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Abstract—A nonintrusive contactless method for studying the parameters of the electrode region of a capaci-
tive low-pressure RF discharge is proposed. The method involves the measurements of dc and ac electric volt-
ages at the elements of the discharge circuit with subsequent calculations of both the electrostatic potential drop
across the electrode sheath and the sheath thickness by using relations derived in the paper. For a collisionless
electrode sheath, the density of the positive-ion current onto the electrode and the charge density at the plasma
boundary are determined. It is shown experimentally that the method can be successfully applied to studying
capacitive RF discharges with inner or outer electrodes. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experimental studies of the physical characteristics
of boundary space-charge sheaths are important for
both the investigation of the mechanisms governing
capacitive RF discharges (CRFDs), which are widely
used in practice, and the control of the plasmochemical
processes in microelectronic industry. In manufactur-
ing systems in which processed substrates are located
on the discharge electrodes, space-charge electrode
sheaths (SCESs) are immediately adjacent to the sur-
faces of the processed plates. Therefore, the studies of
the characteristics of the electrode region enable the
monitoring of the internal system parameters character-
izing the state of the working medium immediately in
the processing region. It is evident that only this type of
monitoring can ensure the high reproducibility of a
technological process.

In this paper, we propose a contactless method for
monitoring the quasi-steady characteristics of a CRFD
used in plasmochemical reactors, namely, the potential
drop Us across the SCES and the SCES thickness ds. In
the case of a collisionless electrode sheath, widely met
in practice, this method also allows one to determine
the density of the positive-ion current ji from the plasma
onto the electrode and the charge density ne = ni at the
SCES–plasma boundary.

The method proposed implies the space and time
averaging of the quantities under study; hence, the
highest accuracy can be achieved when diagnosing a
reactor with a uniform processing of the plate surface.

This method was experimentally tested in CRFDs in
helium at gas pressures of 0.3–0.5 torr and RF-field fre-
quencies of f = 0.64–2 MHz. The experiments were car-
ried out in a discharge tube with inner electrodes;
simultaneously, Langmuir probe measurements were
performed. Fairly good agreement between the results
obtained with these two methods (within 10–15% for
1063-780X/02/2812- $22.00 © 1001
the Us measurements) allowed us to apply the contact-
less method to studying CRFDs with outer electrodes;
previously, experimental techniques for such measure-
ments were unavailable.

2. THEORY

We consider a CRFD with plane electrodes E1 and
E2 of areas S1 and S2, respectively. The electrodes are
coated with dielectric films; the capacitances between
the electrodes and the imaginary second plates on the
side of the interelectrode space are  and  (Fig. 1).
A coupling capacitor C01 is introduced into the circuit
between the RF oscillator and the electrode E1. The
electrode E2 is grounded through a coupling capacitor
C02, which is introduced to accomplish the measure-
ment method proposed. The physical scheme of the
CRFD under study is shown in Fig. 1a. Here, the
hatched domain inside the discharge gap shows the
plasma, which is separated from the electrodes by
SCESs with quasi-steady thicknesses ds1 and ds2.

Our approach is based on three basic assumptions:

(i) The conduction ion current through the sheath is
quasi-steady; i.e.,

(1)

where τ is the time during which an ion traverses the
sheath, ω = 2πf is the angular frequency of the RF field,
and ωLe is the electron plasma frequency at the sheath
boundary.

(ii) The displacement current plays a dominant role
in the sheath; i.e., the following relation between the

C1* C2*

1/τ ω ! ωLe,<
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Fig. 1. (a) Physical model of the CRFD under study and (b) the equivalent circuit of the discharge: U01, U02, and Ud are voltmeters
for measuring the quasi-steady voltages; V01 and Vd are voltmeters for measuring ac voltages; and Rp, Lp, and Cp are the resistance,
inductance, and capacitance of the CRFD plasma, respectively.
resistance and the capacitive reactance of the SCES is
satisfied:

(2)

In this case, the SCESs can be represented as capaci-
tances Cs1, 2 in the discharge equivalent circuit (see
Fig. 1) [1].

(iii) The contribution of charged particles to the per-
mittivity εs of the sheath is negligible; i.e., εs ≈ 1.

Then, we can write the following set of equations:

(3)

(4)

(5)

(6)

where q1 (q2) is the quasi-steady value of the charge at
the capacitor Cs1 (Cs2) [according to the electrostatic
induction law, the same charge is induced at the neigh-
bor capacitors  ( ) and C01 (C02)]; Us1 (Us2) is the
quasi-steady potential drop across the corresponding
SCES; Ud is the total quasi-steady voltage drop across

Rs1 2,  @ 
1

ωCs1 2,
----------------.

q1 Us1Cs1 U1*C1* U01C01,= = =

q2 Us2Cs2 U2*C2* U02C02,= = =

Ud Us1 Us2– U1*– U2*+ + 0,=

V01/Vd Cd/C01,=

C1* C2*
the discharge; and V01 and Vd are the ac voltage drops at
the capacitor C01 and the discharge capacitor Cd,
respectively.

Equation (5) describes the balance of the electro-
static voltages in the discharge, whose interelectrode
distance is d. Equation (6) describes the distribution of
the ac voltage across the circuit segment between points
B and D and on the capacitor C01 (Fig. 1b); i.e., there is
a sort of a capacitive divider of the RF voltage drop in
the discharge circuit.

The unknown variables in Eqs. (3)–(6) are the SCES
parameters Us1, Us2, Cs1, and Cs2.

Combining Eqs. (3)–(6), we find

(7)

The total discharge capacitance Cd can be written as

where CE is the interelectrode capacitance of the dis-
charge gap. Taking this formula into account and using

Us2 Us1 Ud U01C01/C1*– U02C02/C2*.+ +=

Cd Cs1
1–

Cs2
1–

C1
*–1

C2
*–1

+ + +( )
1–

CE,+=
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Eqs. (3), (4), (6), and (7), we find

(8)

The SCES thicknesses ds1 and ds2 can be determined
by using Eqs. (3) and (4) and the formula for the capac-
itance of a plane capacitor Cs = εsS/4πds.

As a result, in view of assumption (iii), we obtain

(9)

(10)

In Eqs. (5)–(8), the measured quantities are the dc
and ac voltages at the capacitor C01 and the discharge
electrodes, as well as the dc voltage at the capacitor C02.

Turning from the physical model of the CRFD cir-
cuit to an actual experimental circuit and the measure-
ment procedure, we will justify the applicability of the
method proposed.

An idea to represent a SCESs as capacitors under
condition (2) was first proposed in [2] and was, then,
verified experimentally by one of us [3] with the
method of the so-called “ionization capacitor.”

In our case too, the resistance of the plasma column
is assumed to be much less than both the plasma reac-
tance and the SCES impedances:

(11)

where Cp and Lp are the plasma capacitance and induc-
tance, respectively.

In order to justify the adopted model, let us make
some estimates for our experimental conditions: the
working gas is He; p = 0.5 torr; f = 2 MHz; ω = 1.3 ×
107 s–1, ds1, 2 ≈ 1 cm; the field strength in the sheath is
Es  ≈ 100 V/cm; the electron–neutral and ion–neutral
collision frequencies are νen ≈ 109 s–1 and νin ≈ 107 s–1,
respectively; the plasma electron density in the center
of the discharge is ne ≈ 108–109 cm–3 [4] (for RF volt-
ages used); and the ion mass is M = 6.64 × 10–24 g.

First, we verify whether inequality (1) holds. We
have τ = ds/v i , where the average ion velocity in the
sheath is v i = bi Es, the ion mobility being bi = e/Mνin.
It follows from here that τ ≈ 5 × 10–7 s and 1/τ = 2 ×
106 s–1 < ω. In the above range of the plasma charge
densities, we have 0.6 × 109 s–1 ≤ ωLe ≤ 1.9 × 109 s–1

and, consequently, ωLe @ ω. Hence, inequality (1)
holds.

Next, we verify whether inequality (2) holds. Taking
into account the experimental value of the ion density
in the SCES (nis ≈ 107–108 cm–3) and the values of the

Us1 Vd/ V01C01 VdCE–( )[=

+ C1
*–1

U01C01/U02C02 1–( )

– Ud/U02C02 2/C2
*– ] 1/U01C01 1/U02C02+( ) 1–

.

ds1 S1Us1/4πU01C01,=

ds2 S2Us2/4πU02C02.=

Rp ! 1/ωCp, Rp ! ωLp,

Rp ! Rs1 2, , Rp ! 1/ωCs1 2, ,
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electrode area (S = 78 cm2) and the SCES capacitance
(Cs = S/4πds = 7 pF), we find the SCES capacitive reac-
tance,

The SCES resistance can be estimated as Rs = ds/σisS,
where σis = e2nis/Mνin is the sheath conductance. It fol-
lows from here that Rs @ 30 kΩ; i.e., inequality (2)
holds.

According to [1], the ions make the main contribu-
tion to the sheath permittivity:

where ωLi is the plasma ion frequency. In this case, it
follows from the experimental data of [4] that, under
our testing conditions (see Figs. 4, 5), we have

Then, we verify whether inequalities (11) hold
under our experimental conditions. Let us compare the
plasma resistance Rp and the plasma reactances 1/ωCp

and ωLp. First, we consider the expression for the
plasma capacitance

where εp ≈ 1 – /(ω2 + ) is the plasma permittiv-
ity [1] and dp and S are the length and cross-sectional
area of the plasma column, respectively. Note that,
when ωLe ≤ νen, we have εp > 0 and the plasma reactance
is capacitive in nature. In contrast, when the inequality

1/ωCs 10 kΩ.≈

εs 1
ωLi

2

ω2 ν in
2

+
-------------------,–=

ωLi
2

 ! ω2 ν in
2

, εs 1.≈+

Cp εpS/4πd p,=

ωLe
2 νen
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Fig. 2. Schematic of a discharge tube with inner electrodes
for conducting contactless and probe measurements.
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 > ω2 +  holds, we have εp < 0 and the plasma
reactance is inductive in nature.

Taking into account the above discharge parameters,
it is easy to find the relations between the resistance and
capacitive reactance of the plasma,

and between the resistance and inductive reactance of
the plasma,

In a similar way, by analyzing the relations between the
plasma resistance and the capacitive reactance and
resistance of the SCES, we obtain

Hence, inequalities (11) also hold under our experi-
mental conditions.

The breakdown of the discharge gap and the devel-
opment of the discharge are accompanied by the forma-
tion of SCESs, which enable the CRFD to arrive at a
steady state. As was observed experimentally [5], in a
steady-state CRFD, the net electric charge arriving at
the electrode over one RF-field period (T ≤ 10–6 s) is

ωLe
2 νen

2
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Fig. 3. Schematic of a discharge tube with outer electrodes
for conducting contactless measurements of the SCES
parameters.
zero. Accordingly, the quasi-steady parameters of the
SCES capacitor (namely, the capacitance Cs, the charge
qs, and the sheath thickness ds) remain constant. In this
case, the charge qs maintains the quasi-steady voltage
Us across the SCES, so the charge of the electrons arriv-
ing from the plasma at the electrode over one RF-field
period balances the charges of both the incoming posi-
tive ions and the electrons emitted from the electrode
surface.

In the CRFD circuit segment (Fig. 1b) consisting of

the series-connected capacitors C01, , and Cs1, the
active element is the capacitor Cs1. It is the charge on its
plates, qs1, that governs the physical processes in the
SCES. Note that all of the series-connected capacitors
of the circuit, including in the measurement capacitor
C01, acquire this quasi-steady charge qs1.

The quasi-steady voltages U01, U02, and Ud in the
experimental circuit were measured by C-95 electro-
static voltmeters with a small input capacitance of C ' =
5 pF. The measuring circuit of these devices is an open
circuit for direct currents, which excludes the charge
leakage from the capacitor under study through the
measuring circuit. To exclude the influence of the RF
voltage on the voltmeter readings, we used an integra-
tor consisting of two resistors R and a capacitor C with
a properly chosen parameters (Fig. 1b).

To avoid a possible influence of the dc electric cir-
cuit of the output stage of the RF oscillator on the oper-
ation of the experimental circuit, the RF power was fed
to the discharge gap through a transformer (Figs. 2, 3).

C1*

100

2000 400 600

200

Us, V

1

2

Vd, V

Fig. 4. Quasi-steady voltage drop Us across the SCES of a
discharge with inner electrodes as a function of the ampli-
tude Vd of the applied RF voltage (CRFD in helium, p =
0.5 torr, f = 1 MHz, and C0 = 10 pF): (1) probe measure-
ments and (2) contactless measurements.
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The RF voltages V01 and Vd were measured by V7-15
electronic voltmeters with a high internal resistance.
These devices were equipped with DN-2 voltage divid-
ers and remote high-resistance heads with a low input
capacitance; this allowed us to operate over wide
ranges of frequencies (5 kHz–300 MHz) and voltages
(V ≤ 1 kV). Similar measurements were also performed
with C-95 voltmeters.

Thus, the method proposed includes the measure-
ments of the voltage at several external elements of the
CRFD circuit and the calculations of the sought param-
eters by using the above formulas and the known
parameters of the experimental setup.

It can be easily seen that, in a particular case of a
very long discharge gap (CE ≈ 0) or when the dielectric
film on the electrode surfaces is either absent or

extremely thin (i.e., when the values of  and  are
large), Eqs. (5)–(8) are considerably simplified.

If positively charged ions in the SCES do not collide
with atoms (which occurs when the ion mean free path
satisfies the inequality λi = 1/naQia ≥ ds , where na is the
atom density and Qia is the resonant charge-exchange
cross section for ions; this condition is usually satisfied
at gas pressures of p ≤ 10–1 torr), then the ion current
density at the electrodes can be estimated by the Child–
Langmuir formula [6]

where e is the electron charge and Mi is the ion mass.
With a known electron temperature Te , according to the
Bohm formula [6]

we can estimate the ion density at the boundary of the
quasineutral plasma:

2. EXPERIMENTAL TESTING 
OF THE CONTACTLESS DIAGNOSTIC METHOD

The method was tested in a symmetric CRFD with
plane inner or outer electrodes (Figs. 2, 3).

In the experiments, we used sealed tubes filled with
helium. The plane inner electrodes 90 mm in diameter
were spaced by 100 mm. The outer electrodes 90 mm
in diameter were spaced by 78 mm and separated from
the discharge by optically transparent quartz plates
4 mm thick. Both types of discharges satisfied the con-
dition

C1* C2*

ji
1

9π
------ 2e

Mi

------
Us

3
2
---

ds
2

------,=

ji 0.8eni

2kTe

Mi

-----------,≈

ni 1.25 ji/e
2kTe

Mi

-----------.=

CE ! C0V0/Vd.
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In this case, expressions (7) and (8) for a discharge
with outer electrodes can be reduced to one formula

This formula becomes even simpler for a discharge
with inner electrodes:

The SCES thickness for both types of discharges is
defined by the formula

In the first stage of experiments, we used a CRFD
with inner electrodes at gas pressures of 0.3–0.5 torr
and RF-field frequencies of 0.64–2 MHz. The contact-
less measurements of the quasi-steady voltage Us were
checked with a special probe circuit consisting of high-
value resistors and an M-193 microammeter shunted
with a capacitor. The parameters of this circuit were
chosen so as to ensure the high measurement accuracy.
The probe was located in the center of the discharge
gap.

To verify whether instrumental effects influence the
contactless measurements, we checked the dependence

Us U0C0 Vd/2V0C0 1/C*–( ).=

Us U0Vd/2V0.=

ds SUs/4πU0C0.=
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Fig. 5. (a) Quasi-steady potential drop Us across the SCES
and (b) the SCES thickness ds a discharge with outer elec-
trodes as functions of the amplitude Vd of the applied RF
voltage (CRFD in helium, p = 0.5 torr, and C0 = 10 pF) for
the RF-field frequency f = (1) 0.64, (2) 1, (3) 2, and
(4) 1.6 MHz.
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of the measured quasi-steady voltage Us on the capaci-
tance of the measuring capacitor C01. In the course of
experiment, the capacitance C01 was varied within 10–
30000 pF. In this case, the values of Us measured by
two methods differed by 10–15% irrespective of the
capacitance C01.

Let us compare the RF-field period (T ≈ 10–6 s) with
the discharge times τ01 and τ02 of the measuring capac-
itors (C01 = C02 = 50 pF), taking into account the equiv-
alent electric circuit (Fig. 1b), in which the electrostatic
voltmeters U01, U02, and Ud break the circuit for direct
currents and the electronic voltmeters V01 and Vd have
internal resistances of R01 = Rd = RV ≈ 106 Ω .

(i) For the capacitor C01 (CRFDs with outer or inner
electrodes), we have

i.e.,
τ01 @ T.

(ii) For the capacitor C02 in the case of a CRFD with
outer electrodes, we have

and, in the case of a CRFD with inner electrodes, we
have

Hence, the charges of the capacitors C01 and C02 change
only slightly over one RF-field period and the measured
quasi-steady voltages U01 and U02 are nearly constant.

These data testify to the correctness of the contact-
less measurements of the quasi-steady potential drop Us

across the SCES.
The results of measurements by both methods are

presented in Fig. 4. The agreement between these mea-
surements can be considered satisfactory, taking into
account both the systematic measurement errors dis-
cussed below and the fact that the probe measurements
were conducted locally in the center of discharge at the
tube axis.

Before performing measurements in a CRFD with
outer electrodes, we carried out a model experiment.
We used a CRFD with inner electrodes, whereas the
dielectric coating of outer electrodes was modeled by
capacitors whose capacitance (C* = 50 pF) was equal
to the preliminarily measured capacitance of the quartz
wall at the end of the discharge tube (Fig. 2). The Us

values measured in this experiment by the probe and
contactless methods differed by nearly 10%.

τ01 = R01C01 = RVC01 5 10
5–
 s,×≈  

τ02 Rd R01+( )C02≈

=  2RVC02 10
4–
 s @ T ;≈

τ02 2Rs Rp R01+ +( )C02≈

≈ RVC02 5 10
5–×  s @ T .≈
Naturally, the parameters of the SCES in a discharge
with outer electrodes were determined by the contact-
less method only. The results of these measurements
are presented in Fig. 5. It can be seen that the measured
values of the SCES parameters Us and ds are close to the
corresponding values for a CRFD with inner elec-
trodes. The Us value increases with increasing RF-field
frequency, as was previously observed in [4].

3. DISCUSSION OF RESULTS

Strictly speaking, a correct comparison of the values
of the quasi-steady potential drops Us across the elec-
trode sheaths measured with the probe and contactless
methods is possible only if we know the distribution of
the electrostatic potential in a discharge. Since we did
not examine these distributions in our study, a compar-
ative analysis was performed by using the relevant data
available in the literature. In this context, we note the
experiment of [7], where it was shown that there may
exist some quasi-steady potential difference between
the center of the discharge and the SCES boundary.
This effect was not taken into account in the contactless
method.

As can be seen in Fig. 4, the difference between the
data obtained by the two methods is systematic in char-
acter: the curve obtained by the contactless method lies
below that obtained from probe measurements. In addi-
tion to the above-said, there is at least one more reason
for the discrepancy observed. The matter is that, in the
equivalent electric circuit of the CRFD, the electrode
sheath is represented as a plane capacitor. However, in
a real situation, only one plate of this capacitor (namely,
the electrode surface) is plane. The second plate is sub-
stantially curved because of the nonuniform radial dis-
tribution of the charged-particle density in the dis-
charge tube. Clearly, the actual SCES capacitance is
lower and the RF voltage drop across the sheath is
greater, which results in a larger potential drop Us

across the sheath due to the so-called “RF-detection”
effect [8]. Hence, a correction of the parameters of the
near-electrode capacitor Cs should reduce the observed
10–15% discrepancy with the results of the approved
probe technique.

In summary, we can conclude that the experimental
testing of the nonintrusive contactless method has dem-
onstrated its high efficiency. The method made it possi-
ble to measure for the first time the parameters of the
electrode region of a CRFD with outer electrodes; the
results of these measurements are of considerable inter-
est, in particular, for plasmochemical technology.
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in a Continuous Liquid-to-Gas Transition
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Abstract—A method is developed that makes it possible to investigate the transition of a metal from a con-
densed to a gaseous phase while maintaining almost uniform temperature and pressure distributions in the sam-
ple. The method consists in the pulsed Joule heating of a sample in the form of a thin foil strip placed between
two relatively thick glass plates. This method is used to measure the conductivity of tungsten in a process during
which the pressure in the sample is maintained at a level of 40–60 kbar and the density of the sample decreases
from the normal solid density to a density 20 to 30 times lower. It is found that, along the 40-kbar isobar, the
density dependence of the conductivity of tungsten changes radically at a certain density value, at which it has
a pronounced kink. At the kink, the density of tungsten is approximately ten times lower than its characteristic
solid density, and the internal energy is about two times the sublimation energy. The method makes it possible
to carry out experiments with the almost isobaric heating of tungsten in the parameter range in which the effect
in question takes place. No such effect is detected in nonisobaric processes. © 2002 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

The problem of transitions of metals from a liquid to
a gaseous phase was considered in the well-known
paper by Zel’dovich and Landau [1]. They noticed that
there is no qualitative difference between metallic and
dielectric states at finite temperatures; therefore, transi-
tions from one state to another may be continuous.
Since metal vapors are dielectrics, transitions from a
condensed metal phase to a gaseous dielectric phase
may also be continuous. The question then arises as to
the character of the phase diagrams of metals in the
region where these transitions take place. Zel’dovich
and Landau [1] predicted that low-melting-point metals
should undergo two separate first-order phase transi-
tions, specifically, liquid-to-vapor and metal-to-dielec-
tric transitions. Moreover, the critical point for the latter
transition was predicted to lie in the range of tempera-
tures and pressures that are much higher than those for
the liquid-to-vapor transition. In [1], it was also pre-
dicted that, for refractory metals, the liquid-to-vapor
and metal-to-dielectric transition curves should
coincide.

Subsequent measurements carried out in [2, 3] for
low-melting-point metals showed that, as the density
decreases, the metal-to-dielectric transition actually
occurs separately from the liquid-to-vapor transition.
However, it was found that, during the metal-to-dielec-
tric transition, the speed of sound, electric conductivity,
and other physical parameters change continuously, in
contrast to the case of liquid-to-vapor transition. For
mercury, the density at which the metal-to-dielectric
transition occurs is higher than the critical-point den-
1063-780X/02/2812- $22.00 © 21008
sity for the liquid-to-vapor transition, while, for alkali
metals, this transition occurs at densities close to the
critical-point density. However, the question about the
critical point for the metal-to-dielectric transition
remained unanswered because of the difficulties in per-
forming precise measurements at high pressures and
temperatures. Efforts to obtain reliable experimental
data for refractory metals were also unsuccessful.

In a number of papers, attempts were made to mea-
sure the electric conductivity of refractory metals in a
wide density range. In [4–7], this was done by means of
the exploding wire technique. A segment of a straight
wire was placed into a condensed medium (water, a
glass capillary, or a plastic shell) and was heated by a
current pulse of density (3–5) × 107 A cm–2. The follow-
ing parameters were measured: the current through the
sample, the voltage drop across it, and (in some cases)
the diameter of the expanding plasma column formed
by an exploding wire. The plasma electric conductivity
was determined assuming that the temperature, pres-
sure, and other quantities are uniformly distributed over
the plasma column. Shadow images of the plasma col-
umn made certain that the column is actually axially
symmetric and uniform along its length. However,
efforts to control the radial distributions of the quanti-
ties were unsuccessful. Moreover, in some cases, it was
impossible to avoid evaporation. The reason is that the
evaporation (which is of a volume nature when the
Joule heating rate is high [8]) also leads to an increase
in the electric resistance of the column and thus can be
regarded as the beginning of the metal-to-dielectric
transition.
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Earlier, two of us [9] proposed an original technique
realizing the transition of condensed metal into a gas-
eous state while maintaining uniform distributions of
the temperature and pressure in the sample. The tech-
nique consists in the pulsed Joule heating of a sample
in the form of a thin foil strip placed between two rela-
tively thick glass plates. In the present paper, we report
the results from experiments utilizing this method to
measure the electric conductivity of tungsten in a pro-
cess during which the pressure in the sample was main-
tained at a level of 40–60 kbar and the density
decreased from the normal solid density to a density 20
to 30 times lower. Since such pressures are several
times higher than the critical pressure for the liquid-to-
vapor phase transition (Pc ≈ 11–13 kbar [8]), evapora-
tion did not manifest itself in our experiments. Our
experimental results show that, along the isobar P =
40 kbar, the density dependence of the conductivity of
tungsten changes radically at a certain density value, at
which it has a pronounced kink. At the kink, the density
of tungsten is approximately ten times lower than its
normal solid density, and the internal energy is about
two times the sublimation energy.

Our paper is organized as follows. First, we analyze
the experimental method proposed here. We estimate
the effect of different factors that violate the uniformity
of the sample and show that, under certain conditions,
the nonuniformities are small. Then, we present a
hydrodynamic model that makes it possible to describe
the dynamics of pulsed Joule heating under conditions
close to the actual experimental conditions. This model
was used to determine the parameters of experiments in
which the sample remained uniform and the character-
istic pressures were held at a high level (in order to
avoid the liquid-to-vapor phase transition). When dis-
cussing the results obtained, we start with the main
methodological problem—an analysis of the nonuni-
formity of the sample during the measurements. We
present clear evidence that, in our experiments, the
sample indeed remains uniform. We also compare our
experimental results with the data from other experi-
ments and from some theoretical calculations.

To conclude the introduction, note that, from a prac-
tical standpoint, the measurements of the electric con-
ductivity of refractory metals over a wide range of den-
sities are also of interest in connection with investiga-
tions of the processes during which an intense pulsed
action induces a transition of metal from a condensed
into gaseous state. In particular, such measurement data
are required for modeling current switches [10], the
influence of high-power laser radiation on metals [11,
12], and the dynamics of the collapse of multiwire
arrays in devices for producing hot plasmas [13, 14].

2. UNIFORM HEATING METHOD

We consider the process of pulsed Joule heating of a
foil strip whose length l, width h, and thickness d sat-
isfy the inequalities l @ h @ d. The characteristic heat-
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
ing time t is assumed to be such that h/c1 @ t @ d/c1,
where c1 is the speed of sound in a metal. These condi-
tions allow the problem to be treated in a one-dimen-
sional formulation, in which the matter is assumed to
move only in one direction, i.e., perpendicular to the
plane of the foil.

Joule heating gives rise to the thermal expansion of
a metal, which thus performs mechanical work on the
glass plates. Since the sonic time scale d/c1 in the sam-
ple is short, it can be expected that the pressure will be
distributed uniformly over the metal and the character-
istic pressure magnitude will be determined by the iner-
tia of glass. If the time scale D/c2 (where D is the plate
thickness and c2 is the speed of sound in glass) is longer
than the characteristic time of the problem, then there is
not enough time for the compression wave in glass to
reach the free plate boundary. Consequently, the pres-
sure in the sample will remain high (provided that the
heating power will not change).

In order for the foil to be heated uniformly, the elec-
tric field should be uniform across the foil, which indi-

cates that the skin depth δ = c/  (where σ is the
electric conductivity, ω is the characteristic frequency
of the current variations, and c is the speed of light in a
vacuum) should be larger than the half-thickness of the
foil. For the conductivity σ = 1016 s–1 (which is on the
order of the electric conductivity of liquid tungsten)
and for the frequency ω = 3 × 106 rad/s of the current
variations, we obtain δ ≈ 0.1 cm.

Another factor that violates the uniformity of the
sample is the effect of the ponderomotive forces. Under
the action of these forces, the pressure profile becomes
parabolic, the characteristic pressure being about Ij/c2,
where I is the amplitude of the current and j is its den-
sity. The contribution of a current with the amplitude
I = 10 kA and density j = 107 A cm–2 to the pressure is
about 1 kbar. The temperature distribution may become
nonuniform because of the heat dissipation in glass.
The thickness of the layer across which the temperature

is nonuniform is about , where χ is the thermal dif-
fusivity of tungsten and t is the characteristic time scale
of the process. For t ~ 10–7 s and χ ~ 0.1 cm2 s–1, we
obtain a thickness of about 1 µm. We can easily see
that, for foils with the dimensions l ~ 1 cm, h ~ 10–1 cm,
and d ~ 10–3 cm and for glass plates with a thickness of
about D ~ 1 cm, the conditions for uniform heating are
satisfied and the problem may well be treated in a one-
dimensional formulation. More precise estimates can
be obtained by taking into account such factors as the
actual time evolution of the heating power, the thermo-
dynamic properties of tungsten, and the dynamics of
the motion of glass plates. A self-consistent model that
describes the heating dynamics with allowance for
these factors will be presented below. Now, we turn to
a description of our experiment.

2πσω

χt



 

1010

        

KOROBENKO 

 

et al

 

.

                                    
3. DESCRIPTION OF THE EXPERIMENT

The experiments were carried out with tungsten foil
strips with a thickness of 20–22 µm, width of 1.5–
3.0 mm, and length of 10.0–11.5 mm, placed between
two thick polished sapphire (or glass) plates, each with
a thickness of 5–7 mm, width of 10 mm, and length of
10.0–11.5 mm. The side slits were covered by two thin
mica strips (Fig. 1). The foil was placed so that the gap
between its surface and the plate was minimal. The gap
width, which was governed by the surface roughness of
the sample and its nonuniformity, was smaller than 5–
7 µm. The pulsed heating of the sample was accom-
plished by discharging a 72-µF capacitor bank with a
charging voltage of about 18 kV. The discharge circuit
with a total inductance of about 240 nH included a
0.3-Ω ballast resistor and a 1.35-Ω shunt resistor, con-
nected in parallel to the sample.

We carried out 11 experiments with tungsten foils.
We measured the time dependences of the current I(t)
through the sample and the voltage drop U(t) across it.
The signals from the Rogowski coil and voltage divider
were recorded by a TDS-754C four-channel digital
oscillograph with a time resolution of 1 ns. The active
component of the voltage drop across the sample was
calculated from the formula UR = U – Lf dI/dt, where Lf

is the inductance of the foil. The resistance of the sam-
ple and the heat released in it per unit mass were deter-
mined from the equations
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Fig. 1. Transverse cross section of the sample: (1) foil,
(2) sapphire plate, and (3) mica plate. The current flows in a
direction perpendicular to the plane of the figure.
where m is the mass of the sample. The electric conduc-
tivity was calculated from the relationship σ = l/(SR),
where S = hd(t) is the cross-sectional area of the sam-
ple. The foil thickness d(t) as a function of time was
calculated using a hydrodynamic model and assuming
that l and h are constant.

4. SELF-CONSISTENT MODEL 
OF THE HEATING DYNAMICS

The set of equations describing the dynamics of the
pulsed foil heating consists of the equations of motion
(the mass, momentum, and energy conservation laws),
Maxwell’s equations, and the equations for the total
current flowing through the foil (the energy and charge
conservation laws for the discharge circuit forming the
current pulse). We introduce a Cartesian coordinate
system such that the x-axis is perpendicular to the plane
of the foil and the y-axis is aligned with the foil (Fig. 1).
In the problem treated in a one-dimensional formula-
tion, the matter moves only in the x direction and the
only nonzero components of the electric and magnetic
fields are the z- and y-components, respectively. Hence,
the equations of motion have the form

(1)

(2)

(3)

Here, ρ, v , P, and ε are the density, velocity, pressure,
and specific internal energy, respectively; w = ε + P/ρ is
the specific enthalpy; and E ' is the electric field strength
in the frame of reference moving with an element of the
medium. Equations (1)–(3) are written in a Gauss sys-
tem of units. According to the Lorentz transformation
formula, we have E ' = E + vH/c, where E is the electric
field strength in the laboratory frame and the current
density j obeys Ohm’s law j = σE '. Since, under the
above conditions, the effects of heat conduction, vis-
cosity, and heat transport by radiation are insignificant,
the corresponding terms do not enter the equations of
motion.

Maxwell’s equations reduce to the two equations

(4)

, (5)

where the displacement currents are neglected.

The boundary conditions relate the magnetic field
strength at the foil surface to the current flowing
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through the foil and the electric field strength to the
active component of the voltage drop across the foil:

(6)

(7)

where a = d(t)/2 is the half-thickness of the foil. The
boundary conditions for the hydrodynamic quantities
are as follows: the pressure at the outer surface of the
glass plate is constant (and is equal to 1 atm) and the
boundary between the metal and the glass is a contact
discontinuity. The initial conditions are assumed to be
natural: the matter is at rest, the pressure and tempera-
ture are equal to their normal values, the current in the
circuit is absent, and the charging voltage of the capac-
itor bank is equal to the initial voltage.

In order to close the set of equations of the hydrody-
namic model, we need to know the thermodynamic
functions of tungsten and its conductivity in a region of
the phase diagram from the condensed state (a solid
body under normal conditions) to the gaseous state
(plasma). The thermodynamic functions for the metal-
to-dielectric transition were obtained semiempirically.
For the liquid-to-vapor phase transition, the thermody-
namic functions were taken from [15]. The procedure
for choosing the parameters was described in [8], in
which it was also shown that these functions give a rea-
sonable description (with an accuracy of 10%) of the
thermal expansion of liquid tungsten and the liquid-to-
vapor phase transition (up to the critical point). The ion-
ization effects are described in the average-atom
approximation [16], and the electric conductivity was
calculated in accordance with [8, 17].

5. RESULTS OF NUMERICAL SIMULATIONS

When solving the set of equations of the hydrody-
namic model, we used two different numerical meth-
ods. Specifically, Eqs. (1)–(3) were solved by the
Godunov method [18], and Maxwell’s equations (4)
and (5) were solved by the sweep method [19]. Figure 2
illustrates how the thermodynamic state of the sample
in the (P, T) plane changes during the pulsed Joule heat-
ing of a 20-µm-thick foil between two 0.5-cm-thick
glass plates. The parameters of the circuit and the sam-
ple dimensions correspond to experiment no. 3 (in the
series of experiments reported here). The triangles refer
to points that are separated in time by the same interval
equal to 150 ns, starting from the time at which the cur-
rent is switched on. Figure 2 shows the phase trajecto-
ries representing two layers of the sample: layer 1 is a
surface layer and layer 2 is a layer near the symmetry
plane. These two layers correspond to two cells of the
spatial grid in Lagrangian coordinates. Within the vol-
ume of the sample, the number of mesh points in the
grid is 40–60, and, within the volume of the glass plate,
the number of mesh points is 500–1000. The difference
in the trajectories of the surface and the central layers

H a t,( ) 2π
c

------ I t( )
h

---------,=

E ' a t,( ) UR t( )/l,=
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reflects the nonuniformity of the thermodynamic state
of the sample. The trajectories are seen to lie substan-
tially above the boiling curve b. The nonuniformity of
the pressure is no higher than 1 kbar, and the nonunifor-
mity of the temperature is no higher than 500 K.

Figure 3 shows the calculated and measured time
dependences of the current I flowing through the sam-
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Fig. 2. Changes in the state of a metal foil between two glass
plates during pulsed Joule heating: (1) surface layer,
(2) layer near the symmetry plane, (m) melting curve,
(b) boiling curve, and (C) critical point. The triangles refer
to times separated by a time interval of 150 ns, starting from
the time at which the current is switched on.
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Fig. 3. Time dependences of the current I through the sam-
ple, the active component UR of the voltage drop, and the
Joule heat q released in the sample. The symbols show the
data obtained from experiment no. 3, and the solid curves
show the calculated results. The characteristic times are as
follows: (a) the beginning of melting; (b) the end of melt-
ing; (c) the time at which the amount of heat released in the
sample reaches the sublimation energy, and (d) the transi-
tion to a dielectric (plasma) state.
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ple, the active component UR of the voltage drop across
the sample, and the Joule heat release q per unit mass.
The measured time evolutions are seen to agree with
the calculated ones to within 5–10%. It should be noted
that such a good agreement between the measured and
calculated evolutions was achieved only after having
constructed a detailed equivalent scheme of the dis-
charge circuit and having determined its parameters.
Because of the presence of distributed (parasitic) induc-
tances and capacitances, the scheme turned out to con-
sist of five contours. We can clearly see that the voltage
curve has three kinks, which correspond to the begin-
ning (point a) and end (point b) of the melting process
and to the transition to a dielectric (plasma) state (point
d). Point c corresponds to the time at which the amount
of heat released in the sample reaches the sublimation
energy (4.6 kJ/g [20]).

The behavior of the electric conductivity during the
metal-to-dielectric transition is described by an interpo-
lation formula constructed according to [21]. The den-
sities at the beginning and end of the transition serve as
adjustable parameters. Without going into the details of
the corresponding calculations, we only note that the
adjustable parameters were chosen so as to reproduce
the time evolution of the heating power with reasonable
accuracy. This adjustment was needed only to analyze
the temperature and pressure distributions in the sample
that correspond to the specific time evolution of the
Joule heating power.

The results of our simulations allowed us to solve
several important methodological problems. First, we
succeeded in choosing the parameters of the circuit and
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Fig. 4. Changes in the state of a metal foil in the (P, ε) plane
during pulsed Joule heating in experiment nos. 3, 5, and 8.
The calculations were carried out for prescribed time evolu-
tions of the current and the Joule heating power. Each of the
experiments is illustrated by the two curves representing
two layers of the sample: the surface layer and the layer near
the symmetry plane.
the geometric dimensions of the sample so that the sam-
ple was heated fairly uniformly and the liquid-to-gas
transition was continuous (in which case a transition to
a two-phase liquid–gas state did not occur). Note that,
in experiments [4–7], a transition to a two-phase state
occurred in the initial stage of the process. In [8], it was
shown that such transitions inevitably lead to the for-
mation of highly nonuniform temperature and density
distributions (because the speed of sound decreases
considerably during the transition from a liquid state to
a two-phase state). The second conclusion that can be
derived from analyzing the numerical result concerns
the estimates of errors in measuring the current and
voltage. It was found that these errors were no larger
than 3–5%. This follows from a comparison of the mea-
sured time dependences of the current and voltage with
those calculated for the initial stage of the process dur-
ing which the sample was in a condensed state (because
the condensed state can be described using the reliable
data on the thermal expansion and electric resistance [8,
22]). The high degree of uniformity of the sample and
good accuracy of the measurements of the current and
voltage enabled us to determine the electric conductiv-
ity by taking the following approach. The resistance of
the sample and the heat released in it were measured in
experiments, while the thickness of the sample was cal-
culated by solving hydrodynamic equations (1)–(3)
only. In this approach, the current and the Joule heating
power were assumed to be known functions of time
(which were taken from experiment) and the right-hand
sides of Eqs. (1)–(3) were represented as follows:

(8)

(9)

All of the results reported below were obtained pre-
cisely by this approach.

6. ANALYSIS OF THE UNIFORMITY
OF THE SAMPLE

The results of the calculations carried out for pre-
scribed time dependences of the current and the Joule
heating power are presented in Fig. 4, which illustrates
how the state of the sample changes in experiment no. 3
(which was carried out with glass plates), experiment
no. 5 (carried out with 5-mm-thick sapphire plates), and
experiment no. 8 (carried out with 1.5-mm-thick sap-
phire plates). The results are given in the (P, ε) plane,
rather than in the (P, T) plane, because the internal
energy can be measured directly (in the initial stage, the
internal energy is almost same as the Joule heat q). The
parameters of experiment nos. 3 and 5 were the same,
except for the material of the plates. It can be seen that
the method proposed here makes it possible to substan-
tially change the pressure level solely by changing from
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Fig. 5. Normalized resistance R* (the resistance normalized by multiplying by the ratio of the initial cross-sectional area of the foil
strip to its initial length) vs. specific heat q released in the sample for experiment nos. 3, 4, 5, and 7. The circles show the data
obtained in [8].
one material of the plates to another. It follows from the
figure that, for q in the range from 7–8 to 20 kJ/g, the
heating processes in experiment nos. 3 and 5 are nearly
isobaric. Each of the three experiments is illustrated by
the phase trajectories representing two layers of the
sample: the surface layer and a layer near the symmetry
plane. In order to relate these trajectories to the time
dependences shown in Fig. 3, we note that, when the
heat released in the sample in experiment no. 3 is equal
to q = 10 kJ/g, the internal energy differs from it by 10%
and this difference increases to 15% when q = 15 kJ/g.

Experiment no. 8 was performed with thin sapphire
plates. It can be seen in Fig. 4 that the pressure reduces
appreciably even when the internal energy increases to
about 12 kJ/g. In experiment no. 8, the rarefaction wave
from the free surface of the plate reached the sample in
a shorter time than in experiment nos. 3 and 5. It is note-
worthy that, at low internal energies, the curves for
experiment no. 8 almost coincide with those for exper-
iment no. 5 and, at higher internal energies, they cross
the curves for experiment no. 3.

Figure 5 shows the resistance of the sample as a
function of the specific heat release for experiment nos.
3, 4, 5, and 7. We present these dependences because
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
both of these quantities can be measured directly. For
convenience in comparing our results with the data
obtained in other works, we normalize the resistance by
multiplying by the ratio of the initial cross-sectional
area of the foil strip to its initial length: R* = RS0/l; for
a uniform sample, the resistance so normalized is pro-
portional to the ratio ρ/σ. It can be seen from Fig. 5 that
our results agree well with the data obtained in [8], in
which the electric conductivity was measured directly
at pressures between 10 and 20 kbar and at densities
ranging from the normal solid density to a density about
four times lower. In Fig. 5, the curves that refer to
experiment nos. 3, 4, and 7 are seen to have pronounced
maxima in the range of q values from 8 to 12 kJ/g. The
reproducibility of the data for the region of the maxima
is fairly high. To make this evident, we show in Fig. 5
the data obtained in experiment nos. 3 and 4, which
were performed under the same conditions. The two
corresponding curves are seen to differ by no more than
5%. This difference characterizes the accuracy with
which the parameters of our experiments are repro-
duced. It follows from the figure that our results differ
from the data obtained in [8] by the same amount.
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Fig. 6. Resistivity σ–1 vs. specific internal energy ε for experiment nos. 3, 5, and 8.
Experiment no. 7 was carried out with a wide foil
(h = 3 mm). The parameters of the discharge circuit
were chosen in such a way that the time dependence of
the specific heating power was close to that for experi-
ment no. 3. The width of the foil strips in experiment
nos. 3, 4, and 5 was 1.5 mm. It is clear that the change
of the expansion of the foil from being one-dimensional
to being two-dimensional depends on the initial width-
to-thickness ratio of the foil. The larger this ratio, the
longer the time during which the expansion is one-
dimensional. According to Fig. 5, the results of experi-
ment nos. 3, 4, and 7 agree to within 5–10%, which is
just the measurement accuracy. We can thus conclude
that, in these experiments, the expansion of the foil was
one-dimensional.

The questions about the one-dimensional character
of the expansion of the foil and about the influence of
the boundary effects when the expansion is substantial
was examined in more detail. Numerical simulations
showed that the time during which the pressure in the
metal decreased was the shortest in the experiment with
thin sapphire plates (experiment no. 8), because the rar-
efaction wave from the free surface of the plate reached
the sample in a shorter time than in other experiments.
In Fig. 4, the curves for experiment no. 8 cross those for
experiment no. 3. This indicates that the metal reaches
the same thermodynamic state (the state at the intersec-
tion point of the curves) in different ways. It is clear
that, when the quantities are distributed uniformly over
the sample, the resistivities in these states should be the
same. From Fig. 6, which shows the resistivity as a
function of the specific internal energy, we see that, for
experiment nos. 3 and 8, the resistivities at this value of
the internal energy (about 16 kJ/g) actually coincide (to
within measurement error). Hence, we can conclude
that the expansion of the samples in these experiments
was one-dimensional and that the nonuniformity of the
expanding samples was insignificant, at least for inter-
nal energies up to 16 kJ/g.

7. DISCUSSION OF THE RESULTS

Figure 7 illustrates how the resistivity depends on
the relative volume (the volume normalized to the spe-
cific volume v0 of a solid body under normal condi-
tions). We can see that this dependence is different for
solid, liquid, and gaseous states. In the liquid phase, the
resistivity is approximately proportional to the specific
volume; i.e., the ratio σ/ρ remains almost constant.
Over the range of relative volumes from 9 to 11, the
dependence changes its character (experiment no. 3).
For larger relative volumes, the resistivity approaches a
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
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Fig. 7. Resistivity σ–1 of tungsten vs. relative volume for experiment nos. 3, 5, and 8. The kink indicated by the arrow (point m)
corresponds to the end of melting. Open circles and open squares refer to temperatures in the range from 10 to 50 kK, with a step
of 10 kK. The bold line K&R shows the results of theoretical calculations for the T = 30 kK isotherm [24]. Closed circles are for
the data of [8, 22], and closed squares are for the data of [6].
constant value. Note that, for relative volumes larger
than 5, the heating processes in experiment nos. 3 and
5 were nearly isobaric. Thus, the dependence of the
resistivity on the specific volume changes its character
along an isobar. As the pressure increases from 40 to
60 kbar, the dependence becomes substantially flatter,
in which case the range of relative volumes where the
character of the dependence changes becomes larger by
a factor of approximately 3. It should be noted that the
dependence referring to experiment no. 8, in which the
pressure decreased, does not have any singularities
(kinks).

Note that the change of the character of the depen-
dence of the resistivity on the specific volume is
directly related to the maximum in the dependence of
the resistivity on the heat dissipated in the sample
(Fig. 5) and, therefore, cannot depend on the accuracy
with which the thermodynamic functions for tungsten
are described. It could, however, be suspected that the
maximum itself is associated with radiative losses.
Since the power of these losses is highly sensitive to
temperature, the effect of radiation can manifest itself
as a kink (maximum) in the dependence R*(ε). In fact,
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the plasma conductivity is proportional to T2/3 and
depends weakly (logarithmically) on the plasma den-
sity. The ratio ρ/σ should decrease with density,
because radiative losses stabilize the temperature (and
conductivity) at a certain level. Our estimates show
that, for an atom density of 6 × 1021 cm–3 (which corre-
sponds to a relative volume of about v /v0 ≈ 10) and a
temperature of 3 eV, the photon mean free path is about
10–6 cm. As a result, the plasma is opaque to radiation,
which is emitted exclusively from a thin surface layer.
Consequently, radiative losses cannot significantly
change the energy balance and the dynamics of motion
of the bulk of the sample.

In Fig. 7, we also plot the data from other experi-
ments. Our results are seen to agree satisfactorily with
the experimental findings of [8, 22]. The dependence
obtained in [6] differs from those obtained in [8, 22]
because of a large systematic error in determining the
volume of the sample and the active component of the
voltage drop. In the experiments of [6], the wires were
heated in glass capillaries such that the ratio of the inner
diameter of the capillary to the initial wire diameter was
large. The primary source of error was that the volume
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of the sample was determined by recording the lumi-
nosity of the expanding plasma column through the
thick capillary wall.

The experiments of [23] were aimed at investigating
polyurethane plasma. It was found that, as the temper-
ature increased to about 7–10 eV, the resistivity
approached a constant level of about 25 µΩ m. This
resistivity value remained unchanged as the density
decreased by several orders of magnitude. In [7], a sim-
ilar effect was observed for aluminum.

Let us now turn to theoretical papers. It can be seen
from Fig. 7 that the theory developed in [24] yields
resistivity values that are close to those obtained in
experiment nos. 3 and 8 (and predicts an analogous
character of the dependence of the resistivity on the
specific volume). However, the calculations carried out
in [24] refer to the T = 30 kK isotherm. The temperature
obtained in our calculations for the range of relative
volumes from 25 to 30 in experiment no. 3 is about
two times higher.

It is of interest to estimate the characteristic densi-
ties corresponding to the transition of tungsten from a
metallic to dielectric state. According to the predictions
made in [21], this transition is continuous and is not a
first-order phase transition. The density corresponding
to this transition is determined from the condition that
the fraction of the classically accessible volume for
valence electrons amounts to about 30%. At a low tem-
perature, the corresponding specific volume v /v 0 is
approximately equal to 5. At a temperature of T ~ I1/3
(where I1 is the first ionization energy), the metal-to-
dielectric phase transition should completely disappear.
For tungsten, this temperature is about 30 kK. Hence,
the effect revealed in our experiments seems to be unre-
lated to the theoretical predictions of [21].

8. CONCLUSION

The method proposed here allowed us to maintain
the sample in a uniform state during a continuous tran-
sition of tungsten from a liquid to a gaseous state. As a
result, the tungsten density decreased from the normal
solid density to a density 20 to 30 times lower. Using
this method, we have carried out experiments on the
isobaric heating of tungsten in a gaseous state. We have
found that the conductivity-to-density ratio for tungsten
in a condensed phase remains almost constant at densi-
ties ranging from the density corresponding to the melt-
ing point to those that are approximately ten times
lower than the normal solid density. At lower densities,
the dependence of the conductivity on the density along
the 40-kbar isobar changes its character: the conductiv-
ity becomes independent of density and approaches a
nearly constant value. This change in the character of
the dependence manifests itself as a kink in the corre-
sponding experimental curve. As the pressure increases
from 40 to 60 kbar, the density dependence of the con-
ductivity near the kink becomes substantially flatter.
Finally, no such effect has been detected in nonisobaric
processes.
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Abstract—A study is made of the processes occurring in a low-density plasma near a dielectric wall. A one-
dimensional non-steady-state model of the electron dynamics is constructed that takes into account secondary
electron emission. The Vlasov–Poisson equations are solved numerically. According to the results obtained, the
steady-state potential distribution that forms at a low temperature of the incident electrons gives rise to a wall
layer whose characteristic thickness is about several Debye lengths and in which the electrons are decelerated.
In this case, the electron density is lowest near the wall. The situation in which the temperature of the incident
electrons is high is far more complicated: the solution is quasi-periodic in character and the electron density
near the wall is the highest. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The structure of the Debye layer (DL), which
always arises near a dielectric wall that is in contact
with a plasma, as yet has been insufficiently studied.
The DL structure in a collisionless plasma is most fre-
quently analyzed by using the formula

(1)

and the expression for the energy flux onto the surface.
In formula (1), jen and jin are the electron and ion flux
densities at the boundary of the DL, σ is the secondary
electron emission coefficient, and UD > 0 is the poten-
tial jump across the DL. In some cases, however, it is
precisely the structure of the DL and its properties that
significantly govern the plasma behavior. In particular,
they determine the distinctive features of the processes
that occur in a stationary plasma thruster (SPT) [1–3].
These processes are fairly complicated for a number of
reasons. First of all, the distribution function of the
electrons incident on the surface is substantially non-
Maxwellian. Second, in the SPT channel, there are
many plasma electrons with energies ε at which the sec-
ondary electron emission coefficient σ(ε) is larger than
unity. Third, the surface of the dielectric wall of the
channel is not perfectly smooth because, on the one
hand, the dielectric material is coarse-grained, and, on
the other hand, it is subject to erosion by high-energy
electrons. These electrons produce complicated struc-
tures at the dielectric surface with a quasi-period in the
millimeter range [4], which is only one order of magni-
tude larger than the DL thicknesses estimated from the
electron thermal velocity and the electron plasma fre-
quency.

1 σ–( ) jen

eUD

kTe

----------– 
 exp jin=
1063-780X/02/2812- $22.00 © 21017
For SPTs, the construction of adequate DL models
incorporating the above features is aimed primarily at
determining the scales of the near-wall conductivity [5,
6] and of the heat fluxes onto the walls. However, to
determine these scales requires the knowledge of the
distribution function of the secondary electrons. For the
known distributions of the incident electrons, the DL
theory for SPTs should be developed on the basis of the
Vlasov equation for the electron distribution function
(EDF) fe(t, r, v) in a self-consistent electric field E and
a prescribed magnetic field H:

(2)

Equations (2) should be supplemented with the corre-
sponding boundary conditions. In the case of a classical
steady-state DL, the Debye radius in an SPT is one
order of magnitude smaller than the electron Larmor
radius; hence, the effect of the magnetic field on the
electrons can be neglected. Note, however, that, in
many cases, the classical DL1 under the SPT conditions
is likely to evolve into an unsteady structure whose
thickness substantially exceeds the Debye radius rD.
Hence, such a dynamic DL should be calculated over a
region whose length is much larger than @rD, which
can make it necessary to take into account the magnetic
field. Our objective here is to find out the general fea-
tures of DLs for which σ(ε) > 1 without assuming their
steady-state behavior, but making a number of addi-
tional simplifying assumptions. The most important of

1 Debye layers in the case of a steady-state non-Maxwellian EDF
and σ(ε) > 1 were analyzed in [7].
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these, together with the above assumption that the
effect of the magnetic field on the electrons can be
neglected, are the assumptions that the velocity of the
incident ions is constant (εi @ eUD) and that the elec-
trons moving from infinity toward the wall obey a Max-
wellian distribution, as well as the assumption that the
wall surface is smooth. With these assumptions, it is
natural to start by constructing a one-dimensional
model.

2. EQUATIONS OF A ONE-DIMENSIONAL 
MODEL

We consider one of the simplest possible formula-
tions of a one-dimensional problem of the local DL
structure near a dielectric wall. Let x be the coordinate
across the layer (the point x = 0 lies deep in the plasma,
and the point x = L corresponds to the wall position) and
let V be the electron velocity component in the x direc-
tion. The EDF fe(t, x, V) is described by the kinetic
equation

(3)

in which the potential Φ(x) of the electric field E satis-
fies Poisson’s equation

(4)

Since the ions are relatively heavy and have a rela-
tively high energy and the Debye radius is small, we
can assume that the ion density ni and the ion velocity
Vi within the DL are both constant, ni = n0 ≡ const and
Vi = Vi0 ≡ const.

For simplicity, we also assume that the electric field
changes its sign at the dielectric surface and its magni-
tude remains the same. Then, the boundary condition at
the wall can be written as

(5)

where ρ is the surface charge density; the possible sur-
face conductivity of the dielectric is neglected. The
potential at the wall surface is assumed to be zero:

(6)

At the left boundary, we impose the simplest physi-
cally realistic and mathematically noncontradictory
condition for the EDF. Specifically, we assume that, at
x = 0, the electrons with V > 0 obey a Maxwellian dis-
tribution:

(7)

where the parameters ne0 and Te0 are the density and
temperature of the incident electrons.

∂ f e

∂t
-------- V

∂ f e

∂x
-------- e

m
----E

∂ f e

∂V
--------–+ 0,=

∂2Φ
∂x

2
---------- 4πe ni0 ne–( ).–=

E L( ) 2πρ,–=

Φ 0( ) 0.=

f e t 0 V, ,( ) ne0
m

2πTe0
-------------- 

  1/2 mV
2

2Te0
-----------– 

  ,exp=
In order to write the equation for ρ and impose the
boundary condition on fe at x = L, we need to adopt a
certain model for the secondary electron emission at the
wall. We will assume that, when an electron with
energy εp collides with the wall, one of the three events
can occur: (i) the incident electron is absorbed by the
wall (in which case the wall acquires the electron’s neg-
ative charge), (ii) the incident electron knocks one sec-
ondary electron with energy ε out of the wall, and
(iii) the incident electron knocks out two secondary
electrons with energies ε1 and ε2. Let P0(εp) be the prob-
ability of the first event, P1(ε, εp) the probability density
of the second event, and P2(ε1, ε2, εp) the probability
density of the third event. We also introduce the nota-

tion W0(εp) = P0(εp) and denote by W1(εp) = (ε,

εp)dε the probability for one secondary electron to be

produced and by W2(εp) = (ε1, ε2, εp)dε1dε2 the

probability for two secondary electrons to be produced.
Then, by definition, the secondary electron emission
coefficient σ(εp) (the mean number of secondary elec-
trons knocked out of the wall by an incident electron
with energy εp) is equal to

The corresponding normalization condition has the
form

For further analysis, we introduce the probability den-
sity of an event in which exactly two secondary elec-
trons are produced, the energy of one of which being ε:

P2, 1(ε, εp) = P2, 2(ε, εp) = (ε1, ε, εp)dε1.

The equation for the surface charge density ρ can be
written as

(8)

Here, we assume that each ion striking the wall is neu-
tralized there by an electron.

Finally, we need to write the boundary condition for
the EDF at the wall (x = L). To do this, we determine the
number of secondary electrons,

(9)

where we denote by F±(ε) the energy distribution func-
tions of the primary (incident) and secondary (emitted)

P1∫
P2∫

σ εp( ) W1 εp( ) 2W2 εp( ).+=

W0 εp( ) W1 εp( ) W2 εp( )+ + 1.=

P2∫

dρ
dt
------ = eni0Vi0 e V f e t L V, ,( ) W0 ε( ) W2 ε( )–( ) V .d

0

∞

∫–

V F
– ε( ) εd

=  V pF
+ εp( ) εp P1 ε εp,( ) 2P2 1, ε εp,( )+( ) ε,dd

0

∞

∫
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electrons (plus and minus sign, respectively). For the
velocity distribution function, we finally obtain

(10)

The functions characterizing secondary electron emis-
sion were chosen in the following way:2 

(11)

where the parameters P00, ε00, and ε20 should, of course,
be such that W1(ε) ≥ 0. Then, we choose the model
functions that are associated with the spectrum of the
secondary electrons and are consistent with functions
(11). Under the assumption that the total energy of the
secondary electrons cannot be higher than the energy of
the incident electron, we can write

(12)

(13)

where P10 and P20 are functions of εp. Then, we can

readily establish that P10(εp) = W1(εp) and P20(εp) =

W2(εp) and obtain

(14)

Hence, we have derived a closed set of equations and
boundary conditions for determining fe , Φ, and ρ.

2 To the best of our knowledge, these functions have not yet been
determined experimentally.
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3. CALCULATED RESULTS

The calculations were carried out for the main
parameters typical of an SPT. The velocity of the inci-
dent ions was Vi0 ≈ 106 cm/s,3 and the ion density was
ni0 ≈ 1011 cm–3 (ni0 = ne0). In the calculations, we varied
the temperature Te0 of the electrons incident to the wall.

In what follows, it is natural to use the units of mea-
surement that are suitable for our problem. Specifically,
we express the density in units of ne0, the velocity in
units of the characteristic thermal velocity VT0 =
(Te0/m)1/2, the length in units of the Debye radius rD0 =
(Te0/4πe2ne0)1/2, the time in units of t0 = rD0/VT0, the
energy in units of Te0, and the electric field in units of
4πene0rD0. In these units, the basic equations of the
model have the form

(15)

The four significant dimensionless parameters of

the problem are the length of the system l =  (in

units of the Debye radius) and the three parameters P00,

ξ00 = , and ξ20 =  of the secondary electron emis-

sion. The results to be described were obtained for l = 10
and P00 = 0.9. As an example, Fig. 1 shows the second-

3 By this is meant the velocity component normal to the wall sur-
face.
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Fig. 1. Secondary-electron emission functions (1) W0,
(2) W1, (3) W2, (4) σ, and (5) W0 – W2 calculated for ξ00 =
1.5 and ξ20 = 6.0.
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ary-electron emission functions calculated for ξ00 = 1.5
and ξ20 = 6.0.

When solving Eqs. (15) numerically, we integrated
the transport equation by using two difference methods
[8, 9], which were found to yield nearly the same
results.

We begin with the case of “low” temperatures, ξ00 =
1.5 and ξ20 = 6.0 (Fig. 1). Our computations show that,
in this case, the solution relaxes to a steady state. Figure 2
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Fig. 2. Steady-state spatial profiles of the electron density
and electric potential for ξ00 = 1.5 and ξ20 = 6.0.
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Fig. 3. Contours of the EDF in steady state for ξ00 = 1.5 and
ξ20 = 6.0.
illustrates the distributions of the electron density ne(x)
and potential Φ(x) over the interval (0, l). The electron
density at the wall is maximum (ne(l) = 0.3), and the
potential of the wall and its charge are both negative
(Φ(l ) = –0.8 and ρ(l ) = –1.4). Hence, in the case of low
temperatures, we deal with a classical DL, which pre-
vents slow electrons from reaching the wall. The DL is
as thick as several Debye radii. Figure 3 shows the con-
tours of fe(x, V). In steady state, these contours are sim-
ply electron trajectories in phase space (x, V). We can
see that slow electrons are reflected from the Debye
potential barrier, while electrons with thermal energies
and higher reach the wall. All of the secondary elec-
trons emitted from the wall surface gain energy when
passing through the DL. It is of interest to address the
question of the energy flux carried by the electrons to
the wall. To answer this question, we calculated the two
quantities

, (16)

which are the energy fluxes of the incident and second-
ary electrons, respectively. The result is G+ = 0.15 and
G– = 0.05, which indicates that about one-third of the
energy of the incident electrons is carried by the sec-
ondary electrons away from the wall.

At high temperatures, the main parameters behave
in a qualitatively different fashion. Let us consider the
numerical results obtained for ξ00 = 0.25 and ξ20 = 1.0.
In this case, the solution does not relax to a steady state.
After a certain time, which depends on the particular
choice of the initial conditions, the solution becomes
nearly periodic. Figure 4 shows the time evolutions of
the electron density, electric potential, and surface
charge density at x = l. As may be seen, the charge on
the wall is always positive (ρ ≈ 1.9) and the electron
density at the wall, ne(l) ≈ 4, is higher than that in the
plasma. In view of such behavior of the electron den-
sity, the DL described by this solution can naturally be
called the anti-Debye layer. The potential oscillates
with the largest amplitude and changes sign with a
period of about six (recall that time is normalized to the
reciprocal of the characteristic plasma frequency). Fig-
ure 5 shows the spatial profiles of the electron density
and electric potential at different instants in a time
interval approximately equal to the oscillation period.
Figure 6 displays the trajectories of ten electrons start-
ing with different initial velocities at the time t ≈ 610
from the left (five electrons) and right (the other five)
boundaries. A comparison with Fig. 3 allows us to con-
clude that the electron trajectories possess some new
property, namely, that slow secondary electrons can
return to the wall. Figure 7 illustrates how the electron
distribution function depends on V at different points x.
The plots in this figure were calculated for the time at
which Φ(l) > 0. That the distribution function at x = l is
double-humped is explained by the fact that the elec-
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Fig. 4. Calculated time evolutions of (a) the electric potential (0 < t < 700) and (b) the electron density, electric potential, and surface
charge density (650 < t < 700) at the wall (x = l) in the case of high electron temperatures (ξ00 = 0.25 and ξ20 = 1.0).
trons moving toward the wall are accelerated, while
those moving away from the wall are decelerated. The
corresponding time-averaged energy fluxes are equal to
〈G+〉  = 0.81 and 〈G–〉  = 0.40.

The question naturally arises of how the final results
depend on the length l of the computation region and,
accordingly, on boundary condition (7). The calcula-
tions carried out for l = 15 show that the main charac-
teristic property (an increase in the electron density
near the wall) is preserved. Figure 8 shows a represen-
tative spatial profile of the electron density, calculated
for l = 15. The characteristic oscillation frequency also
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
remains unchanged, although the potential at the wall
oscillates with a somewhat larger amplitude. On the
whole, however, the question of how to formulate the
“correct” condition at the left boundary has gone unan-
swered.

Our numerical calculations show that, as the elec-
tron temperature grows, the layer evolves into an
unsteady structure and the effective layer thickness
slightly increases, which somewhat limits the applica-
bility of our model (in which the ion velocity and den-
sity are assumed to be constant) and, especially, of the
above boundary conditions in studying DLs. Note also
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that, in our earlier paper [2], we reported the results of
numerically solving the problem in a formulation that
differs by some details from the above formulation.
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Fig. 6. Trajectories of ten electrons that start from (a) the
left (five electrons) and (b) the right (the other five) bound-
ary at the time t ≈ 610 in an unsteady regime (ξ00 = 0.25 and
ξ20 = 1.0).
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Although the results obtained in [2] and in the present
paper are quantitatively different, the qualitative con-
clusions are the same.
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
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4. CONCLUSION

We have proposed a fairly simple one-dimensional
non-steady-state model that describes the formation of
a DL at a dielectric surface with allowance for second-
ary electron emission. The model is based on the set of
Vlasov–Poisson equations and the equation for the sur-
face charge density.

Our simulations carried out for low temperatures of
the incident electrons revealed the formation of a clas-
sical DL, which screens the surface from slow elec-
trons. The surface itself is found to acquire a negative
charge.

In simulations carried out for high temperatures of
the incident electrons, we failed to achieve a steady-
state regime. The solution obtained is quasi-periodic in
character, the electron density at the wall is higher than
that in the plasma, and the wall surface acquires a pos-
itive charge. The last circumstance necessitates the
development of models that explicitly take into account
the ion dynamics and thus are capable of describing the
possible reflection of ions from the wall.
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
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Abstract—Electrostatic oscillations in a stationary beam double layer are studied in the hydrodynamic approx-
imation. An analysis of the solutions to the linearized equations for perturbations shows that the double layer
in an unbounded plasma may be subject only to convective instability, in which case the perturbations localized
inside the region of the potential jump escape from the plasma without distorting the steady field structure. The
double layer in a bounded plasma is investigated numerically by a particle-in-cell method. It is established that,
as is the case in the Pierce system, the governing role in the stability of the double layer is played by the field
of the charges induced on the surfaces of the conducting electrodes. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The double layer (DL) in a plasma is the region of a
self-consistent potential drop maintained by the appro-
priate distributions of accelerated and reflected parti-
cles. The DLs, which can be either stationary or mov-
ing, have been investigated in many laboratory and
numerical experiments (see reviews [1–4]). Interest in
DLs was greatly stimulated by a paper by Block [5],
who pointed out for the first time that they may play an
important role in the acceleration of particles to high
energies in the Earth’s magnetosphere. Later, the
regions of the potential jump that can be interpreted as
DLs were repeatedly observed in space experiments [6,
7]. At present, DLs are invoked to explain a large num-
ber of astrophysical phenomena [8]: they are consid-
ered as possible mechanisms for energy release in solar
flares, the acceleration of electron beams driving X-ray
emission from pulsars, etc.

The DL structure assumes the presence of charged
particle beams, which makes DLs a priori unstable.
The instabilities may result in an insignificant deforma-
tion of the potential profile in the layer or may even
destroy the layer completely. The instabilities associ-
ated with the growing perturbations that propagate
toward the DL from a low-potential region and the
instabilities in the region of the potential drop are
thought to be the most dangerous [2]. In studying a DL
in an infinite plasma, Wahlberg [9, 10] arrived at the
conclusion about the trapping of plasma electron oscil-
lations in the layer and the development of the absolute
instability. However, since such perturbations should
be carried by charged particle beams to homogeneous
regions of the system, the oscillations are unlikely to be
trapped within the layer. This is confirmed, in particu-
lar, by the results of numerical simulations described in
Section 4 of the present work.

In Section 2, the stability of a stationary DL in an
unbounded plasma is studied theoretically. The main
objective is to clarify whether the instability can occur
1063-780X/02/2812- $22.00 © 21024
in the region of the potential jump. Note that most of the
papers on the stability of DLs dealt with unbounded
plasmas [9–12]. The use of an unbounded plasma
approximation is justified in situations in which the
time required for perturbations to propagate through
the entire system is much longer than the characteristic
time scales on which the field associated with the con-
ducting boundaries grows [13]. If this condition is not
satisfied, then the boundaries can radically change the
nature of oscillations in the layer [14, 15]. The problem
of the stability of a DL in a bounded plasma is dis-
cussed in Section 4 on the basis of the results obtained
in numerical experiments.

2. MODEL OF A BEAM DOUBLE LAYER

According to Shamel’s classification [11], for a
beam DL the particle distributions in phase plane have
the form of isolated beams (see the phase distributions
discussed in Section 4). In homogeneous regions out-
side the beam layer, the electron and ion densities are
the same. Note that stationary DLs of this type are most
often encountered in laboratory and numerical experi-
ments. They belong to the class of so-called strong DLs
[3], in which the potential energy of the particles can be
hundreds of times higher than their thermal energy.

Further analysis will be based on a simplified model
of a beam DL in which the accelerated particles are
described by monoenergetic beams and the reflected
particles obey a Boltzmann distribution. In this model,
Poisson’s equation for the steady-state potential in the
layer has the form [15]

(1)

d
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dX
2

---------- 2 1
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Here, the following notation is introduced: X = xω0/v0e,
ω0 = (4πe2n0/me)1/2, n0 is the plasma density in the
homogeneous regions, v 0e is the electron beam velocity

at the entrance to the DL, Φ = 2eϕ/me  is the dimen-

sionless potential, Ψ = 2eϕ0/me  is the dimensionless

potential amplitude, β = 2Te/me , and Te is the tem-
perature of the reflected electrons. Poisson’s equation (1)
was derived under the simplifying assumption Te = Ti

(where Ti is the temperature of the reflected ions) and

with the use of the Langmuir condition [1] me  =

mi  (where v 0i is the ion beam velocity at the
entrance to the DL), which ensures that the electric field
vanishes at infinity (X  ±∞). The origin of the coor-
dinate system is chosen to be located at the center of the
layer. In order for the trajectories of the accelerated and
reflected particles to be separated in phase plane, it is
also assumed that the condition Ψ/β @ 1 is satisfied.

We define the width of the DL by the relationship

From Eq. (1), the width of a DL with a high potential
amplitude (Ψ @ 1) can be expressed as [15]

(2)

Expression (2) implies that the higher the potential
in a beam DL, the larger the layer width. As will be
shown below, this circumstance has a decisive influence
on the layer stability conditions inside the region of the
potential drop. Note that, in studies on the properties of
DLs, it is often assumed that the parameters δ and Ψ
may change independently of one another. However,
this assumption may yield erroneous results. Thus,
Gedalin et al. [14] investigated the stability of DLs with
an infinitely narrow and infinitely high potential jump.
However, as can be seen from expression (2), such lay-
ers have nothing in common with actual DLs.

3. STABILITY OF A DOUBLE LAYER
IN AN UNBOUNDED PLASMA

3.1. Electron Oscillations in the Region 
of the Potential Drop

In the cold beam approximation, we assign the
dependence exp(–iΩT) (where T = ω0t) to perturbed
quantities in order to write the equations for the elec-
tron perturbation amplitudes in the following dimen-
sionless form:

(3)

(4)

v 0e
2

v 0e
2

v 0e
2

v 0e
2

v 0i
2

δ Ψ
dΨ/dX max
---------------------------.=

δ 0.55Ψ3/4
.≈

d
dX
------- G

1–
V ef GNef+( ) iΩNef– 0,=

d
dX
------- GV ef( ) iΩV ef–

dΦ1

dX
----------– 0,=
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(5)

(6)

(7)

Here, G(X) = ; Vef, r = /v 0e and Nef, r =

/n0 are the perturbed velocities and perturbed den-
sities of the accelerated (fast) and reflected electrons,

respectively; Φ1 = 2eϕ(1)/me  is the perturbed poten-

tial; and  = Nr0exp[(Φ – Ψ)/β] with Nr0 = 1 –

1/ .
The set of Eqs. (3)–(7) differs from the standard set

for a uniform beam–plasma system in that the coeffi-
cients of the linearized equations are coordinate-depen-
dent. In this case, reflected particles are treated as a cold
plasma whose density falls off to zero inside the layer.
However, even with this highly simplified approach, in
which the thermal motion of accelerated particles is
neglected, it is impossible to find a general analytic
solution to Eqs. (3)–(7). For further analysis, it is expe-
dient to switch to the field Eef of the density perturba-
tion of an accelerated electron beam [9]:

Then, Eqs. (3)–(7) reduce to the following equation
for the field Eef:

. (8)

Making the replacements we arrive at the Schrödinger-
type equation

(9)

where

(10)

In the limit X  –∞ (Φ  0), we have Q(X) = 1.
In the case ImΩ > 0, the field Eef increases exponen-
tially to the left of the layer, in accordance with rela-
tionship (8). In an unbounded system, this situation is
physically impossible, because, to the left of the layer,
there is only a homogeneous electron beam. Conse-
quently, the layer may be subject only to a convective
instability with ImΩ = 0. Wahlberg [9, 10] revealed the
absolute instability of electron oscillations in the region
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of the potential drop; however, this absolute instability
is likely attributed to the specific structure of the layer
considered in those studies.

In the high-potential region, the accelerated and
reflected particles form a beam–plasma system, which
is subject to a convective instability with the spatial
growth rate

for

The singularity, specifically, an infinitely large value of
ImK at Ω2 = Nr0, is eliminated by taking into account the
electron thermal motion [16]. In this case, a DL in an
unbounded plasma may remain stable because the per-
turbations in the region where the steady-state field is
localized are carried away by a flow of accelerated par-
ticles. The layer can be destroyed by an instability
occurring in the region of the potential drop under the

condition Ω2 < (X). In this case, we can distinguish
between two possible situations. If Ω2 is close to Nr0,
then the spatial growth rate can be large but the region
where the above condition holds is narrow if all parti-
cles that move from the infinitely remote region X = +∞
toward the layer are reflected. This situation occurs
when Ψ @ β; accordingly, the perturbations do not have
enough time to grow to any significant amplitude. If Ω2

is not too close to Nr0, this region is longer and may
even be comparable in length to the DL. However, from
quantum mechanics (the phenomenon of tunneling
through the potential barrier), it is known that the solu-
tions to Schrödinger equation (9) that describe the spa-
tial distribution of perturbations change insignificantly
in the region of a sharp potential drop. In the particular
case at hand, this can be shown by expanding the func-

tion (X) in a series around the point X0, where

(X0) = Ω2. With this expansion, Eq. (9) becomes

The general solution to this equation can be
expressed in terms of the modified Bessel functions
[17]:

We see that the general solution is nearly constant
around the point y = 0 and is proportional to

∝ exp( ) for y  +∞. Consequently, the
characteristic size of the region where the perturbation
grows is δi = 1/4c. For a large-amplitude DL, we take
into account expression (2) to obtain δi . 2Ψ7/4/β @ δ,
which indicates that the perturbation does not have
enough time to grow significantly in the region of the
potential drop. This conclusion also applies to a DL

Im K
1

G
3

Nr0/Ω2
1–( )

------------------------------------------= Ω2
Nr0.<

Ner
0( )

Ner
0( )

Ner
0( )

d
2
Ae

dy
2

-----------
c
y
--Ae+  = 0, y = X X0, c

1–
–  = G

3Φ'/β X X0= .

Ae y C1I1 4cy( ) C2K1 4cy( )+[ ] .=

y 4cy
with a low potential, for which we also have δi .

Ψ/(4 β) @ δ.
For X > X0, the second term in expression (10) is

small and positive, thereby reducing the spatial growth
rate of perturbation associated with the first term. We
can convince ourselves of this by setting G' . ΨΦ–1/2/2δ
and G'' . –Ψ2Φ–3/2/4δ2 for Ψ @ 1 and G ' . Ψ/2δ and
G '' . –Ψ2/4δ2 for Ψ ! 1.

Hence, in the region of the potential drop, the beam
cannot be convectively unstable. The electron oscilla-
tions can grow only in the high-potential region to the
right of the layer.

3.2. Stability of a Double Layer with Allowance
for Ion Motion

We start by considering plasma oscillations in
homogeneous regions on both sides of the layer. In
these regions, the solutions to the linearized equations
for perturbations are proportional to exp[i(KX – ΩT)],
and the corresponding dispersion relations for three
beams to the left and right of the layer have the form

(11)

(12)

where µ = me/mi  and σ = 1/ .
The system under consideration may be subject to

absolute instability if Eqs. (11) and (12) with ImΩ > 0
have the same solutions for real values of K. Since the
left-hand sides of these equations reduce to polynomi-
als of degree 6 in the variable Ω , the equations can be
solved only numerically. Solutions describing the abso-
lute instability were sought by calculating the deviation
of the frequency Ω– to the left of the DL at fixed K val-
ues from the frequency Ω+ to the right of the DL for all
possible values of K:

Figure 1 shows the plots of the minimum value of
δΩ versus K in a homogeneous low-potential region.
The plots were calculated for two branches of solutions
to Eqs. (11) and (12) with ImΩ > 0 at Ψ = 10 and µ =
5 × 10–4. We can see that δΩmin vanishes only in the triv-
ial case K = 0. An analogous situation occurs at other
values of Ψ and µ. We thus can conclude that, in an
unbounded plasma with mobile ions, the instability of a
beam DL is always convective in nature. Note that
familiar criteria for determining the type of instability
[13, 16] are inapplicable to DLs because of their essen-
tial nonuniformity. The Buneman convective instability
in a homogeneous low-potential region in an
unbounded plasma should in principle lead to the

2
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destruction of the layer. In a bounded plasma, the sta-
bility of the DL is governed by the boundary conditions
on the field perturbations and by the sources injecting
particles into the system (see Section 4).

In studying the Buneman instability in the region of
the potential drop in the case of a DL with a high poten-
tial, we can neglect the effect of reflected particles and
exclusively consider the interaction of the electron and
ion accelerated beams. The linearized equations for ion
perturbations can be written in the form

(13)

(14)

where F(X) = , Vif = /v0e, and Nif =

/n0. Keeping in mind that the instability is convec-
tive in nature, we assume that the frequency Ω in
Eqs. (13) and (14) is real.

For electron perturbations, we make replacement
(8). For ions perturbations, we make the replacement

where dFif /dX = Nif . Then, using Eqs. (3), (4), (13), and
(14), we arrive at the following set of equations:

(15)

(16)

where Qe = G–3, Qi =

F–3, θ = Ω , and Θ =

.

In the central region of the layer, the functions
Qe, i (X) change insignificantly because G ' and F ' are
nearly constant in this region and G '' and F '' are nearly
zero, in which case we have Qe(X = 0) = Qi(X = 0) = Q0.
Figure 2 shows the dependence Qe(X) obtained by
numerically solving Poisson’s equation (1) with Ψ =
5.0 and β = 0.2.

Inside the DL, Eqs. (15) and (16) can be regarded as
the equations of two oscillators having the same fre-

quency  and interacting parametrically at a slowly
varying frequency proportional to Ω . For Ψ @ 1, we
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perform an analysis similar to that carried out in the
case of electron oscillations (see Section 2) and take
expression (2) into account to obtain the approximate
expression Q0 ≈ 5.3Ψ–3/2. In this case, the spatial period
of “natural” oscillations in the X direction in Eqs. (15)
and (16) is equal to

In order for a resonant interaction between the oscil-
lators to occur in the system under consideration, the
amount by which the variable X changes should be sev-
eral times larger than L0. However, inside the layer, X
varies by no more than δ, which satisfies the condition
δ ! L0 by virtue of expression (2). Consequently, spa-
tial oscillations cannot grow in the region of the poten-
tial drop. It may be said that the Buneman convective
instability does not have time to develop.

L0 2.7Ψ3/4
.≈

0.04

0.02

0 0.4 0.8 1.2

δΩmin

K

Fig. 1. Dependence of δΩmin on the wavenumber in the low-
potential region of a DL for Ψ = 10 and µ = 0.0005.

0.2

0.1

0 2 4–2–4

Qe

X

Fig. 2. Dependence of Qe on the coordinate for Ψ = 5, β =
0.2, and Ω = 0.5. Here and in subsequent analogous figures,
the dotted curve represents the initial profile of the steady-
state potential.



1028 TURIKOV
4. NUMERICAL SIMULATIONS OF A DOUBLE 
LAYER IN A BOUNDED PLASMA

The linear theory of the stability of a DL in a
bounded plasma was constructed in [14, 15]. However,
the conditions that were used in those papers to join the
solutions in the region of the potential jump may be jus-
tified only in the case of a small-amplitude DL (Ψ < 1).
Because of serious mathematical difficulties, the prob-
lem of the stability of a DL in a bounded plasma cannot
be solved in the general case even in a linear approxi-
mation. That is why it is necessary to carry out numer-
ical experiments, which is a common practice in such
situations.

In most papers devoted to numerical simulations of
DLs, the problem is formulated in the following two
main ways. In the first way, it is assumed that the elec-
tron and ion beams are injected into the system from
two opposite electrodes with a given potential differ-
ence [18, 19]. The second way supposes that the plasma
between the electrodes is initially homogeneous and
nonmoving and that the electrodes are held at a constant
potential applied to them at the initial instant [20, 21].
Both formulations make it possible to analyze the com-
plicated transient processes accompanying the forma-
tion of a DL.

In the present paper, numerical simulations are
aimed at investigating the stability of a DL; accord-
ingly, the formulation of the problem differs from the
above two traditional formulations. Specifically, the

2
0

4 6 8 10 12 14

5

ϕ

V

0

V

0

2

–1

–0.2

X

(e)

(i)

Fig. 3. Initial perturbation in the region of the potential drop
for Ψ = 5, β = 0.5, µ = 0.01, and L = 14: (e) phase plane of
the electrons and (i) phase plane of the ions.
problem was solved by a one-dimensional version of
the particle-in-cell method with the following boundary
conditions for the potential at the surfaces of the con-
ducting electrodes:

The initial potential profile was formed self-consis-
tently by numerically generating the initial particle dis-
tribution in phase plane in accordance with the DL
model described in Section 2. This formulation of the
problem ensures that there are no perturbations in the
initial stage of simulation and also makes it possible to
follow the evolution of a DL during the development of
instability. In simulations, the initial particle distribu-
tion was maintained by particle sources at the ends of
the system. The accelerated particles were injected at
fixed velocity and density. The source of the reflected
particles formed a directed particle flow described by a
half-Maxwellian distribution function. The half-Max-
wellian distribution was generated by using the “quiet
start” model [22] in order to reduce the fluctuations of
the space charge associated with random particle posi-
tions in the cell. The time step ∆T was varied from 0.01
to 0.25, and the spatial step ∆X was varied from 0.05 to
0.5 (the dimensionless variables T and X were defined
above). The electron-to-ion mass ratio µ = me/mi was
varied from 0.0005 to 0.01. The number Nc of particles
in the cell was from 20 to 150, and the number of cells
was from 50 to 200.

Numerical experiments show that the beam of accel-
erated particles carries away initial perturbations local-
ized in the region of the potential jump without distort-
ing the steady-state field distribution (Figs. 3, 4). This
result confirms the theoretical conclusions reached in
Section 3 when analyzing the stability of a DL in an
unbounded system. In this case, the conducting bound-
aries of the electrodes do not have time to come into
play because of the short time it takes the perturbation
to traverse the layer. The system turns out to be
extremely stable against such perturbations, even when
their amplitude is comparable with the amplitude of the
steady-state potential in the layer. On longer time
scales, the system behaves as if there were no initial
perturbations within the layer. In this case, the charges
induced on the conducting electrode surfaces play a
decisive role in the evolution of the system, as is the
case with the Pierce instability of an electron beam
between the electrodes [23].

In the case of sufficiently narrow homogeneous
regions, a virtual cathode (a minimum in the electric
potential) accompanied by the appearance of reflected
electrons forms near the electrode with the lower poten-
tial in the nonlinear stage of the instability. This case is
illustrated in Fig. 5. The initial profile of the steady-
state potential is seen to be distorted insignificantly. On
longer time scales, the distributions to which the field
and the particles have relaxed remain unchanged. Such
a structure in the nonlinear stage of the Pierce instabil-

φ X  = 0( ) 0, φ X  = L( ) Ψ.= =
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Fig. 4. State of a DL at time T = 3 for the initial perturbation
shown in Fig. 3.
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Fig. 6. Formation of the modulated distributions of the
potential and of the velocities of free electrons in the low-
potential region of a DL at time T = 40 for L = 60, the dis-
tance from the cathode to the layer center being d = 48. Here
and in the subsequent figures, the values of the parameters
Ψ, β, and µ are the same as those in Fig. 5.
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Fig. 5. Formation of a virtual cathode in the low-potential
region of a DL at time T = 75 for Ψ = 20, β = 0.5, µ =
0.0005, and L = 16.
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Fig. 7. Explosive increase in the potential in the low-poten-
tial region of a DL at time T = 55.
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ity was also captured numerically by Burinskaya and
Volokitin [24]. The formation of the structure is related
to the additional field generated by the induced charges.

As the region with a low potential becomes wider,
the instability begins to proceed in precisely the same
way as in a long uniform system consisting of an elec-
tron beam and mobile ions [25]. After a time interval of
about the transit time of free electrons through the
region with low potential, the modulated distributions
of the field and the electron velocities form to the left of
the layer (Fig. 6). In this stage, a fairly intense ion
motion indicates the development of a Buneman insta-
bility in a bounded plasma system. However, this insta-
bility differs significantly in properties from the con-
ventional Buneman instability in an unbounded layer
because the spatial scales of structures like those shown
in Fig. 6 coincide with the scales characteristic of the
case of immobile ions. Consequently, the initial stage
of the instability is dominated by the electron motion in
the field of induced charges, as is the case in the Pierce
system. On longer time scales, the ions are entrained in
plasma oscillations; as a result, the instability growth
rate increases. As the amplitude of the perturbation
grows, the electrons become trapped in the potential
wells. Then, the potential in the zones around the max-
ima of the modulated distribution increases in an explo-
sive manner (Fig. 7), as is the case in a uniform system
investigated in [25]. The perturbations grow most
intensely near the cathode. Further, the zone where the
potential has originally increased in an explosive man-
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Fig. 8. Nonlinear stage of the beam instability in the high-
potential region of a DL at time T = 11 for L = 100 and d =
12.
ner expands and overlaps with the similar zones arising
later. As a result, the potential increases to an amplitude
of about Ψ over the entire region between the cathode
and the layer and the initial stationary structure is
destroyed completely. Numerical experiments show
that, in the case of a long region with a low potential,
the lifetime of a DL may be as long as about the ion
plasma period, which is in agreement with the data
from laboratory and satellite measurements [3, 4, 6, 7].

The beam instability to the right of the DL was ana-
lyzed by modeling a system with a short low-potential
region. A high-potential region whose length exceeds a
certain limiting length is subject to the beam instability.
The limiting length increases with increasing tempera-
ture of the reflected electrons (the parameter β) and
with increasing potential amplitude Ψ. The vortices
arising in phase plane in the strongly nonlinear stage of
the instability destroy the layer (Fig. 8). Although the
right boundary of the system is transparent to the accel-
erated electrons, it reflects the field perturbations,
thereby preventing their convective transport away
from the layer. The characteristic time scales on which
the instability develops in this region are about the
plasma period of the reflected electrons, which is much
shorter than the corresponding time scales in the low-
potential region. Hence, we can conclude that, from the
standpoint of increasing the lifetime of a DL, situations
in which the region of the potential drop is close to the
electrode with the higher potential are more favorable.

5. CONCLUSION

The stability of a beam DL has been investigated
both theoretically and numerically. It has been shown
that the instability of a beam DL in an unbounded
plasma is of a convective nature. The electron perturba-
tions localized in the region of the potential jump
escape from it without distorting the initial stationary
DL structure. The Buneman convective instability does
not have time to develop inside the DL because the
electrons and ions are efficiently accelerated by the
steady-state field of the layer.

The problem of the stability of a DL in a plasma
between two electrodes held at fixed potentials has
been studied by numerical simulations. It has been
shown that this plasma system is stable against pertur-
bations in the region of the potential jump even when
the perturbation amplitude is comparable with the
amplitude of the steady-state potential in the layer. In
the case of short homogeneous regions, the formation
of a virtual cathode near the electrode with the lower
potential is accompanied by an insignificant distortion
of the steady-state potential, in which case the overall
DL structure remains unchanged. It has been estab-
lished that, in a system with a long low-potential region
and a short high-potential region, the instability is asso-
ciated exclusively with the field of the charges induced
on the surfaces of the conducting electrodes. The sce-
nario for instability growth is analogous to that in the
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
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case of a bounded homogeneous plasma with an elec-
tron beam. It has been concluded that the lifetime of a
DL in this system may be as long as the ion plasma
period.
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Abstract—The global characteristics of an ATON stationary plasma thruster operating on xenon and krypton
are investigated. It is shown that, with krypton, the thrust at the same mass flow rate of the working gas is greater
and the efficiency is somewhat lower than those with xenon. An efficiency of ~60% was achieved with krypton
for the specific impulse attaining 3000 s. The jet divergence is ~ ±22° for krypton and ~ ±11° for xenon. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In [1–3], the principles of operation of a stationary
Hall-current plasma accelerator of the second genera-
tion (an ATON stationary plasma thruster) with unsur-
passed characteristics were described. When operating
with xenon at an input power of ≥750 W, the thruster
efficiency can attain 70%, which is 15% higher than the
maximum efficiency achieved in conventional station-
ary plasma thrusters (SPTs). The jet divergence in the
ATON SPT is significantly smaller than that in conven-
tional plasma accelerators, such as M-70 and SPT-100.
Thus, the divergence half-angle in the ATON SPT is as
small as ±11°, whereas in conventional accelerators
(SPT-100), it is ±45° [4].

Such high parameters of an ATON SPT operating
with Xe were achieved by creating a proper electric
potential profile in the annular channel in order to
ensure the required focusing of ions in the channel and
to separate the plasma flow from the channel wall in the
acceleration region.

In recent years, much attention has been attracted to
the operation of SPTs with other working gases. Inter-
est in this problem stems from the high cost of Xe and
its limited production in the world.

The studies were carried out in an ATON SPT of the
A-3 type, which is shown schematically in Fig. 1. The
inner diameter of the outer insulator was 60 mm, the
channel length was 24 mm, and the gap width was b =
12 mm. The experiments were performed in the input
power range W ≤ 2.0 kW. With each working gas, the
accelerator operated under optimum conditions, which
were characterized by the minimum discharge current.
The pressure in the chamber was 10–4 torr.

This paper is aimed at studying the local and global
characteristics of an ATON SPT operating with Xe (or
with Kr as an alternative working gas).
1063-780X/02/2812- $22.00 © 1032
2. SCALING LAW

According to the scaling law [5, 6], an accelerator
operating with the same working gas Xe but with dif-
ferent mass flow rates operates in the same (with
respect to the global characteristics) mode if the value
of the parameter α,

(1)

is the same. Here,  is the mass flow rate of the work-
ing gas, S is the channel cross-sectional area, and b is
the channel width.

As was shown in [5, 6], the parameter α can be
rewritten in the form

(2)

α ṁ
S
----b,≡

ṁ

α 1

Λ*
-----------

εT0

β2
-------- 

  1/2

,=

Gas 1

2 4

3

L = 24 mm

30
 m

m‚

Fig. 1. Schematic of an A-3 SPT: (1) gas distributor,
(2) anode, (3) cathode, and (4) magnetic coils.
2002 MAIK “Nauka/Interperiodica”
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where Λ∗  = Λδ; Λ = λion/L is the ionization length; L is
the effective channel length over which the electric field
is sufficiently high; δ = ε/(eUd), ε being the ion energy
cost, which is close to the quantity ∆U that determines
the energy spent on ionization and other losses; Ud is
the discharge voltage; T0 is the temperature of the work-
ing-gas atoms at the inlet into the SPT channel; and
β(Te, A) = 〈σv 〉 is the ionization coefficient, which
depends on the electron temperature Te and the sort of
the working gas. However, expression (2) is inconve-
nient to use. For this reason, we clarify its physical
meaning and put it into a practically usable form.
Indeed, it follows from expressions (1) and (2) that

(3)

Hence, the mass flow rate of the working gas is a uni-
versal function of the main accelerator parameters Ud,
b, S, and T0. Apparently, this conclusion is accurate to
within β. Since β depends only slightly on the proper-
ties of the working gas and, moreover, the electron
energy distribution function and its time evolution in
the accelerator channel are not known with certainty,
the conclusion about the equality of the mass flow rates
for thrusters that have the same sizes, but operate with
different working gases is accurate to a factor of 2.

3. GLOBAL PARAMETERS OF THE A-3 MODEL

3.1. Current–Voltage Characteristics 
and Discharge-Current Fluctuations

Figure 2a shows the static current–voltage charac-
teristics of a model plasma accelerator operating with
Xe and Kr. The characteristics were obtained under the
optimum (with respect to the magnetic field) operating
conditions at the same mass flow rate  = 2.3 mg/s. It
is seen from the figure that, in the voltage range 250 V ≤
Ud ≤ 400 V for Xe and 300 V ≤ Ud ≤ 500 V for Kr, the
discharge current depends only slightly on the voltage,
which indicates the high degree of ionization of the
working gas.

For Xe in the above voltage range, the discharge
current either is equal to the mass current  = manav aS
expressed in amperes (the subscript “a” denotes atoms
of the working gas) or somewhat exceeds the value of

 because of the presence of a “transit” electron cur-
rent and a certain fraction of doubly charged ions (10–
12%).

When Kr is used as a working gas, the discharge
current is substantially higher than the mass current.
This may be attributed to the worse focusing of the
plasma flow in the channel as compared to the case of
Xe and, consequently, to the different near-wall con-
ductivity, which affects the discharge current [7].

ṁ
S
----b 

 
2 eUd

β2
---------T0∼ const.=

ṁ

Jṁ

Jṁ
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When operating with both of these gases, the dis-
charge-current fluctuations in the frequency range 1–

300 kHz are  ≤ 0.1–0.2.

3.2. Thrust Characteristics

The test device was equipped with a torsion three-
filament balance with a relative measurement error
of ≤ ±3%. Figure 2b shows the results of thrust mea-
surements at the mass flow rate  = 2.3 mg/s for Xe
and Kr. It can be seen from the figure that, at the same
mass flow rate, the thrust for Kr is greater than for Xe.
This is explained by the fact that, at the same mass flow
rate and a sufficiently high degree of ionization of the
working gas (see Fig. 2a, illustrating the current–volt-
age characteristic of the discharge), the number of the
created ions is inversely proportional to the atomic
mass, and, consequently, the number of Kr ions produc-
ing the thrust is greater than the number of Xe ions. The
curves describing the thrust as a function of the mass
flow rate and the discharge voltage can be approxi-
mated by the formula

(4)

A comparison of the variations in F for Xe and Kr
shows that the value of θ is the same for both gases; i.e.,
in spite of a smaller fraction of doubly charged ions in

J̃ /J

ṁ

F θ 2e Ud ∆U–( )/M.=

2.0
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Fig. 2. (a) Current–voltage characteristics of the discharge
and the dependences of (b) the thrust, (c) efficiency, and
(d) specific impulse on the discharge voltage at  =
2.3 mg/s for Kr (crosses) and Xe (circles).

ṁ
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the case of Kr, their contribution to the thrust is the
same as that for Xe.

Estimates of ∆U [1] (which can be regarded as the
average potential of the ionization region) for Xe at θ ~ 1
give the value ∆U = 40 V. For Kr, we have ∆U = 60 V.
As is known, this quantity is related to the ionization
loss power. As was expected, the ionization losses in Kr
are higher, because the ionization energy for Kr is
higher than for Xe.

Although the thrust for Kr is higher than for Xe, the
thruster efficiency for Kr is lower (Fig. 2c). This is a
consequence of the fact that the mass current for Kr is
substantially higher than for Xe, whereas the ionization
losses for Xe are lower. Figure 2d shows the specific
impulse as a function of the discharge voltage for Xe
and Kr at the same mass flow rates. It can be seen from
the figure that the specific impulse of a thruster operat-

Table 1

, mg/s 1.5 2 2.3 2.5

Ud , V 400 400 400 400

Jp , A 2.5 3.3 3.9 4.2

F, g 3.6 5.3 6.4 7.25

η, % 42 51 55 60

F/ g, s 2400 2650 2780 2900

ṁa

ṁ

20

300

VU, V∆, VF, 103 m/s

Ud, V
400 500200

25

30

35

1

2

3

1

2

3

Fig. 3. Dependences of (1) VU, (2) V∆, and (3) VF on the dis-

charge voltage at  = 2.3 mg/s for Kr (crosses) and Xe (cir-
cles).

ṁ

ing with Kr is substantially higher, which can be attrib-
uted to the higher velocity of the plasma flow.

As the voltage increases from 300 to 500 V, the
thruster efficiency increases from 52 to 58%; the spe-
cific impulse at 500 V attains 3240 s. Table 1 presents
the global characteristics of a thrust operating with Kr
for the same voltage and different mass flow rates.
Thus, for Ud = 400 V and the mass flow rate  =
2.5 mg/s, the thruster efficiency attains 60% for a spe-
cific impulse of 2900 s.

From the known values of the thrust F and the mass
flow rate , we can determine the average mass flow
velocity:

(5)

The values of VF for Xe and Kr are compared in
Fig. 3. The figure also shows the velocities of singly
charged ions,

(6)

calculated from the total voltage applied between the
anode and cathode of the thruster and from the potential
difference between the ionization region and the cath-
ode. It is seen from the figure that the difference
between VF and V∆ for Kr is larger than for Xe. This
indicates that the fraction of doubly ionized ions for Xe
is greater than for Kr.

4. LOCAL PLASMA PARAMETERS
IN THE CHANNEL AND JET

OF THE ACCELERATOR

The local plasma parameters in the channel and the
jet of the accelerator were measured with a plane face
probe. The probe size was chosen such that the probe
only slightly perturbed the plasma. For this reason, the
measurements in the channel were performed with a
face probe with a working surface area of S = 0.2 mm2.

The local plasma parameters in the accelerator
channel were measured with the help of five wall
probes located at distances of 5, 15, 20, and 25 mm
from the anode. In the plasma jet, the measurements
were performed with a similar probe that could be dis-
placed in the longitudinal and radial directions (0 ≤ z ≤
30 cm, 0 ≤ r ≤ 20 cm).

Figure 4(I) shows the axial profiles of the plasma
potential, electron temperature, and electron density in
the channels of accelerators operating with Xe and Kr
at  = 2 mg/s and Ud = 300 V. It is seen that, for Kr, the
electron temperature in the ionization region is lower
and the electron density ne is higher than for Xe. The
latter may be explained by the fact that, at the same
mass flow rates, the number of Kr atoms entering the
accelerator channel is greater than that of Xe atoms by

ṁ

ṁ

VF
F
ṁ
---- θ 2e U ∆U–( )/M.= =

VU
2eU
M

----------, V∆ 2e U ∆U–( )/M,= =

ṁ
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Fig. 4. Distributions of the (a) plasma potential, (b) electron temperature, and (c) electron density (I) in the channel and (II) in the
jet behind the outlet of the accelerator at  = 2 mg/s and Ud = 300 V for Kr (crosses) and Xe (circles); the anode and the accelerator
outlet are located at z = 0 and 25 mm, respectively.

ṁ

a factor of nearly 1.6, whereas the cross section for
electron-impact ionization for Xe in the given electron
energy range is greater than that for Kr by a factor of
1.5.

It can also be seen that, for Kr, the accelerating
potential is somewhat lower than for Xe. In the case of
Xe, the plasma potential remains constant at a distance
of 12–13 mm from the anode and then drops. This
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
means that, in this case, the electric field occupies a
region of length ~13 mm. For Kr, the potential is con-
stant at a distance of 10–11 mm from the anode and
then drops. In this case, the electric field occupies a
region of length ~15 mm.

The electron temperature distribution in both cases
is bell-shaped. The full width at half-maximum corre-
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sponds to the size of the region occupied by the electric
field.

Figure 4(II) shows the radial profiles of the plasma
potential, electron temperature, and electron density in
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Fig. 5. Distributions of the potential, electron temperature,
and electron density along the channel (the anode is located
at z = 0) for Kr at (a)  = 2 mg/s and Ud = 400 V, (b)  =

2.3 mg/s and Ud = 400 V, and (c)  = 2.3 mg/s and Ud =
300 V.

ṁ ṁ

ṁ

Table 2

, mg/s 2 2 2.3 2.3

Ud , V 300 400 300 400

±α/2 27° 25° 24° 22°

ṁa
the accelerator jet at a distance of z = 30 cm from the
outlet in accelerators operating with Xe and Kr at  =
2 mg/s and Ud = 300 V. A comparison of the local
parameters of accelerators operating with Kr and Xe
shows that the electric potential and the electron tem-
perature at the jet axis (r = 0) are higher for Kr. This
means that, for Kr, these parameters decrease more
slowly with distance from the outlet.

Figure 5 shows the axial profiles of the local plasma
parameters in the channel of an accelerator operating
with Kr in different regimes. It can be seen that, as the
voltage is increased at a constant mass flow rate, the
size of the anode region where the potential is constant
does not change and only the electric field in the ioniza-
tion region increases. As the mass flow rate is increased
at a constant discharge voltage, the size of the anode
region and the field strength in the ionization region
remain unchanged, whereas the gradient of the poten-
tial decreases substantially near the anode region and
the outlet. The variations in the mass flow rate and the
discharge voltage do not affect (within the measure-
ment error) the electron temperature in the ionization
region. At the same time, the charged-particle density
increases proportionally to the mass flow rate, the volt-
age being kept constant.

The divergence of the plasma jet was measured with
a double electric probe [1]. The probe was located at a
distance of z = 20 cm from the outlet of the accelerator
and could be displaced in the radial direction. For every
operating regime, we measured the profile of the ion
current onto the probe. These curves were then used to
calculate the half-angle of the jet divergence for Kr. The
value of α/2 was determined from the condition that
95% of the ion flow fell within the cone with the vertex
angle α. The data on α/2 are presented in Table 2.

It is seen from the table that the half-angle of the jet
divergence varies from ±22° to ±27°, depending on the
operating conditions. This value is substantially greater
than that for an accelerator operating with Xe, where
the half-angle of the jet divergence is ±11°.

5. CONCLUSIONS

The experiments have shown that, in accordance
with the scaling law, a stable high-performance SPT
operation can be achieved with Kr. In this case, the fol-
lowing effects have been observed:

(i) At the same (as for Xe) mass flow rate of the
working gas, the specific impulse (thrust) is greater
than with Xe.

(ii) The efficiency of a thruster operating with Kr is
lower than that operating with Xe. This is explained by
the higher ionization energy of Kr and, hence, the
higher energy cost of an ion.

(iii) The jet divergence obtained with Kr is greater
than that with Xe. However, this disadvantage appar-

ṁ
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ently stems from the nonoptimized operation of the out-
put section of the source (the outlet–cathode region).
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Abstract—In measuring the charge and energy spectra of the ions of a single-element laser plasma, in addition
to thermal ions, fast multicharged ions are recorded that are accelerated by the electric field of laser radiation
in the region of the critical plasma density. The charge and energy spectra of Co ions with the charge numbers
z = 1–3 are measured at laser intensities of q = 5 × 1011–1012 W/cm2. The energy spectra of these ions are broad
and are located on the high-energy side (zmax = 3, E > 5.0 keV) with respect to the thermal ions (zmax = 9, E <
4.0 keV). The increase in q to 1014 W/cm2 results in an increase in the charge number of both thermal and fast
ions. © 2002 MAIK “Nauka/Interperiodica”.
The studies of the distribution of the absorbed laser
energy in a single-element plasma, as well as the charge
and energy spectra of the accelerated (fast) ions, are
important for the problem of laser plasma heating. The
results of these studies are of interest for creating effi-
cient multicharged ion sources, local element analyz-
ers, nonlinear optical media, and plasma lasers. A large
number of theoretical and experimental studies have
been devoted to investigating the charge and energy
characteristics of thermal ions in a single-element laser
plasma [1–6]. As for fast ions, the integral (over charges
and energies) characteristics of the jet expansion and
the velocity distributions of the fast light CD2, CH2, and
SiO2 two-element plasma ions at q = 5 × 1013–
1015 W/cm2 were studied in [1, 7–12]. It was found that
the proton (H+) velocity (3 × 108–7 × 108 cm/s) is higher
than the velocities of C6+, C5+, C4+, and C3+ ions (108–
3 × 108 cm/s), the velocity distributions of different car-
bon ions are similar to each other, and the distribution
functions of carbon ions cut off abruptly near v  ≈ 4 ×
108 cm/s. Note that the generation of fast ions in a two-
element laser plasma depends on the plasma element
composition. Studying the mechanisms for the produc-
tion of fast and thermal ions in a single-element plasma
is important for understanding the features of the spec-
tra of the fast ions. These data allow a deeper insight
into the mechanisms for the interaction of laser radia-
tion with a single-element plasma. However, the ques-
tion of the charge and energy spectra of fast ions in a
single-element laser plasma still remains open. Thus, in
this study, in addition to the charge and energy spectra
of thermal ions, the corresponding spectra of fast ions
in a single-element laser plasma are studied at moderate
intensities of laser radiation (q = 108–1014 W/cm2).

The measurements were carried out with a laser
mass-spectrometer [6] that consisted of a laser, an ion
1063-780X/02/2812- $22.00 © 21038
source chamber, a time-of-flight analyzer with an elec-
trostatic mass-spectrometer, a vacuum chamber, and a
recording system. In the experiments, we used a neody-
mium laser with a pulse energy of ~5 J and pulse dura-
tion of 50 ns, which enabled a laser intensity of qmax =
1014 W/cm2 on the target surface. After the amplifying
stage, a polarization stack was placed; the degree of
laser polarization behind the stack was no lower than
95%. A lens with a focal length of 9 cm focused the
laser radiation into a spot ~10 µm in diameter. The
angle of incidence of laser radiation with respect to the
normal to the target surface could be varied in the range
α = 18°–85°. The scatter in the laser pulse energy was
10–15%. The residual vacuum in the system was
~10−6 torr. Cobalt plates that were previously employed
in the studies of thermal ions were used as single-ele-
ment targets. At some distance from the target, a system
for analyzing the mass, charge, and energy spectra of
multicharged laser-plasma ions was placed. The ana-
lyzing system consisted of a dynamic 150-cm-long
time-of-flight analyzer and an electrostatic mass-spec-
trometer with a resolution of ∆m/m ~ 0.01. In contrast
to [13, 14], the system allowed the study of both ther-
mal and fast ions in a wide energy range. The dynamic
time-of-flight analyzer was used to separate ions with
different velocities. During the plasma expansion into a
vacuum, the plasma density decreased to a value of
<109 cm–3, at which plasma ions could be separated
from electrons by the electric field of the analyzer; the
current density in the analyzer decreased to a value of
<10–7 A/cm2, at which the effect of the ion-beam space
charge after plasma separation could be neglected. The
laser-plasma ions were recorded in the direction along
the target normal. Every reading was averaged over five
laser pulses and was processed with a PC. Note that, in
[13], a method was proposed for controlling the relation
between the parameters of the initial (nonlaser) plasma
002 MAIK “Nauka/Interperiodica”
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and the formed ion beam; the method was based on the
separation of the ions and electrons in a rarefied plasma
by applying an electric field of 70 kV/cm. Based on this
method, in [14], an experimental facility was created
that allowed a complex study of the laser-plasma
parameters, including mass-spectrometer measure-
ments of the ion component, as well as the measure-
ments of the reflection coefficient and the spectra of
soft X radiation. A technique used in the our study dif-
fers from that used in [13, 14] not only in the methods
for the ion-beam formation, but also in the means for
recording and investigating multicharged ions (here, we
use a dynamic mass-spectrometer instead of a static
Thomson mass-spectrometer used in [13]); all this can
affect the experimental data on both the thermal and the
fast multicharged laser-plasma ions.

Studies of the charge and energy spectra of Co ions
in the laser-intensity range q = 108–1012 W/cm2 show
that the laser plasma contains thermal and fast multi-
charged ions that differ in energies and maximum
charge numbers. Note that, at laser intensities of q = 5 ×
1011 W/cm2 and the angle of incidence α = 18°,
together with the thermal Co ions, fast Co ions were
clearly observed in the charge and energy spectra. In
addition to Co ions, all the mass spectra also showed
single-charged C+ and O+ ions of impurities adsorbed
on the target surface. It was shown experimentally that
the fast-ion spectra depend on the polarization of laser
radiation. Figure 1 presents typical energy spectra of
the thermal and fast multicharged Co ions for q =
1012 W/cm2, α = 18°, and p-polarized laser radiation. It
can be seen from the figure that the ion energy spectrum
can be conventionally divided in three ranges. In the
first energy range (0.05 < E < 4.0 keV), there are ther-
mal plasma ions with a maximum charge number of
zmax = 9. For q = 1012 W/cm2 and s-polarization, the
maximum charge number is zmax = 7. The lower the
laser intensity, the lower the maximum charge number
zmax of the thermal ions. At laser intensities as low as
q = 3 × 1011 W/cm2, the maximum charge number is
zmax = 5 independently of laser polarization. In the sec-
ond energy range (4.0 < E < 5.0 keV), regardless of
laser polarization, no Co ions were recorded. Moreover,
no Co ions were recorded in the entire ion mass spec-
trum when the laser intensity was decreased to q =
108 W/cm2. Finally, in the third energy range (E ≥
5.0 keV), starting from q = 5 × 1011 W/cm2, fast ions
were recorded whose charge numbers depended on
laser polarization (recall that no fast ions were recorded
in the energy range 4.0 < E < 5.0 keV at the same laser
intensity, although in the first energy range, thermal
ions with the maximum charge number zmax = 5 were
observed at such q values). The increase in the laser
intensity to q = 1012 W/cm2 not only increases the max-
imum charge number of the fast ions to zmax = 3, but also
spreads out their energy spectrum to E = 14 keV (recall
that at q = 1012 W/cm2, the maximum charge number of
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
the thermal ions is zmax = 9). Note that the energy spec-
tra of both the fast and the thermal ions are wide and
single-peaked; the higher the charge number, the higher
the energy corresponding to the spectral maximum. We
also note that, for q = 5 × 1011 W/cm2 and s-polarized
laser radiation, no fast ions were observed in the ion
mass spectra. The increase in q by two orders of mag-
nitude (to q = 1014 W/cm2) led to an increase in the
charge numbers of both the thermal (zmax = 16) and fast
(zmax = 9) ions. Therefore, the experimental data on the
thermal and fast ions in the laser intensity range q =
1012–1014 W/cm2 can be summarized as follows:

(i) No new features in the charge and energy distri-
butions of the thermal ions have been found, except that
the ion charge number increases with the laser intensity
q and that, together with the thermal ions, fast ions are
produced.

(ii) For both types of ions (thermal and fast), the
changes in the energy distributions at different charge
numbers (both for z = 1–3 at q ≤ 1012 W/cm2 and for z > 3
at q = 1012–1014 W/cm2) are rather similar, although the
mechanisms for producing these ions are different.

(iii) For both types of ions, the maximum charge
number increases with q; however, the threshold q values
are very different for different ion species (see Fig. 2).
It can be seen that, for p-polarized laser radiation and
α = 18°, fast ions appear at q ≥ 5 × 1011 W/cm2.

A temporal analysis of the laser-plasma ions shows
that there are two groups of ions that differ in the time
of flight. Obviously, the shorter the time of flight of ions
from the target to the detector, the higher their energy;
hence, the ion group with the shorter time of flight cor-
responds to the fast (high-energy) ions. The above ion
groups differ in both the duration of the ion-packet
expansion and the maximum ion charge number zmax.
The higher the charge number, the shorter the expan-
sion time. Calculations show that, under the above
experimental conditions, the velocity of the fast ions is
≥108 cm/s. A temporal analysis of the laser-plasma ions
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Fig. 1. Energy spectra of the thermal (z = 1–9, E < 4.0 keV)
and fast (z = 1–3, E > 5.0 keV) multicharged Co ions for
p-polarized laser radiation at q = 1012 W/cm2 and α = 18°.
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allows us to estimate the fractions of both the fast and
the thermal ions. Under the given conditions, the calcu-
lated number of fast ions is 109 (about 10–6% of the ther-
mal ion number). An analysis of the results obtained
shows that the yields of the thermal and fast multi-
charged ions, as well as their maximum charge num-
bers zmax and maximum energies Emax, depend on the
processes of laser absorption, the ionization of the tar-
get atoms, and the recombination and acceleration of
the plasma ions. The rates of these processes depend on
both the laser parameters (laser intensity, laser wave-
length, and polarization) [3, 4]; the density and element
composition of the target; and, to some extent, the angle
of incidence α of laser radiation onto the plasma [5].
Note that, for the normal incidence of laser radiation,
the total reflection of laser radiation occurs near the
critical point where the plasma permittivity ε is zero
[15]. For the above parameters of laser radiation, the
electric field in the vicinity of this point can be as high
as ~109 V/cm [16]. For the normal incidence or suffi-
ciently large α values, the above field singularity at the
point ε = 0 disappears.

Under our experimental conditions, the incidence
angle α = 18° is optimum for providing the maximum
yield of the thermal and fast ions from the plasma.
Seemingly, it is this α value that is optimum for the effi-
cient conversion of the electromagnetic wave into a
plasma wave. In the course of conversion, the plasma
electrons acquire high energy and tend to escape from
the plasma; however, the positive ion space charge pre-
vents this escape. As a result, an electric double layer is
formed, whose self-consistent electric field accelerates
multicharged ions. Hence, the higher the number of the
produced high-energy electrons, the higher the energy
and number of the fast ions. The ion expansion velocity
is the highest at α = 18°; consequently, it is this α value
at which the recombination loss of the multicharged
ions is the lowest and the degree of quenching of the
ionization states is maximum. The efficient conversion
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Fig. 2. Maximum charge numbers z of the (1) thermal and
(2) fast multicharged Co ions vs. laser intensity q for
p-polarized laser radiation and α = 18°.
of laser radiation into the particle energy leads to the
formation of a plasma state with a higher degree of ion-
ization. However, the recombination of both the ther-
mal and fast ions decreases the degree of ionization and
contributes to the energy spectrum of the ions with low
charge numbers. We note that the maximum fast-ion
energy E ≈ 14.5 keV, measured with a mass-spectrom-
eter, agrees with the results of [16], where the ion
energy was measured by the collector method.

To conclude, the charge and energy spectra of ther-
mal and fast multicharged ions in a single-element laser
plasma have been studied as functions of the intensity,
polarization, and incidence angle of laser radiation. For
q = 5 × 1011 W/cm2, α = 18°, and p-polarized laser radi-
ation, along with the thermal ions, fast multicharged Co
ions have been recorded with energies and maximum
charge number quite different from those of the thermal
ions.
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Abstract—An experimental method providing information about the interaction of electrons with excited CO
molecules at high vibrational levels is proposed and justified theoretically. The suggested experimental scheme
is based on the use of two successive discharge pulses under the conditions prevailing in an electroionization
CO laser. The first pulse should ensure a sufficiently high energy input in order for a nonequilibrium vibrational
distribution function to form. The second pulse serves to study the effect of the electric current on the vibra-
tional distribution function of excited molecules at high vibrational levels. The theoretical analysis is based on
the simultaneous solution of the Boltzmann equation for the electron energy distribution function and the
vibrational kinetic equations realistically describing the multiquantum vibrational–vibrational exchange pro-
cesses. The calculated results show that the sensitivity of the proposed measurement technique promises to be
high. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of the interaction between electrons
and excited carbon monoxide molecules at high vibra-
tional levels in a low-temperature plasma has recently
attracted increased interest in connection with the vari-
ous manifestations of these processes in experiments.
Thus, the investigations of the parameters of an elec-
troionization CO laser based on transitions between
high-lying levels of the first vibrational overtone [1]
revealed the strong effect of a non-self-sustained dis-
charge on the laser parameters. Specifically, the laser
efficiency was found to increase rapidly after the dis-
charge was switched off. Basov et al. [1] supposed that
this phenomenon reflects the significant role of the
superelastic collisions between electrons and vibra-
tionally excited carbon monoxide molecules. At a qual-
itative level, the energy exchange between electrons
and vibrationally excited molecules were discussed as
far back as 1980 by Basov et al. [2], who pointed out
that the “plateau” region in the distribution function can
be dominated by superelastic collisions between elec-
trons and CO molecules. In calculating the electron
energy balance in a CO : N2 : He mixture, Islamov et al.
[3] analytically specified the steady-state vibrational
distribution function (VDF) with the fixed effective
vibrational temperature of excited CO molecules at the
first vibrational level and with the fixed translational
temperature. They showed that, at high vibrational lev-
els, the reverse energy flux from molecules to electrons
can predominate over the direct flux. Further progress
in theoretical investigations requires the simultaneous
solution of the Boltzmann equation for the electron
1063-780X/02/2812- $22.00 © 1041
energy distribution function (EEDF) and the vibra-
tional kinetic equations.

The role of the energy exchange between electrons
and vibrationally excited molecules was also discussed
in papers on the optical pumping of CO-containing
mixtures by CO lasers [4–6]. Adamovich et al. [4]
found experimental evidence for the effect of the elec-
trons produced during the optical pumping of CO-con-
taining mixtures by resonant radiation on the VDF. At
the electron density ne ≈ 1011 cm–3, the switching-on of
a constant external field whose strength is insufficient
to maintain a self-sustained discharge leads to the with-
drawal of electrons from the optical pumping region.
As a result, the electron density decreases by approxi-
mately three orders of magnitude and the populations
of the high vibrational levels of CO molecules increase
appreciably. Adamovich and Rich [5] solved the kinetic
equations for the populations of vibrational levels
together with the Boltzmann equation for the EEDF.
This approach enabled them to qualitatively explain the
above experimental findings in terms of the effect of
superelastic collisions between electrons and vibra-
tionally excited molecules. However, they failed to
reach a quantitative agreement with the experiment.
One of the possible causes for this discrepancy between
theory and experiment is the lack of reliable experimen-
tal data on the cross sections for the interactions
between electrons and vibrationally excited molecules.
Another possible cause is that the electron density ne

and the populations of the vibrational levels are deter-
mined with insufficient accuracy (see [6]). Note that
Adamovich and Rich [5] used the single-quantum
2002 MAIK “Nauka/Interperiodica”
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vibrational–vibrational (VV) exchange approximation.
However, in, e.g., [1], it was pointed out that this
approximation leads to significant errors in calculating
the populations of the vibrational levels above the
twentieth level. Although there is a wealth of experi-
mental information about the cross sections for electron
interaction with unexcited molecules, the data on the
corresponding cross sections for the interactions with
vibrationally excited molecules are still lacking. In this
context, it is worthwhile to look for the experimental
conditions under which the reliable information on the
processes in question can be extracted.

A direct approach to the experimental investigation
of the mutual influence of electron kinetics and vibra-
tional kinetics requires the simultaneous measurement
of the EEDF and the population distribution of the
vibrational levels. However, it is clear that such mea-
surements are difficult to perform directly. By means of
numerical models for calculating the EEDF and the
dynamics of the VDF, it is possible to carry out numer-
ical simulations of experiments; in this way, the
required information can be derived from a comparison
of the calculated results with the experimental data.
However, it is not a trivial task to perform such experi-
ments. The experimental data on the dynamic parame-
ters are generally much more informative than the data
on the steady-state parameters. Another important fac-
tor that governs the extent to which the mathematical
processing of experimental data is adequate is the spa-
tial uniformity of the plasma. The reason is that, in a
nonuniform plasma, the particle balance is, in particu-
lar, affected by the transport processes, about which
information is, as a rule, lacking.

In this paper, we theoretically justify a method that
makes it possible to investigate the interaction between
vibrationally excited molecules and electrons under the
conditions prevailing in an electroionization CO laser.
Under these conditions, it is comparatively easy to
ensure the plasma homogeneity over the entire volume
to be investigated and to employ laser methods for
obtaining additional information about the dynamic
parameters. The experimental scheme proposed here is
based on the use of two successive discharge pulses.
The first pulse should ensure a sufficiently high energy
input in order for the nonequilibrium VDF to form. The
second pulse serves to study the effect of the electric
current on the VDF at high vibrational levels by mea-
suring the dynamics of the populations of these levels
or the parameters of the amplification and generation of
a selective CO laser. An important point here is that, in
order to provide the conditions under which the interac-
tion between electrons and vibrationally excited mole-
cules is most efficient, the time delay between the two
pulses should be controlled so as to ensure the forma-
tion of the VDF at high vibrational levels. For the con-
ditions investigated in [7], which reports the results of
experimental and theoretical studies on the dynamics of
the small-signal gain (SSG) for high transitions in the
first vibrational overtone band of a CO molecule, the
time delay should be about 100 µs.

2. THEORETICAL MODEL

The numerical model of the system consists of two
coupled parts, one of which describes the vibrational
kinetics and the other describes the electron kinetics.
The simultaneous solution of the corresponding two
sets of equations makes it possible to describe the
dynamics of the energy exchange between electrons
and molecular vibrations. The electrons interact with
vibrationally excited molecules in very different ways,
depending on the number v  of the vibrational level. For
v  ≤ 9, the electron scattering proceeds through a tran-
sient negative ion state, the resonant scattering cross
section being large. Also, the electrons are subject to
potential scattering, the cross section for which
increases monotonically with the number of the level to
about 10–16 cm2 for v  ≥ 30. A plateau that appears in the
VDF at a sufficiently high energy input is characterized
by very high local vibrational temperatures. Under the
conditions typical of an electroionization CO laser,
these temperatures appreciably exceed the electron
temperature. Consequently, in the electron–molecule
energy exchange at the plateau in the VDF, the energy
is transferred predominantly from molecules to elec-
trons.

In our model, we use the theory of multiquantum
VV exchange, which realistically describes the pro-
cesses occurring at high vibrational levels [8]. The rate
constants of the kinetic processes, including those of
the processes of vibrational–translational (VT) relax-
ation and also the probabilities of spontaneous emis-
sion for transitions at the fundamental frequency and at
the first and second vibrational overtones of a CO mol-
ecule, were taken from [7]. The set of kinetic equations
describing the dynamics of the populations of individ-
ual vibrational levels can be represented in the follow-
ing schematic form:

(1)

where , , , , and  are the rates of
the populating (depopulating) of the level v  by electron
impact and due to VV exchange, VT relaxation, and the
spontaneous and induced emission, respectively. In the
kinetic equations, the terms describing multiquantum
VV exchange have the form

(2)

Here, the frequency Wv  + m, n of transitions from the level
v  + m to the level v  in the VV exchange processes is
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defined as Wv  + m, n = , where 
are the rate constants of the m-quantum exchange.

The equations of the first part of our model, namely,
kinetic equations (1) for the populations of the vibra-
tional levels of carbon monoxide molecules and the
equations for the induced emission intensity [9], were
solved together with the equation of the second part,
namely, the Boltzmann equation for the EEDF in the
two-term approximation.

In the Boltzmann equation, we took into account the
electron energy loss in elastic collisions with atoms and
molecules, the excitation of the rotational and vibra-
tional levels of molecules, the excitation of the elec-
tronic levels of atoms and molecules, and their ioniza-
tion. The cross sections for electron scattering by unex-
cited CO and He molecules were taken from [10, 11]
and [12], respectively. The set of cross sections for He
[12] consists of the transport cross section, two cross
sections for the excitation of effective electronic levels,
and the ionization cross section. The cross sections for
the resonant vibrational excitation of a CO molecule
from the ground state were taken from [11]; in accor-
dance with the recommendations of [13, 14], we
increased them by a factor of 1.3. The cross sections for
superelastic collisions were determined using the prin-
ciple of detailed balance. The cross sections for the res-
onant excitation of molecules at levels v  ≠ 0 and for the
elastic scattering of electrons by them were calculated
following [15]. We assumed that for transitions with
∆v  = 1 and 2, CO molecules at the vibrational levels
v  = 9 and higher are excited as a result of potential scat-
tering and described this excitation in the Born approx-
imation. It should be noted that the results obtained by
calculating the cross section for the excitation of the
first vibrational level of CO molecules near the excita-
tion threshold in the Born approximation agree well
with the measured data [13].

The Boltzmann equation was solved numerically by
an integration–interpolation method, which was used to
construct a three-point, conservative, first-order finite-
difference scheme. The resulting set of equations was
solved by the sweep method and then by iterating on
the EEDF in the nonlinearity parameter until the con-
vergence condition was satisfied for the given relative
accuracy ε. The number of cells in the interval of inte-
gration over energy was 2000, and the relative accuracy
was ε = 10–5. In solving the Boltzmann equation for the
EEDF numerically, the code controlled the total elec-
tron energy balance. In our computations, the total elec-
tron energy was conserved with an accuracy of no
worse than 1%.

We simulated a CO : He = 1 : 4 mixture under con-
ditions close to those in the experiments of [7]: the ini-
tial gas temperature was T0 = 100 K, the initial gas den-
sity was N0 = 0.12–0.18 amagat, and the specific energy
input in the first pulse was Q0 = 180–300 J l–1 amagat–1

(1 amagat = 2.686754 × 1019 cm–3, which corresponds

Qi m– i,
v m v,+

nii m≥∑ Qi m– i,
v m v,+
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to Loschmidt’s number). The numerical results to be
presented in the next section were obtained for a fixed
energy input (Q0 = 200 J l–1 amagat–1) and a fixed gas
density (N0 = 0.18 amagat) and, thus, are representative
for the above parameter ranges. The following three
parameters were also fixed: the electric field strength E0
in the first pulse was E0 = 290 V/cm, the parameter E/N
was 0.6 × 10–16 V cm2, and the durations of the first and
second pulses were taken to be the same (30 µs). In
simulations, it was assumed that the second discharge
pulse was switched on 150 µs after switching on the
first pulse. The electric field in the second pulse was the
same as or weaker than that in the first pulse. The cur-
rent value of E/N was determined with allowance for
the gas density dynamics. The gas density was assumed
to change during the thermal gas expansion caused by
direct heating and the heating related to vibrational
relaxation. Estimates show that, under the conditions
characteristic of the experiments performed in [1, 7],
the gas density can be assumed to be constant (N ≈
const) for several tens of microseconds after the first
pulse is switched on. In later stages, the heated active
medium expands into a large buffer volume at a nearly
constant pressure (P ≈ const); in this case, the change in
the density of the active medium was approximately
calculated by means of a homogeneous model. The
time evolution N(t) of the density of the active medium
was calculated from the following functional depen-
dence, which models the transition to isobaric expan-
sion:

Here, τ = ∆r/vS, where ∆r is the characteristic trans-
verse dimension of the active medium, vS is the speed
of sound, and T is the gas temperature. An analogous
approach was used earlier in [16]. The translational
temperature of the active medium was calculated from
the equation

where W is the heat release power density associated
with direct heating and vibrational relaxation, N is the
density of atoms and molecules in the active medium,
and k is Boltzmann’s constant. The dynamics of the
density of the active medium was also taken into
account in solving the kinetic equations for the popula-
tions of the vibrational levels.

3. RESULTS

After switching on a pump pulse under conditions
typical of an electroionization CO laser, the energy is
exchanged between electrons and molecules primarily
due to the resonant excitation of CO molecules from the
ground state. During resonant excitation, superelastic
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collisions play an increasingly important role and, on
the whole, lead to additional heating of the electrons.
The distribution of the excited molecules over the
vibrational levels during VV exchange is described by
a nonequilibrium VDF [17] with a pronounced plateau,
at which the effective vibrational temperature can be as
high as several tens of thousands of degrees. The inter-
action of electrons with excited molecules at the vibra-
tional levels v  > 9 is dominated by potential scattering.
The electron–molecule energy exchange is, as a rule,
governed by the interaction of electrons with excited
molecules at low vibrational levels, because the relative
fraction of molecules in the plateau region is usually
smaller than 1%.

The interaction of electrons with excited molecules
at high vibrational levels is illustrated in Fig. 1, which
shows the rate constants of the electron-initiated single-
quantum transitions versus the number of the vibra-
tional level. These rate constants were calculated by
using the model of a self-consistent evolution of the
EEDF and VDF for the time at which the first pump
pulse terminates. It should be noted that the rate con-
stants are insensitive to the degree of vibrational excita-
tion because of the low threshold of the process under
consideration. The plot in Fig. 1 makes it possible to
estimate the conditions under which a direct interaction
of electrons with CO molecules becomes important.
Thus, our estimates show that, for the vibrational levels
v  = 30–35, the characteristic frequency of VV
exchange just before the second pulse is switched on is
about 0.5 × 106 s–1. Accordingly, the competition
between the direct interaction of electrons with excited
molecules at these vibrational levels and the VV
exchange processes should be the most pronounced
when the frequency of the electron–molecule interac-

403020100

4

3

2

1

0

v

ke–v, 10–8 cm3 s–1

Fig. 1. Rate constant of the process ëé(v ) + e  ëé(v  +
1) + e vs. number v  of the vibrational level at the time at
which the pump pulse terminates. The parameter E/N
is 0.6 × 10–16 V cm2 and the specific energy input is
200 J l−1 amagat–1.
tion is equal to or higher than the VV exchange fre-
quency. According to Fig. 1, this occurs in the electron
density range ne ≥ 1.5 × 1013 cm–3.

The evolution of the VDF after the pump pulse is
switched off is displayed in Fig. 2. We can see that the
time delay between the two pulses was chosen to be
long enough for the nonequilibrium VDF to form. The
evolution of the VDF after switching on the second dis-
charge pulse with the same electric field as in the first
pulse (the discharge current density being 4.1 A/cm2) is
shown in Fig. 3. At the beginning of the second pulse,

100
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1

0.1
10 20 30 400

n, arb. units

v

1 2 3
4

Fig. 2. Time evolution of the VDF. Shown are the plots of
the VDF at different instants: (1) 30 (the time at which the
main discharge pulse is switched off), (2) 60, (3) 120, and
(4) 150 µs. The current density is 4.1 A cm–2, the parameter
E/N is 0.6 × 10–16 V cm2, and the specific energy input is
200 J l–1 amagat–1.
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Fig. 3. Time evolution of the VDF after switching on the
second pulse. Shown are the plots of the VDF at different
instants: (1) 150 (the time at which the second pulse is
switched on), (2) 160, (3) 200, and (4) 250 µs. The specific
energy input in the second pulse is 365 J l–1 amagat–1 and
the current density is 4.1 A cm–2.
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the vibrational levels at the lower part of the plateau in
the VDF (for v  < 10) are rapidly populated; then, as a
result of VV exchange, the higher vibrational levels
also begin to be populated. In this case, about 100 µs
after the second pulse is switched on, a VDF is estab-
lished with a somewhat higher plateau than before the
second pulse. Hence, the change in the populations of
high vibrational levels after the second pulse is
switched on is governed by the rapid VV exchange
between the low and high vibrational levels, in which
case a direct interaction of electrons with excited mol-
ecules at high vibrational levels plays a minor role. This
conclusion is confirmed by Fig. 4a, which presents the
results of simulations carried out under the assumption
that the rate constants of the interaction between elec-
trons and excited CO molecules at the vibrational levels
v  ≥ 10 are zero.

The evolution of the VDF after switching on the sec-
ond pulse with a weaker electric field (E0/2 and E0/3)
than in the first pulse but at approximately the same

n, arb. units

v
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0.1
100

10

1

0.1

(a)

(b)

(c)100

10

1

0.1
10 20 30 40

Fig. 4. Effect of the electric field strength E in the second
discharge pulse on the VDF at the end of the second pulse
(t  = 180 µs). The calculations were carried out for E =
(a) 290, (b) 145, and (c) 96.7 V/cm. The solid and dashed
curves were calculated with the second pulse being switched
off and on, respectively, and the dashed-and-dotted curves
were calculated without allowance for the interaction of elec-
trons with excited CO molecules at the vibrational levels
v  ≥ 10. The electron density in the second pulse is ne ≈ 1.5 ×
1013 cm–3, and the current density is proportional to E.
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electron density (ne ≈ 1.5 × 1013 cm–3) is illustrated in
Figs. 4b and 4c. The effects that can be observed in
these figures are governed mainly by the fact that the
VDF at low vibrational levels is perturbed to a lesser
extent because of a significantly lower pump power. A
comparison between the curves calculated without and
with allowance for potential scattering shows that the
changes in the VDF at the vibrational levels v  = 30–35
due to superelastic collisions amount to 25–50%. Fig-
ure 5 illustrates the time evolution of the VDF after the
second discharge pulse is switched on. The computa-
tions were carried out for a fixed current density (J =
4.1 A cm–2) and for three different electric field
strengths (E0, E0/2, and E0/3). Since, in a CO : He mix-
ture, the electron drift velocity depends approximately
linearly on E/N and since the current density is fixed,
the electron densities ne in Figs. 5b and 5c are higher
than those in Figs. 4b and 4c by a factor of two and
three, respectively. In Fig. 5, the values of the VDF at
high vibrational levels are seen to be appreciably

v

n, arb. units
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(c)100
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Fig. 5. Effect of the electric field strength E in the second
discharge pulse on the VDF at the end of the second pulse
(t  = 180 µs). The calculations were carried out for E =
(a) 290, (b) 145, and (c) 96.7 V/cm. The solid and dashed
curves were calculated with the second pulse being
switched off and on, respectively, and the dashed-and-dot-
ted curves were calculated without allowance for the inter-
action of electrons with excited CO molecules at the vibra-
tional levels v  ≥ 10. The current density in the second pulse
is fixed and equal to 4.1 A cm–2.
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smaller than those in Fig. 4; this effect is attributed to a
direct energy exchange between electrons and mole-
cules.

In order to illustrate the dynamics of the electron–
molecule interaction at different electric field strengths
and different electron densities, we present in Fig. 6 the
time evolutions of the effective vibrational tempera-
tures at high vibrational levels (v  = 25, 30, and 35) and
of the effective electron temperature. The calculations
were carried out with the second pulse being switched
on and off. The time evolutions in Fig. 6 show that, first,
at the instant at which the second pulse is switched on,
the effective vibrational temperatures are many times
higher than the effective electron temperature, and, sec-
ond, the rate at which these temperatures are equalized
during the second pulse depends strongly on the elec-
tron density and is relatively insensitive to the electric
field strength.

According to the results presented in Figs. 4–6,
experimental measurements of the dynamics of the
VDF at high vibrational levels in a discharge plasma
with a sufficiently high electron density can provide the
most detailed information about the kinetics of the
interaction of electrons with highly excited CO mole-
cules. The required conditions can readily be achieved
through ionization by an electron beam. The traditional
methods for measuring the VDF [4] are too compli-
cated to yield its evolution. Laser diagnostic techniques
may turn out to be more suitable for these purposes,
because the amplification parameters should change
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Fig. 6. Effect of the second discharge pulse on the time evo-
lution of the effective vibrational temperatures at the vibra-
tional levels v  = (1) 25, (2) 30, and (3) 35 and on the time
evolution of the effective electron temperature (curves 4).
The calculations were carried out (a) without the second
pulse and with the electric field strength E in the second
pulse being equal to (b) 290, (c) 96.7, and (d) 96.7 V/cm. In
plot (c), the current density in the second pulse is three
times lower than that in plot (b). In plot (d), the current den-
sity in the second pulse is equal to 4.1 A cm–2, which is the
same current density as in plot (b).
during the evolution of the VDF after the second dis-
charge pulse is switched on [18]. In order to analyze
this effect, we numerically investigated the sensitivity
of the dynamics of the SSG of a CO laser at the over-
tone after the second pulse was switched on to the pro-
cesses of energy exchange between electrons and mol-
ecules at high vibrational levels. The results of calcula-
tions of the SSG dynamics at the first-overtone
transitions 29–27 P(12) and 35–33 P(12) after the sec-
ond pulse is switched on are illustrated in Fig. 7. These
vibrational–rotational transitions were chosen because
the experimental data on the SSG dynamics at them are
available [7]. The curves in Fig. 7 were computed for
three different electric field strengths in the second
pulse and for ne ≈ const, in which case the current den-
sity is approximately proportional to the field strength.
In Fig. 7, we also show the calculated time evolution of
the SSG without the second pulse. The results illus-
trated in Fig. 7 provide clear evidence for the strong
influence of the second current pulse on the SSG
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0.4
SSG, m–1

(a)

(b)
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t, µs
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Fig. 7. Effect of the second discharge pulse on the time evo-
lution of the SSG at (a) transition 29–27 P(12) and (b) tran-
sition 35–33 P(12). The calculations were carried out
(1) without second pulse and with the electric field strength
E in the second pulse being equal to (2) 290, (3) 145, and
(4) 96.7 V/cm. The current density in the second pulse is
proportional to E, and the electron density is ne ≈ 1.5 ×
1013 cm–3.
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dynamics. After switching on the second pulse that is
identical to the first pulse (Fig. 7b, curve 2), the signal
is seen to be absorbed (rather than amplified) for a short
time. This effect can be understood from Fig. 3, which
demonstrates how progressively higher vibrational lev-
els are excited. After the excitation wave approaches a
given vibrational level, the gain intensifies to a larger
extent than if there were no second pulse. As the elec-
tric field decreases (and, accordingly, the energy input
decreases in proportion to the square of the field
strength), the gain is suppressed predominantly by the
direct interaction of electrons with excited molecules at
high vibrational levels. In this interaction, the gain is
weakened for a longer time but to a smaller extent. The
second maximum in the SSG is attributed to the addi-
tional energy input to the low vibrational levels and has
nearly the same height as the first maximum, which is
associated only with the first pulse.

A clearer insight into the role of the direct interac-
tion between electrons and excited molecules at high
vibrational levels may be gained from a comparison
between the gain dynamics in the case of two pulses
and that in the case in which all of the processes under
discussion are artificially “switched off.” The results of
this comparison are demonstrated in Figs. 8a–8c, which
show time evolutions of the SSG at the transition 29–
27 P(12). The difference between the curves calculated
for E = E0/2 and E0/3 is seen to be the largest; the reason
for this is that the weaker the field, the less important
the effect of the energy input into the low vibrational
levels. Figure 8d illustrates the influence of the energy
exchange between electrons and excited CO molecules
at high vibrational levels for E = E0/3 and for the elec-
tron density higher than that in Figs. 8a–8c by a factor
of approximately three, in which case the current den-
sity J = 4.1 A cm–2 in the second pulse coincides with
that in the first pulse. One can see that the direct elec-
tron–molecule interaction at the plateau in the VDF is
even more important.

Taking into account the fact that the laser intensity
may be more sensitive to the interaction details in com-
parison with the gain, we also investigated the effect of
the second pulse on the laser intensity dynamics at the
same transitions 29–27 P(12) and 35–33 P(12) (Fig. 9).
Note that, just after the second discharge pulse is
switched on, the calculated laser intensity is seen to
increase and then to decrease. The laser oscillation at
the transition 35–33 P(12) is seen to terminate in the
three cases with different electric field strengths. From
a practical standpoint, the measurements of the dynam-
ics of the radiation intensity after the second pulse is
switched on can be beneficial for diagnosing the role of
superelastic collisions only at a qualitative level,
because quantitative measurements require that the
reproducibility of the shape of the pulse of the emitted
radiation be high and that there be no pulsations.
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
SSG, m–1

0.4

100

(a) (b)

(d)

0.2

0

0.3

0.1

0

0.2

0.1

0

0.2

200 300 400 100 200 300 400

0.3

0.2

0.1

0

(c)

t, µs

Fig. 8. Effect of the second discharge pulse on the time evo-
lution of the SSG at the transition 29–27 P(12) for E =
(a) 290, (b) 145, (c) 96.7, and (d) 96.7 V/cm. In plots (a)–
(c), the current density in the second pulse is proportional to
E and the electron density is ne ≈ 1.5 × 1013 cm–3. In plot
(d), the current density in the second pulse is equal to
4.1 A cm–2, which is the same current density as in plot (a).
The solid and dashed-and-dotted curves were calculated
with and without allowance for the interaction of electrons
with excited CO molecules at the vibrational levels v  ≥ 10.
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strength E in the second pulse being equal to (2) 290,
(3) 145, and (4) 96.7 V/cm. The current density in the sec-
ond pulse is proportional to E, and the electron density is
ne ≈ 1.5 × 1013 cm–3.
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4. CONCLUSIONS

We have given a theoretical justification of the
method that makes it possible to investigate the interac-
tion of electrons with highly excited molecules by
using two successive discharge pulses under the condi-
tions prevailing in an electroionization CO laser. In
comparison with the method that was proposed by Ada-
movich and Rich [5] and in which the nonequilibrium
VDF is formed by means of CO laser radiation, the
method proposed here has the following advantages:
(i) the active medium is much more uniform in space
than that in the case of optical pumping [19] (this cir-
cumstance greatly facilitates the processing of mea-
sured data), (ii) a non-self-sustained discharge provides
the possibility of varying the electron density over a
much wider range in comparison with the case of opti-
cal pumping [6] and also of varying the effective elec-
tron temperature by changing the reduced electric field,
and (iii) the use of the active medium of an electroion-
ization CO laser makes it possible to apply laser meth-
ods to diagnosing the VDF.

We have formulated the conditions under which the
dynamics of the VDF at high vibrational levels is gov-
erned by the direct interaction of electrons with vibra-
tionally excited molecules, thereby making the experi-
mental measurements as informative as possible. We
have shown that the second pulse can significantly
deform the VDF at high vibrational levels, in which
case the interaction mechanism and the magnitude of
the effect depend strongly on the electron density and
the energy input into the discharge. At a comparatively
high energy input, the VDF is perturbed predominantly
by the rapid VV exchange between the low and high
vibrational levels. As the energy input in the second
pulse decreases, superelastic collisions begin to play a
dominant role in the evolution of the VDF at high vibra-
tional levels; the amplitude of the observed variations
increases sharply with ne. Under these conditions, the
experimental measurements of the dynamics of the
VDF can provide the most detailed information about
the processes of the interaction between electrons and
excited CO molecules at high vibrational levels.

In view of the relative simplicity of laser methods
for measuring the dynamics of the SSG and the laser
efficiency in comparison with the methods for deter-
mining the dynamics of the VDF from the measured
spectra, we have investigated the potentialities for using
laser methods to derive quantitative information on the
dynamics of the VDF. The results of our calculations
show that the sensitivity of such laser measurement
techniques promises to be high.
ACKNOWLEDGMENTS

This study was supported by the Russian Founda-
tion for Basic Research, project no. 02-02-17217.

REFERENCES
1. N. G. Basov, A. A. Ionin, A. A. Kotkov, et al., Kvan-

tovaya Élektron. (Moscow) 30, 771 (2000).
2. N. G. Basov, V. A. Danilychev, A. A. Ionin, and

I. B. Kovsh, Tr. Fiz. Inst. Akad. Nauk SSSR 116, 54
(1980).

3. R. Sh. Islamov, Yu. B. Konev, and B. A. Mirzakarimov,
Preprint No. 3-333 (Inst. of High Temperatures, USSR
Acad. Sci., Moscow, 1991).

4. I. V. Adamovich, S. Saupe, M. J. Grassi, et al., Chem.
Phys. 173, 491 (1993).

5. I. V. Adamovich and J. W. Rich, J. Phys. D 30, 1741
(1997).

6. E. Plonjes, P. Palm, I. V. Adamovich, and J. W. Rich,
J. Phys. D 33, 2049 (2000).

7. A. A. Ionin, Yu. M. Klimachev, A. A. Kotkov, et al., in
Proceedings of the International Conference LASERS
2000, Albuquerque, NM, 2000 (STS, McLean, VA,
2001).

8. A. A. Ionin, Yu. M. Klimachev, Yu. B. Konev, et al.,
Kvantovaya Élektron. (Moscow) 30, 573 (2000).

9. A. A. Ionin, A. A. Kotkov, A. K. Kurnosov, et al., Opt.
Commun. 155, 197 (1998).

10. J. E. Land, J. Appl. Phys. 49, 5716 (1978).
11. H. Ehrhardt, L. Langhans, F. Linder, and H. S. Taylor,

Phys. Rev. 173, 222 (1968).
12. N. A. Dyatko, I. V. Kochetov, A. P. Napartovich, and

M. D. Taran, Teplofiz. Vys. Temp. 22, 1048 (1984).
13. G. N. Haddad and H. B. Milloy, Aust. J. Phys. 36, 473

(1983).
14. N. L. Aleksandrov, I. V. Kochetov, and A. P. Napartovich,

Khim. Vys. Energ. 20, 291 (1986).
15. N. L. Aleksandrov, A. M. Konchakov, and E. E. Son,

Zh. Tekh. Fiz. 49, 1200 (1979) [Sov. Phys. Tech. Phys.
24, 661 (1979)].

16. Yu. S. Akishev, A. V. Dem’yanov, I. V. Kochetov, et al.,
Teplofiz. Vys. Temp. 20, 818 (1982).

17. C. E. Treanor, J. W. Rich, and R. G. Rem, J. Chem. Phys.
48, 1798 (1968).

18. N. G. Basov, A. A. Ionin, A. A. Kotkov, et al., Kvan-
tovaya Élektron. (Moscow) 30, 859 (2000).

19. I. V. Kochetov, A. K. Kurnosov, J. P. Martin, and
A. P. Napartovich, Kvantovaya Élektron. (Moscow) 25,
315 (1995).

Translated by G.V. Shepekina
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002



  

Plasma Physics Reports, Vol. 28, No. 12, 2002, pp. 1049–1059. Translated from Fizika Plazmy, Vol. 28, No. 12, 2002, pp. 1136–1146.
Original Russian Text Copyright © 2002 by Akishev, Kochetov, Lobo

 

œ

 

ko, Napartovich.

        

LOW-TEMPERATURE
PLASMA

         
Numerical Simulations of Trichel Pulses
in a Negative Corona in Air

Yu. S. Akishev, I. V. Kochetov, A. I. Loboœko, and A. P. Napartovich
Troitsk Institute for Innovation and Fusion Research, State Scientific Center of the Russian Federation, 

Troitsk, Moscow oblast, 142190 Russia

Received May 30, 2002

Abstract—Numerical simulations of a negative corona in air demonstrate that the experimentally observed
regime of self-oscillations, known as Trichel pulses, is well described by a three-dimensional axisymmetric
model that is based on the standard transport equations and in which only the ion-induced secondary electron
emission at the cathode is taken into account. The quantitative difference between the measured and calculated
values of the mean current and the pulse repetition rate most likely stems from the insufficiently large dimen-
sions of the computation region and from the fact that the point shape adopted in simulations somewhat inex-
actly conforms to that used in experiments. It was found that the transverse discharge structure near the cathode
radically changes during the pulse. Specifically, as the current grows, a cathode sheath forms at the discharge
axis and expands over the cathode surface. When the current falls off, the cathode sheath is rapidly destroyed;
as a result, the characteristic field structure is well defined only near the discharge axis and becomes virtually
indistinguishable as the current decreases by an order of magnitude. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As far back as 1938, Trichel [1] discovered regular
pulsations of a current flowing in a negative corona dis-
charge in air. The pulsations occurred in a certain volt-
age range, the pulse repetition rate depended on the
experimental conditions, and the pulse duration was
about a hundred nanoseconds. He attributed the pulsa-
tions to the screening of the electric field by a cloud of
positive ions generated near the point during electron-
impact ionization. By now, steady-state Trichel pulses
in negative corona discharges in various gases have
been investigated in a large number of experimental
works (see, e.g., [2–4]). In particular, Loeb [2] asserted
that Trichel pulses form only in discharges in electrone-
gative gases. Zentner [3] measured the current rise time
of a pulse and found that it can be as short as 1.3 ns. The
establishment of Trichel pulses after a rapid switching-
on of the high voltage was studied only in a few papers
(see [5–7]). It was found that the first pulse differs
appreciably in shape, amplitude, and duration from
subsequent pulses. The time required for a regular
(steady-state) sequence of pulses to be established is
determined by the drift transit time of the negative ions
from the cathode to the anode.

Among theoretical studies dealing with numerical
simulations of the shape of the Trichel pulses, there are
papers [8, 9], in which only the shape of the first Trichel
pulse was computed under the assumption that the
cross-sectional area of the current channel is constant,
and paper [10], in which the steady-state sequence of
Trichel pulses was simulated on the basis of a 1.5-
dimensional model with a given shape of the current
1063-780X/02/2812- $22.00 © 21049
channel. The results of these simulations agree well
with the experimental data on the current–voltage and
frequency characteristics and also on the establishment
dynamics of the pulses [7]. However, the equations of
the 1.5-dimensional model were derived under the
assumptions that cannot be justified without reference
to a more precise model and, moreover, are a priori
approximate. A strict approach requires the use of a
three-dimensional numerical model that can formally
be reduced to a two-dimensional axisymmetric model
(the two variables being the radius and the distance
along the discharge axis).

A further argument in favor of the advantages of
using a three-dimensional model to calculate Trichel
pulses comes from the visual observations of the lumi-
nosity of a negative corona near the point. In the regime
of Trichel pulses, the luminous region is seen to be a
wide cone (a wide “corona”) with the vertex at the nee-
dle point [2]. When the mean current increases to about
130 µA, the pulsed regime terminates in a jumplike
manner. Our observations showed that, after the termi-
nation, the luminous cone becomes far narrower. We
attribute this effect to the fact that Trichel pulses are
accompanied by pulsations of the current channel in the
corona.

A distinctive feature of the corona is the existence of
a region of highly nonuniform electric field before the
breakdown. One of the electrodes is a needle or a thin
wire. The electric field is very strong near this electrode
and falls off abruptly with distance from it. Trichel
pulses are generated due to a highly nonuniform elec-
tric field near the cathode. The characteristic dimen-
002 MAIK “Nauka/Interperiodica”
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sions of the region where the most important physical
processes under consideration occur are smaller than
the characteristic spatial scales of the problem (the
interelectrode distance) by four orders of magnitude.
This necessitates using nonuniform spatial computa-
tion meshes: the cells are small near the needle’s point
and increase in size when away from it. The approach
based on such meshes is also exploited to model dielec-
trics barrier discharges [11]. In simulating microdis-
charges in a barrier discharge, it is sufficient to use a
computation region with characteristic dimensions of
about one millimeter, whereas the corona should be
simulated on a computation region of at least one cen-
timeter in size. However, the largest difference between
the simulations of microdischarges and Trichel pulses
is in the time scales of the important physical processes.
The characteristic time scale of the microdischarge evo-
lution and the streamer propagation is about several
tens of nanoseconds, which is the characteristic time
scale of an individual Trichel pulse. In order to under-
stand the mechanism for the regular repetition of
Trichel pulses, it is necessary to simulate at least sev-
eral pulses until negative ions fill the entire interelec-
trode gap. For coronas in a short interelectrode gap, this
occurs in about several tens of microseconds. All this
necessitates the development of new algorithms for
multidimensional simulations of Trichel pulses. Such
an algorithm was developed in [12]. Preliminary results
from simulations of the first two Trichel pulses were
reported in [13]. In the present paper, we give a detailed
description of the model of steady-state Trichel pulses
in a negative corona in the atmospheric air between a
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Fig. 1. Spatial mesh; the cells are the smallest near the cath-
ode, the minimum cell size being 6 × 10–5 cm.
needle and a plane and present the relevant numerical
results.

2. THEORETICAL MODEL 
AND NUMERICAL ALGORITHM

In order to describe the pulsed regime of a negative
corona in a needle–plane electrode configuration, it is
sufficient to solve the continuity equations for electrons
and positive and negative ions and also Poisson’s equa-
tion. The electron drift velocity can usually be deter-
mined from the solution to the Boltzmann equation for
electrons; however, in our model, it is set to be propor-
tional to the electric field strength. The ion drift veloci-
ties are determined from the known ion mobilities. The
positive and negative ion components are each assumed
to be dominated by one ion species. The above equa-
tions are supplemented with an equation for the electric
circuit.

The spatial needle–plane electrode configuration is
assumed to be axisymmetric. This indicates that the
model equations can be solved in the variables X and R,
where X is the distance from the cathode along the dis-
charge axis and R is the radius. The boundary condi-
tions for positive and negative ions are evident: their
densities vanish at the anode and cathode surfaces,
respectively. The electrons are assumed to be produced
only through the ion-induced secondary emission at the
cathode.

The cathode shape is different in different experi-
ments. To be specific, we adopt a model cathode config-
uration that is often used in experiments: a cylinder
with a rounded hemispherical cap of the same radius.
The computation region is additionally bounded by a
dielectric sphere, which is assumed to have an insignif-
icant impact on the discharge dynamics.

As was mentioned in the Introduction, simulations
of Trichel pulses require the development of new
numerical algorithms. In order to satisfy the require-
ments of discrete approximations, the simulations were
carried out on a nonuniform curvilinear mesh whose
boundary was made consistent with the configurations
of the electrodes. Since the cathode shape may be to a
large extent arbitrary, the algorithm was devised with
the use of a mesh generator that adjusted the mesh auto-
matically to conform to the boundary conditions. The
numerical scheme developed for simulations is conser-
vative in the sense of conserving the total current for
any curvilinear mesh. However, the smaller the devia-
tion of the curvilinear mesh from being orthogonal, the
better the convergence of the iteration scheme underly-
ing the algorithm and, accordingly, the higher the com-
putational speed. The numerical mesh on which the
simulations were carried out is shown in Fig. 1.

The problem of controlling the computational accu-
racy is associated with the discretization method. Thus,
certain conservation laws should be satisfied in both the
discrete and continuous approximations. In this respect,
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the approach based on the method of finite elements
provides a simpler way to obtain conservative approxi-
mations than the approach based on a finite-difference
method. That is why we used a finite-element method
with the self-consistent approximation of the geometric
quantities in curvilinear coordinates.

The discrete model equations were constructed from
the integral forms of both the continuity equations for
the particle densities and Poisson’s equation. The
resulting finite-difference equations were solved by
successive iterations with the help of an explicit-
implicit scheme. The complete computer algorithm
involves the following steps:

(i) The source terms in the continuity equations for
the charged particles and the particle densities are cal-
culated in the mesh cells, while the particle drift fluxes
are calculated at the cell boundaries.

(ii) At each iteration step, the “new” densities of the
charged particles and the plasma conductivity are cal-
culated by solving the continuity equations.

(iii) The new values of the electric potential in the
cells and the electric field at the cell boundaries are
determined by solving Poisson’s equation.

(iv) The total current is calculated by integrating the
total current density.

(v) The new value of the cathode voltage is calcu-
lated from the equation for the electric circuit.

(vi) The convergence condition for iterations is

where Is is the total current at the sth iteration step, ε1 is
the relative error, and ε2 is the absolute error. If this con-
dition is not satisfied, then the iterative procedure is
repeated starting with the first step.

3. RELAXATION PROCESS AND INTEGRAL 
CURRENT CHARACTERISTICS

The results that will be described in detail below
were obtained in simulating a negative corona between
a 0.06-mm-radius cylindrical cathode with a hemi-
spherical cap of the same radius and a planar anode
placed at a distance of 7 mm from the tip of the hemi-
sphere. The length of the cylindrical part of the cathode
is 2 mm. An additional insulating boundary of the com-
putation region is assumed to be a sphere of radius
9.06 mm. The corona is coupled to the voltage source
through a 100-kΩ ballast resistor. The plasma kinetic
parameters are taken to correspond to air at room tem-
perature and at a relative humidity of 65%. The main
results to be presented were computed for a source volt-
age of 4.2 kV.

Numerical simulations show that the parameters of
a sequence of pulses relax to steady-state values after
about 25 pulses. As can be seen in Fig. 2, the current
peaks do not differ in height after the fourth pulse, the
minimum current value decreases monotonically from

I
s 1+

I
s

– ε1I
s ε2,+≤
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pulse to pulse and ceases to change after about twelfth
pulse, and the pulse repetition rate relaxes in the longest
time and becomes constant only after 25th pulse. In the
steady state, the ratio of the peak current to the mini-
mum current is equal to 442.

It is convenient to represent the dependence of the
mean current I on the source voltage U0 (it is this depen-
dence that is usually measured in experiments) as a so-
called reduced current–voltage (I–V) characteristic,
which is the dependence of the ratio I/U0 on U0. As a
rule, the reduced I–V characteristic has the form of a
straight line. Because of the large number of input
parameters (including the cathode shape), we failed to
find the experimental data that conform exactly to the
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20 40 60
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10–2

100

101

I, mA

Fig. 2. Establishment of the Trichel pulses.
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Fig. 3. A detailed shape of a steady-state Trichel pulse. At
point 1, the current is minimum. Points 2 and 6 correspond
to a level of 0.1 of the peak height, and points 3 and 5 cor-
respond approximately to the half-height of the peak cur-
rent. At point 4, the current is maximum.
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Fig. 4. Distributions of the electric field strength at times (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6. The contours are marked by suc-
cessive numbers with the corresponding electric field strengths (in kV/cm).
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Fig. 5. Distributions of the density of positive ions in a small region near the cathode at times (a) 1, (b) 2, (c) 4, and (d) 5. The
contours are marked by successive numbers with the corresponding density values (in cm–3).
conditions of our simulations. In addition, estimates
show that the restriction on the anode size associated
with a compromise between the accuracy of computa-
tions and the computational time can affect the mean
current value and the pulse repetition rate. This is also
confirmed by experiments carried out with finite-size
anodes [14]. As a result, the theoretical and experimen-
tal reduced I–V characteristics are both straight lines;
however, the slope of the theoretical characteristic and
the voltage at which the current vanishes differ from
those obtained experimentally. Specifically, the calcu-
lated voltage is equal to 0.8 kV, whereas the measured
voltage is 2.4 kV. The slope of the calculated reduced
I−V characteristic is smaller than the experimental one
by a factor of 2.3. At a source voltage of 6 kV and
higher, the calculated pulse repetition rate essentially
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
coincides with the rate measured under experimental
conditions close to the conditions of our simulations.
However, at a voltage of 4 kV, the calculated rate differs
from the measured one by a factor of more than 2. It
should be noted that, according to the experiments of
[14], an additional boundary in the form of a cylindrical
dielectric screen around the current channel leads to the
same effects, namely, a decrease in the current and an
increase in the pulse repetition rate.

4. STEADY-STATE REGIME

The shape of a steady-state current pulse is shown in
Fig. 3. One can see that at the leading edge of the pulse
there are no singularities, which contradicts the predic-
tions of the 1.5-dimensional model [10]. The current
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rise time is approximately equal to 100 ns. The full
width at half-maximum of the pulse is about 12 ns. The
trailing edge of the pulse is more gentle: the current
decreases by one order of magnitude in about 20 ns. In
order to thoroughly analyze the spatial dynamics of the
plasma components, we chose the six points that are
indicated in Fig. 3. At point 1, the current is minimum
(Imin = 2.4 µA), and it is maximum (Imax = 1.06 mA) at
point 4. Points 3 and 5 approximately correspond to the
half-height of the current peak, and points 2 and 6 cor-
respond to a level of 0.1 of the peak height.

5. DYNAMICS OF THE SPATIAL DISTRIBUTIONS 
OF THE PLASMA PARAMETERS

The general features of the dynamics of the distribu-
tions of the plasma components and the electric field
can be understood from Fig. 4, which shows the con-
tours of the electric field strength in the R–X (radius vs.
distance along the discharge axis) plane. However, the
evolution process under consideration is somewhat dif-
ficult to illustrate graphically because the structures in
the discharge volume develop in a highly nonuniform
manner: at short distances from the cathode (shorter
than a millimeter), the charged particle densities and
the electric field change by many orders of magnitude
on nanosecond time scales. Consequently, the com-
puted electric field distribution is viewable over the
entire computation region only in simulations carried
out for minimum corona currents, in which case the
space charge distorts the field insignificantly (Fig. 4a).

The electric field distributions calculated for five
subsequent times, 2–6, are shown in Figs. 4b–4f,
respectively. For illustrative purposes, these figures dis-
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Fig. 6. Distribution of the density of negative ions over the
entire computation region at time 1, at which the current is
minimum. The contours are marked by successive numbers
with the corresponding density values (in cm–3).
play the distributions only over a small part of the dis-
charge volume near the cathode tip. As can be seen in
Fig. 4b, the electric field is first redistributed near the
discharge axis; at the cathode surface, it becomes three
times stronger than that at time 1. At two subsequent
times, 3 and 4, we distinctly see the formation of a
sheath, which expands over the cathode surface until
the current rises to its peak value (time 4). It is worth
noting that, at the peak current, the maximum field at
the cathode surface is weaker than at the earlier times.
After the current passes through its peak value, the
cathode sheath is rapidly destroyed, so it is not seen in
Figs. 4e and 4f. Looking carefully at Figs. 4b–4d, one
can see that the region of the weaker electric field arises
near the region of the stronger field at the cathode sur-
face and expands together with the cathode sheath. The
above characteristic features of the evolution of the
electric field distribution near the cathode are obviously
associated with an electron-impact avalanche ioniza-
tion, followed by the screening of the electric field by
the produced positive ions.

This character of the evolutionary process is con-
firmed by Fig. 5, which illustrates the distribution of the
density of positive ions in a small region near the cath-
ode. When the current is minimum (Fig. 5a), the ion
density is low and varies rather smoothly in space. As
the current increases (Figs. 5b, 5c), a region of high ion
density arises near the axis and then expands over the
cathode surface, in which case the ion density is the
highest at a distance of about 10 µm from the cathode.
According to Fig. 5d, the characteristic structure of the
cathode sheath becomes indistinguishable at the half-
height of the current peak.

In contrast to positive ions, negative ions gradually
evolve over almost the entire discharge volume. The
characteristic distribution of negative ions at the time at
which the current is minimum is depicted in Fig. 6.

Like positive ions, electrons are concentrated near
the cathode surface because, as they drift away from the
cathode, they are rapidly attached to oxygen molecules.
The evolution of the spatial electron distribution is
illustrated in Fig. 7. Because of the high electron drift
velocity in the electric field, the contours of the electron
density are characteristically stretched out along the
field. The divergence of the contours originating from a
region near the tip of the needle (Figs. 7a, 7b, 7d) is
explained by the fact that the ion density is elevated in
this region (cf. Figs. 5a, 5b). Recall that, in the dis-
charge volume, the electrons are produced only through
the ion-induced secondary emission. At the peak cur-
rent (Fig. 7c), the electron emission current is distrib-
uted uniformly over the part of the discharge region
shown in Fig. 7. The rapid destruction of the cathode
sheath gives rise to the characteristic pattern of the con-
tours of the electron density diverging from the axial
region (Fig. 7d).

A more detailed comparison between the spatial dis-
tributions of the physical quantities at different times is
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
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provided by Figs. 8–11, which show the profiles of the
electric field and charged particle densities along the
discharge axis. Figure 8 shows that, at the leading edge
of the pulse, there remains a deep minimum (up to a
level of about 400 V/cm) in the axial electric field pro-
file at a distance of about 10 µm from the cathode. An
increase in the electric field at distances farther from the
cathode surface and the maximum that forms in the
electric field profile and moves away from the cathode
are attributed to the electron attachment and the pro-
duction of slowly moving negative ions (see Figs. 9,
10). We note that, as the current begins to rise (Fig. 9,
time 2), the maximum electron density at the axis
becomes higher than that at all subsequent times, in
particular, at the peak current. Figure 11 shows the
same effect for positive ions, whose maximum density
is higher than 3 × 1015 cm–3. The formation and destruc-
tion of the cathode sheath are clearly illustrated in
Fig. 12, which presents the potential profile along the
discharge axis. At a level of 0.1 of the peak current
(time 2), the potential drop across the sheath is maxi-
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mum and is approximately equal to 180 V. At the peak
current, the potential drop is about 90 V. As the current
falls off (time 5), the electric field in the cathode sheath
becomes stronger than that at the peak current, and the
region of the stronger field becomes larger. In this case,
the characteristic potential drop across the sheath is
about 210 V.

6. DYNAMICS OF THE DISTRIBUTIONS 
OF THE PLASMA PARAMETERS
OVER THE CATHODE SURFACE

The above-described dynamics of the spatial distri-
butions of the discharge plasma parameters provides
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Fig. 9. Electron density profiles along the discharge axis.
Different times are indicated by numerals in accordance
with Fig. 3.
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Fig. 11. Positive-ion density profiles along the discharge
axis. Different times are indicated by numerals in accor-
dance with Fig. 3.
clear evidence for the substantial restructuring of the
cathode sheath. This restructuring should manifest
itself in the dynamics of the current density distribution
over the cathode surface. Figure 13 illustrates how the
distribution of the total current density over the cathode
surface evolves in time. Since the actual current density
varies by many orders of magnitude, Fig. 13 compares
the profiles of the current density normalized to its val-
ues at the discharge axis at the different times for which
the profiles were calculated. The vertical line is the
coordinate at which the cylindrical cathode surface
becomes a spherical surface. At time 2, the total current
density changes its sign four times, which is obviously
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Fig. 10. Negative-ion density profiles along the discharge
axis. Different times are indicated by numerals in accor-
dance with Fig. 3.
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Fig. 12. Potential profiles along the discharge axis. Differ-
ent times are indicated by numerals in accordance with
Fig. 3.
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explained as being due to the displacement current vari-
ation produced by a change in the electric field at the
cathode surface. In the axial region, the current density
changes sharply, in which case the positive maximum
current density at a distance of about 33 µm from the
axis is higher than that at the axis by a factor of 44. The
current density is negative everywhere, except in a
30-µm-wide ring region on the spherical surface and a
narrow ring region near the axis; this indicates that the
field in these regions decreases. Then, at time 3, the cur-
rent density is seen to peak at an appreciably larger dis-
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Fig. 13. Distributions over the cathode surface of the total
current density normalized to its corresponding instanta-
neous value at the discharge axis. The abscissa is the coor-
dinate LC along the cathode surface. Different times are
indicated by numerals in accordance with Fig. 3; nearly
coincident curves 5 and 6 are shown by the solid and dotted
lines, respectively.
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Fig. 15. Potential profiles along the mesh line at a distance
of 3 µm from the cathode surface. Different times are indi-
cated by numerals in accordance with Fig. 3.
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tance from the axis and to be lower in magnitude. Obvi-
ously, the position of the peak is determined by the
boundary of the cathode sheath, which begins to form
at the discharge axis and to expand over the cathode
surface. At the peak current (time 4), the total current
density is distributed uniformly and the flat part of the
profile extends beyond the boundary between the cylin-
der and the hemisphere. As the pulse current falls off,
the current density is redistributed in such a way that it
concentrates near the discharge axis. The total current
density at the cathode is the sum of the current density

1

0.010 0.02
LC, cm

2

3
Jion/J(0)

1

2

3
4

5
6

Fig. 14. Distribution over the cathode surface of the ion cur-
rent density normalized to the corresponding instantaneous
total current density at the discharge axis. Different times
are indicated by numerals in accordance with Fig. 3.
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46
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Fig. 16. Radial profiles of the normalized total current den-
sity at the anode surface. Different times are indicated by
numerals in accordance with Fig. 3. The abscissa is the
radial coordinate RA at the anode surface. Curve 7 is the
Warburg profile.
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of positive ions and the displacement current density
(the electron current amounts to 0.01 of the ion cur-
rent). The dynamics of the ion current density normal-
ized to the total current density at the discharge axis is
illustrated in Fig. 14. A narrow peak near the axis at
time 2 in Fig. 13 is attributed to the ion contribution to
the total current density. Obviously, the peak near the
boundary of the cathode sheath arises because the elec-
tric field in this region increases, thereby intensifying
the ionization. This pattern of the discharge evolution is
confirmed by Fig. 15, which shows how the potential
varies along the line of the numerical mesh that is at a
distance of 3 µm from the cathode surface. We see that,
at the leading edge of the pulse, the region of the stron-
ger electric field forms near the discharge axis; then,
this region expands and the electric field in it decreases.
As the current falls off, the region of the stronger field
becomes progressively smaller; however, the electric
field at different points decreases nonsimultaneously,
remaining fairly strong near the discharge axis.
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Fig. 17. Radial profiles of (a) the ion current density and
(b) the displacement current density, both normalized to the
total current density at the discharge axis. Different times
are indicated by numerals in accordance with Fig. 3.
7. DYNAMICS OF THE DISTRIBUTIONS
OF THE DISCHARGE PARAMETERS 

OVER THE ANODE SURFACE

It is expected that the complicated plasma dynamics
near the cathode will affect the current dynamics at the
anode surface, at which the total current density is a
sum of the current density of negative ions and the dis-
placement current density. Since the ratio of the areas
of the regions over which the currents are collected by
the anode and cathode is as large as about 335, the cur-
rent density at the anode surface is much lower than that
at the cathode surface. Figure 16 shows the distribu-
tions of the normalized total current density over the
anode surface at the same times as in Fig. 3. During the
pulse (curves 2–6), the current flows through the entire
accessible region of the anode surface. Interestingly,
when the current is minimum, the total current density
is negative at the anode periphery. This can be
explained by comparing the distributions of the ion cur-
rent density (Fig. 17a) and the displacement current
density (Fig. 17b). In simulating Trichel pulses with the
help of a 1.5-dimensional model [10], it was mentioned
that, between the pulses, the potential drop across the
drift region decreases, and that across the cathode
region increases. For this reason, the displacement cur-
rent is positive at the cathode surface (cf. Figs. 13, 14)
and is negative at the anode surface. In this case, the ion
current at the anode turns out to be localized in a
smaller region (with a radius of about 7 mm, see
Fig. 17a); as a result, the displacement current is domi-
nant at the anode periphery.

In Fig. 16, we also show the well-known Warburg
distribution, which describes the time-averaged current
distribution over the anode surface. The way the data
output was organized in the code did not enable us to
directly calculate the mean current density at the anode
surface. However, taking into account the fact that the
displacement current does not contribute to the period-
averaged total current, one can see that the radial profile
of the ion current is essentially unchanged and, thus, it
can be regarded as a mean current density profile. Com-
paring Fig. 16 with Fig. 17a, we can see that the calcu-
lated profile of the mean current density is markedly
narrower than the Warburg profile. With allowance for
the fact that, in accordance with the Warburg distribu-
tion, the current density at the boundaries of the com-
putation region is nonzero, we can conclude that the
size of this region at the anode surface was chosen to be
too small; as a result, its boundaries affect the discharge
parameters. The same conclusion has been drawn
above when comparing the integral parameters of the
corona discharge with the experimental data.

8. CONCLUSION

The results from the numerical simulations of a neg-
ative corona in air demonstrate that the experimentally
observed regime of self-oscillations, known as Trichel
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
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pulses, is well described by a three-dimensional axi-
symmetric model that is based on the standard transport
equations and in which the electrons are assumed to be
produced only through the ion-induced secondary
emission at the cathode. The quantitative difference
between the measured and calculated mean currents
and pulse repetition rates most likely stems from the
insufficiently large dimensions of the computation
region. It is found that the transverse discharge struc-
ture near the cathode radically changes during the
pulse. Specifically, as the pulse current grows, a cath-
ode sheath forms at the discharge axis and expands over
the cathode surface. At the trailing edge of the pulse,
the cathode sheath is rapidly smeared out; as a result,
the characteristic field structure is well defined only
near the discharge axis and becomes virtually indistin-
guishable when the current decreases by an order of
magnitude. The characteristic spatial scale on which
the plasma parameters near a needle-shaped cathode of
radius 60 µm change sharply is about several tens of
microns. The characteristic potential drop across the
cathode sheath is no higher than 200 eV, which is
appreciably lower than the conventional cathode fall in
a glow discharge. This result is not surprising, because
the sheath exists for only about ten nanoseconds.

It is expedient to compare the above results with the
results from the 1.5-dimensional simulations carried
out in [10], in which the shape of the current channel
was specified on the basis of general considerations and
the channel parameters were adjusted so that the calcu-
lated results coincided with the experimental data. The
resulting channel had a thin cylindrical part of radius
0.06 mm and length of 0.2 mm near the needle’s point.
It was assumed that the channel shape did not change
with time. Our simulations, which were carried out
without any reference to the adjustable parameters,
show that the region of steep gradients near the needle
is, in fact, far shorter (tens rather than hundreds of
microns) and that the cross-sectional area of the current
channel changes significantly with time. Nevertheless,
our model and the model of [10] yield similar time evo-
lutions of the integral parameters of the corona dis-
charge. However, the evolutionary patterns differ in
details: the 1.5-dimensional model [10] predicts that an
ionization wave should form along the discharge axis
and should give rise to an additional current peak at the
leading edge of the pulse, whereas the model developed
here predicts that a cathode sheath should form near the
discharge axis and, then, should expand over the cath-
ode surface (i.e., there is only the main current peak).
Since our model was constructed without any arbitrary
assumptions, it seems that the evolutionary pattern in
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which the cathode sheath in the discharge expands over
the cathode surface in a wavelike manner is more real-
istic. The nature of an additional low peak (or shoulder)
recorded in the leading edge of the current pulse at
reduced pressures requires further investigation. In par-
ticular, it is necessary to develop a more adequate
model in order to check the Morrow hypothesis [8]
about the role of photoionization.
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Abstract—The spatial, electrical, and optical characteristics of a transverse glow discharge and a volume dis-
charge with a spherical anode and plane cathode in low-pressure Xe/Cl2 mixtures are studied. It is shown that the
transverse glow discharge in mixtures with a low chlorine content occupies most of the interelectrode gap and
exists in the form of strata. As the total pressure (P ≥ 300 Pa) and the partial chlorine pressure (P(Cl2) ≥ 80 Pa)
increase, a solitary plasma domain with a volume of 1–2 cm3 forms in the discharge gap. It acts as a selective
source of UV radiation in the XeCl(D–X) 236-nm, Cl2(D'–A') 257-nm, and XeCl(B–X) 308-nm bands. In cer-
tain Xe/Cl2 mixtures, plasma self-oscillations in the frequency range 1–100 kHz are observed. The current of a
low-pressure volume discharge with a spherical anode and plane cathode and the emission from it have both a
dc and an ac component. The pressure and composition of the working mixture, as well as the average current
of the volume discharge are optimized to attain the maximum emission intensity of the XeCl(D,B–X) bands.
Low-pressure volume discharges in xenon/chlorine mixtures can be used as active media in low-pressure
large-aperture planar or cylindrical excimer–halogen lamps emitting modulated or repetitive pulsed UV radiation.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Low-pressure volume discharges with a solid cath-
ode and a perforated anode in ïÂ/Cl2 and Xe/HCl mix-
tures were used to pump the active media of planar
XeCl lamps [1]. In lamps with an interelectrode dis-
tance of 3 cm, there was no dielectric wall touching the
plasma and the dc voltage at the lamp anode was no
higher than 1 kV. The emission efficiency in the 4π
solid angle was higher than 4%. Such low-pressure
excimer sources are simpler in design than planar
lamps with microwave pumping [2]. In these lamps, in
contrast to lamps based on a longitudinal glow dis-
charge [3–7], the diffusion of chlorine into the glass
wall of the discharge tube is absent. Note that, under
elevated tube temperatures, this diffusion can lead to a
significant decrease in the gas-fill lifetime of the lamp
and calls for the forced cooling of both the lamp elec-
trodes and the discharge tube. In [1], the main attention
was paid to studying the spatial and energy characteris-
tics of the volume discharge, whereas the time behavior
of the discharge parameters and plasma emission was
not studied. In low-pressure plasmas of noble gas–oxy-
gen mixtures, electron attachment, electron detach-
ment, and the diffusion of negative ions play an impor-
tant role. These processes lead to the stratification of a
longitudinal glow discharge and the formation of a
pinch consisting of an ion–ion plasma in the center of
the discharge tube [8–10]. In the case of a low-pressure
volume discharge in an electronegative working mix-
ture, the distribution of the electric field along the dis-
charge gap can be unstable; for this reason, the creation
of planar excimer lamps is problematic.

In this paper, we present the results of the experi-
mental studies of a transverse glow discharge and a vol-
1063-780X/02/2812- $22.00 © 1060
ume discharge with a spherical anode and plane cath-
ode in low-pressure xenon/chlorine mixtures. These
pumping systems can be applied to develop low-pres-
sure planar and cylindrical excimer lamps with a large
output aperture.

2. EXPERIMENTAL SETUP

The experiments were carried out with a facility that
was previously used to study dc excimer–halogen
lamps [11, 12]. The spatial and current–voltage charac-
teristics of the discharge; the plasma emission spectra
in the spectral range 130–350 nm; the emission inten-
sity in the excimer molecular bands; and the waveforms
of the discharge voltage, current, and total emission
were investigated.

The electrode system of a transverse glow discharge
(TGD) or a spherical anode–plane cathode electrode
system was placed in a 10-l buffer discharge chamber
(Fig. 1). The chamber was hermetically connected via
an LiF window to a vacuum monochromator with a
spectral resolution of 0.7 nm. An FÉU-142 photomulti-
plier with an LiF window was used to monitor plasma
emission. The vacuum monochromator and the photo-
multiplier were relatively calibrated in the spectral
range 165–350 nm by using the molecular hydrogen
continuum. The UV–VUV emission spectra from the
TGD plasma were analyzed by taking the emission
from the end of the plasma column. At the opposite side
of the plasma (against the quartz window of the dis-
charge chamber), a pulsed FOTON photomultiplier was
placed. The waveforms of the total emission from the
plasma in the spectral range 200–700 nm were recorded
using a broadband C1-99 oscilloscope. The time reso-
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. (a, c, d) Transverse and (b) longitudinal cross sections of a TGD in the Xe/Cl2 = (a, b) 120/40-Pa, (c) 240/120-Pa, and
(d) 670/40-Pa mixtures and (e) a volume discharge with a spherical anode and plane cathode: (A) anode, (C) cathode, and (NCG)
negative cathode glow.

P

lution of the recording system was no worse than 10 ns.
The waveforms of the discharge current pulses were
recorded with the help of a low-inductive current shunt
with a resistance of R = 1–5 Ω , and a low-inductive
capacitive divider (with an attenuation coefficient of
400) was used to record the discharge voltage. The
input capacitance of the divider (C0 = 200 pF) shunted
the gap between the spherical anode and plane cathode
of the volume discharge.

The TGD was ignited between a plane nickel anode
and a massive hemicylindrical nickel-plated brass cath-
ode. The area of the anode working surface was 4.5 ×
16 cm2, and the base area of the brass cathode was 7.5 ×
15 cm2. The interelectrode distance was 2.2 cm. The
end and side edges of the TGD electrodes were
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
rounded. The electrode system of the volume discharge
consisted of a massive hemispherical anode with a base
diameter of 7 cm and a 1-cm-thick plane cathode 9 cm
in diameter. The electrodes were made of duralumin
and were spaced by 2.8 cm. The radius of curvature of
the anode working surface was 3 cm. A dc voltage of
Uch ≤ 1.0 kV was applied to the anode through a 20-kΩ
ballast resistor. The average discharge current was var-
ied in the range 2–50 mA, and the total pressure of the
Xe/Cl working mixture was in the range 40–2000 Pa.

3. SPATIAL CHARACTERISTICS

The spatial characteristics of the discharge were
determined by taking the photographs of the discharge
and processing them with a scanner and a PC. The cross
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sections of the electrode system and the low-pressure
glow discharge plasma are shown in Fig. 1. At low par-
tial pressures of xenon and chlorine (Figs. 1a, 1b), the
TGD occupied most of the interelectrode gap and
existed in the form of moving and stationary strata
(generally, five to six stationary strata were observed).
In the middle of the discharge gap, the plasma was
absent. The stratified plasma was adjacent to the work-
ing surface of the anode plate and was separated from
the cathode part of the discharge by a dark space. The
negative cathode glow (NCG) was formed at the
periphery of the cathode cylindrical surface, whereas
the central part of the gap was free of plasma. In the
longitudinal section of the TGD, strata directed along
the TGD electrodes were observed (Fig. 1b). As the

Spatial characteristics of a volume discharge with a spherical
anode and a plane cathode

Xe/Cl2 mixture, Pa da, mm dc, mm

80/120 10 22

160/120 8 17

320/120 7 15

480/120 7 20 (strata)

320/200 9 20

320/320 5 12

10

0 50

I, mA

U, V

300

0 40

Uch, V

600

20

1
2

Ich, mA

100 150

5

15

20

(‡)

(b)

Fig. 2. (a) Steady-state current–voltage characteristics of a
transverse discharge in the Xe/Cl2 = (1) 120/40-Pa and
(2) 670/40-Pa mixtures and (b) the dynamic current–volt-
age characteristic of a volume discharge with a spherical
anode and a plane cathode in the Xe/Cl2 = 160/120-Pa mix-
ture.
xenon partial pressure increased, a solitary plasma
domain formed near one of the ends of the TGD elec-
trode system. The intensity of visible emission from the
plasma domain was maximum in the center of the
domain and decreases toward its periphery. The cath-
ode part of the plasma domain consisted of the NCG
and the cathode dark space. The formation of a domain
was observed most clearly in the case of a spherical
anode and plane cathode (Fig. 1e). The diameters of the
anode (da) and cathode (dc) parts of the plasma domain
(excluding the NCG) in ïÂ/Cl2 mixtures are presented
in the table.

The diameter of the anode part of the plasma
domain was always 1.5–2.0 times larger than the diam-
eter of its cathode part. The increase in the xenon pres-
sure P(ïÂ) from 80 to 320 Pa at P(Cl2) = 120 Pa led to
a decrease in da and dc. At P(ïÂ) = 480 Pa, the domain
was stratified. An increase in the partial pressure of
molecular chlorine resulted in a rapid decrease in the
domain dimensions.

4. ELECTRICAL AND OPTICAL 
CHARACTERISTICS

The steady-state current–voltage characteristics of a
TGD in a Xe/Cl2 mixture (Fig. 2a) are similar to those
of a longitudinal dc glow discharge [13]. At anode volt-
ages of Uch ≤ 650 V, the TGD was stable. The increase
in P(ïÂ) from 120 to 670 Pa led to an increase in Uch
by 130–150 V; the increase was maximum at low dis-
charge currents (Ich ≤ 10 mA). The average power
deposited in the TGD was in the range 1–30 W. The
steady-state current–voltage characteristics of a volume
discharge with a spherical anode and plane cathode
were similar to the TGD characteristic shown in Fig. 2.
At t > 1.5 µs, there was a pronounced segment with a
negative slope in the dynamic current–voltage charac-
teristic (plotted by using the waveforms of the ac com-
ponents of the discharge voltage and current) of a vol-
ume discharge in the ïÂ/Cl2 = 160/120-Pa mixture
(Fig. 2b).

The emission spectra from a TGD in different
Xe/Cl2 mixtures are shown in Fig. 3. The test experi-
ment with proper light filters showed that the integral
emission power in the spectral range λ > 400 nm was
no higher than 10% of the total emission power. Hence,
the waveforms recorded with the pulsed FOTON pho-
tomultiplier represent the emission dynamics from the
XeCl(D,B–X) molecular bands. The plasma of a vol-
ume discharge in a Xe/Cl2 mixture acts as a source of
broadband radiation in the range 200–340 nm. The
XeCl(D–X) and XeCl(B–X) bands with peaks at 236
and 308 nm, respectively, were dominant in the emis-
sion spectrum. An increase in the xenon partial pressure
resulted in a decrease in the emission intensity on the
short-wavelength side of spectrum and an increase in
the emission intensity at λ ≥ 320 nm, which is related
to the process of vibrational relaxation of the B and D
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
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states of a XeCl molecule in collisions with Xe atoms
[14]. After a collision event, the XeCl(B, D, v '') exci-
mer molecule passes to a lower lying energy level. At
low pressures of the Xe/Cl2 mixture, the Cl2(D'–A')
257-nm band was observed against the background of
broadband UV emission formed due to the overlap of
the XeCl(D–X) band with the XeCl(B–X) band. This
fact allows us to refer to the radiation source under
study as an excimer–halogen source.

200 250 300 350
λ, nm

 XeCl (D–X) 236 nm

 XeCl (B–X) 308 nm

2

1

Fig. 3. Emission spectra from a transverse discharge in the
Xe/Cl2 = (1) 670/40-Pa and (2) 120/40-Pa mixtures for Ich =
50 mA.
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
The study of the time behavior of the TGD emission
showed that it contained both a dc and an ac compo-
nent. For example, in the case of a TGD in the Xe/Cl2 =
240/120-Pa mixture at discharge currents of 8–18 mA,
the dc component of the plasma emission intensity was
no higher than 30%. The ac component consisted of
regular pulses with a full width of 20 µs. As the average
discharge current increased, the share of the dc compo-
nent increased and the waveform of the total emission
intensity became a damped sinusoid that reached a con-
stant value at t = 100 µs. This value comprised about
70% of the main (first) maximum of the emission inten-
sity. For low TGD currents (Ich ≤ 4 mA), the plasma
emission intensity was nearly constant.

The dynamics of a volume discharge with a spheri-
cal anode and plane cathode was studied in more detail.
The waveforms of the discharge voltage, the discharge
current, and the total emission intensity from the
plasma are shown in Fig. 4. In the case of a volume dis-
charge in a low-pressure Xe/Cl2 mixture, the dc compo-
nent of the total UV emission from the plasma was min-
imum, and the emission primarily consisted of radia-
tion pulses with a full width of 3.0 µs (Fig. 4a). The
peaks in the emission intensity almost coincided in time
with the discharge current maxima. The emission pulse
was formed at the leading edge of the discharge voltage
2
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0 1 2 3 4
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Fig. 4. Waveforms of the discharge voltage U, the discharge current I, and the total emission intensity JF from the plasma for a vol-
ume discharge with a spherical anode and plane cathode in the Xe/Cl2 = (a) 160/120-Pa and (b) 480/320-Pa mixtures (C0 = 220 pF).



1064 SHUAIBOV et al.
pulse. Figure 4 presents the waveforms of the discharge
parameters for pulses with the maximum values of U, I,
and JF; however, in the experiments, we recorded pulses
with a rather wide scatter in the amplitudes of the dis-
charge parameters (at a level of 30–100% of the maxi-
mum values). This points to the formation of plasma
domains whose parameters vary in a fairly wide range.

An increase in the partial pressures of Xe and Cl2 led
to an increase in the share of the dc components in the
discharge current and plasma emission (Fig. 4b),
whereas the duration of the radiation pulses decreased
from 3 to 2 µs. Substituting krypton or argon for xenon
in a Xe/Cl2 mixture resulted in the disappearance of the
dc component of both the discharge current and the
plasma emission between the pulses. In these media,
the pulse repetition rate increased with average current
and was in the range 5–100 kHz.

The emission intensity J from the TGD plasma in
the spectral range 200–340 nm increased with the aver-
age current without any tendency to saturation (Fig. 5).
At discharge currents in the range 25–50 mA, the rate
at which the UV emission intensity grew with increas-
ing current was 3 times higher than that at low currents
(Ich ≤ 20 mA). Similar dependences of the emission
intensity from XeCl(D,B–X) molecules on the average
current were also observed for a volume discharge with
a spherical anode and plane cathode. To increase the UV
radiation intensity from the discharge, it is promising to
increase the average discharge current to 0.5–1.0 A.
However, it would require the forced cooling of the dis-
charge electrodes and manufacturing them from metals
that are higher melting than duralumin.

5. CONCLUSION

It has been shown that the waveforms of the dis-
charge voltage, discharge current, and emission inten-
sity from a transverse glow discharge and a volume dis-
charge with a spherical anode and plane cathode in
Xe/Cl2 mixtures (at P ≤ 2 kPa) have both a dc and an ac
component. The discharges exist mainly in the form of
plasma domains. In the absence of a dielectric wall,

0.5

0 20

J, arb. units

40

1.0

I, mA

Fig. 5. UV emission intensity from a discharge in the
Xe/Cl2 = 120/40-Pa mixture vs. average TGD current.
there is no contact between the plasma and glass; as a
result, there is no chlorine diffusion into the glass at ele-
vated plasma temperatures. At discharge currents of
Ich = 2–50 mA, the dc voltage at the anode is no higher
than 1.0 kV; in this case, no forced cooling of the dis-
charge unit is required. Xe/Cl2 = (500–700)/(120–250)-Pa
mixtures are found to be optimum for attaining the
maximum emission power from a volume discharge in
the range 200–340 nm (the XeCl(D–X), Cl2(D'–A'),
and XeCl(B–X) band system with maximums at 236,
257, and 308 nm, respectively). Based on the discharges
under study, it is possible to create low-pressure broad-
band excimer–halogen lamps in which a significant
fraction of radiation will be emitted in microsecond
pulses with a repetition rate of 5–100 kHz. To increase
the stability of the transverse discharge, it may be prom-
ising to use an RF pumping (a γ-type discharge with
stripped electrodes separated by a distance of 2–3 cm),
in which case electrode sheaths are formed whose
emission intensity is higher than that of the positive col-
umn of an RF discharge.
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Abstract—Numerous applications of protons and ions accelerated by laser radiation require charged particle
beams of high quality (i.e., such that the ratio of the energy width of the beam to its mean energy is small). In
order to produce beams with controlled quality, it is proposed to use two-layer targets in which the first layer
consists of heavy multicharged ions and the second layer (thin and narrow in the transverse direction) consists
of protons. The possibility of generating a high-quality proton beam in the interaction of ultraintense laser radi-
ation with such a two-layer target is demonstrated by two- and three-dimensional particle-in-cell computer sim-
ulations. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, rapid strides are being made in develop-
ing compact laser devices capable of generating
ultrashort pulses in the multi-terawatt and petawatt
power range [1]. The most important possible applica-
tions of such lasers are associated with electron and ion
accelerators [2–6], as well as compact sources of ions
[7], pions [8], and hard X-ray and gamma radiation [9].

Laser accelerators of ions are based on the high effi-
ciency of converting laser energy into the energy of fast
ions in the interaction of petawatt laser pulses with
plasma [10]. Collimated beams of fast ions were
recorded in experiments on the interaction of laser
pulses with solid targets [3]. The ion acceleration pro-
cesses are also investigated numerically [4–6] by
means of two- and three-dimensional particle-in-cell
(PIC) computer simulations [11]. In the experiments
reported in [3], electrons were accelerated to energies
of about several hundred MeV and the energies of the
accelerated ions amounted to several tens of MeV per
nucleon. The number of particles in the beam can be as
large as about 1013, and the conversion efficiency of
laser energy into the energy of fast ions can be as high
as 7–12%. Computer simulations [6] showed that, by
optimizing the plasma parameters of laser pulses and
targets, it is possible to achieve conditions under which
protons can be accelerated to energies of several hun-
dred MeV, the number of particles accelerated by one
laser pulse being about 1011–1013.
1063-780X/02/2812- $22.00 © 20975
Note that, in the interaction of laser radiation with a
sufficiently thin plasma slab (of either subcritical or
overcritical density), the ions in the slab that are farthest
from the laser are accelerated most efficiently. (It is
clear that, when the target is thick, only the ions nearest
to the laser are accelerated.) The generation of fast pro-
ton beams in the propagation direction of a laser pulse
was first demonstrated in computer simulations carried
out for a dense plasma [12] and a subcritical plasma [4]
and, then, was observed in experiments with high-
power laser pulses [3]. Such factors as a large number
of accelerated protons and their high energy, as well as
the high directionality of proton beams, open up a wide
range of possibilities for employing laser accelerators
as injectors for conventional charged particle accelera-
tors [13], as a means for the fast ignition of thermonu-
clear reactions in inertial confinement fusion [14, 15]
and the initiation of nuclear reactions in matter [8], and
as tools for the purposes of hadron therapy in oncology
[16, 17] and proton diagnostics of plasmas with high
temporal and spatial resolutions [18].

In almost all of these practical applications (injec-
tors, inertial confinement fusion, and hadron therapy),
the key problem is associated with the quality of the
proton beam, because the protons observed in both lab-
oratory experiments and numerical simulations have
broad quasi-thermal energy spectra. This raises the
question as to how to ensure the smallness of the ratio
∆%/% of the energy width of the beam to its character-
002 MAIK “Nauka/Interperiodica”
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istic energy. Thus, for the purposes of hadron therapy,
this ratio should be as small as ∆%/% ≤ 2%, because it
is necessary to guarantee the irradiation of a malignant
tumor with a sufficiently strong dose while simulta-
neously ensuring a minimum acceptable level of the
irradiation of the surrounding healthy tissues and
organs [19]. In the model of the fast ignition of precom-
pressed targets by a beam of protons accelerated by
laser radiation [14], the beam was assumed to be
monoenergetic. In [20], the calculations of the laser
energy required for ignition by a beam of fast protons
with a quasi-Maxwellian energy distribution showed
that the required laser energy is several times higher
than the energy estimated in [14]. Also, in the problem
of a particle injector, the energy spectrum of the beams
should be sufficiently narrow to provide the beam injec-
tion into the optimum acceleration phase [21].

The results of computer simulations described in
this paper show that using a two-layer target whose
qualitative model was formulated in [16] makes it pos-
sible to solve the above problem of generating fast ion
beams with controlled quality. Note that, in laser phys-
ics, multilayer targets have been known for a long time
(see, e.g., [22], where the advantages of compressing
multilayer fusion targets were discussed). In particular,
in [23], it was experimentally demonstrated that the use
of a two-layer target increases the efficiency of laser

Ions

Laser pulse

Protons

Electrons

∆x0

x

1

E

2 R⊥

Laser pulse
r

x

(‡)

(b)

Fig. 1. Two-layer target. The rear side of the foil of heavy
ions is coated with a thin hydrogen layer.
acceleration of protons as compared to the case with a
single-layer target. Cluster targets consisting of parti-
cles of different species were investigated experimen-
tally in [24], where the increase in the acceleration effi-
ciency of protons was also observed.

In contrast to the papers cited above, we propose to
generate beams with controlled quality by using two-
layer targets. In the scheme developed here, the target
is composed of two layers in which the laser-irradiated
first layer consists of heavy, partially ionized ions with
the charge Zie and the mass mi and the second layer,
which is farther from the laser, consists of ionized
hydrogen atoms, i.e., protons and electrons. In the ini-
tial target configuration, the electric charge of positive
ions is fully neutralized by electrons. The number of
electrons in the first layer is assumed to be much larger
than that in the second layer. The second layer should
be of sufficiently small thickness (the layer dimension
in the propagation direction of a laser pulse) and suffi-
ciently small width (the dimension in the transverse
direction). The target configuration under discussion,
which was described qualitatively in [16], is illustrated
in Fig. 1.

In order to explain why it is necessary to satisfy the
above requirements, we describe a typical scenario of
the interaction of a high-power laser pulse with a two-
layer target. In the field of the incident laser pulse, the
target is ionized and some electrons escape from it
under the action of the ponderomotive pressure of the
laser radiation. Escaping electrons give rise to the qua-
sistatic electric field of an unneutralized electric charge.
The quasistatic electric field is localized in a finite
region with dimensions comparable to the transverse
dimension of the laser pulse. The initial stage, during
which the light ions (protons) are accelerated, is insuf-
ficiently long for the heavy ions of the first layer to start
moving. If the total number of protons is small in com-
parison with the number of electrons that have escaped
from the target, then the effect of the electric field of
protons on their dynamics can be neglected, in which
case the proton acceleration can be described in the
approximation of test particles moving in a prescribed
electric field. The fact that the thickness and width of
the proton layer are both small in comparison with the
scalelength of the electric field guarantees that all pro-
tons will acquire approximately the same energy.
Under such conditions, the relative energy spread of the
particles is proportional to the ratio of the target thick-
ness to the inhomogeneity scale of the accelerating
electric field.

Below, we will present the results of calculating the
energy spectrum of protons using a simple theoretical
model. We will also discuss the results of two- and
three-dimensional PIC simulations of the interaction of
high-power laser radiation with a two-layer target.

Our paper is organized as follows. In Section 2,
based on the familiar dependence of the energy losses
of protons in matter on their path length, we justify the
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002



        

GENERATION OF HIGH-QUALITY CHARGED PARTICLE BEAMS 977

                                                                                                                               
necessity of using monoenergetic beams. In Section 3,
by using a one-dimensional static model for the electric
field distribution near the target, we calculate the
energy spectrum and also the longitudinal and the trans-
verse emittance of a fast proton beam. In Section 4, we
report the results obtained from PIC simulations of the
interaction of high-power laser radiation with two-layer
targets. In Section 5, the main results of our study are
summarized.

2. ENERGY LOSSES OF A PROTON BEAM

As is known [25], a proton beam passing through
matter loses energy. The energy loss rate d%/dx =
−F(%) is described by the formula

(1)

where Λ(α%) is a function of energy %. The specific
form of this function depends on the state of matter
(see, e.g., [25–27]). For a proton propagating in a
plasma [27], we have κ = 4πnee4mp/me and the function

Λ(α%) has the form Λ(α%) = ln(4me%/" mp), which

gives α = 4me/" mp, where ωpe = (4πnee2/me)1/2 is
the plasma frequency.

The distribution function 1(x, %) of the fast protons
satisfies the transport equation

(2)

with the boundary condition 1(x = 0, %) = 10(%). The
solution to Eq. (2) can be represented as

(3)

Here, %, %0, and x are related by

(4)

where li(ξ) =  [28] is the logarithmic integral,

which can be expressed in terms of the exponential

integral li(ξ) = Ei(lnξ), with Ei(ζ) = dη/η.

With good accuracy, the logarithmic integral is approx-
imated by the expression li(ξ) ≈ ξ/lnξ. Using formulas
(1), (3), and (4), we obtain the rate of the beam energy
losses, i.e., the energy deposited per unit length of the
beam trajectory:

(5)

Figure 2 shows the profiles of the energy deposited
by fast proton beams that have different energy spectra
at x = 0. Curve 1 was calculated for a beam with a quasi-
thermal energy distribution such that 1(x = 0, %) =

F %( ) κ
%
----Λ α%( ),=

ωpe
2

ωpe
2

∂1
∂x
--------

∂
∂%
------- F %( )1[ ]+ 0=

1 x %,( ) 10 %0( ) d%0

d%
--------- .=
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n0θ(% – %max)exp(–%/T), where θ(ξ) = 1 for ξ > 0 and
θ(ξ) = 0 for ξ < 0. This quasi-thermal distribution func-
tion of a fast proton beam corresponds to the depen-
dence that is usually used to approximate the energy
spectra of the fast protons recorded in experiments on
the interaction of laser radiation with solid targets [3]
and observed in numerical simulations of nonoptimized
targets [4–6], in which case the effective beam temper-
ature T is several times lower than the maximum energy
%max of the accelerated particles. A quasi-thermal beam
is seen to lose its energy mainly at the entrance to the
irradiated target. (Note that, following the generally
accepted terminology, we use the term “target” for both
the object irradiated by laser pulses and the object irra-
diated by proton beams. However, this term does not
introduce any ambiguities because it is used in different
contexts in different sections of the present paper.) This
coordinate dependence of the energy loss rate 〈%'〉  is
unlikely to be acceptable for the purposes of hadron
therapy. In addition, in [20], it was noted that, in order
for the quasi-thermal beams to be used in the scheme of
rapid ignition of a precompressed target by a proton
beam [14], the required laser energy should be several
times higher than that in the case of monoenergetic
beams. For a monoenergetic beam with a distribution
function such that 1(x = 0, %) = n0δ(% – %max), the loss
curve (Fig. 2, curve 2] has a sharp maximum (Bragg’s
peak) [26]. It is because of this property of the energy
loss of ion beams that they hold promise in the hadron
therapy in oncology [19, 29]. Among different methods
for irradiating cancer tumors are those that make use of
raster technology, which requires monoenergetic
beams and beams with a finite energy width (see [19,
29]).

Neglecting the logarithmic dependence on energy in
formula (1), we can obtain the sought-for distribution
10(%) by solving integral equation (5) analytically for
a prescribed distribution 〈%'〉(x) because, in this
approximation, Eq. (5) reduces to the familiar Abel’s

2

%', arb. units

1

3

x

Fig. 2. Profiles of the energy losses for fast proton beams
with different energy distributions: (1) a quasi-thermal
beam, (2) a monoenergetic beam, and (3) a beam with the
energy spectrum that ensures a uniform energy deposition
inside the target.

0
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integral equation. Thus, a uniform energy input over the
interval x1 < x < x2 ensures a beam with the spectrum

(6)

where %max =  and %min = . The energy dep-
osition profile in the case of a beam with energy spec-
trum (6) is shown by curve 3 in Fig. 2. A beam with this
energy spectrum can be formed by appropriately shap-
ing the proton distribution inside the target or by super-
posing a large number of monoenergetic beams.

In turn, monoenergetic proton beams can be formed
by “cutting” a wide beam into a number of narrow
beams in energy space. However, in this way, both the
efficiency of converting laser energy into the energy of
fast particles and, more importantly, the number of par-
ticles in the beam decrease substantially. A more prom-
ising approach is associated with the possible use of
multilayer targets.

3. TWO-LAYER TARGET FOR PRODUCING 
HIGH-QUALITY PROTON BEAMS

In the simplest scheme of ion acceleration, a laser
pulse interacts with a thin single-layer foil. For a laser
operating at a wavelength of one micron, the foil thick-
ness is usually varied from fractions of a micron to sev-
eral microns and more. Under the action of multitera-
watt or petawatt laser radiation, the matter of the foil is
ionized almost instantaneously. The ionization pro-
ceeds through an optical mechanism analogous to that
considered in [30]: the matter of the foil is ionized dur-
ing a time shorter than the optical period and becomes
a thin plasma layer with an overcritical density, ncr =
meω2/4πe2, where ω is the laser frequency. Then, the
ponderomotive force of the laser radiation expels elec-
trons from the focal spot. For ultrashort (femtosecond)
laser pulses, the characteristic time of the hydrody-
namic expansion of a plasma of micron thickness is
longer than the pulse duration. Under such conditions,
the ions remain immobile over a period of time during
which the pulse interacts with the target and thus form
a positively charged ion layer, i.e., a region of unneu-
tralized positive electric charge with dimensions of
about the transverse size of the focal spot of the laser
beam. However, after a time of about 1/ωpi =

, the ion layer begins to expand under the
action of the Coulomb repulsive forces between like
charges. This phenomenon is called “Coulomb explo-
sion,” the simplest example of which is the expansion
of a cluster that has lost all its electrons in the field of a
laser pulse. Cluster targets, which are of considerable
interest for creating compact sources of neutrons and X
radiation, have been studied in many papers (see [31]

1 x = 0 %,( )

=  n0θ % %max–( )θ %min %–( ) %

%max
2

%
2

–
----------------------------,

κ x2 κ x1

mi/4πnZie
2

and the literature cited therein). Note that the quasineu-
trality of a plasma irradiated by longer laser pulses of
moderate intensities (the particular pulse parameters
depend on many factors, including the target parame-
ters) is violated to a smaller extent. In this case, the
plasma ions are accelerated in the same manner as dur-
ing the plasma expansion into a vacuum [32].

When the ratio µ1/2/Zi (where µ = mi /mp) is suffi-
ciently large, the characteristic time scale of the proton
motion is much shorter than that of the Coulomb explo-
sion of a layer of heavy ions. Under these conditions,
the thin surface proton layer of the two-layer target is
accelerated in a prescribed electric field. One of the
most important requirements on such targets is that the
width of the proton layer should be much smaller than
the transverse dimension of the laser pulse. The trans-
verse nonuniformity of the accelerating electric field
that is associated with the finite width of the pulse gives
rise to an additional energy spread of the accelerated
ions. Presumably, it is this effect that was observed in
the experiments of [3], in which fast protons were
recorded in the interaction of laser pulses with thin
metal (aluminum) foils. The protons originated from a
water layer on the target surface. Obviously, the width
of the proton layer was not controlled in those experi-
ments and was on the order of the target width. In addi-
tion, the effect of the transverse nonuniformity of the
accelerating electric field leads to the undesirable defo-
cusing of an ion beam, in particular, to an increase in
the beam transverse emittance. Note that, in order to
reduce the effects just mentioned and to ensure a high
degree of collimation of the ion beam, it was proposed
to use appropriately deformed targets [6].

The characteristic energy of the accelerated ions can
be estimated under the assumption that all the electrons
produced by ionization in the focal spot of a laser beam
escape from the spot under the action of the pondero-
motive pressure of laser radiation. In this situation,
which can occur in the laser field of sufficiently high
intensity, the electric field strength near the positively
charged layer is equal to E0 = 2πn0Ziel, where n0 is the
ion density inside the target, Zie is the charge of an ion,
and l is the target thickness. The transverse dimension
of the region of a strong electric field is about the diam-
eter 2R⊥  of the focal spot. Consequently, the longitudi-
nal dimension of this region is also about 2R⊥ . This
yields the following estimate of the energy acquired
by  an ion with the electric charge Zae in the electric
field E0:

(7)

Here, we have assumed that the energy of the electrons
accelerated by the laser field is on the order of or higher
than the energy required for them to overcome the
potential of the attractive electric field in the accelera-
tion region. The electron energy in a relativistically

strong electromagnetic wave is %e = mec2 /2 (see

%max 2πn0ZaZie
2
lR⊥ .≈

a0
2
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[33]), where the dimensionless wave amplitude a0 =
eE/mcω is related to the radiation intensity by I =

1.38 × 1018(λ/1µm)2 W/cm2. As a result, knowing the
diameter of the focal spot, 2R⊥ , we can determine the
required power of the laser pulse and, having specified
the pulse duration τl, we can find the pulse energy.

We assume that the layer of light ions consists of
protons with Za = 1. The energy spectrum of the protons
can be calculated by using a model in which the accel-
erating electric field is prescribed, which implies that
the total electric charge of the proton layer is much
smaller than that of the layer of heavy ions.

The electric field configuration can be approximated
by the electrostatic field of a charged ellipsoid (an
oblate ellipsoid of revolution) with its major semiaxis
equal to the radius R0 of the focal spot and its minor
semiaxis (one-half of the thickness) equal to l. The
expression for the field of a charged disk is presented in
[25]. Using this expression, we write the coordinate
dependence of the electric field outside the target:

(8)

(9)

where x and ρ = (y2 + z2)1/2 are the coordinates, Rξ = (ξ +

)(ξ + l2)1/2, and

(10)

From expressions (8) and (9), we can see that the elec-
tric field is strongest at the target surface and decreases
sharply outside the region of radius R0.

The proton energy spectrum can be obtained by
assuming that protons are accelerated in the axial
region; this assumption is consistent with the structure
of the two-layer target model under discussion. At the
axis, the radial component of the electric field vanishes
and the longitudinal component is equal to

(11)

For a simple model dependence of the electric field on
the coordinates, a detailed solution of the problem of
the spectrum of average protons is given in the Appen-
dix. It is well known that the solution to the kinetic
equation for the distribution function f(x, v , t) has the
form

(12)
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where f0(x0, v 0) is the distribution function at the initial
time t = 0. We are considering the case in which, at the
initial time t = 0, all particles are at rest and the spatial
distribution of their density is defined by the function
n0(x0). These initial conditions correspond to a distribu-
tion function of the form f0(x0, v 0) = n0(x0)δ(v 0), where
δ(v 0) is the Dirac delta function. The number of parti-
cles in a unit volume dxdv  of phase space is equal to
dn  =  fdxdv   =  fvdvdt  =  fd%dt/mp. Integrating this
expression over time yields the energy spectrum of the
accelerated particles:

(13)

where the Lagrangian coordinate x0 and the Jacobian
|dt/dv  are functions of the particle energy %. The
implicit dependence of the coordinate x0 on the energy
% is determined by the integral of motion

(14)

where ϕ(x) is the electrostatic potential. For longitudi-
nal field component (11), it has the form

(15)

where x is the current particle coordinate. In the prob-
lem as formulated, we have %0 = 0 and x = ∞. The Jaco-
bian |dt/dv  is equal to the reciprocal of the parti-
cle acceleration at the initial time, i.e., to 1/|eE(x0)|,
where the dependence E(x) is given by formula (11).
On the other hand, the function 1/|eE(x0)| is equal to
|dx0/d% |. Hence, we arrive at the following expression
for the particle energy spectrum:

(16)

Note that this expression for the energy spectrum fol-
lows from the general continuity condition for the par-
ticle flux in phase space.

Expression (11) implies that, in the axial region near
the target, the electric field is locally uniform: Ex(l) =
E0 = 8πen0Zil/3; consequently, the energy spectrum is
determined by the form of the dependence n0[ϕ–1(%/e)].

We can see that a unified approach to producing ion
beams with a small energy width is based on the accel-
eration of an initially thin proton (ion) layer with a suf-
ficiently small thickness ∆x0, in which case the energy
spread of the proton beam is proportional to the layer
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thickness ∆x0 and the characteristic acceleration time is

tacc =  ≈ .

The longitudinal beam emittance ε|| is defined as the
product of the energy width ∆% and the beam duration
∆t. Using the above formulas, we find

(17)

For ∆% = 100 MeV, ∆x0 = 0.1 µm, and R0 = 1 µm, the
longitudinal emittance is equal to ε|| = 2 × 10–2 MeV ps,
which is 50 times smaller than the longitudinal emit-
tance of protons observed in experiments with non-
optimized targets [34].

According to expression (9), the radial electric-field
component in the axial region near the target is equal to

Eρ ≈ [8πen0Zil2/(3 )]ρ; i.e., it is a linear function of
the radius. This indicates that the trajectories of the fast
particles are described by the formula

(18)

where ρ0 is the initial radial coordinate of a particle and

k = 2l/ . As a result, the transverse emittance of the
fast proton beam associated with the transverse nonuni-
formity of the electric field at the boundary of the accel-
eration region (at x = R0) is equal to ε⊥  = πd0θ or

(19)

where d0 is the transverse dimension of the proton layer
and the divergence angle of the beam at kR0 ! 1 is
approximately equal to θ ≈ 2l/R0. Thus, for l ≈ d0 ≈
1 µm and R0 ≈ 5 µm, the transverse emittance of the
beam is about ε⊥  ≈ 1 mm mrad, which is about ten times
smaller than that observed experimentally in [3]. Note
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Fig. 3. Profiles of the energy losses for proton beams with
the energy spectra described by formula (20) (curve 1) and
by formula (21) (curve 2).

0

that the transverse emittance calculated in [35] for elec-
trons accelerated in the wake of a laser pulse can be
even smaller.

Energy localization requires that the denominator
on the right-hand side of expression (15) be equal to
zero at a certain energy % = %∗ , in which case the Jaco-

bian |d%/dx0 | vanishes. In turn, this indicates that, at the
initial instant, the accelerated proton layer is localized
near the point at which the electric field is zero (see
[15]). Relationship (16) can be regarded as an equation
for the function n0(x0), provided that both the energy
spectrum and the electric field are specified. Approxi-
mating the coordinate dependence of the electric field
by the linear function E(x) = hx and the proton density
in a thin layer by the function n(x) = n0θ(L –

|x0 |)θ(x0)(1 – /L2), we obtain the following energy
spectrum of fast protons:

(20)

where the maximum and minimum proton energies are

equal to %max = eh /2 and %min = eh(  – L2)/2; i.e.,
the width of the energy spectrum is ∆% = ehL2/2. For a
rectangular distribution of the proton density, n(x) =
n0θ(L – x0)θ(x0), we obtain a spectrum of the form

(21)

Figure 3 shows the energy deposition profiles for
proton beams with energy spectra given by formulas
(20) (curve 1) and (21) (curve 2). We can see that these
spectra ensure a maximum energy deposition in a
region with dimensions that depend on the maximum
and minimum proton energies.

4. RESULTS OF COMPUTER SIMULATIONS 
OF THE GENERATION OF HIGH-QUALITY 

PROTON BEAMS

The above discussion of the methods for producing
proton beams with a small energy spread was based on
a simple theoretical model. In order to take into account
the numerous nonlinear and kinetic processes that
occur in the interaction of high-power laser radiation
with a target, as well as to generalize our analysis to two
and three dimensions, we numerically modeled the
acceleration of protons in a two-layer target irradiated
by an ultrashort laser pulse. Below, we will present the
results of the two- and three-dimensional simulations
that were carried out with the REMP (Relativistic Elec-
tro-Magnetic Particle-mesh) code, which is based on
the PIC method [11]. In this three-dimensional relati-

x0
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=  
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------------------------------------------------------------------------------------------d%;
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vistic electromagnetic code, the electric current density
is calculated by means of a new algorithm [36], which
can operate with quasi-particles of arbitrary shape and
ensures that the local electric charge is exactly con-
served. Here, we report the results obtained in simula-
tions for quasi-particles with a bell-shaped form-factor
(a second-order spline). This makes it possible to sub-
stantially reduce the numerical effect of the plasma
heating as well as other nonphysical effects peculiar to
the PIC method.

4.1. Results of Two-Dimensional Simulations
of the Interaction of a Laser Pulse 

with a Two-Layer Target

In two-dimensional simulations, the computation
region was chosen to be 30λ × 20λ with cells of size
0.03λ × 0.03λ. The total number of particles in the sim-
ulations was approximately 106. The conditions at the
boundaries of the computation region corresponded to
the complete absorption of both the field and the parti-
cles. The calculations were carried out on personal
computers.

In the numerical model, the plasma consists of par-
ticles of three species: “electrons,” “protons,” and
“heavy ions,” with different absolute values of the elec-
tric charge. The proton-to-electron mass ratio is
mp/me = 1836, and the ratio of the mass of an electron
to that of a heavy ion is mi /me = 10 × 1836.

The target is assumed to be located near the x = 5λ
plane. The electron density inside the layer of heavy
ions corresponds to the value ωpe/ω = 3 of the ratio of
the plasma frequency to the laser frequency. The second
(thin and narrow) proton layer (or a layer of hydrogen
contained in a plastic film) is on the rear side of the tar-
get. The electron density inside the proton layer is
lower than the critical density (ncr = meω2/4πe2) and
corresponds to the ratio ωpe/ω = 0.7. The sizes of the
first layer are 0.5λ × 10λ, and those of the second (pro-
ton) layer are 0.1λ × 5λ. Therefore, the total number of
electrons in the first layer is 180 times larger than that
in the second layer.

A circularly polarized laser pulse is initiated at the
left boundary x = 0 of the computation region. The
dimensionless pulse amplitude is a0 = 20, which corre-
sponds to an intensity of 8 × 1020 W/cm2 for laser radi-
ation with a wavelength of 1 µm. The width and length
of the laser pulse are 15λ and 20λ, respectively, which
corresponds to the petawatt power range. The electric
field amplitude inside the pulse is constant and
decreases gradually toward the pulse boundaries in a
transition layer of thickness 2λ.

The results of these computer simulations are illus-
trated in Figs. 4–7, in which the length and time units
are the laser wavelength and period. Figure 4 displays
the energy spectra of protons and heavy ions, and
Figs. 5 and 6 depict the distributions of the transverse
and longitudinal components of the electric field. Fig-
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
ure 5 shows the shape toward which the laser pulse
evolves in the interaction with the target. In Fig. 6, we
see the distribution of the longitudinal quasistatic elec-
trostatic field, which accelerates the ions. The field is
localized in a narrow region near the first layer of the
target (the layer of heavy ions). It can be seen that the
electric field distribution corresponds to that described
by formula (11). Figure 7 presents the electric charge
density distribution at successive times. The two verti-
cally oriented dark regions correspond to positively
charged heavy ions (the left region) and protons (the
right region), and the white diffusive cloud corresponds
to negatively charged electrons. We can see that the pro-
ton layer moves along the x-axis and that the distance
between it and the layer of heavy ions increases with
time. During Coulomb explosion, the layer of heavy
ions expands and acquires a round shape. Note that, for
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Fig. 4. Two-dimensional simulations: the energy spectra of
(a) protons at t = 45 and (b) heavy ions at t = 97.5.
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the pulse and target parameters chosen for the calcula-
tion version described here, not all the electrons are
expelled from the laser-irradiated target. However,
although only a fraction of the electrons are accelerated
by the laser pulse and escape from the target, the result-
ing quasistatic electric field is sufficiently strong and
the region where the field is localized is sufficiently
long for the protons to be accelerated to an energy of
100 MeV. While the maximum energy of the heavy ions
is of the same magnitude as the proton energy, their
average energy per nucleon is ten times lower. Conse-
quently, the heavy ion component can be removed (if
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
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Fig. 7. Two-dimensional simulations: the distribution of the electric charge density in the (x, y) plane at the times t = (a) 18, (b) 27,
and (c) 51. The dark regions correspond to a positive electric charge (the layer of heavy ions is on the left, and an initially thin proton
layer is on the right), and the white region corresponds to a cloud of negatively charged electrons.
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necessary) by an absorber. According to Fig. 4, the
energy spectrum of heavy ions is broad, while the
energy spectrum of the accelerated protons is quasi-
monoenergetic. We emphasize that the energy spectra
in Fig. 4 are plotted on a logarithmic scale; the relative
energy width ∆%/% of the proton energy spectrum is
approximately equal to ∆%/% = 0.03. The proton beam
that forms in the course of acceleration remains well
localized in both coordinate and energy spaces for a
long time. The high spatial localization of the proton
beam results from the above-mentioned property of the
electric field that decreases linearly in space, specifi-
cally, its ability to accelerate charged particles and, at
the same time, to bunch them.

4.2. Three-Dimensional Simulations of Ion 
Acceleration in the Interaction of a Laser Pulse

with a Two-Layer Target

In the three-dimensional simulations, the computa-
tion region was chosen to be 80λ × 32λ × 32λ and the
spatial mesh consisted of 2560 × 1024 × 1024 cells. The
total number of particles in different simulation ver-
sions was varied from 62 × 106 to 820 × 106. The condi-
tions at the longitudinal (along the x-axis) boundaries
of the computation region corresponded to complete
absorption of both the field and the particles, and the
conditions at the transverse boundaries (in the y and z
directions) were periodic. (Note that the waves that
arose in simulations because of the periodic boundary
conditions had a relatively small amplitude and thus did
not significantly affect the final results.) The calcula-
tions were carried out on 64 processors of an NEC SX-
5 parallel supercomputer at Osaka University (Japan).

Below, we report the results of the three-dimen-
sional simulations of a linearly polarized (in the z direc-
tion) laser pulse with the maximum dimensionless
amplitude a0 = 30, which corresponds to a laser inten-
sity of 1021 W/cm2. The laser pulse was assumed to
propagate along the x-axis and to be trapezoidal in
shape: the pulse amplitude increases from zero to its
maximum value in the leading edge of length 3λ, is
constant over a region of length 2λ, and decreases lin-
early to zero in the trailing edge of length 10λ. The total
diameter of the pulse is 12λ; the pulse amplitude is con-
stant over a region of diameter 10λ and decreases to
zero in a layer of thickness 1λ. Such factors as the sharp
increase in the radiation intensity at the leading edge of
the pulse and the absence of both the prepulse and the
pedestal improve the quality of the beam of accelerated
particles. The pulse shape used in our simulations mod-
els a laser pulse with a steep leading edge and with no
prepulse. An analysis of the consequences of the non-
linear effects occurring in the interaction of a relativis-
tically strong laser pulse with a subcritical plasma [10,
37] and with a thin foil [10, 38] showed that these
effects can be exploited to form a laser pulse with a
steep leading edge (i.e., with no prepulse).
In our model, the target is assumed to consist of two
plasma layers such that the density of the heavier layer
corresponds to the value ωpe/ω = 3 of the ratio of the
plasma frequency to the laser frequency and the density
of the lighter (hydrogen) layer corresponds to the value
ωpe/ω = 0.53. The first (heavier) layer consists of elec-
trons and heavy gold ions (the ratio of masses and
charges is mi /Zime = 195.4 × 1836/2), and the second
(lighter) layer consists of electrons and protons (the
mass ratio is mp/me = 1836). Initially, the gold foil occu-
pies the region between the x = 5.5λ and x = 6λ planes.
For a laser wavelength of 1 µm, the foil is half a micron
thick and has a diameter of 10 µm. The hydrogen layer
is farther from the laser; its thickness is 0.03 µm and its
diameter is 5 µm. The total number of electrons in the
denser plasma layer is approximately 2000 times larger
than that in the hydrogen layer.

Note that the above collisionless model for describ-
ing a target with a prescribed degree of ionization sub-
stantially simplifies the problem. This simplification is
brought about by the circumstance that, at present, tak-
ing into account collisions and ionization in three-
dimensional simulations seems to be problematic for
two reasons. First, for petawatt laser pulses, the
present-day theory is still incapable of describing these
processes adequately. The second reason is associated
with the computational requirements. Note also that the
way the system under discussion evolves depends on

the parameter  ≈ Zien0l, which is the electric

charge per unit area of the target surface. This indicates
that, in the case of a thinner and/or lower density target,
the same regime of ion acceleration can be achieved
with a higher degree of ionization.

The results of our three-dimensional computer sim-
ulations are illustrated in Figs. 8–12. Figure 8 shows the
energy spectra of (a) electrons, (b) protons, and
(c) heavy ions at the time t = 80. One can see that the
protons have been accelerated to an energy of about
63 MeV. The relative width of the proton energy spec-
trum is 5%. The energy spectrum of heavy ions is
broad, the maximum energy being 37 MeV. However,
the energy per nucleon is about 0.2 MeV.

Figure 9 shows how the electric field is distributed
over the computation region, giving information about
(a) the shape of the electromagnetic pulse that has
passed through the target and (b) the structure of the
accelerating electric field. In Fig. 9, we present half of
the computation region and show the electric field
structure in its central cross section. The longitudinal
(in the x direction) electric-field component, which
accelerates the ions, is localized near the heavier layer
of the target. Recall that this field configuration can be
approximated by the electrostatic field created by a
charged disk. Note also that the transverse electric-field
distribution (which is not presented in the figures)
clearly shows the enhancement of this field component
at the disk periphery.

Zien0 xd∫
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Figure 10 displays the electric charge distribution
over the computation region. Also, in this figure, we
present half of the computation region and show the
charge distribution in its central cross section. In this
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Fig. 8. Three-dimensional simulations: the energy spectra
of (a) electrons, (b) protons, and (c) heavy ions at time t = 80.
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three-dimensional situation, the proton beam is acceler-
ated predominantly in the x direction, as is the case with
the acceleration of protons and heavy ions in two-
dimensional geometry. The layer of heavy ions expands
as a result of Coulomb explosion. During the expan-
sion, the ions can be accelerated to energies corre-
sponding to the electrostatic potential at the initial
instant. If the electric charge of the proton layer
remains unneutralized, then the protons may also be
subject to Coulomb explosion, in which case they
acquire an additional kinetic energy due to Coulomb
repulsion. However, if the total number of protons is
relatively small and their density is low, this additional
acceleration can be neglected.

A number of electrons move in phase with the elec-
tromagnetic wave and are accelerated by it for a long
time. This group, composed of the fastest electrons, is
distinctly observed in Fig. 11, which shows the phase
plane of the electron plasma component. We can see
that, in the wake of the laser pulse, there is a long tail of
“hot” electrons with energies that are, however, lower
than the electron energy within the laser pulse. In the
vicinity of the target, the electrons have an isotropic
distribution with a maximum energy higher than the
energy of the hot electrons in the intermediate region.

Figure 12 shows the angular distribution of the
energy of (a) electrons, (b) protons, and (c) heavy ions
at the time t = 80. The angular distribution of the elec-
trons reflects the presence of an electron beam moving
behind the laser pulse in the pulse propagation direction
and of an isotropic electron component. The proton
layer moves in the propagation direction of the pulse,
while heavy ions move not only in the direction of the
pulse but also in the opposite direction, as is character-
istic of the Coulomb explosion.

As was already noted, the generation of light ion
beams with a small energy width requires that the layer
of light ions at the target surface should be not only
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Fig. 9. Three-dimensional simulations: the electric field dis-
tributions in a laser pulse and near the target at time t = 80,
represented by the isosurfaces of (a) the transverse electric-
field component Ez = ±10 and (b) the longitudinal electric-
field component Ex = ±1.5.
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thin, but also narrow in the transverse direction; other-
wise, the light ion beam will have a broad quasi-thermal
energy spectrum because of the dependence of the
accelerating electric field on the transverse coordinate.
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Fig. 10. Three-dimensional simulations: the electric charge
distribution over the computation region at time t = 80, rep-
resented by (a) the electron density distribution (obtained
with the ray tracing method) and by the isosurfaces of
(b) the proton density and (c) the density of heavy ions.
In order to confirm this conclusion, Figs. 13–15 illus-
trate the results of computer simulations of the interac-
tion of a laser pulse with a two-layer target that is infi-
nite in the transverse direction. In these simulations, the
transverse dimensions of the layer of light atoms coin-
cided with those of the layer of heavy atoms, the
remaining parameters being the same as in the previous
case.

From Fig. 13, which shows the densities of elec-
trons, protons, and heavy ions at the time t = 80, we can
see that the laser pulse predominantly accelerates the
protons that initially occupy the axial region. The fact
that the acceleration of the entire proton layer is rela-
tively less efficient is associated with the periodicity of
the boundary conditions in the transverse direction. A
part of the proton layer in the axial region acquires the
characteristic shape of a plug. The transverse size of the
acceleration region is seen to be equal to that of the
focal spot of the laser pulse.

As was expected, the spatially averaged particle
spectrum in this case is far from being monoenergetic
(Fig. 14). The proton energy spectrum is quasi-thermal
up to an energy of 25 MeV and has a nonuniform ped-
estal, which terminates at an energy of 47 MeV. In other
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Fig. 11. Three-dimensional simulations: the projection of the electron phase space onto the (x, px) plane. The shades of grey reflects
the number of quasi-particles in the corresponding cell of the projection.
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Fig. 12. Three-dimensional simulations: the angular distributions of the energy of (a) electrons, (b) protons, and (c) heavy ions at
time t = 80. The point (0°, 0°) corresponds to the propagation direction of the laser pulse, and the point (0°, 90°) corresponds to the
direction of the z-axis.
words, the width of the energy spectrum is comparable
with the maximum proton energy.

Figure 15 shows the angular distributions of charged
particles. The angular distribution of electrons
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Fig. 13. Three-dimensional simulations of a target that is
infinite in the transverse direction: the electric charge distri-
bution over the computation region at time t = 80, repre-
sented by (a) the electron density distribution (obtained
with the ray tracing method) and by the isosurfaces of
(b) the proton density and (c) the density of heavy ions.
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(Fig. 15a) is the superposition of an isotropic distribu-
tion and a distribution corresponding to a group of elec-
trons moving in the longitudinal direction. The angular
distribution of protons is narrow, indicating that they
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Fig. 14. Three-dimensional simulations: the energy spec-
trum of protons of a target that is infinite in the transverse
direction.
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Fig. 15. Three-dimensional simulations of a target that is infinite in the transverse direction: the angular distributions of the energy
of (a) electrons, (b) protons, and (c) heavy ions at time t = 80. The point (0°, 0°) corresponds to the propagation direction of the
laser pulse, and the point (0°, 90°) corresponds to the direction of the z-axis.
are accelerated predominantly in the forward direction
(Fig. 15b). The angular distribution of heavy ions
(Fig. 15c) has a pronounced ring structure, which is
associated with the divergence of an ion beam (the
divergence angle being about 40°). Similar ring struc-
tures were observed experimentally in [3].

5. CONCLUSION

We have thoroughly investigated the interaction of
an ultrashort, relativistically strong laser pulse with a
two-layer target. Our two- and three-dimensional com-
puter simulations have demonstrated the generation of
a high-quality proton beam in this interaction process.
Thus, we have fully confirmed the advantages of a two-
layer target that were predicted by the qualitative model
formulated in [16]. The parameters of a proton beam
can be controlled by changing the target parameters,
which is of considerable interest for a number of appli-
cations, e.g., in developing injectors for charged parti-
cle accelerators, in inertial confinement fusion (an
approach based on the concept of the fast ignition of a
thermonuclear target by laser-accelerated protons), and
in hadron therapy in oncology.
In the scheme in which the proton layer of a two-
layer target is accelerated by the electric field near the
target, the width of the peak in the energy spectrum of
a proton beam is equal to ∆% = 2πn0Zie2l∆x0; hence, the
relative energy width (which is the reciprocal of the
beam “quality”) is ∆%/%max = ∆x0/R0. Thus, for a proton
layer with a thickness of 2 × 10–6 cm and for an acceler-
ation region with a length of 2 × 10–4 cm, we have
∆%/%max = 0.01 with %max = 200 MeV. For a target with
a thickness of 1 µm, a proton layer with a radius of
1 µm, and a laser beam with a radius of R⊥  ≈ 10 µm, we
obtain that the transverse emittance characterizing the
angular spread of a proton beam is about ε⊥  ≈ 1 mm mrad.
In the acceleration scheme proposed here, the longitu-
dinal emittance (∆%∆t), which characterizes the longitu-
dinal dimension of a proton beam, is about 10−2 MeV ps.
These values of the transverse and longitudinal emit-
tance are comparable with those for beams accelerated
in standard charged particle accelerators and are much
lower than the values recorded in the interaction of laser
radiation with non-optimized targets. Our computer
simulations have demonstrated the possibility of gener-
ating proton beams with a relative energy width on the
order of several percent and with a transverse dimen-
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
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sion of several microns, localized in a cone with an
angular radius of several degrees.

That the proton layer should be narrow in the trans-
verse direction has been demonstrated by an example a
two-layer target with layers of the same width. It has
been shown that the width of the energy spectrum of a
proton beam generated in the interaction of a laser pulse
with such a target is comparable to the maximum pro-
ton energy.
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APPENDIX

To simplify matters, we assume that the electric field
is nonzero in a region of radius R0, has the strength E0
at the target surface, and vanishes at the distance R0
from the surface. We approximate the electric field with
the expression

(Ä.1)

where the x-axis points in the propagation direction of
the laser pulse and R0 is the inhomogeneity scale of the
electric field (R0 = 2R⊥ ).

The distribution function f(x, v , t) of fast protons
satisfies the kinetic equation

(Ä.2)

It is well known that the solutions to kinetic equation
(A.2) have the form f(x, v , t) = f0(x0, v 0) where f0(x0, v 0)
is the proton distribution function at the initial time
t = 0; i.e., the function f(x, v , t) is constant along the
characteristics of Eq. (A.2). These characteristics,
which relate the initial coordinate and velocity (x0, v 0)
of a particle to its current coordinate and velocity (x, v )
at time t, are described by the expressions

(Ä.3)

(Ä.4)

where Ωb =  and it is assumed that x ≤ R0.
Expressions (A.3) and (A.4) imply that all particles
with zero initial velocities (v 0 = 0) pass through the
boundary x = R0 of the acceleration region simulta-
neously at the time tb = π/2Ωb, regardless of their initial
positions. Consequently, electric field (A.1) ensures
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both the acceleration of the particles and their bunching
in space.

The number of particles per unit volume dxdv  of
phase space is equal to dn = fdxdv  = fvdvdt = fd%dt/mp.
We assume that, at the initial time t = 0, all particles are
at rest and their spatial density distribution is described
by the function n0(x0). These initial conditions are sat-
isfied by the distribution function of the form f0(x0, v0) =
n0(x0)δ(v0), where δ(v0) is the Dirac delta function. In
the context of the applications discussed above, we are
interested exclusively in the time integral of the particle
energy distribution function. Integrating the expression
for fvdvdt over time yields the following energy spec-
trum of the accelerated particles:

(Ä.5)

Here, the dependence of the coordinate x0 and the Jaco-
bian |dt/dv 0 | on energy % should be determined from
relationships (A.3) and (A.4) under the condition that
the particle reaches the boundary R0 of the acceleration
region. The dependence the coordinate x0 on energy %
can be obtained by inverting the relationship % =
mp[(R0 – x0)Ωb]2/2:

(Ä.6)

In turn, the Jacobian can be deduced from relationships
(A.3) and (A.4) under the condition v 0 = 0:

(Ä.7)

We thus arrive at the following expression for the
energy spectrum of the accelerated particles:

(Ä.8)

Hence, the maximum (%max) and minimum (%min)
energies of the accelerated particles are determined by
the dimensions of the region in which the particles were
initially localized, or, equivalently, by the form of the
function n0(x0).
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Abstract—A diagnostic method for determining plasma density from the dispersion of surface waves guided
by a discharge channel in an axial magnetic field is discussed. The diagnostic characteristics that are the easiest
to record experimentally are determined by analyzing the theoretical dispersion curves, and the ways of exploit-
ing these characteristics for plasma diagnostics are suggested. To determine the slowing-down factor of a prob-
ing wave in a plasma channel, it is proposed to use diagnostic-signal resonances that occur when the wavelength
of the slowed wave becomes equal to the length of the emitting or receiving antenna. The dependence of the
plasma density averaged over the cross section of the plasma column on the strength of the external magnetic
field is determined for a discharge channel formed as a result of the ionization self-channeling of plasma (lower
hybrid) waves and whistlers. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

By now, the wave diagnostics of comparatively
dense plasmas with spatial scales much longer than the
wavelength of the probing wave have been developed
fairly well [1]. In this case, the geometrical-optics
approximation can be used, which considerably simpli-
fies the calculation of the parameters to be determined.
Also, in such plasmas, the phase increments of the
probing and scattered waves are sufficiently large,
which simplifies experimental measurements. To diag-
nose low-density plasmas in thin tubes, resonance and
waveguide methods have been developed, in which the
parameters are calculated using perturbation theory.
However, it is not always convenient to determine the
parameters of moderate-power (≤1 kW) RF discharge
plasmas by means of waveguide systems because, on
the one hand, the metal components of such systems
can strongly perturb the structure of the RF fields excit-
ing the discharge and, on the other hand, the plasma
parameters are such that the applicability conditions of
perturbation theory are usually impossible to satisfy,
which significantly complicates the calculations. For
the same reasons, it is undesirable to use electric probes
that are galvanically coupled with the electric circuits
supplying them. Probe diagnostics are especially diffi-
cult to apply to Helicon discharge plasmas [2] because
of the complexity of calculating the current–voltage
characteristics of the probes in a strong magnetic field.
The use of open resonators is restricted to cases of suf-
ficiently high plasma densities in discharges (Ne ≥
1013 cm–3) [1]. For cases where the wavelength of the
probing wave is on the order of the plasma dimensions
and larger, the plasma density is relatively low (Ne ≤
1012 cm–3), and the magnetic field is fairly strong (B0 ≥
1063-780X/02/2812- $22.00 © 20992
1 kG), precise methods for determining the plasma
parameters have not yet been developed.

In this paper, we analyze the potentialities of a
method for diagnosing RF discharge plasmas in mag-
netic fields by means of surface waves guided by a dis-
charge channel. The structure and dispersion properties
of the wave fields guided by a plasma column have been
investigated in many papers (see, e.g., [3, 4]). However,
the knowledge of the waveguide properties of a dis-
charge channel is as yet insufficient to determine the
plasma parameters (possibly because the dispersion of
the probing wave in the channel is difficult to determine
experimentally). Here, we calculate the dispersion
characteristics of waves and the wave field structures
for a cylindrical plasma column in an axial magnetic
field under conditions typical of laboratory experi-
ments. We analyze the effect of the dielectric and metal
walls of the discharge tube on the dispersion curves. We
present the diagnostic characteristics and propose a
method for measuring the plasma density in the chan-
nel. We describe our experiments aimed at determining
the dependence of the amplitude of a diagnostic signal
propagating along the discharge on the magnetic field
and on the plasma density Ne . We use the experimental
data and the dispersion characteristics to determine the
plasma density in a discharge channel formed during
the ionization self-channeling of plasma waves in a
magnetic field [5, 6]. Such a discharge is similar to hel-
icon discharges excited in the same frequency range by
whistlers [2]; the main difference is the use of plasma
(lower hybrid) waves, which interact most efficiently
with the electrons of the discharge plasma. When the
plasma density exceeds a certain level [7, 8], the whis-
tlers begin to propagate in a wave–plasma discharge
[9]. If the amplitude of the whistler electric field is suf-
ficiently large to maintain the plasma density at the
002 MAIK “Nauka/Interperiodica”
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required level, then the whistlers in the channel can
undergo ionization self-channeling [10] and a helicon
discharge separated from the discharge chamber wall
can form.

2. THEORETICAL JUSTIFICATION 
OF THE MEASUREMENT METHOD

The simplest model for describing the propagation
of surface waves along the plasma column of the dis-
charge is the model of a long uniform plasma cylinder
in free space, without allowance for the effect of the
discharge chamber wall. The derivation of the disper-
sion relation in this model is described in a number of
papers (see, e.g., [3]). Here, we present the dispersion
relation and the set of the dispersion curves that allow
us to determine the diagnostic features and to estimate
the plasma parameters in the discharge from the cutoff
frequency or to evaluate them with a given accuracy
from a comparison between the measured and calcu-
lated slowing-down factors of the probing surface
waves.

If the slowing-down factor of the wave is relatively
small (i.e., the electron thermal velocities are negligible
in comparison with the wave phase velocity (Ve ! Vph)),
then the properties of the plasma in a constant magnetic
field directed along the z-axis can be described in terms
of the following dielectric tensor  [7]:

where ε = 1 – , g =

, η = 1 – , ωp =

(4πe2Ne/m)1/2 is the electron plasma frequency; ωH =
eB0/cm is the electron gyrofrequency; ν is the effective
electron collision frequency; and e and m are the charge
and mass of an electron, respectively. Since we are
interested in the high-frequency range, we neglect the
effect of the plasma ions in the expressions for the ele-
ments of the dielectric tensor . In what follows, colli-
sions are neglected; hence, we set ν = 0 in the expres-
sions for ε, g, and η.

We consider axisymmetric (∂/∂ϕ = 0) waves propa-
gating along a plasma cylinder of radius a. We repre-
sent the electric and magnetic fields in the wave in the
form E(r, z) = E(r)exp(iωt – ipk0z) and H(r, z) =
H(r)exp(iωt – ipk0z), where k0 = ω/c = 2π/λ0 is the
wavenumber in free space, p is the slowing-down factor
of the wave, and r is the distance from the z-axis, which
is the symmetry axis of the cylinder. Then, from Max-
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well’s equations, the boundary conditions on the side
surface of the plasma column (r = a), and the condition
that the field decreases exponentially at r > a, we obtain
the dispersion relation [3]

(1)

where y± = , Z = ,  =  ±

, kν = k0 , µ± = ,

 = [ε(ε – p2) – g2],  = η(ε – p2), γ1 = g,

γ2 = p2gη, Jn(kr) is the nth-order Bessel function of

the first kind, and Kn(kr) is the nth-order modified
Bessel function of the second kind.

Dispersion relation (1) determines the dependence
of the slowing-down factor of surface waves propagat-
ing along the discharge on the following parameters of
the system: the frequency ω of the probing wave, the
magnetic field B0, the plasma density Ne, and the radius
a of the plasma column. In the general case, it is impos-
sible to solve dispersion relation (1) analytically and to
obtain a simple analytic dependence p(ω). In [3], this
dispersion relation was analyzed qualitatively for some
limiting cases. For diagnostic purposes, it is important
to know the numerical values of the slowing-down fac-
tor as a function of the parameters of the problem, in
particular, in the case where the frequencies ωp, ω, and
ωH are of the same order of magnitude and change in
the course of the experiment and the radius of the
plasma column is small in comparison with the wave-
length of the probing wave (a < λ0). Note that this case
is of great interest from the experimental standpoint.

The results of solving dispersion relation (1) numer-
ically are presented in Figs. 1–4. Figures 1a and 1b
show the slowing-down factor p of a surface wave a
function of the signal frequency in the ranges ωp < ωH

and ωp > ωH, respectively. The calculations were per-
formed for ωp = 2 × 1010 rad/s and aωp/c = 1.6. In these

figures, we have introduced the notation ωUH = (  +

)1/2 for the limiting frequency, which is equal to the
upper hybrid frequency. The solid curve 0 refers to the
fundamental axisymmetric mode. Inside the plasma
cylinder, the axial component Ez of the electric field of
this mode depends weakly on radius and the depen-
dence of the radial electric-field component Er on
radius is nearly linear. The dashed curves 1, 2, and 3
refer to the higher order modes, for which the depen-
dence Ez(r) has one or more zeros in the plasma region.
Figures 2a and 2b show an example of the radial distri-
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Fig. 1. Slowing-down factor p of axisymmetric waves vs. signal frequency ω for (a) ωH > ωp (ωH/ωp = 1.5) and (b) ωH < ωp

(ωH/ωp = 0.75). The calculations were performed for ωp = 2 × 1010 rad/s and aωp/c = 1.6. Curve 0 is for the fundamental axisym-

metric mode, and curves 1–3 are for the higher order modes with the dimensionless limiting frequencies  =

, where Y1, 2 = aωp/(cϑ1, 2) and ϑn is the nth root of the zero-order Bessel function. In this and other

figures, the dashed-and-dotted curves show the effect of the quartz wall of the discharge tube with the radius R = 3 cm on the dis-
persion of the fundamental and higher order axosymmetric modes of a plasma column. Curve D1 is the dispersion curve of the
dielectric mode guided by the tube wall.
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Fig. 2. Radial profiles of the electric fields of (a) the fundamental axisymmetric mode and (b) the first higher order axisymmetric
mode for ω/ωH = 0.5, ωp/ωH = 0.7, and a/λ0 ~ 0.1.
bution of the axial, radial, and azimuthal components of
the electric fields of the fundamental axisymmetric sur-
face mode and the first higher order axisymmetric sur-
face mode, respectively. In Fig. 2a, the axial component
Ez of the electric field of the fundamental axisymmetric
mode is seen to decrease toward the plasma boundary.
However, the plasma parameters may be such that the
amplitude of the axial electric-field component
increases as approaching the boundary (the field is
localized near the boundary), which is characteristic of
true surface wave. It is worth noting that the azimuthal
component of the electric field of all axisymmetric
modes is small in comparison with the other field com-
ponents.

The plots shown in Fig. 1 demonstrate that axisym-
metric surface waves guided by a plasma cylinder can
propagate only in a limited frequency band. The fre-
quency band in which the fundamental axisymmetric
PLASMA PHYSICS REPORTS      Vol. 28      No. 12      2002
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mode can exist is limited from above by ω = ωUH/
for ωp > ωH and by ω = ωp for ωH > ωp. The band in
which the higher order modes can propagate comprises
two characteristic frequency ranges. In the first range
ω < min(ωp, ωH), the slowing-down factor of these
modes increases monotonically with frequency. In the
second range min(ωp, ωH) < ω < ωUH, the behavior of
the dispersion curves of the higher order modes is more
complicated. When the slowing-down factors are large,
the dispersion curves approach the frequency
max(ωp, ωH). The corresponding modes are backward-

2
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propagating waves (∂p/∂ω < 0). For p = 1, the limiting
frequency for the nth-order mode is equal to [3]  =

, where Yn = aωp/(cϑn) and ϑn is the

nth root of the zero-order Bessel function of the first
kind. This formula implies that, for  > ωH, which
corresponds to small values Y ! 1 (a narrow plasma
cylinder), the dispersion curves of the higher order
modes lie in the frequency range max(ωp, ωH) < ω <

ωn*

ωp
2 ωH

2

1 Yn
2

+( )
2

----------------------+

ω1*
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ωUH. As Y increases, the dispersion of the higher order
modes can change and a forward-propagating wave can
appear at small p values. In this case, the frequency ω*
is shifted toward lower frequencies and, for ωH > ωp, it
becomes lower than ωH. Consequently, for ωH > ωp and
sufficiently large values of Y, the second frequency
range for the higher order modes is limited from below
by ω*. For ωH < ωp, the limiting frequency ω* lies
within the range max(ωp, ωH) < ω < ωUH. Note that, in
dispersion relation (1), the ion motion is neglected;
hence, the range of validity of the relation is limited
from below by the frequency ω @ (ωHΩH)1/2, where ΩH

is the ion gyrofrequency.

Figures 3a and 3b show the slowing-down factors p
as a function of the plasma frequency ωp in the ranges
ω < ωH and ω > ωH, respectively. Figures 4a, 4b, and 4c
show the slowing-down factor p as a function of the
electron gyrofrequency ωH in the ranges ωp < ω, ω <

ωp < ω, and ωp > ω, respectively. In Figs. 3 and

4, we have introduced the notation ωp1 = (ω2 – )1/2,

ωp2 = (2ω2 – )1/2, ωH1 = (ω2 – )1/2, and ωH2 = (2ω2 –

)1/2 and denoted the curves in the same manner as in
Fig. 1. The dispersion curves in Figs. 3 and 4 are calcu-
lated for ω = 1010 rad/s and a/λ0 = 0.1. As the ratio a/λ0
increases (all other conditions being the same), the
slowing-down factor decreases. For a/λ0 ~ 1, we can
use the plane boundary approximation. Another limit-
ing case corresponds to the electrostatic wave approxi-
mation for a narrow waveguide [3]. This approximation
can be used to calculate the slowing-down factor under
the conditions pa/λ0 ! 1 and p @ 1, which are satisfied
only for very narrow waveguides (a/λ0 < 10–2) and for
ω ~ ωp. The set of dispersion curves presented in
Figs. 1, 3, and 4 is helpful for diagnostic purposes
because it makes it possible to choose the measurement
method, the required frequency of the diagnostic signal,
and the corresponding antenna devices.

Based on the dispersion curves obtained above, we
can draw conclusions about the diagnostic characteris-
tics related to the propagation of surface waves. As was
already noted, the dispersion curves in Figs. 1, 3, and 4
show the frequency ranges where the wave is propagat-
ing and the ranges in which is evanescent. By varying
the probing frequency ω, it is possible to experimen-
tally determine the boundaries of the opaque region
and, then, to determine the plasma density from the
boundary frequencies. If the probing frequency is diffi-
cult to vary over a broad band in actual experiments,
one can vary other parameters of the problem, e.g., the
magnetic field or the plasma density.

The above method, which is similar to the cutoff
method [1], is fairly rough because the boundaries of
the ranges in which the surface waves exist are
smoothed out due to collisions (ν ≠ 0) and plasma non-

2 2

ωH
2

ωH
2 ωp

2

ωp
2

uniformity. More precise results can be obtained by
comparing the theoretical and experimental dispersion
characteristics. Here, we propose to determine these
characteristics by the resonance method, whose imple-
mentation requires an antenna with pronounced reso-
nant properties, e.g., an antenna capable of exciting
waves with a maximum amplitude when the wave-
length λs of the slowed wave is equal to the antenna
length. In our experiments, we used an antenna consist-
ing of three coaxial wire rings with their centers at the
symmetry axis. The distances between the neighboring
rings were the same (40 mm). The total length of the
antenna was la = 80 mm. When the central and end rings
are supplied in antiphase, the waves with a wavelength
of λs ≈ la = 80 mm are excited most efficiently. The
antenna so supplied also emits short-wavelength
(plasma) waves whose wavelengths λ are approxi-
mately equal to the diameter of the wire ring. These
waves, however, are strongly damped because the char-
acteristic attenuation scale Λ is proportional to the
wavelength λ (Λ ~ λω/ν). Varying one of the parame-
ters of the problem (the signal frequency or the mag-
netic field), we were able to measure the dependence of
the amplitude of the excited wave on this parameter; to
determine the positions of the maxima (resonances);
and, knowing the slowing-down factor pres = λ0/λs =
λ0/la of the wave, to calculate ωp from dispersion rela-
tion (1).

Let us estimate how the discharge chamber wall
affects the propagation of surface waves along the
plasma column. We consider a uniform plasma column
of radius a in a glass tube with the outer radius R, wall
thickness d, and dielectric constant εg. In this case, we
can divide the region in which the wave fields are exam-
ined into four domains, find the solution for each of
them, and match the solutions at the domain bound-
aries. From the boundary conditions, we then obtain a
set of linear homogeneous equations. Equating the
determinant of the 12 × 12 matrix corresponding to
these equations to zero, we arrive at the desired disper-
sion relation. However, since this relation is very awk-
ward, we do not write it out here and, instead, concen-
trate on its numerical analysis.

The presence of a dielectric layer leads to the fol-
lowing two effects: the change in the dispersion of the
modes considered above and the appearance of new
modes, namely, those guided by a dielectric waveguide.
It is known from the theory of dielectric waveguides
that the frequency range in which axisymmetric surface
waves can propagate is limited by a certain limiting fre-
quency [11]. This frequency is determined by the
dielectric constant of the waveguide and the character-
istic dimensions of the dielectric layer. A numerical
analysis of the dispersion relations in the case of quartz
(glass) discharge tubes (εg ~ 4 and R ~ 3 cm) shows that
the wave fields guided by the tube wall should be taken

into account only under the condition /λ0 ≥ 10–1,d εg
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i.e., when the frequency of the diagnostic signals is f >
5 GHz, the wall thickness being d ~ 2 mm. The slow-
ing-down factor of these waves, which will be referred

to as “dielectric” modes, lies in the range 1 ≤ p ≤ .
In our problem, the dielectric waveguide contains a
magnetized plasma, which can affect the dispersion of
these dielectric modes only when the radius of the
plasma column is comparable to the tube radius (a ~ R).
In Figs. 1, 3, and 4, the dispersion curves of the funda-
mental axisymmetric mode and the first higher order
axisymmetric mode are shown by the dashed-and-dot-
ted lines, which were calculated with allowance for the
effect of the tube wall. Curve D1 in Fig. 1 shows the ini-
tial portion of the dispersion curve of the “dielectric”
mode, whose electric field structure inside the dielectric
is typical of a quasi-TE-wave.

The dispersion of the fundamental axisymmetric
mode is affected by the dielectric only slightly. Numer-
ical calculations performed for a quartz wall with d ~
2 mm and R ~ 5a/4 show that the dispersion curve of
the fundamental axisymmetric mode is slightly shifted
upward, the maximum amount of the shift ∆p/p being
less than 10%. This shift is maximum in the region in
which the dispersion curve begins to increase greatly.
The thicker the dielectric, the higher the dielectric con-
stant, and the smaller the gap between the plasma col-
umn and the tube wall, the stronger the effect of the
dielectric.

An analysis of the dispersion of the fundamental
axisymmetric mode shows that, for a < 2R/3, the effect
of a thin (d ! a, λs) dielectric wall can be neglected.
Also, it seems reasonable to limit the slowing-down
factor p from above in such a way that the distance over
which the plasma boundary is fuzzy be much shorter
than the scale length on which the electric field
decreases.

The effect of the metal wall of the discharge tube or
the wall of the magnetic solenoid on the dispersion
curve of the fundamental axisymmetric mode becomes
important when the difference between the wall radius
and the radius of the plasma column is comparable with
the scale length on which the electric field decreases,

(R – a) ~ λ⊥  = λ0/  (see also [3]). In our case, the
radius of the magnetic solenoid wall is greater than the
plasma radius by factor of 7. As a result, in the fre-
quency range chosen for the diagnostic method pro-
posed here (f > 700 MHz), the dispersion curves of the
surface waves guided by the plasma column inside the
metal cylinder essentially coincide with those of the
surface waves guided by the plasma column in the
absence of a metal cylinder. Consequently, the disper-
sion curve of the fundamental axisymmetric mode can
be calculated from Eq. (1), provided that the slowing-
down factor of the wave is chosen appropriately (p =
3–7).

εg

p
2

1–
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3. EXPERIMENTAL CONDITIONS 
AND MEASUREMENT RESULTS

The feasibility of determining the plasma density by
using the surface waves guided by the discharge chan-
nel was studied in experiments on the ionization self-
channeling of plasma waves in a magnetic field [6]. The
experimental device was a quartz discharge tube 58 mm
in diameter and 1500 mm in length. The working gas
was air at a pressure of P ~ 10–3 torr. The axial magnetic
field B0 was varied over a wide range (from 100 to
1300 G). The discharge was formed as a result of the
self-channeling of plasma waves excited by a quadru-
pole antenna consisting of three coaxial rings located in
the central part of the discharge tube at a distance of
60 mm from each other. An RF voltage (U0 = 50 V and
f0 = 200 MHz) was supplied to the exciting rings of the
antenna from a GST-2 oscillator in such a way that the
central ring was connected to the inner conductor of the
supply cable and the end rings were connected to the
outer conductor of the cable. The connecting cables
were symmetric with respect to the central cable. Such
an antenna turned out to be a resonant source for excit-
ing axisymmetric wave fields with an axial wavelength
of about λ ~ l = 120 mm. We also observed the excita-
tion of smaller-scale plasma waves, which was con-
firmed by the direct observations of the resonance
cones at comparatively high pressures in the chamber
(P > 10−2 torr). As we increased the RF power W0 sup-
plying the discharge above 10 W and the external mag-
netic field B0 above 600 G, we observed the excitation
of waves with an axial wavelength equal to the period
of the ring coils of the magnetic solenoid (λ|| = lcoil =
30 cm). The structure and properties of such dis-
charges, self-localized at the axis of the exciting
antenna, were described in [5, 6]. Here, we only note
that, as the external magnetic field was varied, the cou-
pling of the exciting antenna to the discharge channel
changed, leading to changes in both the plasma density
inside the channel and the radius of the luminous
plasma column. We measured the dependence Ne(B0)
by recording the behavior of the excitation and propa-
gation of the diagnostic wave guided by the discharge
plasma column.

The diagnostic signals were excited by an antenna
similar to the one exciting the discharge. The diagnostic
antenna was located near the end of the discharge tube
and was supplied from G4-160 and G3-2 tunable oscil-
lators. For diagnostics at frequencies f < 1000 MHz, the
distance between the rings was chosen to be 40 mm,
while for diagnostics at higher frequencies, this dis-
tance was reduced to 25 mm. In the above two cases,
the total lengths of the diagnostic antenna were la = 80
and 50 mm, respectively. The diagnostic signal was
recorded at the opposite end of the discharge tube by a
dipole transducer, whose role was played by the
extended (by lr = 16 mm for f < 1000 MHz or 12 mm
for f > 1000 MHz) part of the inner conductor of the
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coaxial cable. The diagnostic signal was monitored by
an S4-27 spectrum analyzer.

In experiments, we measured the dependence of the
squared amplitude of the diagnostic wave that traveled

0
200

A2

B0, G
400 600 800 1000

0.2

0.4

0.6

0.8

1.0

1

2 3

Fig. 5. An example of the experimentally obtained depen-
dences of the squared amplitudes A2 of the diagnostic sig-
nals (normalized to the maximum value of the squared
amplitudes) on the magnetic field B0 for the probing fre-
quencies f = (1) 700, (2) 900, and (3) 1460 MHz.
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Fig. 6. Plasma density in the discharge channel as a function
of the magnetic field. The circles show the Ne values calcu-
lated from the main resonance peak in the dependence
A2(B0), and the asterisks show the Ne values calculated from
the secondary peak. The solid curve is obtained by averag-
ing the experimental values of Ne , the dashed curve is the
dependence Ne (B0) obtained by the dielectric waveguide
method [12], and the squares show the Ne values obtained
by using a 9.74-GHz microwave interferometer.
a distance of about 1200 mm along the plasma column
of an RF discharge on the magnetic field strength. The
plasma radius, required for further calculations, was
determined from the visual diameter of the luminous
plasma column. Figure 5 shows the representative
dependences of the squared amplitude A2(B0) of the
diagnostic wave on the magnetic field. The amplitude is
normalized to its maximum value. The curves were
obtained from measurements at three different frequen-
cies in the range 700–1460 MHz. A common feature of
all the measured dependences is that they have pro-
nounced peaks at magnetic fields of 480, 600, and
800 G for f = 700, 900, and 1460 MHz, respectively.
Along with the main peaks, there are secondary peaks
at weaker magnetic fields in the frequency range f >
700 MHz. At weak magnetic fields (B0 < 400 G), we
recorded low peaks, whose heights, however, are too
small for them to be seen in Fig. 5. The radial profiles
of the axial component of the electric field was mea-
sured by a shielded rod antenna under the conditions
corresponding to the main peaks in the diagnostic sig-
nals (Fig. 5). The field amplitude is seen to decrease
gradually from the axis of the plasma column toward
the wall of the discharge tube and is nonzero every-
where. Consequently, we can assume that the main
peaks in the curves shown in Fig. 5 are related to the
resonant excitation of an axisymmetric surface mode
with the wavelength λs = la. This is confirmed by direct
phase measurements of the wavelength λs of the slowed
wave. Knowing the slowing-down factor, we can use
dispersion relation (1) to determine the plasma density
in the discharge channel. In calculations, we took into
account the dependence of the radius a of the bright
(central) region of the channel on the magnetic field
strength: a(B0 ≈ 500 G) ~ 25 mm, a(B0 ≈ 600 G) ~
15 mm, a(B0 ≈ 700 G) ~ 13 mm, and a(B0 ≈ 1000 G) ~
10 mm. In Fig. 6, the circles show the results of calcu-
lating the averaged plasma density Ne in the channel for
different frequencies of the probing signal and, accord-
ingly, for different magnetic field strengths determined
from the positions of the main resonance peaks in the
dependences A2(B0). Each of the two circles at the same
value of B0 correspond to a different value of the plasma
channel radius, which were used in calculations
because the visual determination of the plasma bound-
aries was inexact. The upper circle in each pair corre-
sponds to the smaller radius of the discharge plasma
(a – 0.2a), and the lower circle corresponds to the
larger radius (a + 0.2a). The dashed curve is for the
dependence Ne(B0) obtained in [12] by the dielectric
waveguide method for the same discharge but in a
wider discharge tube. The asterisks indicate the Ne val-
ues determined from the secondary resonance peaks of
the curves A2(B0), which are related to the half-wave
resonance of the receiving antenna (λs = 2lr). The
squares denote the Ne values obtained at a frequency of
9.74 GHz by means of a microwave interferometer [1].
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4. DISCUSSION OF THE EXPERIMENTAL 
RESULTS

First, we note that the amplitude of the received sig-
nal depends on many factors. Here, we are considering
the effect of such factors as the axial wavelength of the
excited wave, the field structure of the waves, and wave
damping. It is well known [4] that the electric field
amplitude Aα exp(iωt – ipαk0z) of the αth-order wave
excited in a magnetized plasma waveguide by the elec-
tric current with the given density distribution
j(r, ϕ)exp(iωt) can be determined from Lorentz’s lemma
generalized to the case of gyrotropic medium [13]:

(2)

where Nα is the norm of the αth wave [14, 15] and E−α
is the electric field of the αth wave propagating in the
negative z direction in a medium described by the trans-

posed dielectric tensor  (   ) [15]. In order
to excite only axisymmetric wave fields, the current
density distribution should be axisymmetric (j = j(r)).
That is why we chose a quadrupole antenna consisting
of three coaxial rings as the source of the diagnostic
signal. In this case, the distribution of the exciting cur-
rent density j in the plasma is determined by the dielec-
tric tensor  and by the fields of two ring capacitors fed
in antiphase. The wave whose electric field is closest in
structure to the antenna field is excited most efficiently.
Among the modes excited by the quadrupole antenna
chosen for our experiments, the amplitude of the funda-
mental axisymmetric mode is maximum, provided that
the wavelength of the mode is close to the length of the
exciting quadrupole antenna. The axial component of
the electric field of the fundamental axisymmetric
mode does not oscillate inside the plasma column, and
the radial component increases from the column axis
toward the plasma boundary and is shifted from the
axial component by λ/4. The diagnostic quadrupole
antenna excites waves with different wavelengths.
However, fine-scale (plasma) waves are rapidly
damped (see the above discussion) and waves with
wavelengths of about c/f are excited inefficiently. Only
when the slowing-down factor is approximately equal
to the resonant value (i.e., for λs ≈ la), does the ampli-
tude of the fundamental axisymmetric mode increase
sharply. Based on the above analysis, we can conclude
that the main peaks in the curves shown in Fig. 5 are
associated with the resonant excitation of the funda-
mental axisymmetric mode. Its slowing-down factor is
determined by the length la of the diagnostic antenna:
(pres)a = λ0/λs . λ0/la. This conclusion was confirmed by
the experimental examination of the structure of the
excited wave.

The secondary (lower) peaks in curves 2 and 3 in
Fig. 5 are related to the resonances of the receiving
antenna, (pres)r = λ0/λs . λ0/2lr. Adjusting the length of
the receiving antenna allowed us to observe its half- and

Aα
1

Nα
------- j∫ E α– V ;d⋅=

ε̂ T( ) ε̂ij ε̂ ji

ε̂
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quarter-wave resonances. Under the experimental con-
ditions corresponding to Fig. 5, the secondary peaks are
governed by the half-wave resonance of the receiving
antenna, while the quarter-wave resonances turn out to
be close to the resonance of the exciting diagnostic
antenna, thereby causing an additional broadening of
the main peaks in the curves in Fig. 5. The presence of
several peaks in the dependences of the characteristics
of the received signal on the plasma parameters or fre-
quency makes the method more informative and more
precise.

The plasma density Ne was determined from both
the main and secondary peaks in the curves shown in
Fig. 5. The magnetic field B0, the radius a of the dis-
charge tube, and the slowing-down factor (pres)a or (pres)r

of the diagnostic wave were calculated from the posi-
tions of the resonance peaks in the dependence A2(B0).
Knowing these parameters, we were able to deduce the
plasma density Ne in the discharge channel from disper-
sion relation (1).

The accuracy with which the plasma density Ne was
determined was governed by the accuracy with which
the channel radius was specified. From the data pre-
sented in Fig. 6, one can see that the relative error was
small, ∆Ne/Ne < 0.3. The error in the horizontal posi-
tions of the experimental points in the dependence
Ne(B0) was governed by the nonuniformity of the exter-
nal magnetic field along the discharge tube (∆B/B0 ≈
0.1).

To increase the accuracy of the measurement, it is
necessary to have more precise knowledge of the chan-
nel radius, to take into account the radial plasma den-
sity distribution in the channel, and to solve the disper-
sion relations for waves guided by a plasma column
with fuzzy boundaries. In order to eliminate the effect
of measuring devices on the RF discharge structure, it
is desirable that the diagnostic signal be supplied
through a directional coupler directly to the antenna
that forms the discharge.

5. CONCLUSION
The results of experiments in which the plasma den-

sity in the discharge channel was determined from the
observations of the resonant excitation of surface waves
slowed down in a prescribed manner agree fairly well
with the results obtained by means of a dielectric
waveguide [12] and a microwave interferometer [1].
This agreement confirms the potential feasibility of the
diagnostic method proposed here. The situation in
which the main resonance peak is observed at frequen-
cies satisfying the condition ω < ωp, ωH is usually easy
to achieve. In this case, the plasma density is uniquely
determined by the known dispersion parameters. The
characteristic feature of the diagnostic method is the
possibility of determining the plasma density in the
parameter range in which it is difficult to use other
methods. Additional diagnostic possibilities of the
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method are related to the observation of the scattering
of the diagnostic wave by plasma oscillations in the dis-
charge channel [16]. The method proposed here is espe-
cially suitable for diagnosing pulsed discharges in nar-
row tubes such that the radius of the plasma column is
determined by the tube radius. The presence of several
resonance peaks in the spectra of the signals from sev-
eral receiving antennas of different lengths makes it
possible to determine with the desired accuracy the
time dependence of the averaged plasma density in the
plasma column.
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