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Abstract—The possible cosmological variation of the proton-to-electron mass ratio µ = mp/me was
estimated by measuring the H2 wavelengths in the spectra of distant quasars. We analyze high-resolution
(FWHM ≈ 7 km s−1) spectra of the two damped Lyman-α systems at redshifts zabs = 2.3377 and 3.0249
observed in the spectra of the quasars Q 1232+082 and Q 0347−382, respectively. Our analysis yielded the
most conservative estimate for the possible variation of µ in the past ∼10 Gyr, ∆µ/µ = (5.7± 3.8)× 10−5.
Since the significance of this result does not exceed 1.5σ, further observations are needed to increase the
statistical significance. This is the most stringent limit on the possible cosmological variation of µ to date.
c© 2002 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Current theories of fundamental interactions
(SUSY GUT, Superstrings/M-theory, and others)
predict variations of the fundamental physical con-
stants as the Universe evolves. First, the theories
predict variations of the coupling constants with
increasing particle interaction energy (the so-called
running constants). This effect has been reliably con-
firmed in high-energy accelerator experiments. Thus,
for example, the fine-structure constant α = e2/�c is
1/137.036 at low energies and 1/128.896 at energy
∼90 GeV (Vysotsky et al. 1996). This effect must be
taken into account when considering the very early
Universe.

Another prediction of the current theories is that
the low-energy limits of the physical constants can
vary in the course of cosmological evolution and take
on different values at different points in space–time.
There are several reasons for such variations. Thus,
in multidimensional theories (Kaluza–Klein models,
p-brane models, and others), the variations in fun-
damental physical constants are a direct result of
the cosmological evolution of extra-dimensional sub-
space. In several theories (e.g., Superstring), the vari-
ations in constants result from the evolution of the
vacuum state (a vacuum condensate of some scalar
field or quintessence).

*E-mail: iav@astro.ioffe.rssi.ru
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Experimental detection of such variations in con-
stants would be a great step forward in understand-
ing and faithfully describing Nature. The publication
by Webb et al. (2001) on the detection of a possi-
ble variation in the fine-structure constant, ∆α/α =
(−0.72 ± 0.18) × 10−5, at an epoch corresponding
to redshifts 0.5 < z < 3.5 caused quite a stir. The
method used by these authors is based on a simul-
taneous measurement of the variations in the wave-
lengths of a large number of transitions for various
species, which significantly reduced statistical errors.
However, it was more difficult to estimate the sys-
tematic errors than in the previously used method
where the fine structure of lines of each species was
measured separately (see, e.g., Ivanchik et al. 1999).
In any case, this intriguing result must be checked
independently by using a different method.

THE PROTON-TO-ELECTRON MASS RATIO

Here, we check a possible cosmological variation
∆µ/µ, where µ is the proton-to-electron mass ra-
tio at the epoch z = 2.3–3.0. Note that a variation
in α basically suggests a variation in µ, because
any kind of interaction inherent in a given particle
contributes to its observed mass. This implies that
any variations in interaction parameters must cause
a variation in the particle mass and, consequently, in
µ. Unfortunately, the physical mechanism responsible
for the generation of the proton and electron masses
002 MAIK “Nauka/Interperiodica”



424 IVANCHIK et al.

 

2.33770

2.33772

2.33774

 

z

 

 = 2.337712(4)

(a)

 
z

 
i

 

[A]

 

K

 

i

 

–0.015 0 0.015

 

z

 

 = 2.337710(3)

(b)[M]

2.337690

2.337705

2.337720

Fig. 1.The results of zi–Ki regression analysis for the H2

system at zabs = 2.3377 in the Q 1232+082 spectrum.
The laboratory wavelengths were taken from (a) Abgrall
et al. (1993) and (b) Morton and Dinerstein (1976).

is still unclear. Therefore, the exact functional de-
pendence µ(α) is unknown. Nevertheless, there are
several models that allow the electromagnetic con-
tribution to the proton and electron masses to be
estimated (see, e.g., Gasser and Leutwyler (1982) or
Damour and Polyakov (1994), in whichmp,me, andα
depend on the amplitude of a scalar field varying in the
course of cosmological evolution). Model relations
between cosmological variations of α and mp were
also derived (Calmet and Fritzsch 2001). Note that
the numerical value of µ = mp/me is approximately
equal to the ratio of the strong interaction constant
g2/(�c) ≈ 14 to the electromagnetic interaction con-
stant α = e2/�c ≈ 1/137, where g is the effective
coupling constant calculated from the pion–nucleon
scattering amplitude at low energies.

The current proton-to-electron mass ratio has
been measured with a relative accuracy of 2 × 10−9;
µ = 1836.1526670(39) (Mohr and Tailor 2000). Lab-
oratory metrological measurements rule out any sig-
nificant variations in constants on a short time scale
but do not rule out their variations on a cosmological
time scale (∼1010 yrs). Moreover, one cannot exclude
the possibility of a difference between constants in
spatially separated regions of the Universe. This can
be verified only through astrophysical observations of
extragalactic objects. By measuring the wavelengths
of absorption lines in the spectra of high-redshift
quasars, we can directly estimate the possible devia-
tion of fundamental physical constants (in particular,
of µ and α) at the epoch when the absorption spectra
were formed, i.e., ∼10–13 Gyr ago.

The most stringent estimate of the possible cos-
mological variation in µ to date was obtained by
Potekhin et al. (1998), ∆µ/µ = (−10 ± 8) × 10−5.

SENSITIVITY COEFFICIENTS

The method used here to determine the possible
cosmological variation of µ was proposed by Var-
shalovich and Levshakov (1993). It is based on the
fact that the wavelengths of electron-vibro-rotational
lines depend on the reduced mass of the molecule,
with this dependence being different for different tran-
sitions. This makes it possible to distinguish the cos-
mological redshift of a line from the shift caused by a
possible variation in µ. The variation in wavelength
λi with µ can be described (for ∆µ/µ� 1) by the
sensitivity coefficient Ki defined as

Ki =
µ

λi

dλi

dµ
. (1)

The sensitivity coefficients were calculated for the
Lyman and Werner bands of molecular hydrogen by
Varshalovich and Levshakov (1993) and Varshalovich
and Potekhin (1995).

Thus, the measured wavelength λi of a line formed
in an absorption system at redshift zabs is given by

λi = λ0
i (1 + zabs)(1 +Ki∆µ/µ), (2)

where λ0
i is the laboratory (vacuum) transition wave-

length. This expression can be represented in terms of
the redshift zi = λi/λ

0
i − 1 as

zi = zabs + bKi, (3)

where b = (1 + zabs)∆µ/µ.

In reality, zi is measured with an error determined
by the statistical errors of astronomical measure-
ments of λi and by the errors of laboratory mea-
surements of λ0

i . Therefore, relation (3) is only ap-
proximate. Nevertheless, if ∆µ/µ is nonzero, there
must be a correlation between zi and Ki. Thus, a
linear regression analysis of these quantities yields
zabs and b and, consequently, ∆µ/µ and its statistical
significance.
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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Table 1. Parameters of H2 lines (zabs = 2.3377) in the Q 1232+082 spectrum

Transition λ0
i [M], Å λ0

i [A], Å λi, Å σ(λi), Å Ki

L 0–0 P(3) 1115.896 1115.895 3724.543 0.005 −0.01479
L 0–0 R(3) 1112.584 1112.583 3713.480 0.005 −0.01178

L 0–0 P(2) 1112.495 1112.459 3713.179 0.005 −0.01170
L 1–0 P(4) 1104.084 1104.084 3685.093 0.009 −0.01154

L 2–0 P(3) 1084.559 1084.562 3619.947 0.005 −0.00098

L 3–0 P(4) 1074.313 1074.314 3585.740 0.007 0.00122
L 3–0 R(4) 1070.898 1070.899 3574.344 0.006 0.00439

L 3–0 P(3) 1070.142 1070.138 3571.834 0.005 0.00511
L 3–0 R(3) 1067.478 1067.474 3562.948 0.005 0.00758

L 3–0 P(2) 1066.901 1066.899 3561.002 0.005 0.00812

L 4–0 P(4) 1060.580 1060.580 3539.908 0.005 0.00685
L 4–0 P(2) 1053.281 1053.283 3515.556 0.005 0.01369

Table 2. Parameters of H2 lines (zabs = 3.0249) in the Q 0347–382 spectrum

Transition λ0
i [M], Å λ0

i [A], Å λi, Å σ(λi), Å Ki

L 2–0 R(1) 1077.698 1077.697 4337.614 0.010 0.00535

L 3–0 R(2) 1064.995 1064.993 4286.483 0.015 0.00989
L 3–0 P(1) 1064.606 1064.606 4284.924 0.006 0.01026

L 3–0 R(1) 1063.460 1063.460 4280.313 0.010 0.01132

L 4–0 R(3) 1053.976 1053.977 4242.144 0.010 0.01304
L 4–0 R(2) 1051.497 1051.498 4232.175 0.020 0.01536

L 6–0 R(3) 1028.986 1028.983 4141.571 0.015 0.02262
L 7–0 R(1) 1013.434 1013.436 4078.977 0.007 0.03062

W 0–0 Q(2) 1010.941 1010.938 4068.911 0.010 −0.00686

W 0–0 R(2) 1009.030 1009.023 4061.215 0.015 −0.00503
L 9–0 R(1) 992.022 992.013 3992.754 0.010 0.03796

W 1–0 Q(2) 987.978 987.974 3976.492 0.010 0.00394

W 1–0 R(1) 985.651 985.636 3967.087 0.007 0.00626
L 10–0 P(1) 982.834 982.834 3955.814 0.010 0.04053

L 12–0 R(3) 967.674 967.675 3894.798 0.008 0.04386
W 2–0 Q(2) 967.278 967.279 3893.194 0.010 0.01301

W 2–0 Q(1) 966.097 966.094 3888.423 0.007 0.01423

W 3–0 Q(1) 947.425 947.422 3813.255 0.008 0.02176
OBSERVATIONS AND RESULTS

High-resolution (FWHM ≈ 7 km s−1) quasar
spectra obtained with the 8.2-m VLT/UVES
KUEYEN telescope (ESO) were used to check
the possible variation in µ. We analyzed two H2

absorption systems at zabs = 2.3377 in the spectrum
of Q 1232+082 (Petitjean et al. 2000) and at zabs =
ASTRONOMY LETTERS Vol. 28 No. 7 2002
3.0249 in the spectrum of Q 0347−382 (UVES
commissioning data; see D’Odorico et al. 2001).

The H2 Absorption System at z = 2.3377
in the Spectrum of Q 1232+082

More than 50 lines of molecular hydrogen (with
a signal-to-noise ratio from 10 to 14) can be iden-
tified in the wavelength range 3400–3800 Å. For
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Fig. 2.Same as Fig. 1 for the H2 system at zabs = 3.0249
in the Q 0347−382 spectrum.

our analysis, we carefully selected lines that satisfied
the following conditions: (i) isolated, (ii) unsaturated,
and (iii) unblended. In this system, only 12 lines
satisfy these conditions; their parameters are given
in Table 1. The observed wavelengths λi were mea-
sured with an average accuracy of ∼5 mÅby taking
into account the number of points in the line profile,
the spectral resolution, and the signal-to-noise ratio
(Eq. (A14) from Bohlin et al. (1983)). For the lab-
oratory wavelengths, we used two independent data
sets: λ0

i [M] (Morton and Dinerstein 1976) and λ0
i [A]

(Abgrall et al. 1993; see also Roncin and Launay
1994). Figure 1 shows the results of our linear re-
gression analysis of zi as a function of Ki for these
two sets of laboratory wavelengths. They correspond
to ∆µ/µ = (14.4 ± 11.4) × 10−5 [A], and ∆µ/µ =
(13.2 ± 7.4) × 10−5 [M].

The H2 Absorption System at z = 3.0249 in the
Spectrum of Q 0347−382

This H2 system was first detected and investi-
gated by Levshakov et al. (2002). More than 80 lines
of molecular hydrogen (with a signal-to-noise ratio
from 10 to 40) can be identified in the wavelength
range 3600–4600 Å. We independently reanalyzed
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Fig. 3. The results of simultaneous ζi–Ki regression
analysis for the systems at zabs = 2.3377 (1) and 3.0249
(2). The laboratory wavelengths were taken from (a) Ab-
grall et al. (1993) and (b) Morton and Dinerstein (1976).

this spectrum. For our analysis, we selected 18 H2

lines that satisfied the above conditions. The observed
wavelengths λi were measured with an average ac-
curacy of ∼10 mÅ. Parameters of these lines are
given in Table 2. Figure 2 shows the results of our
linear regression analysis of zi as a function of Ki

for these lines. They correspond to ∆µ/µ = (5.8 ±
3.4)× 10−5 [A] and ∆µ/µ = (12.2± 7.3)× 10−5 [M].
It should be noted that three points in Fig. 2b deviate
from the regression line by more than 3σ. Two of
them corresponding to the L 9–0 R(1) and W 1–
0 R(1) transitions were marked by Morton and Din-
erstein (1976) as a blended line and as a line with
a weak continuum. The third point corresponding to
the W 3–0 Q(1) transition deviates in Figs. 2a and
2b, which may be a result of an undetectable blend in
the quasar spectrum. We do not reject these points,
because all of them satisfy the above conditions for
line selection from quasar spectra.

Simultaneous Analysis

A simultaneous analysis of the H2 lines from the
two systems allows us to increase the statistical sig-
nificance both through an increase in the total num-
ber of lines involved in our statistical analysis and
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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through a broadening of the range of sensitivity co-
efficients. Figure 3 shows the results of our linear
regression analysis of ζi as a function of Ki for all 30
lines from the two systems. Here, ζi is the reduced line
redshift:

ζi =
zi − z

1 + z
, (4)

where z is zabs of the absorption system under con-
sideration that corresponds to the set of laboratory
wavelengths used.

Our simultaneous analysis yielded the following
estimates (for the two sets of laboratory wave-
lengths):

∆µ/µ = (5.7 ± 3.8) × 10−5 [A],

∆µ/µ = (12.5 ± 4.5) × 10−5 [M].

The measurement errors of the laboratory wave-
lengths are ∼1.5 mÅ. Therefore, the systematic
error due to uncertainties in laboratory wavelength
measurements is of the order of 2 × 10−5, in agree-
ment with the error in ∆µ/µ obtained from the two
independent sets of laboratory wavelengths.

CONCLUSIONS

Our results may be considered as a hint of a pos-
sible cosmological variation in µ. Further measure-
ments are needed to reach a more definitive conclu-
sion. Nevertheless, we obtained the most stringent
estimate to date of a possible cosmological variation
in µ between zero redshift and z = 2–3.

Measurements of more H2 absorption systems at
high redshifts are required to improve the result. The
spectra of the quasars PKS 0528−250, Q 0347−382,
and Q 1232+082 are most suitable for this purpose.
Observations of these quasars with a high resolution
(FWHM ∼ 7 km s−1) and a high signal-to-noise ra-
tio (>30) would make the conclusion more definitive.

In addition, it is desirable to increase the accuracy
of the H2 laboratory wavelengths, because the contri-
bution of their statistical errors is comparable to the
statistical errors of astronomical observations.
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A Simple Model for the Evaporation of Black Holes at Final Stages
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Abstract—We present a simple model for the evaporation of primordial black holes at final stages with the
formation of a relic remnant with a mass of 1–103 mPl. The model takes into account the conservation
of energy and the impossibility of passing through the state with the minimum possible mass. These relic
remnants may account for a substantial fraction of dark matter in the Universe. c© 2002 MAIK “Nau-
ka/Interperiodica”.
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INTRODUCTION

Presently, one of the most interesting and puzzling
questions in modern theoretical physics concerns the
final stage of Hawking evaporation of primordial black
holes (PBHs). According to the standard scenario
and the Hawking formula (Novikov and Frolov 1986),
they must be evaporated completely. At the same
time, several models (Polnarev and Khlopov 1981;
Khlopov et al. 1985; MacGibbon 1987; MacGibbon
and Carr 1991; Manko and Markov 1993; Alexeyev
and Pomazanov 1997; Alexeyev and Sazhin 1998;
Alexeyev et al. 2001) predict a lower limit on the
possible black-hole mass. Here, we deal with sim-
ple modifications of the black-hole evaporation law
when the minimum possible black-hole mass is con-
strained. This fact may play a major role in cosmol-
ogy, solving the problem of dark-matter candidates.
It should be noted that various ways of stopping
the evaporation in Lovelock gravity were examined
by Myers and Simon (1988) and, using string-like
series in curvature and possible cosmological impli-
cations of this fact, by Barrow et al. (1992). The rela-
tionship of the PBH spectrum to parameters of the
early Universe was considered previously (Alexeyev
et al. 2002). Our subsequent papers are devoted to
more realistic models of PBH evaporation.

THE GROUND STATE
OF A QUASI-CLASSICAL MODEL

Since the general theory of relativity is not renor-
malizable, it cannot be directly quantized. Additional
approaches must be used to obtain quantum gravity.

*E-mail: khovansk@xray.sai.msu.ru
1063-7737/02/2807-0428$22.00 c©
One of these approaches involves using M theory,
which gives 11-dimensional supergravity in the low-
energy limit and the five known string theories in
10-dimensional space, as the basic model and the
subsequent compactification into our 4-dimensional
space–time. In the perturbative approach, the in-
ferred effective gravity (which gives general relativity
in a zero approximation) is a series in curvature with
an additional scalar field (dilaton) of the form

S =
1

16π

∫
d4x

√
−g (1)

×
[
m2

Pl

(
−R + 2∂µφ∂

µφ

)
+ λe−2φSGB + . . .

]
,

where R is the scalar curvature, φ = φ(r) is the dila-
ton,mPl is the Planck mass, and λ is the string cou-
pling constant. In addition to the Einstein term, the
action includes the dilatonic field and high-order cur-
vature corrections. The two-loop correction given by

SGB = RijklR
ijkl − 4RijR

ij + R2

is called the Gauss–Bonnet term.
Such actions may be considered as an interme-

diate step between general relativity and quantum
gravity, which currently does not exist in finished
form. However, a number of interesting results can
be obtained even in terms of this model. One of
them is a Gauss–Bonnet black hole1 (Mignemi and
Stewart 1993; Kanti et al. 1996; Torii et al. 1997).
The stability of such objects at all singular points
against small temporal perturbations was shown by

1It should be noted that, since all the results being discussed
have been obtained recently, as yet there is no standard
terminology.
2002 MAIK “Nauka/Interperiodica”
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Khovanskaya (2002). In addition, according to the
theory of catastrophes, the Gauss–Bonnet dilatonic
black holes are stable against strong perturbations
(Torii and Maeda 1998). Therefore, the solution found
may be assumed to be stable everywhere. An im-
portant characteristic of a Gauss–Bonnet black hole
is the existence of a minimum possible black-hole
size (or mass). There is no static, asymptotically flat,
spherically symmetric black hole with a mass smaller
than the minimum mass Mmin that corresponds to
the horizon radius

rh =
√
λ

√
4
√

6φh(φ∞),

where φh(φ∞) is the dilaton value on the horizon,
which depends on the dilaton value at infinity (an
additional external model parameter). This state is
called the ground state for a quasi-classical model.
We consider a quasi-classical state that becomes the
ground state when the model is quantized.
The question of whether the transition from the

next to last (first excited) state to the ground state is
possible in principle must be clarified.
We consider a diagonal quasi-Schwarzschild

metric of the form2

ds2 = ∆(r)dt2 − σ2(r)
∆(r)

dr2 (2)

− r2(d θ2 + sin2 θdψ2).

At position rhmin (see Fig. 1), the asymptotic form
of metric (2) is

∆ = const1 ×
√
r − rhmin,

σ = const2 ×
√
r − rhmin.

Consequently,RijklR
ijkl ≈ const3×(r−rhmin)−6;

i.e., the curvature invariant diverges, and this is
a nonintegrable singularity. At the same time, the
asymptotics on the horizon is regular in all the
remaining states and shows a quasi-Schwarzschild
behavior:

∆ = d1(r − rh) + d2(r − rh)2 + . . . , (3)

σ = s0 + s1(r − rh) + . . . ,

where (r − rh) � 1, s0 and rh are free parameters.
The probability of the transition from the first ex-

cited state to the ground state with a minimum mass
is (Branoff and Brill 1999)

P = const × eSrh
−Srhmin = const × e−Srhmin

∝ const × e
− 1

(r−rhmin)5 = const × e−∞ = 0.

Thus, this transition is forbidden and the black hole
will never reach the ground state in the course of its
evaporation.

2In the metric and in our subsequent calculations, we use a
system of units with � = c = G = 1.
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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Fig. 1. An illustration of the last transition: the next to
last state is characterized by the existence of a regular
horizon with a finite quasi-Schwarzschild asymptotics;
since the last state (a minimum black hole) is a singu-
larity, the transition to this state is forbidden by quantum
mechanics.

THE DECELERATION OF EVAPORATION

To stop the evaporation before reaching the ground
stateMmin requires including the condition for stop-
ping the evaporation in the classical emission model.3

Since the mass of the relic remnant of a black hole
becomes comparable to the mass of its emitted par-
ticles, the condition for stopping the evaporation can
be obtained from the fact that the black hole cannot
emit more matter than it contains.

In the standard approach, the mass of the emitted
particles is much smaller than M of the emitting
object itself. The smaller is the black-hole mass, the
more intense is the emission. The evaporation rate is

3The classical emission model assumes the mass of the emit-
ted particles to bemuch smaller than themass of the emitting
object itself.
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Fig. 2. A simple model for the deceleration and stop-
ping of black-hole evaporation at final stages involves
introducing a cutoff of the Planck spectrum by the law
of energy conservation. A particle of the corresponding
energy can be emitted if the particle energy lies to the left
of the cutoff line E = M − Mmin (hatched region) and
cannot be emitted if it lies to the right, because its energy
exceeds the total energy of the system. In this case, the
black hole can pass into the forbidden region. Thus, al-
though the black hole temperature increases, the energy
of the emitted particles decreases until the evaporation is
completely stopped.

inversely proportional toM2:

−dM

dt
≈ 4 × 10−5

(mPl

M

)2 mPl

tPl
f, (4)

where f = 1.023h(1/2) + 0.420h(1) + 0.048h(2) is a
function of the number of degrees of freedom for par-
ticles with spins 1/2, 1, and 2, respectively (Novikov
and Frolov 1986).
Let us consider the emission process (4) by taking

into account the fact that the mass of the emitted
particle for a black hole with a mass of the order of
the minimum mass becomes comparable to that of
the emitting object itself. In this case, it would be
natural to impose the condition that during its evap-
oration, the black hole cannot emit more matter than
it contains. This condition follows from the existence
of a forbidden transition between the ground state of
the black hole and its excited states. In the standard
model of Hawking emission, the mass-loss rate of
the black hole increases to infinity as its mass tends
to zero (4).4 If conservation of energy is taken into
account, the mass of the black hole decreases as it
evaporates (in the simplest way) and its temperature
increases, but the mean energy of the emitted par-
ticle and its frequency decrease. Thus, the classical
Planck spectrum is cut off by the condition that the
energy E of the emitted particle should not exceed
M −Mmin. When emitting particles, the system suc-
cessively passes to new states without reaching the
forbidden ground state E = M −Mmin = 0 (Fig. 2).
This condition can be taken into account by inserting
the Heaviside function (H) in the formula for emis-
sion. Thus, we obtain

d2N

dEdt
=

Γs(M × E)
2π

H(M −Mmin − E)
e8πME − (−1)2s

, (5)

where Γs(M × E) is the Starobinsky–Page function
(Starobinsky 1973; Starobinsky and Churilov 1973;
Page 1976a, 1976b). This function depends on the
mass, energy, and spin of the corresponding particle
emitted by the black hole as follows:

Γsboson =

[
(l − s)!(l + s)!
(2l)!(2l + 1)!!

]2

×
l∏

n=1

[
1 +

16
n2

(ME)2
]
8(ME)

[
2ME

]2l+1

,

Γsfermion =

[
(l − s)!(l + s)!
(2l)!(2l + 1)!!

]2

×
l+1/2∏
n=1

[
1 +

64
(2n − 1)2

(ME)2
][

2ME

]2l+1

,

where l and s are the quantum numbers and (M ×
E) � 1. Below, we take into account the contribution
of the l = smode alone, which is dominant.
Given expression (5), the emission law (4) is mod-

ified as follows:

−dM

dt
=

1
2π

∫ M−Mmin

0
dE

Γs(M × E)E
e8πME − (−1)2s

, (6)

where the integration is no longer over all particle
energies but only up to a finite limit.
Let us consider the emission law separately for

particles of different spins atM −Mmin � 1. At final

4This is the reason why the evaporation is important precisely
for low-mass black holes.
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evaporation stages, the corresponding rates of de-
crease in the black-hole mass can be represented as
the joining of analytic asymptotics and series with the
corresponding domains of convergence (Fig. 3).
For particles of zero spin,

−dM

dt
=

1
512π5

1
M2

(7)

×
∫ 8πM(M−Mmin)

0
dx

x3

ex − 1

=
1
π2

M(M −Mmin)3
(

1
3
− πM(M −Mmin)

+
∞∑

k=1

B2k(8πM(M −Mmin))2k

(2k + 3)(2k)!

)
.

For particles of spin 1/2,

−dM

dt
=

1
8192π5

1
M2

(8)

×
∫ 8πM(M−Mmin)

0
dx

x3

ex + 1

=
1

1024π5

1
M2

e−(4πM(M−Mmin)

×
( ∞∑

k=0

E2k(4πM(M −Mmin))2k+4

(2k + 4)(2k)!

+
∞∑

k=0

E2kγ(2k + 4, 4πM(M −Mmin))
(2k + 4)(2k)!

)
.

For particles of spin 1,

−dM

dt
=

1
73728π7

1
M2

(9)

×
∫ 8πM(M−Mmin)

0
dx

x5

ex − 1
=

4
9π2

×M3(M −Mmin)5
(

1
5
− 2

3
πM(M −Mmin)

+
∞∑

k=1

B2k(8πM(M −Mmin))2k

(2k + 5)(2k)!

)
.

For particles of spin 2,

−dM

dt
=

1
29491200π9

1
M2

(10)

×
∫ 8πM(M−Mmin)

0
dx

x9

ex − 1
=

16
225π2

×M5(M −Mmin)7
(

1
7
− 1

2
πM(M −Mmin)

+
∞∑

k=1

B2k(8πM(M −Mmin))2k

(2k + 7)(2k)!

)
.
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servation: the standard Hawking part where −dM/dt ∼
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reaching the state with a minimummass.

The domain of convergence for the series in Eq. (8)
is |8πM(M −Mmin)| < π; E2k are such Euler num-
bers that 1/cosh(t) is a generating function for them:

1
cosh(t)

=
∞∑

n=0

En
tn

n!
,

γ(n, α) is an incomplete gamma function.
In Eqs. (7), (9), and (10), the domain of conver-

gence is |8πM(M −Mmin)| < 2π and B2k are such
Bernoulli numbers that 1/(et − 1) is a generating
function for them:

1
et − 1

=
∞∑

n=0

Bn
tn

n!
.

In the high-mass limit (M(M −Mmin) 	 1), the
evaporation rates of particles with different spins are
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Fig. 4. The black hole evaporation law with energy con-
servation at final stages when the difference in the emis-
sion probabilities of particles with different spins shows
up most clearly: the emission rates of bosons (I) and
fermions (II).

virtually indistinguishable. Indeed, using an asymp-
totic representation of the integrals,∫ 8πM(M−Mmin)

0
dx

x3

ex ± 1

≈
∫ ∞

0
dx

x3

ex ± 1
−
∫ ∞

8πM(M−Mmin)
dxx3e−x,

and taking into account the fact that the Page func-
tion in Eq. (5) is simply Γs(M × E) = M2E2 in the
high-mass limit, irrespective of the spin of the emitted
particles, we obtain for bosons (s = 0, 1, 2)

−dM

dt
=

1
128π3

1
M2

×
∫ 8πM(M−Mmin)

0
dx

M2x3

ex − 1
≈ 1

128π3

×
(
π4

15
− e−A(A3 + 3A2 + 6A + 6)

)

and for fermions

−dM

dt
=

1
128π3

1
M2
×
∫ 8πM(M−Mmin)

0
dx

M2x3

ex + 1
≈ 1

128π3

×
(

7π4

120
− e−A(A3 + 3A2 + 6A + 6)

)
,

where A = 8πM(M −Mmin).

Thus, at infinity, i.e., in the classical high-mass
approximation, the ratio of the boson and fermion
emission rates is 8/7.

ForM(M −Mmin) � 1, it would be natural to use
a different approximation:

−dM

dt

∣∣∣∣
s=0

≈ 1
3π2

M(M −Mmin)3, (11)

−dM

dt

∣∣∣∣
s=1/2

≈ 1
16π

M2(M −Mmin)4, (12)

−dM

dt

∣∣∣∣
s=1

≈ 4
45π2

M3(M −Mmin)5, (13)

−dM

dt

∣∣∣∣
s=2

≈ 16
1575π2

M5(M −Mmin)7. (14)

The evaporation behavior at final stages for bosons
and fermions is shown in Fig. 4.

Relations (11)–(14) lead us to conclude that parti-
cles with an integer spin will be emitted at final stages
of black hole evaporation with a high probability.

CONCLUSIONS

We have presented a simple model to describe the
evaporation of primordial black holes at final stages
with the formation of a relic remnant with a mass of
1–103 mPl. These relic remnants may account for a
substantial fraction of dark matter in the Universe. In
subsequent papers, we plan to investigate the prob-
ability of experimentally detecting these PBHs in a
more realistic model.
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On the Equation of State for the Λ field
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Abstract—The recently detected accelerated expansion of the Universe is related to the existence of a new
type of matter called the Λ field or quintessence. Constraints were obtained on its equation of state from the
absence of clustering of this matter on scales much smaller than the cosmological horizon. The question of
how these constraints affect the possibility of fitting the accelerated expansion by such cosmologicalmodels
as the Chaplygin gas model is discussed. c© 2002 MAIK “Nauka/Interperiodica”.

Key words: Expansion of Universe, Λ field, equation of state
Presently, the interpretation of the measured
redshift dependence of the photometric distance for
type Ia supernovae as evidence for the existence of
a new type of matter in the Universe appears to have
been universally accepted. From a cosmological point
of view, this matter acts as the Λ term in the Ein-
stein equations (Garnavich et al. 1998; Perlmutter
et al. 1998; Riess et al. 1998; Schmidt et al. 1998). A
natural question is how to reconstruct the Lagrangian
of this matter from observational data.

To date, little information is available on this type
of matter: (1) the cosmological effect related to the
Λ term (below referred to as the Λ field1) is known
to be isotropic; and (2) the Λ field is not clustered
appreciably; i.e., it is spatially homogeneous on all
scales where the distribution of nonrelativistic matter
(baryons and cold dark matter) is nonuniform: R �
30h−1 Mpc, where h is the Hubble constant in units
of 100 km s−1 Mpc−1. The first statement leads us
to believe that we are dealing with the scalar mode
of some quantum field theory and suggests that its
effective Lagrangian is (Boisseau et al. 2000):

L =
1
2
gµν∂µφ∂νφ− F (φ)R − V (φ). (1)

It turns out (Starobinsky 1998) that if we have
the redshift dependence of the photometric distance
DL(z) for some class of objects, e.g., type Ia super-
novae and/or the correlation functions 〈δ(0)δ(z)〉 of
the density nonrelativistic matter component at hand,
we can reconstruct the functions F (φ) and V (φ).

Recall briefly what the basic idea is by assuming
that F (φ) = 0 and by following Starobinsky (1998).

*E-mail: podolsky@itp.ac.ru
1For the variableΛ term, Huey et al. (1999) also proposed the
name “quintessence.”
1063-7737/02/2807-0434$22.00 c©
In a system with a scalar field and a nonrelativis-
tic matter component, the cosmology-defining equa-
tions are

8πGV (φ) = aH
dH

da
+ 3H2 (2)

− 3
2
Ωm,0H

2
0

(a0

a

)3
,

4πGa2H2

(
dφ

da

)2

(3)

= −aH dH
da

− 3
2
Ωm,0H

2
0

(a0

a

)3
,

where H0 is the Hubble parameter at z = 0; i.e.,

presently, Ωm,0 =
8πGεm
3H2

0

is the density of the dust-

like matter component in dimensionless units at z =

0,
d

dt
= aH

d

da
. If the expression for H(z) is known,

then the dependence a(φ) must be derived from
Eq. (3) and substituted in Eq. (2) to obtain the poten-
tial V (φ). In turn, H(z) can be derived from DL(z)
or δ(z) by using expressions from Starobinsky (1998)
(see also Huterer and Turner 1999; Nakamura and
Chiba 1999):

H(z) =
(
d

dz

(
DL(z)
1 + z

))−1

, (4)

H2(z)
H2(0)

=
(1 + z)2δ

′2(0)
δ′2(z)

(5)

− 3Ωm,0
(1 + z)2

δ2(z)

∫ z

0

δ|δ′|
1 + z

dz.

Equation (5) is valid only for F (φ) = 0; otherwise,
the situation becomes more complicated (Boisseau
et al. 2000).
2002 MAIK “Nauka/Interperiodica”
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The same method can be used to reconstruct its
equation of state pΛ = f(εΛ)without concretizing the
effective Lagrangian of the Λ field. The corresponding
equations are

8πG
3
εΛ = H2

0Ωm,0(1 + z)3 −H2(z), (6)

4πGf(εΛ) = −4πGεΛ (7)

− 3
2
Ωm,0H

2
0 (1 + z)3 +H(z)(1 + z)

dH(z)
dz

.

If H(z) is known, then we can deduce z(εΛ) from
Eq. (6) and derive the equation of state for the Λ field
by substituting it in Eq. (7).

Actual experimental data currently correspond
to z � 1 in these equations if H(z) is determined
from DL(z) in experiments with type Ia supernovae
(Garnavich et al. 1998; Perlmutter et al. 1998; Riess
et al. 1998; Schmidt et al. 1998). Equation (5)
could be applied by using the abundance of rich
galaxy clusters as a function of redshift, n(z), to
calculate δ(z). However, the corresponding data
are not yet sufficiently representative and accurate.
That is why any information that allows the class of
equations of state containing the equation of state
for the Λ field to be restricted will be useful. Let us
show what constraints on the equation of state for
the Λ field follow from the requirement that there be
no field clustering on scales much smaller than the
cosmological horizon.

The equations of the perturbation theory in cos-
mology where a two-component fluid (nonrelativistic
matter and theΛ field) acts as thematter are (see, e.g.,
Solov’eva and Starobinsky 1985)

Φ̇ +HΦ = 4πG (εmvm + (εΛ + f(εΛ)) vΛ) , (8)

d

dt

(
v̇Λ
f ′(εΛ)

)
− 3

d

dt
(HvΛ) +

k2

a2
vΛ (9)

= 3Φ̇ +
d

dt

(
Φ

f ′(εΛ)

)
,

v̇m = Φ, (10)

δ̇ =
d

dt

(
δεm
εm

)
= 12πG (εΛ + f(εΛ)) (11)

× (vΛ − vm) − k2

a2
vm,

−3
d

dt
(Hvm) +

k2

a2
vm = 3Φ̇, (12)

4πG (δεm + δεΛ) = −k
2

a2
Φ, (13)
ASTRONOMY LETTERS Vol. 28 No. 7 2002
δεΛ
εΛ + f(εΛ)

=
1

f ′(εΛ)
d

dt
(vΛ − vm) , (14)

where v is the gauge-invariant velocity potential
and δ is the Bardeen gauge-invariant energy-density
perturbation (Bardeen 1980). We consider Fried-
mann metric perturbations in the longitudinal gauge,
i.e., ds2 = (1 + 2Φ)dt2 − a2(t)(1 − 2Ψ)δlmdxldxm,
where l,m = 1, 2, 3, and assume a dependence of all
perturbations on the spatial coordinates of the form

exp(ikjx
j), f ′(εΛ) = β2

Λ =
dpΛ
dεΛ

. For this physical

system, Φ = Ψ.
The absence of Λ-field clustering on small scales

in a broad sense implies that the equation for nonrela-
tivistic-matter density perturbations on scales much
smaller than the Hubble radius R = H−1 is the same
as it would be in the absence of the Λ field:

δ̈ + 2Hδ̇ − 4πGεmδ = 0. (15)

It can be derived from Eqs. (8)–(14) of the perturba-
tion theory as follows. From Eq. (11), we have a2δ̇ =
12πG(εΛ + f(εΛ))(vΛ − vm)a2 − k2vm. Differentiat-
ing this equation with respect to t and using Eqs. (10)
and (14), we obtain

δ̈ + 2Hδ̇ = −k
2

a2
Φ + 12πG(1 + f ′(εΛ)) (16)

× ε̇Λ(vΛ − vm) + 24πGH(εΛ + f(εΛ))

× (vΛ − vm) − 12πGf ′(εΛ)δεΛ.

Clearly, this equation does not always reduce to

Eq. (15) in the short-wavelength limit (
k

aH
� 1).

We will compare the first term on the right-hand
side with the remaining terms. Since Φ̇ ∼ HΦ, we

have vm ∼ a2

k2
(HΦ) from Eq. (12) in the short-

wavelength limit. Assume that Eq. (9) in this limit
gives

vΛ ∼ a2

k2

(
3Φ̇ +

d

dt

(
Φ

f ′(εΛ)

))
. (17)

As can be easily seen, this is the case if(
aH

k

)2 ∣∣∣∣ 1
f ′(εΛ)

∣∣∣∣ � 1, (18)

(
aH

k

)
a

k

∣∣∣∣ ddt
(

1
f ′(εΛ)

)∣∣∣∣ � 1 (19)

(here, x � 1 implies that x cannot be too large com-
pared to unity).

The satisfaction of these conditions is sufficient for
the first term on the right-hand side of Eq. (16) to be
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dominant. Indeed, let us compare the first term with
the third term on the right in Eq. (16):

πG(εΛ + f(εΛ))(vΛ − vm) <
(
aH

k

)2

(20)

× Φ
(
d

dt

(
1

f ′(εm)

)
+

H

f ′(εm)
− 3H

)
	 k2

Ha2
Φ.

Similarly, it can be shown that the second term on the
right is small compared to the first term (the identity
ε̇Λ = −3H(εΛ + f(εΛ)) can be used for this purpose).

Let us now show that the inequality |δεΛ| 	 |δεm|,
which essentially implies the absence of
Λ-field clustering in a narrow sense, holds in the
short-wavelength limit when conditions (18) and (19)
are satisfied. Indeed, we have from Eq. (14)

|δεΛ| =
∣∣∣∣(εΛ + f(εΛ))

f ′(εΛ)
d

dt
(vΛ − vm)

∣∣∣∣ (21)

∼ H2

πG

(a
k
H
)2

Φ.

If we now use Eq. (13), then we will see that the
smallness of δεΛ relative to δεm is of the order of(
aH

k

)4

.

Let us try to understand how greatly constraints
(18) and (19) allow the class to which the theory
describing the Λ field belongs to be narrowed. First,
these constraints become meaningful when a quan-
tum field theory of type (1) begins to appear hydro-
dynamical on large scales. In general, for an arbi-
trary quantum field theory, the nondiagonal compo-
nents of the stress tensor are not small compared
to its diagonal components (i.e., σik 
= pδik). This
implies that there are no perturbations propagating
at the speed of sound

√
dp/dε in the system or that

they are of no crucial importance. Accordingly, the
hydrodynamic degrees of freedom are not physical,
reconstructing the equation of state ceases to be of
value, and we must return to the formulation of the
inverse cosmological problem in the form given by
Starobinsky (1998).

Hydrodynamics faithfully describes the actual
situation if the mean free path for perturbations
in the corresponding quantum field theory is small
compared to the Hubble radius 1/H . In a theory of
type (1), if we take the expansion of the potential
energy near the minimum

V (φ) ≈ V0 +
m2φ2

2
+
λφ4

4
+ · · · , (22)

this condition appears as

lkin ∼ 1
nσ

∼ m

Λ
m2

λ2
	 1
H
, (23)
where n is the perturbation density, σ is the scattering
cross section in the φ4 theory, and Λ is the energy
density of the Λ field.

This is a stringent criterion: if we believe that
the accelerated dynamics of the Universe is currently
provided by the same scalar field that is responsible
for the inflationary stage (a simple inflationary model
with a potential of form (22) whose parameters are
well known: λ ∼ 10−12 and m ∼ 1013 GeV), then
constraints (18) and (19) are meaningless. Never-
theless, the freedom is still large: (i) a more complex
theory than (1), for example, a multicomponent scalar
field, may have provided the inflation; (ii) or inflaton is
not responsible for the present accelerated dynamics
of the Universe.

Below, we assume that condition (23) is satisfied
and that hydrodynamics well describes perturbations
in theΛ field. As is easy to see, since (aH/k)2 is small
(currently available experimental data strongly sug-
gest only the absence of Λ-field clustering on scales
<30 Mpc), constraints (18) and (19) give little for
ideal fluid models of the Λ field with the equation
of state pΛ = ωεΛ, where ω ≤ −1/3. However, such
models must be essentially of a theoretical-field na-

ture. Indeed, the speed of sound
dpΛ
dεΛ

= ω squared

is negative for such models, implying an exponential
increase in the perturbation amplitude in such hydro-
dynamics.

From this viewpoint, Chaplygin gas models (Ka-
menshchik et al. 2001; see also the recent paper by
Bento et al. 2002) with the equation of state pΛ =
−A/εnΛ, whereA and n > 0 are constants. are of great
interest. The constraints on A and n that follow from
conditions (18) and (19) are meaningful:(

aH

k

)2 Λn+1

nA
� 1, (24)

(
aH

k

)2 n+ 1
nA

Λn

∣∣∣∣Λ − A

Λn

∣∣∣∣ � 1. (25)

Assuming the energy dominance εΛ + f(εΛ) ≥ 0
for theΛ field, we find from expression (25) using (24)
that

(n+ 1)

(
1 − 1

n

(
aH

k

)2
)

� 1. (26)

Thus, the exponent n in the equation of state for
Chaplygin gas cannot be too large compared to unity.
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Abstract—The observed reduction in the fraction of quasars with polarized radiation as the redshift in-
creases is explained by an increase in the magnetic-field strength in accretion disks at high z. The emerging
Faraday rotation causes the radiation to be depolarized. This mechanism allows the magnetic fields in
accretion disks to be estimated at several hundred gauss. We give simple asymptotic formulas that describe
the Faraday depolarization in optically thick accretion disks. c© 2002 MAIK “Nauka/Interperiodica”.

Key words: active galactic nuclei, quasars, and radio galaxies
INTRODUCTION

Broadband optical polarimetry can serve as a good
tool for determining the magnetic-field strengths
in the immediate vicinity of active galactic nuclei
(AGNs) and quasars. Gnedin and Silant’ev (1978,
1997); Silant’ev (1993); and Silant’ev et al. (2000)
proposed a new method for estimating the magnetic
fields of astrophysical objects. The essence of this
method is to allow for the overall effect of Faraday
rotation in electron stellar atmospheres and accretion
disks with magnetic fields.

Faraday rotation produces new polarimetric ef-
fects. First, overall linear polarization emerges even
in a spherically symmetric scattering circumstellar
envelope or in the atmosphere of a spherical star in
the presence of a magnetic field. Second, a charac-
teristic wavelength dependence of polarization arises,
with the position of the maximum depending on the
magnetic-field distribution in the atmosphere. Third,
the radiation is depolarized in those cases where po-
larization appears in the absence of a magnetic field (a
nonspherical electron circumstellar envelope or stel-
lar atmosphere, an accretion disk, a hot gaseous jet,
etc. (see Dolginov et al. 1995).

Agol and Blaes (1996) and Agol et al. (1998)
performed detailed calculations of polarized-radiation
transfer in electron-scattering accretion disks by
taking into account Faraday rotation. They also
allowed for the contribution of absorption to the total
atmospheric opacity. Their main conclusion is that
a magnetic field reduces the degree of polarization

*E-mail: gnedin@gao.spb.ru
1063-7737/02/2807-0438$22.00 c©
compared to accretion-disk models without magnetic
fields (see Koratkar and Blaes (1999) for a review).

Information on the structure of the global mag-
netic field in a quasar or AGN can also be obtained
from polarimetric radio observations, particularly
through interferometry. Recently, the VLBI technique
has yielded data on the magnetic-field strength and
geometry in the hot plasma around quasars and
AGNs on the parsec or even subparsec scale (Udom-
praset et al. 1997; Ishwara-Chandra et al. 1998;
Saikia and Kulkarni 1998; Pentericci et al. 2000).
Our prime objective is to use the method of allowance
for overall Faraday rotation that we developed to de-
termine the magnetic-field strength in the immediate
vicinity of an AGN or a quasar. It turns out that
a redshift (z) dependence of the AGN and quasar
magnetic fields being determined can be established
in principle from available polarimetric observations.

REDSHIFT DEPENDENCE
OF THE NUMBER OF QUASARS
WITH POLARIZED RADIATION

The observations of several authors (Impey
et al. 1991;Wills et al. 1992; Carilli et al. 2000) show
that the number of extragalactic sources (AGNs,
quasars, huge infrared galaxies) with linearly polar-
ized radiation significantly decreases with increasing
redshift z. Impey et al. (1991) found that, depending
on the redshift, the fraction of quasars with polarized
radiation is distributed as follows:

0.43 ± 0.09 (0 < z < 1), (1)

0.36 ± 0.10 (1 < z < 2),
2002 MAIK “Nauka/Interperiodica”
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0.22 ± 0.16 (2 < z < 3).

In turn, Wills et al. (1992) established that the frac-
tion of quasars with high polarization, p > 3%, has
the distribution

0.59 ± 0.06 (z < 1), 0.24 ± 0.06 (z > 1).
(2)

Thus, it follows from distribution (2) that the number
of quasars with strongly polarized radiation at high
(z > 1) redshifts decreases by more than a factor of 2.
Finally, Carilli et al. (2000) give the following distri-
bution of strongly polarized extragalactic sources:

≥10% (0 < z < 1.5), (3)

≥2% (2 < z < 2.5).

Such a reduction in the number of quasars and galac-
tic nuclei with high polarization appears to depend
on the selection effect. However, the authors above
believe that this effect cannot completely account for
the observed reduction in the number of objects.

Two factors act against the selection effect. First,
the number of quasars itself increases with redshift,
reaching a maximum at z ≈ 3. For example, having
analyzed several surveys, Maday (1999) established
that the density of bright quasars in a comoving
coordinate system greatly increases near z ≈ 3. This
factor also causes the number of objects with sub-
stantial polarization of their radiation to increase.
Second, one might expect an increase in polarization
at high (z > 1) redshifts. The point is that Thomson
scattering by electrons is themost efficient generation
mechanism of polarized radiation. For high redshifts,
a shorter wavelength corresponds to the observed
optical wavelength λ in the frame of a quasar at
rest, λ0 = λ/(1 + z). The radiation spectrum shifts
to the ultraviolet and even to the X-ray range at very
high z. Since the absorption of waves with shorter
wavelengths in plasma is weaker, one might expect
the radiation from accretion disks around galactic
nuclei at high redshifts to be more polarized than that
from nuclei at z ≈ 1.

Using the standard frequency dependence of the
free–free absorption cross section σ, we can obtain
the following redshift dependence of the expected po-
larization:

p ∝ σT

σff
∝ (1 + z)3/λ3

0, hν � kTe, (4)

p ∝ σT

σff
∝ (1 + z)2/λ0, hν � kTe,

where σT is the Thomson scattering cross section.
Both these effects, which can cause the fraction of

quasars with polarized radiation to increase, at least
compensate for much of the selection effect.
ASTRONOMY LETTERS Vol. 28 No. 7 2002
Below, we use data from Wills et al. (1992) and
Carilli et al. (2000) and assume that the redshift
dependence of the number of highly polarized quasars
is given by the relation

N(z ≤ 1)
N(z > 1)

≈ 0.2–0.4. (5)

THE STANDARD THEORY
FOR THE GENERATION OF POLARIZED
RADIATION IN THE IMMEDIATE VICINITY

OF AN AGN OR A QUASAR

One of the fundamental components in the model
of a quasar or an AGN is currently believed to be
an optically thick accretion disk, which is considered
as the source of quasar radiation. The continuum
radiation from such a disk is linearly polarized due
to Thomson scattering by electrons. The disk polar-
ization depends on the disk inclination to the line of
sight. When a geometrically thin disk is seen almost
edge-on, the polarization of a disk with an electron at-
mosphere reaches 11.7% (the well-known Sobolev–
Chandrasekhar effect) and the electric-vector oscilla-
tion direction lies in the disk plane.

When light is scattered in an optically thin, disk-
like shell, the direction of the electric vector is par-
allel to the shell minor axis, while the polarization is
proportional to the shell optical depth and can reach
several percent.

The theory of polarized-radiation transfer in an
electron atmosphere developed by Chandrasekhar
(1950) and Sobolev (1960) underlies the standard
model of polarization generation. The intensity of
the radiation I(µ) = Il(µ) + Ir(µ) emerging from an
optically thick, plane-parallel atmosphere is the sum
of the intensities of radiations polarized parallel (l)
and perpendicular (r) to the plane containing the
normal to the disk and the line of sight:

Il(µ) =
3
8π

F√
2
qHl(µ), (6)

Ir(µ) =
3
8π

F√
2
Hr(µ)(µ+ c),

where µ = cos ϑ, ϑ is the angle between the line of
sight and the normal to the disk, q = 0/68980, c =
0.87294, and F is the emergent flux,

F = 2π

1∫
0

dµµI(µ). (7)
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The functions Hl(µ) and Hr(µ) are the solutions to
the standard Ambartsumian–Chandrasekhar nonlin-
ear equation

H(µ) = 1 + µH(µ)

1∫
0

dη
ψ(η)
µ+ η

H(η) (8)

with ψl(η) = 3(1 − η2)/4 and ψr(η) = 3(1 − η2)/8
substituted for ψ(η). At µ = 0, Hl(0) = Hr(0) = 1.
If µ = 1, thenHl(1) = 3.4695 andHr(1) = 1.27797.

Since the problem is symmetric, only the Stokes
parameter Q(µ) = Il(µ) − Ir(µ) is nonzero and the
polarization is

p(µ) =
Q(µ)
I(µ)

=
qHl(µ) −Hr(µ)(µ+ c)
qHl(µ) +Hr(µ)(µ+ c)

. (9)

For an edge-on (µ = 0) disk, the polarization is
p = (q − c)/(q + c) = −0.1171. The minus sign im-
plies that the electric-field oscillations are perpendic-
ular to the plane containing the line of sight and the
normal to the atmospheric surface.

THE POLARIZATION OF RADIATION
FROM AN ACCRETION DISK

WITH A MAGNETIC FIELD: ALLOWANCE
FOR FARADAY ROTATION

Previously (Gnedin and Silant’ev 1978, 1997;
Silant’ev 1994), we generalized the Sobolev–Chand-
rasekhar theory to an electron atmosphere with a
magnetic field. We showed how Faraday rotation
changes the spectral and angular distributions of
the polarized radiation emerging from a magnetized,
plane-parallel electron atmosphere. One of the main
effects is a sharp decrease in polarization due to Fara-
day depolarization. Detailed calculations of polarized-
radiation transfer for a magnetic field perpendicular
to the disk plane were performed by several authors
(Silant’ev 1994; Agol and Blaes 1996; Gnedin and
Silant’ev 1997; Agol et al. 1998; Koratkar and
Blaes 1999).

The Faraday rotation angle at Thomson opti-
cal depth τ can be written as (see Gnedin and
Silant’ev 1997)

ψF =
1
2
δτ cos θ, (10)

δ =
3
4π

λ

re

ωB

ω
∼= 0.8λ2µ(m)B(G),

where ω = 2πν is the radiation cyclic frequency,
ωB = eB/mec is the cyclotron frequency, re =
e2/mec

2 ∼= 2.82 × 10−13 cm, and θ is the angle
between the line of sight and the magnetic field.

Although obtaining a precise pattern for the ra-
diation emerging at different angles to the normal
to the disk surface requires numerical methods of
calculation, the asymptotic formulas for the Stokes
parameters when δ � 1 can be represented in a sim-
ple analytic form (see Silant’ev 1994):

I(µ) =
F

2πH1
H(µ), (11)

Q(µ) = − F

2πH1

b

2
· 1 − µ2

1 + δ2 cos2 θ
, (12)

U(µ) = − F

2πH1

b

2
· (1 − µ2)δ cos θ

1 + δ2 cos2 θ
. (13)

Here, b = 0.18274, the functionH(µ) satisfies Eq. (8)
with ψ(µ) = 3(3 − µ2)/16 and corresponds to the
Rayleigh phase function, and H1 = 1.19400 is the
first moment of H(µ) (see Chandrasekhar 1950).
Note that the Stokes parameters (12) and (13) are
given in a coordinate system with the x axis in the
plane containing the line of sight and the normal to
the disk.

For an axisymmetric magnetic-field distribution in
the disk plane (Bz = 0, a diamagnetic disk), integra-
tion over the azimuthal angle can be easily performed
to give the analytic formula

p(µ, δ) =

√
Q2 + U2

I
(14)

=
b

2
1 − µ2

H(µ)
1√

1 + δ2(1 − µ2)
.

Below, we use Eqs. (11)–(14) to estimate the
Faraday depolarization as the chief cause of the re-
duction in the number of polarized quasars with in-
creasing redshift z.

FARADAY DEPOLARIZATION
AS A POSSIBLE CAUSE

OF THE REDUCTION IN THE NUMBER
OF QUASARS WITH POLARIZED
RADIATION AT HIGH REDSHIFTS

Formula (5) describes the observed deficit of po-
larized quasars at high redshifts. What causes this
effect? A plausible explanation is that this deficit re-
sults from the depolarizing action of Faraday rotation
in accretion disks at high redshifts.

We assume that the magnetic field in the disk
at z < 1 decreases through dissipation (see, e.g.,
Bisnovatyi-Kogan 1999) to an extent that there is
virtually no Faraday rotation and that the quasar
polarization is attributable to the ordinary Thomson
scattering of light in a nonmagnetized hot electron
atmosphere. In this case, polarization can be observed
over a wide range of accretion-disk inclinations,
except the directions along the normals to the disks.
In contrast, the initial magnetic field of the disk
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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for z > 1, which has not yet dissipated, causes the
emerging radiation to be depolarized due to Faraday
rotation for all angles, except a narrow range of
solid angles almost perpendicular to the magnetic
field. It follows from the above theoretical formulas
that for estimates, this narrow range of solid angles
may be taken to be a factor of ∼δ smaller than the
corresponding range of solid angles in the absence of
Faraday rotation. Thus, we may set the ratio (5) equal
to the ratio of the characteristic solid angles in the
presence and absence of Faraday rotation:

N(z > 1)
N(z ≤ 1)

≈ 0.2–0.4 ≈ ∆ΩFaraday

∆Ω
(15)

≈ π

2δ
=

π

1.6λ2
0(µm)B(G)

.

Here, we use the depolarization parameter δ that cor-
responds to the radiation wavelength λ0 = λ/(1 + z)
in the quasar rest frame. As a result, we obtain an
estimate of the magnetic field in the accretion disk:

B(G) ≈ π(5 − 2.5)
1.6λ2(µm)

(1 + z)2. (16)

Note that formula (16) gives only an estimate of
the magnetic-field strength for an object at a given
redshift z. Under no circumstances should it be con-
sidered as the establishment of an actual z depen-
dence of the accretion-disk magnetic field.

Assuming that λ ∼= 0.55 µm (which corresponds
to observational data), we obtain the following mag-
netic-field estimate: B ≈ (30–15)(1 + z)2G. For a
mean characteristic value of z ≥ 2, we find the mag-
netic field in quasar accretion disks to be
≥300–150 G.

Because of the importance of these kinds of es-
timates, we obtain an independent estimate by set-
ting the ratio of the mean observed polarizations for
quasars at z > 1 and z < 1 equal to the theoretical
ratio calculated using the above formulas. In this
case, the accretion-disk planes are assumed to be
randomly oriented relative to the line of sight. Using
extensive observational polarization data from Impey
et al. (1991), we find that the mean polarization
of quasars is ∼2.7% at z < 1 and ∼2.4% at z >
1, i.e., it is slightly lower. When calculating these
mean values, we did not use several objects whose
polarization was higher than 11.7% and which could
not be described in terms of the theory presented
above. The theoretical polarization of the accretion
disk averaged over all orientations is 3.13% when
only Thomson scattering without Faraday rotation is
taken into account. Recall that for objects at z < 1,
we assume the possible magnetic field to be weak
and the Faraday rotation to be of no importance.
Clearly, our separation of sources into two groups
ASTRONOMY LETTERS Vol. 28 No. 7 2002
with (z > 1) and without (z < 1) magnetic fields is
somewhat rough. Therefore, it comes as no surprise
that the mean polarization 2.7% is slightly lower than
its theoretical value 3.13%. In addition, a modest
contribution of the radiation emerging from the disk
edge also reduces the polarization. However, these
values are still close to each other, which confirms the
validity of our assumption of random disk orientation
and of our separation of objects into magnetic and
nonmagnetic ones.

In the presence of Faraday rotation, the theoret-
ical polarization averaged over the disk orientations
generally depends on the magnetic-field distribution
in the disks. Thus, for disks with magnetic fields
directed along the normal to the disk, its value is 〈p〉 ≈
b ln(2δ)/2δ. For an axisymmetric field distribution in
the disk plane, 〈p〉 ≈ 0.22b/δ. Recall that b = 0.1827.
The ratio of the observed mean polarizations for the
groups with z > 1 and z < 1 is 0.9. Setting this value
equal to the theoretical values 〈p〉/0.0313 of this ratio,
we obtain δ ≈ 10 and 1.4 for the vertical and hori-
zontal (in the disk plane) magnetic fields, respectively.
The estimate (16) yields δ ∼= 8–4.

Thus, the two independent estimates of δ (i.e., the
magnetic field) lead to identical results. We have a
magnetic-field estimateB ≥ 40(1 + z)2 G for δ ≈ 10,
which gives B ≥ 400 G at z > 2. It should be noted
that the above values of 〈p〈 were obtained only when
averaging over the random accretion-disk orienta-
tions. Clearly, they depend on z. Unfortunately, the
available observational data do not allow 〈p〉 to be
calculated for each z. The 〈p〉 = 2.4% used is a z-
averaged value. Since the number of objects at high z
rapidly increases, this value of 〈p〉 is mainly deter-
mined by objects with high z. Therefore, the above
magnetic-field estimates should be referred to the
upper limit of z used in averaging the z interval.

Note that data on the rotation measures of high-
redshift galaxies (Pentericci et al. 2000) yield an
independent estimate of the accretion-disk magnetic
field in the region where polarized optical radiation is
generated.

The expression for the rotation measure is

RM = 0.8NeLBz rad m−2, (17)

where the electron number density Ne is measured
in cm−3, the line-of-sight magnetic field Bz is in µG,
and the radiation path length L is in pc.

The typical values of these parameters are Ne ∼
1 cm−3, Bz ∼ 10 µG, and L ∼ 100 pc. Assuming
the magnetic flux to be conserved and given that the
typical size of the region where optical radiation is
generated in the accretion disk is∼103rg, where rg is
the gravitational radius of a supermassive black hole,
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we obtain the following estimate of the accretion-
disk magnetic field in the generation region of optical
radiation:

B ∼ 2 × 103 G (RM/103)(108M�/MBH)2. (18)

The field strength (18) is close to the magnetic-field
strengths derived from our independent estimates.

CONCLUSIONS

The observed reduction in the fraction of quasars
with polarized radiation as the redshift increases can
be explained by an increase in the magnetic-field
strength of accretion disks at cosmological (z ≥ 2)
distances. We considered the case where radiation
is polarized through its Thomson scattering in a
plane-parallel atmosphere. The question arises as to
whether such a consideration is applicable to those
accretion-disk regions where optical radiation is gen-
erated. It is well known that, for example, free–free
absorptionmay prove to be a dominant opacity mech-
anism in the outer regions of accretion disks. For
quasars and AGNs at high (z > 1) redshifts, the ra-
diation in the intrinsic frame of reference corresponds
to the ultraviolet; i.e., it is generated in the accretion-
disk regions closest to a supermassive black hole. In
addition, allowance for absorption can occasionally
lead to an increase in polarization (see the mono-
graphs by Dolginov et al. (1995) and Gnedin and
Silant’ev (1997), as well as Agol and Blaes (1996)).
However, our comparatively rough estimates show
that the observed reduction in the fraction of polarized
quasars with increasing z can actually be due to the
stronger magnetic fields of accretion disks at large
cosmological distances. Note that the z dependence
of the rotation measure revealed by radio polarimetry
for high-redshift galaxies also exhibits its increase
with redshift (Pentericci et al. 2000). Generalizing
our theory to accretion disks with true photon absorp-
tion involves no fundamental difficulties (Dolginov et
al. 1995; Silant’ev 1994).

Note that our conclusion about an increase in the
magnetic-field strength for z ≥ 1.5 is also in good
agreement with the results of Willott et al. (2000).
According to these authors, many massive galaxies
with active nuclei passed through the evolutionary
phases during which a supermassive black hole and
stellar bulge were formed. According to this study,
such a phase occurs precisely at large cosmological
distances, z ∼ 2–5.
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Abstract—We present our observations of the galaxy UGS 5600 with a long-slit spectrograph (UAGS)
and a multipupil field spectrograph (MPFS) attached to the 6-m Special Astrophysical Observatory
telescope. Radial-velocity fields of the stellar and gaseous components were constructed for the central
region and inner ring of the galaxy. We proved the existence of two nearly orthogonal kinematic subsystems
and conclude that UGC 5600 is a galaxy with an inner polar ring. In the circumnuclear region, we detected
noncircular stellar motions and suspected the existence of a minibar. The emission lines are shown to
originate in H II regions. We estimated the metallicity from the intensity ratio of the [N II]λ6583 and Hα
lines to be nearly solar, which rules out the possibility that the polar ring was produced by the accretion of
gas from a dwarf companion. c© 2002 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Polar-ring galaxies (PRGs) are objects with two
kinematic subsystems rotating in roughly orthogonal
planes. Based on its structural features (see Fig. 1),
Whitmore et al. (1990) listed the peculiar galaxy
UGC 5600 among the most probable PRG candi-
dates: its amorphous main body is surrounded by a
broad outer ring, and the brightenings attributed to
the inner ring are observed in the E–W direction
on both sides of the center at a distance of ∼10′′.
UGC 5600 is a member of a double system (VV 330).
Its companion, the galaxy UGC 5609, is at 1′

.4 (about
15 kpc in projection onto the plane of the sky) to the
southeast and has a similar radial velocity. Presently,
two other galaxies with similar redshifts have been
detected near VV 330 (Galletta et al. 1997); all of
them may represent a group of galaxies.

Among other galaxies from the catalog of Whit-
more et al. (1990), UGC 5600 was observed in the
radio range at a wavelength of 21 cm (Richter et al.
1994). TheMHI/LB ratio was found to be 0.86, char-
acteristic of late-type galaxies. CO-line observations
revealed molecular hydrogen in all structures of the
galaxy (Galletta et al. 1997).

The spectra of the galaxy along its major and mi-
nor axes were obtained by Reshetnikov and Combes
(1994). The radial-velocity curves are complex in
shape. The authors suggested counterrotation in the

*E-mail: lshal@astro.spbu.ru
1063-7737/02/2807-0443$22.00 c©
central part of the galaxy (|r| < 5′′) and gas rotation
around its major axis. In addition, they pointed out
that the galaxy is rich in gas and that the Hα emission
extends to 30′′ (6 kpc).

A detailed photometric study of UGC 5600 (Kara-
taeva et al. 2001) shows that this is most likely a
late-type spiral (Scd) galaxy with an inner polar ring
which is projected onto the galaxy main body on the
northern side and is seen through it on the southern
side. The structure that was taken in the catalog of
Whitmore et al. (1990) as an outer ring represents
two tightly wound spiral arms.

The final conclusion as to whether UGC 5600
belongs to PRGs can be reached only after proving
the existence of two nearly orthogonal kinematic sub-
systems.

The distance to the galaxy is 37.6 Mpc (H0 =
75 km s−1Mpc−1), and the scale is 0.18 kpc in 1′′.

OBSERVATIONS AND DATA REDUCTION

All of the spectroscopic data were obtained at the
prime focus (F/4) of the 6-m Special Astrophysical
Observatory (SAO) telescope. A log of observations
is given in the table.

The observations with the UAGS long-slit spec-
trograph (Afanas’ev et al. 1995) were carried out
in January 2000 at two slit positions: along the
galaxy major axis (PA = 0◦–2◦) and along the polar-
ring major axis (PA = 85◦); according to Karataeva
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. A B-band image of the galaxy UGC 5600; the straight lines indicate the UAGS slit positions, and the rectangles
indicate the MPFS fields.
et al. (2001), this axis passes 2′′ south of the galaxy
photometric center (see Fig. 1). The spectral range
covered included the Hα, [N II] λλ6548, 6583, and
[S II] λλ6716, 6730 emission lines. The detector
was a Photometrics 1024 × 1024-pixel CCD array.
In the observations, the spectrograph slit size was
2′′ × 140′′, and the angular scale along the slit was
0′′
.4 per pixel.

The UAGS spectra were reduced by using stan-
dard procedures from the ESO-MIDAS package. Af-
ter the primary reduction, we carried out a smoothing
along the slit with a 0′′

.8 window for the central region
and a 2′′ window starting from a distance of 15′′ from
the center. The radial velocities were measured from
the centroid positions of the Gaussians fitted in the
emission lines. The accuracy of these measurements
was estimated from the night-sky [O I] λ6300 line
to be ±10 km s−1. We also measured the relative
intensities and FWHMs of the above emission lines.
The observed FWHMs were corrected for the in-
strumental profile width using the standard relation
(FWHM)2 = (FWHM)2obs − (FWHM)2instr.

To study the kinematics of the ionized gas and
stars in the inner regions of UGC 5600 in de-
tail, we observed the galaxy by the method of field
spectroscopy with a multipupil fiber spectrograph
(MPFS) (Afanas’ev et al. 2001) attached to the 6 m
telescope. The spectrograph simultaneously takes
spectra from 240 spatial elements (constructed in
the form of square lenses) that form an array of
16 × 15 elements in the plane of the sky. The angular
size of a single element is 1′′. A description of the
spectrograph is given on the Internet on the SAO
page.1 Simultaneously with galaxy spectra, we took a
night-sky spectrum from an area located 4′

.5 from the
center of the field of view. The detector was a TK1024

1http://www.sao.ru/g̃afan/devices/mpfs/mpfs_main.htm
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A log of observations of UGC 5600

Date, instrument Exposure time, s Field Seeing Spectral range, Å PA, field

Jan. 28, 2000 1800 2′′ × 140′′ 2′′
.0 6200–7000 85◦

UAGS 1800 2 × 140 2.0 6200–7000 0◦

1200 2 × 140 2.0 6200–7000 2◦

Jan. 28, 2001 1800 16 × 15 2.0 4300–5600 Center

MPFS 1200 16 × 15 2.0 4300–5600 E side

1200 16 × 15 2.0 4300–5600 W side

900 16 × 15 1.5 5550–6900 Center

1200 16 × 15 2.0 5550–6900 E side

1200 16 × 15 2.0 5550–6900 W side

Apr. 28, 2001 600 16 × 15 2.0 4700–5900 Center

MPFS 1200 16 × 15 2.0 4700–5900 +5′′ to north

Aug. 11, 2001 1200 16 × 15 1.0 4900–6200 Center

MPFS 900 16 × 15 1.0 6000–7300 Center
1024 × 1024-pixel CCD array. The spectrograph
reciprocal dispersion was 1.35 Å per pixel and the
spectral resolution was ∼3.5 Å. The observations
were performed sequentially in two spectral ranges.
The “green” range included emission lines (Hβ,
[O III] λλ4959, 5007) and absorption lines of the
galaxy stellar population (Mg I λ5175, Fe I λ5229,
Fe I+Ca I λ5270, etc.). The “red” range contained the
Hα, [N II]λλ6548, 6583, [S II]λλ6716, 6730 emission
lines.

We reduced the observations using the software
developed at the SAO and running in the IDL en-
vironment. The primary reduction included debias-
ing, flat fielding, cosmic-ray hit removal, extraction
of individual spectra from CCD images, and their
wavelength calibration using the spectrum of a cali-
bration lamp. Subsequently, we subtracted the night-
sky spectrum from the galaxy spectra. The spectra
of spectrophotometric standard stars were used to
convert fluxes into absolute energies.

We constructed two-dimensional intensity and
radial-velocity (velocity fields) maps in the Hα, Hβ,
[O III] λ5007, and [N II] λ6583 lines; the emission-
line profiles were also fitted with Gaussians. The
accuracy of the absolute radial-velocity determination
estimated from sky lines ranges from 10 to 15 km s−1.
The radial-velocity fields for the stellar component
were constructed by the cross correlation technique
(Tonry and Davis 1979) modified to work with field
spectroscopy and detailed by Moiseev (2001). We
used the spectral range 5200 to 5500 Å containing
high-contrast lines of the galaxy stellar population.
ASTRONOMY LETTERS Vol. 28 No. 7 2002
The spectra of G8–K3 III stars and the twilight sky
observed on the same nights as the galaxy were taken
as the radial-velocity standards. The accuracy of the
radial-velocity determination is∼10 km s−1.

The January 2001 observations were carried out
at three different positions of the spectrograph field
of view (Fig. 1). The resulting fields of velocities and
emission-line intensities were combined to give a
40′′ × 16′′ total field of view. We measured the radial
velocities of the stellar component only for the central
16′′ × 15′′ field, because the contrast of the stellar
lines in the outermost parts decreases sharply.

In April 2001, wemanaged to construct amore ex-
tended radial-velocity field by using two MPFS fields
(one coincided with the galaxy photometric center
and the other was displaced by 5′′ to the north). The
resulting field of view was 16′′ × 20′′. When studying
this velocity field in detail, we suspected that the cen-
tral region of the galaxy, r ∼ 2′′ in size, was kinemat-
ically decoupled (see below). To check this feature,
we repeated our observations of the stellar kinematics
in the central region of UGC 5600 in August 2001,
at ∼1′′ seeing. The derived 16′′ × 15′′ velocity field
with a higher angular resolution was also used in our
analysis. Here, all radial velocities were reduced to the
solar center (heliocentric velocities).

RESULTS OF OBSERVATIONS
WITH THE LONG-SLIT SPECTROGRAPH

Data on the UAGS observations are given in the
first three rows of the table. In our spectra of the
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Fig. 2. Radial-velocity curves (a) along the galaxy major axis and (b) along the ring major axis.
galaxy UGC 5600 along its major axis, the Hα emis-
sion line is traceable up to distances of ∼7–8 kpc
from the center.

The radial-velocity curves along the galaxy major
axis (PA = 0◦) and along the major axis of the inner
ring (PA = 85◦) are shown in Fig. 2a and 2b. We see
from these figures that the radial velocities measured
from different emission lines are equal, within the
error limits. Our radial-velocity curves are similar to
those in Reshetnikov and Combes (1994) and the
small deviations are most likely due to differences in
the spectrograph slit positions. Themean heliocentric
velocity of the photometric center is 2795 ± 3 km s−1,
which is lower than its value in Reshetnikov and
Combes (1994) by 28 km s−1.

The radial-velocity curve along the galaxy major
axis is complex in shape. The curve exhibits a small
rectilinear segment where the velocity increases from
0 to 55 km s−1; then, at a distance of 3′′–4′′ from the
center, the scatter of points increases and further out,
the mean radial velocity decreases. Reshetnikov and
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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Fig. 3. (a) The stellar radial-velocity field and (b) the continuum-flux distribution in the range 5200–5450 Å; the cross marks
the position of the kinematic center.
Combes (1994) concluded that counterrotation was
observed in the central part of the galaxy (|r| ≤ 5′′).
However, a detailed photometric study of this galaxy
(Karataeva et al. 2001) shows that we see the total
radiation from the galactic disk and inner ring exactly
at distances of 4′′–10′′ from the center. Therefore, the
interpretation of the observed radial velocities in this
range is rather complex and contradictory.

Where the slit crosses the spiral arms (|r| ≥ 20′′),
the measurement errors of the radial velocities are
large because the lines are weak. However, the ve-
locity relative to the system center is, on average,
∼30 km s−1, with the southern side approaching us
and the northern side receding.

The radial-velocity curve along the ring major ax-
is (Fig. 2b) is also complex in shape. This is most
likely because the cut passes through different galac-
tic structures.

Thus, we see that despite a wealth of informa-
tion obtained with the long-slit spectrograph, the
interpretation of the observed radial velocities of the
emitting gas is ambiguous. One-dimensional cuts
are not enough to understand the kinematics of such a
multicomponent object. It is necessary to investigate
the two-dimensional velocity fields of the gas and
stars. This is the goal of our MPFS observations.
ASTRONOMY LETTERS Vol. 28 No. 7 2002
KINEMATICS OF THE STELLAR
AND GASEOUS COMPONENTS

Data on the MPFS observations are also given
in the table. Below, we discuss the results of our 2D
spectroscopy.

The Radial-Velocity Distribution for the Stellar
Component

We determined the radial velocities of the stellar
component by cross-correlation analysis. Since the
stellar-velocity dispersion turned out to be smaller
than the spectrograph instrumental profile (σ ≤
70 km s1−), we could not reliably measure it and
study its variations across the galaxy. The low stellar-
velocity dispersion confirms the conclusion of Karata-
eva et al. (2001) that UGC 5600 is a late-type galaxy.

Figure 3 shows the stellar radial-velocity field and
the continuum (5200–5450 Å) intensity distribution.
We see from Fig. 3a that the isovels are complex
in shape. The isophotes in the continuum image
(Fig. 3b) are clearly distorted. These distortions may
be due to the presence of a feature in the nuclear
region; to the clumpy structures in the ring superim-
posed on the galaxymain body; due to the nonuniform
distribution of dust, whose presence follows from the
IR fluxes (Richter et al. 1994), both in the ring and in
the galactic disk. The presence of dust may also affect
the pattern of the radial-velocity field.
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Fig. 4. The radial-velocity fields for the galaxy central region: (a) for stars and (b) for gas, as constructed fromHα at 1′′ seeing.
If we consider the central region belonging to the
galactic disk, then the shape of the isovels mainly cor-
responds to the circular rotation of stars around the
galaxy minor axis. For this region, we constructed the
average rotation curve and the radial dependence of
the kinematic-axis position angle. We used the tilted-
ring technique (Begeman 1989; Moiseev and Must-
sevoi 2000): the velocity field is broken down into
elliptical rings of fixed width and the rotation velocity
V (r) and the kinematic-axis position angle PA(r)
are determined in each ring under the assumption of
circular rotation. In addition, conclusions about the
pattern of noncircular motions can be drawn from
an analysis of the variations in the position of the
kinematic axis and in the disk inclination to the line
of sight.

The cross in Fig. 3 marks the position of the
kinematic center of the stellar component, which was
determined from the symmetry of the velocity field.
The photometric and kinematic centers do not co-
incide, but the separation between them is less than
2′′. The differences in the positions of the photometric
and kinematic centers may be due to the presence
of features in the circumnuclear region. Within the
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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accuracy of our modeling, the position angle of the
kinematic axis PAkin = 2◦ coincides with the posi-
tion angle of the photometric axis from Karataeva
et al. (2001) and the system heliocentric velocity
is 2740 ± 15 km s−1. The system velocities that we
determined from stars and gas differ approximately
by 50 km s−1; such differences are also observed
for other galaxies (see, e.g., Sil’chenko 1998). The
inclination of the stellar disk to the plane of the sky
is∼50◦, which is close to the value from Karataeva et
al. (2001), and its rotation velocity slowly increases
from 40 km s−1 (at a distance of 2′′) to 90 km s−1

(at 8′′).
When analyzing in detail the stellar radial-velocity

field in the circumnuclear region, which is ∼2′′ in
size, we suspected a peculiarity in the behavior of
the isovels. However, the space resolution was too
low to study it. Therefore, as we pointed out above,
additional observations were carried out at seeing no
worse than 1′′. Figure 4a shows the stellar radial-
velocity field constructed from these data. Noncircu-
lar stellar motions clearly show up in a ∼2′′ region,
which may suggest the existence of a minibar that
is possibly formed in the disk because of the close
passage of a companion (Noguchi 1987). The nearly
triangular shape of the isophotes in Fig. 3b and the
asymmetry in the circumnuclear region of the pho-
tometric cuts along the galaxy major axis shown in
Fig. 2 fromKarataeva et al. (2001) are also consistent
with this suggestion. However, observations with a
higher space resolution are needed for the final con-
clusion about the presence of a minibar to be reached.

Two features that recede with velocities
∼40–60 km s−1 show up at ∼4′′

.5 from the center
in the NE and W directions (Fig. 3a). The W feature
may belong to the inner ring. At the same time, the
velocity of the NE feature is opposite to the velocity of
the ionized gas in the inner ring, while this feature is
located far (∼2 kpc) from the disk center.

The Radial-Velocity Distribution for the Gaseous
Component

We constructed the radial-velocity fields of the gas
from hydrogen (Hα, Hβ) lines and from the forbidden
[O III] λ5007 line. They all proved to be similar. The
radial-velocity curves obtained from the velocity fields
are in good agreement with the radial-velocity curves
given in the preceding section.

Hα is the brightest emission line. Since the ac-
curacy of measuring the radial velocities from it is
higher, we present below only the data obtained from
this line. For convenience of comparing the behaviors
of the gaseous and stellar components, Fig. 4 shows
the velocity fields of the stars (a) and the ionized gas
ASTRONOMY LETTERS Vol. 28 No. 7 2002
(b) for the galaxy central region. A detailed anal-
ysis of the gas kinematics indicates that the slope
of the isovels in the central part, ∼3′′ in diameter,
is identical to the slope of the isovels for the stellar
component. Further out, in the E–W direction, the
isovels are turned through about 90◦, suggesting gas
rotation about the galaxy major axis.

To analyze the behavior of the emitting gas in the
galactic inner ring, Fig. 5 shows the Hα intensity
distribution, the total radial-velocity field, and contin-
uum (6100–6300 Å) intensity variations. In contrast
to the continuum intensity distribution (Fig. 5c), the
Hα image (Fig. 5a) is elongated from east to west and
coincides with the ring location, but the ellipticity of
the Hα isophotes changes. They become rounder as
one approaches the center. South of the center, the
isophotes flatten. This isophotal behavior can be ex-
plained by assuming that there are two gaseous com-
ponents. The first is associated with the galactic disk,
and the second is associated with the inner ring. In
the central region, we observe the total radiation from
the two components. The isophote flattening south
of the center may imply that on this side, the ring is
projected onto the galactic disk, and its dust partially
absorbs the disk radiation. Note that our assumption
is in conflict with the conclusion of Karataeva et al.
(2001). Since the region with blue color indices on the
southern side is narrower than on the northern side,
these authors assumed that the ring was projected
onto the galactic body north of the center and was
seen through it south of the center. However, such
a peculiarity of the color indices may be due to the
nonuniform ring structure. For example, it may stem
from the fact that the southern side of the ring is
slightly narrower than its northern side. Therefore, the
behavior of the Hα isophotes seems to characterize
the ring orientation more reliably, especially since the
isophotes are similar in shape in all emission lines.

The existence of two gaseous components must
affect the shape of the line profiles along the galaxy
major axis, particularly at distances of 5′′–10′′ south
and north of the center, where the ring and the disk
are superimposed on each other. A significant scatter
of points is observed precisely in these segments of
the radial-velocity curve (Fig. 2a). The line profiles are
irregular in shape and can be fitted by two Gaussians.
However, the reliability of this fit is low, because the
errors are large.

The assumption that there are two gaseous com-
ponents is also confirmed by the shape of the isovels
in Figs. 4b and 5b. At the center, where the directions
of the isovels for the gaseous and stellar components
coincide, the radial-velocity field is determined by the
motion of the gas belonging to the galactic disk,
while, starting approximately from 2′′ east and west
of the center, the ring gas motion shows up clearly.
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Fig. 5. (a) The intensity distribution, (b) the radial-velocity field in Hα, and (c) the continuum intensity distribution in the
range 6100–6300 Å (the intensities are on a logarithmic scale).
Assuming circular rotation, we attempted to
model the gas motion in the ring (without the central
region ∼3′′ in size) and to estimate the ring inclina-
tion to the plane of the sky. We estimated the latter to
be∼70◦–75◦. Knowing the inclination of the galactic
disk and the ring to the plane of the sky, we can
determine the angle between the disk and the ring
from the relation

cos ∆i = ± sin i1 sin i2 cos (PA1 − PA2) (1)
+ cos i1 cos i2,

where i1 and i2 are the disk and ring inclinations to
the plane of the sky, PA1 and PA2 are the position
angles of the major axes of the galactic disk and the
ring. This angle was found to be about 78◦ ± 5◦; i.e.,
the ring is polar.

A close examination of Fig. 5b reveals several
features in the radial-velocity field. For example, there
is a feature receding with a velocity of∼100 km s−1 at
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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Fig. 6. The distribution of the [N II]/Hα intensity ratio in the galaxy 14′′ × 13′′ central region.
a distance of 7′′ to the west. Such features may result
from the nonuniform ring structure. Their presence
may stem from the fact that individual bright H II
regions fall on the line of sight.

The right part of Fig. 5b, starting from 17′′–20′′,
corresponds to the spiral arm receding at a velocity of
∼30–40 km s−1.

CHARACTERISTICS
OF THE EMISSION-LINE REGIONS

We measured the Hα FWHMs and the relative
emission-line intensities at various distances from the
nucleus. Our measurements for the nuclear region
closely agree, within the error limits, with the results
of Reshetnikov and Combes (1994), who showed that
the nuclear emission originates from H II regions.
Figure 6 presents the distribution of the [N II]/Hα
ratio for the central region of the galaxy. The loga-
rithms of this ratio fall within the range−0.6 to−0.35,
which is characteristic of H II regions (Veilleux and
Osterbrock 1987). Therefore, we may conclude that
the emission lines in the nucleus and in the ring
originate in H II regions. The intensity ratio of for-
bidden and permitted lines is virtually constant along
the major axis of the polar ring, suggesting that the
physical conditions in the emission-line regions are
TRONOMY LETTERS Vol. 28 No. 7 2002
similar. The forbidden-line intensity increases with
distance from the nucleus along the galaxy major
axis compared to Hα. To confirm that the increase
in forbidden-line intensity (Fig. 6) is unrelated to
the edge effects of the multipupil spectrograph, we
considered the data acquired with the long-slit spec-
trograph. It turned out that the [N II] /Hα ratio at the
center is 0.35 and then gradually increases, reaching
0.6 at 5′′–7′′; further out, it is roughly constant up
to 10′′–12′′. The emission-line intensity decreases
with distance from the center and starting from about
14′′, the signal-to-noise ratio is ≤3. Therefore, we
cannot reliably determine the line intensity ratio in
these regions.

The strengthening of the nitrogen forbidden lines
compared to Hα appears to be due to an increase
in the importance of the collisional excitation as the
galactic gaseous disk interacts with the polar-ring
gas.

Here, our prime objective was to study the kine-
matics of the gaseous and stellar components. There-
fore, the observations were carried out only in the
green and red spectral ranges, and we cannot deter-
mine the physical conditions in H II regions and their
chemical composition from our data. However, we
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attempted to estimate the metallicity in the emission-
line regions.

According to Denicolo et al. (2001), there is an
empirical relation between log([N II] λ6583/Hα) and
log(O/H):

12 + log(O/H) = 9.12(±0.05) + 0.73(±0.10) (2)

× log([N II] λ6583/Hα);

its form depends neither on the flux calibration nor
on the reddening corrections. Using this relation, we
estimated the metallicity in H II regions. Figure 7
shows the radial distribution of 12 + log(O/H) along
the galaxy major axis and along the ring major axis.
As was already pointed out above, the shape of the
distribution in Fig. 7a results from an increase in the
nitrogen-line intensity compared to the Hα intensity,
possibly because the collisional excitation increases
in importance. Further, the empirical relation (2) is
reliable for an [N II]/Hα ratio below 0.5. Therefore,
the increase in 12 + log(O/H) in the regions between
5′′ and 10′′ north and south of the center may not
result from an increase in metallicity. The values of
12 + log(O/H) are virtually constant along the major
axis of the polar ring (Fig. 7b), suggesting that the
physical conditions in the ring are homogeneous.

The mean metallicity in the circumnuclear region
and in the polar ring is ≈8.8, which corresponds to
0.9Z�. A similar estimate was also obtained from
[S II] lines by using the sum of the [S II] λ6717 +
λ6731 line fluxes. This result corresponds to normal
evolution in galaxies with such luminosities (Richer
et al. 1998).

The nearly solar metallicity in the polar ring im-
plies that it cannot not be produced by the capture of
a dwarf companion.

CONCLUSIONS

In conclusion, we summarize our main results.
(1) Based on 2D spectroscopy, we constructed

the radial velocity fields of the stellar and gaseous
components for the central regions of the peculiar
galaxy UGC 5600.

(2) An analysis of these fields revealed two kine-
matic subsystems: the first is related to the galactic
disk and the second is related to the inner ring.

(3) The angle between the disk and ring planes
was found to be about 78◦ ± 5◦; i.e., the inner ring
is polar. This provides compelling evidence that the
galaxy UGC 5600 belongs to PRGs.

(4) We established from the intensity ratio of for-
bidden and permitted lines that the emission origi-
nates in H II regions. The metallicity was estimated;
it proved to be nearly solar, which rules out a dwarf
galaxy as the donor in forming the polar ring.
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Abstract—We analyze the space velocities of blue supergiants, long-period Cepheids, and young open star
clusters (OSCs), as well as the H I and H II radial-velocity fields by the maximum-likelihood method. The
distance scales of the objects are matched both by comparing the first derivatives of the angular velocity Ω′

determined separately from radial velocities and proper motions and by the statistical-parallax method. The
former method yields a short distance scale (for R0 = 7.5 kpc, the assumed distances should be increased
by 4%), whereas the latter method yields a long distance scale (for R0 = 8.5 kpc, the assumed distances
should be increased by 16%).We cannot choose between these twomethods. Similarly, the distance scale of
blue supergiants should be shortened by 9% and lengthened by 3%, respectively. The H II distance scale is
matched with the distance scale of Cepheids and OSCs by comparing the derivativesΩ′ determined for H II
from radial velocities and for Cepheids and OSCs from space velocities. As a result, the distances to H II
regions should be increased by 5% in the short distance scale. We constructed the Galactic rotation curve
in the Galactocentric distance range 2–14 kpc from the radial velocities of all objects with allowance for the
difference between the residual-velocity distributions. The axial ratio of the Cepheid+OSC velocity ellipsoid
is well described by the Lindblad relation, while σu ≈ σν for gas. The following rotation-curve parameters
were obtained: Ω0 = (27.5± 1.4) km s−1 kpc−1 and A = (17.1 ± 0.5) km s−1 kpc−1 for the short distance
scale (R0 = 7.5 kpc); and Ω0 = (26.6 ± 1.4) km s−1 kpc−1 and A = (15.4 ± 0.5) km s−1 kpc−1 for the
long distance scale (R0 = 8.5 kpc). We propose a newmethod for determining the angular velocityΩ0 from
stellar radial velocities alone by using the Lindblad relation. Good agreement between the inferred Ω0 and
our calculations based on space velocities suggests that the Lindblad relation holds throughout the entire
sample volume. Our analysis of the heliocentric velocities for samples of young objects reveals noticeable
streaming motions (with a velocity lag of ∼7 km s−1 relative to the LSR), whereas a direct computation
of the perturbation amplitudes in terms of the linear density-wave theory yields a small amplitude for the
tangential perturbations. c© 2002 MAIK “Nauka/Interperiodica”.

Key words:Galactic kinematics, rotation curve, distance scale
INTRODUCTION

The study of the kinematics of Galactic subsys-
tems remains one of the most important fields of
Galactic astronomy. The parameters of the Galactic
rotation curve were determined repeatedly from HI
and HII data (Clemens 1985; Fich et al. 1989;
Merrifield 1992; Brandt and Blitz 1993; Nikiforov and
Petrovskaya 1994; Honma and Sofue 1997; Nikiforov
1999) and stellar radial velocities (Karimova and
Pavlovskaya 1973; Pont et al. 1994; Dambis et al.
1995; Glushkova et al. 1998). High-precision proper
motions and trigonometric parallaxes that became
available with the release of the HIPPARCOS cat-
alog (The HIPARCOS and TYCHO catalogs, ESA
SP-1200, 1997) stimulated further works aimed at

*E-mail: zabolot@lnfm1.sai.msu.ru
1063-7737/02/2807-0454$22.00 c©
refining the angular velocity Ω0 and the form of the
rotation curve in the local solar neighborhood (Feast
et al. 1998; Rastorguev et al. 1999; Dambis et al.
2001). It should be pointed out that the reliability
of the resulting rotation curves depends first and
foremost on the correctness of the adopted distance
scale of objects under study. Objects with known
distances—classical Cepheids, open star clusters
(OSC), and OB-associations—allow the rotation
curve to be determined only out to heliocentric dis-
tances of 4–5 kpc, whereas H I and H II kinematic
data allow constructing the rotation curve over a
considerably wider interval of Galactocentric dis-
tances. The main problem is that the distances of
giant molecular clouds (GMC) and, consequently,
those of H II-regions, are determined from their single
hot exciting stars whose distance scale is prone not
2002 MAIK “Nauka/Interperiodica”
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only to random but also to systematic errors. In this
paper we matched for the first time the distance scale
of GMC to the most accurately determined (in the
random and systematical sense) distances, i.e., those
of long-period classical Cepheids and OSC, and
inferred the kinematic parameters using an algorithm
that allows for initial-data errors, for the ellipsoidal
distribution of residual velocities, and for the errors
of systemic radial velocities that result from the
propagation of distance errors (Rastorguev 2001).
Our second task was to compute the parameters of

the spiral pattern of the Galaxy. Selection effects, i.e.,
the incompleteness of the sample due to interstellar
extinction, makes it very difficult to localize spiral
waves by analyzing only the space distribution of
young objects. The use of kinematic data appears to
be a more promising approach, because it is insensi-
tive to selection effects (Mishurov et al. 1979). Thus
Mishurov et al. (1997) determined, by analyzing the
radial velocities of classical Cepheids exclusively, the
principal parameters of the spiral pattern including
the velocity-field perturbation amplitudes and con-
cluded that the Sun is located near the corotation
circle. The perturbations due to the spiral density
wave are comparable in magnitude to the velocity
dispersion of young subsystems. Therefore, only after
the release of the HIPPARCOS and TYCHO-2 cata-
logs making high-precision proper motions available
did it become possible to analyze the space velocity
field of young objects. Torra et al. (2000) used the
radial velocities of OB-stars and Cepheids and HIP-
PARCOS proper motions of these objects to infer a
pattern speed ofΩP ≈ (31± 4) km s−1 kpc−1. Lepine
et al. (2001) also concluded that the Sun is near
the corotation circle by assuming a superposition of
a two- and four-armed pattern. At the same time,
Rastorguev et al. (2001) concluded that the Sun is
inside the corotation circle by analyzing long-period
Cepheids and young OSC, and Mel’nik et al. (2001)
came to the same conclusion based on their study
of the pattern of systematical noncircular motions of
OB-associations. Here we explore this issue further.

OBSERVATIONAL DATA

We used young OSC and long-period Cepheids
as a reference sample for matching the distance
scales of various objects. Our reference sample in-
cluded 89 young OSC with log T < 7.6 and helio-
centric distances determined by Dambis (1999) by
fitting Kholopov’s (1980) ZAMS with an allowance
for evolutionary deviations based on Geneva-group
isochrones (Maeder and Meynet 1991). The radial
velocities of cluster members were determined by
Glushkova based on published data and can be found
in the paper by Rastorguev et al. (1999). The proper
ASTRONOMY LETTERS Vol. 28 No. 7 2002
motions of clusters were computed from those of their
member stars found in the HIPPARCOS catalog
(Baumgardt et al. 2000).

Our reference sample included 113 classical
Cepheids with periods P > 9d (or ages log T < 7.6
as implied by the period-age relation of Efremov
(1989)) and heliocentric distances computed using
the fundamental-mode period-luminosity relation of
Berdnikov et al. (1996):

〈MK〉I = −5.46m − 3.52m log P

in accordance with the procedure described therein.
An earlier statistical-parallax analysis (Rastorguev
et al. 1999) showed that the sample of Cepheids
with shorter periods is not homogeneous in terms of
pulsation mode and may be contaminated by first-
overtone pulsators. We used published Cepheid radial
velocities and HIPPARCOS proper motions. Young
OSC and long-period Cepheids make up a kinemat-
ically homogeneous sample consisting of 176 and
142 objects with radial velocities and proper motions,
respectively, including 124 objects with space veloci-
ties.

We performed a separate analysis of a blue-
supergiant sample consisting of 102 stars with he-
liocentric distances tied to the OSC distance scale
(Dambis 1990). The kinematic data for these stars
were compiled by A.K. Dambis with the proper
motions adopted from the HIPPARCOS catalog,
and radial velocities, from the catalogs of Barbier-
Brossat and Figon (2000) and Wilson–Evans–
Batten (WEB) (Duflot et al. 1995).

Brandt and Blitz (1993) published the distances
and radial velocities for a total of 206 H II-regions.
We selected 203 of these objects with spectroscopic
or photometric distances inferred from their exciting
stars. The radial velocities of H II-regions were de-
termined from the CO (2.2.-mm) radio lines of their
associated molecular clouds.We did not include three
H II-regions in the final list because of their large
residual velocities relative to the provisional rotation-
curve solution. The catalog mentioned above also
gives standard errors of individual distance and radial
velocities.

We adopted 150 tangent-point radial velocities of
H I clouds from Fich et al. (1989). Note that pub-
lished H I and H II radial velocities are traditionally
corrected for the solar motion relative to the standard
apex assumed to coincide with the local standard of
rest (LSR), and we therefore first converted them into
heliocentric radial velocities.
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METHOD OF ANALYSIS

We used the techniques of maximum-likelihood
and statistical parallax (including its simplified ver-
sion) to compute the kinematic parameters and refine
the distance scales involved. See Murray (1986) for
a description of the principal ideas of the statistical-
parallax method used in this paper. The tangential
velocity of a star is computed from its proper motion
and distance and therefore depends on the adopted
distance scale, whereas radial velocities are distance
independent. The essence of the method is to rec-
oncile the fields of radial and tangential velocities in
terms of somemodel of the field of systematic motions
and ellipsoidal distribution of residual velocities. A
number of authors applied this method with success.
Hawley et al. (1986); Popovski and Gould (1998),
Gould and Popowski (1998), Fernley et al. (1998),
Popowski (1998), Fernley et al. (1998), Tsujimoto
et al. (1998), and Dambis and Rastorguev (2001)
used it to refine the distance scale of RR Lyrae type
variables. In our previous paper (Rastorguev et al.
1999) we applied this method for the first time, albeit
in a somewhat simplified form ignoring the scatter
of absolute magnitudes, to analyze the space velocity
field of young objects of the Galactic disk, which are
characterized by small residual velocity dispersions.

In this paper we also apply a simplified version of
the statistical-parallax technique (as used, e.g., by
Feast et al. 1998), based on reconciling the kinematic
parameters inferred separately from radial velocities
and propermotions. Thus, it is well known thatOort’s
constant A inferred from proper motions is much less
sensitive to the adopted distance scale than is the
value of the same constant inferred from radial veloc-
ities. This allows not only the kinematic parameters
to be determined but also the distance scale of objects
under study to be refined.
Consider now a model of the field of space veloci-

ties that includes both differential rotation and effects
due to a spiral density wave. The residual velocity of a
star can be written in the form of the following column
vector:

∆V = Vobs − Vsys = Vobs − Vsun − Vrot − Vspir,

where Vobs is the observed space velocity; Vsys, the
total velocity of systematic motions including: Vsun,
the mean heliocentric velocity of the sample studied;
Vrot, the contribution of Galactic differential rotation;
and Vspir, the perturbation due to the spiral density
wave. To allow for spiral-pattern effects, we used a
very simple kinematic model based on linear density-
wave theory by Lin et al. (1969) with the perturbation
of potential in the form of a running wave:

ΦS = AΦ cosχ,
where AΦ < 0 is the amplitude of perturbations and
χ = m(−θ + cot i ln(R/R0)) + χ0,

the phase angle of the object in the wave (it increases
toward the Galactic center). Herem is the number of
arms; θ, the position angle of the object (measured in
the direction of rotation); i, the pitch angle of spiral
arms (i < 0 for trailing spirals); χ0, the phase angle of
the Sun; and R and R0, the Galactocentric distances
of the Sun and the object, respectively. The radial
VR (which in the arm is directed toward the Galactic
center) and azimuthal Vθ (directed along differential
rotation at the outer edge of the arm) components of
velocity perturbation can be written in the following
form:

VR = fR cosχ, Vθ = fθ sinχ,

where fR and fθ are the amplitudes of velocity pertur-
bations (Rohlfs 1977):

fR =
kAΦ

κ

ν

1 − ν2
F (1)

ν (x),

fθ = −kAΦ

2Ω
1

1 − ν2
F (2)

ν (x).

We now use standard designations:

k =
m cot i
R

, κ = 2Ω

√
1 − A

Ω
,

x =
(
kσu

κ

)2

, ν =
m(ΩP − Ω)

κ
.

Here, k is the radial wavenumber; κ, the epicyclic

frequency; A, Oort’s constant; F (1)
ν (x) and F (2)

ν (x),
the reduction factors; x, the Toomre instability pa-
rameter; σu, the dispersion of radial velocities; ν, the
relative frequency with which the object rotating in
a circular orbit meets a passing spiral wave; Ω, the
angular velocity of differential Galactic rotation; and
ΩP , the angular velocity of the rigid rotation of the
spiral pattern (i.e., the pattern speed).
Residual space velocities are usually assumed to

have a three- dimensional normal distribution:

f (∆V) = (2π)−3/2 |Lobs|−1/2

× exp
{
−0.5∆VT × L−1

obs × ∆V
}
,

where Lobs is the matrix of covariances. The covari-
ance matrix in our previous paper (Rastorguev et al.
1999) included only the ellipsoidal velocity distribu-
tion and the errors of radial velocities and proper mo-
tions, which is quite a justiable approach in the case
of small errors in the adopted distances. The latter are
related to the dispersion of absolute magnitudes as
follows:

σ2
M = 4.71〈(δr/r)2〉.
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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Here, angular braces mean averaging over the dis-
tribution of distance errors. The covariance matrix
can be easily shown (Rastorguev 2001) to have the
following form:

Lobs = Lloc,e + Lerr + 0.21σ2
M r

2
t (P × L1 × P ′)

− 0.21σ2
Mprt(M × L2 × P ′)

+ 0.21σ2
Mp

2(M × L3 ×M ′),

where matrices L1, L2, L3,M , and P are equal to

L1 =
dVsys

drt
×
dVT

sys

drt
, L2 = 2Vsys ×

dVT
sys

drt
,

L3 = GS × LS,0 ×GTS + Vsys × VT
sys,

M =




0 0 0

0 1 0

0 0 1


 , P =




1 0 0

0 p 0

0 0 p


 ,

respectively, and the formulas for matrices GS , Lloc,e,
Lerr, andLS,0 can be found in the paper by Rastorguev
et al. (1999). Here p is the distance-scale factor
defined as:

p = r0/rt,

where r0 and rt are the adopted (usually photometric)
and true distance, respectively.
We inferred the unknown parameters including the

scale factor p using the maximum-likelihoodmethod,
i.e., by minimizing the following function with sum-
mation taken over all objects of the sample under
study:

LF = −
N∑

i=1

ln f(∆V).

When refining the distance scale by reconciling the
values of Oort’s constant A, we set p = 1. We com-
puted the parameter errors using the method pro-
posed by Hawley et al. (1986).

RESULTS AND DISCUSSION

Kinematics of the Sample of
Long-Period Cepheids and OSC

Our main task was twofold: to refine the dis-
tance scale of objects considered and to construct
the rotation curve of the corresponding subsystem.
We first applied the maximum-likelihood method to
our sample of Cepheids and OSC with heliocentric
distances r < 4 kpc and ignored spiral-pattern effects
in the velocity field. Because the eventual correlation
between the solar Galactocentric distance R0 and
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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Fig. 1. Galactic rotation curves inferred with different
scale lengthsHr and assuming constant velocity disper-
sion.

the distance- scale factor prevents simultaneous de-
termination of these parameters, and because of the
uncertainty in the determination of R0, we performed
our computations twice with the two most commonly
adopted values:R0 = 7.5 and 8.5 kpc.We determined
the angular velocity of Galactic rotation Ω0 from
space velocities of Cepheids and OSC and then used
it to construct the Galactic rotation curve based on
the radial velocities of all objects considered.

How distance errors affect the results. To elu-
cidate the effect of the distance errors on the results
obtained, we repeated our computations with three
different standard errors of absolute-magnitude cal-
ibration: 0m. 1, 0m. 15, and 0m. 2 for Cepheids and OSC.
We set R0 = 7.5 kpc and p = 1 in all three cases.
The results are listed in Table 1. The columns of this
table give the standard error of the absolute magni-
tude; heliocentric velocity components of the sample;
velocity-ellipsoid axes; and rotation-curve parame-
ters. The inferred kinematic parameters can be seen
to be virtually independent of the adopted σM , and
therefore in the following computations we used a
compromise value of σM = 0m. 15, which agrees with
the scatter of the period-luminosity relation for the
Cepheids members of open clusters (Berdnikov et al.
1996).

The effect of the variation of velocity dis-
persion with galactocentric distance. The study
of the kinematics and space distribution of objects
in the disks of other galaxies showed that the disk
surface brightness and velocity dispersion decrease
exponentially with galactocentric distance, and the
squared velocity dispersion is proportional to the
surface density (van den Kruit and Freeman 1986;
Bottema 1993). The corresponding scale length for
our Galaxy can be estimated only indirectly and is
most likely confined between 2 and 6 kpc depending
on the age of the subsystem studied (Lewis and Free-
man 1989; Kent et al. 1991; Malhotra 1995; Dehnen
and Binney 1998; Freudenreich 1998; Drimmel and
Spergel 2001). Let us assume that radial velocity
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Table 1. Kinematic parameters of the Cepheid + OSC sample inferred adopting different standard errors of absolute
magnitudes

σM
u0 ν0 w0 σu σν σw Ω0,

km s−1 kpc−1
Ω′,

km s−1 kpc−2
Ω′′,

km s−1 kpc−3
km s−1

0m. 10 –6.34 –12.39 –6.95 12.90 8.02 7.21 27.71 –4.66 1.18

0m. 15 –6.31 –12.33 –6.96 12.82 7.93 7.19 27.71 –4.66 1.17

0m. 20 –6.27 –12.25 –6.98 12.72 7.81 7.15 27.71 –4.65 1.15

Table 2. Kinematic parameters of the Cepheid + OSC sample inferred with different scale lengths of the assumed
exponential radial decrease of velocity dispersions

Hr,
kpc

u0, ν0, w0, σu, σν , σw , Ω0,
km s−1 kpc−1

Ω′,
km s−1 kpc−2

Ω′′,
km s−1 kpc−3

km s−1

2 –6.77 –12.45 –6.94 14.40 7.88 7.15 28.76 –4.84 1.23

4 –6.35 –12.34 –6.95 13.25 7.93 7.17 28.22 –4.74 1.18

6 –6.30 –12.32 –6.95 13.04 7.94 7.18 28.05 –4.71 1.17

Table 3. Kinematic parameters and the distance-scale factor for the Cepheid + OSC sample inferred via statistical
parallaxes

R0, kpc p
u0, ν0, w0, σu, σν , σw, Ω0,

km s−1 kpc−1
Ω′,

km s−1 kpc−2
Ω′′,

km s−1 kpc−3
km s−1

7.5 0.86 –7.24 –11.51 –8.06 13.70 8.03 8.55 26.93 –4.27 0.94

8.5 0.84 –7.21 –12.33 –8.24 13.65 8.15 8.76 26.61 –3.66 0.73

Standard errors ±0.05 ±2.10 ±1.76 ±1.61 ±1.62 ±1.18 ±1.68 ±1.35 ±0.24 ±0.19
dispersion varies exponentially with Galactocentric
radius:

σu = σ0
u exp

(
−R−R0

2Hr

)
,

Table 4. The first derivative of angular velocity inferred
separately from radial velocities Vr and proper motions µ
of the Cepheid + OSC sample and the resulting distance-
scale factor

Method R0, kpc
Ω′(Vr),

km s−1 kpc−2
Ω′(µ),

km s−1 kpc−2 p

1 7.5 –4.67 –4.53 0.97

2 7.5 –4.68 –4.42 0.94

1 8.5 –4.04 –3.97 0.98

2 8.5 –4.06 –3.88 0.96

Standard errors ±0.26 ±0.34 ±0.09
where σ0
u is the radial velocity dispersion in the solar

neighborhood and Hr, the disk scale length param-
eter. As is evident from our Table 1 (see also re-
sults of Rastorguev et al. (1999) and Dehnen and
Binney (1998)), in the neighborhood of the Sun the
components of the velocity dispersion tensors of both
the classical Cepheids + OSC and local MS-star
sample obey the following Lindblad relation to a good
accuracy:

σν = σu
κ

2Ω
.

It is possible, assuming that this relation is obeyed
at every point of the disk for the current values of
angular rotation velocity and epicyclic frequency, to
determine how the inferred kinematic parameters de-
pend on the adopted disk scale length. In this anal-
ysis we can neglect the effect of the variation of the
vertical velocity dispersion σw with Galactocentric
distance, because, first, it is insignificant compared
to the errors of tangential velocities Vb, and, second,
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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the allowance for the dependence of vertical velocity
dispersion onGalactocentric distance has virtually no
effect on the results obtained. Table 2 presents the
kinematic parameters computed with R0 = 7.5 kpc,
and p = 1. The tabulated velocity-ellipsoid axes refer
to the solar neighborhood. Note thatΩ0 is sensitive to
the adopted scale length parameter.

Figure 1 shows how the inferred rotation curve
changes with the adopted scale length. Although the
exact scale for our sample is unknown, an analysis
of the results of Kent et al. (1991) leads us to con-
clude that young subsystems are characterized by a
relatively shallower decrease of radial dispersion with
Galactocentric distance. According to our results, the
rotation curve forHr = 2 kpc is 9 km s−1 higher than
if computed for constant velocity dispersion. Dehnen
and Binney (1998) inferred a scale length of ∼2–
2.5 kpc for old main-sequence stars; Drimmel and
Spergel (2001) found a scale length of 0.28R0 by an-
alyzing COBE/DIRBE data (note that both old and
young stars contribute to infrared radiation). Since no
accurate data are available about the relation between
surface brightness and velocity dispersion, hereafter
we assume that velocity dispersion remains constant
along Galactocentric radius.

Refining the distance scale. Table 3 lists the
kinematic parameters inferred treating the distance-
scale factor as an unknown parameter. The initial
distances to Cepheids and OSC are on the short dis-
tance scale. As is evident from the table, the distance-
scale factor depends only slightly on the adopted R0.
Judging by these results, the adopted distance scale
should be increased by 14–16%.

Besides the rigorous method of statistical paral-
laxes, we also used its simplified version, which in-
volves comparing the values of the first derivative of
angular velocity Ω′ inferred separately from radial ve-
locities with proper motions.We determined the kine-
matic and rotation-curve parameters of the sample
under study from independent maximum-likelihood
solutions based on radial velocities and proper mo-
tions. It can be easily seen that radial velocities of
stars of flat subsystems allow neither w0 nor σw to
be accurately constrained. We therefore inferred Ω′ in
two ways: (1) by computing the heliocentric space
velocity components u0, ν0, w0 and vertical velocity
dispersion σw of the sample under study from space
velocities, and then fixing these values in separate ra-
dial velocity and proper-motion solutions; and (2) by
substituting u0 and ν0 inferred from radial velocities
into the proper-motion solution and substituting w0

and σw inferred from proper motions into the radial
velocity solution. Table 4 lists the resulting Ω′ and
distance-scale factors p = Ω′(µ)/Ω′(Vr).
ASTRONOMY LETTERS Vol. 28 No. 7 2002
The resulting mean distance-scale factor for the
Cepheid+OSC subsystem is equal to p = 0.96 for
R0 = 7.5 kpc (with Ω′ = −4.50 km s−1 kpc−2) and
p = 0.97 for R0 = 8.5 kpc (with Ω′ =
−3.95 km s−1 kpc−2). Again, we note a weak de-
pendence of the distance-scale factor on the adopted
solar Galactocentric distance (see Table 5).
Noteworthy are (see Tables 3 and 5) systematic

differences between the distance-scale factors given
by the statistical-parallax technique (∼0.86) and
by its simplified modification (∼0.96). We analyzed
the problem for possible biases using numerical
simulations. To this end, we used the real coordinates
and initial distances to the objects of our sample
and simulated their “true” space velocities based
on the earlier determined values of kinematic and
rotation-curve parameters. We then added normally
distributed errors to the “true” distances and space
velocities and redetermined the kinematic parameters
and distance-scale factor using both the rigorous
statistical-parallax technique (space velocities) and
its simplified modification. We set velocity errors
based on the typical errors of observational data
and ellipsoidal distribution of residual velocities.
One hundred numerical simulations yielded a mean
distance-scale factor of p = 1.00 ± 0.05 and p =
1.01 ± 0.07 by making inferences from space veloc-
ities or by comparing the first derivatives of angular
velocity, respectively. The possible distance-scale
factors were confined to the (0.85–1.15) interval,
with, on the average, correlated deviations of the
two values from unity. We cannot unambiguously
choose between the two approaches to the distance-
scale refinement. Since it is logical to associate the
short and long distance scales with R0 = 7.5 kpc
and R0 = 8.5 kpc, respectively, hereafter we in-
ferred the kinematic parameters assuming that the
Cepheid+OSC distance-scale factors of p = 0.96
and 0.84 correspond toR0 = 7.5 and 8.5 kpc, respec-
tively. In support of this conclusion, we determinedR0

from space velocities with fixed p. Our analysis yielded
R0 = (7.4± 1.0) and (8.3± 1.0) kpc for p = 0.96 and
0.84, respectively. The large errors of the resultingR0

are due to the small size of the data sample used.
Determination of Ω0 from radial velocities

using Lundblad’s relation. Note that the fact that
the velocity dispersions of Cepheids and OSC obey
the Lindblad relation allows the angular velocity of
rotation Ω0 at the solar Galactocentric distance to be
estimated independently from radial velocities exclu-
sively. When computing the kinematic parameters,
the idea is to set as unknown only the radial velocity
dispersion σ0

u at the solar Galactocentric distance and
to determine the ratio of velocity ellipsoid axes from
the Lindblad relation while setting the angular veloc-
ity and its derivative equal to their local values for each
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Table 5. Kinematic parameters of the Cepheid + OSC sample inferred from space velocities using the mean distance-
scale factors (determined by comparing the first derivatives of angular velocity)

R0, kpc
u0 ν0 w0 σu σν σw Ω0,

km s−1 kpc−1
Ω′,

km s−1 kpc−2
Ω′′,

km s−1 kpc−3
km s−1

7.5 −6.55 −12.11 −7.25 13.04 7.92 7.55 27.47 −4.54 1.09

8.5 −6.38 −12.98 −7.18 12.80 8.04 7.44 27.37 −3.99 0.90

Standard errors ±1.77 ± 1.71 ±1.24 ±1.49 ±1.10 ±1.22 ±1.39 ±0.24 ±0.19

Table 6. Kinematic parameters of the blue-supergiant sample

R0, kpc
u0 ν0 w0 σu σν σw Ω0,

km s−1 kpc−1
Ω′,

km s−1 kpc−2
Ω′′,

km s−1 kpc−3
km s−1

7.5 −6.04 −10.92 −7.12 11.49 8.96 5.13 29.60 −4.76 0.89

8.5 −6.18 −11.33 −7.86 11.63 9.41 5.71 29.14 −4.00 0.60

Standard errors ±1.93 ±1.73 ±1.08 ±1.42 ±1.14 ±1.03 ±1.62 ±0.32 ±0.53

Table 7. Kinematic and rotation-curve parameters inferred from H II data

R0, kpc
u0 ν0 σu σν Ω′,

km s−1 kpc−2
Ω′′,

km s−1 kpc−3
km s−1

7.5 −8.11 −14.88 6.70 6.91 −4.77 1.26

8.5 −7.92 −15.73 6.56 7.03 −4.08 1.01

Standard errors ±1.71 ±1.19 ±2.07 ±1.14 ±0.27 ±0.22
object. The resulting likelihood function therefore de-
pends explicitly on the unknown angular velocity Ω0.
We applied this method with fixed w0 = −7 km s−1

and σw = 7 km s−1 to the radial velocities of Cepheids
and OSC with p = 0.96 and R0 = 7.5 kpc to obtain
Ω0 = (26.5 ± 8.7) km s−1 kpc−1. The large error of
the inferred angular velocity is fully explained by the
errors of the inferred velocity dispersions, which are
equal to 1.2–1.7 km s−1 (see Table 5). The surpris-
ingly good agreement between the angular velocity
values inferred from space and radial velocities indi-
cates that the Lindblad relation is obeyed accurately
enough throughout the entire space region studied.

Kinematics of the Blue-Supergiant Sample

We applied the maximum-likelihood technique
to a sample of 102 blue supergiants. The disper-
sion of the inferred absolute magnitudes for these
stars is higher than for Cepheids and OSC and is
equal to σM ≈ 0m. 38 (Dambis 1990). We estimated
the distance-scale factor using the two methods
described above. The maximum-likelihood method
applied to space velocities of stars yielded p = 0.97 ±
0.08, whereas a comparison of the first derivatives
of angular velocity determined separately from radial
velocities and proper motions yielded p = 1.09 ± 0.16
(error estimated approximately). Both results agree
fairly well with the correction factor to the blue-
supergiant distance scale (p = 1.03 ± 0.04) inferred
from practically the same sample by comparing pho-
tometric and HIPPARCOS trigonometric parallaxes
(Dambis et al. 2001). As in the case of the Cepheid
and OSC sample, the distance-scale correction fac-
tors given by the two methods differ systematically by
∼0.1. Table 6 lists the final kinematic parameters for
the blue-sueprgiant sample.
Blue supergiants yielded somewhat higher angular

velocity Ω0 compared to what we inferred from the
Cepheid and OSC sample, but the difference is within
the quoted errors. The systematic difference between
the two angular velocity values is partly due to the
specifics of the space distribution of objects involved.
The most reliable estimates of angular velocity are
those inferred from objects lying in the vicinity of the
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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Table 8.Galactic rotation curve V (R) for the short and long distance scales

R, kpc
V (R),
km s−1

R0 = 7.5 kpc

V (R),
km s−1

R0 = 8.5 kpc
R, kpc

V (R),
km s−1

R0 = 7.5 kpc

V (R),
km s−1

R0 = 8.5 kpc

2.0 198.1 198.2 8.2 201.6 227.5
2.1 199.9 201.3 8.3 200.7 227.0
2.3 201.3 203.8 8.4 199.8 226.4
2.4 202.4 205.9 8.6 199.0 225.8
2.6 203.3 207.6 8.7 198.3 225.2
2.7 204.0 209.0 8.9 197.6 224.6
2.8 204.6 210.3 9.0 196.9 224.0
3.0 205.2 211.4 9.1 196.3 223.3
3.1 205.7 212.3 9.3 195.8 222.7
3.3 206.2 213.2 9.4 195.4 222.1
3.4 206.7 213.9 9.6 195.1 221.5
3.5 207.2 214.7 9.7 194.8 220.9
3.7 207.8 215.4 9.8 194.6 220.4
3.8 208.3 216.2 10.0 194.5 219.9
4.0 208.9 216.9 10.1 194.5 219.4
4.1 209.5 217.6 10.3 194.6 219.0
4.2 210.1 218.4 10.4 194.8 218.7
4.4 210.6 219.1 10.5 195.0 218.5
4.5 211.2 219.9 10.7 195.4 218.3
4.7 211.7 220.7 10.8 195.8 218.2
4.8 212.2 221.5 11.0 196.3 218.1
4.9 212.6 222.3 11.1 196.9 218.2
5.1 212.9 223.1 11.2 197.6 218.3
5.2 213.2 223.8 11.4 198.4 218.5
5.4 213.4 224.6 11.5 199.2 218.9
5.5 213.5 225.3 11.7 200.2 219.3
5.6 213.5 226.0 11.8 201.2 219.8
5.8 213.4 226.6 11.9 202.4 220.4
5.9 213.3 227.2 12.1 203.6 221.1
6.1 213.0 227.7 12.2 205.0 221.9
6.2 212.7 228.2 12.4 206.4 222.8
6.3 212.2 228.6 12.5 208.0 223.7
6.5 211.7 229.0 12.6 209.8 224.8
6.6 211.1 229.2 12.8 211.6 226.0
6.8 210.5 229.4 12.9 213.7 227.2
6.9 209.7 229.5 13.1 215.9 228.5
7.0 208.9 229.6 13.2 218.3 229.9
7.2 208.1 229.6 13.3 220.9 231.4
7.3 207.2 229.5 13.5 223.7 233.0
7.5 206.3 229.3 13.6 226.7 234.6
7.6 205.4 229.0 13.8 230.0 236.3
7.7 204.4 228.8 13.9 233.6 238.0
7.9 203.5 228.4 14.0 237.4 239.8
8.0 202.5 228.0
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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Fig. 2. Galactic rotation curve V (R) for the short (R0 =
7.5 kpc) and long (R0 = 8.5 kpc) distance scales.

“tangent circle” (it is the circle in the Galactic plane
with the interval connecting the Sun and the Galactic
center as its diameter), because, in the corresponding
conditional proper-motion equations, the coefficients
at the angular-velocity derivatives are close to zero
(Glushkova et al. 1999). The proper motions of 23
blue supergiants lying in the vicinity of the “tangent
circle” yielded Ω0 = (27.91 ± 2.79) km s−1 kpc−1;
i.e., the angular velocities inferred from two samples
agree well with each other. This result justifies the
subsequent use of blue supergiants for constructing
the combined rotation curve over a wide interval of
Galactocentric distances.

Kinematics of Ionized Hydrogen

The only way to match the distance scales of
H II and stars is to compare the first derivatives
of angular velocity inferred from line-of-sight and
space velocities for gas and stars, respectively. Given
that the scatter of velocities along the z-coordinate
has virtually no effect on the radial velocities of
the thin-disk objects, we fixed w0 = −7 km/s and
σw = σν . Table 7 lists the kinematic and rotation-
curve parameters inferred from H II data for r <
4 kpc. In this interval of Galactocentric distances
the first derivatives of angular velocity for gas (in-
ferred from radial velocities) and stars (inferred from
space velocities) are estimated at either –4.77 and
–4.54 km s−1 kpc−2, respectively (if R0 = 7.5 kpc)
implying the H II distance-scale correction factor p =
0.95, or –4.08 and –3.66 km s−1 kpc−2, respectively
(if R0 = 8.5 kpc) implying the H II distance-scale
correction factor p = 0.90. Note that, as expected, the
velocity ellipsoid axes inferred for gas do not obey the
Lindblad relation, but σu ≈ σν .

Constructing the Rotation Curve

The good agreement between the mean heliocen-
tric velocity components of different young-object
samples allows us to construct the rotation curve
over a sufficiently wide interval of Galactocentric
distances, 2–14 kpc, using radial velocities of both
stars and gas. Figure 2 shows the rotation curves
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perimposed.

V (R) inferred from the entire sample of young objects
(OSC + Cepheids + supergiants + H I + H II)
for R0 = 7.5 and 8.5 kpc. These rotation curves
are tabulated in Table 8. Here we expanded the
difference of angular velocities into a seventh- order
Taylor series in the vicinity of R0, and computed
the velocity ellipsoid axes separately for neutral
and ionized hydrogen, blue supergiants, and for
Cepheids + OSC (see Table 9) with the distances
to all objects matched to each other. The resulting
local centroid velocity and Oort’s constant A are
equal to V (R0) = (206 ± 10) km s−1, A = (17.1 ±
0.5) km s−1 kpc−1 and V (R0) = (226 ± 12) km s−1,
A = (15.4 ± 0.6) km s−1 kpc−1 for the short and long
distance scale, respectively.

Figure 3 shows the rotation curve for the short
distance scale (R0 = 7.5 kpc) with the data points
for individual objects computed using the following
formula:

V = RΩ0 +
R

R0 sin l cos b
(Vr − Vsun,r),

where Vsun,r is the radial projection of the heliocentric
velocity of the sample considered. As is evident from
the figure, the scatter of V about the rotation curve
is due mainly to small sin l. Note that systematic
differences between HI velocities may be manifes-
tations of a barlike structure at the center of the
Galaxy (Freudenreich 1998). The gas-stellar disk of
the Galaxy is well known to show appreciable warp
in the direction l ≈ 90◦ at Galactocentric distances
>10 kpc. Our rotation curve therefore applies only to
the part of the Galactic disk where warp is insignifi-
cant.
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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Table 9.Heliocentric velocity components and velocity-ellipsoid axes for the young-object sample

Objects
σu, σν , σ∗w, u0 ν0 w∗

0

km s−1

Cepheids + OSC 13.30 7.59 7.55 −9.17 −12.98 −7.25

Standard errors ±1.79 ±0.41 – » » »

Supergiants 14.17 10.00 5.13 » » »

Standard errors ±0.51 ±2.12 – » » »

H II 6.71 7.19 5.0 » » »

Standard errors ±0.60 ±0.93 – » » »

H I 6.60 6.05 5.0 » » »

Standard errors – ±0.34 – ±0.48 ±0.78 –
∗ Parameters fixed at values inferred from the space-velocity solution.

Table 10. Parameters of the spiral pattern (R0 = 7.5 kpc)

Objects m
fR fθ i χ0

km s−1 deg

Cepheids 2 −6.66 −1.40 −6.02 −85.19

OSC 4 −5.51 −0.16 −12.18 −88.05

Standard errors ±2.34 ±1.56 ±0.72 ±14.50

ОВ-stars 2 −6.64 0.42 −6.55 −97.28

Standard errors ±2.51 ±2.31 ±0.86 ±18.30
Allowing for Spiral-Arm Effects

Our computations showed that young-object
samples lag behind the Sun on the average by
13 km s−1. Dehnen and Binney (1998) used HIP-
PARCOS proper motions and parallaxes of nearby
MS stars to find out that the Sun moves ahead of
the LSR by 5.25 km s−1. It follows from this that
young subsystems lag behind the LSR by∼8 km s−1,
whereas their velocity dispersion should imply a
velocity lag of ≤1.5 km s−1. This discrepancy may
be due, among other things, to streaming motions
induced by spiral arms.

To allow for the spiral-arm effects in the velocity
field, we performed our computations in terms of two-
and four-armedmodels of the spiral pattern (see Table
10).

The phase of the Sun with respect to the spiral
wave, which is close to −π/2, indicates that the
Sun is situated at the outer edge of the arm; Vθ ≈
1.4 km s−1 (for the Cepheid + OSC sample). We
therefore face a discrepancy between the magnitude
and direction of the tangential disturbance as inferred
from the centroid velocity lag behind the LSR (Vθ ≈
ASTRONOMY LETTERS Vol. 28 No. 7 2002
−6.5 km s−1) and the value of the same quantity com-
puted directly in terms of a model of spiral-pattern
effects in the velocity field. The discrepancy is beyond
the quoted errors. The velocity lag of the centroid of
young objects relative to the LSR can be explained by,
among other things, noncircular motions of the LSR
discussed by a number of authors (Schuter 1982;
Clemens 1985) based on their analyses of H I ra-
dial velocities. Thus Clemens (1985) inferred an LSR
tangential velocity of ∼7 km s−1 from an analysis of
H I motions in the local solar neighborhood. How-
ever, Dehnen and Binney (1998) showed that, despite
their different ages and velocity dispersions, all main-
sequence stars (except late-type В-stars) closely fol-
low a unified theoretical dependence of the sample
tangential velocity on velocity dispersion. Streaming
motions should be “washed out” by ever increasing
velocity dispersion, and we therefore consider the
above determinations of the solar velocity relative to
the LSR to be quite correct, and thus the discrepancy
in question is left unexplained. Interestingly, the he-
liocentric velocity of В-type stars inferred by Dehnen
and Binney agrees well with the velocities we inferred
for the young-object samples.
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Analytic Formulas for the Mass-Transfer Rate and the Evolution
of a Close Binary System of Neutron (Degenerate) Stars
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Abstract—We derive approximate analytic relations between the mass-transfer rate in a close binary
system described in terms of the Roche potential and its basic parameters, such as the total mass of
the binary, the radius of its circular orbit, the mass of the mass-losing component, and the degree of
its Roche lobe overfilling. Using simplifying assumptions (conservative mass transfer, a short relaxation
time of matter on the mass-gaining component compared to the mass-transfer time scale, adiabaticity and
quasi-stationarity of the mass flow through the Lagrangian pointL1) allows the evolution of a binary system
of neutron (degenerate) stars to be described in terms of two ordinary differential equations. This makes it
possible to qualitatively analyze the evolution process, which is useful in those cases where the evolution
of a close binary system must be investigated in general terms, for example, in terms of the scenario for
the transformation of the collapse of a rotating presupernova core into a supernova explosion proposed by
Imshennik and Nadyozhin (1992) and Imshennik (1992). c© 2002 MAIK “Nauka/Interperiodica”.

Key words: stars—structure and evolution
INTRODUCTION

Mass transfer in semidetached close binary sys-
tems (CBSs) has been investigated in some detail in
sophisticated numerical evolutionary models mostly
for stars with ongoing thermonuclear reactions in
their cores (see, e.g., the monograph by Masevich
and Tutukov (1988) and references therein). In con-
trast, when studying CBSs composed of relativis-
tic, primarily neutron stars (NSs), apart from com-
plex numerical simulations of their evolution using
complete three-dimensional hydrodynamic equations
within the framework of general relativity (Oohara
and Nakamura 1999; Fond et al. 2000), the need
for constructing simplified, semianalytic models de-
signed to estimate basic properties of their evolu-
tion with a wide range of possible binary parameters
arises.
It should be emphasized that here, such models

are valid for a sufficiently large mass difference be-
tween the CBS-forming NSs, and, in any case, they
are inapplicable for equal masses of the CBS com-
ponents. The need to construct such semianalytic
models for the CBS evolution showed upmost clearly
when developing and investigating the scenario for
the transformation of the collapse of a rotating pre-
supernova iron core (including the collapse-induced

*E-mail: Imshennik@vitep1.itep.ru
**E-mail: DVPopov@vitep1.itep.ru
1063-7737/02/2807-0465$22.00 c©
fragmentation of this core to form a binary system
of NSs and mass flow from the less massive com-
ponent after the approach of the binary components)
into its explosion with the explosion energies char-
acteristic of collapsing supernovae (Imshennik and
Nadyozhin 1992; Imshennik 1992, 1995).
The approach of the binary components and the

ensuing mass transfer in a CBS composed of pro-
toneutron (hot) stars have previously been studied in
terms of this scenario by using simplified semiana-
lytic models of mass transfer at the final stage, in
particular, in the approximation of point like compo-
nents when describing their gravitational interactions
and radiation (for other simpler approximations, see
below). These studies (Imshennik and Popov 1994,
1998) allowed us to find a satisfactory explanation
for the temporal characteristics of the binary evolu-
tion and for the high initial pulsar escape velocities
and to predict basic parameters of the gravitational
radiation. These results were obtained with a wide
range of binary parameters. The goal and content of
our present study is to construct and justify such
models for mass transfer in CBSs composed of de-
generate NSs. Below, we give an analytic formula
for the rate of mass transfer or, in other words, mass
flow from one (less massive) component to the other
(more massive) component. This formula was derived
by using the well-known results from Paczynski and
Sienkievich (1972), Savonier (1978), Pringle (1985),
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Numerically determined dimensionless xL (a)
and Roche lobe radius (b) versus mass variable δ (1):
2 (b)—the Roche lobe radius calculated from Kopal’s
formula (5), 3—the calculation from the approximate for-
mulas (3) (a) and (4) (b).

Edwards and Pringle (1987), Ritter (1988), and Kolb
and Ritter (1990), in which different and less gen-
eral analytic relations for mass transfer in CBSs are
presented. Next, we included the derived formula in
a system of two ordinary differential equations that
describes the evolution of a CBS of NSs with grav-
itational radiation and mass transfer almost until the
mass of the less massive component decreases to a
critical value of ∼0.1M�.
A MODEL OF MASS TRANSFER IN A CBS.
AN ANALYTIC EXPRESSION

FOR THE MASS-TRANSFER RATE
The mass-transfer rate in a semidetached CBS

was estimated (also analytically) by Paczynski and
Sienkievich (1972), Savonier (1978), Pringle (1985),
Edwards and Pringle (1987), Ritter (1988), and Kolb
and Ritter (1990) with a gradual refinement of the
model assumptions. The binary components in such
models are assumed to be point masses, the orbit is
assumed to be circular, and the Roche potential is
introduced in the frame of reference rotating with the
binary. This potential is the sum of the gravitational
potentials of the point masses M1 and M2 and the
centrifugal potential:

Φ = − GM1

|r− r1|
− GM2

|r− r2|
− 1

2
Ω2(x2 + y2).

Here, the coordinate system is defined in such a way
that the orbital angular velocity Ω is directed along
the z axis and the coordinate origin coincides with
the center of mass. It is convenient to measure the
lengths in units of the constant radius of a circular
orbit a and the potential in units of GMt/a, where
the total mass of the binary components is denoted
by Mt = M1 +M2. Next, we choose one of the bi-
nary components, more specifically, the mass-losing
component, as star 1 and call the second component
star 2. Denote the relative mass of star 1 by δ =
M1/Mt. We place the coordinate origin somewhat
differently, at the center of star 1, and direct the x axis
toward star 2 located at point (1, 0, 0). The center of
mass of the binary then lies at point (1 − δ, 0, 0). In
this coordinate system, the expression for the dimen-
sionless Roche potential is (Pringle 1985)

Φ(x, y, z; δ) = −
[

δ√
x2 + y2 + z2

(1)

+
(1 − δ)√

(1 − x)2 + y2 + z2
+

1
2
[(x− 1 + δ)2 + y2]

]
.

To pass to dimensional units when calculating the
derivatives of the potential below, we should multiply
the first derivatives of Φ with respect to the coordi-

nates by
GMt

a2
and the second derivatives by

GMt

a3
≡

Ω2, as suggested by the Kepler law.
The position of the first Lagrangian point (L1)

can be determined from the well-known condition
∂Φ
∂x

∣∣∣∣
y=z=0

= 0, 0 < x < 1, which, after substituting

the formula for Φ from (1), gives an equation for its
coordinate xL(δ):

δ

x2
L

− 1 − δ

(1 − xL)2
− (xL − 1 + δ) = 0. (2)
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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Numerically solving this equation yields the value
xL(δ) used in our subsequent calculations, which for
δ < 0.4 can be satisfactorily (see Fig. 1) fitted by the
formula

xL(δ) = 0.619δ1/3 . (3)

Note that in Fig. 1a, the results of our numerical
solution merge into a solid line for δ > 0.05. The fol-
lowing formula (Paczynski 1971) is commonly used
to estimate the Roche lobe radius (also in units of a)
defined as the radius of a sphere with volume equal
to the Roche lobe volume over a wide range of mass
ratios, 0.05 < δ < 0.4:

rR(δ) = 0.462δ1/3 (4)

(the dimensional Roche lobe radius is RR ≡ rRa).
The constancy of the ratio (equal to 0.764) of rR to xL

calculated from formulas (3) and (4) implies that the
Roche lobe shape is virtually invariable in this δ range;
i.e., only its size varies. To more accurately fit rR
over the entire range 0 < δ < 1, we use the expression
derived by Kopal (1959) when fitting the numerically
calculated Roche lobe sizes (cf., e.g., Pringle 1985)

rR(δ) = 0.49
(

δ

1 − δ

)2/3

(5)

×
{

0.6
δ2/3

(1 − δ)2/3
+ ln

[
1 +

δ1/3

(1 − δ)1/3

]}−1

.

The numerically determined Roche lobe radius (in
units of a) calculated by the integration of the Roche
lobe volume and by the subsequent recalculation to
the radius of a sphere with the corresponding volume
is shown in Fig. 1. Also shown in the figure are the
results yielded by the fits (4) and (5). We see that the
fit of Kopal (1959) gives an excellent accuracy over
the entire range of mass ratios δ under consideration,
while the fit of Paczynski (1971) gives a good accu-
racy for δ < 0.4.
The matter from star 1 that overfilled its Roche

lobe will flow onto star 2. To determine the rate of this
flow for a given degree of Roche lobe overfilling, we
assume the following:
(1) Adiabaticity of the mass flow with a velocity v

through the Lagrangian point L1 and, accordingly, a
polytropic equation of state for the matter in the outer
envelope of the mass-losing star with a polytropic
index n:

p = Kρ1+1/n, ε = np/ρ,

whereK is the entropic constant.
(2) Quasi-stationarity of the flow, which can be

checked by comparing the dynamical time scale in the
outer envelope (characterizing the relaxation time of
ASTRONOMY LETTERS Vol. 28 No. 7 2002
the stellar radius through mass loss) and the mass-
transfer time scale.
(3) Potentiality of the mass flow in the vicinity

of L1; i.e., the absence of nonzero curlv here.
(4) The coincidence of streamlines with equipo-

tential surfaces.
The latter assumption is partly confirmed by nu-

merical simulations (Lubow and Shu 1975) of the
gas flow near L1. The deviation of streamlines from
equipotential surfaces may be primarily due to the
presence of Coriolis forces, which we ignore when in-
troducing the Roche potential (1). The effect of these
forces causes, in particular, the jet of flowing gas in
the numerical calculations of Lubow and Shu (1975)
to be inclined with respect to the line connecting
the stellar centers at an angle that varies between
19◦ and 28◦, depending on the binary parameters;
in our model, however, this jet is directed along the
x axis. Nevertheless, in estimating the mass-transfer
rate, ignoring these effects seems admissible to a first
approximation.
The above assumptions (adiabaticity, quasi-statio-

narity, potentiality of the flow in the vicinity of L1, and
the coincidence of streamlines with equipotentials)
are used as the basis for our subsequent derivation.
Under these assumptions, the Bernoulli equation is
valid in the entire flow (Landau and Lifshitz 1986):

v2

2
+K(n+ 1)ρ1/n = Φs − Φ, (6)

where Φ is the potential (1) and Φs is its value on the
surface of star 1, where the density becomes zero. In-
deed, according to our assumptions, the streamlines
on which the velocity becomes zero, because there is
clearly a common point with a zero velocity on them
(from symmetry considerations, it lies on the x axis on
the other side of star 1 relative to L1) passes over this
surface. The potential Φs is determined below. Note
also that the absence of other integration constants
for each streamline of the flow under consideration
in Eq. (6) follows from the assumed flow potentiality
(Landau and Lifshitz 1986).
Without changing the directions of the coordinate

axes (the x axis is along the line connecting the stellar
centers, the y axis is perpendicular to the rotation
axis, and the z axis is along the rotation axis), for
convenience of solving the problem, we move the
coordinate origin to the first Lagrangian point L1. We
determine the density of the mass flux crossing the
x = 0 plane, integrate it over the entire area crossed
by the flow (it is specified by the condition Φ ≤ Φs

under our assumptions), and, thus, find the total mass
flux F identically equal to −Ṁ1.
Clearly, the streamlines will cross the x = 0

plane perpendicular to it (because they coincide with
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equipotential surfaces). Note that the only equipo-
tential passing through the point L1 itself at an acute
angle to the x = 0 plane is an exception, but its total
contribution to the result obtained below is zero.
Differentiating Eq. (6) along an arbitrary streamline
and keeping in mind that the potential is constant on
it, we obtain

v
dv

dx
+K

n+ 1
n

ρ−1+1/n dρ

dx
= 0. (7)

Since the streamlines beyond L1 also coincide with
equipotential surfaces, the flux per unit area on the
x = 0 plane is at a maximum. This leads to an ad-
ditional condition at x = 0:

ρ
dv

dx
+ v

dρ

dx
= 0. (8)

Solving Eqs. (6)–(8) for the nonzero derivatives
from (7) and (8) yields the velocity, density, and mass
flux density j = ρv in the x = 0 plane:

ρ =
[

n(Φs − Φ)
(n+ 1/2)K(n + 1)

]n

, (9)

v =
(

Φs − Φ
n+ 1/2

)1/2

, (10)

j =
(

Φs − Φ
n+ 1/2

)(n+1/2) [ n

K(n+ 1)

]n

. (11)
As was shown, for example, by Landau and Lif-
shitz (1986) for the steady-state Euler equation, the
condition (8) for flux density being at a maximum
implies that the flow velocity is equal to the local
speed of sound at a given point of the streamline,
i.e., in our case, on the entire x = 0 plane. Indeed,
the velocity v given by Eq. (10) is identically equal

to the speed of sound C =
(
K
n+ 1
n

ρ1/n

)1/2

for the

equation of state under consideration. The numerical
calculations of Lubow and Shu (1975) revealed that
the sonic point (i.e., the point at which the flow veloc-
ity is equal to the local speed of sound) is very close
to the Lagrangian point L1. This fact suggests that
the above assumptions are physically justifiable. For
example, the flow nonadiabaticity and nonpotential-
ity attributable to the presence of shock fronts must
certainly take place, but all these fronts are located in
the supersonic flow region, beyond L1. Therefore, an
approximate analytic calculation of the mass-transfer
rate can be carried out under our assumptions, which
greatly simplifies the problem.
Let us now calculate the positive difference be-

tween the dimensional potentials, Φs − Φ, by assum-
ing this difference to be small. Let the potentials be
measured from L1. Expanding the potential near L1

in a Taylor series and realizing that its first deriva-
tives with respect to all coordinates are zero at the
Lagrangian point, we find that in the x = 0 plane,

Φ(y, z) =
GMt

a
[hy(δ)y2 + hz(δ)z2], (12)

where y and z are measured in units of a and the
second derivatives were calculated from Eq. (1):

hy(δ) =
1
2
∂2Φ
∂y2

∣∣∣∣
L1

(13)

=
1
2

[
δ

xL(δ)3
+

1 − δ

(1 − xL(δ))3
− 1
]
,

hz(δ) =
1
2
∂2Φ
∂z2

∣∣∣∣
L1

(14)

=
1
2

[
δ

xL(δ)3
+

1 − δ

(1 − xL(δ))3

]
.

Here, it should be noted that the right-hand sides of
Eqs. (13) and (14) contain the quantity xL(δ) de-
termined from Eq. (2), which can be fitted by (3) for
δ < 0.4.
Thus, according to Eq. (12), the equipotential lines

in the x = 0 plane are similar ellipses

y2

a2
y

+
z2

a2
z

= b2,
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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where ay = 1/
√
hy, az = 1/

√
hz , and the similarity

coefficient is denoted by b. Hence, the sought quan-
tity Φs − Φ is, as can be easily verified (see (12)), a
function of one variable, b2s − b2:

Φs − Φ =
GMt

a
(b2s − b2), (15)

where bs is ultimately determined by the degree
of Roche lobe overfilling. Substituting (15) in (11)
yields j as a function of b:

j(b) =
(
GMt

a

)(n+1/2)

× nn

Kn(n+ 1)n(n+ 1/2)(n+1/2)
(b2s − b2)n+1/2.

This function normalized to its value at the jet center,
i.e., at b = 0, is plotted in Fig. 2 for the typical n =
3/2. Similarly, substituting (15) in (9) and (10) yields
ρ and v as functions of b. These functions, also nor-
malized to their values at b = 0, are shown in Fig. 2
(for n = 3/2). Integrating j(b) over the area of the
flow section in the x = 0 plane under consideration
and using the fact that the differential of the ellipse
area: dS = a2πayaz2b db (we insert the dimension-
less factor a2 in dS) depends on b, we obtain for the
total mass flux

F =
∫

j dS = a2

∫ bs

0
j(b)πayaz2b db

=
(
GMt

a

)n+1/2 nn

Kn(n+ 1)n(n + 1/2)n+1/2

× 2πa2√
hy(δ)hz(δ)

b2n+3
s

∫ 1

0
(1 − ξ2)n+1/2ξ dξ,

whence we easily find

F =
(
GMt

a

)n+1/2

(16)

× nn

Kn(n+ 1)n(n + 1/2)n+1/2

× 2πa2√
hy(δ)hz(δ)

b2n+3
s

2n+ 3
.

It is more convenient to rewrite this equation by sub-
stituting bs derived from Eq (15) with Φ = 0 at b = 0:

F =
2πa3

GMt
(17)

× nn

Kn(n+ 1)n(n+ 1/2)(n+1/2)(2n+ 3)

× Φn+3/2
s√

hy(δ)hz(δ)
.
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Thus, the sought mass-transfer rate (the mass
flux from the mass-losing component) is expressed
in terms of the excess of the surface potential above
the potential of L1. The sunsequent calculations yield
expressions for this flux that include only the mass
of star 1 and model parameters. Therefore, the ex-
cess of the potential should be related to the mass
of star 1. Note that for the Roche potential, there is
a unique relationship between the potential on some
equipotential surface and the volume within it. We
assume that there is a unique relationship between
radius (in other words, volume) and mass for a single,
spherically symmetric star. Let us now assume that
when such a star of a given mass moves into the
Roche potential (i.e., into a binary system), its volume
will not change (a refinement of this assumption re-
quires three-dimensional hydrodynamic calculations
of the stellar structure in the binary system similar to
those of Kuznetsov (1995) and is not made here). If
the mass of star 1 corresponds to a volume smaller
than the Roche lobe volume (at a given separation
a between the components), then no mass transfer
takes place; if, alternatively, it corresponds to a vol-
ume slightly larger than the Roche lobe volume, then
the Roche lobe is overfilled and mass transfer takes
place. As long as there is no mass transfer (the star
volume is smaller than the Roche lobe volume), there
is a unique relationship between the volume occupied
by the star and the potential on its surface. Thus,
we can numerically determine the derivative of the
potential on the surface of such a star with respect to
its volume. When the surface potential is larger than
the potential at L1, the volume within the equipoten-
tial surface undergoes an abrupt change (the Roche
lobe of star 2 is added). However, it is physically
clear that at low degrees of Roche lobe overfilling,
star 1 as a whole does not feel this transition, and to
determine the relationship between the potential on
its surface and the degree of Roche lobe overfilling,
the relationship between surface potential and volume
should be extended without a jump in the derivative
from the range of volume corresponding to Roche lobe
underfilling to the volumes corresponding to its slight
overfilling.
The sought derivative of the surface potential with

respect to the volume within the surface can be nu-
merically determined by computing a series of models
close to Roche lobe filling. The inferred left-hand
derivative at Φ = Φ(L1) should then be continuously
extended to potentials slightly larger than Φ(L1).
Thus, we find that

Φs =
dΦ
dV

∣∣∣∣
L1

∆V.

This formula allows the mass flux (17) to be related to
the Roche lobe overfilling volume∆V . The derivative
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Fig. 3. (a) The numerically determined (for various δ)
derivatives of the Roche potential on an equipotential
surface with respect to the volume within this surface
at the potential of L1 (1); 2—interpolation; the deriva-
tive was calculated on the left, i.e., at a lower potential
(and volume); the units of measurementGMt/a4; 3—the
derivative calculated in the spherically symmetric approx-
imation (18), with the Roche lobe volume being deter-
mined from Kopal’s formula (5); 4—a similar calculation
but the Roche lobe volume was calculated from Paczyn-
ski’s formula (4). (b) The ratio Θ(δ) of this numerically
determined derivative to the derivative calculated from
Kopal’s formula (5). The equation of state for the matter,
including the polytropic index n, has no effect on these
plots.

of the surface potential with respect to the volume
within the surface used in the formula is shown in
Fig. 3a. It is important to note that although the
Roche lobe radius is determined from formula (5)
(Kopal 1959) with excellent accuracy, when substi-
tuting the corresponding derivative for a spherically
symmetric potential

dΦ
dV

=
1
3

(
4π
3

)1/3 GMtδ

V 4/3
(18)

at the volume equal to the Roche lobe volume cal-
culated from formula (5), the introduced error is ∼
20%(Fig. 3b).Wemay conclude that this uncertainty
in the excess of the sought derivative compared to
its more accurate three-dimensional determination
shown in Fig. 3a is quantitatively not too large. It
is also important that the ratio of the derivatives of
the potential with respect to the volume (found by an
accurate numerical calculation and determined from
the spherization procedure) is essentially constant:
when δ changes over the entire range of interest, i.e.,
from 0.1 to 0.5, this ratio changes from 0.806 to 0.823
(see Fig. 3b). Denoting this ratio by Θ(δ), we obtain
(in dimensional units)

Φs ≈ Θ(δ)
GM1(R1 −RR)

R2
R

(19)

≈ Θ(δ)
GM1(R1 −RR)

R1RR
.

We emphasize once again that in deriving Eq. (19),
we assumed a low degree of Roche lobe overfilling and
a continuity of the derivative of the surface potential
with respect to the volume within the surface when
its values are extended in the case of Roche lobe
overfilling under consideration. It should be noted

that the one-dimensional derivative
dΦ
dx

∣∣∣∣
L1

is zero

at the Lagrangian point L1 by definition and cannot
be used to determine the potential Φs. On the other
hand, there would be little sense in further increasing
the accuracy of expression (19) by solving a self-
consistent problem of the configuration of star 1 in
the Roche potential. Moreover, it would become an
excess of the accuracy relative to the use of the Roche
lobe radius in the previous derivation based on the
spherization of the volume occupied by star 1. Of
course, there is the problem of the assumption of a

continuous derivative
dΦ
dV

∣∣∣∣
L1

being forced, because

we can say nothing certain about the star configura-
tion when the Roche lobe is appreciably overfilled.

Substituting the approximate value ofΦs from (19)
in (17) yields an expression for the total mass fluxF ≡
−Ṁ1,

−Ṁ1 =
a3

GMt
(20)

× nn

Kn(n+ 1)n(n+ 1/2)n+1/2(2n + 3)
ASTRONOMY LETTERS Vol. 28 No. 7 2002



ANALYTIC FORMULAS FOR THE MASS-TRANSFER RATE 471
× 2π√
hy(δ)hz(δ)

×
(
GM1Θ(δ)

R1

)n+3/2(R1 −RR

RR

)n+3/2

.

Next, let us consider simpler models used to
estimate Ṁ1 by Pringle (1985) and Edwards and
Pringle (1987) and compare the above results with
the estimates of these models. These models ignore
the macroscopic flow of gas through L1 and assume
that the gas particles diffuse into a vacuum with the
thermal velocity equal to the local speed of sound. The
density and the speed of sound at L1 are estimated
under the same assumptions as above [see Eq. (6)
and its justification] but with v = 0. In other words,
for thematter atL1, the parameters are assumed to be
the same as those for a point with the same potential
far from L1.
Using Eq. (6) with v = 0, we find that the density

and the speed of sound atL1 (Φ = 0) are related to the
potential Φs of the stellar surface relative to L1:

ρ =
Φn

s

Kn(n+ 1)n
, C =

√
Φs

n
.

Next, following the simplified model under considera-
tion, we assume that the flux nearL1 also has an ellip-
tical cross section determined by the condition that its

specific internal (C2/2) and potential (Φ(P )
s ) energies

being equal at its boundary; hence, the potential of the
flow surface in our estimate is related to the previously
introduced one by

Φ(P )
s =

Φs

2n
.

Since Φs ∝ b2s , i.e., the potential is proportional to
the flow area, the area in this approach is underes-
timated by a factor of 2n (by a factor of 3 for n = 3/2).
Given that the flux per unit area in the estimate of
Pringle (1985) is constant, we find, after integration
over the area, that the total mass flux given by the
simplified model differs from that calculated above
(see (20)) by a factor that depends on n alone:

κ(n) =
(2n + 3)(n + 1/2)n+1/2

4nn+3/2
. (21)

This quantity is shown in Fig. 4a; it is κ(3/2) =
16/9 for the important case of n = 3/2. Given the
roughness of the models under consideration, this
difference cannot be fundamental, although we see
that the simplified model of Pringle (1985) yields an
overestimated mass-transfer rate for any n. Formally,
for absolutely rigid matter, n = 0 (γ = ∞), the factor
κ(n) goes to infinity, yielding an infinite mass-transfer
rate in the simplified estimate. This is because the
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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Fig. 4. (a) The ratio of the mass flux of flowing matter
in the simplified model of Pringle (1985) to its more
accurate estimate (20) [κ(n) introduced in (21)] and (b)
the functionN(n) introduced in (24) versus the polytropic
index of flowing matter n.

speed of sound becomes infinite, giving a physically
meaningless infinite mass flux. A more careful anal-
ysis leading to expression (20) does not have this
drawback, because lim

n→0
nn = 1 < ∞. However, for

physically realistic adiabatic indices γ = 1 + 1/n of
the stellar matter, the two approaches convey the
dependences of the total mass flux on basic physical
binary parameters (the component masses, the binary
size, and the degree of Roche lobe overfilling) in vir-
tually the same way.

To derive the final equation that could be used
in semianalytic models of the CBS evolution, let us
express the entropic constant K in terms of the ra-
diusR1 and massM1 of star 1. This can be done if the
entire star is assumed to be a polytrope with a single
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adiabatic index.1 Then, we have from the standard
formulas for polytropic models

Kn = GnMn−1
1

R3−n
1

R̃(n)
3−n ,

where R̃(n) is the form-factor of the polytrope that
depends on its index alone, which can be found in
standard tables (see, e.g., Chandrasekhar 1939). We
assume that star 1 is stable against collapse, i.e.,
n < 3. Substituting Kn in (20), we write the rela-
tion between the total mass flux in the model under
consideration and the parameters of the mass-losing
star 1 as

−Ṁ1 = 2πG1/2 (22)

× nnR̃(n)
3−n

(n+ 1)n(n+ 1/2)n+1/2(2n + 3)
a3

Mt

× Θ(δ)n+3/2√
hy(δ)hz(δ)

M
5/2
1

R
9/2
1

(
R1 −RR

RR

)n+3/2

.

Dividing the two sides of Eq. (22) by the constant
(in the conservative model of mass transfer under
consideration) total binary mass and using a specified

1Note, however, that we need not make this strong assump-
tion. In contrast to the surface layers of star 1 with a poly-
tropic index n, we could introduce a different polytropic index
n∗ �= n for the entire star, which is implied in the ensuing
relations for the entropic constantK.
expression for the Roche lobe radius ((4) or (5)), we
finally rewrite formula (22) in a form more convenient
for our calculations, namely, as a differential equation
for the variable quantity δ:

δ̇=−2πG1/2M
1/2
t N(n)D(δ)a−3/2

(
RR

R1

)9/2

(23)

×
(
R1 −RR

RR

)n+3/2

.

Here, we use the possibility (illustrated in Fig. 3b)
of substituting the above constant for Θ(δ) ≈ 0.815
with an accuracy sufficient for our analysis and denote
the auxiliary functions by

N(n) =
nnR̃(n)

3−n
0.815n+3/2

(n + 1)n(n+ 1/2)n+1/2(2n+ 3)
(24)

=
0.815n+3/2

4κ(n)
R̃(n)3−n

(n+ 1)nn3/2
,

D(δ) =
δ5/2√

hy(δ)hz(δ)rR(δ)9/2
. (25)

The function N(n) is plotted in Fig. 4b. The plot
of D(δ) obtained after substituting the exact (in the
entire range 0 < δ < 0.5) fit (5) in (25) is shown in
Fig. 5. This plot leads us to conclude thatD(δ) can be
easily fitted with a linear functionD(δ) ≈ 8.5δ, which
is suitable for qualitatively estimating the behavior
of the solution to the equations of the mass-transfer
model under consideration. This is because Θ(δ) ≈
0.815± 0.01 is virtually constant with δ; hy and hz are
only slightly varying functions of δ, and rR(δ) ∝ δ1/3

for moderately large values of the argument [see (4)].

USING THE DERIVED EXPRESSION
FOR THE MASS-TRANSFER RATE
TO ANALYTICALLY MODEL THE CBS

EVOLUTION

Let us calculate the evolution of the radius of a
binary orbit. Assuming that the total binary mass is
conserved and that the angular momentum is lost
through the radiation of gravitational waves alone
(which is of importance for CBSs composed of rel-
ativistic stars, for example, (proto)neutron stars), we
obtain the following equation by using the standard
treatment of the Newtonian dynamics of the motion
of a mass point with a variable mass (see, e.g., Jara-
nowski and Krolak 1992):

da

dt
= −64G3MtM1M2

5c5a3
(26)

− 2a
(M2 −M1)
M1M2

dM1

dt
.
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Here, the first term on the right-hand side describes
the radiation of gravitational waves in the approxima-
tion of two point masses (Peters and Mathews 1963;
Landau and Lifshitz 1973), which carries energy and
angular momentum away from the binary. The sec-
ond term on the right-hand side of Eq. (26) reflects
the effect of mass transfer from star 1 to star 2 on
the rate of change in orbital radius. To describe this
mass transfer, we use a conservative model (Clark
and Eardley 1977) in (26) with the total mass and
total angular momentum of the binary conserved. As
was shown by Blinnikov et al. (1984), this model is
applicable if the time of angular-momentum transfer
from the accretion disk to star 2 is shorter than the
mass-transfer time scale and if, in addition, the mass
and angular momentum of the matter that leaves the
binary through the outer Lagrangian point L2 may be
neglected. It is easy to verify that without allowance
for the effect of gravitational radiation, conservative
mass transfer from the less massive component al-
ways increases the total energy of the binary E =
−GM1M2/2a. This increase can be produced by the
internal energy of hot star 1.
The system of model equations can be simplified

when the radius of star 1 is a function of its mass; the
degree of its Roche lobe overfilling is then determined
by its mass and by the binary radius. Therefore, the
problem can be reduced to solving two ordinary dif-
ferential equations for the relative mass δ of star 1
and the degree of its Roche lobe overfilling, i.e., the
ratio of its radius to the Roche lobe radius. In this
case, the binary radius can be expressed in terms of
these quantities, and the temporal evolution of the
CBS can be easily investigated qualitatively. It is of
interest to carry out such a study of a CBS composed
of relativistic stars, for example, in terms of the sce-
nario for the collapse of a rotating presupernova core
(Imshennik and Nadyozhin 1992; Imshennik 1992,
1995), which, through fragmentation, leads to the
formation of a CBS of protoneutron stars, and to
mass loss by the less massive component down to
the lower limit of NS masses and its explosion as
a collapsing supernova. Our previous study of this
process (Imshennik and Popov 1998) is based on the
equations for the model of mass transfer in a CBS
derived in this paper.
The radius of cool NS 1 (R1) is determined by its

mass alone; thus, it may be assumed to be a function
of δ, which, of course, also depends on the parameter
mt ≡ Mt/M� constant in each calculation. We use
the following formula to calculate R1:

R1 = R0
mβ1

1

(m1 − µ)β2
(27)

(the fit to the results of the calculations by Baym
et al. (1971) and Jaranowski and Krolak (1992)),
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where the basic numerical values of the parameters
areR0 = 7.5 km, β1 = 0.79, β2 = 0.83, µ = 0.09, and
m1 ≡ M1/M�. Note that, first, the relation between
the NS mass and radius in form (27) was derived for
the equation of state for cool NSs; for a more faithful
description of “loose” hot or rotating protoneutron
stars with much lower densities and larger radii, we
must increase R0 possibly to ∼20–30 km (we em-
phasize the need to perform careful calculations of
the protoneutron-star cooling within the first hours
after collapse). Second, this fit correctly conveys the
fact that the NS radius becomes infinite when its
mass decreases to the lower limit of NS masses µ,
approximately equal to 0.09M�. Qualitatively, this is
equivalent to its explosion, obtained, for example, for
a sufficiently rapid decrease in mass in the model of
Blinnikov et al. (1990).2 Of course, the fact that the
radius R1 becomes infinite at m1 = µ has no quan-
titative physical meaning, because this radius for a
NS with a very small excess of its mass above the
critical value is about 200 km (Blinnikov et al. 1990;
Aksenov et al. 1995). Therefore, the “truncation” of
formula (27) must be implied at R1 ≈ 200 km.
Let us determine the function η(δ) ≡

R1/(R0rR(δ)), where R1 and R0 are introduced
in (27) and rR(δ) is specified by formula (5) (or the
simplified formula (4)); the quantity mt appears in
the function η as a parameter. When using expres-
sion (27) to calculate the NS radius and to determine
rR(δ) according to (4), we have:

η(δ) =
δβ1−1/3

0.462 mβ2−β1
t (δ − µ/mt)β2

. (28)

If expression (5) is used to calculate rR, then the
formula for η(δ) appears much more complex, but
the results for δ ≤ 0.4 are virtually the same. Conse-
quently, we can perform numerical calculations using
formula (5) and a qualitative analysis of our main
results using (4).
Denote the quantity that characterizes the degree

of Roche lobe overfilling by ξ = RR/R1. Using the
expression derived from the definition of ξ and η(δ) for

a = R0 ξ η(δ) (29)

and taking into account the definition of rR(δ), we
rewrite Eq. (23) in the new variables ξ and δ:

dδ

dt
= −2πN(n)

√
GM�m

1/2
t

R
3/2
0

(30)

2The exact critical mass of low-mass NSs appears to be
known with an accuracy of no less than 3%; it depends on
the equation of state for neutron matter, on the kinetics of
β processes, and even on general-relativity effects. Its more
accurate value can be slightly higher than the value taken
in the text: 0.095M� (Blinnikov et al. 1990; Aksenov et al.
1995).
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× D(δ)
η(δ)3/2

ξ3

(
1 − ξ

ξ

)n+3/2

.

In the special but physically interesting case n = 3/2,
Eq. (30) is

dδ

dt
= −2πN(3/2)

√
GM�m

1/2
t

R
3/2
0

(31)

× D(δ)
η(δ)3/2

(1 − ξ)3.

Let us now expressM1 andM2 in Eq. (26) in terms of
δ andMt, substitute a from (29) and the derivative of
δ from (30), and, as a result, rewrite Eq. (26) as

dξ

dt
= −64G3M3

�m
3
t

5c5
δ(1 − δ)
R4

0η(δ)4
1
ξ3

(32)

+ ξ

[
2(1 − 2δ)
δ(1 − δ)

+
d ln η(δ)

dδ

]
2πN(n)

√
GM�m

1/2
t

R
3/2
0

× D(δ)
η(δ)3/2

ξ3

(
1 − ξ

ξ

)n+3/2

,

where the logarithmic derivative can be explicitly ex-
pressed from (28) for the fit (4) of the Roche lobe
radius:

d ln η(δ)
dδ

=
β1 − 1/3

δ
− β2

(δ − µ
mt

)
; (33)

for the more accurate fit (5), this derivative is substi-
tuted in (32) numerically.
For an arbitrary polytropic index, Eqs. (30) and (32)

describe the evolution of a CBS of (proto)neutron
stars with gravitational radiation and mass transfer
when the mass fraction of the less massive com-
ponent δ = δ(t) changes from an initial value at
t = 0 δ0 < 0.5 to the critical value δ = µ/mt at some
time t = tf . Formally, Eqs. (30) and (32) form a
system of two differential equations for two unknown
functions δ(t) and ξ(t) with the initial conditions ξ =
1 (mass transfer begins when the radius of star 1
is equal to the Roche lobe radius) and δ = δ0 (δ0
can take on any value between µ/mt and 0.5; in
principle, it must be determined by calculating the
fragmentation of a collapsing rotating presupernova
core). The right-hand sides of these equations depend
in a complicated way both on the function δ—on
which, in turn, depend the given functions η(δ),
d ln η(δ)/dδ, D(δ)—as well as on the function ξ; in
contrast to δ, this latter dependence is explicit only.
The given constant quantities R0 and Mt (it is more
convenient to use the dimensionless total mass mt),
as well as the world constants G and c, appear
on the right-hand sides as dimensional parameters.
In addition, N(n) (a dimensionless function of the
polytropic index n which appears in the second term
of Eq. (32)) enters into the right-hand side of Eq. (30).
It may be noted that in the important special case
of n = 3/2, it isN(3/2) = 0.0378.3

CONCLUSIONS

The dynamics of a binary star system is known to
be completely determined by the specification of three
parameters, for example, the total mass of the binary
(Mt), the orbital radius (a), and the component-mass
ratio (δ/(1 − δ)), provided that the components are in
a circular orbit (in the Newtonian approximation of
gravitational interaction for point masses). If the total
mass of the binary is conserved (here, we considered
conservative mass transfer), then two parameters are
required to determine the binary dynamics. Therefore,
it is easy to understand why describing the CBS
evolution reduces to solving the two differential equa-
tions (30) and (32) that were derived under certain
simplifying assumptions described in detail above. In
this case, it should certainly be borne in mind that the
radius R1 of the mass-losing component is assumed
to be uniquely related to its mass. Indeed, mass trans-
fer includes an additional evolutionary parameter, the
degree of Roche lobe overfilling ξ = ξ(t): Apart from
the mass fraction of the less massive component δ =
δ(t), the latter characterizes the binary evolution and
can be expressed, by definition, in terms of the ra-
dius R1.
The derived system of ordinary differential equa-

tions (30) and (32) allows us to perform qualitative
and quantitative analysis of the CBS evolution, which
was previously carried out for a binary system of pro-
toneutron stars (Imshennik and Popov 1998). It can
also be used to model other CBSs (primarily those

3When using a similar model in our previous paper (Imshen-
nik and Popov 1998), where we numerically solved the above
system of Eqs. (30) and (32) and applied our results to
qualitatively model the evolution of a CBS of protoneutron
stars, we used a simplified procedure for determining the
relationship between Φs and the degree of Roche lobe over-
filling, which essentially implied setting Θ(δ) equal to unity.
As a result,N(n)was calculatedwith an error approximately
equal to 0.815n+3/2 ; for the important special case of n =
3/2, N(n) was overestimated by a factor of 1.85. How-
ever, our calculations with a refined N(n) confirm our main
conclusions (Imshennik and Popov 1998). This is because
such a refinement decreases the mass-transfer rate for a
given degree of Roche lobe overfilling, for example, by only
a factor of 2 for n = 3/2, leaving the model evolution close
to the limiting case of finite mass transfer for infinitesimal
Roche lobe overfilling considered previously (Imshennik and
Popov 1996). In this case, it proved to be possible to analyti-
cally obtain the major predicted observational manifestations
of the evolution of a CBS composed of (proto)neutron stars.
This suggestion can be easily checked by numerically solving
the system of Eqs. (30) and (32).
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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composed of relativistic stars). This analysis makes
it possible to qualitatively estimate the effect of basic
physical binary parameters on the CBS evolution and
can be used in combination with more detailed nu-
merical simulations of the evolution.
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Abstract—We discuss the possibility of elements heavier than iron being produced in the cooling central
part of a low-mass supernova remnant in terms of a consistent kinetic model that incorporates reactions
with neutrons, protons, α particles and β decay. We show that at typical density (∼109 g cm−3) and
temperature (∼5 × 109), chemical elements with atomic masses up to A ∼ 130 can be produced not
only in the classical r-process but also through a consistent allowance for β decay in nuclear-equilibrium
calculations in a medium with a large neutron excess. The chemical elements from iron to nuclides with
masses A ∼ 130 can be produced under these conditions, which makes up for a deficit in the yields of
chemical elements in current models for the r-process. If the initial neutron excess is large (η0 ≥ 0.4),
then the nuclear equilibrium will be disturbed during matter expansion, and a decrease in temperature
and the dynamical process of rapid nucleosynthesis can take place. For this nucleosynthesis scenario, the
production of chemical elements from iron to uranium is probable even at low initial neutron densities.
c© 2002 MAIK “Nauka/Interperiodica”.

Key words: nuclear astrophysics, nucleosynthesis; supernovae and supernova remnants
INTRODUCTION

Heavy nuclei beyond the iron peak are known
to be produced in nature mainly through neutron-
capture reactions (Burbidge et al. 1957). Analysis of
the Solar-system abundance curve (Cameron 1982)
shows that elements heavier than iron are synthe-
sized under the action of neutrons in two different
processes characterized by different conditions. The
first (s) process takes place when the rates of β decay
are much higher than the rates of (n, γ) reactions:
λβ � λnγ (for neutron densities nn ∼ 1016 cm−3 ).
The mechanism of the s-process is well understood
(Käppeler et al. 1989). The second (r) process takes
place under conditions of high neutron densities and
temperatures such that λβ � λnγ ; the nuclei involved
in such nucleosynthesis have a large neutron excess
and a short lifetime. The numerous studies of this
process carried out in the past 40 years clearly re-
vealed the conditions required for heavy nuclei to be
synthesized (see, e.g., Käppeler et al. (1998) and
references therein). However, the detailed scenario for
the r-process is not yet completely understood.

Over the period of studying the r-process, more
than ten scenarios (see, e.g., Mathews and Cowan

*E-mail: Igor.Panov@itep.ru
1063-7737/02/2807-0476$22.00 c©
1990) have been proposed for this process, in-
cluding an explosion on the neutron-star surface
(Bisnovatyi-Kogan and Chechetkin 1979), a collision
of a neutron star with a black hole (Lattimer and
Schramm 1976), and an explosion of a low-mass
neutron star (Imshennik 1992). The conditions typ-
ical of the r-process can be achieved, in particular,
during type II supernova explosions, for example, for
high-mass stars in the model with an artificial piston
(Hillebrandt 1978; Woosley and Hoffman 1992).
The conditions required for the r-process are also
achieved during neutron-star mergers (Lattimer and
Schramm 1974; Symbalisty and Schramm 1982;
Freiburghaus et al. 1999a). In this scenario, however,
some of the physical parameters are also model-
dependent.

As was mentioned above, the details of the mech-
anism for the formation of conditions for the r-
process are not yet clear, but in recent years, sub-
stantial progress has been made in this problem. The
yields of elements obtained in r-process calculations
(Freiburghaus et al. 1999b) and observations of old
stars (Sneden et al. 2000) show that there are at least
two groups of physical scenarios for the r-process
(Wasserburg et al. 1996; Qian et al. 1998). The
first group (where the main r-process is realized)
assumes the production of chemical elements with
2002 MAIK “Nauka/Interperiodica”
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atomic masses A > 120. The necessary conditions
can be obtained both in the scenario of supernova-
shell ejection by a hot neutrino wind (Woosley and
Hoffman 1992; Takahashi et al. 1994) and during
neutron-star mergers (Rosswog et al. 1999). The
scenario for the production of elements heavier than
iron with atomic masses 60 < A < 120 (an addi-
tional r-process) is not yet clear. There are several
models: the helium-flash model (Hillebrandt and
Thielemann 1977; Truran et al. 1978), the model of
rapid nucleosynthesis induced by a neutrino pulse
from a collapsing supernova (Epstein et al. 1988;
Nadyozhin et al. 1998), and the model for the
production of r-elements in the central region of
a low-mass type-I supernova with a large neutron
excess η = (N − Z)/A and, accordingly, with low
Ye = (1 − η)/2 (Hillebrandt et al. 1984; Ptitsyn and
Chechetkin 1982; Wheeler et al. 1998) during the de-
flagration burning of a CO core discussed by Ptitsyn
and Chechetkin (1982) and Panov et al. (1995).

In our view, elements with atomic masses 60 <
A < 120 are produced during an explosion of a low-
mass supernova not only through (n, γ) reactions but
also through other reactions with protons and α par-
ticles (at least during the initial stage). Therefore,
we often use the term rapid nucleosynthesis rather
than the r-process (Panov and Nadyozhin 1999).
Under actual conditions of the initial stage of the sce-
nario under consideration (at high temperatures and
densities), nucleosynthesis proceeds mainly through
charged-particle reactions. As the temperature and
density decrease and as the charged-particle reac-
tions decrease in importance, such nucleosynthesis
gradually transforms into the dynamical r-process in
the presence of a sufficient number of free neutrons.
The production of some of the heavy nuclei (Z >
26) before the onset of the r-process significantly
relaxes the requirements both on the neutron source
(a smaller number of free neutrons is required) and on
the seed nuclei (they are formed in charged-particle
reactions). In the scenarios for the r-process devel-
oped in recent years, rapid nucleosynthesis begins
immediately after the formation of seed nuclei in the
α process (Woosley and Hoffman 1992) during an ex-
plosion of a high-mass supernova or during neutron-
star mergers (Rosswog et al. 1999). In the above pa-
pers, the α- and r-processes are modeled separately,
in terms of various mathematical models and codes,
which imposes certain constraints on the physical
models in the range of solution-joining parameters.
Thus, in particular, when modeling the r-process in
terms of a unified nucleosynthesis model, the problem
of a correct allowance for the absorption of neutrons
by light elements—“poisons” with a large neutron
capture cross section—can arise.
ASTRONOMY LETTERS Vol. 28 No. 7 2002
Since the new scenarios (see above) for rapid nu-
cleosynthesis suggest a significant role of charged
particles in producing heavy elements, such nucle-
osynthesis cannot be reliably analyzed in the waiting
point approximation or the approximation of nuclear
statistical equilibrium. A consistent investigation of
rapid nucleosynthesis requires a full reaction net-
work that, apart from neutron reactions, incorpo-
rates charged-particle reactions and that allows one
to determine the effect of charged particles on rapid
nucleosynthesis under any of the conditions obtained
in evolutionary models in those cases where this effect
is significant and to determine these conditions. In
addition, by analyzing rapid nucleosynthesis in terms
of a single model over a wide temperature range and
with various nuclear reaction channels being auto-
matically switched on and off, we can avoid simplify-
ing the physics of the phenomenon when solving the
problem under consideration.

THE PRODUCTION OF CHEMICAL
ELEMENTS FROM IRON TO XENON

Model r-process calculations satisfactorily repro-
duce the observed heavy-element abundance curve
(Käppeler et al. 1998; Witti et al. 1993; Woosley
et al. 1994; Freiburghaus et al. 1999b; Blinnikov and
Panov 1996). However, in nucleosynthesis calcula-
tions for specific scenarios, such as a supernova ex-
plosion or a neutron-star merger, there is virtually no
yield of heavy elements with A < 120 (Freiburghaus
et al. 1999a). Therefore, of interest are the r-process
models in which the nucleosynthesis conditions are
not sufficient for the main r-process to proceed but
which are suitable for the additional r-process re-
sponsible for the synthesis of elements with 70 < A <
120. Without purporting to comprehensively review
such models, we briefly consider three likely scenarios
for the additional r-process.

(1) The helium-flash model proposed a quarter
of a century ago (Hillebrandt and Thielemann 1977;
Truran et al. 1978) assumes that an incomplete (ad-
ditional) r-process takes place when a shock wave
passes through the helium shell of a supernova with a
mass of ∼10M�. Through the heating of the medium
behind the shock front, neutrons are intensively pro-
duced in the 18O(α, n)21Ne and 22Ne(α, n)25Mg re-
actions and the r-process can begin on the seed
nuclei formed in the s-process and in equilibrium
nucleosynthesis. It was assumed (because no detailed
calculations were performed) that, depending on the
details of the scenario, the yield of r-elements could
be in good agreement with observations.

(2) For supernovae with massesM > 8M�, whose
explosions are accompanied by core collapse with the
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emission of an intense neutrino impulse, rapid nu-
cleosynthesis in the supernova shell can be triggered
by the neutrinos produced during the collapse of the
internal stellar shells. In particular, as was shown
by Epstein et al. (1988), the neutrino scattering
by helium nuclei followed by their breakup can give
rise to the source of the neutrons required for the r-
process.

This model was considered in detail by Nadyozhin
et al. (1998) and Panov and Nadyozhin (1999). They
showed that the r-process in low-metallicity stars
with masses M ≤ 15M� could produce chemical el-
ements with atomic masses 80 < A < 120.

(3) Yet another schematic model (Ptitsyn and
Chechetkin 1982), when worked out in detail, could
give a realistic scenario for the additional r-process.
Here, it should be noted that the above authors
were perhaps the first to pay attention (although
incompletely) to the role of protons in producing
seed nuclei in the r-process. The explosion model
of a type I supernova with a CO core (Ivanova et
al. 1977; Chechetkin et al. 1980) forms the basis
for the scenario under consideration. In this model,
through the total breakup of the star, the matter of its
central region with a high neutron excess (Ye ≤ 0.3)
is ejected into outer space. In this neutronized matter,
the conditions needed for the r-process to begin and
proceed can be achieved.

As calculations show, the conditions created dur-
ing explosions of such low-mass stars are suitable for
the production of elements between the first and sec-
ond peaks on the abundance curve through charged-
particle reactions and, in several cases, are also suf-
ficient for the production of heavier elements up to
A ∼ 196. At the onset of explosion, much of the mat-
ter consists of iron-peak nuclei in equilibrium. As
the layers of a low-mass star expand (see Ivanova
et al. (1983) for details) and as the matter cools to
below a temperature of ∼6 × 109 K, the equilibrium
conditions are violated and the conditions for the syn-
thesis of elements heavier than iron with A > 80 can
be realized in the presence of a sufficient number of
neutrons.

To estimate these conditions, Panov et al. (1995)
and Blinnikov et al. (1995) developed a model of the
r-process that incorporates the (γ, p) and (p, γ) re-
actions in which the conditions necessary for the the
r-process to begin are formed in the ejected shells
of type Ia supernovae. When the temperature is high
enough (T > 2 × 109 K), the (p, n) and (n, p) reac-
tions and the reactions involvingα particles cannot be
ignored. Therefore, the results of Panov et al. (1995)
and Blinnikov et al. (1995), who, like Ptitsyn and
Chechetkin (1982), took into account the (p, γ) and
(γ, p) reactions alone in addition to reactions with
neutrons and β decay, were only preliminary: as was
shown recently (Panov and Nadyozhin 1999), the role
of reactions with α particles can also be prominent,
particularly if there are a sufficient number of free
α particles, for example, in the helium shell.

A self-consistent solution of the nucleosynthesis
problem under astrophysical conditions is known to
require that the scenarios for the r-process leading to
the production of heavy elements in the reactions of
rapid neutron capture by nuclei correspond to stellar
evolutionary models that determine the conditions for
the r-process to proceed. In particular, one of the
weak points in the available models for the production
of heavy elements is the absence of conditions under
which a high density of neutrons and the density of
seed nuclei required for the r-process are reached
simultaneously. Usually, in the models under consid-
eration, either the seed nuclei are too few in number
and are rapidly depleted or the number of neutrons per
seed nucleus is insufficient for the synthesis of heavy
elements. Thus, apart from the conditions necessary
for the r-process to proceed (temperatures, densities,
neutron number densities), it is necessary to find the
production sources of neutrons and seed nuclei.

A possible solution for the above problem, at least
for nuclei near the first and second peaks on the
abundance curve, was pointed out by Ptitsyn and
Chechetkin (1982). For the possible initial condi-
tions of the r-process they suggested conditions
close to the equilibrium ones but with an enhanced
degree of matter neutronization (the r-process un-
der these conditions was called the rbc-process).
Under the physical conditions typical of the rbc-
process, two groups of nuclei can exist (Ptitsyn
and Chechetkin 1982). The first group with Z <
Z∗ (where λγp ∼ λpγ and λγn ∼ λnγ ) is the most
abundant group of nuclei being produced in the e-
process and forming a maximum of the equilibrium
distribution. For the other, less abundant group of
nuclei with Z > Z∗ (where λγp ∼ λβ), the condition
of detailed balance is no longer satisfied for the
reactions with neutrons, protons, and α-particles (at
λβ ≥ λnγ). The equilibriumnumber densities n(A,Z)
break down, resulting in the formation of new nuclei
with larger Z:

(A + 1, Z) → (A + 1, Z + 1) + e− + ν̃.

Panov et al. (1995) formulated the problem in
more detail, and Blinnikov et al. (1995) began to in-
vestigate this problem in terms of a consistent kinetic
model developed to solve nucleosynthesis problems
(Blinnikov and Panov 1996). However, these authors
did not take into account the many reactions with α-
particles that must play a significant role in the sce-
nario for the explosion of a star and for the production
of new nuclei under consideration either.
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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Here, we bridge the gap for reactions with protons
and α-particles, study the dependence of the results
on the neutronization of the initial medium, and de-
termine the mechanism for the production of chemical
elements with 80 < A < 130 for specific conditions
(T ∼ 5 × 109, ρ ∼ 109 g cm−3).

The present calculations differ from our previous
calculations, in particular, by more complete and ac-
curate nuclear data. More specifically, a common ap-
proach combining experimental data (where possible)
with consistent theoretical reaction-rate calculations
(see Cowan et al. (1991) for pair reactions and Kratz
et al. (1993) for β decay) was used to calculate
the neutron cross sections (for detailed references on
nuclear data, see, e.g., Panov et al. (2001b)). The
principal difference between the present and previous
calculations is that the yield of elements withA > 130
is much smaller than that in the calculations of Panov
et al. (1995) and Blinnikov et al. (1995). It is deter-
mined mainly by allowance for all principal reactions
and by new nuclear data, in particular, by a more
realistic mass formula (Hilf et al. 1976), which gives
a considerably smaller number of existing isotopes for
elements with Z > 50.

In addition, we analyze the edge effect that was
disregarded previously (Panov et al. 1995; Blinnikov
et al. 1995). In the above papers, because of an in-
complete data bank for the charged-particle reaction
rates (only forZ < 45), the (p,X) reactions produced
a leak of matter from the equilibrium range (Z < 45)
into the range where only the reactions with neutrons
and β decay (Z > 45) were taken into account.

THE MODEL AND THE SYSTEM
OF EQUATIONS

Thus, we consider the conditions that arise during
the explosion and breakup of a low-mass superno-
va with a CO core. As was shown by Imshennik
et al. (1999), no detonation takes place in the de-
generate matter in the central region. Therefore, the
burning proceeds in deflagration regime, which pro-
vides a high degree of matter neutronization and a low
entropy before the total breakup of the stellar core.

At the onset of explosion, much of the matter
consists of iron-peak nuclei in equilibrium with the
following typical initial temperatures and densities:
T 0

9 ≈ 5 (T9 ≡ T/109 K) and ρ0 ≈ 1× 109 g cm−3. As
the stellar layers expand and cool down below a tem-
perature of (5–6) × 109 K, the equilibrium conditions
are violated, the effect of β decay shows up, and the
conditions for the synthesis of elements heavier than
iron with A > 80 are created.

As the initial time (t = 0) we choose the time
that corresponds to the expansion and cooling of
ASTRONOMY LETTERS Vol. 28 No. 7 2002
the supernova remnants; since our prime objective
was to elucidate the behavior and role of β decay in
the synthesis of elements for the conditions under
consideration, the detailed astrophysical scenario is
unimportant. For simplicity, we disregarded the tem-
poral variations in temperature and density in most
of our calculations and considered only the effect of
a neutron excess in the initial matter on the mass
distribution of the forming nuclei.

In our calculations, we used a previously developed
(Blinnikov and Panov 1996; Nadyozhin et al. 1998)
kinetic model of nucleosynthesis in which the change
in the fraction YA,Z of each nuclide (A,Z) was de-
scribed by the differential equation

dYA,Z/dt = −λβ(A,Z)YA,Z (1)

− λnγ(A,Z)YA,Z + λnγ(A− 1, Z)YA−1,Z

− λγn(A,Z)YA,Z + λγn(A + 1, Z)YA+1,Z

− λpγ(A,Z)YA,Z + λγp(A + 1, Z + 1)YA+1,Z+1

− λγp(A,Z)YA,Z + λpγ(A− 1, Z − 1)YA−1,Z−1

− λαγ(A,Z)YA,Z + λγα(A + 4, Z + 2)YA+4,Z+2

− λγα(A,Z)YA,Z + λαγ(A− 4, Z − 2)YA−4,Z−2

− λnp(A,Z)YA,Z + λnp(A,Z + 1)YA,Z+1

− λpn(A,Z)YA,Z + λpn(A,Z − 1)YA,Z−1

− λpα(A,Z)YA,Z + λαp(A− 3, Z − 1)YA−3,Z−1

− λαp(A,Z)YA,Z + λpα(A + 3, Z + 1)YA+3,Z+1

+ λαn(A− 3, Z − 2)YA−3,Z−2 − λαn(A,Z)YA,Z

− λnα(A,Z)YA,Z + λnα(A + 3, Z + 2)YA+3,Z+2

+ λνe(A,Z − 1)YA,Z−1 − λνe(A,Z)YA,Z

+
∑

k=0,1,2,3

λβ(A + k,Z − 1)

× Pk(A + k,Z − 1)YA+k,Z−1,

where λ specify the rates of various processes. For
β decay,

λβ(A,Z) = ln 2/T1/2(A,Z).

For two-particle (i, j) reactions,

λij(A,Z) = Yi(t)ρ(t)NA〈σij(A,Z)v〉,
where i = n, p, α and j = n, p, α, γ.

The rates of reverse photodissociation reactions
λγi were determined via the rates of direct (i, γ) re-
actions (Fowler and Hoyle 1967):

λγi(A,Z) = Ci
AZNA〈σiγ(A−Ai, Z − Zi)v〉,

where

Ci
AZ = 0.987 × 1010 gigA−Ai,Z−Zi

gA,Z
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×
[
Ai(A−Ai)

A
T9

]3/2

exp
(
−Qiγ

11.605
T9

)
g cm−3,

Ai = 1, 1, 4, Zi = 0, 1, 2, and gi = 2, 2, 1 for n, p and
α, respectively, and Qiγ is the energy (in MeV) re-
leased in the corresponding direct (n, γ)-, (p, γ)-, and
(α, γ)-reactions: (A−Ai, Z − Zi) + i → (A,Z) +
γ + Qiγ .

The fractions of neutrons, protons, and α parti-
cles are described by the following kinetic equations,
which must be solved simultaneously with system (1):

dYn/dt = −
∑
Z

∑
A

[λnγ − λγn + λnp − λpn (2)

+ λnα − λαn −
∑

k=1,2,3

kλβ(A,Z)Pk(A,Z)]YA,Z ,

dYp/dt = −
∑
Z

∑
A

(λpγ − λγp + λpα

− λαp + λpn − λnp)YA,Z ,

dYα/dt = −
∑
Z

∑
A

(λαγ − λγα + λαp + λαn

− λnα − λpα)YA,Z ,

where

YA,Z =
n(A,Z)
ρNA

, Yn =
nn

ρNA
, (3)

Yp =
np

ρNA
, Yα =

nα

ρNA
.

Compared to the equations presented by Blinnikov
and Panov (1996) and Nadezhin et al. (1998), the
system of Eqs. (1) and (2) contain the additional
terms that describe the reactions involving α particles
(as in the paper by Panov and Nadyozhin (1999)).

In contrast to the calculations of Nadezhin et al.
(1998), we take into account the emission of one,
two, and three delayed neutrons in Eq. (1): P0 + P1 +
P2 + P3 = 1, where P0 is the probability of β decay
without any emission of delayed neutrons, and P1,
P2, P3 are the emission probabilities of one, two, and
three neutrons after β decay, respectively.

The total number of nuclides and, hence, of
Eqs. (1) for nucleosynthesis calculations generally
depends on the choice of boundary conditions; here,
the number is ∼ 3000. We specified the boundary
conditions for the range of nuclei in which nucleosyn-
thesis was modeled as follows: Zmin = 6 (carbon)
and Zmax = 82 (lead); the minimum and maximum
A for each Z were specified by the boundaries of
neutron and proton stability, which were determined
from the mass formula. The nuclear masses used
were obtained by Kratz et al. (1993) with allowance
for Coulomb corrections and with a more accurate
allowance for pairing effects (Möller and Nix 1992)
compared to other mass formulas. The range with the
magic number of neutronsN = 82, where the masses
from Hilf et al. (1976) were used, constituted an
exception (for more details, see Kratz et al. (1993)).

The (n, γ)-reaction rates, as well as the pho-
todissociation reaction rates, were taken mainly from
Thielemann et al. (1987) and Cowan et al. (1991).
The mass relations and β-decay rates (when no ex-
perimental data were available), as with the emission
probabilities of delayed neutrons, were determined
from predictions of the QRPA model described in
detail by Möller et al. (1997). For Z < 46, the rates of
reactions with protons andα particles were calculated
by using NA〈σv〉 taken from the data library of
Thielemann et al. (1987) and supplemented for Z >
46 with the reaction rates calculated in terms of the
same formalism by Rauscher and Thielemann (2000).

Note that of the weak processes, we considered
only β decay. Although the temperature is significant,
β decay was considered only from the ground state of
atomic nuclei.

The electron and positron captures that cause the
neutron excess to change were not considered either.
It is clear from available estimates of the rates of
these processes (Martinez-Pinedo et al. 2000) that
the reaction of electron capture by a proton has the
maximum reaction rate among the processes listed
above. In our case, however, the proton density is
low, and on actual nucleosynthesis time scales (0.1–
1 s), although the results of our calculations may be
sensitive to allowance for this process, this process
will not cause any appreciable change in the results
(and conclusions).

The pair production cross section at T9 = 5 is
small; accordingly, the positron density is much lower
than the electron density (Fowler and Hoyle 1967).
The positron-capture reaction rate is ∼10−3 s−1

(Lang 1978), i.e., it is small and appreciably less than
the rate of β decay. In addition, since the number
of free protons is two to three orders of magnitude
smaller than that of neutrons, the increase in the
number of neutrons is negligible, even at an appre-
ciable positron density. However, if this increase took
place, an increase in the density of free neutrons could
only enhance the production of heavier elements as
the degree of initial neutronization of the medium (η0)
increases. For the same reasons, the positron capture
by nuclei may also be ignored.

As regards the possible effect of electron capture
by nuclei with decreasing Z and decelerating nucle-
osynthesis, its magnitude is small for the following
reasons. First, the nuclei at such a temperature (T9 =
5) are devoid of electron shells, and, therefore, no
к captute takes place. Second, the electron-capture
rate significantly decreases with increasing neutron
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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excess (see, e.g., Thielemann et al. 1986) and, hence,
it is small and much less than the rate of β decay for
the neutron-rich nuclei under consideration.

Here, it should also be noted that currently avail-
able calculations of the rates for weak processes in
terms of the shell model for the nucleus (Martinez-
Pinedo et al. 2000) show that their values are much
lower than those calculated previously (Fuller et al.
1985), which can change the results of collapse cal-
culations.

RESULTS OF CALCULATIONS

In a series of calculations based on the kinetic
model described above, we investigated the nucle-
osynthesis near the iron peak by taking into account
the reactions with neutrons, protons, and β decay at
T9 = 5 and ρ = 109 g cm−3 characteristic of type Ia
supernovae.

As the initial conditions for nucleosynthesis we
chose either the distribution of nuclei in A and Z
derived in the approximation of nuclear statistical
equilibrium (Panov et al. 2001b) or one most abun-
dant nucleus (which had virtually no effect on the final
results) with the corresponding neutron excess η0.

First, we checked the effect of incompleteness
of the nuclear data (in our case, the reaction rates)
on the yields of elements in nucleosynthesis. Our
calculations were performed both using the previ-
ously incomplete library of nuclear reaction rates
(Fig. 1) and with a fully consistent nuclear data library
(Fig. 2). Figure 3 shows the edge effect when the rates
of charged-particle reactions for nuclei with Z >
45 at η0 = 0.26 are disregarded. For η0 < 0.22, the
results differ only slightly. However, as we see from
Figs. 1–3, for an initial neutron excess η0 ≥ 0.24,
new isotopes with A ≥ 130 are produced through the
edge effect caused by incompleteness of the bank
of charged-particle reaction rates, an effect which
leads to the artificial formation of two regions: in one
region, an equilibrium disturbed by a weak leak of
matter through β decay into the region with Z > 45
is established; and in the other region with Z > 45,
the charged-particle reactions are frozen and the
r-process proceeds. Therefore, for an appreciable
neutron excess (η0 ≥ 0.24), the edge effect shows up
clearly, and nucleosynthesis calculations at temper-
atures T9 > 1.5 must be carried out (as was pointed
out by Panov and Nadezhin (1999)) by taking into
account the reactions of charged particles with all
isotopes involved in nucleosynthesis.

The calculated mass distribution of chemical ele-
ments as a function of the neutron excess is shown
in Fig. 2. In our calculations, we used nuclear data
for isotopes with Z < 46 (Thielemann et al. 1987)
and Z ≥ 46 (Rauscher and Thielemann 2000). We
ASTRONOMY LETTERS Vol. 28 No. 7 2002
see from the figure that as the initial neutron excess
increases in the equilibrium distribution, the yield of
heavy elements increases, the fraction of light ele-
ments decreases, and a high fraction of nuclei with
atomic masses ∼130 is formed at η0 ≥ 0.25; i.e., a
significant number of nuclides with atomic masses ∼
80, 130 can be produced even before the onset of rapid
nucleosynthesis. Even for a sufficiently long exposure
(τ = 2 s), when η becomes<0.2, the yield of elements
with A ≈ 100–130 remains high. What actually hap-
pens when β decay is taken into account (Fig. 4) if
the conditions under consideration (temperature and
density) are kept constant for a long time: τNSE �
τβ , where τβ is the time scale of β decay for the most
abundant nuclei? With the passage of time, β decay
causes the neutron excess to decrease, and other
reactions, such as the (n, α), (n, p), and photonuclear
reactions, preventing the production of new nuclei
with atomic masses >130, successfully compete with
neutron capture. As a result, as the neutrons are
depleted and the neutron excess decreases with time,
the fractions of nuclei with A ∼ 80, 130 remain on the
same order of magnitude; the yield of nuclei with 80 <
A < 130 decreases by several orders of magnitude;
and the yield of nuclei with A < 80 increases. Thus,
the yields of isotopes under the conditions in question
are determined mainly by equilibrium nucleosynthe-
sis. However, for an appreciable nucleosynthesis du-
ration at a high temperature (in our case, at T9 ≈ 5)
of τ ≥ 0.5 s, the abundance peak from the position
A ∼ 120 shifts to A ∼ 130 because of the change in
neutron excess η of the medium through β decay
(Fig. 5) and, as a result, in equilibrium.

For η0 < 0.25, β decay causes the neutron excess
η to decrease for a sufficiently long maintenance of the
process (t � τβ). Accordingly, the isotopic composi-
tion smoothly changes (with time) as the yield of ele-
ments with 90 < A < 120 decrease and the fractions
YA increase for A < 70.

If, however, the temperature decreases by several
times and the neutron density is still high enough
(Nn > 1024), then a successful r-process is possi-
ble on the basis of the already formed peaks with
A ∼ 80, 130. It requires a much smaller number of
neutrons than the classical r-process, which starts in
the range of iron-peak elements. This is clearly seen
in Fig. 1 from Lyutostanskii and Panov (1988) and in
Figs. 2 and 3 from Lyutostanskii et al. (1985). These
figures illustrate the velocity of the nucleosynthesis
wave, from which it is clear that the formation time
of the third peak on the abundance curve is much
shorter than the formation time of the second peak.

Note that the degree of initial matter neutron-
ization is of crucial importance in the production of
nuclei with A ∼ 130. Thus, as the neutron excess de-
creases with expanding and cooling matter, the peak
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Fig. 1. Calculated mass fractions of the chemical elements produced at T9 = 5.0 and ρ = 2 × 109 g cm−3 as a function of the
initial neutron excess: (1) η0 = 0.26; (2) η0 = 0.24; (3) η0 = 0.22. The initial composition—Fe and neutrons; the charged-
particle reactions were taken into account for all nuclei with Z < 45 (Thielemann et al. 1987). The duration of the calculations
is τ = 2 s.
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Fig. 2. Same as Fig. 1 but the charged-particle reactions were taken into account up to the nuclei with Z < 74 (Rauscher and
Thielemann 2000). The initial values of η0 are indicated near the curves.
at A ∼ 130 disappears for η0 < 0.25 and is preserved
for η0 > 0.25 (see Fig. 6). As regards the fission pro-
cesses, they can also contribute in several cases to the
formation of the second peak (Panov et al. 2001a).
Nevertheless, this contribution is apparently minor,
except for the cases where the time it takes for the
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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Fig. 3. The calculated yields of elements for η0 = 0.26 as a function of the range in which the charged-particle reactions are
taken into account. (1) The calculated the rates with charged particles based on data from Thielemann et al. (1987); (2) the
rates for elements with Z > 45 were taken from Rauscher and Thielemann (2000). The initial conditions are the same as in our
previous calculations (Figs. 1 and 2).
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Fig. 4. The mass distribution of isotopes versus nucleosynthesis duration τ for the initial neutron excess η0 = 0.26 (the
nucleosynthesis time, in seconds, is indicated near the curves). 1—τ = 0.1 s, 2—τ = 0.5 s, 3—τ = 10 s.
nucleosynthesis wave to move from the second peak
to the fission region is much shorter than the duration
of the r-process (Lyutostanskii et al. 1986).

Let us consider an approximate qualitative model
ASTRONOMY LETTERS Vol. 28 No. 7 2002
for the change in temperature: T9 = 5 at τ ≤ 0.1 s;

subsequently, the temperature abruptly decreases to

T9 = 1 at τ > 0.1 s and remains constant for τ =
10 s. If η0 = 0.25, then the number of neutrons is
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Fig. 5. The yields of elements of different masses as a
function of β decay when calculating the nucleosynthesis
in a medium with the initial neutron excess η0 = 0.26: (1)
the calculation without β decay, (2) with β decay.

not enough for a successful r-process (Fig. 7). If,
however, η0 = 0.40, then the number of neutrons is
enough for heavier elements to be produced (Fig. 8).

Thus, our results can be formulated as follows:
(1) Our nucleosynthesis calculations with a com-

plete library of nuclear reaction rates (including the
reactions not only with neutrons and β decay but
also with charged particles) and with a consistent
approach to determining all nuclear data show that, at
least for the conditions under consideration (T9 ≈ 5,
ρ = 109 g cm−3, η0 > 0.25), chemical elements are
produced up to the peak at A ∼ 130, and no heavier
isotopes are produced, despite allowance for β decay
and the high initial density of free neutrons.

(2) As the neutron excess rises, the yield of ele-
ments with A > 80 in the matter increases signifi-
cantly. However, the neutron excess decreases with
time through β decay, the density of free neutrons
drops, and the nucleosynthesis terminates; the pro-
duced isotopes with mass A pass from the neutron-
rich region to the region of long-lived isotopes with
larger Z. If the initial value η0 < 0.25, then elements
with A > 100 burn out with decreasing neutron flux;
if, alternatively, the initial value η0 > 0.25, then a high
yield of elements with A ∼ 130 is preserved.

(3) When the temperature drops below T9 = 5, the
charged-particle reactions decrease sharply in impor-
tance. This occurs not only because of the reduction
in reaction rates but primarily because of the decrease
in the density of protons and α-particles by several
orders of magnitude. As a result, the neutrons are
rapidly absorbed and the production of new nuclei
heavier than A ∼ 80 decelerates sharply.
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Fig. 6. The production dynamics of nuclides with atomic
masses A ∼ 130 and a change in the number density
of free neutrons for various initial neutron excesses: (1)
η0 = 0.24, (2) η0 = 0.26.

(4) As was assumed by Ptitsyn and Chechetkin
(1982) and Panov et al. (1995), an enhanced neu-
tronization of the expanding matter can give rise to a
broad (in mass) spectrum of new nuclei; the isotopes
up to A ≈ 120 are produced through strong and elec-
tromagnetic interactions, while the elements of the
peak at A ∼ 130 are formed later, after an equilibrium
in charged-particle reactions is established on time
scales t > 0.01 s through β decay, which causes a
decrease in neutron excess and a displacement of
the equilibrium to the region of long-lived and stable
nuclei. At a large neutron excess (T9 = 5, 0.19 <
η0 < 0.3), the r-process will not proceed even if the
temperature decreases, because the fraction of free
neutrons is too small.

(5) When an even larger number of free neutrons
emerge (η0 ≥ 0.3), the r-process can be realized even
with a large number of seed nuclei, such that the n/Fe
ratio is small (< 1). This means that during the ex-
plosion and breakup of a low-mass type I supernova,
the same conditions as, for example, during neutron-
star mergers (Rosswog et al. 1999), where part of
the neutron-rich, dense and hot matter is ejected
into the ambient medium, can arise. If the cooling
time from T9 ∼ 5 to T9 ∼ 1.5 is short (∼0.1 s), then
the starting conditions for rapid nucleosynthesis dur-
ing the cooling to the temperatures typical of the r-
process can be close to the ideal ones: there are a large
number of seed nuclei with masses from 80 to 130,
and the number of free neutrons is still large enough
for some of the nuclei to transform into heavier nuclei
up to A ∼ 196 and heavier through multiple neutron
captures and β decay.

(6) Based on our results, we refine the definition
of the rbc-process (Ptitsyn and Chechetkin 1982)
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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Fig. 7. The rbc-process for the initial neutron excess η0 = 0.26. For a description of the model for the change of conditions,
see the text. The nucleosynthesis duration is indicated near the curves.
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Fig. 8. Same as Fig. 7 for η0 = 0.40.
given above. For nuclei with Z < Z∗ at a high de-
gree of neutronization (η0 ≤ 0.3) and at tempera-
tures T9 ∼ 5, nuclei with atomic masses 80 < A <
130 are produced. Even when the neutron density
decreases through β decay, if the density and tem-
perature change only slightly during a long period
(τ ≥ 1 s), the distribution of nuclei YA changes lit-
tle and the elements with A ∼ 80, 130 remain most
ASTRONOMY LETTERS Vol. 28 No. 7 2002
abundant; β decay may play a prominent role in form-
ing the peak at A ∼ 130. As the temperature de-
creases and as the nuclear reactions with charged
particles “are frozen” in the entire range of heavy
elements, rapid nucleosynthesis begins (Panov and
Nadyozhin 1999). The number of free neutrons is
still enough for this nucleosynthesis to be successful.
We emphasize once again that, in contrast to the r-
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process, far fewer free neutrons are required in the
scenario under consideration, because the nuclei with
80 < A < 130 have already been produced.

Thus, we have shown that the production of nuclei
with A ∼ 80–130 for an enhanced neutron excess
in one way or another can solve the question of r-
element formation in the following cases: (1) if the
initial neutron excess is large and if the hydrodynamic
time scale is short, then all elements from iron to
uranium can be produced, with the scenario for the
production of heavy elements considered here requir-
ing a much smaller number of free neutrons; and
(2) if the number of neutrons after matter cooling is
not enough for the elements heavier than xenon to
be synthesized, then this scenario for the production
of chemical elements can be of fundamental impor-
tance in elucidating the formation of these elements
in nature, because currently available models of the r-
process during explosions of high-mass type II super-
novae or neutron-star mergers show good agreement
with observations only for atomic masses A > 120.
Therefore, in the scenario for the production of heavy
elements under consideration, which assumes a high
degree of initial matter neutronization (η0 ≥ 0.30), an
additional r-process responsible for the production of
nuclei with A < 130 can be realized.
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32. P. Möller and J. R. Nix, Nucl. Phys. A 536, 20 (1992).
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and K. Wisshak (Inst. of Physics Publ., Bristol, 1993),
p. 601.

53. S. E. Woosley and R. D. Hoffman, Astrophys. J. 395,
202 (1992).

54. S. E. Woosley, J. R. Wilson, G. J. Mathews, et al.,
Astrophys. J. 433, 229 (1994).

Translated by V. Astakhov



Astronomy Letters, Vol. 28, No. 7, 2002, pp. 488–493. Translated from Pis’ma v Astronomicheskĭı Zhurnal, Vol. 28, No. 7, 2002, pp. 554–560.
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Abstract—We consider the kinetic problem of charged-particle acceleration in a magnetic trap with
converging magnetic mirrors. We show that for a positive electrostatic potential of the trap plasma relative
to the mirrors, the efficiency of confinement and acceleration increases for electrons and decreases for ions.
c© 2002 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Solving the problem of charged-particle acceler-
ation is of importance in understanding many ques-
tions related to the rapid transformation of magnetic
energy into the thermal and kinetic energy of particles
in cosmic plasma (Somov 2000). The response of
cosmic plasma to the effect of accelerated particles
is studied by their manifestation in various ranges of
electromagnetic radiation, from gamma rays to ra-
dio waves. In particular, the observed fine structure of
the radio emission from solar flares suggests a com-
plex pattern of the nonequilibrium kinetic processes
that take place in plasma. To faithfully describe them,
it is important to have a clear idea of the formation
and behavior of the accelerated-particle distribution
function.

One of the sources of accelerated particles in
solar flares can be collapsing magnetic traps (So-
mov 1994). When the front of a traveling shock wave
crosses a magnetic flux tube, magnetic mirrors with
a field discontinuity emerge, a magnetic trap with a
decreasing length is formed, and its evolution has
a collapsing pattern; i.e., its length tends to zero
(Somov and Kosugi 1997). In this case, the particle
energy increases through the Fermi acceleration
mechanism (Fermi 1954).

The solutions for the distribution function of non-
relativistic accelerated electrons in a magnetic trap
with magnetic mirrors moving toward each other in
the absence of an electric field and Coulomb colli-
sions were obtained by Gisler and Lemons (1990).
As applied to solar conditions, the acceleration of

*E-mail: vkovalev@izmiran.troitsk.ru
1063-7737/02/2807-0488$22.00 c©
relativistic particles in a collapsing trap in the absence
of an electric field was considered by Bogachev and
Somov (1999). Meanwhile, the presence of a field
significantly affects the conditions of particle escape
from the trap and, naturally, the acceleration pattern.

In general, investigating the problem requires
solving a self-consistent system of kinetic equations
for various plasma components in magnetic and elec-
tric fields with the inclusion of Coulomb collisions.
In this paper, we consider only some aspects of the
kinetic problem related to the effect of an electric
potential on the particle acceleration and escape
conditions.

CHARGED PARTICLES IN A MAGNETIC
TRAP

We assume that the magnetic loop rapidly mov-
ing from the magnetic reconnection region in a solar
flare may be considered as an open trap in which the
magnetic field is uniform in most of it but increases
sharply from B1 to B2 in the mirrors (Fig. 1). The
quantity B2/B1 is called the mirror ratio. Open traps
are known (Pastukhov 1984) to have a high admis-
sible plasma β (the ratio of plasma gas pressure to
magnetic pressure) and stability against rough hy-
drodynamic disturbances.

The length of a dynamical trap with mirrors mov-
ing at velocity vm varies as

l = L/L0 = 1 − t/t0, (1)

where L0 is the initial length of the trap at its gen-
eration time t = 0 and t0 = L0/2vm is the collapse
time. Below, instead of t, we use the variable l that
2002 MAIK “Nauka/Interperiodica”
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characterizes the trap contraction. In the absence of
Coulomb collisions, there is a transverse adiabatic
invariant for the fast particles inside the trap: v2

⊥/B =
const. When moving into a region with a stronger field
(into a mirror), the velocity component v⊥ transverse
to the magnetic field increases. At the same time, the
transverse velocity is conserved between reflections
from the mirrors:

v⊥ = v⊥0 = const.

The last two conditions do not contradict each other,
because the field discontinuity takes place only near
the mirrors, where the particle spends a short time
compared to the time of its flight in the main homoge-
neous part of the tube. In other words, we consider the
problem in the approximation of a long trap with short
mirrors (Somov 1994). This condition is violated near
the time of collapse, when the trap length tends to
zero.

At the same temperature, the thermal velocities
(VT = (2kT/m)1/2) of electrons and protons differ by
a factor of (mp/me)1/2. Thus, for the hottest flare
plasma with Te � Ti � 108 K, the thermal electron
velocity is VTe ∼ 5 × 109 cm s−1 and the proton ve-
locity is VTi ∼ 1.2 × 108 cm s−1. The mirror velocity
is vm < 108 cm s−1. For electrons, the condition

vm � VTe (2)

is satisfied and the acceleration may be considered as
a continuous adiabatic process, which can be writ-
ten in differential form. After each reflection from a
magnetic mirror, the longitudinal velocity component
increases by δv|| = 2vm. The time between two se-
quential reflections is δt is L/(v|| + vm). Hence,

dv‖
dt

�
δv‖
δt

= 2vm

(v‖ + vm)
L

� 2vm

v||
L
.

Using the variable l, we write the condition for the
longitudinal adiabatic invariant:

v‖l = const. (3)

If, however, the adiabaticity condition (2) is not
satisfied, then we must take into account the discrete
pattern of acceleration in the trap, and the longitudi-
nal component of the particle momentum increases
during an elastic collision with mirrors moving at
velocity vm as

v|| = v||0 + 2vmN (x). (4)

Here, N is the number of reflections from the mirrors,
which can be determined by using the last two rela-
tions:

N (x) = N
(
v||0(1 − l) + vml

2vml

)
, (5)
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Fig. 1. An idealized model of a long trap with mirrors
moving toward each other.

where N (x) is the integer part of the argument x. The
velocity increment does not depend on the particle
mass and charge but depends only on the mirror
velocity vm, which may be assumed to be constant.
In the absence of an electric field and Coulomb colli-
sions, the trapped particles oscillate with an increas-
ing frequency (v||/L) while repeatedly reflecting from
the converging mirrors and significantly increase their
kinetic energy.

Since only v|| increases, the particle pitch angle
decreases, and after a time, such a particle with

v|| + vm ≥ v⊥0R, R = (B2/B1 − 1)1/2 (6)

becomes an escaping one, falling into the loss cone
that satisfies the condition

sin2θ ≤ sin2θcr = B1/B2. (7)

The time of particle escape from the trap can be
obtained from (6):

lex =
v||0
v⊥0R

. (8)

The latter expression is meaningful when its right-
hand side takes on values in the interval [0, 1]; other-
wise, the particles are not trapped from the very outset
(l = 1).

The criterion for the necessity of allowing for
Coulomb collisions is determined by the ratio of the
time of flight of a probe particle (electron) in the
trap τ = L/v|| to the time of Coulomb collisions
with particles (electrons and ions) of the background
plasma τs

τs =
√
meT

3/2/
√

2πne4Λ.

The collisions may be ignored if τ � τs or v0|| �
L0l

2/τs. Let us obtain estimates for a flare loop with
the particle number density n = 2 × 109 cm−3 and
temperature T = 108 K. The Coulomb logarithm Λ
can vary over the range 10–20. Then, τs � (3–6) s.
At the same time, the time of flight of thermal elec-
trons in a trap with L0 = 2 × 109 cm is considerably
shorter (�0.4 s); therefore, the collisionless condition
is satisfied.
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Fig. 2. The boundary of the electron-confinement region
in velocity space. The dashed line indicates the loss cone
(Pastukhov 1984).

ON THE ROLE OF AN ELECTROSTATIC
POTENTIAL

The presence of an electrostatic potential signifi-
cantly changes the conditions of particle escape from
the trap. The electric fields produced in the traps un-
der consideration can have distinctly different origins.
For instance, they can result from the separation of
volume electric charge due to the different behavior of
electrons and ions inside the trap. Another cause can
generally be any deviation of the magnetic field from
a potential (i.e., current-free) field. Any currents, even
in a force-free magnetic configuration, require electric
fields for their maintenance. For dynamical magnetic
traps, the currents associated with the forces acting
on plasma must be present.

At the kinetic level, the origins of the electric field
can be different. For example, the classical losses
are determined by Coulomb scattering into the loss
cone. In this case, ions are scattered approximately
a factor of (mi/me)1/2 (where mi and me are the
ion and electron masses, respectively) more slowly
than electrons with the same energy. To equalize the
losses of ions and electrons and, thereby, to conserve
its quasineutrality, the plasma acquires a positive po-
tential relative to the mirrors (Pastukhov 1984). The
electric potential can also result from a difference
in anisotropy of the electron and ion distributions
(Spicer and Emslie 1990). In general, the electric
potential is the solution of a self-consistent problem.

Without detailing the nature of the electric fields
in the trap, we consider their effect on the dynamics
of the accelerated particles in general form by char-
acterizing this effect by some potential ϕ, positive or
negative. For simplicity, we assume here that the po-
tential, as well as the magnetic field, changes abruptly
at the trap ends but does not depend on l; there is no
electric field in the main part of the trap.

For a positive plasma potential ϕ relative to the
mirrors, the energy of electric charge Ze (e > 0) is

E = mv2/2 + Zeϕ. (9)
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v
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2

3

1

Fig. 3. The boundary of the ion-confinement region;
(1) cone, (2) hyperboloid, (3) a self-consistent boundary
(Pastukhov 1984).

The region of trapped electrons (Z = −1, E‖ < 0, a
potential well) in velocity space enlarges compared to
the ordinary cone and takes the shape of a two-sheet
hyperboloid (Fig. 2):

v2
||0 < v2

⊥0R
2 + v2

ϕe, v2
ϕe = 2eϕ/me. (10)

The minimum velocity of electron escape from the
trap is

vmin = (2eϕ/me)1/2;

thus, the trapping and acceleration efficiencies in-
crease.

A positive electric potential also results in the con-
finement of electrons in the trap; the time at which
they fall into the loss hyperboloid is

leex =
v||0√

v2
⊥0R

2 + v2
ϕe

. (11)

The case where the right-hand side of the latter ex-
pression is >1 corresponds to the nontrapped parti-
cles at time l = 1.

The situation for ions (Z = 1, E‖ > 0, a potential
barrier) is different. The region of trapped particles
shrinks compared to the cone and takes the shape of
a one-sheet hyperboloid (Fig. 3):

R2v2
⊥0 > v2

||0 + v2
ϕi, v2

ϕi = 2Zeϕ/mi. (12)

In this case, the trap region in velocity space de-
creases with increasing Z and grows withmi. Thus, a
positive potential reduces the efficiency of ion confine-
ment and acceleration. The time of their escape into
the loss hyperboloid is

liex =
v||0√

v2
⊥0R

2 − v2
ϕi

. (13)

The case where the radicand is <0 or liex > 1 cor-
responds to the particles that are already in the loss
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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region at the initial time. The condition for the critical
angle (7) in the presence of an electric field is modified
(Spicer and Emslie 1990):

sin2θcr =

(
1 ±

v2
ϕ

v2

)
B1/B2. (14)

The plus and minus signs refer to ions and electrons,
respectively. The right-hand side of Eq. (14) for ions
can be >1; in this case, there can be no ions with
such velocities. On the other hand, for electrons, the
right-hand side is <0, suggesting that the particles
are trapped. Thus, a positive potential confines the
relatively slow electrons in the trap and expels ions.
A dependence of the critical angle on the particle
velocity appears: the critical angle decreases for ions
and increases for electrons.

CALCULATION OF THE DISTRIBUTIONS
Because of the presence of mirrors, the particles

are separated into trapped and escaping ones: the
distribution segments corresponding to the particles
that satisfy the escape conditions are cut out from
the distribution of the particles injected into the trap.
These particles precipitate into the loss region and are
not involved in the acceleration. Therefore, the initial
distribution f(1) corresponding to l = 1 generally dif-
fers from the injected distribution f0.

The total number of trapped particles is (Bogachev
and Somov 1999)

N(l) = 4πN0

∫ ∫
D

f0(v0||, v0⊥)v0⊥dv0||dv0⊥, (15)

where D is the domain of integration. We took into
account the fact that the longitudinal-velocity distri-
bution is symmetric in a symmetric trap. The change
in particle density n(l) is determined by the change
in the total number of particles N(l) and by the
change in the trap volume. For a trap with a constant
cross section, the volume is proportional to L = L0/l.
Then,

n(l) =
N(l)
L

=
n0

N0

N(l)
l

. (16)

The Solution for Trapped Charged Particles for ϕ = 0
In this simplest case, the cone (6) corresponds to

the trapped particles (both electrons and ions, irre-
spective of the charge):

0 ≤ v0|| < Rlv0⊥, 0 ≤ v0⊥ < ∞. (17)

For the distribution function, we have (Bogachev and
Somov 1999):

f(v||, v⊥, l) =
N0l

N(l)
Θ(Rv⊥ − v||)f0(lv||, v⊥), (18)
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where Θ(x ≥ 0) = 1, Θ(x < 0) = 0.

As the function of injected particles f0 we use the
Maxwellian distribution

f0(v|| v⊥) =
1

π3/2V 3
T

exp(−v2/V 2
T). (19)

The sought distribution (18) becomes a two-temperature
one, (VT⊥ = VT , VT || = VT /l).

Then, integrating (19) over the domain (17) yields

N(l)/N0 = ql, (20)

n(l)/no = q, (21)

q =
R√

1 +R2l2
.

For l = 1, the coefficient q characterizes the extent
to which the injected flare particles are trapped. An
increase in R causes the trap region to increase (the
loss cone to shrink). Therefore, the flux of the particles
precipitating into the loss cone determined by the
derivative dN(l)/dl decreases with increasing R at an
early stage of trap contraction but increases at a late
stage.

The Solution for Captured Electrons for a Positive
Potential ϕ > 0

According to (10), the domain of integration is

0 ≤ v0|| < v∗e, 0 ≤ v0⊥ < ∞,

v∗e = l(v2
o⊥R

2 + v2
ϕe)

1/2.

Then, instead of (18), we have

fe(v||, v⊥, l) =
N0l

N(l)
Θ(Rv⊥ − v∗e)f0(lv||, v⊥), (22)

Ne(l) = 4πN0

∞∫
0

v0⊥dv0⊥

v∗∫
0

f0(v0||, v0⊥)dv0||.

(23)

The latter relation can be written as

Ne(l)
N0

=
4√
π

∞∫
0

y exp(−y2)dyJ1(y), (24)

J1(y) =

u∗(y)∫
0

exp(−x2)dx,

where

x = v0||/VTe , y = v0⊥/VTe ,

uϕe = vϕe/VTe , u∗e = v∗e/VTe .
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We integrate expression (24) by parts:

J1(y) = t, dt =
du∗(y)
dy

exp(−u2
∗(y))dy,

dz = y exp(−y2)dy, z = −1
2

exp(−y2).

As a result, given

J1(0) =
√
π

2
erf(luϕe)

and

1√
π

∞∫
0

exp(−ξ)
(ξ + a)1/2

dξ = ea(1 −
√
a),

erf(x) =
2√
π

x∫
0

exp(−ξ2)dξ,

a =
u2

ϕe

q2
, ξ = y

√
1 +R2l2,

we obtain the sought relations:

Ne(l)
No

= ql exp

(
u2

ϕe

R2

)
(25)

×
[
1 − erf

(
uϕe

q

)]
+ erf(luϕe).

For a weak potential uϕe � 1, using

erf(x) � 2√
π
x,

we have
Ne(l)
N0

� ql +
2√
π
luϕe , (26)

ne(l)
n0

� q +
2√
π
uϕe . (27)

We see that the presence of a positive potential
causes the electron trapping efficiency to increase.

The Solution for Captured Ions for a Positive
Potential ϕ > 0

According to (13), the domain of integration is

0 ≤ v0|| < v∗i, vϕi < v0⊥ <∞,

where

v∗i = l(v2
0⊥R

2 − v2
ϕi)

1/2.

Then, instead of (18), we have

fi(v||, v⊥, l) =
N0l

N(l)
Θ(Rv⊥ − v||∗)f0(lv||, v⊥) (28)
Ni(l) = 4πN0

∞∫
vϕi

v0⊥dv0⊥

v∗i∫
0

f0(v0||, v0⊥)dv0||.

(29)

Here,

u2
ϕi =

v2
ϕi

V 2
Ti

=
eϕ

kTi
.

Repeating the same operations as for electrons, we
obtain

Ni(l)
N0

= exp(−u2
ϕi)erf(lruϕi) (30)

+ ql exp(l2u2
ϕi)

2√
π

∞∫
b

ξ
exp(−ξ2)

(ξ2 − a2)1/2
dξ,

where

r =
√
R2 − 1, a =

uϕi

q
, b = uϕi

√
1 +R2l2,

ξ =
vo⊥
VT

√
1 +R2l2.

In contrast to the previous case, the integral in (30)

J(u) =

∞∫
b(u)

f(ξ, u)dξ,

where

f(ξ, u) = ξ
exp(−ξ2)

(ξ2 − a2)1/2
,

cannot be calculated analytically; however, in the case
of interest, uϕi � 1, using the expansion at u = 0

J(u) � J(0) +
dJ(u)
du

∣∣∣∣∣
u=0

u,

where the derivative is

dJ(u)
du

=

∞∫
b(u)

df(ξ, u)
du

dξ − db(u)
du

f(ξ, u)|ξ=b(u),

we obtain
Ni(l)
N0

� ql − 2lR2

√
πr

uϕi,

ni(l)
n0

� q − 2R2

√
πr

uϕi.

CONCLUSIONS
Thus, we have solved the kinetic problem of

charged-particle acceleration in a collapsing mag-
netic trap with a given electric potential and con-
verging mirrors. We derived analytic formulas for the
ASTRONOMY LETTERS Vol. 28 No. 7 2002
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total number of particles and their number density
as a function of the trap contraction parameter. We
showed that for a positive trap plasma potential
relative to the mirrors, the efficiency of confinement
and acceleration of electrons and their flux into the
loss region increase, whereas those for positive ions
decrease compared to the case of ϕ = 0, in which the
Fermi acceleration efficiency does not depend on the
charge.

Here, the competing processes must be taken into
account. As was pointed out above, on the one hand,
electrons, being more mobile than ions, are scattered
faster into the loss region because of Coulomb col-
lisions. On the other hand, the region of ion escape
in velocity space grows and the efficiency of their
acceleration decreases. In this case, the plasma can
generally acquire a negative potential, under which
the ion confinement and acceleration is more efficient.
Plasma quasineutrality can be achieved when the
electron and ion fluxes are equal.

In general, determining the exact self-consistent
boundary of particle confinement is a more com-
plex problem than the limiting cases of the cone and
hyperboloids considered here (Pastukhov 1984). We
restricted our analysis to an isotropic distribution
of the particles injected into the trap. Meanwhile,
anisotropic nonuniform distributions are most prob-
able. In addition, for high-temperature turbulent cur-
rent sheets, the electrons and ions can have different
temperatures with Te � Ti (Somov 2000).

Bases on analysis of the problem, we can estab-
lish that even in the collisionless case with isotropic
injection, an electric potential can emerge, because
the electron mobility is higher than the ion mobil-
ity. Even at the time of trap formation, the particles
are separated into trapped and flyby ones. The fly-
by electrons leave the trap faster; the trap plasma
acquires a positive potential, expelling protons. A
plasma distribution with an electric potential is es-
tablished when plasma quasineutrality is provided.
Plasma anisotropy leads to the growth of electromag-
netic instabilities (Mikhaı̆lovskiı̆ 1975).

The model of charged-particle acceleration in col-
lapsing magnetic traps under discussion can be con-
sidered in two aspects. On the one hand, such traps
emerge when a magnetic loop interacts with a shock
ASTRONOMY LETTERS Vol. 28 No. 7 2002
wave (Gisler and Lemons 1990). On the other hand,
collapsing traps are an inevitable consequence of re-
connection in the corona. To be more precise, they
represent the part of the reconnected magnetic fluxes
that move downward, toward the chromosphere and
photosphere. From the viewpoint of particle acceler-
ation theory, traps are an important detailing of the
current-sheet model by S.I. Syrovatskiı̆. The high-
energy particles (SCR) accelerated by the electric
field in a current sheet escape into interplanetary
space along open field lines. At the same time, the
thermal particles heated in a current sheet and low-
energy particles can be trapped and additionally ac-
celerated in them to significant energies, as our cal-
culations show.

These problems will be further discussed in our
forthcoming papers.

ACKNOWLEDGMENTS

This work was supported by the Russian Foun-
dation for Basic Research, project nos. 99-02-16076
(V.A.K.) and 99-02-16344 (B.V.S.).

REFERENCES
1. S. A. Bogachev and B. V. Somov, Izv. Akad. Nauk, Ser.

Fiz. 63, 1555 (1999).
2. E. Fermi, Astrophys. J. 119, 1 (1954).
3. G. Gisler and D. Lemons, J. Geophys. Res. 95 (A9),

14925 (1990).
4. A. B. Mikhailovskiı̆, Theory of Plasma Instabilities

(Atomizdat, Moscow, 1975; Consultants Bureau, New
York, 1974), Vol. 1.

5. V. P. Pastukhov, in Reviews of Plasma Physics, Ed.
by B. B. Kadomtsev (Énergoatomizdat, Moscow, 1984;
Consultants Bureau, New York, 1987), Vol. 13.

6. B. V. Somov, in Fundamentals of Cosmic Electrody-
namics (Kluwer, Dordrecht, 1994), p. 364.

7. B. V. Somov, in Cosmic Plasma Physics (Kluwer,
Dordrecht, 2000), p. 652.

8. B. V. Somov and T. Kosugi, Astrophys. J. 485, 859
(1997).

9. D. S. Spicer and A. G. Emslie, Astrophys. J. 330, 997
(1988).

Translated by G. Rudnitskiı̆


	423_1.pdf
	428_1.pdf
	434_1.pdf
	438_1.pdf
	443_1.pdf
	454_1.pdf
	465_1.pdf
	476_1.pdf
	488_1.pdf

