damping coeffi-
cient of a; < 0.2 dB) connecting the sample to the low-
noise amplifier. This amplifier was connected to the
second-stage amplifier occurring at T = 300 K via a
rigid coaxial cable in astainless-steel braid. This cable
could be considered as consisting of two parts: the first,
with an effective temperature of T+, = 30 K and adamp-
ing factor of a, < 1.5 dB, and the second, with a5 <
0.5dB at T+, = 295K (see Fig. 3). Asaresult, the total
noise temperature of the measuring system was

To=Ty
Tyo
a,+d,

+ 1[TTl(l —0(51) +Tr(1- agl) +

= }=12K,

which was on the same order of magnitude as the back-
ground radiation temperature (T, = 10 K). Under condi-

Parameters of bicrystal junctions measured at liquid helium
temperature (T = 4.2 K)

Sample
Parameter
BC-9 |BC-15| BC-16 BC-21

Misorientation 33° 12° 12° 12°
anglea

lo LA 70 18 55 32
Ry, Q 16 90 40 60
R\S Q pm? 10 45 20 30
Qmade 10 - 16 15
\ '\ 300 - 30 10

(H=0) (H=650¢)|(H=450e¢)

AV,mV (forQ~e)| V>4 |25-70| 20-60 5-20
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tions of good impedance matching between the sample
junction and the low-noise amplifier, the accuracy of
noise temperature determination was £5 K. In order to
minimize the influence of the background radiation
reaching the sample via the rectangular waveguide, we
used a cooled microwave absorber ensuring a 20-dB
attenuation. The noise temperature of the measuring
system was calibrated by varying the temperature of
a 50-Q-impedance matched load connected instead of
the sample.

The response signal voltage (proportiona to the
noise power Py) was measured at the output of a qua-
dratic detector. Simultaneously, the amplitude—fre-
guency characteristic was measured at the amplifier
output. The absence of resonance features on this char-
acteristic in the course of noise measurements was evi-
dence of agood impedance matching between the sam-
ple junction and the measuring circuit. By varying the
inductance of the cable connecting the sample to the
amplifier, it was possible to ensure nonresonance
impedance matching in a broad range of normal resis-
tances of the sample junctions (Ry = 15-90 Q). How-
ever, exact quantitative determination of the spectra
density of current fluctuations S(V) O Py /Ry (Ryisthe
differential resistance of the junction) and the corre-
sponding effective transferred charge Q(V) = S(V)/2l
was possible only for the junctions with normal resis-
tances within anarrower interval, Ry = 20-60 Q. Data
on the maximum effective transferred charge Q. the
range of voltages AV where this charge was constant
and equal to the electron charge, and the el ectric param-
eters of several junctions are presented in the table.

4. RESULTS AND DISCUSSION

4.1. Electrical Properties
of Superconducting Bicrystal Junctions

Figure 4 shows the typical current—voltage charac-
teristic of a bicrystal junction, which is well described
by aresistive model with two channels of charge trans-
fer, including the current of quasi-particles (V/Ry) and
the superconducting current (Ig(¢) = I.sing). A small
level of the excess current (deviation from the Ohm
law) at voltages above 10 mV is evidence of the
absence of direct (nontunneling) conductivity. How-
ever, the temperature dependence of the critical current
(left inset to Fig. 4) is close to linear (to within the
experimental accuracy), in contrast to a theoretica
curve obtained for the tunneling junctions between
S-type superconductors [8] that exhibits saturation for
KT <A. Thejunctionswith direct conductivity, in which
the low-energy Andreev states determine the supercon-
ducting current transport, usually exhibit an almost lin-
ear behavior of 1(T) in abroad temperature interval.

According to Fig. 2, the states of both types
described by Egs. (1) and (2) can be observed in the
tunneling DID junctions depending on the incidence
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angle of quasi-particles, and the superconducting cur-
rent consists of two parts [6, 11]:

Is(f) = lsc(9) + Iyas(9).

The contribution due to Andreev states near the gap,
whichisdescribed by Eq. (1), rapidly increaseswith the
temperature (in proportion to AXT) according to the
Ambegaokar—Baratoff law [8]) and exhibits saturation
at low temperatures:

lsc O DoAgcos(2a)sing.

The contribution due to states near the Fermi level
increases in proportion to /T with decreasing temper-

ature and (for KT < A./D) saturates at
Imes O —Apsin(2a) Docosq—2> sgn%in%%

(with the minus sign). Therefore, there must exist a cer-
tain temperature T* at which the | (T) curve exhibits a
dipandthelg¢) curve deviates from the sinusoidal law.
For a barrier with the transparency D = 102 and an
Y BCO superconducting gap of Ay = 20 meV, the esti-
mationyields T* =12 K. Thetypical experimental curve
of 1(T) presented in the left inset to Fig. 4 exhibits no
such dip, whichis probably related to faceting devel oped
at the interface during epitaxial growth [19, 22].
[I"ichev et al. [11] studied bicrystal junctions of small
thickness (comparable with the facet size) and observed
adipinl(T) for atemperature at which the current ver-
sus phase curve deviates from the sinusoidal law.
A nonmonotonic I(T) curve was also observed for
junctions of rather large thickness (on the order of sev-
eral microns), but only for asymmetric bicrystal junc-
tions [24].

At high temperatures (T.— T < T,), where the influ-
ence of thermal fluctuations is large, the temperature
dependence of |.iscloseto (T,—T)¥2[6, 25]. Thistem-
peratureinterval featuresthe most pronounced suppres-
sion of the D-type component of the order parameter
near the bicrystal junction [26].

According to Egs. (1) and (2), the superconducting
current at T < T, depends on the transparency D in the

DID junctions (1. O /D) not in the same manner asin
the SISjunctions (I, [0 D). Thisdifferenceisrelated to
the fact that low-energy Andreev levels in the DID

junctions occur at the Fermi level (E ~A./D, seefor-
mula (2)), whereas these levels in S-type superconduc-
tors occur near the gap (E ~ A, see formula (1)). The
behavior observed in our experiments seems more like
it obeystheroot law: 1. 0 1/,/RS O /D (seetheright
inset to Fig. 4). Despite arather large scatter of experi-
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Fig. 4. The typical current-voltage characteristic of a
bicrystal junction measured at T = 4.2 K. The left inset
shows the temperature dependence of the critical current I

and the resistance R; the right inset shows a plot of the crit-
ical current density versus characteristic normal resistance
(RnS) of thejunction.

mental points (characteristic of the junctionsinvolving
cuprate superconductors [19]), the best fit (minimum

deviation) of 1 (D) was observed for thel, O /D curve.
We believe that the observed dependence of the energy
of Andreev levels on the junction transparency is quite
stable to the action of various factors, including the
boundary faceting, which leads to the appearance of
both symmetric (D,ID_,) and asymmetric (D, 1D, junc-
tions). However, the D, D_, junctions according to for-
mula (2) at low temperatures have I 0 AyD,, whereas

the D, D, junctions are characterized by |0 A, D3 [5].

Therefore, the superconducting current for D, < 1 is
determined by the regions with symmetric misorienta-
tion of the crystallographic axes.! It is not excluded
that, in the case of suppression of the order parameter,
the D-type component may influence the behavior of
[(D) [26]. It should be noted that a dependence of the

. O /D type was theoretically predicted for SIS con-
tacts with a thick potentia barrier [28]. For such SIS
junctions, the difference of the spectrum of the Andreev
bound states from the spectrum according to Eq. (1)
leadsto adifferent dependence of I, onthebarrier trans-
parency. However, redization of the mechanism
described in [28] requires low transparency of the
boundary (D < 10-8) and weak influence of the depair-
ing factors on the density of states.

1 Inhomogeneity (roughness) of the bicrystal junction on a smaller
scale (on the order of the Fermi wavelength of quasi-particles
(A =0.01 um) breaks the coherence of Andreev reflections for
small incidence angles of quasi-particles (4rtn(A)cosd > 1, where
n is the characteristic size of the junction inhomogeneity in the
direction of current flow [27].)
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4.2. The Dependence of the Critical Current
on the Magnetic Field

Figure 5 presents the experimental dependence of
the critical current on the magnetic field, I.(H), for one
of the bicrystal junctions studied. As can be seen, the
curveis significantly different from the Fraunhofer dif-
fraction pattern typical of junctions with a small char-
acteristic inhomogeneity size, w < A; (inthiscase, wis
the width of bridges crossing the bicrystal junction),
where A; is the Josephson penetration depth [8]. The
observed | (H) curve can be related to inhomogeneity
(roughness) of the junction related to faceting at the
interface: previously, such patterns were observed for
the misorientation angles greater than 10° (but smaller
than 45°) [29]. It was demonstrated [30] that the experi-
mental behavior presented in Fig. 5 could be well
described interms of asystem of parallel Josephson junc-
tionswith a certain distribution of critical currents. Some
bicrystal junctions exhibited 1.(H) curves in which the
ratio of the critical current to local maximum was below
two and the subsequent | (H) peaks weakly decreased
with increasing magnetic field. It was shown [30] that the
junctions of thiskind have to be considered with regard
to the presence of facets possessing the properties of
T-contacts [6, 25].

4.3. The Phase Dependence
of the Critical Current

The phase dependence of the superconducting cur-
rent, |(¢), in aJosephson junction is determined by the
character of conductivity between two superconductors

BORISENKO et al.

in contact with each other. At relatively high tempera-
tures (T.— T < T), the I{d) curve shape is very close
to sinusoidal for the junctions of any type: I4d) =
I.sin¢. Thisdependenceisretained in all low-transpar-
ency SIS junctions (D < 1) at low temperatures (T <
TJ) [1, 5, 8], whilein thick SNS junctions (L > hv/KT)
thislaw holdsfor T < T. In order to revea deviations of
thel4(¢) curve shape from sinusoidal, we have measured
the current—voltage characteristics of bicrystal junctions
exposed to a monochromatic microwave radiation
Asin(2rtyt) in the millimeter range (f, = 40-100 GHz)
[14]. The experiments were performed for the junctions
featuring both symmetric (the bridge was perpendicul ar
to the interface) and asymmetric current flow (the
bridge was oriented at y = 0—72° relative to the inter-
face). Previoudly, the appearance of the subharmonic
Shapiro steps in the junctions with nonsinusoidal 14¢)
curve was used to study the phase dependence of the
critical current of thin tin bridges [31] and hybrid
Pb/Au/Y BCO superconducting heterojunctions [32].

Figure 6 presents the dependences of thefirst (1,(A))
and subharmonic (I1,,(A)) Shapiro steps on the radia-
tion amplitude for the bicrystal junctionswith y= 0 and
54°. Theinset to Fig. 6 shows theoretical curves calcu-
lated using aresistive model for f, > 2el Ry/h. The cal-
culations were performed for the sinusoidal relation

Is(¢) = lcsing

and for a system with small deviation from the sinu-

I, mA

T T T T T
0.06 .
0.04+ E
0.02+ -

0 1 1 1 1 1

—4 -2 0 2 4

H, rel. units

Fig. 5. Experimental curve of the critical current versus magnetic field applied to abicrystal junction.
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soidal law:

1(0) = (1-3)I snd +3l.sn(2¢), & = 0.2.

As can be seen, the difference between the two theoret-
ical and experimental |,(A) curves is relatively small.
However, even a small deviation of the phase depen-
dence from sinusoidal leads to the appearance of
noticeable subharmonic Shapiro steps. The results of
experimental measurements of the amplitude of sub-
harmonic steps as a function of the bridge orientation
angle y showed the absence of sin(2$) components in
the angular interval y = 0-36° (to within 5%). For the
angles y > 40°, the contribution of sin(2$) exhibits
monoatonic growth.?

The deviation of the phase dependence from sinuso-
idal for the bicrystal junctions with asymmetric bias
current is probably related to the current component
along the bicrystal interface, which changes the spec-
trum of low-energy Andreev states. The maximum

energy of Andreev states, A,,/D, = 2 meV, is compara-

ble to the value (€ = evgA? = 5 meV) of the longitudi-
nal component of the superconducting current for jg =
103A/cm?, ve=5x 10*cm/s, and A = 0.1 um (here, A is
the London penetration depth).

4.4. Shot Noise in Bicrystal Junctions

Indirect evidence for the existence of excess non-
thermal noise in the junctions involving cuprate super-
conductors has been obtained from data on the broaden-
ing of the line of intrinsic Josephson generation [33, 34]
and on the noise characteristics of SQUIDs and electro-
magnetic radiation detectors[35]. However, the 1/f type
fluctuations do not always explain the growth of noise
(in particular, for processesin the microwave frequency
range). From this standpoint, it was of interest to study
the appearance of shot noise—a factor determining
both broadening of the generation line and deteriora
tion of the device characteristics.

The noise characteristics of junctions were studied
both in the autonomous regime (H =0, A=0) andina
weak magnetic field (H < 100 Oe) sufficient to suppress
the critical current in the junction. Figure 7 shows the
current—voltage characteristic and the noise power as a
function of the bias voltage, Py(V)), in the autonomous
regime.3 In the region of large voltages (V > 30 mV),

2 For a high-frequency external action (fe > 2el Ry/h), the ratio of

the maximum amplitude of the subharmonic step to the critical
current within the framework of the resistive model is equal to the
ratio of the second and first harmonics in the phase dependence of
the critical current.

3 The noise power is expressed in the temperature units due to the
special features of calibration of the experimental setup described
in Section 3.2.)
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Fig. 6. Plots of (a) thefirst and (b) the subharmonic Shapiro
steps versus microwave radiation amplitude (fo = 100 GHz,

T = 4.2 K). Curves show the dependences calculated using
the resistive model for I(¢) = I.sin$ (dashed) and I¢) =

(1-9)I.sind + dl.sin2¢ (o = 0.2) (solid); symbols present
the experimental data for two orientations of bridges. The
inset shows the corresponding I(¢) curves.
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Fig. 7. Symmetric bicrystal junction: (1) current—voltage
characteristicat T=4.2 K; (2) noise power Py (V) expressed
in kelvins; (3) theoretical shot noise temperature Tgy(V) =
(e/2K1(V)Ry. The inset shows the normalized effective

charge Q(V) = §(V)/2l.

the experimental Py(V) curve coincides with the classi-
cal dependence of the shot noise temperature,

Tsu(V) = (e/2k)I(V)Ry,
where R; is the differential resistance of the junction.
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Fig. 8. (a) Spectral density of thenoise current §(V) at T=4.2 K for abicrystal junction with Ry = 18 Q (squaresrepresent experimental
data; the thick solid curve shows the results of theoretical calculation for aDID junction with D = 0.01 and eAg =5 mV [18]); (b) nor-
malized effective charge Q(V) = §(V)/2I (sguares present experimental data; thick solid curve shows the results of theoretical cal-

culation).

Calculations of Q(V) were performed for the spectral
density of noise § = 2el at eV > KT, hf (this condition
was satisfied in the experiment for V>0.7mV a T =
4.2 K and the amplifier operating at f, = 1-2 GHz). Pre-
viously, an analogous dependence (similar to the curve
in Fig. 7) of the spectral density of noisein asupercon-
ducting junction was observed for SIS contacts [36-39]
in the region of voltages above Ale.

As can be seen from Fig. 7, the junction noise tem-
perature T exceeds the shot noise temperature Tg,(V)
in abroad range of lower voltages (0<V <30 mV). In
the region of small voltages (V < 2 mV) the Ty(V)
curve exhibits peaks caused by the appearance of the
intrinsic Josephson radiation at the amplifier input. At
small voltages, a sharp increase in the value of Ry(V)
(this dependence is not depicted in Fig. 7) affects
impedance matching between the sample and ampli-
fier. For this reason, below we will consider only the
spectral density of shot noise S(V) O 4kTy/R, and the
effective charge Q(V) = §(V)/2I, since these quantities
areindependent of R,. Taking into account variation of
the Ry(V) value, we observe an almost linear increase
in§(V) atV>4mV and adistinct peak at V <2 mV.
Theinset to Fig. 7 shows the effective charge variation
in the same junction, which reveal s the growth in Q(V)
that is characteristic of the superconductor structures
featuring multiple Andreev reflections [15-18]. The
ratio Q. /e exceeded ten (see table).

Figure 8 shows S(V) and Q(V) curves measured in
the presence of an external constant magnetic field
decreasing | . and R, of thejunction. At alarge biasvolt-
age (V> 10 mV), the S(V) curves observed in the mag-
netic field (Fig. 8a) and at H = 0 (Fig. 7) coincide,
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which alows usto use the noise density calibration per-
formed for S(V) in the autonomous regime.* As can be
seen, the Ry variations at small bias voltages do not
influence the shape of the curve of transferred charge
versus voltage (Fig. 8b). The bias voltage in Fig. 8 is
normalized to V = Ay/e = 5 mV and the experimental
values of § and Q are expressed in relative units. Solid
curves show the results of theoretical calculationsfor a
mirror-symmetric junction D,sID_4s with D = 0.1 at a
fixed value of the inelastic scattering parameter
(0.0034). As can be seen, the experimental data fit to
the theory well taking into account multiple Andreev
reflections in the junctions involving D-type supercon-
ductors [18]. However, the values of the transparency
and gap evaluated for the D-type superconductor using
this comparison to the theory differ from the values
determined using electrical measurements. It should be
also noted that we did not observe subharmonic gap
features on the current—voltage characteristic predicted
in [18], which is probably related to the low transpar-
ency of the junction.

At the same time, the values of V, for which Q(V) =
Qnax inthe magnetic field proved to be much lower than
in the autonomous regime. The measurements for the
autonomoustransitions could be performed only for the
junctions with low values of the normal resistance
(Ry < 20 Q), which were poorly impedance-matched to
the measuring amplifier. As a result, the error in these
measurements exhibited a severalfold increase. For such

4 The range of voltages for which the shot noise obeys the classical
relation Q = e changed from one sample to another. The upper
boundary of this range is probably related to the potential barrier
height (see table).
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junctions, comparison of theory and experiment [18]
was performed using normalized dependences.

The fact that the intensity of noise caused by multi-
ple Andreev reflections exceeds the level of thermal
fluctuations explains the experimentally observed
broadening of the Josephson generation line in the
junctions of cuprate superconductors [33-35]. This
result should be taken into account in applications
based on the Josephson effect. Note aso that, in the
region of high bias voltages, the Nyquist noise in the
junction is much lower than the shot noise.

5. CONCLUSIONS

The results of our experimental study of the critical
current as a function of the temperature, transparency,
and phase difference between superconducting elec-
trodes, aswell as the measured current—voltage charac-
teristics showed that the most probable mechanism of
superconducting current transport in bicrystal junctions
of cuprate superconductors is electron tunneling
through the barrier with participation of the bound
states formed at the superconductor-insulator interface
as a result of multiple Andreev reflections. However,
the shapes of the experimental current—phase and cur-
rent—-magnetic field curves cannot be described within
theframework of ahomogeneous junction model, with-
out taking into account the roughness caused by face-
ting at the interface in the course of epitaxia layer
growth. At present, there is no consistent theory ade-
guately describing the experimental situation. In the
region of relatively large bias voltages (V > 5 mV), the
junction noise level exceedsthelevel of thermal fluctu-
ations, in agreement with the voltage dependence of the
shot noise in the junction (analogous to that observed
for the junctions of S-type superconductors). In the
region of small voltages, a noise peak is observed that
is characteristic of superconducting junctions featuring
multiple Andreev reflections.
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Abstract—The longitudinal and transverse spin relaxation through a (generally anisotropic) electron—nucleus
interaction in paramagnetic and magnetically ordered insulators is theoretically studied for nuclei with a
resolved quadrupole structure. Expressions are derived for the relaxation rates of both the transverse nuclear
magneti zation componentswhen individual transitions are excited in the quadrupole structure and the total lon-
gitudinal nuclear magnetization component. These expressions are reduced to aform that contains the Fourier
transforms of the time correlation functions only for the electron spins. Given the specific form of these corre-
lation functions corresponding to different phase states of the electron spins and different origins of their fluc-
tuations, the temperature dependences of the nuclear rel axation rates are ascertained in various cases, including
those for dipole and isotropic hyperfine interactions. Cal culations are performed for arbitrary electron and half-
integer nuclear spins by taking into account the possible quadrupole splitting of the NM R spectrum without any
restriction on the smallness of the ratio awykgT () is the resonance frequency of the electron spins). The
derived expressions are compared with available experimental data on the longitudinal and transverse nuclear
relaxation in colossal-magnetoresi stance lanthanum manganites in the part of their phase diagram where the
corresponding samples are either paramagnetic or magnetically ordered insulators and near the points of tran-
sition to an ordered state. Interpretations alternative to the existing ones are offered. © 2004 MAIK

“ Nauka/lInterperiodica” .

1. INTRODUCTION

In aparamagnetic or magnetically ordered insul ator,
the nuclear relaxation is generally attributable to the
fluctuating local magnetic fields generated on the
nuclei by the electron spins. The corresponding relax-
ation rates are well known for nuclei with an equidis-
tant NMR spectrum (nuclei withthespinl = /2 or | >
1/2[1]). Onthe other hand, generalizing theseresultsto
the case of nuclear spins with a nonequidistant NMR
spectrum, which ensures, for example, a resolved qua-
drupole NMR structure, is of current interest. These
nuclei are exemplified by *°La and %Mn in
La - ,A,MnO; lanthanum manganites (where A is an
akali-earth metal; doping gives rise to holes in the g
state of the Mn®* ions of the initial LaMnO; material).
Heightened interest in these materials is aroused by
their unusual magnetic and el ectric transport properties
(see reviews [2—-4]). Studying the temperature depen-
dences of the longitudinal (T,) and transverse (T,)
relaxation times for *°La and %Mn nuclei is highly
informative for investigating lanthanum manganites.
This is because NMR experiments provide local prob-
ing at alattice site of the samplewheretheintensity and
correlation times of the fluctuating local magnetic
fields and the electric field gradients causing nuclear
relaxation [5-12] determinethetimes T, and T,. Which

local fields, magnetic or electric, play the dominant role
depends on the composition and temperature of the
sample. Since these local fields for the specific samples
studied were found in several papers [5-7] to be pro-
duced by the interactions of nuclear spinswith those of
electrons, the times T, and T, in these samples bear an
imprint of the degree of order in the electron spin sys-
tem and the origin of the electron spin fluctuations.
When the experimental nuclear relaxation data [5—7]
are interpreted theoretically, the difference between the
behaviors of the electron spin system in a magnetically
ordered sample and a paramagnet is generally disre-
garded quantitatively. On the other hand, lanthanum
manganites manifest the most interesting and promis-
ing properties precisely near the transition to the ferro-
magnetic state.

Therefore, the goal of this study isto draw attention
to the possibility of different interpretations of the tem-
perature dependences of the times T, and T, for differ-
ent degrees of order in a system of localized electron
spins and different origins of their fluctuations. To this
end, wefirst reduce the problem of calculating the rates
of nuclear relaxation through an arbitrary anisotropic
electron—nucleus interaction to aform that contains the
correlation functions of only the electron spin system.
Subsequently, as an illustration of the results obtained,
we consider the regions of the phase diagram for lan-
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thanum manganites (with a hole concentration of 0 <
X < 0.15; see [8-14]) where the sampleis either a para-
magnetic or magnetically ordered insulator; hence, the
presence of delocalized spins is disregarded in the for-
mulation of the problem. We perform our calculations
for arbitrary electron and half-integer nuclear spins,
taking into account the possible quadrupole splitting of
the NMR spectrum.

2. CALCULATING THE NUCLEAR RELAXATION
RATES

Let us consider the electron—nucleus system of a
dielectric sample composed of localized electron and
nuclear spins. This can be both a paramagnet and a
ferro- or antiferromagnet in which the magnetic
moments of the sublattices are directed along the corre-
sponding easy axes. To smplify the problem, we
assume that these axes are directed along or opposite to
the crystallographic z axis of the crystal (a collinear
structure) that coincides with the principal axis of the
electric field gradient and the direction of the external
constant magnetic field H,.! The quantization axes of
the electron and nuclear spins are assumed to coincide.
In addition to the Zeeman energies of the electron (S
and nuclear (1) spins (the first two terms), the main
Hamiltonian of this system,

¥, = thSZ—hw,IZ—ZJZSj By
' M
+ 5o+ 8a)[ (19310 +1) |

includes the electron-spin exchange energy (J is the
exchange integral of the closest neighboring electron
spins) and the effective quadrupole Hamiltonian of the
nuclei. Here, w, = (—gug/#)H, where H isthe sum of the
external field Hy, the demagnetizing field of the sample
surface, and the effective fields of the magnetic anisot-
ropy. The nuclear frequency wy includesthe static shifts
due to the interaction with the electron spins (see
below). The last term in Eq. (1) is the axisymmetric
guadrupole Hamiltonian of the nuclei, where

3e°qQ
2121 -1)’

Q isthe quadrupole moment of the nucleus, andeq=V,,
is the tensor component of the electric field gradient.
Equation (1) also takes into account the fact [16] that,
even for a cubic crystal with wq = 0, the virtual pro-
cesses of emission and absorption of aspin wave by the
nucleus of a magnetic ion attributable to hyperfine
interaction at low temperatures (T < T, Ty, where T
and Ty are the Curie and Néel temperatures, respec-

fiwg =

1 Note that generalizing the problem to other orientations of the
field Hq reduces to renormalizing wq (see [15]).
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tively) are described by an axisymmetric quadrupole
Hamiltonian with

‘"_Z‘*’k’

where A istheisotropic hyperfine coupling constant, w,
is the frequency of the spin wave with wavevector k,
and N, isthe number of magnetic spins. Below, we con-
sider the case where wg + duy, < .

Here, we investigate an experimental situation
where the role of the quadrupole Hamiltonian (irre-
spective of its causes) reduces only to the transforma-
tion of equidistant nuclear levels into nonequidistant
ones. In this case, either the frequency difference
between the neighboring NMR transitions is assumed
to be larger than the NMR line width, which ensures a
resolved quadrupole structure (e.g., the multicompo-
nent quadrupole structure in high-quality lanthanum
manganite monocrystals at helium temperatures [8] or
the characteristic powder spectrum in astrong magnetic
field [7]) or the quadrupole structure is unresolved and
one NMR line is observed [5, 6]. In particular, we
exclude from our analysis the case of low hole concen-
trations and temperatures at which the nuclear relaxation
in the state of aferromagnetic insulator is attributable to
the fluctuations of the electric field gradients on the
nuclei. In the latter case, as was shown in [11-13], the
broad spectrum of the corresponding correlation times
leads to such fast inhomogeneous transverse nuclear

relaxation with a characteristic time T, that the signal
from the nuclear spin echo becomes unobservable.

In writing the electron—nucleus interaction 7' that
causes the relaxation of the nuclear spins when their
direct coupling with thelattice and the direct or indirect
interaction between themselves are disregarded, we
take into account the fact that the fluctuating part of the
local field generated by the el ectron spins on the nuclei
causes the relaxation. Therefore, the terms responsible
for the static local field on the nuclei should be sub-
tracted from the total Hamiltonian of the electron—
nucleus interaction (as was noted above, together with
the external field H, they form the nuclear resonance

frequency w):

= ﬁz Z D;"™I"5 2

j mm=-1

—mm'

where D;; " are the coupling constant between the ith
nuclear spin and the jth electron spin; 65?” = ~S]“ -
[é}"D m, m' = -1, 0, +1; and the following notation [1]
is used:

g - :%2(5?&5{), i
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Note that the interaction of the nuclear spin only with
the proper electron shell (i =) or the closest paramag-
netic centersisimplied in (2) (e.g., in[6], the sum over
the eight closest Mn ions is taken for the indirect local
field on the *La nucleus), because the contribution
from each of the centers to the relaxation of nucleus i
rapidly decreases with distance r;;. Some of the multi-
particle (el ectron—electron and nucleus—nucleus) inter-
action effects are mentioned below.

We calculate the transverse nuclear relaxation rate
by the Kubo—Tomita method [17] (seeaso[1]). In con-
trast to the calculationsin [1], weimpose no restrictions
on the smallness of the ratio Zw/kgT in the paramag-
netic region and take into account the fact that the qua-
drupole structure of the NMR spectrum may be
resolved (for | > 1/2). To determine the longitudinal
nuclear relaxation rate, we use the Kubo-Tomita and
Moriya [18] formulas (see also [16]); i.e., we use the
approximation of short correlation times for the elec-
tron correlation functions where these times do not
exceed the reciprocal of the fluctuation amplitude in
frequency units.

For an experimental situation where the resonance
frequency of the electron spinsis much higher than the
nuclear frequency, we obtain the following relationsfor
the width of the M — M + 1 transition in the quadru-
pole NMR structure and for the relaxation rate of the
longitudinal component of the total nuclear magneti-
zation:

1
T2|v| —TS||((OS||)Z(D ) +8: + > CM+1 2C E

X Ty (009 = 02) z( —D"Di%) + Teo(wy)

+ 1 1 +-—
Z(‘DO lDO : Z[CMTSD((‘)SEI)+§CM+1TSD(Q)SD)

(©)
1 —+ +1+ -
+ZCM lTSD(wsD)}ZD D l !
1 1 —
+ E[CMTSD(Q)SD) + ECM +1TsD(wsD)
+2CM 1Tsm(wsm)}ZD+l ! _1+11
= = Tq (g — wI)Z( 2D+10D_10)
(4)

1+1h 1-1-1+1
+TSD((")SD)Z(D+ " +Di-: Dj; ),
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where

Tg(g) = ReI [BS;(t)dS[Ht,
0

Ty (g —w) = ReIEBSf(t)éSfbep(—iwlt)dt,
0

00

To(y) = Re[T88](1)3S) Dep(-iwt)et,
0

00

T (wy) = Rej[asf(t)ésfmexp(—iw,t)dt,

the angular brackets denote an equilibrium averaging
with the Hamiltonian #,, and the braces denote the
symmetrized product { AB} = (AB + BA)/2. The quanti-
tiesCy = I(I + 1) — M(M + 1) characterize the intensity
of the component of the quadrupole NMR structure
related to the change in the z component of the nuclear
spinM — M + 1. The meaning of the designations wy,
and wg; is explained below in each specific case. For-
mulas (3) and (4) are valid for any paramagnetic and
magnetically ordered insulators if the pair interaction
between the electron and nuclear spins is effective in
the nuclear relaxation.

As we see from Egs. (3) and (4), at fixed electron—
nucleus coupling constants, the nuclear relaxation is
determined by the electron correlation functions, their
physical nature and the specific form of the time depen-
dence, which determine the corresponding correlation
times. Since this al depends on the degree of order in
the electron spin system, the latter clearly shows up in
the nuclear relaxation.

The time dependence of the electron spin operators
is determined by the Hamiltonian H, with the addition
of any interactions that can cause these operators to
decay in paramagnetic and magnetically ordered insu-
lators. Since we study here the situation where
duy, < Wy, it was assumed in formulas (3) and (4) that

T (2M + 1) (g + 5w)] =T4(0).

The result of this assumption is that the total longitudi-
nal magnetization of a nuclear spin system with split
quadrupole structure approaches equilibrium along a

single exponential with the characteristic rate Tf
denoted in [6, 7] by 2W and 1%, respectively. The spin
relaxation of one selected pair of levels in the quadru-
pole-split spectrum (the corresponding transition is
determined by the choice of the frequency of exciting
and reading pulses) experimentally observed in [19-22]
is multiexponential. The corresponding theoretical
analysis was performed in [18-21] in terms of level
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populations, i.e., in a reduced description of the spin
dynamics where the nondiagonal elements of the spin
density matrix were assumed to have decayed by the
time of observation. Experimentally, such asituationin
aspin system with a strong inhomogeneous broadening

of the magnetic resonance with a width &* > T;ﬁ,l is

ensured by the conditiont > T3 =(d*)™, wheretisthe

interval between the radio-frequency pulses. In this
time, the precession dephasing of the individua iso-
chromates destroys the transverse magnetization com-
ponents, which is equivalent to the nondiagona ele-
ments of the density matrix becoming equal to zero. In
this case, the observed multiexponential longitudinal
relaxation is described by the formulas from [19-22]
with 2W (or t%) given by Eg. (4) and its versions pre-
sented below. If, however, an experiment records the
total longitudinal magnetization component, then its
relaxation for wg + duy, < Wy is one-exponential.

If there is no quadrupole structure (i.e., the NMR
signal is of the same form as that at | = 1/2), then we
should set Cyy- 4o =1, Cy+1=0,and Cy,_;, = 0in

Egs. (3) and (4). Then, as should be in this case [24],
T2 = 2(T2)norsee:

where (T;l)normc is the nonsecular width.

When the isotropic indirect hyperfine interaction
dominatesin the local field on the nucleus, we have

+1+1

DQ.O:

1]

= D '= A/,
the remaining D™ = 0. Such a situation is also possi-
ble for some of the nuclei of nonmagnetic ions where
the isotropic hyperfine interaction is ensured by the
overlapping of the electron shells[16].

The overlapping of the inner t,g-orbitals of manga-
nese ions with the swave functions on the **°La
nucleus in La, _,CaMnO; may serve as an example
(see [6] and, for more detail, [9]). In this case, the
hyperfine field on **La is insensitive to the e -state
population in manganese ions.

If the dipole—dipol e interaction between the electron
and nuclear spins acts as the anisotropic interaction
(which is most characteristic of the nuclear relaxation
of nonmagnetic ions), then
D = a;(1-3cos’8y),

1]

-D;D;’ = -D;" Dt = 9a25m 8;cos’8;;,
2 (5)

+1+1~-1-1 +1-1~-1+1
Dy "Dy~ + Dy "D

2
a&; 2732 .9 2 . 4
= —}(1-3cos’,) +Zai2jsm 8;.
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Here, a; = ylysri_js; y; and y; are the gyromagnetic ratios
for the nucleus and the electron, respectively; and 6; is
the anglethat the vector r;; indicating the position of the
ith nucleus with respect to the jth electron spin makes
with the z axis. The anisotropic contribution to the local
field on the nucleus can aso come from the “proper”
electron shell. For example, the field on the Mn
nucleus in Mn3* ions has a strong anisotropic contribu-
tion from the spin—dipolefield of the g;-€lectron orbital
d(x?—y?) of theion [5], while the hyperfinefield on the
SSMn nucleus in Mn** ions has no such contribution.

In paramagnets, wy, = 0, Wy, = ws, and the following
should be substituted in (3) and (4) [1]:

3S;()3S _

fo(t),
s -

[5S;(1)8S;0

——— = exp(iwgt) f(t),
5S35 ’

where at arbitrary temperatures

35 85 = exp(ﬁiE/SEST) -1
35550 = zeisgfixci(/i:’;/)kf?,
5S35} 0= —[Skoth E;k‘*’frg
s = —SBSEiﬁ$%,

B is the Brillouin function. The quantities {8S;)?0

should be calculated numerically for the specific elec-
tron spin.

In the high-temperature (HT) approximation, i.e.,
at alow ratio iwdkg T, when
[ 8S6S} 0= B S 8SU= 8 S8S

= 2[(8S) T= —S(S+ 1),

Egs. (3) and (4) simplify to

-1 \HT

(TZM) - WHT + (ZCM 1)Wnon$c1

(6)
(TH" = 2W .
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Here, we use the identity

rcu = 2C, -1

1
- +
CM+1 2

2

and the notation

Cu+t

_ S(S+ 1)D

Wi = SH(O)Z(DS%

+rsm(ws>z( ~20;"'Dy” 1)%

Wit = X5 ) 3 (-0;°03"
(7)
+TSD(0\)S)Z(D+1+1 1_i_Di+J:1—1Di—j1+1)El
. _ 314(0) , _ 3rg(wy)
Tq(0) = m Ty (o) = S(S”+ 1)
' _ 3tg(wy) _ 3rg(wy)
Tao(ws) = 28(S+1) 2S(S+1)

If the concentration of magneticionsislow, then the
sample is a diluted paramagnet. LaGa, - ,Mn,O; crys-
talswith 0 < x < 0.2, where most of the magnetic Mn3*
ions are substituted with nonmagnetic Ga®* ions, may
serve as examples of amagnetically diluted lanthanum
manganite. The NMR and the nuclear spin relaxation of
8Ga and Ga in such samples were investigated
in[22].

The correlation functionsfg(t) and fs(t) for the elec-
tron spin fluctuations in a diluted paramagnet may be
assumed to be simple exponentials [1]. Then, 1g(0) =
L where Ty is the time constant of the function fs”(t),

\ T . T
Ts||((*)l) = %1 TSD(wS) = 23 |
1 Ts|| + ('OSTSD +1

where 1 is the time constant of the function fg(t).

Expression (7) for T]l at | = 1/2 with such electron cor-

relation functions is identical to the corresponding
expression in [1] for an arbitrary anisotropic electron—
nucleus interaction. If the relaxation rates are domi-
nated by the dipole—dipole interaction and if the terms
with T(w,) are negligible due to the relation w, > wy,
then expressions (6) and (7) for a magnetically diluted
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sample with a random distribution of paramagnetic
centers (PC) reduceto

(Taee =S4
®
x [O 8'[3”(0) +0. 6(2CM - 1)Ts||(wl)] z alj’
(T1ee= 22101 (@) sd o

If, however, the isotropic hyperfinei nteractl oniseffec-
tive in the nuclear relaxation, then expressions (6) and
(7) take the form

(T—l)HT S(S+1)
2MJ/PC ~ Sﬁ ( )
10
x Y AllTy(0) + (2Cy ~ DT (@))],
j
R WA @

In the limit of long correlation times, oosrsD > 1 (nev-

ertheless, for the method of short correlation timesto be
applicable, g = T4 = T, must not exceed A(S(S +

1)y Aj/3) Y2 that we use in our estimation), we
obtain from (10) and (11)

- A2 1/2
-1

(Tom)pc = ‘[S(S"' 1)2 _”D ,
(12)

-1 HT

(Ti)pe = Hts(s+1>z—m < (Taw)ee-

. .- 2.2
Under strong-narrowing conditions where w, T, <

1, the line width (10) of an individual transition is pro-
portional to C,,, the square of the matrix element of the
dipoletransition M — M + 1.

—1 \HT

(To)iT CMZS(S* L,

£3 A

This result seems quite natural for an arbitrary iso-
tropic relaxation mechanism in systems with a quadru-
pole structure attributabl e to a quadrupole Hamiltonian
of any origin (see, e.g., [23]); it is important that the
Fourier transform of the correlation function for the z
component of the fluctuating spin at azero frequency is
approximately equal to the spectral density of the cor-
relation functions for the transverse components at its
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resonance frequency. The longitudinal relaxation rate
for the total magnetization is approximately equal to

1\ HT  28(S+1
(Tll)PC = %ﬁ‘z‘_)rsz Aizj;
j

i.e., the following relation holds:

-1 \HT

(Tom)re = Cu(THpe- (13)

In [6], the longitudinal relaxation rate for *¥La
nuclel (I = 7/2) was measured by using a stimulated
echo and the recovery of the NMR signal detected by
the spin echo method after saturation. The observed
multiexponential time dependence of the nuclear mag-
netization z component that corresponds to the popula:
tion difference at the detected central transition isdom-
inated by the relaxation rate

Tiar = 28X 2Wij .

According to (6), the transverse relaxation rate mea-
sured by the decay of the spin echo that was aso
excited at the central frequency is

-1 _ HT HT
T2(—1/2) - Wsec + 31Wnonsec-

In our opinion, Fig. 8 from [6] shows the quantities

2W, = T4/28 = 2w/ = T, (14)
-1 HT
2w, = Lz - N Sy (15)

1_6 nonsec

16 16

which differ from 2W, and 2W, in expressions (3) from

that paper. Expressions (14) and (15) proposed above
seem to be correct.

For strong NMR line narrowing (T = 300 K), the
equality Wo = WT__ holds; acorollary of thisequal-
ity is2W, = 2W,, as observed experimentally. For slow
fluctuations, i.e., at low temperatures, but in the para-
magnetic region (Te < T < 250 K) where Wi, >

W it follows from the theory that 2W, < 2W,, in
agreement with the experimental data. In theintermedi-
ate temperature range, the general formulas (14) and
(15) should be used to determine T;" from data on the
spin-echo decay at the central transition.

On the other hand, it seems that the ordering in the
electron spin system should be taken into account at
T <Te. The fact that Wil and T;", attributable to

the involvement of free spin waves in the case where
the external constant magnetic field is negligible com-
pared to the exchange field, become equal to zero may
then be the result of a prohibition from the energy con-
servation law (see below).
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The fluctuations of the electron spin componentsin
a conventional paramagnet are attributable to its spin—
lattice and (or) spin—spin (dipole—dipole and exchange)
interaction [1]:

T =Ta+Aw, Toi=Aw, (16)

where T, is the electron spinattice relaxation time

and Aws ~ (y§ 1)%c, is the homogeneous EPR line width

(c, is the electron spin concentration). Here, we took
into account the fact that, since the projection operator
of an individual electron spin onto the z axis does not
commute even with the secular part of the dipole—
dipole interaction between the electron spins, the pro-
cesses that lead to a (homogeneous) EPR line broad-
ening also cause relaxation of the z component of the
electron spin [1]. The experimental temperature depen-
dences are successfully fitted theoretically by using the
activation laws of the variationsin 1y, and 1 with tem-
perature [6, 24].

A comparison of Egs. (8), (9) and (10), (11) shows
that the assumption about the effectiveness of a partic-
ular electron—nucleus interaction in the nuclear relax-
ationinthetheoretical formulassignificantly affectsthe
guantitative interpretation of the experimental data. For
example, the dependence of T, for the 1¥*La nuclei in
La,_,CaMnO; (x = 1/3) on the square of the constant
magnetic field shown in Fig. 11 from [7] was inter-
preted by assuming the dipole—dipole interaction to be
effective (formula (9)). The values of 108 sand 130 G
were obtained for the correlation time of the electron
spins and the amplitude of the fluctuating local field on
the®Lanuclei, respectively. Itispointed out in[7] that
the measured correlation time proved to be much larger
than its expected value. However, if this plot wereinter-
preted in terms of an isotropic hyperfine interaction
(see formula (11)), then the correlation time would be
much shorter, T, = 1072 s, while the amplitude of the
local field would be much larger that suggested in [7].
For thisinterpretation, both these quantities prove to be
within the expected ranges [ 6] (the spin—spin and spin—
lattice interactions were assumed in [6, 7] to be the
source of fluctuations in the localized electron spins).
The assumption made in [6] about an isotropic pattern
of the fluctuating local field on the **La nuclei seems
to be more redlistic. Therefore, Egs (3), (4), and (10)
with an isotropic hyperfine interaction should be used
for the width of the detectable (in ceramic samples) rel-
atively narrow central transition —1/2 — 1/2 in the
guadrupole structure of the NMR signal (it is observed
against the pedestal of merged satellitelines[6, 7]) and

for the longitudinal relaxation rate T[l measured in
both studies.

The assumption that the electron spin dynamics
dowsdowninLg _,CaMnO; (x = 1/3) dueto the tran-
sition to the spin glass state [25] seems not to be con-
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firmed by the EPR data [26]. It should be noted, how-
ever, that adding nonmagnetic trivalent ions (instead of
bivalent ones) to lanthanum manganites can giveriseto
slow electron spin dynamics, as confirmed by a series
of NMR and EPR experimentsin LaGa, _,Mn,O; (X =
0-0.2) [21]. According to [22], the nuclear relaxation
scenario for Gaand "*Gain LaGa, _ ,Mn,O5 isthefol-
lowing.

The Jahn-Teller static cooperative pulling of the
MnQOg octahedrons related to the orbital ordering, i.e.,
the strictly alternating orbitals d(3x? — r?) and d(3y? —
r?) of the Mn3* ions, takes place in the distorted rhom-
bohedral phase of LaMnO; at room temperature. A
dilution and arise in temperature cause a breakdown of
the Jahn-Teller cooperative deformations and a slow
reorientation of the orbitals. As was theoretically sub-
stantiated in [27], thermally activated reorientations of
the Jahn—Teller configurations take place in Mn** clus-
ters or near defects. These reorientations are the source
of fluctuations that ensure a relatively slow relaxation
of the Mn® spins. According to [16], long €electron
relaxation times serve as the source of large 1y and 1.

Thelatter, in turn, ensure the nuclear relaxation of 8Ga

and "*Ga by a mechanism based on the effectiveness of
the dipole—dipol e el ectron—nucleus interaction [22].

In crystals with a high concentration of magnetic
ions, the main type of interactions between them is the
exchange interaction; at T < T y, the sample isin an
ordered state, ferromagnetic (FM) or antiferromagnetic
(AFM). The existence of a region corresponding to a
ferromagnetic insulator on the phase diagram for lan-
thanum manganites with a low hole concentration was
proven theoretically [28] and experimentally [29, 30].
According to [8, 10], only the phase of aferromagnetic
insulator with a spontaneous field of ~3.5 T [12] is
detected in ceramic La, _,CaMnO; samplesfor T < T
and 0 < x < 0.15 by the NMR method, while in pure
LaMnO; at T < Ty, there is a spontaneous field of
~0.03 T attributable to lattice distortion [8]. The elec-
tron spin components in ordered crystals fluctuate due
to the exchange interactions between themselves. This
pattern at a high concentration of magnetic ionsis pre-
served even in the paramagnetic region of a magnetic,
i.e,a T>Tcy (inthiscase, wy = 0and wy, = 0). As
follows from theresults of [18] (seealso[16]), the elec-
tron correlation functions are then Gaussian:

BS(1)3S{= 5 B8 ()5ST]

2

1 5+1
=S85 (1)5S = A5+ 1) o 25'

It should be noted, however, that when this expression
was derived, the external constant magnetic field was
assumed to be weak compared to the spontaneous field

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

1239

of the magnetic; i.e., it was assumed that the exchange
frequency defined by the equality

25(S+1 §

ot = B5HHZEY
(Z is the number of closest neighbors of the electron
spin) was higher than the electron Zeeman frequency.

In this case, Ty =T = A TU2/we; hence, we obtain for
the paramagnetic (PM) region of a magnetic

17

1 \HT _ mS(S+1) T 0 L
(Tamdem = A/; 30, Z[(D ) 2D; (18)
*+ (2 -D(= DTOD‘“’+D””D.,»1 LD iDR Y],
(Tew = @T@
We

(19)

Z[( D+10D—10 +1+1D|J1 1+Dﬁl_1Drjl+1)]-

If we write expressions (18) and (19) for nuclei with
| = 1/2 whose relaxation is dominated by the fluctua-
tions of the isotropic local field, then the longitudinal
and transverse relaxation rates in the paramagnetic
region will be equal:

(20)

(Tll)pM = (Tz )PM = ﬁS(S+ 1)ZA

This result matches expression (5.35) in [16].

Let us now take into account the fact that the
exchange mechanism of the electron spin fluctuations
in an ordered insulator (sample va.16 with ahigh Curie
temperature investigated in [6] may serve as an exam-
ple) at low temperatures is effected through the inelas-
tic scatterings of spin waves by the nuclear magnetic
moments [16]. Experiments on the inelastic scattering
of neutronsin La, _,CaMnQO; in a zero external field
[30, 31] suggest the presence of spin waves (which are
also interpreted as the coherent waves of magnetic
polarons) with a quadratic dispersion law (both gapless
and with a gap).

Theelectron spin deviation produced at acertain lat-
tice site of amagnetically ordered crystal propagatesin
the crystal as an oscillatory wave of electron magnetic
moments—a spin wave or a magnon. For free spin
waves (i.e., those that do not interact with one another
and with thelattice), the fluctuations of the spin compo-
nents at site j can be roughly written as [16]

3S = +(Aal-ala),
8S/ = J/2Sa;, BS = ./2Sa],

where a,-T and g are the creation and annihilation oper-
ators for the spin deviation at the lattice site j. In these

(21)
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formulas, we should take the upper sign for FM and the
upper and lower signsfor one and the other sublattices,

respectively, for AFM. Let us pass from a}r and g to

their spatial Fourier components and take into account
the time dependence of the collective variables,

a(t) = akexp(ind), a(t) = aep(-ind),
where wy isthe frequency of amagnon with awave vec-
tor K. If we now disregard the influence of the constant
magnetic field and make the only assumption that the
NMR frequency (attributable to the local field) is low
compared to the frequency of the homogeneous FM or
AFM resonance, Weyr arvr = Wk = o, then we can easily
verify that only the Raman processes involving mag-
nons [16, 32] contribute to the nuclear relaxation. An
elementary act of these processesisthe emission of one
magnon by anucleus and the absorption of another; the
nuclear relaxation results from their energy difference.
As we see from (21), these processes are described by
the correlation function of the electron spin z compo-
nents, which contains exponentials of the form
expli(w — wy)d (g = Wy — wy). However, it is well
known that impurities (e.g., rare-earth ions) and the
interaction between the magnons can cause the spin
wave to be damped out. The nuclear relaxation through
the emission or absorption of one magnon by anucleus
(W = W) then becomes possible. In calculating the
corresponding relaxation rates, we take into account
the fact that, in general, the scattering of spin waves
can ensure the fluctuations of an arbitrary anisotropic
field from the electron spins on the nucleus. For afer-
romagnet,

(BSi(t)3S = Niz

S

X z expli(w—w)t— (M + Tt n(ne + 1),
kK

35S (t)5ST = 2—52 exp(— it —T ),
N,2

- + 2S . ~
[8S(t)dS0 = WSZ exp(iwt—T,t)(n,+ 1),

where N, isthe total number of localized electron spins,
I, is the damping of spin waves with a wave vector k,
and the mean (at a given temperature) spin wave
numbers are given by the Bose-Einstein distribution
function

N = [exp(hw/ksT —1)]

Given the damping of spin waves at T < T (the low-
temperature (LT) approximation), the following
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expressions can be derived for the transverse and longi-
tudinal nuclear relaxation ratesin FM from (3) and (4):

—1 LT

(Towem = [z(o ) +z( D”°D‘1°)<2cM—1)}

I
—(*JK')2 +(M+ rk')2

X _an(nk +1)

Skk (k

(|

S 0+1~0-1
+PR3 om0 (00

# 5[Cu(20+ 1)+ Cyp- N+ Cyp_a(y+ 1]

z D+1+l

# 5[Cu(2N+ 1) + Cypo (e + 1)+ Cy_y]

(22)

g+ T
(Tf)é& = z( D”°D‘1°)—

M+
2 2
- ) + (M +Ty)

(23)

(2n + 1)r,

2. 2
= Wty

When the damping of spin waves in the sampleis neg-

ligible, we should let dl 'y in formulas (22) and (23)

tend to zero. Then,

(Tawew = Ty [(D)”=D;j*D;(2Cy ~ )]
' (24)
X —an(nk +1)3( 0, — wy),
Sk Kk
(T )em = Z”Z( D”"D‘“’)—
. (25)
X Z N (N + 1)O( 0y — W)
k, k'
No. 6 2004



SPIN RELAXATION OF QUADRUPOLE NUCLEI

According to [16], when the isotropic fluctuating local
field on the nucleus dominates, expression (25) becomes
equal to zero. The well-known expression (5.41)
from [16] is obtained for the transverse relaxation rate
at | = 1/2. The physical cause of the longitudinal relax-

ation rate T[l becoming equal to zero in this case dif-
ferssignificantly from the cause of thelarge decreasein

T[l for dow fluctuations (see formulas (12)). Expres-

sion (25) pertains to the case (pointed out in [17])
where a perturbation (the Hamiltonian of an isotropic
electron—nucleus interaction) cannot produce the
absorption or emission of a nuclear-frequency quan-
tum. Naturally, both thelongitudinal relaxation rate and
the nonsecular contribution to the NMR line width then
simultaneously become equal to zero.

However, for the nuclei of nonmagnetic ions, the
dipolefields of the surrounding magnetic ions can con-
tribute significantly to the local field. Expressions (22)
and (23) with the substitution of (5) yield the relaxation
ratesin the case where the scattering of spin waves pro-
duces the fluctuations of the dipole field on the nuclel.

To find out how expressions (24) and (25) depend on
temperature, the following should be substituted in
them [16]:

Me—_ ,.
N—zznk(nk-u)é(%—wk')
Sk (26)
1 [k ﬁ WevH] -0
In 1-ex } 0.
16TtooEDiwé] pD keT Ul

This expression is valid for a quadratic dispersion law
of spin waves. wy, = Weyr + We(ak)?, where ais the lat-
tice parameter.

For completeness, we provide similar results for a
cubicAFM at T < T, y obtainedin[16] for anisotropic
local field on the nucleus:

L —
2 JAFM 6]‘[ﬁ2wéFM
(27)
a2 Xe! | KT 0 [ WarmA]
z qu,l AFM|:||: 17] ke T D}

where C is a constant on the order of unity determined
by the number of spinsin an elementary cell and by the
geometry of the latter;

WAM 4SJ, ,(0)

E - ﬁ fl/ ’

where J; ,(0) is the Fourier component with k = O for
the exchange integral between the AFM subl attices.

14(X) = jydy

e
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Expression (27) from [16] isvalid in the long-wave-
length approximation for spin waves when their spec-
truminAFM is

AFM

Since wg T < Wy, it follows from (24), (25), and (27)
that the longitudinal and transverse nuclear relaxation
rates in AFMs will be much larger than those in FMs,
which is observed experimentally [5]. A more detailed
and comprehensive theory of the nuclear spin relax-
ation in AFMsis presented in [33].

At intermediate (IT) temperatures (T < Tc ), the
temperature dependence of the relaxation ratesin cubic
crystalsin a zero external field is[16, 32]

3/2

- , HT T
(T)ew = (e = CODouir—575 -

1/2

(28)

_ T
C(THpm—2H

(T;l)IATFM = (Tll)!ATFM = PMOT T, [

where C' ~0.1.

Here, it should be noted that formulas (28) are valid
in avery narrow temperature range [16, 32):

EF&DU2<T TCN<
T < o O

for FMsand

(A)| <T_TC,N

AFM
W TC, N

<1
for AFMs. In addition, applying a sufficiently strong
constant magnetic field suppresses (particularly

strongly in FMs) the divergence of T;" [32] predicted

by expressions (28). Therefore, this effect was not
observed in the experimental works on the nuclear
relaxation in lanthanum manganites under consider-
ation [5-13].

In conclusion, we will describe the role of the mul-
tiparticle nucleus—nucleus interactions that are indirect
in a magneticaly ordered crystal and are effected
through the electron spins due to the hyperfine interac-
tion. Theindirect interaction between the nuclear spins
of amagnetically ordered crystal through the emission
of a magnon by one nucleus and its absorption by
another (Suhl-Nakamura (SN) interaction) at high con-
centrations of magnetic nuclei can contributeto theline
width of the nuclear quadrupole structure (see[16]). This
contribution is estimated as the square root of the second
moment of the lines. As was shown in [34, p. 443], this
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moment for a resolved quadrupole structure changes
fromlinetolineand, fortheM — M + 1 transition, is

SN _ 2
Maw)™ = S+ 1)
(29)

* 3 UF[Ch+ 5Ch 1+ 5Ch 1|
0]

Here, N, isthe number of magnetic nuclei, and U;; isthe
temperature-independent  Suhl-Nakamura coupling
constant. In contrast to the Suhl-Nakamurainteraction,
the indirect interaction between the nuclear spins
through the electron spinsin crystals with a cubic sym-
metry becomes isotropic (scalar) with increasing tem-
perature, when the spontaneous magnetization is absent
or small, and its constant depends on temperature as T2
[32]. Asaresult of the scalar form, thisinteraction will
not contribute to the second moment of the NMR signal
from identical nuclei. On the other hand, for identical
nuclei with a symmetry lower than the cubic one and
for different nuclel with any symmetry, this indirect
interaction will make a contribution to the line width
that will decrease with increasing temperatureas T2, In
the immediate vicinity of the point of transition to an
ordered state, the Moriyatheory [32] yields a contribu-
tion to the line width for both FM and AFM that
diverges as (T/[T — T¢ y[)V4

3. CONCLUSIONS

We calculated the transverse relaxation rates T;ﬁ,l

for the nuclear magnetization at the frequencies of indi-
vidual transitions of the quadrupole NMR structure and

therelaxation rate T;" for thetotal longitudinal magne-

tization component by using methods that assume short
correlation times for the fluctuating local fields gener-
ated on the nuclei by the electron spins. The corre-
sponding formulas were derived for an arbitrary aniso-
tropic eectron—nucleus relaxation mechanism and
arbitrary electron and nuclear spins; they are valid for
any ratio fwdksT. The cases of dipole—dipole and iso-
tropic hyperfine relaxation mechanisms were concret-
ized. We discussed the fact noted in [7] that, when the
results of experiments on the relaxation of **°La nuclei
inLa _,CaMnO; areinterpreted under the assumption
made in [7] about the effectiveness of the dipole—dipole
electron—nucleus interaction, the correlation times
prove to be unusually long, while the fluctuating local
fields prove to be weak. We showed that these results
interpreted by assuming the isotropic hyperfineinterac-
tion to be effective [5, 6] yield correlation times and
local field amplitudes within the ranges expected from
the EPR data. It should be noted that the nuclear relax-
ation model based on the effectiveness of the electron—
nucleus dipole-dipole interaction can yield good
results for magnetically diluted manganites [22].
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In adiluted paramagnet, the correlation functions of
the longitudinal (transverse) electron spin components
are simple exponentialswith correlation times equal to,
respectively, the spinHattice and spin—spin electron
relaxation times (a LaMnO; material strongly diluted
with nonmagnetic Ga** ions [22]). In samples with a
high concentration of magnetic ions (eg., in
La _,CaMnOs), the fluctuations of the electron spins
both below and above the magnetic ordering tempera-
ture are attributable to their exchangeinteraction. Inthe

|atter case, theformulasfor T, and T;" were obtained

by taking into account the well-known Gaussian time
dependence of the electron correlation functions with
the correation times that are the reciprocals of the
exchange frequency. In magnetically concentrated
samples below the ordering temperature, the nuclear
relaxation could be attributable to the exchange fluctu-
ations of the spatially correlated electron spins, which
is faithfully described in terms of spin waves. Without
allowance for the damping of spin waves, only the
Raman magnon absorption—emission processes, which
contribute only to the transverse nuclear relaxation, are
effectivein the nuclear relaxation. Therefore, we might
expect a sharp slowdown of the longitudinal nuclear
relaxationat T < T, whichis attributablein our case to
the energy prohibition on the single-magnon interac-
tion with nuclei rather than to the slowdown of the elec-
tron spin fluctuations. This mechanism can quaita-
tively explain therelation 2W, < 2W, observed in[6] at
T<Tc.
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Abstract—A carbonaceous material containing single-wall carbon nanotubes (SWNTS) has been synthesized
by arc-discharge evaporation of graphite with acatalytic additive of nickel and cobalt powders. The synthesized
SWNTswere purified from an amorphous carbon component (soot) and the catalyst particlesby boilingin nitric
acid. A comparison of the X-ray fluorescence spectra measured before and after this treatment showed that acid
etching significantly decreased the content of soot in the material. The material enriched with SWNTSsis char-
acterized by a reduced threshold for the appearance of the field emission current, which is explained by a
decrease in the screening effect of soot. The current—voltage characteristics of SWNTSs exhibit a hysteresis,
which is suggested to be due to the adsorption of molecules and radicals on the surface and at the ends of carbon

nanotubes. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Single-wall carbon nanotubes (SWNTS) are of con-
siderable interest both from the standpoint of basic sci-
ence, being the ideal object for direct observation of the
effects characteristic of low-dimensional structures, and
inview of the possible practical applications[1]. One of
the most impressive features of SWNTsisthe cold emis-
sion of electrons at low eectric field strengths [2-4],
which provides for areal possibility of creating a new
generation of small-size electronic devices capable of
operating in abroad range of frequencies at high work-
ing currents. The dependence of the tunneling current on
the composition of the environment makes it possible to
devel op effective gas sensors based on SWNTs[5].

The field emission properties of SWNTSs are deter-
mined by theratio of the tube length to diameter and by
the structure of the tube surface. Using high-tempera-
ture electric arc, it is possible to obtain carbon nano-
tubes containing asmall number of defects, whichisan
important factor favoring stability of the emission cur-
rent. The average nanotube diameter is determined by
the catalyst composition [6, 7] and varies within
1.0-1.4 nm. Powdered Ni—Co mixtures with various
ratios of components (sometimes, with additives of rare
earth metal s) are among the most effective catalysts for
SWNT synthesis.

In addition to nanotubes combined in bundles, the
as-synthesized material contains amorphous carbon
and residual catalyst particles. For effective utilization
of SWNTsin various devices, it is necessary to remove

these by-products. This can be achieved by a special
chemical treatment of the carbonaceous material, in
particular, by etching in concentrated minera acids.
However, the chemica treatment also modifies the
structure of carbon nanotubes by opening their ends,
grafting various functional groups, and creating vacan-
cies [8-11]. Evidently, these changes in the chemical
structure of SWNTsmust influence their el ectron struc-
ture and, hence, the field emission characteristics of the
SWNT-containing material.

This study was aimed at determining changesin the
electron structure and field emission properties of an
SWNT-containing carbonaceous material synthesized
by arc-discharge evaporation of graphite and then sub-
jected to achemical treatment. The electron structure of
the material was studied by ultrasoft X-ray fluorescence
(XRF) spectroscopy, which provides information about
thelocal partial density of occupied electron states. The
XRF spectra were interpreted based on the results of
guantum-chemical calculations of model structures
using the local density functional approximation. The
dynamic characteristics of the field emission from
SWNTs were studied by varying the frequency of the
applied sawtooth voltage.

2. SYNTHESIS
OF SWNT-CONTAINING MATERIAL

The SWNT-containing carbonaceous material was
obtained via arc-discharge evaporation of graphite

1063-7761/04/9906-1244$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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Fig. 1. TEM micrographs of a carbonaceous material synthesized by arc-discharge evaporation of graphite with Ni—Co catalyst
additives: (a, b) before treatment with nitric acid; (c) after the chemical treatment. Magnified image (b) shows the bundles of

SWNTSs.

using a setup described in detail elsewhere [12, 13].
The synthesiswas carried out in astainless-steel reactor
with adiameter of 0.5 m and aworking volume of about
150 with water-cooled walls. The buffer gaswas helium
at a pressure of 1.2 x 10° Pa. The arc discharge was
power supplied from acurrent generator ensuring adis-
charge current of about 1000 A at an applied voltage of
35-40 V. The electrodes were arranged in a vertical
geometry. The movable upper electrode (cathode) was
a graphite rod with a diameter of 60 mm. The lower
consumable electrode (anode) was a 200-mm-long
graphite rod with a 14 x 14 mm? cross section and a
10-mm-diameter axial cavity filled with a catalyst
powder.

In the first stage of synthesis, the anode cavity was
filled with a mixture of powdered graphite, nickel, and
cobalt at a total metal content of 5% (relative to the
electrode weight). Upon the graphite anode evaporation
in the arc discharge, soot was deposited on the water-
cooled reactor walls. The deposit contained meta
nanoparticles and a small proportion of SWNTSs (about
1% according to electron microscopy data). This soot
was used to fill the cavity of the evaporated electrodein
the second stage of synthesis. In this stage, the synthe-
sized carbonaceous material was deposited onto a
nickel screen situated at a distance of 100 mm from the

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

arc and heated to a temperature of 1200°C. A deposit
formed on this screen had a denser structure than the
soot formed on the water-cooled reactor walls in the
first stage.

3. ELECTRON-MICROSCOPIC EXAMINATION
OF CARBONACEOUS MATERIAL

The structure of a material deposited on the nickel
screen was studied by transmission electron micros-
copy (TEM). The measurements were performed using
aJEM-100CX electron microscope (JEOL, Japan) with
aspatial resolution of 5 A. The samples were prepared
by ultrasonic dispersion of soot in cavitation-boiling
suspension deposited onto a colloid substrate. The
TEM micrographs showed that the synthesized mate-
rial contained carbon nanotubes, metal particles, and
soot (Fig. 1a). Carbon nanotubes synthesized in the
presence of a Ni—Co catalyst have a diameter of
1.2-1.4 nm and form bundles including up to severd
tens of nanotubes (Fig. 1b). The weight fraction of nan-
otubes in the materia obtained by two-stage synthesis
was about 50%.

The particles of metal and amorphous carbon were
removed by boiling the carbonaceous material for 2 h
in concentrated nitric acid. As can be seen from Fig. 1c,
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Fig. 2. The CK, spectra: (a) experimental spectra of an SWNT-containing material (1) before and (2) after purification; (b) theo-
retical spectra constructed using the results of quantum-chemical calculations for model structures of (1) a carbon nanotube,
(I1) astripe of carbon hexagons, and (I11) acarbon chain (Fig. 3); spectrum IV showsasum of curvesl, |1, and 111 with acomponent

ratioof 7:1.5: 1.5.

the material upon thistreatment is enriched with carbon
nanotubes. The purified material is characterized by a
significantly lower content of metal particles and soot.
In addition, there appear hollow spherical graphite par-
ticles. Some of the metal particlesretained after synthe-
sis are covered by graphite layers. In the case when the
number of such layersissmall and they contain defects,
the acid dissolves metal to leave hollow graphite shells.
Since thick and continuous graphite shells prevent acid
penetration, the etched material still contains a certain
fraction of graphite-encapsulated metal particles. The
weight fraction of SWNTSs relative to the total carbon
content in the purified materia is about 90%.

4. X-RAY FLUORESCENCE SPECTRA
AND ELECTRON STRUCTURE
OF CARBONACEOUS MATERIAL

XRF spectra of the SWNT-containing material
before and after boiling in nitric acid were measured
with a laboratory-made spectrometer. The samples
were applied onto a copper substrate and cooled down
to liquid nitrogen temperaturein the course of measure-
ments. The X-ray fluorescence was excited using
bremsstrahlung radiation from a copper anode operat-
ingat U=6kV, | =0.5A. Theoutput radiation was ana-
lyzed by an ammonium biphthalate (NH,AP) single

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

crystal. Because of the phenomenon of anomalous
reflection, the NH,AP crystal exhibits nonuniform
reflectance near the K-edge of carbon absorption [14].
For this reason, the XRF spectra were corrected by
means of a special mathematical algorithm [15]. The
analyzer crystal employed in our setup allowed the CK,
spectra to be obtained with an energy resolution of
0.5eV and the maximum statistics in a short-wave-
length range (279-285 €V). The X RF spectrawere nor-
malized to maximum intensity; the accuracy of deter-
mining spectral line positions on the energy scale was
about 0.3 eV.

Figure 2a compares the CK, spectra of the initial
(as-synthesized) and acid-treated carbonaceous
SWNT-containing material. The XRF spectra exhibit
the main maximum D at an energy of 276.2 €V and a
less intense peak A at 281.0 eV. Such peaks with close
energies of the emitted radiation are characteristic of
the CK, spectraof graphite [16], arc-discharge synthe-
sized multiwall carbon nanotubes [17], and SWNTs
obtained by laser ablation [18]. The XRF fluorescence
spectrum arises when valence electrons occupy the
vacancies created by exciting radiation on the core lev-
elsof atoms (1sfor carbon). Owing to the dipole selec-
tion rules, the CK, spectrum contains information
about the density of occupied 2p states of a carbon
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Fig. 3. Caculated fragments of an (8, 8)-armchair-type SWNT (model 1), a stripe of graphite carbon hexagons (model I1), and a
carbon chain (model 111). Large open circles denote carbon atoms; small open circles are hydrogen atoms attached to terminal car-
bon atomsin the nanotube and chain structures. Black circlesindicate two structurally nonequivalent carbon atoms in the nanotube

for which the theoretical CK,, spectrum was constructed.

atom, which can be compared to the results of quan-
tum-chemical calculations for atoms in the given com-
pound [19]. Based on such a comparison, peaks A and
D inthe CK, spectraof our sampleswere assigned to 1t
and o electron systems, respectively. The electrons of
both rtand o systems are also responsible for the inten-
sities of peaks C and B.

The CK,, spectrum of amaterial enriched with carbon
nanotubes is characterized by a decrease in the relative
intensities of high-energy features (Fig. 2a, curve 2).
This spectrum is much like the CK, spectrum of
SWNTs synthesized by laser evaporation of a graphite
target with additives of aNi—Co catalyst [18], which is
evidence that carbon atoms occur in the like electron
states in the nanotubes of both types. The main differ-
ence of purified material from the initial one is a
decrease in the content of soot. Therefore, it is sug-
gested that the peaks of maximum intensity in the CK,
spectrum of theinitial sample are most probably related
to features of the electron state of amorphous carbon.

The structure of soot formed in the course of arc-
discharge evaporation of graphiteis undetermined. The
results of measurements using various spectral and
structure-sensitive techniques show that most probable
components in this soot are small graphite fragments
[20] and linear carbon chains[21]. In order to reveal the
differences in electron structure of the carbon atoms
constituting the surface of nanotubes and those entering
into the fragments contained in soot, we have analyzed
three model structures (Fig. 3). Model | isafragment of
the (8, 8)-armchair-type nanotube configuration. Two
types of bonds can be distinguished in this structure:
(i) perpendicular to the tube axis and (ii) making an
angle with this axis (a bond of this type links atoms
indicated by black circlesin Fig. 3). Theresults of opti-
mi zation of the nanotube fragment geometry performed
within the framework of the semiempirica MNDO
method [22], showed that the lengths of the bonds of
two types are 1.42 and 1.45 A at a tube diameter
of 10.9 A. The shorter bond is perpendicular to the tube
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axis, in agreement with the results of calculations for
the armchair-type nanotube of a greater diameter
performed using the local electron density functional
approximation [23]. The structure of model 1l
comprises five carbon hexagons sharing edges, and
model I11 represents afragment of the a-carbyne chain
with alternating single and triple bonds [24]. The struc-
tures of these models were cal culated within the frame-
work of the local density functional approximation
using the B3LYP method [25], implemented in the
guantum-chemical program package Jaguar [26]. The
calculation was performed using a 3-21G basis set of
atomic orbitals; the dangling bonds at the boundaries of
nanotube and carbyne fragments were saturated with
hydrogen atoms.

The results of quantum-chemical calculations of the
model structures were used to simul ate the correspond-
ing theoreticd CK, spectra. The X-ray transition
energy was assumed to be equal to the difference
between one-electron energies of the valence (i) and
core (j) levels:

Ej = &—¢. (D)

1)
The X-ray transition intensity was calculated assum-
ing that localization of the C 1s orbitals allows these
transitions to occur within the same carbon atom A.
Then, the line intensity was calculated using the
formula

=Y lehenl” 2

A,n,m

where A denotes carbon atoms of the model, and Cim
and C,, are the weight coefficients with which the 1s
and 2p atomic orbitals enter into the jth and ith molec-
ular orbitals, respectively. Theoretical spectra of the
carbon nanotubes according to model | were calculated
for two structurally nonequivalent carbon atoms indi-
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Absolute (E) and relative (AE) energies of peaksin the exper-
imental CK,, spectra of SWNT-containing materials and in
the theoretical spectra of model carbon structures

Pesk | E®P, eV | EM gV | AE®P eV | AE® eV
A 282.6 270.9 -1.6 -1.6

A 281.0 269.3 0 0

B 279.0 267.6 2.0 1.7

C 277.6 265.9 34 34

D 276.2 264.4 48 49

E 274.0 262.3 7.0 7.0

cated in Fig. 3. By considering only these central
atoms, we reduced the influence of the fragment bound-
aries so as to model the electron state of carbon atoms
in along nanotube. In simulating the spectra of struc-
tures according to models Il and Ill, we took into
account all carbon atoms. Theoretical spectrawere con-
structed as the superpositions of 0.6 eV-wide Lorentz-
ian lines and normalized to maxima.

The theoretical CK, spectra of the carbon-based
structures according to models I-11 and their sum
(curve V) are presented in Fig. 2b. The spectrum of the
carbon nanotube (curve 1) exhibits the main maximum
D, ashoulder C on the short-wavelength side, and aless
intense component A. The samefeaturesareresolvedin
the spectrum of purified SWNTs (Fig. 2a, curve 2). The
calculated energies of X-ray transitionsare about 12 eV
lower than the corresponding experimental values. This
difference is related to the fact that calculations of the
systemin the ground state were performed with neglect
of relaxation processes accompanying the X-ray emis-
sion. The calculated distances between the main spec-
tral features agree well with the experimental values
(see table). The calculation somewhat overstated the
relative intensity of the short-wavelength peak A in
comparison to that in the measured X RF spectraof nan-
otubes, which can be explained by the limitations of
model | and the calculation method employed. The
length of the calculated fragment may be insufficient to
completely exclude the effect of fragment boundaries
on the electron state of central carbon atoms. Indeed,
investigation of the dependence of the density of C 2p
electrons on the length of fragmentsin a (6, 0)-zigzag-
type nanotube showed that the optimum tube length
correspondsto five hexagons[27]. Moreover, the calcu-
lated tube has asmaller diameter than the SWNTs stud-
ied. High curvature of the graphite cylinder leads to a
significant alternation of bonds in the (8, 8)-armchair-
type nanotube configuration and, asaresult, to localiza-
tion of the Ttelectron density. An increase in the length
and diameter of the nanotube fragment (selected taking
into account limitations of the software used in the cal-
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culations) might be expected to result in a decrease in
the relative intensity of peak A in the theoretical spec-
trum of the carbon nanotube according to model I.

The CK, spectra of the fragments representing a
stripe of carbon hexagons and a carbon chain (Fig. 2b,
curves Il and I11, respectively) significantly differ both
from each other and from the spectrum of the carbon
nanotube. The spectrum of fragment Il displays two
pronounced features with their maxima at about 265
and 270 eV. As aresult, account of the electron state of
condensed carbon hexagons leads to an increase in the
relativeintensity of peaks D and A, aswell as of the most
short-wavelength feature A' in the total spectrum IV. The
shape of profile 1l isindicative of asignificant delocal-
ization of the electron density in this model. Thus, the
presence of carbon chains in the sample must provide
for an increase in the intensity of peaks C, B, A and a
long-wavelength shoulder E in the total spectrum. All
the above tendencies are observed in the CK,, spectrum
of theinitial material in comparison to that of the puri-
fied sample. It should be noted that adding only one of
the spectra of models |1 or 111 to the spectrum of nano-
tube | does no provide satisfactory reproduction of the
experimental profile.

Thus, the results of modeling show that the particles
of soot must contain both graphite fragments and car-
bon chains. In order to obtain the relative intensities
observed in the spectrum of the initial carbonaceous
material, we constructed thetotal profile IV with a70%
contribution of the nanotubes and the remainder distrib-
uted approximately equally between the contributions
of models il and I11. Aswas noted above, the content of
nanotubesin the product of two-stage synthesis accord-
ing to electron microscopy datais about 50%. An addi-
tional contribution may be provided by the graphite
coatings on metal particles. Thisis confirmed by simi-
larity of the CK, spectra of multilayer polyhedral car-
bon particles and graphite[28]. An increasein therela
tive intengities of features A and B in the total profile IV
in comparison to the theoretical spectrum of carbon
nanotube | is due to a high density of states in struc-
tures Il and Ill in the energy interval 267-272 eV
(Fig. 2b). An analysis of the results of quantum-chemi-
cal calculations showed that the el ectron density profile
inthisinterval isformed by overlapped atomic orbitals
oriented perpendicularly to the C—C bonds. In contrast
to the case of a graphite cylinder, the carbon chain and
stripe fragmentsinclude carbon atomsin the hybridized
sp! state, which accounts for the increased density of
weakly bound electron states responsible for peak A in
the total profile IV.

5. FIELD ELECTRON EMISSION

The electron emission properties of SWNT-contain-
ing samples were studied in a diode regime. The mea-
surements were performed at room temperature in a
vacuum of 5 x 10 Pa. The powdered material was
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Fig. 4. Current—voltage characteristics plotted (a, b) as the electron emission current density J versus the electric field strength F
and (c, d) in the Fowler—Nordheim coordinates for an SWNT-containing material (a, c) before and (b, d) after purification. Circles
(triangles) present the data obtained in the course of increase (decrease) of the sawtooth voltage. (a, b) Solid and dashed arrows
indicate the fields at which the emission current appears and disappears, respectively. (c, d) Regions 1 correspond to low-current
field electron emission via an adlayer; region 2 reflects the most significant adsorption—desorption processes on the SWNT surface;
region 3 corresponds to high-current electron emission from heated nanotubes.

pressed into a 0.5-mm-deep 1-mm-diameter cavity on
the surface of a stainless stedl cathode. The cavity was
filled with the powder by means of a scraper and lev-
eled flush with the cathode surface. The sample pre-
pared in thisway is characterized by arandom orienta:
tion of nanotubes relative to each other and to the cath-
ode surface. This may lead to differences in the
threshold voltage for the onset of field emission. The
results of measurements performed on four samples
prepared from the same batch of carbonaceous material
showed the same character of current—voltage curves,
with the scatter of threshold voltages not exceeding 5%
of the mean value. The distance from the cathode to a
flat molybdenum anode was d = 500 + 5 um. The value
of the tunneling current as a function of the electric
field strength was measured on applying a sawtooth
voltage with an amplitude of up to U = 1500 V and
afrequency of 0.025 Hz. The discrete character of mea-
surements at small currentsisrelated to alimited sensi-
tivity of the analog-to-digital converter operating in a
broad range of currents. The response had theform of a
periodic signal whose constant amplitude value was
evidence of stable electron emission characteristics.
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The datawere obtained by averaging over the results of
40 measurements for each sample.

Figures 4a and 4b show the current—voltage (J-F)
characteristics of the carbonaceous SWNT-containing
material in theinitial state and after the treatment with
nitric acid, respectively. As can be seen, the two mate-
rials differ in slope of the J-F curves and in values of
the hysteresisloop width and the threshold electric field
strength. Owing to arelatively large area of the sample
(about 1 mm?), hundreds of individual carbon nano-
tubes contribute to the emission current, and the mea-
sured values represent averaged characteristics of the
whole sample.

The field emission of electrons from flat metal cath-
odesis described by the Fowler—Nordheim equation [29]

e’F? o 0 4./2m

J(F) = U 3neF [

a2m)’ng

(©)
where J isthe emission current density, F isthe electric
field strength, ¢ isthe work function of agiven cathode
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material, e and m, are the electron charge and mass,
respectively, and n isthe field enhancement factor. The
J-F curve of the initial material is typical of SWNTs
[30]. The emission current appears when the field
strength reaches 1.45 V/um, which is two to three
orders of magnitude lower than the values expected for
carbon-based materials according to Eq. (3). Thediffer-
enceis explained by the special morphology of carbon
nanotubes. In the ideal case, the applied electric field
strength exhibitslocal enhancement at the end of a sep-
arate tube as compared to the macroscopic value F ~
U/d. Thefield enhancement factor ) in the hemisphere-
on-rod approximation is given by the ratio of the rod
length to hemisphere radius [31]. For a sloped nano-
tube, the n value islower, as determined by the projec-
tion of the tube length onto the normal to the sample
surface. The local field enhancement factor further
decreases as aresult of the field screening by the neigh-
boring particles. The parameter n plays a determining
role in decreasing the threshold for the emission onset
in materials containing carbon nanotubes.

A comparison of Figs. 4aand 4b showsthat the acid
treatment led to an increase in the emission current and
decreased the threshold field strength down to
1.1V/um (Fig. 4b). This is related primarily to a
decreasein the screening action of soot particlesand an
increase in the content of SWNTs in the material (see
Fig. 1). Indeed, calculation of the densities of occupied
states for the models |11 considered above confirmed
that carbon nanotubes are characterized by alower ion-
ization potential (see Fig. 2). Higher ionization poten-
tials of the stripes of condensed carbon hexagons and
especially of the carbon chain structures lead to an
increase in the tunneling threshold for the particles of
soot. The field emission from such structures begins at
higher field strengths than the emission from carbon
nanotubes.

In Figs. 4c and 4d, the results of measurements for
the samples with SWNTs are plotted as In(J/F?) versus
1/F (Fowler—Nordheim coordinates). Using this repre-
sentation, it is possible to determine the work function
¢ for a given cathode material by measuring the slope
of the linear dependence. The current—voltage charac-
teristics of theinitial and purified material plotted inthe
Fowler—Nordheim coordinates can be divided into two
and three linear portions, respectively. Breaks in the
characteristics may reflect either changes in the work
function or saturation of the emission current related to
limited density of the conduction electrons, especially
in the case of nonmetallic tubes [32]. The minimum
slope in region 2 of the Fowler—Nordheim plot for the
purified sample could just beindicative of the emission
current saturation, but the subsequent increase in the
slope observed in region 3 of this curve rejectsthis pos-
sibility. The most probable reasons for the work func-
tion of carbon nanotubes to change in the course of
measurements of the current—voltage characteristicsare
adsorption processes. Molecules adsorbed on the sur-
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face and ends of nanotubes may form either chemical
bonds (chemisorption) or the polarization and van der
Waal s contacts (physical adsorption). It was shown that
the adsorption of polar moleculesleadsto adecreasein
the emission threshold [33] and increases the field
emission properties of nanotubes [34]. The influence of
physically adsorbed molecules on the emission proper-
ties of multiwall nanotubes was confirmed by direct
mass spectrometry measurements, which showed an
increase in the partia densities of H,, H,O, CO, and
CO, at high field strengths (about 24 V/um) [35].

The results of measurements of the electron emis-
sion current using sawtooth voltage with aperiod on the
order of several seconds revealed a hysteresis in the
current—voltage characteristics. The magnitude and
sign of this hysteresis depend on the structure of nano-
tubes, the electron state of emitting surfaces, and the
chemical nature of residual gases. In our experiments,
the threshold electric field strength on the ascending
branch of the current—voltage characteristic was
0.2 V/um higher than that on the descending branch for
the samples of both initial and purified materials
(Fig. 4). Thisisevidence of an additional barrier for the
field emission of electrons from unheated nanotubes.
We believe that the barrier can be related to the pres-
ence of functional groups chemically bound to the ter-
mina atoms of carbon nanotubes. An analysis of the
electron structure of SWNT clusters with and without
hydrogen-saturated terminal atoms calculated using the
local density functional approximation showed that the
ionization potential is about 0.5 eV higher for a carbon
nanotube with hydrogen atoms [36], which may
explain the observed increase in the tunneling barrier.
After the onset of electron emission (at afield strength
of about 1 V/um), the ends of nanotubes begin to clean:
chemically bound molecules are removed first, while
the physically adsorbed molecules influence the field
emission in the fields up to 2.0-2.5 V/um. It should be
noted that the desorption of a chemisorbed particleisa
single event taking place upon the appearance of tun-
neling current, whereas the physical adsorption—des-
orption process has a dynamical character and continu-
ously influences the field electron emission. At afield
strength above 2.5 V/um and a high emission current,
the temperature of nanotubes increases up to 1300-
2000 K [37-39]. Under these conditions, the hysteresis
decreases because of a considerable contribution due to
thermoelectron emission that is independent of the
adsorption properties of the emitter material.

6. CONCLUSIONS

We have synthesized an SWNT-containing carbon-
aceous material by arc-discharge evaporation of graph-
ite and studied the electron structure and properties of
this material by methods of ultrasoft XRF, electron
microscopy, and field el ectron emission measurements.
The CK,, spectrum of a sample treated with nitric acid

No. 6 2004



EFFECT OF PURIFICATION ON THE ELECTRON STRUCTURE

reveals a significant decrease in the density of high-
energy states as compared to that for the initial mate-
rial. According to TEM data, the chemical treatment
leads to partial removal of the amorphous carbon frac-
tion and metal catalyst particles, thus increasing the
SWNT fraction in the material. The CK, spectra were
successfully interpreted based on the results of quan-
tum-chemical calculations for the model carbon struc-
tures performed using the local density functional
approximation. It is established that the amorphous
fraction must include a considerable amount of carbon
in the hybridized sp! state forming chain structures and
boundaries of graphite fragments. Such carbon atoms
account for the high density of electron states forming
the high-energy maximum in the CK,, spectrum of the
initial material.

Carbon nanotubes possess the minimum ionization
potential among the calculated model structures, which
explains the increase in the field electron emission
properties of the material after chemical purification.
The amorphous carbon covering the surface and ends of
nanotubes probably produces a screening action, thus
influencing the appearance of tunneling current. The
current—voltage characteristics of both the initial and
purified samples exhibit deviations from the Fowler—
Nordheim relation, which are probably related to the
influence of adsorbed molecules and functional groups
on the work function of SWNT-containing materials.
The results of measurements in a dynamical regime
revealed a hysteresisin the current—voltage characteris-
tics of samples. More significant changes observed in
the characteristics of purified samples may reflect the
attachment of functional groups (chemisorption) to
defects and ends of the chemically treated carbon nan-
otubes. Anincreasein thefield strength leads to detach-
ment of the adsorbed functional groups, which results
in the corresponding increasein the emission current. A
small hysteresis observed in the current—voltage char-
acteristics at high values of the applied bias voltage
probably reflects the physical adsorption. This dynam-
ica phenomenon can be used for the development of
gas sensors.
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Abstract—Propagation of electromagnetic and spin wavesin layered conductorswith aquasi-two-dimensional
dispersion law of charge carriersisinvestigated theoretically in the presence of an external magnetic field with
induction By . In layered conductors, the drift velocity vp of electrons along B is an oscillatory function of the
angle between the magnetic field direction and the normal to the layers. For certain orientations of the magnetic
field with respect to the layers of the conductor, vp iscloseto zero. In these directions, thereisno collision-free
absorption, and weakly damped waves may propagate even under strong spatial dispersion. In the short-wave-
length limit, there may exist collective modes with frequenciesin the neighborhood of resonancesfor arbitrary
orientation of the wavevector k relative to B, . Similar types of excitations in quasi-isotropic metals are pos-
sible only when k is perpendicular to the direction of the external magnetic field. © 2004 MAIK “ Nauka/Inter-

periodica” .

1. INTRODUCTION

Layered structures with strongly anisotropic metal-
lic-type electric conductivity have been intensively
studied recently. These structuresinclude alarge family
of organic conductors based on tetrathiofulvene,
dichalcogenides of transition metals, graphite, and
other materials. In the absence of an external magnetic
field, the electric conductivity o along the layers in
these materials is several orders of magnitude greater
than the conductivity o across the layers. The sharp
anisotropy of thekinetic coefficients of layered conduc-
tors is attributed to the quasi-two-dimensional charac-
ter of the energy spectra of electrons. The maximal
velocity of electrons with Fermi energy g along the
normal n to the layers, v, = v - n, is much less than the
characteristic velocity of electrons in the plane of lay-
ers, Vg, while their energy weakly depends on the
momentum projection p,=p - n and can be represented
asarapidly divergent series

00 n ,
€(p) = &(Pw Py) + Z €q(Px Py, N)COS pp

0

(D)

n=1

The functions €,(p,, p,, N) rapidly decrease as their
number increases, and the greatest of these functionsis
€1(Pw Py N) ~ NEE- Here, n = (o/0))? isthe quasi-two-
dimensionality parameter of a conductor, p, = #/a, and
. isthe Planck constant. Formula (1) correspondsto the
strong-coupling approximation when the overlapping
of the electron shells of atoms belonging to different
layers is small, while the distance a between them is

much greater than the interatomic distance within a
layer. The Fermi surface (FS) €(p) = &g for charge car-
rierswith the dispersion law (1) is an open surface with
small corrugation along axis p,; it may be multisheeted
and consist of topologically different elements, for
example, of cylinders and planes. In what follows, we
will assume that the FS of alayered conductor repre-
sents a weakly corrugated cylinder all of whose sec-
tions by the plane pg = (p - Bg)/By = p,cosd + p,sind =
const are closed for 72 — 9 > n, where B, = (B,sind,
0, Bycosd) is the induction of the external magnetic
field. Numerous experimental investigations of mag-
netic oscillations have shown that a considerable part of
tetrathi of ulvene-based organic conductors have such an
FS[1-3].

At low temperatures, various types of weakly
damped Bose-type collective modes (el ectromagnetic,
acoustic, and spin waves) may exist in norma metals
placed in a magnetic field. There is a large number
works devoted to the study of electromagnetic and spin
waves in quasi-isotropic metals; a survey of the results
of these studies is given, for example, in the mono-
graphs [4, 5]. In the present paper, we consider collec-
tive modes in layered conductors with quasi-two-
dimensional energy spectrum of electrons. Wave pro-
cesses in layered conductors are characterized by a
number of features associated with the topology of the
FS. For certain orientations of the magnetic field with
respect to the layers of a conductor, the projection of
electron velocity onto the direction of B, averaged
over the period of motion along a cyclotron orbit, is
negligibly small. There is no collision-free absorption

1063-7761/04/9906-1253$26.00 © 2004 MAIK “Nauka/ Interperiodica’



1254

for these directions of By, and weakly damped waves
may propagate even under strong spatial dispersion.

2. SYSTEM OF EQUATIONS
OF THE PROBLEM

The kinetic properties of asystem of fermionsin an
electromagnetic field are described by the equation for
the density matrix and the Maxwell system of equa-
tions. Consider the quasiclassical casefitog = T < neg,
when the quantization of the energy levels of charge
carriers in a magnetic field does not have any signifi-
cant effect on the magnitude of magnetization M and
the quantum oscillatory component of the magnetiza-
tion does not exceed its paramagnetic part. Here, wg is
the cyclotron frequency of conduction electrons and
Tis temperature. Under these conditions, the density
matrix in the quasiclassical approximation represents
an operator in the space of spin variables and a quasi-
classical function depending on the coordinates and
momenta. An equation for the one-particle density
matrix is given by

"—p——[s Bls+ 508,81 +3(5.8 +eEE§—p

g; B}%*% xBE-Ico..,

where [€, p]s is the commutator of matrices in the
space of spin variables, { €, p} isthe classical Poisson

bracket, 1o isthe collision operator, e is the electron
charge, cisthe velocity of light, E is electric field, and
B = By + B(r, t), where B(r, t) is a high-frequency
field. The operator

é = 8(p)aaﬁ _uoo- (B + 6’é(p1 rvt) (3)

isasum of the energy of aquasiparticlein the one-elec-
tron approximation in a magnetic field and the energy
of a quasiparticle due to electron—€lectron interaction;
within the Landau—Silin Fermi-liquid theory [6, 7], the
latter energy can be represented as

o0&(p, r,t)

d’p kA (4)
= Tro.J'(ZnZ)sl]_(p, o, p,6)3p(p, T, 0 1).

Here,

L(p,o,p',6") = L(p,p’) +S(p,p’)66" (5

isthe Landau correlation function, d,g isthe Kronecker
delta, |, is the magnetic moment of a conduction elec-

tron, o is the Pauli matrix, and dp is the nonequilib-
rium component of the density matrix. The term on the
right-hand side of (5) that depends on spin operators
corresponds to the exchange interaction of electrons.
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The ac electric E and magnetic B(r, t) fields are
determined from the Maxwell equations

- laE 41,
curl B T + ?J, o
_ 168 N
curlE = e divB = 0,

supplemented with the material equation for the density
of current induced in the medium:

3 N

i, t)-eTrI ap(p, , ,>g—;

(7)

3
+ cpoeurl Try J’ (2nf5)

500(p, 1, 0,1).

For angles 3 between B, and n that are not too close
to 172, namely, for /2 — 8 > n, closed electron orbits
in the momentum space for different values of the
momentum projection onto the magnetic field direction
are nearly indistinguishable, while the area S(¢, pg) of
the cross section of the FS by the plane pg = const and
the components v, and v, of the velocity v = dg(p)/op
of conduction electrons in the plane of layers depend
weakly on pg. This means that the energy of quasipar-
ticles in the one-electron approximation, the Landau
correlation function, and the cyclotron frequency can
be expanded into an asymptotic seriesin the quasi-two-
dimensionality parameter ), and the leading term of the
asymptotics is independent of pg. In the zeroth-order
approximation in n, the functions L(p, p') and S(p, p’)
can be represented as the Fourier series

L(p.p) = Z Lo(er)e™ ",
(8)

Sp.p) = Y Siene™

n=-m

Theintegras of motion of charge carriersin amagnetic
field, € and pg, as well as the phase of the electron
velocity ¢ = wgty, wheret, is the time of motion along
atrgjectory € = g, pg = congt, are chosen as the vari-
ables in the p-space. Due to the symmetry L(p, &, p',
6')=L(p, 6',p, 6) with respect to the permutation of
arguments, the coefficientsin (4) are related by the for-
mulasL_,=L,and S, = S,. Consideration of the sub-
sequent terms of the expansion of the correlation func-
tion in powers of n results in negligibly small correc-
tions to the spectrum of collective modes.

Instead of the matrix equation (2), it is convenient to

consider a system of four equations for the distribution
function

f(r.p,t) = Trp
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and the spin density
g(r,p,t) = Tr(ep).

One of these equations is obtained by applying the
operation of taking the trace with respect to the spin
variables to the matrix equation for p, while the other
three are obtained by applying the operation Sp to the
original equation (2) multiplied by ¢. The function
o(r, p, t), together with the second term on the right-
hand side of (7), describes paramagnetic spin waves,
which were predicted by Silin [8] and experimentally
observed by Dunifer and Schultz [9] in alkaline metals.

For small deviations of the electron system from
equilibrium, one can represent the functionsf and g as
the respective sums of equilibrium parts and small non-
equilibrium components,

of
f(r,p, 1) = fole) —w(r, p,t)a—;,

of,
- S28(r,p. ).

Here, fy(€) is the Fermi function, and gy(€) =
—UBy(0fy/0€). The integral of p,gy(€) over aunit cell in
the p-space represents the magnetization My = B in
auniform constant magnetic field of induction By, o =
MoV (€p) is the static paramagnetic susceptibility, and
v(gp) isthedensity of states at the Fermi level. The non-
equilibrium component of the distribution function sat-
isfies the linearized Boltzmann equation

a(r,p,t) = go

S veagfuran

~(1
+ev[E = I(col)l,

whilethe kinetic equation for the perturbed spin density
in the case when & is perpendicular to By is given,
according to [8], by

@D—+ [v x B pD(§+E5§D)

- ey x (5 + 0] (10)
OB 2UHo 22
al’ t— % [ xB ] - IcoII

where angular brackets denote averaging over the
Fermi surface:

_ 20°p [ 9fo(e)
o= [ ;)35 L. P D).

The collision integrals T and 1% determine the
characteristic relaxation times of momentum, T,, and
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spin density, 1, (T, > 1,). Henceforth, we will consider

processes that correspond to the range of frequencies
w> 1t =1+

where the asymptotics of the spectrum of collective

modes is independent of the specific form of the colli-
sion integral and k is the wavevector.

System of equations (6)—(10) describes natural
oscillations of electromagnetic field and spin density in
layered conductors with arbitrary energy spectrum and
correlation function.

3. CYCLOTRON WAVES

The so-called cyclotron waves represent a type of
excitations that is characteristic of both a solid-state
and agas plasma. These waves, with frequenciesin the
neighborhood of the cyclotron resonance w = Nwg, N =
0,1, 2, ..., propagate predominantly in the direction
perpendicular to the external magnetic field under con-
ditions of nonloca coupling between the current den-
sity and the electric field. In this section, we restrict our
consideration to the one-electron approximation and do
not take into account a Fermi-liquid interaction
between charge carriers.

Assuming that the space-time dependence of all
variable quantitiesis given by exp(ik - r —icwt), we can
easily derive from the Maxwell equations (6) the dis-
persion equation
2
-Gy k)| =

C

2
det[k 5, —kik, (11)

which determines the spectrum w(k) of natural oscilla-
tions of electromagnetic field. Here,
gj(w k) = 9+ ——0;;(w k)

isthe tensor of permittivity, 6”- isthe Kronecker delta,

2
oy k) = (2mh)°

< o S e [aovi(®) @)
1- exp (oo [k B/) %o

21

x{d¢1vj(¢—¢1)expE§B¢l—iR(¢,¢l)E

is the conductivity tensor,
R(9, ¢1)‘— _[ do'k Lv(¢"),
0—0,
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m* is the cyclotron effective mass of charge carriers,
and

2n

kv = %_[J’dq)‘k (0), & = w+io.

If the wavevector k = (ksing, 0, kcosg) liesin the plane
xz, then, expanding the determinant, we obtain

A[km +Bd(CD +C =0,

o] Cloor] (13)

where
. 2 . 2
A = g, 8N @+ 2¢,,9NQCOS P+ €,C0S P,

— 2 2
B=- Exx€zz— (syyszz + syz) cos @

_(exxs + 8xy)Sn (p+ sz+ 2(8 —&€,E

Xy-yz yy)

x Sin@Qcos @

C= det[sij] = szz(sxxs +8xy)

2
T EuExy 28xysxzsyz gy

sXZ’

and @isthe angle between the vectors n and k.

In the case of strong spatial dispersion, krg > 1,
nkr, ~ 1, wherer, = v/wg isthe Larmor radius of con-
duction electrons, the integrals with respect to ¢ and
¢,in (12) are calculated by the stationary phase
method [10]; moreover, if w~ wg, the stationary points
are determined from the equations v, (¢) = 0 and
v (d — ¢,) = 0. One can easily see that the maximal of
the components o;; of the conductivity tensor is oy,
which is proportional to (kry)™; the expansion of the
components a,; (j = X, y, 2), in powers of (kro)™ starts
from higher order terms; and the components g, (o =
X, Y), are proportional to n, while ,, 0 n?. Inthe main
approximation in the small parameters (kro)* and n, we
obtain the following dispersion equation from (13):

K*c? _ 41
F - —(:)_ yy? (14)
2 —1
em* wg 1
o-yy((’o! k) = 3 pB ~
.w— [k OV
21th I 1-exp %m co—DiH

Wg

xS k(0" H|det(Ryq, (0, 0} ™
g (15)

xeXp['uTB @ _jR(o', 0l +i 1 S}

x vy (0 )vy (6 - 7).
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The summation is over all stationary points @@ =

(¢(a)’
(@y: k(@) = 1 if a stationary point belongs to the

domain of integration 0 < ¢@ < 21, 0< ¢* < 21, and
K(@©®@) = 1/2 if it lies on the boundary of the domain;
and s = sgnRy,, (0@, 057) = Vu(Ryy,) — VA(Ryy,),
where v,(Ry,,) and v_(Ry, ) are the numbers of posi-
tive and negative eigenvalues of the matrix Ry, =

PR(O@, d')/addd ., respectively. The dependence of
the cyclotron frequency on pg should be taken into
account only in the expression k,v,/wg in the exponent

provided that nkvg ~ wg; therefore, we took m* w !
outside the integral .

Outside the domain of values of w, k corresponding
to the condition

| —nNnwg| > max |k O/}, (16)
the integrand in (15) has a pole; after integrating with
respect to pg, the dispersion equation acquires an imag-
inary part that is responsible for a strong absorption of
awave. In layered conductors, the drift velocity vg =
[v[{ of electrons along amagnetic field oscillates as the
angle 9 between the magnetic field and the normal to
the layersis varied. For certain directions of B, relative
to the conductor layers, vg is closeto zero, and thereis
no Landau damping. In this case, the wave attenuation
is determined by collision processes, and collective
modes may exist even under the condition that nkvy =
wg . Intherange of values of wand k suchthat k - v, >
wg and w < k -v,,, wherev,,isthe maximal velocity in
the direction k, there exist solutions to the dispersion
equation (14) in the region of the resonance

W = Nwg +Aw, a7
where nwy isthe frequency corresponding to the cyclo-
tron resonance, n =1, 2, 3, ..., and |[Aw|ranges in the
interval 0 < |AW|< wg.

Let us take into account only the zeroth- and first-
order terms in formula (1) for the dispersion law of
charge carriers. Neglecting the anisotropy in the plane
of layersand assuming that &,(p,, p,) isaconstant equal

toNVvep, (Ve = /2e/m, m= const isthe effective mass

in the plane of layers), we express the energy of aqua-
Siparticle as

2 2

Pt Py p.

e(p) = (18)

The velocity components of a conduction electron
that correspond to the dispersion law (18) satisfy the
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eguations
dv, _eBy
N, mCcosb‘vy,
dv eB
—Y = -0 — + ]
at, mc( v,cosd + v, sind), (19
v, = nvesind_Pe _ SD

Ly cosd pO

Asymptotic (up to terms of order n) solutions to sys-
tem (19) are easily obtained by standard methods of
nonlinear mechanics[11]:

vy (ty) = vO(t) +vP(ty),
vO(t)) = vcoswg(B)ty,
v(t) = nvetanddg(@)sinB—nv tand  (20)

n(O()Sm(B nTv2)
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V,(t)) = nvesin(B—oacoswg(B)ty).
Here,

() 1
ws(B) = wg %L+§ntan3J1(a)cosL%
is the cyclotron frequency of quasiparticles with
energy (18) in the field By = (Bysind, 0, Bycosd),

W = (lgBy/mc)cosd, o = (mvpy)tand, B =
Ps/Pocosd, J,(a) isthe Bessel function, theinitial phase
is chosen so that v,(0) = 0, and

@
— Vx (O) r]pO _
Vg = VF%I——VF +—mVFcos([3 a)%

is the amplitude of the first harmonic of v,(t) that is
determined from the condition

mv;(0)/2 + N v epecos(pL0)/p) = &

Z cosnwg(B)t,, For electrons with the dispersion law (18), the com-
= ponent oy, of the conductivity tensor is expressed as
inR O_TC
e (z»:F)vF T, ~ Sna?[Q’TH wBDKD/QD
yy(OO k) = To Ot(TB(OO— [k D/q)) — e . (21)
snw—B(w— [k Ov)
Here, v(gp) = p,mV1i2 is the density of states of quasi- k k ¥
particles with energy (18), and R(9)) = I D/(cb) dp = 2=
o wg(By) (*)B(Bi)
1 z
0.0y = == (dB....
21 k,v
-! T[n (0) O(Gi) COSBi (24)

Averaging the velocity components of electrons
over aperiod of their motion along acyclotron orbit, we
obtain

[k B/, = nvedo(a)(ktand +k,)sinp. (22
For thedirections of B, inwhich a isequal to one of the
zeros o, = (Mve/pg) tand; of the Bessel function Jy(a),
theaverage [k - v[j [0 n?, and the dispersion equation is
rewritten as

(krg)™ govaD w

1% 5ne @ o
- 0
Bcos 0 Dst(Si)EJD (23)
= 0,

(0)

where
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[

k,v Jon+1(Q))
Mo <O>ta“’9 cos, Z A(n+ 1)(2n+ 1)

where

w2

Ho(0) = T—ZTI dd sin(a cosh )

is the Struwe function, [ = pg/pocosd;, w,

JAtn,e’/m is the plasma frequency, and n,

PP v 2 /21743 is the density of charge carriers.
When

1 UJOPVFDZ > 1
(kro)*HoO

2004
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which can easily berealized in conductorswith the den-
sity of charge carriers on the order of one carrier per
atom, the solution to Eq. (23) can be represented as (17)
with

Aw = mg”%_(‘—i)narcgn[sanR(a)Eg. (25)
Intheinverselimit case
1 H*)DVFD 1
(kro)*Hof

the spectrum of cyclotron wavesis determined by

_ (kro) °reo, VP
W = NWg E[l 2Ttsn(pr(0)cD

(26)
x (1—(-1)" ESinR(S)EQ;)EL

In layered conductors, for certain directions of the
external magnetic field with respect to the layers, elec-
tromagnetic waves with frequencies in the neighbor-
hood of the cyclotron resonance may propagate for
arbitrary orientations of the vectorsk and B, . Formu-
las (25) and (26) show that, under strong spatial disper-
sion, the frequencies of cyclotron waves are oscillatory
functions of the projection k, of the wavevector onto the
plane of layers.

4. FERMI-LIQUID MODES

Consider propagation of electromagnetic waves in
the electron Fermi liquid along the normal to thelayers.
In the linear approximation (9) with respect to a weak
perturbation of the electron system by the electric field
of the wave,

E(r,t) O exp(—iwt+ik ),

the kinetic equation is transformed into the integral
equation

P+ Lyl = R{evE-iwl(p, p)y(p)d,
where

(27)

[0
RIG = ;- [d'g(e)
) (28)
< expl i (¢~ ) ”%Bk @) -1

¢

r(¢)-r(¢) = —Id¢"V(¢")-
d

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

KIRICHENKO et al.

Let us invoke the model representation of the Lan-
dau correlation function in the form

L(p,p") = Av DV, (29)

which quite satisfactorily describes the Fermi-liquid
phenomena in the propagation of electromagnetic
waveswithk = (0, 0, k).

Using this expression, we can rewrite a renormal-
ized correction to the distribution function W = ¢ +
MLybs

W= g+ eNvix (30)
where X, = v, Wlle.
Equating Egs. (30) and (27), we obtain

P = Z{eﬁ(vk)Ek—ieoo/\?%(vk)xk—e/\vkxk} .(31)
k

Multiplying formula (31) by v; and averaging the result
over the Fermi surface, we obtain a system of linear
algebraic equationsin ;.
Xi+AY vl +iony OV R(V X
k k (32)
= Z [V, R(V \)(E,.

Substituting a solution to this system into the expres-
sion for the current density j = [@v®dL] which, with
regard to (29), is rewritten as

i = €Y WR(VINE-iwAX),  (33)
k

we obtain the relation between j and E.

Thus, Egs. (31), combined with the Maxwell equa-
tions for the Fourier components

Ex = ij1 Ey = ija

yield a system of six linear algebraic equations in the
functions E; and x;:

e’x; + ez/\z LivilX e+ i(*)/\z OikXk —
k k

iz =0, (34)

Z Oa(Ex—1wAX) = 0,

(35)
Ex_zzoxk(Ek_ IwAXk) = 0;
k

Ey—ZZGyk(Ek—iw/\xk) = 0.
k
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Here,

Z = 4T[—|(A)
K¢ — w?

and the quantities o, = €LV, R(vk)Dcm ncide with the
components of the conduct|V|ty tensor in a gas approx-
imation. A condition for the existence of a nontrivial
solution to this system of equations (the vanishing of its
determinant) represents a dispersion equation for
waves. After straightforward calculations, we can rep-
resent it as

[1 LB+ NOyy xy)+ A oxx}

~ ~ W, ~
x [1 _Z(ny + /\ycyxBxy) + g/\ycyy}

(36)
~ W, ~
_[Zoyx—gl\xoyx—/\xsxy}
~ W, ~
X[ZoXy_EAyO-Xy_AyBxy} = 0
Here,
O, v, O0r,v 0
Bop = [vgvyl-A oV VaVs
1+ AV
Oyp = _ A
Oup = Oap—(047028)/020 Ny = TR
aa

o,B =xYy.

A peculiar behavior of alayered conductor is asso-
ciated with thefact that thein-plane vel ocities of charge
carriers are much greater than their projection onto the
normal to the layers (axis 2). The in-plane anisotropy
does not produce any appreciable effect on the phenom-
ena associated with the specific feature of the quasi-
two-dimensional energy spectrum of such a conductor,

s (kv edo(@))* ~[(nkvedo(@)’ o8 10 e = o
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and we do not take it into account. In this case, B,, =0,
A=/, and one can easily verify that Eq. (36) holdsif

oo
k’c” — 0’ —ATWT5A,
e

@
i O+ 0yt J (O — oyy) + 40Xy0yxg - 0
2(O-xx yy ny yx) O

One can easily verify that the quantities G,p (0, B =
X, y) are mainly determined by the components O,
because the components g;, that contain index z are
small due to the smallness of the quasi-two-dimension-
ality parameter n).

Assume, for simplicity, that the dispersion law of
charge carriersis given by (18). Calculating g, by the
equation of motion (20) of acharged particle in amag-
netic field, we can easily verify that, for & < 1, Eq. (37)
isrewritten as

Kc®—w’
2
- w% = 0.
A= (07 &)~ (knv e do(@))?

(38)

Here, A = /\XvF (12 is a dimensionless quantity that
characterizes the Fermi-liquid interaction between
electrons.

If the condition

W)~ Aw)® < (kv Jg(@)’ < (@ F ofY)” (39)

holds, then, in the collision-free limit (1, — ), there
exist real solutions to the dispersion equation (38).
They describe collective modes that are associated with
correlation phenomena and are absent in a gas approx-
imation. These excitations exist even for k > k;, =

u)p/cﬁ . Application of a magnetic field removes the
degeneracy of the spectrum of electromagnetic oscilla-
tions, thus resulting in two waves with the frequencies

(07

1- (A —wilk’c?)

The threshold frequencies of these waves wy;, =

(wpn VElC/N) + oofgo) may be much lower than w,; this
provides more favorable conditions for observing
Fermi-liquid modes in layered conductors compared
with ordinary metals.

An increase in the angle between the magnetic field
and the normal to the layers enhances the influence of
the dependence of the electron velocity projection onto
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(40)

the wavevector on its phase on the trgjectories. If the

condition nkvy/ oo(o) > 1 holds, then one can apply the
method of stationary phase to calculate 0,5. When
tand < TPy/2pg, there may be either two or none of
such points on the electron orbit. However, for a suffi-
ciently large deviation of the magnetic field from the
normal to the layers, there may be a sufficiently large
number of points of stationary phase on the orbits that
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(a) (b)

Points of stationary phase at which k - v = w on the electron
orbits (a) for tand < 1pg/2pg and (b) for tand > TPy/2pk.
Thin lines connect the points at which kv, = .

intersect several unit cells of the momentum space (see
figure).

After integrating with respect to ¢ and ¢', the
expression for o, inastrong magnetic field (wgt; > 1)
isrewritten as

2
wp

ar’kv?

21 —1
2T

J’dBEﬂ exp—(u) EkVJ:Jp)D

00[3 =

ﬁ a(Pe)Vp(Pe) |

u(T[_ (I)e)VB(T[_ ¢e)i|
2vy(od]

2|v (Tt~ ¢o)|
(41)

%l+exp2nl(w kv Zq)g

1
+
(ZCAZE SN

1,2[va(¢e)vg<n— o)

><expD |—A¢+|kAz+|g+ @(

EII(VQ,)%

3 Q . s 0
#Va(m= 4)vy(d e 00 —ikaz—iZ | 5
where ¢, are the points on the electron trgjectory at
which v(¢o) =0, v, (¢, >0, Ap. = T1—2¢,, and Az, =
AT—¢e) — Z(de).
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In formula (41), Ad and Az are essentially different
on different electron orbits. At certain inclination
angles 9 = 9, of the magnetic field, an electron nearly
ceases to drift aong the wavevector, and, in a linear
approximation in the quasi-two-dimensiondity parame-
ter, the projection averaged over the period, of the veloc-
ity of acharged particle onto the norma to the layers,

L}, = nvedo(a)sing,

vanishes.

The integration of the last two terms of aternating
sign with respect to 3 significantly reduces the contri-
bution of these terms to the electric conductivity even
for nkvg/wg = 1. Asaresult, for 8 =9, in the range of
frequencies close to the frequency of rotation of charge
carriers along closed trajectories in a magnetic field or
to the multiples of this frequency,

(0)

W = nwg’ +Aw,

one can heglect the nondiagonal components of the ten-
Sor ag, While, for the components g, , One can apply
the following asymptotic expr on:

a(q)e)
Ouq = B (42)
4T[2kV|:ZI z(¢e)|
In this case, the dispersion equation reducesto
2
Kc?—w — 0o =0, o=xYy. (43

WA — i 65 /4TTOq

When |Aw|> nw, dispersion equation (38) may have
areal solution that describes a cyclotron wave, and the
relation between Aw and k in the collision-free limit is
given by

_ e g
Aw = Cr]kaD 202 (0)% (44)
where
i BV (0 B
Ilvz(tbe, B)ID

Formula (44) shows that, in the absence of Fermi-
liquid electron correlations, an undamped cyclotron
wave may only exist when Aw < 0. The consideration
of Fermi-liquid effects increases the transparency win-
dows of alayered conductor, and a cyclotron wave may
propagate even for Aw> 0, i.e., above the cyclotron res-
onance freguency.

5. SPIN WAVES
Paramagnetic spin waves represent space-time per-
turbations of spin density. Oscillations of this type are
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attributed to the exchange interactions between elec-
trons and cannot be excited in a gas of noninteracting
particles. In the main approximation in the small
parameter n, the Landau correlation function is given
by (8) and kinetic equation (10) for the spin density can
be substantially simplified. Let us expand the functions
® =& + [BE[0nto Fourier seriesin the variable ¢:

®(p) = Y P(er pa)e™,

n=-o

&(P) = 5 &aler pe)e™:

applying formula (8), we obtain

&(p) = @(p) = Y ADne™

(45)
where N
A, = S -,
1+S,
” (2 m? I dpe ¢f B (cr, B, ) = (&7 @},

S, = v(&a)S.

Substituting (45) into Eq. (10), we find that the com-
ponents of the renormalized spin density ®, = @, +
iPy O exp(ik - r —iwt) of conduction electronswith the
quasi-two-dimensional dispersion law (1) satisfy the
equation

0P,

00

= i v+ 0)B; (46)
Wp

w0 < —(+) 1
o 2 WP €T (@),
n=-—o
Here, ®, =®,cosd —®,sind, theaxisx, isperpendic-
ular to the axis y and the vector By, Q = —2uBy/% =
wWw/(l+ ), and w, = —2U,By/% is the spin paramag-
netic resonance frequency. The ac magnetic field B, =

B,, t iB, induced by spin oscillations is determined
from the equation

i ~ k -
B (w, k) = 4n§w (w,k)—k—z(k ™ (m,k))H, (47)
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where M~(w, k) = Y& (p, w, k)Ois the high-frequency
magnetization.

After straightforward transformations, Eq. (46) for
the renormalized spin density is reduced to

¢ 0; ¢ 0
oW = Id¢'expg—fd¢"(d)¢ Q-k /(¢"))D
—o0 BDBQ)' |:| (48)

XE_(k (9 £ QB -~ Z A0 ""PD

Multiplying Eq. (48) by e and integrating the
result with respect to the variables 3 and ¢, for the Fou-

rier coefficients @." of the function

2n

o, = ElﬁJ’dBCD(i)(ﬁF, B.9).
0

we obtain the following system of linear equations.

Z %np_ @ an(B)%aéi)
p=-
_ 10 - (k O/}, 7 Q)
= —uo 2—%& eXp%T[I Q)B

(49)

2n2mn

x de¢d¢1(k (9 -6, FQ)
00

&_Q¢1—iR(¢,¢1)H> ,

xexpH(p—n)o —ipg, +i= -
B

FolB) = 575 01— oL ‘(EKM“Q)%

2n2mn

XIId¢d¢1
00

(50)

x expH(p— )6 —ipd, +i% o 2, —iR(®, 0.

The Fourier coefficients of the smooth function
v(ep)S(p, p) rapidly decrease as their number increases,
therefore, one may restrict onesdlf to afinite number of
terms of the series. System of equations (49), combined
with Eq. (47), which links the high-frequency magnetic
field to the magnetization, describes natural oscillations
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of spin density in layered conductors with arbitrary
energy spectrum and correlation function. It is obvious
that, to determine the spectrum of spin waves, it suffices
to use the homogeneous system of equations corre-
sponding to (49). Let us neglect the small nonhomoge-

neous parameter in (49), which is proportional to B,
and takes into account the effect of the self-consistent

field B, . The dispersion equation of “free” oscillations
of spin density is given by [12]

0
D(w®, k) Edet[énp w—Dfnp(B)E&} =0 (51
The frequency w of natural oscillations of magnetiza-
tign coincides, up to the terms proportional to X, ~
H5V(ep), with the frequency «© of free oscillations of
spin density. At this frequency, the magnetic suscepti-
bility has a sharp maximum and the determinant
D(w, k) is equal to X, in order of magnitude.

The condition that thereis no collision-free attenua-
tion of spin waves reduces to the inequality

|w—nwg F Q| >max| [k LV

KIRICHENKO et al.

Under strong spatial dispersion, k - v, > wg, 0 F Q <
k - vy, for the directions of B, relative to the conductor
layers such that vg is close to zero, there exist solutions
to the dispersion equation (51) in the neighborhood of
the resonance

W= NnwgxQ+Aw,

53
n,=012,... ®3)

Aw < g,

The correction to the resonance frequency can be rep-
resented as

n,wg = Q

Ao = TIK, I o

Yi: (54)

wherey; are the roots of the equation

p(B) = 3 K(0%)

The summation is over all stationary points determined
from the equations v, (¢) = 0and v,(¢ —¢$,) =0. By wyg
in (51), (53), and (54), we mean the zeroth-order term
in the expansion of the cyclotron frequency in powers
of n.

In amodel wherethe energy of conduction electrons
is defined by (18) and the velocity components are
defined by (20), asymptotic expressions for the coeffi-
cients f.,(B) are given by

D
n((o+ Q)

xO[l B
O

sinFR(®) +5(n+ pHd

~— 0
SinT[((l)+ Q) E

fop(B) = cos5(n—p)
(57)

+

Wp

and Eq. (55) reducesto
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det 6ﬂp pyl np(B)l%| =0, (55)
(52) where
: (56)
[det(Ryy, (0, 07|
det| Onp = ApYi %OS (n—p)
(58)

+ (-1)”1< SnER(S;) + lZT(n + p)E>BE‘ =

When the correlation function is defined by the zeroth
and first Fourier harmonics,

S(p,p) = S+2S,cos(dp —¢'),

Eqg. (58) is reduced to a quadratic equation whose roots
are given by

1 n,
Viz = 5pho* 2A:+ (-1)" (Ao —2A1)g

n, 2
t{(Ao+2A +(-1) "(Ag—2A,)Q) (59
+8M Ay (- 1+ ¢ +h)} 0
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where g = [$inR(3;)[d and h = SinR(3)){d.

of

In the short-wavelength limit, for certain directions
the external magnetic field, there exist spin waves

with frequencies (53) close to the resonance fregquen-
cies W, = Nwg £ Q. An analogoustype of excitationsin
quasi-isotropic metals occurs only when the wavevec-
tor k is perpendicular to B,,.

N -
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Abstract—We analyze the peculiarities of the superconducting state (s- and d-wave paring) in the model of the
pseudogap state induced by Heisenberg antiferromagnetic short-range order spin fluctuations. The model is
based on the pattern of strong scattering near hot spots at the Fermi surface. The analysisis based on the micro-
scopic derivation of the Ginzburg—Landau expansion with the inclusion of al Feynman diagrams of perturba-
tion theory for theinteraction of an electron with short-range order fluctuations and in the ladder approximation
for the scattering by normal (nonmagnetic) impurities. We determine the dependence of the critical supercon-
ducting transition temperature and other superconductor characteristics on the pseudogap parameters and the
degree of impurity scattering. We show that the characteristic shape of the phase diagram for high-temperature
superconductors can be explained in terms of the model under consideration. © 2004 MAIK “ Nauka/ I nter pe-

riodica” .

1. INTRODUCTION

One of the most important problems in the physics
of high-temperature superconductors (HTSCs) based
on copper oxides is the theoretical description of the
characteristic shape of their phase diagram [1]. Eluci-
dating the nature of the pseudogap state that is observed
over wide ranges of temperatures and carrier concentra-
tions [2] and that undoubtedly plays the central rolein
shaping the properties of the normal and superconduct-
ing states of these systems arouses particular interest.
Despite ongoing discussions, the pseudogap formation
scenario based on the pattern of strong scattering of
current carriers by antiferromagnetict (AFM, SDW)
short-range order spin fluctuations seems to be pre-
ferred [2, 3]. In the momentum space, this scattering
takes place with thetransfer of the wavevectors of order
Q = (1/a, 1Wa) (a is the two-dimensional lattice con-
stant) and leads to precursors of the rearrangement of
the electron spectrum that arises when a long-range
AFM order is established (the period doubles). This
results in a non-Fermi liquid behavior (dielectrization)
of the spectral characteristics near the so-caled hot
spots at the Fermi surface that emerge at the points of
intersection of this surface with the boundaries of the
“future” antiferromagnetic Brillouin zone [2].

A simplified model of the pseudogap behavior [4, 5]
in which the scattering by real (dynamical) spin fluctu-
ations was replaced (which is valid at fairly high tem-

1 The role of similar charge (CDW) fluctuations cannot be ruled
out either.

peratures) with a static Gaussian random field of
pseudogap fluctuations with a characteristic wavevec-
tor from the vicinity of Q whosewidthisdetermined by
the inverse correlation length of the short-range order
K = &1 has been intensively studied in terms of this
approach. An overview of the works, as applied to the
properties of the normal state and for simple models of
the influence of pseudogap fluctuations on supercon-
ductivity, can befound in [2].

In our recent paper [6], based on the microscopic
derivation of the Ginzburg—Landau expansion,2 we
have studied the influence of pseudogap fluctuationsin
the hot spot model on the basic characteristics of the
superconducting state (s- and d-type pairing) that forms
against the background of these fluctuations. We con-
sidered adlightly simplified version of the model where
the Heisenberg spin fluctuations were replaced with
Ising or spin-independent charge CDW fluctuations.
These pseudogap fluctuations of a “dielectric’ nature
were shown to generally suppress conductivity, causing
adecrease in superconducting transition temperature, a
reduction in the jump in specific heat, and severa other
anomalies of the superconductor characteristics. We
found two possible types of interaction between the
superconducting order parameter and pseudogap fluc-
tuations that lead to distinctly different scales of their
influence on superconductivity.

The goal of thiswork is to generalize the approach
proposed in [6] to the “realistic” case of Heisenberg

2 A similar analysis was performed in [7] on the basis of Gorkov's
equations.
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spin fluctuations and to cal culate the influence of (non-
magnetic) impurities (disorder) on superconductivity in
the pseudogap state. We show that the typical phasedia-
gram for aHTSC can be semiquantitatively modeled in
terms of the model under consideration.

2. THE HOT SPOT MODEL
AND THE RECURRENCE PROCEDURE
FOR CALCULATING THE GREEN FUNCTIONS
AND THE VERTEX PARTS

The basic ideas of the hot spot model under consid-
eration and the method for calculating the single-elec-
tron Green function were presented in detail in [4, 5];
the methods for determining the vertex parts of interest
were described previously [6, 8]. Therefore, in this sec-
tion, we provide only the basic equations and introduce
the necessary notation by briefly describing the
changes required to allow for the spin structure of the
interaction in the Heisenberg model of antiferromag-
netic fluctuations.

An effective interaction between electrons and spin
fluctuations is introduced in the model of an “amost
antiferromagnetic” Fermi liquid [4]. Thisinteractionis
described by the dynamical susceptibility characterized
by the correlation length & of the spin fluctuations and
their characteristic frequency wg to be determined
experimentally, which can depend significantly on the
carrier concentration (and, for &, on the temperature).
This dynamical susceptibility together with the effec-
tive interaction have (in momentum representation) a
maximum in the vicinity of Q = (17a, 1va), which gives
rise to two types of quasi-particles: hot quasi-particles
whose momenta lie near the points of the Fermi surface
coupled by the scattering vector of order Q and cold
quasi-particles whose momenta lie near the regions of
the Fermi surface surrounding the diagonals of the Bril-
louin zone[2, 4, 5].

At high temperatures, 21T > wy, the spin dynamics
may be disregarded [4]. The interaction with spin
(pseudogap) fluctuations then reduces to the scattering
of electrons by the corresponding static Gaussian ran-
dom field. In this model, we can suggest a simplified
form of the effective interaction (the correlator of the
random fluctuation field) [4, 5] that alows full summa-
tion of the Feynman series of perturbation theory,
which gives rise to the following recurrence procedure
for determining the single-electron Green function:

a 1
ClEnP) = g ik s )
5 (€0 P) = WS(k +1)Gy, 1(Ep P)- )

Thisisshown intheform of asymbolic Dyson equation
in Fig. 1a, where the following function is introduced:

1
e " E(p) FIKVK )

GOk(Snv p) =
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@ W2 sk + 1)
a
] . éww% |
Gk G()k GOk Gk+1 Gk

(b)

G,
G
- De(p) :> Age(p) + (1) - Dge(p),
G
: Gy
' G,
! Gk_ | k
b - Dye(p) => Age(p) + r(k) - Dge(p).
Gi_1
Gy

Fig. 1. Recurrence equations for (a) the Green function and
(b) the triangular vertex.

Here, k = & is the inverse correlation length of the
pseudogap fluctuations; €, = 2iT(n + 1/2) (to be spe-
cific, we assume that €, > 0);

N f dd k,
£(p) = EL:" o O (@

p foreven k;

o= v(p+ Q)| +|v,(p+Q)| forodd K,
o HVx(p)|+|vy(p)| for even k;

v(p) = 0¢,/0p is the velocity of a free quasi-particle
with the spectrum &, that is taken in standard form [4].

&p = —2t(cospa + cosp,a) — 4t'cosp,acospa—U;
(6)

t and t' are the transfer integrals between the closest
neighbors and between the second closest neighbors on
the square lattice, respectively; a isthe lattice constant;
and u is the chemical potential.

The parameter W has the dimensions of energy. It
defines the effective pseudogap width and can be writ-
ten in the model of Heisenberg spin fluctuations as [4]

50
W = g'—- = ¢’lln, -n,)D ©)

where g is the coupling constant between el ectrons and

spin fluctuations, [Siz Uis the mean square of the spin at
the lattice site, and n;, and n;, are the particle number
operators at the site with the corresponding spin projec-
tions. Clearly, like the correlation length &, the parame-
ter W in the semiphenomenological approach [4, 5] is
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The choice of the sign in the recurrence procedure for the
vertex part

Pairs CDW SDW (Ising) | SDW (Heisenberg)
fluctuations | fluctuations fluctuations
S + - +
d - + -

also afunction of the carrier concentration (and temper-
ature) to be determined experimentally.

The factor s(K) is determined by the Feynman dia-
gram combinatoricsand is

s(k) = k (8)

in the simplest case of commensurable short-range order
charge (CDW) fluctuations, while for the most interest-
ing case of Heisenberg spin (SDW) fluctuations [4] 3

K*2 torodd K,

O3

s(k) = 9)
EKB for even k.

The validity conditions for the approximation under
consideration were discussed in detail in [4, 5].

A remarkable feature of the model under consider-
ation is the possibility of full summation of the entire
series of Feynman diagrams® for the vertex functions
that describe the response of the system to an arbitrary
external perturbation. This was considered in detail
in [8]. Here, we immediately give the recurrence equa
tionsfor the“triangular” verticesin the Cooper channel
that arise in the corresponding analysis. These equa-
tions are similar to those derived in [6] and describethe
response to an arbitrary fluctuation of the supercon-
ducting order (gap) parameter,

A(p, g) = Aqe(p), (10)

where the symmetry factor that determines the type
(symmetry) of pairing istaken in the form

1L, s-wave paring,
e(p) = [0 (11)

[cos(py@) — cos(pya), dxz_yz-type pairing,

and it isimplied that the pairing is singlet in spin. Itis

3 The Feynman diagram combinatorics for the model of Heisen-
berg fluctuationsis analyzed in detail in the Appendix.

4 Includi ng all of the diagrams with crossing interaction lines.
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convenient to write the vertex of interest as

r(sn! —<€n PP+ q) = I_p(snl —€n q)e(p) (12)

gp(sn, —€,, q) is then defined by the recurrence proce-
ure

rpk—l(sn’ —€n q)

=1+ Wzr(k)Gk(enl p + q)Gk(_enf p)
9 [1 + 2ikK v
Gl (€ P +0) — G (—€p P) — 2iKK v,

} (13)

x rpk(gn! —€n q)v

which is shown as graphs in Fig. 1b. The “physical”
vertex corresponds to I, - o(€,, —€p, 0). The additional
combinatorial factor isr(k) = s(k) for the simples case
of charge (or Ising spin) pseudogap fluctuations consid-
ered in [6]. For the most interesting case of Heisenberg
spin (SDW) fluctuations considered below, this factor
is[4] (see also the Appendix)

for even Kk,
k) = 14
"(k) E,k—;g for odd k. (14

O

The choice of the sign of W? on the right-hand side of
Eqg. (13) depends on the symmetry of the superconduct-
ing order parameter and the type of pseudogap fluctua-
tions [6] (for details, see the Appendix). The corre-
sponding cases are listed in the table. In particular, we
see from this table that in the most interesting case of
d-type pairing and Heisenberg pseudogap fluctuations,
we should take the minus, so the recurrence procedure
for the vertex part becomes an alternating one. At the
same time, for the case of sswave paring and fluctua-
tions of the same type, we should take the plus, and the
recurrence procedure becomes a constant-sign one. It
was shown in [6] (using other examples from the table)
that this difference in the types of recurrence procedure
leads to two quadlitatively different behaviors of all
basic superconductor characteristics.

3. THE INFLUENCE OF IMPURITIES

The influence of the scattering by normal (nonmag-
netic) impurities can be easily taken into account in the
self-consistent Born approximation by writing the
Dyson equation shown graphicaly in Fig. 2a for the
single-electron Green function. Compared to Fig. 1a,
the standard contribution from the impurity scattering
to theintrinsic-energy part [9] was added to thisfigure.
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(a) pU? W2 stk + 1)
/X\\
Gy Gox Goy G G, Gy Gri1 Gy
(b)
i
- Dge(p) = - Bge(p) + X - Bye(p) +r(k) = Bge(p)-
|
I
Fig. 2. Recurrence equations for (a) the Green function and (b) the triangular vertex including the impurity scattering
Asaresult, the recurrence equation for the Green func-  we have in the simplest approximation
tion can be written as ,
€,— €,—PU Y IMGy(E,,
n n—P % 00( n p) (19)
_ -1
Gk(sn- p) - |:G0k(€n- p) =gN. = €, + YoSONE,,
(15
-1 Yo
2 2 Ne = 1+—, (20)
-puU ZG(En, p) —W's(k+1)Gy.(€n p)} ) &

where p is the impurity concentration with a point
potential U and the “impurity” intrinsic-energy part
includes the full Green function G(g,,, q) = G = o(€ns P),
which must generally be determined in a self-consistent
way by using the written procedure. The contribution
from thereal part of the Green function to thisintrinsic-
energy part typicaly reduces [9] to an insignificant
renormalization of the chemical potential, so Eq. (15)
takes the form

0 , 0
Gu(en p) = |iE,—pU ZImG(sn, p) + kv kO

0 . 0
(16)

-1

~&(p) ~W’s(k + 1)Gy. (&, p)}

Therefore, compared to the impurity-free case, the fol-
lowing substitution (renormalization) actually takes
place:

g &—pU°Y IMG(e, p)=en.,  (17)

(18)

Ne =

n

If no full self-consistent calculation is performed for
the intrinsic-energy part of the impurity scattering, then

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

where y, = TIPU2N,(0) is the standard Born impurity
scattering frequency [9] (Ny(0) isthe density of state of
the free electrons at the Fermi level).

For the triangular vertices of interest, the recurrence
equation that includes the impurity scattering is shown
as agraph in Fig. 2b. For the vertex that describes the
interaction with the fluctuation of the superconducting
order parameter (10) with d-wave symmetry (11), this
equation simplifies significantly, because the contribu-
tion of the second diagram in the right-hand part of
Fig. 2b is virtually equal to zero in view of the condi-

tion pe(p) = 0 (cf. the discussion of asimilar situa-

tion in [10]). The recurrence equation for the vertex
then has the form (13), where the expressions derived
from (15) and (16), i.e., the “dressed” (by the impurity
scattering) Green functions defined by Fig. 2a, should
be used as G,(z¢,,, p). For the vertex that describes the
interaction with the fluctuation of the order parameter
with ss-wave symmetry, we have the equation

€ Q)

rpk—l(sn’ -

= 1+pU° G(&,, p +a)G(~& P)T (. ~&1, Q)
P

+ W (K)G(€n P + 4)Gi(~€n, P) (21)

o+ 2ikk v D
0 Gi(EnP+0) =G (—&nP) - ZIkKVkD

X

x rpk(gn’ —€n q)v
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&»Pt+q

X(q) = e(p) e(p)

_8}1’ -p

Fig. 3. Diagram for the generalized susceptibility x(q) in
the Cooper channel.

where expressions (15) and (16) should again be used
as Gy(xe.p) and the sign of W2 is determined by the
above rules. The difference between this vertex and the
vertex of the interaction with d-wave symmetry fluctu-
ations lies in the appearance of the second term on the
right-hand side of Eq. (21), i.e., in the substitution

1—»nr = 1+pU°y G(e, p+0)
. (22)

x G(_gn’ p)rp(sl —€n, q)

Therefore, the self-consistent calculation procedure
now looks as follows. Starting from the zero approxi-
mation G = Gy, and Iy, = 1, we then have in Egs. (16)
and (21)

pu?

sn Z I mGOO(Snf p)
p

r]azr]r:]-_

We run the corresponding recurrence procedures (start-
ing from a certain value of k) and determine the new
valuesof G=Gy-pand ', =, -. We again calculate
ne and nr using (18) and (22), use these values in (16)
and (21), and so on until convergence is achieved.

When considering the vertex of the d-wave symme-
try, we should set n = 1 at all steps of our calculations.
In this case, there is actually no particular need to per-
form full self-consistent impurity scattering calcula-
tion, because it leads to relatively small corrections to
the results of non-self-consistent calculation using the
simplest substitution (19) [7].

4. CALCULATING THE SUPERCONDUCTING
TRANSITION TEMPERATURE
AND THE GINZBURG-LANDAU COEFFICIENTS

The critical superconducting transition temperature
is defined by the normal-phase Cooper instability equa
tion

1-Vx(0; T) = 0, (23)
where the generalized Cooper susceptibility is indi-
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cated by thegraphin Fig. 3and is

X(q; T) = ‘TZ zG(sn, p+q)

& P

X G(~€p, —P)E*(P)T p(€ny —Er Q).

(24)

The pairing interaction constant V, which is nonzero in
alayer 2w, in width around the Fermi level, determines
the seed transition temperature T, in the absence
of pseudogap fluctuations by means of the standard
BCS equation:®

T/a

m T/a
_2VT ¢’(p)
1= n;{dprd%,aﬂg’

0

(25

where m = [w./2MTy)] is the dimensionless cutoff
parameter of the Matsubara frequency sum. Asin [6],
all of our calculations were performed for the typica
spectrum (6) of quasi-particles in HTSCs for various
relations between t, t', and p. By arbitrarily choosing
w, = 0.4t and T, = 0.01t, we can easily find a value of
the pairing parameter V in (25) that yields this value of
Ty for different types of pairing. In particular, we

obtain V/ta? = 1 and V/ta? = 0.55 for stype and dxz_yz -
type pairing, respectively.

The fact that the Cooper susceptibility at g = 0 is
required to calculate T, significantly simplifies the cal-
culations [6]. In general, for example, knowledge of
X(q; T) at arbitrary (small) g isrequired to calculate the
Ginzburg-L andau expansion coefficients.

The Ginzburg—L andau expansion for the difference
between the free energy densities of the superconduct-
ing and normal states can be written in standard form:

FamFo = A2+ aClA + 20" (26)

it is defined by the loop expansion for thefree energy in
the fluctuation field of the order parameter (10).

It is convenient to normalize the Ginzburg—Landau
coefficients A, B, and C to their values in the absence of
pseudogap fluctuations by writing them as [6]

A = A)K,s, C = CoKe, B = ByKg, (27)

5We do not discuss the microscopic nature of this interaction; it
can be associated with the exchange by the same antiferromag-
netic spin fluctuations, phonons, or a combination of the elec-
tron—phonon and spin—fluctuation interactions.
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where
Ao = No(0) = € ()]
Co = Ny(0) 7392 VE)PEPD (28)
0(0)7f[§3)zce“(p>u

the angular brackets denote an ordinary averaging over
the Fermi surface:

_ 1 .
0.0= NO(O)ga(zp)...,

and Ny(0) is the state density at the Fermi surface for
free electrons.

We then obtain the following general expressions[6]:
x(0; T)—x(0; To)

Ka = A (29)
_ x(q T.)—x(0; Tc)
Ke = qﬁo 7c, (30)
_ T_c 4 2
Ky = Bognge (P)G™(en P) @D

X GZ(_Sna _p)rg(sn’ —<£n 0)1

which were used for our direct numerical calculations.

In the presence of impurities, al of the Green func-
tions and the vertices appearing in these expressions
should be calculated using Egs. (16) and (21) written
above.

Knowledge of the Ginzburg-Landau expansion
coefficientsalowsall of the basic superconductor char-
acteristics near the transition temperature T, to be deter-
mined. The coherence length is defined as

&M Ke
EBCS(T) Ka

where () isthe value of thislength in the absence
of a pseudogap. For the magnetic-field penetration
A(T)

depth, we have
— f KB
)\BCS(T) KAKC,

where this quantity was also normalized to its value of
AgcqT) in the absence of pseudogap fluctuations.

(32)

(33)
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Fig. 4. T, versus effective pseudogap width W for d-type
pairing for three impurity scattering frequencies: yo/T =
0(2), 0.18 (2), and 0.64 (3). The inverse correlation length
iska=0.2.

The normalized slope of the upper critical field
near T,

= TcKa
Teo TCOKC’

‘dch (34)

/‘dch

and the relative jump in specific heat at the transition
point,

(Cs_Cn)Tc _ Tc Ki

AC = = —"Te = &8
(Cs - Cn)Tco TcO K B

(35

are determined in asimilar way.

5. RESULTS OF CALCULATIONS

The results of calculations for the charge (CDW)
and spin (SDW) Ising fluctuations of the short-range
order were presented in [6]. Here, we focus on the anal -
ysis of the most important and interesting case of
Heisenberg spin (SDW) fluctuations and on the discus-
sion of the role of impurity scattering (disorder). Since
the case of d-type pairing is of particular importancein
the physics of HTSCs based on copper oxides, we pay
slightly more attention to this case.

We performed all of the calculations in this section
for the typical parameters of the initial electron spec-
trum t'/t =-0.4 and p/t = -1.3 and took ka = 0.2 for the
inverse correlation length. To save space, we do not
present the results of our calculations for the dimen-
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Fig. 5. Square of the coherence length (a) and magnetic-
field penetration depth (b) versus effective pseudogap width
W for d-type pairing for three impurity scattering frequen-
cies: Yo/ Teo =0 (1), 0.18 (2), and 0.64 (3)

sionless Ginzburg—Landau expansion coefficients K,,
Kg, and K¢, but immediately show the typical depen-
dences for the basic physical parameters.

When considering the dependences on the
pseudogap width and the impurity scattering frequency
Yo, We give al of the characteristics normalized to their
values, respectively, at T=Tyand T =T(W), i.e, at the
seed transition temperature at a given W, but in the
absence of impurity scattering (y, = 0).

5.1. The d-Type Paring

In Fig. 4, the superconducting transition tempera-
ture T, is plotted against the effective pseudogap width
W for several impurity scattering frequencies. We see
that pseudogap fluctuations lead to noticeable suppres-
sion of superconductivity; in the presence of finite dis-
order, a critical value of W at which T, becomes zero
arises. This suppression of T, is naturally related to the
partial dielectrization of the electron spectrum near hot
spots [4, 5].

Similar dependences are shown in Fig. 5 for the
coherence length and the magnetic-field penetration
depth and in Fig. 6 for the slope of the temperature
dependence of the upper critical field and the jump in
specific heat at thetransition point. The latter supercon-
ductor characteristics are rapidly suppressed by
pseudogap fluctuations.
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Fig. 6. Slope of the upper critical field and jump in specific
heat at the transition point versus effective pseudogap width
for d-type pairing for three impurity scattering frequencies:
Yo/ Teo = 0 (1), 0.18 (2), and 0.64 (3).

The dependence on the correlation length of the
short-range order fluctuationsisslower: in al cases, the
increasein & (the decreasein parameter k) enhancesthe
pseudogap fluctuation effect.

TL‘/TCU(W)
1.0 T T T T

0.8 .

0.6

0.4

0.2 7

3\ 2] |/

0 0.2 04 0.6 0.8 1.0

yO/ TCO(W)

Fig. 7. T, versus impurity scattering (disorder) frequency
for d-type pairing for three effective pseudogap widths:
W/T=0(1),2.8(2), and 5.5 (3).
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Fig. 8. Square of the coherence length (a) and magnetic-
field penetration depth (b) versus impurity scattering fre-
quency Yo for d-type pairing for three effective pseudogap
widths: W/T,o =0 (1), 2.8 (2), and 5.5 (3).

In Fig. 7, the superconducting transition tempera-
tureis plotted against the impurity scattering frequency
Yo for several effective pseudogap widths. We see that,
in the presence of pseudogap fluctuations, the suppres-
sion of T, with growing disorder is appreciably faster
that in their absence (W = 0) when the dependence
T«(yo) for d-type paring is described by the standard
Abrikosov—-Gorkov curve [10, 11]. Similar depen-
dences are shown in Fig. 8 for the coherence length and
the penetration depth and in Fig. 9 for the slope of the
H,(T) curve and the jump in specific heat. We again see
that impurity scattering (disorder) causes the last two
parameters to rapidly decrease; i.e., it enhances the
pseudogap fluctuation effect.

The derived dependences on the pseudogap param-
eters are qualitatively similar to those obtained in [6]
for the case of charge (CDW) pseudogap fluctuations
where, as in the case considered here, an aternating
recurrence procedure arises for the vertex part. At the
same time, certain quantitative differences associated
with different diagram combinatorics also arise. The
dependences on the impurity scattering (disorder) fre-
guency have not been studied previously in thismodel 5

The dependences found arein qualitative agreement
with most of the data from the experiments aimed at
studying the superconductivity in the domain of exist-
ence of the pseudogap (the underdoped region in the

5 The corresponding dependences of T, were considered in [7] for
the constant-sign recurrence procedure that arises in the case of
Ising SDW fluctuations where the suppression of superconductiv-
ity ismuch slower.
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Fig. 9. Slope of the upper critical field and jump in specific
heat at the transition point versus impurity scattering fre-
quency Yo for d-type pairing for three effective pseudogap

widths: WiT, = 0 (1), 2.8 (2), and 5.5 (3).

cuprate phase diagram). Below, we show that the
results obtained can be used to directly model the typi-
cal phase diagram for HTSC cuprates.

T('/Tc()
1.0 T 1.0 T T T
1 0.8 ! .
06F 2 .
0.8+ 3
0.4+ .
2
02+ .
1 1
0.6 0 10 20 30 40
W/T<'0
0.4+ B
0.2+ _
1 1 1
0 10 20 30 40
W/TL‘O

Fig. 10. T, versus effective pseudogap width W for s-type
pairing for two impurity scattering frequencies: yg/To =
0 (1) and 20 (2). Theinverse correlation length iska = 0.2.
The insert shows the characteristic behavior of the jumpin
specific heat for similar parameters.
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5.2. The s-Type Pairing

The s-type pairing is mainly of interest in revealing
the characteristic differences from the d-type pairing.
There are virtually no experimental data on the s-type
conductivity in systems with a pseudogap, although it
may well be that the corresponding systemswill bedis-
covered in the future.

Our calculations indicate that pseudogap fluctua-
tions suppress appreciably the superconducting transi-

T.IT W)

1.2

1.0

0.8

0 5 10 15 20 25
yO/TCO(W)

Fig. 11. Superconducting transition temperature T, versus
impurity scattering (disorder) frequency yg for s-type pair-
ing for three pseudogap widths: W/T = 0 (1), 8 (2), and
15 (3).
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Fig. 12. Square of the coherence length (a) and magnetic-
field penetration depth (b) versusimpurity scattering (disor-
der) frequency Yo for stype pairing for two effective
pseudogap widths: W/ Ty = 0 (1) and 15 (2).
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tion temperature in this case aswell (Fig. 10), although
the scalelength of these fluctuations required for signif-
icant suppression of superconductivity is much larger
than that for the d-type pairing. This result has already
been obtained in [6]. Note, however, that in the case of
Heisenberg SDW fluctuations under consideration,
thereisno characteristic “ shelf” onthe T(W) curve that
is present in the case of scattering by CDW pseudogap
fluctuations [6]. The jump in specific heat at the super-
conducting transition point is also significantly sup-
pressed on the same scale of W, as shown in the insert
to Fig. 10. The corresponding dependences for the
coherence length and the penetration depth are similar
to those obtained previously in [6] and are not given
here. Figure 11 shows the calculated dependence of T,
on the impurity scattering (disorder) frequency. Apart
from the relatively weak suppression of T, by disorder
related [7] to the state density smearing at the Fermi
level, aweak effect of increasein T, with y, that is prob-
ably related to the smearing of the pseudogap in the
state density by impurity scattering can also be
observed.

Figure 12 shows how impurity scattering (disorder)
affects the coherence length and the magnetic-field
penetration depth in the case of s-type pairing.

Finally, Fig. 13 shows how impurity scattering
(disorder) affects the slope of the upper critical field
and the jump in specific heat. The jump in specific
heat is significantly suppressed by disorder, and the
behavior of the slope of H.,(T) qualitatively differs
from that in the case of d-type pairing: the growth of
disorder causesthis parameter to increase appreciably,
as in the standard theory of “dirty” superconductors
[20], while pseudogap fluctuations increase the slope
of H(T). In the absence of pseudogap fluctuations,
similar differences in the behavior of the slope of
the H(T) curvefor disorder have been pointed out [10].

6. MODELING THE PHASE DIAGRAM

The described model of the influence of pseudogap
fluctuations on superconductivity allows the typical
phase diagram for HTSC cuprates to be modeled.’
Modeling of thiskind, based on an extremely simplified
version of our model, was originally attempted in [13].
The main ideais to identify the parameter W with the
experimentally observed effective pseudogap width
(the temperature of the crossover to the pseudogap
region of the phase diagram), E, = T*, determined from
many experiments [1-3]. This parameter is known to
decrease almost linearly with increasing dopant (cur-
rent carriers) concentration from values of ~10° K,
becoming zero at a certain critical concentration x. =

7 We ignore the existence of a narrow region of antiferromagnetic
ordering in the state of a Mott insulator that exists in the range of
low dopant concentrations by restricting our analysis to the wide
domain of existence of a“bad” metal.
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0.19-0.22 that dightly exceeds the “optimal value’
Xopt = 0.15-0.17 [1, 14]. Accordingly, we may take® a
similar concentration dependence of our pseudogap
width parameter W(X). In this sense, the dependence
W(X) may be considered to be determined directly from
experiments. The only parameter to be determined is
then the concentration dependence of the seed supercon-
ducting transition temperature T,(X) that would exist in
the absence of pseudogap fluctuations. Its knowledge
will alow the concentration behavior of the actua tran-
sition temperature T(X) to be determined by solving the
equations of our model. Unfortunately, as was pointed
out in [6], the dependence T(X) is generally unknown
and cannot be determined from experiments, remaining
afitting parameter of the theory.

Assuming, as was done in [13], that T4(X) can be
described by alinear function of x that becomes zero at
x = 0.3 and choosing Ty(X = 0) to obtain the desired
To(X = Xop), We can calculate the form of the “observed”
dependence T.(x). As an example, the results of such
calculations for d-type pairing and the scattering by
charge (CDW) pseudogap fluctuations [6] using atypi-
cal dependence W(X) are shown in Fig. 14. We see that,
even under such arbitrary assumptions, the hot spot
model yields a dependence T.(X) close to the experi-
mentally observed one. Similar calculations for the
Ising model of the interaction with spin fluctuations (a
constant-sign procedure for the vertex part [6]) indicate
that reasonable values of Ty(x) can be obtained only at
nonrealistic values of W(x) that are about an order of
magnitude larger than the observed values.

Inthe BCS model for the seed temperature T, under
consideration, the assumption of a noticeable concen-
tration dependence of this parameter seemsrather unre-
alistic.? Therefore, we assume that T, does not depend
on the carrier concentration x at al, but take into
account the fact that doping inevitably gives rise to
impurity scattering (internal disorder), which can be
described by the corresponding linear function y(x). Let
usassumethat thisgrowth of disorder leadsto total sup-
pression of the d-type pairing at x = 0.3 in accordance
with the standard Abrikosov—Gorkov dependence [11].
The phase diagram for a La, _,Sr,CuO, system calcu-
lated in our model for Heisenberg pseudogap fluc-
tuations by taking into account the described role of
impurity scattering is shown in Fig. 15. The parameters
of the problem for this system used in our calculations
are given in Fig. 15. The “experimental” values of
T(X) indicated in this figure (as well asin Fig. 14) by

8 Naturally, this identification can be made to the unknown propor-
tionality factor of the order of unity.

91n this approach, the dependence T(X) may be attributable only
to the corresponding relatively weak dependence of the state den-
sity at the Fermi level.
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Fig. 13. Slope of the upper critical field and jump in specific
heat at the transition point versusimpurity scattering (disor-
der) frequency Yo for stype pairing for two effective
pseudogap widths: W/T,g =0 (1) and 15 (2).
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Fig. 14. Model phase diagram for the scattering by charge
(CDW) pseudogap fluctuations (d-type pairing) and the
seed superconducting transition temperature Ty that is a
linear function of the carrier concentration. The diamonds
represent the “experimental” data; W(x = 0) = 708 K;
Teo(x=0) =90 K; ka=0.2; T.(x=0.17) = 36 K.
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Fig. 15. Model phase diagram for the scattering by Heisen-
berg (SDW) pseudogap fluctuations (d-type pairing) and the
seed superconducting transition temperature Ty that does

not depend on the carrier concentration with theinclusion of
internal disorder y(X) that is linear in dopant concentration.
The diamonds represent the “experimental” data; y; =
0.15T (curve 1), yg = 0.25T (curve 2); W(x = 0) =
580K; T = 70 K; t/t = -0.25; p/t = -0.8; ka = 0.2;
Tax(x = 0.16) = 39 K.

diamonds were obtained by using the empirical for-
mula[14, 15]

Te(x)

0= ) >

= 1-82.6(X—Xgp) -

This formula satisfactorily describes the concentration
behavior of T, for a number of HTSC cuprates. We see
that our model gives an almost ideal description of the
“experimental” data at reasonable values of W(x) in the
entire underdoped region. The description becomes
poorer at the end of the overdoped region. It should be
borne in mind, however, that formula (36) does not
yield satisfactory results either; in addition, our super-
conductivity suppression model in the overdoped
region is clearly very crude, and no special parameter
fitting that would improve the agreement with the data
in this region has been performed.

Itisinteresting to consider the behavior of the super-
conducting transition temperature T, for additional dis-
ordering of the system for various compositions (carrier
concentrations). There are many experimental works in
which such disordering was achieved by doping [16, 17]
or by fast neutron [18] and electron [19, 20] irradiation.
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Therole of the additional disorder was discussed in the
context of the existence of a pseudogap state only
in[17].

In our model, this disordering can be simulated by
introducing the additional impurity scattering parame-
ter v, that is added to the internal disorder parameter
V(X). The calculated superconducting transition temper-
ature for two values of this parameter is also shown in
Fig. 15. We seethat, in close agreement with the exper-
iment [17], doping (disorder) causes the domain of
existence of superconductivity to narrow rapidly. Also
in close agreement with the conclusion drawn above
from Fig. 7 and with the experimental data[17, 18], the
suppression of superconductivity by disorder in the
underdoped region (the pseudogap region) is much
faster than that for the optimal composition. It might be
expected that “normal” disorder, which clearly causes
the pseudogap in the state density to dightly decrease,
could lead to acertain “delay” of the decreasein T, but
this effect is absent for d-type pairing.

However, the problem is that, in al cases, the
decreasein T, isfaster than that implied by the standard
Abrikosov—Gorkov curvefor d-typepairing [11]. At the
same time, attempts to properly process most of the
experimental data on disordering in HTSC cuprates
[16, 19, 20] lead to the conclusion that this decreaseis
actually much slower than that predicted by the Abriko-
sov—Gorkov dependence. Thisasyet unsolved problem
is among the main problemsin the theory of high-tem-
perature superconductors [12]. One way to solve this
problem may be associated with a consistent descrip-
tion of the role of disorder in superconductors located
in the transition region from “loose” pairs of the BCS
theory to “compact” pairs that emerge in the limit of
strong coupling [21]. Another interesting possibility of
explaining this delay of the decrease in T, is related to
the anisotropy of elastic impurity scattering considered
in detail in [10, 22]. This effect can be included
relatively easily in our calculations. It seems particu-
larly interesting in connection with the established
strong anisotropy of elastic scattering (with d-type
symmetry) observed in ARPES experiments on a
Bi,Sr,CaCuQg , 5 System [23, 24]. The corresponding
scattering frequency varies over the range 2060 meV
[24], which isalmost an order of magnitude higher than
the maximum value of y(x) used in our calculations and
points once again to the unusual stability of the d-type
pairing in cuprates against static disorder. It should be
noted that our model for the intrinsic-energy part of the
electron actually describes asimilar anisotropy of elas-
tic scattering that corresponds to its increase near hot
spots. However, no delay of the decrease in T, was
observed in our calculations.

Theresults show that, despite the obvious crudeness
of our assumptions, the hot spot model gives a reason-
able (occasionally even semiquantitative) description
of the domain of existence of superconductivity on the
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phase diagram for HTSC cuprates.’® The significant
uncertainty in the formation scenario for the concentra-
tion dependence of the seed superconducting transition
temperature remains a major shortcoming in the
approach.

7. CONCLUSIONS

Our analysis shows that the pseudogap state model
based on the concept of hot spots can provide a fairly
consistent description of the basic properties of the
superconducting phase for HTSC cuprates and their
phase diagram with arelatively small number of fitting
parameters most of which can be determined from
independent experiments.

It should be emphasized that our analysis was per-
formed entirely under the standard assumption [12]
about the self-averaging of the superconducting order
(gap) parameter in the field of random impurities and
pseudogap fluctuations. This assumption is generally
justified for superconductors whose coherence length
(the Cooper pair size) is much larger than other micro-
scopic lengths in the system, such as the mean free path
or the correlation length & of the pseudogap fluctuations.
In the class of pseudogap state models under consider-
ation, thisisnot necessarily the case, and significant non-
self-averaging effects [25, 26] that lead to the qualitative
picture of an inhomogeneous superconducting state with
superconducting-phase drops existing at temperatures
T> T, canarise. In principle, there are direct experimen-
tal data that confirm this picture of inhomogeneous
superconductivity in HTSC cuprates [27—29]. Of course,
wearefar from asserting that these real experimentscon-
firm the picture that has been theoretically developed by
using simplified modelsin [25, 26]. Nevertheless, these
results emphasize the importance of a consistent analy-
sisof the non-self-averaging effectsin relatively realis-
tic pseudogap state models, such as the hot spot model
considered above. 1!
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APPENDIX

DIAGRAM COMBINATORICS IN THE MODEL
OF HEISENBERG PSEUDOGAP FLUCTUATIONS

To analyze the diagram combinatorics, let us con-
sider the limit of an infinite correlation length of spin
fluctuations. In this case, the spin density by which an
electron is scattered can be expressed as

S, = S8(q-Q), (A1)

and averaging over Gaussian spin fluctuations reduces
to ordinary integration [4]:

2.2
S
4420 0 (a2

3
g
" @ ePD

Consequently, in this limit, we can first solve the prob-
lem of an electron in the coherent field of the spin den-
sity (A.1) and then perform averaging (A.2) over its
fluctuations. For the subsequent analysis, it is conve-

nient to introduce the fluctuating field & = (g/./3)S,
the potential by which an electron is scattered. Averag-
ing (A.2) over the spin fluctuations then reduces to
averaging over the fluctuations of thisfield:

0.0= / J'd6| 35' 2?\’/v
Tt

350
qu) J'd|8t||8t| expB——D
2W20

(A.3)

Thus, there are two fluctuating fields by which free car-
riers are scattered: the real longitudina field & =

(¢//3)S, and the complex transverse field §, with
amplitude |6,] and phase ¢ that is associated with the
two transverse components of the vector S.

This averaging gives rise to a diagram technique
with two types of effective interactions [4]: oneis rep-
resented by the dashed line,

5,8 f1= +2-5(4-Q),

where the minus refers to the case of a change in spin
projection under this line (e.g., when the dashed line
encloses an odd number of spin flip operators S, and
S); the other is represented by the wavy line,

2
Ve = % (A4

2

%Esqs__qm 2-—6(q Q).

Themeans [$,S,[and [ S [are equal to zero dueto the
phase averaging in (A.3).

Vs = (A.5)
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Fig. 16. Two-particles vertices with different diagram com-
binatorics.

Let us now solve the problem of an electron in the
coherent field of the spin density (A.1). Inthis case, the
matrix single-particle Green function has four indepen-
dent components!? that can be determined from the
system of equations

Giii1r = G+ G10Gy,. 1, + G106y, . 44,

Gzr;h = G0,Gyy;1; + G, 5*(31¢-1¢ (AD)
Gy.1 = =G0 Gy, .1, + GO Gy, qy,
Gii1 = =G193Gy, .4, + G167 Gy, 45,

where we use the short designations (g,, p) — 1,
(€np+Q) — 2and

_1 -1
ien_Ep1
It thus follows that

G, =

G = Ggl
11,11 GIlG;1—|8|2
g
Gy, .4, = , (A7)
21; 1t Gzngl—|8|2
_ &
Gll;lT - 0’ GZl'lT (311(351_|5|2

where [3] = /3 + |3 is the amplitude of thefield 3.

In this case, the fluctuation-averaged single-particle
Green functionis

2 3 3/2
G = [By00= [THer
03 G “o
d|3/13|*exp -
I UowG'G; - [8)*

12The components that differ from these by the change of sign of
all spin projections can be obtained by the substitution 8 —

- and &~ &} .
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Thisintegral representation can be easily written [4] as
the continued fraction (1), (2) with k = 0 and the com-
binatorial coefficients s(k) defined by Eq. (9).

The combinatorial coefficients r(k) for the two-par-
ticle vertices are dightly more difficult to determine.
Four types of vertices (see Fig. 16) may be considered.
For all four types of vertices, the recurrence procedure
hasthe form (13), but the signsin the procedure and the
combinatorial coefficients r(k) can be different. Let us
consider all verticesin the coherent field o.

(1) The charge vertex (the spin projection is con-
served at the vertex) in the diffusion channel (particle-
hole), Fig. 16a:

(G,G,) ' +3|°

T . (A9

rgh = Z G11 ; ioGi'o; 1't =
where i and o take on valuesof 1, 2 and 1, |, and the
designations (¢,,, p') — 1), (&, p'+ Q) — 2), and
ds = [(G.Go) ™ = [BF1[(G,G2) ™ — |8F] are used.

(2) The charge vertex in the Cooper channel (parti-
cle-particle),'® Fig. 16b:

(G,G,) "+ &
rgh = zelr;icGl'r;i‘o = %

i,o

(A.10)

(3) The spin vertex (the spin projection changessign
a the vertex) in the diffusion channel (particle—hole),
Fig. 16c:

(G,G,) ' -&
Sp_zelrlolali_ 22d§ l-

(4) The spin vertex in the Cooper channel (particle—
particle), Fig. 16d:

rip = ZGh;iGGl‘L;i‘—o
i,o

(A.11)

' (A.12)
- 2 2
_ (G,G,) ™ + (18" -9))
ds '
The physical vertices can be obtained from these verti-

ceswith the coherent field & by averaging (A.3) over the
fluctuations of the corresponding field.

Thus, we see that the vertex IS is defined by

Eq. (A 9), while al of the other vertices have the
form4

(G,G,) " +3//3
r = ,
ds

(A.13)

13 |t emerges when the triplet pairing is described.
1T hisform is equivalent to (A.10)—(A.12) when averaged.
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where the plus corresponds to the vertices " and ',
and the minus corresponds to the vertex 'y .

Obviously, r(k) = s(k) for the vertex rjh . Indeed, the

expansion for the physical vertex [T gh Ccan be obtained

by inserting the corresponding free vertex in al the
electron lines of an arbitrary diagram for the single-par-
ticle Green function. Inserting this vertex changes nei-
ther the direction of the electron line nor the spin pro-
jection; accordingly, the diagram combinatorics does
not change either.

In the limit of an infinite correlation length, any
skeleton diagram for the vertex differs from the ladder
diagram of the same order with the interaction
(W?/3)3(q — Q) only by the sign and the factor 2P,
where p is the number of wavy lines. Thus, the sum of
all skeleton diagrams of a given order may be replaced
with the corresponding ladder diagram with the interac-
tion (W%3)d(q — Q) multiplied by the combinatorial
factor, which we call the number of skeleton diagrams
of agiven order.

The first term in Egs. (A.9)«(A.12) is the same for
all vertices and generates the numbers of skeleton dia-
grams of even (in WP) order when averaged (since this
term corresponds to the terms with i = 1 in these equa-
tions). Thus, the numbers of skeleton diagrams of even
order arethe samefor all four vertices. The second term
in these equations generates the numbers of diagrams
of odd order (it corresponds to the terms with i = 2).
Consequently, the numbers of skeleton diagrams of odd
order for all three vertices defined by (A.13) are+1/3 of

the corresponding numbers of for the vertex Ff,h . The

minus corresponding to the vertex 'y’ can be offset by

changing the sign in the recurrence procedure for this
vertex. Consequently, the sign of the second term
in (A.13) determines the sign in the recurrence proce-
dure (13) for these vertices, and the combinatorial coef-
ficientsr(k) are the same for these three vertices.

The number of skeleton diagrams of order L is®

3" [ . (A.14)

1<ksL

Thus, we obtain

r(k) =

1<k<2n

s(k)

1<k<2n

(A.15)

15The factor 3- emerges, because the recurrence procedure (13)
and the combinatorial coefficients r(k) correspond to the expan-
sion in a power series of W2, while the number of skeleton dia-
grams was determined for the expansion in a power series of

W23
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forevenL=2n+1and

r(K) =% M s (A.16)

l1<ks<2n+1 1<ks<2n+1

for odd L = 2n + 1; whence, given (9), follows (14).
In this paper, we were mainly interested in the ver-

tex 2" . The above analysis shows that a constant-sign

procedure emerges for this vertex for the case of s-type
paring where the symmetry factor e(p), which must
appear in the vertex, isequal to unity. In contrast, in the
case of d-type paring where the superconducting gap
when switching over to Q changes sign (i.e., ep) =
—e(p + Q)), the sign of the recurrence procedure must
be reversed [6], and the procedure becomes an alternat-
ing one. For the Ising spin fluctuations considered
in [6], the situation with the sign of the recurrence pro-
cedurefor the vertex isreverse. This somewhat surpris-
ing result can be easily understood from Eq. (A.12) for

thevertex 'Y . Thetwo transverse components (i.e., the
field 8, vanish in the Ising moddl, causing the sign of
the second term in (A.12) and, hence, in the recurrence
procedure to change.
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Abstract—An analysis of spin dynamicsis presented for semiconductor systems without inversion symmetry
that exhibit spin splitting. It is shown that electron—electron interaction reduces the rate of the Dyakonov—Perel
(precession) mechanism of spin relaxation both via spin mixing in the momentum space and via the Hartree—
Fock exchange interaction in spin-polarized electron gas. The change in the Hartree—Fock contribution with
increasing nonequilibrium spin polarization is analyzed. Theoretical predictions are compared with experimen-
tal results on spin dynamics in GaAs/AlGaAs-based quantum-well structures. The effect of electron—electron
collisionsis examined not only for two-dimensional electron gasin aquantum well, but also for electron gasin
abulk semiconductor and a quantum wire. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Spin dynamics in semiconductors and semiconduc-
tor heterostructures is the subject of intensive ongoing
research in view of possible applications in spintron-
ics[1-5]. There exist four principa mechanisms of free-
€l ectron spin relaxation in semiconductors (see [6-8] and
references therein). In the Elliott—Yafet mechanism,
spinflip dueto el ectron—electron scattering is explained
by admixture of valence-band states to the conduction-
band wave functions. In the Dyakonov—Perel (DP)
mechanism, spin polarization decays during intervals
between successive collisions, rather than in collisions
(asinthe Elliott—Yafet mechanism), owing to wavevec-
tor-dependent spin splitting of the conduction band [9].
In p-type structures, electrons are spin-depolarized as
they are scattered by holes (the Bir—Aronov—Pikus
mechanism). In samples with paramagnetic impurities,
spin flip is partly due to the exchange interaction
between free electrons and electrons bound to para
magnetic impurities.

For two-dimensional n-type quantum-well struc-
tures, the DP mechanism, also known as the precession
mechanism (due to spin splitting in systems without
inversion symmetry), isthe most likely scenario of spin
depolarization in wide ranges of carrier temperature
and concentration [10-21]. Spin splitting is equivalent
to spin precession in magnetic field, with aLarmor fre-
guency L, depending on the magnitude and direction
of the electron wavevector k. The spin relaxation rate
can be estimated as

1. 0 @0

where the angle brackets denote averaging over the
electron energy distribution and T is a microscopic

relaxation time. We were the first to note [22] that the
inverse relaxation time 1t is the sum of contributions
due not only to various momentum-scattering mecha-
nisms (which control the carrier mobility), but also to
electron—electron collisions (which do not change the
mean electron quasimomentum). Indeed, it does not
matter whether a change in k (and the corresponding
change in the axis of Larmor precession) is due to the
scattering by a static defect or a phonon, or dueto cyclo-
tron motion of free carriersin magnetic field [11, 23], or
it is caused by a collision with another electron. In par-
ticular, this implies that there exists a natural upper
limit of spin relaxation rate in high-quality structures:

Tgl < mi Et,(fe) , Where the time scale Tfj;) characteriz-

ing the electron—electron collision frequency can be
found by solving an equation for the component ds, of
the spin density matrix that isan odd function of k. The
important role played by electron—electron scattering
was demonstrated experimentally in [24], where spin
dynamics were studied for optically oriented electrons
in n-type GaAs/AlGaAs-based quantum wells.

In[22, 25], T was calculated for a nondegenerate

two-dimensional electron system by solving a master
equation for the spin density matrix. In [26], the theory
was extended to the case of a bulk crystal, when elec-
tron—electron collisions can be described in the quasi-
elastic approximation [27]. Extensions of kinetic the-
ory from nondegenerate to arbitrary electron statistics
were outlined in [28]. The contribution of electron—
electron callisions to spin dynamics was allowed for in
the theoretical study presented in [29], where the Har-
tree—Fock corrections to the one-electron energy in a
spin-polarized electron gasintroduced in [16, 17] were
also taken into account. The numerical results pre-
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sented in [29] were obtained for only one value of two-
dimensional quantum-well electron concentration in
nonzero magnetic field at temperatures above 120 K.
They cannot be used to evaluate the relative contribu-
tions of electron—electron and electron—phonon scatter-
ing and distinguish between the effects due to Hartree—
Fock corrections to electron energy and electron—elec-
tron collisions.

In this paper, we present a kinetic theory of spin
relaxation of conduction electrons that takes into
account the contribution of electron—electron interac-
tion for arbitrary degrees of degeneracy and spin polar-
ization of the electron system. We calculate the spin
relaxation time for a two-dimensiona electron gas at
temperatures ranging from low values to 120 K in the
case when electron—phonon interaction weakly affects
spin relaxation. The results obtained are compared with
experiment [24] (see preliminary comparison in [30]).
We find conditions under which the Hartree—Fock cor-
rectionsare negligible ascompared to the effect of elec-
tron—electron collisions on spin dynamics. The effect of
these collisions on the Dyakonov—Perel mechanism is
analyzed for systems with dimensions varying from
d=3tod=1

The paper is organized as follows. In Section 2, we
derive a master equation for spin-polarized electrons
that takes into account electron—electron interaction. In
Section 3, a general expression is obtained for the ten-
sor of inverse spin-relaxation times. In Section 4, we
calculatethe spin relaxation timefor aquantumwell. In
Section 5, the spin relaxation time is calculated for a
bulk semiconductor and a quantum wire.

2. MASTER EQUATION
FOR THE SPIN DENSITY MATRIX

Inthekinetic theory of the electron gas, thejoint dis-
tribution of the wavevector k and spin isdescribed by a
2-by-2 density matrix that can be represented in terms
of basis matrices as

P = fr+s (o, D

Here, o is the vector whose components are the Pauli
matrices, f, = Tr[p,/2] isthe spin-averaged electron dis-
tribution function, and s, = Tr[p,(6/2)] is the spin per
k-state electron (the 2-by-2 identity matrix isomittedin
this representation). The master equation for the den-
Sity matrix p, can be written as

P+ Hao(k) +Velk), 0d + O} = 0. )

Here, #so(k) is the contribution of spin-dependent
terms to the effective one-electron Hamiltonian, and
Vc(K) is the Hartree—Fock contribution to the effective
one-€lectron Hamiltonian due to the exchange interac-
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tion between the spin-polarized electron gas and an
electron in the k-state [16, 17, 29, 31]:

Ve(k) = 2% Vie_(s¢ [0). ©)
&

The last term on the left-hand side is the collision inte-
gral. The electron—el ectron scattering processes that do
not conserve the total spin areignored in this study.

To derive an expression for the contribution of elec-
tron—electron interaction to the collision integral

Qx{p}, we apply the standard Keldysh diagram tech-
nique and use the fact that the matrix element associ-
ated with the electron—electron scattering process Kk,
S +K',sc —=p, s, +p', sy can be represented as

M(p1 Sp1 p'! Sp'lk! Sk’ kl! Sk')

= Vk_pésp,skésp,,sk,—Vk_p.6sp,§<,6
where s, S, ... denote projections of spin +1/2 on the
z axis and V, is a Fourier component of the Coulomb
potential V(r) in ad-dimensional space. We can use (4)
to write the matrix element for arbitrary spin orienta-
tionsintheinitial and final states. Expression (4) can be
rewritten in a convenient invariant matrix form by
assigning index 1 to the spin states s, and s, of electrons
with wavevectors k and p, respectively, and index 2 to
the spin states s and s, Furthermore, Eq. (4) can be
written in the following operator form in terms of the 2-
by-2 identity matrices |D and 1@ and the Pauli matrices

o and 6@ (a=x,y, 2):

(4)

S S

M = AIYIP +Be! 6 )
where
1 1
A = Vk_p—évk_p', B = —évk_p-. (6)

This expression for M, as well as the starting expres-
sion (4), has a simple form because the scattering pro-
cesses that do not conserve the total spin areignored in
this study. We write out the following useful expression

for the squared operator M :
M = (A%+38%)11? + 2B(A-B)e" 6.

The matrix M is then used to rewrite the collision
integral in (2) in compact form as

A n
Qdpt = 5 z O+, p+pO(Ex + Ex —Ep—Ep)
K, p,p'

xTr,G(p, p'; Kk, k'),

(7)

where amatrix depending onthe spinindicesland 2is
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introduced,
G(p,p; k k) = MUY -p) (1@ - pPyMp{Ypl?

oI o)1 o)

- . (8)
a1 o)1 —pf2)

—(1=p (1P —p)Mpy e,

and Tr, denotes the sum of diagonal matrix elements
with index 2. The eguation for the density matrix is
equivalent to the following system of scalar and
(pseudo)vector equations for f, and s, , respectively:

df,

—d—t—+Qk{f!§ :01 (9)

d

TS (@R )+ QLS T} = 0.
Here, the angular frequencies are defined by the rela
tions

(10)

f 2
Hso(k) = iﬂk 6, Qcy = %ka'—ksk‘! (11)
=

the scalar and vector collisionintegrals, by therelations

Tt
Qk{fﬁg’ = Zﬁ z 6k+k',p+p‘6(Ek+Ek'_Ep_Ep')
K,p,p'
xTryTro[G(p, p'; k, K],
Tt
Qk{sa f} = Z-?L z 6k+k',p+p'6(Ek+Ek'_Ep_Ep')

K, p,p'
xTr,Tr,[6YG(p, p'; k, K)].

Performing the operations Tr, and Tr,, we abtain
_2m
A{f.g =%

x Z 6k+k',p+p'6(Ek+ Ek'_ Ep_ Ep‘)
K.p.p

x{(2Vi_p=Vi_pVi_p)
*[ffie(l- fp_ fp')_ 1:pfp'(l_ fr— i)l
+2(Vi—p_vk—pvk—p‘)
X[(fp=fi)(se B5y) + (Fp = fie) (sc [5)]
=V Vi pl (T + fie) (s, B5y)
—(fp+ fp)(sc B5e) 1}

(12)
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Qds f = o
XS BrkpepO(Eit Ee—Ep—Ep)
&
x{(2Vi_p =Vi_pVi_p)
x[scF(k'; p, p') —s,F(p"; K, k)]
—VipVioplseF(k; p, pY) —s,F(p'; Kk, k')
= (Se =) (sp Bsy) ]
+2(Vi_p = ViespVie—p) (S =8 (8¢ By 1,
where
F(ky ko kg) = Fi (T=fi, =)+ i fy

(13)

(14)

When the terms of third order in f and s can be
neglected for anondegenerate el ectron system, the vec-
tor collision integral reduces to [22]

ods =&

x Z O+, p+pO(Ex+ Ex—E,—Ep)
K, p,p'

X [2(Vi—p = Vi—pVi—p) (S Fe =S T )

(15)

+Vi Vi p(sfe—sefi) ]

Thecasewhen all spinsare oriented along acertain axis
and the case of weak spin polarization (|s| < f,) were
discussed in [26]. The contributions to (12) and (13)
proportiona to Vﬁ_p and Vi _, Vi _ represent direct
Coulomb interaction and exchange interaction between
electrons, respectively. A kinetic equation for spin-
polarized electron gas taking into account electron—
electron interaction was discussed in a series of papers
[16, 17, 29, 31]. The Hartree—Fock term in (9) is con-
sistent with analogous terms in the equations for spin
density-matrix components discussed in [16, 17]. Note
that the electron—€lectron collision integral considered
in[29, 31] did not include exchange interaction. More-
over, the expressions for Q. {s, f} and Q \{s, f} that
follow from (13) substantially differ from the corre-
sponding collision integral (0py/0t)geq fOr Py = Sex—iSey
used in [29, 31]. In the case of anondegenerate electron
system, the term V;_ in (15) is multiplied by s, f,. —
S, f» Whereas the corresponding multiplicand in [29, 31]
is proportional to

Sk,cx(pr+ fk'+ fp')_sp,a(ka+ fk‘+ fp')v
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where a = X, y. Note a so the wavevectorsk, k', p, and p'
areused hereinstead of k, k'—q, k —q, andk'in[29, 31],
respectively. Both analysis of (15) and general consid-
erations show that the collision integral corresponding
to the latter combination of wavevectors is incorrect,
because it does not vanish for the spin-polarized elec-
tron gas characterized by the Maxwell-Boltzmann
equilibrium distribution of kinetic energy in each spin
branch.

The Larmor frequencies due to spin—orbit interac-
tion can be expressed for specific semiconductors as
follows. The valence-band spin-orbit splitting in a bulk
semiconductor with zinc-blende-type lattice scales
with the electron wavevector cubed. The corresponding
Larmor frequency is

ah’

3
N2MEg
where a = 0.07 is the Dresselhaus constant, E, is the
band gap, mis the effective electron mass, k, = k(k% —

Q =

K, (16)

ki), and the remaining components of k are obtained
by cyclic permutation of indices (the x, y, and zaxes are
aligned with the [100], [010], and [001] directions,
respectively) [32].

For a[001]-grown quantum well that has symmetric
interfaces and is symmetric under the point group D,
spin splitting is due to bulk inversion asymmetry. It is
represented by the Dresselhaus term [10]

%so(k) = Bl(cyky - kax) '

obtained by averaging the three-dimensional Hamilto-
nian #so(k), with , given by (16), over the size-quan-
tized states of an electron moving along the growth

axis; here, B, O alk0

For an asymmetric quantum well that is symmetric
under the point group C,,, spin splitting involves an
additional contribution (represented by the Rashba
term) due to the inversion asymmetry of the hetero-
structure-confining potential (see [8] and references
therein):

(17)

%SO(k) = BZ(kay - 0-ykx)-
where 3, is a constant factor.

(18)

In the principa axes of the C,, group, X' || [110],
y' ||[110], and z || [001], the Larmor frequency corre-
sponding to these contributions to spin splitting has the
components

Qv = Bk, Quy = —B.kJh,
K B_ky Ky = B (19

where 3, = 2(B, £ B,).
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For a quantum wire, the Larmor frequency can be
expressed as follows [33-35]:
Q, = Ak, (20

wherethe constant vector A determinesthe splitting and
the direction of the spin precession axis.

Thus, the angle dependence of the Larmor-fre-
quency components Q, , is described by the third-
order spherical harmonics Y; (k/K) for zinc-blende-
based bulk crystals, by the first-order harmonics cosé,
and sing, and terms linear in the two-dimensional
wavevector k for quantum-well structures (¢, isthe azi-

muthal angle of k), and by the function sgn{k} for
guantum wires.

3. SPIN RELAXATION TIME

We consider the DP mechanism of spinrelaxationin
the case when the spin splitting £Q, is small as com-
pared to /T, where T is the electron wavevector relax-
ationtime; i.e., Q, T < 1 can beused asthe small param-
eter in perturbation theory. When spin splitting is
neglected, it is assumed that the electron energy distri-
bution is uniform and the spins of all electrons are par-
allel to a unit vector o,. Therefore, the zeroth-approxi-

mation spin density matrix p(k’ is diagonal in the basis
of spin states with spin projection on the o, direction,
and its diagonal elements are the Fermi—Dirac func-

tions
-1
1} ,

where |, and |_ are chemical potentials, E, = #%k%/2m
is the kinetic energy of an electron, kg is Boltzmann's
constant, and T is temperature. In the basis of states
with spin projection on the z axis, a quasi-equilibrium
density matrix can be represented as follows [9]:

= [ exp B
fr. = [expD T al

pp = fr+s b,

where the mean occupation fﬁ and mean spin sﬁ for
k-state electrons are expressed in terms of f, . as

f =

1 1
S(fiet i) 8= S(fe—fiJos

Introducing the quasi-equilibrium components of s,
and Q¢ , wewrite

S = S + 35, Qcy = Qg,k"‘&gc,k,
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where

2
ro, kK = Z ZVk'—ksk'a
« (21)

2
690"( = %ka-_késk-.
K'

The first-order perturbative correction does not modify
the distribution function f, , while &s is proportional to
the spin splitting. Note that the order of the angular har-
monic associated with s is preserved by the collision

operator Q,{s, f% and operator (3); i.e., the angle-
dependent components ds, , and dQc , o involve the

same harmonics as does €, . Note also that Qg‘ « |l O
and 2k69Cak =0.

Taking the sum of (10) over k, we obtain a balance
equation for the total spin S, = ZKSE:

dSo

+zésk><9k = 0. (22)

Retaining the terms in (10) depending on the orienta
tion of k, we derive the following eguation for the non-
equilibrium correction:

L {08 = —Syx L,

L(58 = Qufs 1% +(Ge- 0, 85 (23

Hi)0sc x 5+ —
P

where

fro—fie
k ﬁz\/k k |SO|

and the function Hy is defined by the relation
2 _
%zvk'_k6sk- - Hk6$k
"

In addition to the electron—electron collision operator
Qy, we introduce a term in L, that represents the
momentum scattering characterized by a constant
time t,. The momentum scattering time is used as an
additional parameter in the theory developed below.

The contribution of the time derivative dds/dt
to (23) is neglected here, because it is a quantity of
higher order in Q,1. Since the collision integral must

vanish for py , the expression for

Qls 3 = Qs +3s %
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can be substantially simplified by introducing an oper-
ator Q{ds, &, f % linear in ds,. An analysis of the sym-
metry of L, shows that ds, 0 S,. Therefore, we can
replace s, ¢, and s, with ds,, ds., and 0s,, respec-
tively, inthe summandsin (13) that arelinear inthe spin
density matrix. Moreover, we can perform the follow-
ing changein the cubic terms:

(Se =S (8, ) —= (8¢ =8 (S Op)-
Then, the solution to Eq. (23) can be represented as

08 a = F1(So)Sp x €2

(24)

+ Fan(So) [So * (Sp x L24)],
where F(S)) and F,(S,) are even functions of S,
depending on k = |k|. Figure l1a illustrates the equilib-
rium distribution for a nondegenerate electron system,
the nonequilibrium spin distribution in the absence of
splitting, and the correction ds, due to precession with
Q, [Ozinthe case of S, || zand spin splitting linear in
the wavevector. If spin splitting is controlled by the
Rashba term (18), then ds, is paralel to k (see
Fig. 1b). When the dominant role is played by
Dresselhausterm (17), the angle dependence of ds, has

amore complicated form (see Fig. 1¢).

Substituting the nonequilibrium correction given
by (24) into (22), wefind that the decay of thetotal spin
is governed by the equation

S, 3 (PSSR (S )

+ F(So) (So T2, (Sp x )} = 0.

If there exists a coordinate system in which the angle-
averaged product [@, ,Q, gllis proportiona to &, g,
then we can rewrite the balance equation for spin as

4., S, 2 _
Ta * TG: * ZFZKSO‘BV EQKBESO,BSO,V =0,

where g4, isthe Levi-Civita permutation symbol and

= 5 FudSo) (124" - Qic0)- (25)
k

When S;isparallel to acoordinate axis a, the contribu-
tion proportional to F,, vanishes, and spin relaxation
can be described in terms of 1,4 oOnly.
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4. SPIN RELAXATION
OF CONDUCTION ELECTRONS
IN A QUANTUM WELL

Consider conduction e€lectrons occupying the
ground size-quantized subband (e1) in a [001]-grown
zinc-blende-based quantum-well structure. In view of
the quasi-two-dimensional form of the wavefunction
envelope ¢,(2) and the effect of screening, the Fourier
transform of the Coulomb potential has the following
form (see[25]):

_ome

V, = ——H
¢ K(q+ay)
where q is a two-dimensional vector with components
0 and gy,

0e = 2me{ KA1+ exp(-u/kgT)]}

is the inverse screening length [36], W is the chemical
potential, and the sample area in the interface plane is
unity. The form factor

H(q) = Hexp(—qlz—z|)¢§1(z)¢21(z)dzdz

describes the spread of the electron wavefunction in a
qguantum well and strongly depends on the quantum-
well width a. In the grictly two-dimensional limit,
when a— O and thewell isinfinitely deep, H(q) tends
to unity. Inawell of finitewidth, H(q) < 1; whenga < 1

(a), (26)

flk), s(k)

GLAZOV, IVCHENKO

(distances between electrons are relatively large),
H(g) — 1; whenga> 1 (for relatively small distances
between electrons), the form factor isinversely propor-
tional to gand V, O g2 (if screening is neglected), asin
the case of athree-dimensional electron gas.

The contribution of the Hartree—Fock field to the DP
spin relaxation mechanism is controlled by the param-
eter Qc1, where Q. isthe mean value of the frequency
Q¢ defined in (11), and 1 is the relaxation time of the
electron wavevector in any collision. The spin-preces-
sion frequency controlled by the Hartree—Fock
exchange interaction can be estimated as

2
Q. O-=—PN,
akk

where 7k is the mean electron quasimomentum, N is
the two-dimensiona electron concentration, and P =
23/N isthe degree of spin polarization. Thetime 1 can
be estimated by using the relation 1T = T;l + T;i,
where the time 1, characterizes the frequency of elec-
tron—electron collisions. For the Boltzmann gas,

c,e'N
ikkg T

In the case of a highly degenerate electron system,
when the thermal energy kgT is much smaller than the

-1 _
ee —

(27)

1.0r

0.8F

0.6

04+

0.2

(b)

(©

Fig. 1. () Electron distributionsin the k space: (1) Maxwell-Boltzmann distribution, (2) quasi-equilibrium distribution of electrons
with spin parallel to the z axis, and (3) nonequilibrium correction ds; , due to spin splitting; (b) spin orientation controlled by the
Rashbafield in the (X, y) plane of a quantum well; (c) spin orientation controlled by the Dresselhaus field in the (X, y) plane of a

quantum well.
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Fermi energy E, we can use the estimate

-1 _ EFlj(BTDZ
Tee = CZ(T)—ﬁ—DE_FD ’ (28)
where ¢, ~ T¢/2 [37, 38] and c,(T) is adowly varying
function of temperature, which behaves as
(TV4)In(E/ksT) for aFermi-level electron [39-42].

In what follows, we separately analyze the case of
low degree of spin polarization, when QT < 1 and the
Hartree—Fock field can be neglected, and the case of
relatively high P, when the frequency Q. is at least
comparable to theinversetime 12,

4.1. Weakly Polarized Electron Gas

In the case of a two-dimensional electron gas, the
quasi-€elastic approximation cannot be applied to colli-
sion integral (13) [37, 38, 43, 44]. Indeed, the energy
transferred in an electron—electron collision is on the
order of kgT; i.e., therelative change in energy is com-

parableto thosein sﬁ and ds, . For thisreason, Eq. (23)

for the nonequilibrium correction was solved numeri-
caly.

When Q1 < 1, we neglect the contributions of Har-
tree—Fock exchange interaction (3) and cubic in s,
terms to the collision integral by taking the limits of
QC,k I Oand QK{BS, §), fO} I QK{BS, §): O, fO}
In this case, the tensor of inverse spin-relaxation times
given by (25) is independent of the total spin, and its
nonzero components in the C,,, principal axes are

1Bk 1 Bkt

.- O0sz0Y -~ oO0x0O"

XX vy (29)
11,1
Tzz Tx‘x‘ Tyy

Here, the collision time T that controls DP spin relax-
ation is defined as

=1 kzF 0 30
T= ézk_z 1«(0), (30)
k 0

with F,,(S) defined in (24) and a reference wavevector
ko introduced to simplify the analysis of the dimensions
of individua multiplicands in expressions for spin
relaxation times. In the cases of nondegenerate and
degenerate electron systems, reasonable estimates for
k, are given by the “thermal” wavevector k; =

J2mks T /4 and the Fermi wavevector k2 = /21N
(T =0), respectively.
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For nondegenerate electron gas, T was calculated
in[22, 25, 26] without allowance for momentum scat-
tering. In this case, k, = ky and

v 4
1 _(9-1 _ € N
T = = —=, (31)
* hiKks T
where the constant factor c¢; is approximately 35.7 (for

strictly two-dimensional gas), i.e., several times greater
than ¢, in (27). For degenerate (low-temperature) elec-

trons, the function rfe) (T) calculated in this study can
be accurately approximated as follows:

where ¢, = 3.4. This expression does not contain the

factor c,(T), because its presence in (28) is due to the
assumption that the electron energy relative to the
Fermi level is small as compared to kg T. Thus, we have

1 0 T2 at low temperatures and linear growth with
temperature at high temperatures (when the chemical

potentia is negative); i.e., Tffe) (T) is a nonmonotonic

function. The minimum value of rfj correspondsto the

point of transition between the degenerate and nonde-
generate statisticsat T ~ E¢/kg.

Now, we focus on the case when spin splitting in a
guantum well is controlled by only one of thetermsthat
arelinear ink (either 3, or B, iszero). If 3, =0, then the
Larmor frequency is independent of ¢, (Q, = |BK).
Therefore, we can represent 1,4 as

(32)

where 2Qq = 3, kg is the spin splitting for Fermi-level
electronsat T=0.

Figure 2 compares our theoretical results with the
experiment reported in [24] (see aso the preliminary
comparison in [30]). Here, thetime T in (32) isused as
the ordinate to simplify presentation. Squares and cir-
cles represent the values of T and 1, measured in an
n-type GaAs/AlGaAs-based quantum-well structure
characterized by a high carrier mobility [24, 30], with a
concentration of 1.86 x 10 cmr2, awell width of 100 A,
a barrier height of 250 MeV, an effective mass of m=
0.067m, (my is the free-electron mass), and k = 13. All
values of T, except for that at T = 1.8 K, were deter-
mined by measuring 1,,and using (32). At T=1.8K, the
condition Qg < 1 corresponding to the collision-dom-
inated regime was violated in the sample (Q,T ~ 2) and
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T, ps

1l Lo nl L1l L1
0'10.1 1 10

T,K

1l L
100

Fig. 2. Temperature dependence of microscopic collision
time T that controls spin relaxation according to (32) and
transport time T, that controls carrier mobility for an

n-GaAs/AlGaAs quantum-well structure. Experimental
values of T and T, are represented by circles and squares,

respectively [24, 30]. Dashed and dotted curves represent
the time T calculated, respectively, by neglecting momen-
tum scattering and electron—electron collisions. Solid
curves are obtained by taking into account both electron—
electron collisions and momentum scattering with 1, =

10 psfor strictly two-dimensional (curve 1) and quasi-two-
dimensional (curve 2) electrons.

an oscillatory spin-polarization decay was observed
(see [49]):

So.o(t) O & cosQt.

The corresponding result (T =6 psat T = 1.8 K) isthe
open squarein Fig. 2.

Calculated results are represented in Fig. 2 by four
curves. The dotted curve was calculated by neglecting
electron—€lectron collisions (I(ese)_l = 0) and retaining
both linear and cubic in wavevector contributions to
spin splitting [6, 8]. It disagrees with the drop in T
observed experimentally at T > 5 K. The remaining three
curves were calculated for three models with 3, # 0 and
B, = 0. The dashed curve corresponds to two-dimen-

siona electron—electron collisions in the absence of
momentum scattering (ti * # 0, T, = 0). Curves 1

and 2 were calculated for two-dimensional and quasi-
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two-dimensional electron wavefunctions (in aguantum
well with H(q) < 1), respectively, by taking into account
both electron—electron collisions and momentum scat-
tering with T, = 10 ps. The parameter values used in the
calculations correspond to the experimental conditions.
The figure demonstrates that our results are in good
agreement at temperatures up to 80 K. This means that
the reduction of the DP spin relaxation rate in the
experiment reported in [24] was dominated by elec-
tron—electron collisonsat T > 5K.

4.2. Highly Polarized Electron Gas

When the degree of spin polarization ishigh, kinetic
equation (23) for ds, contains two contributions pro-
portional to the total spin: the Hartree—Fock term (G, —

H)S, and the terms quadratic in sﬁ in the linearized

collision integral Q,{ds, <°, f%. Estimates show that
these terms can be neglected for P below 20% consid-
ered here; i.e., the collision integral Q,{ds, s° =0, f %}
can be used in this case as well. For this reason, we
examine how the field induced by the Hartree—-Fock
interaction modifies the results presented in the preced-
ing subsectionwhen S, # 0. It followsfrom (21) that the
average Hartree—Fock fieldisparallel to S,. It givesrise
to precession of ds, about the vector S;; i.e., it reduces
the rate of spin relaxation (by analogy with Larmor pre-
cession in external magnetic field [23]). To be specific,
we henceforth assume that the spin polarization is par-
allel to the growth axis of the quantum well (o, || 2) in
the case of B, # 0 and 3, = 0 (i.e, linear in wavevector
splitting of the subband el due to the Dresselhaus
term).

First, we calculate the effect of the Hartree-Fock
field on spin relaxation in the case of T — 0, when
electron—€lectron collisions are ruled out by the Pauli
exclusion principle and spin relaxation is due to elastic
carrier scattering by defects of quantum-well inter-
faces, which is characterized by a momentum relax-
ation time 1, satisfying the condition Qqt, < 1. The
result can be obtained in analytical form by assuming
that the difference between i, and p_is small for elec-

tronswith s, = +1/2. The corresponding sv and 3s, can

be approximated by delta functions of the magnitude
of k:

S = PRS(E — )0,
08¢ = (Accosdy +Assing,)O(E,—H),
where P = (W, — )/20, B = (K, + )/2, and the con-
stant vectors A, and A, liein the (%, y) plane. The Har-
tree—Fock contribution to (23) can be rewritten as
(G — Hp)ds xS = s, X L,
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where the frequency of spin precession in the exchange
field generated by the spin-polarized electron gas is
expressed as

21A NP
m

Q. = Mo, (33)

2n

(2T[h) J’V%kFan)D

2

2000y s 4 J2rg
X(1=—cosp)dp = rsF(ry) -2 +——
with V() =V, the constant r ¢ = J2me?kh2k? charac-

terizes the Coulomb-to-kinetic energy ratio, and (see
[46, 47])

Fix) = Zgarccom(ﬁ/x)/A/Z—xz, X< /2,
TCarccos(J2/x) 32 =2, x> /2.

The relaxation time for the spin parallel to the growth
axisis obtained by using general expression (25):

1 Qx
= = ——>t— (34)
T 1+(QCTp)

It follows that (Qct,)* = 0.4 for P=1%and N = 1.86 x
104 cm=2.

Figure 3 shows the spin relaxation rates calculated
numerically versus P for the same parameters of the
electron gas as those used in calculating curve 1 in
Fig. 2(N=1.86 x 10" cm? and 1, = 10 ps). The reduc-
tion of spin relaxation rate due to increase in degree of
spin polarization is qualitatively consistent with the
results of a numerical analysis of spin dynamicsin an
external magnetic field [29].

Figure 3 demonstrates that, if the starting degree of
spin polarization is held constant, the effect of the Har-
tree—Fock field decreases as the electron—electron col-
lision frequency increases with temperature according
to (28). We conclude that the experimental conditions
in [24] correspond to the regime of weak spin polariza-
tion considered in Section 4.1.

5. EFFECT OF ELECTRON-ELECTRON
COLLISIONS IN SYSTEMS
OF DIFFERENT DIMENSIONS

It is interesting to compare the effects of electron—
electron collisions on the reduction of the spin relax-
ation rate in semiconductor-based systems of different
dimensions: abulk semiconductor, aquantum well, and
a quantum wire. In this section, we compare the DP
spin relaxation times cal culated for abulk semiconduc-
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TP = 0)/1(P)
1.0
0.9
0.8
0.7
0.6
0.5
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0.2
0.1

0 5 10 15 20
P, %
Fig. 3. Reduction of the rate of spin relaxation in strongly

polarized electron gas at T = 0 (1), 10 (2), 20 (3), and
40K (4).

tor and a quantum wire by allowing only for electron—
electron collisions with those due to the elastic scatter-
ing by ionized impurities whose concentration is equal
to the electron concentration. The calculations are sim-
plified by assuming that spin polarization is weak,
which makes it possible to ignore the spin-dependent
Hartree—Fock corrections to the electron energy.

5.1. Spin Relaxation in a Bulk Semiconductor

When the three-dimensional nondegenerate el ectron
gas satisfies the condition

where rp = (kkgT/41€2N)¥2 is the Debye screening
radius, electron—electron collisions can be treated as
quasi-elastic [27, 28, 48]. This means that the wavevec-
tor g = p —k exchanged in the collision transforming a
(k, k") state into a (p, p') state is small as compared to
the “thermal” wavevector. In this case, electronsdiffuse
in the momentum space, and the collision integral can
be represented as the divergence of the electron flux
density in thisspace [27]. Moreover, we can usethefol-
lowing differential operator (see[28]):

Ps. O = -9
Da—tés‘"DSfQ"{éS" f} = Z%W"'(k)’ (395)

with the spin flux density in the k space defined as

Wii(k) = —Ai(k)sc, = Djj(k) (36)

akSkI
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0.01 : : : :
0 20 40 60 80

T,K

100

Fig. 4. Dimensionless parameter { in (40) versus tempera-
ture for spin relaxation in a quantum wire controlled by
electron—electron collisions only (solid curve) and scatter-
ing by ionized impurities localized at the center of the wire
(curve 1) and uniformly distributed over the wire cross sec-
tion (curve 2).

and A(k) and Dj;(k) expressed as

_ 8Kk
Alk) = 2mkgTT,(E,)’
s K0l L[]
Dj;(k) = 2|:6”2TD(E|() k'kJE[|(Ek) ZTD(Ek)D:|

The inverse electron—€lectron collision times [48]

() = T,

15 (E) = Tee(E)[20'(X) + H(X)(2—Xx)]

characterize the spread in the momentum space along
the vector k and in the perpendicular plane, respec-
tively; the scattering timeis

1.(E) = E¥22mt? 2riNE*A,

where A is the Coulomb logarithm; x = E/ksT; and
U(X) = erf(J/x) — 2./x/Te™.

Numerically solving Eg. (23) with collision opera-
tor (35), we abtain thefollowing final expression for the
principal values of the tensor of inverse spin relaxation
times:

— == == =qa —-T, (37)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

GLAZOV, IVCHENKO

where a is defined by (16) and

T=1 (S’~122K f (kBT)3’2 (38)
e

5.2. Spin Relaxation of Conduction Electrons
in a Quantum Wire

For electron—electron collisions in a one-dimen-
sional system schematized as k + K — p + p', the
energy and momentum conservation laws imply that
eitherp=kandp' =K or p=Kk and p' = k [49]. There-
fore, collisions do not change the state of a pair of elec-
trons having equal spins. Otherwise, collisions can
result in spin exchange, asin the process

(k, 1/2) + (K, =1/2) —= (K, 1/2) + (k, -1/2).

Thus, electron—electron collisions in a quantum wire
can reduce the DP spin relaxation rate in a quantum
wire, asin two- and three-dimensional systems.

Inacylindrical quantum wire characterized by weak
spin polarization and arbitrary degree of degeneracy of
the electron system, the electron—electron collision
integral for s, reducesto

Qs f} = Tjdpv (k=p)

lk—pl
x[sF(K; p, p') —s,F(p; k K)I.

(39)

Here, ;7 = (me¥/mh3k), the function F(K; p, p) is
defined by (14), and the Fourier transform of the
dimensionless quasi-one-dimensional potential of elec-
tron—€lectron interaction [50],

V(@ = 722[_1__ 2 :
(aRo)°L10  3(qRy)
32
+ 213(ARo)K3(aRy)
3(qRy)" (Ro) ’ ’ }

isexpressed in terms of the quantum-wireradius R, and
the Bessal and Macdonald functions I15(x) and Ky(X).
Effects of Luttinger-liquid behavior on spin dynamicsin
one-dimensional systems were considered in [34, 51].
Analogous effects on DP spin relaxation arel eft outside
the scope of the present analysis.

The spin component parallel to the vector A inlinear
relation (20) is preserved, whereas the decay of the spin
component in the perpendicular plane is characterized
by the rate constant

1 _
T = (40)

2
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Thesolid curve and dotted curvesin Fig. 4 represent the
dimensionless factors {(T) calculated, respectively, for
electron—electron collisionsin aquantum wirewith N =
3.2x10°cmtand R, = 100 A and for the scattering of
electrons by ionized impurities whose concentration is
equal to the electron concentration. These results dem-
onstrate that the effect of electron—electron collisionsis
stronger in awide temperature range.

According to (37) and expression (3.40) in[32], the
ratio of the respective spin relaxation times due to elec-
tron—electron collisions and the elastic scattering by
ionized impurities whaose concentration is equal to the

electron concentration, 15°/1%, isabout 2.5 for an unde-

formed bulk semiconductor; i.e., the effect of electron—
electron collisions is stronger. For a two-dimensional
electron gas, theratio is 3.6 [26, 28]. Curve 2in Fig. 4
demonstrates that the effect of electron—electron colli-
sions is stronger than that due to the elastic scattering
by ionized impurities uniformly distributed over the
wire cross section by an order of magnitude at T =
100 K. Thus, the effect of electron—electron collisions
on the DP spin relaxation rate increases with decreasing
dimension.

6. CONCLUSIONS

A theoretical analysis of the effect of electron—elec-
tron interactions on the Dyakonov—Perel spin relax-
ation is presented. It is shown that this mechanism of
spin relaxation is controlled by el ectron—electron colli-
sionsto an extent comparableto the effect of other elec-
tron scattering processes. In the case of strong spin
polarization, the Hartree-Fock field additionally
reduces the rate of spin relaxation. The results obtained
here agree with experimental studies of spin dynamics
in n-type quantum-well structures characterized by
high carrier mobility.
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Abstract—It is shown that the problem of instantons in ferromagnetic materials in a large-spin model is
reduced to an exactly integrable dynamical system with afinite number of variables. For arather wide class of
models, there exists a continuum of instanton paths that form a one-parameter family of paths with essentially
different shapes but with the same val ue of the Euclidean action. On the basis of the formalism developed, exact
instanton solutions are constructed that describe macroscopic quantum tunneling for asmall ferromagnetic par-
ticlewith uniaxial or biaxial quadratic anisotropy in the presence of amagnetic field applied perpendicularly to
the easy axis. These solutions are valid for any relations between the anisotropy parameters and for any mag-
nitude of the magnetic field and its direction in the base plane. Based on the solutions obtained, the principles
of macroscopic quantum tunneling in high-spin-molecule-type magnetic particles are described. Tunneling
regimes of two types are obtained: (1) regimes that are characterized by destructive interference of instanton
trajectories and oscillatory dependence of the transition probability on the magnitude of the magnetic field and
(2) regimes in which al instantons have the same purely real value of the Euclidean action and there is no

destructive interference. © 2004 MAIK “ Nauka/I nterperiodica” .

1. INTRODUCTION AND FORMULATION
OF THE MODEL

In the last decade, the problems of macroscopic
guantum tunneling in macroscopic (or, more precisely,
mesoscopic) maghetic systems have been intensively
studied both experimentally and theoretically (see sur-
veys[1, 2]). Inthe physics of magnetism, these systems
include small magnetic particles, magnetic clusters,
and high-spin molecules. Special attention has been
focused on the phenomenon of coherent macroscopic
guantum tunneling between energy equivalent but
physically different states in systems with discrete
degeneracy of the ground state. In such systems, atyp-
ical effect of coherent quantum tunneling consists in
the mixing of two equivalent classical states that corre-
spond to two identical minima of the anisotropy energy
(see[1, 2]). The mixing resultsin the tunnel splitting of
these states, which are degenerate in the classical case.
Interest in this phenomenon is due to the two following
reasons. First, mesoscopic objects that exhibit quan-
tum-mechanical properties are of interest as potential
elements of quantum computers (see [3, 4]). Second,
these problems involve fine and beautiful effects of
interference between instanton trgjectories. In ferro-
magnetic particles, these effects |ead to the suppression
of tunneling for systems with half-integer total spinin
the absence of a magnetic field [5, 6], aswell asto the
oscillatory dependence of the tunnel splitting of levels

on external parameters, first of all, on the magnetic
field. In the case of H # 0, tunneling was theoretically
studied (by an instanton method) by Garg, who discov-
ered an interesting interference phenomenon: oscilla-
tions of the splitting of levels as a function of a mag-
netic field applied along the hard axis[7]. The effects of
coherent macroscopic quantum tunneling can be
observed experimentally by the resonance absorption
of electromagnetic waves by tunnel-split levels. The
controllability of the tunneling phenomena (the switch-
ing on and off of tunneling) is an important factor for
the application of magnetic elements in quantum com-
puters|3, 4].

Thefirst studiesin the theory of quantum tunneling
[8-10] were performed for small ferromagnetic parti-
cles under the assumption that all spinsin aparticle are
paralel to each other (a large-spin model). For these
systems, the effects of destructive interference of
instanton traj ectories and suppression of tunneling due
to interference were predicted in [5, 6]. Then, it was
long believed that antiferromagnets are more conve-
nient objects for the experimental observation of tun-
neling because they are characterized by higher tunnel-
ing probability and less stringent temperature con-
straints compared with ferromagnets [11-14]. It is
worth noting that the effects of coherent quantum tun-
neling were first observed, by resonance methods, in

1063-7761/04/9906-1291$26.00 © 2004 MAIK “Nauka/ Interperiodica’
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antiferromagnetic particles of ferritin of biological ori-
gin[15].

In recent years, there has been increased interest in
tunneling in ferromagnets and, hence, in large-spin
models. This interest has been stimulated by experi-
mental investigations of tunneling phenomena in ori-
ented single-crystals of high-spin molecules (see the
survey by Wernsdorfer [16]). In fact, the synthesis and
investigation of high-spin molecules have started a new
period in the study of macroscopic quantum phenom-
ena. The main advantage of these objects, which
include both ferromagnets (in fact, high-spin molecules
or molecular magnets) and antiferromagnets (spin
rings), is their well-defined magnetic structure [17].
The total magnetic moment of high-spin molecules
amounts to 26 Bohr magnetons [18]. The states of the
most thoroughly studied high-spin molecules, which
are denoted for brevity by Fe; and Mn,,, are well
described under the assumption that all spins of amol-
ecule are coupled by a strong exchange interaction and
form atotal spin of S= 10. There aso exist high-spin
molecules with half-integer spin, which include Mn,
complexeswith the spin 9/2 [19]. In these systems, tun-
neling phenomenawere observed both between excited
levels, which have greater splitting [20, 21], and in the
ground state [22—26]. Actually, a system of such mole-
cules represents an ensemble of identical particles (in
contrast, for example, to the particles of ferritin, in
which the number of magnetic ions in a particle may
range from 20 to 30, i.e., about one percent of the total
number of ions, which is on the order of 3500). More-
over, it is possible to produce high-quality single crys-
tals of high-spin molecules with exactly oriented
anisotropy axes. This made it possible to pose the ques-
tion concerning the observation of tunnel-splitting
oscillations, predicted by Garg [7], as a function of an
external magnetic field applied along the hard axis of a
magnetic particle. Such oscillations were observed by
Wernsdorfer and Sessoli in Fe; [24] and by Wernsdorfer
and coauthorsin Mn,, [25]; experiments were also car-
ried out on systems with half-integer spin [26]. The
measurements of the relaxation time at low tempera
tures showed that this quantity periodically depends on
a magnetic field when the field is directed along the
hard axis of such high-spin molecules.

The observation of these beautiful phenomena stim-
ulated new theoretical investigations of the problem of
tunneling for ensembles of oriented ferromagnetic par-
ticles [27, 28]. The states of high-spin molecules are
well described under the assumption that all spinsin a
molecule are coupled by a strong exchange interaction,
so that the total spin of amoleculeis S. Thus, we arrive
at amodel of large spin Sin the presence of single-ion
magnetic anisotropy in a magnetic field H. In all the
works devoted to this problem that we are aware of, the
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dynamics of high-spin molecules is described by a
Hamiltonian

A = 2(KS +K,S)

+gugH [+ I2[§+) + ﬁ—)] .
Here, K; and K, are constants of rhombic anisotropy,

the term with K corresponds to tetragonal anisotropy
that existsinthe case of Mny,, S, and S, are components
of the spin operator, S, = S + 1S, g isthe gyromagnetic
ratio, and g isthe modulus of the Bohr magneton. The

constants K, K,, and K are positive; i.e, the zaxisis
the easy axisfor the spin. The magnitude of K issmall:

K < Kj, K,; its contribution is significant only for an
undeformed Mn,;, molecule, which has no natural
rhombic anisotropy. For Feg molecules, as well as for
deformed Mn,, complexes, the main contribution to
anisotropy is made by the first two termsin (1), i.e., by
rhombic anisotropy. In what follows, we restrict our

consideration to the caseof K = 0.

The simplest way to analyze the tunneling between
different classically degenerate ground states m®) and
mO© of asystem and to determine the tunnel splitting of
energies of these statesisto apply theinstanton formal -
ism (see, for example, [29, 30]). For the classical mag-
netization m, we have to pass to imaginary time in the
classical Landau—Lifshits equations by the formulat =
it and find instanton solutions m = m(1) to these equa-
tions such that the magnetization tends to two different
ground states, m(t) — m®), as T — oo, This
approach can be applied more carefully within the for-
malism of coherent spin states [30]. Within this
approach, amagnetization vector m of constant magni-
tude represents a dynamical variable. Taking into
account that the magnetization is antiparallel to the
spin, we writem = —S/S It is convenient to parameter-
ize the vector m in terms of angular variables 6 and ¢:
m, +im, = sinBexp(idp) and m, = cos6. Instantons cor-
respond to the extrema of the Euclidean action Ag[m]
and represent solutions to the Euler—Lagrange equa-
tions for the Euclidean version of the Lagrangian of a
ferromagnet. Only equivalent trgjectories that have the
minimal value of the real part of the Euclidean action
Ag[m] contributeto splitting. Thiscontribution is propor-
tional to the tunneling exponential exp{—ReAm]/%}.
The Euclidean action can be represented in terms of the
magnetization vector m as follows:

(D)

Acm] = [k [-insHEIR L wm) |, @

where W(m) is the energy of a ferromagnet that
includes the ferromagnetic anisotropy energy and the
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Zeeman energy of a spin in an external magnetic field.
The first term in the case of real time determines the
dynamics of magnetization; variation of it gives the
well-known Landau—L ifshits equations. The dynamical
part of the Lagrangian (2) has asingularity at m - n =
—1. The origin of this singularity and possible ways to
remove it become clear when we pass to the variable
M = Mm, which is not subject to the condition M2 =
const. Interms of M, the expression for the Lagrangian
can be written as

L = —iAdOM/oT + W(m),

3

A =Aa9nxM]/M[M+n[M], ®)
wherethevector A hasasingularity ontheline(n, M) =
—M. The dynamical part of Lagrangian (1), represented
in terms of M and dM/at, formally coincides with the
Lagrangian of a charged particle with coordinate M in
amagnetic field with the vector potential A. It can eas-
ily be shown that the vector B = curl A = 2SM /M3 has
no singularitieswhen M # 0. Thus, expression (2) for A
describes the vector potential of a magnetic monopole
Situated at the origin. The vector potential A for a
monopole certainly has a singularity on the line (the
Dirac string) that starts at the location point of the mono-
poleand goestoinfinity [30]. The admissible transforma-
tions (2) or (3) are reduced to gauge transformations, in
particular, to changing the orientation of the Dirac string.
The singularities of the Lagrangian are closely related to
the so-called Berry phase (see |5, 6, 30)), i.e., to the total
time derivative in the Lagrangians (2) or (3), which
does not manifest itself in the equations of motion but
isresponsible for the interference of instanton trajecto-
ries. The nontrivial contribution of the Berry phase to
the tunneling probability is determined by the integral

AdM along aclosed contour and can be transformed

Into atwo-dimensional integral of B = curl A over asur-
face bounded by this contour, whereby the result should
not depend on calibration [5, 6, 30].

Usually, the Lagrangian of a ferromagnet is
expressed in angular variables. When n || e,, the Euclid-
ean action acquires the well-known form

Ac(6, ) = [d[~iAS(1~ cosO)3/dr +W(6, 9)].

The dynamical part of the Lagrangian in thisform also
contains singularities associated with the nondifferen-
tiability of the azimuth ¢ at the points 8 = 0, Tt How-
ever, we will use more general expression (2) because
the cal culation of the Euclidean action can often be sig-
nificantly simplified by an appropriate choice of the
direction of the Dirac string (see Section 4).

It has often been pointed out that instantons are for-
mally similar to domain-wall-type solitons. Some-
times, this similarity is quite striking; for instance, in
Lorentz-invariant models, the analysis of solutions for
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instantons is analogous to that for domain walls. How-
ever, we will show that, for a ferromagnet, there is a
fundamental difference between the analyses of instan-
tons and domain walls. In contrast to the problem of a
moving domain wall, which isintegrable only in afew
particular cases, the construction of an instanton solu-
tion in aferromagnet isreduced to an exactly integrable
dynamical problem.

The Euclidean version of the equations for magneti-
zation dynamics has an obvious integral of motion
W(B, ¢) = congt; within the instanton formalism, the
value of this constant should be chosen so that
WO, $®)) = 0 for the equilibrium states 6 = 6®), ¢ =
d® between which the tunneling is considered. Hence,
W(6, ¢) = 0 on the instanton solution; therefore, for a
ferromagnet, the quantity Ag[6, ¢] is determined only
by thefirst termin the Lagrangians (2) or (3), i.e., by its
dynamical part. This, in particular, implies that the
instanton solution cannot be real because the realiza-
tion of the quasiclassical dynamics requires that the
Euclidean action must have a considerable real part of

A (2).

2. A MODEL
OF A PURELY UNIAXIAL FERROMAGNET
AND SOME GENERAL CONSIDERATIONS

We begin the analysis with the case of a purely
uniaxial magnet by setting

in (1). In this case, equations for the angular variables
are expressed as

sinBd¢/dt = wycosB(sinB—hcosd),

N (4)
d(cosB)/dt = +hsinBsing,

where h = H/H, = gugH/KSis a characteristic dimen-
sionless field, H, = KSgug has the meaning of the
anisotropy field, and 2w, = KS. If we assume that cos@
and ¢ may take complex values, the system of equa-
tions (4) represents a dynamical system with two
degrees of freedom. It is convenient to introduce
dimensionless imaginary time by changing T — twy.
Next, instead of the first equation, we can use the first
integral W(B, ¢) = const of this system. The equation
W(B, ¢) = 0 yields sin@ = hexp(iod), where o = +1.
Using this formula, we can eliminate ¢ from the equa-
tion for d(cosB)/dt and obtain afirst-order equation for
the quantity P = cos6 in the following form:

2P = g(1-h*-P?). (5)
Here and below, a dot denotes a derivative with respect
to dimensionlesst. It isclear that the presence of adis-
crete parameter 0 = £1 in this problem corresponds to
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Fig. 1. Phasetrgjectories of the system of equations (6) with
o = +1 on the plane of complex variable P = Py +iP,. The

circle denotes a pole (at the point P = —1) of the integrand
of (8), which determines the value of the Euclidean action.

theinvertibility of the original equationswith respect to
the imaginary time t. Obviously, the replacement of o
by —o correspondsto the replacement of t by —, i.e., of
an instanton by an anti-instanton; henceforth, we can
seto =1

Taking into account that P in an instanton may be
complex, wewrite P =P, +iP,. Separating the rea and
imaginary parts, we arrive at a system of two real equa-
tions:

2P; = 1-h’—P;+P5, P, =-P,P,. (6

These equations have two singular points on the

phase plane (P,, P,), P, = +4/1—h” and P,= 0. A sim-
ple analysis shows that both these points are degenerate
nodes. For o = +1 (see above), one has an unstable node

at P, =—,/1—h® and astablenodeat P, = /1 —h* (see

Fig. 1). Hence, al phase trajectories that emanate from
the point P; = —m, P, = 0 reach the point P; =
J?hz , P, =0, and Egs. (5) or (6) describe a continu-
ous one-parameter family of instantonsinwhichm —
hey—ezA/lTh2 a1 — —o and m — he +

e1-h’ as1 —= +. Similarly, when ¢ < 0, one
obtains an analogous family of anti-instantons. The
general instanton solution of Egs. (6) can explicitly be
expressed as

_ 2 sinhwTt
Py =W1-h coshwT + cosy’
. (7
siny

P, = J1-h

coshwT + cosy’
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where w = /1 —h? y and the arbitrary real parameter
) takesvalues0 < P < 21L

The presence of a continuous family of separatrix
trajectories is a usual property of integrable Hamilto-
nian systems with two degrees of freedom [31]. One
should expect that this situation is also realized in our
case, i.e., that system (4) with two degrees of freedom
is integrable. Below, we will show that all instanton
problems in ferromagnets are exactly integrable. Now,
we discuss the properties of the family of solutions (7).

For aparticular case ) =0, wehave P, =0; i.e., cosO
is real, while ¢ is purely imaginary. Such solutions
were discussed by Garg in [7]; but he considered only
discontinuous solutions, i.e., those that have jumps near
equilibrium positions. Among solutions (7), there is a
discontinuous solution, which correspondsto () = 1.

At first sight, instantons of type (7) with different
values of Y are essentialy inequivalent. For example,
when | = 11, a solution has a singularity. However, it
turns out that all such solutions have the same value of
the Euclidean action. One can easily verify this fact by
applying formula(2) and expressing ¢ intermsof 6 by
the formula hexp(i¢) = sinB obtained above. The latter
formulaimpliesthat isin6dd = cosBd6, and the Euclid-
ean action is represented as the contour integral
" pgp
1+P ®)

in the complex plane P, i.e,, on the plane (P, P,)
depicted in Fig. 1 above. Since al the contours that
determinetheintegration path for different Y # 1tdo not
intersect the real axis and the only pole at the point P =
—1 does not fall within the domain bounded by the tra-
jectory with = 0 and atrgjectory with acertain ) # 0,
11, the value of A isthe same for all these contours,

1+4J1-h°
1-1-h

Analyzing the improper integral, one can easily verify
that the special case | = 1tleads to the same expression
for Ac. Hence, there exist an infinite number of instan-
ton paths in this problem that possess different struc-
tures but have the same value of the Euclidean action.
To explain this, at first sight strange, result, one
should notice that al solutions (7) can actually be
rewritten using acomplex shift of the argument of asin-
glereal solution. Indeed, taking areal solution derived

from (7) for ¢ = 0 and writing P = A/1 — h*tanh(wT/2 +
i), wearrive at (7). A question arises asto whether the
possibility of such aproliferation of instanton solutions
is a specific property of model (5) or continuous fami-

1-h%+1In
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lies of instantons that are characteristic of integrable
dynamical systems also exist in other models of a fer-
romagnet.

To answer this question, we express the equation of
motion for P = cosB and Q = ¢, without specifying the
form of the ferromagnet energy W(6, ¢), as complex
Hamilton equations

ow . - oW
30" iQ = P )

Let uswrite W= H, + iH,, where H; and H, are real-
valued functions and—assuming that P and Q are com-
plex, P=P +iP"and Q = Q' + iQ"—separate the real
and imaginary parts of Egs. (9). As aresult, we obtain
asystem of four real equations whose right-hand sides
contain the derivatives of H; and H, with respect to the
variablesP', P", Q', and Q". However, if we require that
the function W be an analytic function of complex vari-
ablesP and Q, i.e., that the function W should indepen-
dently satisfy the Cauchy—Riemann conditions with
respect to these variables, then the right-hand sides can
be rewritten in terms of the derivatives of H; or H,
alone. As aresult, this system of equations becomes a
Hamiltonian system. In particular, choosing the pairs of
canonical variables as

q. = QY g, = Q,

we can rewrite the system as p; = —0H,/0q;, § =
0H,/0p,, i.e., asaHamiltonian system with two degrees
of freedom, with the Hamilton function H; = H,(p, 05,
P,, 0,) and an additional integral of motion H,. Again,
using solely the Cauchy—Riemann condition for W, one
can show that the Poisson bracket for H; and H,, calcu-
lated in terms of the canonical variables p, and ¢, van-
ishes. Thus, we can conclude that any model of aferro-
magnet with energy W that is analytic with respect to
cos6 and ¢ in the above sense is reduced to an exactly
integrable dynamical system and in fact admitsthe con-
struction of an infinite system of instanton trajectories.

A concrete procedure for solving this problem can
be substantially facilitated when one takes into account
the fact that the canonical pairs of variables (10) consist
of onereal and oneimaginary part of the complex vari-
ables P and Q. Therefore, one can seek a partia solu-

tion in which only one pair of variables, p, = p{” (1),

iP =

py = P, p2 = P, (10)

g, = q(lo) (1), is changed, while the other pair is identi-
caly zero, p, = 0, g, = 0. As we have seen above, this
condition corresponds to a solution of the form (7) with
U = 0; in this case, the value of ¢ ispurely imaginary (or
¢ = 0). Further, using acomplex shift of the argument,

P(1) = p(t+ip), Q1) = it +iy),

we can obtain ageneral solution with p; ,, q; » # 0. Par-
tial solutionsinwhich some of thevariablesarereal and
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others are either purely imaginary or zero are known
to occur in many models of magnets (see, for exam-
ple, [32]). Below, wewill demonstrate the efficiency of
thistechnique as applied to many physically interesting
models of aferromagnet.

One may have the impression that the condition for
the analyticity of energy W with respect to both com-
plex variables P = cosB and Q = ¢ is rather stringent.
For instance, energy of theform (5) does not satisfy this

requirement because it contains sin@ = ,/1—P* and
branching points with respect to the variable P. How-
ever, this problem can be resolved by an appropriate
choice of the polar axisin acoordinate system. Indeed,
the energy of a ferromagnet includes the energy of
magnetic anisotropy W, and the Zeeman energy Wy =
gugH - Sinan external magnetic field H. Choosing the
polar axis along H, we obtain W, = —gugHScos8 =
g|lus|HSP. The anisotropy energy represents a polyno-
mial in even powers of the spin components and, for
magnets with symmetry no lower than that of rhombic
crystals, contains only the squares of the spin compo-
nents (except for rhombohedral magnets, whose energy
contains an invariant of the form sin6cosBcos39).
Thus, for al magnets with symmetry no lower than that
of rhombic crystals, except for rhombohedral magnets,
the condition for the analyticity of energy Wisfulfilled
when the magnetic field is directed along the symmetry
axes. We think that this constraint on the choice of a
model is not very stringent. Moreover, it seems that the
existence of a finite number of branching-point-type
singularities does not impede the manifestation of inte-
grability properties, in particular, the existence of
degenerate families of instantons and the possibility of
constructing them. Below, in Section 4, we verify this
fact by a concrete example, where we construct such
families of instantons in the case when the direction of
amagnetic field is different from a symmetry axis of a
crystal. However, since the analysis of this case is
rather cumbersome, it is expedient to begin with the
simpler case of a rhombic ferromagnet in a magnetic
field paralld to a certain symmetry axis; this will be
done in the following section.

3. ANALY SIS OF A FERROMAGNETIC MODEL
WITH A MAGNETIC FIELD DIRECTED
ALONG RHOMBIC ANISOTROPY AXES

Consider instanton solutions for a magnet with
rhombic anisotropy assuming that K = 0 in (1). We
begin with the simple case when the field is directed
along one of the symmetry axes and W(cosb, ¢) is an
analytic function of its arguments in the entire domain
of their definition. In what follows, it is convenient to
assume that the magnetic field is aways directed along
the same axis, say, adong they axis. Let usintroduce a
dimensionless parameter A = K,/K,; the case A < 1 cor-
respondsto the situation when they axisisthe hard axis
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of aferromagnet and the x axisis an intermediate axis,
when A > 1, the classification of axesisreversed. Thus,
by varying the parameter A, we can obtain all interest-
ing cases. when A < 1, the magnetic field is directed
along the hard anisotropy axis, whereas, when A > 1,
the magnetic field is parallel to an intermediate axis.
While constructing instantons and calculating the
Euclidean action, it suffices to consider only those val-
ues of magnetization for which W = 0; therefore, we
will omit the coefficient K,/2 in the expression for
energy and the parameter w, = K,S% in a solution.
Choose a reference point of energy so that W= 0in the
ground state. Then, the energy of a ferromagnet in the
dimensionless form is expressed as

A2

W(m) = 3m’+2(m,~h)? (11)

where h = gugH/K,S.

In this model of aferromagnet, the system of equa-
tions for instantons has the form

dm, _ . dm, .
gr MM g =AM,
; (12
m, _ .
o = il(A=Dm +hm,,

and instanton solutions are situated on the level sur-
faces of the integrals

Amg +(m,—h)? = 0 and mg+m}+m = 1.

Hence, m,—h=io,/Am, whereo = £1; i.e, therela-
tion between m, and m, in an instanton solution is lin-
ear. The system of equations (12) has an exact class of
solutions
m,=ix, m =y, m =z (13)
wherex, y, and z are real variables. Then, we obtain the
following system of real equationsfor x, y, and z

d
T = (y=hyz,
d q 14
= 9z _ -
g - AXZ, It [(A=1)y+h]x.

Note that we may not restrict the analysis to real
solutions of (14); we can consider the substitutions (13)
simply as a change of variables assuming that x, y, and
z are complex variables. Actually, one should do so
when constructing a general instanton solution that
belongs to a one-parameter family. However, as we
pointed out in the preceding section, for the simplest
case of auniaxial ferromagnet, it is much more conve-
nient to first construct a certain simple symmetric solu-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

IVANOV, KULAGIN

tionwithreal x, y, and zand then continueit by an imag-
inary shift along the independent variable 1. A similar
procedure of shifting along T applies to the case of a
rhombic ferromagnet.

The instanton solutions of interest are situated on
the level surfaces of the first integrals

M =(y=h)? =0 and X" +y*+7 =1, (15)

whereby one obtains alinear relation between the vari-

ablesxandy,y—h=0./A x, whereo = +1, and asimple
rel ation between the variables x and z,

2 2
(}\_1)%+(}’\h“/7‘5 +7 =1+ h (16)

-1 A=-1

This analysis of areal class of solutions clearly shows
that the variation of the parameters of the problem gives
rise to bifurcations. Equation (16) describes various
second-order curvesonthe plane(x, y): whenA > 1, one
has an ellipse, whereaswhen A < 1, one has a system of
hyperbolas that belong to different sectors of the plane

(%, y) for small and large fields, ® <1 — A = hi and
1-\ < h? < 1, respectively. In the limit cases when
A =1 (a uniaxial ferromagnet) or h? = hZ, Eq. (16)
describes a parabola or two intersecting straight lines,

respectively. Naturaly, all these curves pass through
the points that correspond to equilibrium positions, z=

+,/1—h?, x = 0; however, they exhibit essentially dif-
ferent behavior (see below). Taking into account the
fact that the ground state is not degenerate for h> 1 and
tunneling is impossible, we obtain three different
domains for instantons. We will show below that
instanton solutions possess essentially different proper-
tiesin these three domains. In particular, the value of h,
coincides with the critical value of thefield (which was
introduced earlier by Garg [7] and then by the authors
of [27, 28]) above which the effects of destructiveinter-
ference vanish. However, the authors of the cited works
obtained this value of h, from other considerations;
namely, they assumed that there are no continuous
instanton solutions for h > h, and that one should intro-
duce either discontinuous instantons [27] or instantons
that partially proceed in ordinary real time [28]. It is
quite possible that such exotic instanton paths will be
useful for certain other tunneling problems. However,
we will show that, within the ferromagnetic model (1),
taking into account the existence of an infinite family of
instantons obtained by a complex shift of the type
described above, there exist continuous standard
instanton solutions with purely real 1 for all domains
indicated above. In fact, only the solutions with certain
specific values of the complex shift parameter Y are
discontinuous. Thisfact ismost easily illustrated by an
example of the case 1 —h? < A < 1, when the magnetic
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fieldissmall, h?2 < hc2 =1-A,andA <1,i.e, the mag-
netic field is applied along the hard axis of a magnet.

AWeak Field Parallel to the Hard Axis

Itisthis casethat was considered in detail by Garg[7]
and for which oscillations of the transition probability
as afunction of afield were predicted and experimen-
tally observed [16—26]. The instanton paths used in [7]
do not satisfy the assumption that m, and m, arereal and
m, is purely imaginary. However, we begin with seek-
ing precisely such solutions in order to obtain general
solutions by a complex shift of the argument. In partic-
ular, we obtain instantons similar to those of [7] in this
way. Let us rewrite (16) in the canonical form:

(x=%0)° , 7
AL VR (17)
a’ b?
where
_ch/A - _ 1 h®
Xo =75 27 1—)\%_1—)\5’
, (18)
b2 = 1-A-h
1-\

The branches of the hyperbola described by this
equation are the integral curves of the system of equa-
tions (14). For read x, y, and z, these curves do not con-
nect points corresponding to different equilibrium posi-

tions, i.e, the point x =0, z = A/l—h2 with the point

x=0,z= —A/l—hz, in a finite domain of the plane
(X, 2). However, there does exist an instanton solution
that connects these points. To construct this solution,
we introduce a parametrization X = x, + asinh@, z =
bcosh@ and, using the first equation of system (14),
obtain the following equation for ¢:

a‘-;iT" = 0./A (X, + asinh)b.

A solution to this equation can easily be expressed in
explicit form:

Q- g lie+i
tanh2 sinhy + coshytanh[z(i + IllJ)},

1/2

& = oA"A(1-n) " (1-1y), (19)

a(1-N)"2(1-r)"
h)\l/Z

In this formula, Y is an arbitrary complex number;
this clearly indicates the possibility of both a complex
and areal shift of theargument. Explicit expressionsfor

sinhy =
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the spin componentsin an instanton are rather lengthy;
however, after trivial calculations, they can be simpli-
fied by shifting the argument by the real quantity y

introduced above. Henceforth, we use the notation E =
wT + y + i with the characteristic frequency w =

WAY2(1 —h?)Y2 = (%) K, K,(1—h?) . Thisyields
m =0 /—l_hz cosh¢

1/sinhy — sinh§’

1-h’ 1
(L-A\ _h2)1’21/sinhy— sinh&’

m, = i (20)

1

0)\1/2
B 1/sinhy — sinh&’

m = | ——
y |:(1—)\—h2)1/2

(From this point on, we omit the bar over &, thus admit-
ting arbitrary shifts of the argument, both real and com-
plex.) Then, we immediately obtain, in particular, that
asolution has the above-mentioned singularity only for
certain specific values of Y, namely, for = 0 and Tt
For all other values of ), a solution has no singularity;
more precisely, the singularity moves to the complex
plane and does not manifest itself for real values of the
imaginary timeT. It isinteresting to note that, when the
polar axisis chosen along amagnetic field (y axis), the
azimuth ¢ of magnetization, which is purely imaginary
in solutions of the form (13),

—hsinhE}

2.1/2
g (1=h") 1

(1—A —h?)Y?coshg’

m
tanp = — =
mZ

becomes real for Y = 172, when cosh(§ + iT12) —

i sinh¢ . When @ = 172, the angle ¢ ranges from zero to
Ttthrough 172 as 1 varies from oo to —o; in this case, the
angle 0, aswell asall components of the magnetization,
are complex. The structure of the solution for Y = 172
resembles that of the instanton path that was used by
Garg in [7]. For al other values of ), both 6 and ¢ are
complex; moreover, therea part of the angle  does not
reach 172

Thus, we have arrived at a very complicated struc-
ture of instanton paths, with complex values of all spin
components or angular variables 8 and ¢ for magneti-
zation. Among the solutions obtained, there are singu-
lar ones as well. However, the situation with a physi-
caly interesting quantity, the Euclidean action Ag,
turns out to be very simple and clear just asin the pre-
ceding section. Here as before, the Euclidean action can
conveniently be caculated in terms of contour inte-
grals. However, it is more convenient to use the com-
plex variable & and choose the direction of a singular
ray (the Dirac string) aong the negative direction of the
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axism,. The point isthat the case involving the integra-
tion over acomplex plane P for arhombic ferromagnet
is not so clear and simple as the purely uniaxial case

3/2

IVANOV, KULAGIN

considered above because, when A # 1, branching
points arise in the plane P. As a result, the Euclidean
action is represented as the integral

Ag = OAS

(1-h% o sinh(& +iy) 1)
(L+h)(1-A _hz)MI [sinh(Z + i) —(a/h Osinhy)][sinh(€ +iy) —ao/sinhy]’
where we have restored a complex shift along €. This ; T -
integral can be considered as an integral along acertain rlzlfnwj F(z)dz Iilfnoo_]’ F(z)dz _f F(z)dz
AB DC ABCD

contour L in the complex planez= ¢,

Ag = ﬁSIsz(z),
L

3/2

(1-h)
(1+h)(1-A—-h?)

F(z2 =0 (22)

1/2

» sinhz
[sinhz—(a/h [Binhy)][sinhz—a/sinhy]’

where the contour L represents a straight line in the
complex planethat is parallel to thereal axis (Imz= )
and passes at a distance of Y from it. Hence, it is clear
that one can easily find adifference between the Euclid-
ean actions A¢ for different values of  via a simple
integral along a closed contour (see Fig. 2).

Let usfix two values Y, and U,, ; < Y,. Consider
a contour (rectangle) ABCD, where A=-R + iy, B =
R+iy,, C=R+iy,, D=-R+iy,, and Risarea num-
ber. It is obvious that

IF(z)dzHO and IF(z)dzHO,
BC DA
asR — oo, so that

@ A<l h<h,
¥ A<1,h>h,
D A>1

D @

S K- DK =~ T — - @ KD K -@— -

° ® 2T

—e o0

Fig. 2. Complex plane z, integration contour ABCD, and the
arrangement of poles of the function F(z). Closed circles
correspond to the case of aweak field considered in this sec-
tion; other symbols correspond to other domains of the
problem parameters A and h that are considered bel ow.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 99

and this limit is determined by the integral aong a
closed contour that encloses the rectangle ABCD.
Hence, the difference

Ac(Y1) —Ac(W,) = AS f F(2)dz

ABCD

between the Euclidean actions for different ¢ is
expressed in terms of the sum of residues of the func-
tion F(2) that fall within this rectangle (the strip g, <
YJ,). Thus, the Euclidean action is independent of y in
certain intervals of Y, and the function Ag({) changes
stepwise as the contour ABCD crosses a pole as U var-
ies. Sincethe function F(2) is periodic in y with period
21, the function Ag(() isalso periodic; therefore, it suf-
ficesto consider avariation in Ac(W) in astrip of width
211 It isobviousthat this strip contains four poles of the
function F(2) and the sum of all these four residues
equals zero. Note also that the integral (22) does not
change under the substitutionsy — Y + Tand 6 —
—0, S0 that one can restrict the consideration to acertain
one sign of o, say, 0 = 1. Thisis aso valid for other
relations between the values of the parameters h and A
of the problem (see below), but the properties of theres-
idues will be different, which results in a variation in
the dependence of Az on Y.

In the case considered here, of aweak field applied

along the hard axis, h? < hf =1-A, A <1, two polesof
the function F(2), z, and z,, lie on the real axis at the
pointsz; = {; and z, = {,, where {; and {, arereal solu-
tions of the equations sinh{, = 1/sinhy and sinh{, =

V(hsinhy), while the other two poles lie at the points
Zy=—(, +imand z, = —{, + 1. The sums of residues at
the pairs of points z;, z; and z,, z, are equa to zero,
whereas the sums of residues at the pairs of pointsz;, z,
and z;, z, with different values of  are redl; for exam-

ple, RegF(z)] + RedF(z)] = 1 — h/J/1—-A. Hence,
when the parameter Y passes through the values 0, T,
21, etc., the Euclidean action Ag(y) acquires a purely

imaginary term £2riAg1 — h/.,/1—A]. For a certain
concrete value of |, one can easily calculate the quan-
tity Ag (it is convenient to take Y = 172). Then, taking
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into account the above-described properties of Az, we

arrive at the expression
A/ —h%+ A h

J— A N1

J(1=h?)(1-2) +hﬁ\}
J(1=h?)(1=N) =hJ/A

iThS siny —
Y aoalsng YA

h2<h? = 1-A\.

Thus, we have found that, for the case of a weak
field directed along the hard axis, the real part of the
Euclidean action is independent of ), and all instanton
trajectories, either regular or singular, real or complex,
make identical contributions to the tunneling exponen-
tial factor exp(—Re[Ag]/%). In this case, the imaginary
part of Az depends only on siny/|sin]. This meansthat
all trgjectories for which the parameter Y liesin differ-
ent strips of the same width 11 behave identically and
that interference occurs between instanton trajectories
for which the values of  liein these neighboring strips.

Below, we will analyze instanton solutions in two
other cases that arise when the external magnetic field
isdirected along symmetry axes. In the case of astrong
field, 1 — A < h? < 1, directed along the hard axis for
A <1, as well as when the field is directed along an
intermediate axis, i.e.,, A > 1, the integral curves of the
system of equations (14) connect points corresponding
to different but equivalent equilibrium positionsfor real
X, ¥, and z. This means that there exist nonsingular
instantons with real x, y, and zin these two cases. How-
ever, taking into account the complex nature of instan-
tons, one cannot observe any fundamental differencein
the structure of general instanton solutions.

Ac = 4

x In

(23)

Instantons in the Case of a Srong Field
Directed along the Hard Axis

Instanton solutions for a strong field h?>1—-A >0
are analyzed in virtually the same way asin the preced-
ing subsection. Just as for a weak field, the integral

F(2) =

(1 h)(1—h?)"(\ +h2—1)" coshz
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curves of the system (14) are second-order curves with
the parameters defined by formulas of type (18). When
1 -\ <h?<1, one has a hyperbola of the form (x —
Xo)?la? — Z2Ib? = 1, where the expression for x, is the
same as in the case of a weak field (see (18)) and
expressions for a2 and b? differ in sign from those given
in (18). To construct an instanton solution that connects
equilibrium points, we introduce a parametrization x =
Xo+acosh@, z=bsinh@. Then, using thefirst equation
of system (14), we obtain the following equation for @

3(3 = 0./A(X, + acosh@)b.

Its convenient to seek a solution to this equation in the
form

g = RAro(C A1) 7
(1=-h)(1-2))

tanh[%(& + im)},

where the variable & is similar to that used in the case
of aweak field (see (19)). Next, we can write explicit
expressions for the spin components in the instanton:

(h*+ A —1)"sinhz

ohAY2— (h%+ A —1)"?coshz

m, = o(1—h?"

m = io(1-h?)
© Y2 _g(h?+ A —1)"?coshz

(24)

m, = )\1’2—h0(h2+)\ 1)1’2coshz
A2 _g(h?+x—1)"coshz

where z = & + iy. The Euclidean action can easily be
represented as an integral of the same type as (21)
or (22),

A = hSJ’sz(z),

with the only difference that now the function F(2) is
defined by

1/2

(25)

1/2

[(A +h?—1)"?coshz— oA *h][(\ +h?—1)"coshz— oA™Y

Instantons for a Field Directed
along an Intermediate Axis

Now, consider the final case when the field is
directed along an intermediate axis, i.e.,, when A > 0. In
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this case, the integral curve is the ellipse (x — x,)%/a? +
Z°/b? = 1 with the same X, and with a? and b? given by
2=0\+h-1)/A-12andb?=(\ +h—1)/(A —1).
We choose a parametrization of a solution in the form
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X =Xy + acos, z= bsing, where ¢ is described by the
equation

do _

- —0 /A (X, + acos@)b.

a

Like the formulas for the spin components, the solu-
tion to this equation can easily be expressed in explicit
form. However, we will not write out these cumber-
some expressions since they can be obtained from for-
mulas (24). To this end, it suffices to note that the con-
stant A of rhombic anisotropy enters formulas (24) for
the spin components, as well as the expression for the
Euclidean action in terms of the integral (25), only as

Jh?=1+A and /A, and the combination (1 — )),
whose sign distinguishes these two cases, does not
appear under the square-root sign. In this situation, one
should expect that the corresponding formulas for the
two domains of parameter values will be equivalent.
Hence, the expressions for the spin components and for
the function F(2) in the case A > 1 coincide with (24)
and (25), respectively, provided that o isreplaced by —o
in the latter formulas. Since such a substitution is
equivalent to acomplex shift of theargument by it i.e.,
to the substitution g — » + 11, both cases can be con-
sidered using the same expression for the function F(2),
which we choose as

(1 _ h2)3/2

(L+h)(1=A—=h?)

F(z) =

1/2

» coshz
[ coshz + cosh] [ coshz + hcoshB]’

(26)

where

1/2
A

coshf} = ————.
B (h2 FA— 1)1/2

Formula (26) is valid both in the case of a strong
field directed along the hard axis and in the case of an
arbitrary magnitude of a magnetic field directed along
an intermediate axis. However, we will see that the
behavior of the Euclidean action as a function of i in
these two cases is essentially different and is also dif-
ferent from the case of aweak field directed along the
hard axis, which was considered at the beginning of this
section.

Calculation of the Euclidean Action
forh2>1-\

The inequality h? > 1 — A involves both cases dis-
cussed above: astrong field directed along the hard axis
and an arbitrary field directed along an intermediate
axis. To calculate the Euclidean action, we apply the
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same method as that used above in the case of a weak
field. For afunction of the form (26), there are no sin-
gular points on the real axisfor ¢ = 0, and the value of
the integra is redl; it can readily be calculated in an
explicit form (seeformula(27) below). Next, the values
of Ag(y) for Y # 0 are expressed in terms of the contour
integral aong the rectangle ABCD, and the difference
between the values Ac(y) and Ac(0) is determined by
the sum of residues of the polesthat fall within the cor-
responding strip.

Note that, in both cases of interest, > > 1 — A\ and
coshf3 > 1; i.e, B isreal. Therefore, two of the four
poles contained in the strip 0 < Y < 2rtlie at the points
7, ,= i1+ 3. The sum of residues at these pointsisequal
to zero, and the value of Ac()) is not changed when the
contour crosses the line z = iTt Next, for a strong field

applied along the hard axis, hf <h<1lforA<1, we

have hcosh3 > 1, and the second pair of polesalso lies
onthesamelinez ,=im* (', where ' isreal. For this
pair of poles, the sum of residuesisalso zero. Hence, in
the case of astrong field applied along the hard axis, Ag
isindependent of Y, Az(P) = Ac(0). Since A(0) isreal,
the imaginary part of the Euclidean action is equal to
zero, and there is no interference. The vanishing of
interference as the field increases is in agreement with
the experiment of [24, 25] (see aso the survey [16]) and
with the results of calculations performed with the use
of discontinuous instanton solutions or test functions
[27, 28]. Note that, in our calculations for the case of a
strong field, solutions with discontinuities for real 1
only exist for Y = 11, but these solutions are not distin-
guished among other trgjectories of the infinite one-
parameter family. Thus, in the case of astrong magnetic
field applied along the hard axis, the real part of Ac is
independent of ),

A = ﬁs{ln)\+A/l—h2 h
_ = _
A—iJ1-h* ~1-A

cinhsA+ J(l—hle—x)}
h/A=(1-h")(1-7)

0<1-A = h’<h’

(27)

and all instanton trajectories with parameter  in the
strip 0 < P < 2rtmake equal contributions to A¢.

In the case of afield directed parallel to an interme-
diate axis, the two poles of the function F(2), z, and z,,
again lie on the axis Im(z) = Tt at the points z; , = i+
. However, inthe case of A > 1, we have hcoshf3 <1,
and the two other poles move away from the line
Im(2) =TT, they are situated at the points z; = i(11—b) and
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=i(mt+ b), where b isarea solution to the equation
cosb = hcosh3 < 1. The values of the residues at these
points are purely imaginary; they have equal absolute
values but opposite signs: Res[F(z3)] =—h/ /A -1 and
Req[F(z,)] = +ih/ /A —=1. Thus, just asin the case of a
weak field, the Euclidean action Ac() depends on . It
changes stepwise when the contour ABCD passes
through a pole under the variation of . However, when
A > 1, the jump AA(Y) of the function is real and
occursat Y =mi—band Y =T+ b, i.e, a values of Y
that depend on the parameters of the problem. Thus, in
the strip 0 < Y < 11— b, the Euclidean action isindepen-

dent of Y and attainsits minimal value A™"
Almin) h{ln)\ + All—h2 4h
(min) _
A—i1-h* JA-1
J(1=h?)(1-)) }
1

hoA+/h%+ A=

(28)

X arctan

at P = 11—Db, it increases stepwise to the value
= A + 27 Sh/ /1 -

and remainsequal tothisvalueintheentirestriptt—b <
P <1+ b; at Y =1+ b, the Euclidean action returns

stepwise to the value A™" and remains equal to this

value as | increases further up to 2t i.e., in the strip
T+ B < Y < 21t In the spirit of the instanton approach,
we have to take into account only paths with the mini-
mal value of the Euclidean action. Hence, such behav-
ior of Ag(y) under the variation of a field resultsin a
continuous variation in the relative weight of instanton
pathsthat guaranteesthe minimal value of the exponen-
tial factor exp(—Re[Ag]/z) and make a contribution to
the tunneling. The relative width (rt— B)/m of thisinter-
val tendsto 1/2 ash — 0 and attainsits maximal value
of unity when h — 1. The emergence of an additional
coefficient, associated with thisfactor, in the expression
for the probability of tunneling transition is a remark-
able result of the structure of instanton paths. This

A( max) _

1301

structure, namely, the presence of one-parameter fami-
lies of instanton trajectories instead of a finite number
of instantons in the standard theory, is indicated by the
present authors for the first time. We will discuss this
guestion in greater detail in the final section of the

paper.

4. INSTANTON SOLUTIONS
UNDER AN ARBITRARY ORIENTATION
OF A FIELD IN THE BASE PLANE

In [24, 25], the tunnel splitting of levels was mea-
sured both under the variation of the magnitude of the
external magnetic field and under the rotation of the
field in the base plane of a magnet. Therefore, the anal-
ysis of the case with an arbitrary orientation of thefield
in the plane (x, y) perpendicular to the easy axis of a
magnet is important for the interpretation of experi-
mental data. However, this case has not been studied by
theoreticians. To our knowledge, [33] is the only work
in which the analysis of instantons was carried out on
the basis of an approximate reduction of the Lagrangian
to the problem on the dynamics of a particle with a cer-
tain effective mass; however, thistechnique is certainly
inapplicable to the most interesting case of A ~ 1.
Below, we will show that the method developed in this
paper allows the construction of exact instanton solu-
tions in this complicated case too.

In the case of an arbitrary orientation of afield, the
condition that energy is equal to its minima vaue
yieldstherelation A(m,—h/A)? + (m,—h,)?= 0. There-
fore, thereisalinear relation between m and m, on the
instanton solution as well; in complex terms (13), we
have

y = oxJ/A +h,—ihal/A;

however, all magnetization components are now com-
plex. But this fact does not prevent us from choosing a
parametrization in terms of ¢ of the same type as
before, writing an equation for ¢, and solving it. As a
result, we obtain rather cumbersome formulas for the
function @ = (1) in the solution and afew less cumber-
some expressions for the magnetization components,

_ (hA)(Hi+A-1)" coshz—lo(l hyHy)

0H2)\1’2+(H +1—1)"?coshz

hy(HI+ A — 1)Y

?coshz + o)\”z(l —ich Hll)\slz)

(29)

OHAY2 + (H2+ A —1)"?coshz
(Hl+)\—1) ®sinhz

m, = o(1- ch))l/2
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Here,
H, = h,—iho/A"?, H, = h,—iha/A*?,

1/2

Ho = (h) +h2/A%)™",

and z= ¢ + iy as before; the last equation allows us to
takeinto account acomplex shift of thevariable T inthe
solution.

The value H, = 1 corresponds to the main bifurca-
tion in the problem. The effects of degeneracy of the
classical ground state, tunneling, and instantons mani-
fest themselves only for Hy < 1. The symmetry of this
solution is lower than that in the case of a symmetric
orientation of a field considered above; therefore, the
expression for the Euclidean action with a standard
choice of the Dirac string n aong the hard axisturns out
to be rather cumbersome. However, choosing n to be
antiparallel to the magnetic field normalized by alocal
value of the anisotropy filed, i.e, in the form n =
(ehJ/A + gh))/H,, one can significantly simplify this
expression and represent the Euclidean action as

A = ﬁSIsz(z),
L

3/2
F(z) =

Hi(1-H))
2.1/2 (30)

Ho(1+ Hp)(A =1+ Hj)

y coshz
[coshz+ R][coshz+ HyR]’

where

o_)\1/2

Ho(A =1+ H?)

R =

1/2H2'

Asbefore, thisintegral istaken along the contour L,
i.e., dong astraight line z on the complex plane, that is
paralel to the real axis. Thisfact allows usto take into
account a complex shift along the argument & in the
instanton solution. Next, we can calculate A for a cer-
tain value of Y (itisconvenient to take Y = 0) and deter-
mine the difference between the values of A for differ-
ent Y. The function Az = Ac() is determined by the
position of the poles of the integrand (30), which are
situated at the points

z) = 2iTk+imt {, 7z = 2iTMk+imt §,

where {; and {, aretheroots of the equations cosh(; =
R and cosh{, = HgR, respectively, where k is integer.
The analysisis significantly simplified if we take into
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account the fact that, for our choice of the Dirac string,
the residues of the function F(2) at appropriate polesare
given by simple expressions. The residues at points of
the type z; do not depend on the parameters of the prob-
lem and are equal to £1, while the residues at points of

the type z, are equal to ¥H,//1— A . Here, the pairs of
poles corresponding to the signs + at {, or {, are char-
acterized by opposite signs of the residues.

To investigate the effect of the field rotation in the
plane (X, y), we represent its components as

hy, = hcosy, h, = hsiny.

For definiteness, assume that A < 1 and that the angle
X = 0 correspondsto the field orientation along the hard
axis of aparticle. Since (; , are complex, the positions
of poles could not be found analytically; the corre-
sponding numerical data are given in Fig. 3. As
expected, the poles exhibit essentially different behav-

iorinaweak (h<h,= ./1—A) and astrong (h, < h <
1) field under the rotation of the field.

We begin with the most interesting case of a weak
field (see Fig. 3a). In this case, for x = 0, the poleslie
on the lines Imz = w2 and Imz = 3102 symmetrically
with respect to the point z = itt (Note that the picture
here differs from that presented in Fig. 2 in the preced-
ing section because of the different choice of the refer-
ence point for Y.) As x increases, the poles move
toward each other, so that, as x — 172, the points of
type z; with the residues Reg[F(z)] = £1 lieonthe axis
Imz = 11, while the points of type z, with the residues
equal to +H,/h. lie on the imaginary axis Res = 0.
Expressing the positions of poles in the strip 0 <
Imz<2mas

z, = imE[A(X) +iBu(X)],

it [Ay(X) +iBy(X)],

Z;

where A, , and B, , are positive real numbers, we can
easily verify that B,(X) < By(x) for any 0 < x < 1w2.
Therefore, the function Ag(y) and a classification of
contributions of paths with different  turn out to be as
follows.

When the reference point for ) is chosen as at the
beginning of this section, the minimal value of the real

part of A, equal to A" | isattained at Y = 0, 2t This
value remains minimal for Y in the two strips 0 < ) <
T— B, and 11+ B, < ) < 21t The boundaries of these

strips are determined by the condition that the integra-
tion path passes through poles of the type z,. Since the

residue at the point z, equals +H,/(1 —A)Y?, the value of
Ag increases stepwise by 2miziSH,/(1 — A)Y? when the
integration path passes through these poles. Note that,
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in this case, the real part of Ag increases stepwise by
2m,#Sh;, and, for appreciable values of h,, the contri-
bution of this strip should be neglected. Thisvalue of A¢
is preserved in the two strips t— B, < < 11— B, and
T+ B; <y <11+ B,. When the trgjectory entersinto the
central part of the domain (0, 2m), i.e., into the strip TT—
B, <y < +By, the value of Ag again varies stepwise,
but now by a purely imaginary value of 21i4S.

Thus, the contribution of instanton paths to the tun-
neling amplitude is determined by the following princi-
ples. The pathswith the minimal value of ReAg contrib-
ute with a relative weight of 1 — B,/Tt. The remaining
paths, whose relative weight is B,/Tt< 1/2, make a con-
tribution with the exponentially small coefficient
exXp(—AAR), AA: = 2th, Si/h,, as well aswith various
phase coefficients. In the spirit of the instanton
approach, we should take into account only the paths
with the minimal value of Az, except, maybe, the case
AA/h < 1. Inour case, this inequality is satisfied only
for extremely small angles of deviation from the hard
axis, h, < h/2nS. For h = 0.5h,, thisfact correspondsto
X £ /1S which amounts to several degreesfor S= 10.
For smaler fields, the criticad value of the angle
increases. This fact corresponds to the experimentally
observed tunneling pattern in which the tunnel splitting
exhibits nonmonotonic behavior only for small ¥;
moreover, even for small but nonzero angles, the oscil-
lations are smoothed out as the field increases.

In the most interesting case of small h, < h, onecan
carry out a quite comprehensive analysis of the prob-
lem. In this case, the values of B, and B, are close
to 172,

1-A 1/2
B, = g— x—z(l_hi) ,
Ah,(1-A —h?)
o @
B, = J—h #(1_%)”2_

2 N1-A-h)

The difference B, — B, issmall, and, in thefirst approx-
imation in h,, the contribution of strips of the type i+
B, <Y <11+ B;, whose width is proportional to h,, i.e.,
containing an additional power of a small parameter,
can be neglected. Then, the tunnel splitting A of levels
versus the angle x (recall that A is proportiona to the
sum of tunneling exponential factors over all paths),

Al

0 A
zeXpD_ﬁD’
y
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Fig. 3. The dynamics of the poles of the function F(2) under
therotation of amagnetic field in the basal planefor various
values of its magnitude |h| = h. The dots indicate successive
positions of poles asthe angle x between the field direction
and the axis y increases from x = 0 to X = 172; to improve
clarity, the indicated positions of points correspond to the
values of X that differ by T/10. The arrows show the direc-
tion of motion as x increases starting from x = 0. For spe-
cific numerica calculations, the following values of the
parameters are chosen: A = 0.73, which approximately cor-
responds to Feg, (a) h/h, = 0.6, and (b) h/h, = 1.35.

is described by the approximate expression

Z e—AE/ﬁ

v

(min)
1 o 0A D
=5Pa =0

X

21h, S h
1+ ex [——X+2Tl'iS - D]
Pm o %l JI=AC

For h, = hsinx = 0, this expression gives the earlier
obtained result

(min)
h
A:expg— ';l ECOS[T[S%[—J%E}‘.
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For small but nonzero h, # 0, incomplete destructive
interference occurs when the tunnel splitting is propor-
tional to
A(mm)

£ O

—AE/h

2°

2
X%%L—exloD ZTOSITE | op 0 2

QI el T ()

X COS | TIS hﬂ DUZ.
sl

When h, # 0, this expression does not vanish for any
value of h,.

In the case of astrong field, h > h,, the arrangement
of polesisdifferent (see Fig. 3b). Whenh ||g,, i.e., X =
0, al poleslieon theline Imz = 1tin this case, they do
not contribute to the function Ac(y)) (see the previous
section). When the direction of the field deviates from
the hard axis, the poles move away from this line and
two strips with different values of Ag are formed near
the line Res = 1t Again, as Y deviates from the value
P = 0, apole of type z, is the first one traversed by |,
and the real part of the Euclidean action increases step-
wise. However, when h > h., thereisan essential differ-
ence from the case of aweak field: for small h,, when
it isexpedient to consider the contribution of pathswith
large values of ReAg, the width of an appropriate strip
is smal and proportional to h,. Accordingly, the
relative weight of atrajectory with a different value of
the phase factor, which could contribute to interference,
issmall. When h, are not small, the contribution of such
paths is suppressed by the exponentia factor
exp(—AA/AR). Therefore, when h > h,, there are no
effects of partial interference for any orientation of the
field, which agrees with the experiment of [16].

5. DISCUSSION OF THE RESULTS
AND CONCLUDING REMARKS

We have considered two problems, a general and a
specific one. Specifically, we have given afull descrip-
tion of quantum tunneling between levels correspond-
ing to the ground state of a Fe;-type high-spin molecule
(which are degenerate in the classical case) with rhom-
bic anisotropy in amagnetic field directed arbitrarily in
the plane perpendicular to the easy axis of the mole-
cule. Asfar aswe are concerned, we are thefirst to con-
struct exact instanton solutions for this model for arbi-
trary values and orientations of the magnetic field. To
our knowledge, the results obtained describe all basic
features of the experimental behavior of tunnel splitting
A of levels as afunction of the magnitude and orienta-
tion of amagnetic field. In the case of a magnetic field
paralel to the hard axis, our analysis yields either (1)
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the interference pattern, predicted by Garg [7], with a
nonmonotonic variation of the splitting A of levels and
the vanishing of A at certain values of weak field H <

H. = SJ/K,(K,—K;) /gug, or (2) the absence of inter-
ference and a monotonic increase of A(H) in the entire
domain of admissible values of the field H, < H <
KSgug. To our knowledge, the results of our calcula-
tionsmade it possible to describe, for thefirst time, par-
tial interference on the basis of exact instanton solu-
tions, i.e., to describe the nonmonotonic behavior of
A(H) without vanishing of A for asmall deviation of the
field from the hard axisby an angle of x < X.= l/iSand
amonotonic behavior of A(H) for al other orientations
of the field.

Such afull description of this specific problem has
become possible owing to analysis of the general prob-
lem concerning the structure of instanton paths in fer-
romagnets. We could reduce the problem of searching
for instanton paths for a wide class of ferromagnetic
models to an exactly integrable problem of Hamilto-
nian dynamics. We have established that, for nearly all
physically meaningful ferromagnetic models, instanton
paths form a system of continuous one-parameter fam-
ilies. Each instanton belonging to a certain family is
characterized by its own function m(t), but the value of
the Euclidean action A¢ isthe same for all instantonsin
this family. We have established that all instanton paths
are characterized by asingle real parameter | that var-
iesintheinterval 0< Y < 21, while the Euclidean action
is a periodic, with period 21, stepwise function of (.
This picture is fundamentally different from that usu-
ally described in the literature, which involves afinite
number of instanton paths.

Depending on the situation, our scheme may give
different results: those that can, in principle, be reduced
to astandard scenario where certain families of instan-
tons with the same A¢ can be represented by a single
path, and those that cannot by described by such asim-
plified scheme. Examples of such a “reducible’ prob-
lem are given by the model of a purely uniaxia ferro-
magnet, considered in Section 2, in which all instanton
paths with 0 < < 21t have the same value of Ag, or by
a more complicated model with rhombic anisotropy
and afield exactly paralel to the hard axis. In the latter
case, two families of instantons with equal real parts of
Ac but different imaginary parts of Ag correspond to two
strips with the same width Ay = 1t In this case, each
family of paths can be represented by a single equiva-
lent instanton. However, afull description of the exper-
imental results requires the use of “irreducible’ prob-
lems. A clear example of such problems is obtained
from the analysis of the effect of deviation of a mag-
netic field from the hard axis. In this case, both for H <
H, and H > H,, there exist instanton solutions with

dightly different values of ReAg, such that A —
AY = AA; < AY? | and significantly different imagi-
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nary parts of Ag. If the problem consisted only in the
existence of two different instantons, it would be diffi-
cult to account for the different behavior of the system
in these two cases. The result, namely, the fact that the
splitting of levels is significantly different for H < H,
and H > H,, is associated precisely with the concept of
continuous families of instantons that exist in the inter-
vals Ay. In the specific case H < H,, the characteristic

intervals Ay, , for instantonswith AL and AY areon

the same order of magnitude, which results in partial
interference of type (32), whereas, for H > H_, the
width of one of the intervalsis small, and no interfer-
ence OCCuUrs.

Here, it isrelevant to note that the picture of instan-
ton families that depend on a continuous parameter
admits a realization of more general tunneling scenar-

ios that do not occur in the simple model (1) with K =
0 considered here, i.e., in amodel in which the anisot-
ropy energy is quadratic in the spin components. Sup-
posethat, in acertain model of aferromagnet, there are
two instanton families that have different imaginary
parts but the same real parts of Az and are realized in
different intervals Ay. Then, one can obtain a different
form of partial interference, without exponentia sup-
pression. Another interesting scenario could occur if,
for acertain value of the external parameter, theinterval
width for instantons with the minimal value of Ag
would tend to zero. Then, in the neighborhood of this
value of the parameter, the tunneling would be deter-
mined by paths with nonminimal Ac. This, as well as
many other possibilities, cannot be excluded a priori.
However, the analysis of more complicated ferromag-

netic models, including model (1) with K #0, fallsout-
side the scope of this paper. There are no fundamental
difficulties here: the function W(cos6, ¢) in model (1)

with K # 0 is analytic; however, the analysis of this
model requires the solution of complicated algebraic
equations, which can only be done numerically.

Aswas pointed out above, the presence of instanton
familiesis associated with the admissibility of complex
values for magnetization m (or for angular variables 6
and ¢) in an instanton and can be described by a com-
plex shift of the reference point of imaginary timeinthe
instanton solution, m(t) — m(t + iy). These proper-
tiesare closely related to the analyticity of the classical
energy of a ferromagnet with respect to the variables
cosB and ¢. Many authors pointed out that it is neces-
sary to take into account complex values of magnetiza-
tion. In the clearest form, this property of instantons
was formulated in the works[34], which are devoted to
the analysis of the mathematical nature of integrals
along instanton paths in ferromagnets. However, the
authors of these works used a parametrization of mag-
netization in terms of a complex stereographic projec-
tion, w = (m, + im)/(1 + m,). Under such a parametri-
zation, the energy of a ferromagnet contains nonana-
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lytic multipliers of the type |wJ? for which the Cauchy—
Riemann conditions are violated on the entire complex
plane w rather than at certain specific singular points.
Therefore, theintegrability of the problem in these vari-
ables, aswell asthe possibility of using acomplex shift
of the argument for obtaining solutions with the same
value of Ag, is not obvious apriori.
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