
  

Journal of Experimental and Theoretical Physics, Vol. 100, No. 1, 2005, pp. 1–13.
From Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 127, No. 1, 2005, pp. 5–17.
Original English Text Copyright © 2005 by Lee, Milstein, Strakhovenko, Schwarz.

                                   

ATOMS, MOLECULES,
OPTICS

                                          
Coulomb Corrections to Bremsstrahlung in the Electric Field 
of a Heavy Atom at High Energies¶

R. N. Leea, A. I. Milsteina, V. M. Strakhovenkoa, and O. Ya. Schwarzb

aBudker Institute of Nuclear Physics, Novosibirsk, 630090 Russia
bNovosibirsk State University, Novosibirsk, 630090 Russia

e-mail: R.N.Lee@inp.nsk.su, A.I.Milstein@inp.nsk.su, V.M.Strakhovenko@inp.nsk.su
Received April 29, 2004

Abstract—We consider the differential and partially integrated cross sections for bremsstrahlung from high-
energy electrons in an atomic field, with this field taken into account exactly. We use the semiclassical electron
Green function and wavefunctions in an external electric field. It is shown that the Coulomb corrections to the
differential cross section are very susceptible to screening. Nevertheless, the Coulomb corrections to the cross
section summed over the final-electron states are independent of screening in the leading approximation in the
small parameter 1/mrscr (rscr is the screening radius and m is the electron mass, " = c = 1). We also consider
bremsstrahlung from a finite-size electron beam on a heavy nucleus. The Coulomb corrections to the differential
probability are also very susceptible to the beam shape, while the corrections to the probability integrated over
momentum transfer are independent of it, apart from the trivial factor, which is the electron-beam density at
zero impact parameter. For the Coulomb corrections to the bremsstrahlung spectrum, the next-to-leading
terms with respect to the parameters m/ε (ε is the electron energy) and 1/mrscr are obtained. © 2005 Pleiades
Publishing, Inc. 
1. INTRODUCTION

Bremsstrahlung in the electric field of atoms is a
fundamental QED process. Its investigation, started in
the 1930s, is important for various applications. In the
Born approximation, both the differential cross section
and the bremsstrahlung spectrum have been obtained for
arbitrary electron energies and atomic form factors [1]
(see also [2]). High-energy asymptotics of the
bremsstrahlung cross section in a Coulomb field has
been studied in detail in [3] exactly in the parameter Zα
(where Z is the atomic number and α = 1/137 is the fine-
structure constant). In these papers, the differential
cross sections and the bremsstrahlung spectrum have
been obtained. For a screened Coulomb field, the high-
energy asymptotics of the differential cross section was
derived in [4]. The effect of screening on the spectrum
was studied in [5, 6]. For the spectrum, it turned out that
screening is essential only in the Born approximation.
In other words, the Coulomb corrections to the spec-
trum are not significantly modified by screening. By
definition, Coulomb corrections are the difference
between the result obtained exactly in the external field
and that obtained in the Born approximation. In the
recent paper [7], it was claimed that Coulomb correc-
tions to the differential cross section of the bremsstrahl-
ung are also independent of screening.

¶ This article was submitted by authors in English.
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In the present paper, we investigate the bremsstrahl-
ung cross section in the electric field of a heavy atom.
We assume that ε, ε' @ m, where ε and ε' are the initial
and final electron energies, respectively. In Section 2,
we consider the differential cross section in detail in the
leading approximation, i.e., neglecting corrections in
the parameters m/ε and 1/mrscr . In contrast to the state-
ment in [7], screening may strongly modify Coulomb
corrections to the differential cross section. We demon-
strate explicitly that this fact does not contradict the
final-state integration theorem [5], which implies that
Coulomb corrections to the spectrum are independent
of screening. We also study the influence of the electron
beam finite size on Coulomb corrections. Again, Cou-
lomb corrections to the differential cross section are
very sensitive to the shape of the electron beam, while
the spectrum is independent of it, except for a trivial
factor. In Section 3, we consider corrections to Cou-
lomb corrections in the spectrum. It turns out that, in
the first nonvanishing order, they enter the spectrum as
a sum of two terms. The first term is proportional to m/ε
and is independent of screening. The second term is
small in the parameter 1/mrscr and is independent of the
energy.

Our approach is based on the use of the semiclassi-
cal Green function and the semiclassical wavefunction
of the electron in an external field. Previously, this
method was successfully applied to the investigation of
the photoproduction process at high energy [8, 9].
 © 2005 Pleiades Publishing, Inc.
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2. DIFFERENTIAL CROSS SECTION

The cross section of the electron bremsstrahlung in
the external field has the form

(1)

where k is the photon momentum, p and p' are the
respective initial and final electron momenta, and

The matrix element M is given by

(2)

where  and  are the respective wavefunctions
of the in- and out-state of the electron in an external
field, containing the diverging and converging spherical
waves and the plain wave with 4-momentum P in their

asymptotics,  = , eµ is the photon polarization
4-vector, and γµ are the Dirac matrices.

In [10], the semiclassical wavefunction of the elec-
tron in an arbitrary localized potential was found with
the first correction in m/ε taken into account. In calcu-
lating bremsstrahlung and the e+e– photoproduction
cross section in the leading approximation, the follow-
ing form of the wavefunction can be used [10]:

(3)

In this formula, q is a two-dimensional vector lying in
the plane perpendicular to p, the upper sign corre-

sponds to , and uP is the conventional Dirac spinor.

We recall that the wavefunction  corresponds
to the positron in the final state with the 4-momentum
(εp, p). For a Coulomb field, wavefunction (3) coincides
with the standard Furry–Sommerfeld–Maue wavefunc-

tion. When the angles between p and r in (r) and

between p and –r in (r) are not small, it is possi-

ble to replace rx in Eq. (3) by Rx = . Then, the

dσγ α
2π( )4ω

------------------dp'dkδ ε ε'– ω–( ) M 2,=

ω k , ε εp p2 m2+ , ε' εp' .= = = =

M r ik r⋅–( )ψP'
out( ) r( )ê∗ ψP

in( ) r( ),expd∫=

ψP
in( ) ψP

out( )

ê∗ eµ*γµ

ψP
in out,( ) r( )

qd
iπ
------ ip r⋅ iq2± iλ xV rx( )d

0

∞

∫+−exp∫±=

× 1
1

2 p
------ xa ∇ V rx( )⋅d

0

∞

∫+−
 
 
 

uP,

rx r xn q 2 r n⋅ / p,++−=

λ P0, nsgn p/ p.= =

ψP
in( )

ψ εp– p–,( )
in( )

ψP
in( )

ψP
out( )

r xn+−
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integral over q can be taken, and we obtain the conven-
tional eikonal wavefunction

(4)

We direct the z axis along the vector n = k/ω, then
r = zn + r. In this frame, the polar angles of p and p' are
small. We split the integration region in Eq. (2) in two:
z > 0 and z < 0. The corresponding contributions to
M are denoted as M+ and M–, with M = M+ + M–. For

z > 0, the function  has the eikonal form, and
we obtain

(5)

where D = p' + k – p is the momentum transfer.

In Eq. (5), we have replaced  in the def-

inition of rx in Eq. (3) by . It is easy to see that,
within our accuracy, we can also replace the quantity

V(r + n'x) in Eq. (5) by V(r + n'x + q ) and con-
sider the vector q to be perpendicular to z axis. After

that, we shift r  r – q  and take the integral
over q. We obtain

(6)

ψP eik,
in out,( ) r( ) ip r⋅ iλ xV Rx( )d

0

∞

∫+−exp=

× 1
1

2 p
------ xa ∇ V Rx( )⋅d

0

∞

∫+−
 
 
 

uP.

ψp'
out( ) r( )

M+ r
qd

iπ
------ iq2 iD r ---⋅–





exp∫d

z 0>
∫=

– i x V r nx– q 2z/ p+( ) V r n'x+( )+[ ]d

0

∞

∫ 



× up' ê∗ 1
2 p
------ xê∗ a ∇ V r nx q 2z/ p+–( )⋅d

0

∞

∫–

–
1

2 p'
------- xa ∇ V r n'x+( )ê∗⋅d

0

∞

∫ up,

2 r n⋅ / p

2z/ p

2z/ p

2z/ p

M+ r i
z

2 p
------∆⊥

2– iD r⋅–




expd

z 0>
∫=

– i x V r nx–( ) V r n'x+( )+[ ]d

0

∞

∫ 



× up' ê∗ 1
2 p
------ xê∗ a ∇ V r nx–( )⋅d

0

∞

∫–

–
1

2 p'
------- xa ∇ V r n'x+( )ê∗⋅d

0

∞

∫ up.
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In the same way, we obtain

(7)

There are two overlapping regions of the momen-
tum transfer ∆,

(8)

In the first region, we can neglect the terms propor-

tional to  in the exponents in Eqs. (6) and (7). Then,
the sum

becomes

(9)

We can make the replacement n, n'  n in the
prefactor in Eq. (9). In the exponent, we must take the
linear term of the expansion of the integral in n – n and

M– r i
z

2 p'
-------∆⊥

2 iD r⋅–




expd

z 0<
∫=

– i x V r nx–( ) V r n'x+( )+[ ]d

0

∞

∫ 



× up' ê∗ 1
2 p
------ xê∗ a ∇ V r nx–( )⋅d

0

∞

∫–

–
1

2 p'
------- xa ∇ V r n'x+( )ê∗⋅d

0

∞

∫ up.

I. ∆ ! 
mω
ε

--------,

II. ∆ @ ∆min
m2ω
2εε'
----------.=

∆⊥
2

M M+ M–+=

M r iD r⋅–




expd∫=

– i x V r nx–( ) V r n'x+( )+[ ]d

0

∞

∫ 



× up' ê∗ 1
2 p
------ xê∗ a ∇ V r nx–( )⋅d

0

∞

∫–

–
1

2 p'
------- xa ∇ V r n'x+( )ê∗⋅d

0

∞

∫ up.
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n' – n into account. As a result, we have

(10)

In the arguments of V(r ± ny), we make the substi-
tutions z  . After that, we take the integral over
y and obtain

(11)

We now pass to the calculation of M in the second
region, where ∆ @ ∆min. In Eq. (6) for M+, we can

replace n'  n and z /2p  /2p, where  =
r · n. Because the polar angle of n is small, we can inte-
grate in Eq. (6) over the half-space  > 0. After the inte-
gration over , we obtain

(12)

The calculation of M– is performed quite similarly.
As a result, we have

(13)

Now, we can write the representation for M that is
valid in both regions,

(14)

M r iD r⋅– iχ r( )–[ ]expd∫=

× yd

0

∞

∫ up' ê∗ iy n n–( ) a/2 p–[ ] ∇ V r ny–( )⋅[

+ iy n' n–( )– a/2 p'–[ ] ∇ V r ny+( )ê∗⋅ ]up,

χ r( ) zV r( ).d

∞–

∞

∫=

z y+−

M A D( ) up'
n n'–( )ê∗

∆z
2

------------------------ ê∗ a
2 p∆z

------------ aê∗
2 p'∆z

-------------+– up 
  ,⋅=

A D( ) i r iD r iχ r( )–⋅–[ ]∇ ρV r( ).expd∫–=

∆⊥
2 z̃∆⊥

2 z̃

z̃
z̃

M+ i r iD r⋅– iχ r( )–[ ]expd∫–=

×
up'ê∗ 2 p a D⊥⋅+[ ] up

2 pD n⋅ ∆⊥
2+

---------------------------------------------------.

M i r iD r⋅– iχ r( )–[ ]expd∫–=

× up'
ê∗ 2 p a D⊥⋅+( )

2 pD n⋅ ∆⊥
2+

--------------------------------------
2 p' a D⊥⋅+( )ê∗

2 p'D n'⋅ ∆⊥
2–

---------------------------------------– up.

M
εε'
ω
------A D( ) up' 2ê∗ p⊥ p⊥'+

δδ'
------------------– ê∗ a

εδ'
---------- aê∗

ε'δ
----------–+ up

 
 
 

,⋅=

δ m2 p⊥
2 , δ'+ m2 p⊥'

2
.+= =
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Within our accuracy, this expression coincides with
Eq. (11) in region I and with Eq. (13) in region II. Using
the explicit form of the Dirac spinors, we finally obtain

(15)

This expression is in agreement with that obtained
in [4] by another method. We emphasize that the poten-
tial enters amplitude (15) only via A(D).

2.1. Coulomb Corrections
to the Differential Cross Section 
in a Screened Coulomb Potential

We discuss Coulomb corrections to the differential
cross section of bremsstrahlung. We recall that these
corrections are the difference between the exact (in the
external field strength) cross section and that obtained
in the Born approximation, which is proportional to
[|A(D)|2 – |AB(D)|2] with A(D) from Eq. (11) and

(16)

The screening modifies the Coulomb potential of
the nucleus at distances

In the region

the quantities A(D) and AB(D) are of the form

(17)

Therefore,

and Coulomb corrections to the differential cross sec-
tion vanish in this region in the leading approximation.

M
1

2δδ'
----------A D( ) ϕ'† p⊥ p⊥'+( )





⋅=

× ε ε'+
ω

------------e∗ p⊥ p⊥'+( ) i s e∗×[ ] p⊥ p⊥'+( )⋅–⋅


---+ 2im s e∗×[ ] z


– δ δ'+( ) ε ε'+
ω

------------e∗ i s e∗×[ ] ⊥– 
  ϕ





.

AB D( ) i r iD– r⋅[ ]∇ ρV r( )expd∫–=

=  D⊥ r iD– r⋅[ ] V r( ).expd∫

rscr @ λC 1/m.=

∆ @ max ∆min rscr
1–,( ),

A D( ) AB D( )
Γ 1 iZα–( )
Γ 1 iZα+( )
-------------------------- 4

∆⊥
2

------ 
  iZα–

=

=  D⊥ πZα Γ 1 iZα–( )
Γ 1 iZα+( )
-------------------------- 4

∆⊥
2

------ 
  1 iZα–

.–

A D( ) 2 AB D( ) 2 for ∆ @ max ∆min rscr
1–,( )=
JOURNAL OF EXPERIMENTAL A
Hence, Coulomb corrections are important only in the
region

In this region, we can use Eq. (11) for the matrix ele-
ment. For the Coulomb corrections, substituting
Eq. (11) in Eq. (1), using the relation

and integrating over the azimuthal angle φ and summat-
ing over polarizations, we obtain

(18)

We note that, in this formula, we can assume that the z
axis is directed along the vector p. Then, ∆z is negative
and

The potential V(r) and the transverse momentum trans-
fer D⊥  enter Eq. (18) only as the factor dR,

(19)

It follows from the definition of A(D) that, for rscr @

, screening can be neglected. However, it is obvi-
ous from Eq. (19) that screening drastically modifies
the D⊥ -dependence of the differential cross section for

rscr & . We illustrate this statement with the exam-
ple of the Yukawa potential

After straightforward calculation, we have

(20)

∆ & max ∆min rscr
1–,( ) ! m.

dΩp'dΩk
dφdD⊥ d∆z

ωεε'
-------------------------,=

dσC
γ αdωdD⊥ d∆z

16π3ε3ε'∆z
2

-------------------------------=

× ε2 ε'2 2
m2ω
∆z

---------- m4ω2

εε'∆z
2

-------------+ + + A D( ) 2 AB D( ) 2–[ ] .

∆z ∆min≥ m2ω
2εε'
----------.=

dR dD⊥ A D( ) 2 AB D( ) 2–[ ] .=

∆z
1–

∆z
1–

V r( ) Zα βr–[ ] /r.exp–=

∆⊥
dR
d∆⊥
--------- 32π3 Zα( )2=

× ζ2 xxJ1 xζ( )K1 x( ) 2iZαK0 γx( )[ ]expd

0

∞

∫
2

–
ζ4

1 ζ2+( )2
--------------------- ,

ζ
∆⊥

∆z
2 β2+

---------------------, γ β

∆z
2 β2+

---------------------.= =
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005



COULOMB CORRECTIONS TO BREMSSTRAHLUNG IN THE ELECTRIC FIELD 5
We emphasize that ∆⊥  enters the right-hand side of

Eq. (20) only via the variable ζ, and, hence, 
is the characteristic scale of distribution (20). For β @
|∆z|, this scale is entirely determined by the screening
radius rscr = β–1. In this case, the ∆⊥ -distribution is much
wider than that in the absence of screening. We there-
fore conclude that, in contrast to the statement in [7],
Coulomb corrections to the differential cross section
strongly depend on screening. We note that screening
also affects the shape of the ∆⊥ -distribution (20) via the
parameter γ, which varies from 0 to 1. In Fig. 1, we
show the dependence of ∆⊥ dR/d∆⊥  on the scaling vari-
able ζ for Z = 80 and different values of the parameter γ.

We note that, in contrast to bremsstrahlung, Cou-
lomb corrections to the differential cross section of e+e–

photoproduction in the atomic field are important only in
the region ∆⊥  ~ m, where screening can be neglected [4].

2.2. Integrated Cross Section 

It was shown in [5] that Coulomb corrections to the
cross section of bremsstrahlung integrated over D⊥  are
independent of screening in the leading approximation.
The statement was based on the possibility of obtaining
this cross section from the one for the e+e– photopro-
duction. In this subsection, we perform the explicit

integration of d  (Eq. (18)) over D⊥ . We show that the

strong influence of screening on the shape of d  does
not contradict the statement in [5]. Our consideration is
quite similar to that used in [11] in the calculation of
Coulomb corrections to the e+e– pair production in
ultrarelativistic heavy-ion collisions.

We consider the quantity

(21)

This integral converges due to the compensation in the
integrand, and the main contribution comes from the
region

(see Eq. (17)). Substituting the integral representation
for A(D) (Eq. (11)) and for AB(D) (Eq. (16)) in Eq. (21),
we have

(22)

It is necessary to treat this repeated integral with
care. If one naively changes the order of integration
over D⊥  and r1, 2 , the integration over D⊥  in infinite lim-

∆z
2 β2+

σC
γ

σC
γ

R Rd∫ D⊥ A D( ) 2 AB D( ) 2–[ ] .d∫= =

∆⊥  & max ∆z rscr
1–,( )

R D⊥ r1 r2dd∫∫d∫=

× iD r1 r2–( )⋅[ ] iχ r1( ) iχ r2( )–[ ]exp 1–{ }exp

× ∇ 1⊥ V r1( )[ ] ∇ 2⊥ V r2( )[ ] .⋅
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
its leads to δ(r1 – r2). Then, the quantity R vanishes
after the integration over r1, which is not correct. Such
an erroneous change of the order of integrations was
made in [4] in explicitly verifying that the integrated
cross section is independent of screening. Although this
independence itself takes place, the proof of this fact
given in [4] and widely cited in textbooks is not consis-
tent. The correct integration in Eq. (22) can be per-
formed as follows. We restrict the region of integration
over D⊥  by the condition

where

In this region, integral (21) is saturated and, hence, the
result of integration must be independent of Q. We can
then change the order of integrations over r1, 2 and D⊥  in
Eq. (22) and take the integral over D⊥ :

(23)

It is seen from this formula that the main contribution
to the integral is given by the region |r1 – r2| ~ 1/Q. If
ρ1, 2 @ 1/Q and |r1 – r2| ~ 1/Q; then

,

and the integrand is suppressed. Therefore, integral (23)
is determined by the region where both ρ1 ~ 1/Q and

∆⊥ Q,<

Q @ max ∆z rscr
1–,( ).

R 2πQ r1 r2

J1 Q r1 r2–( )
r1 r2–

----------------------------------- i∆z z1 z2–( )[ ]expdd∫∫=

× iχ r1( ) iχ r2( )–[ ]exp 1–{ } ∇ 1⊥ V r1( )[ ] ∇ 2⊥ V r2( )[ ] .⋅

iχ r1( ) iχ r2( )–[ ]exp 1–  ! 1

0

–10

0 5 15 20 30

ζ

∆⊥ dR/d∆⊥

–20

–30

–40

–50

–60
2510

Fig. 1. The quantity ∆⊥ dR/d∆⊥  as a function of ζ for Z = 80
and γ = 1 (solid curve), γ = 0.5 (dashed curve), and γ = 0.01
(dotted curve). The variable ζ is defined in Eq. (20).
SICS      Vol. 100      No. 1      2005
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ρ2 ~ 1/Q. Due to the factor ∇ 1⊥ V(r1)∇ 2⊥ V(r2) in the
integrand, z1, 2 ~ 1/Q also. If r ! rscr , then

and

In addition, for r1, 2 ! |∆z|–1, we can omit the factor
exp[i∆z(z1 – z2)] in (23). We then perform the substitu-
tion r1, 2  r1, 2/Q and obtain

(24)

We emphasize that this formula does not contain Q.
Using the identity

(25)

and the relation

(26)

which follows from the summation theorem for the
Bessel functions, we have

(27)

Making the change of variables ρ1, 2 = rexp(±t/4) and
integrating over r, we finally obtain

(28)

V r( ) Zα /r–≈

χ r( ) 2Zα ρln const+( ).≈

R 8π Zα( )2 r1 r2dd∫∫=

×
r1 r2⋅( )J1 r1 r2–( )

ρ1
2ρ2

2 r1 r2–
---------------------------------------------------

ρ2

ρ1
----- 

 
2iZα

1–
 
 
 

.

r1 r2⋅( )J1 r1 r2–( )
r1 r2–

---------------------------------------------------
ρ1ρ2

ρ1
2 ρ2

2–
----------------=

× ρ1 ρ2∂
∂ ρ2 ρ1∂

∂
– 

  J0 r1 r2–( ),

φJ0 ρ1
2 ρ2

2 2ρ1ρ2 φcos–+( )d

0

2π

∫
=  2πJ0 ρ1( )J0 ρ2( ),

R 32π3 Zα( )2 ρ1 ρ2dd

ρ1
2 ρ2

2–
-----------------

0

∞

∫
0

∞

∫=

× ρ2J0 ρ2( )J1 ρ1( ) ρ1J0 ρ1( )J1 ρ2( )–[ ]
ρ2

ρ1
----- 

 
2iZα

1–
 
 
 

.

R 32π3 Zα( )2 t
Zα t( )cos 1–

t( )exp 1–
--------------------------------d

0

∞

∫=

=  32π3 Zα( )2 Reψ 1 iZα+( ) C+[ ]–

=  32π3 Zα( )2 f Zα( ),–
JOURNAL OF EXPERIMENTAL A
where C is the Euler constant and

Using this formula and taking the integral over ∆z from
–∞ to –∆min in Eq. (18), we reproduce the well-known
result obtained in [3]. We note that the value of R fol-
lowing from the numerical integration of Eq. (20) over
∆⊥  agrees with the universal result (28).

Thus, we come to a remarkable conclusion: Cou-
lomb corrections to the cross section integrated over D⊥
are independent of screening, although the main contri-
bution to the integral comes from the region

,

where, for ∆min ! , the differential cross section is
essentially modified by screening. We emphasize that
this result is valid in the leading approximation with
respect to the parameters m/ε ! 1 and λC/rscr ! 1. In the
next section, we show that, in the limit m/ε  0, the

screening contributes to /dω only as a correction in
the parameter λC/rscr .

2.3. Effect of Beam Size on Coulomb Corrections 

It is interesting to consider the effect of a finite
transverse size b of the electron beam on Coulomb cor-
rections to bremsstrahlung in a Coulomb field of a
heavy nucleus. This consideration should be performed
in terms of the probability dW rather than the cross sec-
tion. Similarly to the effect of screening, a finite beam
size can lead to a substantial modification of Coulomb
corrections to the differential probability dWC , while
Coulomb corrections to the probability integrated over
D is a universal function. To illustrate this statement, we
consider bremsstrahlung from the electron described in
the initial state by the wavefunction of the form

(29)

where the function h(p) peaks at p = p0. If the width δp
of the peak satisfies the condition

then

(30)

where the function φ(r) is normalized as

ψ x( ) d Γ x( )/dx.ln=

∆⊥  & max ∆min rscr
1–,( )

rscr
1–

dσC
γ

ψ r( ) Ωph p( )ψP
in( ) r( ),d∫=

δp ! ∆minε & m,

ψ r( ) Ωph p( ) i p p0–( ) r⋅[ ]ψ P0

in( ) r( )expd∫≈

=  φ r( )ψP0

in( ) r( ),

r φ r( ) 2d∫ 1=
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005



COULOMB CORRECTIONS TO BREMSSTRAHLUNG IN THE ELECTRIC FIELD 7
and has a width of

The quantity dWC is given by the right-hand side of for-
mula (18), where the functions A(D) and AB(D) are
given by Eqs. (11) and (16) with the additional factor
φ(r) in the integrands. Substituting

we have

(31)

If

then we can simply replace φ(r)  φ(0) in Eq. (31),
so that the differential distribution does not change
compared with the case of a plain wave. Therefore, we

consider the case b ! , where the finiteness of the
beam size is very important. In this case, we can replace
K1(∆zρ)  (∆zρ)–1 in Eq. (31).

Substituting the functions A(D⊥ ) and AB(D⊥ ) from
Eq. (31) in dR defined by Eq. (19) and repeating all the
steps of the derivation of

in the previous subsection, we obtain

(32)

We see that Coulomb corrections to the integrated prob-
ability depend on the shape of the wave packet only via

the factor , corresponding to a electron density at
zero impact parameter. Therefore, their dependence on
Zα coincides with that in the case of a plane wave (24).
However, the shape of φ(r) can essentially modify the
D⊥ -dependence of dWC . As an illustration, in Fig. 2, we
show the dependence of ∆⊥ dR/d∆⊥  on ζ for Z = 80 and

b @ 1/ ∆minε * λC.

V r( ) Zα /r,–=

A D( ) 2iZα∆ z rφ r( )d∫–=

× iD⊥– r⋅[ ]exp K1 ∆zρ( )r/ρ1 2iZα+ ,

AB D( ) 2iZα∆ z rφ r( )d∫–=

× iD⊥– r⋅[ ]exp K1 ∆zρ( )r/ρ.

b @ ∆z
1– ∆min

1– ,∼

∆min
1–

R Rd∫=

R 32π3 Zα( )2 f Zα( ) φ 0( ) 2.–=

φ 0( ) 2
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
φ(r) = φ0(ρ) (solid curve) and φ(r) = φ1(ρ) (dashed
curve), where

(33)

It is seen that the behavior of ∆⊥ dR/d∆⊥  differs drasti-
cally for the two cases considered. In accordance with
Eq. (32),

for φ(r) = φ0(ρ) and

R = 0

for φ(r) = φ1(ρ). We note that, in the latter case, the
function ∆⊥ dR/d∆⊥  itself is different from zero.

3. NEXT-TO-LEADING TERMS
IN THE BREMSSTRAHLUNG SPECTRUM

As is known [5], the modification of the high-energy
asymptotics of Coulomb corrections to the spectrum
due to the screening effect is small. Below, we show
that the same is also true for the next term in m/ε. In this
section, we explicitly calculate the screening correction
in the leading term of the high-energy asymptotics and
neglect screening in calculating the next-to-leading
term in m/ε. In other words, we calculate the first cor-

φ0 r( )
ρ2/2ρ0

2–[ ]exp

πρ0
2

----------------------------------,=

φ1 r( )
ρ/ρ0( )2 ρ2/2ρ0

2–[ ]exp

2πρ0
2

----------------------------------------------------, ζ ρ0∆⊥ .= =

R 32π3 Zα( )2 f Zα( )/πρ0
2–=

20

0

0 2 6 8
ζ

π ρ2
0 ∆⊥ dR/d∆⊥

–20

–40

–60

–80

104

Fig. 2. The quantity ∆⊥ dR/d∆⊥  in the units  as a

function of ζ = ρ0∆⊥  for Z = 80 and φ(r) = φ0(ρ) (solid
curve), φ(r) = φ1(ρ) (dashed curve). The functions φ0, 1 are
defined in Eq. (33).

πρ0
2( )

1–
SICS      Vol. 100      No. 1      2005



8 LEE et al.
rections in the small parameters m/ε and 1/mrscr to the
bremsstrahlung spectrum

(34)

with the amplitude M given by Eq. (2) and summation
performed over the polarizations of all particles. It is
convenient to calculate dσγ/dω using the Green func-
tion G(r2, r2|ε) of the Dirac equation in an external
field. This Green function can be represented as

(35)

where ψn is the discrete-spectrum wavefunction, εn is
the corresponding binding energy, and P = (εp, p). The
set of either in- or out-wavefunctions can be used in
Eq. (35). The regularization of denominators in
Eq. (35) corresponds to the Feynman rule. From
Eq. (35),

(36)

where Ωp is the solid angle of p and δG = G – . The

function  is obtained from (35) by the replacement
i0  –i0. Because the bremsstrahlung spectrum is
independent of the direction of the vector p, we can
average the right-hand side of Eq. (34) over the angles
of this vector. Using Eq. (36), we then obtain

(37)

where r = r2 – r1 and ε' = ε – ω is the energy of the final
electron. Here and below, we use the linear polarization
basis (e* = e). We note that the integration over dΩk is
trivial because the integrand is independent of the
angles of k, and we therefore omit the integral

 below. It is convenient to represent dσγ/dω in

σγd
ωd

--------
αωp'ε'

2 2π( )4
----------------- Ωp' Ωk M 2,

λeλe' λγ,
∑dd∫=

G r2 r1 ε,( )
ψn r2( )ψn r1( )
ε εn– i0+

------------------------------
λe n,
∑=

+
pd

2π( )3
-------------

ψP r2( )ψP r1( )
ε εp– i0+

-------------------------------
ψ P– r2( )ψ P– r1( )

ε εp i0–+
-----------------------------------+ ,∫

λe

∑

ΩpψP
in( ) r1( )ψP

in( ) r2( )d∫
λe

∑

=  ΩpψP
out( ) r1( )ψP

out( ) r2( )d∫
λe

∑ i
2π( )2

εp p
-------------δG r1 r2 εp,( ),=

G̃

G̃

σγd
ωd

--------
αω
2εp
---------

Ωkd
4π
--------- r1 r2 ik– r⋅( )expdd∫∫∫–=

× Sp δG r2 r1 ε,( )êδG r1 r2 ε',( )ê{ } ,
λγ

∑

Ωk/4πd∫

JOURNAL OF EXPERIMENTAL A
another form using the Green function D(r2, r1|ε) of the
squared Dirac equation,

(38)

Performing transformations as in [9, 12], we can
rewrite Eq. (37) as

(39)

For the first two terms of the high-energy asymp-
totic expansion of the spectrum, the leading contribu-
tion to the integral in Eqs. (37) and (39) is given by the
region

This estimate is in accordance with the uncertainty rela-

tion. Substituting δD = D –  in Eq. (39), we obtain
four terms. Within our accuracy, the terms containing

D(ε)D(ε') and (ε) (ε') can be omitted, and we have

(40)

Here and below, we assume the subtraction from the
integrand of its value at Zα = 0. For calculations in the
leading approximation in m/ε, the function D(r2, r1|ε)
can be used in the form [12]

(41)

where D(0)(r2, r1|ε) is the semiclassical Green function
of the Klein–Gordon equation in the external field. The

function  is obtained from Eq. (41) by the replace-
ment D(0)  D(0)*. Representation (41) can be used
directly for the calculating the screening correction to
the spectrum. It is shown below that it can be used for
calculating the correction in m/ε as well.

G r2 r1 ε,( ) γ0 ε V r2( )–( ) g p2 m+⋅–[ ] D r2 r1 ε,( ),=

p2 i∇ 2.–=

dσγ

dω
---------

αω
4εp
--------- r1 r2 –ik r⋅( )expdd∫∫–=

× Sp 2e p2 êk̂–⋅( )δD r2 r1 ε,( )[ ]{
λγ

∑
× 2e p1 êk̂+⋅( )δD r1 r2 ε',( )[ ] } .

r r2 r1–
1

∆min
---------∼ 2εε'

ωm2
---------- @ 

1
m
----.= =

D̃

D̃ D̃

dσγ

dω
---------

αω
2εp
---------Re r1 r2 ik– r⋅( )expdd∫∫=

× Sp 2e p2 êk̂–⋅( )D r2 r1 ε,( )[ ]{
λγ

∑
× 2e p1 êk̂+⋅( )D̃ r1 r2 ε',( )[ ] } .

D r2 r1 ε,( ) 1
a p1 p2+( )⋅

2ε
------------------------------+ D 0( ) r2 r1 ε,( ),=

D̃
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COULOMB CORRECTIONS TO BREMSSTRAHLUNG IN THE ELECTRIC FIELD 9
Substituting Eq. (41) in Eq. (40) and taking the
trace, we obtain

(42)

In deriving Eq. (42), we integrated the terms containing
second derivatives of D(0) by parts. We are interested in
the Coulomb corrections that can be obtained from
Eq. (42) by the additional subtraction of the Born term
(∝ (Zα)2) from the integrand.

3.1. Next-to-Leading Term in m/ε
for Coulomb Corrections to the Spectrum 

We start with Eq. (40) and introduce the variables

(43)

We note that the variable r in this section has a quite
different meaning than the variable r in the representa-
tion for A(D) in the previous section (see Eq. (11)). The
analysis performed shows that the leading contribution
to the term under discussion originates from the region
ρ ~ 1/m and θ, ψ ~ m/ε ! 1, where θ is the angle
between the vectors r2 and –r1, and ψ is the angle
between the vectors r and k. Screening can then be
neglected, and we can use the semiclassical Green
function D in a Coulomb field obtained in [9],

(44)

where q is a two-dimensional vector in the plane per-
pendicular to r. We note that, because the angle θ is
small, we can assume that the variable z belongs to the

dσγ

dω
---------

2αω
ε2

-----------Re r1 r2 ik r⋅–( )expdd∫∫=

× 4 e p2D2
0( )⋅[ ] e p1D1

0( )⋅[ ] ---




λγ

∑

+
ω2

εε'
------ e p1 p2+( )⋅ D2

0( )[ ] e p1 p2+( )⋅ D1
0( )[ ]





,

D2
0( ) D 0( ) r2 r1 ε,( ), D1

0( ) D 0( )∗ r1 r2 ε',( ).= =

r r2 r1, r–
r r1 r2×[ ]×

r2
-----------------------------= = , z

r r1⋅
r2

-----------.–=

D r2 r1 ε,( )
iκeikr

8π2r1r2

------------------ qd i
κrq2

2r1r2
------------

2 r1r2

q r–
---------------- 

 
2iZαλ

exp∫=

× 1
λr

2r1r2
------------a q⋅+ 

  1 i
π Zα( )2

2κ q r–
----------------------+ 

 




–
π Zα( )2

4κ2
------------------ γ0λ g r/r⋅–( )g q r–( )⋅

q r– 3
-------------------------





,

λ ε , κsgn ε2 m2– , a γ0g,= = =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
interval (0, 1) and r1 = rz, r2 = r(1 – z). The function 
entering Eq. (40) is obtained from Eq. (44) by the
replacement κ  –κ and λ  –λ. The contribution
of the last term in braces in Eq. (44) vanishes after tak-
ing the trace in Eq. (40). Therefore, this term can be
omitted in the problem under consideration. The
remaining terms in Eq. (44) can be represented in
form (41) with

(45)

Then, using the relation

(46)

and passing from the variables r1, 2 to the variables r, r,
and z, we obtain from (42) that

(47)

where Q1, 2 = |q1, 2 – r|. The integral over r can be taken

D̃

D 0( ) r2 r1 ε,( )
iκeiκ r

8π2r1r2

------------------ q i
κrq2

2r1r2
------------expd∫=

×
2 r1r2

q r–
---------------- 

 
2iZαλ

1 i
π Zα( )2

2κ q r–
----------------------+ 

  .

e p1 2,⋅( )D 0( ) r2 r1 ε,( )
iκ2eiκ r

8π2r1r2

------------------=

× q i
κrq2

2r1r2
------------

2 r1r2

q r–
---------------- 

 
2iZαλ

expd∫

× 1 i
π Zα( )2

2κ q r–
----------------------+ 

  e r⋅
r

---------+−
e q⋅
r1 2,
----------+ 

  ,

dσC
γ

dω
---------

αωε'

32π4ε
--------------Re

rd

r5
----- zd

z2 1 z–( )2
----------------------- q1d q2d rd∫∫∫

0

1

∫∫–=

× iωr
2

-------- ψ2 m2

εε'
------+ 

  i
εq1

2 ε'q2
2–

2rz 1 z–( )
------------------------+exp

×
Q2

Q1
------ 

 
2iZα

1– 2 Zα( )2 Q2

Q1
------ln

2
+





+
iπ Zα( )2

2
--------------------

Q2

Q1
------ 

 
2iZα

1– 1
εQ1
--------- 1

ε'Q2
----------– 

 




× 4εε' e– r⋅
e q1⋅
1 z–
------------+ 

  e r⋅
e q2⋅

z
------------+ 

 




λγ

∑

+
ω2

z2 1 z–( )2
----------------------- e q1⋅( ) e q2⋅( )





,
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10 LEE et al.
using the relations (see Appendix B in [9])

(48)

where

C = 0.577… is the Euler constant, and q = |q1 – q2|. We
next perform summation over the photon polarization,
pass to the variables

and take all integrals in the following order: dΩr , ,
dq, dr, dz. The final result for Coulomb corrections to
the bremsstrahlung spectrum is given by

(49)

f Zα( )
1

2π Zα( )2q2
---------------------------=

× r
Q2

Q1
------ 

 
2iZα

1– 2 Zα( )2 Q2

Q1
------ln

2
+d∫

=  Re ψ 1 iZα+( ) C+[ ] ,

g Zα( )
i

4πq
--------- rd

Q2
------

Q2

Q1
------ 

 
2iZα

1–∫=

=  ZαΓ 1 iZα–( )Γ 1/2 iZα+( )
Γ 1 iZα+( )Γ 1/2 iZα–( )
---------------------------------------------------------,

ψ t( ) d Γ t( )/dt,ln=

q̃ q1 q2, q+ q1 q2,–= =

dq̃

y
dσC

γ

dy
--------- 4σ0 y2 4

3
--- 1 y–( )+ 

  f Zα( )–=

–
π3 2 y–( )m
8 1 y–( )ε

--------------------------- y2 3
2
--- 1 y–( )+ 

  Reg Zα( ) ,

y ω/ε, σ0 α Zα( )2/m2.= =

0 0.2 0.6 0.8
y

σ–1
0 ydσγ

C/dy

–0.5

–1.0

–1.5

1.00.4

0

–2.0

Fig. 3. The dependence of yd /dy on y (see (49)) for

Z = 82, ε = 50 MeV. Dashed curve: leading approximation;
solid curve: first correction is taken into account.

σ0
1– σC

γ

JOURNAL OF EXPERIMENTAL 
In this formula, the term proportional to f (Zα) corre-
sponds to the leading approximation [3], and the term
proportional to Reg(Zα) is an O(m/ε)-correction. In our
recent paper [9], this result was obtained by means of
the substitution rules from the spectrum of pair produc-
tion by photon in a Coulomb field. Formula (49)
describes bremsstrahlung from electrons. For the spec-
trum of photons emitted by positrons, it is necessary to
change the sign of Zα in (49). The O(m/ε)-correction
becomes especially important in the hard part of the

spectrum, as can be seen in Fig. 3, where /dy
with the correction (solid line) and without it (dashed
line) are shown for Z = 82 and ε = 50 MeV. We note
that, in the whole range of y, the relative magnitude of
the correction is appreciably larger than m/ε due to the
presence of a large numerical coefficient.

3.2. Screening Corrections 

In this subsection, we calculate the screening cor-

rection to the high-energy asymptotics of d /dω, con-
sidering λC/rscr as a small parameter.

We start from Eq. (42) and use the semiclassical
Green function D(0)(r2, r1|ε) for an arbitrary localized
potential V(r). This Green function was obtained
in [10] with the first correction in m/ε taken into
account. The leading term has the form (see also [12])

(50)

Similarly to Eq. (47), we obtain

(51)

where

(52)

σ0
1– ydσC

γ

σC
γ

D 0( ) r2 r1 ε,( )
iκeiκ r

8π2r1r2

------------------=

× q i
κrq2

2r2r2
------------ iλr xV r1 xr q–+( )d

0

1

∫– .expd∫

dσC
γ

dω
---------

αωε'

32π4ε
--------------Re

rd

r5
----- zd

z2 1 z–( )2
----------------------- q1 q2 rddd∫∫∫

0

1

∫∫–=

× iΦ iωr
2

-------- ψ2 m2

εε'
------+ 

  i
εq1

2 ε'q2
2–

2rz 1 z–( )
------------------------+ +exp

× 4εε' e– r⋅
e q1⋅
1 z–
------------+ 

  e r⋅
e q2⋅

z
------------+ 

 




λγ

∑

+
ω2

z2 1 z–( )2
----------------------- e q1⋅( ) e q2⋅( )





,

Φ r x V r1 xr q2–+( ) V r1 xr q1–+( )–[ ] .d

0

1

∫=
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COULOMB CORRECTIONS TO BREMSSTRAHLUNG IN THE ELECTRIC FIELD 11
As we see in what follows, it is meaningful to retain
the screening correction only in the case where rscr !

, which is considered below. Then, the main con-
tribution to integral (51) comes from the region

1/m & ρ & rscr ! r

and

Under these conditions, the narrow region

around the point

is important in the integration over x in Eq. (52). There-
fore, we can perform this integration from –∞ to ∞. The
phase Φ then becomes

(53)

where δV(r) is the difference between the atomic poten-
tial and the Coulomb potential of a nucleus. The nota-
tion in Eqs. (51) and (53) is the same as in Eq. (47). It
is seen that

and

Therefore, expression (51) can be expanded in Φ(scr). In

our calculation of the screening correction d /dω,
we retain the linear term of the expansion in Φ(scr). The
function δV(R) can be expressed via the atomic elec-
tron form factor F(Q) as

(54)

Substituting this formula in Eq. (53) and taking the

∆min
1–

q1 2, 1/m.∼

δx ρ/r ! 1=

x0
r1 r⋅

r2
-----------– z= =

Φ 2Zα Q2/Q1( )ln Φ scr( )+ 2Zα Q2/Q1( )ln= =

+ r x δV r1 xr q2–+( ) δV r1 xr q1–+( )–[ ] ,d

∞–

∞

∫

Φscr ρδV ρ( )
ZαδV ρ( )

V ρ( )
---------------------- ! 1 for ρ m∼∼∼

Φscr

q1 2,

ρ
-------- 1

mρ
------- ! 1 for ρ rscr @ 

1
m
----.∼∼ ∼

σC
γ scr( )

δV R( )
Qd

2π( )3
------------- iQ R⋅( )F Q( )

4πZα
Q2

--------------.exp∫=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
integral over x from –∞ to ∞, we obtain

(55)

where Q⊥  is a two-dimensional vector lying in the plane
perpendicular to r. We next use the identity (see
Eqs. (22) and (23) in [13])

(56)

where

Expanding the exponential in Eq. (51) with respect to
Φ(scr) and using relation (56), we take the integrals over
q1, 2 , r, and z and obtain

(57)

Using the trick introduced in [13], we can rewrite
this formula in another form. We multiply the integrand
in (57) by

(58)

Φ scr( ) Q⊥d

2π( )2
------------- iQ⊥ r q2–( )⋅( )exp[∫=

– iQ⊥ r q1–( )⋅( )exp ]F Q⊥( )
4πZα

Q⊥
2

--------------,

r
r q2–
r q1–
----------------- 

 
2iZα

iQ⊥ r q1 2,–( )⋅[ ]expd∫

=  
q2

4Q⊥
2

---------- f
f 2

f 1
----- 

 
2iZα

iq f1 2, /2⋅[ ] ,expd∫

q q1 q2, f1 2,– f Q⊥ .+−= =

y
dσC

γ scr( )

dy
----------------- 4α Zα( )

π
-------------------Im

Q⊥d

Q⊥
4

----------F Q⊥( )
fd

2π
------∫∫=

×
f 2

f 1
----- 

 
2iZα

2iZα
f 2

f 1
-----ln–

S ξ1( )

f 1
2

------------
S ξ2( )

f 2
2

------------– ,

S µ( )
µ 1–( )

µ2
----------------- 1

2 µ
---------- y2 3 µ–( )[ ]





=

+ y 1–( ) µ2 2µ 3–+( ) µ 1+

µ 1–
----------------ln

– 3y2 y 1–( ) µ 3–( )–




,

y
ω
ε
----, ξ1 2, 1

16m2

f 1 2,
2

------------.+= =

1 xδ x
2f Q⊥⋅
f2 Q⊥

2+
------------------– 

 d

1–

1

∫≡ f2 Q⊥
2+( )=

× xd
x

-----δ f Q⊥ /x–( )2 Q⊥
2 1/x2 1–( )–( ),

1–

1

∫
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change the order of integrations over f and x, and make
the shift

After that, the integration over f can be easily per-
formed. Then, we make the substitution x =  and
obtain

(59)

According to Eq. (57), the correction yd /dy has
the form

(60)

Shown in Fig. 4 is the Z-dependence of the ratio
A1, 2/ f (Zα) calculated numerically with the use of form
factors from [14]. For the less realistic Yukawa poten-
tial, we can perform analytic calculations of the func-
tions Ai . It turns out that their dependence on the
parameter β = λc/rscr has the form

(61)

where bi and ci are some functions of Zα, while ai does
not depend on Zα. Recalling that β is proportional to

f f Q⊥ /x.+

τtanh

y
dσC

scr( )

dy
--------------- 16σ0m2 Q⊥d

2π
----------

F Q⊥( )

Q⊥
4

---------------

0

∞

∫=

× τd
τsinh

------------- 2Zατ( )sin
2Zα

-------------------------- τ–
ϕd

2π
------ eτS µ2( ) e τ– S µ1( )–[ ] ,

0

2π

∫
0
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Fig. 4. The dependence of A1/f(Zα) (solid curve) and
A2/f(Zα) (dashed curve) on Z. 
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Z1/3 in the Thomas–Fermi model, we see that Ai depend
on Z mainly via the factor

Therefore, it is quite natural that yd /dy calculated
with the use of the exact form factors is well fitted by
the expression

(62)

In fact, the accuracy of this fit for all Z is better than a
few percent.

It follows from Eq. (61) that, for rscr * , the fac-
tor β2 in the screening correction is extremely small,
β2 & (m/ε)2. The terms of such an order were systemat-
ically neglected in our consideration. Hence, within our
accuracy, the account of the screening correction is

meaningful only for rscr ! .

4. CONCLUSIONS

We have performed a detailed analysis of Coulomb
corrections both to the differential and the integrated
cross sections of bremsstrahlung in an atomic field. We
have calculated the next-to-leading term in the high-
energy asymptotics of the bremsstrahlung spectrum.
Similar to the leading term of the high-energy asymp-
totics of Coulomb corrections to the spectrum, this term
is independent of screening in the leading order in the
parameter λc/rscr . We have also calculated the first cor-
rection to the spectrum in the parameter λc/rscr .

We have shown that, in contrast to Coulomb correc-
tions to the spectrum, Coulomb corrections to the dif-
ferential cross section strongly depend on screening
even in the leading approximation. This dependence is
very important in the region that gives the main contri-
bution to the integral over ∆⊥ . We have performed the

explicit integration over ∆⊥  of d  for arbitrary screen-
ing and have verified the independence of the final
result from screening.

We also examined the effect of the finite beam size
on Coulomb corrections to bremsstrahlung in a Cou-
lomb field of a heavy nucleus. Similar to the effect of
screening, the finiteness of the beam size leads to a
strong modification of Coulomb corrections to the dif-
ferential probability, while the probability integrated
over ∆⊥  depends only on the density of the electron
beam at zero impact parameter.

Zα( )2β2 Zα( )2Z2/3.∝

σC
γ scr( )

y
dσC

γ scr( )

dy
---------------- 8.6 10 3– σ0 Zα( )2×≈

× Z2/3 1.2 1 y–( ) y2+[ ] .

∆min
1–

∆min
1–

σC
γ
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Abstract—The band structure and evolution of the Fermi surfaces of stripe phases were studied using the
t−t'−U Hubbard model in the mean field approximation. The appearance of quasi-one-dimensional “impurity”
subbands caused by the localization of particles on domain walls inside the Hubbard gap is confirmed. Among
vertical stripe phases parallel to y bonds, the Y8 and Y4 structures with distances l = 8a and 4a between domain
walls were found to be stable. Fermi surface segments in antinodal or nodal directions were shown to corre-
spond to an “impurity” band or the main band related to the entire antiferromagnetic domain region. This is a
probable explanation of the difference in the properties of ARPES spectra at different Fermi surface regions
observed for La2 – xSrxCuO4. It was shown for the Y8 structure that the topology of the Fermi surface
changed and an isotropic pseudogap opened at the point corresponding to a p = 1/8 doping level. Attempts
at relating this property to the anomalous suppression of Tc in LSCO at p = 1/8 encountered difficulties. The
low dispersion of the impurity band and the wide gap separating it from the lower Hubbard band in diagonal
stripe phases formed at p < 0.05 create prerequisites for the existence of the insulating state at nonzero doping.
© 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Angle-resolved photoemission spectroscopy
(ARPES) [1, 2] directly probes quasi-particles in
cuprates. For instance, the superconducting gap was
measured and the existence of a pseudogap revealed by
this method in the normal state of underdoped cuprates
based on Bi (BSCCO). Like the superconducting gap of
d symmetry, the pseudogap is absent in the nodal diag-
onal directions (on the line of the superconducting gap
nodes) and opens in the antinodal quasi-momentum
directions close to the points M(±π, 0), (0, ±π). There
are many arguments [1–3] in favor of the conclusion
that the pseudogap is determined by the properties of
the antiferromagnetically correlated Fermi liquid,
namely, by the energy profile of the lower Hubbard
band. This profile is well discernible in the ARPES data
on insulating undoped antiferromagnets. At a low dop-
ing, it determines hole pockets in the nodal directions
around the point (π/2, π/2) and the pseudogap in the
excitation spectrum in the antinodal quasi-momentum
directions. The homogeneous solutions of the t–t'–U or
t–t'–J models substantiate this picture at low h-doping
and predict a change of the topology of the Fermi sur-
face from small-sized hole pockets to a large elec-
tronic-type Fermi surface as the doping increases.

The observed evolution of the Fermi surface as the
degree of h doping increases, however, contradicts the
assumption of the formation of a e–type Fermi surface.
For La2 – xSrxCuO4 (LSCO), the Fermi surface arc
remains hole-like at substantial doping levels and
1063-7761/05/10001- $26.000106
always intersects the M(0, π)–Y(π, π) segment. It fol-
lows from the ARPES data on LSCO [4–6] that its
Fermi surface has segments of two different types. The
first type is straight Fermi surface segments parallel to
CuO bonds close to the M point. The second type is seg-
ments close to the nodal diagonal directions with system-
atic photoemission intensity suppression on them. This
picture was obtained for underdoped LSCO by photoe-
mission with photons of energy hν = 29 eV [4–6] in the
main Brillouin zone. Measurements at hν = 55 eV with
a higher resolution in the second Brillouin zone showed
that, along with bright Fermi surface segments in the
antinodal directions, there were Fermi surface seg-
ments along the boundary of the magnetic Brillouin
zone with a narrow momentum distribution and a low
integral intensity [7, 8]. This behavior was related in [7]
to the formation of stripe structures, that is, antiphase
antiferromagnetic domains arranged in line. The sug-
gestion was made that the transition between two types
of structures, from diagonal stripe structures to stripe
structures parallel to CuO bonds, occurred in the region
of the transition from the insulating to superconducting
state of LSCO at low doping levels (δ ~ 0.03–0.07).

The observation of incommensurate peaks in inelas-
tic neutron scattering at Q = (π, π) ± (δ, ±δ) or Q = (π ±
δ, π), (π, π ± δ) in the insulating or superconducting
phase, respectively (see [9–11]), lends support to the
existence of such quasi-static structures. A comparative
study of the incommensurate peaks from superlattices
in elastic neutron scattering and incommensurate peaks
 © 2005 Pleiades Publishing, Inc.
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in inelastic neutron scattering favors the suggestion that
the latter originate from slowly fluctuating stripe struc-
tures [12]. The pinning of such structures caused by dop-
ing with zinc [13] or under magnetic field action [14]
substantiates this conclusion. Additional broadening of
quasi-particles at the points k = (k0, π – k0) (k0 ~
0.175π), where the Fermi surface turned from the direc-
tion M(π, 0)–M'(0, π) toward segments parallel to
Γ(0, 0)–M(π, 0) [7], was also related to stripe phases.

The Fermi surface in electronically doped cuprates
is substantially different from that in h-doped samples.
The observed Fermi surface in the underdoped region
bounds electron pockets around the points M(±π, 0),
(0, ±π) [15] in consistency with the energy profile of
the upper Hubbard band [16, 17]. Further doping gen-
erates a fragmentary Fermi surface with an additional
segment in the diagonal direction [18]. Such a patched
character of the Fermi surface was explained in [19] by
the formation of electron and hole pockets simulta-
neously from the upper and lower Hubbard subbands of
the t–t'–U model. In [20], the hypothesis according to
which the fragmentary structure of the Fermi surface
was related to stripe phases was also discussed.

The purpose of this work is to show that the frag-
mentary Fermi surface structure and several other spe-
cial features of bands and spectral intensities could
appear as a result of the formation of stripe phases. We
show that Fermi surface fragmentation for a periodic
stripe structure is caused by splitting the initial band
into several subbands, as distinct from splitting into two
(lower and upper) Hubbard subbands in the homoge-
neous antiferromagnetic state. This is accompanied by
the splitting off of “impurity” quasi-one-dimensional
subbands present inside the Hubbard gap of the homo-
geneous antiferromagnetic state. These in-gap bands
are related to particles localized on domain walls. We
show that different Fermi surface segments correspond
either to the particles that belong to the impurity band
and are associated with domain walls or to particles
from the entire region of antiferromagnetic domains.

Our analysis is based on self-consistent solutions to
the Hubbard model obtained by the mean field method.
The results are in agreement with those reported
in [20, 21] and based on a simplified description of
stripe phases, which were modeled by a handpicked
potential. The mean field method allows the stability of
stripe structures to be estimated in a crude approxima-
tion, and unrealistic hypothetical structures, for instance,
stripe structures with charge modulation and long-range
antiferromagnetic spin order simultaneously, to be
excluded from consideration. Our calculations substanti-
ate many of the properties of quasi-particle excitations in
stripe phases observed in model calculations and calcula-
tions by the mean field method [20–24]. In particular,
they lend support to the interpretation of quasi-one-
dimensional quasi-particle states inside the Hubbard
gap as states localized on domain walls.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
We consider the t–t'–U Hubbard model with band
energy ek and one-center interaction U > 0 (t = 1 and all
energies are in t units throughout). The model does not
include long-range Coulomb interactions but gives a
quite correct description of the properties of quasi-par-
ticles characterized by large quasi-momenta near the
Fermi boundary. The Hamiltonian of the model in the
mean field approximation is insufficient for describing
the superconducting state and must be augmented by
empirical interaction of electrons on neighboring cen-
ters. The corresponding equations should be derived
with more accurate inclusion of correlations. We, how-
ever, use the original t–t'–U Hubbard model to study
stripe structures in the normal state. The procedure for
seeking a solution by the mean field method with a peri-
odic field structure is quite standard [24]. The periodic
structure is determined by the two-dimensional transla-
tion vectors Ei and Bi in the direct and reciprocal lat-
tices, respectively,

(1)

which satisfy the conditions EiBj = 2πδij .
An arbitrary site n = n(L, j) = E1L1 + E2L2 + j of the

periodic structure with nc centers per unit cell is
described by the coordinates L = (L1, L2) and j = ( jx, jy)
of the unit cell and the site inside it, respectively. A
quasi-momentum k ∈  G inside the Brillouin zone of the

original lattice is expressed via the momentum 

reduced to the Brillouin zone  of the periodic struc-

ture, k =  + B1m1 + B2m2. The set of integers m1, m2

numbers all independent Umklapp vectors. The  and

G regions are bounded by the conditions | Bi | ≤ |Bi |2/2
and |kx(y) | ≤ π, respectively.

The role of the order parameters for the periodic
mean field solutions is played by electron densities and
mean spin vectors of each unit cell site,

(2)

Here, averaging is over all NL = N/nc unit cells and α
numbers spin vector components.

The mean energy is found in the mean field approx-
imation as an explicit function of order parameters (2)
[24], and the wave function is determined by the popu-

lation of the one-electron eigenstates  of the linear-
ized Hamiltonian

This Hamiltonian is partitioned into independent con-

tributions for each reduced quasi-momentum  value.

Here, T is the kinetic energy and  and  are the
operators corresponding to one-electron means (2). The

Ei Eix Eiy,( ), Bi Bix Biy,( ), i 1 2,,= = =

k̃

G̃

k̃

G̃

k̃

r j rn L j,( )〈 〉 , Sα j Sα n L j,( ),〈 〉 .= =

χkλ
†

H lin T NL 2Ur jr̂ j 2USµjŜµj–{ }
j

∑+ h̃k̃.

k̃ G̃∈

∑= =

k̃

r̂ j Ŝµj
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eigenstates of the Hamiltonian Hlin are expanded in the
momentum representation into a set of 2nc Fermi oper-
ators

(3)

where λ = 1, …, 2nc , Bm = B1m1 + B2m2, and the vec-

tors  + Bm span the entire phase space G.
The matrix of eigenvectors Wmσ, λ and eigenvalues

 are found by diagonalizing the  matrix in the

basis set { },

(4)

Here,

(5)

where ϕ( j, m) = exp[iBmj] and j = ( jx, jy) runs over all
nc centers of the unit cell. Order parameters (2) them-
selves are in turn calculated from the matrix of eigen-
vectors W and Fermi functions f as

(6)

The Pauli matrices σα and σ0 in (6) correspond to the
Sαj and rj components, respectively. Equations (4) and
(6) determine the self-consistent solutions of the mean
field method for a periodic field structure.

The intensity of the photoemission of electrons with
the momentum projection k onto the ab plane and
energy E = hν – ω is

(7)

It is determined by the matrix element M(k), spectral
density A(kω), and Fermi function f and is accompanied
by the convolution with the Gaussian function Rωk [25]
that imitates finite resolution in k and energy. The
dependence of the matrix element M on k was studied
in [26]. Here, we use a constant value of M, because our
goal is to study the influence of the structure on the
spectral density A.

In the one-electron approximation,

(8)

χ
k̃λ
† c

k̃ Bm σ,+
† Wmσ λ, k̃( ),

m σ,
∑=

k̃

E
k̃ λ, h

k̃

c
k̃ Bm σ,+
†

h
k̃

( )
m, σ m' σ', , Wm' , σ' λ, Wm, σ λ, E

k̃ λ, .=

h
k̃

( )
m σ m' σ', , , δmm'δσσ'ek̃ Bm+

=

+ U ϕ j m' m–,( ) r jδσσ' Sµj σµ( )σσ'–[ ] ,
j

∑

r j Sα j,{ } 1
2N
------- σ0 σα,{ } ss'ϕ j m' m–,( )

m, s m' s', ,
∑

k̃ G̃∈

∑=

× Wm s λ, ,* k̃( )Wm' , s' λ, k̃( ) f E
k̃λ µ–( ).

I k ω,( ) M k( ) 2A kω( ) f ω( ) Rωk.⊗=

A k ω,( ) 1
N
----=

× Wm, σ λ, k̃( ) 2δ E
k̃λ µ– ω–( )δ

k k̃ Bm+, .
m σ λ, ,
∑

k̃ G̃∈

∑
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Here, λ = 1, …, 2nc and m = (m1, m2) number indepen-
dent Umklapp vectors Bm = B1m2 + B2m2. The standard
replacement of the δ function in (8) by a function with
a finite width Ω is implied. The map I(kx, ky, ω = 0)
visualizes both the main and shadow Fermi surface seg-
ments. Although band energies are periodic functions
in the k space, intensity (7) and spectral density (8) are
devoid of such periodicity. For this reason, even if the
matrix element in (7) is independent of k, various Fermi
surface regions manifest themselves with different
intensities because of the compound nature of band
operators in the presence of a structure.

Apart from the maps I(kx, ky, ω = 0), we consider
intensity maps averaged over a certain frequency win-
dow 2∆ω,

(9)

Here, R is the corresponding Gaussian function with
width ∆ω that imitates finite resolution in ω. The con-
struction of such maps requires function normalization
by its maximum value. It follows that the brightness
and width of Fermi boundaries on them depends on the
width of the frequency window ∆ω in (9). In particular,
at a large width ∆ω, not only the true Fermi boundaries
with sharp population steps but also boundaries with
smoother n(k) variations are seen in the map of the I∆ω
function. Such regions correspond to the opening of a
insulating gap or pseudogap.

Lastly, if k = k(l) is varied along a certain contour,
the map of the A(k, ω) function on the plane of two vari-
ables k(l) and ω reproduces the dispersion of the energy
levels Eλ(k) along the selected contour. Each level is
then weighted with a weight factor |Wk, σ, λ|2 corre-

sponding to the contribution  to band eigenstate (3).
To see all the Eλ(k) bands as a whole rather than their
“bright” fragments only, it is sufficient to construct the
map of function (8) with replacing the |W|2 factor
by one.

2. THE STRUCTURE 
OF VERTICAL STRIPE DOMAINS

Among the stripe phases with domains aligned with
the y-oriented CuO bonds, the structures with domain
walls centered on x bonds, wall spacings l = 4, 6, 8, and
10, and nc = 2l (l is in lattice parameters) were calcu-
lated. Let these phases be named Y4, …, Y10, res-
pectively. Without adjustment of model parameters, the
mean field approximation ignoring interaction with the
lattice describes a tendency in structure changes rather
than the exact order of their sequence as the doping
varies.

The mean energies (p) per lattice site are shown
in Fig. 1 as functions of the doping p = 1 – n for the

I∆ω k ω,( ) ω'I kω'( )R
ω ω'–

∆ω
--------------- 

  .d∫=

ckσ
†

H
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hole-doped model with the parameters U = 4 and t' =
0.1 (in t units) for a series of structures and for the
homogeneous antiferromagnetic state. The latter has
the lowest energy when p  0. In agreement with the
earlier results [24], stripe states are stabler in hole-
doped models than the homogeneous antiferromagnetic
state. The Y10, Y8, Y6, and Y4 structures sequentially
become stablest as p increases. Starting with certain
p > p*(l) inside the interval l, two additional domain
walls appear in the Y8 and Y10 structures, and the width
of the true antiferromagnetic domain decreases to 4a
and 5a. The p* values correspond to kinks in the depen-
dence of the mean energy on the doping and lie in the
region where Y4 is the stablest structure. At large p, the
Y4 structure with ∆l = 4 is obviously distinguished as
the stablest structure. 

Figure 1 also displays variations in the electron and

spin densities r(n) and d(n) = 〈Sz(n)〉  on sites
along the nx coordinate parallel to CuO bonds for some
structures in the hole-doped system with U = 4 and t' =
0.1. These variations show the degree of charge local-
ization and spin density distortion close to domain
walls. The self-consistent periodic spin field F(n) =
U(−1)nd(n) (or the spin structure factor) is somewhat
different from the handpicked potential with rectangu-
lar modulation [20, 21]. At low t', it actually contains
only two harmonics Fq with the vectors q = Bm closest
to the vector Q = (π, π) of the homogeneous antiferro-
magnetic state.

The main and shadow Fermi surface segments on
the complete phase space plane |kx(y)| ≤ π for the Y4

stripe structure with l = 4a and nc = 8 aligned with y
bonds are seen in Fig. 2a, where the map of the intensity
of photoemission I(k, ω = 0) at the doping level p = 0.15
is shown. The Fermi surfaces of the stripe structure are
substantially different from those of the homogeneous
antiferromagnetic solution for the model with the same
doping level. The Fermi surfaces for the latter are
boundaries along hole pockets prolate along the bound-
ary of the magnetic Brillouin zone. The periodic field of
spins of antiphase antiferromagnetic domains forms
quasi-one-dimensional Fermi surface segments perpen-
dicular to the direction of stripe domains. The map of
intensities I(kx, ky, ω = 0) symmetrized along the x and
y stripe domain orientations is shown in Fig. 2b. The
absence of a Fermi boundary in the diagonal direction
means a pseudogap opening in this direction instead of
the pseudogap in the region of points M = (0, π), (π, 0)
for a homogeneous solution.

The intensity I∆ω map averaged over the frequency
window ∆ω = 0.08t according to Eq. (9) is shown in
Fig. 2c. In addition to the bright Fermi surface seg-
ments, the broadening of ∆ω makes visible quasi-parti-
cles with energies exceeding the pseudogap width in
the diagonal direction.

1–( )
nx ny+
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The band structure of periodic stripes and spectral
weight transfer between subbands are seen in the spec-
tral density A(k, ω) maps on the (k, ω) plane as k
changes along a certain contour. The band energies
weighted according to (8) and the system of the same
band levels Eλ(k) – µ of the periodic structure with unit
weights are shown in Fig. 3 as functions of k, which
varies along the path Γ(0, 0)–M(π, 0)–Y(π, π). The
Eλ(k) energies [but not the intensities A(k)] are, as they
should be, periodic functions of k with the period 2π/l
in the contour regions normal to the direction of stripe
domains. In reality, only a small number of nonshadow
band levels contribute to the spectral function for each

Fig. 1. (a) Doping p = 1 – n dependences of the mean energy
per node for the hole-doped model with the parameters U =
4.0 and t' = 0.1 of vertical stripe structures and homoge-
neous antiferromagnetic state (thick curve AF). The curves
for Yl structures are labeled by the corresponding l = 4, 6, 8,
and 10 values. (b) The same at a low p value for the diagonal
stripe phases D10 and D20. The dashed lines correspond to
approximate mean field results in the region of incomplete
convergence. (c) Mean density and spin (2) variations
depending on the coordinate nx of lattice sites for the Y8
(solid lines) and D8 (dashed lines) structures.
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(‡) (b) (c) Y

Γ

Fig. 2. (a) Intensity map [Eq. (7)] on the |kx, y| ≤ π plane representing the Fermi surface of the Y4 structure of vertical stripes with
l = 4 for the model with U = 4 and t' = 0.1; doping level p = 0.15. (b) The same map averaged over the x- and y-oriented stripe
structures. (c) Map of intensity (8) averaged over the frequency window ∆ω = 0.08t in the first phase space quadrant 0 < kx(y) ≤ π.
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Fig. 3. (a) Maps of spectral density (8) revealing band energies Eλ(k) – µ of the Y4 stripe structure as k varies along the contour
Γ−M(π, 0)–Y(π, π). (b) The same bands from the density map of levels with unit weights in (8). Model parameters and doping are
as in Fig. 2.
k and, accordingly, manifest themselves in photoemission.
In agreement with the results obtained in [20, 21, 24], it
follows from Fig. 2 that the transfer of spectral weight
between the subbands of periodic structure occurs in
such a way that bright band regions tend to reproduce
the unperturbed band. Bright band fragments close to
the boundary of the magnetic Brillouin zone appear
inside the Hubbard gap of the excitation spectrum of
the homogeneous antiferromagnetic state.
JOURNAL OF EXPERIMENTAL 
Details of the behavior of “weighted” bands E(k) –
µ in the vicinity of the boundary of the magnetic Bril-
louin zone as k varies along three sections, namely,
Γ−M(π, 0)  Y(π, π), Γ–S(π/4, 3π/4)  Y, and
Γ−(π/2, π/2)  Y, are shown in Fig. 4. Along the last
two sections, none of the bands intersects the chemical
potential level, which means a pseudogap opening in
these directions and is in agreement with the absence of
a diagonal Fermi surface segment in Fig. 2b. The Fermi
AND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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(a) (b) (c)
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ΓMY ΓSY ΓY

Fig. 4. Behavior of bands and spectral density transfer between them close to the boundary of the magnetic Brillouin zone from the
A(k, ω) map; k varies along three contours Γ–M(π, 0)–Y(π, π), Γ–S(3π/4, π/4)–Y, and Γ–Y in the region limited by the condition
kx + ky ≤ 1.3π. The vertical lines correspond to the k values at the intersections of the contours with the magnetic Brillouin zone.
Maps b and c display pseudogap opening at the corresponding points of this zone. The Y4 structure, doping, and model are as in
Figs. 2 and 3.

(a) (b)

Fig. 5. Photoemission intensity I(k, ω = 0) maps revealing the Fermi surface for the Y8 stripe structure (with averaging over the x
and y orientations); maps (a) and (b) correspond to doping levels p = 0.1 < 1/8 and p = 0.15 > 1/8, respectively. Anomalous doping
p = 1/8 corresponds to pseudogap opening along the boundary of the magnetic Brillouin zone.
surface also disappears near My(0, π). According to the
interpretation suggested in [20–22], there appears an
impurity 1D band of quasi-particles localized on
domain walls and moving along them. For vertical
stripe domains, the dispersion of such a band is large,
of order t.

Calculations of the Y8 and Y10 structures show that
the shape of the Fermi surface similar to that described
above (Figs. 2a, 2b) only exists at the doping levels p <
1/8 and p < 1/10, respectively. At the same time, Fermi
surface segments in the nodal diagonal directions
appear at p > 1/l, and a pseudogap habitual with
BSCCO again opens near the M(π, 0), (0, π) points. The
Fermi surfaces of the Y8 structure with the doping levels
p = 0.1 < 1/8 and p = 0.15 > 1/8 are shown in Fig. 5. At
the very instant of the change of the topology of the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
Fermi surface, at the doping level p = 1/8, a pseudogap
opens along the entire boundary of the magnetic Bril-
louin zone. The impurity band lies wholly above the
chemical potential level µ and is fully free, whereas the
remaining seven lower levels of the main band originat-
ing from states delocalized over the antiferromagnetic
domain lie above µ at all k values and are fully popu-
lated. The gap between them at the chemical potential
level is seen in Fig. 6, which displays the spectral den-
sity A(k, E – µ) maps as k varies along three sections,
namely, Γ – M(π, 0)–Y(π, π), Γ–S(π/4 3π/4)–Y, and
Γ−Y, and the corresponding unweighted eigenvalues.
The arrangement of the latter explains the scheme of
filling the main and impurity in-gap bands. The appear-
ance of a diagonal Fermi surface segment at p > 1/8 in
the Y8 structure means the formation of a hole pocket in
the remaining main band, which contains seven levels
ICS      Vol. 100      No. 1      2005



112 OVCHINNIKOVA
per domain layer, while the impurity band that split off
from the main band inside the Hubbard gap is com-
pletely depopulated. Solutions for the Y10 structure
exhibit similar change of the Fermi surface topology at
p = 1/10. At this p value, the mean energy of the
Y10 structure is, however, higher than that of the Y8

structure.

It is more realistic to describe LSCO as an ensemble
of several quasi-static structures with domains of vari-
ous widths or mean charge density fluctuations in space
or time. Simplified model calculations of a disordered
stripe phase were performed in [20]. Taking into
account spatial charge fluctuations or (and) structure
variations, we can expect quasi-one-dimensional Fermi
surface segments in antinodal directions and Fermi sur-
face segments in nodal directions to manifest them-
selves simultaneously in the ARPES data. It follows
from our analysis that different Fermi surface segments
have different origins, and antinodal segments originate
from impurity band states localized on domain walls,
whereas Fermi surface segments in nodal directions
originate from states delocalized over the antiferromag-
netic domain. Clearly, the former are more sensitive to
the influence of defects, impurities, and structure varia-
tions. This could explain the difference in the shape of
ARPES signals from LSCO for nodal and antinodal
Fermi surface segments (the presence versus absence of

E
–µ

kM YΓ

–3

4

4

–3

E
–µ

Fig. 6. Behavior of bands Eλ(k) – µ for the Y8 structure at
anomalous doping p = 1/8 on the maps of the spectral (bot-
tom) and unweighted (top) densities of states. Quasi-
momentum k changes along the Γ–M(π, 0)–Y contour. The
horizontal line is the chemical potential level.
JOURNAL OF EXPERIMENTAL A
sharp peaks in the energy distribution of photoelec-
trons [6, 7] for the corresponding segments).

It also follows from the band fragmentation
described above that the pseudogap region of the mag-
netic Brillouin zone with a suppressed photoemission
intensity is retained in the region of the intersection of
the standard Fermi surface arc and the boundary of the
magnetic Brillouin zone in the vicinity of the point
S(π/4, 3π/4). Such magnetic Brillouin zone points are
called hot points in [7], because, starting with these
points, the observed broadening of the photoemission
peak is interpreted as the switching on of an additional
mechanism of scattering of particles with the corre-
sponding k value. According to the concept of stripe
phases, the disappearance of the Fermi surface in this
direction is caused by special features of the bands,
namely, the retention of the pseudogap in the region
between two Fermi surface segments of different
natures. Near hot points, spectral weight is transferred
from band states delocalized over the antiferromagnetic
domain to an impurity quasi-one-dimensional band,
which is more sensitive to the stripe structure period. As
has been mentioned, peak broadening in the energy dis-
tribution of photoelectrons in antinodal directions start-
ing with hot points could be a consequence of a disor-
dered arrangement of domain walls.

An attempt can be made to relate the anomaly of the
electronic properties of the Y8 structure at p = 1/8 to the
anomalous suppression of superconductivity and Tc in
LSCO at this p value. However, a contradiction remains
between the positions of inelastic neutron scattering
peaks q = π(1, 1 ± 1/8) expected for the stripe structure
Y8 and their positions q = π(1, 1 ± 1/4) observed for
LSCO at p = 1/8. The latter favor the Y4 structure. 

Studies of other periodic structures showed that, in
the mean field approximation, charge modulation
(charge density waves) is only possible in the presence
of antiphase antiferromagnetic domains with bound-
aries between them. The artificial order parameters that
describe charge density waves for in-phase antiferro-
magnetic domains do not survive: the solution by the
mean field method converges to a homogeneous anti-
ferromagnetic solution. This is also true of the periodic
variant of bubble-type structures [20] with a 4 × 4 cell
and two-dimensional structures with antiphase antifer-
romagnetic domains of size 4 × 4 and charge modula-
tion along the x and y axes. A consideration of the latter
in the mean field approximation leads to a homoge-
neous paramagnetic solution. At certain parameter val-
ues, there exist dimeric structure states with spin cur-
rents on plaquettes 4 and mean spin vectors lying in the
ab plane (32 centers per unit cell). Their energy is
higher than that of the vertical stripe structure Y4, and
their Fermi surface in no way corresponds to the seg-
ments of the observed Fermi surface.
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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3. DIAGONAL STRIPE PHASES

The differences between diagonal stripe structures
and the structures aligned with bonds, which were con-
sidered above, are of interest. The diagonal structures

with a distance of l/  between domain walls and the
number nc = 2l sites per unit cell will be denoted by Dl .
The presence of such structures in the insulating
LSCO phase follows from inelastic neutron scattering
peaks with Q = (π, π) ± (δ, ±δ) at a doping level of
p < 0.05 [9–11]. We calculated Dl structures with the
translation vectors E1 = (–1, 1) and E2 = (l, l) and
domain walls centered on sites rather than bonds,
because the energy of diagonal structures increases
when domain walls are centered on bonds. The energies
of the D10 and D20 structures with the numbers of sites
nc = 2l = 20, 40 per unit cell are shown in Fig. 1b rela-
tive to the energy of the antiferromagnetic state at
p < 0.1. The data presented in Fig. 1 and the experimen-
tal results reported in [9–11] lead us to expect the exist-
ence of diagonal stripe phases Dl with l > 20 in the low
doping region (p ≤ 0.05). Nevertheless, the characteris-
tics of the Fermi surface and the impurity band inside
the Hubbard gap will be illustrated as an example of the
D8 stripe structure with a smaller number of levels.

The Fermi surface map and the behavior of bands
along the sections Γ–Y(π, π) and Γ–Y '(–π, π) for the
diagonal D8 stripe structure with the translation vectors
E1 = (–1, 1) and E2 = (8, 8), nc = 16, and domains parallel
to E1 are shown in Fig. 7. As was predicted in [20, 21],
the quasi-one-dimensional Fermi surface segments are
perpendicular to the direction of stripe domains. An
impurity in-gap band with a small dispersion appears
in the middle of the Hubbard gap. As follows from the
reasoning of the authors of [20, 22], the dispersion of
this band is proportional to the small hopping t', as dis-
tinct from a similar in-gap band in vertical stripes with
width ~t. At such a small dispersion of the in-gap impu-

2
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rity band and a wide gap separating it from the remain-
ing lower Hubbard band, doping and stripe structure
period variations enable a system having the insulating
state even at nonzero doping ph ≠ 0 to be modeled [22].

The spectral density A(k, ω) map is shown in Fig. 8
along two diagonal sections for the periodic structure
D8 with nc = 16, E2 = (8, 8), and a doping level of p =
1/8. It corresponds with the structure of “weighted”
bands along two diagonals, parallel and perpendicular
to stripe domains. The plots at the bottom display the
system of “unweighted” one-electron levels. Along the
entire boundary of the magnetic Brillouin zone, a wide
gap separates the major part of the lower Hubbard band
from the impurity band of states split off and localized
along domain walls. At p = 1/8, the impurity band of the
D8 structure is empty. It follows that, at such a doping,
the D8 structure would have the properties of a insulat-
ing with a wide gap separating the conduction band.
This situation is similar to that with the anomalous
behavior of the vertical stripe structure Y8 at doping p =
1/8. The difference is that the gap of excitations in the
Y8 structure would be narrow because of a large impu-
rity band dispersion.

The question of whether or not the D8 structure with
p = 1/8 can exist, that is, the question of its stability as
compared to vertical stripe structures, can hardly be
answered unambiguously on the basis of mean field
calculations. It follows from the positions of the low-
frequency incommensurate peaks of inelastic neutron
scattering by LSCO [9, 10] that we can expect the for-
mation of diagonal stripe structures Dl with l ≥ 20 only
at a very low doping level, p < 0.05.

Any diagonal Dl structure at the corresponding dop-
ing level p = 1/l retains the properties of the D8 structure
described above; that is, it remains insulating and has
an equally wide gap separating the main filled band
from the empty impurity conduction band. It follows
that, at arbitrarily low doping in the region p < 0.05,
where diagonal structures Dl with l > 20 are stabler, we
(a) (b) (c)
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–µ

Y ' Y
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Γ +

Γ Y ' YΓ

Fig. 7. (a) Intensity map for the D8 structure with stripe domains parallel to the vector B2 = (–π, π) at the p = 0.15 doping level. The
Fermi surface segments normal to the direction of domains are only seen. (b, c) Behavior of bands for k changing along the diagonals
Γ(0, 0)–Y'(–π, π) and Γ–Y(π, π), respectively.
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always observe the formation of a set of diagonal

domain walls with the mean distance  > 20/
between them that gives rise to the insulating state of
the system through splitting off the required number of
empty impurity bands from the remaining fully filled
main band. These arguments, first presented in [22],
explain the existence of a insulating phase in LSCO at
nonzero doping (p < 0.05).

As distinct from diagonal structures, vertical stripe
domains are characterized by a large impurity band dis-
persion, ∆E ~ t, on the order of the Hubbard gap width
itself. Because of this and because of the dispersion of
the edge of the lower Hubbard band, such structures
cannot be responsible for the insulating state of the sys-
tem over a substantial range of doping. The anomaly
at p = 1/8 is an exception for the vertical stripe struc-
ture Y8 .

Lastly, note one more problem that arises in the
description of the electron-doped Nd2 – xCexCuO4
cuprate (NCCO) at pe > 0.13. This is the interpretation
of the patched character of the Fermi surfaces observed
in the maps of the intensity of the ARPES signal from
NCCO [18]. The Fermi surfaces consist of the bound-
aries of the electron pockets around the M(π, 0), (0, π)
points and additional Fermi surface segments in the
diagonal nodal direction. This phenomenon was
explained in [19] by the coexistence of electron pockets
from the population of the upper Hubbard band and

l 2

E
–µ

k

YΓ

–4

4

4

–4

E
–µ

Fig. 8. Spectral density A(k, ω) maps (bottom) and band
energies E(k) – µ (top) of the D8 stripe structure at the p =
1/8 doping level for k changing along the Γ–Y diagonal nor-
mal to the direction of stripe domains.
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hole pockets in the neighborhood of k ~ (π/2, π/2) from
partial depopulation of the lower Hubbard band.
Attempts at relating the appearance of the additional
Fermi surface segments to stripe structures did not lead
to an unambiguous result [20]. We also tried to find
stripe structures that would reproduce such segments.
In particular, the Fermi surface of the diagonal stripe
structure D10 does have additional segments in the
nodal direction perpendicular to the direction of diago-
nal stripe domains. The energy of this state for the
e-doped Hubbard model is, however, higher than the
energy of the homogeneous antiferromagnetic state, as
with the e-doped models of the other stripe structures
studied earlier [24].

To summarize, the formation of stripe structures and
related Umklapp processes and spectral weight transfer
between different subbands result in the fragmentation
of bands and Fermi surfaces observed in photoemis-
sion. A quasi-one-dimensional impurity band is split
off inside the Hubbard gap. It corresponds to states
localized along domain walls that separate antiphase
antiferromagnetic stripe domains. In the region of sta-
bility of stripe structures Yl aligned with bonds and hav-
ing domain widths l = 4, 6, 8, and 10, it is the impurity
band that is responsible for the existence of Fermi sur-
face segments aligned with bonds in antinodal direc-
tions at doping levels p < 1/l. At the same time, Fermi
surface segments in nodal directions owe their exist-
ence to band states delocalized over antiferromagnetic
domain sites and appear at doping levels p > 1/l. The
different origins of the nodal and antinodal Fermi sur-
face segments explains the difference in the character-
istics of photoemission from these segments observed
in the ARPES studies of LSCO [4–6]. For the Y8 struc-
ture, the p = 1/8 critical value itself signifies the open-
ing of a pseudogap along the entire magnetic Brillouin
zone boundary. The suggestion that the Y8 structure is
responsible for anomalous suppression of Tc in LSCO
at a p = 1/8 doping is, however, inconsistent with the
size l = 4 of stripe domains that follows from neutron
scattering measurements. Calculations of diagonal
stripe structures substantiate the special features of
impurity bands in this situation. The small dispersion of
the impurity band and the wide gap separating it from
the main band noticed in [20–22] are responsible for the
existence of a insulating phase at nonzero doping. It
would be useful to discuss the photoemission spectra of
LSCO bearing in mind the details of the behavior of
bands and Fermi surfaces of particular structures
obtained in mean field calculations.

Note added in proof. Substantial progress in analy-
sis of stripe phases was achieved by using the
Gutzwiller approximation in [27, 28], where the depen-
dences of the period, chemical potential, and transport
properties of the structures on doping were explained.
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Abstract—A consistent analytical theory is developed for coherent resonant electron tunnelling in a two-well
nanostructure in the presence of a weak electromagnetic field. Simple expressions derived for the transmission
coefficient and linear response of the two-well nanostructure make it possible to clarify the physics of processes
and to express the gain as a function of the structure parameters. It is shown that the high-frequency response
of the two-well nanostructure considerably exceeds the response of a one-well structure (resonance-tunnel
diode) and that the application of a constant electric field makes it possible to tune the oscillation frequency and
to increase the gain. It is concluded that two-well nanostructures can be used in designing terahertz oscillators.
It is shown that, in contrast to a resonance-tunnel diode, interference of electrons between the wells and radia-
tive “laser-type” transition play a decisive role in such structures. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Resonant tunnelling in nanostructures has wide
prospects in designing integrated circuits, logic ele-
ments, oscillators, and lasers [1]. New striking possibil-
ities appear when conditions for coherent tunnelling are
created. Coherent lasers that do not require population
inversion [2] and oscillators based on a two-band Stark
ladder [3] may serve as examples of such devices.

At the present level of technology, coherence can be
ensured over large lengths (up to a dozen quantum
wells); this was demonstrated in experimental studies
(see, for example, [4]). It should also be noted that the
simple condition τΓ < τph for coherent tunnelling (τΓ is
the residence time for an electron in a well and τph is the
time of coherence breakdown) may turn out to be too
stringent. Indeed, the detailed theory shows that the
electron–phonon interaction does not affect the attenu-
ation of Bloch oscillations under certain conditions [5],
while resonant tunnelling remains coherent even for
τΓ @ τph [6].

For this reason, it would be interesting to study the
features of the interaction of an electromagnetic field
with nanostructures under the conditions of coherent
tunnelling. It should be noted that a theoretical descrip-
tion of coherent systems requires a consistent quantum-
mechanical approach. This is so because resonant tun-
nelling is associated with quantum interference of elec-
trons, which is exceptionally sensitive to the boundary
conditions and the energy of the electrons being
injected. Such an approach was used earlier for describ-
ing the high-frequency response of a single-well struc-
ture [7] (which is also referred to as a resonance-tunnel
diode (RTD)).

This study aims at developing a theory of the high-
frequency response for a two-well nanostructure
(TWNS). Such a structure can be the simplest structure
1063-7761/05/10001- $26.000116
in a transition from an RTD to a superlattice with a
Stark ladder. In addition, TWNS is of independent
interest. First, it exhibits new features associated with
interwell interference and level splitting. Second, the
high-frequency response associated with transitions
between split levels might be more intense than the
response in an RTD [8, 9]. Thus, TWNSs are very
promising for developing terahertz oscillators.

In this study, a consistent analytic theory of coherent
resonant tunnelling of electrons interacting with an
electromagnetic field is developed. A simple model of
the structure and the approach used earlier in [7] are
employed. Simple expressions derived here for the
transmission coefficient and the response of the system
make it possible to clarify the physics of the processes
and to calculate the gain as a function of TWNS param-
eters.

In particular, it will be shown that the gain of a
TWNS considerably exceeds the gain of an RTD, and
that the application of a constant electric field makes it
possible to retune the oscillation frequency. The con-
clusion that the gain increases in a certain interval of the
constant field appears the most interesting. It should
also be noted that in the same way as in [7] for an RTD,
we managed to eliminate expressions of the type of
1/ω2, which diverge for ω  0 and which are typical
of approximate theories (see the literature cited in [7]),
and obtain correct frequency dependences.

2. FORMULATION OF THE PROBLEM 
AND BASIC EQUATIONS

We will study a model of coherent tunneling in a
TWNS using the approach developed in [7]. We con-
sider a one-dimensional structure with δ-function barri-
ers at points x = 0, a, 2a (see figure). A steady-state
 © 2005 Pleiades Publishing, Inc.
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electron flow proportional to q2 is supplied to the first
well from the left (x  –∞); the energy ε of the elec-
trons is approximately equal to the resonance level
energy εR of the first well. In the region of the TWNS,
a varying electric field E(t) is applied and the field
potential is

(1)

The resonance level of the second well may be dis-
placed by V (for example, due to the action of the con-
stant electric field). The wavefunction Ψ(x, t) satisfies
the Schrödinger equation

(2)

Here, we assume that " = 2m = 1. We seek the steady-
state solution to Eq. (2) in the form (see [7])

(3)

Partial wavefunctions Ψl0, Ψln , l = 1, 2, n = ±1 describe
electrons with quasienergies ε and ε + ωn , respectively.

Functions Ψl0(x) in the zeroth approximation in the
varying field satisfy the equations

(4)

and the boundary conditions

(5)
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The corresponding equations and boundary conditions
for function Ψln(x) in the approximation linear in the
field have the form

(6)

(7)

.

The varying field induces the polarization currents
(response)

Here, Jc is the current synphase with the field and J s is
the reactive current:

(8)

pn
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In the subsequent analysis, we will consider only cur-
rent Jc leading to the emission (absorption) of the vary-
ing electric field.

3. WAVEFUNCTIONS
AND TRANSMISSION COEFFICIENTS 
OF A TWO-WELL NANOSTRUCTURE 

IN ZERO VARYING FIELD

The solutions to Eqs. (4) have the form

(9)

and the coefficients are given by

(10)

where the following notation is used:

(11)

Determinant ∆10(2) describes the resonance properties
of the TWNS and the form of the coefficients of trans-
mission of electrons through the structure,

(12)

Here and below, we consider the structure with
“intense” barriers, for which α/p @ 1. It is in this limit
that remarkable properties of quantum wells are fully
manifested.

First, we will study the resonance properties of a
symmetric TWNS, for which V = 0 and p = p1. In this
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case, the determinant (11) assumes a simpler form
∆10(2) ≡ ∆0(2),

(13)

In the vicinity of the resonant values of energy, where
∆0(2) assumes its minimal value, we can represent
momentum p in the form

In this case, we obtain the following equation for
x = :

(14)

We will seek the solution to this equation in the form of
expansion of x = x1 + x2 into a power series in small
parameter δ. In the first approximation, we obtain the
equation

(15)

which has the following solutions:

(16)

Two solutions correspond to the splitting of the reso-
nance level of an isolated well into two levels with ener-
gies

(17)

and the splitting energy width

(18)

In the next approximation in δ, we have

(19)

The presence of the imaginary part indicates damping
in view of possible departure of an electron from the
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TWNS. Relations (17)–(19) make it possible to write
determinant ∆0(2) in the form

(20)

where Γ is the width of the resonance levels in the
TWNS. It can easily be seen that the determinant
assumes the following values in resonance:

(21)

Expression (20) makes it possible to find the TWNS
transmission coefficient in explicit form:

(22)

This coefficient has two resonance peaks in the vicinity

of resonance energies  with width Γ. The resonant

values  are equal to unity, while for ε =  –
t0/2 (the value between the maxima), the transmission

coefficient becomes quite small, T(  – t0/2) =
4(p/α)2 ! 1.

Let us consider the general case V ≠ 0, assuming,
however, that V ! εR . In this case, the equations are
extremely cumbersome and will not be given here in
complete form. In the first approximation in δ, the
equation for x1 assumes the form

(23)

where  = Va/p0 ! 1 and δ = p0/α ! 1.
Equation (23) has two solutions,

(24)

which correspond to two levels with the corresponding
energies

(25)

The value of energy splitting

(26)

increases with V. For V @ t0, the splitting is t ≈ V; i.e.,
the energy levels in the wells become independent.
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The imaginary part of the correction of the next
order in δ and  has the universal form

(27)

for both levels and is independent of . Consequently,
the level widths Γ are identical and are given by expres-
sion (20). The real part of correction  is cumbersome
and is not given here. Whenever necessary, it can be

taken into account in  and t.

Substituting the values of resonance energy (to

within δ2, , and ) into determinant ∆10(2), we
obtain the expression

(28)

which is transformed into (21) for V = 0. It can be seen
that the resonant value increases with V as expected.
Using the results obtained above, we can represent
determinant ∆10(2) in the vicinity of the resonance in
the form

(29)

As before, transmission coefficient (12),

(30)

has two resonance peaks of width Γ. The resonant val-
ues of T(ε) decrease with increasing V,

(31)

since field V leads to degradation of interwell interfer-
ence and to localization of electrons in individual wells.

4. WAVEFUNCTIONS
IN A TWO-WELL STRUCTURE 

IN THE PRESENCE OF A VARYING FIELD: 
GENERAL SOLUTION

The solutions to Eqs. (6) for functions Ψln have the
form (see, for example, [7])

(32)
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Substituting Ψ1n and Ψ2n into boundary conditions (7),
we obtain the following system of linear equations for
determining coefficients Aln and Bln:

(33)

The right-hand sides Fj are given by

(34)

The solutions to system (33) can be represented in the
form

(35)

where the following notation is introduced:

(36)

(37)
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(38)

Determinant ∆1n(2) in (38) is analogous to ∆10(2) to
within the substitution p1n  p1. Consequently, it can
be written in the form

(39)

Formulas (35)–(39) provide an exact solution to sys-
tem (6), (7), which is unfortunately cumbersome and
hard to visualize. In addition, this solution contains for-
mally diverging expressions for ω  0. However, as
was shown for the first time in [7], there exists a trans-
formation under which diverging terms can be singled
out and compensated exactly. In this case, use is made
of small parameters δ = p0/α and ωn/εR , which are
present in a structure with high barriers. The smallness
of the frequency (equal to splitting t in resonance) as
compared to the resonance energy follows from the
smallness of splitting,

In particular, on account of the smallness of δ and
ωn/εR , we can simplify the expressions for Fj , omitting
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the terms which are small in δ and ωn/εR:

(40)

(41)

5. WAVEFUNCTION AND RESPONSE
OF THE FIRST WELL

IN A TWO-WELL STRUCTURE

It is more convenient to consider the wavefunctions
and the response of each well separately. First, we
express coefficients A1n and B1n in terms of Al0 and Bl0
so as to single out the terms diverging for ω  0,
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where the following notation is introduced:

(43)

Contributions  and  contain terms diverging
for ω  0 and are independent of determinant ∆1n(2),
which is cancelled out due to the terms grouped in
∆1n(2) when A10 and B10 appear in the numerator. Coef-

ficients  and  are finite for ω  0 and are the
only terms contributing to the response.

It can be proved that the part of the wavefunction

diverging in ω and emerging due to  and  is
compensated by the contribution from the inhomoge-
neous solution f1. Indeed, expanding p1n = p1 – ωn/2p1

in the exponent exp(±ip1nx) appearing with  and

, we see that the corresponding diverging contribu-
tions are cancelled out. Thus, for Ψ1n we obtain

(44)

It will be shown below that current (8) can be expressed

in terms of combinations of  and ,

(45)

which can be determined from relations (42):

- (46)

It should be noted that the coefficients of wavefunction
Ψ1n and their combinations γ1n and δ1n contain the inter-
fering contribution both from the electrons arriving
from the upper level of the first well after the emission
of a photon (on the order of M1n) and from the electrons
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experiencing resonant tunnelling from the second well
(on the order of Φ1n).

Let us now calculate M1n using expressions (43),

(10), and (11). In the main approximation in δ and ,
determinant ∆10(1) for the resonance value of momen-
tum p = p(1) is given by

(47)

Here and below, we assume that energy ε of the elec-

trons supplied to the structure is equal to . To
determine the value of ∆1n(1), we note that it coincides
with ∆10(1) if we replace p1n by p1 and pn by p. Conse-
quently, choosing the frequency equal to splitting

energy t, we find that  = , and hence

(48)

Substituting cofactors into Eq. (43) and considering
that

(49)

we obtain
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It can easily be seen that
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Summing the results, we obtain
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It should be emphasized that the squared frequency in
the denominator cancels out; consequently, function
Ψ1n is finite for ω  0.
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Let us now calculate the current  in the first
well. Substituting functions Ψ10 and Ψ1n into Eq. (8),
we arrive at the following expression:

(54)

(55)

Current  (54) is the sum of two terms. The first term
weakly depends on the coordinate and is proportional
to ϕ1n ,

(56)

(57)

It was shown in [7] for a single-well structure that the
first term describes electron transitions between states
with wavefunctions proportional to sinpnx and cospx,
sinpx and cospnx, which are typical of the current state
and vanish in an isolated quantum well. These transi-
tions occur with approximately equal weights, thus
making intense interference of these states possible. If
the energy of supplied electrons coincides with the res-
onance energy, compensation takes place and ϕ1n van-
ishes. It will be shown below that, as before, the con-
tribution of the ϕ term is also small for any V if ε =

(1).

The second term corresponds to a “laser-type” tran-
sition between states sinpx and sinpnx since these func-
tions coincide with the eigenfunctions of an isolated
well. True, momenta p1 and pn differ by a small quantity
ωn/2p (in a laser, p – pn = ±π/a).

Omitting terms small in δ, we obtain the following
expression for F1n:

(58)

It follows hence that current  is proportional to
[1/∆1n(2) + c.c.]. It follows from expression (39) for
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tions are satisfied for a transition between levels with

energies  and . For this reason, we will hence-
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forth disregard nonresonant transitions, assuming that

J1c(x) ≈ .

We can now find the reduced current and the
response of the first well:

(59)

Assuming that the resonance condition ωn = t =

t0  is satisfied and using the resonance values of
∆10(2) and ∆1n(2), we arrive at the final formula

(60)

Let us analyze the dependence of J1c on the bias voltage
V0. For V0 = 0, the current assumes the value J1c(0), then
increases with V0, and decreases in proportion to 1/V0
for large values of V0 @ 1. For a certain value of V0 =

1/ , the current attains its maximal value. The
increase in current J1c in a certain interval of bias volt-
ages V can be explained by the fact that field V
“detunes” the resonant determinant ∆10(1), increasing it

in proportion to [V0 + ]. As the value of V
increases further, the increase in |∆10(2)|2 and ∆1n(2)
becomes predominant, and J1c attains is maximal value.
It can be concluded hence that, in a certain optimal
interval of variation 0 < V ≤ t0, the gain is maximal and
frequency tuning is possible.

Concluding this section, we will prove that if the
energy of supplied electron is equal to the energy of the
upper level, the value of ϕ1n is small as compared to the
second term F1n in parameter δ. Indeed, substituting A10
and B10 into relation (57), we can reduce the expression
for ϕ1n to the form
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1 V0
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This readily leads to the above statement.

6. WAVEFUNCTION AND RESPONSE 
OF THE SECOND WELL

Proceeding in the same way as for the first well, we
can determine coefficients A2n and B2n by separating the
terms diverging in ω. After certain transformations, we
obtain

(61)

where

(62)

Expressions (61) for A2n and B2n differ from formula (42)
for A1n and B1n in that the terms with A20 and B20 contain

exponentials exp(±2i(p1 – p1n)a) and  in the sec-
ond term for B2n. To restore the symmetry, it is conve-

nient to pass to new functions  and :

(63)

where

(64)

After the transformation of expressions (63) and (64),

A2n U1A20 2i p1 p1n–( )a( )exp=

+ U
2 β1n–
∆1n 2( )
---------------- M2n Φ2n–( ),
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+ U
β1ne

4i p1na
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M2n A20e
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∆̃1n 1( )X1n
* 2i pn p1n–( )a( )exp[=

+ B20e
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p
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e
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Ã2n A2ne
2i p1na

, B̃2n B2ne
2i p1na–

,= =
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the expressions for  and  assume the form

(65)

where

(66)

In addition, the expression for the current in the second
well is transformed to

(67)

In expressions for  and , we must replace

coefficients A and B by  and . Using relations (65),

we obtain the following expressions for  and :

(68)

It should be noted that the relation between  and 
has the sign opposite to relation (46); consequently the
structure of  differs from that of ϕ1n . First, we will

calculate :

(69)

Substituting  and , we obtain
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Ã20 B̃20

ϕ̃2n
8qe

i p1 p+( )– a

∆10
* 2( )

---------------------------- 2 β1n β1–( )+[ ]=

=  
16qe

i p1 p+( )a–

∆10
* 2( )

------------------------------- 1 1
ε1

2

t0
2

----++ .
JOURNAL OF EXPERIMENTAL A
As in the case of the first well, the ϕ contribution is
small in parameter α/p as compared to the “laser” con-

tribution from . Thus, we observe that TWNSs dif-
fer basically from RTDs, for which the ϕ contribution
dominates.

Let us find the reduced current (67) in the second
well:

(70)

It should be observed that the integral is negative in
contrast to the integral for the first well. However, 
also has the opposite sign as compared to γ1n.

We will now calculate , which involves certain
difficulties. We will proceed as follows. We decompose
X1n and  into the real and imaginary parts,

(71)

Now, we can write the expression for  in the form

The term containing Y can be reduced to determinant
∆1n(2) whose resonance value is small. Consequently,
the second term can be disregarded. It can easily be

proved that the expression for  for p = p(1) has the
form

(72)

so that we can write

(73)

Accordingly, for  and  we obtain
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Substituting  and  ≈ –β  into expression (70),
we obtain the current in the second well,

(76)

which completely coincides with current (59) in the
first well. The corresponding resonance value has the
form

(77)

Equation (2) was also solved numerically [10]. The
analytic results obtained above for the transmission
coefficients of the currents in the first and second wells
coincide with numerical values.

7. DISCUSSION OF RESULTS 
AND CONCLUSIONS

It would be interesting to compare the results
obtained for a TWNS with the corresponding results for
a single-well structure (RTD) and for a coherent quan-
tum-well laser. According to [7], the polarization cur-
rent (response) of an RTD is given by

(78)

In the low-frequency limit, we have ω ! Γ; assuming

that γ = Γ1, we obtain  = 1/Γ1. Comparing (78) with
expression (77), we see that the reduced high-fre-
quency current (ω @ Γ) in the TWNS exceeds the cur-
rent in the RTD by a factor larger than α/p. A still larger
gain as compared to the RTD current is obtained in the
high-frequency quantum regime [7] for γ = ω @ Γ:

(79)

The current ratio is

(80)
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Thus, a TWNS provides a substantially higher gain at
high frequencies ω @ Γ as compared to a single-well
structure.

Comparing J1c with the corresponding current in a
coherent laser [2], in which radiative transitions occur
between the resonance levels in a quantum well (p –
pn = π/a), we find that the value of J1c is smaller by p/α.
The reason is that the frequency is lower and equal to
the splitting energy. However, in contrast to a coherent
laser, the frequency of the TWNS can be tuned by
changing the constant voltage V, the voltage increasing
the gain in a certain interval of V.
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Abstract—Polariton emission in GaAs-based microcavities has been studied under variable conditions, which
made it possible to excite (a) polaritons from the upper polariton branch and hot free polaritons and electrons,
(b) polaritons from the lower polariton branch (LPB) and localized excitons, and (c) the mixed system. Variation
of the excitation conditions leads to substantial differences in the energy distributions of polaritons and in the
temperature dependences of polariton emission. It is established that the energy relaxation of resonantly excited
LPB polaritons via polariton and localized exciton states at liquid helium temperatures is ineffective. Instead,
the relaxation bottleneck effect is suppressed with increasing temperature by means of exciton delocalization
(due to thermal excitation by phonons). The most effective mechanism of relaxation to the LPB bottom is via
scattering of delocalized excitons on hot free carriers. It is found that the slow energy relaxation of polaritons
excited below the free exciton energy can be significantly accelerated at low temperatures by means of addi-
tional weak generation of hot excitons and, especially, hot electrons. This acceleration of the energy relaxation
of polaritons by means of additional overbarrier photoexcitation sharply decreases the barrier for stimulated
parametric scattering of polaritons excited at an LPB inflection point. Therefore, additional illumination can be
used to control the polariton–polariton scattering. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Exciton–photon interaction in semiconductor
microcavities (MCs) with quantum wells in the active
layer leads to the formation of quasi-two-dimensional
(2D) exciton–photon states called MC polaritons [1].
These coupled states between photon and exciton are
characterized by extremely low density of states (on the
order of 10–4 of the level for exciton states) and by finite
energies at a zero quasi-momentum k. These unique
features of the MC polariton dispersion, on the one
hand, and short polariton lifetimes, on the other hand,
lead to a significant difference of the energy relaxation
of polaritons in MC structures from the relaxation of
bulk (3D) polaritons and that of 2D excitons in quan-
tum wells.

In particular, strong dependence of the MC polari-
ton energy on the quasi-momentum at small k values
significant decreases (similarly to the case of 3D polari-
tons in semiconductors) the rate of energy relaxation
with acoustic photon emission. At a low density of exci-
tation, this results in a strong decrease in the population
of states on approaching the bottom of the lower polari-
ton branch (LPB). This phenomenon is known as the
bottleneck effect [2]. Calculations showed that, in MCs
with a Rabi splitting of Ω = 6 meV and a negative
detuning of ∆ = EC(k = 0) – EX ~ –Ω between the photon
and exciton mode energies, the population of states at
1063-7761/05/10001- $26.000126
the LPB bottom decreases by three orders of magnitude
as compared to the population of states near the free
exciton energy EX [2]. The bottleneck effect was exper-
imentally studied in MCs under conditions of continu-
ous-wave (cw) and pulsed laser excitation [3, 4]. The
results of these investigations showed that even weak
resonant excitation of polaritons led to a significantly
less pronounced decrease in the population of MC
polariton states as compared to the calculated values. For
example, in MCs with ∆ ~ –Ω for Ω = 6 meV, the popu-
lation of polariton states at the LPB bottom decreased
only by one order in magnitude [3, 4], which is two to
three orders lower than predicted by the theory [2]. This
behavior indicates that a considerable role in polariton
relaxation is played, besides the scattering on acoustic
phonons, by some other scattering mechanisms. These
include, first, the scattering due to interparticle interac-
tions. In particular, Malpuech et al. [5] found that, in the
presence of even a small 2D electron gas density in a
quantum well, the scattering of polaritons on electrons
leads to a stronger energy relaxation of polaritons than
does the scattering on phonons. These calculations qual-
itatively explained the experimentally observed strong
dependence of the polariton energy distribution in the
LPB on the conditions of photoexcitation [6, 7].

This paper presents the results of a thorough inves-
tigation of the energy relaxation in MCs with InGaAs
 © 2005 Pleiades Publishing, Inc.
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quantum wells in the active layer in various regimes of
optical excitation, which led to different initial compo-
sitions of the photoexcited exciton–electron–polariton
system. This was achieved by using lasers generating
light quanta with various energies "ωexc: a cw He–Ne
laser and two tunable solid-state titanium sapphire
(Ti−Sp) lasers. The He–Ne laser (with "ωexc @ Eg,
where Eg is the bandgap width of GaAs) was used to
excite hot free carriers (electrons and holes) and exci-
tons. Using tunable Ti–Sp lasers, we produced resonant
excitation of polaritons with various energies corre-
sponding to lower and upper polariton branches. Differ-
ent compositions of the photoexcited exciton–electron–
polariton system were obtained by varying the laser
output powers.

The results of investigation of the photolumines-
cence (PL) of polaritons showed that their energy dis-
tribution in fact strongly depends on the photoexcita-
tion conditions and the temperature. It was also con-
firmed that even weak He–Ne laser irradiation during
the Ti–Sp-laser-induced resonant excitation of MCs
near the LPB inflection point strongly accelerates
polariton relaxation to the LPB bottom, which may lead
to almost tenfold decrease in a threshold for the stimu-
lated parametric scattering of polaritons.

The paper is organized as follows. In Section 2 we
describe samples and experimental techniques. Section 3
reports on the temperature dependence of polariton
emission upon resonant excitation to the LPB of the
system. Then we will consider how additional resonant
excitation to the upper polariton branch (UPB) of the
system (Section 4) and additional excitation with an
energy exceeding the bandgap in the barrier layer (Sec-
tion 5) affect the polariton emission upon resonant exci-
tation to the LPB of the system. Section 6 is devoted to
the effect of additional nonresonant excitation on
the threshold of stimulated parametric scattering of
polaritons.

2. SAMPLES
AND EXPERIMENTAL TECHNIQUES

We have studied emission from a semiconductor
MC grown by molecular-beam epitaxy. The experi-
ments were performed on distributed Bragg reflectors
comprising 20 and 17 stacked Al0.13Ga0.87As/AlAs pairs
beneath and above the active element, respectively.
Each stack consisted of (λ/4)-thick layers, where λ is
the wavelength to which the MC is tuned. The active
element comprised six In0.06Ga0.94As quantum wells
with a thickness of 70 Å situated in the antinodes of an
electromagnetic field in a (3λ/2)-thick GaAs layer con-
fined between two Bragg mirrors. The GaAs layer had
a wedge shape, such that the Fabry–Perot mode energy
monotonically varied along the sample at a rate on the
order of 0.7 meV/mm. This sample configuration
allowed the energy distance between the Fabry–Perot
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
mode and the exciton energy to be varied by exciting
luminescence in different points of the sample.

The structure was placed in an optical cryostat into
helium vapor. The sample temperature could be con-
trolled in a range from 5 to 30 K to within 0.2 K. Tun-
able (Ti–Sp) and cw (He–Ne) lasers (EHe–Ne ≈ 1.96 eV)
were used for the resonant and nonresonant excitation
of polariton emission, respectively. The resonant exci-
tation was performed at a certain angle Φexc relative to
the normal to the MC plane, which provides the excita-
tion of polaritons with k = qsinΦexc, where q is the pho-
ton wavevector in vacuum. The PL signals were mea-
sured using a system comprising a double monochro-
mator (RAMANOR U-1000) and a CCD camera. The
measurements were performed at several points of a
sample with a Rabi splitting of "Ω ≈ 6 meV and a
detuning between the photon and exciton mode ener-
gies ∆ from –2 to –6 meV.

3. EFFECT OF TEMPERATURE 
ON THE POLARITON EMISSION 
UPON RESONANT EXCITATION

TO THE LOWER POLARITON BRANCH
Figure 1a shows the PL spectra of polariton states

recorded at T = 6 K (solid curve) and T = 20 K (dashed
curve). The signal was detected in the direction of the
normal to the sample surface, which corresponded to
the emission of polaritons with k = 0. The resonant
excitation of samples to the LPB was performed using
laser radiation with a power density of WA = 240 W/cm2

incident at Φexc = 19° (k = 2.5 × 104 cm–1). The energy
of exciting quanta was "ωexc = 1.4519 eV, that is,
2.6 meV below the exciton energy level (EX ≈
1.4545 eV). As expected, the PL spectrum measured at
a lower temperature (T = 6 K) displays a single lower
polariton (LP) band corresponding to emission from
the LPB bottom. Fine structure of the LP band is due to
interference within the sample thickness (GaAs sub-
strate is transparent in this spectral range). As the tem-
perature increases to 20 K, the LP band intensity shows
a more than tenfold growth, which is evidence of a sig-
nificant increase in the polariton energy relaxation rate.
In addition, the PL spectrum measured at 20 K exhibits
an upper polariton (UP) band corresponding to emis-
sion from the UPB bottom, which appears due to the
scattering of polaritons with phonon absorption.

Figure 1b displays the PL spectra observed for the
MC nonresonantly excited by He–Ne laser radiation at
a power density of WHe–Ne = 60 W/cm2. As can be seen,
the LP and UP bands are observed in this case at both 6
and 20 K, but the UP band intensity is still significantly
lower than that of the LP band. This ratio of intensities
is evidence of a sufficiently effective relaxation of the
photoexcited polaritons from the upper to lower branch.
For the excitation above Eg, in contrast to the resonant
excitation below EX , the LP band intensity exhibits a
decrease (approximately twofold over the 6–20 K inter-
SICS      Vol. 100      No. 1      2005
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val) with increasing temperature, rather than an
increase. The UP band intensity remains virtually
unchanged.

The difference in behavior of the LP and UP band
intensities in response to the temperature variation for
excitation below EX and Eg is related to the fact that the
process of energy relaxation in the MC depends on the
composition of the photoexcited exciton–electron–
polariton system. Indeed, nonresonant excitation of the
MC predominantly leads to the formation of electrons,
holes, and excitons in the GaAs barrier, which are
trapped by the quantum well to form a system of non-
radiative “hot” excitons with large quasi-momenta.
These excitons are scattered into polariton states with
small k [2], which is followed either by recombination
or by trapping on quantum well potential fluctuations
with the formation of long-lived (~100 ps) localized
excitons [8]. In the case of the resonant excitation to
LPB by the Ti–Sp laser radiation with "ωexc < EX , the
excited polaritons are scattered either to the LPB states
with smaller k or to the degenerate (with LPB) localized
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Fig. 1. MC polariton PL spectra measured for k = 0 at T =
6 K (solid curves) and T = 20 K (dashed curves) using
(a) resonant excitation into LPB with Ti–Sp laser A (WA =

260 W/cm2) at Φexc = 19° and (b) nonresonant overbarrier
excitation above Eg of GaAs with a He–Ne laser (WHe–Ne =

60 W/cm2). The LP and UP bands correspond to emission
from the LPB and UPB bottom, respectively.
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exciton states. In our experiments, the energy of excita-
tion by the Ti–Sp laser A was approximately 2.6 meV
below EX . For this reason, the scattering of resonantly
excited polaritons into high-energy exciton states with
large k due to the absorption of acoustic phonons at T =
6 K (kT ≈ 0.5 meV) is unlikely.

Thus, the difference in the distribution of polariton
population of the LPB states in the region of polariton
bottleneck (k ~ 104 cm–1) observed under variable exci-
tation conditions is related to a difference in the compo-
sition of the photoexcited exciton–electron–polariton
system. In order to determine the distributions of
polaritons with respect to the quasi-momentum under
different excitation conditions, we have measured the
angular dependences of the LP intensity (k ~ sinΦ). As
can be seen from ILP(k) curves presented in Fig. 2a, the
population of LPB states under all excitation conditions
decreases on approaching the bottom of the band. This
nonequilibrium distribution of polariton states is a con-
sequence of the bottleneck effect cased by a strong dis-
persion of polaritons and their short lifetimes (compa-
rable to the characteristic time of scattering on acoustic
phonons [2–4]). However, the behavior of ILP(k) for the
nonresonant excitation above the bandgap is quantita-
tively different from that for the resonant excitation into
LPB below EX . For the sake of more convenient com-
parison of the ILP(k) curves at T = 6 K in Fig. 2a, the
excitation densities of Ti–Sp (260 W/cm2) and He–Ne
(60 W/cm2) lasers were selected so as to ensure that the
LP band intensities would be approximately equal at
k ~ 2 × 104 cm–1. Under these conditions, the ILP(k ≈ 0)
value for the nonresonant (He–Ne laser) excitation is
about ten times that for the resonant excitation (Ti–Sp
laser A). A comparison to the results of calculations [2]
showed that a decrease in the population of MC polari-
ton states observed in the experiment using He–Ne
laser radiation was three orders of magnitude lower,
and that observed for Ti–Sp laser was two orders of
magnitude lower than the value predicted by the theory
for the phonon mechanism of polariton relaxation.

Now let us consider the effect of temperature on the
process of energy relaxation in the polariton system. As
can be seen from Fig. 2a, the ILP(k) dependence for non-
resonant excitation weakly varies with the temperature.
In the case of resonant excitation below EX , an increase
in the temperature from 6 to 20 K is accompanied by
significant changes in the population of polariton states
near the LPB bottom: the ILP(k) curve becomes less
steep and the intensity of emission from LPB for k = 0
exhibits a tenfold increase (Figs. 1 and 2). In order to
explain the effect of temperature on the polariton emis-
sion, let us consider Fig. 2b showing the temperature
dependence of ILP(k = 0) for the excitation with Ti–Sp
laser radiation. As can be seen, the PL intensity
increases with the temperature according to an expo-
nential law, in proportion to exp(–∆E/kT) with an acti-
vation energy of ∆E ≈ 2.6 eV. This value coincides with
AND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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Fig. 2. MC polariton emission: (a) the LP band intensity versus k for the excitation with Ti–Sp laser A ("ωexc = EX – 2.6 meV) and
He–Ne laser radiation; (b) temperature dependence of ILP (k = 0) for the excitation with Ti–Sp laser A.
the difference between the exciton level and the excita-
tion energy EX – "ωexc ≈ 2.6 meV. In order to trace vari-
ations of the activation energy as dependent on this dif-
ference, we measured the temperature dependences of
ILP(k = 0) at various Φexc, which allowed the energy of
resonant excitation by the Ti–Sp laser to be varied
within EX – "ωexc = 2.1–3.1 meV. As expected, the acti-
vation energy was dependent on this energy difference,
but the relation ∆E ≈ EX – "ωexc was retained. Thus, we
may suggest that an additional channel of polariton
relaxation at higher temperatures is related to the ther-
mal activation of long-lived (~100 ps [8]) localized
exciton states photoexcited upon the resonant excita-
tion into the LPB at E ≈ "ωexc. A strong decrease in the
intensity of polariton emission observed on approach-
ing the LPB bottom at a lower temperature indicates
that the relaxation of such localized excitons with the
emission of acoustic phonons, both into low-energy
LPB states and into low-energy states of localized exci-
tons followed by the scattering into LPB states, is not
an effective mechanism.

The characteristic exponential behavior of the
polariton emission intensity as a function of the temper-
ature indicates that the relaxation of resonantly excited
polaritons and localized excitons at 20 K proceeds in
two stages. In the first stage, thermal activation of the
localized excitons leads to occupation of the low-
energy excitonlike states in the LPB. At the second
stage, these excitons are scattered into states at the LPB
bottom. Note that the absorption of Ti–Sp laser radia-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tion in the range of temperatures T < 20 K remains
almost constant (relative variation ∆A/A does not
exceed 20%). Therefore, a contribution to the optical
absorption (upon the resonant excitation) due to transi-
tions into the LPB with the absorption of acoustic
phonons is relatively small. Thus, the optical absorp-
tion coefficient is predominantly determined by the
scattering into localized excitons, while an increase in
the polariton emission intensity ILP with the tempera-
ture is directly related to delocalization of the photoex-
cited localized excitons.

4. EFFECT OF ADDITIONAL RESONANT 
EXCITATION TO THE UPB

ON THE PHOTOLUMINESCENCE
OF POLARITONS RESONANTLY EXCITED

TO THE LPB

In order to elucidate mechanisms responsible for the
energy relaxation of excitonlike polaritons, we have
studied the PL of polaritons under conditions of simul-
taneous excitation into UPB and LPB, whereby local-
ized excitons and polaritons in the LPB, polaritons in
the UPB, and hot free excitons with large quasi-
momenta were excited. The ratio between various
excited states could be changed by varying the relative
density of excitation into the LPB and UPB.

Figure 3a shows the PL spectra of MCs with a
detuning between the exciton (X) and photon (C)
modes ∆ = EX – EC ≈ –5.3 meV. The emission was
SICS      Vol. 100      No. 1      2005
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Fig. 3. (a) MC polariton emission spectra measured for k = 0 at T = 6 K using resonant excitation into UPB with Ti–Sp laser B at
ΦB = 28°, WB = 60 W/cm2 (dashed curves), into LPB with Ti–Sp laser A at ΦA = 19°, WA = 100 or 300 W/cm2 (thick solid curves),
and with both Ti–Sp lasers (thin solid curves); (b) schematic diagram of energy relaxation in the exciton–polariton system upon
simultaneous resonant excitation with lasers A and B into the LPB and UPB, respectively.
detected along the normal to the MC plane. The mea-
surements were performed at T = 6 K under various
excitation conditions. Thick solid curves represent the
spectra observed for a resonant excitation into the LPB
with the Ti–Sp laser A at an excitation angle of ΦA =
19° ("ωA = 1.4519 eV ≈ EX – 2.6 meV). As was pointed
out above (Fig. 1), the single predominant signal in
these spectra is due to emission from the LPB bottom.
Dashed curves represent the PL spectra recorded using
a resonant excitation into the UPB with the Ti–Sp laser
B at an excitation angle of ΦB = 28° ("ωB = 1.4633 eV).
These spectra display the signals due to both lower (LP)
and upper (UP) polaritons. Thin solid curves in Fig. 3a
show the spectra of emission along the normal to the
MC plane measured using simultaneous excitation of
the sample with Ti–Sp lasers A and B ("ω = 1.4519 and
1.4633 eV, respectively). The two families of spectra
presented in Fig. 3a were recorded for two different
densities of excitation using laser A (WA = 100 and
300 W/cm2, respectively) at constant densities of exci-
tation using laser B (WB = 60 W/cm2). A comparison of
the spectra observed using the excitation with laser B
only and with both lasers A and B shows that the con-
tribution to the intensity of polariton emission due to
the latter laser is not additive: an additional excitation
JOURNAL OF EXPERIMENTAL A
to the LPB leads to an increase in intensity of the LP
band and a decrease in intensity of the UP band, that is,
stimulating the polariton relaxation from UPB to LPB.
In particular, Fig. 3a shows that, for WA = 100 W/cm2,
the intensity of the LP band obtained by excitation with

two lasers ( ) is about 1.5 times the sum of intensi-
ties of the LP bands observed upon separate excitation

with lasers A and B (  + ). As the power of laser

A is increased to 300 W/cm2, the ratio /(  +

) increases to 2.5.

Figures 4a and 4b show plots of the PL intensity for
polaritons from the LPB and UPB bottom versus den-
sity of excitation into the UPB, measured with a fixed
density of excitation into the LPB (WA = 300 W/cm2)
and without such excitation, respectively. The dashed
line in Fig. 4a shows the intensity of emission from the
LPB bottom in the case of excitation using only laser A
at WA = 300 W/cm2. As can be seen from these data, the
excitation into the UPB only (open circles) leads to a
slightly sublinear increase in the UP band intensity and
to a slightly superlinear growth in the LP band intensity.
These deviations from linearity indicate that both the
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rate of the relaxation from the UPB to LPB and the rate
of the energy relaxation to the LPB bottom increase
with the density of excited polaritons. An increase in
the relaxation rate is related to interparticle collisions.
These collisions also account for the difference in
intensity of the LP and UP bands recorded upon the

simultaneous ( ) and separate (  + ) MC exci-
tation using two Ti–Sp lasers. Figure 4 also shows that

the difference between  +  and  for the
emission from the UPB is maximum under the condi-
tions of a small density of excitation into the UPB. As

for the LP band intensity, the difference between  +

 and  exhibits the opposite trend and increases
with the density of excitation into the UPB. This behav-
ior is quantitatively characterized in Fig. 5, which
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shows plots of the ratios γLP = /(  + ) and

γUP = /  versus the power of laser B for WA = 60
and 300 W/cm2. As can be seen, the maximum value of
γLP (~1.5) for WA = 60 W/cm2 is achieved at WB ~
240 W/cm2, while for WA = 300 W/cm2, the maximum
(~2.5) is achieved at WB ~ 500 W/cm2.

Figure 6a presents a plot of the intensity of emission
from the UPB bottom versus quasi-momentum k mea-
sured at T = 6 K for the resonant excitation into the UPB
with laser B operating at WB = 60 W/cm2. As can be
seen, the energy distribution of polaritons over the UPB
(in contrast to that over the LPB) is close to thermody-
namically equilibrium distribution for a certain effec-
tive temperature: the density of polaritons exponen-
tially increases on approaching the UPB bottom even at
very low excitation densities. Apparently, such a distri-
bution cannot be established due to the relaxation of
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polaritons with the emission of acoustic phonons only
for the UPB. Indeed, on the one hand, the UPB disper-
sion is not less steep than the LPB dispersion and,
hence, the relaxation to the UPB bottom, as well as to
the LPB bottom, requires the emission of several
phonons. On the other hand, the polariton lifetime on
the UPB is (because of a significant photon contribu-
tion) even shorter than that on the LPB. A quasi-equi-
librium distribution of polaritons on the UPB can be
explained only by including into consideration the pro-
cesses of scattering between UPB and LPB. Indeed, the
scheme in Fig. 3b shows that the most probable process
even at the first stage is the scattering of polaritons
(excited into the excitonlike states with large quasi-
momenta on the UPB) to the LPB with the emission or
absorption of acoustic phonons [2]. First, the density of
exciton states is several orders of magnitude greater
than the density of states on the UPB; second, the prob-
ability of polariton scattering with the emission of
phonons is determined by the relative fraction of the
exciton component, which is small for the UPB states
and close to unity for the high-energy LPB states. The
exciton states on the LPB with k > k0 ~ 105 cm–1 are
JOURNAL OF EXPERIMENTAL A
optically inactive and characterized by very large
(nanoseconds) lifetimes [9]. Since these lifetimes are
greater by several orders of magnitude than the charac-
teristic times of the exciton–exciton collisions and the
scattering on acoustic phonons, the exciton system
acquires a distribution with a certain effective tempera-
ture close to the lattice temperature [10, 11]. The
energy distribution of polaritons at the UPB bottom is
formed due to the reverse scattering of equilibrium
long-lived polaritons from LPP to UPB. Since the ener-
gies of acoustic phonons involved in the scattering pro-
cess fall within 1 meV [2], the distribution of polaritons
in the UPB measured in experiment reflects with suffi-
cient accuracy the process of energy relaxation and the
effective temperature of the excitonlike polaritons in
the LPB. Thus, by measuring the energy distribution of
polaritons in the UPB, it is possible to obtain direct
information about the behavior of “dark” excitonlike
polaritons in the LPB and to trace variations in the sys-
tem excited in various regimes.

Now let us consider variations in the distribution of
polaritons over the LPB and UPB under the conditions
of resonant excitation with two lasers. Figure 6b shows
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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a change in the distribution of the relative intensity of

emission from the UPB, expressed as ρUP = / ,
with increasing quasi-momentum, which directly
reflects the change in population of the corresponding
states. As can be seen, an additional excitation into the
LPB below EX produces two effects: first, a decrease in
the integral intensity of emission from the UPB (and,
hence, in the total density of polaritons on the UPB)
and, second, a more pronounced decrease in intensity
with increasing k (or the energy), reflecting a decrease
in the effective temperature of polaritons. More effec-
tive cooling was observed for a lower density of excita-
tion with laser B, that is, for a lower density of hot exci-
tons and UPB polaritons injected into the system. Tak-
ing into account the above considerations concerning
relations between the energy distribution of particles
between the UPB and LPB, we may conclude that the
injection of polaritons with energies below EX also
leads to a decrease in the effective temperature in the
exciton system initially excited above EX . The energy
of hot excitons is spent for exciting low-energy polari-
tons on the LPB and localized excitons. This must
result in increasing density of excitonlike polaritons on
the LPB in the region of energies E ~ EX with k ~ 3 ×
104–106 cm–1.

Figure 6c shows the experimentally measured
changes in distributions of the LPB population

expressed as ρLP = /(  + ). As can be seen,
the maximum increase in the polariton density caused
by the second laser excitation is observed exactly in the
region of k ~ (2–3) × 104 cm–1, that is, for energies
slightly below the exciton energy level. Moreover, at a
low density of excitation into the UPB (WB = 20 W/cm2),

an increase in  relative to the sum  +  is
observed only in this region of quasi-momenta; only for
a greater excitation density (WB = 60 W/cm2) does this
increase spread toward lower quasi-momenta near the
LPB bottom.

An analysis of changes in the energy distribution of
polaritons caused by variations of the density of excita-
tion into the UPB and LPB showed that the interaction
between the two photoexcited systems leads to a nonad-
ditive increase in the LPB population near E = EX as a
result of the cooling of hot excitons produced by laser B
and the delocalization of (localized) excitons generated
by laser A. The mechanisms of this delocalization
include the scattering on phonons (on increasing the
temperature) and on hot excitons and free carriers (on
illumination with laser B). The most effective delocal-
ization of the localized excitons is caused by their inter-
action with electrons, since the matrix element of the
exciton–electron interaction is several orders of magni-
tude greater than those of the exciton–exciton and exci-
ton–phonon interactions [5]. Indeed, intentionally
undoped MBE-grown semiconductor microstructures
are characterized by the density of residual impurity
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centers not less than 1013 cm–3, which leads to the
appearance of a 2D electron gas with a density of 109–
1010 cm–2 in quantum wells. An increase in the temper-
ature or laser-induced generation of hot excitons leads
to heating of the equilibrium electrons and a change in
their density due to the deionization of charged centers
by the hot phonons and excitons. The scattering of hot
free carriers on resonantly excited localized excitons
and polaritons leads to an effective population of the
LPB near E = EX . The delocalization of excitons
requires an energy of δE > EX – "ωexc~ 2.6 meV.

Thus, the effect produced by additional resonant
MC excitation into the UPB is analogous to that of the
temperature for the resonant excitation into the LPB,
leading to an increase in the density of mobile excitons
in the LPB near E = EX . These excitons are effectively
scattered to the LPB bottom as a result of exciton–exci-
ton and exciton–electron collisions. The predominant
mechanism is the exciton–electron scattering, which is
characterized by a large cross section; in addition, the
energy and momentum conservation laws impose much
lower limitations on the exciton–electron interaction
with respect to the energy of excitons which can be
effectively scattered to the LPB bottom. For the exci-
ton–exciton scattering, the threshold condition for the
kinetic energy of excitons scattered to the LPB bottom
can be written as 2E1E2 > (EX – ELP(k))2/4, where E1,2
are the energies of excitons on the LPB measured from
EX . This formula shows that, in an MC with an LPB
depth of EX – ELP(k = 0) ≈ 5 meV, effective scattering to
the LPB bottom will take place only for particles with
energies above 1.7 meV. In the exciton–electron system
with the same temperatures of excitons and electrons,
effective exciton–electron scattering to the LPB bottom
begins with an exciton energy of E ~ (EX –
ELP(k))me/mX , where me and mX are the effective masses
of electron and exciton, respectively. Since the me in
GaAs is almost ten times as small as mX , the scattering
to the LPB bottom becomes possible for particles with
a much lower threshold energy (on the order of
0.3−0.4 meV) than that for the exciton–exciton inter-
action.

In order to assess how much the efficiency of scat-
tering to the LPB bottom depends on the kinetic energy
of polaritons initially excited to the UPB, we studied
the intensity of the polariton emission from the LPB
bottom as a function of "ωB. In these experiments, we
changed both the energy "ωB and the angle of excita-
tion for laser B in order to realize the conditions of res-
onant photoexcitation into the UPB. The results of
these measurements are plotted in Fig. 7 as the intensi-
ties of polariton emission from the LPB at k = 0 versus
"ωB, measured for the excitation with both lasers A and

B ( ) and with laser B alone ( ). As can be seen,
additional excitation to the UPB bottom ("ωB – EX ~
0.36 meV) leads to addition of intensities observed for
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the separate excitation using lasers A and B:  =

 + . However, as the "ωB value increases, the
ratio of the two intensities grows to reach about three
for "ωB – EX ≈ 15 meV.

An increase in "ωB leads primarily to a growth in
the average energy of excitons produced by laser B and
to an additional heating of the electron gas. In turn, the
greater the quasi-momenta of excitons (kX) and elec-
trons (ke), the more effective the exciton–electron scat-
tering to the LPB bottom (however, this increase is rel-
atively small). In particular, Fig. 7 shows that, for exci-
tation into the UPB alone, the intensity of polariton
emission from the LPB bottom is almost independent
of "ωB – EX . For this reason, we believe that the lack of
additivity in ILP observed with increasing "ωB is related
to the involvement of localized excitons produced by
laser A into the scattering process. The scattering of hot
excitons and electrons, excited by laser B, on the local-
ized excitons leads to their delocalization. The esti-
mates presented above for an MC with an LPB depth of
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about 5 meV show that effective scattering to the LPB
bottom is possible for excitons with k * 5 × 106 cm–1.
Upon excitation by laser B to the UPB bottom, the
energy of photoexcited excitons is insufficient for the
delocalization of excitons produced by laser A
(2.6 meV below EX). For this reason, the scattering of
particles, excited by both lasers, to the LPB bottom pro-
ceeds independently and the corresponding intensities
are additive. As "ωB increases, the energy of particles
excited by laser B becomes sufficient for the delocaliza-
tion of excitons excited by laser A. Since the efficiency
of the exciton–electron scattering for delocalized exci-
tons is several orders of magnitude higher than that for
localized ones, the delocalization of excitons produced
by laser A immediately gives rise to density of polari-
tons on the LPB bottom.

5. EFFECT OF NONRESONANT 
ABOVE THE BANDGAP LASER EXCITATION 

ON THE ENERGY RELAXATION 
OF POLARITONS

It was demonstrated in the previous section that the
effect of hot excitons excited by laser B on the relax-
ation rate of polaritons excited by laser A increases with
the kinetic energy of excitons (Fig. 7). It can be
expected that the linear dependence of ILP on "ωB
(Fig. 7) becomes saturated only for "ωB – EX > "ΩLO,
that is, when the photoexcited particles will effectively
relax with the emission of optical phonons "ΩLO ~
35 meV. Thus, the maximum effect of enhancement of
the energy relaxation of polaritons resonantly excited
into the LPB should be expected in the case of an addi-
tional overbarrier excitation (with an energy above the
GaAs bandgap). Under these conditions, the system will
feature the excitation of both hot excitons and free carri-
ers (via the production of electron–hole pairs and the
delocalization of impurity centers). The excitation above
Eg(GaAs) was provided by He–Ne laser radiation.

Figure 8 shows the behavior of the intensity of
polariton emission from the LPB bottom under condi-
tions of simultaneous excitation using two lasers:
(i) resonant excitation below EX into the LPB with a
Ti−Sp laser and (ii) nonresonant excitation above
Eg(GaAs) with a He–Ne laser. The experiments were
performed with variation of the energy of either the
Ti−Sp laser (Fig. 8b) or the He–Ne laser (Fig. 8a). As
can be seen from Fig. 8b, a relatively weak additional
excitation above the bandgap can provide for a more
than tenfold increase in the density of polaritons on the
LPB bottom, which is significantly higher than the
effect provided by a resonant excitation into the UPB
with "ωB – EX < 15 meV. Thus, it has been established
that a relatively weak additional excitation using a
He−Ne laser leads to a sharp increase in the rate of
polariton energy relaxation to the LPB bottom. Here, a
question naturally arises concerning the optimum ratio
of the densities of excitation below EX and above
AND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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Eg(GaAs). The acceleration of relaxation to the LPB
bottom is related to delocalization of the (localized)
excitons excited by laser A with energy below EX . To a
first approximation, the rate of delocalization of the

localized excitons is  ∝  nhot ∝  WHe–Ne, where nhot is
the density of hot free carriers excited by the He–Ne
laser. Therefore, the density of localized excitons must
grow linearly with WHe–Ne until τdel becomes compara-
ble to the characteristic time of radiative recombination
of the localized excitons (τLE). With further increase in
WHe–Ne, the density of polaritons on the LPB bottom
must reach saturation. It should be noted that, to a first

approximation, the rate of delocalization, , must be
independent of the density of delocalized excitons and,
hence, the fraction of delocalized excitons must be
independent of the density of resonant excitation below

EX as long as  < ).

These predictions agree well with the experimental
data presented in Fig. 8. As can be seen, the intensity of
polariton emission from the LPB bottom in the selected
range of variation of the laser power is virtually a linear
function of this power for the separate excitation using
both He–Ne and Ti–Sp lasers. This behavior implies
that neither polariton–polariton nor polariton–exciton
interactions play any significant role in the energy
relaxation of polaritons for the separate excitation using
laser A or the He–Ne laser. However, simultaneous
excitation with both lasers leads to a more complicated

behavior of the polariton emission intensity .

As can be seen from Fig. 8a,  is greater than

the sum  +  even for WHe–Ne ≈ 2 W/cm2. As

WHe–Ne further increases up to 30 W/cm2, the 
value exhibits a superlinear increase with the laser
power and then reaches saturation for WHe–Ne >

70 W/cm2. The dependence of  on the power
density WA of the Ti–Sp laser A at a fixed power of the
He–Ne laser is virtually linear in the entire range of WA
(Fig. 8b). The dependence of the factor of increase in
the polariton emission intensity, defined as γ =

(  – )/ , on WHe–Ne and WA is presented in
Fig. 9a and 9b, respectively. As can be seen from these
data, γ is virtually independent of WA; at the same time,
γ ∝  WHe–Ne for WHe–Ne < 30 W/cm2; and γ reaches satu-
ration for WHe–Ne > 70 W/cm2.

The rate of delocalization of the (localized) excitons
by free carriers can be evaluated using a simple relation,

where σ ≈ π  is the exciton scattering cross section,
aX ≈ 50 Å is the Bohr radius of exciton, and v  =

τdel
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 is the velocity of hot free electrons. In the
case of excitation using a He–Ne laser, the density of
carriers per quantum well is approximately n ~ 3 ×
107 cm−2 W [W/cm2]. For Ekin = 5–10 meV and
WHe−Ne = 30 W/cm2, we obtain τdel ≈ 0.1 ns. This value
is comparable in order of magnitude with the lifetime of
localized excitons (τ = 0.3–0.5 ns) [8].

In addition to relaxation of the delocalized excitons
to the LPB bottom as a result of the direct exciton–exci-
ton or exciton–electron scattering from the reservoir of
excitons with large k, the LPB bottom can be also pop-
ulated as a result of the trapping of mobile excitons by
deeper localized levels, followed by their scattering
(elastic and involving one phonon) to the polariton
states (see Fig. 3b). The efficiency of this channel is
related to two factors: on the one hand, thermal delocal-
ization of the deep localized excitons is practically
absent; on the other hand, the time of scattering of these
excitons into the polariton states is comparable to the
time of their radiative recombination (0.3–0.5 ns).
However, the density of localized states decreases with
distance from EX according to the Gauss law,

Aexp(−(E – EX)2/ ). In the MC structure studied (six
quantum wells), the halfwidth of the inhomogeneous
exciton band was δL = 1.5 meV and the density of local-
ized states became lower than the density of polariton
states (on the order of 2 × 107 cm–2 meV–1) already at
E = EX – 5 meV. Thus, it can be expected that, in the
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Fig. 8. Plots of the polariton emission intensity from the
LPB for k = 0 at T = 6 K versus (a) WHe–Ne and (b) WA for
an MC excited using a He–Ne laser (n), Ti–Sp laser A (r),
and both lasers simultaneously (d).
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structures with relatively shallow LPBs, the relaxation
into polariton states at the LPB bottom competes with
the direct scattering of mobile excitons.

6. PARAMETRIC SCATTERING
OF POLARITONS STIMULATED BY MEANS

OF NONRESONANT LASER EXCITATION

Earlier [12–15] it was established that a polariton
system, in contrast to exciton systems, may exhibit
intense parametric scattering under certain excitation
conditions for relatively low densities of excitation in
MCs with shallow LPBs (EX – ELP ≈ 2–4 meV). In par-
ticular, excitation into the LPB with kp near the bending
point provides conditions for polariton–polariton scat-
tering into the states near k = 0 and k = 2kp with obser-
vation of the laws of energy and quasi-momentum con-
servation: 2E(kp) = E(k = 0) + E(2kp). The scheme of
this scattering is presented in Fig. 10. When the excita-
tion density increases to a certain threshold level Wth ,
the scattering acquires stimulated character [12–15]. At
T = 5 K, the efficiency of the stimulated polariton–
polariton scattering to the LPB bottom upon excitation
near the inflection point even at a moderate power den-
sity (W ~ 100–200 W/cm2) exceeds by several orders of
magnitude the efficiency of the polariton–phonon scat-

1

10

102

γ, rel. units

(a)

(b)

γ ~ W

WA = 260 W/cm2

120 W/cm2

60 W/cm2

WHe–Ne = 100 W/cm2

101 100
WHe–Ne, W/cm2

100 1000

WA, W/cm2

10

102

Fig. 9. Plots of γ = (ILP(A + He–Ne) – ILP(A))/ILP(A) versus
(a) WHe–Ne and (b) WA; γ is the factor of increase in the
emission intensity from the LPB for k = 0 at T = 6 K, caused
by simultaneous excitation using He–Ne and Ti–Sp lasers.
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tering considered above [12–15]. In order to provide
conditions for the stimulated parametric scattering, it is
necessary to ensure large populations of the final
polariton states at the LPB bottom. Thus, a question
arises as to whether it is possible to modify the thresh-
old of the stimulated scattering of polaritons by means
of a weak additional nonresonant photoexcitation. It
was demonstrated above that this leads to a signifi-
cantly accelerated relaxation to the LPB bottom for the
polaritons initially scattered to the localized states with
E ≈ "ωA. In order to answer this question, we studied
the effect of an additional above-bandgap excitation on
the emission from the LPB bottom in MCs with EX –
ELP ≈ 4 meV resonantly excited by a Ti–Sp laser near
the inflection point ELP(k).

Figure 11a shows a distribution of the polariton
emission intensity with respect to the quasi-momentum
for excitation near the inflection point at an excitation
density about 1.5 times below the critical density for
the development of stimulated parametric scattering.
Under these conditions, the intensity of emission exhib-
its an almost tenfold monotonic decrease on approach-
ing the LPB bottom. Figures 11b and 11c demonstrate
a change in the emission intensity distribution under the
conditions of a weak additional photoexcitation pro-
duced by a He–Ne laser. As can be seen, the pattern is

–6–8 –4 –2 0 2 4 6 8

k, 104 cm–1

E
ne

rg
y

Exciton

Ti–Sp laser A3 meV

Fig. 10. Schematic diagram of parametric scattering, show-
ing the distance from the LPB bottom to the free exciton
energy level.
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Fig. 11. The intensity of polariton emission from the LPB bottom versus quasi-momentum and energy for the resonant excitation
into the LPB near the bending point (WA = 800 W/cm2; T = 5.2 K): (a) without additional illumination; (b, c) with additional exci-

tation using a He–Ne laser with WHe–Ne = 30 and 80 W/cm2, respectively.
modified even upon an additional illumination at
WHe−Ne = 30 W/cm2, for which the intensity is almost
independent of the quasi-momentum. As the laser
power density increases to WHe–Ne = 80 W/cm2, the dis-
tribution exhibits a strong maximum at k ≈ 0 with an
angular width below 3°, which is evidence of the devel-
opment of a parametric scattering into states with k ~ 0.
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It should be noted that the intensity of emission in the
case of excitation using the He–Ne laser alone is almost
ten times lower than that observed for the resonant exci-
tation, so that excitation by the He–Ne laser cannot
ensure macroscopic population of the LPB bottom.
Therefore, macroscopic population of the LPB bottom
is reached due to stimulation of the energy relaxation of
SICS      Vol. 100      No. 1      2005
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localized excitons (excited below EX by the Ti–Sp laser)
to the LPB bottom as a result of the interaction with
photoexcited hot excitons and electrons. Thus, by
means of injection of hot electrons at a relatively low
density into the polariton system, it is possible to con-
trol the threshold for stimulated parametric scattering
in the polariton system of planar semiconductor MCs.

7. CONCLUSIONS
Investigations of the relaxation of a polariton system

in a GaAs MC photoexcited below the free exciton
energy level at T = 6 K showed that the relaxation of
polaritons over the LPB and over the states of localized
excitons with the emission of acoustic phonons is inef-
fective. An increase in temperature leads to suppression
of the bottleneck effect in polariton relaxation. It was
established that the energy relaxation to the LPB bot-
tom is a two-stage process. At the first stage, excitons
are delocalized as a result of the thermal activation by
phonons; at the second stage, these delocalized exci-
tons are scattered into states at the LPB bottom, either
as a result of direct exciton–exciton or exciton–electron
scattering into polariton states, or due to exciton local-
ization on deeper fluctuations, followed by their scat-
tering into LPB states (in MCs with relatively shallow
LPBs).

At low temperatures, the energy relaxation of
polaritons excited below the free exciton energy level
can be significantly accelerated by means of additional
weak generation of hot excitons and, especially, hot
electrons. The collisions of hot excitons and electrons
with resonantly excited excitons and LPB polaritons
lead, on the one hand, to a strong cooling of UPB
polaritons and hot excitons and a decrease in the UPB
population. On the other hand, these interactions lead to
delocalization of the excitons photoexcited below the
free exciton energy level. Since delocalized excitons
relax to the LPB bottom much faster than do localized
excitons, additional generation of hot excitons and
electrons leads to a significant (by one to two orders of
magnitude) increase in the population of the LPB bot-
tom at helium temperatures.

Acceleration of the energy relaxation of polaritons
by means of additional overbarrier photoexcitation
leads to a strong increase in the population of states at
the LPB bottom and sharply decreases the barrier for
stimulated parametric scattering of polaritons excited at
an LPB bending point. Therefore, additional illumina-
JOURNAL OF EXPERIMENTAL A
tion can be used as a control mechanism over polari-
ton–polariton scattering.
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Abstract—The special features of the dielectric properties and conduction of ferroelectric crystals of
Pb5(Ge1 − xSix)3O11 (0 ≤ x ≤ 0.67) solid solutions were studied. Permittivity anomalies close to the temperatures
T1 ≈ 260 K and T2 ≈ 130 K, the appearance of relaxator behavior at x > 0.35, and critical behavior of the con-
centration dependences of dielectric and pyroelectric characteristics at x1 = 0.35 and x2 = 0.60 were observed
and studied. These phenomena were found to be related to the dynamics of charge localization on defects with
activation energies of Ua1 ≈ 0.6 eV and Ua2 ≈ 0.23 eV. Relaxator behavior appears when the Curie point lies in
the temperature region of thermal charge localization. The concentration dependence features at x1 and x2 are
explained by the coincidence of the Curie point and the centers of the temperature regions of charge localization
on the Ua1 and Ua2 defect levels, respectively. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Lead germanate crystals Pb5Ge3O11 are uniaxial fer-
roelectrics with the phase transition from the P3/m non-
polar phase to the P3 polar phase at TC0 = 450 K [1–3].
These crystals are promising as pyroelectric sensors, an
optical material for recording and reading holograms,
and a material for creating ferroelectric memory ele-
ments [4–9]. Thanks to the well-defined ferroelectric
phase transition, which lies in the temperature region
convenient for studies, lead germanate has been exten-
sively used in the past three decades for studying soft
mode problems, the appearance of the central peak, etc.
[1–9]. These crystals have been model objects for
studying ferroelectric phase transitions.

An important direction in studies of ferroelectric
lead germanate is the preparation and investigation of
various solid solutions on its base. Data on the influ-
ence of isostructural atomic substitutions on crystal
properties contribute to elucidating the special features
of the nature of dielectric properties and the appearance
of ferroelectricity. They make it possible to change var-
ious crystal characteristics over wide ranges. Ferroelec-
tric solid solutions that exhibit relaxator behavior are of
special interest to science and technology. We found
that the addition of silicon to lead germanate gradually
turned it into a relaxator ferroelectric. The main general
distinguishing feature of such ferroelectrics in the
phase transition region is the presence of a strongly
smeared maximum of the temperature dependence
of permittivity and low-frequency permittivity disper-
sion [10–22]. Although we still use the term “phase
1063-7761/05/10001- $26.000139
transition,” the permittivity maximum in relaxator fer-
roelectrics does not correspond to the real phase transi-
tion into the ferroelectric state, and no long-range order
then appears. The smeared phase transition in relaxator
ferroelectrics occurs as a gradual rearrangement of the
crystal structure and the formation of an inhomoge-
neous state. The correlation radius changes with tem-
perature but does not become infinite anywhere. For
instance, X-ray studies have failed to detect structure
distortions related to the phase transition to the low-
temperature phase.

In recent years, ferroelectric-relaxators have been
extensively studied. Nevertheless, a clear understanding
of the physical mechanisms and an unambiguous inter-
pretation of the observed phenomena are still lacking
[10–22]. First, relaxator ferroelectrics were treated as
objects with fluctuations of the local phase transition
temperature caused by chemical disorder [10]. Later,
the idea was introduced of the superparaelectric state of
relaxators [11]. Recent years have witnessed the devel-
opment of approaches some of which are related to
treating relaxator ferroelectrics as objects with “glass
behavior” [12, 13], while the others develop phenome-
nological models in which the system is divided into
nanoregions under the action of random fields [14–16].
Recently [17–20], the conclusion was drawn that one of
the conditions for the appearance of relaxator behavior
is the coincidence of the phase transition region with
the temperature region of thermal charge localization
on defects. The possibility of shifting the Curie point in
the Pb5(Ge1 – xSix)3O11 (PGSO) system with respect to
 © 2005 Pleiades Publishing, Inc.
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the regions of charge localization on defects by chang-
ing the concentration of silicon makes this system a
very convenient object for verifying this conclusion.

Several works were concerned with lead germanate-
silicate crystals Pb5(Ge1 – xSix)3O11 in which part of ger-
manium atoms were replaced by silicon [3, 4, 23–31].
The main trends of variations in the ferroelectric and
other properties of the system caused by the replace-
ment of germanium with silicon were described. The
Tm temperature corresponding to maximum permittiv-
ity decreased from 450 K at x = 0 to 220 K at x = 0.75
as the content of silicon in PGSO crystals increased. In
crystals with x > 0.25, the phase transition was smeared
and relaxator behavior was observed. In addition to
those in the phase transition temperature region, per-
mittivity anomalies in PGSO crystals were observed
over the temperature intervals 210–270 K and
40−150 K; the corresponding permittivity maxima
were close to the characteristic temperatures 260 and
130 K [29]. As the composition with x1 = 0.39 was
approached, the concentration dependences of the
properties of solid solutions first exhibited a decrease in
the permittivity εm in the Curie point region. The per-
mittivity then sharply increased and passed a well-
defined maximum at x1 = 0.39, and the phase transition
became smeared. Similar behavior was observed for
compositions close to x2 = 0.67. The concentration
dependences of the dielectric loss tangent [29] and the
pyroelectric constant [24] of solid solutions were also
nonmonotonic. Note that, in [24, 29], the crystals were
ascribed the composition of the batch mixtures from
which they were grown.

It is pertinent to note that the dielectric, conduction,
and pyroelectric properties of PGSO crystals have
obviously been studied insufficiently. In particular, the
low-temperature permittivity anomalies of PGSO crys-
tals were only studied at one frequency of 1 kHz; the
temperature dependences of their conduction were
reported for limited frequency, temperature, and con-
centration ranges; the pyroelectric constants of
Pb5Ge3O11 crystals reported by various authors were
substantially different [4–6, 24]; data on the pyroeffect
in the region of permittivity anomalies at low tempera-
tures were virtually absent; and the concentration
dependences of the pyroeffect of solid solutions [24]
were determined in fairly large concentration steps
(∆x = 0.15). The incompleteness and contradictory
character of the data impede the determination of the
nature and reasons for the appearance of the low-tem-
perature permittivity anomalies, special features of its
concentration dependence, and the origin of relaxator
behavior of the system. The nature of the specified
dielectric property characteristics of the system of solid
solutions under consideration has not been elucidated
thus far.

The influence of various factors, such as the measur-
ing field frequency, the degree of monodomainization
of crystals and their calcining at various temperatures
JOURNAL OF EXPERIMENTAL A
in various gas media, composition deviations from sto-
ichiometry, etc., on the low-temperature permittivity
anomalies of Pb5Ge3O11 crystals was studied in [32].
The results led the authors to conclude that these anom-
alies were relaxation in character and related to the
dynamics of thermal localization of charge carriers on
defect centers with the formation of local polarized
states. It was shown in [32] that, in conformity with the
theoretical results described in [17–20], an analysis of
the dielectric and other properties of Pb5Ge3O11 crystals
should be performed bearing in mind that they
belonged to the class of ferroelectric-semiconductors
[33–36] in which the interaction of the electronic and
lattice subsystems noticeably influenced dielectric
properties. The energy gap width of Pb5Ge3O11 crystals
is Eg = 3.0 eV [35]. In these crystals at T > 300 K, impu-
rity conduction related to the presence of local defect
levels with activation energies of 0.62 eV in the forbid-
den band prevails [36, 37].

When we began these studies, we suggested that the
low-temperature permittivity anomalies of isostructural
PGSO solid solution crystals had the same nature as
those of pure lead germanate. The behavior of the
dielectric properties of the system, however, has certain
special features which manifest themselves as striking
peculiarities of concentration dependences and the
appearance of relaxator behavior. We therefore deemed
it of interest to study the dielectric and conduction
properties of the whole series of solid solutions in
detail. 

The purpose of this work was to determine the char-
acter and reason for the appearance of low-temperature
permittivity anomalies in PGSO solid solutions of all
concentrations and explain changes in the dielectric
properties of solid solutions caused by changes in their
composition, the presence of striking peculiarities of
the concentration dependences, and the appearance of
relaxator behavior in the system. To solve these prob-
lems, we performed detailed studies of the dielectric
and conduction properties of the PGSO system over a
wide temperature range at various frequencies. We took
advantage of the possibility of shifting the Curie point
TC with respect to the region of thermal localization of
charges by changing the concentration of silicon,
which, according to [17–20], should substantially influ-
ence the dielectric properties. The permittivity anoma-
lies were characterized in more detail by studying the
temperature dependences of the pyroelectric effect of
crystals at low temperatures.

2. THE PREPARATION OF CRYSTALS 
AND METHODS FOR STUDYING THEM

Single crystals of the composition Pb5(Ge1 – xSix)3O11
were grown by cooling a molten 5PbO · 3(1 – y)GeO2 ·
3ySiO2 (0 ≤ y ≤ 1) batch mixture at a rate of 5.0 K/h in
platinum crucibles as described in [29]. Transparent
light-brown crystals had an isometric habitus with a
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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Fig. 1. Concentration dependences of the a and c parameters of the hexagonal unit cell of Pb5(Ge1 – xSix)3O11 solid solution crystals.
{ }- and {0001}-type faceting, their size across

reached 4–8 mm. The chemical composition of the
crystals was determined by X-ray spectral microanaly-
sis on a CAMEBAX-301 spectrometer. The content of
silicon in the crystals was found to vary within the lim-
its 0 ≤ x ≤ 0.67. The ratio between the concentration of
silicon atoms in the crystals x and their concentration in
the initial batch mixture y was 0.91 ± 0.03 over the
entire range of y variations. Clearly, this x/y ratio equals
the distribution coefficient of silicon during growing
solid solution crystals from their melts. These data on
the distribution coefficient can be used to refine the real
concentrations of solid solution crystals studied earlier,
which were assigned the compositions of the initial
melts [3, 4, 23–31]. We were unable to prepare crystals
with silicon concentrations x > 0.67, and the x = 0.67
concentration is likely limiting for the replacement of
germanium with silicon in Pb5(Ge1 – xSix)3O11 solid
solutions.

The phase composition of the samples and the ori-
entation of crystallographic axes in the crystals were
determined using a DRON-4 diffractometer and a
POLAM L-213M polarization microscope. The X-ray
powder patterns of the crystals and the hexagonal unit
cell parameters calculated from them corresponded to
the data on Pb5(Ge, Si)3O11 crystals obtained in [3, 4,
26, 29]. In agreement with these data, crystal symmetry
did not change as the content of silicon increased.
Simultaneously, the a and c hexagonal unit cell param-
eters decreased monotonically, without noticeable
jumps (Fig. 1). These results are evidence of the
absence of obvious morphotropic phase transitions in
the system.

Electrophysical properties were studied for plates
cut from the single crystals normally to the c axis. Elec-
trodes were deposited on the base planes of the plates
using a silver paste. The thickness of the plates and the
area of the electrodes were d = 0.5–1.5 mm and S ≈
6 mm2, respectively. The permittivity ε, dielectric loss
tangent , and specific electrical conductivity ρ
were measured using an E7-14 immittance meter or a
P5083 alternating current bridge in low measuring

1010

δtan
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fields. The characteristic rate of temperature variations
was 5.0 K/min. The pyroelectric constant γ was deter-
mined by the quasi-static method using a V7-30 elec-
trometer. To obtain monodomain crystals, the samples
were polarized by cooling to temperatures above the
Curie point and simultaneously applying a constant
electric field of 0.25 kV/cm.

3. RESULTS

We studied the temperature dependences of permit-
tivity ε, dielectric loss tangent , and specific con-
ductivity ρ of Pb5(Ge1 – xSix)3O11 crystals for various
silicon concentrations over a wide temperature range of
4.2–850 K at various frequencies from 0.1 to 100 kHz.
We also measured the pyroelectric constant γ over the
temperature range 100–350 K. The measurement
results are shown in Figs. 2 and 3. Special attention was
paid to two silicon concentration regions, 0.30 < x <
0.45 and 0.55 < x < 0.67. It will be shown below that, at
these concentrations, the effective Curie temperature
TC(x) is in the temperature region of dielectric peculiar-
ities close to the critical temperatures T1 ≈ 260 K and
T2 ≈ 130 K. The results of measurements allow us to
distinguish several anomalies of the temperature and
concentration dependences of the dielectric, conduc-
tion, and pyroelectric properties of the crystals under
consideration.

Permittivity anomalies in the regions of Tm, T1 ,
and T2. In agreement with the data obtained previously,
the temperature dependences of the permittivity of
PGSO crystals contain a well-defined maximum εm at
the temperature Tm in the region of the Curie point.
Apart from this peak, we observe less pronounced max-
ima ε1 and ε2 close to the temperatures T1 ≈ 260 K and
T2 ≈ 130 K below Tm (see Fig. 2). These maxima are
accompanied by anomalies of the temperature depen-
dences of the dielectric loss tangent (T), which has
a peak at about 230 K and a very broad asymmetric
peak at 60–120 K.

δtan

δtan
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The concentration dependences of the Tm , T1, and
T2 temperatures corresponding to the permittivity max-
ima, the maximum permittivity values themselves, the
dielectric loss tangents at Tm , T1, and T2 (εm , ε1, ε2 and

, , , respectively), and the concentra-
tion dependence of the maximum pyroelectric constant
value γm close to the Curie point are shown in Fig. 4.
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The position of the εm peak close to the Curie point
changes as the content of silicon in the crystals
increases and shifts toward lower temperatures from
450 K at x = 0 to 225 K at x = 0.67 (Figs. 2, 4). The posi-
tion of the εm peak shifts to the lower temperature T1 ≈
260 K as the content of silicon increases to x = x1 =
0.35; two permittivity anomalies at Tm and T1 then coa-
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005



 TRANSFORMATION OF DIELECTRIC PROPERTIES 143
lesce (Tm = T1), see Figs. 2 and 4. The permittivity peak
heights εm and dielectric loss tangents  close to
Tm decrease as the concentration of silicon in the crys-
tals increases from x = 0 to 0.35. When the x = 0.35 sil-
icon concentration is reached (when two anomalies at
Tm and T1 coalesce), the peak permittivity value εm

increases jumpwise. The εm peak permittivity value for
the crystals close to the Curie point decreases as x
increases above x1 and then again increases and passes
the second maximum at x2 = 0.60. At the same critical
silicon concentration values x1 and x2, maxima of the
concentration dependences of the peak dielectric loss
tangent and pyroelectric constant values are observed
(Fig. 4).

An increase in the content of silicon comparatively
weakly influences the positions of the low-temperature
permittivity and dielectric loss peaks. The ε1 and 
peaks shift to higher temperatures by approximately
20 K, and their heights increase (Figs. 2 and 4). The
positions and heights of the ε2 and  peaks in the
region of T2 change insignificantly.

To summarize, x1 is the critical concentration of sil-
icon at which two dielectric property anomalies at Tm

and T1 coalesce. This is accompanied by a jump
increase in the peak permittivity value εm . The εm value
decreases as the content of silicon increases further and
again reaches a maximum at the next critical silicon
concentration x2 = 0.60. The concentration depen-
dences of the peak dielectric loss tangent and pyroelec-

δmtan

δ1tan

δ2tan

Fig. 3. Temperature dependences of the pyroelectric con-
stant measured along the polar axis of Pb5(Ge1 – xSix)3O11
crystals (numbers at curves are silicon contents). Inset
shows log plots of the same dependences.
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tric constant values have maxima at the same critical
silicon concentrations x1 and x2, which are also charac-
terized by a noticeable broadening of the peak of the
temperature dependence of permittivity in the phase
transition region (Fig. 5).

Dispersion of the low-temperature permittivity
anomalies. The temperature dependences of permittiv-
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Fig. 4. Concentration dependences in the Pb5(G1 – xSix)3O11
system of (a) position and (b) amplitude of permittivity
maxima; (c) maximum dielectric loss tangent values in the
vicinity of the temperatures Tm , T2, and T1 and (d) maxi-
mum pyroelectric constant values in the region of the Curie
point Tm . The permittivity anomaly values were obtained by

measuring the ε(T) and (T) dependences at a 1 kHz
frequency; the extrapolation curve (1) (see text) is shown by
the dot-and-dash line.
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ity and dielectric loss tangent measured for three silicon
concentrations (x = 0, 0.32, and 0.41) at various fre-
quencies are shown in Fig. 6. The temperatures corre-
sponding to the low-temperature  peak at x < 0.35
and the peak at x > 0.35 that remains after two peaks at
Tm and T1 coalesce noticeably increase as the measuring
field frequency grows (Fig. 6). This is evidence of the
relaxation character of these features. For instance, the
temperature corresponding to the  peak of the
crystal with x = 0 shifts from 200 to 260 K as the fre-
quency increases from 0.1 to 100 kHz. An unusual form
of permittivity dispersion is observed for the solid solu-
tions with x > 0.35. Whereas the (T) peak shifts to
higher temperatures by approximately 60 K as the fre-
quency increases from 0.1 to 100 kHz, the frequency-
induced shift of the ε(T) anomaly is virtually unnotice-
able (Fig. 6c). At x = 0.41, the  peak related to the
ferroelectric transition is unobservable, whereas the
temperature corresponding to the  relaxation
peak increases from 210 K at 0.1 kHz to 272 K at
100 kHz. Dispersion is observed at low frequencies not
characteristic of the lattice subsystem. This is evidence
that PGSO crystals are relaxator ferroelectrics.

The low-temperature ε2 and  peaks at T2 also
shift to higher temperatures as the measuring field fre-
quency increases. At x = 0, the  peak shifts from
116.7 K at 0.1 kHz to 144.1 K at 10 kHz (see Fig. 6a).

Transition smearing. An increase in the content of
silicon in the crystals causes ferroelectric phase transi-
tion smearing, which sharply increases as the silicon
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Fig. 5. Concentration dependence of the width at half-
height ∆Tm of the permittivity maxima in the region of TC
in Pb5(Ge1 – xSix)3O11 crystals according to ε(T) depen-
dence measurements at a 1 kHz frequency.
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concentration approaches x1 = 0.35. The solid solutions
with x > 0.35 acquire features characteristic of relaxator
ferroelectrics. They are characterized by an obviously
smeared phase transition, a sharp increase in the half-
width of the permittivity maximum (see Fig. 5), and
noticeable permittivity dispersion in the region of the
Curie point at low frequencies.

At the silicon concentration x = 0.32, which is lower
than the critical value x1, an additional low-temperature
peak ε1 at T1 is clearly seen against the background of
the broadened main peak εm (Fig. 6b). This peak has a
strong frequency dependence. At the concentration x =
0.41, which is higher than the critical concentration x1,
we observe the temperature and frequency depen-
dences of permittivity with one smeared maximum and
pronounced dispersion at low frequencies (Fig. 6c), as
is typical of relaxators.

Nonergodicity. The heights and shapes of the per-
mittivity and dielectric loss maxima of the crystals
strongly depend on their thermal prehistory; that is, we
observe nonergodic behavior. A tendency toward
increasing the amplitudes of the maxima after calcining
the crystals at high temperatures and decreasing these
amplitudes after holding the crystals at low tempera-
tures is noticeable. This tendency is most manifest at
x ≈ x1 = 0.35. The form of the anomalies of the ε(T) and

(T) dependences measured for crystals with sili-
con contents close to x1 and x2 changes substantially
during thermal cycling. Changes in the form of these
dependences caused by thermal cycling of crystals with
x = 0.33 are shown in Fig. 7. Certain differences
between the temperature dependences measured at dif-
ferent frequencies during one heating cycle and during
different cycles at one frequency can be explained by
the thermal cycling effect. In particular, measurements
during different cycles exhibit irregularities in the
sequence of decreasing the ε value depending on the
frequency; no such irregularities are observed during
one heating cycle.

It follows that the crystals of the system under con-
sideration exhibit nonergodicity of the behavior of the
temperature dependences of dielectric characteristics.
This effect increases in the regions of compositions
close to the x1 and x2 critical values.

The temperature dependence of resistance. To
elucidate the nature of the observed features of the tem-
perature and concentration dependences of the dielec-
tric properties of the PGSO crystals, we studied the
temperature dependences of their conduction proper-
ties. The temperature dependences of specific electrical
resistance measured at various frequencies are shown
in Fig. 8.

Four temperature regions which differ in the charac-
ter of conduction are quite clearly seen in the tempera-
ture dependences of the specific resistance of the PGSO
crystals (Fig. 8). In the high-temperature region
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(region I, T > 285 K), resistance is independent of fre-
quency and decreases as the temperature increases
according to the Arrhenius law,

,

where kB is the Boltzmann constant and Ua1 is the acti-
vation energy, Ua1 ≈ 0.64 eV. In temperature region II

ρ ρ0 Ua1/kBT( )exp=
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Fig. 7. Temperature dependences of permittivity ε and
dielectric loss tangent  measured at a 1 kHz frequency
along the c axis of Pb5(Ge1 – xSix)3O11 crystals with x =
0.32. The results of four cycles of measurements performed
one after another under (1) heating, (2) cooling, (3) heating,
and (4) cooling conditions are shown. Arrows indicate
direction of temperature variation.
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(T = 210–285 K), the temperature dependence of resis-
tance has a transient shape, resistance depends on tem-
perature uncharacteristically, and a well-defined fre-
quency dependence is observed. In low-temperature
region III (T = 150–210 K), resistance again weakly
depends on the frequency and decreases as the temper-
ature increases following the Arrhenius law, ρ =
ρ0exp(Ua2/kBT), with the activation energy Ua2 ≈
0.23 eV. In low-temperature region IV (T < 140 K),
resistance weakly depends on the temperature and
again strongly depends on the frequency.

The obvious activation dependence of conduction in
temperature regions I and III (Fig. 8) is evidence of
usual semiconductor conduction with thermal activa-
tion of charge carriers from the local levels Ua1 and Ua2

to the conduction band. The nonactivation form of the
temperature dependences and the strong frequency
dependence in temperature regions II and IV are evi-
dence of a transient conduction mechanism with the
predominance of hopping conduction over states local-
ized at the Ua1 and Ua2 levels [38]. A decrease in resis-
tance in these regions as the temperature decreases is
indicative of the localization of charges on defects; that
is, the number of charge carriers that for quite a long
time reside on the corresponding Ua1 and Ua2 levels and
can participate in hopping conduction increases as the
temperature decreases. As a result, resistance
decreases, which is evidence that regions II and IV are
the regions of the effective thermal localization of
charges. The temperatures 285 and 150 K are therefore
the upper limits of the temperatures at which the effec-
tive thermal localization of charges on the levels Ua1

and Ua2, respectively, begins. Note that the observed
activation energies Ua1 and Ua2 are much smaller than
the energy gap width (3.0 eV) and correspond to the
energy intervals between the bottom of the conduction
band and the defect levels.

Changes in the content of silicon in the crystals
weakly influence their conduction properties (in partic-
ular, the positions of the temperature regions of charge
localization, where thermally activated conduction
transforms into hopping conduction) and the activation
energies of conduction Ua1 and Ua2.

The temperature dependence of pyroeffect.
Peaks in the region of the Curie point characteristic of
ferroelectric phase transitions are observed in the tem-
perature dependences of the pyroelectric constant of
polarized solid solution crystals (see Fig. 3). The γm

peak height decreases as the content of silicon in the
crystals increases from x = 0 to 0.33. At x = 0.33–0.35,
γm increases and reaches a maximum at x = 0.35. It then
decreases and again increases to the second local max-
imum at x = 0.60 (see Fig. 3). The temperature depen-
dences of the pyroelectric constant below the Curie
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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n

point contain a minimum in the temperature region
170–185 K (see Fig. 3).

4. ANALYSIS AND DISCUSSION

4.1. The Effective Curie Temperature 
of Solid Solution Crystals

The well-defined permittivity maxima observed in
the crystals of all compositions at the highest tempera-
ture Tm(x) for each concentration are related to the fer-
roelectric phase transition or the relaxator-type
smeared phase transition that occurs in the crystals.
This is substantiated by the presence of a well-defined
pyroelectric constant maximum in the same tempera-
ture region and the absence of the pyro effect at the
higher temperatures.

The permittivity maximum at Tm shifts to lower tem-
peratures as the content of silicon in the crystals
increases. At x = 0–0.20, when a sharp phase transition
occurs, the Tm(x) temperature of the permittivity maxi-
mum corresponds to the Curie point TC(x) of the sys-
tem. In this region of concentrations, the Curie point of
the system linearly depends on the concentration of sil-
icon, as is characteristic of many ferroelectric solid
solutions,

(1)TC x( ) TC0 Ax– ,=
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where TC0 = 450 K, A = 530 K, and x is the concentra-
tion of silicon.

At higher silicon concentrations at which the crys-
tals acquire features of relaxator ferroelectrics, the
positions of the smeared high-temperature ε(T) max-
ima do not correspond to a phase transition. Generally,
phase transitions can be observed in them only after
applying an external constant electric field [21, 22]. The
effective Curie temperature of the corresponding solid
solution crystals can be determined by extrapolating
dependence (1) over the entire region of silicon con-
centrations (see Fig. 4). This dependence will be used
below to analyze the special features of the behavior
of the dielectric properties of the system under consid-
eration over the entire concentration range.

The lowering of the Curie point and, accordingly,
permittivity and dielectric loss peak values in the vicin-
ity of the Curie point as the content of silicon in the
crystals increases is explained by the lower polarizabil-
ity of silicon cations compared with germanium cations
that they substitute.

4.2. The Relaxation Character
of Low-Temperature Permittivity Anomalies

and the Nature of their Appearance

The low-temperature permittivity anomalies
observed at T < Tm are relaxation in character. This fol-
lows from the noticeable displacement of the corre-
SICS      Vol. 100      No. 1      2005
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sponding (T) dependence peaks to higher temper-
atures as the measuring field frequency increases. We
determined the characteristic relaxation times τ at vari-
ous temperatures on the assumption that the equality
ωτ = 1 (ω = 2πf) was valid at the ε''(T, ω) maximum
[39, 40]. The relaxation times determined this way are
the most probable. The τ(T) dependence that we
obtained was well approximated by the Arrhenius law
(Fig. 9),

The activation energy  and the characteristic relax-
ation time τ01 for the permittivity anomalies in the
region of T1 were determined graphically. These values
changed insignificantly when silicon atoms were intro-

duced into the crystals and equaled  = 0.60 eV and
τ01 = 2.0 × 10–14 s. Analogous calculations performed
for the dielectric anomalies in the vicinity of T2 yield

 = 0.24 eV and τ02 = 4.7 × 10–14 s. 

The peak widths of the (T) dependences in the
vicinity of 230 K were estimated by the Debye equation
[39, 40]

and the Arrhenius equation with the use of the τ0 and

 values found above. (Here, ε* = ε' – iε", with ε∞ and
εs denoting the high-frequency and static contributions
to permittivity.) The resulting values were two to three
times smaller than the experimentally observed peak

δtan

τ τ 0 Ua
ε /kBT–( ).exp=

Ua1
ε

Ua1
ε

Ua2
ε

δtan

ε* ε∞–
εs ε∞–
1 iωτ+
------------------=

Ua
ε

10–5

3.6 4.0

τ, s

1/T, 10–3 K–1

4.4 4.8
10–6

10–4

10–3

x = 0

0.32
0.35
0.41

Fig. 9. Dependence of relaxation time τ on inverse temper-
ature at various compositions.
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widths of the corresponding dependences. It follows
that the relaxation processes observed in the crystals
were characterized by diverse relaxation times.

Analysis of the experimental temperature depen-
dences of the conduction of the PGSO crystals per-
formed above shows that the characteristic tempera-
tures T1 and T2 of the low-temperature permittivity
anomalies are in the temperature region of the thermal
localization of charges on the defect levels Ua1 and Ua2.
The closeness of the activation energy of relaxation
processes determined from dielectric measurements

(  = 0.6 eV and  = 0.24 eV) to the activation
energy of conduction at 300–450 K (Ua1 ≈ 0.64 eV) and
150–210 K (Ua2 ≈ 0.23 eV), as well as the temperature
sequence of changes in the activation energy of conduc-
tion and the appearance of dielectric property peculiar-
ities, is evidence that dielectric relaxation processes
and the temperature dependence of conduction are
determined by the same defect levels. This and the
results obtained in [17–20, 32] lead us to conclude that
the low-temperature permittivity anomalies in the
PGSO solid solution crystals of all compositions are
related to the thermal localization of charge carriers on
defect centers. Filling defect levels as the temperature
decreases causes the appearance of local deformations
and local electric fields around charges localized on
defects, which in turn stimulates the appearance of
induced local polarization [19, 41]. The dynamics of
these processes manifests itself in the form of low-fre-
quency relaxation dielectric anomalies in the tempera-
ture region of the thermal filling of local centers [17–20].
This conclusion also corresponds with the low-fre-
quency range of the dispersion of the observed dielec-
tric anomalies. The characteristic time of induced
polarization changes and, accordingly, the frequency
range of permittivity dispersion are determined by the
vibrational properties of local states formed around
local centers and depend on the characteristic times of
the lattice and electronic subsystems [17–20]. The low-
frequency range of dispersion is related to the charac-
teristic times of the thermal activation of charges from
defect levels, which are much longer than the character-
istic lattice times.

The weak dependence of the characteristic tempera-
tures of the low-temperature permittivity anomalies in
PGSO on concentration is explained by the weak influ-
ence of the substitution of silicon for germanium in the
crystals on their main semiconductor properties that
determine the appearance of these anomalies, that is, on
the positions of the temperature regions of the localiza-
tion of charge carriers on the Ua1 and Ua2 levels and
level depths.

4.3. The Appearance of Relaxator Behavior
in Pb5(Ge1 – xSix)3O11

As the content of silicon increases in the solid solu-
tions under consideration, the sharp ferroelectric phase

Ua1
ε Ua2

ε
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transition is replaced by a smeared transition of the
relaxator type. The maximum smearing of the ferro-
electric phase transition is observed for the composi-
tions whose effective Curie temperature TC(x) lies in
the temperature region of charge localization. This
behavior conforms to the recently suggested phenome-
nological model of relaxator ferroelectrics [18–20].
According to this model, relaxator behavior arises from
the relation between the lattice subsystem and the
dynamics of the thermal localization of charges in
traps. According to one of the conditions for the appear-
ance of relaxator behavior, the phase transition temper-
ature should lie in the temperature region of the thermal
localization of charge carriers on defects.

The charges remain localized on defects fairly long
as the temperature decreases, which fixes the local
polarization direction on them [41]. The inhomoge-
neous polarization state formed around a charged
defect is retained equally long. This inhomogeneous
state effectively prevents the formation of homoge-
neous polarization in the system. As the Curie point is
reached, spontaneous polarization has different direc-
tions in nanoregions about various defects. The system
then acquires an inhomogeneously polarized state, and
the phase transition becomes smeared. On the other
hand, the characteristic polarization relaxation times in
such a system are related not only to the dynamics of
the lattice subsystem, but also to the dynamics of
charge delocalization from defects. For this reason, we
observe dispersion at frequencies that are much lower
than lattice frequencies.

The shape of the ε(T) and (T) dependence
anomalies of the crystals with the compositions in the
transient region with x ≈ x1 substantially changes under
thermal cycling (see Fig. 7). According to [17], such
nonergodic behavior can be explained by dependence
on the thermal prehistory of the crystal.

To summarize, we see that relaxator behavior
appears when the effective Curie temperature TC(x) [see
Eq. (1)] lies in the temperature region of the thermal
localization of charges. This conclusion is in agreement
with what follows from the theoretical model consid-
ered in [17–20].

4.4. The Nature of Defect Centers

The influence of silicon content variations on the
conduction properties of the crystals is weak, which
means that the effect of silicon on the electronic sub-
system is insignificant. It does not create additional
charge localization levels and does not change the
energy depth of such levels. This leads us to conclude
that the localization centers are likely related to the sub-
lattice of lead atoms. The broad distribution of relax-
ation times related to localization on the Ua2 level (see
above) is evidence that this level is in reality a system
of defect levels with a fairly broad energy distribution.

δtan
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Some conclusions on the nature of defect centers in
PGSO can be drawn from the results of the photorefrac-
tometric studies of Pb5Ge3O11 [8, 9, 42, 43]. These
results show that the characteristic defects in
Pb5Ge3O11 that play the role of charge traps in the for-
bidden band are part of Pb2+ cations transformed to
Pb3+ under the action of optical radiation. Clearly, fur-
ther detailed studies of the characteristics of defect cen-
ters in PGSO crystals will be of great importance for a
more in-depth interpretation of the special features of
their dielectric properties.

4.5. An Analysis 
of Nonmonotonic Concentration Dependences

As follows from the X-ray data (see above), the non-
monotonic character of changes in the properties of the
system of solid solutions under consideration in the
regions of the x1 = 0.35 and x2 = 0.60 concentrations
cannot be explained by morphotropic phase transitions
caused by concentration changes. An increase in the
content of silicon in the crystals does not change their
symmetry, and the hexagonal unit cell parameters then
decrease monotonically without noticeable jumps (see
Fig. 1).

The nonmonotonic character of the concentration
dependences of the dielectric and pyroelectric solid
solution characteristics in the neighborhoods of x1 =
0.35 and x2 = 0.60 can be explained by the influence of
the localization of charge carriers on defect centers on
dielectric and other properties and an increase in this
influence when the Curie point gets into the region of
thermal localization. According to [17–20], the shape
of dielectric property anomalies should depend on the
position of the Curie point relative to the characteristic
temperature of the region of the thermal localization of
charge carriers.

The positions of the temperature regions of charge
localization close to T1 and T2 change insignificantly as
the content of silicon in the crystals increases, whereas
the effective Curie temperature TC(x) substantially
decreases. For this reason, the TC(x) temperature, which
initially, at x < 0.35, lies above the region of thermal
localization, decreases as the content of silicon
increases and, at x1 = 0.35 and x2 = 0.60, occurs in the
regions of thermal localization at the Ua1 and Ua2 levels,
respectively. Clearly, the crystals of the specified com-
positions, at which TC(x) is inside the thermal localiza-
tion regions, should have extreme dielectric and pyro-
electric characteristic values. Changes in the dielectric
properties of the solid solutions close to x1 = 0.35 and
x2 = 0.60 are critical in character. It follows that the
nonmonotonic changes observed in the concentration
dependences of the dielectric and pyroelectric charac-
teristics of the crystals at about x1 = 0.35 and x2 = 0.60
are related to the coincidence of the effective Curie
temperature [see (1)] and the temperature region of the
SICS      Vol. 100      No. 1      2005
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thermal localization of charges on the Ua1 and Ua2 lev-
els, respectively, at these concentrations.

5. CONCLUSIONS

Our study of the dielectric properties and conduc-
tion of Pb5(Ge1 – xSix)3O11 solid solutions revealed
peculiarities in the behavior of the measured parame-
ters caused by changes in the temperature and concen-
tration. These were: the presence of anomalies of the
temperature dependences of dielectric properties close
to the characteristic temperatures T1 and T2 in addition
to the usual anomalies close to the Curie point; the pres-
ence of well-defined maxima of the concentration
dependences of dielectric properties close to the con-
centrations x1 = 0.35 and x2 = 0.60; the strong depen-
dence of dielectric properties on the temperature pre-
history of the samples close to the concentration x1; and
the appearance of relaxator behavior in the crystals at
x > 0.35 (x is the concentration of silicon).

A combined analysis of the dielectric properties and
conduction of PGSO family crystals shows that the
observed dielectric property peculiarities are related to
an increase in the strength of interrelation between the
lattice and electronic subsystems when the region of the
structural phase transition coincides with the region of
the thermal localization of charges on defects. The form
of the temperature–frequency dependences of permit-
tivity anomalies in the vicinity of the T1 and T2 temper-
atures is evidence that these anomalies are relaxation in
character. The appearance of these anomalies is caused
by the influence of the localization of charges on
defects with activation energies Ua1 = 0.64 eV and
Ua2 = 0.23 eV on the dielectric properties of the crys-
tals. The conduction data, according to which the T1
and T2 temperatures lie in the temperature regions of
charge localization on the corresponding defects, lend
support to this conclusion. This conclusion is also sub-
stantiated by the coincidence of the activation energies
of relaxation processes determined from dielectric
measurements and the activation energies of conduc-
tion and by the correspondence between the low-fre-
quency dielectric relaxation range and the characteris-
tic times of changes in the concentration of charges on
defect levels. These results are in agreement with the the-
oretical concepts [17–20] that describe the influence of
charge localization on defects on dielectric properties.

The reason for the pronounced anomalies of the
concentration dependences of dielectric characteristics
is changes in the position of the effective Curie temper-
ature TC(x) with respect to the T1 and T2 temperatures of
the thermal localization of charges on the Ua1 and Ua2
defect levels. The positions of the temperature regions
of the thermal localization of charges and activation
energy values remain almost unchanged as the content
of silicon in the crystals increases. This is evidence that
the defect centers are related to the lead sublattice. On
the other hand, an increase in the content of silicon in
JOURNAL OF EXPERIMENTAL A
the crystals strongly decreases the effective Curie tem-
perature TC(x). At the concentrations x1 and x2, the
effective Curie temperature TC(x) lies inside the regions
of the thermal localization of charges T1 and T2. As a
result, the influence of the dynamics of charge localiza-
tion on dielectric properties sharply increases at these
concentrations, and we observe concentration depen-
dence maxima and relaxator behavior in agreement
with the theoretical predictions [17–20]. The strong
dependence of dielectric properties on the temperature
prehistory of the crystals with x ≈ 0.35 is caused by a
substantial temperature-induced change in the concen-
tration of localized charges and the retention in mem-
ory of the inhomogeneous charge distribution over
traps created when crystals are held close to TC ~ T1 for
a long time.

To summarize, we studied the temperature-fre-
quency and concentration dependences of the dielectric
properties and conduction of Pb5(Ge1 – xSix)3O11 family
crystals. Analysis of the results obtained enabled us to
reveal the nature of the appearance of low-temperature
dielectric property peculiarities and relaxator behavior
in the system.
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Abstract—A simple model is used for estimating the bottom energy of the electron conduction band and the
electron-forbidden gap energy. It is shown that electrons in liquid hydrogen are localized not in electron bub-
bles, as was considered previously, but in molecular negative ions surrounded by voids about 0.5 nm in radius.
The conductivity of fluid hydrogen at not very high pressures is connected to transfer of positively charged clus-
ters and negatively charged bubbles. As the pressure and density increase, molecular dissociation occurs and
electron localization on atoms becomes more favorable, also with the creation of a void around atomic negative
ions. At a sufficiently high concentration of atoms, the probability of tunnel transition of an electron from one
atom to another becomes close to unity, the energy level of the negative ion degenerates in the band, and the
conductivity is caused by the transfer of these quasifree electrons. It is supposed that this charge transfer
mechanism may play an important role in the region of fluid hydrogen metallization. © 2005 Pleiades Publishing,
Inc. 
1. INTRODUCTION

Investigations of hydrogen behavior in the solid, liq-
uid, and plasma state are of significant importance from
both a scientific and technological standpoint. They are
important in astrophysics because hydrogen is the most
abundant chemical element, which constitutes about
three-fourths of the matter in the Universe. Jupiter and
Saturn together contain over 400 Earth masses, most of
which is hydrogen, heated and compressed to high tem-
peratures and pressures. Hydrogen is fluid under these
conditions. The convective motion of electrically con-
ducting hydrogen produces the magnetic field of giant
planets by dynamo action (see [1] and references
therein). Knowledge of the equation of state and phys-
ical properties of hydrogen and its isotopes is very
important for successful solution of the problem of
inertial nuclear fusion. An intriguing possibility of
metastable metallic, and even superconducting, phases
of solid hydrogen at ambient pressure has been pre-
dicted [2].

In 1935, Wigner and Huntington predicted that
molecular diatomic hydrogen would undergo a transi-
tion to a metallic state at an imposed pressure of about
25 GPa [3]. Current predictions are in a range close to
300 GPa [4]. However, despite unrelenting assault of
experiments, dense solid hydrogen shows no evidence
of metallic behavior [5]. In a fluid, electric conductivity
measurements under multiple-shock compression indi-
cate that hydrogen becomes metallic at pressures of

¶ This article was submitted by authors in English.
1063-7761/05/10001- $26.000014
about 140 GPa, nine times the initial fluid density, and
a temperature of about 3000 K [6–10]. Electric conduc-
tivity has also been measured under single-shock com-
pression up to 20 GPa and 4600 K [11]. Those experi-
ments show that conductivity is thermally activated
similarly to the semiconducting fluid, and becomes
greater than 1 Ω–1 cm–1 at 200 GPa and 400 K. The
pressure dependence of the conductivity measured
in [9] is shown in Fig. 1. The change in slope at

104

100 150 200

Pressure, GPa

Conductivity, Ω–1 cm–1

103

102

10

1

Fig. 1. Electrical conductivity of H2 and D2 as a function of
pressure [9]. The change in slope at 140 GPa is the transi-
tion from semiconducting to metallic fluid.
 © 2005 Pleiades Publishing, Inc.
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140 GPa is indicative of the transition to the metallic
state. An analysis of the measurements in the range
93−120 GPa (semiconducting regime) resulted in the
equation typical of liquid semiconductors,

(1)

where σ is the electric conductivity, σ0 weakly depends
on the density ρ, Eg(ρ) is the density-dependent elec-
tron bandgap of the fluid, kB is the Boltzmann constant,
and T is the temperature. If the temperature dependence
of conductivity is related to transition of electrons from
the ground state to the continuous spectrum, then Eg

coincides with the ionization potential of the hydrogen
molecule in matter. The results of the least-square fit of
the experimental data to Eq. (1) are

(2)

where Eg(ρ) is in eV, ρ is in mol/cm3, and σ0 is in
Ω−1 cm–1. We note that a value 200–300 Ω–1 cm–1 is typ-
ical of liquid semiconductors [12]. The bandgap was
also estimated as Eg = 11.7 ± 1.7 eV at the point
ρ = 0.13 ± 0.005 mol/cm3 in the single-shock experi-
ments [11]. The metallization density is defined to be
the density at which the mobility bandgap Eg is reduced
by pressure to Eg ~ kBT, at which point Eg is filled in by
fluid disorder and thermal smearing. We have Eg(ρ) ≈
kBT at the density about 0.316 mol/cm3 and the temper-
ature about 2600 K (0.22 eV). Thus, fluid hydrogen
becomes metallic at about 140 GPa and 2600 K via
continuous transition from a semiconducting to metal-
lic fluid.

The bandgap Eg has been measured only for solid H2
and D2 at low temperatures (about 5 K) and low (satu-
ration) pressures [13, 14]. The vacuum ultraviolet
absorption spectra of these two hydrogen isotopes are
practically identical. The low-energy component of the
spectra below 15 eV was assigned to Wannier exciton
transitions. The analysis of the higher order terms of the
Wannier series in [14] implies that Eg ≈ 14.7 eV in
hydrogen and Eg ≈ 14.9 eV in deuterium. These values
are close to the gas phase ionization potentials of the
hydrogen molecules: Ig = 15.43 eV for H2 and Ig =
15.47 eV for D2. Knowledge of Eg makes it possible to
estimate the energy of the bottom of the electron con-
duction band V0. In fact, the molecular ionization
potential in dielectric matter, as follows from the close-
coupling approximation, is related to the gas phase ion-
ization potential by

(3)

where P+ is the polarization energy of the medium by a
positive ion. For estimating the value of P+, the Born

σ σ0 Eg ρ( )/2kBT–[ ] ,exp=

Eg ρ( ) 1.22 62.6 ρ 0.300–( ),–=

σ0 90, 0.290 ρ 0.319,≤ ≤=

Eg Ig P+ V0,+ +=
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formula can be used:

(4)

where Ri is the radius of the cavity where a point charge
resides, surrounded by a homogeneous liquid or solid
with the dielectric constant ε. Usually, Ri is chosen
equal to the crystallographic ionic radius or to the hard-
core radius of the neutral parent molecule. Good agree-
ment with the results of the theoretical estimates of P+
for solid rare gases [15, 16] may be achieved for

(5)

where Rs is the radius of the cell occupied by a mole-
cule in the medium with a concentration of molecules
N. Substitution of Eq. (5) in Eq. (4) gives P+ = 0.7 eV
for H2 and P+ = 0.8 eV for D2. Thus, according to this
estimation, the energy of the bottom of the electron
conduction band V0 is approximately –0.05 eV in solid
H2 and +0.20 eV in solid D2.

The sign and value of V0 are determined by compe-
tition between the polarization and exchange interac-
tions of an electron with molecules of the medium,

(6)

where Pe < 0 is the energy of the medium polarization
by an electron and Te > 0 is the minimum kinetic energy
that a free electron can have in a system of short-range
repulsive scatterers. With decreasing N, the relative
contribution of the polarization interaction increases
and V0 must therefore also be negative in the liquid and
gas phases of hydrogen. In an ideal gas, the optical
model [17] may be used for estimation of V0,

(7)

where m is the electron mass and L is the electron–mol-
ecule scattering length. This implies that L must be neg-
ative and demonstrate a Ramsauer–Tawnsend mini-
mum. The scattering length was obtained in spectro-
scopic investigation of the properties of electrons
localized above the surface of solid hydrogen [18, 19].
The resonant energy of the electron transition between
ground and excited surface states was found in this
experiment to depend on the density N of H2 molecules
in the vapor phase. The linear density shift of the tran-
sition energy was interpreted in terms of the optical
model (fully analogous to the Fermi shift of energy of
high excited Rydberg atoms in a gas atmosphere) by
means of Eq. (7). This gave the value L = –0.14 ±
0.04 nm and negative V0, which is in qualitative agree-
ment with the previously discussed results of spectro-
scopic investigations of solid hydrogen. We note that
the currently accepted value is L = +0.067 nm. Discus-
sion of possible reasons of this discrepancy can be

P+
e2

2Ri

-------- 1 1
ε
---– 

  ,–=

Ri Rs, Rs
3

4πN
----------- 

 
1/3

,= =

V0 Te Pe,+=

V0
2π"

2

m
------------LN ,=
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found in [19]. Most probably, discrepancy occurs
because practically all measurements of the electron
scattering length were performed at temperatures high
enough for the rotational degrees of freedom to be
excited. Only Zavyalov and Smolyaninov [18, 19] per-
formed their experiments at cryogen temperatures.

A negative value of V0 indicates the absence of a
potential barrier for penetration of an electron from the
gas phase to bulk liquid or solid hydrogen. At first sight,
this contradicts a number of well-known experimental
facts. First, the possibility of electron localization
above the surface of condensed He, Ne, and H2 is usu-
ally connected with the existence of a potential barrier
for electrons at the surface of these three matters having
small polarizability of atoms or molecules [20, 21].
Second, in the experiments on mobility of charge carri-
ers in liquid [22–24] and solid [25–27] hydrogen, a
very low mobility of negative charges (on the same
order as or, in some cases, even less than the mobility
of positive charges) was observed. The current interpre-
tation of this effect supposes that, just as in liquid and
solid helium, the positive charges represent clusters
(Atkins’ snowballs [28]) consisting of a positively
charged molecular ion surrounded by a layer of neutral
molecules, and the negative charges in condensed
hydrogen are electrons localized in bubbles or voids of
several atomic sizes [21]. This interpretation also
implies the existence of a sizable potential barrier of
about 1–2 eV at the surface of the electron bubble.
Third, irradiated solid hydrogen displays a number of
interesting spectral features. Hydrogen mixtures con-
taining tritium, when cooled below a temperature of
about 10 K, show additional lines in the fundamental
absorption spectrum [29]. The new lines were inter-
preted as Stark-shifted molecular transitions whose
appearance was caused by the presence of trapped
charges of both signs in the lattice as a result of the ion-
izing tritium radioactivity. Proton- and γ-irradiated
samples show the same features. The analysis of Stark
shifts resulted in the conclusion that two species of each
charge exist, one mobile and one less mobile. Each of
the less mobile charge species is responsible for the
induced absorption features. The mobile negative
charge is thought to be a small polaron, and its immo-
bile counterpart is then an electron trapped in the form
of a bubble [30]. In addition to the Stark-shifted fea-
tures, a number of spectral features also attributed to
trapped electrons have been observed in irradiated solid
hydrogen (see, e.g., [31] and references therein). A sim-
ple square-well model for the electron bubble gives a
good fit to the observed spectra only for an unreason-
ably large well depth V0 = 3.8 eV [32].

One of the aims of the present work is to eliminate
the aforementioned contradictions between different
experiments. With the help of a simple model, we show
that, even in the case of a negative V0 (but not very large
in absolute value), two-dimensional electron surface
states may exist owing to the additional potential bar-
JOURNAL OF EXPERIMENTAL A
rier at the surface, whose appearance is related to dif-
ferent ranges of polarization and exchange forces. An
important role of the polarization energy at the surface
and interface was also reported for other dielectric and
semiconducting systems [33]. Using the fact of the

recently observed formation of the  ion in solid
hydrogen [34–36], we conjecture that the low mobility
of negative charges in condensed hydrogen is a result of
the electron capture by a hydrogen molecule and bub-
ble creation around it, but not the result of electron bub-
ble creation. We assume that, in the case of irradiated
liquid and solid hydrogen, the availability of the admix-
ture of hydrogen (deuterium) atoms is decisive and
electrons are localized in H– (D–), surrounded by voids

of smaller size than in the case of  ( ). Near the
metallization pressure of hydrogen, considerable disso-
ciation of molecules (about 10%) occurs [8]. Electrons
are localized in atomic negative ions. With increasing
pressure, overlapping of the neighboring atomic nega-
tive ion states should result in formation of an extended
electron band and lead to the insulator–metal transition.
In this paper, results of our determination of the density
dependence of V0 and Eg are presented and compared
with the results of single-shock experiments.

2. ENERGY OF THE BOTTOM 
OF THE ELECTRON CONDUCTION BAND

In dense fluids and solids, the interaction between
atoms and molecules plays an important role, optical
model (7) is inapplicable for estimation of V0, and more
detailed consideration of Eq. (6) is necessary. The
energy Pe of the polarization interaction of electrons
with matter differs from the ion polarization energy P+.
Calculations performed for solid rare gases [16] are
well fitted by

(8)

(9)

where a ≈ 1.2Rs , α is the atomic or molecular polariz-
ability, and t satisfies the conditions 0 < t < 0.2. Approx-
imation (8) coincides numerically with the calculation
data in [15] and Born formula (4). It is well known that,
for helium isotopes and other rare gases, the value of V0
depends significantly on the atomic density and is prac-
tically independent of isotopic composition, aggrega-
tive state, and the type of crystal structure [37]. There-

H2
–

H2
– D2

–

P+
1
a
---ϕ+

α
a2
----- 

  ,–=

ϕ+ t( ) 3.154t 3.860t2–

1 2.55t 4.750t2–+
---------------------------------------------,=

Pe
1
a
---ϕe

α
a3
----- 

  ,–=

ϕe t( ) 4.966t 0.924t2+
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fore, there is good reason to believe that Eqs. (8) and (9)
can be used for solid and fluid hydrogen and deuterium.
The results of estimating the polarization energy of
positive ions and electrons near the triple point of H2
and D2 are listed in the table.

For estimating the minimum electron kinetic energy
Te , it is necessary to specify the short-range part of the
interaction potential. The interaction of an electron
with an atom or molecule in the vacuum can be qualita-
tively described by a simple model potential shown in
Fig. 2 [38, 39],

(10)

The only unknown parameter of the potential, the solid
core radius Rc , is fitted as follows. In the case where a
stable negative ion of the corresponding species exists
(as is the case with H–), the value of Rc is sought with
which the solution of the Schrödinger equation with
potential (10) gives the correct value of the electron
affinity EA. The atomic hydrogen has EA = 0.754 eV
[40], which results in Rc = 0.032 nm. A negative ion of
molecular hydrogen does not exist in vacuum. In this
case, it is possible to use the known relation between
Rc , α, and the electron scattering length L [41],

(11)

where a0 is the Bohr radius. Substitution of the value
L = –0.14 nm in Eq. (11) results in Rc = 0.052 nm. This
value of Rc seems quite reasonable because, in the scat-
tering of two closed atoms, it should be twice the
atomic Rc , but correlation in positions of the atoms in
the molecule slightly reduces the value of Rc .

Knowing the radius of the molecular hard core, it is
possible to calculate the value of zero-point electron
energy Te . An approach commonly used for this is
based on the Wigner–Seitz model [15, 37, 42]. In this
model, the medium is divided into equivalent spheres of
radius Rs . Each sphere contains a hard core of radius Rc

at its center. A free electron may be in any cell with
equal probabilities. Therefore, the electron wavefunc-
tion ψ(r) ~ r–1sin[k(r – Rc)] and ψ'(r) must be continu-
ous at the cell boundaries, which is possible only if
ψ'(Rs) = 0. This gives

(12)

The results of estimations of Te and the values of V0 and
Eg following from Eqs. (6) and (3) are also listed in the
table. It follows that our estimation of the ionization
potential Eg in solid hydrogen is in good agreement
with spectroscopic measurements [14] and the bottom

V r( )

∞, r Rc,≤

αe2

2mr4
------------, r Rc.>–







=

L
α
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a0Rc
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Te
"

2k2

2m
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of the electron conduction band V0 is negative in all
cases considered.

This model makes it possible to determine the
dependence of V0 and Eg on the fluid density ρ. The
results of our calculations are shown in Figs. 3 and 4. V0

has a minimum at a density of about 0.3 g/cm3 and
becomes positive at about 0.5 g/cm3. Such behavior is
typical of all fluid rare gases having negative V0 under
ambient conditions. The forbidden energy gap
decreases with density and, within the experimental
errors, coincides with Eg produced by single-shock
compression at the point 0.53 g/cm3.

3. SURFACE POTENTIAL BARRIER
AND LOCALIZATION OF ELECTRONS

ON THE SURFACE OF HYDROGEN

For liquids with a positive value of V0 (for example,
helium and neon), the electron transfer from the vac-

Results of estimation of the characteristic energies of H2
and D2 near their triple points: the positive ion P+ and the
electron Pe polarization energy; the minimum electron
kinetic energy Te; the energy of the bottom of the electron
conduction band V0; and the electron mobility gap or ioniza-
tion potential Eg. All values are in eV

Hydrogen Deuterium

liquid solid liquid solid

P+ –0.67 –0.78 –0.78 –0.91

Pe –1.08 –1.26 –1.26 –1.48

Te 0.95 1.09 1.09 1.27

V0 –0.08 –0.16 –0.16 –0.18

Eg 14.68 14.49 14.53 14.38

V

–EA

Rc

0

r

ψ(r)

–α e2/2mr4

0

Fig. 2. A model potential for the electron–atom or electron–
molecule interaction V(r) and the electron wavefunction
ψ(r) in the negative ion.
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uum into the liquid is hampered by this barrier. An elec-
tron approaching the surface from the vacuum never-
theless feels the influence of its positive image charge
inside the liquid. The potential of this attractive image
force above the surface is given by

(13)

where z denotes the coordinate perpendicular to the sur-
face and ε is the dielectric constant of matter. The
attraction by the image force and the barrier given by V0
lead to a bound surface state [20, 21]. The electron is,
however, still partially free to move along the surface
and has high mobility in these directions. For liquid

V z( ) Qe2

z
---------, Q–

ε 1–
4 ε 1+( )
--------------------,= =

3.0

0 0.6 1.0

Density, g/cm3

V0, eV

2.5

1.0

0

–0.5

2.0

0.5

0.2 0.4 0.8

1.5

Fig. 3. Energy of the bottom of the electron conduction
band V0 in fluid D2 as a function of density ρ.
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Fig. 4. Electron-forbidden energy gap in fluid D2 as a func-
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helium, the potential barrier V0 ~ 1 eV is high in com-
parison with the binding energy of the localized elec-
tron. Therefore, it is possible to set V0 = ∞ with good
accuracy and to take the presence of the interface into
account by the boundary condition of the wavefunction
Ψ|z = 0 = 0. The attractive potential then gives rise to a
hydrogen-like wave function with the Bohr radius
becoming a0/Q. The energy levels correspond to the
Rydberg series, and the electron energy spectrum is
given by

(14)

where k is a two-dimensional wavevector of the elec-
tron parallel to the helium surface. Owing to small
polarizability of helium (Q ≈ 1/144), the ground-state
binding energy is also small (E1(0) ≈ 7.5 K ! V0) and
the assumption V0 = ∞ is quite reasonable in this partic-
ular case. The electron is localized at a distance on the
order of 100 nm from the surface, and, therefore, the
true behavior of the interaction potential at the distance
of the interatomic order from the surface is not very
important. The frequencies of the 1–2 and 1–3 transi-
tions correspond to 125.9 and 148.6 GHz, respectively.

In the case of condensed hydrogen, the situation is
different. As we have shown above, V0 is negative in
both liquid and solid hydrogen, and at first sight, the sur-
face electron localization is impossible. Such states were
nevertheless observed [18, 19, 43, 44]. We now consider
the spectroscopic measurements with surface electrons
on solid hydrogen surfaces in more detail [19]. A tunable
laser source makes it possible to observe the photores-
onance of the surface electrons when changing the
potential of the lower electrode U (and, consequently,
the confining electric field E) altered the electron spec-
trum. The photoresonance signal amplitude depended
linearly on the laser intensity and on the surface charge
density. The transition frequency in the limit of zero
electric field E and hydrogen gas pressure P was equal
to 3.15 ± 0.05 THz. As in the case of similar experi-
ments for electrons over 3He and 4He [45, 46], the
energy spectrum can be approximated by introducing
the Rydberg correction δ into Eq. (14),

(15)

where δ is independent of n. Measurements of δ for 3He
and 4He gave –0.014 and –0.022, respectively, while
δ = –0.11 was obtained for solid hydrogen [18, 19]. As
we already mentioned, Zavyalov and Smolyaninov
found that, for electrons over solid hydrogen and deute-
rium, the transition frequencies depend strongly on
vapor density. Analysis of this dependence made it pos-
sible to determine the scattering length L that we use in
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our estimations. That the scattering length is negative is
important evidence that V0 is negative.

To understand why creation of the localized surface
states is possible in the case of negative V0, we consider
the interaction of an electron with the surface of hydro-
gen in more detail. The interaction potential V(z) is
shown schematically in Fig. 5. Inside condensed hydro-
gen, the potential energy of the long-range polarization
interaction Pe is determined, for example, by Eq. (9).
Approaching the surface, Pe increases. At the surface, it
is tied continuously to the image force potential, which
is determined by Eq. (13) far from the surface. An elec-
tron located just at the surface interacts with half the
molecules that it interacts with in the bulk matter. It is
therefore reasonable to assume that, at the surface, the
polarization energy is approximately Pe/2. In addition
to the polarization interaction, there is a short-range
exchange interaction of the electron with electrons of
hydrogen molecules, which results in the shift of the
free electron energy V0 by a positive value Te . The
dependence of Te(z) is significantly more abrupt than
that of Pe(z). We approximate it by the step function.
The resulting surface potential depicted in Fig. 5 by
solid line represents the potential barrier for electrons
penetrating from the vacuum side. It is obvious that, if
V0 is not too small, the surface electron localized states
may exist.

For determination of the surface electron energy spec-
trum, we use an even simpler potential. Outside hydro-
gen, it coincides with the image force potential (13)
down to z = Rc = 0.052 nm. At shorter distances, the
potential is considered to be constant, V(z) = V(Rc).
Inside hydrogen, the potential is also considered to be
constant, V(z) = V0 – Pe/2. Solution of the Schrödinger
equation gives a spectrum in Eq. (15) with δ ≈ –0.2 that
is practically independent of n. For a model thus simpli-
fied, the agreement with the experimental value δ =
−0.11 is quite satisfactory. It is worthwhile to note that
we used the continuity conditions

(16)

for the electron wavefunction ψ(z) [47], where meff is
the electron effective mass. In liquid helium, meff ≈ m
and both masses cancel out in Eq. (16). In solid hydro-
gen, meff ≈ 0.2m [48]. The sudden change in the electron
effective mass at the hydrogen surface results in a sig-
nificant increase in surface electron binding energy.

4. STRUCTURE AND ENERGY SPECTRUM
OF ATOMIC AND MOLECULAR NEGATIVE IONS

IN CONDENSED HYDROGEN

The electron affinity to atoms and molecules
increases in condensed dielectrics in comparison with its
value in vacuum [49–53]. This effect was observed by
Lukin and Yakovlev [49] and Sowada and Holroyd [50]

ψ 0–( ) ψ +0( ), meff
1– ψ' 0–( ) m 1– ψ' +0( )= =
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in experiments on conductivity of solutions of molecu-
lar oxygen in different dielectric liquids. Such solutions
were exposed to short X-ray radiation pulses. This
resulted in ionization of the solvent and a sharp growth
in conductivity. Then, the electrons were localized at
neutral oxygen molecules with the creation of negative

 ions. After this, the conductivity dropped abruptly

because the mobility of heavy  ions is several orders
less than the mobility of free electrons. Then, a laser
pulse in the visible spectrum was produced. If the laser
frequency exceeded a certain threshold value, then pho-
todetachment occurred, accompanied by new growth of
conductivity. The photodetachment energy was found
to be significantly higher than the electron photode-
tachment energy from the oxygen molecule in vacuum
(the difference was more than 1 eV). This effect is the
result of a strong polarization interaction of the bound
electron with atoms or molecules of the solvent. A more
detailed discussion of this effect can be found in [51–53].

As a result of irradiation or thermal dissociation, a
certain amount of atomic hydrogen may be present in
condensed molecular hydrogen. We therefore perform
our estimations for both atomic and molecular negative
ions. At the moment of the electron transition to the
level of a negative ion, surrounding matter can be con-
sidered undisturbed. The electron binding energy in the
negative ion can then be estimated from the solution of
the Schrödinger equation with a potential slightly dif-
ferent from that in Eq. (10) and Fig. 2; it is presented in
Fig. 6. At the surface of the surrounding void, the neg-
ative ion with R = Rs , the interaction potential varies
stepwise by a value of Te . The estimation of the electron
affinity gives, for example, EA ≈ 1.33 eV for H– in liq-
uid hydrogen at the triple point and EA ≈ 1.42 eV for
D– in solid deuterium, also at the triple point. A contin-
uous red emission spectrum was observed during pro-
ton-beam irradiation of solid D2 and H2, maximizing
near 830 nm (1.49 eV) [31, 54]. We believe that the
electron attachment to D and H is responsible for this

O2
–

O2
–

Condensed H2 Vacuum

V(z)

En
V0

Te

Pe

z

Fig. 5. Schematic arrangement of the electron interaction
potential at the surface of condensed hydrogen.
SICS      Vol. 100      No. 1      2005



20 KHRAPAK, YOSHINO
emission. Similar estimation shows that the electron
affinity to the hydrogen molecule in undisturbed hydro-

gen is negative. Hence, the radiative formation of 

and  ions is impossible. With increasing fluid den-
sity, the electron affinity increases. The results of our
calculation of the electron affinity to atomic deuterium
in fluid molecular deuterium are shown in Fig. 7.

After atomic negative ion formation, the interaction
of its outer electron with surrounding matter results in
the creation of a void around the ion, with decreasing
electron energy. At the bubble radius about 0.5 nm, the
electron energy shift is about 0.15–0.20 eV. With the
potential barrier at the surface of the void, which is of
order of Pe/2, the electron detachment energy is approx-
imately equal to 1.9 eV for H– in liquid H2 and 2.2 eV
for D– in solid D2. The last value is somewhat different

H2
–

D2
–

V

–EA

Rc

0

r

ψ(r)

0 R

V0

Te

Fig. 6. Model potential for the electron–atom or electron–
molecule interaction V(r) and the electron wavefunction
ψ(r) in the negative ion inside a bubble of radius R.
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Fig. 7. Electron affinity to atomic deuterium in fluid deute-
rium as a function of density.
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from the experimentally measured value about 3.1 eV
of the electron bound-free transition energy in proton-
irradiated solid deuterium [32]. Nevertheless, we
believe that photodetachment of electrons from the D–

ions may be responsible for this ultraviolet absorption
spectrum and suppose that a more refined calculation of
the hydrogen negative ion spectrum is capable of
improving agreement with experiment. Creation of

negative  and  ions also becomes possible inside
voids of sufficiently large radius. For example, the elec-

tron detachment energy for the  ion in a void 0.5 nm
in diameter in solid D2 is approximately 1.3 eV. Close

values are valid for  in liquid and solid H2 and for

 in liquid D2. This allows us to suppose that low
mobility of negative charges in liquid and solid hydro-
gen [22–27, 39] is related to electron localization in
molecular or atomic (when dissociation of molecules
occurs) negative ions surrounded by bubbles or voids.

5. CONCLUSIONS

A simple model for estimating the bottom energy of
the electron conduction band V0 and the forbidden
energy gap Eg was proposed based on the experimental
investigation of the exciton absorption spectrum in con-
densed hydrogen. Estimation of Eg is in good agree-
ment with values obtained in measuring conductivity
by single-shock wave experiments. It was shown that
electrons in liquid hydrogen are localized not in the
electron bubbles, as was considered previously, but in
molecular negative ions surrounded by voids of about
0.5 nm in radius. The conductivity of fluid hydrogen at
not very high pressures is related to the transfer of
heavy complexes—positively charged clusters and neg-
atively charged bubbles. With increasing pressure and
density, molecular dissociation occurs and the electron
localization on atoms becomes more favorable, also
with the creation of a void around atomic negative ions.
At a sufficiently high concentration of atoms, the prob-
ability of tunnel transition of an electron from one atom
to another becomes close to unity, the energy level of
the negative ion degenerates in the band, and the con-
ductivity is caused by the transfer of these quasifree
electrons. This mechanism of charge transfer may play
an important role in the region of fluid hydrogen metal-
lization.
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Abstract—An analysis of the evolution of microscopic particles (dust grains) in the Earth’s ionosphere and
their effect on ionization in the middle atmosphere is presented. It is shown that summer conditions in the polar
ionosphere, which are characterized by an ambient air temperature below 150 K and presence of supersaturated
water vapor, facilitate the formation of dust structures in the middle atmosphere, such as noctilucent clouds and
polar mesospheric summer echoes. The ionospheric plasma composition can change significantly in the regions
occupied by these structures. Depending on photoelectric properties of the grains, their presence may lead to
excess, or decrease in, electron concentration and complex behavior of ion concentration. The proposed self-con-
sistent model of the ionosphere allows for grain growth, sedimentation, and charging and can be used to explain
the behavior of ionization under summer conditions in the polar ionosphere. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Processes taking place in plasmas containing micro-
scopic particles have been the subject of extensive stud-
ies in recent years. Systems of this kind are generally
called complex (or dusty) plasmas. The particles are
rapidly charged by recombination of electrons and ions
on their surface, photoelectric emission, and other pro-
cesses. The resulting plasmas are characterized by
additional length and time scales and, therefore, by
much more complex behavior, such as instabilities and
waves of new types. The interest in dusty plasmas is
due to their widespread occurrence in nature. Dust grains
are present in the interstellar medium, planetary mag-
netospheres and ionospheres, and the atmospheres of
comets. Frequently, dust grains strongly affect, and may
even determine, environmental conditions. Understand-
ing of the processes taking place in complex plasmas has
significantly improved owing to laboratory experiments
conducted since the mid-1990s [1–6]. This motivates the
application of methods developed in studies of dusty
plasmas to ionospheric plasmas. As shown below, the
ionosphere may contain both nanometer- and micron-
sized dust particles. In this paper, we call them micropar-
ticles, since this term is common in studies of dusty plas-
mas. Note also that the charging of particles greater than
10 nm in size is described by models analogous to those
used in analyses of charging of micron-sized particles.
However, the present study is of interdisciplinary nature,
because its results can be applied in other areas, such as
atmospheric physics, geophysics of micron-scale and
nanostructured objects, and ecology.

Microparticles build up in the ionosphere as a result
of both bombardment by micrometeorites (which sub-
1063-7761/05/10001- $26.000152
sequently burn in the upper part of the middle atmo-
sphere, at altitudes of 80 to 100 km) and convective
transport of particles from the lower atmosphere (soot
produced by forest fires or particles of volcanic origin).
It is commonly believed (see [7]) that these processes
lead to the buildup of dust grains several nanometers in
diameter at altitudes of 80 to 100 km. Their concentra-
tion varies between 10 and 1000 cm–3, depending on the
season and micrometeorite activity. It can be shown that
the presence of these particles does not modify the state
of the ionospheric plasma under normal conditions.
The situation is totally different in the polar mesos-
phere under summer conditions at altitudes of 80 to
90 km: the ambient temperature falls below 150 K, the
water vapor that is present at these altitudes supersatu-
rates (e.g., see [8]), and dust grains grow. As their diam-
eter reaches a certain value (at a certain time), their
presence begins to determine local ionization charac-
teristics of the ionosphere. When the micrometeoritic
activity is relatively high, narrow sporadic layers of ele-
vated ionization are frequently observed in the middle
and upper atmosphere (at altitudes of 90 to 110 km) [9],
where the most common ions are those of sodium,
potassium, iron, and their oxides (apparently of meteor-
itic origin). We do not discuss the physics associated
with these layers.

One important feature of the polar ionosphere under
summer conditions is the presence of dust layers (very
thin on the atmospheric scale) located at altitudes of 80
to 85 km (noctilucent clouds, or NLC) or 85 to 95 km
(polar mesospheric summer echoes, or PMSE). NLC
consist of submicron-sized particles. Their vertical
optical thicknesses are much less than unity, but they
can be seen by the naked eye at sunset, whereas PMSE
 © 2005 Pleiades Publishing, Inc.
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(apparently consisting of charged nanometer-sized par-
ticles) cannot be observed by optical methods and man-
ifest themselves by strong radio reflections observed
with radars at frequencies between 50 and 1000 MHz
[10]. Strong correlation between observations of NLC
and PMSE suggests that they have a common origin. In
the literature, NLC and PMSE are frequently grouped
together under the common term polar mesospheric
clouds (PMC) [8]. These objects are discussed in this
paper with a view to constructing a self-consistent
model that can explain the most important observa-
tions.

The paper is organized as follows. In Section 2, we
discuss the summer physical conditions in the polar
ionosphere and present both computed spectra of solar
radiation in the mesosphere and observed concentra-
tions of electrons and ions. In Sections 3 and 4, we
develop a theoretical model describing the evolution of
dust structures in the middle atmosphere and discuss
the results of numerical simulations of polar meso-
spheric clouds. Finally, we state the main conclusions.

2. SUMMER CONDITIONS
IN THE POLAR IONOSPHERE

The formation of NLC and PMSE (hereinafter
called dust structures1) takes place in the polar atmo-
sphere at mesospheric altitudes (80–100 km) between
the end of May and the end of August. In this period,
the polar mesosphere is the coldest place on Earth. The
ambient air temperature there falls below 150 K [8],
and water vapor supersaturates. This leads to conditions
favoring the growth of dust grains. The dominant nucle-
ation mechanism appears to be the condensation of
water molecules on nanometer-scale particles, which
are always present at mesospheric altitudes. The char-
acteristic grain size is a few nanometers [11], and their
concentration typically is 10 to 1000 cm–3. They are
either products of volcanic eruptions and forest fires
brought into the mesosphere from the lower atmo-
sphere by convective mixing of the atmospheric air or
(more likely) products of combustion of micrometeor-
ites in the middle atmosphere. The micrometeorite flux
toward the Earth is 100 Mt per day (e.g., see [12]). It
mainly consists of centimeter-sized objects. They burn
at altitudes of 80 to 100 km, supplying nanometer-sized
particles to the mesosphere. It should be noted here that
observation data concerning nanometer-scale particles
in the upper part of the middle atmosphere are practi-
cally unavailable, because they cannot be detected by
optical methods. Since information about particle com-
position and size distribution can be obtained only by
means of sounding rocket flights [13], the quantities
indicated above should be interpreted only as conjec-
tures about the dust contained in the mesosphere [7].

1 The term layered is also used in literature, because their vertical
size, 10 to 1000 m, is small on the atmospheric altitude scale.
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Figure 1 illustrates the summer conditions in the
polar ionosphere that are important for the physics of
PMCs. In particular, the figure shows vertical profiles
of neutral-gas temperature, saturated water vapor pres-
sure, water vapor pressure, and estimated microparticle
concentration. Particle nucleation conditions are satis-
fied at altitudes between 78 and 92 km, where water
vapor is supersaturated. Note that it is in this altitude
range where NLC and PMSE are observed.

Under conditions of local water vapor supersatura-
tion, the nucleation of nanometer-scale particles is fol-
lowed by their charging. At the altitudes in question, the
ionosphere is characterized by a complicated composi-
tion of its charged component, which consists of elec-
trons and positive and negative ions. Positive ions can
be tentatively divided into two groups. The so-called

simple, or primary, ions , , and NO+ are pro-
duced both by solar radiation (primarily via photoion-
ization of nitrogen monoxide resulting in NO+ forma-
tion) and by electron impact ionization in collisions
with high-energy electrons that escape from the radia-
tion belts. The other group contains the ions H+(H2O)n

(so-called clusters or proton hydrates), where n is the
hydration number (normally, n ≤ 10). They are pro-
duced from simple ions via a complicated chain of
charge transfer reactions [14]. It is important that the two
kinds of ions are characterized by substantially different
recombination rate constants αrec: αrec ~ 10–7 cm3 s–1 for
simple ions, whereas αrec ~ 10–5 cm3 s–1 for proton
hydrates. It should also be noted that the concentration
of positive ions of each group is a complicated function
of ionization rate qe , ionization source (i.e., the relative
contributions of solar radiation and fast electrons to
ionization), as well as of the composition of the neutral
middle atmosphere, particularly on the NO concentra-
tion (since photoionization primarily involves NO mol-
ecules). The composition of the positive-ion subsystem
strongly depends on the neutral-gas temperature Tn.
This is explained by the fact that the cluster bond
strength is very small when n is large. For example,
clusters with n ≥ 10 cannot form at Tn ≥ 160 K, because
they are destroyed in collisions with neutrals at a rate
faster than their formation rate. In this case, the simple
positive ions and proton hydrates with small n are the
dominant components.

The mesosphere may also contain negative ions [15].
However, they can be neglected at the altitudes of inter-
est here (80–100 km). Indeed, the primary negative ion

 is produced in the three-body attachment reaction

(with rate constant katt ≈ 10–31 cm6 s–1) and consumed in
the photodetachment reaction

N2
+ O2

+

O2
–

e 2O2 O2
– O2+( )+

"ω O2
– O2 e++
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Fig. 1. Qualitative estimates for vertical profiles of air temperature (solid curve), partial pressure of water vapor (dashed curve),
pressure of saturated water vapor (dash–dot curve), and nanometer-sized particle concentration (dash–dot–dot curve). Water vapor
is supersaturated at altitudes of 78 to 92 km. Since the degree of saturation is  = /Psat ≥ 1, ice particles can form as a

result of heterogeneous nucleation on nanometer-sized grains. The altitude range in which noctilucent clouds are observed is indi-
cated.

ΦH2O PH2O
(with rate constant kphoto ≥ 0.3 s–1 at the altitudes in
question), in the reaction with atomic oxygen

(with rate constant kdet ≈ 3 × 10–10 cm3 s–1), and in
charge transfer reactions

The fastest process is the charge transfer via collisions
with water molecules. The corresponding rate constant

is  ≈ 10–11 cm3 s–1.

The  kinetics in the lower ionosphere can be
described by the equation [16]

(1)

where brackets denote species concentrations. The bal-

ance condition for the sources and sinks of  yields an

O2
– O O2 O e+ ++

O2
– M M– O2.++

kct
H2O

O2
–

∂ O2
–[ ]

∂t
-------------- kattne O2[ ] 2 kdet O2

–[ ] O[ ]–≈

– kphoto O2
–[ ] kct

H2O
O2

–[ ] H2O[ ] ,–

O2
–

JOURNAL OF EXPERIMENTAL A
estimate for the  concentration:

This quantity is substantially smaller than the charac-
teristic concentrations of positive ions and electrons at
the altitudes in question, which are estimated as
follows:

where the characteristic ionization rate in the mesos-
phere is qe ~ 0.1–10 cm–3 s–1.

Microscopic currents of electrons and ions in the
ambient plasma and their recombination on the surface
of a microparticle result in its charging. This leads to a
considerable decrease in positive-ion and electron con-
centrations in the regions occupied by NLC and PMSE.
Effects due to solar radiation may lead to much more
complicated behavior of charged species in dusty iono-
spheric plasmas, depending on the photoelectric prop-
erties of microparticles, their concentration, and grain
size. This behavior is discussed in detail below.

O2
–

O2
–[ ] kattne O2[ ] 2/ kphoto(≈

+ kdet O[ ] kct
H2O

H2O[ ] ) 0.1–1 cm 3– .≈+

ne ni qe/α rec( )1/2 102–104 cm 3– ,≈ ≈ ≈
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radiation.

Fλ
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0
λ∫
The presence of dust grains affects not only charged
species in the ionosphere, but also its neutral compo-
nents. In particular, catalytic production of water mole-
cules on microparticle surface can increase the water
concentration in dusty regions, which promotes particle
nucleation, i.e., giving rise to negative feedback. Note
that the effect of dust grains on minor components of
the middle atmosphere is poorly studied to this day.
However, it is a promising area of research in photo-
chemistry of the middle atmosphere, because the rates
of heterogeneous chemical reactions on microparticle
surface are comparable to those of gas-phase chemical
reactions in the middle atmosphere. For example, there
exists evidence of reduced concentration of atomic
oxygen in the vicinity of NLC [17]. Note also that the
formation of NLC and PMSE may be related to global
climate change, which additionally motivates the study
of these structures. It is well established that the fre-
quency of appearance of PMC has considerably
increased over the past decades [9], while the tempera-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ture distribution in the polar mesosphere under summer
conditions has remained virtually the same2 [18]. This
trend can be attributed to increasing water vapor con-
centration in the mesosphere due to increasing methane
concentration (whose oxidation is a source of water). It
is well known that the methane concentration in the
lower atmosphere also tends to increase, but the cause-
and-effect relationships responsible for correlations
between these trends have not been established.

One important characteristic of the polar mesos-
phere under summer conditions is its irradiation by
solar radiation. Figure 2 shows the solar radiation spec-
tra versus altitude computed for a zenith angle of 85°.
In addition, we present the spectral power distribution

2 The increase in the frequency of appearance of PMC may be
explained by an additional (yet unrevealed) cooling of the mesos-
phere due to man-made emission of carbon dioxide into the lower
atmosphere. According to current views, increase in greenhouse
CO2 concentration leads to temperature increase in the lower
atmosphere and its decrease in the mesosphere.
SICS      Vol. 100      No. 1      2005
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 of solar radiation and the corresponding energy
flux

The latter can be used to evaluate the role played by the
photoelectric emission from dust-grain surface for
microparticle materials having various optical and pho-
toelectric properties. The solar radiation spectra were
computed by using the PHODIS code [19].

The chosen zenith angle is the most common. In
summer, the Sun hardly ever sets at the altitudes con-
sidered here, and the solar radiation spectrum weakly
depends on the zenith angle αs if αs ≤ 90°. Moreover,
even if αs ≤ 95°, then scattered radiation with wave-
lengths λ ≥ 300 nm that reaches the mesosphere is
almost unattenuated (only relatively short-wavelength
components of solar radiation are strongly absorbed).
The zenith-angle range of 85–95° almost entirely cov-
ers the experimental data base on PMCs. It is clear that
solar radiation with λ ≤ 175 nm (photon energy "ω ≥
7.3 eV) is strongly absorbed at altitudes h ≈ 100 km.
The work function Wice for ice is about 8.7 eV. There-
fore, there is no photoelectric emission from ice parti-
cles. In particular, this implies that ice microparticles
are negatively charged. However, if a dust grain con-
tains metal inclusions (which are characterized by a
work function W of a few electronvolts, e.g. [20], W =
2.35 eV for sodium, W = 2.22 eV for potassium, W =
2.80 eV for calcium, W = 3.64 eV for magnesium, W =
4.2 eV for aluminum, and W ≈ 4.6 eV for iron), then
photoelectric emission can play a certain role, depend-
ing on the grain size, in the ionization balance in the
middle atmosphere and the grain may be positively
charged. This is possible for microparticles produced
when micrometeorites containing substantial amounts

of these metals are burned. The ionization rate 
corresponding to a single metal microparticle can be
comparable to natural ionization sources, which
include ionizing solar radiation and fast electrons:

Here, Qabs ≈ πa2 is the effective cross section for
absorption of solar radiation by a metal microparticle of
radius a, Φ(λW) is the integral flux of photons having
energies higher than W, and Y(λ) is the photoelectron
yield (normally, Y ~ 10–2–10–4). Thus, the charge car-
ried by the microparticles contained in the mesosphere
may be of either sign, depending on their composition,
which complicates their effect on the composition of
the ionospheric plasma.

Fλ
out

Φ λ( ) Fλ
out λ .d

0

λ

∫=

qd
photo

qd
photo QabsΦ λW( )Y λ λ W≤( )≈

∼ 0.1–10 cm 3–  s 1– qe.∼
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Despite the fact that the history of sounding rocket
flights in the polar mesosphere under summer condi-
tions spans more than thirty years, the data obtained are
not sufficient to determine the plasma composition in
dust structures. Both electron and ion concentrations
were measured only in eleven experiments. Microparti-
cle size distributions were measured only in two. Since
the ionization conditions in the mesosphere depend on
many factors, including ionization rate, neutral-gas
composition, solar radiation flux, dust-grain composi-
tion, and neutral-gas temperature, the data acquired in
the experiments can hardly be interpreted unambigu-
ously. Nevertheless, a systematic analysis of experi-
mental results concerning the behavior of charged spe-
cies in the polar mesosphere under summer conditions
shows that five trends can be identified [10, 21, 22]:

(i) considerable dips (“bite-outs”) in both electron
and positive-ion concentrations at altitudes between 80
and 85 km;

(ii) considerable decrease in the electron concentra-
tion without any significant change in the concentration
or composition of the positive-ion subsystem;

(iii) a considerable increase in electron concentra-
tion in the region occupied by NLC while no measure-
ments of ion concentrations were performed;

(iv) a considerable increase in the concentration of
positive ions accompanied by a dip in electron concen-
tration;

(v) no appreciable change in the electron and posi-
tive-ion concentrations while strong radio reflections
were observed in the mesosphere (at altitudes between
80 and 85 km) in radar frequency bands of 50 to
1000 MHz.

It is shown below that these results can be explained
by the presence of microparticles in the middle atmo-
sphere.

3. THEORETICAL MODEL
OF DUST STRUCTURES

The model of dust structures developed here relies
on the data concerning the polar mesosphere under
summer conditions summarized below. The unper-
turbed charged component is described by invoking a
model of the polar ionosphere [23], which provides a
quantitatively accurate description of the diurnal varia-
tion of the ionospheric plasma density at altitudes of 80
to 100 km. To simplify analysis, we consider two groups

of positive ions: the simple ions , , and NO+ are

characterized by  ≈ 10–7 cm3 s–1; the proton hydrates

H+(H2O)n are characterized by  ≈ 10−5 cm3 s–1 aver-
aged over n. Both the rate βc of aggregation of simple
ions into clusters and the ionization rate qe are deter-
mined by using the aforementioned model of the polar
ionosphere under summer conditions. Under the condi-

N2
+ O2

+

α rec
s

α rec
c
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tions considered here, the typical values of βc and qe are
βc ~ 0.1 s–1 and qe ~ 0.1–10 cm–3 s–1.

The transfer of solar radiation in the middle atmo-
sphere is computed by taking into account the actual
value of zenith angle in a particular season. To describe
the neutral composition, we use the model of the polar
atmosphere under summer conditions developed in
[24]. A model vertical distribution of microparticles is
used as an initial one, with a peak concentration nd ~
103 cm–3 at an altitude of 90 km. The characteristic
scale of variation of microparticle concentration is
comparable to the altitude scale H of the middle atmo-
sphere (H ≈ 7 km). The typical neutral-gas concentra-
tion nn at altitudes of about 80 km are determined by the
model of the atmosphere: nn ≈ 5 × 1014 cm–3.

The set of equations describing the effect of dust
grains on the ionization characteristics of the iono-
sphere under summer conditions is written in a local
approximation, since the characteristic charging time
for microparticles in a dusty ionosphere is much shorter
than those characterizing their transport. It includes

balance equations [16] for the concentrations ne , ,

and  of electrons, simple ions, and clusters, respec-

tively, and for the charge  of a microparticles of
radius a,

(2)

(3)

(4)

(5)

and a kinetic equation for the microparticle velocity
distribution function fd(h, a, v, t) at an altitude h,

(6)

Here,  ( j = e, s, c) represents the losses of elec-
trons, simple ions, and clusters in collisions with dust
grains,
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(the microparticle size distribution, nd = dvda, is

taken into account in dnd); the term  represents the
photoelectric emission induced by solar radiation,

and the terms νe , νs , and νc represent the charging rates
due to collisions of electrons, simple ions, and clusters
with microparticles, respectively. The term qphoto repre-
sents the ionization rate due to photoelectric emission;
βc , the rate of aggregation of simple ions into clusters.

In Eq. (6), the second and fourth terms describe,
respectively, microparticle growth in the ambient
supersaturated water vapor and either sedimentation or
rise of dust grains subject to neutral drag. Here, ρ and
ρd denote the densities of the ambient air and grain
material, respectively; md is the grain mass; αw is the
accommodation coefficient for water molecules collid-

ing with a dust grain (normally, αw ~ 1);  is the ther-
mal velocity of water molecules; cs is the local speed of
sound; vwind and v  are the vertical wind and grain veloc-
ities, respectively; and the factor Fd (on the order of
unity) reflects the effect of grain geometry.

It should be noted that the large-scale circumpolar
vortex that forms in the Earth’s atmosphere under the
conditions considered here, in particular, induces
upward motion of the gas entrained in the vortex
motion. In the mesosphere, this gives rise to an upward
component of the mean neutral-gas velocity, vwind ≈
1−10 cm/s.

The coagulation of colliding microparticles in the
mesosphere can be neglected, since the corresponding
time scale is much greater than other characteristic
times:

Equations (2)–(6) describe the evolution of a parti-
cle located at an altitude h. This approximation is appli-
cable because the vertical PMC size (~1 km) is much
smaller than their horizontal extent (~100 km), while
the horizontal velocity characteristic of microparticle
transport is less than, or comparable to, their vertical
velocity, and the horizontal particle displacement over
times on the order of 24 hours is negligible.

Microscopic electron and ion currents incident on
the grains are calculated by using the orbit-limited
probe model [25, 26], in which the cross sections for
collisions of electrons and ions with a charged grain are
determined by angular-momentum and energy conser-
vation laws. For a negatively charged grain, the orbit-

f d∫
Lphoto

e

Lphoto
e qphoto nd,d∫=

v w
th

τcoag ndv πa2( ) 1–
106 s.≥≈
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limited probe approximation leads to the following
expressions for charging rates:

For a positively charged grain, νe and νi are expressed
as

Here, qd = Zde is the grain charge; –e is the electron
charge; Te and Ti are the electron and ion temperatures,
respectively; and mα is the particle mass for the specie
denoted by α. The ionization rate qphoto associated with
photoelectric emission is determined by the solar radi-
ation flux F(λ):

(7)

where Qabs is the photon absorption cross section,

is the complex refractive index of the grain material,
F(λ) is the solar radiation energy flux, λ* is the longest
wavelength of a photon inducing photoelectric emis-
sion, and Y(λ) is the photoelectric emission probability.
The last quantity is usually calculated by using the
Fowler–Nordheim relation [27]

where the factor C varies within 10–2–10–4 eV–2,
depending on the grain size and composition [28]. Note
that photoelectric emission plays a significant role
when the grain size is sufficiently large. In the case of a
particle size of a few nanometers, the photoelectric
emission is weak, since the absorption cross section
Qabs decreases with a as a3 when a ! λ.

The integration limits in (7) are set by the condition
that only photons with energies such that

νe πa2 8Te

πme

--------- 
 

1/2

ne

eqd

aTe

-------- 
  ,exp≈

ν i πa2 8Ti

πmi

--------- 
 

1/2

ni 1
eqd

aTi

--------– 
  .≈

νe πa2 8Te

πme

--------- 
 

1/2

ne 1
eqd

aTe

--------+ 
  ,≈

ν i πa2 8Ti

πmi

--------- 
 

1/2

ni

eqd

aTi

--------– 
  .exp≈

qphoto πa2 Qabs a m λ( ),( )F λ( )Y λ( ) λ ,d

0

λ*

∫≈

m λ( ) n λ( ) iκ λ( )+=

Y λ( ) C W
2π"c

λ
-------------– 

  2

,=

2π"c
λ

------------- W–
e2Zd

a
----------–
JOURNAL OF EXPERIMENTAL A
create photoelectrons. In the case under analysis, the
photon energy is a few electronvolts, while the equilib-
rium potential of a charged grain is on the order of

where Tn ≈ 0.03 eV is the temperature of neutrals in the
mesosphere. Indeed, since the initial energy of a photo-
electron is a few electronvolts,

the charging of dust grains depends on their thermaliza-
tion rate. The photoelectron temperature can be esti-
mated using the equation

(8)

where νen(Te) is the electron–neutral collision fre-
quency and δen(Te) is the fraction of electron energy
transferred in a collision. When Te ~ 1 eV, electrons
cool down most effectively via inelastic collisions with
molecules of O2 or N2 (since vibrational states of the
molecules are excited by electron impact), in which
case δen ≈ 10–2. The corresponding electron cooling
time at mesospheric altitudes is

i.e., much shorter than the dust-grain charging time 
estimated as

Therefore,

and, accordingly,

Thus, photoelectric current from a dust grain can be
neglected. Recall also that the effect of negative ions on
microparticle-charging processes in the mesosphere is
neglected here.

The set of Eqs. (2)–(7) provides a self-consistent
description of the spatiotemporal variation of ioniza-
tion characteristics (plasma density, ion composition,
and microparticle charge) and the microparticle size
distribution in the polar mesosphere under summer
conditions. Boundary conditions for the microparticle
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velocity distribution function fd(t, a, h) are set as fol-
lows: at the upper boundary (h = 100 km),

which corresponds to the absence of microparticles at
high altitudes; at the lower boundary (h = 78 km), we
also set

In physical terms, this means that microparticles rap-
idly evaporate as they leave the region occupied by
supersaturated water vapor.

f d a h t, ,( ) 0,=

f d a h t, ,( ) 0.=
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4. NUMERICAL RESULTS

In this section, we discuss the results obtained by
applying the theoretical model presented above to the
polar ionosphere at 80 to 95 km under summer condi-
tions. Our discussion is focused on the possibility of
explaining the most important experimental data con-
cerning behavior of charged species in a dusty iono-
sphere.

Figure 3 shows the mean equilibrium charge of a
dust grain of radius 100 nm located at an altitude of
85 km as a function of the microparticle concentration
and the effective solar radiation flux that induces pho-
toelectric emission. This parametric study facilitates
estimation of the dependence of microparticle charge
on the zenith angle under summer conditions in the
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Fig. 3. Mean charge of a dust grain of diameter 100 nm at an altitude of 85 km (shown at curves in units of electron charge) versus
solar radiation energy flux and dust-grain concentration. The work function for the grain material is about 4 eV.
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polar mesosphere. The work function is assumed to be
about 4 eV; i.e., an ice particle containing metal inclu-
sions is considered. Figure 3 demonstrates that, even
when exposed to a moderate solar radiation flux, a
microparticle carries a relatively large positive charge
Zd ≈ 50, which decreases with increasing grain concen-
tration. For typical dust-grain concentrations in the
mesosphere (nd ≈ 300 cm–3) and moderate solar radia-
tion flux, the mean dust-grain charge is about ten elec-
tron charges. It is clear that the plasma composition in
the region occupied by dust grains changes, because the
total charge carried by the microparticles is comparable
to that of electrons and ions:

As the effective solar radiation flux decreases, the mean
dust-grain charge becomes negative and comparable to
the electron charge. This implies that the absolute
charge carried by a grain in the mesosphere can be sub-
stantially reduced by photoelectric emission. (Note that
the dust-grain charge in the absence of photoelectric
emission is negative, and its mean absolute value is
about ten electron charges.)

Under the conditioned under consideration, charge
fluctuations are relatively large,

and Eq. (5) cannot be used to describe the charging of a
dust grain, because it is derived under the implicit
assumption that the charge varies continuously rather
than by discrete portions. When Zd is small, the evolu-
tion of the mean dust-grain charge is described by the
Langevin equation [29]

where g(t) is a zero-mean random function:

with τch ~  denoting the characteristic dust-grain
charging time. The difference between the continuous
and discrete charging equations can be important for
estimating the mean charge of a relatively small grain
(about 10 nm in diameter), which appear to be of minor
importance for the physics of polar mesospheric
clouds. For dust grains of interest here (having diame-
ters greater than 10 nm), the mean charge is relatively
large (|Zd| @ 1), and Eq. (5) is applicable.

Figure 4 shows the evolution of vertical grain size
distribution and the mean grain size versus time and
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altitude. The initial vertical profile is the Gaussian dis-
tribution of 10-nm grains

where h0 = 90 km and H ≈ 7.5 km. The solution to
Eq. (6) presented here illustrates the formation of a
layer of dust grains of characteristic diameter 2a ≈
0.5 µm at altitudes of about 80 km over a few hours,
with a grain concentration of nd ≈ 10–1000 cm–3). It
should be noted that the characteristic diameter
depends both on the accommodation coefficient αw and
on the density ρd of a growing particle. The figure
clearly demonstrates the growth of sedimenting parti-
cles. The grain residence time in the mesosphere
increases in the presence of upward air flow, and the
characteristic grain diameter increases accordingly.
The inset illustrates the effect of upward air flow on the
characteristics of a single grain of radius r0 = 3 nm ini-
tially located at h0 = 85 km. The vertical location hd and
radius rd of the grain are plotted versus time. The verti-
cal wind speed vwind was set equal to 10 cm/s, which is
close in order of magnitude to wind speeds observed in
the polar mesosphere under summer conditions. With
time elapsed, rd  r∞ ≈ 200 nm and hd  h∞ =
80 km. The values of r∞ and h∞ are independent of h0
and r0, being determined only by vwind. Therefore,
when the upward velocity of air motion in the mesos-
phere is not zero, the grains leaving a dust cloud rapidly
evaporate, their size decreases, and upward air motion
brings them back into the mesosphere, where they grow
and settle again. As a result, a sharp lower boundary of
the dust cloud appears at the altitude hb determined by
the condition

For a grain of radius r0 = 3 nm, the minimal upward
velocity required to bring a grain back into the meso-
sphere is relatively low,

and can easily be reached under summer conditions in
the polar mesosphere by virtue of the existence of the
circumpolar vortex. Thus, the sedimentation and
growth of nanometer-scale particles in the mesosphere
lead to the development of a narrow layer of submi-
cron-sized particles at altitudes of 80 to 85 km, i.e.,
where noctilucent clouds are observed.

The presence of submicron-sized particles in the
mesosphere has a strong effect on plasma characteris-
tics (depending on photoelectric properties of dust-
grain material). This effect is illustrated in Fig. 5 by
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Fig. 4. Mean dust-grain size (shown at curves in centimeters) versus time and altitude as a characteristic of dust sedimentation in
the polar mesosphere under summer conditions. Formation of a layer of particles 0.3–0.5 µm in diameter at altitudes of about 80 km
over a time period of about 10 h is demonstrated. The inset shows typical altitude (solid curve) and radius (dashed curve) of a dust
grain versus time as characteristics of the effect of upward air flow on particle motion. Vertical air velocity is 10 cm/s.
spatiotemporal variations of mesospheric ion and elec-
tron concentrations in the presence of a layer of dust
grains characterized by different values of the work
function. The right panels correspond to pure ice micro-
particles. In this case, since there is no photoelectric
emission, the microparticles are negatively charged and
both ion and electron concentrations are reduced in the
region occupied by the dust layer. Indeed, the presence
of dust grains in the ionosphere leads to recombination
of the plasma on the grain surface. As a result, the rates
of electron and ion losses increase according to
Eqs. (2)–(5), and the corresponding concentrations
decrease. It can be shown that a concentration nd ≈
102 cm–3 of dust grains of diameter 2a ≈ 100 nm is suf-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ficient to substantially reduce the mesospheric plasma
density. These dust-grain parameters are common for
NLC-type structures. It should be noted that a decrease
in electron concentration reduces the loss of ions due to
recombination. Therefore, while the presence of micro-
particles reduces the electron concentration, the ion
concentration in the mesosphere may remain
unchanged or even increase. These effects obviously
depend on the relative importance of the ion losses due
to recombination and collisions with dust grains. As the
dust-grain concentration exceeds a certain value, the
equilibrium ion concentration becomes independent of
the electron concentration and is controlled only by the
loss of ions in collisions with microparticles, because
the electron concentration is substantially reduced and
SICS      Vol. 100      No. 1      2005
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panels correspond to the absence of photoelectric emission from dust grains (the work function exceeds 7.3 eV, as in the case of
pure ice microparticles). The left panels illustrate strong effect of photoelectric emission on the plasma composition in the mesos-
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the role played by ion losses due to recombination is
insignificant.

The left panels in Fig. 5 correspond to a microparti-
cle material characterized by a relatively low work
function (W ≈ 3 to 4 eV). In this case, even if the micro-
particle concentration is low (nd ~ 10–100 cm–3), the
present model predicts an increase in electron concen-
tration and a decrease in ion concentration, due to
higher recombination losses.

Note that the mesospheric plasma exhibits a more
diverse behavior when photoelectric emission plays a
significant role. Depending on the microparticle size and
concentration, virtually any effect due to the presence of
microparticles in the mesosphere (see Section 2) can be
observed.

Figure 6 shows the evolution of electron concentra-
tion in the mesosphere associated with sedimentation
and growth of dust grains. The plotted solution to
Eqs. (2)–(7) illustrates the self-consistent behavior of
the electron plasma component under summer condi-
tions in the polar mesosphere (correlated with dust-
grain growth and solar radiation flux). It is clearly dem-
onstrated that the microparticle layer begins to substan-
tially modify the state of the ionospheric plasma only
after several hours have passed, i.e., when the grain size
has substantially increased. The formation of such a
layer is characterized by a time scale of about 24 hours.
This explains the experimental fact that neither NLC
nor PMSE can be observed permanently (while the
water vapor contained in the mesosphere is super-

cooled). Indeed, if the characteristic time 
required for nanometer-sized particles to fill the meso-
sphere is long as compared to the time of dust-layer for-
mation (about 24 h in the case considered here), then
the frequency of appearance of mesospheric dust

clouds (NLC and PMSE) is controlled only by .
According to observations of noctilucent clouds, this
time scale substantially exceeds the characteristic time
of dust-layer formation.

5. CONCLUSIONS

We have developed a theoretical model that pro-
vides a self-consistent description of spatiotemporal
variations of the plasma composition in the polar meso-
sphere under summer conditions and formation of noc-
tilucent clouds and polar mesospheric summer echoes.
The model describes sedimentation of dust grains in the
middle atmosphere, their growth in a supersaturated
water vapor, and microparticle charging processes,
allowing for variations of the ion-subsystem composi-
tion in the polar mesosphere and photoelectric emis-
sion. The model can be used to predict the five trends
associated with NLC and PMSE enumerated above:
considerable increase or decrease in the electron con-
centration observed at altitudes between 80 and 85 km,
with or without significant change in the concentration

τprofile
dust

τprofile
dust
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or composition of the positive-ion subsystem. The
model provides a unified explanation of these trends
and of the presence of both positively and negatively
charged particles in the upper atmosphere discovered
by means of sounding rocket flights, as well as of the
experimental fact that neither NLC nor PMSE can be
observed permanently.
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Abstract—A detailed independent derivation of the equation of state of a weakly nonideal hydrogen plasma is
presented. The impetus for this work was the demand for high accuracy of the equation of state of the solar
plasma in relation to the problems of modern helioseismology, accuracy sufficient for reproducing the velocity
of sound on the Sun from optical measurement results with errors not exceeding 10–4. The existing equations
for the second virial coefficient in the expansion of the Helmholtz thermodynamic potential for a system of
electrons and protons in powers of the activities of these particles involve certain procedures for the removal
of the arising divergences that provoke questions and require independent verification. The suggested equation
of state is used to qualitatively estimate the accuracy of various physical and chemical models. The speed of
sound and adiabatic exponent calculated along the solar trajectory are presented for a model hydrogen plasma.
The calculations were performed with the inclusion of relativistic corrections, electron degeneracy effects,
radiation pressure in the plasma, Coulomb interaction in the Debye–Hückel approximation with diffraction
and exchange corrections, and converging contributions of bound and scattering states. © 2005 Pleiades Pub-
lishing, Inc. 
1. INTRODUCTION

Helioseismology opens up the unique possibility of
very accurately checking the equation of state of a
weakly nonideal plasma. It enables us to reproduce the
local velocity of sound on the Sun with an accuracy
higher than 10–4 from optical measurement results [1–3].
A comparison of various theoretical models with exper-
iment can be used to check the existing methods for
including the contributions of bound states and
continuum represented within the framework of a phys-
ical model in the equations for the second virial coeffi-
cient [4–6].

It is commonly accepted, at least in the physical lit-
erature, that, starting with works [7–12] (these results
can also be found in monographs [13, 14], which con-
tain a comprehensive bibliography), the problem of the
form of the equation of state of weakly nonideal hydro-
gen has been solved in principle, with an accuracy of

, where

is the Debye nonideality parameter (e is the charge of
the electron, κD is the inverse Debye radius, and T is the
temperature of the plasma in energy units). It is, in par-
ticular, assumed that the contribution of bound states
(atomic partition functions) to the pressure of a plasma
is given by the converging Planck–Brillouin–Larkin or,
simply, Planck–Larkin (P–L) equation [6, 8–14].

ΓD
2

ΓD e2κD/T=
1063-7761/05/10001- $26.000165
At the same time, the atomic partition function is
given in the astrophysical literature in the form sug-
gested in [4], and the Planck–Larkin equation is open to
criticism [15], because convergence in this equation
arises starting with states with the principal quantum
numbers

where

is the ionization potential of the hydrogen atom. Here,

is the reduced mass (me and mp are the masses of the
electron and proton, respectively) and " is the Planck
constant. However in reality, radiation from the solar
photosphere contains Balmer series contributions with
n ≈ 17 > 6 * nmax [16] at T ≈ 5800 K. Irrespective of
theoretical justification of various equations for the
contribution of bound states to the equation of state for
a hydrogen plasma in the innards of the Sun, helioseis-
mology enables us to select those that better correspond
to experiment. It turned out that the theory that uses the

n & nmax Ry/T ,∼

Ry
µe4

2"
2

-------- 13.598 eV≈=

µ
memp

me mp+
-------------------=
 © 2005 Pleiades Publishing, Inc.
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Planck–Larkin equation is closer to experiment [6] than
that described in [4], where the contribution of excited
states is limited by ionization under the action of
plasma microfields (the Unsöld mechanisms [17]).

The contribution of bound states was described
in [18] by an equation different from the Planck–Larkin
formula. More recently, this equation was substantiated
in [19, 20]. In this work, attention is focused on the
internally contradictory method for obtaining converg-
ing equations for the second virial coefficient that can
be found in the literature (e.g., see [13, 14]) and that are
based on Beth–Uhlenbeck-type equations [21], the
Levinson theorem [22], and the methods for regulariz-
ing diverging equations [8, 10–12], whose applicability
to long-range Coulomb interaction is not obvious.

Not infrequently, finite results are obtained in theo-
retical physics from initially inapplicable diverging
equations, but, in certain instances (including the deri-
vation of the equation of state of a weakly nonideal
plasma), recipes used for this purpose contain elements
of a certain mysticism and, if used uncritically, can lead
to errors and contradictions to experiment.

The divergence of the atomic “partition function” Σ,
including the summation over discrete and scattering
states, is “removed” in [8] by subtracting contributions
with one and two wavy lines that correspond to interac-
tion in first-order (this contribution disappears because
of electroneutrality) and second-order perturbation the-
ory (this contribution has already been taken into
account in the summation of a series of ring diagrams
that yield a finite expression for Coulomb interaction in
the Debye–Hückel approximation). The result given
in [8] corresponds to regularization of the type

(1)

where I is the ionization potential of the hydrogen atom
I = Ry,

(2)

(3)

This regularization method for calculating the second
virial coefficient was extended in [10] even to the sub-
traction of contributions up to the third-order derivative
with respect to e2 in the Taylor expansion of the integral
in wavevectors that characterize scattering states in the
Beth–Uhlenbeck equation.

In [11–13], the removal of diverging terms from the
second virial coefficient was related to Debye screening
in a plasma, which allowed the authors to apply the
Beth–Uhlenbeck equation and the Levinson theorem.

ΣP–L Σreg I( )≡ Σ I( ) Σ 0( )– I
∂Σ
∂I
------ 

 
0

,–=

Σ I( ) n2 I

n2T
--------- 

  ,exp
n 1=

∞

∑=

ΣP–L n2 I

n2T
--------- 

 exp 1– I

n2T
---------– 

  .
n 1=

∞

∑=
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We show in what follows that the divergences that
arise when we calculate the contribution of bound
states are only removed by a fragment of the diagram
with one wavy line that corresponds to the inclusion of
discrete states in the theorem of completeness of Cou-
lomb wavefunctions that describe the relative motion of
the electron–proton system. The inclusion of contin-
uum states with the use of the theorem of completeness
of Coulomb functions for this diagram together with
the subtraction of the contribution of two crosspieces
(already taken into account in obtaining the Debye–
Hückel equation) removes divergences in the equation
for the contribution of scattering states to the second
virial coefficient.

The resulting converging equation for the atomic
partition function is different from the Planck–Larkin
equation. We also calculated the finite contribution of
scattering states from all pair interactions to the second
virial coefficient. These calculations required the
search for correct methods for handling the squares of
the wavefunctions of the continuous spectrum contain-
ing δ functions in the momentum representation. The
equations for attractive states in the second virial
coefficients were generalized to degenerate electrons,
which appears to be important in view of astrophysical
applications, for instance, for helioseismology, because
the solar plasma is weakly nonideal, and the expansion
of the equation of state up to the second virial coeffi-
cient taking into account electron degeneracy is quite
justified.

Interestingly, the contribution of attractive states to
the second virial coefficient summed over discrete and
continuum states coincides with the equation given
in [13] to within certain corrections in the logarithmic
term. We will show that self-consistent calculations of
the contributions of discrete and continuous spectra
admit the use of the Planck–Larkin equation together
with the properly determined contribution of scattering
states. The problem of “correctly” taking into account
the regularized atomic partition function arises within
the framework of the chemical model, in which atoms
(molecules) are declared “good” quasi-particles (found
from calculations or experiment), whereas the contribu-
tions of interaction in the continuous spectrum are
ignored in calculating the equation of state.

This approximation often becomes inevitable
because of the complexity of describing an equilibrium
multicomponent plasma, when the inclusion of scatter-
ing states requires a description of many-particle inter-
action (starting with HeI, for which we must solve the
quantum scattering problem for three bodies, etc.).

We compare the complete physical model with
chemical models that use various methods for regular-
izing the atomic partition function. For a weakly ion-
ized plasma, the difference between these methods is
inessential (if I/T @ 1). For a hot plasma, such as the
plasma close to the center of the Sun (I/T ! 1), taking
into account the discrete spectrum only, ignoring the
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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contribution of scattering states, leads to superfluous
accuracy.

This work is organized as follows. In Section 2, we
analyze the perturbation theory series and formulate a
consistent method for taking into account plasma neu-
trality in the expansion in powers of activity. This is
already necessary in calculations of exchange coupling
contributions and the Debye–Hückel approximation
with corrections for diffraction and the screening of
“dressed” particles.

Section 3 analyzes the contribution of ladder dia-
grams to the equation for the second virial coefficient
and formulates the regularization rules for the integra-
tion of expressions containing the squares of wavefunc-
tions in the momentum space (p-space).

In Section 4, we describe calculations of the contri-
bution of bound states with the use of the exact Fock
equations for the Coulomb wavefunctions of the dis-
crete spectrum in the p-space. The results are compared
with those obtained using the Planck–Larkin equation.

Section 5 contains calculations of the contribution
to the second virial coefficient of scattering states that
arise in interactions in repulsive and attractive fields.
The results are compared with those reported in [13].

Section 6 contains the general equation of state of a
weakly nonideal hydrogen plasma on the Sun (where
we must, of course, take into account a large number of
chemical elements). In the central region with the
plasma parameters T ~ 1 keV and ρ ~ 150 g/cm3, we
must also take into account the pressure of radiation in
the medium. The corresponding equations are given.

In Section 7, we present the results of numerical cal-
culations of the speed of sound and adiabatic compress-
ibility performed for a hydrogen plasma along the solar
trajectory within the framework of the so-called
S-model [1].

2. THERMODYNAMIC
PERTURBATION THEORY

The thermodynamic functions of a weakly nonideal
hydrogen plasma can be calculated using the Matsub-
ara technique [23, 24] or the Kadanoff–Baym–Keldysh
formalism of nonequilibrium Green functions [25–27].
We will use the second method in several instances
because it admits generalization to the nonequilibrium
case and allows state broadening effects on the thermo-
dynamic functions of a plasma to be included; these
effects are responsible for the observation of discrete
spectra.

Following [25], we calculate corrections to pressure
P0 of an ideal gas comprising noninteracting protons
and electrons [28] to determine plasma pressure P,

(4)

where PH is the Hartree correction, Pexch is the exchange
correction for electron–electron interaction, and PD–H is

P P0 PH Pexch PD–H δP,+ + + +=
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the correction of the Debye–Hückel approximation
(these terms are discussed in the present section). For
higher order corrections δP that include the contribu-
tion of ladder diagrams, see Section 3.

We assume that the protons are nondegenerate.
Their ideal-gas concentration (called activity, ζp) is
related to the chemical potential µp and temperature
(β = T–1) in a grand canonical ensemble as

(5)

where

is the thermal de Broglie wavelength. The pressure of
the ideal gas of the protons is

(6)

The electrons can be degenerate (for instance, in the

center of the Sun, ne  ≈ 0.6), and their activity ζe will
therefore be written [28] in terms of the ideal-gas con-

centration  (valid in the general case of degenerate
particles):

(7)

Accordingly, the pressure of an ideal gas of degen-
erate electrons is given by [28]

(8)

In this approximation, the electroneutrality condition is
written as

(9)

The Hartree correction to the ideal-gas approximation

ζ p 2Âp
3– βµp( ),exp=

Âp
2π"
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mpT
------------=

P0 p Tζ p.=

Âe
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(see Fig. 1a) has the form [7, 13, 28]

(10)

for the Helmholtz thermodynamic potential Ω = –PV

δΩH

V
---------- Ṽ 0( ) ζ e ζ p–( )2=

(a)

(b)

(c)

(d) (e)

(f)

a
Vab(0)
~

b

c
Σ

a

a

a

+ + …+ +

b

a

b

…

… …

…

a

a

…

… …

Fig. 1. Feynman diagrams in the Matsubara technique [23, 24]
(solid lines are the Green function and wavy lines are the
Fourier components of the interaction potential): (a) Hartree
correction, see (10) and (109); (b) Hartree–Fock approxi-
mation (exchange interaction), Eq. (15); (c) Debye–Hückel
approximation, Eqs. (16) and (43); (d) ladder diagram,
Eqs. (58), (59), and (87); (e) ladder diagram (exchange
interaction), Eqs. (79), (166), (167), and (170); and (f) dia-
gram describing medium effects (taking into account
energy corrections proper, Σc) on Debye–Hückel screening,
Eq. (57).
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(V is the volume of the system). Here,  is the Fou-
rier transform of the Coulomb interaction potential at
zero momentum transfer. The regularization of the
integral

(11)

with the use of exp(–κr), where κ  0 is the regular-
ization parameter, yields

(12)

This regularization of the Fourier component of the
potential reduces (10) to zero because of electroneutral-
ity condition (9). In the general case of a multicompo-
nent plasma, condition (9) becomes

(13)

(zk is the charge of a particle of kind k in e units), and
the generalization of (10) is obvious,

(14)

In the next, Hartree–Fock, approximation (see Fig. 1b),
we obtain the well-known [25, 28, 29] finite solution
for the exchange correction caused by electron–elec-
tron interaction. For instance, for nondegenerate elec-
trons in the first Born approximation, we have [28]

(15)

Here, ζe should be calculated using the nondegenerate
limit [exp(–y) @ 1] in (7),

We give a more general equation containing the sum
over the entire Born series in Section 5.

The ring diagrams [30, 31] that follow next along
the interaction potential (see Fig. 1c) yield the Debye–
Hückel contribution (e.g., see [7–14, 24])

(16)

Ṽ 0( )

Ṽ q( )
e2

r
---- iq r⋅ κr–( )exp rd∫κ 0→
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4πe2

q2 κ2+
----------------,= =
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Here, κD is the inverse Debye radius [24, 32],

(17)

Equation (17) was rigorously derived by Fradkin [32],
who showed that the right-hand side of (17) contains
derivatives of physical concentrations nk with respect to
chemical potentials. In perturbation theory, the activi-

ties can be approximated as  = ζk .

Recall that physical concentrations are related to
chemical potentials as [28]

(18)

The physical concentrations obey the traditional elec-
troneutrality relation

(19)

Attempts at relating the physical concentrations to
activities according to (18) can give the following
result: if plasma asymmetry, for instance, caused by
electron exchange, is taken into account, the obtained
ζk values do not satisfy the electroneutrality condition
for activities [Eq. (9) or (13)], which leads to unbal-
anced divergence of Hartree contribution (10) to the
thermodynamic potential. This divergence was

removed in [7] in assuming that  = 0.

Let us consider the simplest model of a nondegener-
ate plasma in which the exchange contribution δΩexch is
ignored compared with the Debye–Hückel correction.
This presupposes smallness of the parameter

In this model,

(20)

Using activities instead of concentrations nk in (17), we
obtain from (18)

(21)

(22)
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If zk ≠ 1, Eqs. (21) and (22) with

yield

(23)

That is, even within the framework of this simplest
model, condition (13) is violated. For a singly charged
hydrogen plasma, ζe = ζp in this model, but this equality
does not hold if exchange is taken into account. The
technique that we use to correlate conditions (13)
and (19), which is necessary for removing the diver-
gence of Hartree term (14) as κ  0, is as follows.
Because we assume that conditions (13) and (19)
should be satisfied simultaneously to prevent the diver-
gence of the Hartree term, the concentrations should be
determined according to (18) with differentiating the
thermodynamic potential with respect to chemical
potentials taking into account constraints imposed
by (13). The ne and ζe values are found from (19) and
(13), respectively,

(24)

The differentiation and summation in (24) are only over
the activities of the ions, and ζe in Ω is replaced by (13).
For the model described by (20), Eq. (24) yields

(25)

It follows from (25) that [cf. (21)]

(26)

Using electroneutrality conditions (19) and (13) for
physical concentrations and activities, respectively, and
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taking into account (26), we easily obtain

(27)

It follows from (27) that

(28)

That is, as distinct from (23), where independent
definition (18) is used for the ions and electrons, defini-
tion (24) leads to correlated fulfillment of electroneu-
trality conditions (13) and (19) and removes the diver-
gence of the Hartree term. To determine ζk explicitly
through the physical concentrations nk, we use the def-
inition of the inverse Debye radius (17),

(29)

Here, the summation is over the kinds of ions. Multi-
plying (29) by (e2/T)2 yields the equation for

in terms of the physical concentrations nk ,

(30)

After determining ΓD(nk) by (30), we can find the activ-
ities ζk and ζe by (26) and (28).

In the standard Debye–Hückel theory for the grand
canonical ensemble [33, 34] with nk and ne given
by (18) and (19), (30) is usually replaced by

(31)

Here, the summation is over the ions and electrons.
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Solutions to (30) and (31) can be compared in the
limit

(Strictly, the condition of the applicability of the
Debye–Hückel approximation also requires that the
inequality (ΓD/2)zm ! 1 be satisfied.) It then follows
from (30) that

(32)

Index “N” means that the “new” equation [Eq. (30)] is
used. On the other hand, (31) yields

(33)

(index “O” stands for old). The extrapolation to ΓD @ 1,
which is, of course, unjustified, yields

(34)

according to both (30) and (31). If ΓD  ! 1, (30)
and (31) yield

Note that relations (21), (22), and (26–28) between
concentrations and activities give the same equation of
state for model (20),

(35)

If the condition of electroneutrality for activities
[Eq. (13)] is ignored, Eqs. (21) and (22) yield

(36)

in the limit ΓD ! 1. Here, the summation is only over
the ions and electroneutrality condition (19) is used.
However, using condition (13) and solutions (26)
and (28) in (35) yields the equation of state exactly in
form (36). Relation (13) for solutions (26) and (28)
means that

(37)
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The symbol “∆” denotes the correction to the ideal-gas

approximation ,

[see [28]; for instance,  = Tln(ne /2)]. It follows
from (26) that

(38)

Using (38) in (37), we obtain

(39)

In the standard Debye–Hückel theory for the canonical
ensemble (see [28]), we have

(40)

[compare (40) with solution (21)]. By analogy with (22),
we find that

(41)

for the electrons. Relation (37) does not hold for solu-
tions (40) and (41).

If the relation between concentrations [Eq. (19)] is
taken into account, the relation between the chemical
potentials and free energy F takes the form [cf. (24)]

(42)

This equation is satisfied in the Debye–Hückel theory
for both solutions (38), (39) and (40), (41).

In the region of the applicability of the theory

( ΓD ! 1), the equation of state (36) is insensitive to
the selection of a solution to (24), but the selection in
favor of condition (13) follows from the requirement of
the absence of the divergence of (14) and other (higher
order) terms of thermodynamic perturbation theory,
such as the contribution of ladder diagrams in the
expansion of Ω in powers of activity, whose finiteness
is, in particular, provided by the vanishing of (14) (see
Sections 3–5).

The Debye–Hückel approximation represented by
the contribution of ring diagrams in the static limit [24]
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(see Fig. 1c) contains several corrections that can be
obtained using the technique described in [25, 26] (par-
ticle spins are set equal to 1/2 for simplicity),

(43)

where the integration in the λ parameter corresponds to
the integration in charge e2 ° e2λ; P is the total
momentum of particles i and j; q and k are the wavevec-
tors of the relative motion of the center of mass before
and after interaction, respectively; ni(q) stands for the
occupation numbers of the particles of kind i; mi and zi

are the mass and charge (in elementary units) of a par-
ticle of kind i; M = mi + mj is the total mass;

is the reduced mass of particles i and j; and

This equation is for the general case that admits the
inclusion of degeneracy and nonstatic corrections. Tak-
ing into account the contribution of two crosspieces to
the sum of ring diagrams, which should be subtracted
from the ladder diagrams (see Figs. 1d, 1e) that
describe the interaction of a pair of particles in the con-
tinuum, corresponds to the replacement of 4πe2λΠR

in (43) in the denominator of the last multiplier by the
regularization parameter κ2 [cf. (11), (12)]. Here, ΠR is
the retarded polarization operator [24–27] determined
by the sum of the contributions of all the particles that
participate in the screening of Coulomb interaction.

The static approximation implies the validity of the
condition

Here, εFi is the Fermi energy of the particles of kind i
and ωpi is their plasma frequency [24, 28].
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For instance, in the nondegenerate case (ni ! 1), it
follows from (43) that

(44)

Here,

The replacement of the multiplier

with

(with respect to the T @ "κ  parameter, where  ~

 is the thermal velocity of relative motion)
yields the approximation

(45)

Here,

is the square of the inverse Debye radius,

In the nondegenerate case,

Usually, the approximation is used in which ΠR(q)
is replaced by ΠR(0). Equations (45) and (17) then
yield (16).
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We must clarify this point. In (45), ΠR(q) should
be expanded up to the second derivative with respect
to q [35],

(46)

Let us introduce the value

For this value, we obtain [20, 35]

(47)

Here,  is the ideal gas concentration and  is the
averaging of the kinetic energy over occupation num-
bers for the particles of kind i,

(48)

The Debye–Hückel correction then takes the form [20]

(49)

Here,

(50)

Estimates for a hydrogen plasma give

for the nondegenerate case (ρ is the density of matter
in g/cm3 and T is the temperature in eV). In the center
of the Sun, f(a) differs from 1 in the third decimal place,
which, together with the smallness of the Debye–
Hückel correction (~10–2) compared with the ideal gas
approximation, allows us to use approximation (16) in
helioseismology problems [f(a) = 1].
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For the “true” radius of screening of charge fluctua-
tions Γscr = κ–1, (46) yields

(51)

It follows from the estimates of Π''(0) given above that,
at the plasma temperature T ~ 1 eV, the condition

is fulfilled at ne ≈ 3 × 1021 cm–3. However, under these
conditions, the nonideality parameter

and Eq. (47) for Π''(0) must be refined. A charge den-
sity wave is formed and Debye screening disappears in
the region where κ2 < 0. The parameter with respect to
which we must take into account corrections on the
order of a corresponds to the value (ÂeκD)2, which is not
too small in the center of the Sun [the closeness of f(a)
to one is determined by the smallness of the coefficient
of this parameter]. The ratio between the thermal de
Broglie wavelength of the electron and the Debye
radius characterizes quantum effects in Debye screen-
ing, and the corresponding corrections to (16) and (49)
[at f(a) = 1] are known as diffraction corrections [12].
They can easily be found from (44) in the approxima-
tion

taking into account exponential multipliers and energy
denominators present in (44). In the nondegenerate
case in the first approximation with respect to the Âκ
parameter, (44) yields (see [12])

(52)

Here,

Note also one more class of corrections to the
Debye–Hückel approximation for the first time
obtained in [8] (also see [9, 12]). Physically, these cor-
rections arise because particles interacting with the
medium (“dressed” particles, see Fig. 1f) participate in
screening. Formally, this corresponds to the inclusion
of energetic corrections proper to the Green functions
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present in polarization loops. The corrections calcu-
lated in [32] and [25, 27] are on the order of Â2. Classi-
cal corrections arise when we take into account the

energy diagram proper  [25, 26],

For particles of kind i,

(53)

where

and q = (q, q4) is the four vector.

Calculations of operators of the type Π–– taking into
account relations of the type

and the summation in calculating ΠR(0) over all particle
kinds give

(54)

in the nondegenerate case (cf. [14]). Here,

Using the obtained classical equation for the mass oper-
ator, we find the correction to the kinetic Green func-
tion in the form [27]

(55)
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In (55),

are the occupation numbers of the fermions. Using (54)
in correction (43) and Eqs. (55) and (56), we obtain the
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classical correction to the Debye–Hückel term (the
index “cl” means that this result is classical in nature)

(57)

In (57), the summation is over all particle kinds. The
coefficient π/2 was used in [8] instead of π/3. The same
value is also found in [9]. In [13], this term is written
with either π/3 or π/2 in different places. Our indepen-
dent examination shows that the correct coefficient value
is π/3. Note that this correction is small compared with
the “large” logarithmic term discussed in Section 5.

3. THE LADDER APPROXIMATION
IN SECOND VIRIAL COEFFICIENT 

CALCULATIONS

Let us consider the contribution of the δP value
present in (4), see Fig. 1d. In the Matsubara technique
[23, 24], δΩ/V = –δP is given by (the integration in λ
implies the e2 ° e2λ replacement)

(58)

Here, the summation is over the frequencies ω (or p4);
for fermions, ω = πT(2n + 1); the index “L” stands for
ladder; Gi(p, ω) is the Green function of a particle of
kind i with momentum p and frequency ω in the Mat-
subara technique [24]; and the energy part proper
Σi(p, ω) can be written via the two-particle vertex Γij

found in the ladder approximation [29],

(59)

For instance, for electron–proton interaction, mi = me ,
mj = mp , p = (p, p4) ≡ (p, ω) is the 4-momentum of the
electron, and k = (k, k4) is the 4-momentum of the pro-
ton. The value Γij(q, q'; P) [q and q' are the relative
4-momenta before and after the reaction, respectively,
and P = p + k = (P, P4) is the total 4-momentum] can
be written in the ladder approximation for small occu-
pation numbers (n ! 1) in the form [7, 29]
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Here, M = mi + mj; µ = mimj/M; µi and µj are the chem-
ical potentials; En is the binding energy of the state with
the principal quantum number n; the summation over
n is generally over both discrete states with quantum
numbers {n} = (n, l, m), which are characterized by the

wavefunctions  of the relative motion of particles
i and j (bound electron states in the field of protons),
and continuous spectrum states; a tilde over a wave-
function denotes its Fourier component in the momen-
tum space; and P4 = 2πnT is the fourth component of
the total momentum. For the scattering states that cor-
respond to the continuum, the sum over discrete states
{n} is replaced by the integration in momenta k that
characterize the wavefunction at infinity (this is a plane
wave in a short-range action field). Using the
Schrödinger equation in the momentum representation
and the completeness theorem for the wavefunctions

(  is the Coulomb interaction potential in the
momentum representation),

(61)

we can transform the scattering amplitude to

(62)

Using (58) and (59), let us write δΩ as

(63)

The summation over the frequencies q4 and P4 and the
integration in dP in (63) and (60) yield
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in the nondegenerate case (cf. [20]; we also use (62) for
Γij in what follows). Here, ζi stands for activities
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Γ ij q q'; P,( ) Ṽ ij q q'–( ) (2π)3+=

×
Ψ̃n q( )Ψ̃n* q'( ) En

"
2q2

2µ
----------– 

  En
"

2q'2

2µ
------------– 

 

iP4
"

2P2

2M
-----------– En– µi µ j+ +

-----------------------------------------------------------------------------------------.
n

∑

δΩ
V

-------
4

2π( )6β2
------------------- λd

2λ
------ q Pdd∫

0

1

∫
q4 P4,
∑

i j,
∑=

× Gi

mi

M
-----P q+ 

  G j

m j

M
------P q– 

  Γ ij q q'; P,( ).

δΩL

V
---------- ζ iζ jÂij

3 λd
2λ
------ qd

2π( )3
-------------∫

0

1

∫
i j,
∑=

× βEn–( ) En
"

2q2

2µ
----------– 

  Ψ̃n q( )
2

exp
n

∑

ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005



A CONVERGING EQUATION OF STATE OF A WEAKLY NONIDEAL HYDROGEN PLASMA 175
[cf. (5)] and Âij = . For an interacting proton
and electron, we have En = –Ry/n2 in the discrete case
and Ek = "2k2/2µ in the continuum. For two particles i
and j with the short-range interaction potential V =
λV0(r), the Beth–Uhlenbeck equation [21, 28] can be
obtained from (64).

Let us use the relation that follows from the
Schrödinger equation,

(65)

By virtue of the well-known quantum-mechanical the-
orem [36] and taking into account that

(66)

where  is the Hamiltonian of the relative motion of
particles i and j, we have

(67)

for bound states. Taking into account (65)–(67) and
using (64), we obtain the contribution of discrete spec-
trum states in the form

(68)

(the index “b” denotes bound states). After the summa-
tion over l and m and the substitution En = –Ry/n2, (68)
diverges as

where ζ(s) is the Riemann ζ-function,

(69)

Equation (64) can also be used to obtain an explicit
equation for the contribution of scattering states of par-
ticles i and j in a short-range potential.

2π"
2/µT

En εq–( ) Ψ̃n q( )
2 qd

2π( )3
-------------∫

=  V r( ) Ψn r( ) 2 r.d∫

V r( )
λ

---------- ∂V
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-------

∂*̂
∂λ
--------,= =

*̂

∂En
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∂λ
-------- n=

δΩij
b

V
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3 T βEn–( )exp 1–( )
n{ }
∑–=

1( )
n

∑ ζ 0( ),∼

ζ s( ) n s– .
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∞

∑=
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The Schrödinger equation for the complex-conju-
gate wavefunction ,

, (70)

can be differentiated with respect to λ to obtain the
equation conjugate to (70),

(71)

Let us multiply (70) by ∂Ψk/∂λ and (71) by , sub-
tract the latter result from the former, and integrate the
difference over volume. This yields

(72)

The right-hand side of (72) in a short-range potential
can be transformed into an integral over the surface
using the asymptotic behavior of the wavefunction
(r  ∞)

(73)

Here,

and fk is the scattering amplitude.

Representation (73) is inapplicable to the Coulomb
potential because of plane wave distortions at arbi-
trarily large distances. If the scattering amplitude is
written through the scattering phases δl [36], (72) and
(73) allow us to obtain

(74)

Combining (68) and (74) yields

(75)

The Levinson theorem that relates the finite num-
ber of bound states nl to momentum l via scattering
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"
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phases [22],

(76)

is valid in a short-range potential. We can use (76) to
transform (75) to the Beth–Uhlenbeck equation [21, 28].

Unfortunately, Eqs. (68), (75), and (76) diverge in
the Coulomb case, and the use of the Beth–Uhlenbeck
equation as a point of departure [10–13] therefore rests
on an insecure (mystic) foundation.

Note that (64) can be generalized to include
exchange of identical particles [29] (see Fig. 1e). Only
a continuous spectrum exists in the repulsive field of
identical particles, and the square of the modulus of the

wavefunction  should be replaced as

(77)

The second term in (77) gives an additional exchange
contribution, which can be represented in the r-space
using the identity

(78)

Accordingly, repeating the derivation of (75), we can
use (78) to obtain a generalization of the Beth–Uhlen-
beck equation to the case of identical particles (e.g.,
electrons),

(79)

We must, for scattering states, specify the meaning of
the square of the modulus of a wavefunction in the
p-representation. Indeed, the short-range potential
Ψk(q) contains the three-dimensional δ-function
δ(k − q) because of the presence of a plane wave in the
boundary condition.

Let us consider the right-hand side of (65) (this
value will be denoted by J) and use the integral repre-
sentation of the wavefunction [36]

(80)

nl
1
π
--- δl 0( ) δl ∞( )–[ ] ,=

Ψ̃n q( )
2

Ψ̃k q( )
2 Ψ̃k* q( ) Ψk q( )

1
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-------------∫
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2
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JOURNAL OF EXPERIMENTAL A
Here, G0(r, r') is the Green function that describes the
free particle,

(81)

Using the definition of the scattering amplitude outside
the mass surface

(82)

(here, |p| ≠ |k| in the general case) and Eqs. (80)
and (81), we obtain the right-hand side of (65) in the
form

(83)

Applying the optical theorem [36], we can write the
term in square brackets also in the form

(84)

The symbol P means that the integral is calculated in
the sense of its principal value.

Equations (80)–(82) also give  in the form

(85)

Using (85) in (65) and taking into account that

let us consider the left-hand side of (65). We obtain

(86)
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that is, the method for associative multiplication of
wavefunctions in the p-space specified above brings (86)
in coincidence with (84).

However, if we first multiply  by Ψk(q) tak-
ing into account (85), we encounter problems with the
determination of the square of the three-dimensional
δ-function. Even if [δ(k – q)]2(q2 – k2) is assumed to be
zero, which is generally not obvious (but inevitable,
because otherwise, the left-hand side of the identity
remains finite while the right-hand side vanishes as the
charge tends to zero), there appears the double product
of the δ-function and the second term in (85), which
entails the appearance of the superfluous factor 2 in the
f(k, k) term in (86) and the violation of identity (65).

Equations of type (80) become invalid in the Cou-
lomb field and, as has been mentioned, the representa-
tion of the scattering amplitude in form (60), which
leads to (64), is accompanied by divergences.

If we use representation (62) for Γij(q, q; P) present
in (63) to determine the contribution of ladder dia-
grams, it becomes clear that the contribution of

 ~ e2/κ2 [see (11), (12)] vanishes because of neu-
trality relation (13) for activities. After the summation
over q4 and P4 in (63) with the use of the contribution
of the second term of (62), we obtain (see Fig. 1d)

(87)

Here, for the e–p interaction, we must sum over the dis-
crete spectrum (over bound states) and integrate over
scattering states characterized by the index k. For e–e
and p–p interactions, only integration makes sense.

We show in Sections 4 and 5 that (87) yields finite
solutions for the contributions of both bound and scat-
tering states after the subtraction of the contribution of
two crosspieces [~e4β/κ, where κ  0 is the regular-
ization parameter, cf. (11), (12)] already taken into
account in the summation of ring diagrams. In a hydro-
gen plasma, the total contribution of the logarithmic
term proportional to (e2/T)3ln(mp/me), which does not
require being cut off at the Debye radius, is also finite.

4. THE CONVERGING CONTRIBUTION
OF BOUND STATES 

TO THE SECOND VIRIAL COEFFICIENT

The contribution of bound states to the second virial
coefficient can be calculated using the exact result
obtained by Fock [37] for the wavefunctions of the non-
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relativistic hydrogen atom in the momentum represen-
tation,

(88)

Here, pn = (a0n)–1 and a0 = "2/µe2λ is the Bohr radius
corresponding to the current charge e2λ. As

the part of (87) that corresponds to bound states can,
taking into account (88), be written as

(89)

Here, X = βRy. We find from (89) that

(90)

(91)

After transformations, the explicit equation for
cn(X) takes the form

(92)

After the differentiation with respect to z, we must set
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1

2π( )3
------------- Ψ̃n l m, , q( )

2

l m,
∑ 8

π2a0
5n3 q2 pn

2+( )4
----------------------------------------.=

En

"
2 pn

2

2µ
-----------,–≡

δΩBS

V
------------ 4ζ eζ p

µ4
Âep

3 e10

π2
"

8
-------------------- 1

n3
-----

n 1=

∞

∑–=

× λλ 4 λ2X

n2
--------- 

  qd

q2 pn
2+( )3

-----------------------∫expd

0

1

∫

–
qd

q2 pn
2+( )3

----------------------- β"
2q2

2µ
----------– 

 exp∫ .

qd

q2 pn
2+( )3

-----------------------∫ π2

4 pn
3

--------,=

qd

q2 pn
2+( )3

----------------------- β"
2q2

2µ
----------– 

 exp∫ cn X( ),=

β"
2q2

2µ
---------- λ ep

2 q2, λ ep
"

2µT
--------------.= =

cn X( ) 4π q2 qd

q2 pn
2+( )3

----------------------- q2λ ep
2–( )exp

0

∞

∫=

=  4π
z∂

∂ qd

q2 z+
------------- q2λ ep

2–( )exp

0

∞

∫–

– 4πz
2
---

z2

2

∂
∂ qd

q2 z+
------------- q2λ ep

2–( ).exp

0

∞

∫

pn
2

SICS      Vol. 100      No. 1      2005



178 STAROSTIN, ROERICH
Consider the integral [38]

(93)

Here, the incomplete gamma function Γ  is

defined as follows:

(94)

(95)

Using (93) and (94) and performing the differentiation
in (92), we obtain

(96)

In the limit of X/n2 ! 1, (96) transforms into

(97)

It is easy to see that the contribution of the first term
in (89) given by (90) and the first term of expansion (97)
cancel each other out at n @ 1.

Using (89), (90), (91), and (96), we obtain

(98)
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after the integration in λ. Here, Fn(β) has the form

(99)

Asymptotically, at n @ 1, (99) yields

(100)

This is four times larger than according to the Planck–
Larkin equation,

(101)

Expansion (97) can be used to write (89) in the form

(102)

Here, one that corresponds to the first term of expan-
sion (97) is subtracted from the exponential function.
The integration of (102) in λ yields

(103)

We see that the first three terms under the sum sign
in (103) correspond to the Planck–Larkin equation. The
remainder of the expansion of the exponential function
[see (99)] X2/2n4 plus the fourth term of sum (103)
gives asymptotics (100).

Let us write the contribution of the bound states in
the form
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Using the expansion in X, we obtain for (99)

(105)

At the same time, it follows from the Planck–Larkin
equation that

(106)

Let us introduce the notation

(107)

for the difference between  (106) and  (105).
This difference is given by

(108)

We show in Section 5, where the contribution of scat-
tering states is considered, that (105) together with (87)
calculated properly for the continuous spectrum coin-
cides with the Σtot value for the total e–p interaction
given in [13].

Using the completeness theorem for the functions
including the discrete and continuous spectra, the sub-
trahend in (87) can, for instance, for e–p interaction, be
written as (see Fig. 1a)
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that is, this subtrahend in (87) exactly balances the first
term in representation (62) for Γep(q, q'; P), which, by
virtue of neutrality condition (13) for activities, van-
ishes after the summation over all pair interactions. It
follows that the finite partition function (98), (99)
obtained above corresponds to taking into account the
summation over bound states only in counterterm (109).
The integral over scattering states in (87) also becomes
finite, but only after the subtraction of the contribution
of the ladder section with two crosspieces included in
the summation of the contribution of ring diagrams.

Consider a generalization of (89)-, (102)-type equa-
tions for the contribution of degenerate electrons to
δΩBS (me ! mp),

(110)

At λ2X/n2 ! 1 and y = µe/T > 0, (110) gives

(111)

Equation (111) was derived on the assumption that the
condition

(112)

was satisfied. At X @ 1 and X > y > 0, which corre-
sponds to the definition I > µe in the degenerate case,
(110) gives

(113)

The condition X > y and contribution (113) of bound
states correspond to anomalously high concentrations
of “atomic” quasi-particles, and, because of strong
interaction between them, both are inapplicable. In
addition, the scattering amplitude Γ was obtained
ignoring effects of the Pauli-blocking type [29].

δΩBS

V
------------ ζ p

32
π
------TX 2 λ λd

0

1

∫
n 1=

∞

∑–=

× t2 td

1 t2+( )3
--------------------

λ2X

n2
--------- 1 t2+( ) 

 exp 1–

λ2X

n2
---------t2 y– 

 exp 1+

----------------------------------------------------.

0

∞

∫

δΩBS

V
------------ ζ p

2π2

3
--------T

Ry
T

------- 
 

2

.–=

yexp

2y5/2
------------X5/2

 & 1

δΩBS

V
------------ 2ζ pT y

I
T
---.expexp–=
SICS      Vol. 100      No. 1      2005



180 STAROSTIN, ROERICH
Note that equations of type (87) are obtained in the
Keldysh technique (see [25–27]),

(114)

Symbolically expressing the Σ> value through the imag-
inary part of the scattering amplitude Γep [25],

(115)

we obtain Γep in the form [cf. (62)]

(116)

where δγ(x) is the Lorentz contour, which becomes the
δ-function in the limit of zero width γ  0. Equa-
tions (114)–(116) give (87) and (110). At the same
time, this approach allows us to take into account
atomic state broadening effects with the same accuracy
as can be attained in calculating spontaneous radiation
of a system of charged particles with discrete–discrete
transitions. If Stark microfields that cause level shifts
and statistical line broadening are taken into account,
this approach also contains the effects of microfield-
induced state decay [5, 17, 20].

Note that the atomic partition function in the lowest
order in interaction (up to the second virial coefficient)
converges starting with principal quantum number val-

ues nmax ~ . This means that the contribution of
bound states to pressure is given by an equation of the
type ΣSRM (or ΣP–L). In contrast, discrete states can make
an observable contribution to other physical effects, for
instance, spontaneous radiation of an equilibrium
plasma (the corresponding partition function con-
verges) at n > nmax, up to states at which their Stark
width is comparable to the energy of their ionization.

5. THE CONVERGING CONTRIBUTION 
OF SCATTERING STATES 

TO THE SECOND VIRIAL COEFFICIENT

The contribution of continuous spectrum states to
equations of type (87) can be calculated by determining
the Fourier components of the wavefunctions that
describe scattering of charged particles by each other.
The system of Coulomb wavefunctions represented by
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the summation over orbital momenta [36] can conve-
niently be used. For instance, for the attractive field,

(117)

Here,

and F(α, β, z) is the degenerate hypergeometric func-
tion. The Fourier transform of (117) can be found using
the linear regularization procedure,

(118)

The κ1 parameter must turn to zero at the end of calcu-
lations. Equations (117) and (118) give [39]

(119)

Here,  has the form

(120)

The first term in (120) is similar to the regularized
three-dimensional δ-function [cf. (85)], and the second
term, to the contribution of the scattering amplitude
with the energy denominator in (85). Because of regu-
larization and the special features of Coulomb interac-
tion, we must clarify the meaning of (119) and (120)
in (87). For this purpose, let us turn to (65), which is
valid for exact wavefunctions in a short-range potential.
The point is that the integral of the Coulomb potential
with functions of type (117) in the right-hand side
of (65) also requires regularization. For instance, for a
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repulsive field of p–p interactions, we have the exact
equation [36, Appendix f]

(121)

Here,

and F(α, β; γ; z) is the hypergeometric function.
Similar equations can be obtained for e–e interac-

tion with the replacement mp  me .
The left-hand side of (65) should be calculated using

the  functions regularized according to (118).
Substituting (118) into

(122)

(for instance, the first multiplier  with the κ1

parameter and the second one, , with the regular-
ization parameter κ2), using the Schrödinger equation,
and integrating in dq yields

(123)

A comparison of (122) and (123) with (121) leads us to
assume [taking into account that (122) is real] that κ1 =
κ2 = κ/2. It could be shown that the last three terms
(counterterms) remove the square of the modulus of the
first term in (120), like the square of the three-dimen-
sional δ-function was removed in (85) and (86) to
obtain the coefficient 1 in place of the doubled real part
of the product of two terms in braces in (120). Taking
into account the subtraction in the multiplier
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(exp(−βεk) – exp(–βεq)) in (87), which removes the
contribution of the f(k, k)-type term in (86), we find
that Eq. (87) for the continuous spectrum (the spectrum
of the scattering states, denoted by SS) should be writ-
ten in the form (for instance, for e–p interaction)

(124)

Here, k– = k – iκ/2. We can calculate the integral with
respect to the angles between the vectors q and k
in (124) and, after passage to the variables

,

obtain

(125)

Let us also write the equation for the counterterm
to (125) (the contribution of two crosspieces in the lad-
der taken into account in the summation of the series of
ring diagrams). The isolation of the contribution of e–p
interaction in (44) and the replacement of the last mul-
tiplier in the denominator, 4πe2λΠR, by κ2, where κ is
the regularization parameter [see (11), (118), (121)],
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which should be turned to zero at the end of calcula-
tions, yields

(126)

Here, J is the integral in y,

(127)

where Φ(x) is the probability integral [38],

(128)

Asymptotically as κ  0, (126) and (127) give

(129)

In order to debug the procedure for the three-dimen-
sional integration of (125) and test the results, it is sim-
plest to begin with calculations of the contributions of
p–p and e–e interactions, because the completeness
theorem for Coulomb wavefunctions in a repulsive
field only includes scattering states and, taking into
account (121), we obtain the identity, for instance, for
p–p interaction [also see (125)],
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In this equation,

For  from (121) [the index “(H)” denotes the
hypergeometric function present in (121)], we obtain

(131)

Here,

(132)

(133)

The  value, which corresponds to the subtrac-
tion of the diagram with one crosspiece [of the type of
the subtraction of the ~exp(–βεq) term in parentheses
in (87)], in the ladder diagram is given by

(134)

When summation is performed, all contributions of
p−p, e–e, and e–p interactions vanish by virtue of (9)

and (13). To remove the divergence of  and

 – , we must subtract the contribution of
two crosspieces from (130)–(134) [as with (126)–(129)],

(135)

Numerical integration was performed using library
subroutines for calculating integrals over a finite one-
dimensional interval based on the Gauss–Kronrod
quadrature formulas (the number of nodes was 10
and 21). The number of points was selected automati-
cally, and an adaptive procedure was used for mesh
refinement close to sharp peaks of the integrand to
attain the required accuracy. We also developed a
nested procedure for calculating multidimensional inte-
grals by recursion with respect to integral dimension.
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At each nesting level, the integrand was represented as
a nested integral and calculated by a similar recursion
using a separate copy of the library subroutines for one-
dimensional integration.

One-dimensional integration was performed with
setting the required relative accuracy. In multidimen-
sional integration, the relative accuracy of calculating
the integrand (that is, each integral “inner” with respect
to the embedment rank) at each given point was set at a
value inversely proportional to the magnitude of its
contribution to the integral “external” in its rank.

The three-dimensional integrals in (125) and (130)
were calculated in the variables

λ
in the following order:

The integration in v  required the interval to be addition-
ally partitioned into subintervals whose ends coincided
with local maxima. The first and second crosspieces
(which increased as κ  0 proportionally to κ–2 and
κ–1, respectively) were calculated using analytic equa-
tions similar to (134), (126), and (127).

Note that the use of library subroutines for integra-
tion over semi-infinite intervals to calculate the second
crosspiece led to errors random in κ at small κ values,
which were outside the required relative accuracy.
When constants asymptotic in κ were calculated for

differences of the type  – , the error was
comparable to the result. For this reason, integrals over
semi-infinite intervals were calculated iteratively, as the
limiting values of the integrals over segments when the
upper integration limit was successively doubled. This
variant always gave small stable errors in approxima-
tions to the second crosspiece at all κ values and was
used for integration with infinite limits.

At the first stage, we obtained satisfactory accuracy
in reproducing the asymptotic behavior, linear in lnηf

(ηf = κ/κD, ηf  0), for the equations

(136)

The right-hand side of (136) turned asymptotically to
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(see [20] for e–e and p–p interactions). Subsequent calcu-
lations of A = A(ρ, T) with the highest accuracy possible
for obtaining a suitable analytic approximation requires

the accuracy of calculating /V and /V to be
increased as required by a decrease in ηf  0.

Next, the construction of equations similar to [13,
(6.1)–(6.4)] and calculations at several (ρ, T) points
along the Sun radius gave the asymptotic equation

(137)

The value

(138)

converges with respect to κ to the limiting value

and the rate of convergence (absolute error)

(139)

is proportional to κ2 for e–e and p–p interactions and

~κ1.14 for e–p interaction. The smallest  value at
which we were able to calculate integral (125) and esti-
mate Aab was on the order of 10–12–10–13.

The limiting Aab values (ab = ep, ee, and pp) are
shown in Fig. 2 versus the |αab | parameter (αee = –αe/2,
αpp = –αp/2). It turned out that these values fairly
closely (indistinguishably on a linear scale) coincide
with the analytic equations
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where the ΣQ(α) function is represented by the series
[see Section 6, Eq. (184)]

(143)

At large –α @ 1, the asymptotic behavior of (143) is
described by the equation

(144)

The largest deviation

along the solar curve is close to 2.5 × 10–4 for e–e, 10–3

for p–p, and 10–2 for e–p interaction. The larger error in
the e–p asymptotic is explained by the lower rate of
convergence and the necessity of calculating three-
dimensional integrals. For e–e and p–p interactions, we
used two-dimensional integration of (131)–(133) after
verifying the validity of (130). Note that the limiting
relative accuracy of calculations was 2 × 10–14 for two-
dimensional and 10–10 for three-dimensional integrals.

The conclusion can be drawn that numerical integra-
tion with an accuracy to the excessive term with ln3
in [13] substantiates the analytic representation of the
Born series given in [13].
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Fig. 2. Calculated Aab values versus the |αab| parameter; ab:
(1) e–p, (2) e–e, and (3) p–p interactions. The correspond-
ing analytic Bab values calculated at several points are
marked by “+.”
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Note that (131) can be integrated analytically for
comparison with and verification of the equations
obtained in [13]. First, let us write an equation for the
hypergeometric function [40] whose argument γ
equals 1,

(145)

Here, C = 0.5772… is the Euler–Maclaurin constant [38]

and ψ(x) = dlnΓ(x)/dx is the ψ-function. The ψ(1 + i )

value can be expanded into a series in powers of  [38],

(146)

Substituting (146) into (131) immediately shows
that series (146) terms give divergent results when inte-
grated in y. We can ignore the term κ2/4 compared with
k2 because of the passage to the limit κ  0 in the
coefficient of the sum in square brackets and under the
logarithm sign.

Let us use the following procedure for the summa-
tion of a series of diverging integrals, which turns out to
be rigorous although slightly unusual. Consider a
model example, for which all procedures are similar to
those that arise when (131) is handled with the use
of (145) and (146). We use the integral representation
of the ψ-function [38]

(147)
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integration in the last term in (147). This yields [41,
p. 454, (2.5.38.1–3)]

(148)

Using the relation [38]

(149)

and (148) in (147), we obtain

(150)

This is a rigorous result. On the other hand, we can

expand ψ(1 ± ia/ ) in powers of a as in (146),

(151)

and integrate this series term by term using the defini-
tion of Jmodel [Eq. (147)],

(152)

The diverging integrals in the right-hand side of (152)
were regularized using analytic continuations (relations
for the gamma function [38]),
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A comparison of (150) and (152) shows that (150) con-
tains all integer powers of a, whereas (152), even pow-
ers only. Passing to the new summation variable

(154)

and performing the summation over all k from 1 rather
than over even k from 2 only, as we ought to (this is
what appears unusual), we obtain from (152)–(154)

which exactly coincides with the rigorous solution
[Eq. (150)].

After the subtraction of (134) and (135) from (131),
we can apply regularization procedure (153) and parti-
tion the summation variable (154) to obtain from (147)

(155)

[as in the derivation of (150)]. The first term on the
right-hand side of (155) corresponds to the “classical”
limit represented by the logarithmic contribution to the
second virial coefficient (here, κ  0),

(156)

In [13], the corresponding equation contains an unnec-
essary term with ln3 in parentheses, (–C – 2ln3 + 1).
This term arises when the classical representation for
the second virial coefficient (Bcl) is used “literally” with
the expansion in powers of U/T up to the third order and
the replacement of

by the screened interaction potential value

In [13], κ in (156) is understood to be κD [28]. We have

(157)
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The lower limit is set at max(e2/T, λp). The regular-
ization procedure [Eq. (121)] contains a linear exponent,
and ln3 does not appear. Note that (156) is obtained using
analytic continuations and the equations [38]

(158)

Here, Λ = (κλp/2)2 and

(159)

We will show that the sum of the contributions ,

, and  leads to the disappearance of the reg-
ularization parameter κ  0 in the final solution for a
hydrogen plasma.

The second, quantum, term in (155) is given by a
series in powers of the Born parameter (which is on the
order of e2/"vT), that is, the αp/2 parameter in our
problem. This series exactly coincides with that given
in [13],

(160)

We stress that this result is also substantiated by a
detailed comparison with numerical integration in both
representations (130) and (131) after the subtraction of

 from (131) and  from both (130) and (131).
Solutions (156) and (160) with the replacement mp 
me are also valid for e–e interaction.

Identity (130) does not hold for attractive e–p inter-
action because the use of the completeness theorem for
Coulomb functions that leads to (134) requires the
inclusion of discrete and continuous states, whereas
continuous states are only present in (130).

The numerical integration results show that the
three-dimensional integral is approximated by an ana-
lytic equation whose meaning is discussed in Section 6,
namely,

(161)
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Here,  is the logarithmic contribution [cf. (156)]

(162)

Summing the equations of type (156) for p–p and
e−e interactions and (162) yields

(163)

(it is taken into account that ζe = ζp). This result does
not contain the κ parameter.

The solution for  can be written in the form
[cf. (105), (108)]

(164)

(165)

The equation for exchange interaction (mainly, e–e)
can be obtained by analogy with (121) using (81)
and (82).

Equations of type (117) can be used to obtain Jexch
for a repulsive field in the form

(166)

Eventually, the exchange contribution  is
written as
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The integrals in (167) are calculated numerically. We
can also obtain an explicit analytic result using a tech-
nique similar to that applied to derive Eqs. (147)–(150)
for Jmodel and the expansion

(168)

With Bernoulli numbers given by [38]

(169)

(167) yields the initially converging result

(170)

where E(αe) is given by

(171)

Equation (171) exactly coincides with that given in [13]
for the exchange contribution and is substantiated by
numerical integration. The first Born series (171) term
gives the contribution described above by (15). Note
that, even for the conditions close to the center of the
Sun, the Born series for p–p interaction [Eq. (160)] con-
verges poorly because αp @ 1.

In this limit, expansion (146) can be replaced by the

asymptotic equation for the ψ-function [38] (  @ 1),

(172)

Substituting (172) into (131) and using (145) and the
method for summing diverging integrals [similar
to (147)–(150)], we obtain

(173)

in the limit αp @ 1.
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In this limit, it follows from (173) (αp@ 1) and equa-
tions of types (163) (for e–e interaction at αe ! 1) and
(162) (αep ! 1) that (ζe = ζp)

(174)

Equation (174) also does not contain κ (λepT/e2 @ 1
according to the condition αep ! 1). Note in addition
that, in the limit αp @ 1, αe @ 1, and αep @ 1, the con-
tribution of all logarithmic corrections, including the
constants outside the logarithm sign, is cancelled for a
hydrogen plasma. For a plasma comprising electrons
and nuclei with charge z @ 1 and atomic weight A, the
derivation of the equation for the second virial coeffi-
cient performed ignoring the contribution of the con-
stants outside the logarithm sign (lnz @ 1) yields the
following results:

(1) In the limit

where

(this limit presupposes anomalously high temperatures
T * 50z4A keV), we obtain

(175)

Here, the condition ζe = zζp is used. Equation (175)
explicitly contains the κ parameter (at z ≠ 1); it is rea-
sonable to set this parameter equal to κD, κ = κD.

(2) In the limit

,

we obtain
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Here, it is assumed that

At z @ 1, (176) can be written in the form

(177)

6. THE EQUATION OF STATE
OF A WEAKLY NONIDEAL HYDROGEN 

PLASMA

Consider the summed contribution of Eqs. (6), (8),
(16), (52), (57), (98), (104), (155), (156), (163), (160),
(164), (165), (170), and (171) obtained above as
applied to describe the equation of state of a weakly
nonideal hydrogen plasma in relation to helioseismol-
ogy problems.

The meaning of these equations is as follows: (6)
describes the pressure of the ideal gas of protons; (8), the
pressure of the ideal gas of degenerate electrons; (16),
the contribution of Coulomb interaction to the pressure
(δPD–H = –δΩD–H/V) in the Debye–Hückel approxima-
tion in a grand canonical ensemble; (52), the diffraction
(quantum) corrections to the Debye–Hückel approxi-
mation; (57), corrections taking into account that parti-
cles interacting with the medium, rather than free par-
ticles, are responsible for Debye screening; (98) and
(104), the converging contribution of bound states
to the pressure (the contribution of “atoms”); (155)
and (156), the logarithmic contribution on the order of
(e2/T)3 of proton–proton interaction to the second vir-
ial coefficient; (163), the total logarithmic contri-
bution of all interactions on the order of
(e2/T)3ln(mp/me) in a plasma of protons and electrons;
(160), (164), and (165), the contribution of scattering
states to the thermodynamic characteristics of a
plasma; and (170) and (171), the contribution of elec-
tron–electron exchange.

It is necessary to take into account relativistic cor-
rections to the contribution of the free electron gas to
thermodynamic functions and radiation pressure in a
“transparent” plasma in the center of the Sun. Treating
relativistic contributions as a correction (T/mc2 & 10–3),
let us write the relation between the momentum and
kinetic energy of the electron as

(178)
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Equation (178) can be used to determine the activity of
electrons [cf. (7)]

(179)

and the electron gas pressure [cf. (8)]

(180)

(the index “r” means that relativistic corrections are
included). As previously,

in (179) and (180).

Corrections to the energy and other functions of
electrons can be found in a similar way. To obtain the
equation of state of a weakly nonideal hydrogen
plasma, we must find a relation between activities (or
chemical potentials) and concentration [cf. (24)] taking
into account the degeneracy of electrons,

(181)

The thermodynamic potential Ω is represented by the
sum of all the contributions specified above. Here, the
primed sum denotes that the differentiation in (181)
should be performed taking into account (13) and equa-
tions similar to (179) and (180) for the activity and
pressure of the electrons. For instance, within the
framework of the simplest model of type (20), for
which, in addition to the ideal gas contribution, the
Debye–Hückel contribution is taken into account with
the use of general equations (16) and (17) and neutrality
condition (19), we obtain for the simplest case of zk = 1

(182)

In (182),  should be differentiated with respect to the
chemical potential taking into account (179). Next,
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we must put

where NA is Avogadro’s number and ρ is the plasma
density.

Note that, because a hydrogen plasma is only
weakly nonideal (ΓD ! 1) and corrections for degener-
acy and relativistic contributions are comparatively
small for it under Sun conditions, the contributions to
the second virial coefficient other than those included
in model (20) can be described by Eqs. (52), (57), (98),
(104), (155), (156), (163), (160), (164), (165), (170),
and (171) obtained for a plasma with nondegenerate
electrons.

Note that the analytic equations for the converging
contribution of bound states [Eq. (104)] together with
the final equation for the contribution of scattering
states [Eqs.(164) and (165)] [strictly speaking, this
equation was a guess substantiated by a comparison
with the results of numerical integration according
to (125) from which (126) was subtracted] and with the
use of expansion (105) give

(183)

Here, Σtot is the sum of the series in powers of αep =

, which exactly coincides with the equations
given in [13, 14] and obtained from Beth–Uhlenbeck-
type equations written for the total contribution of
attractive states without partitioning them into bound
and scattering states,

(184)

Interestingly, Eq. (184) was obtained in [13, 14] by dis-
carding the divergent terms of order e2, e4, and e6 on
account of Coulomb screening. Our approach allows
the exact correspondence to be obtained between (184)
and the sum of converging contributions of bound states
(which do not at all require taking screening into
account) and scattering states calculated using three-
dimensional integrals (125), from which the contribu-
tion of two crosspieces [Eq. (126)] should be sub-
tracted; the latter were already included in obtaining the
ring approximation corresponding to the Debye–
Hückel approximation. At large parameter values
αep @ 1, the sum in (184) can be estimated by replacing
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summation with integration in n and applying the sad-
dle-point method,

which corresponds to taking into account the ground
state only in the atomic partition function, as was ini-
tially done in the Saha equation. Using this formula to
estimate the fraction of bound states (“atoms”) in the
center of the Sun gives a value on the order of 30% (an
absurd result), whereas, according to the Planck–Lar-
kin equation, this fraction is 10–4 in order of magnitude.
If the contribution of bound states represented by the

Planck–Larkin equation [with  given by (3)
and (106)] is subtracted from (184), we can obtain an
analogue of the contribution of scattering states
[cf. (164), (165)],

(185)

Equation (185) was not written in explicit form. How-
ever, comparing it with the equation for the contribu-
tion of scattering states of type (160) for p–p interaction
shows that this contribution has a similar structure.
[Also compare (148), where the result is independent of
the sign of a].

Equations (107), (108), and (185) therefore allow us
to write the relations

(186)

(187)

The total contribution of bound and scattering states
[Eq. (184)] can be written in two ways,

(188)

In the sense of (188), the Plank–Larkin equation is
“correct.” It, however, contains contributions of bound
states and the continuous spectrum, provided the con-
tribution of scattering states is determined properly.
Unlike the Planck–Larkin equation, the equation for

 describes the contribution of bound states only.

Taking into account that δΩ/V = –Tζeζp Σ, let us
write the first several terms of (105), (106), (165),
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and (185), which are expansions in powers of the Born
parameter [~e2/("vT)],

(189)

(190)

(191)

(192)

A comparison of (189) and (191) shows that the princi-
pal nonvanishing contribution of bound states is com-
mensurate in magnitude to the contribution of scatter-
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Fig. 3. Solar trajectory: (1) temperature (K) and (2) density
(g/cm3) as functions of the relative radius r/R(.
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ing states, whereas the first term in (190) is two times
larger in magnitude than the corresponding term
in (192). Note that Eq. (192) was obtained in [10].

The chemical picture that includes the ideal gas,
Debye–Hückel, and bound state contributions to the
equation of state is often used in the literature. All cor-
rections, including those for diffraction, screening by
“dressed” particles, and interactions in the continuum
(arising from scattering states containing “classical”
logarithmic contributions and quantum sums in the
Born parameter e2/"vT), are then ignored. This is justi-
fied in the limit I/T @ 1, because the main contribution
to the equation of state is then made by bound states and
is proportional to exp(I/T). In the center of the Sun, we
have I/T ! 1. For this reason, the neglect of scattering
states while the contribution of bound states is retained
is illegal. However, as both contributions (Σ values) are
then small (~10–4) and the contribution of bound states
predominates at the periphery, the chemical picture
may be fairly “correct.”

The complete physical model for determining the
equation of state of a hydrogen plasma along the solar
trajectory is compared with the chemical models repre-

sented by  or  in Section 7.

The equation of state of a plasma that describes
pressure P(ρ, T) and other thermodynamic functions
should be augmented by the contribution of equilibrium
thermal radiation in the plasma. Equations for radiation
intensity in an absorbing medium were obtained
in [42]. It follows from these equations that, with
respect to the ε''/ε' ! 1 parameter, we can use equations
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Fig. 4. (1) Total pressure and (2) fraction of radiation pres-
sure in the total pressure as functions of temperature along
the solar trajectory.
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for radiation in a transparent medium. For instance, we
have /  ~ 10–6 in the center of the Sun according

to the S-model [1]; here,  is the mean absorption
coefficient (opacity), c is the velocity of light, and  is
the mean frequency of thermal radiation.

Let us write an equation for energy in a transparent
dense plasma [43] taking into account the relation k =

nω/c (n =  is the refractive index of the
plasma),

(193)
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is the electronic plasma frequency and V is the volume
of the system (V  ∞). It is taken into account
in (193) that radiation with frequencies ω < ωp does not
propagate in the system as free radiation. The expan-
sion of the denominator in (193) in powers of the expo-
nential function exp(–"ω/T) yields

(194)

where Kn(z) stands for the Macdonald functions [38]
and z = n"ωp/T. In the limit "ωp ! T ("ωp/T ~ 1/4 in the
center of the Sun), (194) yields (cf. [28])

(195)
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In a similar way, we obtain free radiation energy in the
form

(196)
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we can use (196) to determine radiation pressure,

(197)

In the limit "ωp ! T, (197) yields [28]

(198)

To determine the velocity of sound along the solar tra-

jectory, we must know the  value (the heat capacity
of radiation),
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BS ΣSRM

BS ΣSRM
BS
and the derivatives (∂PR/∂T)ρ and (∂PR/∂ρ)T . The corre-
sponding equations are easily obtained from (194) and
(197). We omit the resulting fairly cumbersome for-
mulas.

Note that equilibrium between radiation and matter
presupposes that the condition R @ 1 is fulfilled. At
the periphery, in the photosphere, this condition is vio-
lated [1]. For instance,

 g/cm3,

 cm–1,

 cm,

Solving direct helioseismology problems requires
the determination of various thermodynamic values
along the solar trajectory. We restrict our consideration
to a hydrogen plasma (whereas the Sun contains other
elements too, largely He and also Li, Be, B, C, N, O,

kω

ρ 4 10 9–×∼

k κρ 8 10 3– 4 10 9–××× 3.2 10 11–×= = =

R( 7 1010×≈ kR( 2.∼
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Ne, …, Fe) because the generalization of equations of
type (104) with ΣBS in one or another form (even within
the framework of the chemical model) to multielectron
bound states requires solving the problem of three and
more bodies. Strict results have not been obtained thus
far even for HeI, and the problem requires further
inquiries. Several comments will be made in Conclu-
sions.

The velocity of sound in a hydrogen plasma can be
calculated by the equation [44]

(199)

Here, pressure P and heat capacity cV are represented

by the sums of the contributions of matter PM ( ) and

radiation PR ( ) and ρ is the density of the plasma.
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BS
Another important parameter used in helioseismology
is the adiabatic exponent Γ1,

(200)

7. NUMERICAL CALCULATIONS
OF THE EQUATION OF STATE 

OF A WEAKLY NONIDEAL HYDROGEN 
PLASMA ALONG THE SOLAR TRAJECTORY

Equations (5), (6), (9), (179), (180), (182), (16),
(52), (57), (98), (104), (156), (163), (160), (164), (165),
(170), (171), (194), and (197) were used to calculate the
equation of state of a weakly nonideal hydrogen
plasma, that is, the dependence of the total pressure
P(r) or P(T) along the solar trajectory within the frame-
work of the S-model [1].

Density and temperature distributions as functions
of the current radius counted from the center of the
Sun [1] are shown in Fig. 3. Calculations taking into
account all the contributions specified above character-
ize the physical picture, which, according to thermody-

Γ1
ρ
P
---cS

2.=
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namic perturbation theory, is represented with accuracy
to the second virial coefficient (up to ζ2) for the hydro-
gen plasma.

The total pressure of the plasma and radiation along
the solar trajectory is shown in Fig. 4, where we also
see the fraction of radiation pressure with respect to the
total pressure (approximately 4 × 10–4 in the center of
the Sun).

The absolute values of relative contributions δP/Ptot ,
where δP = –δΩ/V, to the total pressure are shown in
Figs. 5 (versus temperature) and 6 (at the periphery,
versus relative radii 1.0008 ≥ r/R( ≥ 0.9992). We see
that the contribution of the pressure of the electrons and
protons, which approximately equals 1 in the tempera-
ture coordinates, sharply drops at the periphery approx-
imately to 10–5. At the periphery, bound states (atoms)
predominate. Their contribution in the center of the
Sun, like that of e–p scattering states, is approximately
10–4. The contribution of Coulomb interaction (on the
order of 10–2 in the center of the Sun) reaches a maxi-
mum (about 10–1) at T ~ 5 × 104 K and decreases to 10−9

at the periphery. Diffraction corrections (on the order of
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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Fig. 9. Relative deviations of the adiabatic compressibility index from the ideal gas value (Γ1 – 5/3); see Fig. 8 for notation.
10–3 in the center of the Sun) pass a maximum (about
4 × 10–3) at T ≈ 5 × 104 K and then, like all interactions
involving charged particles (the contributions of the
summed logarithm, scattering states arising from e–p,
p–p, and e–e interactions, and e–e exchange interac-
tion) sharply drop at the periphery.

The relative contribution of the total logarithmic
term is about 2 × 10–4 in the center of the Sun (accord-
ingly, the correction for screening by “dressed” parti-
cles is an order of magnitude smaller).

Exchange interaction in the center of the Sun, next
in significance to Coulomb contribution, is approxi-
mately 4 × 10–3. The radiation pressure is about 4 ×
10−4, and the contribution of p–p scattering states is on
the order of 10–4 in the center of the Sun. The smallest
contribution of e–e scattering states is approximately
4 × 10–6.

We also see that many of the corrections to the sec-
ond virial coefficient are quite substantial, taking into
account the high accuracy of the inversion procedure in
helioseismology problems.

We must again mention that we only consider the
contribution of a hydrogen plasma on the assumption
(obviously incorrect, especially close to the center of
the Sun, because of the presence of He and other ele-
OURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ments) that this is hydrogen that is responsible for the
total density of matter. In spite of the exceedingly con-
ventional character of this model, the purpose of our
calculations was to qualitatively estimate the relative
contributions of various total plasma pressure compo-
nents. At the same time, the accuracy of this model in
the usual sense (leaving precision helioseismology
aside) is quite reasonable in comparison with the data
of the complete S-model, including He and other ele-
ments distributed along the solar trajectory. For
instance, the distributions of the velocity of sound cS on
the temperature scale calculated within the framework
of the hydrogen physical model [see (199)] and the
S-model are shown in Fig. 7. The same figure contains
the relative deviations of the velocity of sound calcu-
lated using various chemical models. The chemical
models ignore all corrections except the contribution of
free particles, the Debye–Hückel Coulomb interaction,
the contribution of bound states according to the

Planck–Larkin equation ( ) or represented by

, and the contribution of radiation. The difference
between the results obtained using two methods for the
inclusion of bound states is approximately 7 × 10–3 at
T ~ 105 K, when degeneracy effects are inessential. In

ΣP–L
BS

ΣSRM
BS
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the center of the Sun, the role played by degeneracy is

noticeable, and the two models,  and , one
taking degeneracy into account and the other ignoring
it, are very close to each other, but the relative devia-
tions of the models including degeneracy from those
that ignore it are larger than 10–2.

The deviations of the adiabatic exponent from its
ideal gas value (Γ1 – 5/3) × 103 [see (200)] along the
solar trajectory are shown in Fig. 8. We can compare the
data calculated according to the complete physical
model and chemical models based on equations for

 and  (with and without taking degeneracy
into account). The same figure contains the results of
calculations by the S-model for the “real” Sun contain-
ing all elements [1]. Even though the hydrogen model
is obviously incomplete, the difference between the
(Γ1 – 5/3) × 103 value calculated with its use and the
value obtained according to the S-model is not very
large, especially close to the center of the Sun, where

the physical model and the  variant of the chemi-

cal model are closer to experiment than the  che-
mical model (which even gives deviations opposite
in sign).

The Γ1 – 5/3 value is plotted in the entire range
along the coordinate axes in Fig. 9, which gives an
additional idea of the quality of the hydrogen model.
We see that the adiabatic exponent decreases in the
region of hydrogen ionization. The second, smaller,
peak present in S-model calculations is caused by the
ionization of helium, which is absent in our model. The
difference between the chemical models specified
above is unnoticeable on the scale of the figure.

8. CONCLUSIONS

The development of helioseismology requires
knowledge of the equation of state with high accuracy.
We therefore performed an independent and detailed
derivation of a converging equation of state taking into

account relativistic (~T/(mc2)) and degeneracy (~ne )
effects and consistently including the neutrality condi-
tion for activities ζe = ζp , Coulomb interaction in the
Debye–Hückel approximation (~ΓD) with various cor-
rections on the order of ΓDÂκ, and contributions to the
second virial coefficient from the converging logarith-

mic term [ ln(mp/me)], bound states (~ζe ),
scattering states arising from interactions of all types

(~ζe ), exchange interaction (~ζe /T), and
radiation pressure taking into account plasma effects on
radiation dispersion properties. Numerical calculations
of the equation of state, the velocity of sound, and the
adiabatic exponent were performed for a hydrogen
plasma along the solar trajectory with the use of the

ΣP–L
BS ΣSRM

BS

ΣP–L
BS ΣSRM

BS
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BS
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Âe
3
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Âep
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3 Σij

SS
Âe

2e2
JOURNAL OF EXPERIMENTAL A
complete physical model and various chemical models.
Note that, at the level of the current accuracy of mea-
surements in helioseismology, qualitative sorting out of
certain approximations is possible in principle (for
instance, the results obtained in [6] are closer to exper-
iment than those reported in [4]).

Note several problems that require solution to pro-
mote further developments in this field of study. First
and foremost, we must consistently go beyond the
scope of the approximation that describes the equation
of state up to the second virial coefficient. Even taking

into account the contributions of the H–, , and H2

hydrogen states to pressure falls outside the approxima-
tion limited by the second virial coefficient. We already
mentioned the problem of describing the contribution
of many-electron states of neutral and charged species
(HeI, HeII, etc. over all the elements) and many-body
scattering states. Heroic efforts made in this direction
[45, 46] cannot be considered conclusive. Indeed, the
method [45] for taking into account connected dia-
grams (PCD) when simple irreducible diagrams

(also see [13]) are known, which is based on the equa-
tion

(201)

itself leads to inaccuracies because it involves the inte-
gration in charge in quantum thermodynamic perturba-
tion theory [24]. For instance, with S(ζk) in the Debye–
Hückel approximation,

(202)

we obtain from (201)

(203)

which differs from the “correct” result [Eq. (57)] in the
coefficient. Because of the integration in charge, we
here have π/2 instead of π/3 ([8] contains a similar slip).

At the same time, the approach suggested in [45, 46]
allows us to at least qualitatively predict the structure of
the converging partition function of a multielectron
atom. Note that equations of the type of the Planck–
Larkin equation or the equation for ΣSRM diverge if lit-
erally generalized, for instance, to a two-electron
(helium-like) atom (ion) because of the presence of
doubly excited states. Let us consider the limit of a
large nuclear charge (z @ 1), when electron–electron
interaction can be ignored in the principal approxima-
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tion compared with electron–nucleus interaction. Tak-
ing into account that [cf. (104)]

we obtain from (201)

. (204)

This result appears to be reasonable, at least qualita-
tively. To substantiate equations of this type, we must
use the Faddeev equations for the problem of three bod-
ies [47].

Also note that the Sun is a unique scientific labora-
tory. Indeed, first-principle calculations of many pro-
cesses in it are possible because its plasma is weakly
nonideal. For instance, in the center of the Sun, the con-
dition

(205)

is satisfied (here, ESt = e  is the Stark microfield in
the plasma and d ~ ea0). For this reason, the principal
cut-off factor for the partition function of an atom is
temperature, because the contribution of bound states is
on the order of (Ry/T)2 [see (100), (101)]. In (205), EStd
is the interaction energy between the Stark microfield
and the atomic dipole d ~ ea0. The presence of the large
parameter given by (205) allows us to calculate the
equation of state starting with the ideal gas approxima-
tion and sequentially introduce the other effects,
including the influence of the discrete spectrum on the
pressure of a plasma, where unperturbed atomic states
arise at the first step. A qualitative consideration based
on the decay of “atoms” caused by screening, broaden-
ing, ionization under the action of microfields (the
Unsöld mechanism [4]), etc. leads to a picture different
from that obtained using perturbation theory with the
expansion in powers of activities, which is even not
substantiated by experiments. (Cf. [1], where it was
noted that the results of [6] are closer to the inversion
data than those obtained in [4].) Such a literal taking
into account of Debye screening in calculations of
atomic states (e.g., see [13, 14]) causes large shifts of
atomic levels and, accordingly, the centers of spectral
lines, which are not observed in weakly nonideal plas-
mas of arc discharges [48, 49].

In our view, taking into account broadening effects
(see (116) and the results reported in [20]) in describing
both spectral lines and the thermodynamic properties of
a weakly nonideal dense plasma is a more promising
approach. In principle, it binds up the problems of radi-
ation gas dynamics with those of radiation-collisional
kinetics, in which “atoms” are represented differently
in pressure and radiation calculations [20].

SSD ζ eζ pTÂep
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Abstract—We present experimental evidence and theoretical justification for the phenomenon of bistable elec-
trooptical switching in nematic liquid crystals doped with chiral compounds so that the ground state corre-
sponds to a 360° helical twist of the director. The system exhibits switching between the ground and a metasta-
ble unwound states. The observed effect differs from the well-known Berreman–Heffner bistable switching by
the absence of a topologically nonequivalent ground state of the liquid crystal layer with a 180° twist of the
director. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The physics of formation of stable and metastable
states in liquid crystals (LCs) and the effects of switch-
ing between these states constantly attract the attention
of researchers. This research activity is related both to
the interest in elucidating special features in the inter-
action of LC molecules with the alignment surfaces and
to the new prospects of using the bistable switching
effects in electrooptical devices and display technolo-
gies [1–4].

One of the first effects of bistable switching in nem-
atic liquid crystals (NLCs) was demonstrated in the
early 1980s by Berreman and Heffner [5, 6]. It was
shown that NLCs doped to a certain extent with a chiral
additive are capable of featuring transitions to metasta-
ble states under the action of an applied electric field.
Because of some features of the interaction between the
LC director and hydrodynamic back-flows arising in
the course of LC reorientation in the applied field, it
was also possible to provide for reversible switching
between these optically distinguishable states with dif-
ferent director twist angles. A distinctive feature of the
Berreman–Heffner effect is that, for the typical bound-
ary conditions with a small director pretilt angle at the
NLC layer boundaries, the ground state is characterized
by a helix with a 180° twist of the director, while the
switching takes place between the 0° and 360° twist
states. Thus, the system in fact features three states,
which leads to problems in practical applications of this
phenomenon.

The Berreman–Heffner effect had been extensively
studied until quite recently [7–10]. These investigations
were aimed, in particular, at finding conditions for
effectively eliminating the ground 180° twist state. This
is related to the fact that the 180° state is topologically
nonequivalent to the switched (0° and 360°) states. If
the driving field is absent for a sufficiently long time,
1063-7761/05/10001- $26.00 0199
the director exhibits relaxation to the ground state via
defects. Elimination of the defects requires using spe-
cial field configurations and/or special boundary condi-
tions [7, 10]. For symmetric boundary conditions, non-
defect transitions are possible only between topologi-
cally equivalent states even in the material with a weak
anchoring energy [11]. A special case is realized under
asymmetric boundary conditions with a weak anchor-
ing at one of the boundaries, whereby transitions are
possible between the 0° and 180° twist states [4]. How-
ever, the creation of controlled asymmetric anchoring
conditions is a rather difficult technological problem.

This paper demonstrates the possibility of bistable
switching under the conditions where the minimum
free energy of an NLC layer corresponds to a helical
state of the director with a 360° twist. In the case under
consideration, this is the ground state and it is topolog-
ically equivalent to the second switched (unwound)
state, so that the problem of the third (topologically
nonequivalent) state is eliminated.

The paper consists of theoretical and experimental
parts. The theoretical part reports on the results of
numerical simulation of the LC director dynamics and
describes the requirements to parameters that the LC
materials have to obey in order to provide bistable
switching between the 360° twist ground state and a
metastable homogeneous unwound state. The experi-
mental part presents evidence of the actual bistable
switching in NLCs of two types. The results of detailed
experimental investigation of the process of electroop-
tical switching illustrate limitations posed on the
parameters of LC layers and switching fields.

2. NUMERICAL SIMULATION

The laboratory coordinate system x, y, z is oriented
so that the xy plane coincides with one surface of a
© 2005 Pleiades Publishing, Inc.
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plane-parallel LC layer and the z axis points toward the
other surface of the layer. The LC layer is assumed to
be homogeneous in the x and y directions. An important
role in the simulation of bistable switching is played by
the hydrodynamics. Based on the Frank–Oseen contin-
uum theory of elasticity [12, 13], the Ericksen–Leslie
hydrodynamic theory [14, 15], and the Euler–Lagrange
formalism, it is possible to write the following system
of dynamic equations for the LC layer with an electric
field applied along the normal (coinciding with the z
axis of the laboratory coordinate system), in which the
local molecular orientation field is determined by the
director n = (nx , ny , nz) ≡ (ξ, η, ζ):

(1)

Here, ρ is the LC density, I is the moment of inertia per
unit LC volume, v = (v x , v y , v z) is the velocity vector
of the hydrodynamic flow, α1–α6 are the hydrodynamic
Leslie coefficients, γ = α3 – α2 is the rotational viscos-
ity, α6 = α5 – γ, λ is the Lagrange multiplier related to
the unit normal vector n, F is the free energy density of
the LC layer given by the formula

(2)

Kii are the elastic moduli, and ε||, ε⊥  are the principal
components of the low-frequency permittivity tensor;
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primed symbols denote the derivatives of the compo-
nents of director n = (nx , ny , nz):

(3)

In expression (2) for the free energy density F, the
contribution due to the electric field is written in terms
of the z-component of the electric displacement vector
D. In other words, we adopt a model in which a charge
(rather than a potential difference) is set on the LC
boundaries (electrodes). For this reason, the term
describing the electric field contribution enters into the
free energy with the plus sign. Alternatively, the electric
contribution is frequently included with the minus sign,
which indicates that the work is performed by a voltage
source and implies that a potential difference is set on
the boundaries. Both models eventually lead to identi-
cal results. However, description in terms of the electric
displacement is more convenient because LCs are good
dielectrics and the electric displacement (in contrast to
the electric field strength E) is independent of z even for
an inhomogeneous distribution of the director. The
voltage drop across the LC layer and the z-component
of the electric displacement are related as

(4)

where d is the LC layer thickness.
It was experimentally established that the inertial

contributions written in the left-hand sides of Eqs. (1)
are negligibly small. These terms were ignored in the
simulation. In solving Eqs. (1), we used the boundary
conditions determined by a anchoring energy and an
LC director pretilt angle at the alignment surfaces. The
boundary-value problem was solved by a method anal-
ogous to that described in [16], using experimentally
determined values of the director pretilt angle (4°) on
both boundaries of the LC layer and a anchoring energy
of W = 0.2 mJ/m2. It is important to note, however, that
the finiteness of the anchoring energy of LC molecules
at the boundaries is not substantial for the effect under
consideration. For this reason, Eqs. (1) can be also
solved with rigid boundary conditions (infinitely high
anchoring energy).

The simulation was performed for the following vis-
coelastic and dielectric parameters of the model LC:
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These values are close to the parameters of the well-
known, widely used LC material 4-n-pentyl-4'-cyano-
biphenyl (5CB) [17]. The system of equations (1) was
numerically solved by the well-known relaxation
method using the NLCL program package developed
by one of the authors (S.P.P.) for the simulation of elec-
trooptical effects in LCs. In addition, it was necessary
to solve the corresponding optical problem for inhomo-
geneous anisotropic media. This solution was obtained
using an algorithm described in detail elsewhere [18].

In expression (2), the term q0 characterizes the chiral
properties of the LC material. In the course of simula-
tion, q0 and the elastic modulus K33 were the variable
parameters. In bulk materials, where the contribution of
the anchoring energy to the total free energy of the sys-
tem is negligibly small, the equilibrium LC texture with
a minimum free energy corresponds to a helical direc-
tor distribution with a natural pitch of P0 = 2π/q0 of the
cholesteric helix. In the case of thin LC films, the situ-
ation dramatically changes. Owing to the surface
anchoring, multiple local minima of the free energy
appear that correspond to the states with various num-
bers of half-turns of the cholesteric helix accommo-
dated within the layer thickness. The energy barrier
between the adjacent states increases with the anchor-
ing energy. Thus, in the rigid anchoring limit, the
ground state with the pitch P0 is accompanied by an
infinite number of metastable states of the director dif-
fering by an integer number of half-turns of the helix
over the LC layer thickness. Here, a substantial point is
that a continuous transition between two states differ-
ing by an odd number of half-turns is impossible for a
continuous deformation of the director in the entire vol-
ume. Therefore, such states are topologically nonequiv-
alent and transitions between such states without defect
formation are impossible. It is interesting to note that,
in the case of symmetric boundary conditions (even for
a small anchoring energy making possible a change in
the state of director orientation at the boundaries), anal-
ogous nondefect transitions are also forbidden: such a
transition would require the director to rotate by 90° in
the middle of the LC layer, which contradicts the sym-
metry of the system [11].

The situation is different for the states differing by
an even number of half-turns of the helix. In this case,
there are no prohibitions and nondefect switching is
possible. For example, let us consider the states sche-
matically depicted in Fig. 1. Here, nondefect transitions
from the state with one half-turn of the cholesteric helix
over the layer thickness (180° twist state, Fig. 1a) to a
unwound state (Fig. 1b) or to the state with one com-
plete turn (Fig. 1c) are forbidden. For the sake of brev-
ity, the states depicted in Figs. 1a–1c will be referred to
below as π-, 0- and 2π-states, respectively. At the same
time, transitions between the 2π- and 0-states are possi-
ble via a homeotropic state of the director in the middle
of the layer (Fig. 1d). As was noted above, the possibil-
ity of such switching was demonstrated by Berreman
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and Heffner [5]. An important feature of the Berreman–
Heffner system is that the ratio of the LC layer thick-
ness (d) to the natural helix pitch (P0) is d/P0 ≈ 0.5,
which accounts for approximately equal energies of the
0- and 2π-states. However, this circumstance also
implies that, for the planar boundary conditions, the
minimum free energy corresponds to the π-state.
Therefore, the realization of switching between the 2π-
and 0-states requires an intermediate process to convert
the ground π-state to the topologically nonequivalent
2π-state, which essentially involves the defect for-
mation.

The results of our numerical calculations showed
that the application of a driving voltage waveform
(Fig. 2b) comprising a sequence of two-part and single
pulses (similar to that used in [7]) makes it possible to
switch the system between the 2π- and 0-states even if
the 2π-state is the ground state. Figure 2a shows the
simulated electrooptical response of an LC layer sand-
wiched between crossed polarizers. Here, the director
passes from a twist state to the homeotropic state upon
application of the first two-part voltage pulse to the LC
layer, and exhibits relaxation to the homogeneous state
when the field is switched off. The transition is accom-
panied by the characteristic bounce of the optical trans-
mission. The final homogeneous 0-state is dark in the
crossed polarizers because the axis of one polarizer and
the LC director occur in the same plane. Arrival of the
following single pulse switches the homogeneous
0-state back to the 2π-state which (for the given orien-
tation of polarizers and optical anisotropy of the LC
layer) renders the optical system transparent. Similarly
to the case of the Berreman–Heffner effect, the transi-
tions proceed via the homeotropic state of the director
(aligned in the z axis) in the middle of the layer
(Fig. 1d) owing to different development of the hydro-
dynamic flows dependent on the shape of the driving
voltage.

The results of our simulations are summarized in
Fig. 3. It was established that an important condition for
bistable switching in the system studied is a large ratio
of the elastic moduli: K33/K22 > 3. Curves 1 and 2 in
Fig. 3 separate regions representing various states of
the director after the field is switched off, depending on
the variable parameters K33/K22 and d/P0. In the region
of K33/K22 and d/P0 ratios to the left of curve 1, the field
induces a homogeneous state which cannot be switched
back to the 2π-state. To the right of curve 2, the given
driving voltage waveform induces a 2π-state without
the possibility of switching to the homogeneous 0-state.
And it is only in the region between curves 1 and 2 that
the situation admits switching between the 0- and
2π-states. For 0.5 < d/P0 < 0.75, the system exhibits the
Berreman–Heffner switching in spite of the thermody-
namically favorable π-state. The system will relax into
this third state via defect formation if the field is
switched off for a prolonged time.
SICS      Vol. 100      No. 1      2005
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(b)

(a)

(c)

(d)
1 2 3 4 5 6 7

X

Y

Fig. 1. Schematic diagram of the LC director distribution in depth of an LC layer: (a) helical 180° twist state (π-state); (b) homo-
geneous unwound state (0-state); (c) helical 360° twist state (2π-state); (d) the process of switching from the (1) 2π- to (4) 0-state
and (5–7) the reverse process (states 2 and 5 are induced by an applied electric field).
Another important result revealed by the simulation
is that, as can be seen from Fig. 3, the switching is also
possible for 0.75 < d/P0 < 1.25, where the 2π-state
becomes the ground state under strong anchoring con-
JOURNAL OF EXPERIMENTAL A
ditions. Although the energy of the metastable 0-state
increases so that the π-state becomes energetically
more favorable than the 0-state, the system switches to
the 0-state because it is topologically equivalent to the
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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2π-state. Thus, the third (π-) state in this regime is elim-
inated.

3. EXPERIMENT

In searching for the system featuring the predicted
bistable switching, we selected LCs of the two types.
The first LC is the aforementioned 5CB. This material
is frequently used as the model LC medium, although
the elastic moduli of 5CB-based LCs have been
reported only in a few papers [17, 19]. According to the
published data, the room-temperature ratio of the elas-
tic moduli K33/K22 (elastic ratio) for 5CB is close to
three, which allowed us to expect bistable switching to
take place even in this classical material. The second
LC, referred to below as BCO, was prepared from a
mixture of three bicyclooctane homologs with a com-
mon structural formula,

, (5)

where R = C3H7, C5H11, and C7H15. The obtained mix-
ture contained the three homologs in a weight ratio of
30 : 40 : 30. The physical properties of an analogous
mixture have been thoroughly studied by Bradshaw
et al. [20] and are presented in the table. It should be
noted that the measurements reported in [20] were per-
formed at relatively high temperatures; nevertheless,
the material is characterized by an extremely high elas-
tic ratio, K33/K22 = 3.3, which must still increase (taking
into account the temperature derivatives) on the pas-
sage to room temperature. The BCO-based LC mixture
fully justified our expectations with respect to bistable
switching in a system with the ground 2π-state accord-
ing to the state diagram in Fig. 3.

The chiral additive was an KhDN-1 compound (syn-
thesized at the State Research Institute of Organic
Intermediates and Dyes (NIOPIK), Moscow), which
was introduced into both LC matrices in a concentra-
tion of 0.4 wt %. This amount of additive ensured the
natural helical pitch of P0 = 10.6 µm for 5CB and P0 =
6.9 µm for BCO.

The experiments were performed on samples in the
form of a Cano wedge with the layer thickness varying
from 2 to 10 µm over a distance of about 10 cm. The
wedge was obtained between polyimide-coated 10 ×
15 × 100 mm optical glass plates with a pattern of
4-mm-wide transparent SnO2 electrodes perpendicu-
lar to the long side, formed by chemical etching. The
high rigidity of glass plates and high quality of their
surfaces ensured smooth variation of the LC layer
thickness. The LC layers were aligned by rubbing the
polyimide films, which ensured the required planar
boundary conditions with strong anchoring and a
director pretilt angle of about 4°. Because of the strong
anchoring of LC molecules at the alignment surfaces,

R CN
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the pitch cannot vary smoothly along the wedge. This
results in the formation of the Grandjean zones in
which the number of half-turns of the helix is fixed
within a certain interval of the layer thickness, as deter-

0

0.1

0.2

0.3

0.4

T, rel. units

360° twist
Homogeneous

360° twist
(a)

(b)

0 0.1 0.2 0.3
t, s

0

10

20

U, V

0-state

Fig. 2. Bistable switching in an LC layer: (a) numerically
simulated electrooptical response showing transitions
between 0- and 2π-states; (b) control pulsed voltage wave-
form. The LC layer is sandwiched between crossed polariz-
ers; the transmission axis of one polarizer is parallel to the
xz plane containing the LC director in the homogeneous
0-state. The numerical simulation was performed for
d/P0 = 1, K33/K22 = 4, and ∆n = 0.19 (other parameters of
the virtual LC are close to the corresponding values for 5CB
(see the text).

4
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2

K33/K22

0.5 0.6 0.7 0.8 0.9 1.0
d/P0

4

6

8

10

12

14
K33, pN

1 2

Ground 180° twist state Ground 360° twist
state

Non-switchable homogeneous
unwound state

Non-switchable 360° twist state

Fig. 3. The results of numerical simulations showing the
regions of parameters of the virtual LC featuring non-swit-
chable 0-state (to the left of curve 1), bistable switching
between the 2π- and 0-states (region between curves 1
and 2), and non-switchable 2π-state (to the right of curve 2)
in response to a driving voltage waveform analogous to that
depicted in Fig. 2b.
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mined by the d/P0 ratio varying in the intervals 0–1/4,
1/4–3/4, 3/4–5/4 and so on. The numbers of half-turns
of the cholesteric helix in the adjacent zones differ by
one, so that the states of the LC director in the adjacent
zones are topologically nonequivalent. The neighbor-
ing zones are separated by disclination lines.

The sample design described above makes it possi-
ble to study the electrooptical effects simultaneously in
three Grandjean zones corresponding to a director twist
angle of 0° (unwound or 0-state), 180° (π-state), and
360° (2π-state). Each of these zones consists of many
local electrically independent cells of variable thick-
ness. The local thickness of each cell was measured

1

2 3

4

5

6

7

8

9

Fig. 4. Schematic diagram of the experimental setup for the
investigation of LC orientation and electrooptical switch-
ing: (1) polarization microscope (Polam P-113); (2) photo-
detector or video camera; (3) digital oscillograph (Tektronix
TDS 3012); (4, 6) microscope polarizers; (5) sample (LC
layer in Cano wedge); (7) microscope light source (incan-
descent lamp); (8) voltage source; (9) personal computer
(with Creative PCI-128 sound board and PhysLab 5.0 pro-
gram package).

Parameters of a BCO-based LC mixture [20]

Elastic moduli K11, K22, K33, pN (T = 74°C) 11.2, 10.0,
33.0

dK11/dT, pN/K (T = 74–80°C) –0.3

dK33/dT, pN/K (T = 74–80°C) –1.3

d(K22/K11)/dT, K–1 (T = 74–80°C) –0.2

Principal components of the low-frequency 
permittivity tensor ε||, ε⊥  (T = 74°C)

17, 8.5

Refractive indices n||, n⊥  (T = 74°C) 1.64, 1.50

Bulk viscosity η, Pa s (T = 20°C) 0.1

NLC–isotropic phase transition temperature, °C 92

Crystal–nematic phase transition temperature, °C 20
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using a capacitive technique before filling the wedge
with the LC medium.

The main idea in the search for and study of the pre-
dicted bistable switching consisted in monitoring the
LC layer switching in the third (360° twist) Grandjean
zone between the ground 2π-state and the homoge-
neous 0-state and vice versa. For a definite orientation
of the axes of crossed polarizers, the 2π- and 0-states
are readily distinguished by the naked eye due to the
structure of differently colored bands separated by dis-
clination lines. Indeed, if the axis of one of the crossed
polarizers is oriented along the direction of rubbing of
the alignment layers, the homogeneous state corre-
sponds to the dark region irrespective of the LC layer
thickness. Therefore, switching into the homogeneous
state renders the interval of thicknesses corresponding
to the third Grandjean zone optically equivalent to that
of the first Grandjean zone. However, the third and first
Grandjean zones are separated by a well-distinguished
second Grandjean zone in which the director has a 180°
twist.

The electrooptical response was studied using the
setup schematically depicted in Fig. 4. The setup com-
prised a polarization microscope (equipped with a pho-
todetector and a video camera), a digital oscillograph,
and an original system of virtual devices PhysLab 5.0
used in this case for the formation of the control pulsed
voltage waveform of a desired shape filled with a 1-kHz
sinusoidal signal. Switching into the homogeneous
0-state was provided by a two-part pulse with the
amplitudes U10 (reset phase) and U20 (selection phase)
and the respective durations τ10 and τ20. The reverse

0.6

0.7

0.8
d/P0

0 4 8 12 16
U20, V

6.5

7.0

7.5

8.0

8.5
d, µm

1

2

3

4
5

360°

180°

Fig. 5. Bistable switching in 5CB at T = 21°C: experimental
curves bounding the region of values of the layer thickness
d, the ratio d/P0, and the selection pulse amplitude (U20)
ensuring bistable switching between the 2π- and 0-states for
U10 = 20 V, τ10 = 50 ms, and various selection pulse dura-
tions τ20 = 20 (1), 50 (2), 100 (3), and 200 ms (4); horizontal
line 5 corresponds to the LC layer thickness at which the
disclination line separating the second (180° twist) and third
(360° twist) Grandjean zones in the Cano wedge is
observed.
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switching to the 2π-state was induced by a single pulse
with an amplitude of U2π = U10 (see Fig. 8b).

Figure 5 shows a family of closed curves bounding
the region of values of the layer thickness (d/P0) and the
selection pulse amplitude (U20) for bistable switching
between the 2π- and 0-states in a 5CB-based LC for
various selection phase durations τ20. For example, at
U20 = 2.5 V and τ20 = 200 ms, bistable switching is
observed in the maximum range of LC thicknesses
(from 6.5 to 8.5 µm). At a given content of the chiral
additive, this corresponds to the interval of d/P0 values
from 0.61 to 0.8. For d/P0 < 0.75, the switching is local-
ized in the second Grandjean zone and corresponds to
the Berreman–Heffner type bistability. Observation of
the bistable switching effect in this region required
multiply repeated application of the pulsed voltage
waveform with a high amplitude (about 20 V), which
was necessary to eliminate the ground π-state. In this
case, we have initially observed in the Cano wedge a
slow (over several seconds) transition from the π- to
2π-state via the formation of numerous defects. It was
not until complete disappearance of the LC regions in
the π-state that homogeneous bistable switching
between the 2π- and 0-states could be observed. As for
a very narrow interval within 0.75 < d/P0 < 0.8, this
region falls into the third Grandjean zone. Here, the
2π-state is (by definition) the ground state and, hence,
we observe the anticipated bistability without the third
π-state. It should be emphasized that this thickness
region of switchable states is very small with respect to
the LC layer thickness and is localized at the very
boundary of the second Grandjean zone. A comparison
of the experimental data to the results of simulation
showed that the elastic ratio K33/K22 = 3 for the
5CB-based LC is somewhat overstated; nevertheless,
to within the experimental uncertainty, this value is in
good agreement with the observed behavior. Indeed,
according to the results of simulation (Fig. 3), the
upper boundary of the region of switchable states with
respect to the LC layer thickness corresponds to d/P0 =
0.82, while the experiment (for the optimum para-
meters of switching pulses) gives upper value of
d/P0 = 0.8.

The experimental situation for the BCO-based LC
was sharply different from that for 5CB. As expected
based on the simulation results for a large elastic ratio
(K33/K22 > 3.3), the switching was observed only in the
third Grandjean zone. The observed behavior is illus-
trated in Fig. 6, which shows (like Fig. 5 for 5CB) a
family of closed curves bounding the region of param-
eters ensuring bistable switching for various values of
τ20. At U20 = 5 V, an increase in the selection pulse
duration τ20 from 20 to 200 ms results in that an
increased (from 30 to 70%) part of the third zone is
involved in the switching process. Figure 7 illustrates
the role of the reset pulse amplitude U10 at a fixed reset
time τ10 = 50 ms. As can be seen, the maximum range
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of layer thicknesses for bistable switching is achieved
at relatively high U10 values on a level of 20–30 V.
In the case of relatively low control fields correspond-
ing to U10 = 10 V and U20 = 5 V, it is necessary to use
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Fig. 6. Bistable switching in BCO at T = 24°C: experimen-
tal curves bounding the region of values of the layer thick-
ness d, the ratio d/P0, and the selection pulse amplitude
(U20) ensuring bistable switching between the 2π- and 0-
states for U10 = 20 V, τ10 = 50 ms, and various selection
pulse durations τ20 = 20 (1), 50 (2), and 200 ms (3); hori-
zontal lines corresponds to the LC layer thicknesses at
which the disclination lines separating (4) the second (180°
twist) and third (360° twist) Grandjean zones and (5) the
third and fourth (540° twist) Grandjean zones are observed.
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Fig. 7. Bistable switching in BCO at T = 24°C: experimen-
tal curves bounding the region of values of the layer thick-
ness d, the ratio d/P0, and the selection phase duration (τ20)
ensuring bistable switching between the 2π- and 0-states for
U20 = 5.2 V, τ10 = 50 ms, and various reset pulse amplitudes
U10 = 10 (1), 15 (2), and 30 V (3); dashed horizontal lines
corresponds to the LC layer thicknesses at which the discli-
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and fourth (540° twist) Grandjean zones (for d/P0 = 1.25)
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relatively large durations of the selection phase:
τ20 > 150 ms. In this case, bistable switching is local-
ized at the center of the third Grandjean zone where
d/P0 ~ 1.

Figure 8 presents oscillograms illustrating the elec-
trooptical switching between the 0- and 2π-states. As
can be seen, the observed electrooptical response coin-
cides in detail with the predicted behavior (see Fig. 2).
The difference in the time scale between Figs. 2 and 8
is related only to the difference in viscoelastic parame-
ters between the model and real LC materials. It should
be noted that a transition to the homogeneous 0-state
after termination of the two-part voltage pulse is
accompanied by the characteristic bounce of the optical
transmission. The duration of this bounce is determined
by viscoelastic properties of the LC medium. From the
standpoint of practical applications, this optical bounce
is undesired. The problem of optical compensation for
this effect is a subject for separate investigation.

Finally, it should be noted that, since the unwound
homogeneous state is metastable, prolonged absence
of the control field leads to unavoidable relaxation to
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0 1 2 3 4
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Fig. 8. Oscillograms of the (a) optical transmission T and
(b) control pulsed voltage waveform for bistable switching
between the 2π- and 0-states in the third Grandjean zone
(d/P0 = 0.94) at T = 25°C. The LC layer is sandwiched
between crossed polarizers; the dark state (e.g., at t = 1 s)
corresponds to the 0-state; the bright state (e.g., at t = 1.8 s)
corresponds to a helical distribution of the director in the
2π-state.
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the ground 2π-state. The rate of this relaxation
decreases with increasing LC layer thickness and with
decreasing number of defects on the alignment sur-
face. At a layer thickness of about 7 µm, the character-
istic time of the complete transition to the ground state
amounts to tens of seconds. In this context, it would be
more correct to speak of a quasi-bistable switching. We
use the term bistable switching because it is histori-
cally attributed to the Berreman–Heffner effect (which
would be also more correctly classified as quasi-
bistable switching).

4. CONCLUSIONS

We have theoretically predicted, based on the
results of numerical simulation, and experimentally
observed and studied the phenomenon of bistable
switching in the third Grandjean zone of a chiral nem-
atic layer. In this case, the ground (thermodynamically
equilibrium) state corresponds to a helical director dis-
tribution deep in the layer with the resulting 360° twist,
and the switching takes place between the ground state
and a metastable unwound state of the director. In con-
trast to the well-known Berreman–Heffner bistable
switching, the process under consideration does not
involve a third state corresponding to the 180° twist.
The results provide a deeper insight into the role of
topologically equivalent states in the electrooptics of
LCs. The absence of the topologically nonequivalent
180° twist state leading to undesired defect formation
simplifies the use of the proposed effect in electroopti-
cal devices.
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Abstract—The complex dynamics of intracavity three-wave mixing are discussed. Detailed results obtained
by numerical simulation of routes to chaos are presented for a wide range of parameters. As the pump intensity
increases, a complex sequence of alternating regular and chaotic self-modulation regimes is observed. The rela-
tionship between these regimes and soliton formation and propagation is analyzed. © 2005 Pleiades Publishing,
Inc. 
1. INTRODUCTION AND STATEMENT 
OF THE PROBLEM

Spatiotemporal chaos in nonequilibrium systems is
one of the most challenging problems in modern non-
linear physics [1–4]. One important example of wave
interaction leading to the onset of chaos is three-wave
mixing, which manifests itself in fluid dynamics,
plasma physics, radio engineering, electronics, nonlin-
ear optics, and other areas [2–7].

In this paper, we analyze the nonlinear dynamics of
intracavity three-wave mixing in a quadratic nonlinear
medium. This system can be considered as a model of
an optical parametric oscillator (OPO), as well as of
other electromagnetic oscillators [8, 9]. Another
example is acousto-optic interaction in a system with
reflecting boundaries [10]. Currently, generation of
chaotic signals is considered a promising field of
research in view of possible applications in communi-
cation systems, radar technology, etc. [11–13]. In
these applications, distributed systems offer certain
advantages as sources of high-dimensional chaotic
signals characterized by a high complexity (in a cer-
tain sense).

We consider three interacting waves whose frequen-
cies and wavenumbers satisfy the following phase
matching conditions:

(1)

A pump photon with frequency ωp is down-converted
into a signal–idler photon pair with frequencies ωs and
ωi , respectively [2–7]. We use the model of this system
developed in [14] by applying the slowly varying enve-

ωs ωi+ ωp,=

ks ki+ kp.=
1063-7761/05/10001- $26.00 0208
lope approximation [2–6]:

(2)

(3)

(4)

where As, i, p , v s, i, p , and σs, i, p denote the corresponding
amplitudes, group velocities, and nonlinear coupling
constants, respectively. The nonlinear medium is con-
fined in a cavity tuned to the signal frequency. The cav-
ity is supposed to be transparent for the idler and pump
beams. (This system is known as singly resonant opti-
cal parametric oscillator in the OPO theory [9].)
Boundary conditions are set as follows (see [14]):

(5)

(6)

where R = ρexp(iψ) is a (complex-valued) feedback
parameter, l is the cavity length, ∆t is the feedback
delay time, and A0 is a constant input pump amplitude
(controlled by an external pump source). While the ini-
tial condition for the pump is Ap(x, 0) = A0, both signal
and idler are seeded by noise.

The parameters ρ, ψ, and ∆t depend on the cavity
type, which is not specified here. For example, the for-
ward- and reflected-wave amplitudes at the boundaries

∂As

∂t
-------- v s

∂As

∂x
--------+ σsAi*Ap,=

∂Ai

∂t
-------- v i

∂Ai

∂x
--------+ σiAs*Ap,=

∂Ap

∂t
--------- v p

∂Ap

∂x
---------+ σ– pAsAi,=

As 0 t,( ) RAs l t ∆t–,( ),=

Ai 0 t,( ) 0, Ap 0 t,( ) A0,= =
© 2005 Pleiades Publishing, Inc.
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of a linear Fabry–Perot cavity, As and , satisfy the
relations

(7)

where R0 and Rl denote the (complex-valued) left and
right boundary reflection coefficients, respectively.
Since the reflected wave is not involved in the wave

mixing,  obeys the equation

(8)

for a wave propagating backwards with the signal
group velocity. Representing the solution to Eq. (8) as

we eliminate the reflected-wave amplitude from (7) and
obtain Eq. (5) with ρ = |R0Rl |, ψ =  – 2ksl,
and ∆t = l/v s.

In the case of a traveling-wave ring cavity, the delay
∆t is an independent parameter, but boundary condi-
tions (5) and (6) still hold. Moreover, they apply to the
system considered in [10], where no cavity was
employed and feedback was implemented by means of
acoustic wave reflection from the boundaries.

Changing to the dimensionless variables (see [14])

and dropping the primes, we rewrite Eqs. (2)–(4) as

(9)

(10)

(11)

where α = A0l(σsσi/v sv i)1/2 is the normalized input
pump amplitude and the parameter u = v i(v s –
v p)/v p(v i – v s) characterizes the group-velocity mis-
match. To be specific, we assume that v i > v s; other-
wise, similar equations can easily be obtained by
changing the normalization conditions. In either case,

As
–

As 0( ) R0As
– 0( ),=

As
– l( ) RlAs l( ) 2iksl–( ),exp=

As
–

∂As
–

∂t
--------- v s

∂As
–

∂x
---------– 0=

As
– 0 t,( ) As

– l t l/v s–,( ),=

R0Ri( )arg

As'
σpv s

σsv p
-----------

As

A0
------, Ai'

σpv i

σiv p
-----------

Ai

A0
------, Ap'

Ap

A0
------,= = =

ξ x
l
--, τ

v sv i t x/v i–( )
l v i v s–( )

----------------------------------,= =

∂As

∂τ
--------

∂As

∂ξ
--------+ α Ai*Ap,=

∂Ai

∂ξ
-------- α As*Ap,=

1 u+( )
∂Ap

∂τ
---------

∂Ap

∂ξ
---------+ α AsAi,–=
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the difference of the signal and pump group velocities
is supposed to be sufficiently large, because their rela-
tive values determine the parametric-gain bandwidth.
When v s ≈ v i , the bandwidth tends to infinity, i.e., the
corresponding signal spectrum is too wide to treat the
parameters in the starting equations as constants, and
even the equations for slowly varying amplitudes are
not valid anymore.

Boundary conditions (5) and (6) rewritten in terms
of the dimensionless variables are

(12)

where

is the normalized delay. For the Fabry–Perot cavity,
∆t = l/v s (see above) and, therefore,

However, δ can have any value in the present analysis,
since it is not restricted to any specific type of cavity.
Under the present assumptions, the spectrum of the sys-
tem is given by the expression (see [14])

(13)

where Ω is a dimensionless offset relative to the
frequency ωs satisfying exact phase matching condi-
tions (1).

It was shown in [14] that the pump amplitude cor-
responding to the generation threshold is a periodic
function of the feedback-parameter phase ψ. This
behavior is common to delayed feedback systems
(e.g., see [15–18]). When ψ = –2πn (n = 0, 1, 2, …), the
offset given by (13) is zero (i.e., one of the dimensional
eigenfrequencies corresponds to the exact phase match-
ing conditions) and generation is initiated by a pump of
minimal intensity. In this case, the generation condition
has a simple form:

(14)

Conversely, when ψ = –2πn + π, the nearest eigenfre-
quencies are equally separated from the phase-match-
ing frequency, the threshold pump intensity is at its
highest, and there is a periodic array of generation
zones in the (α, ψ) plane.

As the pump intensity increases, the steady-state
generation regime (with time-independent envelopes)
becomes unstable. In the ensuing self-mode-locked

As 0 τ,( ) RAs 1 τ δ–,( ), Ai 0 τ,( ) 0,= =

Ap 0 τ,( ) 1,=

δ
v sv i ∆t l/v i+( )

l v i v s–( )
--------------------------------------=

δ
v i v s+
v i v s–
----------------- 1.>=

Ωn
2πn ψ+

1 δ+
--------------------,=

ρ αcosh 1.=
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regime, a parametric soliton periodically propagates
along the axis [14, 15]. The onset of the self-mode-
locked regime always occurs via a “hard” change from
steady-state generation to strong envelope oscillation.
This can be interpreted as simultaneous generation of
many phase-locked cavity modes leading to periodic
formation of soliton-like pulses. This self-mode-lock-
ing mechanism is associated with a dip in the gain curve
[14, 17–21].

According to [14, 15], a transition to chaos through
intermittency is observed at the center of a generation
zone as the phase locking characteristic of the steady-
state and self-mode-locked periodic regimes breaks
down. In the latter regime, the phases of the generated
modes (each depending separately on coordinate and
time) satisfy the relation

(15)

which ensures optimal conditions for energy exchange
between the modes. As the modulation depth increases
with α, the system passes through states with fast-vary-
ing phases. At certain instants, the phase locking breaks
down. Accordingly, both coupling efficiency and enve-
lope oscillation weaken, the phase locking is restored,
and the process repeats. The output waveform is a
sequence of almost regular intervals of phase-locked
oscillation with growing modulation depth interrupted
by intervals of irregular oscillation.

However, the description given in [14, 15] does not
embrace all scenarios. Nonlinear oscillations in distrib-
uted systems are characterized by complex behavior in
the corresponding parameter spaces involving alternate
regular and chaotic regimes and different scenarios of
transition to chaos [15–18, 22, 23]. The system consid-
ered here should be expected to exhibit behavior of this
kind as well. Note also that only the transition to chaos
at the center of a generation zone has been analyzed,
whereas essentially different dynamics may be
observed when the system is detuned from the zone
center frequency [15, 16].

In this paper, we present the results of a detailed
study of chaotic dynamics. In Section 2, we assume that
phase-locking condition (15) is satisfied, in which case
the envelope amplitudes in Eqs. (9)–(12) can be treated
as real variables. We demonstrate a variety of self-
mode-locked regimes differing by the number and
polarity of the generated solitons. As the pump inten-
sity increases, a transition to chaos occurs via break-
down of quasiperiodic dynamics. It was shown in [14]
that the scenario described above cannot be imple-
mented when the pump intensity substantially exceeds
the generation threshold, because the phase-locked
regime becomes unstable. However, an analysis of this
simplified route provides a correct physical interpreta-
tion of the complex dynamics observed in the general
case of complex amplitudes (see Section 3). In Section 4,

ϕp ξ τ,( ) ϕ s ξ τ,( )– ϕ i ξ τ,( )–[ ]sin 0,=
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we discuss a scenario of transition to chaos near the
boundaries of a generation zone, where bistability is
possible; i.e., the regimes developing from two neigh-
boring modes coexist. The coalescence of these
regimes (disappearance of bistability) due to increasing
supercriticality is analyzed in detail.

It should be mentioned here that various issues aris-
ing in the OPO theory have been addressed in numer-
ous studies (e.g., see [24–34]). However, the complex
dynamics and scenarios of transition to chaos discussed
in this paper have almost never been considered. The
analyses were focused on stability of the steady-state
regime, formation of soliton-like localized structures,
and related phenomena. For the most part, the case
when all of the three waves are phase-matched with
high-Q cavity modes was considered (three-wave para-
metric oscillator). Under this condition, one can set
periodic boundary conditions and seek solutions for the
slowly varying envelope fields of appropriate eigen-
modes (i.e., consider the so-called mean-field limit
[24–26, 28, 29, 31, 34]). In this approximation, the
starting equations can be reduced to models analogous
to the Ginzburg–Landau or Swift–Hohenberg equation
[25, 26, 28, 31]. However, the three-wave coupling
model based on Eqs. (9)–(11) is better suited for ana-
lyzing the essentially multimode regimes of complex
dynamics. According to the terminology of the OPO
theory, this model describes a singly resonant nonde-
generate OPO with an arbitrary-Q cavity. However, we
emphasize that the model is universal in the sense that
it describes the dynamics of intracavity parametric mix-
ing of waves of any nature.

We also note that our analysis is restricted to a one-
dimensional problem formulation. This approach is
applicable when the transverse field distribution can be
treated as invariant. Thus, we ignore the instabilities of
transverse field profile, which play an important role in
the dynamics of broad-area cavities [24–26, 28, 29, 32].
The complex dynamics due to two-dimensional effects
should be analyzed in a separate study.

2. TRANSITION TO CHAOS AT THE CENTER 
OF A GENERATION ZONE: PHASE LOCKING

Consider the dynamics of three-wave mixing at the
center of a generation zone (ψ = 0). In this case, it can
be shown that there exist solutions describing phase-
locked modes, i.e., satisfying condition (15) (see [14]),
and the envelope in Eqs. (9)–(12) can be treated as real
variables.

To be specific, we set ρ = 0.2 (i.e., consider a rela-
tively low-Q cavity), u = –1, and δ = 1.0. We consider
the sequence of bifurcations observed as the input
pump amplitude is increased. When α is relatively
small, we are dealing with single-mode generation at
the fundamental frequency (see [14]). Since Ω = 0 in
our model, the generation frequency is ωs . When α
exceeds a certain threshold αsm, the instability of the
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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Fig. 1. Spatiotemporal dynamics, phase portraits, and spectra of output signal in different self-mode-locked regimes: ψ = 0; u = −1;
δ = 1.0; ρ = 0.2; α = 4.75 (a), 5.0 (b), and 5.8 (c).
single-mode regime leads to a self-mode-locked
regime. The output waveform aout(τ) = |As(ξ = 1, τ)|,
phase portrait, and spectrum shown in Fig. 1a illustrate
the spatiotemporal dynamics of periodic soliton-like
pulse propagation. The hard onset of self-mode-locking
is characterized by generation of numerous side modes
at frequencies close to Ωn defined by (13). The particu-
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lar combination of the side modes is determined by the
value of δ (see [14] for details). In the case considered
here, even modes are generated (n = 2, 4, 6, …) and the
offset Ωsm between the fundamental mode and the near-
est side modes is approximately 2π. Note that the self-
mode-locking mechanism described here is character-
istic of broadband delayed-feedback oscillators, such
SICS      Vol. 100      No. 1      2005
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as traveling-wave tube oscillators [18–21], ring-cavity
lasers [35–37], and free electron lasers [38].

New self-mode-locked regimes emerge as α
increases, differing by the number and polarity of gen-
erated parametric solitons. Figure 1 illustrates the three
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Fig. 2. Phase portraits and spectra illustrating a quasiperi-
odic route to chaos at α = 8.2 (a), 8.5 (b), and 8.75 (c). The
remaining parameters are as in Fig. 1.
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regimes of this kind obtained for the parameter values
specified above. In the regime corresponding to Fig. 1a,
periodic propagation of a single soliton with positive
polarity is observed. Note that the obvious invariance of
Eqs. (9)–(11) under the change As, i  –As, i implies
that there exists either a solution that is symmetric
under this change or a pair of asymmetric solutions that
are mutually symmetric. Figure 1a illustrates one of the
admissible asymmetric regimes.

Figure 1b illustrates an asymmetric two-hump soli-
ton regime with opposite polarities. The corresponding
modulation frequency is half that in the case of Fig. 1a;
i.e., odd side modes are generated. (Recall that the
onset of a self-mode-locked regime observed when δ =
1.0 is due to generation of the modes with n = ±2.) The
section of the corresponding phase diagram shows a
limit cycle of complex geometry. Note that the modes
with n = ±1 have the largest amplitudes in this, whereas
the largest amplitude in the regime illustrated by Fig. 1a
corresponds to the fundamental mode (n = 0). The dip
at the fundamental frequency manifests a change in the
gain curve [14].

Figure 1c illustrates a symmetric regime in which
single-hump solitons having similar shapes and oppo-
site polarities (sometimes called solitons and antisoli-
tons) are generated. In this case, the modulation fre-
quency Ωsm is close to 2π (as in Fig. 1a), but the funda-
mental mode is completely suppressed. The spectrum
consists of the Ωsm-mode and its odd harmonics; i.e.,
only the ±2(n +1)th modes survive (n = 0, 1, 2, …).

Analogous transitions between asymmetric and
symmetric self-mode-locked regimes have also been
found in various models of optical lasers [35, 36, 39]
(this phenomenon was called mode splitting in [39]).
These results were indirectly confirmed in a recent
study [40] of parametric spin-wave generation in an
“active ring” consisting of an yttrium–iron–garnet film
and a feedback loop containing a microwave amplifier
and a variable attenuator. Both nonlinearity and disper-
sion were completely determined by the film’s proper-
ties, while the amplifier was used to compensate for
coupling losses in the input and output antennas. The
film was pumped by a square-pulse train at the doubled
signal frequency. When the signal frequency was close
to one of the ring eigenfrequencies, a periodic sequence
of identical solitons analogous to that shown in Fig. 1a
was generated. When the signal frequency was approx-
imately at the midpoint between eigenfrequencies, soli-
tons with alternating polarity were generated in a
sequence analogous to that presented in Fig. 1c. Similar
behavior was exhibited by different active rings con-
taining ferromagnetic films [41, 42]. However, the tran-
sitions between regimes predicted by the present model
are due to variation of pump intensity rather than fre-
quency and are associated with the nonlinear transfor-
mation of the gain curve described in [14].

With further increase in α, quasiperiodic self-mod-
ulation is observed, and then a transition to chaos
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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occurs via breakdown of quasiperiodic dynamics (the
Ruelle–Takens scenario). Figure 2 shows phase
portraits and spectra illustrating quasiperiodic and cha-
otic self-modulation regimes.1 

Qualitatively similar behavior is observed at differ-
ent values of ρ and δ. The influence of the feedback
parameter is clear from the diagram of regimes in the
(ρ, α) plane shown in Fig. 3. The curves shown here
represent the generation threshold (predicted by (14))
and successive transitions from single-mode generation
via self-mode-locked periodic regimes with a different
number of solitons to quasiperiodic and chaotic self-
modulation. The illustrated behavior deviates from the
scenario described above only when ρ is close to unity
(i.e., for high-Q cavities), in which case a hard transi-
tion to chaos is observed instead of quasiperiodic self-
modulation. Note that the regions of quasiperiodic
dynamics contain multiple synchronization tongues
representing phase-locked regimes characterized by
rational quotients of mode frequencies. They are not
shown in the figure because they are too small.

Variation of the normalized delay δ does not lead to
any qualitative change either. However, the overall
dynamics becomes increasingly complex as this param-
eter increases. In particular, the number of multisoliton
regimes observed prior to the onset of quasiperiodic
self-modulation increases. This is easy to explain,
because transitions between different regimes are due
to competition between modes (see above), and the
parameter δ controls the number of “active” modes
(whose frequencies lie within the parametric-gain
bandwidth). In any event, the typically observed phe-
nomena include mode splitting and quasiperiodic route
to chaos.

3. TRANSITION TO CHAOS AT THE CENTER
OF A GENERATION ZONE: GENERAL CASE

Even though phase-locked modes always exist at the
center of a generation zone, they may be unstable. Cal-
culations performed in the general case of complex
amplitudes show that the scenario described in the pre-
ceding section holds only for steady-state generation
and self-mode-locked periodic regimes, when a single
soliton forms over the cavity length (regions SF and S1
in Fig. 3) [14, 15]. When the formation of two-hump
solitons with opposite polarities becomes possible,
there exist points where the signal amplitude vanishes.
Under this conditions, the system passes through states
with fast-varying phases, phase-locking condition (15)
is violated, and therefore both coupling efficiency and
envelope oscillation weaken. Then, the mode locking is
restored. Overall, the signal exhibits transition via
intermittency to a chaotic regime characterized by a
continuous spectrum. In the (ρ, α) plane shown in

1 Only the spectral domain of Ω > 0 is shown in Fig. 2, since the
spectra corresponding to real variables are symmetric about the
zero offset frequency.
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Fig. 3, the intermittency threshold corresponds to the
boundary separating regions S1 and S2. Since condition
(15) does not hold in chaotic regimes, the coupled wave
amplitudes cannot be treated as real quantities and the
multisoliton regimes described in the preceding section
are, strictly speaking, unstable. However, since the time
scales of transient processes are relatively long, the
regimes should rather be considered as metastable.
Therefore, they can be implemented in experiments, for
example, by pumping with a pulse train (as was done
in [40]).

However, intermittent chaotic regimes correspond
to a very narrow interval of α. At higher α, a periodic
self-modulation largely analogous to that illustrated by
Fig. 1b is observed, but the corresponding spectrum is
asymmetric (mode frequencies are shifted relative to
the their “zero-point” values given by (13)). Further
increase in pump amplitude leads to a transition to
chaos that has much in common with that described in
Section 2. As a typical example, consider the case of
ρ = 0.7 and ψ = 0.1π (Fig. 4). When α = 3.9, quasiperi-
odic self-modulation is observed (see Fig. 4a), the spec-
trum is dominated by modes with n = –2 and +1, while
the central modes (with n = –1 and 0) are suppressed.
The corresponding spatiotemporal dynamics resemble
the two-soliton regime depicted in Fig. 1b. At a higher
pump amplitude, a transition to chaos occurs via break-
down of quasiperiodic dynamics (see phase portrait and
spectrum in Fig. 4b). When α = 5.0 (Fig. 4c), periodic
mode locking is restored, and regular oscillation similar
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Fig. 3. Map of dynamic regimes in the (ρ, α) plane: αst =
generation threshold; SF = steady-state oscillation at the
fundamental frequency; S1–S3 = self-mode-locked regimes
with different number of generated solitons; Q = quasiperi-
odic self-modulation; Ch = chaotic self-modulation.
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Fig. 4. Phase portraits and spectra illustrating different types of behavior observed after transition to chaos via intermittency: ρ =
0.7; δ = 1.0; ψ = 0.1π; α = 3.9 (a), 4.3 (b), 5.0 (c), and 5.2 (d).
to the single-soliton generation depicted in Fig. 1a is
observed. Further increase in pump amplitude again
leads to a transition to chaos via breakdown of quasip-
eriodic dynamics. Thus, a sequence of alternating regu-
lar and chaotic regimes is observed, in agreement with
results obtained for different distributed systems char-
acterized by complex dynamics [15–18, 22, 23]. The
bifurcation sequence ultimately leads to a “fully devel-
oped” chaotic regime, whose phase portraits do not con-
tain any identifiable large-scale pattern (see Fig. 4d).
However, even the spectra of such regimes contain dis-
tinct components corresponding to the eigenmodes of
the original system.

Overall, the complex dynamics at the center of a
generation zone described above is observed for other
values of the feedback parameter. The only exceptions
are the cases of ρ ! 1 and ρ ~ 1, where somewhat sim-
pler behavior is observed (“islands” of regular dynam-
ics in the chaotic sea disappear). However, several tran-
sitions can still be identified between chaotic attractors
that have developed from various modes. The corre-
sponding spectra differ by the locations and amplitudes
of discrete peaks standing out against a noisy back-
ground.
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It should also be noted that the overall dynamics
becomes increasingly complex as δ increases, i.e., the
frequency difference between modes decreases. Tran-
sient processes tend to take longer times, whereas the
intervals of regular behavior become shorter. The
regimes discussed above are increasingly difficult to
identify, obviously because of competition between
many closely spaced modes.

4. TRANSITION TO CHAOS
NEAR THE BOUNDARIES 
OF A GENERATION ZONE

Finally, we discuss the complex dynamics observed
near the boundaries of a generation zone, where stable
(but not necessarily single-frequency) generation
regimes developing from two neighboring eigenmodes
coexist. The particular regime that survives after the
transition is determined by the initial conditions. This
behavior is typically exhibited by delayed-feedback
oscillators [15–18]. The key question concerns the
regime that develops from two coexisting attractors as
supercriticality increases: do they merge into a single
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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attractor, or are they superseded by an essentially dif-
ferent regime?

To be specific, we consider the case of ρ = 0.2, δ =
1.0, and ψ = 0.9π, when the regimes corresponding to
the modes with n = 0 or –1 are observed, depending on
initial conditions. The dynamics in question were sim-
ulated by increasing α and retaining the initial condi-
tions. The dynamics observed under relatively weak
pumping are qualitatively similar to those described
above. In particular, a transition to chaos via intermit-
tency occurs in the fundamental mode when α = 5.2,
superseded by quasiperiodic self-modulation at α =
5.28. Figure 5 illustrates the coexistence of two quasip-
eriodic regimes corresponding to the same parameter
values.

As α increases further, a new attractor appears, with
a spectrum dominated by modes with n = –2 and 1 (see
Fig. 6a). The spectrum, being almost symmetric about
the fundamental frequency, contains distinct compo-
nents at the frequencies corresponding to n = –5 and 4,
which are almost equal to the tripled frequencies of the
dominant modes. The frequencies of the remaining
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Fig. 5. Phase portraits and spectra of output signal for the
bistable regime with ρ = 0.2, ψ = 0.9π, δ = 1.0, and α = 5.37.
The coexistent self-modulation regimes develop from the
modes with n = 0 (a) and –1 (b).
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components are different from any eigenmode fre-
quency. Thus, the central modes with n = –1 and 0 are
suppressed. This regime is analogous to the mode split-
ting and “symmetric” cycles described in [35, 36, 39].
The output waveform is a sequence of envelope solitons
having different polarities. The carrier-wave phases
corresponding to neighboring solitons differ appro-
ximately by π.2 In this respect, the regime is analogous
to those discussed in Section 2 (see Fig. 1c).

The three regimes coexist within a narrow range of
parameter values. Outside it, the attractors that develop
from the central modes become unstable, and a single
“symmetric” attractor survives. The corresponding
self-modulation regime is quasiperiodic, except for a
resonance observed in a narrow parameter interval due
to self-mode-locking. At α ≈ 5.65, a transition to chaos
occurs via breakdown of quasiperiodic dynamics. With

2 It is clear that the phase is a function of both coordinate and time.
However, it varies insignificantly within each pulse, and the dif-
ference in phase between neighboring solitons is almost equal
to π.
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Fig. 6. Phase portraits and spectra for regimes with sup-
pressed central modes: (a) multiple-frequency regime with
α = 5.4; (b) fully developed chaotic regime with α = 6.0.
The remaining parameters are as in Fig. 5.
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increasing supercriticality, a transition to “fully devel-
oped” chaos analogous to that discussed above is
observed (see Fig. 6b).

5. CONCLUSIONS

We have presented a detailed description of chaotic
dynamics of intracavity three-wave mixing that gener-
alized the results reported in [14, 15]. As the pump
amplitude is increased, the first transition to chaos via
intermittency (due to breakdown of phase locking)
described in [14, 15] is followed by a complex
sequence of alternating regular and chaotic self-modu-
lation regimes in which breakdown of quasiperiodic
dynamics plays a dominant role. Transitions between
distinct regimes are associated with changes in spa-
tiotemporal dynamics caused by formation of coherent
structures (envelope solitons) and their interactions.

We have analyzed the complex dynamics near the
boundaries of a generation zone (which was not studied
in [14, 15]), where the system’s behavior is further
complicated by effects due to bistability, i.e., coexist-
ence of oscillatory regimes developing from neighbor-
ing modes. With increasing supercriticality, the corre-
sponding attractors become unstable and a new regime
emerges that is symmetric about the phase-matching
frequency (i.e., the gain-bandwidth center). This
regime is dominated by distant side modes, whereas the
central modes are suppressed. The bifurcation sequence
leads to the so-called fully developed chaos, i.e., a
highly irregular oscillatory regime in which no large-
scale pattern can be identified in the section of the
phase portrait. This behavior is characteristic of
delayed-feedback distributed systems, in agreement
with results reported in [15–18].

The results obtained in this study can be used to
explain the complex dynamics exhibited by certain
devices, particularly optical parametric oscillators. We
have also observed some phenomena that occur in other
systems, such as delayed-feedback traveling-wave tube
oscillators [18–21], ring-cavity lasers [35–37], and
“active rings” based on ferromagnetic films [40–42].
These findings suggest that the behavior demonstrated
here is common to broadband delayed-feedback oscil-
lators.
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Abstract—We propose a model of a Brownian motor that performs a useful work against a load force F in an
asymmetric periodic potential V(x) = V(x + 2L) that undergoes random shifts by a half period L with a frequency
γ. An arbitrarily shaped potential profile is repeated with an energy shift ∆V in both half-periods L, while the
periodicity of the function V(x) is ensured by its jumps at x = 0 and x = L. The boundary condition at x = 0 for
the distribution function of a Brownian particle allows us to introduce a high and narrow potential barrier V0
that blocks the reverse current and leads to high efficiency of the motor (the ratio of the useful work done
against the load force F to the energy imparted to the particle through the potential shifts). Based on this
model, we derived exact analytical expressions for the current J and the efficiency η. In the special case of
piecewise-linear potentials, J and η were plotted against F and γ for various values of the parameters ∆V
and V0. We discuss the influence of the potential shape and fluctuation frequency on the main characteristics
of the motor. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

At present, the nonequilibrium fluctuations in asym-
metric environments that lead to a directed motion of
Brownian particles even in the absence of an external
field are being intensively investigated [1–3]. These
issues are of methodological and practical interest in
studying and constructing the so-called Brownian
motors—nanomachines converting various forms of
energy into mechanical energy, systems segregating
nanoparticles, molecular pumps operating on the split-
ting energy of adenosine triphosphate, etc. In modeling
such systems, an asymmetry is introduced by consider-
ing asymmetric potentials, while fluctuations are pro-
duced by time-varying deterministic or random exter-
nal forces (rocking ratchets) [4–6] or by the corre-
sponding changes in the potentials themselves (flashing
ratchets) [7–9]. Considering fluctuating potentials is par-
ticularly important for biological applications [10]. Fast
chemical reactions or sharply changing electric fields,
which cause abrupt changes in the rate constants of
chemical reactions related to directed particle transport,
could be responsible for these fluctuations [11–15]. Fluc-
tuating potentials in these models arise when the phase
space of reaction coordinates can be introduced [16–18].

Asymmetric potentials that fluctuate (switch)
between two states, U±(x), with a frequency γ are com-
monly considered. Through these fluctuations, a
Brownian particle acquires a certain energy part of
which dissipates when equilibrium is established in
each of the potential profiles U±(x), while the other part
transforms into the energy of directed motion. The
main characteristics of such a Brownian motor include
1063-7761/05/10001- $26.00 0218
the current J, which determines the mean velocity of
the directed motion, and the efficiency η, which charac-
terizes the ratio of the useful work done against the
external load force F to the energy spent on the poten-
tial fluctuations. A monotonic decrease in the current J
with increasing load force F and a nonmonotonic
behavior of the function η(F) with a maximum ηm at a
certain value of Fm are typical of a Brownian motor in a
certain γ range, just as for any motor. Naturally, models
with large ηm are of particular interest, especially since
biological motors generally demonstrate high efficiency.

Simple potentials with a minimum number of
parameters being varied, for example, sawtooth poten-
tials characterized only by the amplitude and the asym-
metry parameter, are commonly used to facilitate the
computational work. Owing to the linear shape of this
type of potentials, the differential equations that
describe the diffusion and drift of a Brownian particle
have analytical solutions, because their coefficients are
constant. Astumian and Bier [7] considered the fluctua-
tions of such potentials between two states in which
only their amplitudes differed. If the potential in one of
the switching states is equal to zero (see [2] for a
detailed description of this case), then the particle
motion in this state is purely diffusive, and, accord-
ingly, the function η(F) reaches a maximum at low
ηm ≈ 0.05 [19]. Chauwin et al. [9] showed that, if the
potential switches between two states with identical
spatial periods and if the extrema are shifted from one
another in a certain way, then the Brownian motion is
not involved in the generation of directed particle
motion at all. In the simplest case, an asymmetric peri-
© 2005 Pleiades Publishing, Inc.
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odic potential that undergoes random shifts by half a
period L with a frequency γ ensures that this condition
is satisfied. Clearly, one might expect an increase in ηm

in this case (see model B of fluctuating sawtooth poten-
tials in [20]). However, the efficiency increases signifi-
cantly only in those models in which each of the poten-
tials shifting by L contains a high barrier V0 that blocks
(under certain conditions) the reverse current [21]. An
additional condition is that the flat part of the potential
profile must be repeated with an energy shift ∆V in both
half-periods of the potential [22]. For a periodic poten-
tial profile, these two conditions can be satisfied simul-
taneously if the potential is allowed to change abruptly
at least at one point belonging to the interval (0, 2L).

In this paper, we present the exact analytical expres-
sions for J and η that were derived by using the above
model and that were analyzed for various types of
potential profiles and various parameters to elucidate
the prerequisites for the high efficiency of a Brownian
motor. In Section 2, we describe our model and intro-
duce the equations that define the main characteristics
of the motor. The general solution of these equations
and its specific realization for high blocking barriers,
for low and high potential switching frequencies, and
for the special case of linear potentials are presented in
Section 3. The influence of the potential shape and fluc-
tuation frequency on the main characteristics of the
motor is discussed in Section 4.

2. DESCRIPTION OF THE MODEL

The dynamics of a Brownian particle in the poten-
tials

(the subscripts + and – denote the potentials with the
components V(x) shifted by half a period and the related
quantities) is determined by two distribution functions,
ρ±(x, t), that satisfy the Smoluchowski equation [23]
with an additional term that describes random transi-
tions of the particle between the potentials U± with a
frequency γ:

(1)

Here, the currents j±(x, t) are defined by

(2)

where D is the diffusion coefficient, β = (kBT)–1 is the
inverse temperature, kB is the Boltzmann constant, and
T is the absolute temperature. In a steady state, the total

U± x( ) V± x( ) Fx+=

∂ρ± x t,( )
∂t

--------------------- ∂ j± x t,( )
∂x

--------------------– γ ρ± x t,( ) ρ+− x t,( )–[ ] .–=

j± x t,( ) D –βU± x( )[ ]exp–=

× ∂
∂x
------ βU± x( )[ ]ρ ± x t,( )exp{ } ,
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current J ≡ j+(x) + j–(x) is a constant that may be repre-
sented as [22]

(3)

Expression (3) was derived by integrating Eq. (1) over

x using the conditions ρ±(x + L) = (x) and j±(x + L) =

(x) that follow from the equality V±(x + L) = (x).
These conditions also determine the expression for the
energy spent on the potential switching U+  U– 
U+ per unit time:

(4)

Since the useful work done by the motor per unit time
against the load force F is Wout = 2FLJ, relations (3) and
(4) define the efficiency of the motor η = Wout/Win .

In a steady state, the system of equations (1) and (2)
is equivalent to fourth-order differential equations for
ρ±(x) with x-dependent coefficients that are expressed
in terms of the derivatives of the functions U±(x). These
equations reduce to third-order equations, because the
total current J is conserved as x changes. A simplifica-
tion arises when piecewise-linear potentials U±(x) are
used, which leads to third-order differential equations
with constant coefficients. Their general solution is
defined by the roots of a cubic equation, while the arbi-
trary constants and the sought-for current J can be
determined by a numerical procedure from the continu-
ity conditions for the functions ρ±(x) and their deriva-
tives at the points of contact of the linear segments of
the potentials [7]. The problem can be analytically con-
sidered if an arbitrarily shaped potential profile is
repeated with an energy shift ∆V in both half-periods L
and if the periodicity of the function V(x) is ensured by
its jumps at x = 0 and x = L. The differential equations
for ρ+(x) ± ρ–(x) then become second-order equations;
one of them is solved in quadratures for U±(x), while the
particular solutions of the other appear explicitly in the
expressions for the motor characteristics derived in the
next section. In addition, this potential profile is a nec-
essary condition for a high efficiency of the motor [22].

Let us define the function V+(x) in the two half-peri-
ods by the relations

(5)

J 2 j+ 0( ) γR L( ),+=

R x( ) ρ– x'( ) ρ+ x'( )–[ ] x.d

0

x

∫≡

ρ+−

j+− V+−

W in 2γ V+ x( ) V– x( )–[ ] ρ – x( ) ρ+ x( )–[ ] x.d

0

L

∫=

V+ x( )
V0, 0 x l0,<≤
v x( ), l0 x L,<≤




=

V+ x L+( ) v x( ) ∆V , 0 x L,<≤–=
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so it undergoes the jumps V0, V0 – v (l0), and v(l0) – 2∆V
(v(L) = ∆V, in accordance with the choice of the coor-
dinate origin in Fig. 1) at x = 0, l0, and L, respectively.
In the limit l0  0, the boundary conditions at x = 0
and x = L can be easily derived from Eq. (2). These are
the continuity conditions for the currents at these points
and the relations that include the equality ρ±(x + L) =

(x):

(6)

(7)

where Λ ≡ l0exp(βV0). In this limit, V0l0  0, but arbi-
trary values of the parameter Λ are admissible; in par-
ticular, we may assume that Λ/L @ 1. Therefore, rela-
tion (4) takes the form Win = 2γ∆VR(L), and the effi-
ciency of the motor is given by the formula

(8)

ρ+−

Λ j+ 0( ) D ρ– L( ) βv l0( )[ ]ρ + l0( )exp–{ } ,=

ρ+ L( ) β v l0( ) 2∆V–[ ]{ }ρ – l0( ),exp=

η FL
∆V
------- 1 2 j+ 0( )

γR L( )
----------------+ .=

U+(x)

V0

v (l0)

v (x)

v (l0) – ∆V

∆V Fx

2Ll0 L
0

x

γ

U–(x)

0

v (x) – ∆V

Fx

Fig. 1. The potentials U±(x) = V±(x) + Fx that include the
asymmetric periodic components V±(x) = V±(x + 2L) =

(x +L) shifting by half a period L with a frequency γ and
the external field of the load force F. Each potential has a
high barrier V0 in a narrow l0 region. The flat profile v(x) is
repeated in both half-periods L with a shift ∆V. The period-
icity of the functions V±(x) is ensured by their jumps. (The
positions of the potential curves and the boundary points on
them are indicated relative to the straight line Fx).

V+−
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The efficiency η tends to unity as FL  ∆V if the
negative current j+(x) at x = 0 is negligible. This condi-
tion is satisfied in the case where the barrier V0 at x = 0
is high enough. Thus, the Brownian motor is highly
efficient if the following two conditions [22] are satis-
fied simultaneously: (i) the presence of a high and nar-
row barrier V0 that blocks the reverse current; and (ii)
the repetition of an arbitrarily shaped flat potential
profile v (x) in both half-periods of the function V+(x)
with an energy shift ∆V.

3. ANALYTICAL TREATMENT 
OF THE MAIN CHARACTERISTICS

OF THE MOTOR

Let us introduce the new variables ξ1, 2(x) = ρ+(x) 
ρ–(x) that, given Eqs. (1) and (2), satisfy the following
differential equations in the interval l0 < x < L:

(9)

(10)

where  ≡ γ/D. The general solution of Eq. (9) can be
expressed in terms of two particular solutions, ϕi(x), of
the same equation,

(11)

and contains two arbitrary constants, C1 and C2. Two
more arbitrary constants, C3 and J, appear in the general
solution of Eq. (10):

(12)

Equation (3) relates only the constants C1 and C2. To
show this, it is convenient to introduce two functions
expressed in terms of the particular solutions ϕi(x):

(13)

Then, the expression for j+(x)

(14)

+−

ξ1' x( ) β v ' x( ) F+[ ]ξ 1 x( )+{ } ' 2γ̃ξ1 x( ),=

ξ2' x( ) β v ' x( ) F+[ ]ξ 2 x( )+ J /D,–=

γ̃

ξ1 x( ) Ciϕ i x( ),
i 1=

2

∑=

ξ2 x( ) β v x( ) Fx+[ ]–{ }exp=

× C3
J
D
---- β v x'( ) Fx'+[ ]{ } x'dexp

l0

x

∫– .

χ i x( ) ϕ i' x( ) β v ' x( ) F+[ ]ϕ i x( ),+=

Φi x( ) ϕ i x'( ) x', id

l0

x

∫ 1 2.,= =

2 j+ x( ) J D Ciχ i x( ),
i 1=

2

∑–=
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follows from Eq. (2), and Eq. (3) takes the form

(15)

Given the equality (x) = 2 ϕi(x) that follows from
Eqs. (9) and (13), Eq. (15) may be rewritten in an equiv-
alent form:

(16)

Thus, equalities (15) or (16) give the first equation for
the constants C1 and C2. The second equation is deter-
mined by the normalization condition that relates the
constants C3 and J:

(17)

Ci χ i 0( ) γ̃Φi L( )+[ ]
i 1=

2

∑ 0.=

χ i' γ̃

Ci χ i 0( ) χ i L( )+[ ]
i 1=

2

∑ 0.=

ξ2 x( ) xd

l0

L

∫ C3Z–
J
D
----Z–  + –

1
2
---,= =
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where (see Z+ below)

(18)

Two more equations for the four constants C1, C2, C3,
and J follow from the boundary conditions (6) and (7).

Having solved the system of equations (6), (7), (15)
(or (16)), and (17), we may write the main characteris-
tics of the motor as

Z± β v x( ) Fx+[ ]±{ } x,dexp

l0

L

∫≡

Z–  + xd β v x ( ) Fx + [ ] – { } exp 

l

 

0

 

L

 ∫  ≡

× x' β v x'( ) Fx'+[ ]{ }exp .d

l0

x

∫

(19)

j+ 0( ) D
4Σ
------ A 4γ̃Z+ βFL–( ) β∆V( )sinhexp–[ ] ,=

R L( ) 1
Σ
--- Λ β∆V βFL–( )exp 1–[ ] 2Z+exp βFL–( ) β∆V( )sinh+{ } ,=

J
D
2Σ
------ 2γ̃Λ β∆V βFL–( )exp 1–[ ] A+{ } ,=

η FL
∆V
------- β∆V βFL–( )exp 1 2γ̃Λ( ) 1– A+–

β∆V βFL–( )exp 1– 2Λ 1– Z+ βFL–( ) β∆V( )sinhexp+
------------------------------------------------------------------------------------------------------------------------------------,=
where

(20)

Σ 2γ̃Λ Z+Z– β∆V βFL–( )exp{=

– Z–  + β∆ V β FL – ( ) exp 1– [ ] }

+ ΛZ– Ψ0 βv l0( )[ ]exp ΨL 2β∆V( )exp+{ }

+ Z+Z–B Z–  + A ,–

A 2Ψ0 βv l0( )[ ]exp=

× βFL–( ) β∆V( )coshexp 1–[ ]

+ 2ΨL β∆V( ) βFL–( )exp β∆V( )cosh–[ ] ,exp

B 2 βFL–( ) Ψ0 βv 0 l0( )[ ]exp β∆V( )cosh{exp=

+ ΨL β∆V( )exp } ,
The analytical representation (19) allows us to cal-
culate the characteristics of the motor for an arbitrarily
shaped potential v(x) and the parameter Λ that specifies
the degree of blocking of the reverse current.

3.1. The Limit of a High Efficiency (Λ/L @ 1)

The main result that follows from representation (19)
is that, if Λ is large enough, then the efficiency of the
motor tends to unity as FL  ∆V, irrespective of the
shape of the potential v(x). This condition is realized
when the high blocking barrier V0 of small width l0 is
the steepest segment of the potential profile V+(x). The

Ψ j

χ1 0( ) χ1 L( )+ ϕ1 j( )
χ2 0( ) χ2 L( )+ ϕ2 j( )

χ1 0( ) Φ1 L( )
χ2 0( ) Φ2 L( )

---------------------------------------------------------, j 0 L.,= =
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efficiency in the limit FL  ∆V may then be approx-
imately represented as

(21)

,

and its maximum is reached for

(22)

The presence of a high blocking barrier allows the
high efficiency of the model of a Brownian motor under
consideration to be explained in terms of a strong cou-
pling between two processes, one of which supplies
energy to the motor, while the other ensures the gener-
ation of useful energy by the motor. The generalized
thermodynamic driving forces of these processes are
X2 = β∆V and X1 = –βFL. The corresponding general-
ized currents are J2 = γR(L) and J1 = J, which are spec-
ified by relations (19). The entropy production in these
two processes and its relationship to the efficiency of
the motor may be written as [24]

(23)

The thermodynamic equilibrium is determined by the
conditions X2 = X1 = 0 under which J2 = J1 = 0. There-
fore, the generalized currents near equilibrium can be
expanded in terms of small generalized forces. Assum-
ing that these expansions are linear, we obtain

(24)

where the expansion coefficients Lij satisfy the Onsager
symmetry relation L12 = L21 and the inequalities L11 > 0,

L22 > 0, and  ≤ L11L22, which ensure that the qua-
dratic form dS/dt ≥ 0. Kedem and Caplan [24] intro-

duced the parameter q ≡ L12/  (–1 ≤ q ≤ 1) as a

η FL
∆V
-------

Fs F–
F0 F–
---------------, F0L≈ ∆V 1 δ0+( ),=

FsL ∆V 1 δs–( ),=

δ0

Z+

Λ
-----1 2β∆V–( )exp–

β∆V
----------------------------------------- ! 1,=

δs
A

2γ̃Λβ∆V
---------------------- ! 1–=

ηm 1 δ0+ δ0 δs+–( )2
,=

FmL ∆V 1 δ0 1 δ0+( ) δ0 δs+( )–+[ ] .=

dS
dt
------ J1X1 J2X2+ J2X2 1 η–( ),= =

η
J1X1

J2X2
-----------.–=

Ji Lij X j, i
j 1=

2

∑ 1 2,,= =

L12
2

L11L22
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measure of coupling between the two processes in
terms of which the maximum efficiency is expressed as

(25)

When q  ±1, ηm tends to unity as ηm  1 –

2 .
Expanding relations (19) and (20) in terms of X1 and

X2 yields

(26)

The small parameters δ0 and δs in this expression are
defined by formulas (21), which in the limit X1, 2  0
take the form

(27)

Thus, the presence of a high barrier blocking the
reverse current ensures the coupling between the two
processes whose energy is transformed by the motor
near equilibrium. Relations (21) and (22) are also valid
far from equilibrium where the generalized thermody-
namic forces X1 and X2 are not small. Comparing the
parameters δ0 and δs defined by formulas (21) and (27),
we can easily verify that they are at a minimum near
equilibrium. Therefore, the highest efficiency of the
motor in the presence of a blocking barrier is achieved
precisely near equilibrium.

3.2. Low and High Potential Switching Frequencies 

The smallness of δs in (21) suggests that γ is limited
below. The physical meaning of this limitation is that a
particle cannot pass through a high and narrow barrier
V0 over the mean lifetime γ–1 of the potentials U±; i.e.,
the barrier blocks the reverse motion of the particle.
The characteristic relaxation time τ in a flat potential
profile v(x) + Fx is given by

Therefore, the characteristic time in which the barrier
V0 can be overcome is estimated as τ/δ0, and the ine-
quality δs ! 1 is equivalent to the condition γ–1 ! τ/δ0.
The behavior of solution (19) changes significantly
with dimensionless parameter γτ. In the limiting case of
low frequencies, γτ ! 1, the particular solutions ϕi(x)

ηm
q2

1 1 q2–+( )
2

----------------------------------.=

1 q2–

q Λ Λ γ̃–1 Ψ0 βv l0( )[ ]exp ΨL+( )+[ ]{=

× Λ 2Z++( ) } 1/2– 1
1
2
--- δ0 δs+( ).–Λ → ∞

δ0

2Z+

Λ
--------- ! 1,=

δs

Ψ0 βv l0( )[ ] Ψ L+exp
γ̃Λ

--------------------------------------------------- ! 1.=

τ Z+Z–/2D L2/2D.≥=
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tend to the particular solutions of (12). This leads to the
following asymptotics of the functions Ψ0, L:

(28)

which can be used to determine γR(L). To calculate
j+(0) with the same accuracy also requires the linear
(in γ) corrections to (28) that depend on the particular
solutions ϕi(x). Nevertheless, the total current calcu-
lated using Eq. (3) without applying these corrections
yields a qualitatively proper behavior of the solutions
for γτ ! 1 considered in [22].

In the opposite limiting case of high frequencies,

γτ ≥ L2/2 @ 1, ϕi(x) ≈ exp(± ) and the functions
Ψ0, L become independent of the parameters of the flat
potential profile:

(29)

The parameter A in (20) can then be easily expressed in
terms of the slope f0L ≡ [v(l0) – ∆V]/L of the flat poten-
tial profile:

(30)

and the maximum efficiency for δs ! δ0 ! 1 may be
written as

(31)

Since the parameter δ0 defined in (21) is small, the
expression in the braces is generally negative and the
parameter ηm increases with , tending to the limiting

value of 1 – 2 . The exception is the case of f0LL ~
∆V in which the expression in the braces is positive for
Λ/L ! β∆Vexp(2β∆V). In this case, the parameter ηm

shows a nonmonotonic behavior: it first reaches a max-

imum at some  and then decreases to 1 – 2  with

increasing . In the limit Λ  ∞, expression (31)
reduces to the asymptotics presented in [22].

Ψ0 2Z–
1– βv l0( )–[ ] ,exp

ΨL 2Z–
1– β∆V– βFL–( ),exp

γ → 0

γ → 0

γ̃ 2γ̃x

Ψ0 L, 2γ̃.
γ → ∞

A 2 2γ̃=

× β∆V βFL–( ) β f 0LL( ) β∆V( ) 1+coshexp[ ]exp{

– β∆V( ) β f 0LL( )exp β∆V( )cosh+[ ]exp } ,

ηm 1 2 δ0–
2

2γ̃Λ
-------------- β f 0LL( ) β∆V( ) ---coshexp





+≈

+ 1
β f 0LL( )exp β∆V( )exp+[ ] β∆ V( )sinh

δ0β∆V
----------------------------------------------------------------------------------------------–





.

γ̃
δ0

γ̃ δ0

γ̃ γ̃
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3.3. Linear Potential v(x) 

Solution (19) contains important information about
the behavior of the main characteristics of a Brownian
motor as a function of the peculiarities of the potential
profile v(x). To continue our analytical treatment of
these characteristics, we choose the following linear
function as the potential v(x):

(32)

For l0  0, the particular solutions of Eq. (9) and the
functions of the parameters of v (x) appearing in (19)
and (20) then take the form

(33)

To reduce the number of parameters of the potential, let
us consider two special cases: a stepwise potential with
v (l0) = v(L) and a highly asymmetric sawtooth poten-
tial with v (l0) = 2v(L) = 2∆V.

3.3.1. A stepwise potential. This special case is of
interest in that the current J at F = 0 can be represented
in a simple analytical form that characterizes the main
trends in the behavior of the current as a function of
several model parameters:

(34)

where

Since the potential V(x) is symmetric in the absence of
an additional barrier (Λ = 0) or in the absence of an
energy shift between the two half-periods (∆V = 0), the
current vanishes under these conditions. It also

β v x( ) Fx+[ ] β v l0( ) f x l0–( ),+=

f βF
β v L( ) v l0( )–[ ]

L l0–
----------------------------------------.+≡

ϕ1 2, x( ) f– ∆±( )x/2[ ] , ∆ f 2 8γ̃+ ,≡exp=

Z± ±βv l0( )[ ] fL±( )exp 1–[ ] / f ,exp±=

Z–  + 
L
f ---

1
 

f
 2 ----- 1 fL – ( ) exp– [ ] ,–=

Ψ0 L,
1

2 L∆/2( )sinh
-------------------------------- fL

2
------± 

 exp




=

+
L∆
2

------- 
 cosh ∆ f

L∆
2

------- 
 sinh±





.

J
D

L2
----- Λ̃

Λ̃ Λ̃ β∆V( )exp 1+ +[ ]Γ 1– cothΓ+
-----------------------------------------------------------------------------------=

× β∆V
2

-----------,tanh

Λ̃ Λ/L, Γ L γ̃/2.≡≡
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approaches zero for exp(β∆V) @  when Γ ! 1 or for

exp(β∆V) @ Γ  when Γ @ 1. In the limit   ∞,
the current approaches a nonzero value of
(D/L2) .

Figure 2 shows the characteristic dependences of J
and η on the load force F calculated using Eqs. (19),

(20) and (32), (33) at various  and fixed parameters
β∆V and Λ/L. As γ increases, the current and the effi-
ciency rise, with the latter showing a nonmonotonic
behavior with a maximum ηm that also increases with γ.
The larger the parameter Λ, the closer the monotonic
dependences ηm(γ) to the ideal limit η = 1 (Fig. 3).

3.3.2. A highly asymmetric sawtooth potential. In
this case, the parameter ∆V simultaneously governs the

Λ̃
Λ̃ γ̃

β∆V /2( )tanh

γ̃L2

0 0.5 1.0 1.5 2.0 2.5 3.0
βFL
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Fig. 2. Current J (solid lines) and efficiency η (dashed
lines) versus load force F calculated for a stepwise poten-

tial using relations (19), (20) and (32), (33) at various 
(indicated near the curves) and fixed parameters β∆V = 3
and Λ/L = 1000.

γ̃L
2
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asymmetry of the potential and the height of the barrier
that blocks the reverse current. Therefore, the behavior
of the main characteristics of the motor is nontrivial
even in the absence of an additional barrier V0 (Λ = 0).
For example, in contrast to the case of a stepwise poten-
tial (see Fig. 2) or a highly asymmetric sawtooth poten-
tial with a high additional barrier (Fig. 4b), the maxi-
mum ηm of the function η(F) changes nonmonotoni-
cally as γ increases (Fig. 4a). This dependence is clearly
illustrated by Fig. 5, which shows the nonmonotonic
behavior of ηm(γ) in a certain range of small Λ (in
agreement with the limit of large γ represented by rela-
tion (31)). The influence of an additional barrier on the
efficiency of the motor is clearly seen from the depen-
dence of the maximum of the function of two variables
η(F, γ) on the parameter ∆V (Fig. 6). In the range of

–3 –2 –1 0 1 2 3 4

log(γL2/D)

0
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0.6
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1000
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20

Fig. 3. ηm = maxη(F) versus potential switching frequency
γ for a stepwise potential at various Λ/L (indicated near the
curves) and fixed parameter β∆V = 3.
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Fig. 4. Current J (solid lines) and efficiency η (dashed lines) versus load force F for a highly asymmetric sawtooth potential at var-

ious  (indicated near the curves) and fixed parameters β∆V = 3 and Λ/L = 0 (a) and Λ/L = 1000 (b).γ̃L
2
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small ∆V, high efficiency is ensured solely by the pres-
ence of an additional barrier V0, while the role of an
additional barrier for large ∆V is insignificant compared
to ∆V and the high efficiency is attributable to the
blocking of the reverse current by the sawtooth poten-
tial itself. In these two limiting cases, the laws accord-
ing to which ηm tends to unity are completely different.
In the first case, the deviation of ηm from unity
decreases exponentially rapidly with increasing V0
(see (21) and (22)), while in the second case, it is
described by the asymptotic ηm  1– ln(β∆V)/β∆V
(the values of Fm and γm at which the function η(F, γ) is
at a maximum are determined by the asymptotics
β(∆V – FmL)  ln(β∆V) and L2  ln(β∆V)/2β∆V).
For a stepwise potential, the parameter ∆V is not related
to the presence of a blocking barrier. Therefore, the effi-
ciency ηm monotonically decreases with increasing ∆V
(Fig. 6).

Expanding functions (33) in terms of the parameter
8 /f 2 ! 1, we can easily represent J and η at Λ = 0 and
FL ! ∆V as

(35)

where

Note that expanding J in terms of small generalized

γ̃m

γ̃

J
γ β∆V( )sinh β∆V–[ ] τ 1– βFL( )sinh–

2 1 β∆V( )cosh+[ ]
--------------------------------------------------------------------------------------------,=

η FL
∆V
------- 1 β∆V

β∆V( )sinh
---------------------------–

1
γτ
----- βFL( )sinh

β∆V( )sinh
---------------------------– ,=

τ β∆V /2( )sinh
β∆V /2

--------------------------------
2 L2

2D
-------.=
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Fig. 5. ηm = maxη(F) versus potential switching frequency
γ for a highly asymmetric sawtooth potential at various Λ/L
(indicated near the curves) and fixed parameter β∆V = 3.
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forces X2 = β∆V and X1 = –βFL near equilibrium yields

(36)

Since the current is proportional to the cube of ∆V, we
conclude that the two processes responsible for the con-
version of energy by the motor are coupled very weakly
and that the maximum efficiency is very low,

Only far from equilibrium does the efficiency tend to
unity as β∆V  ∞ (see Fig. 6). Expression (35) that
defines η reduces to that in [22] for the case of low fre-
quencies only if β∆V @ 1 (because the current was cal-
culated in [22] using formula (3) in which j+(0) was cal-
culated in the zeroth approximation in γ). Introducing
an additional high, narrow barrier ensures a high effi-
ciency of a motor with a highly asymmetric sawtooth
potential not only far from equilibrium, but also near it.

3.4. Continuous Potentials 

An accurate analytical description of the main char-
acteristics of a Brownian motor is possible, because the
fluctuating potential undergoes abrupt changes. In
addition, boundary condition (6) suggests the introduc-
tion of an additional high and narrow barrier that plays
a key role in ensuring high efficiency of the motor. On
the other hand, the abrupt changes in the potential may
be treated as a limiting behavior of real continuous
potentials. Therefore, our study would be incomplete
without an analysis of the stability of the solutions
obtained against the small changes in the potential

J
1
24
------γ β∆V( )3 βDF

2L
-----------.–≈

ηm
1

288
--------- β∆V( )4γ̃L2.

Fig. 6. ηm = maxη(F, γ) versus potential shift in the two
half-periods at various Λ/L for a highly asymmetric saw-
tooth potential (solid lines) and a stepwise potential (dashed
line).
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shape through which the continuous behavior becomes
discontinuous.

For a Brownian particle with a diffusion coefficient
D, the potential switching with a frequency γ deter-

mines the characteristic size of the region  =
 in which the distribution functions and the cur-

rents undergo significant changes due to the potential
fluctuations. For the boundary conditions (6) and (7) to
be satisfied, these distances must be much larger than
the distances l at which the same quantities change sig-
nificantly due to an abrupt change in the potentials.
Estimating the slope of the potential profile on the seg-
ments l that shrink to a point when passing to the limit
of a discontinuous potential as V0/l, we obtain the con-
dition

(37)

which is satisfied over a wide range of frequencies γ.
Given that the currents cannot change significantly over

the width l0 of the barrier V0 (l0 ! ), a more strin-
gent condition arises,

(38)

When calculating the efficiency of a motor, we
should also bear in mind that the nonzero width of the
barrier V0 makes a contribution proportional to V0l0 to
the energy Win spent on the switching of the potentials
U±. As a result, when the potentials switch between V0
and v 0 and when condition (38) are taken into account,
the small parameter δ0, which was represented by rela-
tion (21) in the limit l0  0, can be estimated as

(39)

Therefore, as the barrier V0 increases at small fixed l0,
the parameter δ0 first decreases (approximately to
(l0/L)exp(–βv 0) at β(V0 – v 0) = 2ln(L/l0)) and then
begins to increase. Thus, the efficiency of the motor
increases with Λ (see Fig. 5) only at moderately large
Λ. The energy losses due to the nonzero width of the
high barrier V0 can be reduced significantly if
exp(−βv 0) ! 1, i.e., if the transitions in the l0 region
occur between two barriers. This mechanism of the
increase in the efficiency of a motor was considered
in [21] for a fluctuating double-well potential.

4. DISCUSSION AND CONCLUSIONS

The main characteristics of a Brownian motor
depend significantly on the shape of the fluctuating
periodic potential. For a directed motion of Brownian
particles to arise, this potential must introduce an asym-
metry of directions, and the presence of several more

γ̃ 1/2–

D/γ

γ ! D βV0/l( )2,

γ̃ 1/2–

γ ! D/l0
2.

δ0
L
l0
--- βV0–( )

βV0l0

L
------------- βv 0–( ).exp+exp∼
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factors that prevent the reverse particle motion and
reduce the energy losses caused by the potential fluctu-
ations is required for the motor to operate efficiently.
Studying these factors through numerical calculations
of the currents and the efficiencies for variously shaped
potentials and various forms of fluctuations is very
unrewarding work, because it is not only very time-con-
suming, but also always leaves the optimality of the
results obtained open to question. We need a general
approach that, on the one hand, would define the main
requirements for the potential shape and, on the other
hand, would admit an analytical solution of the problem
and, thus, would allow an optimal mode of operation of
the motor to be easily chosen. The approach proposed
in this paper completely satisfies these criteria.

Indeed, the repetition of the shape of the potential
V(x) in both half-periods with an energy shift ∆V allows
us to obtain an exact analytical solution of the problem
for the fluctuations represented by random potential
shifts by the same half-period by assuming that the
periodicity of the function V(x) is ensured by its jumps
at x = 0 and x = L and that a high and narrow barrier V0
is introduced by the boundary condition at x = 0. At the
same time, prerequisites for a high efficiency of the
motor are created: the barrier V0 prevents the reverse
motion of a Brownian particle, while the identity of the
potential shape in both half-periods at FL ≈ ∆V allows
the energy losses related to the relaxation after the
potential switching to be avoided. Thus, only two struc-
tural elements of the potential profile are important for
an optimal operation of the motor: the parameter ∆V
that characterizes the potential asymmetry and is
responsible for the generation of directed motion and
the parameter Λ = l0exp(βV0) that characterizes the
degree of blocking of the reverse current. The orders of
magnitude of the current (for L2 ! 1) and the maxi-
mum possible efficiency can be estimated as follows:

(40)

Here, we assume that l0  0 and V0  ∞, but
l0V0  0 and the parameter Λ can take on arbitrary
values (which must be large enough for the efficiency
of the motor to be high). Clearly, these conditions
reflect the idealized situation of a highly efficient
motor. In reality, for barriers V0 of nonzero width l0, the
condition for the shape identity in both half-periods is
violated and energy losses deteriorating the motor char-
acteristics arise. For the same reasons, the efficiency of
the motor also decreases when abrupt changes in the
potential are replaced by continuous ones. The deterio-
ration of the characteristics can be minimized by using
a double-well periodic potential considered in [21].
Indeed, if the curvature of the potential at the extreme

γ̃

J
γ
2
--- β ∆V FL–( )

2
-----------------------------,tanh∼

ηm 1 L
l0
---

βV0

2
---------– 

  .exp–∼
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points is much larger than the ratio F/L, then the posi-
tions of these points may be assumed to be independent
of F. Since the wells are spaced a half-period L apart, a
Brownian particle makes transitions between the close
neighborhoods of the minima of these wells as the
potentials switch. The identity of the shapes of the
remaining potential segments is no longer necessary;
therefore, we can easily ensure the presence of a high
barrier at x = 0 and satisfy the periodic boundary condi-
tions.

The parameters ∆V and FL may be treated as the
generalized forces that disturb the system from the
equilibrium characterized by a zero current J. The pres-
ence of a high barrier V0 ensures a strong coupling
between the two processes whose energy are trans-
formed by the motor. In this case, the efficiency is high-
est precisely near equilibrium. In contrast, a high effi-
ciency of a Brownian motor with a highly asymmetric
sawtooth potential (without an additional barrier V0)
arises from a completely different mechanism. In this
case, the same parameter ∆V governs the asymmetry of
the potential and the height of the barrier that blocks the
reverse current. As a result, the highest possible effi-
ciency slowly tends to unity with increasing ∆V as
ηm  1 – ln(β∆V)/β∆V, i.e., reaches a maximum far
from equilibrium.
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Abstract—We use the saddle-point method to derive analytical expressions for the spectral–angular probability
distributions of the ionization by a strong linearly polarized laser field in Keldysh’s model that are valid for an
arbitrary electron energy and adiabaticity parameter. We obtain asymptotic expansions of the general formulas
in the multiphoton and tunneling regimes, analyze their accuracy, and formulate the validity conditions.
We provide literal estimates of the parameters that characterize the properties and evolution of the distributions.
© 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

During the ionization of atoms by intense laser
fields, electrons absorb more photons than the mini-
mum number required for a transition to the continuum.
This effect, called above-threshold ionization, was the-
oretically predicted by Keldysh in 1964 [1]. The first
observation of above-threshold ionization in an experi-
ment [2] fifteen years later gave rise to an enormous
number of experimental and theoretical works. Both
the above-threshold ionization proper and the accom-
panying generation of high-order harmonics and corre-
lated double ionization were studied. The results of
these studies were described in detail in reviews and
monographs [3–6].

In the last decade, the experimental capabilities have
been significantly extended in connection with the pro-
duction of laser sources that generate intense femtosec-
ond pulses with a kilohertz repetition frequency. This
made it possible to accumulate reliable statistics of rare
events and to study the spectral–angular probability
distributions of above-threshold atomic ionization over
a wide electron energy range where the recorded signal
changes by 10 to 12 orders of magnitude [7]. In a lin-
early polarized field, the spectrum of the electrons
emitted in the direction of polarization was found to
have a universal shape whose basic features are deter-
mined by the field parameters and the atomic ionization
potential. In the initial portion, the spectrum rapidly
decreases up to energy ε ≈ (2–3)Up , where Up = F2/4ω2

is the mean vibrational electron energy in a laser field
of strength F and frequency ω or the ponderomotive
potential (in what follows, we use the atomic units " =
m = –e = 1). What follows next is the so-called high-
energy plateau, an extended portion in which the elec-
tron yield decreases with increasing energy relatively
slowly. The plateau abruptly terminates at energy ε ≈
10Up . The recorded signal in the high-energy plateau
1063-7761/05/10001- $26.000022
region is 4 to 6 orders of magnitude lower than that in
the initial portion of the spectrum.

In Keldysh’s model [1, 8, 9], the ionization probabil-
ity amplitude is calculated as the matrix element of the
perturbation operator between a bound atomic state and
a Volkov wave. Since the effect of a laser field on the
motion of a free electron in Volkov states is exactly
taken into account, the model describes the ionization
process outside the scope of perturbation theory. On the
other hand, the Volkov states do not include the interac-
tion of the electron with the atomic core; therefore, the
ionization appears as a direct transition to the contin-
uum. The theory constructed in this way reproduces the
main properties of the initial portion of the experimen-
tally observed spectrum for above-threshold atomic
ionization, but does not yield a high-energy plateau. To
describe the plateau, the approach with Volkov states
was modified to incorporate the interaction of the elec-
tron that happened to be in the continuum with the
atomic core. In this case, the wave packet of the ionized
electron calculated in the approximation of a direct
transition to the continuum is taken as a zero approxi-
mation, and the scattering of the packet by the parent
ion is calculated in the first order of perturbation theory
in the atomic core potential [10–13]. In such calcula-
tions, the probability amplitude of the direct ionization
appears in the composite rescattering matrix element.

In a zero-range potential, the direct ionization
amplitude can be expressed in terms of a generalized
Bessel function that is an infinite series of the products
of two ordinary Bessel functions [14, 15]. The general-
ized Bessel functions can be easily tabulated, but they
are inconvenient to perform a qualitative analysis of the
spectrum for various laser-field and atomic parameters
and all the more inconvenient in rescattering calcula-
tions.
 © 2005 Pleiades Publishing, Inc.
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Therefore, approximate analytical formulas that give
a clear idea of the dependence of the photoionization
spectra on laser–atomic parameters are of great interest.
Such formulas were previously derived [1, 8, 9] by cal-
culating the transition amplitude using the saddle-point
method. Subsequently, these results have been repeat-
edly used and refined [16–18]. However, in all of these
papers, the exponent at the saddle point was expanded
in terms of the deviations of the electron energy from
the maximum of the distribution. This expansion has no
direct bearing on the saddle-point method and signifi-
cantly limits the validity range of the results obtained.
In a linearly polarized field, the spectrum is at a maxi-
mum at energy ε = 0. Accordingly, the distributions cal-
culated using the energy expansion describe only the
initial portion of the spectrum without covering the
entire energy range with the dominant contribution of
the direct ionization.

Meanwhile, the electron distributions calculated by
the saddle-point method without the expansions men-
tioned above [19, 20] agree excellently with the calcu-
lations by other methods [12, 21] and with the experi-
mental data on the photoionization of negative ions [22]
over the entire direct ionization spectrum. As was noted
above, they reproduce the main properties of the spec-
trum of the direct above-threshold ionization of neutral
atoms by intense optical radiation. In the saddle-point
method, the transition amplitude is defined by the stan-
dard formula (see (2) below) into which the explicit
form of the action calculated at the complex saddle
point should be substituted. In [19, 20], the emerging
complex expressions were tabulated for a specific set of
parameters of the problem, and the corresponding dis-
tributions were analyzed in graphical or numerical
form. Below, we show that closed real expressions for
the spectral–angular photoelectron distributions valid
over a wide energy range can be derived for a linearly
polarized field, and significant progress can be made in
their analysis. Formulas of this type, but without inter-
ference and for only one direction along the field polar-
ization, are discussed in [23].

Here, we give formulas pertaining to the ionization
from a zero-range potential well. The ionization poten-
tial of the only bound s-state is a parameter of such a
potential well.

Generalizing the results obtained to finite-range
potentials in which bound states with a nonzero orbital
angular momentum are possible leads to two effects.
First, the common numerical factor of the spectral–
angular distributions changes; naturally, this does not
affect the functional dependences. Second, a known
angular dependence is added. Both these factors can be
taken into account just as was done previously [9, 19].
Without these complications, our formulas can be
directly used to study the shape of the electron spec-
trum when a negative hydrogen ion is photoionized in
weak or strong fields. The situation is different for neu-
tral atoms. In this case, the approach based on Volkov
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
states is used to describe the ionization by fairly strong
low-frequency laser fields that are capable of imparting
a momentum to the electron comparable to or larger than
the typical atomic values. Including the long-range Cou-
lomb field of the ion core using perturbation theory gives
rise to a large factor in the photoelectron distribution for
a short-range potential [24, 25]. This factor depends on
the field strength, but does not depend on the electron
momentum. As a result, the total ionization probability
increases by several orders of magnitude, while the
shape of the distribution remains unchanged.

This paper has the following structure. A general
expression for the spectral–angular distributions that is
valid over a wide energy range for arbitrary adiabaticity
parameters is derived in Section 2. New asymptotic
expansions of the distributions in the multiphoton and
tunneling regimes are considered in Section 3. Our
main conclusions are summarized in Section 4.

2. BASIC RELATIONS

We will consider the ionization of an s-state with a
binding energy I in a zero-range potential by a low-fre-
quency, I/ω @ 1, linearly polarized laser field F(t) =
(Fsinωt, 0, 0). We write the rate of transition to a
Volkov state with a momentum p due to the absorption
of n photons as

where dΩ is the element of the solid angle in the direc-
tion of the vector p. The electron energy εp = p2/2 is
determined by the energy conservation law

(1)

where N in the second equality is the threshold number
of photons required for a transition to the continuum,
and k = 0, 1, 2, … designates the sequence of peaks in
the energy spectrum. The electron energy in the k = 0
threshold channel is ∆, 0 < ∆ = Nω – Up – I < ω. The
ionization amplitude B(p) has the form of a single time
integral over the field period [9, 19]. Since the field is a
low-frequency one, we can calculate this integral by the
saddle-point method. Using the latter yields

(2)

The action S(p, t) is defined by

where εp(t) is the time-dependent kinetic energy of the
electron with the drift (canonical) momentum p in the

dWn

dΩ
---------- Wn p( )≡ 2π B p( ) 2 p,=

εp I U p+ + nω N k+( )ω,= =

B p( ) 2I( )1/4

2π( )3/2
-----------------

iS p ts,( )( )exp

S '' p ts,( )( )1/2
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S p t,( ) It
1
2
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field F(t). The equation for the complex saddle points
ωts = ωt0 + iωt1 is

(3)

Here, pF = F/ω = 2  is the oscillation amplitude of
the kinematic electron momentum (velocity) in a peri-
odic field, and p⊥  is the momentum component in a
plane perpendicular to the direction of linear polariza-
tion.

The choice of the path of integration in the saddle-
point method for a generalized Bessel function and the
classification of the possible positions of saddle points
are discussed in [14]. In our case, the path located in the
band 0 < ωt0 < 2π of the upper half-plane (ωt1 > 0)
should be drawn through two points, ωt± , that have the
same imaginary part and symmetrically located real
parts ωt0± = π ± d. The presence of two terms in Eq. (2)
produces interference in the spectral–angular electron
distributions.

The solutions of Eq. (3) can be naturally expressed

in terms of two dimensionless parameters,  and ,
similar to Keldysh’s adiabaticity parameter γ2 [1]:

Indeed, separating the real and imaginary parts of
Eq. (3) yields

(4)

where the + and – signs pertain to the points ωt+ and
ωt−, respectively. Eliminating the trigonometric func-
tions from Eq. (4), we find the imaginary part of the
saddle points:

(5)

The real part of the saddle points ωt0± = π ± d can be
easily calculated with the known solution (5) using
Eqs. (4):

(6)

Separating the real and imaginary parts of the action
S(p, t±), performing the summation in (2) over the sad-
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dle points, and designating

we obtain the following real expression for the angular
distribution of the n-photon ionization probability after
simple algebraic transformations:

(7)

(8)

(9)

(10)

(11)

In Eqs. (7)–(11), the momentum p and the energy
εp = p2/2 are related to the number of absorbed photons
n by the energy conservation law (1); the angle θ is
measured from the direction of polarization. The
n-photon ionization probability (7) with the real func-
tions (8)–(11) is equivalent to Eq. (33) from [19] for l =
m = 0 written in terms of the complex ionization ampli-
tude and the complex saddle point.

The standard saddle-point method can be used to
calculate the ionization amplitude if we can restrict our-
selves to the quadratic expansion of the action at the
saddle points, |S '''(ωts)| ! |S ''(ωts)|3/2, or if the saddle
points are isolated, |S ''(ωts)|–1/2 ! 2d. Analysis indicates
that the validity conditions in a low-frequency field,
ω ! I, with a strength below the atomic one, F ! Fa =
(2I)3/2, are satisfied for all values of the parameter γ.

The spectral–angular distributions defined by
Eqs. (7)–(11) are applicable for any photoelectron
energies and arbitrary adiabaticity parameters. The
dependence on the electron energy, emission angle, and
other parameters is present both explicitly and via the
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imaginary part of the saddle point ωt1. We see from the
structure of solution (5) that ωt1 critically depends on

the sign of the combination  – 1. For  >1, the two
terms on the right-hand side of (5) are added, effec-
tively moving the saddle point away from the real axis

and reducing the probability. If, alternatively,  <1,
then these terms partly cancel each other, the saddle
point approaches the real axis, and, hence, the probabil-

ity increases. In the multiphoton regime,  >1 for all
energies, because γ2 > 1. In the tunneling regime, γ2 < 1,

and the parameter  can be both smaller and larger
than unity in different portions of the spectrum. There-
fore, the behavior of the ionization probability changes
near the critical energy

(12)

determined by the condition  = 1. This conclusion is
illustrated by Fig. 1, which shows how sharply the
slope of the tangents changes on the opposite sides of
εcr . The width of the transition region is on the order of
the ionization potential.

According to the widely used semiclassical model
[26], the direct ionization spectrum terminates at
energy εcl = 2Up , which is commonly called the classi-
cal boundary of the spectrum. In quantum theory, a
sharp boundary is usually said to be absent, but the
probability rapidly decreases at ε > εcl . We see from
Fig. 1 that the rapid decrease starts from an energy εcr

that is lower than the classical boundary by the ioniza-
tion potential. In the deep tunneling regime, γ2 ! 1, the
difference between the boundaries εcr and εcl is rela-
tively small, and the transition accounts for only a small
portion of the entire spectrum. However, this difference
becomes important when the parameter γ2 does not dif-
fer greatly from unity. For example, εcr = Up at γ2 = 1/2,
which is a factor of 2 lower than the classical boundary.
As γ increases, the energy εcr shifts leftward and
becomes equal to zero at γ = 1.

Let us also discuss some of the general properties of
the spectra. Figure 2 shows the energy spectra with
interference in the case where an electron is emitted at
an angle to the direction of field polarization. We con-
sider the entire range of possible emission directions
(for the symmetric angles θ and π – θ, the spectra are
identical). As the emission angle θ increases, the corre-
sponding spectra decrease increasingly fast. This trend
holds not only for small emission angles [12], but also
for all emission angles. Since the computational param-
eters for the figure correspond to tunneling ionization,
γ = 1/2, the property of the spectra under discussion
becomes obvious due to the presence of the factor (1 +
(εpsin2θ)/I)3/2 in the exponent (see Eq. (26) below).

γp
2 γp

2

γp
2

γp
2

γp
2

εcr 2U p I ,–=

γp
2
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Analysis of the interference in the spectra reveals
that when an electron is emitted in the direction of
polarization and at a small angle (θ < 45°) to it, the sep-
aration between the neighboring minima in the energy
spectrum (the “period” of the interference structure)
increases with energy [12]. This property shows up
most clearly at θ = 0 (see Fig. 2 in [12]). Another qual-
itative trend can be directly seen from Fig. 2: the inter-
ference period increases with emission angle in the ini-

0
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logWn, arb. units

εp/I

–2

–4

320 4 5 6

γ = 0.5

2Up – I

Fig. 1. The photoelectron energy spectrum in the direction
of field polarization calculated using the general formulas
(7)–(11) without interference. The parameters correspond
to the He ionization by radiation with a frequency of "ω =
1.58 eV and an intensity of 0.85 × 1015 W cm–2; γ = 0.5,
F/Fa = 0.06. The position of the critical energy is indicated
by an arrow.
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Fig. 2. The photoelectron spectra in various electron emis-
sion directions calculated with interference using the gen-
eral formulas (7)–(11). The parameters are the same as
those in Fig. 1.
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tial portion of the spectrum under consideration. This
increase continues up to θ ≈ 60° (there is only one min-
imum on the curve corresponding to this angle). How-
ever, as the emission angle increases further, the period
begins to decrease; i.e., the number of minima in the
portion of the spectrum under consideration increases.
The described properties of the spectrum can also be
deduced by analyzing the behavior of the derivative
dReS±/dn, which acts as the interference oscillation
“frequency.”

In the limit where the ionized electron is emitted
perpendicular to the laser field direction, the interfer-
ence period is constant and equal to twice the photon
energy. Since the factor [1 + cos(ReS± – Φ)] in Eq. (7)
becomes equal to zero, there are no above-threshold
peaks corresponding to the absorption of an odd num-
ber of photons n = N + k in the spectrum [19]. This can
also be seen from Eqs. (6) and (11), whence it follows
that 2d = π, Φ = 0, and, hence, ReS± = πn at θ = 90°. For
the parameters in Fig. 2, the threshold number of pho-
tons is odd (N = 47), and there are no above-threshold
peaks with even numbers k in the spectrum in a direc-
tion perpendicular to the field. The absence of peaks in
the spectrum that correspond to the absorption of an
odd number of photons when a state with a zero orbital
angular momentum is ionized agrees with the angular
momentum and parity dipole selection rules. An above-
threshold spectrum along θ = 90° with a separation of
2ω between the peaks also emerges in numerical calcu-
lations [27]. As far as we know, this property of the
spectrum has not yet been observed experimentally.
Concluding our discussion of the spectrum in a direc-
tion transverse to the field, we note that, in this case,
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W
n,
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. u
ni

ts

εp/Up
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–4

10 2 3

–6

10 20 30 40 50 60 70 80 900
k

Fig. 3. The energy spectrum in the direction of polarization
calculated without interference using the general formulas
(7)–(11) (solid line) and formulas (14)–(17) that are appli-
cable at low energies (dashed line). The parameters corre-
spond to those in Fig. 1. The number of absorbed above-
threshold photons is shown on the upper scale.
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γ⊥  = γp ,  = γp , and exponent (8) can be writ-
ten as ImS = (I/ω)g(γp) with the function g(x) defined
below by Eq. (13).

3. ASYMPTOTIC EXPANSIONS

In this section, we discuss the expansions of the exact
(in terms of the saddle-point method) result (7)–(11). We
derive the expansion in the range of low energies for
arbitrary γ [9] and new expansions that describe the
electron distribution over a wide energy range in the
multiphoton, γ > 1, and tunneling, γ < 1, regimes.

3.1. Ionization to Low-Energy States 

The general formulas (8)–(11) can be simplified for
an arbitrary adiabaticity parameter if we restrict our
analysis to the range of low energies, εp < I. Using the
designation [1]

(13)

and retaining only the main contributions in the expan-
sions in terms of the small parameter εp/I < 1 in (5)
and (8)–(11), we obtain

(14)

(15)

(16)

(17)

Probability (7), whose elements can be calculated
using (14)–(16), matches Eq. (53) from [9].

The spectra in the direction of polarization, θ = 0,
are compared in Fig. 3. The parameters correspond to
the tunneling regime I = Up/2, and, as we see, the agree-
ment is excellent for εp/Up < 1/2. As the energy
increases further, the curves diverge, so difference by
an order of magnitude occurs near energy εp/Up ≈ 1.5.
When an electron is emitted at an angle θ ~ 1 to the
direction of polarization, the discrepancy between the
exact formulas and the linear (in energy) expansion is
observed earlier. For example, for εp = Up/2 and θ = 45°,
the approximate formulas (14)–(17) underestimate the
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probability by a factor of 4, while at the same energy
and θ = 60°, the results differ by an order of magnitude.
The validity range of the low-energy expansion in the
multiphoton regime also proves to be narrower (see
Section 3.2).

We see from the expansion of the phase difference (15)
that it is large compared to unity at low energies in both
the tunneling and multiphoton regimes and changes
greatly as one goes to the neighboring above-threshold
peak when the electron emission direction or the inten-
sity changes only slightly. However, the formula with
the principal expansion term (15) is insufficient to accu-
rately calculate the interference structure. The existing
inaccuracy in the position of the interference minimum
in the initial portion of the spectrum rapidly accumu-
lates with increasing energy. Thus, for example, for the
parameters of Fig. 3, the approximate formula (15) pre-
dicts an interference maximum at the energy that corre-
sponds to the absorption of ten above-threshold pho-
tons, while according to the general result (9), there is
a minimum here. Formula (15) can be improved by
including the next expansion terms up to contributions
on the order of unity. However, it is easier to calculate the
interference using general formula (9), if necessary.

3.2. The Multiphoton Regime 

In the multiphoton regime, γ2 > 1, the inequality

 > 1 holds at all electron energies. Therefore, the
expansion in (5) and (8)–(11) in terms of powers of the

small parameter  allows us to derive a single
approximate formula for the entire above-threshold
ionization spectrum. How many terms of this expansion
should be included to properly calculate the contribu-
tions on the order of unity in the exponent and the phase
depends on the large factors n, εp/ω, and Up/ω in
Eqs. (8) and (9). In the formulas given below, we
restrict ourselves to the contributions that provide a rel-

ative accuracy of the exponent and the phase of ~ :

(18)
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(21)

(22)

The validity ranges of the multiphoton and low-
energy expansions partially overlap. The expansions in
terms of the parameters γ–2 ! 1 in (14)–(16) and
εp/I ! 1 in (18)–(22) yield identical results. In particu-
lar, exponent (18) takes the form

(23)

where g(γ) is the multiphoton limit of function (13):

The envelope of the spectrum calculated with the
multiphoton expansion (18) virtually matches the exact
result even at γ = 2: the difference is less than 10% (see
Fig. 4). At γ = 1, i.e., at the boundary of the validity
range, the multiphoton expansion describes the qualita-
tive behavior of the spectrum, underestimating the ion-
ization probability by a factor of 5 or 6, on average. We
also see from Fig. 4 that the linear (in energy) approxi-
mation of the exponent in the multiphoton regime is
applicable at electron energies much lower than the ion-
ization potential. The reason is that we can substitute
Eq. (18) with (23) if the discarded expansion terms are
small compared to unity. The largest discarded contri-

bution of ~ /ωI arises in the expansion of the loga-

rithm in (18). It follows from the condition /ωI < 1
that the linear (in εp) expansion is justified for above-

threshold peaks with numbers k < . In a low-fre-
quency field where I/ω @ 1, this restriction is more
severe than the initially assumed validity condition for
the expansion in terms of low energies k < I/ω (I/ω = 15
in Fig. 4).

The term with sin2θ in exponent (18) describes the
envelope of the angular dependence (the θ dependence
is also present in the interference factor). Since εp ≈ kω,
the width of the angular distribution in the kth above-
threshold peak in the multiphoton regime is estimated

from (18) to be θc(k) ≈ 1/  (cf. [17]). The fairly broad
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(in the first peaks) angular distribution extends in the
direction of polarization. In general, the angular distri-
bution is at a maximum at an angle θ ≠ 0 due to inter-
ference [19].
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logWn, arb. units

εp/Up
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–8

1.51.00 2.0 2.5 3.0

γ = 0.5

2Up – I
–6

–2

Fig. 5. The direct ionization spectrum in the direction of
polarization in the tunneling regime (without the interfer-
ence factor) calculated using the general and approximate
formulas for ImS. The parameters are the same as those in
Fig. 1. The solid, dash-dotted, dotted, and dashed lines rep-
resent the general formulas, the multiphoton expansion, the
tunneling expansion (26), and the tunneling expansion (26)
with the second term in the parentheses discarded.
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Fig. 4. The photoelectron spectra (without interference) in
the direction of field polarization for the ionization of He
atoms by radiation with a frequency of "ω = 1.58 eV at
intensities of 2.0 × 1014 W cm–2 (γ = 1.0) and 5.3 ×
1013 (γ = 2.0) W cm–2. The solid and dash-dotted lines rep-
resent, respectively, the calculation using the general for-
mulas (7)–(11) and the multiphoton expansion (18)–(22)
(the dash-dotted line merges with the solid line at γ = 2.0).
The dashed straight line represents the linear (in energy)
approximation (14)–(17) at γ = 2.0.
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Note that the condition γ @ 1 is not sufficient to pass
to the limit of perturbation theory when the probability
depends on the intensity as a power law. It is necessary
that the condition Up/ω ! 1 be satisfied; this condition
allows us to discard the contributions proportional to
this parameter in the exponent and in the phase of the
cosine. The interference structure of the distributions
ceases to depend on the intensity only in this limit.

3.3. The Tunneling Regime 

As was noted above, the tunneling regime is pecu-

liar in that the parameter  to the left and to the right
of the kinetic energy (12) take on values lower and
higher than unity, respectively. Therefore, the expan-
sions are constructed by different methods on the oppo-
site sides of this boundary.

At fairly high electron energies, the inequality  @ 1
holds and the high-energy tail of the spectral–angular
distributions can be described by the multiphoton
expansion formulas (18)–(22). However, it should be
borne in mind that the validity range of this expansion
in the tunneling regime begins at fairly high energies.

Thus, for example, the condition  ≥ 3 is satisfied for
energies εp ≥ 5Up at γ2 = 1/2. As we see from Fig. 5, the
extrapolation of the multiphoton expansion beyond the
validity range toward the lower energies is invalid even
for a qualitative description of the spectrum: the devia-
tion from the real distribution reaches several orders of
magnitude.

Below boundary (12), the expansion is constructed

as follows. Since  – 1 < 0 in this portion of the spec-

trum, the smaller the transverse parameter  com-
pared to unity, the stronger the cancellation of the terms
on the right-hand side of Eq. (5). Therefore, it would be
natural to perform an expansion in terms of the param-

eter  ! 1 in Eq. (5). Under the cancellation condi-

tions,  ≈ γ⊥  ! 1, which allows the hyperbolic
functions to be substituted with a power series expan-
sion. To write the formulas derived in this section in a
more compact form, it is convenient to denote  =

px/pF = pcosθ/pF . Given that 1 –  = 1 –  –  and
performing an expansion in terms of the parameter

 ! 1 in (5), we obtain

(24)

When the imaginary part of the exponent is calculated,
the lowest order terms cancel each other out. Retaining
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the terms on the order of , we obtain

(25)

After the substitution of (24) into (25) and the neces-
sary expansions in (9)–(11), we derive an approximate
expression for the spectra–angular distributions in the
tunneling regime:

(26)

(27)

(28)

(29)

The special cases of exponent (26) have previously
been considered in the literature. Thus, setting  = 0
in (26), we obtain Eq. (16) from [28], while distribu-
tion (4) from [23] is derived if we set p⊥  = 0 in (26) and
discard the second term in the braces.

There is a common validity range for the tunneling
and low-energy expansions. The expansions in terms of
the parameters γ ! 1 in (14)–(17) and εp/I ! 1 in (26)–
(29) yield identical results.

The spectrum in the direction of field polarization at
γ = 1/2 calculated by using the general formulas of the
saddle-point method and their expansions is shown in
Fig. 5. As we see from this figure, there remains a broad
portion of the spectrum near the critical energy where the
expansions prove to be invalid, and the calculation should
be performed using the general formulas (7)–(11).

In deriving the tunneling expansion, we retained the

contributions on the order of  (see (25)), which gave

rise to a correction proportional to  in the parenthe-
ses of exponent (26). With this correction, the well-

γ⊥
5

ImS
pF

2

2ω
------- γ⊥

2 ωt1

1 p̃x
2–

3
-------------- ωt1( )3–

=

–
1 2 p̃x

2+
15

------------------ ωt1( )5 …+ 
 .

ImS
Fa

3F 1 p̃x
2–

-------------------------- 1
p⊥

2

2I
------+ 

 
3/2

=

× 1
1 2 p̃x

2+

10 1 p̃x
2–( )2

---------------------------γ⊥
2–

 
 
 

,

ReS± n2 1
γ⊥

2

2 1 p̃x
2–( )

----------------------–
 
 
 

p̃xarccos=

–
4U p

ω
---------- p̃x 1 p̃x

2– 3
2
---

1 2 p̃x
2+

1 p̃x
2–( )2

---------------------γ⊥
2–

 
 
 

,

ρ
γ⊥

γ
----- 1 p̃x

2– ,=

Φtan p̃x

γ⊥

1 p̃x
2–

--------------.=

p̃x

γ⊥
5

γ⊥
2

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
known [9] tunneling limit of the function g(γ) with the
quadratic contribution is obtained at p = 0 from (26):
g(γ) = (Fa/3F)(1 – γ2/10). We see from Fig. 5 that the

correction proportional to  at the very beginning of
the spectrum slightly improves the agreement with the
calculation based on the general formulas, but, at the
same time, when the energy approaches εcr , it leads to
a sharper deviation from the exact result due to the fac-

tor (1 – )–5/2. This deviation arises, because the valid-
ity condition for the tunneling expansion is violated.
For γ2 ! 1, the inequality

holds in two cases: first, for all photoelectron emission
directions θ if the energy εp is less than or on the order
of the ionization potential; and, second, for emission
directions close to the direction of linear polarization
when the angle θ is less than or on the order of the adi-
abaticity parameter γ. In the latter case, the energy εp

can be comparable to Up , but should not be close to the
critical energy: εcr – εp @ I. The latter restriction arises,

because in deriving relation (24), γ⊥ /  is a small
expansion parameter, while for θ = 0 and εp = εcr , this
parameter is equal to unity.

Note also that the critical energy shifts leftward and,
accordingly, the validity range for the tunneling expan-
sion narrows down as the parameter γ increases. Con-
currently, the multiphoton expansion approaches the
exact result (see Section 3.2).

Since the factor  is on the order of unity in
much of the tunneling spectrum, the width of the angu-
lar distribution in the kth above-threshold peak is esti-
mated from (26) to be

(30)

Compared to the multiphoton regime, the widths θc(k)
decrease with increasing k more slowly and, although

weakly, proportional to , depend on the intensity.
For numbers k ≈ Up/ω, the width of the angular distri-

bution becomes small, on the order of γ .

4. CONCLUSIONS
Let us summarize our main conclusions. The spec-

tral–angular photoelectron distribution that is valid
over wide ranges of energies and field strengths can be
derived in explicit form by calculating the amplitude of
the ionization by a strong low-frequency laser field
using the saddle-point method. Our study of the analyt-

γ⊥
2

p̃x
2

γ⊥
2 I εp θsin

2
+

2U p

-------------------------- ! 1=

1 p̃x
2–

1 p̃x
2–

θc k( ) 1

γk
---------.≈

F

F/Fa
SICS      Vol. 100      No. 1      2005



30 GORESLAVSKII et al.
ical structure of this distribution shows that there is a
critical energy under tunneling ionization conditions
near which the slope of the energy spectrum changes.
This energy is lower than the universally accepted clas-
sical boundary of the spectrum 2Up by the ionization
potential.

In the multiphoton and tunneling regimes, we
obtained asymptotic expansions of the general formu-
las of the saddle-point method that transform to those
derived previously by Perelomov et al. [9] in the range
of low energies. In the tunneling regime, the expansions
are different in form on the opposite sides of the critical
energy; the spectrum is described by the multiphoton-
limit formulas at higher energies. The expansions are
invalid in the transition region near the critical energy,
and the calculation should be performed using the gen-
eral formulas. This should be taken into account when
the adiabaticity parameter is moderately small com-
pared to unity and when the transition region occupies
much of the spectrum. This situation is typical of exper-
iments on the ionization of atoms by optical radiation in
the tunneling regime.

Apart from a direct analysis of the direct ionization
distributions, the derived formulas can be used to ana-
lyze the accompanying processes of elastic rescatter-
ing, generation of high-order laser-frequency harmon-
ics, and correlated double ionization. The experimental
capabilities that have been extended significantly in the
last decade allow these processes to be studied in ellip-
tically polarized fields. Therefore, generalizing our
results to an elliptically polarized field seems of current
interest.
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Abstract—Radiative corrections to the Compton scattering cross section are calculated in the leading and next-
to-leading logarithmic approximations in the case of colliding high-energy photon–electron beams. Radiative
corrections to the double-Compton scattering cross section in the same experimental setup are calculated in the
leading logarithmic approximation. We consider the case where no pairs are created in the final state. We show
that the differential cross section can be written in the form of the Drell–Yan process cross section. Numerical
values of the K-factor and the leading-order distribution on the scattered electron energy fraction and scattering
angle are presented. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The Compton scattering process

(1)

(where e1, 2 , ω1 are the energies of the initial and scat-
tered electrons and the initial photon, c = cosθ, and θ is
the angle between p2 and k1) plays an important role as
a possible calibration process in high-energy photon–
electron colliders [1]. Obtaining a radiation-corrected
cross section of this process is the motivation of this
paper. Modern methods based on the renormalization
group approach in combination with the lowest-order
radiative corrections (RC) makes it possible to obtain a
differential cross section in the leading approximation
(where ((α/π)L)n ~ 1, with the “large logarithm” L =
ln(s1/m2)) and in the next-to-leading approximation
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(where terms on the order of (α/π)nLn – 1 are conserved).
The accuracy of the formulas given below is therefore
determined by terms on the order of

(2)

compared with the terms on the order of unity and is
at the per mille level for typical experimental condi-
tions [1] θ ~ 1, κ1 ~ 10 GeV2. Terms on the order of (2)
are systematically omitted in what follows. We con-
sider the energies of initial particles to be much less
than the Z-boson mass MZ , and, therefore, the weak
corrections to the Compton effect are beyond our accu-
racy.

The first papers devoted to cancellation of radiative
corrections to Compton scattering were published in
1952 by Brown and Feynman [2] (the contribution of
virtual and soft real photon emission) and Mandl and
Skyrme [3] (emission of an additional hard photon). In
the work of Veltman [4], the lowest-order radiative cor-
rections to the polarized Compton scattering were cal-
culated in nonrelativistic kinematics. This case of kine-
matics was also considered in the paper by Swartz [5].
In the papers by Denner and Dittmaier [6], the lowest-
order radiative corrections in the framework of the
Standard Model were calculated in the case of a polar-
ized electron and photon.

In this paper, we consider the case of high-energy
electron and photon Compton scattering (with the cms
energy supposed to be much higher than the electron

m2

κ1
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mass but much less than the Z-boson mass). We find
that the cross section with radiative corrections of all
orders of perturbation theory taken into account can be
written in the form of the Drell–Yan process. Both lead-
ing and next-to-leading contributions are derived
explicitly.

We consider the kinematics where the initial photon
and electron move along the z axis in the opposite direc-
tions. The energy of the scattered electron is a function
of its scattering angle:

(3)

We now consider the kinematic case where ρ < 1. The
case where ρ > 1 is considered in Appendix B.

The differential cross section in the Born approxi-
mation is given by

(4)

In taking RC of higher orders (arising from emission of
both virtual and real photons) into account, the simple
relation between the scattered electron energy and the
scattering angle changes, and the differential cross sec-
tion in general depends on the energy fraction z of the
scattered electron. Accepting the Drell–Yan form of the
cross section, we can write it in the form

(5)

where the structure function D(x, L) (specified below)
describes the probability to find the electron (consid-
ered as a parton) inside the electron, K is the so-called
K-factor, which can be calculated from the lowest RC
orders, K is specified below (see Eqs. (8), (19),
and (26)), and the “hard” cross section is

(6)
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The cross section written in the Drell–Yan form
explicitly satisfies the Kinoshita–Lee–Nauenberg theo-
rem [7]. Indeed, being integrated over the scattered
electron energy fraction z, the structure function corre-
sponding to the scattered electron becomes unity
because

(7)

Mass singularities associated with the initial lepton
structure function remain.

Therefore, our master formula for the cross section
with RC taken into account is

(8)

with the nonsinglet structure function D defined as [8]

(9)

In the Conclusions (see Eq. (30)), we give the so-called
“smoothed” form of the structure function.

The second term in the right-hand side of (8) col-
lects all the nonleading contributions from the emission
of virtual, soft, and hard photons, with KSV given in Sec-
tion 2, where the virtual and soft real contributions are
considered. In Sections 3 and 4, we consider the contri-
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bution from an additional hard photon emission and
introduce an auxiliary parameter θ0 to distinguish the
collinear and noncollinear kinematics of photon emis-
sion. We also give the expression for the hard photon
contribution Kh . The results of numerical estimation of
the K-factor and leading contributions are given in Sec-
tion 5. In Appendix A, we demonstrate the explicit can-
cellation of the θ0 dependence. In Appendix B, we con-
sider the kinematic case ε1 > ω1.

2. CONTRIBUTION OF VIRTUAL 
AND SOFT REAL PHOTONS

To obtain the explicit form of the K-factor, we repro-
duce the lowest-order RC. It consists of the virtual pho-
ton emission contribution and the contribution from the
real (soft and hard) photon emission. The contribution
of virtual and soft photon emission was first calculated
in the famous paper by Brown and Feynman [2]. The
result is

(10)

with (see [2], kinematic case II)

(11)

where KV (the virtual photon contribution to the K-fac-
tor) is

(12)

and

(13)
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The soft photon emission for our kinematics has the
form

(15)

Standard calculations lead to the result

(16)

The resulting contribution to the cross section from vir-
tual and soft real photons is independent of the fictitious
“photon mass” λ and the L2-type terms. It can be writ-
ten as

(17)

where we introduce the notation

(18)

We can see that the terms proportional to the “large”
logarithm L have a form conforming to the renormal-
ization group prescription for the structure function.
The contribution of nonleading terms is

(19)

3. CONTRIBUTION 
OF THE HARD COLLINEAR REAL

PHOTON EMISSION

The dependence on the auxiliary parameter ∆e is
eliminated when the emission of a real additional hard
photon with 4-momentum k and the energy ω exceed-
ing ∆e is taken into account.

It is convenient to consider the kinematics in which
this additional photon moves within a narrow cone of
the angular size m/e1 ! θ0 ! 1 along the directions of
the initial or scattered electrons. The contribution of
these kinematic regions can be obtained using the “qua-
sireal electron method” [9] instead of the general
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(rather cumbersome) expression for the cross section of
the double-Compton (DC) scattering process [3].

In the case where the collinear photon is emitted
along the initial electron, the result is

(20)

When the photon is emitted along the scattered elec-
tron, we have

(21)

where z = /ω1 < z0 is the energy fraction of the scat-
tered electron (after emission of the collinear photon).

It is convenient to write the contribution of the col-
linear kinematics in the form

(22)

dσ
dzdc
------------ 

 
k ||p1

α
2π
------ x

σBd
cd

--------- x p1 θ,( )d

0

1 ∆e/e1–

∫=

× 1 x2+
1 x–
-------------- L1 1–( ) 1 x–+ δ z t x( )–( ),

L1
θ0

2
e1

2

m2
----------ln L

θ0
2ρ

2z0 1 c+( )
------------------------.ln+= =

dσ
dzdc
------------ 

 
k ||p2

α
2π
------

σBd
cd

--------- p1 θ,( ) td
t
----δ t z0–( )

z 1 ∆e/e2+( )

z0

∫=

× 1 z2/t2+
1 z/t–

-------------------- L2 1–( ) 1 z
t
--–+ ,

L2
e2'

2θ0
2

m2
------------ln L

θ0
2z2

2ρ 1 c+( )z0
----------------------------,ln+= =

ε2'

dσh

dzdc
------------ 

 
coll

α
2π
------ L 1–( ) x

1 x2+
1 x–
--------------d

0

1

∫=

θ 1 x– ∆1–( )
dσB x p1 θ,( )

dc
-----------------------------δ z t x( )–( )×

+
td
t
----

1 z2

t2
----+

1 z
t
--–

--------------θ 1 z
t
--– ∆2– 

  σB p1 θ,( )d
cd

--------------------------δ t z0–( )
z

z0

∫

+
d f 1( )

dzdc
------------ d f 2( )

dzdc
------------,+
JOURNAL OF EXPERIMENTAL A
where

(23)

We here use the relation

Again, we can see that the terms containing the large
logarithm L have the form conforming with the struc-
ture function. Our ansatz (5) is therefore confirmed.

The dependence on the auxiliary parameter θ0 van-
ishes when the contribution of noncollinear kinematics
of the additional hard photon emission is taken into
account (see Appendix A).

4. NONCOLLINEAR KINEMATICS 
CONTRIBUTION. DOUBLE-COMPTON 

SCATTERING PROCESS

The general expression for the cross section of the
DC scattering process

(24)

was obtained years ago by Mandl and Skyrme [3]. The
expression for the cross section presented in this paper
is exact but, unfortunately, too complicated. Instead, we
use the expression for the differential cross section cal-
culated (by the methods of chiral amplitudes [10])
under the assumption that all kinematic invariants are
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Table 1.  The value of Kh as a function of z and cosθ (calculated for ρ = 0.4)

z\cosθ –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

0.1 –2.82 –2.61 –2.39 –2.19 –2.09 –1.89 –1.87 –2.06 –2.75

0.2 –2.77 –2.47 –2.17 –1.90 –1.65 –1.46 –1.39 –1.56 –2.30

0.3 –3.43 –2.98 –2.55 –2.14 –1.77 –1.47 –1.30 –1.38 –2.13

0.4 –4.96 –3.87 –3.23 –2.65 –2.13 –1.67 –1.34 –1.30 –2.02

Table 2.  The value of  as a function of y and cosθ (calculated for η = 0.064)

y\cosθ –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

0.05 0.70 –1.97 –7.41 –15.54 –26.90 –42.70 –65.40 –100.64 –166.21

0.10 0.36 –3.20 –9.85 –18.38 –18.35

0.15 0.03 –3.38 –1.34

0.20 –0.20 0.29

0.25 –0.25

K̃h

Table 3.  The value of /α2dσ/(dcdy) (the leading contribution, the first term in the right-hand side of master formula (8))
as a function of y and cosθ (calculated for ρ = 0.4, ω1 = 5 GeV)

y\cosθ –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

0.1 0.211 0.237 0.265 0.299 0.345 0.413 0.526 0.754 1.450

0.2 0.337 0.357 0.378 0.405 0.445 0.508 0.618 0.850 1.576

0.3 0.703 0.669 0.643 0.634 0.644 0.685 0.782 1.013 1.784

0.4 3.883 2.153 1.554 1.264 1.113 1.054 1.090 1.296 2.122

ω1
2

large compared with the electron mass squared, κ ~ κ' ~
κi ~  @ m2:

(25)

The explicit expression for the contribution to the
K-factor from hard photon emission Kh is

(26)
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where

(27)

and the phase volume dΦ is restricted by the conditions
ω, ω2 > ∆e and the requirement that the angles between
the 3-vectors k2, k and the 3-vectors p1, p2 exceed θ0.

The values of Kh calculated numerically are given in
Tables 1 and 2. We numerically and analytically find
the independence of Kh of the auxiliary parameters θ0
and ∆ε (see Appendix A).

The cross section of the DC scattering process in an
inclusive experimental setup with the leading logarith-
mic approximation in terms of the structure functions
has the form
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with the structure functions given above and

(29)

5. CONCLUSIONS

The characteristic form of the “reverse radiative
tail” (see Tables 3 and 4) of the differential cross sec-
tion vs. the energy fraction z can be reproduced if one

dσ0
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The leading-order radiative corrections as a cosθ distribu-
tion (see (31)). 
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uses the smoothed expression for nonsinglet structure
functions, which includes the virtual electron pair pro-
duction [11]

(30)

In the figure, we give the magnitude of RC in the lead-
ing approximation

(31)

The results given above refer to the experimental
setup without additional e+e–, µ+µ–, π+π– real pairs in
the final state.

The accuracy of the formulas given above is deter-
mined by the order of magnitude of the terms omitted
(see (2)) compared to the terms on the order of unity,
i.e., on the order of 0.1% for typical experimental con-
ditions. In particular, this is why we omit the evolution
effect of the K-factor terms.

The numerical value of Kh , leading contributions,
and the Born cross section for different kinematic
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Table 4.  The value of ( /α2)d /dcdy (the leading contribution, the first term in the right-hand side of master formula (39))
as a function of y and cosθ (calculated for ω1 = 400 MeV, ε1 = 6 GeV)

y\cosθ –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6

0.05 9.658 11.110 13.626 17.513 23.678 34.116 53.669 98.208

0.10 11.350 15.024 22.633 39.297 86.017

0.15 13.839 23.190 56.097

0.20 17.735 45.672

0.25 24.303

ε1
2 σ̃

Table 5.  Born cross section (4) (without the factor α2/ ) for ρ = 0.4

cosθ –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

1.779 2.038 2.365 2.796 3.389 4.266 5.721 8.669 17.881

ω1
2

ω1
2

α2
------

dσB

dc
----------
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Table 6.  Born cross section (40) (without the factor α2/ ) for ω1 = 400 MeV and ε1 = 6 GeV

cosθ –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

93.317 60.706 49.428 44.994 44.351 47.084 54.584 72.444 129.944

ω1
2

ω1
2

α2
------

dσB

dc
----------
                  
regions are presented as functions of z and c in
Tables 1–6.
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APPENDIX A

Integrating the phase volume over k2,

(32)

we can write it in the form

(33)

where D = 1 –  –  – c2 – 2cc1c2 and c1, c2 are the
cosines of the respective angles between k and p1, p2.

For collinear kinematics, the following relations can
be useful:

1. k ≈ (1 – x)p1,

(34)

dΦ = 
d3k
ω

--------
d3k2

ω2
----------δ4 Q k– k2–( ), Q = p1 k1 p2,–+

dΦ ωdω
ω1

2
-----------

2dc1dc2

D
--------------------δ 2ρ ρz 1 c+( )– z 1 c–( )–=

–  ω
ω
 

1

 ------ ρ 1 c 1 – ( ) z 1 c 2 – ( ) – 1 c 1 + + ( ) ,

c1
2 c2

2

R1 R k || p1

2xρ
z 1 c–( )
------------------- z 1 c–( )

2xρ
-------------------+ 

 = =

× 1 x2+

1 x–( )2
------------------ 1

2ρ2 1 c1–( )xω1
2

-------------------------------------,

dΦ1 dΦ k || p1
2

d3k
ω

--------δ x p1 k1 p2–+( )2( )= =

=  2π
ρ 1 x–( )dxdc1

2 z 1 c+( )–
-----------------------------------δ x x0–( ),

dσh
1

dzdc
------------

α3z
2!4πρ
--------------- R1 Φ1d∫ α3

4ρω1
2 1 c–( )

------------------------------= =
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In the last equation, we take into account the same con-
tribution from the region 

 

k
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 In the case where 

 

k

 

 

 

≈

 

 (

 

t

 

/

 

z

 

 – 1)

 

p

 

2

 

, we obtain

(35)

Therefore, the contribution in the case where 

 

k

 

 || 

 

p

 

2

 

(

 

k

 

2

 

 || 

 

p2) has the form

(36)

Comparing formulas (34) and (36) with (23), we can
see explicit cancellation of the θ0 dependence.

APPENDIX B

Here, we describe the different cases of kinematic
regions for ρ and z.

All the above formulas were considered for ρ < 1,
and the possible region for the variable z was deter-
mined by the inequality x0 < 1,

(37)

which means that the lower integration limit in for-
mula (8) is less than 1. In the case where ρ > 1, it is con-

×
1 x0

2+
1 x0–
--------------

2x0ρ
z 1 c–( )
------------------- z 1 c–( )

2x0ρ
-------------------+ 

  4

θ0
2

-----ln .

R2 R k || p2

2xρ
z 1 c–( )
------------------- z 1 c–( )

2xρ
-------------------+ 

 = =

× 1 x2+

1 x–( )2
------------------ 1

2ρ2 1 c1–( )xω1
2

-------------------------------------,

dΦ2 dΦ k || p2
2

d3k
ω

--------δ x p1 k1 p2–+( )2( )= =

=  2π
ρ 1 x–( ) x c1dd

2 z 1 c+( )–
----------------------------------δ x x0–( ).

dσh
2

dzdc
------------

α3z

2!4ρω1
2

------------------ R2 Φ2d∫=

=  
α3

4ρaω1
2

---------------- 1 c–
a

----------- a
1 c–
-----------+ 

  1 z2/t2+
1 z/t–

-------------------- 4

θ0
2

-----.ln

z
2ρ

1 c– ρ 1 c+( )+
--------------------------------------,≤
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Table 7.  The value of y0 and z0 as a function of c for η = 0.064 and ρ = 0.4

cosθ –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8

y0 0.417 0.263 0.192 0.152 0.125 0.106 0.093 0.082 0.074

z0 0.423 0.455 0.489 0.526 0.571 0.625 0.690 0.769 0.870
venient to introduce the new variables

(38)

For ρ > 1 (or η < 1), master equation (8) becomes

(39)

with the possible values for the energy fraction y of the
scattered electron given by y ≤ y0. Born cross sections (4)

and (6) and formulas for hard photon emission ,

 for ρ > 1 follow precisely by the appropriate substi-
tution ρ  η–1:

(40)

η
ω1

ε1
------, y

ε2'

ε1
----,= =

y0
ε2

ε1
----

2η
1 c η 1 c–( )+ +
--------------------------------------, η 1.<= =

dσ̃
dydc
------------ p1 p2,( ) = 

xd
t̃ x( )
----------D x L̃,( )

σ̃B x p1 θ,( )d
cd

-----------------------------D
y

t̃ x( )
---------- L̃, 

 

x̃0

1

∫

+
α
π
---

dσ̃B p1 θ,( )
cd

-------------------------- K̃SVδ y y0–( ) K̃h+[ ] ,

x̃0
yη 1 c–( )

2η y 1 c+( )–
--------------------------------, L̃

2ε1
2y0 1 c+( )

m2
------------------------------,ln= =

t̃ x( ) 2ηx
x 1 c+( ) η 1 c–( )+
----------------------------------------------,=

K̃SV

K̃h

dσ̃B x p1 θ,( )
dc

-----------------------------
πα2

ε1
2

--------- 1

η 1 c–( ) x 1 c+( )+( )2
-----------------------------------------------------=

× η 1 c–( )
η 1 c–( ) x 1 c+( )+
---------------------------------------------- η 1 c–( ) x 1 c+( )+

η 1 c–( )
----------------------------------------------+ 

  .
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Large values of the leading contribution (see Table 4)
near the kinematic bound (see Table 7) can be under-
stood as a manifestation of the δ(y – y0) character of the
differential cross section. The y0, z0 dependence is
given in Table 7.
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Abstract—The order parameter of a quasi-two-dimensional electron system in which superconducting pairing
with large momentum and repulsive interaction occurs represents an alternating function of the momentum of
the relative motion of a pair. This function vanishes at points on the Fermi contour (FC) segments inside each
equivalent domain of kinematic constraint. The superfluid density is proportional to the area of such a domain.
When the pairing interaction is repulsive, the order parameter can be described by a two-component complex
function of coordinates that represents a solution to a system of two Ginzburg–Landau differential equations.
The characteristic size of a pair, which is determined by the effective mass rather than the velocity of an electron
near the FC, as well as the penetration depth and the correlation length for the fluctuations of the order param-
eter are obtained. The order parameter forms incommensurable quasi-periodic structures that arise under long-
wavelength fluctuations of the phase and correspond to antiferromagnetically ordered current circulations. The
pairing channel considered provides a qualitative description for the characteristic features of superconductivity
in cuprates. © 2005 Pleiades Publishing, Inc. 
1. Superconductivity in quasi-two-dimensional
(2D) cuprates, which arises under the doping of a par-
ent insulator with antiferromagnetic (AF) ordering,
exists in a limited interval of doping concentrations
x∗  < x < x*. The temperature of superconducting (SC)
transition TC attains its maximum at a point x = xopt in
this interval. In the underdoped regime (x∗  < x < xopt),
the superfluid density of the SC condensate of singlet
pairs is small, ns ~ (x – x∗ ), and the Fermi contour (FC)
is determined by the total concentration of charge car-
riers (1 – x) and may have several points (nodes) at
which the SC gap vanishes [1, 2]. When x∗  < x < xopt ,
noncoherent pairs exist in the domain of a pseudogap
state TC < T < T*, where the temperature T* at which
the pseudogap emerges corresponds to the association
of charge carriers into pairs, whereas TC corresponds to
the emergence of phase coherence in the system of
already existing pairs [3]. Since the phase stiffness is
small, well-developed fluctuations arise that suppress
the long-range order in a 2D system, so that TC can be
considered as the Berezinskii–Kosterlitz–Thouless
transition temperature, which corresponds to the gener-
ation of uncoupled vortices and antivortices of the
phase of the SC order parameter [4]. The weak interac-
tion between electrons in adjacent copper–oxygen
CuO2 planes stabilizes the system with respect to the
long-wavelength fluctuations of the order parameter,
thus accounting for the dependence of TC on the num-
ber of CuO2 layers in the unit cell [5]. The short-range
1063-7761/05/10001- $26.00 0039
AF order admits the existence of orbital currents (cur-
rent circulations) [6], which can manifest themselves as
a density wave (DDW) [7] or a DDW fluctuation [8] in
a system with a d-wave SC gap.

A quite general phenomenological approach [9, 10]
to the unification of AF and SC orderings shows that,
along with the Cooper SC pairing with zero momentum
of a pair and a dielectric pairing with a large AF vector,
there necessarily exist other pairing channels, each of
which can become the dominant channel under certain
conditions. One of such channels is a singlet SC pairing
with large momentum of a pair. The states of such pairs
belong to the class of eigenstates of the Hubbard
Hamiltonian [11]. Under the assumption that the hop-
ping of pairs between adjacent lattice sites is admitted,
these states may lead to superconductivity for the posi-
tive energy of on-site correlation [12]. The SC pairing
with nonzero momentum gives rise to an inhomoge-
neous state similar to the Fulde–Ferrel–Larkin–Ovchin-
nikov (FFLO) state [13, 14] with spatial modulation of
the modulus and phase of the order parameter [15].

Both attraction due to electron–phonon interaction
[16, 17] and repulsion [18] are considered as the pairing
mechanisms. The well-known features of the physics of
cuprates can be qualitatively explained in terms of the
pairing with large momentum under Coulomb repul-
sion [19]. In the present paper, we develop a macro-
scopic approach to the description of superconductivity
in cuprates. This approach is based on the Ginzburg–
Landau equations [20] derived for this pairing channel
in a way similar to that used in [21] for the Bardeen–
© 2005 Pleiades Publishing, Inc.
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Cooper–Schrieffer (BCS) model [22]. Due to the fluc-
tuation phenomena, the applicability of the mean-field
approximation is limited to the overdoping domain
xopt < x < x*. However, the results concerning the struc-
tural features of the order parameter can be extended to
the low doping domain.

2. The momenta k± of particles that compose a pair
with the total momentum K = k+ + k– and the momen-
tum of relative motion k = (k+ – k–)/2 in a degenerate
2D electron system have a limited domain of variation
ΞK . The shape and the size of this domain are deter-
mined by the Fermi contour and the momentum K [23].
The domain ΞK of kinematic constraints includes one-
particle states whose linear combination gives the
wavefunction of the relative motion of a pair. The
boundary that separates filled and vacant parts of the
domain ΞK with K ≠ 0 is generally given by isolated
points. However, for certain K close to the doubled
Fermi momentum in the direction of K and for a special
shape of the FC, this boundary may be given by finite
segments of the FC that satisfy the mirror nesting con-
dition [19] and form a pair Fermi contour (PFC). This
contour plays the same role for the relative motion of a
pair as the FC plays for electrons and holes [19].

The pairing with total momentum K ≠ 0 corre-
sponds to nonzero anomalous averages

(1)

where  is the annihilation operator of an electron
with momentum q and spin σ = ↑ , ↓ ; the averaging is
performed at temperature T. The energy gap parameter

(2)

where U(k – k') is the Fourier transform of the energy
of pairing interaction and N is the number of unit cells,
is a solution (up to a phase factor) to the self-consis-
tency equation

(3)

where

(4)

E =  is the energy of the quasiparticle, ∆ ≡
∆(K, k),

(5)

F K k,( ) âK
2
---- k↓–

âK
2
---- k↑+

,=

âqσ

∆ K k,( ) N 1– U k k'–( )F K k',( ),
k'

∑–=

∆ K k,( ) 1–
2N
------- U k k'–( )∆ K k',( ) f K k'; T,( ),

k'

∑=

f K k; T,( ) E 1– E
2T
------,tanh=

ξ2 ∆ 2+

2ξ 2ξ K k,( )≡ ε K/2 k+( ) ε K/2 k–( ) 2µ–+=
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is the kinetic energy of the relative motion of the pair
with total momentum K measured from the chemical
potential 2µ, and ε(q) is the dispersion law of an elec-
tron. The summation is performed over a kinematically
allowed domain ΞK .

In the BCS model, the attraction between electrons
in a narrow layer near the Fermi surface is independent
of the momentum k of the relative motion of the pair;
therefore, the order parameter does not depend on k
either. If the pairing interaction is repulsive, then it
turns out that a nontrivial solution to the self-consis-
tency equation exists provided that the linear integral
operator with the kernel U(k – k') has at least one nega-
tive eigenvalue [24] in addition to positive eigenvalues.

The perfect mirror nesting leads to a logarithmic
singularity with respect to |∆| in Eq. (3), which in this
case has a solution for arbitrarily small values of the
effective coupling constant. Deviations from the perfect
mirror nesting under the variation of the momentum of
the pair or the shape of the FC smooth out the logarith-
mic singularity. As a result, pairing becomes possible
when the coupling constant exceeds a certain minimal
value that increases with the deviation [25]. The energy
gap ∆(K, k) is an alternating function of the momentum
of the relative motion within the domain ΞK . The nodal
line of this function intersects the PFC [24], thus giving
rise to nodes that are exclusively attributed to the repul-
sive character of the interaction. The maximal value of
|∆(K, k)| determines the momentum K = Kj of the pair
that corresponds to the condensate (the index j numbers
crystallographically equivalent momenta).

The eigenfunctions ϕjs(k) of the Hermitian operator
with kernel U(k – k') form a complete orthonormal sys-
tem of functions in a domain Ξj , and the energy gap can
be expanded in this system,

(6)

therefore, the dependence of the energy gap on the
momentum of relative motion is transferred to the
eigenfunctions that are independent of the self-consis-
tency equation. For large Kj , the domain Ξj is rather
small; therefore, the kernel U(k – k') can be expanded
in a power series within this domain. If we restrict our-
selves to the first two terms of this series [24], we obtain

(7)

where U0 and r0 have the meaning of the effective cou-
pling constant and the screening length, respectively.
Kernel (7) is the simplest degenerate kernel with two
even and two odd (with respect to the transformation
k  –k) eigenfunctions [26].

Owing to the crystalline symmetry, every state of a
pair with momentum Kj ≠ 0 is degenerate and is formed
by a linear combination of pairs with equivalent

∆ K j k,( ) ∆s K j( )ϕ js k( );
s

∑=

U k k'–( ) U0r0
2

1 r0
2 k k'– 2/2–[ ] ,≈
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momenta. The momentum of relative motion of such a
pair belongs to the union of kinematically allowed
domains that correspond to different equivalent Kj . The
energy gap is rewritten as

(8)

where k belongs to a certain domain Ξj in each term and
the coefficients ∆s(Kj) ≡ ∆s are equal for all equivalent
Ξj . The coefficients βj (normalized by the condition

 = 1) are defined by an irreducible (not necessar-
ily trivial) representation of a symmetry group according
to which the functions (8) are transformed and which
depends on the interaction that mixes the momenta of
the relative motion of pairs with different Kj. If either
kinematically allowed domains with different Kj do not
overlap or this overlapping can be neglected, then the
squared modulus of the linear combination (8), which
can be considered as the order parameter, is repre-
sented as

(9)

this expression allows one to expand the free energy in
powers of |∆(Kj, k)|2 for a certain Kj and then pass
to (8).

3. At temperatures close to TC, |∆(Kj, k)|  0. This
allows one to linearize the self-consistency equation for
τ ≡ (TC – T)/TC ! 1, representing it as

(10)

where

(11)

f0(K, k; T) is the function (4) for ∆ = 0 and U–1(k – k')
is the inverse matrix of U(k – k'). Using the expansion (6)
of the energy gap in the eigenfunctions of the kernel (7),
one can reduce the system of equations (10) to a system
of two equations and determine the transition tempera-
ture from the solvability condition of the latter system.
Note that, when the kernel has a unique eigenfunction
that corresponds to a positive eigenvalue (an approxi-
mation similar to the BCS model for repulsive interac-
tion), the only equation obtained from (10) has only the
trivial solution ∆ = 0. The spectrum of the kernel (7)
contains one negative eigenvalue; therefore, the self-con-
sistency equation certainly has a nontrivial solution [24]
for T < TC ≠ 0.

For T < TC, the terms with the momenta Kj of the
condensate in the linearized Hamiltonian give rise to a

∆ k( ) β j∆ K j k,( )
j

∑ β j∆s K j( )ϕ js k( ),
j s,
∑= =

β j
2

j∑

∆ k( ) 2 β j
2∆s*∆s'ϕ js* k( )ϕ js' k( );

j s s', ,
∑=

Pkk' K j; TC( )∆ K j k',( )
k'

∑ 0,=

Pkk' K; T( ) NU 1– k k'–( ) δkk' f 0 K k; T,( )/2,+=
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macroscopically large number of pairs. For T  TC,
the contribution of these terms can be considered as a
small perturbation of the Hamiltonian of an ideal gas of
pairs. The free energy can be calculated within thermo-
dynamic perturbation theory [27]; in the second order,
it is expressed as

(12)

where the kernel (11) is determined at a temperature T
close to TC. Formula (12) can be rewritten as

(13)

where the kernel

(14)

with k ∈  Ξj is identical for all Ξj . Using expansion (6),
we obtain

(15)

where the matrix elements

(16)

are independent of j because of the summation over k.
The sum over j is included (together with the coeffi-
cients βj) in the definition of ∆s according to (8).

The fourth-order contribution  can be deter-

mined from the expression F =  – TS, where  is the
mean value of the linearized Hamiltonian. Omitting the
calculations presented in [28], we write the final result:

(17)

Here, we set Tn = πTC(2n + 1)) in the sum

(18)

over the union of all Ξj and used the well-known repre-

F 2( ) ∆† K j k,( )Pkk' K j; T( )∆ K j k',( ),
j k k', ,
∑–=

F 2( ) ∆† K j k,( )P k; T( )∆ K j k,( ),
j k,
∑–=

P k; T( ) τ
4TC
---------

ξ K j k,( )
2TC

--------------------cosh
2–≈

F 2( ) τ ∆ s*Fss'∆s' ,
s, s'

∑–=

Fss'
1

4TC
---------

ϕ js* k( )ϕ js' k( )

ξ K j k,( )/2TC[ ]cosh
2

---------------------------------------------------
k

∑≡

Fc
4( )

H H

F 4( ) 1
2
--- ∆s*∆s'*Fss't t'∆t∆t' .

s, s' , t , t'

∑=

Fss't t'
2TCϕ js* k( )ϕ js'* k( )ϕ jt k( )ϕ jt' k( )

Tn
2 ξ2 K j k,( )+[ ]

2
--------------------------------------------------------------------------

k

∑
n 0=

∞

∑=
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sentation [29]

(19)

4. To take into account the dependence of the order
parameter on the radius vector R of the center of mass
of a pair, we have to pass to the Fourier transform

(20)

where k belongs to the domain ΞK corresponding to the
momentum K. In the case of a weakly inhomogeneous
system, when the momenta K slightly differ from the
momentum Kj of the condensate of a spatially homoge-
neous state, ∆(K, k) can be expanded in the system of
functions ϕjs(k) defined in Ξj . Then,

(21)

For a condensate with momentum Kj in a homogeneous

system, we put ∆(K, k) = ∆(Kj, k) , so that

(22)

is similar to the FFLO state [13, 14], the essential dif-
ference being that the energy gap under repulsive inter-
action has two FFLO components (22) coupled by the
self-consistency equation. Functions (22) with different
j are orthogonal to each other:

In a spatially inhomogeneous state, the coefficients
∆s are functions of R that slowly vary on the atomic
scale. In this case, different R correspond to generally
different condensate momenta; therefore, putting, K =
Kj + q, one should sum over q for every j. Since the
homogeneous contribution to the free energy has
already been obtained, the second-order gradient con-
tribution can be calculated for T = TC and represented as

(23)

where

(24)

because, for small q, one can apply Eq. (10) to trans-
form the kernel in (12).

f 0 K j k; T,( ) = 4T
1

πT 2n 1+( )[ ] 2 ξ2 K j k,( )+
----------------------------------------------------------------.

n 0=

∞

∑

∆ R k,( ) N 1/2– ∆ K k,( ) iK– R⋅( ),exp
K

∑=

∆ js R( ) ∆ R k,( )ϕ js* k( ).
k

∑=

N δKK j

∆ js R( ) ∆s iK j– R⋅( )exp=

∆ js* R( )∆ j's' R( )
R

∑ N∆s*∆s'δj j' .=

Fg
2( ) ∆† K j q k,+( )P' q k,( )∆ K j q k,+( ),

j q k, ,
∑–=

P' q k,( )
=  f 0 K j q k; TC,+( ) f 0 K j k; TC,( )–[ ] /2N ,
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The application of a magnetic field changes the
phase of the annihilation operator of an electron at a site
n [30],

(25)

therefore, the phase of the order parameter as a function
of the vector potential A is expressed as

(26)

where 2R = n + n', and the approximate equality holds
if the derivatives of the vector potential are negligible
(in the weak-field approximation). The vector poten-
tial A in (25) includes both the contribution of a slowly
varying field that is retained in the approximate expres-
sion (26) and the contribution of the internal field that
arises due to doping and current circulations [6]. This
contribution manifests itself, for instance, in the boson
model [31] of resonating valence bonds [32], as gauge
fields that link the charge and spin degrees of freedom.

The energy gap can also be expanded in terms of the
eigenfunctions of the kernel of the interaction operator
for momenta that differ from the condensate momen-
tum for a spatially homogeneous state. In this case, for
small enough q, the functions ϕs(k) can be assumed to
belong to the domain Ξj that corresponds to the momen-
tum Kj . Define the functions

(27)

where

(28)

The normalization condition for the dimensionless

functions ϕjs(k) implies that ϕjs(k) ~ , where Nc ≡
ΞjS/(2π)2 is the number of states in the domain Ξj and S
is a normalizing area. Then, formulas (15)–(18) show
that the order parameter is normalized in the domain of
kinematic constraint |Ψs(R)|2 ~ Nc , so that Ψs(R) can be
considered as components of the condensate wavefunc-
tions. The fact that the superfluid density is propor-
tional to Nc for a large total momentum of a pair indi-
cates that the domain of the momentum space in which
the scattering of pairs due to the interaction occurs is
determined by the domain of kinematic constraint. This
contrasts with the BCS model, in which, in spite of the
fact that the pairing interaction is different from zero in
a thin layer enclosing the Fermi surface, the domain of
the momentum transfer under scattering is the entire

ĉnσ ĉnσ
ie
"c
------A n( ) n⋅ ;exp

e
"c
------ A n( ) n A n'( ) n'⋅+⋅[ ] 2e

"c
------A R( ) R,⋅≈

Ψs R( ) ∆s R( )/aTC,=

∆s R( ) β je
iK j R⋅

∆ js R( ).
j

∑=

Nc
1/2–
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Brillouin zone, so that the superfluid density is propor-
tional to the total number of particles. Formula (23) is
rewritten as

(29)

Here,

(30)

where a2 = S/N.
The “biased” order parameter is expressed as

(31)

where the operator of covariant differentiation with
respect to the coordinates of the center of mass of a pair
is given by

(32)

Up to the second order in R, formula (29) can be repre-
sented as (summation over repeated Cartesian indices α
and β is assumed)

(33)

where, upon passing to integration with respect to q and
r, we have

(34)

The integral with respect to q is determined by the
poles of the integrand in the complex plane (for each
component of the vector q), which are obtained from
the equations

(35)

For a weakly inhomogeneous state (for small q), the
left-hand side of Eq. (35) can be expanded in series

Fg
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2 ϕ s* k( )P' q k,( )ϕ s' k( ),
k
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Ψs' R r+( ) i
2e
"c
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 
 
 

exp eir D̂⋅ Ψs' R( ),=

D̂ i∇–
2e
"c
------A.–=

Fg
2( ) d

2
R D̂αΨs R( )[ ] †

Qss'
αβ D̂βΨs' R( )[ ] ,

s, s'

∑∫=

Qss'
αβ a2TC

3 d
2
k

2π( )2
-------------ϕ s* k( )ϕ s' k( )∫

n 0=

∞

∑=

× d
2ρ

2π( )2
-------------ραρβ

d
2
q

2π( )2
------------- eiq r⋅

Tn
2 ξ2 K j q; k+( )+

---------------------------------------------.∫∫

ξ K j q k,+( ) iTn.±=
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in q. Restricting the expansion to the first nonvanishing
terms, we obtain

(36)

There are no terms linear in q in this formula because
the electron velocities at the points k+ and k–, which are
symmetric with respect to Kj , have opposite directions.
m* makes the sense of a certain effective mass of an
electron, and the tensor aαβ , defined by the equation

(37)

can be assumed to be independent of k.

The disposition of the PFC in the extended neigh-
borhood of a saddle point [33] allows one to restrict the
analysis to the case of extremely strong anisotropy of
the effective masses. Let m* be a light component of the
effective mass, which corresponds to the momentum Kj

of the pair directed along the coordinate axis q1. Set

aαβqαqβ = . Then, integration with respect to q2 leads

to the substitution ραρβ  δα1δβ1 in (34). The inte-
gral with respect to q1 can be calculated by the theorem
of residues. Subsequent integration with respect to r
allows us to represent the gradient contribution to the
free energy as

(38)

where m= |m*|, Ψs ≡ Ψs(R), and

(39)

here we took into account that the momenta ±Kj make
equal contributions to (34) and that, in the case of tet-
ragonal symmetry, the momenta equivalent to ±Kj ,
turned through angles of ±π/2, give similar contribu-
tions with a simultaneous change of the numbering of
the coordinate axes.

Homogeneous contributions of the second (15) and
fourth (17) orders are expressed as

(40)

ξ K j q k,+( ) ξ K j k,( ) "
2

8m*
-----------aαβqαqβ.+=

aαβ
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"
2

-------
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∂2ε k–( )
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------------------+ ,=
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2

ρ1
2

Fg
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2

4m
------- d

2
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Mss' D̂Ψs'[ ] ,
s, s'
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Mss' 8
d

2
k

2π( )2
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a2TC
3 ϕ s* k( ) ξ K j k,( ) ϕ s' k( )

Tn
2 ξ2 K j k,( )+[ ] 2

------------------------------------------------------------------;∫
n 0=
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F 2( ) τ d2R Ψs*Ass'Ψs' ,
s, s'

∑∫–=
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and

(41)

respectively, where

(42)

and

(43)

in accordance with (16) and (18). Note that, in the sim-
plest case (which is worth considering only for the
attractive interaction) when the degenerate kernel of the
interaction operator has a unique eigenfunction ϕjs =

, the matrices introduced by formulas (39), (42),
and (43) degenerate into the numbers

(44)

respectively, where g is the density of states and ζ(z) is
the Riemann zeta function.

Let us represent the free energy as the Ginzburg–
Landau functional

where 

(45)

is the magnetic field energy, A ≡ A(R), and z0 is the dis-
tance between adjacent CuO2 planes.

A standard variational procedure yields a system of
equations for the order parameter,

(46)
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and an equation for the vector potential,

(47)

where

(48)

is the current density in the CuO2 plane. The system of
boundary conditions can be expressed, in particular, as

(49)

where n is the outward normal to the boundary of a 2D
domain in the CuO2 plane.

The presence of the system of two equations (46)
instead of a single Ginzburg–Landau equation corre-
sponding to the BCS model may lead, just as in the case
of s–d pairing [34], to several nontrivial solutions (that
may differ, for example, in the relative phase). These
solutions correspond to the minima of the Ginzburg–
Landau functional, whose positions and the energy val-
ues depend on the relation between the matrix elements
Att' and Bstt's' . Moreover, system of equations (46) for the
interrelated components of the order parameter may
lead to topological defects in the phase of the order
parameter that are different from vortices and antivorti-
ces and arise as solutions to the Ginzburg–Landau
equations corresponding to the BCS model, like in the
case described by the two-component Gross–Pitaevskii
equation for condensates of oppositely charged particles
coupled through the electromagnetic field alone [35].

The components of the equilibrium order parameter
in a spatially homogeneous system are determined by
the system of equations

(50)

which implies that, for τ < 0, the equilibrium state cor-
responds to the trivial solution  = 0. When τ > 0, the
equilibrium order parameter is determined from the
condition that the matrix in square brackets in (50) van-

ish. Denote  = cs, where the coefficients cs are
independent of temperature and are determined form
the system of three independent equations

(51)
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The coefficients cs enter this system as three nonnega-
tive invariant combinations: as the squared moduli |c1|2

and |c2|2 and as the interference term  + ,
which determines the relative phase of the coefficients
c1 and c2. The matrices Att' and Btss't' have three and five
independent components, respectively, which can eas-
ily be estimated. Let us choose the eigenfunction ϕj2,
which corresponds to a positive eigenvalue, in the form
that was used for estimates (44). Then, the function ϕj1,
which corresponds to a negative eigenvalue and van-
ishes on the PFC, can be chosen as a linear function of
ξ. This choice is consistent with the assumption [36]
about the “tilt” of the energy gap. For such eigenfunc-
tions, the elements of the matrices Att' , Btss't' , and Mtt'
all of whose indices are 2 coincide with estimates (44)
in order of magnitude. Taking into account that the
parameter γ = πTC/ε0 is small, we can estimate the
above matrix elements with all indices equal to unity as
A11 ~ γ2A, B1111 ~ γ2B, and M11 ~ γM. B1122 ~ γ2B to a
logarithmic degree of accuracy in γ, and the elements
with an odd number of identical indices, which are also
proportional to γ2, have an additional small term (which
determines their sign) associated with the asymmetry
between the filled and vacant parts of the domain Ξj .

Note that, when the kernel of the interaction opera-
tor has a single positive eigenvalue, system (50) degen-
erates into a single equation that has no nontrivial solu-
tions. Moreover, system (50) has only the trivial solu-
tion when all eigenvalues of the kernel are nonnegative.
In the case of two (one positive and one negative)
eigenvalues, which is considered here, the elements of
the matrices Att' and Bstt's' are such that a nontrivial solu-
tion certainly exists for τ > 0.

The essential difference between the system of
equations (46) and the system that describes, for exam-
ple, the s–d pairing [34], is that the coefficients multi-
plying the first-order components of the order parame-
ter are proportional to τ. In the case of repulsion, both
components Ψ1 and Ψ2 correspond to the same transition
temperature and cannot exist one without other [24]
because the transition to the limit case of a unique pos-
itive eigenvalue implies the simultaneous transition
TC  0 [24].

5. It follows from (47) and (48) that the penetration
depth λ is defined as

(52)

and the two-dimensional superfluid density is given by

(53)

c1*c2 c1c2*

1

λ 2
-----

8πe2τ
mc2z0

-------------- cs*Mss'cs'

s, s'

∑=

ns 2τ cs*Mss'cs' ,
s, s'

∑=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where the coefficients cs are solutions to the system of
equations (51).

The size of a pair in the real space can be evaluated
as the inverse of the imaginary part of the pole defined
by (35) for n = 0. Let us denote by ε0 the characteristic
energy scale of the domain Ξj and take into account that
ε0 @ TC. Then, we obtain the estimate

(54)

Setting ε0 ~ 0.1 eV, we obtain ζ0 ≈ 3 × 10–7 cm for |m*|
≈ 10–27 g and TC ≈ 80 K. Note that, for the pairing with
zero total momentum (in the case of attraction), when
there are no kinematic constraints and ε0 has the sense

of the Fermi energy, we have  ~ vF , and (54)
is rewritten as ζ0 ~ "vF/πTC.

The correlation function for the fluctuations of the
components of the order parameter can be represented
as

(55)

where r = R' – R, Uss' is a unitary matrix that simulta-
neously diagonalizes the matrices Ass' and Mss' , At and
Mt are the eigenvalues of these matrices, and

(56)

Taking into account that the Macdonald function K0(z)
behaves as

for large values of the argument, we can consider the

least of quantities (56), rc = min( ), as the character-
istic correlation length for the fluctuations of the order
parameter. Just like the size of a pair in the real space,
this length is determined by the electron effective mass
near the FC.

As rough estimates, one can use expressions (44),
which are the greatest (in order of magnitude) diagonal
elements of appropriate matrices corresponding to the
positive eigenvalue of degenerate kernel (7). The mean
squared modulus of the equilibrium order parameter is
proportional to the area of the domain Ξj ,

(57)

and the dimensionless ratio κ = λ/rc @ 1.
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The gradient contribution to the free energy (40)
describes long-wavelength fluctuations of the order
parameter with respect to the thermodynamic equilib-
rium value determined by system of equations (50).
The structure of order parameter (28) is such that a spe-
cial current state may arise in the domain of well-devel-
oped fluctuations. The character of this state can be deter-
mined by Ginzburg–Landau equations (46) and (47). If
we single out the phase

(58)

of the order parameter, we can rewrite expression (47)
for a superconducting current in the absence of mag-
netic field as

(59)

Here,

(60)

and Ψs is given by expression (27). Due to the exponen-
tial factors in the definition (28), Ψs is a rapidly varying

(on the space scale proportional to ) function of the
coordinates X and Y of the radius vector R: 

(61)

The upper (lower) sign corresponds to the irreducible
representation of A1g (B1g). The current circulation
along any closed contour L0 in the cuprate plane,

(62)

is generally different from zero; here, n3 is a unit nor-
mal to the CuO2 plane, and S0 is the area of the surface
bounded by the contour L0. If the characteristic size of
contour L0 is much greater than the scale proportional

to , on which a variation of the order parameter (61)
occurs, then V ≈ 0. The structure of order parameter (61)
corresponds to the partition of a real 2D space into cells

of area on the order of , so that the projections of
the vector product in (62) onto direction n3 in adjacent
cells have different signs. Thus, long-wavelength fluc-
tuations of the phase of the order parameter (which are
especially significant in underdoped cuprates due to the
small phase stiffness) result in an incommensurable
antiferromagnetically ordered (on the scale of phase
fluctuations) structure in the form of orbital current cir-
culations.
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An estimate for the phase stiffness near the transi-
tion temperature can be obtained from Eq. (38). In the
absence of magnetic field, expression (38) can be
rewritten as

(63)

whence it follows that

(64)

Here,  is defined by (60) in which the components of
the order parameter should be set equal to their equ-
ilibrium values, which are solutions to system of equa-
tions (50). Thus, near the transition temperature, we
have ρs ~ τ. If we assume that ρs is a linear function of
temperature [37], then, for τ = 1, expression (64) deter-
mines the value of the phase stiffness at zero tempera-
ture, ρs(0), which is proportional to the area of the
domain Ξj of kinematic constraint.

6. The mean-field approximation used when deriv-
ing Ginzburg–Landau equations (46) and (47) is
assumed to be sufficient [1] for describing the SC state
of optimally doped and overdoped cuprates. In the
underdoped regime, the presence of a pseudogap for
TC < T < T* suggests [32] that the ground state of the
high-temperature (T > TC) phase differs from the state
of a normal Fermi liquid. Therefore, a theory based on
the same principles as the BCS theory may prove to be
inadequate for the physics of cuprates. Moreover, fluctu-
ations play an essential role in underdoped cuprates [4],
so that, if the mean value of the order parameter van-
ishes at a certain transition temperature T

 

C

 

, its mean
square may be different from zero in a rather wide
range of temperatures above 
 

T
 

C
 

 [3].
Analysis of the  t – J  model under the constraint of no

double occupation of lattice sites shows [18, 38, 39]
that the mean-field theory with regard to the relevant
renormalization of the kinetic energy and the superex-
change interaction in the 

 

t

 

–

 

J

 

 Hamiltonian gives a rea-
sonable doping-level dependence for the SC-transition
temperature 

 

T

 

C

 

 and the temperature 

 

T

 

* at which a
pseudogap arises. In addition, it shows that the phase
stiffness in the underdoped state is small (

 

ρ

 

s

 

 ~ 

 

x

 

). The
latter fact allows one to interpret 

 

T

 

* as the formation
temperature of pairs that exist for 

 

T

 

C

 

 < 

 

T

 

 < 

 

T

 

* in nonco-
herent states, and 

 

T

 

C

 

, as the temperature at which phase
coherence arises [18].

The constraint of no double occupation corresponds
to the limit case when the energy of on-site correlation
is much greater than the electron energy band gap and
thus promotes dielectrization of the system and the
emergence of AF ordering. A more realistic constraint
on the double occupation under which the total
(Gutzwiller) projection used in [18, 38, 39] is replaced
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by a partial projection [40] also leads to the phase stiff-
ness ρs ~ x. Moreover, this constraint allows one to
apply the general BCS approach to describe SC in
underdoped cuprates without resorting (like in [18]) to
various, rather factitious schemes for separating charge
and spin degrees of freedom [31, 41–43]. The absence
of a true separation of charge and spin (a specific con-
finement of holons and spinons) is an argument in favor
of the general BCS conception as applied to cuprates.

Unlike the BCS theory, in which the SC state arises
as a result of instability of a normal Fermi liquid with
respect to the Cooper pairing with zero total momen-
tum, the theory of superconductivity in cuprates must
take into account competition between the SC and AF
states [7]. Antiferromagnetic ordering is characterized
by a momentum on the order of the doubled Fermi
momentum. This is one of the reasons why the SC pair-
ing with large momentum [9–11] (which is generally
incommensurate [7] in doped cuprates) may turn out to
be the main pairing channel [19].

The description of doped cuprates within the t–J
model on the basis of SU(2) symmetry in fermionic
representation [44] suggests that one should introduce
a doublet of bosons one of which may condensate into
a state with zero momentum and the other corresponds
to a condensate with large momentum (π, π). The
SU(2) formalism leads to the correlation of orbital cur-
rents, which manifests the AF ordering of current cir-
culations [6] corresponding to a flux phase [45]. Equa-
tion (62) implies that such a character of current circu-
lations can be associated directly with the large
momentum of the pairs that form the SC condensate.

Owing to the positive term , the repulsive pair-
ing interaction (7) takes into account a partial constraint
of no double occupation of sites and results in a sub-
stantial dependence of the SC order parameter on the
momentum of the relative motion of the pair. For large
total momentum of the pair, this dependence results,
first, from the crystalline symmetry (pairing in equiva-
lent domains Ξj of the momentum space) [23, 26], and,
second, from the specific character of repulsion (the
presence of a negative eigenvalue of the interaction ker-
nel, which is in agreement with the assumption [46]
that there is a pairing interaction in addition to the Hub-
bard repulsion). Thus, the four nodes for the d-wave
symmetry of the SC gap (the irreducible representation
B1g relating equivalent domains Ξj) are supplemented
with nodes associated with intersection of the FC with
the nodal line of the order parameter [24]. Under the
s-wave symmetry (the trivial representation A1g), the
repulsive pairing interaction also gives rise to nodes of
the order parameter (the extended s-wave symmetry [2]).
The analysis [47, 48] of the experimental data obtained
by different methods shows [47] that the order parame-
ter in the bulk of a cuprate semiconductor corresponds
to the s-wave symmetry (which is extended in com-
pounds with hole doping and anisotropic in compounds

U0r0
2
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with electron doping) [47]. This result does not contra-
dict the fact that phase-sensitive experiments that allow
one to probe thin (on the order of the coherence length)
surface layers indicate that the order parameter has the
d-wave symmetry [47]. With the nodes of the order
parameter and quasiparticles that are thermally gener-
ated in the neighborhoods of these nodes, one may
associate a linear decrease in the phase stiffness as tem-
perature increases [37]. This makes it possible to deter-
mine (within the mean-field theory) the transition tem-
perature from the condition ρs(TC) = 0 [37]. Note that
the additional nodes, just as the regions of the nodal line
of the order parameter that lie near the FC, lead to an
increase in the number of generated quasiparticles
(compared with, say, the case of “pure” d-wave symme-
try). Therefore, systems with strong anisotropy of the
FC, where the nodal line is rather far from the FC on the
average, should be characterized by higher values
of TC.

The smallness of the phase stiffness is responsible
for the significant long-wavelength phase fluctuations
of the order parameter, which, for T ≈ TC, develop into
singular fluctuations in the form of uncoupled pairs of
vortices and antivortices [4] that exist in the pseudogap
state of underdoped cuprates. The Dirac character of
the spectrum of nodal quasiparticles [1] makes it possi-
ble to describe, by analogy with quantum electrody-
namics in two dimensions (QED2 + 1), the pseudogap
state within the phenomenological scheme of [4]. In
this scheme, the nonsuperconducting phase with a
pseudogap manifests itself as a certain algebraic Fermi
liquid [4] that plays the same role in the phase transition
to the SC state as the normal Fermi liquid plays in the
BCS theory. Vortices and antivortices, which represent
elementary excitations in the QED2 + 1 scheme, mani-
fest themselves as topological defects of the phase of
the order parameter and result from quantum or thermal
fluctuations. Similar defects may arise due to the
change of the signs of individual current circulations
[49] in a state corresponding to the flux phase. In the
energy-band scheme, these defects can be associated
with long-lived quasi-stationary states of particle pairs
with large total momentum [26].

The phase transition to the SC state in 2D systems in
which the order parameter has nodes inevitably
acquires the characteristic features of the Berezinskii–
Kosterlitz–Thouless transition because quasiparticles
reduce the phase stiffness and thus stimulate the ther-
mal excitation of vortices and antivortices. The Joseph-
son junction between CuO2 layers [18], just as between
equivalent domains Ξj under pairing with large momen-
tum, may suppress the phase fluctuations and bring the
transition temperature closer to the value defined by the
mean-field theory. A similar effect results from the
competition between the SC and DDW states with
regard to the inhomogeneous distribution of charge car-
riers that are introduced during doping along different
copper–oxygen planes in a unit cell [5].
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All successful phenomenological approaches to the
problem of superconductivity in cuprates are associated
with inhomogeneities either in the real space (for exam-
ple, stripes) or in the momentum space [1]. Pairing with
large momentum inevitably results in a spatially inho-
mogeneous SC state, similar to the FFLO state, in
which the distribution of the amplitude of the order
parameter is analogous to that in the DDW. The pairing
repulsion gives rise to nodes in the order parameter and
thus reduces the phase stiffness of the SC condensate.
These two principles substantially unify various theo-
retical approaches to the description of superconductiv-
ity in cuprates [50].
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Abstract—The lack of universal phenomenological approaches to calculation of the spatiotemporal distribu-
tions of vector fields in superconducting materials with high anisotropic pinning hinders the analysis of accu-
mulated empirical data. The development of such phenomenology is impeded by the tradition of inadequate
description of the transition characteristics of superconductors. Based on a detailed investigation of the current-
dependent transitions in commercial niobium–titanium wire, it has been found that, in contrast to the commonly
accepted approach, the transition characteristics are conveniently described as the dependences of the resistance
on the current, by analogy with the dependences on the temperature and magnetic field. Investigations in the
range of magnetic fields from 0 to Bc2 showed that it is the resistance that exhibits exponential variation with
the field. The values of resistances determined by extrapolation of the transition curves to a zero current obey
the exponential dependence on the magnetic field. The experimental results are consistent with predictions of
the statistical model explaining the shape of the transition characteristic as determined by the bulk inhomoge-
neity of the superconductor. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

After more than four decades of research, the resis-
tive state of superconductors with high pinning is still
among the central topics in investigations of the phe-
nomenon of superconductivity. The interest in this issue
is related to important technical applications of super-
conductors capable of carrying nondissipative currents
of high densities. It is surprising enough that, despite
such a long period of extensive investigation, discover-
ies are still being made and new physical ideas formu-
lated in this field. The frequency of such events espe-
cially increased after the discovery of high-temperature
superconductivity and was related to the growing vari-
ety of experiments devoted, in particular, to the depen-
dence of electric fields and critical currents on the ori-
entation of an external magnetic field. Each new exper-
imental result was explained by peculiarities of the
interaction between magnetic flux quanta and pinning
centers of a certain type, which led to a very compli-
cated pattern of interactions of the magnetic flux with
the superconductor structure. Now it is difficult to
judge unambiguously whether the existing notions
reflect the real complexity of the phenomenon under
investigation, or if the abundant harvest of discoveries
reflects the absence of adequate phenomenology with
predictive potential and capable of describing the time
variation and spatial distribution of vector fields and
currents in a superconductor for arbitrary orientations
of external fields and currents relative to the principal
axes of the anisotropic structure.

Adhering to the second point of view, we believe
that attempts to construct an adequate phenomenologi-
1063-7761/05/10001- $26.000050
cal electrodynamics are not futile. Previously, we have
formulated such a phenomenology in the critical state
approximation [1], which allows one to describe, for
arbitrary orientations of the external fields and currents,
the static characteristics of a given superconductor
(such as the critical current density and the angle
between the current density and electric field vectors)
in terms of the experimentally determined parameters
of the global anisotropic potential well of pinning. The
proposed model provides a good description for the
results of a large series of experiments performed on a
niobium–titanium foil with highly anisotropic pinning.
Some predictions made within the framework of this
model were confirmed by subsequent experiments [2,
3]. We find it attractive and possible to expand the
model and construct a consistent vector electrodynam-
ics of superconductors with high anisotropic pinning,
which would describe the process of magnetic flux dif-
fusion in such materials.

In order to ensure that the generalized model would
be capable of describing processes developing in time,
it is necessary to generalize the approach to description
of the transition characteristics of superconductors,
which is presently performed only in a scalar form. We
believe that good prospects have nothing to do with the
well-known attempts [4] to construct a vector electro-
dynamics of superconductors with high anisotropic
pinning based on the concept of a thermally activated
vortex motion [5, 6] nor on the generalization of the
critical state model j = jcE/E introduced by Carr [7].
The activation model initially employs a scalar expres-
sion for the electric field, whereby the absolute value of
 © 2005 Pleiades Publishing, Inc.
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a vector product of the current density and the magnetic
field enters into an exponent or the hyperbolic sine
argument, by no means influencing the direction of the
electric field. The Carr approach to generalization is
merely incorrect: in fact, the directions of electric field
and current even in the isotropic case coincide provided
only that the magnetic field is perpendicular to the cur-
rent direction [1, 2].

An alternative, statistical explanation of the shape of
transition characteristics [8] taking into account inho-
mogeneity of the critical parameters of superconduc-
tors can be quite readily generalized. This approach
was previously considered as being opposite to that
used in the thermal activation model [8–11], but later
the regions of applicability of the two models were sep-
arated. It was accepted that certain “internal” transition
characteristics determined by physical processes (such
as thermal activation) are inherent in superconducting
materials, whereas the statistical model was invoked in
explaining the observed broadening of the transition as
caused by the longitudinal inhomogeneity of a super-
conducting wire [12, 13]. Before the discovery of high-
temperature superconductors, it was assumed that there
is a certain internal voltage–current curve, which is
exponential, while the statistical characteristic obeys a
power law. Indeed, model calculations of the transition
characteristics of a one-dimensional chain of elements
with critical parameters distributed according to the
normal law [8, 14, 15] give results obeying a power law
in a certain region of the total characteristic. Coinciden-
tally, this region coincided with that experimentally
measured for multifilament wires [16]. The voltage–
current (V–I) curves of high-temperature superconduc-
tors also proved to obey the power law, and the activa-
tion model was adapted to this shape of the internal
curve by introducing a logarithmic potential well of
pinning [17].

Our suggestion made quite long ago [14] concern-
ing application of the statistical model to the internal
transition characteristics with due regard of the bulk
inhomogeneity of superconductors was not accepted,
even despite a convincing, in our opinion, numerical
demonstration [15, 18] of the fact that a bulk-inhomo-
geneous model with a normal distribution of the prop-
erties of elements gives an exponential transition char-
acteristic. This result is provided by the possibility of
bypassing an element, occurring in the normal state, via
superconducting paths. It was shown [18] that the dif-
ference between a limited real distribution and the
unlimited normal distribution does not significantly
influence the shape of the calculated superconducting
transition characteristic. Subsequently, numerous exper-
imental data were obtained which confirmed the bulk
inhomogeneity of superconducting materials possessing
high current-carrying capacity [2, 4, 19–23]. The notion
of such inhomogeneity in superconductors with high
pinning is now commonly accepted. On the one hand,
vortices exhibit pinning on microinhomogeneities; on
the other hand, samples frequently comprise more or
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
less ordered mixtures of various superconducting
phases. For example, it was reported that several layers
of intermetallic phases with various compositions,
grain sizes, degrees of straining—and hence differing
critical temperatures—were formed on the surface of a
niobium filament in a bronze coating [23]. A certain
hierarchy of the types of structural inhomogeneities
was considered in [19, 23], where it was suggested to
place inhomogeneities with dimensions on the order of
an alloy grain size between extreme types. The grains
in a homogeneous alloy may exhibit a certain scatter in
the composition and, hence, critical temperature, elec-
tron mean free path and, hence, critical field, concentra-
tion of pinning centers and, hence, critical current den-
sity. As will be demonstrated below, a statistical distri-
bution of any one critical parameter gives rise to scatter
(with the same variance) in the other two such para-
meters.

Transition characteristics of such inhomogeneous
materials are conventionally described using the
expression [14, 24–26]

(1)

This formula corresponds to parallel coupling of the
normal resistance ρn and a superconducting component
ρsc exhibiting exponential growth with the temperature
T, magnetic field B, and current density j:

where

and δ has the meaning of a relative variance of the dis-
tribution of critical parameters in the given inhomoge-
neous material. The preexponential term in Eq. (1) is
selected so that the effective resistance would amount
to half of the normal resistance when any parameter
reaches its critical value (Tc , Bc2, or  rendering
K = 0). This choice corresponds to the adopted defini-
tion of critical parameters.

Equation (1) reflects the close relationship between
the temperature-, field-, and current-dependent transi-
tions in a superconductor, whereas the thermal activa-
tion model considers the current-dependent transition
as distinct. The shape of the current-dependent transi-
tion characteristic predicted by the activation model

ρeff 0.5ρn 1 K T B j, ,( )
2δ
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 
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differs from the shape of the field and temperature
dependences Reff(B, T) described by logistic curves.
This difference was explained as being related to the
fact that the field and temperature are the parameters of
state, whereas the current is a kinetic quantity. Interre-
lation between the temperature-, field-, and current-
dependent transitions was usually not discussed.
Recently, Hense et al. [26] again established a scaling
relationship between the temperature-, field-, and cur-
rent-dependent transitions in a niobium–tin wire.
Apparently, it was the inertia of thinking in terms of the
thermal activation model that made the authors of [26]
conclude that “from the physical point of view, scaling
… is not understood at the moment.”

Below we present the results of investigations of the
transition characteristics of superconducting wires with
high pinning. The aim of our study was to provide
experimental evidence for the planned continuation of
the work on vector electrodynamics of superconducting
materials with high pinning. We hope that these results
will stimulate revision of some common notions about
the nature of the resistive state of such superconductors.

2. EXPERIMENTAL METHODS 
AND RESULTS

We naturally selected a niobium–titanium wire as
the sample material, since it is analogous to niobium–
zirconium wires widely used in basic experiments
favoring establishment of the thermal activation model
[27–30]. However, this is not the only basis for this
choice: we believe niobium–titanium wire and foil to be
the most suitable materials for investigating the transi-
tion characteristics of superconductors with high pin-
ning and studying the problems of their electrodynam-
ics. Commercial technology of niobium–titanium
alloys is on a quite high level and provides relatively
homogeneous materials exhibiting uniform properties
along the wire length, with sufficiently high anisotropic
pinning. No other commercially available material
offers these advantages, and it is even much more diffi-
cult to obtain samples with high longitudinal unifor-
mity under laboratory conditions. These advantages
make it possible to study the general laws of electro-
dynamics in technical superconductors [1], which are
almost not masked by specific features of particular
samples. Experiments with niobium–titanium wires are
not complicated by brittleness and high sensitivity to
straining, which we typical of intermetallic compounds
and HTSC. On the other hand, niobium–titanium wires
are by no means a simple material. These wires were
displaced from the focus of research, not even having
been exhaustively studied. In recent years, it was found
that niobium–titanium alloys are two-component (as
manifested by a difference in the critical fields of the
grain body and boundaries [2]) and are characterized
JOURNAL OF EXPERIMENTAL A
by anisotropic pinning in the cross section of a round
wire [3].

Three U-shaped samples for V–I measurements
using the standard four-point-probe technique were
prepared from a piece of cold-drawn copper coated
Nb–50 wt% Ti wire with a diameter of 0.15 mm. The
superconducting core diameter was 0.12 mm. The sam-
ple ends were soldered to current-carrying leads. Poten-
tial tips spaced by 10 mm were connected to a 20-mm-
long central part, which was oriented perpendicular to
the magnetic field. The magnetic field generated in the
working region by a 200-mm-long coil with an inner
diameter of 42 mm was homogeneous to within 10–4.
This was sufficient to exclude the effect of field inho-
mogeneity on the V–I curve with a rather high slope. In
sample 1, the copper coating in the region between
potential contacts was removed by etching in an iron
chloride solution. The resistance of sample 1 in the nor-
mal state was 0.85 Ω . Sample 2, on which the copper
coating was retained, had a much smaller resistance
(2.1 mΩ). Samples 1 and 2 were fixed with low-temper-
ature glue on a fiberglass substrate. Sample 3, soldered
to a stainless steel substrate, had a resistance of
0.56 mΩ. All these normal resistances were determined
in the linear regions of the voltage–current curves in
high magnetic fields, where the critical currents were
very small.

Three differently prepared samples were necessary,
on the one hand, for providing satisfactory sensitivity
and stability of the V–I measurements in liquid helium
for current densities ranging within four orders of mag-
nitude and, on the other hand, for excluding burn-out of
the samples during the operating time of the sample
protecting scheme. This is illustrated in Fig. 1, which
shows the nonisothermal V–I curves [31] calculated for
samples 1–3 in various magnetic fields. Based on some
preliminary data concerning properties of the wire
studied, we arbitrarily selected the heat transfer coeffi-
cients as 102 W/(m K) for samples 1 and 2 glued to the
substrate and 104 W/(m K) for sample 3 with the sur-
face washed by liquid helium. Exact conditions of heat
exchange were unknown, the V–I measurements were
limited from below (on a level of 5 nV) by the intrinsic
noise of a photovoltaic nanovoltmeter, and from above,
by the development of thermal instability or by the pro-
cess of current distribution between the superconduct-
ing core and the normal-metal shunt. Since a voltage
jump corresponding to a vertical tangent to the V–I
curve takes place upon an insignificant heating [32], the
preceding part of the curve remains virtually undis-
torted. Overheating involved in the distribution of cur-
rent between the superconductor and the normal metal
is also insignificant, which allows the isothermal V–I
curve of the superconductor to be reconstructed by
determining the corresponding current as the difference
between the total current and the component passing
via the normal metal, which is readily determined for
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005



        

RESISTANCE–CURRENT CURVES OF HIGH PINNING SUPERCONDUCTORS 53

                                                     
10–2

10–10

1.0

Current, A

0.6

10–4

10–6

10–8

0.4 0.80.20

B = 9.1 T

Sample 1
∆T = 3.3 mK

Sample 2

Sample 3

(b)

Fig. 1. Voltage–current curves calculated for the niobium-titanium wire samples studied in experiment: (a) the region of fields close
to Bc2 (sample 1 with removed copper coating is stable up to I = 20 mA and ensures obtaining V–I curves with satisfactory precision;
the accuracy of measurements on samples 2 and 3 with a stabilizing metal is unsatisfactory); (b) the region of high magnetic fields
(sample 1 is unstable; V–I curves can be obtained for sample 2, where the current passing into the copper coating is small, so that
the accuracy of its calculation does not significantly affect the determination of current flowing in the superconductor); (c) the region
of low magnetic fields (samples 1 and 2 are unstable; V–I curves can be obtained for sample 3, where the current passing into the
superconductor is greater than that in the stabilizing substrate and can be calculated with acceptable accuracy).
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Fig. 2. Experimental (a) voltage–current and (b) resistance–current curves of sample 1 measured in various magnetic fields.
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the known resistance. In these calculations, we ignored
the field dependence of the substrate resistance for sam-
ple 3. The copper coating resistance for sample 2 was
determined using the Kohler rule.
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As can be seen from Fig. 2a, sample 1 measured at
B > 10.2 T allowed stable V–I curves of the supercon-
ductor to be measured in rather high electric fields.
However, it was difficult to use this sample in low
SICS      Vol. 100      No. 1      2005
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Fig. 4. Experimental resistance–current curves of sample 3 measured in various magnetic fields (all curves are corrected for the
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magnetic fields, because it might readily burn out
(before the action of the protecting scheme) in cases
of loss of stability. In this region, the V–I measure-
ments can be performed with satisfactory accuracy
using sample 2 (Fig. 3). The V–I curves of sample 3
(Fig. 4) are stable in the entire range of fields, but the
accuracy in determining the current flowing in the
superconductor in high fields is limited by the uncer-
tainty in the current (of comparable magnitude) flow-
ing in the normal metal. For this reason, sample 3 was
used for the V–I measurements in low fields, where
the risk of burning out for sample 2 was large.

As the external magnetic field was decreased from
11.66 T to zero, the critical current increased from
1 mA to 40 A. The results of V–I measurements were
used to calculate the resistance as a function of the cur-
JOURNAL OF EXPERIMENTAL A
rent for various magnetic fields. The resistance–current
curves are presented in Figs. 2– 4. These dependences
have proved to be exponential in a rather broad range of
variation of the sample resistance, which allowed the
plots (in semilogarithmic coordinates) to be extrapo-
lated by the least-squares method to a zero current. This
yielded the values of a certain conditional resistance of
the superconducting core for various magnetic field at a
zero current (Fig. 5). The accuracy of determining the
logarithm of this resistance was better than 1% for the
overwhelming majority of resistance–current curves,
and the extrapolation error was always significantly
smaller than the size of symbols in Fig. 5. Sample 1 was
also used for detecting the field-dependent transition,
that is, the dependence of the resistance on the mag-
netic field at a fixed probing current (1 mA).
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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3. DISCUSSION OF RESULTS

Measurements of the voltage–current curves per-
formed in the fields close to the critical value make it
possible to study the laws governing the current-depen-
dent transitions at very small currents in the absence of
instability. This knowledge clarifies questions concern-
ing the adequacy of our notions about the flux flow
regime in superconductors with high pinning. The tra-
ditional approach to description of the transition char-
acteristics [27–30] was developed within the first three
years after the discovery of materials possessing high
current-carrying capacity, when researchers were
greatly impressed at finding a rigid vortex lattice deter-
mining the properties of type II superconductors.
According to these notions, the vortex dynamics in
superconductors with high pinning is identical to the
lattice dynamics in the ideal type II superconductor.
The electric field in this resistive state (called the flux
flow regime) linearly increases with the current, and the
differential resistance does not exceed the normal resis-
tance:

(2)

Thus, the superconductor under isothermal conditions
occurs in the resistive state and does not pass to the
superconducting state at an arbitrarily high current. The
possibility of reducing the properties of a superconduc-
tor with high pinning to those of the ideal type II super-
conductor seemed a plausible hypothesis, but this
hypothesis was never experimentally confirmed for a
material with sufficiently high current-carrying capac-
ity. It was commonly accepted that the flux flow regime
cannot be observed in superconductors with high criti-
cal currents because of thermal instability, which is
developed already in the exponential region of the volt-
age–current curve [32]. Nevertheless, it was believed
that this regime actually exists, in particular, in wires
stabilized with normal materials. This hypothesis
underlies the classical theory of stability of supercon-
ducting wires [33]. The traditional description, repro-
duced in numerous monographs [6, 9, 34–38] and fre-
quently treated as the only correct approach, has
become the basis of the modern, rather contradictory
scalar electrodynamics of technical superconductors.

According to the inhomogeneous superconductor
model, an increase in the transport current results in the
critical state being attained locally, at certain low sites,
and the current is redistributed in the wire cross section
unless the entire sample bulk would gradually pass to
the normal state. The characteristic describing this pro-
cess has the shape of logistic curve (1). We failed to
measure this characteristic in the entire range and only
observed it in the vicinity of the critical field, for cur-
rents below 20 mA.

∂E
∂j
------ ρn

B
Bc2
-------.=
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The voltage–current curves presented in Fig. 2a
contain no sufficiently extended linear portions that
might be considered as manifestations of the flux flow
regime. As the current increases, the voltage drop grad-
ually reaches a value for the normal metal, while the
differential resistance in the upper part of the transition
significantly exceeds the normal resistance. We believe
that this discrepancy with the behavior predicted by
relation (2) is evidence in favor of our point of view,
according to which high pinning superconductors do
not feature the flux flow regime. The resistance–current
curves of the material studied in this range of fields
(Fig. 2b) resemble the logistic curves for the tempera-
ture- and field-induced transitions, except that the ini-
tial resistance significantly differs from zero. The exist-
ence of this initial resistance is explained by the two-
component nature of the niobium–titanium alloy estab-
lished in [2], whereby the body and surface (where the
impurities are concentrated) of grains are characterized
by somewhat different critical fields. For this reason,
the current-dependent transition at the grain boundaries
proceeds on the background of a pedestal correspond-
ing to the field-dependent transition in the grain body.
In Fig. 2b, triangles represent the values of sample
resistance measured for the field-dependent transition
at a probing current of 1 mA (for the same values of the
external field as those involved in the V–I measure-
ments). Naturally, the observed resistance–current
curves pass through these points.

Any resistance–current curves must begin at the
point where the resistance corresponds to the given
magnetic field at a zero current (this resistance is usu-
ally assumed to be zero). In order to find such points
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Fig. 5. Field dependence of the resistance of a niobium-tita-
nium wire determined by extrapolation to a zero current, in
comparison to the curve measured independently in
sample 1 using a probing current of 1 mA.
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corresponding to the fields significantly lower than Bc2,
we extrapolated the exponential resistance–current
curves toward the zero current (Fig. 5). It was found
that the dependence of the extrapolated values on the
magnetic field is well described by an exponent up to a
value as small as 10–85 Ω . This value is physically
meaningless and (within the framework of the statisti-
cal treatment) it only implies that the assembly of inho-
mogeneous particles comprising a superconductor con-
tains those with critical temperatures, fields, and cur-
rents arbitrarily close to zero although the probability
of such particles covering the current trajectories
formed by particles occurring in the superconducting
state rapidly decreases with current, magnetic field, and
the temperature. In accordance with expressions (1),
the dependence of this latent resistance on the field is a
continuation of the resistance–field curve measured at a
small probing current.

The results of the experimental data processing pre-
sented in Fig. 5 show good agreement with Eq. (1).
Using the whole body of experimental data, it is possi-
ble to construct the field dependences of fitting param-
eters of the model under consideration, namely, of the
JOURNAL OF EXPERIMENTAL A
δ value and the current density corresponding to half of
the normal resistance:

The calculations were performed using the values of
current related to the current density as Ic/2(He) =
Sjc/2(µ0He). This relation, which is not as trivial as it
might seem at first glance, is valid in a broad range of
fields except the region of low fields where a point of zero
magnetic induction appears, owing to the contribution of
the current self field, in the wire cross section [39]. The
parameters δ and Ic/2 were determined for each current-
dependent transition using the relation following from
Eq. (1):

(3)

where I0 = Ic/2δ, and the critical temperatures and fields
correspond to half of the normal resistance (these val-
ues were determined previously [40]). The critical cur-

jc/2 jc/2* T B,( ) 1 T
Tc 0( )
-------------– 

  1 B
BcT
---------– 

  1–

.=

δ
1 T /Tc–( ) 1 B/Bc2 T( )–[ ]

Ic/I0 Ec/IcRn( )ln+[ ]
--------------------------------------------------------------, =
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Fig. 7. Characteristics of the current-dependent transition in a niobium–titanium wire with a diameter of 120 µm as functions of the
temperature and magnetic field (data from [40]): (a) the critical current (for Ec = 1 µV/cm); (b) the inverse increment I0 of the volt-
age–current curve; (c) the relative variance of critical characteristics of the wire; (d) the calculated critical current Ic/2 corresponding
to half of the normal resistance at zero temperature and induction (see relations (5)).
rent Ic was determined using the traditional criterion
Ec = 1 × 10–4 V/m. The value of I0, equal to the inverse
current increment, was determined from the slope of
the resistance–current curve.

Figure 6 presents the results of the primary process-
ing of experimental data and the calculation of fitting
parameters. It was found that these parameters change
but slightly in a broad range of fields. Deviations of the
Ic/2 value from a constant level in the regions of high
and low fields have a quite simple explanation con-
firmed by independent experiments [2, 3]. As the field
increases above 9 T, inhomogeneity of a real material is
manifested and some grains already exhibit a transition
to the normal state in this field. The observed decay in
I0 and Ic/2 corresponds to contraction of the effective
superconductor cross section caused by the appearance
of normal bulks in the wire. In the fields below 1.5 T,
anisotropy of the wire material becomes significant.
Indeed, it was demonstrated [3] that thermomechanical
treatment of a wire results in the formation of a texture
characterized by cylindrical symmetry. The pinning in
such a wire is characterized by a tensor [1, 3] having
three main components along the axis and in the radial
and azimuthal directions in the transverse cross section.
The pinning is much higher for vortices in the azi-
muthal direction than for those in the radial direction.
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In moderate and high fields, where the direction of
magnetic induction in the material coincides with the
external field, the pinning tensor exhibits averaging. In
a low field, the presence of the current self field makes
the azimuthal component prevailing over the radial one.
This gives rise to a sharp growth in the extent of pinning
and, hence, in the Ic/2 and I0 values.

The results of processing of the experimental data
described above made it necessary to return to our early
experiments carried out in 1978, where the voltage–
current curves of niobium–titanium and niobium–zir-
conium wires were studied (of course, using worse
measuring equipment) as dependent both on the mag-
netic field and on the temperature. The experimental
procedure was described in detail and the primary
results were tabulated in [40]. Application of the
method of data processing described above showed
(Figs. 7 and 8) that the characteristic constants δ and jc/2
retain their values not only in a wide interval of fields,
but in a broad range of temperatures as well.

The results drive us to revise the commonly
accepted approach to description of the current-carry-
ing capacity of superconductors with high pinning. It
has been established that the resistive state of such a
superconductor (at least, for Nb–50 wt % Ti and
Nb−50 wt % Zr solid solutions studied) can be
SICS      Vol. 100      No. 1      2005
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described in terms of the Bc2(T) function and three con-
stants: Tc(0), δ, and jc/2 . If the real anisotropy of a super-
conductor can be ignored, the last constant is the cur-
rent density corresponding to half of the normal resis-
tance of the given material at a zero temperature in a
zero magnetic field (if the attainment of this point were
not hindered by thermal instability). The conditional
quantity, usually called critical current, which corre-
sponds to the state in which the superconductor resis-
tance is Rc , is determined from Eq. (1) as

(4)

Ignoring the small term δln(Rc/Rn), we obtain the well-
known scaling

where

Ic Ic/2 δ
Rc

Rn
-----ln 1 T

Tc
-----– 
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and FLc is the critical Lorentz force (we avoid denoting
the last quantity as Fp and using the term “pinning
force,” since this may lead to incorrect treatment of this
value as a vector [1]). The dome shape of FLc(b), which
is usually attributed to structure-sensitive pinning, in
our case is related to the field dependence of the resis-
tance at the starting point of the resistance–current
curve

involving no parameters directly depending on the pin-
ning structure. Using a scaling of the type

,

it is necessary to consider the fact that pinning accounts
for only a fraction of this dependence, namely,
bµ − 1(1 −b)ν – 1. Refraining here from speculating on
possible factors responsible for the deviation of expo-
nents from unity in other superconductors, we only
emphasize that many technical superconductors are in
fact mixtures of several superconductors [23].

ρeff ρn 1 T
Tc 0( )
-------------– 

  1 B
Bc2 T( )
----------------– 

  /δ– ,exp=

FLc FLcmaxbµ 1 b–( )ν=
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An important feature of Eq. (1), which was not con-
sidered before, is the fact that the width of the super-
conducting transition with respect to the temperature,
field, and current is controlled by the same parameter δ.
It was claimed above that, irrespective of the nature of
a particular inhomogeneity, the temperature-, field-,
and current-dependent transitions exhibit simultaneous
and proportional broadening. The basic reasons under-
lying this relationship can be understood using the
notion of the critical layer (Fig. 9) [14], which repre-
sents a generalization of the widely used concept of the
critical surface. The critical surface is the set of points
separating the normal and superconducting states in the
{T, B, j} coordinate space, under the assumption that the
transitions exhibit a jumplike character. In materials
with smoothed superconducting transition, the critical
current is a conditional quantity corresponding to a cer-
tain conventionally selected criterion, for example, an
effective resistivity equal to 10–12 Ω m. This criterion
can be represented by a “critical surface” of its own.
Selecting another criterion, we obtain a different criti-
cal surface (not intersecting with the first one). Thus,
the superconducting and normal states in the {T, B, j}
space are separated by a transition layer, each point of
which corresponds to a certain effective resistance, and
the points with equal effective resistance form noninter-
secting critical surfaces. Displacements along each
coordinate between the neighboring critical surfaces
are related as

(5)

These relations clearly demonstrate that the supercon-
ducting transition is simultaneously smoothed with
respect to the temperature, field, and current with the
same relative variance. Can statistical broadening of the
transition be eliminated? A system in which the physi-
cal factors influencing broadening of the current-
dependent transition can be studied is probably offered
by a single crystal containing homogeneously distrib-
uted identical pinning centers and featuring sufficiently
steep field- and temperature-dependent transitions.
However, if the depth of the potential well of intro-
duced centers or their density acquire a finite variance,
the temperature- and field-dependent transitions will be
smoothed to the same degree and the initially homoge-
neous crystal will become the classical inhomogeneous
material.

We believe that the results presented above give us
grounds to use the hypothesis about inhomogeneity of
real superconductors in the development of vector elec-
trodynamics, with a view to its possible verification by
means of comparison with the results of a large number
of recent experimental investigations. At the same time,
the above considerations show that this hypothesis
implies revision of some canonical concepts and meth-
ods of analysis, so that rather serious competition with
the existing notions can be expected. However, we

∆ρeff

∂ρeff
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-----------∆T

∂ρeff

∂B
-----------∆B

∂ρeff

∂j
-----------∆j.= = =
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believe that the competition is possible with another
hypothesis, rather than with a system of well-estab-
lished facts. For this reason, we consider it expedient to
provide this paper with an Appendix presenting our
understanding of the present-day state of the activation
model.

4. CONCLUSIONS

A comparison of the results of experimental investi-
gation of the transition characteristics of a niobium–
titanium wire to the inferences of a phenomenological
model of an inhomogeneous superconductor with high
pinning showed good agreement. The generalized
superconducting transition is well described in terms of
the exponential dependence of the effective resistance
of a superconductor on the temperature, magnetic
induction, and current density. Only two fitting param-
eters, δ and jc/2 , are sufficient in order to describe the
temperature-, field-, and current-dependent transitions
in a broad range of magnetic fields and temperatures.

It is necessary to take into account the tensor char-
acter of pinning for correct description of the general-
ized superconducting transition in low magnetic fields,
where the current self field significantly influences the
direction of the total induction. Near the critical mag-
netic field, the transition characteristic is affected when
the effective cross section of the superconducting wire
is reduced caused by the transition of a certain fraction
of grains into the normal state in the fields significantly
lower than the Bc2 value determined at a small probing
current. Retention of the trace resistance at arbitrarily
low values of the temperature, induction, and a zero
current in Eq. (1) is related only to the inhomogeneity
of a superconducting material.

We are not inclined to believe that our results reject
the Anderson model, but it is obvious that we have to
find a way to distinguish the effects of thermal activa-
tion on the background of another, statistical nature of
broadening of the voltage–current curves, so as to

0.5

1.0

0

0.2
0.4

0.6
0.8

1.00
0.2

0.4
0.6

0.8
1.0

1

2

3

B/BcT/Tc

Fig. 9. Schematic diagram illustrating the notion of a criti-
cal layer. Critical surfaces 1–3, corresponding to the effec-
tive resistances amounting to 0.9, 0.5, and 10–6 of the nor-
mal resistance at δ = 0.01, respectively, are parallel to each
other. The position of line j = 0 depends on the selected level
of effective resistance.

j/jc/2
SICS      Vol. 100      No. 1      2005



60 KLIMENKO et al.
obtain reasonable estimates of the parameters of indi-
vidual pinning centers.

APPENDIX

Models of Thermally Activated Magnetic Flux Creep 
and Quantum Tunneling 

The model of thermally activated vortex motion was
developed by Anderson [5] in 1962 upon analysis of the
experimental data of Kim et al. [27] on the logarithmic
decay of magnetic field in a niobium–zirconium cylin-
der and the exponential voltage–current curves of a nio-
bium–zirconium wire. If the experimenters could have
noticed that their resistance–current curves were expo-
nential as well, the model would probably be different.
However, Anderson suggested that the motion of vorti-
ces in a superconductor is analogous to the motion of
dislocations in a stressed metal [41], which is mani-
fested by a temperature-dependent creep of metals.
Based on this analogy, Anderson obtained the well-
known expression for the voltage–current curve of a
superconductor:

(A.1)

The notion about thermally activated vortex motion
in a medium with potential relief was attractive because
it gave hope of explaining the observed linear tempera-
ture dependence of the critical current. For a condition-
ally selected critical value of the electric field Ec , the
critical current is described by the relation

(A.2)

which reflects a decrease in the critical current with
increasing temperature and magnetic field in agreement
with the behavior observed in experiment. In addition,
this theory explains logarithmic decay of the magnetic
moment of a magnetized superconductor and the field
dependence of the critical current (previously proposed
by Kim et al. [27]),

(A.3)

where the term B0 was introduced in order to eliminate
divergence of the critical current density when the
external field decreases to zero. According to Anderson
[5], B0 = ΦB/d2, where ΦB is the magnetic flux of a vor-
tex bundle and d is the bundle diameter.

The model of thermal activation was the first theory
capable of describing the results of the large number of
experiments carried out by that time. This theory
offered an elegant and clear physical picture of the
motion of magnetic flux in a superconductor and it con-
formed well to then adopted “physical fashion,” which

E
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explains why it was so popular and included into all
handbooks and monographs. Nevertheless, the model
met a certain criticism from the very beginning, and the
experiments revealed serious discrepancies—such that
would be fatal for any other model. However, the life-
time of the thermal activation model was prolonged at
the expense of admission of an arbitrary dependence of
the model parameters on the temperature, field, and
current. This marked the origin of a very fruitful branch
in the theory of pinning, which related these depen-
dences to various microscopic features of the interac-
tion between vortices and trapping potential wells and
made it possible to explain any experimental result
within the framework of the thermal activation model.
We believe that it was a remarkable fact that Anderson
in a later review [42] made a reference to his most fre-
quently cited paper [5] only in the context of a discus-
sion about vortex motion under the action of the
Lorentz force, not even mentioning the activation
model. In our opinion, it was the absence of rather
active discussions (in 1963–70s) in the mentioned
monographs that accounted for a revival of the thermal
activation model upon the discovery of high-tempera-
ture superconductivity. The revival was inspired by the
paper of Dew-Hughes [43], where it was claimed that,
if the thermal activation model is valid, its predictions
should be especially clearly manifested in HTSC at ele-
vated temperatures. According to these predictions,
new HTSC must exhibit a limited current-carrying
capacity at high temperatures. However, no new evi-
dence in favor of validity of the thermal activation
model was presented.

This Appendix summarizes arguments against the
thermal activation model, including both reasoning
used by opponents in the early discussion mentioned
above and some new arguments arising in recent years.

(i) Expression (A.1) introduces a certain discomfort
by predicting a finite electric field at a zero current den-
sity. Prolonged discussion about this paradox was
calmed by the discovery that such differential charac-
teristic does not lead to a discrepancy in the integral
characteristic: when the current I flows in a plate in the
direction perpendicular to the external field Be (applied
in the plane of the plate), the voltage drop V becomes
zero when the current ceases. The contributions due to
the intrinsic magnetic field of the current have opposite
signs on opposite sides of the plate, and the integral
characteristic acquires the form

where factors α and β make the arguments dimension-
less. However, the above simple considerations by no
means provide a ground to change the differential char-

V βBe( ) α I( ),sinhexp∝
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005



RESISTANCE–CURRENT CURVES OF HIGH PINNING SUPERCONDUCTORS 61
0.4

0
0

jc(B = 10 T)/jc(Hi)

Hi, T

0.6

0.2

0.8

1.0

2 4 6 8 10

α = 0.56 GN/m3

α = 3.20
α = 2.33
α = 1.27

5

6

7

4

3

2

1

8

0
12

(J, A/m2)

1.0 × 10
91.5 × 10

9
2.0 × 10

9

5

6

7

4

3

2

1

8

0
12

Z,
 m

m

2.0

R, mm R, mm

2.4 3.0

(B, T)

1.4
2.0
2.4

Fig. A1. Influence of a finite length of a tubular sample and self-consistent distributions of the induction and current density in the
tube wall on the shape of the measured integral characteristic Jc(Hi) (dashed line) for a differential characteristic of the jc(B) = α/B
type (solid line). The right-hand insets show the maps of self-consistent distributions of the current density J and induction B in the
tube wall.
acteristic so as to render it a form eliminating the dis-
cussion [6]:

(A.4)

Confusing the integral and differential characteristics is
a permanent source of ambiguity in the theory of pin-
ning.

(ii) Let us consider expression (A.4), where U0 is the
height of the pinning-related potential barrier hindering
the motion of a separate vortex bundle, U1 = jBVcrp is a
decrease in this height due to the Lorentz force, and Vc

and rp are rather ambiguously defined dimensional fac-
tors. The first of these quantities, Vc , is given a meaning
of the bulk of the vortex bundle capable of surmounting
the barrier independently of the other bundles; the sec-
ond factor, rp , has the meaning of a characteristic length
of variation of the pinning potential. The preexponen-
tial factor includes a product of ν0, the frequency of
bundle oscillations at the pinning center, and l, the
length by which the bundle displaces upon a single
jump. It was admitted that any of the model parameters
may depend on the magnetic field and the temperature,
and that the barrier (reduced by the current) can be a
nonlinear function of the current [30, 44]. Moreover, it
was even assumed [17] that the hyperbolic sine argu-
ment has a logarithmic character, which was necessary
to make the model capable of explaining the power
shape of the voltage–current curves of superconduc-
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tors. Such a number of assumptions and fitting param-
eters generally removes the question of experimental
verification of the model. Nevertheless, many research-
ers are still engaged in experimental and theoretical
investigations of some parameters of the thermal acti-
vation model (see. e.g., [44]).

(iii) Admitting the dependence of U0 and U1 on tem-
perature, the theory refused its main original destina-
tion: explaining the linear temperature variation of the
critical current. Of course, this explanation was ques-
tionable from the very beginning, since the temperature
at which the critical current vanishes in Eq. (A.2) is not
related to the critical temperature.

(iv) There is a quite steady opinion that the thermal
activation model is “reliably confirmed” by the
observed logarithmic law of decay of the magnetic
moment of a superconductor. It should be recalled that
experiment cannot confirm a theory: in the best case,
there are merely no discrepancies between them.
A simple electrotechnical problem in calculating the
magnetic flux diffusion in the sample with a given volt-
age–current curve was repeatedly described in the liter-
ature [5, 30, 46, 47]. In order to obtain the logarithmic
variation of the magnetic moment with time, it is suffi-
cient that the sample resistance would rapidly decrease
with the current density: this behavior was observed in
materials having both exponential and power voltage–
current curves.

It is commonly accepted that experiments of this
type offer certain advantages in comparison to direct
measurements of the voltage–current curve. The first
SICS      Vol. 100      No. 1      2005
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apparent advantage is that a difference in levels of the
electric field makes it possible in principle to refine the
shape of the V–I curve with a sensitivity inaccessible in
the case of direct measurements. The second such
advantage is apparent simplicity of taking into account
the current self field as a result of measurement of the
magnetic field inside a tubular sample or the magnetic
moment in the magnetic field parallel to the axis of a
cylindrical sample. The latter advantage is used for
determining the value of B0 in Eq. (A.3). Indeed,
according to Eq. (A.3), the inverse critical current den-
sity is a linear function of the magnetic field, and B0 is
given by the intercept of this line with the field axis.
The linear current density in experiments with tubular
samples is determined from the difference in magnetic
fields outside and inside the tube [5, 45], assuming that
the sample length is sufficient for the linear relationship
to be valid. However, it is this assumption that leads to
a regrettable error. This is illustrated in Fig. A1, which
shows the results of simulation of the typical experi-
ment. Calculations were performed for a sufficiently
complete set of data taken from [45], where the proper-
ties of molybdenum sulfides were studied using tubular
samples with a length of 16 mm, an outer diameter of
5 mm, and a wall thickness of 2 mm. Using the method
described in [1], we obtained self-consistent distribu-
tions of the current density and magnetic induction in
the wall for four samples with the known maximum
pinning force. It is important to note that we used a dif-
ferential characteristic of the type corresponding to
Eq. (A.3) and assumed that B0 = 0. Then, the inverse
difference of magnetic fields outside and inside the tube
was plotted as a function of the magnetic field. These
plots were found to be linear, but their slopes were
lower than the slope of the differential characteristic
and the points of intersection with the field axis were
situated to the left from zero. The scale of the effect
coincided with the results of determination of B0 pre-
sented in [45, Fig. 4]. This situation is analogous to that
reported previously [39], where it was demonstrated
that the behavior of Ic(He) in the region of low fields is
determined by the current self field, an that a singularity
at the zero of the differential characteristic jc(B) = α/B
does not lead to the appearance of singularities in the
integral characteristic in the zero external field. Thus,
the very introduction of the parameter B0, is a conse-
quence of erroneously mixing up the integral and dif-
ferential characteristics.

(v) In order to bring the temperature dependence of
the slope of the voltage–current curve into agreement
with experiment [10], it is necessary to admit that
Vcrp ~ T/(1 – T/Tc). However, this assumption is obvi-
ously strains the point too much.

(vi) In 1972, Campbell and Yvetts [9] pointed out
that the only advantage of the thermal activation model,
in their opinion, is that it predicts the exponential shape
of the voltage–current curve. However, it was found
that, on the one hand, nonexponential voltage–current
JOURNAL OF EXPERIMENTAL A
curves can also conform to the activation scheme [17]
and, on the other hand, the exponential shape of the ini-
tial portion of any superconducting transition can be
explained in terms of a bulk inhomogeneity of the
superconductor [15].

(vii) Although the thermal activation model has
proved to be highly robust with respect to criticism, the
superconductor community sometimes recognizes lim-
ited applicability of this theory. One example is offered
by the quantum tunneling model [45]. The rate of field
decay inside a tubular sample upon switching off the
external field is defined as

.

According to the canonical Anderson model [5], this
rate is expressed as

It was found that, as the temperature decreases, the field
decay rate tends to a finite nonzero value. If the decay
were caused by thermal fluctuations, it would not take
place at zero temperature, which makes the hypothesis
of the quantum tunneling of vortices quite logical.
However, if we take into account that ΦBd2 in [5] corre-
sponds to the product Vcrp in Eq. (A.4) and that the lat-
ter product also tends to zero with decreasing tempera-
ture, this hypothesis does not seem as obvious.

Let us consider another aspect: inhomogeneity of a
material is retained at zero temperature and this reason
for the field decay may compete with the hypothesis of
quantum diffusion. Considering possible factors
responsible for the decay, Mitin [45] rejected the model
of a bulk-inhomogeneous superconductor because he
believed that this model, first, necessarily implies a lin-
ear relation between the critical current and the field
and, second, it predicts the decay rate as determined by
the relative degree of inhomogeneity of the material.
According to the experimental results obtained in [45],
the relation between the critical current and the field
was nonlinear, while the decay rate was lower in a
highly inhomogeneous sample than in a more homoge-
neous one. However, the first reason is erroneous because
inhomogeneity cannot change the relationship between
critical current and field (which is determined by physi-
cal, rather than statistical factors). In our paper [14] cited
in [45], a linear critical surface was selected as the sim-
plest case in order to demonstrate a relationship
between the broadening of transitions with respect to
the current, field, and temperature (the linear behavior
of jc(H) observed in this article needs physical explana-
tion and is probably not universal). The second reason
is also erroneous, since even the rough expression
(written without any justification) shows that the decay

1
H i
-----

dH i

d t/t0( )ln
---------------------

4πw
H i H i B0+( )
-----------------------------

kBT

d4
---------.–
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rate is determined by a product of the relative variance
and the critical current, while the critical current for the
inhomogeneous sample was about fifty times as small
as that of the homogeneous one.

In order to finally eliminate the latter confusion, we
will obtain an expression for the rate of field decay
inside a thick tube made of an inhomogeneous super-
conductor with a linear critical surface. This derivation
generally reproduces a procedure used to obtain an
analogous relation in [30], where it was originally
established that the problem of description of the elec-
tric field diffusion is the simplest to solve. It is espe-
cially interesting to reproduce the calculation, since the
result (coinciding with experiment) is obtained without
recourse to the thermal activation model. In order to
simplify expressions, let us solve the problem in a
dimensionless form for a flux frozen between two par-
allel plates. From the standpoint of physics, this prob-
lem is identical to the description of experiments with
superconducting tubes. Consider two plates of thick-
ness d, which are parallel to the xz plane, and let the
field be oriented along the z axis. The screening cur-
rents and electric fields in one plate are directed along
the x axis, while those in the other plate are oriented in
the opposite direction. Taking into account that all
parameters depend only on the time and the y coordi-
nate, we formulate the quasi-stationary problem as

(A.5)

where b = B/Bc2, θ = T/Tc , i = j/jc2, ε = E/ρn jc/2 , ξ =
µ0 jc/2y/Bc2, and τ = ρn jc/2t/Bc2.

In order to specify the initial and boundary condi-
tions, let us assume that macroscopic currents in the
plates before the experiment are absent, and that a
homogeneous and sufficiently high magnetic field be

exists in a part of the space containing the plates. After
switching off the field source, the rapid process of mag-
netic flux redistribution involves the whole plate thick-
ness, so that the field bi frozen between the plates
becomes smaller than the initial value (be). Considering
one of the plates, we can write the boundary conditions
as b(0, τ) = bi(τ), b(ξ0, τ) = 0 (ξ0 is the dimensionless
thickness of the plate). Following the method described
in [30], the electric field diffusion in the plate is
described by a separable differential equation

(A.6)

curlb i,=

∂ε
∂ξ
------

∂b
∂τ
------,=

ε i
1– θ b i+ + +

δ
---------------------------------------,exp=

δ∂ ε( )ln
∂τ

---------------- ∂ε
∂ξ
------–

∂2ε
∂ξ2
--------.–=
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In order to obtain this expression, we differentiated the
material equation (third equation in (A.5)) with respect
to time and replaced the derivatives of the field and cur-
rent by their derivatives with respect to the coordinate
using the first two equations in (A.5). We also took into
account that the field and current decrease in magni-
tude, and we ignored the term ∂(lni)/∂τ in comparison
to δ–1(∂|b|/∂τ + ∂|i |/∂τ), which is justified for not too
small currents (i.e., for not very long times). Note that
neglecting ∂(lni)/∂τ for large times leads to a physically
senseless result, whereby the fields and currents acquire
negative values of arbitrarily large magnitude, rather
than tending to zero. This paradox, arising in the exact
solution of the problem of diffusion with a differential
characteristic (A.1) according to the thermal activation
model, is directly related to finiteness of the electric
field at zero current density. However, neglecting
∂(lni)/∂τ for reasonable experimental times is quite
correct.

The solution to Eq. (A.6) has the form

(A.7)

where λ is an arbitrary constant appearing due to the
separation of variables (the parameter C2 is not neces-
sary and will be taken equal to zero). The origin of time
is conveniently selected as τ0 – 1. Using this solution,
we can write an equation for the magnetic field (the sec-
ond equation in (A.5)) for the given boundary condi-
tions:

(A.8)

This equation yields

(A.9)

where the absence of an external field corresponds to
C3(ξ0) = 0 and λ = exp(C1 – ξ0). The value of C3(0) can
be approximately determined from the condition that
the plate occurs in the critical state, whereby the expo-
nent in the material equation is zero:

(A.10)

(A.11)

(A.12)

The argument of the logarithmic term at the initial
moment is nonzero, which eliminates singularity at this
point. It should be noted that an analogous expression
describes the process of establishing the critical state

ε δ
λ τ τ 0–( )
--------------------- C2 C1 ξ–( )exp– λξ–[ ] ,=

δ C1 ξ–( )exp λ–( )
λ τ 1+( )

----------------------------------------------
∂ b
∂τ

---------.–=

b C3 ξ( ) δ
λ
--- C1 ξ–( )exp λ–[ ] τ 1+( ),ln–=

i
∂b
∂ξ
------ 1 θ– b ξ( ),–= =

C3 0( ) 1 θ–( ) 1 ξ0–( )exp–( ),=

bi τ( ) 1 ξ0–( )exp–[ ]=

× 1 θ– δ ξ0( ) τ 1+( )lnexp–[ ] .
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in [46]. In contrast, we solve the problem for an estab-
lished critical state of the system. Therefore, we have
no grounds to relate this process to an initially low (on
the semilogarithmic scale) rate of the field variation
inside the tube.

For a sufficiently large time (τ @ 1), the experimen-
tally measured rate of field decay between the plates
(normalized to the initial value) in the dimensionless
form is as follows:

(A.13)

This expression qualitatively describes the results
reported in [45], including the finite rate of field decay
at zero temperature and its linear growth at T ! Tc .

The above result shows that the hypothesis of quan-
tum tunneling is insufficiently justified, but we are
more interested in consequences related to the thermal
activation model. Since, as was noted above, public
opinion allows the model constants to be treated as
functions of the parameters of state, one can readily
choose the temperature dependence such that it will
compensate the growth in the absolute value of the
exponent when the temperature approaches zero. The
fact that ν(0) differs from zero refutes the thermal acti-
vation model no more significantly than do many other
facts. However, it is hoped that the logarithmic field
decay law obtained for a voltage–current curve differ-
ent from (A.1) must violate the widespread opinion that
this law unambiguously confirms the validity of the
thermal activation model. Apparently, only further
accumulation of alternative explanations of the results
of experimental investigations, now traditionally inter-
preted in terms of this rather inconvenient model, will
eventually reject this theory. The statistical model of
transition characteristics is free of obvious discrepan-
cies of this kind but, unfortunately, it closes the channel
for obtaining data about the microscopic interactions
between vortices and the point pinning centers.

We can hardly expect that the radical point of view,
according to which the apparently elegant Anderson
hypothesis was unrealistic from the very beginning,
will be quickly accepted. However, there are no reason-
able arguments against the other approach to interpre-
tation of the existing situation. Of course, the process of
thermal activation of the vortex motion can be impor-
tant. However, the bulk inhomogeneity of superconduc-
tors with high pinning has been reliably established and
unambiguously influences the shape of the transition
characteristics. Therefore, investigation of the activa-
tion processes requires the development of an approach
capable of distinguishing their contribution on the
background of a rough statistical part. Unfortunately, to
the best of our knowledge, no such attempts have been
reported.

ν T( ) 1
Bi 0( )
-------------

∂Bi

∂ t( )ln
---------------

δ µ0d jc/2/Bc2( )exp
1 T /Tc–

---------------------------------------------.= =
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Abstract—Plastic deformation of aged crystals and diffusion-controlled aggregation of Eu2+ ions in freshly
quenched NaCl : Eu crystals causes the formation of complexes bound by exchange interaction. The solution
of large-sized precipitates by quenching followed by impurity aggregation results in the nucleation of magnet-
ically sensitive clusters comprising few atoms. A constant magnetic field with induction 5 T increases the prob-
ability of the transition of magnetically sensitive clusters from the high- to low-spin metastable state and
induces changes in their atomic structure. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Studies of magnetoplastic effects in ionic and cova-
lent crystals have led to the development of new physi-
cal principles for controlling their mechanical proper-
ties with the use of a magnetic field, which changes spin
dynamics in separate pairs of defects [1–3]. It was
found that some spin-dependent stages of the interac-
tion of paramagnetic defects could proceed at a higher
rate than spin-lattice relaxation. They can therefore be
sensitive to comparatively low magnetic fields with
induction B ~ 1 T at near-room temperatures. Part of the
magnetoplastic effects were explained by magnetic
field-induced transformations of the atomic structure of
impurity atom nanoclusters, which played the role of
dislocation stoppers [3]. The diffusion-controlled for-
mation of such nanoclusters from separate impurity-
vacancy dipoles was intensely studied in [4–10], but
possible influence of electron-spin processes on the
aggregation of impurities was not taken into account.
Studies of magnetic field effects on cluster formation in
a crystal lattice can provide new information about ele-
mentary plastic deformation processes and the possibil-
ity of controlling them with the use of magnetic fields.
In addition, they can also contribute to distinguishing
the contribution of electron-spin processes to impurity
aggregation.

It was shown in [11–14] that the atomic structure of
clusters formed during plastic deformation or the
aggregation of Eu2+ ions in the crystal lattice of NaCl
could be changed by applying a magnetic field and that
these changes could be observed in photoluminescence
spectra. Understanding the micromechanisms of this
1063-7761/05/10001- $26.00 0066
process requires data on the spin state of clusters before
and after their transformation in a magnetic field. The
general principles of the physics of nonequilibrium
spin-dependent phenomena [15–20] present a single
possibility for explaining the influence of magnetic
fields on the atomic structure of clusters: changes in
their spin state at the instants of their excitation by ther-
mal fluctuations. The initial and at least one of the pos-
sible final states of such clusters should correspond to
stable spin-correlated pairs, triples, or more complex
systems with exchange interaction, which maintains
spin correlation in clusters at high temperatures. A
magnetic field is capable of changing the mutual orien-
tation in clusters only at the instants of the transition
from one stable state to another, when the energy differ-
ence between them is comparable to the Zeeman split-
ting of spin levels and is on the order of µBgB, where B
is the constant magnetic field induction, µB is the Bohr
magneton, and g is the g factor of the paramagnetic par-
ticle. The magnetic properties of clusters sensitive to
magnetic fields, their initial and final spin states, and
the contribution to the total magnetic susceptibility of
the paramagnetic impurity subsystem have not been
determined thus far for the systems characterized by
magnetoplastic effects or the influence of a weak mag-
netic field on their other physical properties.

Our goal was (1) to study the magnetic properties of
Eu clusters formed as a result of plastic deformation of
NaCl crystals and diffusion-controlled aggregation of
impurity-vacancy Eu dipoles and (2) detect magnetic
field effects on the effective spin of magnetically sensi-
tive nonequilibrium Eu clusters and determine the
direction of the corresponding transition.
© 2005 Pleiades Publishing, Inc.
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2. EXPERIMENTAL

We used NaCl : Eu crystals of about 0.1 g containing
600–1000 ppm europium. The crystals were grown by
the Czochralski method in a controlled dry argon atmo-
sphere. Doping was performed by adding a certain
amount of EuCl2 preliminarily reduced from EuCl3 ·
6H2O to NaCl melts.

The real part of magnetic susceptibility was mea-
sured using an MPMS-7 SQUID magnetometer in a
constant magnetic field (0.3 T) over the temperature
range 2–300 K. The sensitivity of the magnetometer
with respect to the magnetic moment under constant
magnetic field conditions in the reciprocating sample
option (RSO) mode was 10–8 emu, which was sufficient
for the determination of magnetic moments M with an
accuracy on the order of 10–4. Our main goal was to
study the paramagnetic (or superparamagnetic) compo-
nent of the magnetic moment of the samples related to
the contribution of Eu2+ ions. For noninteracting Eu2+

ions, the M(T) dependence obeys the Curie law; that is,
M(T)T = const at high temperatures and begins to
decrease according to the Brillouin function at low tem-
peratures (kT ~ µBgB), because the distribution of para-
magnetic particles over spin states then changes sub-
stantially. Another reason for a decrease in M(T)T as
temperature lowers can be negative exchange interac-
tion within europium clusters. Positive exchange inter-
action can increase M(T)T compared with a system of
noninteracting spins. The influence of weak exchange
interaction can be detected at fairly low temperatures
kT ~ Θ, where Θ is the exchange interaction energy.

As the filling of spin states and exchange interaction
in clusters are the main factors that control their mag-
netic sensitivity, the low-temperature region of the
M(T) dependence is of the greatest interest. Against the
background of the Curie law, the effect of admixtures
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
related to exchange interaction is usually weak. For this
reason, the contribution of exchange interactions and
the spin of particles were determined by applying the
usual approach; that is, we constructed the dependence
of the product M(T)T on temperature and other experi-
mental parameters. Whereas the crystal was subjected
to mechanical and magnetic actions at room tempera-
ture, the magnetic state of the impurity was determined
using the most informative low-temperature portion of
the M(T)T dependence.

In all our crystals, the M(T)T dependence in the
region of high temperatures was linear and deviated
from the straight line only at T < 20–30 K (Fig. 1a).
This is explained by a substantial contribution of the
crystal lattice, whose diamagnetic moment Mlat does
not depend on temperature, to the total magnetic
moment of the sample M = Mlat + MEu. We therefore
subtracted the diamagnetic component from the exper-
imental temperature dependences M(T)T by the stan-
dard method [21]. The diamagnetic component was
determined from the slope of the M(T)T dependence at
near-room temperatures, where T @ Θ and the contri-
bution of the MEuT paramagnetic component did not
depend on temperature. The slope of the experimental
M(T)T dependence was determined via approximating
its high-temperature portion by a linear function. The
MEu(T)T dependences obtained after subtracting the
diamagnetic component (Fig. 1b) characterize the con-
tribution of only the paramagnetic (or superparamag-
netic) MEu component of the magnetic moment of the
crystal. We also determined the Mlat value by weighing
the sample and calculating the magnetic moment from
the reference data on the diamagnetic susceptibility of
NaCl. This method gave the same Mlat value as that
obtained from the temperature dependence M(T)T.
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Fig. 1. Temperature dependences of magnetic moment M multiplied by temperature T for a NaCl : Eu crystal (a) before subtracting
the diamagnetic component and (b) after its subtraction.
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Special precautions were taken during the prepara-
tion of the samples. After chopping them out or thermal
treatment, a surface layer approximately 100 µm thick
was removed by polishing with purified deionized
water (ultrapure water 43001-1B) to prevent the mag-
netic properties of crystals from being influenced by
accidentally present foreign ferromagnetic particles.
The crystals were handled exclusively with ceramic
pincers and deformed in a deformation machine with
quartz rods. This prevented the samples from being
contaminated with foreign magnetic particles that
might be pressed into their surface.

The crystals were subjected to macroplastic com-
pression deformation on a “soft” deforming machine,
in which mechanical stress linearly grew with time,
σ ∝  t, and the relative deformation of the sample ε was
measured. Industrial “hard” deformation machines of
the Instron type are often used in experiments. In such
machines, a linear time sweep is set for the deformation
ε ∝  t rather than mechanical stresses. The deformation
is proportional to the mean rate of an increase in the
area “swept” by dislocations. The rate of deformation
was not constant in our experiments; we can only spec-
ify its mean value, which was on the order of 10–5 s–1.
The photoluminescence of the crystals was studied at
room temperature using a Jasco-777 standard spectro-
photometer. The excitation light had a wavelength of
λ = 370 nm, and the spectra were recorded over the
wavelength range λ = 380–735 nm. The EPR spectra

Fig. 2. Temperature dependence MEu(T) in crystals with
deformations (1) ε = 0 and (2) ε = 10%. The MEu(T) value
at room temperature is taken to be unity. Solid lines are the
calculated MEu(T)T dependences obtained including the
contributions of isolated impurity-vacancy dipoles and
exchange-coupled clusters. The low-temperature portions
of the MEu(T)T dependences at various deformations ε =
(1) 0, (2) 2, (3) 4.8, (4) 5.6, (5) 7, (6) 8, and (7) 10% are
shown in the inset.
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were obtained on a Bruker ESP-300 spectrometer at
T = 3.3 K (microwave field frequency 9.453 GHz). The
constant magnetic field of the spectrometer was
directed along the (001) axis. In several experiments,
we used a JMTD-LH15T40 superconducting labora-
tory magnet, which enabled the samples to be subjected
to the action of a constant magnetic field up to 15 T at
room temperature.

3. RESULTS

3.1. The Influence of Plastic Deformation 
on the Magnetic and Optical Properties of Eu Clusters

The influence of plastic deformation on the mag-
netic properties of clusters was studied for crystals held
for five years at room temperature and not subjected to
thermal treatment. The major fraction of impurity ions
were therefore in the state of large-sized precipitates.
The crystals contained 1000 ppm europium. After the
first measurement of the temperature dependence of the
MT product, the NaCl : Eu samples were placed into a
deforming machine and loaded with a mechanical load
that linearly increased with time. The dependence of
the relative crystal deformation ε on mechanical stress
σ was recorded. After ε = 1–2% was reached, the crys-
tals were unloaded and the residual plastic deformation
εres was determined using a micrometer. Next, the sam-
ples were placed into the SQUID magnetometer, and
the dependence MEu(T)T was recorded. The crystals
were then again deformed and the MEu(T)T dependence
recorded. We performed several deformations and mea-
surements of the temperature dependence of the mag-
netic moment for every sample. We found that plastic
deformation changed the shape of the MEu(T)T depen-
dence (Fig. 2). At deformations exceeding 5–6%,
which corresponded to the hardening stage, further
deformation of the samples did not cause changes in the
MEu(T)T dependences (Fig. 2).

It was reported in [22] that the magnetic moment of
chemically “pure” NaCl crystals changed after their
deformation and that there remained residual magneti-
zation whose temperature dependence was characteris-
tic of ferromagnets. To separate the contributions of
crystal lattice deformation and changes in the state of
the paramagnetic impurity subsystem, we performed
experiments with NaCl : Cu crystals. Deforming crys-
tals with a copper concentration of about 1 ppm caused
the crystal magnetic moment to change by about
10−8 emu, which was close to the instrumental error of
the magnetometer that we used and three to four orders
of magnitude smaller than changes that we observed in
NaCl : Eu crystals after their deformation. It follows
that, in our experiments, all changes in the magnetic
properties of the NaCl : Eu crystals resulting from plas-
tic deformation were caused by processes that occurred
in the subsystem of the paramagnetic europium
impurity.
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Fig. 3. EPR spectra of an aged NaCl : Eu crystal (a) before deformation, (b) after deformation to ε = 6%, and (c) after deformation
to ε = 12%. Spectrum fragments containing narrow lines of impurity-vacancy dipoles are shown in insets.
The EPR spectra of the samples recorded at 3.3 K
before plastic deformation and after deforming them by
6 and 12% are shown in Fig. 3. The fragments of these
spectra given in the insets contain series of narrow lines
about 5 Oe wide. The sequence of the spectra presented
in Fig. 3 shows that the fraction of narrow lines
decreases and several comparatively broad bands
appear as the degree of plastic deformation grows.

Apart from changes in the magnetic properties,
deforming the crystals caused the redistribution of
intensities in various regions of the photoluminescence
spectra of the NaCl : Eu crystals and the appearance of
a new band at λ = 536 nm observed by us in [23]
(Fig. 4). As with deformation in a hard machine [23],
the luminescence spectrum remained almost
unchanged up to the elastic limit. After the yield point
was reached, when the density of dislocations increased
substantially, we observed a decrease in the intensity of
luminescence at λ = 427 nm and its increase at λ =
536 nm (Fig. 4). At the end of the stage of easy glide of
dislocations (at ε = 5–6%), these changes slowed down,
and, at the hardening stage, the intensities of lumines-
cence in these spectral regions almost ceased to depend
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Fig. 4. Photoluminescence spectra of an aged NaCl : Eu crys-
tal before deformation (thick solid line) and after plastic
deformation to ε = 10% (dashed line). The thin solid and dot-
ted lines are the corresponding spectra resolved into Gauss
profiles before and after deformation under the conditions of
mechanical stress increasing linearly. Arrows indicate cluster
types corresponding to each spectral band according to [4].
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Fig. 5. (a) Deformation ε dependences of (1) luminescence intensity I427 of impurity-vacancy dipoles and (2) number x1 of impurity-
vacancy dipoles determined by analyzing SQUID measurements; the I427 and x1 values before deformation were taken to be unity.
(b) Deformation ε dependences of (1) luminescence intensity I535 of clusters (bands centered at 536 nm) and (2) number x2 of
exchange-coupled complexes determined by analyzing SQUID measurements; the I535 and x2 values before deformation were taken
to be unity.
on further plastic deformation (Fig. 5). It follows that
the magnetic properties of the crystals and changes in
the luminescence spectrum initiated by deformation in
a soft machine are sensitive to changes of the crystal
deformation stages and the presence and regime of dis-
location movement.

3.2. Changes in the Magnetic Properties of Crystals 
during the Aggregation of Impurity-Vacancy Dipoles 

into Clusters

Changes in the magnetic moment MEu caused by
thermal treatment of the NaCl : Eu (600 ppm) crystals
and impurity aggregation were studied after holding the
samples at 770 K for 2 h and throwing them onto a cop-
per plate to increase the rate of cooling. This procedure
(quenching) caused strong changes in the MEu(T)T
curve. The dependence characteristic of superparamag-
nets acquired the shape typical of paramagnets after
quenching (Fig. 6). These changes were caused by the
solution of large-sized clusters bound by exchange
interaction and their transformation into isolated impu-
rity-vacancy dipoles. The low-temperature tail of the
MEu(T)T dependence changed after quenching as time
elapsed (Fig. 7). The MEu(T)T dependence showed a
tendency to return to its initial form (to the form it had
before quenching) at room temperature because of the
gradual diffusion-controlled aggregation of impurity-
vacancy dipoles into clusters.

We also observed changes in the luminescence spec-
tra of the crystals caused by the aggregation of impu-
rity-vacancy dipoles (Fig. 8). These were an increase in
the intensity of long-wave spectrum components and a
decrease in the integral intensity of luminescence. For
JOURNAL OF EXPERIMENTAL A
four pairs of samples whose luminescence spectra were
absolutely identical immediately after quenching, we
observed spectral differences long after, depending on
whether or not the crystal was held in a constant field of
15 T. The intensity of long-wave luminescence of the
samples that remained in a magnetic field for the first
50–100 h after quenching was higher compared with
control samples. This observation is in agreement with
the results reported by us in [11–14]; it means that mag-
netically sensitive clusters whose transformation
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Fig. 6. Temperature dependences of MEuT for an aged crys-
tal (1) before quenching and (2) 5 h, (3) 30 days, (4) 60 days,
and (5) 120 days after quenching. 
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Fig. 7. Low-temperature regions of MEu(T)T dependences for quenched crystals (a) 5 h, (b) 30 days, (c) 60 days, and (d) 120 days
after quenching. Solid lines are the calculated MEu(T)T dependences obtained taking into account the contributions of isolated impu-
rity-vacancy dipoles and dimers in various spin states.
causes “switching” between aggregation paths appear
during aggregation. The next series of experiments
were therefore performed to study these magnetically
sensitive nonequilibrium states.

3.3. The Influence of a Constant Magnetic Field 
on the Effective Spin

of Magnetically Sensitive Nonequilibrium 
Europium Clusters

It was shown in [11–14] that magnetically sensitive
clusters comprising few atoms appeared approximately
50 h after quenching if aggregation occurred at room
temperature. In other words, a field with induction of
about 6 T influences the microhardness of crystals and
photoluminescence if intermediate clusters of impu-
rity-vacancy dipoles are formed in crystals; the concen-
tration of such dipoles is maximum 50 h after quench-
ing. A magnetic field with induction less than 1 T
almost does not change the properties of crystals. It was
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
found [11, 12] that a decrease in the temperature to
77 K suppressed the magnetoplastic effect and the field
effect on photoluminescence. Taking all these observa-
tions into consideration, we used a weak measuring
field with induction of 0.3 T and a strong magnetic field
capable of transforming clusters of point defects. The
sequence of operations is schematically shown in
Fig. 9. After quenching, the NaCl : Eu (600 ppm) crys-
tals were held at room temperature for two days, and
the MEu(T)T dependence was then measured in a weak
magnetic field from 2 to 200 K. Every crystal was
heated to 300 K and held for 40 min in the absence of
external actions. This was necessary for determining
those changes in M that might be caused by impurity
aggregation. It was then cooled to 2 K, and the MEu(T)T
dependence was again measured. After heating to
300 K for the next time, a strong magnetic field with an
induction of 5 T was switched on in the SQUID magne-
tometer, and the sample was held in this field for
40 min. Magnetic field-induced changes in the crystal
SICS      Vol. 100      No. 1      2005
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were studied by again recording the MEu(T)T depen-
dence in a weak field. Importantly, the sample remained
in the magnetometer during all these manipulations,
and its accidental displacements, inevitable if the sam-
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600450 500 550

Fig. 8. Photoluminescence spectra of two quenched
NaCl : Eu crystals: (1) and (2) coinciding spectra immedi-
ately after quenching, (3) spectrum of a control sample held
6 months after quenching at room temperature in the
absence of a magnetic field, and (4) spectrum of the sample
held in a field of 15 T for the first 100 h after quenching and
stored 6 months after quenching at room temperature.

Fig. 9. Experimental MEu(T)T dependences: (1) the first
series of measurements prior to exposure to a 5 T field,
(2) the second series of measurements after heating before
exposure to a 5 T field, and (3) the third series of measure-
ments after exposure to a 5 T field, and calculated MEu(T)T
dependences obtained using the Brillouin function that
describes (4) isolated dipoles with spin S = 7/2, (5) dimers
with the highest spin possible S = 7, and (6) trimers with the
highest spin possible S = 21/2. The sequence of operations
is shown in the inset. Arrows correspond to MEu(T)T depen-
dence measurements in a 0.3 T field.
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ple were taken out, could not influence the experimen-
tal results.

These results are shown in Fig. 9. The low-tempera-
ture tail of the MEu(T)T dependence remained almost
unchanged when the samples were heated. The expo-
sure of the crystals to a 5 T field caused changes in the
form of the MEu(T)T dependence at low temperatures.
These changes were reproduced for all six samples
used in this series of experiments. We checked the pos-
sibility of the influence of extraneous factors on the
purity of our experiment. The rated residual magnetic
field in the magnetometer after switching the 5 T field
off was about 0.1 Oe, that is, on the order of 10–6 of the
main signal. The presence of such a weak additional
field cannot explain changes in the magnetic moment of
the crystal observed in our experiments. We never-
theless performed control measurements with
NaCl : Cu(1–10 ppm) crystals that were not subjected
to thermal treatment. Because of the absence of excited
states of the subsystem of paramagnetic impurities, it
was impossible in principle to observe changes induced
by a magnetic field at room temperature. In other
words, these samples were used as a field-insensitive
reference. The M(T)T dependence did not change after
the exposure of the NaCl : Cu crystals to field action
(Fig. 10). It follows that the residual field in the magne-
tometer, traces of ferromagnetic particles on the surface
of the crystals, and other artifacts could not cause
changes in the magnetic properties of the NaCl : Eu
crystals observed in our experiments.

4. DISCUSSION

First, let us consider changes in the magnetic prop-
erties of the crystals caused by their deformation. The
Eu2+ ion has spin S = 7/2. In the absence of exchange
interactions, its EPR spectrum comprises fourteen
packets of lines about 5 Oe wide split by hyperfine
interactions [23]. Clearly, these narrow lines character-
ize the fraction of isolated impurity-vacancy dipoles in
our experiments. The broad lines are the EPR spectrum
of clusters broadened by dipole or exchange interaction
(see Fig. 3). Changes in the EPR spectrum while the
crystal is deformed (a decrease in the fraction of narrow
lines and the appearance of broad lines) are evidence of
a decrease in the fraction of isolated impurity-vacancy
dipoles and the appearance of new clusters (see Fig. 3).
As the aged crystals contained clusters of various types,
an analysis of the SQUID magnetometry data on
exchange interactions within these clusters could only
be used to obtain averaged estimates taking into
account the corresponding correction to the Brillouin
functions [24]. The M(T)T dependence was therefore
approximated by the additive contributions of x1 iso-
lated impurity-vacancy dipoles Mdip and x2 exchange-
coupled clusters Mcl to the magnetic moment. The tem-
perature dependence Mdip(T) was described by the Bril-
louin function BS(ζ), which took into account the Bolt-
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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zmann spin-level distribution of electrons as a function
of temperature,

(1)

where

µB is the Bohr magneton, and g ≈ 2 is the g factor.

The Mcl contribution of exchange-coupled clusters
was described by a similar function where the argument
of the Brillouin function was changed taking into
account the correction T0 for averaging the exchange
interaction value J ~ kT0 over various clusters,

To summarize, the experimental M(T)T depen-
dences were approximated by the function MEu(T) =
Mdip(T) + Mcl(T) whose adjustment parameters were x1,
x2, and T0. Figure 2 shows that the calculated curve
closely agrees with the experimental dependences at
T0 = –2 K. As estimating dipole–dipole interactions
yields T0 ~ 0.1 K, this result characterizes mean
exchange antiferromagnetic interactions in clusters.
The above approximation of the experimental data
enabled us to find the dependences of the number of
isolated impurity-vacancy dipoles x1 (Fig. 5a) and
exchange-coupled clusters x2 (Fig. 5b) on the deforma-
tion ε of crystals. In conformity with the conclusions
obtained in analyzing the photoluminescence and EPR
spectra, an analysis of the SQUID magnetometry data
shows that the number of isolated dipoles decreases and
that of exchange-coupled clusters increases as the crys-
tals are deformed. At the stage of hardening, the x1(ε)
and x2(ε) dependences reach saturation. This conclu-
sion, substantiated by three independent methods, con-
tradicts the result obtained when the same crystals were
deformed using a hard machine [25]. It was shown
in [25] that clusters were destroyed and transformed
into isolated impurity-vacancy dipoles or their com-
plexes containing few atoms under the conditions of
plastic deformation at a constant rate in a hard machine.
This means that the regime of deformation substantially
influences the character of interactions between dislo-
cations and point defects. The aggregation of clusters
during plastic deformation observed in this work can be

Mdip T( ) gµBSx1BS ζ( ),=

BS ζ( ) 2S 1+
2S
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2S
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1
2
---S

ζ
2S
------,coth–=

ζ
SgµBB

kT
-----------------,=
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explained by an increased mobility of impurities along
the dislocation nucleus and an ensuing increase in the
probability of the approach of dipoles to each other in
this region and also by the entrainment of impurities
with moving dislocations. Drawing conclusions in
favor of one of these possibilities requires performing
additional experiments.

Turning to the influence of thermal treatment on the
magnetic properties of europium impurities, note that
the EPR spectrum observed in our experiments after
quenching corresponded to the presence in crystals of
only isolated impurity-vacancy complexes or their
weakly bound clusters, dimers. Various stages of impu-
rity aggregation in ionic crystals were studied theoreti-
cally in [26]. It was shown that the primary products of
diffusion-controlled aggregation, that is, dimers (pairs
of dipoles), could be of four types in the NaCl lattice
(Fig. 11), and that all configurations formed equiprob-
ably at the initial stages because they appeared in acci-
dental encounters of dipoles wandering in the lattice
under the action of thermal fluctuations. This stage is
the “bottleneck” of further aggregation, because only
two of the four dimer configurations admit the addition
of dipoles and cluster growth. It follows that unfavor-
able configurations should first be transformed into
favorable dimers by thermal fluctuations for trimers
and more complex formations to appear. This conclu-
sion is substantiated by the kinetic studies of changes in
the EPR spectra after quenching [13].

In this work, we studied comparatively short initial
stages of aggregation at which large-sized clusters
could not be formed. At a 600 ppm concentration of
impurity, the mean distance between dipoles is d ~
100 Å. Therefore, the diffusion coefficient being D ~
10–22 m2/s, the drawing of two dipoles together takes
time t ~ d2/D ~ 107–108 s, that is, about 100 days. Our
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Fig. 10. Dependences M(T)T for aged NaCl : Cu(1 ppm)
crystals obtained (1) before and (2) after exposure to a 5 T
field.
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measurements were performed approximately during
this time interval. For this reason, the dependence
MEu(T)T was modeled taking into account the contribu-
tions of x1 isolated impurity-vacancy dipoles and x2

dimers of various configurations, MEu = Mdip + Mdim.
The contribution of dipoles Mdip was described by (1),
and the contribution of dimers Mdim had to be written
taking into account all possible spin states. The exact
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Fig. 11.  Schematic representation of aggregation paths
from dipoles to clusters according to [26].
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Fig. 12. Dependences of the numbers of dipoles (x1) and
dimers (x2) on time elapsed after quenching NaCl : Eu
crystals.
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equation for the magnetic moment of dimers was taken
from [27],

(2)

where ζ = SgµBB/k(T + T0).
The approximation of the experimental data at vari-

ous times after quenching by the function

is shown above in Fig. 7. We see that, during the whole
time interval of measurements, the experimental data
are well described by the model that takes into account
the contributions of dipoles and dimers. This substanti-
ates the correctness of the selected model although does
not rule out the formation of more complex clusters,
which, it appears, do not make a substantial contribu-
tion to the magnetic moment of the crystal. Fitting the
MEu(T)T dependences with the use of the above func-
tion enabled us to determine the amounts of dipoles (x1)
and dimers (x2) as functions of time elapsed after
quenching. Figure 12 shows that aggregation decreases
the number of dipoles and increases that of dimers, as
is expected for the initial cluster formation stages.

The influence of a magnetic field on the mean spin
of the clusters formed during aggregation can be ana-
lyzed by comparing the experimental MEu(T)T curves
with the theoretical predictions obtained with the use of
the Brillouin function corresponding to the states with
maximum spin Smax of dipoles and clusters of various
types, including dimers, trimers, etc. It follows from
Fig. 9 that the experimental curves lie between the Bril-
louin functions written for dipoles and for the high-spin
state of dimers with S = 7. Using the mean spin as an
approximation parameter in the Brillouin function
yields an exact description of the MEu(T)T dependence
before and after applying a strong constant magnetic
field (Fig. 9). This approach allowed us to find that the
mean spin of clusters before and after applying the field
was 6.2 ± 0.1 and 4.8 ± 0.1, respectively. It follows that
the exposure of the crystals to field action decreases the
mean spin, which can be explained by the transition of
part of clusters from the high- to low-spin state. As
SQUID magnetometry only allows the total contribu-
tion of all types of clusters to magnetization to be mea-
sured, the absolute spin value of magnetically sensitive
clusters cannot be determined by this method. It, how-
ever, follows from very general considerations that
spins in a cluster should be coupled by strong exchange

Mdim
1
2
---x2gµB=

×

JS S 1+( )
kT

----------------------- 
  2S 1+

2S
---------------ζ 

  SBS ζ( )sinhexp
S 0=

Smax

∑
JS S 1+( )

kT
----------------------- 

 exp
2S 1+

2S
---------------ζ 

 sinh
S 0=

Smax

∑
-----------------------------------------------------------------------------------------------------,

MEu T( )T Mdip T( ) Mdim T( )+[ ] T=
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005



THE MAGNETIC PROPERTIES OF Eu NANOCLUSTERS FORMED IN NaCl CRYSTALS 75
interaction for thermal fluctuations to be incapable of
rapidly destroying such complexes and spin correlation
to persist for a long time. The closeness of the mean
spin before applying a magnetic field, S = 6.2, to its
maximum value in dimers, Smax = 7, therefore leads us
to suggest that magnetically sensitive clusters are
dimers (pairs of dipoles) in which spins are coupled by
exchange interaction and oriented parallel to each
other.

Note in conclusion that the aggregation of particles
in crystal lattices has currently been studied in detail
only at late stages of its development, when combining
a large number of particles results in the formation of
nanocrystals discernible in electron microscopic
images and X-ray diffraction patterns. At the same
time, the initial stages of formation of nuclei of cluster
growth are crucial to the process as a whole. These clus-
ters only comprising several impurity atoms can have
different atomic configurations and be characterized by
different electronic processes involved in their origina-
tion. It could be suggested that the physical mecha-
nisms of formation of nuclei are fairly general for a
wide range of crystals. The information obtained in this
work can be used to solve such problems of importance
for applications as the doping of semiconductors and
controlling the state of clusters in them, crystal growth,
and the self-organization of impurity atoms in crystal
lattices of metals and alloys. Aggregation is usually
considered from the point of view of jumps of atoms in
crystal lattices under the action of thermal fluctuations.
The corresponding theoretical concepts are largely
based on calculations of lattice dilatancy and its influ-
ence on the diffusion coefficient. Other important char-
acteristics of aggregation, namely, the occurrence of
electronic and spin reactions between paramagnetic
particles with spins, are then outside the field of vision.
In this sense, aggregation is akin to processes of con-
cern to spin chemistry, in which similar reactions were
only studied for liquid-phase systems [15, 16]. We can
expect considerable changes in the physics of spin-
dependent reactions in solids compared with processes
in liquids. Dipole–dipole and spin–orbit interactions,
intracrystalline field anisotropy, and different molecu-
lar dynamics of paramagnetic particles change the
effectiveness of solid-state spin-dependent processes.
These problems require additional inquiries.

5. CONCLUSIONS

(1) The plastic deformation of crystals under the
conditions of mechanical stress linearly increasing with
time was found to decrease the concentration of iso-
lated impurity-vacancy dipoles and cause the formation
of clusters with exchange interaction of the ferromag-
netic type. This can be caused by the arising of condi-
tions favoring the approach of dipoles to each other in
regions of strong crystal lattice distortions close to dis-
location nuclei and the entrainment of dipoles by mov-
ing dislocations.
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(2) Aging crystals at room temperature for 103 h
caused aggregation of isolated impurity-vacancy
dipoles to exchange-coupled clusters (dimers) contain-
ing two Eu2+ ions. The temperature dependences of the
magnetic moment of clusters can be correctly described
without including the contribution of larger aggregates.

(3) Among the clusters formed approximately 50 h
after quenching, there were magnetically sensitive con-
figurations that changed their optical and magnetic
properties at room temperature under the action of a
magnetic field with induction 5 T. This field was found
to initiate the transition of part of clusters from the
high- to low-spin state.
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Abstract—Parametric excitation and the above-threshold behavior of a nonequilibrium system of nuclear mag-
nons are investigated both under microwave noise pumping and under monochromatic pumping with noise
modulation of the magnon spectrum. It is established that there exist two critical pumping amplitudes: the first
corresponds to the onset of nonlinear absorption of the microwave field, and the second corresponds to the
development of strong phase correlations—a nonequilibrium Bose condensate (NBC)—in a system of excited
magnon pairs. The formation of the NBC was recorded by two methods: by intense electromagnetic radiation
from a sample and by a coherent response of parametric magnons to a harmonic modulation of their spectrum
(by a modulation response). The existing theories provide a satisfactory description for the functional depen-
dence of pumping thresholds on the parameters of experiment, except for the region of minimal temperatures.
The observed discrepancy between theoretical and experimental results can be explained under the assumption
that quasi-elastic two-magnon relaxation processes make a nonadditive contribution to the threshold amplitudes
of noise pumping. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

A hyperfine interaction between the spins of the
nuclei and the electron shells of magnetic ions in
weakly anisotropic antiferromagnets has given rise to a
new branch of coupled oscillations of electronic and
nuclear spins—nuclear spin waves (NSWs). The fre-
quencies of these oscillations lie in the range of NMR
frequencies (ωn/2π ≤ 700 MHz for 55Mn nuclei), and
the wavevectors k ≤ 106 cm–1. The most remarkable
feature of NSWs is that they exist in a paramagnetic
system of nuclear spins I that is characterized by a high
level of thermal fluctuations and weak polarization
(〈I〉/I ~ 1%) at liquid helium temperatures. The concept
of NSWs was proposed in [1], where the authors calcu-
lated the spectra of these waves in ferro- and antiferro-
magnets and showed that the most convenient objects
for investigating NSWs are cubic antiferromagnets and
antiferromagnets with easy-plane anisotropy. The char-
acteristic feature of these antiferromagnets is the pres-
ence of a low-frequency branch of spin waves and the
exchange enhancement of hyperfine interaction [2].
The NSW spectrum in the easy-plane antiferromagnet
CsMnF3 is given by

(1)

where  [kOe2] = 6.4/T is the parameter of hyperfine
interaction, T is temperature, H is a static magnetic

ωk ωn 1 H∆
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field, α = 0.95 × 10–5 kOe cm is the constant of inhomo-
geneous exchange interaction, and ωn/2π = 666 MHz.

Spin and magnetoelastic waves in magnets repre-
sent a very convenient object for investigating the phys-
ics of nonlinear wave processes. At present, parametric
resonance of these waves has been studied sufficiently
well in an ac magnetic field hcosωpt parallel to a dc
field H. When the strength of the microwave magnetic
field exceeds a threshold value hc , the sample exhibits
parametric instability with respect to the decay of a
pumping quantum into a pair of magnons (or qua-
siphonons) of half the frequency with equal and oppo-
sitely directed wavevectors (ωp = ωk + ω–k). The critical
amplitude hc of the microwave field, which is usually
called a pumping threshold or a parametric-excitation
threshold, is defined by the expression hc = γ/V, where γ
is the relaxation rate of the excited waves and V =
(∂ωk/∂H)/2 is the coefficient of coupling between para-
metric waves and the pumping field; this coefficient is
determined by the effective magnetic moment of the
excited wave. For NSWs, this coefficient is defined by

(2)

i.e., it depends on the frequency of magnons, magnetic
field, and temperature.

Immediately above the excitation threshold (i.e., for
h > hc), a dynamic order is established in the system,
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which is characterized by two parameters: the number of
parametric pairs of magnons (or quasiphonons) and their
phase with respect to the pumping field (see [3, 4]).
Obviously, this nonequilibrium Bose condensate
(NBC) of a macroscopic number of generated pairs rep-
resents a forced oscillation of the medium at the fre-
quency of the external field.

The situation is substantially complicated when the
external ac field is applied in the frequency interval
(ωp – ∆ω/2, ωp + ∆ω/2) and the frequency bandwidth of
pumping is greater than the γ of the excited waves. The
very possibility of parametric excitation of an oscillator
by a noise field seems to be rather questionable [5].
Moreover, the possibility of nonequilibrium phase tran-
sition accompanied by the formation of an NBC in the
wave system excited by noise pumping is still more
questionable, because a noise field does not have any
distinguished phase and cannot establish a coherent
state in the excited system by itself.

Parametric resonance of spin waves under noise
pumping was considered by Mikhailov and Uporov [5]
and Cherepanov [6]. These authors obtained identical
(up to a factor of 2 for ∆ω @ γ) formulas for the mean
threshold power Pn of the noise field at which time-
average nonlinear absorption starts in the system.
Under Gaussian noise pumping for arbitrary ∆ω ! ωp,
the threshold power is given by [7]

(3)

where Pc ∝   is the threshold power for monochro-
matic pumping and the critical power Pn represents the
integral power of microwave noise pumping (rather
than its spectral density).

However, these authors have fundamentally differ-
ent views on the above-threshold behavior of a system
of nonequilibrium magnons. In [5], the authors argue
that the basic limiting mechanism for the microwave
absorption is nonlinear dissipation, while the phase cor-
relations of waves are ineffective. Conversely, the author
of [6] argues that strong phase correlations should arise
in the pairs of excited waves (the phase limiting mecha-
nism), like under monochromatic pumping.

Such phase correlations were experimentally
observed for the first time by Andrienko and Safonov [7]
under noise pumping of magnetoelastic waves in the
antiferromagnetic FeBO3; they observed two thresh-
olds of instability. The first threshold (Pn1) corresponds
to the onset of nonlinear absorption of microwaves,
while the second (Pn2) corresponds to the formation of
an NBC. (Note that the authors of [5, 6] did not con-
sider the possibility of two thresholds.) However,
because of the specific features of the experiment in [7],
namely, strongly anisotropic excitation (quasiphonons
are generated along the C3 axis of the crystal) and a pos-
sible effect of the boundaries of a sample on the forma-
tion of an NBC (the thickness of the plane-parallel plate

Pn/Pc( ) 1– ∆ω/γ,=

hc
2
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was much less than the mean free path of a magne-
toelastic wave), the authors could not answer the ques-
tion whether or not an NBC can be formed in an infinite
sample. Finally, in [8], an NBC was first observed
under noise pumping of nuclear magnons in the antifer-
romagnetic CsMnF3 when the mean free path of mag-
nons was less than the sample size and the effect of
boundaries could be neglected.

Another possibility of the noncoherent effect of
external fields on a spin-wave system was first investi-
gated by Zautkin and colleagues [9]. They theoretically
and experimentally investigated a parametric genera-
tion of electron magnons by a monochromatic micro-
wave field in yttrium iron garnet (YIG) under a noise
modulation of the spectrum of spin waves by a radio-
frequency field and argued that this case corresponds to
nonmonochromatic (noise) pumping with fluctuating
phase. They calculated and measured the threshold
pumping amplitude corresponding to the onset of non-
linear absorption and the nonlinear magnetic suscepti-
bility of a sample. The threshold formula given in [9] is
analogous to Eq. (3) and is expressed as

(4)

where Hn is the spectral density of the noise field; the
threshold of “noise” pumping Pn in this case (in con-
trast to (3)) is the threshold power of monochromatic
pumping under the noise modulation of the spectrum of
spin waves. Later, Safonov [10] considered the decay
threshold of phase correlations in a wave system
excited by a monochromatic field when the noise mod-
ulation of the spectrum was switched on, and obtained
the formula

which can conveniently be rewritten as

(5)

For the present, this is actually the only calculation of
the threshold Pn2, i.e., the destruction (formation)
threshold for an NBC. In the limit of small Hn, the
threshold powers Pn1 and Pn2, defined by (4) and (5),
respectively, differ only by a factor of 2.

In [9], based on the qualitative agreement between
theory and experiment, the authors concluded that
phase correlations are significant. However, they could
not directly confirm the presence of strong phase corre-
lations in a wave system under noise modulation of the
magnon spectrum. Note that the experimental results
of [9] can equally (up to the measurement errors of the
pumping threshold Pn) be described by formulas (4)
and (5). The formation of an NBC under parametric
excitation of waves (quasiphonons) with the noise

Pn/Pc( ) 1– V Hn( )2/γ Hn
2 V /hc( ),= =

hn/hc 1– V Hn( )2/γ,=

Pn/Pc( ) 1– Hn
2= V /hc( ) 2 Hn
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modulation of their spectrum was first observed by
Andrienko and Safonov in [7].

In the present paper, we investigate the behavior of
the system of nuclear magnons both under noise pump-
ing with γ ≤ ∆ω ! ωp and under monochromatic micro-
wave pumping with the noise modulation of the spec-
trum of NSWs. In this case, the mean free path of gen-
erated magnons is much less than the crystal size,
whereby the effect of sample boundaries on the forma-
tion of a stationary state of parametric pairs can be
neglected. Moreover, under the conditions of coherent
pumping and noise pumping, we investigate the radia-
tion of electromagnetic waves by parametric pairs of
NSWs. This effect has been first discovered in the
present study.

2. EXPERIMENTAL TECHNIQUE

Nuclear magnons in the easy-plane antiferromagnet
CsMnF3 (with the Néel temperature 53.5 K) were gen-
erated by a microwave field of frequency ωp/2π =
1080–1180 MHz. The noise field was generated by two
methods.

(1) Noise modulation. In this case, a microwave
oscillator operated in the usual mode (monochromatic
pumping) and a signal from a white noise generator
operating in the frequency range from 0.015 to 600 kHz
was amplified by a broadband amplifier and was
applied to a modulating coil that was wound coaxially
with a helical microwave resonator. The ripple ampli-
tude of the noise spectral density was no greater than
3 dB. The measurement accuracy of the mean spectral
density Hn of the noise field was 15%, and the accuracy
of relative measurements was 5%. To a high degree of
accuracy, such noise can be considered as white noise
because its bandwidth is much greater than the relax-
ation frequency of magnons γ/2π ≤ 20 kHz.

(2) Noise pumping. A noise signal from a radio-fre-
quency white noise generator was used for modulating
the frequency of a microwave oscillator. The spectrum
of the output microwave-pumping signal was investi-
gated by a spectrum analyzer. The shape of the spec-
trum was close to a Gaussian curve with a frequency
bandwidth of ∆ω ! ωp. The bandwidth of the pumping
spectrum was measured at a half maximum to an accu-
racy of 10%, the condition γ < ∆ω < ∆ωR being always
satisfied, where ∆ωR is the linewidth of the resonance
curve of the microwave resonator loaded with a sample.

A single-crystal sample of CsMnF3 with a size of
about 3 × 3 × 5 mm3 was placed in a helical microwave
resonator with a quality factor of Q ~ 500 filled with
liquid helium. The experiment was carried out in the
temperature interval T = 1.9–4.2 K in a magnetic field
of H = 500–2000 Oe under parallel microwave pump-
ing (h || H). The relaxation rate γ/2π of generated mag-
nons was calculated using the monochromatic pumping
threshold hc with an accuracy of 25% and ranged
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(depending on T and H) from 6 to 20 kHz. The accuracy
of relative measurements of hc and γ was 5%. The mean
free path of magnons was L ≤ 1 mm, i.e., several times
less than the characteristic size of the sample.

Microwave pumping was performed in continuous-
wave mode, as well as in a pulsed mode with a repetition
rate of 10–100 Hz and a pulse length of 300−2000 µs. In
the pulsed mode, the threshold pumping power was
determined by the appearance of a nonlinear distortion
(chip) on a detected microwave pulse transmitted
through the resonator. In continuous-wave mode, this
threshold is determined by the appearance of a modula-
tion response in the spectrum of the microwave signal
transmitted through the resonator loaded with a sample
(the description of this technique is given below). The
relative measurement accuracy of the threshold power
was 10%.

We used two methods to detect an NBC, which are
based on the observation of collective phenomena asso-
ciated with the formation of this state.

The first method consist in the observation of the
modulation response αm. This method was developed
and widely used for investigating the properties of the
NBC of magnons that is formed under monochromatic
pumping [4]. Later, this method was successfully
applied to detect the NBC of quasiphonons generated
by noise pumping [7]. A weak radio-frequency mag-
netic field Hmcos(ωmt) is applied to a sample to modu-
late the spectrum of spin waves. This gives rise to oscil-
lations of the amplitude and phase of the NBC about
their equilibrium values (the so-called collective oscil-
lations), which result in a modulation, with amplitude
∆P and frequency ωm, of the microwave power
absorbed by the sample. This amplitude modulation
(∆P = αmHm) points to the existence of the NBC in the
sample.

To record αm, a microwave signal transmitted
through the resonator was detected and applied to a
spectrum analyzer or to a selective microvoltmeter
tuned to the frequency ωm and then fed to the Y input of
an X–Y automatic recorder.

The second method consists in the observation of
electromagnetic radiation from a system of excited
nuclear magnons. Earlier, this effect was observed in a
system of magnetoelastic waves [10]. It consists in the
fact that a sample in which an NBC is produced by
monochromatic microwave pumping emits characteris-
tic electromagnetic radiation after switching off the
pumping. The frequency of this radiation is close to the
pumping frequency, and its intensity is nonmonotonic
in time and has a magnitude comparable to the micro-
wave power absorbed by the sample. In the present
paper, we could also observe similar radiation from a
system of NSWs.
SICS      Vol. 100      No. 1      2005
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3. RESULTS AND DISCUSSION

3.1. Parallel-Pumping Thresholds
under Noise Modulation of the Magnon Spectrum 

We observed two pumping thresholds Pn1 < Pn2. The
first threshold corresponds to the onset of nonlinear
absorption of microwave power, and the second corre-
sponds to the formation of an NBC. Since the differ-
ence between Pn1 and Pn2 is usually no greater than the
experimental error, we only traced the behavior of the
threshold Pn1 in our experiments, because it is easier to
measure. In this section, we denote it simply by Pn. Fig-
ure 1 shows the threshold power of monochromatic par-
allel pumping as a function of the spectral density of the
noise field for various temperatures, pumping frequen-
cies, and magnetic fields. One can see that (Pn/Pc – 1) is
proportional to the squared spectral density of noise,
depends on H and T, and rapidly decreases as the fre-
quency of generated magnons approaches ωn. The the-
oretical curves calculated by formula (4) with a fitting
factor of 5.9 (for ωp/2π ≈ 1090 MHz) are shown by a
solid line. They well describe the functional depen-

dence of the threshold on  and T at this pumping fre-
quency over the entire range of Hn. The theoretical

Hn
2

2

0 1.0

Pn/Pc – 1

H2
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2.0
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Fig. 1. Relative increase in the threshold power of coherent
pumping as a function of the spectral density of noise field;
(s) H = 1830 Oe, T = 2.05 K, and ωp/2π = 1088.8 MHz;
(m) H = 1134 Oe, T = 4.2 K, and ωp/2π = 1093.3 MHz;
(n) H = 689 Oe, T = 4.2 K, and ωp/2π = 1093.3 MHz; and
(d) H = 1775 Oe, T = 2.0 K, and ωp/2π = 1165.8 MHz. Solid
curves correspond to theoretical calculations by formula
(4), and dashed curves, to calculations by formula (5). Fit-
ting factors are equal to 5.9 and 2.5 for ωp/2π = 1090 MHz
and 3.4 and 1.6 for ωp/2π = 1166 MHz.
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curve calculated by (5) (dashed curves) describes the
functional dependence of the threshold only for
Pn/Pc < 5; but the fitting parameter for this curve is less;
it is just 2.5. As the pumping frequency increases, the
effect of Hn on the threshold should rapidly decrease
because, according to (2), the parameter V that enters (4)
rapidly decreases. This decrease is clearly demon-
strated in Fig. 1, where the upper (o) and lower (•) rows
of dots differ only by the pumping frequency. More-
over, this decrease turns out to be even stronger than
that predicted by the theory, so that the fitting parame-
ters decrease and, for ωp/2π ≈ 1166 MHz, are 3.4 and
1.6, respectively. Recall that, actually, the theory does
not contain any fitting parameters, and the calculated
value of Pn depends only on the accuracy of the abso-
lute measurement of the threshold value of hc and the
spectral density Hn of the noise field. Actually, the cal-
culations are performed for ideal white noise, while the
real frequency characteristic Hn(ωm) of the noise-field
generator is not uniform and has a limited bandwidth of
0.15–600 kHz. Therefore, a calculated threshold may
not coincide with a measured one; however, this may
barely at all affect the determination of the absolute
value and the functional dependence of the pumping
threshold. Thus, the effect of the noise modulation of
the spectrum on the pumping threshold for NSWs turns
out to be several times greater than the calculated result.

The field dependence of the threshold of monochro-
matic pumping at a temperature of T = 2.08 K for fixed
values of the amplitude of noise modulation are shown
in Fig. 2. Figure 3 represents the same results as
(Pn/Pc – 1) vs. H together with the similar results
obtained at T = 4.2 K. One can see that the fitting
parameter is independent of H and T; i.e., the theoreti-
cal calculations satisfactorily describe the field and
temperature dependence of the parallel-pumping
thresholds for NSWs under the noise modulation of the
spectrum. Thus, at a fixed pumping frequency, the the-
ory describes the functional dependence of the thresh-
old on any parameter: on the spectral density of noise,
on a magnetic field, and on temperature. The NSW
parameters, such as relaxation rate, wavevector, and the
coupling coefficient between NSWs and pumping, vary
several times in these intervals of H and T. Hence, the
fitting factor is independent of the above parameters of
magnons; it depends only on their frequency. Thus, the
measurements show that, although the theory gives an
incorrect absolute value of the threshold, it fails to
describe only one function of the threshold, namely, the
frequency dependence of the monochromatic pumping
threshold under the noise modulation of the spectrum
of nuclear magnons. Note that the effect of the excita-
tion frequency on the noise pumping threshold is stud-
ied here for the first time. Earlier, the values of the
pumping threshold measured during the study of
nuclear magnons in YIG [9] under the noise modulation
of the spectrum coincided with the calculated ones up
to the measurement errors. However, these measure-
ND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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Fig. 3. Relative increase in the threshold power of coherent
pumping as a function of a static magnetic field for a fixed
amplitude of noise modulation; (d) Hn = 0.02 Oe/Hz1/2, T =

2.08 K, and ωp/2π = 1094.4 MHz; (s) Hn = 0.04 Oe/Hz1/2,
T = 2.08 K, and ωp/2π = 1094.4 MHz; and (,) Hn =

0.03 Oe/Hz1/2, T = 4.2 K, and ωp/2π = 1093.3 MHz. Solid
curves correspond to theoretical calculations by formula (4)
with a fitting parameter of 5.9, and dashed curves, to calcu-
lations by formula (5) with a fitting parameter of 2.5.
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Fig. 2. Threshold power of coherent pumping as a function
of a static magnetic field for a fixed amplitude of noise mod-
ulation of the magnon spectrum; (m) Hn = 0, (s) Hn =

0.02 Oe/Hz1/2, and (d) Hn = 0.04 Oe/Hz1/2; T = 2.08 K and
ωp/2π = 1094.4 MHz.
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ments were carried out at a single value of pumping fre-
quency and only for two values of the magnetic field. In
the experiments on the excitation of quasiphonons in
FeBO3 [7], the theory failed to describe the dependence
of Pn on the magnetic field.

3.2. Noise Pumping Thresholds of NSWs 

Investigations have shown that one should also dis-
tinguish two thresholds Pn1 < Pn2 under noise pumping
of nuclear magnons. The first threshold corresponds to
the onset of nonlinear absorption of microwave power,
and the second, to the formation of an NBC. The ratio
Pn2/Pn1 of these thresholds increases with ∆ω but does
not exceed 1.25. Figure 4 shows the threshold of para-
metric pumping of NSWs as a function of the frequency
bandwidth of microwave pumping. Since the difference
between the thresholds Pn1 and Pn2 is usually no greater
than the experimental error, we only kept track of Pn1 in
these experiments; in what follows, we simply denote it
by Pn. According to theory (3), (Pn/Pc – 1) is propor-
tional to ∆ω for any values of T, H, and ωp. However,
for a fixed pumping frequency of about 1090 MHz, the
calculated value of (Pn/Pc – 1) exceeds the measured
value by a factor of 3 at temperature T = 4.2 K and by a

10

0 500

Pn/Pc – 1

∆ω/2π, kHz

20

1000

Fig. 4. Relative increase in the threshold power as a function
of the frequency bandwidth of noise pumping; (d) T =
2.05 K, ωp/2π = 1088 MHz, H = 1750 Oe, and γ/2π =
7.1 kHz; (s) T = 4.2 K, ωp/2π = 1093.3 MHz, H = 1680 Oe,
and γ/2π = 16.8 kHz; and (m) T = 2.0 K, ωp/2π =
1165.8 MHz, H = 1825 Oe, and γ/2π = 10.1 kHz. Dashed
curves correspond to calculations by formula (3) with the
fitting parameters 0.15, 0.31, and 0.1 for the dots d, s, and
m, respectively.
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factor of about 7 at temperature T = 2.05 K. The fitting
factor is also changed under the variation of the pump-
ing frequency: at 1166 MHz, the measured value of
Pn/Pc – 1 is less than the theoretical value by a factor of
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Fig. 5. Threshold power of noise pumping as a function of
a static magnetic field for fixed values of the pumping
bandwidth; (m) ∆ω/2π ≈ 0, (s) ∆ω/2π = 40 kHz, and
(d) ∆ω/2π = 270 kHz; T = 2.08 K and ωp/2π = 1094.4 MHz.
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Fig. 6. Relative increase in the threshold power of noise
pumping as a function of a static magnetic field for fixed
values of the pumping bandwidth; (s) ∆ω/2π = 40 kHz and
(d) ∆ω/2π = 270 kHz; T = 2.08 K and ωp/2π = 1094.4 MHz.
The curves correspond to calculations by formula (3) with a
fitting parameter of 0.175.
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10. Thus, in the case of noise pumping, the theory
describes neither frequency nor temperature depen-
dence of the generation threshold.

Figure 5 shows measured values of the noise pump-
ing threshold as a function of a static magnetic field for
fixed values of ∆ω. Figure 6 reproduces the same results
as Pn/Pc – 1 vs. H. The calculated curves are obtained
as follows. Using the measured monochromatic pump-
ing threshold hc(H), we calculated γ(H) by formula (2)
and substituted it into (3) to calculate H as a function of
Pn/Pc – 1. Again, one can see that the theoretical results
with the above-mentioned fitting parameters are in
good qualitative agreement with the experimental
results. Here, it is essential that Pc varies 40 times over
the range of magnetic fields considered. The wavevec-
tor, the relaxation rate of generated nuclear magnons,
and the coupling coefficients between pumping and
NSWs are also changed significantly. However, the fit-
ting factor remains constant. Hence, the theory cor-
rectly describes the noise pumping threshold Pn as a
function of the above-mentioned parameters of gener-
ated magnons, but gives a value of the threshold power
that is several times greater than the measured value.
Recall that, conversely, under the noise modulation of
the spectrum of NSWs, the theoretical results were sev-
eral times less than the experimental data. The field
dependence of the noise pumping threshold obtained
earlier when investigating the generation of qua-
siphonons in FeBO3 [7] did not admit theoretical
description. Thus, formula (3) much better describes
the noise pumping of NSWs. This is likely to be asso-
ciated with a weak effect of the sample boundaries on
the system of generated magnons; i.e., for NSWs, the
theoretical model is closer to the real experimental
situation.

Under noise pumping of NSWs, theoretical results
significantly deviate from experimental results as tem-
perature decreases and frequency varies. Recall that the
effect of the microwave-field frequency on the noise
pumping is investigated in the present paper for the first
time; all measurements in [7–9] were carried out at a
fixed frequency.

One may propose the following qualitative expla-
nation for this discrepancy between theory and expe-
riment.

The analysis of the relaxation mechanisms of NSWs
has shown [2] that, for ωp/2π ≈ 1090 MHz and T =
4.2 K, the relaxation of NSWs in CsMnF3 is deter-
mined, by about 50%, by inelastic scattering of NSWs
by the fluctuations of nuclear magnetization (by two-
magnon processes) and, by another 50%, it is deter-
mined by three-particle relaxation processes with the
temperature dependence T5. At 2.2 K, the contribution
of inelastic relaxation processes decreases to about 5%.
Moreover, the efficiency of three-particle processes
rapidly decreases as the magnon frequency, i.e., the
pumping frequency, increases. As a result, elastic pro-
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cesses also become dominant. In our opinion, it is the
dominant role of elastic relaxation processes that is
responsible for the fact that the noise pumping thresh-
old of NSWs proves to be appreciably less than the cal-
culated one; this is especially manifest as temperature
decreases or as the pumping frequency increases.

An assumption about the specific role of two-mag-
non processes and their nonadditive contribution to the
threshold formula has been made by Zakharov and
L’vov [11]. They suggested that, since the wave energy
is not changed under elastic scattering (only the propa-
gation direction of a wave is changed), secondary mag-
nons keep taking part in the process of pumping, thus
reducing the threshold of parametric excitation, which
is described in this case by

(6)

where γel and γnel are the relaxation rates of elastic and
inelastic processes, respectively. However, experiments
with monochromatic pumping [2, 12] did not confirm
this assumption. Experiments showed an additive con-
tribution of all γ to the threshold amplitude: hc = (γnel +
γel)/V. Apparently, the point is that, a crucial role under
monochromatic pumping is played by the phase of a
wave, which changes after a quasi-elastic scattering of
a magnon. Moreover, quasi-elastic scattering may be
accompanied by a slight variation in the energy and the
absolute value of the wavevector of a magnon (the so-
called drift over the spectrum). As a result, a secondary
magnon is out of resonance with the pumping field. In
the case of microwave noise pumping, whose fre-
quency and phase rapidly fluctuate, neither the varia-
tion of the phase of secondary magnons nor the weak
drift of magnons over the spectrum of NSWs (within
∆ω) influence the coupling between magnons and the
driving microwave field. Therefore, secondary mag-
nons continue to take part in the pumping process, thus
reducing its threshold. (These secondary magnons can
also be interpreted as an additional noise field.) Thus, it
is the noise pumping under which the contribution of
two-magnon processes to the threshold amplitude
should become nonadditive. Our experiments have
shown that the greater the relative contribution of elas-
tic processes, the greater the deviation of the fitting
parameter from 1, displayed both by temperature and
frequency dependence of the fitting parameter. Unfor-
tunately, the noise pumping threshold with regard to the
specific role of quasi-elastic processes has not been cal-
culated. Nevertheless, the qualitative model proposed
above is in good agreement with experiment.

3.3. Kinetics of Parametric Instability 

It is well known [3] that, in the case of monochro-
matic pumping, when the amplitude of the microwave

hc γnel γnel γel+( )[ ] 1/2= /V ,
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field exceeds a certain threshold value hc , the number of
magnons first increases by the exponential law

(7)

where N0 is on the order of the number of thermal mag-
nons of frequency ωk , τm is the lifetime of these mag-
nons, and t is the time measured from the switching
moment of a microwave pumping pulse. The number of
magnons increases due to the sample’s absorption of
photons stored in the resonator. This absorption also
increases exponentially at first. When the number of
magnons reaches Nk1 (which is determined by the sen-
sitivity of the setup), a chip appears on the microwave
pulse transmitted through the resonator. The time inter-
val τ = τ(Nk1) from the beginning of the pulse to the chip
is given by the expression

(8)

where C is a constant determined by the lifetime of
magnons and the sensitivity of the experimental setup.
In a certain period of time after the chip, due to the
restriction mechanisms, the number of parametric pairs
and the magnitude of microwave absorption reach a
steady-state level. For monochromatic pumping, the
linear dependence of the inverse time to the chip on the
supercriticality was repeatedly verified in experiments
(see, for example, [3, 13]).

In this section, we focus on the development of para-
metric instability under noise pumping, in particular, on
the dependence of the time τ on the spectral bandwidth
of the pumping ∆ω and on the noise modulation ampli-
tude of the magnon spectrum Hn.

The development time of parametric instability as a
function of noise level was measured as follows. For
fixed values of the microwave power and pumping
bandwidth (P, ∆ω = const), we increased the pulse
length until a chip appears on it. This time τ to a chip
slightly varied from pulse to pulse, the variation being
the greater, the greater the pumping bandwidth ∆ω. We
measured the minimal, rather than the mean, value of τ
at which a chip appeared on microwave pulses. The
results of these measurements are represented in Fig. 7.

The most obvious factor responsible for increasing
the time to a chip with increasing the pumping band-
width is a decrease in the supercriticality as ∆ω
increases. To take into account this change in the super-
criticality, we should replace (h/hc) by (h/hn) in (8),
where hn = hn(∆ω) ∝  (Pn(∆ω))1/2 is a function of the fre-
quency bandwidth of pumping. Then, formula (8) is
represented as 1/τ = C[(P/Pn)1/2 – 1]. Taking into
account the experimental dependence of Pn on ∆ω
(which is described by theory (3) with a certain fitting
factor b), we can rewrite this formula as

(9)

where b is taken from earlier experiments and is equal
to b = 0.15 for ωp/2π = 1094.4 MHz, T = 2.08 K, and

Nk N0 h/hc 1–( ) t/τm( )[ ] ,exp=

1/τ C h/hc 1–( ),=

1/τ C h/hc( )/ b∆ω/γ 1+( )0.5 1–[ ] ,=
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H = 1870 Oe. Figure 7 shows that formula (9) with a fit-
ting parameter of C = 7000 well describes the general
behavior of the experimental curves, which is rather
unexpected because formula (9) takes into account only
the decrease in the supercriticality with increasing the
pumping frequency bandwidth ∆ω but does not take
into account the specific feature of the noise-induced
generation of parametric magnons. Note that, in a wide
range of ∆ω, the experimental results for three values of
supercriticality are well described by three parallel
lines, which correspond to the empirical function

(10)

where τ0 is the time to a chip under coherent pumping.

Similar measurements of the development time of
parametric instability were also carried out under
coherent pumping of NSWs with the noise modulation
of the spectrum. The results of these measurements are
shown in Fig. 8. The measurement technique is analo-
gous: for constant values of the microwave power and
noise modulation level (P, Hn = const), we increased the
length of a pulse until a chip appears on it. Since the
noise modulation increases the pumping threshold, to a
first approximation, we can take into account the effect
of this modulation on the development time of paramet-
ric instability by substituting the experimental depen-
dence of the threshold on Hn into formula (8). As shown

1/τ 1/τ0 10.3∆ω,–=

1

0 500

1/τmin, 104 s–1

∆ω/2π, kHz

2

1000

3

Fig. 7. Time to a chip as a function of the bandwidth of
noise pumping for fixed values of pumping power;
(s) P/Pc = 3.5, (d) P/Pc = 11.7, and (m) P/Pc = 50.5; T =
2.08 K, H = 1870 Oe, and ωp/2π = 1094.4 MHz. Dashed
curves are calculated by formula (9), and the straight lines,
by formula (10).
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above, this dependence is well described by theory (4)
with a fitting factor of 5.9. Using formulas (4) and (8)
and the experimental values of Pn(Hn), we obtain

(11)

The curves corresponding to (11) are shown in Fig. 8 by
dashed lines. Since formula (11) does not take into
account a shift in the phase of the NBC under noise
modulation of the spectrum, the agreement between
experiment and calculations by (11) can be assumed to
be quite satisfactory. Incidentally, the only fitting
parameter C in (11) is the same as in (9): C = 7000. It
allows one to satisfactorily describe, by formulas (9)
and (11), all experimental results represented in Figs. 7
and 8. Note that, for P/Pc < 20, the experimental results
shown in Fig. 8 are also well described by straight lines
drawn by the empirical formula

(12)

A certain similarity between empirical formulas (10)
and (12) seems to be quite unexpected because the
effect of Hn on the threshold power Pn is quadratic,
whereas the effect of the bandwidth of the noise-pump-
ing spectrum ∆ω on Pn is linear.

1/τ C h/hc( )/ 1 5.9Hn
2V /hc+( )0.5

1–[ ] .=

1/τ 1/τ0 3.37 106Hn.×–=

1

0 2

1/τmin, 104 s–1

Hn, 10–3 Oe/Hz1/2

2

4

3

Fig. 8. Time to a chip of coherent pumping as a function of
the noise modulation amplitude of the spectrum for several
values of pumping power; (s) P/Pc = 3.4, (n) P/Pc = 10,
(d) P/Pc = 11.4, and (m) P/Pc = 38; T = 2.08 K, H =
1870 Oe, and ωp/2π = 1094.4 MHz. Dashed curves are
calculated by formula (11), and the straight lines, by for-
mula (12).
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3.4. Observation 
of Nonequilibrium Bose Condensation

of Parametric Pairs of Magnons 
Generated by Noise Pumping 

Up to now, we have dealt with the threshold ampli-
tude of pumping above which a large number of non-
equilibrium magnons are generated in a sample, and
with the development time of parametric instability. Of
greatest interest is the state of these nonequilibrium
magnons (parametric pairs of magnons) that is formed
above the threshold of noise pumping, in particular, the
solution of the problem on the possibility of strong
phase correlations in such a system.

Figure 9 represents the amplitudes of the modula-
tion response αm, drawn by an automatic recorder, as a
function of the integral power of noise pumping and
monochromatic pumping. These data are recorded in a
continuous-wave mode. This figure also shows the
oscillograms of microwave pulses transmitted through
a resonator and recorded at three values of the ampli-
tude of the microwave noise field. We observed two
pumping thresholds, Pn1 < Pn2. At point A, where P <
Pn1, there is no nonlinear absorption, and αm = 0. Oscil-
logram B recorded above the threshold Pn1 (Pn2 > P >
Pn1) shows “bursts” of absorption; i.e., there exist (on
the average) nonequilibrium magnons in the sample,
but αm = 0. This nonlinear absorption increases with the
pumping power (the bursts occur more frequently).
Above the threshold Pn2, the pulse has a shape of C in
the figure, and a modulation response arises (αm ≠ 0),
which indicates that there exist (on the average) phase
correlations in the system, i.e., that an NBC is formed.
As we pointed out above, the ratio of the thresholds
Pn2/Pn1 increases with ∆ω but does not exceed 1.25.
This result is radically different from the case of noise
pumping of quasiphonons [7], where the ratio of these
two threshold powers amounted to 4. Such a small dif-
ference between the thresholds Pn1 and Pn2 is likely to
be attributed to the dominant contribution of elastic
processes to the relaxation of NSWs. It is obvious that
the threshold of the NBC formation, Pn2, is associated
with the total number of magnons within the pumping
bandwidth ∆ω. When P > Pn1, nonequilibrium magnons
generated by pumping arise in the sample. Secondary
magnons that result from two-magnon scattering pro-
cesses remain in the same spectral domain of NSWs.
Hence, these magnons are accumulated; i.e., the occu-
pation numbers of magnons with frequencies ωk ≈ ωp/2
rapidly grow. As a result, the number of magnons
reaches a critical value necessary for the formation of
NBC earlier, for lower supercriticality (P/Pn1), com-
pared with the case when three-particle relaxation pro-
cesses (which decrease the occupation numbers of
magnons near the frequency ωp/2) are dominant.

The existence of the NBC was also detected by elec-
tromagnetic radiation from a sample, which was
observed immediately after switching off a pumping
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
pulse (see Fig. 10). It is well-known that the power of a
microwave signal transmitted through a resonator is
proportional to the number of photons in the resonator.
In the absence of the NBC, immediately after switching
off the oscillator, this signal monotonically decreases

0

α m

Pc Pn1 Pn2 P

A B

C

1

2

A B

0

C

Fig. 9. Signal of modulation response as a function of power
for (1) monochromatic pumping and (2) noise pumping
(drawn by automatic recorder), and the oscillograms of
microwave pulses of noise pumping transmitted through the
resonator at points A, B, and C.
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Fig. 10. Oscillograms of the trailing edge of microwave
pulses and a signal of electromagnetic radiation from a sam-
ple for T = 2.08 K, H = 1790 Oe, Pin ≈ 2000Pc, and ωp =
ωR – 2π × 0.7 MHz for (1) monochromatic pumping and
(2) noise pumping. Curve (3) represents the trailing edge of
a pulse for P < Pc; t = 0 corresponds to the moment of
switching off the pump oscillator.
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with a characteristic decay time of photons of about
0.1 µs, which is determined by the Q of the resonator.
If the pumping power is substantially greater than the
threshold power, then, after switching off the pumping
field, one can observe radiation from the sample behind
the trailing edge of the pulse. First, the microwave
power transmitted through the resonator sharply
decreases (the trailing edge of the pulse decreases more
abruptly than in the case P < Pc). Then, the signal starts
to grow, and its amplitude reaches a maximum in τ ~
0.5 µs after the end of the pulse. Then, one can observe
a decay of radiation with a characteristic time of about
1 µs. The maximal radiation power is comparable with
the power of the pumping signal absorbed by the sample.

This radiation was earlier investigated in [14] under
parametric excitation of magnetoelastic waves in
FeBO3. It is associated with the fusion of two quasipar-
ticles (magnons in our case), which constitute a para-
metric pair, and is accompanied by the generation of a
photon with the frequency close to ωp (m + m  ph),
i.e., by a process inverse to the pumping. Since para-
metric pairs in the NBC have equal phases, this radia-
tion is coherent and has a large amplitude, in contrast to
the radiation from individual magnons at frequency ωk .
Since the electromagnetic radiation from parametric
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Fig. 11. Oscillograms of the trailing edge of microwave
pulses and a signal of electromagnetic radiation from a sam-
ple for various shifts of the monochromatic pumping fre-
quency with respect to the resonator frequency ωR = 2π ×
1094.8 MHz: (a) ωp = ωR , (b) ωp = ωR + 2π × 0.33 MHz,
(c) ωp = ωR – 2π × 0.74 MHz, and (d) under noise pumping
with ωp = ωR – 2π × 0.2 MHz and ∆ω = 2π × 1 MHz; T =
2.08 K, H = 1840 Oe, and P ≈ 2500Pc.
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pairs of NSWs is observed for the first time in the
present study and because it provides information on
the properties of a Bose condensate of magnons gener-
ated by noise pumping, we will dwell on this phenom-
enon in greater detail.

In [15], Safonov has shown that a new mechanism
of positive nonlinear damping of parametric pairs is
possible under parallel pumping in the combined reso-
nator–sample system—a radiation damping due to the
emission of a photon of frequency 2ωk by a parametric
pair. The magnitude of the radiation damping is given
by [14]

(13)

where Q and vR are the Q factor and the volume of the
resonator, respectively. It is obvious that the emission
of photons due to this process is hard to detect under
switched on pumping because a counterflow of photons
from the sample to the resonator merely reduces the
microwave power absorbed by the sample. However,
this radiation can be detected after the termination of
the pumping pulse. It seems that such radiation was
observed for the first time in a system of parametrically
generated electronic magnons in YIG ferrite [16]; how-
ever, detailed information about this effect is not avail-
able. Later, this radiation was investigated in [14, 17]
under parametric excitation of magnetoelastic waves in
FeBO3.

First, we consider electromagnetic radiation
observed under monochromatic pumping of NSWs. It
is important that the shape of the radiation signal
depends both on the pumping power and on the relation
between the natural frequency ωR of the microwave res-
onator and the pumping frequency. While the pumping
power affects only the amplitude (power) of radiation,
the variation in the pumping frequency strongly affects
the shape of the radiation signal as well. This is associ-
ated with the fact that, irrespective of the pumping fre-
quency, the frequency of the damped signal of the res-
onator (curve 3 in Fig. 10) is always close to ωR. Radi-
ation from the sample is emitted at the natural
frequency of the NBC, which is close to the pumping
frequency: ωNBC = ωp + Ω , where Ω ~ γ[P/Pc – 1]1/2 is
the frequency of collective oscillations in the NBC sys-
tem. The nonmonotonic behavior of radiation is attrib-
uted to the beating in the system of these two damped
oscillators.1 Hence, the shape of the radiation signal
depends on the relation between the frequencies of
these oscillators. Curve 1 in Fig. 10 is obtained for ωp =
ωR – 2π × 0.7 MHz, when the radiation peak is most
clearly displayed. Shifting the pumping frequency with
respect to the resonator frequency, one can observe
radiation signals of various shapes. Figs. 11a–11c show

1 For simplicity, we do not take into account the shift between ωR
and ωNBC due to the repulsion of the frequencies of coupled mag-
non–photon oscillations in the combined resonator–sample sys-
tem [17].

γrad 2π"QV2Nk/v R,=
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examples of these signals for several frequencies of
monochromatic pumping. This behavior is similar to
the radiation from quasiphonons observed in [14].
Recall that the pumping was performed by a periodic
sequence of microwave pulses rather than by a single
pulse; however, on the screen of an oscilloscope, all
pulses merge into a single one (give identical traces)
because the NBC of nuclear magnons is in the same
state, i.e., having the same amplitude and phase, after
the termination of all microwave pulses.

Now, let us return to the noise pumping. If we switch
on the noise modulation of the field H at a fixed fre-
quency of monochromatic pumping, we can simulta-
neously observe the trailing edges of several pulses on
the screen of an oscilloscope; these pulses demonstrate
various shapes of radiation signals, similar to those
observed under monochromatic pumping for the varia-
tion of power. It is obvious that all these traces of the
cathode ray of the oscilloscope are attributed to the
nonequivalence of the states of the NBC (its amplitude
and phase) at the termination moments of different
microwave pulses.

Now, let us apply noise pumping with a central fre-
quency of ωp = ωR – 2π × 0.2 MHz and a bandwidth of
∆ω ~ 2π × 1 MHz. We can simultaneously observe the
trailing edges of several pulses on the screen of the
oscilloscope (Fig. 11 d). They demonstrate radiation
signals of various shapes, similar to those observed
under monochromatic pumping for the variation of fre-
quency. This means that, under the noise pumping, not
only the amplitude of the NBC (the number of paramet-
ric pairs) varies with time, but also the NBC frequency
drifts.

The drift of the NBC frequency under noise pump-
ing was also observed in the experiments on investigat-
ing the modulation response of the spectrum of a micro-
wave signal transmitted through a resonator. An exam-
ple of such a spectrum is presented in Fig. 12. The
spectrum is recorded with large acquisition time to
“average out” fast fluctuations of a microwave signal
over frequency. The intense central line in the figure
corresponds to a signal of the pumping generator with
a spectral bandwidth of ∆ω/2π = 40 kHz, and the side
bands represent a modulation response at frequencies
ωNBC ± ωm. Since the width of the side bands corre-
sponds to the bandwidth of noise pumping, the range of
drift frequencies of the NBC is approximately equal to
the pumping bandwidth ∆ω.

Thus, under noise pumping, an NBC drifts over a
wide range of frequencies, while the shape of the elec-
tromagnetic signal depends on the frequency of the
NBC at the moment when the microwave noise pulse is
switched off. However, the amplitude of the maximal
signal of radiation (it is shown by curve 2 in Fig. 10)
and its relaxation time are virtually the same for the
noise and the coherent pumping. This result allows us
to conclude that the frequency bandwidth and the
amplitude of the NBC of nuclear magnons that is
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
formed under noise pumping are virtually the same as
those in the case of monochromatic pumping, and that
the difference between radiation signals induced by dif-
ferent microwave pulses is mainly associated with the
drift of the NBC frequency.

Note one more feature of the electromagnetic radia-
tion of nuclear magnons. This radiation is not observed
immediately above the pumping threshold (P > Pc) as it
was in the system of quasiphonons in FeBO3 [14]. For
a sufficiently high supercriticality (P ~ 1000Pc),
another type of instability develops in a system of
NSWs. The mechanism of this instability is unknown.
What is important, it is accompanied by a sharp (more
than an order of magnitude) increase in the microwave
power absorbed by a sample, and hence, by an increase
in the NBC amplitude. Electromagnetic radiation of
NSWs can be observed precisely above the threshold of
this instability. To understand this phenomenon, we
write an expression for the radiation power due to non-
linear radiation damping:

(14)

Since the radiation power (just as the magnitude of
radiation damping) is proportional to the square of the
magnetic moment of parametric waves, Prad ∝  V2 ∝  µ2,

Prad
dNk

dt
---------

4π"QV2Nk
2

νR
----------------------------.–= =

0.5
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Fig. 12. Spectrum of a microwave signal transmitted
through the resonator under noise pumping and coherent
modulation of the magnetic field; T = 2.05 K, ωp/2π =
1088.8 MHz, ∆ω/2π = 40 kHz, H = 1830 Oe, ωm/2π =
480 kHz, and P/Pc = 2000. The bandwidth of the spectrum
analyzer is 3 kHz, and the time constant is 3 s. The dashed
curve represents the central line on the scale 1 : 10000.
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and the magnetic moment of NSWs is very small, the
radiation of NSWs is very small immediately above the
pumping threshold. This radiation becomes compara-
ble to the radiation of magnetoelastic waves observed
in [14] at much higher values of supercriticality, when
the number of parametric pairs in the NBC becomes

greater than the corresponding number  of qua-
siphonons by a factor of greater than 100. Above the
new instability threshold of NSWs, the number Nk

sharply increases and a radiation signal with a power on
the order of the power absorbed by the sample becomes
visible. Note that such radiation was also observed
under monochromatic pumping, under noise pumping,
and under the noise modulation of the spectrum of
NSWs.

Thus, we have experimentally demonstrated the for-
mation of a coherent state (nonequilibrium Bose con-
densate) of pairs of nuclear spin waves under their para-
metric excitation by a microwave noise field. The exist-
ing theory satisfactorily describes the pumping
threshold except for the region of low temperatures.
The observed discrepancy between theory and experi-
ment can be explained under the assumption about the
specific role played by the elastic processes of magnon
relaxation. The effect of coherent electromagnetic radi-
ation by a system of parametric pairs of NSWs gener-
ated both by monochromatic and noise pumping has
been observed for the first time.
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Abstract—Field emission from nanostructured carbon materials is analyzed by applying the model of emission
center in which the emitting surface contains two phases of carbon having substantially different electronic
properties. In accordance with this model, the proposed mechanism involves electron tunneling through two
potential barriers. The calculated probability of tunneling through two potential barriers implies that the low-
voltage field emission observed experimentally can be attributed to the existence of resonant surface states.
Numerical estimates suggest that the emission current can increase by at least four orders of magnitude owing
to resonant tunneling through two potential barriers. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Field emission (FE) is an important area of basic
and applied research [1–3]. Currently, special attention
is given to studies of FE from various carbon materials,
which are characterized by anomalously low voltages
required to generate substantial emission currents. The
corresponding threshold strength of the electric field
created at the emitting carbon surface is much lower
than predicted by the Fowler–Nordheim theory, which
adequately describes FE from metals and semiconduc-
tors [1, 2]. A comparative analysis of FE from diamond
films, carbon nanotubes, and nanostructured carbon
materials suggests that the mechanism of the low-volt-
age emission observed experimentally is universal for
all carbonaceous materials and composites and is
explained by the possibility of formation of clusters
with diamond-like electronic properties on graphite-
like carbon surfaces [4]. Apart from data concerning
emission characteristics, indirect evidence supporting
both this mechanism and the model of emission center is
provided by observations of cathode luminescence [5]
and photoelectric emission [6].

This mechanism can also be invoked to find consis-
tent explanations for other phenomena involving car-
bonaceous materials exhibiting low-voltage electron
emission, including carbon nanotubes [7–10]; nanocrys-
talline diamond powders, films, and composites [11–14];
and amorphous diamond-like and related films [15];
and carbon fibers [16]. It should be emphasized that all
of these carbonaceous materials exhibit both low-volt-
age emission and normal FE (as from metals and semi-
conductors). To generate substantial currents emitted
from metals or semiconductors, higher voltages are
generally required even in those cases when the geo-
metric characteristics of emitting surfaces (e.g., deter-
mined by means of electron microscopy) are analogous
1063-7761/05/10001- $26.000089
to nanocarbon structures (see [17, 18]). It was shown in
our recent study [19] that the density of low-voltage
emission centers on a carbon cathode surface can be
substantially higher (by several orders of magnitude)
than the density of electron-emitting centers when a
higher voltage is applied. This possibility (attributable
to electrostatic screening) impedes interpretation of
experimental observations.

In this paper, we present the results of further anal-
ysis focused on details of low-voltage emission and on
quantitative estimation using the previously proposed
phenomenological model of emission center and the
corresponding mechanism of low-voltage emission
from carbonaceous materials [4–6].

2. PHENOMENOLOGICAL MODEL 
OF LOW-VOLTAGE EMISSION

The phenomenological model of low-voltage emis-
sion center relies on the assumption that the electrons
are emitted into a vacuum by tunneling through two
potential barriers rather than one (as in the conventional
FE theory). It is obvious that the tunneling probability
corresponding to a certain combination of barrier
parameters and the same applied voltage can be higher
in the case of two barriers, as compared to a single one.
Analogous twin potential barriers have been analyzed
in FE models for cathodes with molecules adsorbed on
their surfaces [1, 2] and for cathodes made of thin layers
of different materials [2, 20]. Carbon cathodes are spe-
cial in that twin potential barriers on their surfaces are
due to the presence of two different forms of carbon,
which have graphite- and diamond-like properties [4–6].

Figure 1 schematizes the energy diagram at the
interface between such a nanocarbon cathode and vac-
uum. In contrast to common representations of dia-
 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Schematic energy diagram at the interface between a nanocarbon material and vacuum. Quantum wells correspond to the
locations of individual carbon atoms. Gray areas represent energy bands. The Fermi and vacuum levels (EF and Evac) are represented
by horizontal lines. The surface atomic layer is represented by a separate quantum well with two energy bands (HOS and LUS)
separated by a LUS–HOS bandgap. Resonant levels (ER) are shown in the vicinity of the Fermi level. Dotted curves represent energy
levels modified by external electric field.
grams of this kind, Fig. 1 shows the quantum wells cor-
responding to individual carbon atoms located at the
surface. Gray areas represent energy bands. For graph-
ite, which can be classified as a semimetal or semicon-
ductor with zero bandgap, the Fermi level (EF) corre-
sponds to the upper parts of the wells. The surface
atomic layer is different in that the energy bands are
separated by a gap having a width of about 4 eV [5, 6],
which is comparable to the bandgap in a disordered dia-
mond or diamond-like material [15]. The lowest unoc-
cupied and highest occupied states are labeled in Fig. 1
as LUS and HOS, respectively. It is natural to assume
that the Fermi level lies in the middle of the LUS–HOS
energy gap. This surface layer can tentatively be called
diamond-like. A possible mechanism of formation of
such diamond-like monolayers on the surfaces of
graphite nanocrystallites was discussed in our recent
papers [4−6, 21]. Analogous heterogeneity of elec-
tronic properties of carbon nanotube surfaces can be
attributed to various structural defects [22, 23] or
induced by external electric fields [24, 25]. Carbon
clusters having diamond-like dielectric properties can
manifest themselves by the presence of electrostatic
charges on nanotube surfaces [26]. In view of this fact,
the energy diagram shown in Fig. 1 can be applied to
various nanostructured graphite-like materials, includ-
ing carbon nanotubes.

Results obtained by means of optical emission spec-
troscopy suggest that the barrier height at the interface
between a diamond-like cluster and vacuum (EF – Evac)
is about 4.5 eV [6]. In our model, we set the barrier
height between different phases of carbon equal to
4.5 eV, which is slightly lower than the work function
for graphite. The thickness of the intermediate layer
between the graphite- and diamond-like phases, which
determines the corresponding barrier width, is larger in
order of magnitude than the interplanar spacing in
graphite. In our estimates, both are set equal to 0.4 nm.
To simplify calculations, we assume that the inner
JOURNAL OF EXPERIMENTAL A
potential barrier and the barrier at the cathode–vac-
uum interface (where the external field is applied)
have square and wedge-shaped profiles, respectively.
Figure 2 shows the simplified energy diagram for the
cathode surface.

3. TUNNELING PROBABILITY
THROUGH TWIN POTENTIAL BARRIERS

The emission current is determined by probability
of tunneling from the cathode material into vacuum. In
the most general form, the corresponding current den-
sity is expressed as

(1)

where k is the electron wavevector, Ez is the electron
energy of an electron in the material, F is the electric
field strength at the surface, e is the electron charge, " is
Planck’s constant,

is the group velocity of an electron, and T(Ez, F) is the
transmission coefficient for the barrier. It is obvious
that the value of T(Ez, F) characterizing twin barriers
differs from that corresponding to a single barrier. To
evaluate the transmission coefficient, we first consider
the probability of tunneling through each individual
barrier separately.

The barrier at the cathode–vacuum interface can be
treated in the WKB approximation, as in the conven-
tional FE theory, and approximated by a wedge-shaped
profile. Then, the corresponding transmission coeffi-
cient is [27]

(2)

j e v zT Ez F,( ) k,d∫=

v z
1
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Fig. 2. Simplified schematic representation of the energy diagram at the interface between a nanocarbon material and vacuum with
two potential barriers in the presence of external electric field.
where E0 is the cathode–vacuum barrier height, which
is equal to the electron energy in free space relative to
the Fermi level. It should be noted here that the actual
barrier profile at a matter–vacuum interface is not
wedge-shaped, and a rigorous treatment must allow for
image forces. However, it was shown in [1, 2] that these
forces can be taken into account by introducing a pre-
exponential factor into the final expression for current
if the applied field is not very strong.

If the inner potential barrier (at the interface
between different carbon phases) is represented by a
simple square profile, then the corresponding transmis-
sion coefficient is [27]

(3)

where χ = V – Ez is the effective barrier height and w is
the barrier width. The transmission coefficient corre-
sponding to twin square barriers can be expressed as
follows (see [28, 29]):

(4)

where P1 and P2 denote the respective amplitude trans-
mission coefficients and the expressions in braces are
combinations of phase factors. The exact expressions
for the phase factors are determined by the barrier
heights and widths and the electron wavevector. A gen-
eral expression analogous to (4) can be used as an
approximation in an analysis of tunneling through two
barriers one of which is wedge-shaped and the other has
a square profile. Since the inner barrier is substantially
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narrower than the outer one, the transmission coeffi-
cient for the former is much greater than for the latter.
Accordingly, the sum on the right-hand side of (4) is
dominated by the second and fourth terms. In view of
the inverse proportionality in (4), this implies that the
maximum of T(Ez, F) is reached when the expression in
braces in the fourth term vanishes. The conditions cor-
responding to the highest tunneling probability should
be interpreted as resonant tunneling conditions. These
conditions are implemented when the energy of a tun-
neling electron equals a steady-state energy level for an
electron in an isolated potential well with parameters
(height and width) similar to those of the quantum well
between the two barriers considered here [28, 29]. In
the case of FE from the surface of a carbonaceous mate-
rial, resonance conditions are satisfied if the electron
energies close to the Fermi level are equal to those of
electron states associated with atoms located at the
cathode surface.

Surface states are common to various materials.
Their parameters, including energy, depend on the
material, the surface treatment method, etc. Leaving
these factors outside the scope of this study, we note
that some surface states can contribute to electron tun-
neling. It is obvious that the voltage drop associated
with a strong external field must lower the surface-state
energy levels. This biasing effect can shift the system
into or out of a resonant state. In Fig. 1, the resonant
states in zero and nonzero external fields are depicted
by solid and dotted lines, respectively.

It should be noted that the calculation of the phase
factors in braces in expression (4) is a very difficult task
requiring additional analysis, including a more accurate
determination of the barrier profiles. However, no
knowledge of this kind is required in the case of reso-
nant tunneling through two barriers. Previously, analo-
gous resonant mechanisms were discussed with regard
to the states that arise on cathode surfaces as a result of
adsorption of various molecules [1, 2] and to carbon
cathodes (e.g., see [11, 12]). According to the model of
SICS      Vol. 100      No. 1      2005
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emission center discussed in this paper, surface states
can be associated with clusters having diamond-like
electronic properties that form on the surfaces of well-
ordered graphite-like nanoscale structures, such as car-
bon nanotubes or graphite nanocrystallites. In this
respect, the surface states described above are similar in
all low-voltage carbon cathodes. Therefore, conclu-
sions based on the present analysis apply to a low-volt-
age cathode of any type that contains these surface
states.

In what follows, we focus on resonant tunneling
with ϕ4 –  = 2πn, where n is an integer. In this case,
the fourth term (classical analog of the tunneling prob-
ability through two barriers given by the product of the
respective tunneling probabilities) can be neglected,
and only the second term is retained. It can be shown
that the phase differences in the second and fourth
terms in (4) cannot vanish simultaneously [28, 29].
Then, taking into account image forces, we can use
expression (4) to derive the emission current density

(5)

This expression differs from that obtained in the con-
ventional FE theory (see [1–3]) by additional sum-
mands in the preexponential factor and exponent. Using
the parameters adopted above for our phenomenologi-
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Fig. 3. Tunnel current densities predicted by the Fowler–
Nordheim theory (dots) and by expression (5) for low-volt-
age emission through two potential barriers (solid curve).
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cal model (χ = 4.5 eV and w = 4 Å), we find that the fol-
lowing relation holds for F < 5 × 109 V/m:

Thus, if the inner barrier is narrower than the outer one,
then this quantity contained in the preexponential factor
does not significantly modify the expression for current
density as compared to the Fowler–Nordheim formula.

However, the value given by (5) strongly depends on
the summand added to (χ1/2w) in the exponent. Substi-
tuting the parameters specified above into (5), we see
that the emission current density can exceed those pre-
dicted by the Fowler–Nordheim theory for emission
from metals or semiconductors. Figure 3 compares the
field-dependent current densities calculated by using
expression (5) and the Fowler–Nordheim formula.

These results are obtained for an isolated emission
center, whereas electrons are actually emitted by
numerous emission centers located on the cathode sur-
face. Since the geometry of emission centers varies, the
mean electric field strengths corresponding to the emis-
sion threshold vary accordingly [19]. The number of
emission centers on a metal or semiconductor cathode
surface must increase with voltage as local electric field
strengths progressively exceed the threshold values
determined by local values of work function. The high-
est emission current density is reached when the mean
field strength is much higher than the local threshold
values, depending on the free-carrier concentration and
mobility, whereas the density of centers where emis-
sion is controlled by the mechanism discussed here
may decrease with increasing field strength. The latter
trend is explained by the possible saturation of the
emission current due to a limited density of resonant
surface states (whose number is obviously less than the
number of free electron in the cathode material). For
example, this effect is characteristic of emission from
nanostructured-carbon film cathodes [19]. This behav-
ior of carbonaceous cathodes at low voltages leads to a
total emission current from macroscopic cathode sur-
faces containing numerous emission centers that is
even higher than that predicted by using expression (5)
for current density.

To elucidate the role played by the inner barrier, let
us consider the ratio of the resonant emission current IR
to the conventional field-emission current IFN given by
the Fowler–Nordheim formula as a function of the
inner barrier width w:

(6)
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Figure 4 shows this function calculated for F = 2 ×
109 V/m. It should be noted that estimates of this kind
are valid if w is much narrower than the outer barrier
width, i.e., if the inner barrier is easily passed by elec-
trons. The dependence of the emission current on the
barrier width illustrates the fact (paradoxical from a
classical-mechanics standpoint) that an increase in the
width of one potential barrier results in an exponential
increase in the tunneling probability through two barri-
ers. This quantum-mechanical effect is due to the exist-
ence of at least one quasi-steady resonant level between
the barriers. As noted above, the number of resonant
states contributing to the emission mechanism consid-
ered here depends on the presence of certain clusters
having modified electronic properties on a carbon cath-
ode surface. When the density of these resonant states
is much lower than the density of the free carriers that
may contribute to the emission current, the total emis-
sion current is strictly limited even though the tunneling
probability may increase exponentially. A more
detailed analysis of upper limits on resonant tunneling
current should be based on further experimental and
theoretical studies of resonant states on the surfaces of
nanocarbon materials.

4. CONCLUSIONS

According to the analysis presented above, the
existence of resonant surface states can explain the
mechanism of low-voltage field emission from nano-
carbon materials. One essential requirement is the het-
erogeneity of the surface properties of a curved graph-
ite-like atomic layer, which gives rise to twin potential
barriers. Accordingly, low-voltage emission of elec-
trons from various nanocarbon materials is character-
ized by a sharply resonant behavior and can be imple-
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Fig. 4. Ratio of resonant field-emission current to the emis-
sion current given by the Fowler–Nordheim formula versus
inner barrier width w for F = 2 V/nm applied to an emission
center.
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mented when surface states occupy certain relative
positions. The current density due to low-voltage emis-
sion is an exponential function of the thickness of the
surface layer having modified electronic properties.
Effective resonant tunneling requires that this thickness
be comparable to the width of the potential barrier at
the material–vacuum interface. Formation of such nar-
row atomic layers is a unique characteristic of carbon-
aceous materials due to the fact that carbon atoms can
organize into well-conducting graphite-like and dielec-
tric diamond-like structures.
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ELECTRONIC PROPERTIES
OF SOLIDS
Peculiarities of the Magnetic State
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Abstract—The results of experimental investigation of the chemical phase composition, crystal structure, and
magnetic properties of the manganite La0.70Sr0.30MnO3 – γ (0 ≤ γ ≤ 0.25) with perovskite structure depending
on the concentration of oxygen vacancies are presented. It is found that the mean grain size of the stoichiometric
solid solution of La0.70Sr0.30MnO3 amounts approximately to 10 µm, while the grain size for anion-deficient
solid solutions of La0.70Sr0.30MnO3 – γ is approximately 5 µm. It is found that samples with 0 ≤ γ ≤ 0.13 have a

rhombohedral unit cell (with space group R c, Z = 2), while samples with γ ≥ 0.20 have a tetragonal unit cell
(space group I4/mcm, Z = 2). It is proved experimentally that the magnetic phase state of the manganite
La0.70Sr0.30MnO3 – γ changes upon a decrease in the oxygen content. It is shown that anion-deficient solid solu-
tions of La0.70Sr0.30MnO3 – γ experience a number of successive magnetic phase transformations in the ground
state from a ferromagnet (0 ≤ γ ≤ 0.05) to a charge-disordered antiferromagnet (γ = 0.25) via an inhomogeneous
magnetic state similar to a cluster spin glass (0.13 ≤ γ ≤ 0.20). The mean size of ferromagnetic clusters (r ≈
50 nm) in the spin glass state is estimated. It is shown that oxygen vacancies make a substantial contribution to
the formation of magnetic properties of manganites. The generalized magnetic characteristics are presented in
the form of concentration dependences of the spontaneous magnetic moment, coercive force, and the critical
temperature of the magnetic transition. The most probable mechanism of formation of the magnetic phase state
in Sr-substituted anion-deficient manganites is considered. It is assumed that in the absence of orbital ordering,
a decrease in the magnetic ion coordination number leads to sign reversal in indirect superexchange interactions
Mn3+–O–Mn3+. © 2005 Pleiades Publishing, Inc. 

3

1. INTRODUCTION

The discovery of giant magnetoresistance (GMR) in
orthomanganites with the general chemical formula
Ln1 – xAxMnO3 (Ln stands for a trivalent rare-earth cation
and A is a bivalent alkali-earth cation) stimulated intense
studies of their physicochemical properties [1–4]. The
essence of the GMR effect is that the resistance of sub-
stituted manganites sharply decreases at the instant of
phase transitions to the ferromagnetic state after the
application of an external magnetic field. The magne-
toresistance of manganites is many orders of magnitude
higher than that for multilayered films and granular sys-
tems; this effect is observed at room temperatures and
in weak magnetic fields [5]. This opened wide pros-
pects for practical applications of manganites. Phase
transformations associated with orbital and charge
states, which determine the type of magnetic ordering,
are also an interesting feature of manganites. For exam-
ple, charge-ordered compounds are antiferromagnetic
insulators as a rule, while charge-disordered com-
pounds are ferromagnetic metals [6].

It is well known that magnetic and electric states of
manganites are mainly determined by the concentration
ratio of tri- and tetravalelent ions of manganese. This
1063-7761/05/10001- $26.00 0095
ratio can usually be changed by doping with an alkali-
earth metal. However, other methods such as substitu-
tion of magnetic and nonmagnetic ions with different
valences for manganese or the use of nonstoichiometric
oxygen also exist [7]. For example, it was found that
oxidation of LaMnO3 leads to a transition from the anti-
ferromagnetic state to the ferromagnetic state in which
the interdependence of magnetic and electrical proper-
ties is clearly manifested [8]. The emergence of oxygen
vacancies leads to a sharp increase in the ion conductiv-
ity in manganites, which is interesting for technical
applications [9].

Substituted manganites are good model objects for
studying physical properties of strongly correlated
electronic systems. However, the general level of the
theory does not permit an adequate description of all
the results of experimental studies. The nature of mag-
netic and electrical phenomena in manganites remains
the subject of heated discussion [10–12].

The compound LaMnO3 forms the basis of all sub-
stituted lanthanum manganites. This compound is an
antiferromagnetic semiconductor with a magnetic
structure of the A type [13, 14]. The weak ferromag-
netic component is due to antisymmetric Dzialoshin-
© 2005 Pleiades Publishing, Inc.
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sky-Moriya exchange [15, 16]. The Néel temperature
for this compound is approximately 140 K. It should be
noted that the magnetic properties of all manganites are
determined by the spins of manganese ions since the
orbital magnetic moment of these ions are “frozen” in
the crystal field of oxygen anions. The presence of
Jahn–Teller Mn3+ ions with electron configuration

 (S = 2), which appear in the stoichiometric com-

pound La3+Mn3+ , is responsible for the O' ortho-

rhombic (c/  < a ≤ b) symmetry of the unit cell of this
compound. In the octahedral oxygen surroundings, the
d shell of the Mn3+ ion splits into a doublet and a triplet.
In the high-spin state, the triply degenerate level t2g is
completely filled with three electrons, while the doubly
degenerate level eg contains only one electron. Such a
high-spin configuration is associated with a strong
Hund exchange coupling, which orients all electron

spins in the same direction. It is assumed that  elec-
trons are localized at manganese ions and cannot move
freely over the crystal lattice.

The dependence of the magnetic properties of substi-
tuted manganites with perovskite structure on oxygen
stoichiometry has not been studied extensively. As a
result of removal of oxygen anions from the crystal lattice

of a solid solution La1 – x , the
Mn4+ ions are converted into Mn3+ ions and their coor-
dination number decreases from 6 to 5 [17]. Of all the
3d-metal-based compounds, manganites are character-
ized by the widest interval of variation of oxygen sto-
ichiometry. For example, the oxygen index for manga-
nites may vary from 2.5 [18] to 3.29 [19]. Titanates and
vanadates a much smaller deviation from stoichiometry
(from 3 to 3.08 and 3 to 3.05, respectively) [20]. Oxy-
gen vacancies in manganites can be ordered, as was
observed in the case of CaMnO3 – γ; this leads to inter-
esting peculiarities in the crystal structure and magnetic
properties, such as an increase in TC and µeff [21].

The Sr-substituted manganite La0.70Sr0.30MnO3 was
chosen as the object for investigation in this study. We
analyzed the influence of oxygen stoichiometry on its
crystal structure and magnetic properties. Earlier [22],
a number of La1 − xSrxMnO3 – x/2 anion-deficient solid
solutions, which do not contain Mn4+ ions, were inves-
tigated. Such a situation was realized by a matched
variation of two parameters, viz., the concentration
of (1) substituent cations Sr2+ and (2) O2– anions.
Interpretation of the magnetic properties of
La1 − xSrxMnO3 – x/2 cannot be based on the double-
exchange mechanism model due to the absence of het-
erovalent Mn ions. In the system La0.70Sr0.30MnO3 – γ,
the average valence of manganese ions gradually
decreases, leading to the formation of 20% Mn2+ ions
for γ = 0.25. Thus, it is interesting to follow the dynam-
ics and, whenever possible, separate the effects of dif-

t2g
3 eg

1

O3
2–

2

eg
1

Ax
2+Mn1 x– 2γ+

3+ Mnx 2γ–
4+ O3 γ–

2–
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ferent contributions (double exchange and superex-
change) to the formation of the magnetic state of anion-
deficient manganites with a constant concentration of
Sr2+ cations. A comparative analysis of the results of
investigation of two systems, La1 – xSrxMnO3 – x/2 and
La0.70Sr0.30MnO3 – γ, indicates that the concentration of
oxygen vacancies is an additional parameter signifi-
cantly contributing to the formation of magnetic prop-
erties of systems with the same chemical composition
and varying valences of manganese ions.

Analysis of the crystal structure, magnetic and elec-
trical properties of anion-deficient compound
La0.70Sr0.30MnO3 – δ was carried out in [23]. It was
found that a transition to orbitally ordered O' orthor-
hombic structure takes place in the concentration range
0.075 ≤ δ ≤ 0.1; this is quite astonishing since the pres-
ence of oxygen vacancies must break the symmetry in
the arrangement of the d orbitals of manganese ions and
hamper the orbital ordering. The samples below TC are
ferromagnets for 0 ≤ δ ≤ 0.1 and orbitally ordered anti-
ferromagnets for 0.125 ≤ δ ≤ 0.15. As the oxygen defi-
ciency δ decreases, the Curie temperature also
decreases together with spontaneous magnetization. It
was also found that the resistivity gradually increases
and becomes semiconductor-type, while the tempera-
ture of transition to magnetically ordered state is dis-
placed towards low temperatures. However, no mention
is made in [23] about the temperature- and magnetic
field dependences of magnetization. The magnetic tran-
sition temperature was determined in a quite strong
magnetic field of 0.5 kOe; the structural data are also
inadequate. However, the physical properties of manga-
nites are very sensitive to the method of their prepara-
tion and the unit cell symmetry. Hence we present here
detailed experimental results on the chemical phase
composition, crystal structure, and magnetic properties
of Sr-substituted anion-deficient manganite
La0.70Sr0.30MnO3 – γ (0 ≤ γ ≤ 0.25).

2. EXPERIMENT

The method for obtaining polycrystalline stoichio-
metric La0.70Sr0.30MnO3 and anion-deficient
La0.70Sr0.30MnO3 – γ solid solutions is given in [22].
X-ray diffraction analysis was carried out on a diffrac-
tometer DRON-3 in the Kα radiation of Cr at room tem-
perature in the angular interval 20° ≤ 2θ ≤ 100° with a
scanning step ∆θ = 0.03. A graphite monochromator
was used to filter out the Kβ radiation. The oxygen con-
centration was determined by thermogravimetric anal-
ysis (TGA). The absolute error in determining the oxy-
gen index was ±0.01, and the chemical formula of
anion-deficient solid solutions can be written as
La0.70Sr0.30MnO3 – γ ± 0.01. A significant feature of anion-
deficient perovskite-like solid solutions obtained by the
method of topotactic reactions is the possibility of their
oxidation accompanied by restoration of the initial
composition, structure, and physical properties [24].
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The microstructure and chemical phase composition
of the samples were analyzed on a NANOLAB-7 scan-
ning electron microscope containing two mutually
complementary X-ray analyzers: MS-46 (wave disper-
sion spectrometer) and System 860-50 (energy disper-
sion spectrometer). The samples were degreased before
the experiments by washing in ethyl alcohol in an ultra-
sonic bath for approximately 5 min.

The magnetic properties of anion-deficient samples
La0.70Sr0.30MnO3 – γ were studied on a commercial
OI-3001 vibrating-coil magnetometer in the tempera-
ture range 4.2–350 K. The temperature dependences of
the specific magnetic moment were measured in weak
fields (up to 100 Oe) during heating after zero-field
cooling (ZFC) and in the field cooling (FC) mode; the
field dependences at low temperatures (5 K) were also
measured. The magnetic ordering temperature Tmo was
determined from the temperature dependence of the
FC-curve for specific magnetic moment in a weak mag-
netic field of 100 Oe as the temperature corresponding
to the sharpest decrease in the specific magnetic
moment (min{dMFC/dT}). For samples with a blurred
magnetic phase transition, Tmo was determined as the
temperature at which the specific magnetic moment
became about 10% smaller than its maximal value. The
freezing temperature Tf for magnetic moments of ferro-
magnetic clusters was defined as the temperature corre-
sponding to the peak on the ZFC curve for the specific
magnetic moment. Spontaneous atomic magnetic
moment Ms was determined from the field dependence
by linear extrapolation to zero field.

3. EXPERIMENTAL RFESULTS
AND DISCUSSION

The phase composition and the unit cell parameters
were determined by X-ray diffraction technique using
the anion deficient samples of La0.70Sr0.30MnO3 – γ as
objects of investigation. Powder diffraction patterns for
some solid solutions are shown in Fig. 1. It was found
that all samples had perovskite structure. Within the
experimental error (less than 3%), impurity phases
were not detected.

An important condition for the emergence of the
ABO3 perovskite structure is a favorable cation size.
One of the cations (A) must always be larger and must
have a radius nearly the same as the radius of the oxy-
gen anion, while the other cation (B) in the octahedral
coordination must be substantially smaller. The radii of
cations A and B must be within the limits roughly set,
on the one hand, by the conditions according to which
the coordination number must be 6 or 12. On the other
hand, these limits are determined by the so-called sta-
bility (tolerance) factor t defined by Goldsmith [25] as
follows:

(1)t
r A( )〈 〉 r O( )〈 〉+

2 r B( )〈 〉 r O( )〈 〉+( )
-----------------------------------------------------;=
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here, 〈r(A)〉 , 〈r(B)〉 , and 〈r(O)〉  are, respectively, the
mean radii of the ions in the A and B positions in per-
ovskite ABO3 and of the oxygen ion.

Oxide compounds have perovskite structure if their
tolerance factor lies in the limits of 0.82 < t < 1.02. The
value of t must be equal to unity in the ideal case. How-
ever, systematic study of oxides with perovskite struc-
ture revealed that the value of t is slightly lower in
actual practice. The limits of the numerical values of
this parameter (which determine the range of the per-
ovskite structure) are determined by the valence of cat-
ions and are found, for example, to be tmin = 0.77 and
tmax = 0.99 for a perovskite of the CaMnO3 type. If the
radius of ion A is so small that t < tmin, a corundum or
ilmenite structure is formed most frequently. For t >
tmax, a calcite or aragonite structure is formed [26]. The

0
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Fig. 1. Powder X-ray diffraction patterns obtained at room
temperature for the following solid solutions: (a) anion-
deficient La0.70Sr0.30MnO2.80; (b) La0.70Sr0.30MnO2.95,
and (c) stoichiometric La0.70Sr0.30MnO3.
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Goldsmith’s tolerance factor (t), oxygen vacancy concentration (γ), concentration of trivalent manganese ions, symmetry type
(S), and unit cell parameters (a, c, α, and V) for anion-deficient solid solutions La0.70Sr0.30MnO3–γ (0 < γ ≤ 0.25)

Chemical composition t, Å γ Mn3+, % R a, Å c, Å α V, Å3

La0.70Sr0.30MnO3 1.0021 0 70 R 5.464 60.44° 116.82

La0.70Sr0.30MnO2.95 0.9766 0.05 80 R 5.478 60.31° 117.39

La0.70Sr0.30MnO2.87 0.9727 0.13 96 R 5.501 60.09° 117.92

La0.70Sr0.30MnO2.80 0.9675 0.20 90 T 3.959 7.642 119.79

La0.70Sr0.30MnO2.75 0.9649 0.25 80 T 3.978 7.644 120.98

Note: R stands for the rhombohedral symmetry with space group R c and T indicates the tetragonal symmetry with space group I4/mcm.

The values of the effective ionic radii are borrowed from [28]: r[La3+(12)] = 1.360 Å, r[La3+(10)] = 1.270 Å, r[Sr2+(12)] = 1.440 Å,
r[Sr2+(10)] = 1.360 Å, r[Mn2+(5)] = 0.750 Å, r[Mn3+(6)] = 0.645 Å, r[Mn3+(5)] = 0.580 Å, r[Mn4+(6)] = 0.530 Å.

3

values of t for anion-deficient solid solutions
La0.70Sr0.30MnO3 – γ studied here are given in the table.

An ideal perovskite unit cell possesses cubic sym-
metry with space group Pm3m. However, compounds
with cubic perovskite structure are encountered quite
rarely. The crystal lattice of a perovskite is usually dis-
torted as a result of (i) mismatching between the sizes
of the cations and pores occupied by them and (ii) the
Jahn–Teller effect (JTE). In the former case, a transition
to the free-energy minimum is attained due to coopera-
tive rotation of oxygen octahedrons MnO6. Tetrahedral
distortions (a = b ≠ c, α = β = γ) appear as a result of
rotation of the initial cubic lattice about the [100] axis,
orthorhombic distortions (a ≠ b ≠ c, α = β = γ) appear
as a result of rotation about the [110] axis, and rhombo-
hedral distortions take place when the structure rotates
about the [111] axis (a = b = c, α = β = γ ≠ 90°). In the
second case, distortions appear as a result of removal of
degeneracy of eg electron levels of the Jahn-Teller Mn3+

ions in the octahedral field of oxygen anions [24].

The unit cell symmetry in anion-deficient solid solu-
tions La0.70Sr0.30MnO3 – γ changes with the oxygen
vacancy concentration. Samples with 0 ≤ γ ≤ 0.13 pos-

sess a rhombohedral unit cell (space group R c, Z = 2),
while samples with γ ≥ 0.20 have a tetragonal unit cell
(space group I4/mcm, Z = 2). It is worth noting that such
X-ray reflections are displaced towards smaller Bragg
angles (Fig. 1) upon an increase in the oxygen defi-
ciency, which corresponds to an increase in the unit cell
volume.

It was found in [23] that the anion-deficient solid
solution La0.70Sr0.30MnO3 – δ in the concentration range
0.075 ≤ δ ≤ 0.1 experiences a transition to the orbitally
ordered O' orthorhombic structure. This conclusion is
dubious since the presence of oxygen vacancies must
break the symmetry in the arrangement of d orbitals of
the nearest manganese ions and hamper the orbital
ordering. According to Goodenough [27], the O' ortho-

3
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rhombic symmetry (c/  < a ≤ b) is associated with
the cooperative static JTE, resulting in antiferrodistor-
tion ordering of  orbitals of Mn3+ ions. The JTE

means a decrease in the free energy of a degenerate
electron system due to a decrease in its symmetry as a
result of removal of electron level degeneracy. The nec-
essary condition for the emergence of the JTE is the
presence of a degenerate electron system. These can be
d9 and d7 ions in a low-spin state or d4 ions in a high-
spin state. In the case of manganites, the degeneracy of
the eg levels of Mn3+ in the octahedral surrounding of
oxygen anions is removed. For the La1 – xCaxMnO3 – γ
system with x ~ 0.1, a transition from O' orthorhombic

to O orthorhombic symmetry (a < c/  < b) was
detected earlier [28]. The unit cell parameters of anion-
deficient solid solutions La0.70Sr0.30MnO3 – γ considered
here are given in the table. The presence of the tetrago-
nal symmetry in samples with γ ≥ 0.20 indicates the
absence of orbital ordering in them.

Figure 2 shows the results of investigations by scan-
ning electron microscopy. These results show that a sto-
ichiometric sample of La0.70Sr0.30MnO3 is characterized
by a mean grain size of about 10 µm, while anion-defi-
cient sample of La0.70Sr0.30MnO3 – γ have a grain size of
about 5 µm. In this study, the grains are homogeneous
spatial regions separated by continuous boundaries. It
can be seen from the figure that the grain size is charac-
terized by a considerable spread. Thus it can be con-
cluded that the thermal treatment of polycrystalline
samples at lower temperatures decreases the mean size
of the grains and increases their porosity. It is also
found that all the samples exhibit uniform distribution
of chemical elements corresponding to the basic chem-
ical formula La0.70Sr0.30MnO3 – γ.

As the oxygen deficiency γ increases, the unit cell
volume for anion-deficient samples La0.70Sr0.30MnO3 – γ
increases monotonically (see table). Such a behavior is
due to the fact that the concentration of Mn3+ ions

2

d
z

2

2
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2 µm

2 µm

(a)

(b)

Fig. 2. Photographs obtained using a scanning electron microscope for solid solutions of (a) stoichiometric compound
La0.70Sr0.30MnO3 and (b) anion-deficient compound La0.70Sr0.30MnO2.80.
increases in the system (r{Mn3+(6)} = 0.645 Å). The
effective radius of these ions in the octahedral sur-
rounding of oxygen anions is larger than that of Mn4+

ions (r{Mn4+(6)} = 0.530 Å). The emergence of oxygen
vacancies leads to a decrease in the coordination num-
ber and hence to a decrease in the effective radius of
Mn3+ ions. Oxygen vacancies are formed precisely near
Mn3+ ions since the force of electrostatic repulsion
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
between these ions is smaller than in the case of Mn4+

ions. The effective radius of Mn3+(5) in the pentahedral
coordination is 0.580 Å [29].

Figure 3 shows the temperature dependence of the
specific magnetic moment for some anion-deficient
solid solutions of La0.70Sr0.30MnO3 – γ in the ZFC
and  FC modes. The stoichiometric compound
La0.70Sr0.30MnO3 is a ferromagnet [22] with a Curie
SICS      Vol. 100      No. 1      2005



100 TRUKHANOV
2

0 100

M, G cm3/g

T, K

–0.05

3001500

0

–0.10

200 300

4

0

1

2

0.2

0.4

0

dMFC/dT

(c)

Tc = 282 K

γ = 0.05
H = 100Oe

Tf = 49 K

γ = 0.13
H = 100Oe

FC

ZFC

–0.02

3001500

0

–0.04

dMFC/dT(b)

γ = 0.20
H = 100Oe

FC

ZFC
–0.0015

3001500

0

–0.0030

dMFC/dT

Tf = 43K

(a)

Fig. 3. Temperature dependence of the specific magnetic
moment in a field of 100 Oe, measured upon increase in
temperature after zero-field cooling (ZFC) (dark symbols)
and in a field of 100 Oe (FC) (light symbols) for anion-
deficient solid solutions of (a) La0.70Sr0.30MnO2.80,
(b) La0.70Sr0.30MnO2.87, and (c) La0.70Sr0.30MnO2.95. The
inset demonstrates the temperature dependence of the deriv-
ative of the FC curve.
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the anion deficient solid solution La0.70Sr0.30MnO2.75.
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temperature of about 350 K and a spontaneous mag-
netic moment on the order of 3.66µB per structural unit.
The Curie temperature gradually decreases with
increasing concentration of oxygen vacancies. The
long-range ferromagnetic order is preserved in the sam-
ples right up to γ ≈ 0.05; this is indicated by the identi-
cal behavior of the ZFC and FC curves. The Curie tem-
perature for the anion-deficient solid solution
La0.70Sr0.30MnO2.95 is about 282 K (Fig. 3c). The ZFC
and FC curves exhibit different behavior for samples
with γ > 0.05. In all probability, this is an indication of
the absence of long-range ferromagnetic order. The FC
curve for La0.70Sr0.30MnO2.87 (Fig. 3b) is concave and
descends gradually at a temperature higher than
approximately 49 K. The transition to the paramagnetic
state is quite broad. The ZFC curve exhibits a peak at
Tf ~ 49 K. A similar behavior is observed for the
La0.70Sr0.30MnO2.80 sample (Fig 3a). The peak of the
ZFC curve is slightly lowered and is observed at a tem-
perature of about 43 K. Thus, anion-deficient samples
with γ ≥ 0.13 exhibit properties typical of cluster spin
glasses. This is also confirmed by a very smooth varia-
tion of the temperature derivative ∂MFC/∂T of the FC
curve (see inset to Fig. 3). A gradual decrease in the
value of Tf with increasing γ indicates a decrease in the
size of ferromagnetic clusters. The La0.70Sr0.30MnO2.75
sample exhibits a behavior typical of an antiferromag-
net with TN = 124 K (Fig. 4).

Figure 5 shows the field dependence of the atomic
magnetic moment for samples of the anion-deficient
series La0.70Sr0.30MnO3 – γ. A few salient features can be
singled out on these curves. First, the magnetic moment
for samples with γ > 0.05 is not saturated completely in
fields up to 16 kOe, which slightly complicates the
determination of the spontaneous atomic magnetic
moment Ms . Second, Ms does not attain the theoreti-
cally attainable value of [(0.70 + 2γ) × 4 + (0.30 – 2γ) ×
3]µB per structural unit for any anion-deficient sample
under the assumption of complete ferromagnetic order-
ing of the Mn3+ and Mn4+ ions. The value of Ms
decreases continuously with increasing γ, although it
should increase according to the theory. A noticeable
field hysteresis is observed for samples of
La0.70Sr0.30MnO2.87 (Fig. 5b) and La0.70Sr0.30MnO2.80
(Fig. 5c). These samples are also characterized by a
substantial residual magnetization and coercive force.

Figures 6 and 7 show the generalized results of mag-
netic investigations of anion-deficient samples of
La0.70Sr0.30MnO3 – γ. As the value of γ increases, a
steady decrease is observed in the spontaneous atomic
magnetic moment from Ms ≈ 3.66µB per structural unit
(γ = 0) to 0.02µB per structural unit (γ = 0.25). The
sharpest decrease in the value of Ms is observed for the
sample with γ = 0.13. However, Ms does not attain its
theoretical value for any composition. A considerable
increase in the coercive force was observed for γ ≥ 0.13.
AND THEORETICAL PHYSICS      Vol. 100      No. 1      2005
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Fig. 5. Magnetic field dependence of the atomic magnetic moment for anion-deficient solid solutions of (a) La0.70Sr0.30MnO2.95,
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This fact indicates that the magnetic anisotropy consid-
erably increases with oxygen deficiency.

Figure 7a shows the effect of oxygen vacancies on
the magnetic properties of Sr-substituted manganites.
The figure shows the linear interpolation of the
critical temperature of magnetic phase transition to
the paramagnetic state depending on the concentra-
tion of Mn3+ ions for two series of samples: (i) sto-
ichiometric La1 − xSrxMnO3 and (ii) anion-deficient
La0.70Sr0.30MnO3 – γ. These two series have the same
concentration of Mn3+ ions under the condition x =
0.30 – 2γ. It can be clearly seen that these two series of
samples reveal identical behavior of Tmo upon an
increase in the concentration of Mn3+. The value of this
temperature decreases, but the decrease is not the same
in both series. For the anion-deficient series, the
decrease is sharper. This leads to the conclusion that
oxygen vacancies are an additional parameter making
a significant contribution to the formation of magnetic
properties of systems with the same chemical compo-
sition but with different valences of manganese ions.
The presence of oxygen vacancies in the region with a
high concentration of Mn3+ ions suppresses the ferro-
magnetic properties the more strongly, the larger the
ratio of concentrations of Mn3+ and Mn4+ ions. The
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
coefficient describing the effect of oxygen nonstoichi-
ometry on the decrease in the value of Tmo can be
obtained from the difference in temperatures Tmo(x)

Fig. 6. Concentration dependence of the values of spontane-
ous atomic magnetic moment (dark symbols) and coercive
force (light symbols) for a number of anion-deficient solid
solutions La0.70Sr0.30MnO3 – γ (0 ≤ γ ≤ 0.25) at 5 K.
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and Tmo(γ) for the stoichiometric and anion-deficient
series, respectively, which is defined as

(2)

This coefficient is K ~ 470γK–1.
The substituted lanthanum manganites

La1 − xSrxMnO3 – γ with an oxygen deficiency are inter-
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Fig. 7. (a) Critical temperature of the magnetic phase tran-
sition as a function of (a) concentration of the Mn3+ ions for
solid solutions of the stoichiometric composition
La1 − xSrxMnO3 (light symbols) and anion-deficient solid
solutions La0.70Sr0.30MnO3 – γ (dark symbols) and (b) mag-

netic phase diagram for the system of La0.70Sr0.30MnO3 – γ
anion-deficient solid solutions. F indicates a ferromagnet,
F + P stands for the mixed magnetic state formed by ferro-
magnetic clusters in the paramagnetic matrix, SG denotes a
cluster spin glass, A indicates an antiferromagnet and P, a
paramagnet. Solid symbols correspond to the temperature
of a transition to the paramagnetic state, while light symbols
correspond to the temperature of freezing of magnetic
moments in ferromagnetic clusters. The inset to Fig. 7a
demonstrates the difference in the critical temperatures of
the magnetic transition for the stoichiometric and anion-
deficient series as a function of the oxygen vacancy concen-
tration.

x
Mn3+
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esting for experimental studies of the indirect 180°
exchange between manganese ions [30]. It should be
noted that La3+, Sr2+, and O2– ions are diamagnetic. This
fact considerably simplifies the interpretation of the
results of magnetic studies.

Zener worked out a special theory of indirect
exchange interactions via charge carriers (double
exchange) to explain the magnetic properties of substi-
tuted manganites [31, 32]. This type of dependence is
observed preferably for ferromagnets with metal-type
conductivity, but several facts cannot be explained by
the double-exchange theory [33].

The basic tenets of the theory of superexchange, a
specific type of indirect exchange interaction, were for-
mulated by Goodenough. He assumed that ferromag-
netism is due not only to a strong double exchange, but
also to the peculiarities of exchange interactions in the
system of Jahn–Teller Mn3+ ions. In the absence of
static Jahn–Teller distortions, the orbital configuration
of 3d electrons is determined by the position of the
nuclei of manganese ions. In other words, a correlation
must be observed between the electron configuration
and vibrational modes of the nucleus so that the inter-
action Mn3+–O–Mn3+ becomes ferromagnetic. This
assumption, known as the Goodenough quasistatic
hypothesis and based on virtual exchange of electrons
between manganese ions, predicts the anisotropic
nature of their exchange interactions [34].

In the general case, the energy of the exchange inter-
action in the system of magnetic ions is defined by the
Heisenberg Hamiltonian [35]

(3)

where  and  are the operators of the total spins of
the ith and jth magnetic ions, respectively, and Ji, j is the
exchange integral defined as

(4)

where ϕi(1) and ϕj(2) are the wavefunctions of the ith
and jth ions in states 1 and 2, respectively, e0 is the elec-
tron charge, and r1 and r2 are the radius vectors of
states 1 and 2. A positive exchange integral (Ji, j > 0) in
Eq. (4) corresponds to the ferromagnetic interaction
since the exchange energy minimum of the system is
observed for Si ↑↑  Sj . For Ji, j < 0, antiferromagnetic
ordering of spins sets in.

The calculations of exchange integrals between the
total spins of manganese ions are extremely tedious and
do not always lead to a value close to the one observed.
Consequently, it is simpler and more constructive to
seek possible magnetic phase states by writing the

Ĥex Ji j, ŜiŜ j,
i j,
∑–=

Ŝi Ŝ j

Ji j, ϕ i* 1( )ϕ j* 2( )
e0

2

r1 r2–
------------------ϕ j 1( )ϕ i 2( ) r1 r2,dd∫=
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exchange Hamiltonian of the system proceeding from
physical considerations and experimental results, and
treating various quantities being measured as phenom-
enological parameters. In this case, following Goode-

nough [30], it is assumed that  (in the absence of

orbital ordering) and  have positive signs, while

 have negative signs (the superscripts correspond
to total spins S = 2 and 3/2 for the Mn3+ and Mn4+ ions,
respectively).

It is well known [36] that the superexchange inter-
actions Mn3+–O–Mn3+ are anisotropic in the orbitally
ordered phase. For (001) planes, the exchange integral

is greater than zero ( (001) > 0), while along the
[001] direction, this integral is smaller than zero

( [001] < 0). In the orbitally disordered phase, these
interactions are isotropic, i.e., positive along all direc-

tions (  > 0). The stoichiometric solid solution
La0.70Sr0.30MnO3 is not orbitally ordered; consequently,
the superexchange interactions Mn3+–O–Mn3+ are pos-
itive.

The emergence of oxygen vacancies reverses the
sign of the exchange integral for the interactions Mn3+–
O–Mn3+. The superexchange interaction Mn3+(5)–O–
Mn3+(5) for the pentahedral coordination of manganese
ions is antiferromagnetic. This is confirmed by the

compound Ca2+Mn3+  which is antiferromagnetic
[37, 38]. The Mn3+(5) ions in this compound are in the
pentahedral coordination of oxygen anions. Thus,
anion-deficient samples of La0.70Sr0.30MnO3 – γ are fer-
romagnets with values of Tmo and Ms decreasing
slightly upon an increase in γ in the interval 0 ≤ γ ≤ 0.05.

For γ > 0.05, the volume of the antiferromagnetic
orbitally disordered phase associated with the interac-
tion Mn3+(5)–O–Mn3+(5) begins to increase substan-
tially, leading to a decrease in the spontaneous mag-
netic moment. The competition in the interaction
between antiferromagnetically and ferromagnetically
ordered clusters probably leads to the cluster spin glass
state with gradually decreasing freezing temperature
for the magnetic moments of ferromagnetic clusters. The
orientation of the magnetic moments of clusters in a spin
glass in the temperature range below Tf does not exhibit
any spatial periodicity. This orientation changes in space
at random like the arrangement of atoms in an ordinary
glass. In contrast to paramagnets, in which magnetic
moments fluctuate in time, spin glasses are characterized
by “frozen” magnetic moments, i.e., by nonzero time-
averaged vector quantities. A state of the spin glass type
is often observed in heterogeneous magnetic systems
such as the alloys Co–Cu and Co–Ag [39, 40]. In such
alloys, ferromagnetic grains are implanted in a
nonferromagnetic matrix. The formation of the spin
glass state for the anion-deficient solid solutions

Ji j,
2 2,

Ji j,
3/2 3/2,

Ji j,
2 3/2,

Ji j,
2 2,

Ji j,
2 2,

Ji j,
2 2,

O2.50
2–
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La0.70Sr0.30MnO3 – γ is confirmed by the clearly mani-
fested peak on the temperature dependence described
by the ZFC curve. A gradual decrease in Tf indicates a
decrease in the size of ferromagnetically ordered clus-
ters.

In this study, we obtained a quantitative estimate of
the mean size of ferromagnetic clusters formed upon an
increase in the number of oxygen vacancies. To do this,
we used the Bean–Livingstone formula [41] connecting
the mean size of ferromagnetic inclusions in a dia- or a
paramagnetic matrix with the magnetic crystallo-
graphic anisotropy constant (which is precisely equal to
the volume energy density of magnetic crystallographic
anisotropy) and the critical temperature Tf ,

(5)

where 〈K〉  is the mean value of the magnetic crystallo-
graphic anisotropy constant for a ferromagnetic cluster,
〈V〉  is its mean volume, kB is the Boltzmann constant,
and Tf is the freezing temperature (corresponding to the
peak on the ZFC curve). The anisotropy constants can
be obtained from the equation [42] for the magnetic
crystallographic anisotropy energy in the (100) plane,

(6)

where K1 and K2 are the magnetic crystallographic
anisotropy constants and θ is the angle between the
magnetization and the [010] axis. The magnetic crystal-
lographic anisotropy energy is determined by the area
between the M(H) curves measured for single crystals
along the [010] and [001] directions.

In [43], it was found that K1 = 45.3 × 104 erg cm–3

and K2 = 73.6 × 104 erg cm–3 for a La0.744Ba0.186MnO3
manganite single crystal at 4.2 K. The mean size of a fer-
romagnetic cluster for samples of La0.70Sr0.30MnO3 – γ
(γ ≥ 0.13) with TF ~ 49 K has been approximately esti-
mated at 50 nm (for the above data). Thus, we can state
that ferromagnetic clusters of a nanometric size are
formed as a result of the concentration phase transition
to the spin glass.

When the concentration of oxygen vacancies is γ =
0.25, a sample of La0.70Sr0.30MnO3 – γ becomes a charge-
disordered antiferromagnet. This sample contains 20%
of Mn2+ ions. As a rule, Mn3+ and Mn2+ ions in manga-
nites are ordered so that they are antiparallel [44]. Since
these ions have different magnetic moments (4µB and
5µB per structural unit), this ensures a ferromagnetic
contribution amounting to 1µB per structural unit. The
observed value of the moment equal approximately to
0.02µB per structural unit indicates that Mn2+ ions are
probably eliminated by oxygen vacancies from the
exchange interactions. The vacancies must be predom-

K〈 〉 V〈 〉 kBT f ,=

Ea K1 θ K2 θ,sin
4

+sin
2

=
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inantly located near the Mn2+ due to the weakness of
electrostatic repulsion.

4. CONCLUSIONS

In this study, we have reported on the results of
experimental investigation of the chemical phase
composition, crystal structure, and magnetic properties
of a manganite with the perovskite structure
La0.70Sr0.30MnO3 – γ (0 ≤ γ ≤ 0.25) for various concentra-
tions of oxygen vacancies. The stoichiometric solid
solution La0.70Sr0.30MnO3 was obtained in air by con-
ventional ceramic technology, while the anion-deficient
compounds La0.70Sr0.30MnO3 – γ were obtained in vac-
uum using the topotactic reaction technique. The
microscopic structure and the chemical phase composi-
tion of all the samples were studied using a scanning
electron microscope. It was found that the mean grain
size in the stoichiometric solid solution
La0.70Sr0.30MnO3 obtained at 1550°C is about 10 µm,
while its value for La0.70Sr0.30MnO3 – γ anion-deficient
solid solutions is 5 µm. Thermal treatment at lower
temperatures leads to a decrease in the mean grain size.
It was found that samples with 0 ≤ γ ≤ 0.13 possess a

rhombohedral unit cell (space group R c, Z = 2), while
samples with γ ≥ 0.20 have a tetragonal unit cell (space
group I4/mcm, Z = 2). Experimental evidence is pro-
vided for the variation of the magnetic phase state of the
investigated manganite upon a decrease in the oxygen
concentration. It is shown that La0.70Sr0.30MnO3 – γ
anion-deficient solid solutions experience a series of
successive magnetic phase transformations in the
ground state from a ferromagnet (0 ≤ γ ≤ 0.05) to a
charge-disordered antiferromagnet (γ = 0.25) via an
inhomogeneous magnetic state similar to a cluster spin
glass (0.13 ≤ γ ≤ 0.20). The mean size of ferromagnetic
clusters in the spin glass state was estimated as r ≈ 50
nm. It is shown that oxygen vacancies make a substan-
tial contribution to the properties of manganites. The
generalized magnetic data are presented as concentra-
tion dependences of the spontaneous magnetic moment
and the coercive force. The magnetic phase diagram has
been constructed. The most probable mechanism of
formation of the magnetic phase state in Sr-substituted
anion-deficient manganites is considered. It is assumed
that in the absence of orbital ordering, a decrease in the
coordination number of a magnetic ion leads to the sign
reversal of indirect superexchange interactions Mn3+–
O–Mn3+.
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