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Abstract—The forces acting on interacting moving atoms exposed to resonant laser radiation are calculated. It
is shown that the forces acting on the atoms include the radiation pressure forces as well as the external and
internal bias forces. The dependences of the forces on the atomic spacing, polarization, and laser radiation fre-
quency are given. It is found that the internal bias force associated with the interaction of atomic dipoles via the
reemitted field may play an important role in the dynamics of dense atomic ensembles in a light field. It is shown
that optical size resonances appear in the system of interacting atoms at frequencies differing substantially from
transition frequencies in the spectrum of atoms. It is noted that optical size resonances as well as the Doppler
frequency shift in the spectrum of interacting atoms play a significant role in the processes of laser-radiation-
controlled motion of the atoms. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The action of laser radiation on atoms, molecules, or
dielectric microparticles makes it possible to control
their motion owing to the action of radiation forces [1, 2].
Radiation forces that have been considered in the liter-
ature so far are associated with laser radiation proper
and act over distances between particles much longer
than the radiation wavelength (i.e., in the radiation
wave zone). A fundamentally different situation takes
place when particles are located at distances compara-
ble to or much smaller than the radiation wavelength. In
this case, an additional field associated with mutual
effect of atoms in the external radiation field in the
near-field zone is coupled with the external radiation
field. It was shown in [3] that the additional field leads
to a noticeable change in the amplitude, phase, and fre-
quency characteristics of dipole radiation of interacting
atoms. This property of the mutual effect of closely
spaced atoms was interpreted in [3] as the near field
effect. This effect can be manifested in optical proper-
ties of nanostructural objects (dimers, atomic chains,
and fullerenes), in the Brewster reflection of light from
the surface of nonabsorbing insulators [3], and in opti-
cal probing of the surfaces of solids [3].

In addition of the above-mentioned effects, the
mutual influence of particles leads to the emergence of
a force exerted by one particle on another. From the
physical point of view, the force acting between two
atomic particles emerges as a result of interaction of
induced dipole moments. From the quantum-mechani-
cal point of view, induced dipole moments of atoms
appear as a result of atomic coherence induced by a
laser field. In the case of dielectric particles, the force is
due to macroscopic polarization of the medium.
1063-7761/05/10002- $26.00 0229
This force may play an important role in various
fields of application. The force of interaction between
atoms and molecules in a laser radiation field is impor-
tant in applications such as laser cooling of atoms in
traps (including magnetooptical traps), in experiments
on Bose–Einstein condensation, and atomic force
microscopy. The force of interaction between dielectric
particles in a radiation field is important in such appli-
cations as the control of motion of microparticles,
including control of the spatial position of viruses and
bacteria.

In this study, we present an analysis of the forces of
dipole interaction of atoms exposed to stationary quasi-
resonant laser radiation. The results of this study show
that the forces of interaction depend to a considerable
extent on the atomic spacing, polarization, and laser
field frequency, as well as the Doppler frequency shift.

A large number of publications are devoted to the
interaction of atoms in dense ensembles exposed to a
laser field [3–9]. In contrast to these publications, we
will show here that optical size resonances play an
important role in controlling the motion of atoms in
dense atomic ensembles exposed to laser radiation.
Optical size resonances in a system of stationary atoms
were considered for the first time in [10–12]. The exist-
ence of such resonances was confirmed experimentally
in [13], where typical peaks were observed in the spec-
tra of anisotropic reflection of light from a gallium ars-
enide surface reconstructed by antimony. In our opin-
ion [14], such effects indicate the presence of optical
size resonances in antimony dimers. Optical size reso-
nances should apparently be manifested in various sys-
tems consisting of a small number of atoms forming
nanostructural objects. It should be noted that the effect
of atomic dipoles in polyatomic systems, leading to the
© 2005 Pleiades Publishing, Inc.
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so-called local field effect, were considered by many
authors (see, for example, [15–17]). A distinguishing
feature of the effect of atomic dipoles in nanostructural
objects containing a small number of atoms is that the
intrinsic field in such systems can be calculated exactly
without using statistical averaging of the dipole fields.

In this paper, we consider optical size resonances in
systems of moving interacting atoms with allowance
for the Doppler frequency shift. Moreover, in contrast
to [3–9], we consider here the motion of atoms in laser
fields without a noticeable change in the populations of
atomic states and disregarding spontaneous atomic
transitions of atoms from excited states to the ground
state. It will be shown that the motion of atoms in dense
ensembles can be effectively controlled in low-inten-
sity laser fields by tuning the frequency of laser radia-
tion to the size resonance frequency, which depends on
the atomic spacing.

2. INTERACTION OF TWO ATOMS 
IN A RADIATION FIELD: EQUATIONS

OF MOTION

We will henceforth assume that atoms are two-level
systems and that one two-level atom is at the origin
r1 = 0 of the coordinate system, while the other atom is
at point r2 with coordinates (0, R, 0). The atoms are irra-
diated by a running laser wave with constant amplitude
E0L and frequency ω, which is close to atomic transition
frequencies ω01 and ω02. The electric field of this wave
has the form

(1)

where k0 is the wavevector of the external wave.

The electric field formed by the laser wave and by
the dipole moments of the atoms at point of observation
r at instant t can be represented in the form [3]

(2)

where 〈d〉 j is the induced dipole moment of the jth atom,
which depends on the field value at the location of this
atom; Rj = |r – rj|; and c is the velocity of light in vac-
uum. Observation point r in Eq. (2) may either coincide
with points r1 and r2 or lie outside of these points. Dif-
ferentiation in Eq. (2) is carried out over the coordinates
of the observation point. It should be noted that the val-
ues of induced dipole moments 〈d〉1 and 〈d〉2 in the
near-field zone are determined only by the electric vec-
tor of the electromagnetic field. The effect of the mag-
netic vector of the field becomes comparable to the
effect of the electric vector only in the wave zone when
k0Rj @ 1.

EL r t,( ) E0L ik0 r iωt–⋅( ),exp=

E r t,( ) EL r t,( ) curlcurl
d〈 〉 j t R j/c–( )

R j

----------------------------------,
j 1=

2

∑+=
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For a system of two atoms, the Hamiltonian can be
written in the form

(3)

Here, Ej are the electric fields at the points of locations
of atoms 1 and 2, d0j is the matrix element of the dipole
moment of the jth atom, I is the unit operator, and σαj

(α = 1, 2, 3, j = 1, 2) and σ±j = σ1j ± iσ2j are the effective
spin operators for the jth atom, which satisfy the com-
mutation relations

(4)

where δjk is the Kronecker delta. It should be noted that,
in the notation used here, the dipole moment operators
of the atoms have the form

Using Hamiltonian (3) and commutation relations (4),
we can now derive the Heisenberg equations of motion
for two parts of the dipole moment operators d+j =

σ+j and d–j = d0jσ–j and σ3j:

(5)

After this, a transition can be made in Eqs. (5) to mean
values sαj = 〈σ〉 αj and s±j = 〈d〉±j; in the case of a classical
field, the form of Eqs. (5) remains unchanged.

It is convenient for subsequent analysis to separate
explicitly the field oscillations with optical frequency,
assuming that

where  and  are the real and imaginary parts of
the fields acting at the points of location of atoms 1

H
1
2
---" ω0 j I σ3 j+( )

j 1=

2

∑=

–
1
2
--- d0 j* σ+ jE j d0 jσ– jE j+( ).

j 1=

2

∑

σ1 j σ2k,[ ] 2iσ3 jδjk, σ2 j σ3k,[ ] 2iσ1 jδjk,= =

σ3 j σ1k,[ ] 2iσ2 jδjk, σ+ j σ–k,[ ] 4iσ3 jδjk,= =

σ+ j σ3k,[ ] 2– iσ+ jδjk, σ– j σ3k,[ ] 2iσ– jδjk,= =

d j
1
2
--- d0 j* σ+ j d0 jσ– j+( ).=

d0 j*

ḋ+ j id+ jω0 j
2i
"
-----d0 j* σ3 j d0 j E j⋅( ),+=

ḋ– j –id j– ω0 j
2i
"
-----d0 jσ3 j d0 j* E j⋅( ),–=

σ̇3 j
i
"
--- d+ j d– j–( ) E j.⋅=

E j E0 j iωt–( ), E0 jexp E0 j' iE0 j'' ,–= =

E0 j' E0 j''
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and 2. In stationary fields, these quantities do not
depend on time. We introduce the transformation

(6)

as well as the functions

defining the induced dipole moments of the atoms.
These functions satisfy the equations for coupled quan-
tum dipoles, which should be supplemented with relax-
ation terms taking into account the natural widths of
atomic transitions. Assuming that the total rate of spon-
taneous decay of the upper levels is equal to 2γj , we can
write the equations of motion for atomic variables in
final form:

(7a)

(7b)

(7c)

where δj = ω – ω0j are detunings of the field frequency
relative to optical atomic transition frequencies in the
jth atom and w0j is the equilibrium value wj . In deriving
Eqs. (7), we took into account the fact that relation
d0j(d0j · E0) = |d0j |2E0 holds for d0j || E0j .

Noting further that the induced dipole moments of
the atoms at instants t – Rj/c are defined by the relations

and using expressions (1), (2), and (6), we can represent
quantities E0j in the form

(8)

where tensor  is defined as

Equations (7) and (8) form a coupled system of
equations, which makes it possible to calculate the

s1 j u j ωt( )cos v j ωt( ),sin–=

s2 j u j ωt( )sin v j ωt( ), s3 jcos+ w j,= =

s± j u j iv j±( ) iωt±( ),exp=

s± j d0 j u j iv j±( ) iωt±( ),exp=

X j d0 j u j iv j–( ), X j* d0 j* u j iv j+( ),= =

Ẋ j iδjX j
2i
"
----- d0 j

2w jE0 j– γ jX j,–=

Ẋ j* –iδjX j*
2i
"
----- d0 j

2w jE0 j* γ jX j*,–+=

ẇ j
i
"
--- X j* E0 j⋅ X j E0 j*⋅–( ) 2γ j w j w0 j–( ),–=

d〈 〉 j
1
2
---X j ik0R j iωt–( ),exp=

E01 E0L ik0 r1⋅( )exp
1
2
---ĜX2 ik0R( ),exp+=

E02 E0L ik0 r2⋅( )exp
1
2
---ĜX1 ik0R( ),exp+=

Ĝ

Ĝ
A– 0 0

0 2B 0

0 0 A– 
 
 
 
 

, B
1

R3
----- i

k0

R2
-----,–= =

A B
k0

2

R
----– , k0

ω
c
----.= =
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fields at the points of location of the atoms as well as
induced dipole moments of the atoms taking into
account the mutual influence of the atoms on each
other. In this case, the velocities v1 and v2 of the atoms
depend in the general case on acting fields (8), which
leads to dynamic variation of transition frequencies in
the spectrum of the interacting moving atoms. In subse-
quent analysis, we will use the coordinate system asso-
ciated with the center of mass of the two atoms, intro-
ducing the atomic spacing vector r = r1 – r2. Placing the
origin at the center of mass, we obtain

(9)

where m1 and m2 are the masses of atoms 1 and 2,
respectively, and v =  is the velocity of relative motion
of the atoms.

3. LINEAR OPTICAL SIZE RESONANCES
IN THE SYSTEM 

OF TWO INTERACTING ATOMS
Let us consider the most interesting case from the

standpoint of physics, when the atoms interact with
radiation over time periods much longer than the spon-
taneous relaxation time τsp = 1/2γ. For such periods of
time, in Eqs. (7) we must take into account the fact that

(10)

This means that relaxation processes and the processes of
inducing the dipole moments in the atoms are mutually
compensated. Condition  = 0 indicates that the motion
of the center of mass of the atoms is uniform. The fulfill-
ment of condition  = 0 in the system of atoms in the
state of thermal equilibrium at a certain temperature T is
connected with the number of collisions of an atom with
the remaining atoms of an ideal gas per unit time,

where r0 is the radius of the atom, kB is the Boltzmann
constant, mA is the atomic mass, and N/V is the concen-
tration of atoms. It is necessary that the time ν–1 between
two consecutive collisions be longer than time τsp. In this
case, if conditions (10) are satisfied, Eqs. (7) can be
reduced to a system of nonlinear algebraic equations.

We introduce the quantum polarizabilities of the
atoms in the region of isolated resonances ω0j:

(11)

Then the steady-state solution to Eqs. (7a) and (7b)
can be represented in the form

r1

m2

m1 m2+
-------------------r, r2

m1

m1 m2+
-------------------r,–= =

v1 v2, v1–
m2

m1 m2+
-------------------v,= =

ṙ

Ẋ j 0, ẇ j 0, v̇ 0.= = =

v̇

v̇

ν N
V
----16r0

2 πkBT
mA

-------------,=

α j

2 d0 j
2

"
--------------- 1

δj iγ j+
-----------------.–=
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(12)

X1
y E0L

y w1α1

ik0 r1⋅( )exp w2α2B ik0 r2⋅( ) ik0R( )expexp–

1 w1w2B2α1α2 2ik0R( )exp–
---------------------------------------------------------------------------------------------------------------– α eff

y 1( )E0L
y ,= =

X1
x z, E0L

x z, w1α1

ik0 r1⋅( )exp
1
2
---w2α2A ik0 r2⋅( ) ik0R( )expexp+

1
1
4
---w1w2A2α1α2 2ik0R( )exp–

-------------------------------------------------------------------------------------------------------------------– α eff
x z, 1( )E0L

x z, ,= =

X2
y E0L

y w2α2

ik0 r2⋅( )exp w1α1B ik0 r1⋅( ) ik0R( )expexp–

1 w1w2B2α1α2 2ik0R( )exp–
---------------------------------------------------------------------------------------------------------------– α eff

y 2( )E0L
y ,= =

X2
x z, E0L

x z, w2α2

ik0 r2⋅( )exp
1
2
---w1α1A ik0 r1⋅( ) ik0R( )expexp+

1
1
4
---w1w2A2α1α2 2ik0R( )exp–

-------------------------------------------------------------------------------------------------------------------– α eff
x z, 2( )E0L

x z, ,= =
where ( j) is the nonlinear effective polarizability of
the jth atom.

Induced dipole moments (12) of the atoms depend
on quantities w1 and w2, i.e., on the differences in the
probabilities of detecting the atoms in the ground and
excited states. In the general case, quantities w1 and w2
are functions of fields E01 and E02; consequently, the
effective polarizabilities are nonlinear functions of
external field E0L . It will be shown below, however, that
in a certain range of E0L values, the effective polariz-
abilities are quantities that are practically independent
of laser field E0L . This case corresponds to a linear
approximation. Indeed, Eqs. (7a) and (7b) lead to the
expressions

where γ = x, y, z. Substituting these expressions into
Eqs. (7c), we arrive at the equality

If the condition

is satisfied, we can assume that quantities wj in our
analysis coincide with their equilibrium value w0j = –1.
Taking into account the relation between laser field E0L

and acting fields E0j , we obtain the linear approxima-
tion condition in the form

(13)

In the following analysis, we will use only this
approximation, which allows us to treat the motion of
the atoms in the laser field as a coherent process, disre-
garding stochastic processes associated with spontane-

α̂ eff

X j
γ α eff

γ j( )E0L
γ w jα jE0 j

γ ,–= =

w j

w0 j

2 d0 j
2/"2( ) E0 j

2[1/ δj
2 γ j

2+( ) 1]+
----------------------------------------------------------------------------------.=

2 d0 j
2

"
2

--------------- E0 j
2 1

δi
2 γ j

2+
---------------- ! 1

α eff
γ j( )
2 d0 j

------------------E0L
γ

 ! 1.
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ous decay of the excited states of the atoms, leading to
random displacements of the atoms due to the recoil
during the emission of spontaneous photons [1, 2].

Analysis of formulas (12) shows that the effective
polarizabilities possess size resonances whose frequen-
cies are functions of the atomic spacing. In the linear
approximation, these size resonances are referred to as
steady-state optical size resonances. These resonances
can be described theoretically using Eqs. (7a) and (7b)
and assuming that wj  –1.

For two identical atoms (when α1 = α2), we can
derive from Eqs. (12) the simple formulas for frequen-
cies  and  of size resonance,

(14a)

(14b)

where it is assumed that w1 = w2 = –1, d01 = d02 = d0,
ω01 = ω02 = ω0, and k0R ! 1. The condition α1 = α2 can
be satisfied for stationary atoms. For k0R ! 1, we can
disregard the time lag in the dipole–dipole interaction
of the atoms and set A = B = 1/R3. The equality of the
natural frequencies of the atoms, ω01 = ω02, can be
observed if the interacting atoms are stationary. Thus,
the system of two identical atoms (α1 = α2) possesses
two linear stationary optical size resonances depending
on the direction of polarization of the laser wave rela-
tive to the R axis of the diatomic system. When the
polarization vector of the laser wave is directed along
the R axis of the system, the size resonance frequency
is equal to  and is defined by formula (14a). If, how-
ever, the polarization vector of the laser wave is perpen-
dicular to the R axis of the diatomic system of identical
atoms, the size resonance frequency is defined by for-
mula (14b) and is equal to . At frequencies  and

, the induced dipole moments and, hence, effective

w1' w2'

w1' ω0

2d0
2

"
--------B,–=

w2' ω0

d0
2

"
-----A,+=

ω1'

ω2' ω1'

ω2'
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polarizabilities (12) attain their maximal values. The
widths of these resonances are determined by the natu-
ral width of energy levels in isolated atoms constituting
the system. These atoms are isotropic in our analysis.
The mutual influence of the atoms in the laser radiation
field leads to anisotropy of the diatomic system since

( j) ≠ ( j).

As a result of their motion, atoms with the same val-
ues of ω0 and |d0| cease to be identical. Indeed, the lin-
ear Doppler effect causes a phonon frequency shift
upon the transition from the stationary coordinate sys-
tem to the system of coordinates of the atom having
velocity vj . Consequently, α1 ≠ α2 and

(15)

Substituting these expressions into Eqs. (12), we
can find the frequencies of size resonances, for which
the effective polarizability of the atoms acquires its
maximal values. At small distances such that k0R ! 1,
we assume that polarizabilities (15) are real quantities
and derive the following formulas for optical size reso-
nance frequencies at such atomic spacings:

(16)

Thus, in contrast to the case of stationary atoms, allow-
ance for the motion of identical atoms gives rise to four
linear optical steady-state size resonances. The limiting
transition from formula (16) to formulas (14) for
(k0 · v1)  0 can be carried out if we analyze disper-
sion properties of the numerators in effective polariz-
abilities (12). This enables us to choose an appropriate
sign in expressions (16) and leads to two size reso-
nances whose frequencies are defined by formula (14).

Let us consider a numerical example of two sodium
atoms, singling out in a sodium atom the quantum tran-
sition 3S  3P with wavelength λ = 5890 Å (yellow
line of the Na atom). The change in the velocity of a Na
atom as a result of absorption (emission) of a photon
with the given wavelength is v r = h/mAλ ≈ 3 cm/s,
where mA is the mass of the Na atom. The recoil energy
is 25 kHz. The mean thermal velocity of a Na atom at
room temperature T = 300 K is  = 5 × 104 cm/s. The
Doppler frequency shift of a photon for such a velocity
is ∆ν = k0 /2π = 850 MHz. The natural width of the
3S  3P transition line is equal to 10 MHz, which
allows us to determine the dipole moment of the transi-

α eff
y α eff

x z,

α1

2 d0
2

"
------------- 1

ω k0 v1 ω0 iγ+–⋅–
------------------------------------------------,–=

α2

2 d0
2

"
------------- 1

ω k0 v1 ω0 iγ+–⋅+
------------------------------------------------.–=

ω1 2, ω0 k0 v1⋅( )2 w10w20B2 2 d0
2

"
------------- 

 
2

+
1/2

,±=

ω3 4, ω0 k0 v1⋅( )2 1
4
---w10w20A2 2 d0

2

"
------------- 

 
2

+
1/2

.±=

v

v

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tion, d0 = 6.239 × 10–18 CGSE units. It follows from for-
mulas (16) that the Doppler shift and the frequency
shift due to the dipole–dipole interaction of the atoms
are comparable for atomic spacings R ≈ 5 nm. For Na
atoms in an ideal gas in thermal equilibrium at T =
300 K, the number of collisions of a sodium atom with
the remaining atoms is ν = (N/V) × 2.5 × 10–11 s–1,
where N/V is the concentration, and the radius of the
sodium atom is assumed to be equal to the Bohr radius.
For N/V = 1018 cm–3, the average time ν–1 between col-
lisions is approximately equal to 10–6 s; consequently,
the steady-state condition for process (10) is satisfied.

Let us consider the results of numerical analysis of
formulas (12) for two moving sodium atoms in a laser
radiation field. In these formulas, inversions w1 and w2
correspond to the equilibrium value; for this reason, the
effective polarizabilities of moving interacting atoms
are independent of the laser field E0L . In accordance

with formulas (16), dispersion relations Im ( j) indi-
cate the presence of four linear steady-state size reso-
nances in the diatomic system of moving atoms; two of
these resonances correspond to the y polarization of the
laser field, while the remaining two resonances corre-
spond to the x and z laser field polarizations. Quantum
polarizabilities (15) of stationary isolated atoms in the

case of exact resonance are identical, α1 = α2 = 3i/ .
At size resonance frequencies, the effective polarizabil-
ities of moving interacting atoms approximately coin-
cide with quantum polarizabilities of stationary atoms
over small distances as compared to the wavelength.

Figure 1 illustrates the behavior of one of the size
resonances for the y component of the effective polariz-
ability depending on the atomic spacing and a fixed rel-
ative velocity of atoms. It can be seen from the figure
that, for large atomic spacings, the optical resonance
corresponds to a dimensional detuning vω0/cγ from
resonance, which is equal to 1.697 × 102. With decreas-
ing atomic spacing, the optical size resonance gradually
expands, the effective polarizability gradually increas-
ing thereby to a value comparable to the quantum polar-
izability of an isolated atom in the case of exact reso-
nance. For a fixed velocity of relative motion of the
atoms, there exists a limiting value of atomic spacing
R/λ ≈ 0.05 for which an optical size resonance is formed.
The frequency dependence of the effective polarizability
of the first sodium atom for positive detunings from res-
onance in accordance with formula (16) can be analyzed
analogously. For such detunings from resonance, in a

wide range of variation of R/λ, the value of Im (1)
remains virtually unchanged; the frequency of this size
resonance slightly shifts to the right only in the vicinity

of R/λ ≈ 0.05. The dependence of Im (2) on R/λ and
δ/γ for the second sodium atom in the given numerical
example coincides with the dependence presented in
Fig. 1, the only difference being that the sign of detun-

α eff
γ

k0
3

α eff
γ

α eff
γ
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5

4

3

2

1

–200

–190

–180

–170

–160

δ/γ
0.20

0.15

0.10

0.05

R/λ

Fig. 1. Effective polarizability of moving sodium atom 1 interacting with moving sodium atom 2 for various atomic spacings; δ =
ω – ω0, k0 || v, where v is the relative velocity of the atoms.

αy
eff (1) × 10–16, cm3
ing δ/γ is reversed. In this case, the value of R/λ ≈ 0.05
corresponds to atomic spacings for which the dipole–

dipole interaction parameter 2 /γ"R3 becomes com-
parable to parameter vω0/cγ determining the Doppler
frequency shift in the spectrum of moving atoms.

4. DIPOLE FORCES IN THE SYSTEM 
OF INTERACTING ATOMS 

IN A LASER RADIATION FIELD

The forces acting on the atoms of a diatomic object
in a laser field are defined as [1, 2]

(17)

where the angle brackets imply quantum-mechanical
averaging and V1 and V2 are the operators of interaction
between the atoms and the electric field. In accordance
with formula (3), for two-level atoms of the object, we
can write

(18)

d0
2

F1

∂V1

∂r1
--------- , F2–

∂V2

∂r2
--------- ,–= =

V j
1
2
---σ+ jd0 j*– E0 j

1
2
---σ– jd0 j E0 j* ,⋅–⋅=
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where acting fields E0j are defined by formulas (8), in
which quantities Xj can be calculated using effective
polarizabilities (12) that are functions of coordinates r1
and r2 of the points of observation.

Substituting Eq. (18) into expressions (17), we
obtain

(19)

where

(20)

Evaluating relations (19), we can present forces F1
and F2 as the sum of three partial forces,

(21)

where  is directed along wavevector k0 of the laser

wave, while forces  and  are directed parallel or

F1
1
2
--- X1m*

∂E01
m

∂r1
----------- c.c.,+

m x y z, ,=

∑=

F2
1
2
--- X2m*

∂E02
m

∂r2
----------- c.c.,+

m x y z, ,=

∑=

X jm α eff
m j( )E0L

m .=

F j F j
1( ) F j

2( ) F j
3( ),+ +=

F j
1( )

F j
2( ) F j

3( )
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antiparallel to unit vector n = (r1 – r2)/|r1 – r2|. We will

refer to forces  and  as the forces of external
and internal displacements of the atoms in the diatomic
object, respectively, depending on the sign of vector n in
the corresponding terms in general expressions (19).

In the absence of the dipole–dipole interaction, the
atoms do not affect each other; in formulas (19) and (21),

only radiation pressure forces  and , which are
determined by quantum polarizabilities (15), differ from
zero. If the dipole–dipole interaction is taken into

account, forces  and  can be referred to as radi-
ation pressure forces as before, although we must now
use the effective polarizabilities defined by formulas (12)
in the expressions for the induced dipole moments.

The directions of the radiation pressure forces coin-
cide with wavevector k0 of external radiation. The dis-
persion relation for radiation pressure forces is deter-
mined by the dispersion relations for the effective
polarizabilities of the atoms (see Fig. 1). This means
that radiation pressure forces substantially increase for
fixed atomic spacings R if the external field frequency
coincides with the size resonance frequency. The radia-
tion pressure forces are proportional to the square of the
electric field of the external wave. Using the values of
effective polarizabilities (see Fig. 1) for sodium atoms,
we can determine dimensionless radiation pressure

force /2"k0γ at the frequency of one of the size res-
onances. It can be seen that this force can be on the
order of unity for laser fields E0L = 10–3 CGSE units,
which satisfy the linear approximation condition (13).

Let us consider the behavior of two interacting
atoms moving in a laser field for various directions of
propagation of the laser wave relative to the axis of the
diatomic object (Fig. 2). Such a situation can appar-
ently take place in laser beams. Figures 3 and 4 show
the dependences of the y components F1y and F2y of the
resultant forces acting on atoms 1 and 2 on dimension-
less atomic spacing R/λ and dimensionless detuning δ/γ
from resonance. It can be seen from Figs. 3 and 4 that
the dimensionless forces acting on the first and second
atoms exceed the radiation pressure force approxi-
mately by a factor of two, which indicates a significant
role of other partial forces (namely, the forces of inter-
nal and external displacement of the atoms) in the
dynamics of the atoms. Figures 3 and 4 also show that
the forces acting on the first and second atoms differ in
absolute value since the moving atoms are not identical
and their effective polarizabilities exhibit, in accor-
dance with relations (12), different dependences on
atomic spacings in view of the difference in quantum
polarizabilities (15). We can estimate the values of
accelerations of the atoms in the laser field. For exam-
ple, for F1y/2"kγ = 1, where k = ω0/c, we find that the
value of force F1y is equal to 1.33 × 10–14 dyne and the
accelerations is equal to 0.32 × 109 cm/s2. For a fixed

F j
2( ) F j

3( )

F1
1( ) F2

1( )

F1
1( ) F2

1( )

F1
1( )
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velocity of relative motion of the atoms, resultant
forces F1y and F2y acting on the atoms in the laser field
strongly change upon a variation of the atomic spacing.
The dependence of these forces on the laser field fre-
quency also changes in this case. This means that the
motion of the atoms can be effectively controlled only
for the relevant variation of the laser field frequency.

5. POTENTIAL ENERGY OF THE INTERACTION 
OF ATOMS IN A LASER RADIATION FIELD

The potential energy of an atom in a diatomic object
exposed to a laser radiation field is defined by the for-
mulas

(22)

Let us consider the dependence of the potential
energy of the atoms on the laser radiation frequency
and atomic spacing.

V1〈 〉 1
2
---X1*–=

E0L ik0 r1⋅( )exp
1
2
---ĜX2 ik0R( )exp+ 

    +  ×  c.c., 
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2

 

〈 〉
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2
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Fig. 2. Vector diagram of a diatomic system: R = r = r1 – r2;
ϕ is the angle between vectors k0 and R lying in the zy
plane; RC is the radius vector of the center of mass of the
system of two identical atoms of mass m1 = m2 = mA; the
diatomic object axis R || y0, where y0 is the unit vector
directed along the y axis; and n is the unit vector directed
from atom 2 to atom 1.
SICS      Vol. 100      No. 2      2005



236 GADOMSKIŒ, GLUKHOV
0

–0.01

–0.02

–0.03

–160–180– 190

R/λ = 0.09

–170

0

–0.5

–1.0

–1.5

0.5

–160–180– 190

F
1y

/2
"

kγ

R/λ = 0.06

δ/γ

–170

0

–0.1

–0.2

–0.4

0.1

–180– 190

R/λ = 0.07

–170

–0.3

0

–0.04

–0.08

–160–180– 190

R/λ = 0.08

–170
0.06

0.04

0.02

0
180170160

R/λ = 0.09

δ/γ
165 175

0.15

0.10

0.05

0
180170160

R/λ = 0.08

165 175

0.6

0.4

0

–0.2
174166

R/λ = 0.07

170 178

4

2

0

–2

185175165

R/λ = 0.06

170 180

0.2

F
1y

/2
"

kγ

Fig. 3. Dependence of the y component F1y of the resultant force acting on the first Na atom in laser field E0L = 5 × 10–3 CGSE
units on the atomic spacings and detunings from the resonance frequency of the 3S  3P transition in the sodium atom. The
velocity v  of the relative motion of the atoms is fixed and equal to 5 × 104 cm/s; vector k0 coincides with the axis of the Na–Na
object.
Figure 5 shows the dispersion curves of the potential
energy of an atom in a diatomic Na–Na object exposed
to laser radiation for fixed distances between the atoms.
It can be seen that, for large distances between the
JOURNAL OF EXPERIMENTAL A
atoms comparable to the laser radiation wavelength, the
potential energy of an atom in the object may assume
either positive or negative values depending on the
detuning from resonance. In other words, by varying
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Fig. 4. Dependence of the y component F2y of the resultant force acting on the second Na atom in a laser field on dimensionless
distances R/λ and on dimensionless detunings δ/γ from resonance. The numerical values of physical quantities are the same as in
Fig. 3.
the frequency of external radiation, we can attract or
repel the atoms by laser radiation. In this case, the laser
radiation intensity should not be high and the differ-
ences in probabilities w for the two atoms must almost
coincide with their equilibrium values.
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Figure 6 shows the typical dependences of the
potential energy of an atom in the diatomic object on
the value of R/λ in the field of laser radiation with fixed
frequencies. It can be seen that the system of Na atoms
can pass to a state with the minimal potential energy of
SICS      Vol. 100      No. 2      2005
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about 〈V1〉  = –5 × 10–12 erg for small atomic spacings
(R ≈ 0.045λ).

Let us consider the behavior of potential energy (22)
of the atoms for small atomic spacings. Substituting
expression (8) into (22), we obtain the following for-
mula for the polarization of laser radiation directed
along the y axis:

(23)

V1〈 〉 1
2
---α eff

y* 1( ) E0L
y( )2

ik0 r1⋅( )exp
1
2
---α eff

y 1( )+–=

× ik0R( ) 1

R3
----- i

k0

R2
-----– 

 exp c.c.+
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Fig. 5. Potential energy of a sodium atom in the Na–Na
object in a laser radiation field for large atomic spacings.
The numerical values of physical quantities are the same as
in Fig. 3.
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It can be seen from Fig. 1 that the absolute value of

effective polarizability (1) in size resonances for

various atomic spacings is on the order of 10–15 cm3.
For weak fields, the internal field is much stronger than
the external field for small atomic spacings (on the
order of 1 nm). For this reason, the value of 〈V1〉  for
such atomic spacings may reach 10–12 erg.

5.1. Energy and Momentum Conservation Laws 
in a System of Two Moving Interacting Atoms 

in a Laser Radiation Field 

The interaction of two hydrogen-like atoms with
stationary centers at arbitrary distances was treated
in [3] as a third-order effect in quantum electrodynam-
ics, in which three photons (two of which are virtual
and the third is real) interact. In such an analysis, the
emission or absorption of a real photon in the electric
dipole approximation is represented by using the elec-
tron polarizability of the atom producing the polarizing
field at the point of location of the second atom. In the
nonrelativistic theory, the problem of interaction of two
identical atoms in the ground state in the absence of a
radiation field is solved in the second order of perturba-
tion theory; the corresponding potential energy of inter-
action between two atoms without retardation is

defined as  = A0/R6, where A0 is a constant quantity
[18]. The interaction of two identical atoms, one of
which is in an excited state at a distance R ! 2πc/ω0,
where ω0 is the transition frequency, is considered in
the first order of perturbation theory; the corresponding

potential energy is  = ±B0/R3, where B0 is a con-
stant and the plus and minus signs correspond to sym-
metric and antisymmetric wave functions of the states
of the two atoms.

Taking into account these results, we can write the
energy conservation law for two moving atoms with the
emission of a real photon in the form

(24)

where v1 and v2 are the initial velocities of the atoms

and  and  are their final velocities after the emis-
sion of a real photon and a transition of the two atoms
to the ground state. An analogous equality can also be
written for the reverse process involving the absorption
of a real photon.

α eff
y

V12
0( )

V12
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2
---m1v1

2 1
2
---m2v2

2 V12
±( )

"ω0+ + +
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To derive the momentum conservation law, we rep-
resent the velocities of the atoms in the form

(25)

where Vj are the velocities of translatory motion of the

v j V j v jC,+=
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pair of atoms, associated with radiation pressure

forces  and external displacement forces , and
vjC are the velocities of the atoms, which are associ-

ated with internal atomic displacement forces  in
the laser radiation field. For two identical atoms with

F j
1( ) F j

2( )

F j
3( )
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mass m1 = m2 = mA, the radius vector of the center of
mass RC = (r1 + r2)/2, where r1 and r2 are the radius
vectors of atoms 1 and 2 relative to the laboratory sys-
tem of coordinates. Introducing vector r = r1 – r2 of the
atomic spacing and placing the origin at the center of
mass moving with velocity VC, we arrive at relation (9),
where v is the relative velocity of the atoms in the
diatomic object. Using the obvious equalities v = v1 –
v2 and v1 + v2 = 0, we derive the following relations:

(26)

Consequently, in the center-of-mass system, in the
absence of real photons, we obtain

(27)

where P1 is the total nonrelativistic momentum of
translatory motion of the pair of atoms and p1C = mAv1C
and p2C = mAv2C are the momenta of the internal motion
of the atoms. Thus, the momentum conservation law in
the diatomic object in the case of absorption (emission)
of a real photon with momentum  has the form

(28)

where , , and  are the velocities of transla-
tory and internal motion of the atoms after absorption
of a real photon and the wavevector  (on account of
the linear Doppler effect) is given by

(29)

Using the energy and momentum conservation laws (24)
and (28), we can calculate the variations of the corre-
sponding quantities in single events of emission or
absorption of photons.

Thus, we have demonstrated here that the motion of
atoms can be effectively controlled by laser radiation
with allowance for the dipole–dipole interaction of
atoms and the Doppler shift in the frequency of the
moving atoms. The dipole–dipole interaction of atoms
is taken into account without resorting to perturbation
theory by using effective polarizabilities (12). We have
proved that moving atoms of the same species are not
identical due to the Doppler frequency shift affecting
the quantum polarizabilities of two-level atoms. It has
also been shown that the forces acting on the atoms in
a laser field are quadratic functions of the electric field
of the laser wave. This means that the motion of the

v v1C v2C, V1– V2,= =

2V1 v1C v2C+ + 0.=

P1 p1C p2C+ + 0,=

"k0'

2mAV1 mAv1C mAv2C "k0'±+ +

=  2mAV1' mAv1C' mAv2C' ,+ +

V1' v1C' v2C'

k0'

k0'
k0

k0
--------ω'

c
-----, ω' ω k0 VC.⋅–= =
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atoms is analyzed in a linear approximation, in which
the effective polarizabilities of the atoms are indepen-
dent of the field. Such a situation is defined by condi-
tion (13), under which the inversions of the atoms differ
from their equilibrium values only slightly. It can be
seen from condition (13) that this approximation holds
for low-intensity laser fields. However, owing to optical
size resonances in the system of interacting moving
atoms, it is possible to attain large values of forces act-
ing on the atoms by smoothly varying the laser radia-
tion frequency if the laser field frequency coincides
with the frequency of one of size resonances. It has
been shown that the application of the linear approxi-
mation in which the interacting atoms are mainly in the
ground state makes it possible to disregard spontaneous
processes of emission of photons, which lead to sto-
chastization of the motion of the atoms due to photon
recoil. Thus, the process of controlling the motion of
atoms in dense ensembles considered here is coherent.
The laser field intensity for which such a coherent pro-
cess can be accomplished is defined by condition (13).
In the numerical example considered above, this condi-
tion can be satisfied in fields E0L = 10−2–10–3 CGSE
units, which corresponds to intensities IL = 1.19–1.19 ×
10–2 mW/cm2.

In our opinion, the approach proposed here for a the-
oretical description of the dynamics of moving interact-
ing atoms will make it possible to analyze various pro-
cesses in atomic ensembles both in dense atomic beams
as in gases with various atomic spacings. It would be
interesting to analyze the trajectory of motion of atoms
in a laser field taking into account the variation of the
velocities of the atoms upon a decrease or an increase
in the distance between them.
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Abstract—A theoretical analysis is presented of the change in the momentum of a three-level atom due to its
interaction with counterpropagating laser pulses that overlap in time. The two lower energy states of the atom
are metastable; i.e., a lambda-type configuration of atomic levels is considered. The cases of two and four coun-
terpropagating pulses having different carrier frequencies are considered. In the case of adiabatic atom–field
interaction, it is shown that the atom’s momentum can change by an integer multiple of the photon momentum
and the corresponding standard deviation is small as compared to the photon momentum squared. © 2005 Ple-
iades Publishing, Inc. 
1. INTRODUCTION

Radiation pressure on atoms leads both to a change
in the average momentum of an atom proportional to
the atom–field interaction time and to momentum dif-
fusion characterized by a standard deviation from the
average momentum proportional to the square root of
the interaction time (e.g., see [1–4] and references
therein). As a result, a finite-width distribution of the
atomic velocities parallel to the light propagation direc-
tion develops even if these velocity components are
equal for all atoms at the initial moment of the interac-
tion. Moreover, since momentum diffusion involves
spontaneous radiative decay of an excited state, the
atomic ensemble created as a result of the interaction is
an incoherent superposition of atomic states having dif-
ferent momenta. This lack of coherence in the atomic
ensemble impedes the development of atomic optical
elements that must ensure the possibility of interfer-
ence of atom waves. It is clear that, in order to preserve
coherence, the atom–field interaction must be orga-
nized so that the resulting ensemble of atoms is unaf-
fected by spontaneous emission.

One possibility is provided by stimulated Raman
adiabatic passage (STIRAP), which makes use of
coherent population trapping [5–7]. In the simplest case
of a three-level atom interacting with two temporally
overlapping pulses that couple the metastable states to
the excited one, STIRAP makes it possible to transfer
a population from one metastable state to the other
almost completely without significantly populating the
excited state [8]. When the atom interacts with counter-
propagating pulses, the change in its momentum due
to absorption of a photon from one wave and stimu-
lated emission of a photon of the other wave is the sum
1063-7761/05/10002- $26.000242
of the photons’ momenta. This method can be used to
transfer a population between magnetic sublevels of
an atom [9–11] or molecule [12] and simultaneously
change its momentum without decoherence.

An alternative method for substantially changing
the momentum of an atom without loss of coherence
makes use of the interaction between a two-level atom
and two counterpropagating laser pulses having differ-
ent carrier frequencies [13]. It was shown in [13] that,
if the variation of the field amplitudes is sufficiently
slow, then the average momentum gained by the atom
can be an integer multiple of photon momentum and the
corresponding standard deviation is small as compared
to the photon momentum squared, while the electronic
state of the atom either remains unchanged or changes
to the excited state. This momentum transfer is physi-
cally possible when the atom remains in an adiabatic
state (eigenstate of the time-dependent Hamiltonian)
throughout the atom–field interaction. The adiabatic
state is described by the eigenfunctions corresponding
to different momentum values at the initial and final
moments of the interaction. In the experimental scheme
suggested in [13] as an implementation of momentum
transfer to an atom, the pulse widths must be smaller
than the excited-state lifetime, because the excited state
of the interacting atom is substantially populated. The
scheme cannot be used in experiments on atomic beams
using continuous-wave lasers, where a short-lived
effect of light on the atom is produced as its trajectory
crosses a laser beam, because the typical atom—field
interaction time (about 10–5 s) is much longer than the
typical excited-state lifetime (10–7 to 10–8 s). Note that
the effect is mitigated as the pulse frequency is detuned
from resonance in order to reduce spontaneous radia-
tive decay of the excited state.
 © 2005 Pleiades Publishing, Inc.
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In this paper, we analyze the transfer of momentum
to a three-level atom or molecule (with a lambda-type
configuration of atomic levels) due to its interaction
with counterpropagating laser pulses. Under certain
conditions, the existence of the third level makes it pos-
sible to substantially reduce the population of the
excited state and, therefore, spontaneous radiative loss
of population. The phenomenon under analysis can be
observed in experiments on the same transitions in the
atoms and molecules for which STIRAP is observed,
such as Ne*, NO, and SO2 [8]. Depending on the
energy difference between the metastable states and on
the laser polarization, each laser pulse can couple either
one metastable state or both to the excited one.

1.1. The Case of Large Energy Difference
between the Metastable States 

Consider an atom interacting with two pairs of laser
pulses propagating in opposite directions along the z
axis. The field of each pulse is assumed to couple only
one of the metastable states to the excited one. This can
be due either to a large energy difference between the
metastable levels or, in some cases, to a specific laser
polarization. The four pulses are grouped into two pairs
in accordance with their carrier frequencies. The differ-
ence in carrier frequency between the pulses in each
pair is comparable to the frequency of the transition
between the metastable states. Therefore, the two-pho-
ton process of absorption at one carrier frequency and
emission at the other can occur in a pair. However, two-
photon transitions involving absorption and stimulated
emission in different pairs are impossible because of a
large detuning from two-photon resonance for these
processes. When the carrier frequencies are detuned
sufficiently far from the one-photon transition, the
excited state is weakly populated even if the atom–field
interaction time is longer than the excited-state life-
time. In the resulting effective two-level system,
momentum transfer can be implemented with a small
standard deviation as compared to the photon momen-
tum squared, while the electronic state of the atom can
either remain unchanged or change to the other meta-
stable state.

1.2. The Case of Small Energy Difference
between the Metastable States 

In this case, each pulse couples both metastable
states to the excited one. Population transfer involving
a change in the atom’s momentum can be induced by
two counterpropagating pulses. (In the case of copro-
pagating pulses considered in [14], momentum cannot
be transferred from the field to the atom.) As in the case
of a two-state atom interacting with counterpropagating
pulses, the atom–field interaction time must much
shorter than the excited-state lifetime to ensure that
coherence is preserved.
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2. THE CASE OF LARGE ENERGY DIFFERENCE 
BETWEEN THE METASTABLE STATES

2.1. Model 

Consider a three-level system with metastable states
|1〉  and |3〉  and an excited state |2〉  whose energy is
higher than those of the metastable states. (Hereinafter,
the system called atom can be either an atom or a mol-
ecule.) The state |2〉  can spontaneously decay into states
other than |1〉  and |3〉  at a rate γ; i.e., the mean excited-
state lifetime is 1/γ. Spontaneous transitions to states |1〉
and |3〉  are neglected. Assume that only the state |1〉  is
populated prior to the atom–field interaction. The
atom–field interaction is described in a semiclassical
approximation: the field is treated as classical, while the
atom is modeled as a quantum-mechanical system. The
atom interacts with four laser pulses with carrier fre-
quencies ω1, ω2, ω3, and ω4 propagating along the z axis
(see Fig. 1). The energy difference between |1〉 and |3〉,

is assumed to be so large that each pulse couples the

"S W3 W1,–=

1

2

3

S

δ1

δ2 δ3

δ4

ω1 ω2 ω3 ω4

Fig. 1. Schematic diagram of interaction between three-
level atom and four laser pulses. Short horizontal arrows
indicate pulse propagation directions; ωj and δj (j = 1, …, 4)
are carrier frequencies and detunings from corresponding
transition frequencies; "S = W3 – W1 is energy difference
between metastable states.
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excited state to one metastable state only. Pulses 1 and
2 couple the state |1〉  to the state |2〉 . Pulses 3 and 4
propagate in the respective opposite directions and
couple |3〉  to |2〉 . The electric field interacting with the
atom is

(1)

where ki are the wavevector magnitudes and ϕi are the
initial phases (i = 1, …, 4).

In the Raman–Nath approximation (when kinetic
energy is neglected), the Hamiltonian of the atom is
expressed as

(2)

Here, H0 is the Hamiltonian of the free atom, |n〉  and Wn

(n = 1, …, 3) denote its eigenstates and the correspond-
ing energies, and d is the dipole moment operator. The
decay term is introduced into (2) to describe the evolu-
tion of the atom by the Schrödinger equation without
using an equivalent, but more complicated, equation for
the density matrix. This description in dipole approxi-
mation is made possible by neglecting spontaneous
radiative decay of the state |2〉  into |1〉  and |3〉 , which
can be done if the probability of transition to other
states is much higher (e.g., for molecules). Changes in
kinetic energy are negligible if the mass of the atom is
sufficiently large; i.e., both Doppler effect and recoil
can be ignored. Our previous study has shown that
allowance for kinetic energy does not qualitatively
change the behavior of a two-level atom interacting
with two counterpropagating pulses [13] (at least, if the
transferred momentum is about ten times the photon
momentum, as in the case considered here). However,
an analysis is much simpler to perform in the Raman–
Nath approximation, because the atom’s coordinate can
be treated as a parameter in the Schrödinger equation.

In the rotating-wave approximation, the Hamilto-
nian is written as

E t( ) E1 t( ) ω1t k1z– ϕ1+( )cos=

+ E2 t( ) ω2t k2z ϕ2+ +( )cos

+ E3 t( ) ω3t k3z– ϕ3+( )cos

+ E4 t( ) ω4t k4z ϕ4+ +( ),cos

H t( ) H0 d E0 t( )⋅– i"
γ
2
--- 2| 〉 2〈 | ,–=

H0 W1 1| 〉 1〈 | W2 2| 〉 2〈 | W3 3| 〉 3〈 | ,+ +=

d d12 1| 〉 2〈 | d21 2| 〉 1〈 | d32 3| 〉 2〈 | d23 2| 〉 3〈 | .+ + +=

H12
RWA "

2
--- Ω1 i δ1t k1z– ϕ1+( )( )exp[=

+ Ω2 i δ2t k2z ϕ2+ +( )( )exp ] ,

H21
RWA "

2
--- Ω1* i– δ1t k1z– ϕ1+( )( )exp[=

+ Ω2* i– δ2t k2z ϕ2+ +( )( )exp ] ,
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(3)

The remaining matrix elements are zero. In (3), we
introduce carrier-frequency detunings from resonances,

(4)

and the Rabi frequencies

characterizing the strengths of respective atom–field
interactions.

2.2. Adiabatic Elimination 
of the Excited-State Population 

Suppose that the detuning is much larger than the
corresponding Rabi frequency for each pulse, but the
difference between δ1 and δ4, as well as that between δ2
and δ3, is comparable to the Rabi frequencies. In addi-
tion, assume that

(5)

H22
RWA i

"
2
---γ,–=

H23
RWA "

2
--- Ω3* i– δ3t k3z– ϕ3+( )( )exp[=

+ Ω4* i– δ4t k4z ϕ4+ +( )( )exp ] ,

H32
RWA "

2
--- Ω3 i δ3t k3z– ϕ3+( )( )exp[=

+ Ω4 i δ4t k4z ϕ4+ +( )( )exp ] .

δ1 ω1
1
"
--- W2 W1–( ),–=

δ2 ω2
1
"
--- W2 W1–( ),–=

δ3 ω3
1
"
--- W2 W3–( ),–=

δ4 ω4
1
"
--- W2 W3–( ),–=

Ω1 1〈 |d E1 t( ) 2| 〉/", Ω2⋅– 1〈 |d E2 t( ) 2| 〉/",⋅–= =

Ω3 3〈 |d E3 t( ) 2| 〉/", Ω4⋅– 3〈 |d E4 t( ) 2| 〉/",⋅–= =

∆14 iγ+  @ max Ω1 t( ) Ω2 t( ) Ω3 t( ) Ω4 t( ), , ,( ),

∆23 iγ+  @ max Ω1 t( ) Ω2 t( ) Ω3 t( ) Ω4 t( ), , ,( ),

∆14 ∆23–  @ max Ω1 t( ) Ω2 t( ) Ω3 t( ) Ω4 t( ), , ,( ),
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where

(6)

and the atom–field interaction time τint is such that

for each n. Adiabatically eliminating the excited-state
population amplitude, we find the matrix elements of
the Hamiltonian of the effective two-level system in the
basis of the states |1〉  and |3〉:

(7)

where

Since the detunings are small as compared to the corre-
sponding transition frequencies, the relation

where kav is the average photon momentum, holds to a
high accuracy.

Non-Hermitian Hamiltonian (7) with complex Rabi
frequencies describes a two-level system moving in the
field defined by a complex potential. An analysis of
scattering in an analogous field was performed in [15]
for a two-level atom interacting with a standing wave
with allowance for relaxation. In particular, it was
shown that an extremely narrow distribution of atoms
along the light-propagation direction can evolve in the
field of two standing waves, with a temperature much
smaller than the recoil energy.

∆14
1
2
--- δ1 δ4+( ),=

∆23
1
2
--- δ2 δ3+( ),=

τ intmax Ωn t( )( ) @ 1

H1 1,
TL "

2
---

Ω1 t( ) 2

2∆14 iγ+
----------------------

Ω2 t( ) 2

2∆23 iγ+
----------------------+ 

  ,=

H1 3,
TL "

2
---

Ω1 t( )Ω4* t( )
2∆14 iγ+

----------------------------e
iΦ14 Ω2 t( )Ω3* t( )

2∆23 iγ+
----------------------------e

iΦ23+ 
  ,=

H3 1,
TL "

2
---

Ω1* t( )Ω4 t( )
2∆14 iγ+

----------------------------e
i– Φ14 Ω2* t( )Ω3 t( )

2∆23 iγ+
----------------------------e

i– Φ23+ 
  ,=

H3 3,
TL "

2
---

Ω4 t( ) 2

2∆14 iγ+
----------------------

Ω3 t( ) 2

2∆23 iγ+
----------------------+ 

  ,=

Φ14 ϕ1 ϕ4 δ1 δ4–( )t k1 k4+( )z,–+–=

Φ23 ϕ2 ϕ3 δ2 δ3–( )t k2 k3+( )z.+ +–=

k1 k4+ k2 k3+ 2kav,= =
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2.3. Schrödinger Equation
in the Momentum Representation 

To be specific, we represent the atom as a plane
wave and assume that the z component of its velocity is
zero (the Doppler shift due to finite velocity can be sub-
sumed under the detunings). Since Hamiltonian (7) is a
periodic function z with period π/kav, the probability
amplitudes of |1〉  and |3〉  should be sought as series
expansions in the eigenfunctions

of the z-component of the momentum operator in the
coordinate representation, where n is an arbitrary inte-
ger and 2n"kav is the corresponding eigenvalue. The
resulting expansion shows that the probability ampli-
tude of the state |1〉  with the momentum z-component
2n"kav is related to the analogous probability amplitude
for |3〉  with (2n ± 2)"kav. In other words, if the initial
state is |1〉  with zero z-component of momentum, then
the only nonzero probability amplitudes are those of the
state |1〉  with the z-component 4n"kav and the state |3〉
with the z-component 2(2n + 1)"kav. Then, the state of
the atom can be represented by a vector B whose 2nth
component is the probability amplitude of the state |1〉
with the z-component 4n"kav and (2n + 1)th component
is the probability amplitude of the state |3〉  with the
z-component 2(2n + 1)"kav . The corresponding proba-
bility that the atom located at a point z is in the state |1〉
or |3〉  is

(8)

respectively. It is obvious that the phases in (8) can be
arbitrary. Setting

(9)

where

(10)

in (7), we obtain the Schrödinger equation in the
momentum representation:

(11)

z 2n〈 | 〉 2inkavz( )exp=

C1 z t,( ) B2n t( )e
iΦ2n z 4n〈 | 〉 ,

n ∞–=

∞

∑=

C3 z t,( ) B2n 1+ t( )e
iΦ2n 1+ z 2 2n 1+( )〈 | 〉 ,

n ∞–=

∞

∑=

Φ2n n φ2 φ1– φ4 φ3–+( ) 1
2
--- δ0 2nδd–( )t,+=

Φ2n 1+ Φ2n
1
2
--- φ2 φ1 φ4– φ3–+( )– δ0t,–=

δ0
1
2
--- δ1 δ4 δ2 δ3–+–( ),=

δd δ1 δ4– δ2 δ3,+–=

i"
∂
∂t
-----B t( ) HMB t( ),=
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where the nonzero matrix elements HM are

(12)

Note that the equation is independent of the initial
phases of the fields. This is a consequence of the
assumed carrier-frequency detuning from resonance.

According to (11) and (12), the case when γ is neg-
ligible and condition (5) holds corresponds to an effec-
tive two-level atom interacting with two laser pulses
without losses. The corresponding Rabi frequencies are

Each pulse induces a transition between the states |1〉
and |3〉  and a change of 2"kav in the atom’s momentum.
If

(13)

then, by analogy with the scheme of interaction
between a two-level atom and the bichromatic field of
countepropagating pulses considered in [13], the
momentum equal to an integer multiple of 2"kav can be
transferred from the field to the atom with or without
change in the internal state of the atom. It should also
be noted that Eqs. (11) and (12) are qualitatively differ-
ent from those obtained in [13] in that they involve
Stark shifts quadratic in the Rabi frequencies.

The spontaneous decay rate γ is contained in both
diagonal and off-diagonal matrix elements in (12) and
is responsible for their imaginary parts, which describe
the decrease in the metastable-state populations due to
transitions to states other than |1〉 , |2〉 , and |3〉 . These
transitions can be ignored if

(14)

H2n 2n 1–,
M "

2
---

Ω2Ω3*

2∆23 iγ+
----------------------,=

H2n 2n,
M "

2
---

Ω1
2

2∆14 iγ+
----------------------

Ω2
2

2∆23 iγ+
---------------------- δ0 nδd–+ + 

  ,=

H2n 2n 1+,
M "

2
---

Ω1Ω4*

2∆14 iγ+
----------------------,=

H2n 1+ 2n,
M "

2
---

Ω1*Ω4

2∆14 iγ+
----------------------,=

H2n 1+ 2n 1+,
M "

2
---

Ω3
2

2∆23 iγ+
----------------------

Ω4
2

2∆14 iγ+
----------------------+

=

– δ0
1
2
--- 2n 1+( )δd– 

 ,

H2n 1+ 2n 2+,
M "

2
---

Ω2*Ω3

2∆23 iγ+
----------------------.=

Ω14
1
4
---

Ω1Ω4

∆14
-------------, Ω23

1
4
---

Ω2Ω3

∆23
-------------.= =

max Ω14 Ω23,( )τ int @ 1,

max γ1 γ3,( )τ int ! 1,
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where

(15)

Criteria (13) and (14) are satisfied simultaneously
only if

(16)

This necessary, but not sufficient, condition is assumed
to hold in what follows.

With increasing field strength, adiabaticity crite-
rion (13) is satisfied more reliably, whereas condition (14)
becomes less reliable. For condition (14) to hold, an
increase in the field strength must be combined with a
proportional increase in the detunings ∆14 and ∆23.

Since Eqs. (11) and (12) cannot be solved analyti-
cally, we discuss their numerical solutions and demon-
strate that a substantial momentum can be transferred to
the atom in the field of counterpropagating pulses with
a small standard deviation.

2.4. Numerical Simulation 

We set B0 = 1, and the remaining Bn are set to zero,
since the atom is modeled by a plane wave and the z
component of its velocity is zero at the initial moment.
We consider pulse shapes of the form

(17)

where

(18)

In this case (e.g., in contrast to cos(πx)), the time deriv-
atives vanish at the initial and final instants of the atom–
field interaction, which makes it easier to simulate adi-
abatic passage. The Gaussian pulse shape commonly

γ1
γ
4
---

Ω1
2

∆14
2 1

4
---γ2+

----------------------
Ω2

2

∆23
2 1

4
---γ2+

----------------------+
 
 
 
 

,=

γ3
γ
4
---

Ω3
2

∆23
2 1

4
---γ2+

----------------------
Ω4

2

∆14
2 1

4
---γ2+

----------------------+
 
 
 
 

.=

max ∆14 ∆23,( ) @ γ.

Ω1 ΩmaxF
t t1–

τ
----------- 

  ,=

Ω2 ΩmaxF
t t2–

τ
----------- 

  ,=

Ω3 ΩmaxF
t t3–

τ
----------- 

  ,=

Ω4 ΩmaxF
t t4–

τ
----------- 

  ,=

F x( )
πx( ),

1
2
--- x

1
2
---≤ ≤–cos

2

0, x
1
2
---, x

1
2
---.≥–≤






=
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used in simulations is not considered in this study since
a real pulse cannot have an infinite length. Moreover,
the atom tends to return to its initial state without any
change in its momentum as the pulse length (or field
strength) is increased, because the time-dependent
eigenvalues corresponding to infinite-length pulses
never cross.

To be specific, we assume

(19)

Under this condition, criterion (5) for adiabatic elimi-
nation of the excited-state amplitude is satisfied if

The parameters ∆0 and Ωmax determine the Rabi fre-
quencies Ω14 and Ω23 for two-photon processes, with
maximum value

and the Stark shifts

,

of |1〉  and |3〉 , respectively.

Population transfer between atomic states depends
both on time delay between Ω14 and Ω23 and on
dynamic Stark splitting. The latter effect was studied
in [16] for a two-level atom interacting with a pulse
field in the regime of laser-induced Stark splitting.
Here, these effects are analyzed separately.

2.4.1. Delayed two-photon processes. First, we
consider a pulse model closest to the two-level atom
interacting with counterpropagating pulses analyzed
in [13]. We set

(20)

i.e., the counterpropagating pulse pairs 1, 4 and 2, 3
give rise to Rabi frequencies of similar form with delay
td. Under these conditions, the Stark shift ∆S1 = ∆S3 can-
not affect population and momentum transfer, which
depend only on the difference between the Stark shifts
of |1〉  and |3〉 .

Figure 2 shows the average z-component of momen-
tum in the dressed state |1〉 ,

(21)

∆14 ∆23– ∆0.= =

∆0 @ Ωmax.

Ω0
1
4
---

Ωmax
2

∆0
-----------=

∆S1
1
4
---

Ω1
2

∆14
----------- 1

4
---

Ω2
2

∆23
-----------+=

∆S3
1
4
---

Ω3
2

∆23
----------- 1

4
---

Ω4
2

∆14
-----------+=

t1 t4 td/2, t2 t3 td/2;–= = = =

p1

2"kav

n1
------------- 2 j B2 j

2,
j ∞–=

∞

∑=
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and the corresponding standard deviation,

(22)

versus Ω0/δd. Here,

is the population of the state |1〉 . It is clear that p1(Ω0/δd)
is a steplike function and ∆p1 drops in the plateau
regions. With increasing duration of the atom–field
interaction, the degree of nonadiabaticity decreases,
which leads both to decrease in ∆p1 in the plateau
regions and to increase in the plateau width. The fact
that ∆p1 ! "kav in the plateau regions implies that the
z-components of the momenta of almost all atoms
change by p1 = 0, 4"kav, 8"kav, …; i.e., the transferred
momentum is an integer multiple of 4"kav. In the jump
regions, which become narrower with increasing pulse
width, |B2j |2 ~ 1 for at least two values of j, and ∆p1
reaches a maximum value.

The figure demonstrates that both transferred-
momentum magnitude and the corresponding standard
deviation are independent of spontaneous emission: the
curves corresponding to zero and finite decay rates are
indistinguishable in Figs. 2a and 2b. However, the
ground-state population n1 can significantly decrease
when the decay is taken into account. This result is
clear from the following argumentation. In the present
model, which does not allow for spontaneous transi-
tions to the states |1〉  and |3〉 , spontaneous decay
removes an atom from the ensemble interacting with
the field without changing the momentum distributions
of atoms in the states |1〉  and |3〉 . As a result, both aver-
age momenta of atoms in the states |1〉  and |3〉  and the
corresponding standard deviations do not change even
though the populations of these states can change sub-
stantially.

In the interval of Ω0/δd considered here, the average
momentum is

(23)

and the corresponding standard deviation is

(24)

where

∆ p1

4"
2kav

2

n1
--------------- 2 j( )2 B2 j

2 p1
2,–

j ∞–=

∞

∑=

n1 B2 j
2

j ∞–=

∞

∑=

p3

2"kav

n3
------------- 2 j 1+( ) B2 j 1+

2,
j ∞–=

∞

∑=

∆ p3

4"
2kav

2

n3
--------------- 2 j 1+( )2 B2 j 1+

2 p3
2–

j ∞–=

∞

∑ ,=

n3 B2 j 1+
2

j ∞–=

∞

∑=
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Fig. 2. (a, b) Mean z-component (thick curve) and standard deviation (thin curve) of transferred momentum measured in units of
"kav for atoms in state |1〉  and (c, d) population of state |1〉  after interaction with pulses defined by (17), (20) vs. ratio of the highest
two-photon Rabi frequency to difference in two-photon detuning between the pulse pairs 1, 4 and 2, 3: td = 0.4τ; δ0 = 0; δdτ =
200 (a, c), 2000 (b, d). Solid and dashed curves correspond to γ = 0 and γ/∆0 = 0.0002, respectively.
is the population of the state |3〉 , are zero and 2"k,
respectively, to a high accuracy. For the parameter val-
ues specified in the figure caption, the momentum dis-
tributions of atoms in the state |3〉  have sharp peaks at
+2"k and –2"k.
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When Ω0/δd is large, the values of the left-hand side
of (14) corresponding to the dashed curves in Figs. 2c
and 2d are 0.2 and 2, respectively, if we set τint = τ.
These estimates are consistent with the weak effect of
spontaneous radiative decay on population transfer in
ND THEORETICAL PHYSICS      Vol. 100      No. 2      2005
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the former case and the substantial decrease in the pop-
ulation of the state |1〉  in the latter.

When the probability of spontaneous transitions to
the states |1〉  and |3〉  are higher than or comparable to
that of transitions to other states, relaxation can
strongly affect the momentum distribution function,
because spontaneous emission increases the momen-
tum spread. However, this effect can be virtually elimi-
nated by tuning the carrier frequencies farther off reso-
nance and simultaneously increasing the pulse energies
so that criteria (13) and (14) hold.

The steplike behavior of transferred momentum as a
function of Rabi frequency and other parameters (e.g.,
δ0 and td) can be explained by analyzing the adiabatic-
state quasienergies (eigenvalues of Hamiltonian (12)).
Both before and after the atom–field interaction (when
all Rabi frequencies are zero), the quasienergies of the
adiabatic states corresponding to |1〉  are

whereas the quasienergies of the adiabatic states corre-
sponding to |3〉  are

If the difference between the adiabatic-state energy ini-
tially equal to "ϖ0 and other adiabatic-state energies
remains large throughout the interaction and equals
"ϖn after the interaction, then the expected change in
the z-component of momentum is 2n"kav. When the
atom–field interaction parameters (field strength,
detuning, and the delay between the pulses) are varied
within certain limits, the configuration of the quasien-
ergy curves does not change, and the momentum trans-
ferred to the atom is virtually independent of these
parameters. After the varied parameter values pass a
domain where the quasienergies are comparable and
the atomic state cannot be described by a single adia-
batic state, the configuration of the curves is different,
and a different amount of momentum is transferred.
This can be explained by discussing the following
example.

Figure 3a illustrates the evolution of adiabatic-state
quasienergies "ϖn measured in units of "δd for param-
eter values that ensure the transfer of 4"kav to the atom.
The quasienergy of the adiabatic state corresponding to
the ground state with zero initial momentum projection
on the pulse propagation direction is represented by the
thick curve. The vertical lines mark the endpoints of the
time interval of simultaneous interaction between the
atom and all pulses. Since the atom initially interacts
with pulses 2 and 3, only the pairs of amplitudes B2n

and B2n – 1 can be coupled by the field during the time
interval on the left of the vertical lines (see (12)). These

"ϖ2n
1
2
---"δ0

n
2
---"δd,–=

"ϖ2n 1+ –
1
2
---"δ0

2n 1+
4

---------------"δd.–=
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pairs are associated with the adiabatic states whose ini-
tial energies are

and

and the state of the atom can change only within such a
pair. Since the difference of the corresponding quasien-
ergies is much greater than "/τ, the atom remains in the
initial adiabatic state represented by the thick curve. At
t = –0.35τ, this curve crosses one that corresponds to
another pair of adiabatic states coupled by the field, but
the state of the atom does not change. Similarly, the
atomic state does not change at t = +0.35τ, another
intersection of quasienergy curves. According to the
figure, the atomic state after the interaction corresponds
to the energy –"δd; i.e., the z-component of momentum
changes by 4"kav.

"ϖ2n
1
2
---"δ0

n
2
---"δd–=

"ϖ2n 1– –
1
2
---"δ0

2n 1–
2

---------------"δd,–=

–1.5
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Fig. 3. Adiabatic-state quasienergies for Hamiltonian (12)
in units of "δd vs. time for pulses defined by (17), (20): td =
0.4τ; γ = 0; δ0 = 0; Ω0/δd = 0.78125 (a), 1.25 (b). Thin ver-
tical lines mark the endpoints of the time interval of simul-
taneous interaction between the atom and all pulses.
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The configuration of curves representing time-
dependent quasienergies changes with increasing field
strength: a new intersection appears before the left ver-
tical line is reached, and the quasienergy configuration
takes the form illustrated by Fig. 3b (Ω0/δd = 1.25). This
value of Ω0/δd corresponds to the change 4"kav in the
mean momentum z-component in the state |1〉  when
δdτ = 200 (Fig. 2a). As δdτ is increased to 2000, the
mean z-component of the momentum transferred to the
atom changes to an intermediate value between 4"kav
and 8"kav (Fig. 2b), and the corresponding standard
deviation approaches its maximum value 2"kav. With
further increase in the duration of atom–field interac-
tion, the change in the z-component of momentum of an
atom in the state |1〉  becomes 8"kav, while the standard
deviation decreases to a value much smaller than "kav.
This behavior is illustrated by the curves of time-depen-
dent quasienergies presented in Fig. 3b. Unlike Fig. 3a,
Fig. 3b shows examples of avoided crossings of con-
verging quasienergy curves. In the neighborhoods of
the avoided crossings (indicated by arrows), Landau–
Zener transitions can occur between the adiabatic states
represented by the converging curves. These transitions
are characterized by a probability P, which exponen-
tially depends on the time of passage through the
avoided crossings and varies from unity to zero with
increasing pulse width. If condition (13) holds and the
pulse is not very wide, the state of the atom follows the
thick curve until the point indicated by an arrow is
reached. After a Landau–Zener transition occurs at this
point (with a probability close to unity), the state fol-
lows the dashed curve. The metastable state |3〉  is pop-
ulated with a small probability 1 – P, with the momen-
tum z-component +2"kav. After the next Landau–Zener
transition, the atomic state either follows (with a high
probability) the dashed curve or changes (with a small
probability) to the metastable state |3〉 , with the
momentum z-component –2"kav. The final state of the
atom is |1〉  with the momentum z-component +4"kav.
With increasing atom–field interaction time, the Lan-
dau–Zener transition probability tends to zero, and the
atom remains in the adiabatic state represented by the
thick curve. The final state of the atom is |1〉  with the
momentum z-component +8"kav. Thus, an increase in
the duration of the atom–field interaction must shift the
steps in p1 leftwards, which is clear from comparison of
Figs. 2a and 2b. Taking into account the Landau–Zener
transitions between converging quasienergy curves, we
find that the relative population of a final atomic state
with momentum ±2"kav is P(1 – P). Therefore, the
mean value of the z-component of transferred momen-
tum for an atom in the state |3〉  is zero, and the corre-
sponding standard deviation is +2"kav, in agreement
with numerical results.

Figure 4 shows the mean z-component of the
momentum transferred to the atom, the corresponding
standard deviation for |1〉  and |3〉 , and the populations of
JOURNAL OF EXPERIMENTAL A
these states as functions of δ0/δd. If the mean two-pho-
ton detuning is such that

then the atom gains a momentum of 8"kav, the final
state |3〉  is weakly populated, and the population of |1〉
is close to unity. Otherwise, the atom gains the momen-
tum 10"kav over a wide detuning range (in various
directions), and the state |3〉  is mainly populated. This
behavior, as well as that illustrated by Fig. 2, is analo-
gous to the results obtained in [13] for a two-level atom
in the bichromatic field of countepropagating pulses.
When δ0 = (±1/2)δd, the plane wave representing the
atom splits into two waves of equal intensity having the
momenta 8"kav (state |1〉) and  (state |3〉). The
physical explanation of the splitting lies in the fact that
this condition corresponds to a two-photon resonance
between the pairs of pulses 1, 4 and 2, 3. Accordingly,
the initial state of the atom is a linear superposition of
two adiabatic states. These states adiabatically evolve
into states |1〉  and |3〉  with different momenta. Note also
that an atom can also change its state and simulta-
neously gain momentum when δ0 = 0 and the pulses
have different amplitudes (see [17]).

2.4.2. Simultaneous two-photon processes. Now,
we set

(25)

so that Ω14 = Ω23. This case is qualitatively different
from the two-level system considered in [13], where a
delay between the pulses is required to ensure that the
standard deviation of the momentum transferred to the
atom is small. However, the difference in the Stark shift
between the states |1〉  and |3〉  makes it possible to trans-
fer a substantial momentum to the atom with a small
standard deviation in this case as well.

Suppose that criterion (14) holds, i.e., spontaneous
radiative decay of the excited state does not affect
momentum and population transfer. Figure 5 shows the
change in the mean z-component of momentum, the
corresponding standard deviation in state |1〉 , and the
population of this state as functions of Ω0/δd calculated
under condition (25). Analogous results obtained for |3〉
are not shown here. (It suffices to note that the mean
transferred momentum and the corresponding standard
deviation are zero and 2"kav, respectively.) As in
Fig. 2b (Eq. (20)), the function p1(Ω0/δd) plotted in
Fig. 5 behaves as a steplike function and ∆p1 drops in
the plateau regions. Thus, the effect of difference in
dynamic Stark shift between |1〉  and |3〉  is similar to the
role played by the delay between pulses. This is quite
natural, since the detunings of the pairs of pulses 1, 4
and 2, 3 from two-photon resonance are different, and
the gradual variation of the difference of the Stark shifts

1
2
---δd δ0

1
2
---δd< <–

10"kav+−

t1 t3 td/2, t2 t4 td/2,–= = = =
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Fig. 4. Mean z-component (thick curve) and standard deviation (thin curve) of transferred momentum measured in units of "kav for
states |1〉  (a) and |3〉  (b) and populations of |1〉  (c) and |3〉  (d) after interaction with pulses defined by (17) vs. ratio of mean two-
photon Rabi frequency to two-photon detuning difference δ0/δd: Ω0/δd = 1.55; td = 0.4τ; δdτ = 2000.
of |1〉  and |3〉  (see Fig. 6) leads to difference between the
corresponding atom–field interaction conditions.
The interaction is stronger for one pair at an early stage
and for the other pair at a late stage. The resulting pro-
cess is qualitatively similar to the interaction under con-
dition (20).

3. THE CASE OF SMALL ENERGY DIFFERENCE 
BETWEEN THE METASTABLE STATES

In this section, we consider the case when the
energy difference between the metastable states (mea-
sured in frequency units) is close to the Rabi frequen-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
cies that characterize the atom–field interaction. In this
case, the atom in either metastable case interacts with
each pulse (unless this is forbidden by selection rules).
Therefore, as in the case of a two-level atom [13], anal-
ysis of momentum transfer can be restricted to counter-
propagating pulses 1 and 2 (by setting ω3 = ω1 and
ω4 = ω2 in Fig. 1). Note that the case of copropagating
laser pulses, when momentum cannot be transferred
from the field to the atom, was considered in [14].

The pulse propagating in the positive z direction
induces 1  2 transitions with a Rabi frequency Ω1
and 2  3 transitions with a Rabi frequency Ω3. The
Rabi frequencies Ω2 and Ω4 are associated with the

     
                                                                                              
SICS      Vol. 100      No. 2      2005



252

   

ROMANENKO, YATSENKO

               
4

p1/"kav, ∆p1/"kav

(a)

8

12

16

20

24

0 1

n1

Ω0/δd

2 3 4

(b)

0.5

1.0

Fig. 5. (a) Mean (solid curve) and standard deviation (thin
curve) of transferred momentum measured in units of "kav
for atoms in state |1〉  and (b) population of state |1〉  after
interaction with pulses defined by (17), (25) vs. ratio of the
highest two-photon Rabi frequency to difference in two-
photon detuning between the pulse pairs 1, 4 and 2, 3: δdτ =
2000; td = 0.4τ; δ0 = 0; γ = 0.
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Fig. 6. Evolution of Stark shift difference ∆S = ∆S1 – ∆S3
between |1〉  and |3〉  (solid curve) and two-photon Rabi fre-
quencies Ω14 (curve 1) and Ω23 (curve 2) measured in units
of δd: td = 0.4τ; δ0 = 0; Ω0/δd = 0.5. Intersections of solid
curve with dotted lines correspond to resonances with pulse
pair 1, 4 or 2, 3.
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1  2 and 2  3 transitions induced by the pulse
propagating in the negative z direction. The atom–field
interaction is described by the Schrödinger equation (3)
subject to the following additional conditions: (i) the
time dependence of Ω3 is similar to that of Ω1 up to a
constant factor, and analogous similarity conditions
holds both for Ω2 and Ω4 and for φ1 = φ3 and φ2 = φ4;
(ii) the detunings δ1, δ2, δ3, and δ4 satisfy the relation

(26)

where S = (W3 – W1)/"; (iii) since W3 – W1 ! W2 – W1,
the difference between the wavevectors of the counter-
propagating pulses can by neglected by setting ki = k
(i = 1, …, 4).

Changing to the momentum representation, we seek
the probability amplitude for each state | j 〉  in the form

(27)

where

It is obvious that the phases in (8) can be arbitrary. Set-
ting

(28)

we obtain a set of equations for the probability amplitudes
corresponding to the states |j〉 with momentum n"k:

(29)

          

δ3 δ1– δ4 δ2– S,= =

C j z t,( ) A j n, t( ) iΦ j n, t( )( ) z n〈 | 〉 ,exp
n ∞–=
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Fig. 7. Mean z-component and standard deviation of transferred momentum measured in units of photon momentum "k for atoms
in states |2〉  (a) and |3〉  (b) and populations of these states (c, d) after interaction with pulses defined by (17), (25) vs. delay between
pulses in the absence of spontaneous radiative decay of the excited state during interaction. Parameters of pulse and detuning are
given in text.
One example of the scheme of atom–field interac-
tion considered in this section is the atom whose meta-
stable state is characterized by the total angular
momentum J = 1 (i.e., the angular-momentum projec-
tions M = –1, 0, and 1 on the z axis) and excited state
has the angular momentum J = 0. When a magnetic
field parallel to the z axis is applied, the degeneracy
with respect to M is removed, and the frequencies of the
transitions between the state with M = 0 (upper level)
and those with M = 1 and M = –1 differ by a quantity S
proportional to the magnetic induction. Since the J = 0,
M = 0  J = 1, M = 0 transitions are forbidden, we
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
have a three-level scheme of atom–field interaction. If
the pulses are linearly polarized, then each pulse
induces both admissible transitions with the same Rabi
frequency.

Omitting both physical explanation of the possibil-
ity of transfer of a substantial momentum to the atom
with a small standard deviation without changing its
internal state and numerical results analogous to those
presented in the preceding section, we discuss here the
dependence of the transferred momentum on the delay
between the pulses. A numerical analysis was per-
formed for Rabi frequencies of the form defined by (17)
SICS      Vol. 100      No. 2      2005
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and (25) with Ωmax = 2S and for the relatively small
detunings

which correspond to

by virtue of (26). The pulse width was sufficiently
large, Sτ = 2000, to ensure adiabatic atom–field interac-
tion. Figures 7a and 7b demonstrate that the time-
dependent mean changes in momentum z-components
pj (j = 2, 3) as functions of the delay between the pulses
have plateaulike portions, where the corresponding
standard deviation is virtually independent of the delay
and ∆p ! "k. Figures 7c and 7d show the populations
of states |2〉  and |3〉  as functions of the delay between
the pulses. Comparing them with Figs. 7a and 7b, one
can determine the number of atoms in the states |2〉  and
|3〉  and the momenta transferred to them during the
atom–field interaction. Note that the steplike behavior
of pj(td/τ) predicted for the particular set of parameter
values is observed only for atoms that are in states |2〉
and |3〉  after the interaction.

Thus, when the energy difference between the meta-
stable states is relatively small as compared to "Ω0, a
substantial momentum (~10"k) can be transferred
simultaneously with a change in the state of an atom
interacting with two counterpropagating pulses, and the
corresponding standard deviation of momentum is
smaller than "2k2. However, the model of atom–field
interaction discussed here is applicable only when the
pulses are relatively short, because the excited state of
the atom is increasingly populated in the course of its
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Fig. 8. Evolution of populations of states |1〉  (curve 1), |2〉
(curve 2), and |3〉  (curve 3) during atom–field interaction.
The final state is |3〉  with p = 14"k. Detuning, pulse width,
and Ω0 are as in Fig. 7; td = –0.31τ.
JOURNAL OF EXPERIMENTAL 
interaction with radiation (see Fig. 8). In this case, the
excited state cannot be adiabatically eliminated even if
the fields are tuned farther off resonance, because the
resulting equations are characterized by identical time
variation of two-photon Rabi frequencies and by equal
Stark shifts for the states |1〉  and |3〉 .

4. CONCLUSIONS

The possibility of momentum transfer to a three-
level atom with metastable lower states due to its inter-
action with laser pulses is analyzed. It is shown that the
mean momentum gained by the atom interacting with
counterpropagating pulses can be an integer multiple of
the photon momentum if the pulses overlap in time.

When the energy difference between the metastable
states is so small that the atom in either state interacts
with each laser pulse, the momentum of the atom inter-
acting with two counterpropagating pulses can change
by a substantial amount as compared to the photon
momentum. In this case, the excited-state population is
large during the atom–field interaction, and spontane-
ous radiative loss of atoms can be avoided only if the
pulses have widths shorter than the spontaneous decay
time.

When the energy difference between the metastable
states is so large that each pulse couples only one meta-
stable state to the excited state, the transfer of a substan-
tial momentum, as compared to the photon momentum,
requires the use of two pairs of counterpropagating
laser pulses. If the carrier frequencies are tuned suffi-
ciently far off resonance, but the pulse pairs induce
two-photon transitions between the metastable states,
then the momentum transfer is insensitive to spontane-
ous decay of the excited state, which remains virtually
unpopulated in this case. This is important in view of
possible applications of the proposed method of
momentum transfer in experiments on atomic beams
using continuous-wave lasers instead of pulsed lasers,
when the effect of a light pulse on a moving atom is
obtained when its trajectory crosses a laser beam and
a typical atom—the field interaction time is much
longer than the typical excited-state lifetime.

Physically, the possibility of momentum transfer in
the field of counterpropagating laser pulses is due to the
existence of adiabatic states that are identical to the
atomic state with a certain momentum at the initial
instant and to the same or different atomic state with a
different momentum at the final instant of the atom–
field interaction. If the adiabatic-passage condition is
satisfied, then the transferred momentum is virtually
insensitive to the values of the interaction parameters,
such as the delay between the pulses or their peak inten-
sities.
AND THEORETICAL PHYSICS      Vol. 100      No. 2      2005
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Abstract—Nonlinear two-component electromagnetic pulse propagation through a resonant axially symmetric
anisotropic medium having a permanent dipole moment is analyzed under conditions of strong coupling
between the ordinary (short-wavelength) and extraordinary (long-wavelength) pulse components. It is shown
that a pulse can propagate through the medium in regimes different from self-induced transparency if its ordi-
nary component is detuned off resonance. In particular, a pulse propagating in the regime of self-induced super-
transparency substantially changes quantum-level populations, but its group velocity remains almost equal to
the linear velocity. If a pulse propagates in the extraordinary transparency regime and the carrier-frequency
detuning from resonance is small, then its group velocity is substantially lower, while the level populations
remain virtually invariant. Regimes of propagation through weakly excited media under quasi-resonance con-
ditions are also identified. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Owing to progress in experimental techniques,
coherent optical phenomena in nonlinear media have
remained a subject of permanent interest over the
decades since the discovery of self-induced transpar-
ency (SIT) [1] (see reviews in [2, 3] and references
therein). Substantial progress in theoretical analysis of
these phenomena have been made by applying power-
ful mathematical tools, such as the inverse scattering
method, to light–matter interaction models [4–6]. Vari-
ous types of solutions to equations solvable by this
method, including the so-called SIT equations [7] and
the reduced Maxwell–Bloch equations [8], can be used
to describe numerous processes in nonlinear optics. In
particular, pulse propagation in integrable models can
be associated with soliton solutions [7–14].

Coherent phenomena in those nonlinear media where
quantum particles have a permanent dipole moment are
an important subject of current studies [15–23]. If a
medium is anisotropic, then the parity of quantum
states is not well defined. Therefore, diagonal dipole
matrix elements may not vanish. This is also possible
for polar molecules. However, the most diverse phe-
nomena can be observed in experimental studies of
asymmetric quantum wells and quantum wires [24].
Modern technologies make it possible to grow semi-
conductor crystals with widely varying properties. In
particular, for GaAs/Al0.14Ga0.86 crystals with
Al0.3Ga0.3As barriers, the absolute value of the ratio of
diagonal dipole matrix elements to the corresponding
off-diagonal element varies between 0.15 and 7.1,
depending on quantum-transition frequency [18].
1063-7761/05/10002- $26.000256
The optical anisotropy induced by the internal elec-
tric fields generated by low-dimensional quantum
objects (wells, wires, and dots) manifests itself by bire-
fringence. Propagation of electromagnetic pulses hav-
ing ordinary and extraordinary components through a
resonant anisotropic medium was analyzed in [23]. The
operator version of the WKB method [25, 26] proposed
in [27] was applied to show that a permanent dipole
moment is responsible for a strong nonlinear coupling
between pulse components having nearly equal linear
velocities. The short-wavelength (ordinary) component
induces quantum transitions and effectively gives rise
to the long-wavelength (extraordinary) component,
which dynamically shifts the transition frequency and
chirps the ordinary component. This regime is hence-
forth referred to as long/short-wave coupling (LSWC).
When the extraordinary component is dominant, the
regime called extraordinary transparency (EOT) in [23]
takes place. In this regime, the two-component pulse
decelerates as in the SIT regime and has no appreciable
dynamic effect on the populations of quantum states
(population trapping).

Analysis of the LSWC equations for two-compo-
nent pulses propagating in a resonant axially anisotro-
pic medium is continued in this paper. Behavior of
solutions to these equations was examined in [23] by
assuming that the ordinary component is resonant with
quantum transitions. In this case, the only effect of the
extraordinary component, which has no well-defined
carrier frequency, is to detune the ordinary component
from resonance, thus weakening the excitation of the
medium. In the more interesting case of an input pulse
tuned off resonance, the effect of the extraordinary
component varies. The dynamic shift in the ordinary-
 © 2005 Pleiades Publishing, Inc.
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wave frequency induced by this component can either
detune the pulse from resonance with an anisotropic
medium or brings it into resonance. Moreover, owing to
the existence of a permanent dipole moment, the
extraordinary component can affect the pulse velocity,
which leads to transparency regimes in resonant media
that substantially differ from SIT. In this paper, we
identify and classify these regimes.

The paper is organized as follows. In Section 2, we
formulate the system of material and wave equations
for electromagnetic pulse propagation perpendicular to
the optical axis of an axially symmetric anisotropic
medium containing resonant two-level particles with a
doubly degenerate level. By applying a unitary trans-
formation, these equations are rewritten as a system of
equations for a two-component pulse interacting with a
nondegenerate two-level system that describes extends
the SIT equations to the case of a permanent dipole
moment. The system can be solved by the inverse scat-
tering method if the LSWC condition is exactly satis-
fied. In Section 3, we develop a general analysis of the
one-soliton solution to the LSWC system, which is
used as a basis for the discussion of various regimes of
two-component pulse propagation in anisotropic media
presented in the sections that follow. We modify the
soliton solution to describe the case when the ordinary
and extraordinary waves have different velocities and
the model equations are written without assuming that
the concentration of resonant transitions is low. When a
two-component pulse propagates through an anisotro-
pic medium, the anisotropy of the medium depends on
pulse parameters. In Section 4, we consider pulse prop-
agation through a strongly excited resonant medium, in
which case electromagnetic pulses can propagate not
only in the SIT regime, but also in the self-induced
supertransparency (SIST) regime. These regimes are
essentially different in that the pulse velocity is not sub-
stantially reduced in the SIST regime. The duration of
the pulses that cause the largest change in level popula-
tions depends on the amount of detuning. When the
components have equal linear-wave velocities, the ordi-
nary-wave carrier frequency is lower than the reso-
nance frequency. Furthermore, the SIST regime is char-
acterized by substantial chirping of the ordinary wave.
In Section 5, we analyze the regimes of two-component
pulse propagation through a weakly excited medium.
Apart from the EOT regime, whose existence under
exact resonance conditions was substantiated in [23],
we consider the positive and negative nonresonant
transparency (PNT and NNT) regimes that take place
under conditions of quasi-resonance approximation. In
Sections 6 and 7, we discuss manifestations of the iden-
tified transparency regimes in high-density media and
positively and negatively birefringent media. In the lat-
ter case, coupled propagation of a high-frequency ordi-
nary wave and an extraordinary video pulse is analyzed
in detail under the Zakharov–Benney resonance condi-
tion, i.e., when the group velocity of the high-frequency
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
wave and the phase velocity of the low-frequency
waves are equal.

2. BASIC EQUATIONS

Consider two-component electromagnetic pulse
propagation through an axially anisotropic medium.
For example, suppose that the medium contains quan-
tum wires [24]. An electron moving in a quantum wire
is characterized by anisotropic mobility: its motion per-
pendicular to the wire axis is much more restricted as
compared to its axial motion. Since the anisotropy is
induced by a strong internal electric field, the energy
levels are degenerate in the absolute value of the projec-
tion of electron angular momentum.

Consider a laser pulse propagating in the positive
direction of the y axis and suppose that the quantum
wires are parallel to the z axis. Then, the ordinary and
extraordinary electric field components in the pulse, Eo
and Ee , are parallel to the x and z axes, respectively.
Assume that the ordinary-wave carrier frequency ω is
nearly equal to the frequency ω0 of a σ-transition
between the levels, one of which is degenerate in the
absolute value of the projection of total angular
momentum. In this case, it can readily be shown that the
ordinary and extraordinary pulse components play
totally different roles: the ordinary wave induces a res-
onant transition, whereas the extraordinary one induces
a dynamic shift in the transition frequency [23]. Under
these conditions, the time-dependent quantum states
obey the following operator equation in the slowly
varying envelope approximation [23]:

(1)

Here,

R12 and R13 are the slowly varying envelopes in

∂R
∂t
------- i Ω̃ R̃,[ ] .=

R̃

ρ11 R12 R13

R12* ρ22 ρ23

R13* ρ23* ρ33 
 
 
 
 

,=

Ω̃

∆
D11

"
--------Ee+

d12

"
-------%o

d13

"
-------%o

d12

"
-------%o*

D22

"
--------Ee 0

d13

"
-------%o* 0

D33

"
--------Ee 

 
 
 
 
 
 
 
 

,=

ρ12 R12 iω t
noy
c

--------– 
 

 
  ,exp=

ρ13 R13 iω t
noy
c

--------– 
 

 
  ,exp=
SICS      Vol. 100      No. 2      2005



 

258

        

SAZONOV, USTINOV

                                                    
ρjk (j, k = 1, 2, 3) are the density-matrix elements; " is
Planck’s constant; ∆ = ω0 – ω is the detuning from res-
onance (|∆| ! ω0); D11, D22, and D33 are the nonzero
elements of the projection of the dipole matrix on the
z axis; and %o is the ordinary-wave electric field
envelope:

The Maxwell equations yield the following system [23]:

(2)

(3)

where c is the speed of light in free space; no and ne
denote the ordinary and extraordinary refractive indi-
ces, respectively; and N is the concentration of resonant
σ-transitions.

According to Eq. (3), the extraordinary component

of the polarization of anisotropic resonant quantum
states is determined by the quantum-level population
and the diagonal dipole matrix elements. Since the pop-
ulation is changed by the effect of the resonant ordinary
component of the pulse, the two-component pulse
propagation in the medium under study is modeled self-
consistently.

If 2πN  ! "ω0 (the concentration of resonant
transitions is low), where

then the order of Eq. (3) can be reduced by applying the
unidirectional approximation [8]:

(4)

Assuming that D33 = D22 ≠ D11 [21, 23], we can
change to new variables by applying the unitary trans-
formation

, (5)
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where

with σ = . The new variables are
expressed as

(6)

Then, Eqs. (2) and (4) are rewritten as

(7)

(8)

where d = , and

is a permanent dipole moment. Combining (1) with (5),
we obtain

(9)

where

Equation (9) can be expanded into equations for matrix

R'˜
ρ11' R12' R13

R12'* ρ22' ρ23'

R13'* ρ23'* ρ33' 
 
 
 
 
 

,=

T
1 0 0

0 σcos σsin

0 σsin– σcos 
 
 
 
 

,=

d13/d12( )arctan

ρ11' ρ11, ρ22' σρ22cos
2

= =

+ σ σ ρ23 ρ23
*+( )sincos σρ33sin

2
,+

ρ33' σρ22sin
2 σ σ ρ23 ρ23

*+( ) σρ33,cos
2

+sincos–=

R12' σR12cos σR13,sin+=

R13' σR13cos σR12,sin–=

ρ23' σρ23cos
2 σ σ ρ33 ρ22–( )sin σρ23*sin

2
.–cos+=

∂%o

∂y
---------

no

c
-----

∂%o

∂t
---------+ 2i

πNω
noc

------------dR12' ,–=

∂Ee

∂y
---------

ne

c
----

∂Ee

∂t
---------+

πN
nec
-------D

t∂
∂ ρ11' ρ22'–( ),–=

d12
2 d13

2+

D D11 D22–=

∂R'˜

∂t
-------- i Ω'˜ R'˜,[ ] ,=

Ω'˜ TΩ̃T 1–≡

∆
D11

"
--------Ee+

d
"
---%o 0

d
"
---%o*

D22

"
--------Ee 0

0 0
D22

"
--------Ee 

 
 
 
 
 
 
 
 

.=
ND THEORETICAL PHYSICS      Vol. 100      No. 2      2005



RESONANT TRANSPARENCY REGIMES 259
elements:

(10)

(11)

(12)

(13)

(14)

Since the last two equations make up an indepen-
dent system, we can analyze them separately. In terms
of physics, the most interesting case corresponds to the
trivial solution to Eqs. (13) and (14). Indeed, suppose

that only diagonal elements of  are nonzero and the
populations of states with opposite signs of the projec-
tion of total angular momentum are equal, as in the case
of Boltzmann distribution (ρ22 = ρ23). Then, it follows
from Eqs. (6), (13), and (14) that  =  = 0 at any
instant, and the original variables are expressed as

Thus, Eqs. (7)–(12) provide a comprehensive
description of a two-component electromagnetic pulse
propagating through a resonant axially symmetric
anisotropic medium in the case of the Boltzmann distri-
bution of particles over energy levels. This extension of
the SIT equations to the case of a permanent dipole
moment was derived in [23] under the additional
assumption that d12 = d13. If the initial energy distribu-
tion differs from the Boltzmann distribution, then
Eqs. (13) and (14) must be solved under nonzero initial
conditions.

Changing to the variables
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we rewrite Eqs. (7)–(12) as

(16)

(17)

(18)

(19)

where

Note that the Rabi frequency Ωo associated with the
ordinary component is the field envelope, whereas Ωe is
proportional to the electric field component Ee , which
has no well-defined carrier frequency.

In [23], an operator version of the WKB was used to
show that the pulse components are strongly coupled in
the case of exact resonance (∆ = 0) if their linear veloc-
ities are nearly equal. When the LSWC condition is sat-
isfied exactly, i.e.,

(20)

Equations (18) and (19) can be integrated to obtain the
following expression for the “Rabi frequency” of the
extraordinary wave:

(21)

where  = D2. It should be noted here that this nonlin-
ear system, as well as its gauge-invariant equivalents,
arise in various problems in nonlinear optics and
belong to the class of systems that can be integrated by
the inverse scattering method (see [28] and references
therein). Studies of the nonlinear evolution of soliton
solutions to this system have mainly been focused on
the characteristics of electromagnetic pulses, whereas
the behavior of resonant media has remained unclear. In
this paper, we eliminate this shortcoming.

If the concentration of resonant transitions is not
low, then the unidirectional approximation cannot be
applied and we perform a gauge transformation and
change to the variables defined by (15) to obtain the fol-
lowing equation instead of (19):

(22)

Equations differing from (16)–(18) and (22) only by
notation were also obtained in [27] for longitudinal–
transverse acoustic pulse propagation parallel to an
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external magnetic field in a system of resonant para-
magnetic impurities with effective spin S = 1/2.

3. GENERAL ANALYSIS 
OF THE SOLITON SOLUTION

As noted above, system (16)–(19) subject to condi-
tion (20) belongs to the class of systems that can be
solved by the inverse scattering method. Its is well
known that particular solutions to such equations can
be found by algebraic methods [4–6]. These methods
can be used to obtain soliton solutions to integrable
equations, which are of primary physical interest in
many cases.

It is convenient to express the ordinary component
of the one-soliton solution to (16)–(19) in exponential
form:

(23)

where

(24)

(25)

α = τp∆, and W∞ is the initial population of the medium.
The phase and group velocities of the pulse in the labo-
ratory frame are

(26)

where

Substituting (24) into (21), we obtain

(27)

The change in the population of the medium is
described by the expression

(28)
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Expressions (23) and (25) show that the ordinary-
component phase is modulated, which leads to a local
nonlinear chirping of the carrier frequency, ω 
ωloc = ω + δωnon, where

(29)

In an isotropic resonant medium (D = 0, g  ∞),
phase modulation is absent and Eqs. (24), (26), and (28)
reduce to the respective expressions for a SIT 2π-pulse
propagation.

Comparing (29) with (24), we find that the nonlinear
shift in the local carrier frequency decreases toward the
pulse edges faster than the ordinary component. Thus,
∆ can be interpreted as the detuning of the ordinary-
wave carrier frequency from resonance at the pulse
edges.

According to Eq. (17), the ordinary wave dynami-
cally shifts the quantum-transition frequency: ω0 

 = ω0 + Ωe . Therefore, it is convenient to introduce
an effective ordinary-wave detuning:

(30)

If the pulse width Tp is defined as twice the distance
from the point of zero t – y/v g at which |Ωo| is half its
maximum value, then expression (24) yields

(31)

In the slowly varying envelope approximation, both the
pulse length and nonlinear shift of the carrier frequency
must obviously satisfy the conditions ω0Tp @ 1 and
|δωnon| ! ω0. It can easily be shown that these inequal-
ities are valid if ω0τp @ 1. Moreover, for g and α such
that |g| < |α|, gα > 0, and |g – α| @ 1, the condition
ω0τp @ |g – α| must also be satisfied, which is the case
only when D2 @ 4d2. This condition can be met within
the scope of modern semiconductor crystal growth
technology. It is clear from the inequality ω0τp @ 1 that
the ordinary-wave phase velocity is much closer to the
linear velocity, as compared to the group velocity.

The expressions presented above can be modified to
describe the case when condition (20) is not satisfied
and/or the unidirectional approximation is not
employed. Indeed, if the extraordinary component is
sought as a traveling-wave solution Ωe = Ωe(t – y/v g),
then Eqs. (22), (16)–(18), and (23)–(26) can be used to
obtain a relation between Ωe and Ωo similar to (21) with
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where

It is obvious that the modified expressions (23)–(28)
provide a solution to system (16)–(18), (22). By virtue
of (26), expression (32) can be rewritten as

If

(33)

then (23)–(28) define a soliton solution to (16)–(19) in
the case of low concentration of quantum transitions.

Note that (33) reduces to (32) as A  0 only if

ne = no. The parameter , which does not vanish only
for a medium having a permanent dipole moment, is
called here the effective anisotropy. Thus, we empha-
size its dependence not only on the properties of
the medium, but also on the pulse parameters. Com-
paring (32) with (33), we see that, for a medium with
equilibrium initial population, the effect of the extraor-
dinary wave on pulse formation (due to anisotropy)
must increase with decreasing concentration of reso-
nant transitions.

In what follows, we use expressions (24) and (26)–
(29) to identify several regimes of two-component
pulse propagation through an anisotropic medium.
Unless stated otherwise, it is assumed that the particles
are in thermodynamic equilibrium prior to the pulse
propagation, i.e., the initial population W∞ is negative

(–1/2 ≤ W∞ < 0), and both A and  are positive. In the

next two sections, we consider the case of  = D2,
which corresponds to a low-density medium with
ne = no. A more general analysis is presented in Sec-
tions 6 and 7.

4. SOLITONS
IN A STRONGLY EXCITED MEDIUM

Strong excitation is interpreted here as the largest
possible change in the population of quantum levels
induced by a two-component pulse. By virtue of (24)
and (28), this condition can be formulated as

Performing some simple algebra, we obtain
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which yields

(34)

This condition can also be rewritten as a relation
between the detuning ∆ and the parameter τp:

Setting the right-hand side to zero, we find the interval
of admissible values of the detuning: 0 < ∆ < ∆m, where
∆m = 4ω0d2/D2.

For a finite detuning, τp vanishes in the isotropic
limit (D  0); i.e., the field amplitude tends to infin-
ity. This agrees with the well-known fact that the largest
change in population in an isotropic medium corre-
sponds to exact resonance (∆ = 0). Strong excitation can
then be attained only for a positive detuning (∆ > 0); i.e.,
the carrier frequency must be lower than the resonant
transition frequency (ω < ω0). The positive detuning
from resonance required for a pulse to cause complete
excitation in a medium having a permanent dipole
moment is consistent with the fact that the extraordi-
nary electric-field component generated in such a
medium induces a red shift of the effective transition

frequency , since Ωe < 0 according to (21).

Using condition (34), we rewrite expressions (24)
and (26)–(29) as follows:
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where the amplitudes are

(36)

The corresponding pulse width is

(37)

According to Eqs. (35) and (36), the effective
dynamic detuning of the ordinary component from res-
onance with the medium, ∆ef , equals ∆ at the edges of
the pulse and –2∆ at its center. Thus, owing to the effect
of the extraordinary component, the ordinary pulse
component is resonant with quantum transitions on
average over the pulse duration. As a result, the largest
possible change in population is achieved.

When the detuning is very small (α ! 1, g @ 1), the
expressions in (35) can be represented as

(38)

Here, |Ωe| ! |Ωo| and the phase-modulation depth for
the ordinary component is much smaller than its spec-
tral width in the input pulse: |δωnon| ! 1/τp. Under the
exact resonance conditions (α = 0, g  ∞), expres-
sions (38) reduce to well-known expressions of the SIT
theory for isotropic media (D = 0), where neither
extraordinary-wave video pulse nor ordinary-wave
phase modulation are observed (Ωe = δωnon = 0).

According to (36), an increase in detuning (and
therefore α) leads to larger amplitudes of both ordinary
and extraordinary components and a deeper chirping of
the ordinary component toward lower frequencies.
Since the pulse length decreases, the profiles of both
components become sharper.

It is also important that group velocity approaches
the linear-wave velocity c/no as detuning increases. The
medium remains strongly excited: the largest possible
change in population is reached at the center of the soli-
ton. This is obviously explained by the fact that an
increase in pulse amplitude combined with a decrease
in pulse width increases its power. The ensuing higher
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rate of excitation/de-excitation processes leads to a
higher soliton propagation velocity.

It is clear from (34) that each particular value of g
corresponds to two distinct values of α. Regimes with
relatively small detuning (α < 1) can be associated with
the SIT regime, which is implemented when α = 0.
When α > 1, we say that the solutions given by (35)
describe the regime of self-induced supertransparency,
thus emphasizing the fact that the propagation velocity
is higher as compared to the SIT regime while excita-
tion is equally strong. Since ∆ ! ω0 in the slowly vary-
ing envelope approximation, the SIST regime must be
most strongly manifested in media with D2 @ 4d2.

When g @ 1 and α @ 1, both ordinary and extraor-
dinary wave amplitudes and the phase-modulation
depth for the ordinary component of the SIST pulse
reach their limits 2∆m, 4∆m, and ∆m, respectively. In
this case, (37) yields the following estimate for the
pulse duration:

This time scale corresponds to the time scale of phase-
modulation localization. When the condition ω0Tp @ 1
is not satisfied, the slowly varying envelope approxima-
tion cannot be employed. However, a tendency toward
distortion of SIST solitons in an anisotropic medium is
observed as the detuning increases. A deeper phase
modulation combined with a decrease in the corre-
sponding localization time scale and a shorter pulse
width can be interpreted as an effect due to generation
of a supercontinuum. Indeed, the Fourier transform of
solution (23)–(25), (27) defined as

yields

where θ = . (It is assumed here that 0 <
 < π.) The absolute values of the Fourier trans-

forms of the extraordinary and ordinary components
reach maximum values at ν = 0 and ν = ν0, respectively,
where

When g – α @ 1 and θ  π, the expression for |Fo(ν)|
shows that the spectral pulse width is δω ~ 1/(π – θ)τp
and maximum of the spectral energy distribution is
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reached at the frequency ω – ν0, which is much lower
than the carrier frequency ω. In this case, despite a large
linear detuning from resonance (τp∆ @ 1), a substantial
nonlinear spectral broadening (τpδω @ 1) leads to
generation of resonant Fourier components (photons),
which stimulate quantum transitions.

The present analysis shows that an ordinary compo-
nent initially tuned off resonance can be brought into
resonance via generation of an extraordinary compo-
nent. Therefore, strong excitation by a pulse with a non-
zero initial detuning can occur only in a medium having
a permanent dipole moment and never takes place in
isotropic media.

We should note that Eqs. (16)–(19) differ from the
systems considered in [20–22], where one-component
pulse propagation was analyzed. The evolution of both
field and medium was described by the system of
reduced Maxwell–Bloch equations extended to the case
of a permanent dipole moment:

(39)

where U, V, and W are the Bloch vector components;

 is a time-dependent parameter proportional to the
wave field; µ and β are parameters proportional to the
permanent dipole transition moment and the concentra-
tion of quantum objects; and n is refractive index.

If we set U + iV ∝  exp(iωt), where ω is the input car-

rier frequency, then the terms proportional to  and

 in the material equations in (39) describe second
harmonic generation when ω ≈ ω0. As applied to the
present model of axially symmetric quantum objects,
system (39) describes a regime in which the pulse has

only an extraordinary component (  = Ωe), which
stimulates a resonant π-transition and simultaneously
shifts the transition frequency. This regime can be
implemented in the system of anisotropic quantum
objects considered here. However, in contrast to the
present model, the input pulse must be polarized in the
principal plane of the anisotropic medium (i.e., in the
extraordinary-wave polarization plane), and its carrier
frequency must be close to the frequency of a nonde-
generate π-transition. In the case considered here, the
strict distinction between the respective effects of the
ordinary and extraordinary waves indicated above leads
to relation (21) between them, which is equivalent to the

replacement of ∆ + Ωe with ∆ – ( /4ω0d2)|Ωo|2 in
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Eq. (17). Since the dynamic coefficient |Ωo|2 has no car-
rier frequency, no higher harmonics are generated. The
high-frequency input ordinary-wave pulse generates an
extraordinary-wave (zeroth-harmonic) video pulse,
which leads to phase modulation of the ordinary
component and, as a consequence, to its spectral broad-
ening.

5. TRANSPARENCY REGIMES 
IN A WEAKLY EXCITED MEDIUM

Let us now consider electromagnetic pulse propaga-
tion in anisotropic media in the case when g ! 1. Since
ω0τp @ 1 in the slowly varying envelope approxima-
tion, the value of |D/d| must sufficiently large to ensure
that ωτp(d/D)2 ! 1. If ω0τp ~ 102, then |D/d| ≥ 20. To
date, GaAs/Al0.14Ga0.86 semiconductor crystals with
Al0.3Ga0.3As barriers are available, with |D/d| ≈ 7 [18].
This is not sufficient to ensure that both g ! 1 and the
slowly varying envelope approximation is applicable,
but |D/d| is expected to increase with further progress in
semiconductor crystal growth technology.

First, we consider the case of large detuning from
resonance (|α| @ 1). If α < 0 (or ω > ω0), then (24) and
(26)–(29) reduce to

(40)

Comparing these expressions with (38), we see that the
ordinary-wave amplitude is much smaller as compared
to that in the SIT regime in an anisotropic medium,
whereas the respective extraordinary components are
comparable. We also note that

i.e., the amplitude ratio can have an arbitrary value. The
medium remains almost unexcited as the soliton
described by (40) propagates through it, and the soliton
velocity decreases only very slightly. The phase-modu-
lation depth is also small (|δωnon| ! 1/τp), and the effec-
tive detuning ∆ef only increases as the extraordinary
wave is generated, which leads to an even weaker exci-
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tation of the medium as compared to that induced by
the input pulse.

If g ! 1 and α @ 1, then

(41)

where

(42)

The expressions for the phase and group velocities are
obtained from those in (40) by replacing |α| with –α.

Note that expressions (35), (36) and (41), (42) are
somewhat similar: in both case, the solitons are sharply
peaked, and their propagation velocities are nearly
equal to c/no. However, these regimes are essentially
different in terms of behavior of the medium. Whereas
the medium is strongly excited as the soliton described
by (35) propagates through it, no significant excitation
is caused in the case of (41). Indeed, since the effective
detuning ∆ef of the soliton described by (41) is –5∆ at
its center, it is not resonant with the medium. However,
according to (40) and (41), the excitation of the
medium at ω < ω0, being relatively weak, is still stron-
ger than that at ω > ω0. The reason is that the effective
detuning decreases toward the pulse edges when ω <
ω0, owing to the extraordinary component, and
increases when ω > ω0. Thus, a comparison of (40)
with (41), (42) demonstrates obvious asymmetry with
respect to ordinary-wave detuning. Since α < 0 for the
solitons described by (40) and α > 0 for the solitons
described by (41) and (42), we call the corresponding
regimes negative and negative nonresonant transpar-
ency, respectively.

The inequality |α| @ 1 combined with the applica-
bility conditions for the two-level and rotating-wave
approximations (|∆| ! ω, ω0) completely characterize
the conditions of quasi-resonant interaction between
the pulse and the medium [29, 30]. Following [30], we
eliminate the material variables R and W from (16)–
(19) by using expansions in the small parameter |α|–1.
We also assume that |Ωo/∆| ! 1 and (Ωe/∆) ! 1. First,
we rewrite Eq. (17) as

(43)

It is obvious that the ratio of the second term on the
right-hand side to the left-hand side (and therefore, to

Ωo

Ωom

1 4α2 ζsinh
2

+
--------------------------------------, Ωe

Ωem

1 4α2 ζsinh
2

+
----------------------------------,–= =

W W∞ 1 8g

α 1 4α2 ζsinh
2

+( )
-------------------------------------------– 

  ,=

δωnon δωnon
m ζsech

2

1 4α2 ζtanh
2

+
-----------------------------------,–=

Ωom
4
τp
---- gα , Ωem

8α
τp
-------, δωnon

m 2α
τp
-------.= = =

R
ΩoW

∆ Ωe+
----------------–

i
∆ Ωe+
----------------∂R

∂t
------.–=
JOURNAL OF EXPERIMENTAL A
the first term on the right-hand side) is α–1. Therefore,

in the zeroth approximation. Substituting this expres-
sion into the right-hand side of (43), we obtain the first
approximation. Repeating these operations two more
times, we find that

(44)

in the third approximation. (Here, we set Ωe = 0 and
W = W∞ in the last two terms, which are responsible for
dispersion, in view of the conditions imposed above.)
By virtue of the inequality Ωe/∆ ! 1, we expand the
first two terms, which are responsible for zero-delay
linear and nonlinear response and linear and nonlinear
dispersion of polarization response, in powers of Ωe/∆.
Substituting (44) with W ≈ W∞ into Eq. (16) and inte-
grating the result, we obtain

(45)

Here, we dropped the last term in (44), because it rep-
resents second-order dispersion.

Substituting (45) into (44); retaining zero-delay lin-
ear and nonlinear response, first-order nonlinear disper-
sion, and linear dispersion to the third order; and
restricting the analysis to cubic nonlinearity, we have

(46)

Now, we can substitute (45) and (46) into the right-hand
sides of Eqs. (18) and (19) to obtain a set of two nonlin-
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ear wave equations. Recalling (21) and performing
some simple algebra, we obtain the equation

(47)

with τ = t – y/v g, where v g is the group velocity defined
by the relation

The terms proportional to Ωo and |Ωo|2Ωo are eliminated
by the phase transformation

(48)

where

We consider two extreme cases: g/α @ 1 and g/α !
1. In the former limit, we have γ = –∆/3, q2 = b2 = 0, and
b1 = –3q1/2 and (47) is rewritten as the modified com-
plex Korteweg–de Vries equation

(49)

Note that the parameter q3 does not change sign under
the change ∆  –∆; i.e., the quasi-resonant soliton
regime in an isotropic medium is independent of the
detuning sign. This is obvious since Ωe = 0.

In the other limit,

Dropping the third-order dispersion terms, we obtain

(50)

It can readily be shown by using (50), (48), and (45)
that the soliton solution to Eq. (50) corresponds to the
expressions (40) describing the NNT regime.
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The PNT regime cannot be described by applying
this approach, because the value of ∆ + Ωe passes
through zero and changes sign as the pulse propagates
through the medium, owing to the extraordinary com-
ponent, which makes expansion in terms of ((∆ +
Ωe)τp)–1 inapplicable.

If g ! 1 and |α| ! 1 (detuning is small), then (24)
and (26)–(29) lead to expressions identical to those
found in [23]:

(51)

where

The phase velocity v ph is close to the linear-wave veloc-
ity, and the expression for group velocity is identical to
that in (38) corresponding to the SIT regime.

In this case, the extraordinary component exceeds
the ordinary one: (Ωem/Ωom)2 @ 1. The medium is not
excited, since the effective detuning is large, 3/τp. How-
ever, the propagation velocity decreases as in the case
of strong excitation at α ~ 1. Pulse deceleration in the
EOT regime is explained by the dispersion of the
medium within the ordinary-wave bandwidth. This
effect was analyzed in detail in [23].

Thus, the transparency regimes corresponding to a
high degree of anisotropy (g ! 1) can be not only quan-
titatively, but also qualitatively, different. As shown
above, this difference is explained by the detuning of
the ordinary wave from resonance with quantum
objects in anisotropic medium. One common feature of
the three regimes is virtual absence of any excitation of
quantum levels.

6. THE CASE OF HIGH-DENSITY MEDIUM

Now, suppose that the parameter  in (23)–(28) is
defined by (32). This means that the refractive indices
are not equal and the quantum-transition density is not
small, yet expressions (23)–(28) provide solutions to
Eqs. (16)–(18), (22).

In this section, we consider the case when the con-

dition  ! 1 is not satisfied. Since the refractive
indices of a typical anisotropic medium are such that
|ne – no| ! 1, we can assume that the left multiplicand
in the denominator on the right-hand side of (32) is
close to unity. Then, (32) can be rewritten as

(52)
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266 SAZONOV, USTINOV
i.e., the parameter  is independent of the optical
anisotropy Ao for a high-density medium.

It can be shown that the transparency regimes iden-
tified in the preceding sections exist in this case as well.

If ne < no (Ao < 0), then  can exceed D2 in the general

case. It follows from (52) that  > D2 if

Under this condition, (32) cannot be replaced by (52).
Therefore, the effective anisotropy cannot exceed D2

for a high-density medium, and the strong-excitation
regimes with g > 1 must be more pronounced.

Using (34) and (52), we find that the pulse parame-
ters τp and ∆ are related as follows in the case of strong
excitation:

(53)

where

(54)

It is obvious that

(55)

It follows from (53) that the detuning of the pulses
that cause the largest change in quantum-level popula-
tions can only be such that at least one of the quantities
F1 and F2 is positive. It is easy to see that this is possible
only if ∆ > 0. Since the coefficients of ∆3 and ∆ on the
right-hand side of (55) are positive and the coefficient
of ∆2 is zero, the product F1F2 changes sign only once
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ω0

2Ae
---------.+=

F1F2 Ae∆
3 ω0∆

2– Ãω0
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Fig. 1. Curves of strong excitation for high-density
medium. Parameter domains for ∆d ! ω0: (I) SIT; (II) SIST;

(III) EOT; (IV) NNT; (V) PNT. Thin curve:  = 0.Ã
JOURNAL OF EXPERIMENTAL A
at ∆ > 0. Therefore, F2 is negative in this domain, and
F1 is positive if 0 < ∆ < ∆d, where ∆d is the positive root
of the equation F1F2 = 0. Thus, for a given detuning sat-
isfying the condition 0 < ∆ < ∆d, only pulses having a
certain unique duration can strongly excite the medium.
A similar result was obtained in the case when the uni-
directional approximation was used and the refractive
indices were assumed to be equal. The carrier fre-
quency of the ordinary component of a pulse that
strongly excites the medium was also lower than the
resonance frequency. Note that the parameter τp cannot
be smaller than a certain minimum for pulses of this
kind. Furthermore, in accordance with the classification
adopted here, both regimes of strong excitation can be
identified in this case: the SIT (α  0) and SIST
(α  ∞) regimes correspond to ∆  0 and ∆ 
∆d, respectively (see Fig. 1).

The formulas corresponding to the unidirectional
approximation under condition (20) are obtained

from (53) and (54) by setting  = 0, and the corre-
sponding maximum detuning is ∆m = 4ω0d2/D2. It can
readily be shown that the interval of admissible detun-
ing is wider for a high-density medium (∆d > ∆m). In a
low-density medium, the effective anisotropy is more
pronounced, and a pulse can be resonant with the
medium on average and thus cause strong excitation
within a narrower interval of detuning. Note also that
the medium effectively becomes more isotropic with

increasing , and the slope of the curve described by
(53) increases with decreasing ∆. This is explained
by the fact that the largest change in quantum-level
population in an isotropic medium can occur only
under exact resonance conditions.

The analysis developed above implies that a
decrease in the effective anisotropy of a high-density
medium does enhance characteristic properties of
pulses in the SIT and SIST regimes. Conversely, the
NNT, PNT, and EOT regimes (with g ! 1) become less
pronounced. In these regimes, the difference between
the refractive indices of an anisotropic medium is not
essential. The domains of regimes corresponding
to (53) are schematized in Fig. 1.

7. MEDIA WITH PRONOUNCED POSITIVE 
AND NEGATIVE BIREFRINGENCE

Suppose that the concentration of quantum objects
is so small that

(56)

Then (32) can be rewritten as (33), as in the case when
the unidirectional approximation was used. In contrast
to the case of high-density medium considered in the

preceding section, the parameter  now depends on
the optical anisotropy Ao. Therefore, pulses propagat-
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RESONANT TRANSPARENCY REGIMES 267
ing through media characterized by positive and nega-
tive birefringence have different characteristics. In
what follows, we show that the difference in refractive
index manifests itself in the behavior of two-compo-
nent pulses interacting with the medium.

First, we assume that the medium is positively bire-

fringent (ne > no, Ao > 0). In this case,  is negative if
the pulse parameters τp and ∆ satisfy the inequality

The polarity of the extraordinary component changes
accordingly (see (27)). This leads to important conse-
quences concerning strong excitation of the medium.

As τp   and ∆  , where  and  satisfy
the relation

the effective anisotropy increases indefinitely (  
∞), and the group velocity of the pulse tends to the
extraordinary-wave velocity (v g  c/ne). A pulse with

τp and ∆ close to  and , respectively (see (2)), prop-
agates in the EOT regime, because its extraordinary
component is stronger than the ordinary one. Since the
effective anisotropy is higher in the parameter domain
in question, the EOT regime is more pronounced, espe-
cially when ∆ is small.

If

(57)

then the effective anisotropy cannot exceed D2. There-
fore, the NNT and PNT regimes (g ! 1, |α| @ 1) are less

pronounced in this parameter domain. Since  < 0, the
detuning corresponding to these regimes changes sign;
i.e., the former regime exists at α < 0; the latter, at
α > 0.

Consider the case of strong excitation in a positively
birefringent medium. It follows from (33) and (34) that
the largest change in quantum-level population occurs
if τp and ∆ are such that

(58)
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where

(59)

The condition F > 0 determines the range of admissible
detuning. Using (58), we rewrite (33) as

(60)

We denote by

and

(61)

the root of the equation  = 0 and the nonzero roots of
the equation F = 0. Since Ao > 0 in the case in question,
it holds that ∆2 < ∆0 < ∆1.

It is clear that the largest change in quantum-level
population can be achieved for both positive and nega-
tive values of detuning (0 < ∆ < ∆1 and ∆2 < ∆ < ∆0). The
existence of the latter interval of admissible detuning is

due to the possibility of change in the sign of  for
positively birefringent media. Indeed, if ∆2 < ∆ < ∆0,

then  < 0 and therefore Ωe > 0. This means that a neg-
atively detuned pulse can strongly excite the medium,
being resonant with it on average because of the
dynamic shift induced by the extraordinary component.

In the case under consideration, the transparency
regimes involving strong excitation of the medium are
similar to those predicted under condition (20), but they
can exist in two parameter domains. If ∆  0 or
∆  ∆0, then α  0, and the pulse propagates in the
SIT regime. In the latter limit case, both components
have larger amplitudes and, therefore, higher velocities.
If ∆  ∆1 or ∆  ∆2, then |α|  ∞ and the pulse
propagates in the SIST regime; i.e., its shape is sharper
and velocity is higher as compared to the case when
∆  0. The corresponding transparency domains and
the curve of strong excitation are shown in Fig. 2.

If Ao  0, then ∆1  ωo/Ae and both ∆2 and ∆0
increase indefinitely. The corresponding curve of
strong excitation is represented in Fig. 1 by a thin curve.

It should be noted that positively birefringent media,
as well as isotropic media, are strongly excited by
pulses with arbitrary τp. Since the present analysis
relies on condition (56), the effective anisotropy exceeds
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268 SAZONOV, USTINOV
D2 in the parameter domain where inequality (57) is not
valid. Therefore, both SIT and SIST regimes are less
pronounced in the case of positive detuning, whereas
the SIT regime corresponding to ∆  ∆0 must be
more pronounced because the effective anisotropy
tends to zero.

Next, we consider negatively birefringent media
(no > ne, Ao < 0). It can readily be shown by using con-

dition (56) that  < D2; i.e., the effective anisotropy is
weaker for such systems. The reason is that the linear
extraordinary-wave velocity is higher as compared to
the ordinary one and, therefore, is always higher than
the pulse velocity. In this case, the extraordinary com-
ponent plays a minor role in pulse formation.

Since negative birefringence reduces the effective
anisotropy, regimes characterized by strong excitation

D̃

0 ∆2 ∆

τp
–1

∆0∆1

Fig. 3. Curve of strong excitation for negatively birefringent

medium for –Ao < /4, –Ao = /4 (thin curve), and

−Ao > /4 (dotted curve).
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τp
–1

III

III

∆0∆2

Fig. 2. Curve of strong excitation for positively birefringent
medium. Parameter domains are shown for |∆2| ! ω0 and
labeled as in Fig. 1. Thin curve: vg = c/ne.
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are more pronounced. Equations (58)–(61) corre-
sponding to these regimes remain valid. Note that con-
dition (56) imposes a constraint on the parameter τp
and, therefore, on detuning (see (58)). Accordingly, the

detuning in (60) must be such that the parameter  is
less than D2 even though the first summand on the right-

hand side is greater than .

According to (59), F < 0 for negative ∆; i.e., the
pulses that cause the largest change in quantum-level
population can be only positively detuned. This agrees

with the fact that  does not change sign in the case
under study, i.e., the extraordinary component induces
a dynamic red shift. However, as in the case of positive
detuning, there exist two intervals of admissible detun-
ing corresponding to strong excitation of the medium.
Such conditions can be implemented if the medium is

such that 0 < –Ao < /4. In this case, ∆1 and ∆2 are real
and distinct; moreover, and ∆1 < ∆2 < ∆0. The SIT
regime is implemented when either ∆  0 or ∆ 
∆0; the SIST regime, when either ∆  ∆1 or ∆  ∆2.

If –Ao = /4, then ∆1 = ∆2 = ∆0 and the parameter
domain corresponding to SIST lies in the neighborhood

of ∆ = ∆0/2. If –Ao > /4, then the roots ∆1, 2 are com-
plex quantities, and the curve of strong excitation con-
sists of a single branch. Under this condition, the SIST
regime may not exist. As in the case of an isotropic
medium, the parameter τp can have arbitrary values for
pulses that cause the largest change in population in a
negatively birefringent medium. Figure 3 shows the
curves of strong excitation corresponding to several
values of parameters of the medium.

The NNT, PNT, and EOT regimes must be less pro-
nounced in negatively birefringent media because of
weaker effective anisotropy. This behavior resembles
that of high-density media, except that the effective
anisotropy decreases with increasing absolute value of
detuning in the present case.

The quasi-resonance approximation can be used to
identify yet another transparency regime of two-com-
ponent soliton propagation with nonlinear coupling
between the components for ne ≠ no. In this case, sys-
tem (16)–(19) cannot be reduced to a single wave equa-
tion. Neglecting the third-order linear dispersion
in (46), as well as the nonlinearity |Ωo|2Ωo, on account
of the quasi-resonance condition ∆τp @ 1 (i.e., mini-
mizing the allowance for nonlinearity and dispersion),
we combine Eqs. (45), (46), (18), and (19) to obtain

(62)
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where

When q = 0, i.e.,

(63)

Eqs. (62) are identical to the Yajima–Oikawa model [31],
which describes interaction between long- and short-
wavelength waves in the Zakharov–Benney resonance
(ZBR) regime [32]. In this case, according to (63), the
group velocity of the short-wavelength (ordinary) com-
ponent equals the phase velocity of the long-wave-
length (extraordinary) one. A system of this form was
derived in [33, 34] by assuming that the ordinary-wave
carrier frequency is tuned far off resonance with a mul-
tilevel system: ω ! ω0 or ∆ ~ ω0. The analysis per-
formed here shows that a ZBR regime can also be
implemented under quasi-resonance conditions. In the
present case of pulse propagation through a medium in
thermodynamic equilibrium, it holds that v g < c/no.
Therefore, condition (63) can be satisfied when ne > no;
i.e., the host crystal that contains resonant objects must
be positively birefringent. Note that conditions (20) and
(63) can be combined in one medium, for example, by
using a constant electric field parallel to the anisotropy
axis. The ensuing Stark effect will shift the frequency
ω0 of degenerate σ-transitions. By virtue of the fre-
quency dependence of no, one can then switch between
conditions (20) and (63). It was shown in [33, 34] that
the solitons described by the Yajima–Oikawa system
are stable in the region of normal dispersion, p > 0 or
∆ > 0.

The one-soliton solution to system (62) under con-
dition (63) is

(64)

(65)

where the free parameters τp and Ω can be interpreted
as pulse width and carrier-frequency shift, respectively;
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r = neΩ/c + 2p(1/  – Ω2); and the propagation velocity
is defined by the relation

(66)

If p, Ω > 0, then v t > c/ne = v g. Thus, the pulse velocity
in the ZBR regime exceeds both linear phase velocity
of the long-wavelength component and linear group
velocity of the short-wavelength component. This phe-
nomenon can be explained by the following argumen-
tation. Suppose that a pulse containing only an ordinary
(high-frequency) component enters a medium. Accord-
ing to the second equation in (62), since µe ∝  D2 ≠ 0, an
extraordinary-wave video pulse is then generated in the
medium under condition (63). In terms of photons, this
means that each ordinary-wave photon will be red-
shifted after a portion "Ω of its energy has been trans-
ferred to an extraordinary wave: ω  ω – Ω (Ω ! ∆).
The expression for v g becomes

which is equivalent to (66). As the ordinary component
is detuned from resonance by the red shift, the medium
is weakly excited.

Combining (64) with (65), we find

Since Ω ! ∆ while ∆τp @ 1, the product Ωτp cannot be
very large. Otherwise, both two-level and rotating-
wave approximations should be abandoned. Assuming
that Ωτp ~ 1 and ne/no ~ 1 and taking into consideration

the condition g ! 1, we obtain /  ! 1. Thus,
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Characteristics of two-component pulse propagation regimes

|α| |g| vg |Ωo/Ωe|
Excita-

tion

SIT –2∆ !1 @1 vSIT @1 strong

SIST –2∆ @1 @1 <c/no ~1 strong

NNT ≈∆ @1 !1 c/no arbitrary weak

PNT –5∆ @1 !1 c/no !1 weak

EOT @|∆| !1 !1 >vSIT !1 weak

ZBR ≈∆ @1 !1 >c/ne !1 weak

Note:  is the effective detuning at the center of a pulse;  is

compared with ∆ in the EOT in terms of absolute value.

∆ef
m

∆ef
m ∆ef

m
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the extraordinary component plays a dominant role in
the ZBR regime. Moreover, the ordinary component is
not phase modulated in this regime. However, as
explained above, this component is modified by a uni-
form nonlinear red shift, δωnon = –Ω .

8. CONCLUSIONS

The analysis presented in this paper leads to the con-
clusion that axial anisotropy greatly expands the variety
of transparency regimes. Owing to the anisotropy, an
input quasi-monochromatic pulse tuned off resonance
can generate an extraordinary-wave video pulse, which
changes the mechanism of its interaction with quantum
objects.

In this study, we identify six regimes of two-compo-
nent pulse propagation through a resonant medium,
which can be classified with regard to propagation
velocity and degree of excitation caused in the medium
(see table). Self-induced transparency is characterized
by strong excitation and substantial decrease in pulse
propagation velocity relative to linear velocity. Self-
induced supertransparency differs from SIT in that the
decrease in velocity is small, but the medium is strongly
excited as well (the propagating soliton causes total
inversion of population followed by return to the initial
state). In this regime, the ordinary-wave carrier fre-
quency is lower than the resonance frequency if the
refractive indices associated with the components are
equal. The pulse width corresponding to the largest
change in quantum-level population is determined by
the amount of detuning. SIST solitons have larger
amplitudes and smaller lengths as compared to SIT
solitons, and their ordinary components are strongly
frequency modulated. There also exist regimes that
involve population trapping. The pulses propagating in
the extraordinary transparency regime are character-
ized by small detuning and dominant role of the
extraordinary component. Their group velocity sub-
stantially changes and may become comparable to that
of pulses causing strong excitation. In the positive and
negative nonresonant transparency regimes, the pulse
velocity changes insignificantly, while the absolute
value of detuning is large. The former regime is domi-
nated by the extraordinary pulse component, whereas
the ordinary-to-extraordinary amplitude ratio can be
arbitrary in the latter. The most substantial difference
between these regimes concerns the behavior of detun-
ing. In the negative nonresonant transparency regime, it
remains virtually constant. If a pulse propagates in the
positive nonresonant transparency regime, then the
effective detuning changes sign, passing through a res-
onance, owing to the effect of the extraordinary compo-
nent. In the latter case, a slightly stronger excitation is
obtained, and the pulses are sharply peaked, as in the
SIST regime.

If the concentration of resonant objects is high
and/or the ordinary and extraordinary refractive indices
are different, then the anisotropy is determined not only
JOURNAL OF EXPERIMENTAL A
by the properties of the medium, but also by pulse
parameters. In a high-density medium, the effective
anisotropy decreases for all pulses. Accordingly, trans-
parency regimes characterized by strong excitation of
quantum objects are more pronounced in such a
medium. In the most interesting case of a strongly pos-
itively birefringent medium, the effective anisotropy
can change sign. For this reason, SIT and SIST regimes
are implemented not only when the carrier frequency is
lower than the resonance one, but in the opposite case
as well. In the PNT and NNT regimes, detuning
changes sign. Furthermore, the effective anisotropy of
the medium increases indefinitely as the group velocity
of the pulse approaches the extraordinary-wave veloc-
ity. Under these conditions, pulses propagate in the
extraordinary transparency regime, which is more pro-
nounced, especially when the detuning is small. More-
over, a positively birefringent medium containing reso-
nant particles can sustain propagation of a soliton-like
bound state of a quasi-monochromatic ordinary wave
and an extraordinary-wave video pulse in the Zakha-
rov–Benney regime, owing to an essential role played
by microscopic quantum objects having a permanent
dipole moment. If the medium is strongly negatively
birefringent, then its effective anisotropy decreases. As
in high-density media, the transparency regimes involv-
ing strong excitation are more pronounced in this case.
On the other hand, as in positively birefringent media,
there can exist two intervals of ordinary-wave carrier
frequency where the largest possible change in quan-
tum-level population can occur. However, the carrier
frequency remains lower than the resonance frequency,
because the sign of the effective anisotropy does not
change.

It is well known that there exists correspondence
between coherent optical and acoustic phenomena. A
correspondence of this kind is also observed between
propagation of two-component electromagnetic and
acoustical pulses through resonant media. In particular,
an effect analogous to EOT was predicted for longitu-
dinal–transverse acoustic pulse propagating parallel to
an external magnetic field in a system of resonant para-
magnetic impurities with effective spin S = 1/2 when
the longitudinal amplitude of the pulse exceeds the
transverse one [27]. Moreover, analogs of all regimes
considered above exist in acoustic pulse propagation,
because the corresponding governing equations are
identical to system (16)–(18), (22) [35]. In these
regimes, the role played by the high-frequency (trans-
verse) component of an acoustic pulse is analogous to
the role of the ordinary pulse component, and the lon-
gitudinal component is the counterpart of the extraordi-
nary component.

As noted at the end of Section 2, both the system of
LSWC equations and their gauge equivalents are well
known in the theory of inverse scattering method and
arise in other physical problems. In particular, systems
of this type describe two-photon propagation of electro-
magnetic waves in a two-level medium [36, 37], inter-
ND THEORETICAL PHYSICS      Vol. 100      No. 2      2005



RESONANT TRANSPARENCY REGIMES 271
action between two polarized electromagnetic waves in
a two-level medium with cubic nonlinearity [38], four-
wave mixing, and single-photon pulse propagation in a
resonant medium involving the Stark effect [28]. The
transparency regimes of soliton propagation analyzed
here must also be manifested in these processes. The
regimes of electromagnetic pulse propagation involv-
ing the Stark effect differ only by the phase modulation
of the high-frequency field. In other cases, additional
analysis is required to elucidate the physical meaning
of particular differences, because the equations that are
gauge equivalent to the LSWC system were derived by
using nonlinear change of independent variables.

In this study, we ignored inhomogeneous spectral
line broadening. A study allowing for this effect may
throw light on the pulse area theorem for anisotropic
media, providing a basis for analysis of their stability.
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Abstract—The coherent interaction of femtosecond laser pulses in the pump–probe regime has been experi-
mentally studied in the time domain by monitoring light reflection from a tellurium single crystal. The optical
response of the probed medium exhibits periodic variations at a frequency equal to that of the exciting laser
radiation. Experimental dependences of the observed “coherent artifact” on the pump/probe intensity ratio, the
number of accumulated pulses, and the mutual orientation of the polarization vectors of electromagnetic fields
and the crystallographic axes are well described by the proposed phenomenological model. © 2005 Pleiades
Publishing, Inc. 
1. INTRODUCTION

Recent decades have seen considerably growing
interest in the study of response of condensed media to
the action of ultrashort laser pulses, in which the energy
is concentrated within a short time, small space, and
narrow spectral intervals [1]. This research activity has
been stimulated to a considerable extent by the progress
in laser technologies in reducing the laser pulse dura-
tion down to the subpicosecond range, thus opening the
way to real-time investigation of many processes
related to the properties of solids.

One of the main approaches to investigations of fast
dynamics is based on the pump–probe method. Accord-
ing to this approach, a medium is first excited by a short
powerful laser pulse and then the optical properties of
this excited medium are studied using much weaker
probing pulses, typically obtained by separating part of
the main laser beam (with the aid of a beam splitter) and
attenuating it to a considerable degree. The first (pump-
ing) pulse prepares a certain nonequilibrium state of the
medium, whereas the second (probing) pulse of very
low intensity (practically incapable of modifying the
state of the medium) is used to study the process of sys-
tem relaxation to the equilibrium state. However, these
notions are completely inconsistent with the experi-
mental situation in the region of zero delay of the prob-
ing pulse relative to the pumping pulse, where the two
pulses are superimposed in the sample. In this case, we
can no longer consider one pulse as pumping and the
other merely as probing, since the excitation of the
medium substantially depends on the coherent super-
position of pulses, and the smallness of the probing
pulse by no means implies that its effect is negligibly
small.
1063-7761/05/10002- $26.000272
Experiments in the time domain in the region of zero
delays frequently show unusual and poorly reproduced
deviations from the curves measured at greater delays
and then extrapolated to a zero delay (Fig. 1). In the lit-
erature devoted to coherent phonons [2, 3], all these
phenomena have been given the name “coherent arti-
fact.” This term (in our opinion, rather inadequate) has
to reflect, first, the connection of the observed effects to
coherent superposition of laser pulses and, second, the
irregular and poorly controlled character of these phe-
nomena. Phonons excited by ultrashort laser pulses are
usually called coherent, since the exciting pulse dura-
tion is shorter than the period of lattice oscillations. The
excitation of oscillations in nontransparent media can

0

0

∆R/R0, rel. units

t, ps1 2

0.02

0.04
Autocorrelation signal

Coherent artifact

Coherent phonons

Fig. 1. Normalized time-resolved differential reflection sig-
nal ∆R/R0 from tellurium single crystal measured at room
temperature for a time resolution of 6 fs. Laser pulse inten-
sity, 0.1 mJ/cm2.
 © 2005 Pleiades Publishing, Inc.
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be successfully described using phenomenological
models based on the displacive excitation of coherent
phonons and a mechanism close to the inelastic light
scattering [2, 3]. It is a common practice to minimize
the coherent artifact signal using orthogonal polariza-
tions of the pumping and probing radiation, nondegen-
erate pump–probe scheme, etc. [2, 3]. There are several
points of view on the nature of the coherent artifact. The
formation of this signal is usually related to nonlinear
optical effects (for collinear polarizations of the pump-
ing and probing radiation) of the four-wave mixing [4].
According to this, the pumping pulse is scattered
toward the probing pulse as a result of the phase grating
formation.

This paper presents the results of thorough experi-
mental and theoretical investigation of the coherent
artifact in the time domain on a subfemtosecond reso-
lution level. It is experimentally demonstrated that the
“artifact” observed in the case of orthogonal polariza-
tions of the pumping and probing radiation possesses a
regular periodic structure, is perfectly reproduced, and
can be described within the framework of a simple phe-
nomenological model of the light–medium interaction.
This analysis opens ways to investigating the response
of a medium within ultimately short periods of time
and, in addition, establishes the natural zero point for
time count in the pump–probe method.
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2. DESCRIPTION OF EXPERIMENT

Figure 2 shows a schematic diagram of the experi-
mental arrangement. The experiments were performed
with a tunable femtosecond Ti-sapphire laser of the
Tsunami type (Spectra Physics) pumped at 532 nm
from a Millenia Xs laser (Spectra Physics). The laser
pulse shape was optimized using a double prism com-
pressor and monitored with the aid of an autocorrelator.
By shifting one of the two prisms, it was possible to
adjust the phase modulation (chirp) so as to provide the
optimum compensation of the group velocity disper-
sion in beam splitters, lenses, and other transparent ele-
ments in the pathways of both pumping and probing
beams, thus ensuring the minimum pulse duration in
the sample plane. This duration, as determined by mon-
itoring the nonlinear transmission of a GaP crystal, was
90 fs. The spectral composition of the pulse was deter-
mined using a monochromator with a multichannel
detection system. The pulse shape and spectrum were
displayed in real time on the autocorrelator and com-
puter displays. This setup allowed the pulse parameters
to be continuously monitored and adjusted.

The measurements were performed using a fast scan
system (AIXscan) comprising a shaker (angular ret-
roreflector mounted on an electromagnetic vibrator
driven by a high-precision oscillator), a delay line with
a step motor, high-frequency twelve-digit analog-to-
Spectrometer

Autocorrelator

Shaker

G1
λ/2

G3
F3

F2

BS

B A

F4

PC

Delay line

PD2
PD1

λ/2
G2

L

F1

TV CCD

Tsunami

Millenia Xs

Fig. 2. Schematic diagram of the experimental arrangement (see the text for explanations).
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digital amplitude converter (operating at 0.5 and
1.0 MHz), and a PC with special control software. The
shaker made it possible to scan over and display a range
of delay times with the initial value set by a delay line.
The signal was digitized only during the forward run of
the shaker. The measurements were performed at room
temperature.

A sample crystal was placed at the focus of lens L
(Fig. 2) with a focal distance of 90 mm, through which
the pumping and probing pulses were transmitted par-
allel to the optical axis. The parallelism of laser beams
entering the lens, which is a necessary prerequisite for
the optimum spatial superposition of pumping and
probing beams, was thoroughly checked at the system
adjustment stage. The two beams were focused by the
lens into one spot on the crystal surface. The imaging
system, comprising a zoom objective, a CCD camera,
and a TV monitor provided sharp beam focusing on the
crystal surface and controlled matching of the pumping
and probing beam spots. The pumping pulse was trans-
mitted to the crystal via shaker, followed by a Glan
prism G1 (eliminating parasitic polarization), a half-
wave plate (rotating the polarization plate), and a neu-
tral filter F1 of variable optical density (adjusting the
required pump intensity).

The probing beam was obtained by separating a
small part of the pumping beam with the aid of beam
splitter BS. This beam passed through a delay line, a
half-wave plate, and a Glan prism G2. The latter Glan
prism was used to control polarization of the probing
beam, while the intensity of this beam was adjusted by
rotating the half-wave plate (changing the projection of
the electric field vector onto the given polarization
direction). The beams of pumping and probing pulses
were separated by means of spatial filtration performed
by diaphragm F3 mounted in front of a neutral light fil-
ter. Oscillations of the vibrator in the shaker ensured
scanning of a certain interval of the time delay between
pumping and probing pulses. The data were digitized in
the high-frequency analog-to-digital amplitude con-
verter and stored in a computer memory. The delay line
was used for a rough leveling of the optical paths of the
pumping and probing pulses and for calibration of the
shaker sweep.

In order to increase the data accumulation rate and
expand the working range of delay times provided by
the shaker, it is necessary to increase the amplitude of
the retroreflector and use a relatively high working fre-
quency of the shaker. Evidently, just the opposite
requirements have to be satisfied for reaching maxi-
mum time resolution of the system: this corresponds to
the minimum velocity of the angular retroreflector that
can be achieved by decreasing the amplitude and fre-
quency of shaker vibrations. In our experiments, the
shaker was operated with amplitude two to three times
smaller than maximum and at a frequency of 40 Hz.
The frequency was stable to within ±10–3 Hz, which
allowed the delay times in a range of 4 ps to be digitized
JOURNAL OF EXPERIMENTAL A
at a step of 0.1 fs per point. The error caused by the fre-
quency instability was comparable with the discrete-
ness of digitization. A decrease in the range of scanned
delay times and the frequency of shaker operation
could increase the accuracy of digitization (under oth-
erwise equal conditions). However, in our case this
would detrimentally influence the conditions of opera-
tion of the program of automated time scale calibration.
This program set a series of fixed time delays between
the pumping and probing pulses, compared these
delays to the shift of a pulse reflected from the shaker,
and determined the coefficients of time scale calibra-
tion, thus taking into account nonlinearity of the sweep.
The minimum parameters at which this calibration pro-
gram could successfully operate corresponded to a
shaker frequency of 34.76 Hz and a calibration range of
about 4 ps. In a standard probe–pulse experiment with
the response signal measured using a lock-in detector,
the discreteness of digitization is determined by the
delay line step and usually does not exceed 6.6 fs per
point [2, 3].

We have measured the relaxation of changes in the
reflection coefficient (or in the transmission coefficient,
in the case of a transparent GaP crystal used for the sys-
tem calibration) caused by the pumping pulse. Since
these changes are relatively small, we have used a spe-
cial differential technique in order to increase the accu-
racy of measurements. According to this, a part of the
probing beam was separated (before striking the sample
crystal) by the beam splitter and directed to photodiode
PD1 (Fig. 2). The probing beam reflected from the crys-
tal was detected by photodiode PD2. The signals from
both detectors were fed to the inputs (A and B) of a dif-
ferential amplifier, where the difference A–B was
amplified and measured using a high-frequency analog-
to-digital converter of the AIXscan system. The A and
B signal channels were thoroughly balanced (whereby
the signals from photodiodes were equilibrated using a
neutral filter F2 with variable optical density mounted
in front of photodiode PD1) in the absence of pumping
pulses. As a result, we monitored the signal propor-
tional to a change in the reflection coefficient, which
was on a level from 10–3 to 10–5 of the absolute value of
this coefficient. The differential amplifier was equipped
with a built-in frequency filter, which allowed the
working signal to be measured in a preset frequency
band and thus increased the signal to noise ratio. For the
study of coherent phonons, it was sufficient to use a fre-
quency band from 1 Hz to 3 kHz, where virtually no
distortions were introduced into the corresponding
oscillations (with a period of about 300 fs). In investi-
gations of the coherent artifact, the period of signal
variation was about 3 fs and this required the working
frequency band of the amplifier to be increased (in our
measurements, the frequency band was typically from
1 Hz to 300 kHz).

All measurements were performed for a basal plane
of a tellurium single crystal crystallized at room
ND THEORETICAL PHYSICS      Vol. 100      No. 2      2005
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Fig. 3. (a) The shape of a coherent artifact signal with well-pronounced regular structure measured at a high resolution; (b) the
coherent artifact on the background of first two oscillations of the reflection coefficient, related to the excitation of fully symmetric
(A1) coherent phonons in a tellurium single crystal. Pumping laser beam power, 37 mW; probing laser beam power, 3.2 mW; number
of accumulated runs, 100; polarization: epump || y, eprobe || x.
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temperature in a hexagonal lattice belonging to space

group .

3. EXPERIMENTAL RESULTS

In the measurements of coherent phonons, the
coherent artifact is usually manifested by a special
region in the initial part of relaxation curves oscillating
at a frequency of the phonon mode [2, 3]. This region is
clearly seen in Fig. 3b together with two initial oscilla-
tions of the reflection coefficient caused by excitation
of the coherent fully symmetric phonons in the tellu-
rium crystal [5]. A comparison of Figs. 1 and 3 shows
that an increase in the time resolution reveals a regular
periodic structure of the artifact (see Fig. 3a). It is seen
at first glance that the rapid oscillations are performed
not relative to the zero line, but relative to a certain
slowly varying (on the given time scale) function. This
function can be readily separated from the oscillating
curve by averaging over the oscillation period. The
results of such separation for various pump/probe
intensity ratios are presented in Fig. 4. At equal intensi-
ties of the pumping and probing beams, rapid oscilla-
tions are virtually symmetric relative to the zero level.
If the pumping pulse intensity is significantly higher
than that of the probing pulse, the artifact exhibits a
slowly varying positive additive to the reflection coeffi-

D3
6
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cient. The magnitude of this additive also significantly
depends on the orientation of light polarization relative
to the crystallographic axes. The ratio of the slowly
varying and rapidly oscillating components of the
response also changes when the beams change their
roles, whereby the probing beam is used for pumping
and vice versa (in experiment, this is achieved by
exchanging photodiodes between the probing and
pumping beams, while retaining the same beam polar-
izations).

Figure 5 shows a change in the artifact in the course
of a gradual increase in the probing beam intensity in
the case when the polarizations of both beams were
rotated by 90° as compared to their orientations in the
experiment presented in Fig. 4. As can be seen, a
change in the ratio of beam intensities leads to a change
in the ratio of slowly varying and rapidly oscillating
components of the response (analogous to that shown
in Fig. 4). However, in this geometry, the contribution
of the slowly varying component is greater than in the
case presented in Fig. 4. This was specially checked for
the same number of accumulated data, which is an
important circumstance since it was found that the
shape of the artifact depends on the number of accumu-
lated runs. This dependence is illustrated in Fig. 6,
which shows that an increase in this number is accom-
panied by a decrease in the relative contribution of the
oscillating part of the response. The effect is related to
SICS      Vol. 100      No. 2      2005
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Fig. 4. The influence of the ratio of the pumping and probing beam intensities on the shape of the coherent artifact. An increase in
the pumping beam intensity leads to the appearance of a slowly varying positive component. Slowly varying background curves
were obtained by smoothening over the period of the artifact. Pump/probe intensity ratio (mW): (a) 7.2/7; (b) 37/3.2; number of
accumulated runs, 1000; polarization: epump || y, eprobe || x.
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Fig. 5. The influence of the ratio of the pumping and probing beam intensities on the shape of the coherent artifact measured for a
laser beam polarization other than that in Fig. 4: epump || x, eprobe || y; number of accumulated runs, 10000; pumping laser beam
power, 28.4 mW; probing laser beam power (mW): (a) 7.2; (b) 18.2; (c) 28.7.
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Fig. 6. Variation of the coherent artifact depending on the number of accumulated runs: (a) 10000; (b) 1000; (c) 100. An increase
in this number leads to a decrease in the relative contribution of the rapidly oscillating component. Polarization: epump || x, eprobe ||
y; pumping laser beam power, 28.4 mW; probing laser beam power, 7.2 mW.
averaging of the oscillating curve with time as a result
of uncontrolled phase fluctuations appearing, probably,
because of imperfection (the lack of interferometric
precision) of the experimental setup.

Figure 7 shows the results of two sequential experi-
ments performed using the same number of accumu-
lated runs and equal values of all controlled experimen-
tal parameters. As can be seen, one of the curves exhib-
its clearly pronounced oscillations with a single period
of 2.67 fs. The amplitude of these oscillations in the
other curve is significantly decreased and additional
small peaks are observed between the main maxima.
The change is most probably caused by a spontaneous
fluctuation in the phase of shaker oscillations. The
period of the oscillating component in the response
(2.67 fs) coincides to within 4.8% with the period of the
carrier wave of the light pulse (2.80 fs). The latter is
determined to within 1.3% (for an excitation laser
wavelength of 841 ± 11 nm).

The above experimental data elucidate the reasons
for which the artifact was previously observed in the
form of an irregular and poorly reproducible behavior
of the relaxation curves in the region of zero delay
times. First, the standard time resolution (not better
than 6.6 fs) did not allow detecting oscillations with a
period shorter than 3.0 fs. Second, the goal of increas-
ing the signal to noise ratio in the investigation of fea-
tures of the relaxation kinetics required using large sig-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
nal accumulation times, selecting sufficiently high
shaker frequency, and employing optimum signal filtra-
tion regimes. All these factors lead to effective averag-
ing of the oscillating component of the artifact and
strongly distort its shape, the more so that it is highly
sensitive to small uncontrollable phase fluctuations.
The sensitivity of the artifact to intensities of the beams
and their polarization relative to the crystal axis still
complicates the pattern.

All the experimental results considered above
referred to differential measurements of the relaxation
of a change in the reflection coefficient of tellurium sin-
gle crystal exposed to a high-power femtosecond laser
pulse. It should be emphasized that very similar results
were obtained when the metal crystal was replaced by
a crystal of high-temperature superconductor or man-
ganite. However, for the sake of brevity, the consider-
ation is restricted to the analysis of data obtained for
tellurium.

In the experiments with all nontransparent (strongly
absorbing) crystals, the time sweep of the shaker was
calibrated using a standard procedure, whereby a sam-
ple crystal in the lens focus was replaced by a transpar-
ent (in the laser wavelength range employed) crystal of
GaP (an indirect-band semiconductor with a bandgap
width of 2.8 eV at the Γ point; n = 3.24 at 850 nm [6]).
The photodiode was moved from the reflected beam to
the transmitted beam and the same differential tech-
SICS      Vol. 100      No. 2      2005
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nique was used to measure a change in the transmission
of the probing beam after excitation of the GaP crystal
by the pumping pulse. It is commonly accepted that
(i)  a  decrease in the probing beam transmission
observed at the moment of superposition of the pump-
ing and probing pulses is related to the two-photon
absorption and (ii) the shape of the detected signal is
proportional to the autocorrelation function of laser
pulse intensities. This provides a simple and convenient
method of optimization of the excitation pulse duration
immediately at the site where the sample will be placed,
while rather large signal amplitude makes it possible to
use this method for calibration of the shaker sweep. The
two-photon absorption is insensitive to the phase of the
light wave. The interference between the pumping and
probing beams was excluded by using orthogonal
polarizations of the two beams. Despite this, our study
of the nonlinear transmission of a GaP crystal at a high
time resolution revealed the presence of oscillating
component in the response signal, which had a shape
quite similar to that presented in Fig. 4, with a period
close to that of the carrier wave. Further investigation
showed that, under certain conditions, it is possible to
observe a change in the sign of the differential trans-
mission, whereby the pumping pulse induces an
increase (rather than a decrease) in transmission of the
crystal. Moreover, the response of a GaP crystal has
proved to be sensitive not only to the phase difference
between the pumping and probing beams, but also to
the phase modulation of the laser pulse that could be
varied with the aid of a prism compressor. All these fea-
tures are difficult to explain within the framework of a

–20

∆R/R0, rel. units

t, fs
0 20

Fig. 7. Two time series of the coherent artifact recorded for
the same fixed experimental parameters. A sharp decrease
in the magnitude of oscillations and the appearance of addi-
tional peaks in one of the curves is probably related to a
spontaneous fluctuation in the phase of shaker vibrations.
Number of accumulated runs, 300; pumping laser beam
power, 28 mW; probing laser beam power, 18 mW; polar-
ization: epump || x, eprobe || y.
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simple two-photon absorption model, although this
process can still play a certain role in the phenomena
under consideration.

Consistent theoretical analysis of the propagation of
a high-power femtosecond laser pulse in a nonlinear
medium is a highly complicated problem and there are
a huge number of publications on this subject. As for
the task of description of the nonlinear reflection of a
short high-power laser pulse, this problem admits a
simple solution within the framework of a simple phe-
nomenological model considered below.

4. DISCUSSION OF RESULTS
It should be noted that the observed phenomena can-

not be explained by simple interference between the
pumping and probing beams. Indeed, polarizations of
the two beams in all experiments were orthogonal and
the reflected signal was detected at a site distant from
the region of beam overlap, so that no superposition of
light waves took place in the detector.

The coherent phonons excited in a tellurium crystal
by the pumping laser pulse are manifested in the exper-
imental curves by a periodic time variation of the
reflection coefficient of the sample (Fig. 3). We natu-
rally assumed that the observed periodic temporal
structure of the coherent artifact is also related to a peri-
odic time variation of the reflection coefficient under
the action of electromagnetic field of the pumping
pulse. Based on this assumption, it is possible to pro-
vide a phenomenological description of the properties
of a coherent artifact observed in experiment.

4.1. Phenomenological Model 

Let us describe a laser pulse at the crystal surface by
a wave packet,

(1)

where ω0 is the carrier frequency and A(t) and ψ(t) are
slowly varying amplitude and phase. Since only a sur-
face layer of the crystal with a thickness much smaller
than the wavelength contributes to the reflection coeffi-
cient, we may decline from analysis of the character of
light propagation in the crystal and solve an essentially
local problem. This circumstance makes possible a
simple description of the experiment. In order to sim-
plify the formulas, we will not take into account the
vector character of electromagnetic fields. If necessary,
the form of A(t) and ψ(t) functions can be specified.
These functions are quite rigidly set by the condition of
femtosecond laser pulse generation using synchronized
modes of a Ti-sapphire laser. In particular, the carrier
frequency is a higher harmonic of the fundamental
mode of the laser cavity and the amplitude A(t) is
directly related to the number of synchronized modes.
The phase ψ(t) includes the linear and quadratic terms,
the latter determining the phase modulation (chirp) of

Φ t( ) A t( ) i ω0t ψ t( )+( )–[ ] ,exp=
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the pulse. The carrier frequency and the spectral width
of a pulse can be directly measured in experiment. The
chirp determining (together with the slowly varying
amplitude) the spectral width can be varied with the aid
of the prism compressor.

We assume that a laser pulse produces a change in
the coefficient of reflection of the crystal surface, which
varies with time as

(2)

where R0 is the background reflection coefficient.
Accordingly, the amplitude of the reflected pulse can be
written as

(3)

Let us express the variable increment of the reflection
coefficient as

(4)

where a(e) is a coefficient taking into account the
dependence of the increment on the orientation of the
polarization of light relative to the crystallographic
axes. In the general case, this coefficient is a complex
quantity whose modulus determines the magnitude of
the increment and the argument reflects the possible
phase shift of the laser-induced change in the reflection
coefficient relative to the phase of the electric field vec-
tor of the pulse:

(5)

Under the conditions of superposition of the pumping
and probing laser pulses, the increment of the reflection
coefficient can be written as

(6)

where τ is the time delay between the pumping (Φpump)
and probing (Φprobe) pulses. Then, the amplitude of the
reflected probing pulse is

(7)

Since the photodiodes measure the light intensity aver-
aged over the response time, the measured differential
signal S can be determined by multiplying the ampli-
tude (7) by its complex conjugate, averaging the prod-
uct over the diode time constant, and rejecting the terms

R t( ) R0 r t( ),+=

Φ̃ t( ) Φ t( )R t( )=

=  R t( )A t( ) i ω0t ψ t( )+( )–[ ]exp .

r t( ) a e( )Φ t( ),=

a e( ) a eiϕ .=

r t( ) apumpΦpump t τ+( ) aprobeΦprobe t( ),+=

Φ̃probe t( ) Φprobe t( )=

× R0 apumpΦpump t τ+( ) aprobeΦprobe t( )+ +( ).
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not containing Φpump (which are compensated in a bal-
anced differential scheme). As a result, we obtain

(8)

where the angle brackets denote averaging with respect
to time, the ai and Ai are assumed to be positive (all
signs are included into the phase factors), and the terms
∆ψ and ∆ϕ are given by the formulas

(9)

The linear term in the pulse phase increment, which is
related to a difference in optical paths between the
pumping and probing beams, is explicitly taken into
account by the delay time τ. Then, ∆ψ is determined
entirely by the quadratic term, that is, by the chirp. For
the sake of simplicity, we will assume the phase modu-
lation (chirp) in the sample plane to be zero. The second
formula (9) implies that the delay of the induced incre-
ment in the reflection coefficient depends on the slowly
varying amplitude and on the pulse phase (chirp). It is
natural to assume that this dependence is weak and can
be ignored to the first approximation. Under these
assumptions, expression (8) can be rewritten as

(10)

This expression qualitatively describes all the main fea-
tures of the coherent artifact observed in experiment.
First, it contains the rapidly oscillating component of
the response varying with the period of the carrier
wave. The slowly varying component is always positive
(as in experiment) and coincides to within a factor

( ) with the correlation function of the laser pulse

intensities. The presence of the factor  explains
why the slowly varying contribution depends on the
orientation of the polarization of the pumping pulse rel-
ative to the crystal axes. The ratio of the second term to
the first term in expression (10) is proportional to

which implies that the contribution of the rapidly oscil-
lating component increases with the probing pulse
amplitude. Not that this ratio also depends on the orien-

S apump
2 Apump

2 t τ+( )Aprobe
2 t( )〈 〉∝

+ 2 apumpApump t τ+( )aprobeAprobe
3 t( )〈

× ω0τ ∆ψ ∆ϕ+ +( )cos 〉 ,

∆ψ ψpump t τ+( ) ψprobe t( ),–=

∆ϕ ϕ pump t τ+( ) ϕprobe t( ).–=

S apump
2 Apump

2 t τ+( )Aprobe
2 t( )〈 〉∝

+ 2 apumpApump t τ+( )aprobeAprobe
3 t( )〈 〉 ω 0τ .cos

apump
2

apump
2

2
aprobeAprobe

apumpApump
-------------------------,
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tation of the polarization of the pumping pulse relative
to the crystallographic axes.

Although the proposed model quite satisfactorily
describes the trends observed in experiment, it is neces-
sary to develop a consistent microscopic description of
these phenomena, since the phenomenological model is
self-contradictory. Indeed, the reflection coefficient is a
single-valued function of the susceptibility χ(ω) of the
medium. The susceptibility, characterizing the optical
properties of the medium, is defined as the coefficient
of proportionality between the Fourier components of
the electric field and the polarization of the medium at
the same frequency ω. Therefore, the susceptibility
χ(ω) and, hence, the reflection coefficient cannot
explicitly depend on the time, as it was assumed in pro-
posed phenomenological model. It should be noted
that, in the case of coherent phonon excitation, the sus-
ceptibility implicitly depends on the time because of
nonstationary excitation of lattice vibrations in the
medium [2, 3].

4.2. Analysis of the Adequacy 
of the Phenomenological Model 

We believe that the physical reason ensuring the
adequacy of the proposed phenomenological model is
the conservation of the total probability of finding the
electron subsystem of a crystal either in the ground or
in the excited state in the time scale on the order of laser
pulse duration. This, in turn, is a consequence of the
smallness of the laser pulse duration as compared to the
characteristic times of the energy and phase relaxation
of the electron subsystem. This can be illustrated by a
simple example of a two-level model of the medium,
despite the fact that this model is oversimplified and
does not aspire to provide a detailed description of real
experiments.

Consider a medium consisting of identical two-level
systems with a transition frequency ω21, which are dis-
tributed in the volume with a density of N. As is known,
the susceptibility of such a medium initially occurring
in a ground (nonexcited) state can be expressed in a
quasi-stationary case as [7]

(11)

where χ'(ω) and χ''(ω) are the real and imaginary parts
of the susceptibility, respectively; d is the matrix ele-
ment of the dipole moment of the transition; ∆ = ω21 –
ω is the frequency detuning; Γ2 and Γ1 are the trans-
verse and longitudinal relaxation constants, respec-

χ' ω( ) d2N
"

---------- ∆

∆2 Γ2
2 Γ2

Γ1
-----Ω2+ +

-------------------------------------,=

χ'' ω( ) d2N
"

----------
Γ2

∆2 Γ2
2 Γ2

Γ1
-----Ω2+ +

-------------------------------------,=
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tively; and Ω is the Rabi frequency. These formulas for
the real and imaginary parts of the susceptibility were
obtained assuming that a dipole transition is allowed
between levels of the two-level system. For Γ2 = Γ1 
0, formulas (11) give correct expressions for the sus-
ceptibility in the absence of relaxation:

(12)

These expressions can be also obtained directly, by
solving a nonstationary Schrödinger equation with har-
monic time-dependent perturbation:

(13)

Let us consider a somewhat more general case of this
problem with a perturbation of the following type:

(14)

As can be readily seen, perturbation (14) with real V1
and V2 values can be reduced to the form (13) by sub-
stitution

(15)

This implies that a solution of the problem with pertur-
bation (14) reduces to solution of the problem (13) with
then effective Rabi frequency

(16)

where Ωi = Vi/". Not that, since the form of the operator
of interaction between the electromagnetic field and the
two-level system was not specified, formulas (14)–(16)
are valid not only for the electric dipole interaction, but
for the other (e.g., quadrupole) interactions as well. In
the case of the electric dipole interaction, the suscepti-
bility in the absence of relaxation is

(17)

χ' ω( ) d2N
"

---------- ∆
∆2 Ω2+
------------------,=

χ'' ω( ) 0.=

i"
∂Ψ
∂t

-------- H0 V t( )+[ ]Ψ ,=

V t( ) V ωt.cos=

V t( ) V1 ωt V2 ωt φ+( ).cos+cos=

V V1
2 2V1V2 φ V2

2+cos+ ,=

ωt ωt θ,+

θsin
V2 φsin

V1
2 2V1V2 φ V2

2
+cos+

---------------------------------------------------------.–=

Ω̃ Ω1
2 2Ω1Ω2 φ Ω2

2+cos+ ,=

χ' ω( ) d2N
h

---------- ∆
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2 2Ω1Ω2 φ Ω2
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-------------------------------------------------------------------,=
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AND THEORETICAL PHYSICS      Vol. 100      No. 2      2005



ON THE NATURE OF “COHERENT ARTIFACT” 281
The fact that the susceptibility is real allows us to use a
relation between the susceptibility and refractive index,
which is valid for transparent media:

(18)

Accordingly, for  ! ∆, the reflection coefficient is

(19)

A comparison of expression (19) to the phenomenolog-
ical formulas (2) and (6) shows their close similarity. In
the case of a quasi-stationary excitation, Ω1 and Ω2
depend on the slowly varying amplitude and phase, that
is, are also slowly varying functions of time. If the
phased modulation is absent, we have

where Ai(t) are slowly varying pulse amplitudes. The
first term in square brackets of expression (19) corre-
sponds to the background reflection coefficient R0,
while the second and third terms correspond to changes
in the reflection coefficients induced separately by the
pumping and probing pulses. The last term (which is
absent in the phenomenological formula) describes the
mutual influence of the two pulses. Formula (19) does
not contain explicit dependence of the reflection coeffi-
cient on the time with a period of the carrier wave, but it
naturally reflects the influence of the relative phase of the
two waves, φ = ω0τ, which removes the inconsistency of
the phenomenological approach. Expression (19) shows
that, during the coherent interaction of two laser pulses
with the medium. The reflection coefficient cannot be
independently determined for each of the waves and
has a physical meaning only for their combination.
Even a small change in amplitude of one of the waves
will lead to a change in the reflection coefficient for the
other wave as well. Using relation (19), we readily
obtain an expression for the reflected signal measured
using our differential technique:

(20)

This expression coincides in form with relation (10)
obtained within the framework of the phenomenologi-

n 1 4πχ' ω( )+ 1 4πd2N
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cal model. It should be noted that the dependence of the
signal on the orientation of the polarization of laser
beams relative to the crystal axes can be also deter-
mined taking into account the tensor character of the
dipole moment of the transition. We did not perform
this analysis for the sake of simplicity. The only signif-
icant difference between formula (20) and relation (10)
is related to the sign. According to the two-level model,
a nonlinear additive to the reflection coefficient must
always lead to a decrease in reflection of the probing
beam, whereas experiment shows the opposite trend.1 

Thus, a simple two-level model unexpectedly pro-
vides a good qualitative description of the observed fea-
tures of the coherent artifact. The physical reason of the
mutual influence of laser pulses in this model is abso-
lutely clear, being related to the conservation of the
total probability. As is known, the interaction of a two-
level system with an external harmonic field leads to
periodic oscillations in the probability to find the sys-
tem in an excited state. Therefore, a delayed probing
pulse finds the system in the state of a superposition
with a certain phase whose value determines the inter-
action of the probing pulse with the excited system.

5. CONCLUSIONS

The results presented in this paper show that the so-
called coherent artifact possesses a regular structure,
has a reproducible character, and appears as a result of
conservation of the total probability of finding the elec-
tron system in one of the two possible (ground or
excited) states in the course of the interaction of the
medium with spatially superimposed pumping and
probing pulses. A good qualitative description of the
experimentally observed properties of the coherent arti-
fact, provided by the simple phenomenological model,
makes it possible to use this artifact as a natural marker
determining the zero point on the relaxation curve. This
approach to determining the zero point offers consider-
able advantages to the other known methods (e.g.,
reversal of the time axis by means of changing the role
of the beams with the transfer of photodiodes from
probing to pumping beam channel or use of an auxiliary
crystal replacing the sample [2]). Indeed, the method
employing the artifact allows the position of the zero
delay time to be determined immediately in the course
of measurements, without introducing additional
changes into the experimental setup. The slow compo-
nent of the coherent artifact is proportional to the corre-
lation function of the laser pulse intensities and can be
used for optimization of these intensities in the course
of measurements.

1 The authors are grateful to the referee for drawing their attention
to the fact that the discrepancy between the two-level model and
experiment in the sign of the effect is quite reasonable, since a
field-induced decrease of the average population difference in the
two-level system always leads to a decrease in the resonance
additive to the permittivity and, hence, in the refection coef-
ficient.
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Abstract—The spectrum of weak probe field absorption (amplification) by two-level atoms experiencing col-
lisions with buffer gas atoms in a strong resonance laser field is studied theoretically. Analysis is carried out for
systems with a weak Doppler broadening under relatively mild constraints on the strong field intensity for the
general case of an arbitrary change in the phase of the radiation-induced dipole moment in elastic collisions of
gas particles. It is shown that, in spite of uniform broadening of the absorption line, the probe field spectrum
exhibits a clearly manifested anisotropy to mutual orientation of the wavevectors of strong and probe radiation.
It is found that the width of resonances in the probe field spectrum under definite conditions (that can easily be
created in experiments) is proportional to the diffusion coefficient for atoms interacting with radiation. This fact
can form the basis of the spectroscopic method for measuring the transport frequencies of collisions between
particles absorbing radiation and buffer particles. It is shown that phase memory effects in collisions strongly
modify the probe field spectrum both qualitatively and quantitatively. Simple operative formulas proposed for
the probe field spectrum are convenient for experimental data processing. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The probe field method developed in the 1970s is
one of the most widely used and effective methods in
nonlinear spectroscopy [1–3]. The essence of the
method is that a weak (probe) field “sounds” the struc-
ture of atomic states perturbed by a strong field. The
possibility of varying the frequency, polarization, and
direction of propagation of the probe field renders this
method a powerful tool for studying various relaxation
processes.

The study of the interaction between the weak field
and atoms in the strong resonance laser field is also
important due to the possibility of noninversion ampli-
fication of radiation. The possibility of noninversion
amplification of radiation was predicted by Rautian and
Sobel’man [4], who considered the interaction between
a probe field and two-level atoms perturbed by a strong
laser field. It turned out that the probe field is not
absorbed but amplified by the noninversion medium in
a certain frequency range. In this case, nonlinear inter-
ference effects1 are responsible for noninversion ampli-
fication [1]. The noninversion amplification effect by
two-level atoms, which was predicted in [4], was sub-
sequently studied in many theoretical works [5–11] and
was observed experimentally in the rf range [12, 13]
and in the optical spectral region [14, 15].

1 Coherent nonlinear phenomena in atoms associated with correla-
tion of quantum states, which is caused by an external field, are
known as nonlinear interference effects [1].
1063-7761/05/10002- $26.000283
The interaction between the probe field and atoms
was investigated by theorists under certain assumptions
and using some approximations. Calculations were
made either in the framework of perturbation theory in
the strong laser radiation intensity or by disregarding
atomic motion and collisions. At the same time, the
results of contemporary experiments cannot be inter-
preted in the framework of perturbation theory in the
strong field intensity, and atomic collisions should be
consistently taken into account.

In this paper, we present a theoretical analysis of the
spectrum of absorption (amplification) of a probe field
by two-level atoms located in a strong resonance laser
field and experiencing collisions with buffer gas atoms.
The analysis is carried out under a relatively mild con-
straint imposed on the strong field intensity in the gen-
eral case of random variation of the phase of the radia-
tion-induced dipole moment (from complete breakdown
to complete conservation) in elastic collisions of gas par-
ticles (phase-preserving collisions are known to lead to
the Dicke effect of spectral line narrowing [1, 2]). We
consider the case of interaction between atoms and
radiation with a low rate selectivity, which corresponds
to a weak Doppler broadening as compared to the sum
of the collision rate and the radiation relaxation rate.
This enabled us to apply a simple computational
method based on the velocity-averaging procedure
directly in the kinetic equations for the density matrix.
This led to equations coinciding with the corresponding
system of equations for stationary particles to within
 © 2005 Pleiades Publishing, Inc.
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the redefinition of relaxation constants, which reflects
the motion of particles in accordance with the diffu-
sion law.

It may appear that allowance for the motion of
atoms in the case of a weak Doppler broadening should
only introduce small corrections to the probe field spec-
trum. It turns out, however, that the motion of atoms
must necessarily be taken into account even in the case
of a weak Doppler broadening since it leads to an unex-
pectedly sharp qualitative and quantitative (by several
orders of magnitude) transformation of the probe field
spectrum. The present paper is devoted to theoretical
analysis of this unexpectedly sharp transformation of
the probe field spectrum.

2. BASIC EQUATIONS

Let a two-level atom be in an external electromag-
netic field %%%% represented by a strong and a weak run-
ning wave which are in resonance with the m–n transi-
tion between the ground (n) and excited (m) energy
levels:

(1)

The quantities with subscript µ characterize a weak
(probe) field; ω, ωµ and k, kµ are the frequencies and
wavevectors of the corresponding waves; and ϕ0 is the
phase shift of the probe field relative to the strong field.
In the resonance approximation, the interaction between
radiation and two-level particles is described by the fol-
lowing kinetic equations for density matrix [1]:

(2)

where

(3)

Here, ρi(v) is the velocity distribution of the particles at
the ith level (i = m, n); S[ρi(v)] and S[ρmn(v)] are colli-

%%%%
1
2
--- E ik r iωt–⋅( )exp{=

+ Eµ ikµ r iωµt– ϕ0–⋅( )exp } c.c.+

d
dt
----- Γm+ ρm v( ) S ρm v( )[ ]=

– 2Re i G* Gµ* iϕ–( )exp+[ ]ρ mn v( ){ } ,

d
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-----ρn v( ) Γmρm v( ) S ρn v( )[ ]+=

+ 2Re i G* Gµ* iϕ–( )exp+[ ]ρ mn v( ){ } ,

d
dt
-----

Γm

2
------ i Ω0 k v⋅–( )–+ ρmn v( )

=  S ρmn v( )[ ] i G Gµ iϕ( )exp+[ ] ρ n v( ) ρm v( )–[ ] ,+

ϕ q r εt– ϕ0, q–⋅ kµ k,–= =

ε ωµ ω, Ω0– ω ωmn,–= =

G
dmnE
2"

------------, Gµ
dmnEµ

2"
--------------.= =
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sion integrals; Γm is the spontaneous decay rate for the
excited level m; dmn is the matrix element of the dipole
moment for the m–n transition; and ωmn is the m–n tran-
sition frequency.

For the collision integrals in Eqs. (2), we will use the
strong collision model [1]

(4)

where W(v) is the Maxwellian velocity distribution,
νm and νn are the frequencies of collisions of absorbing
particles in the excited and ground states with buffer
particles, and ν and  are “nondiagonal” frequencies of
“departure” and “arrival”, which are complex-valued
quantities in the general case. Quantities νi  (i = m, n)
are connected with diffusion coefficient Di of particles

in the ith state via the relation Di = /2νi , where vT is
the most probable velocity of absorbing particles [16].
The case when phase memory is not preserved during
collisions corresponds to

(5)

In the case of completely preserved phase memory dur-
ing collisions, the frequencies ν and  of departure and
arrival are real-valued and identical [1]:

(6)

To simplify the problem, we will confine our analy-
sis to the case when the transport collision frequencies
differ insignificantly,

(7)

Under this condition, collision frequencies νm and νn

can be replaced by the average transport frequency

(8)

It should be noted that condition (7) imposed on colli-
sions of any type (collisions preserving the phase of the
radiation-induced dipole moment as well as those caus-
ing a strong phase mismatching). Indeed, the estimates
obtained using the rigid sphere model show (see Con-
clusions) that phase memory effects can be manifested
when the difference between transport collision fre-

S ρi v( )[ ] ν i– ρi v( ) ν iρiW v( ),+=

ρi ρi v( ) v, id∫≡ m n,,=

S ρmn v( )[ ] –νρmn v( ) ν̃ρmnW v( ),+=

ρmn ρmn v( ) v,d∫≡

ν̃

v T
2

ν̃ 0.=

ν̃

ν̃ ν νm νn.= = =

νm νn–
νn

-------------------- ! 1.

ν
νm νn+

2
-----------------.=
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quencies is small (under a few percent). On the other
hand, condition (7) is satisfied even when collision fre-
quencies differ by 10–15%; in this case, collisions are
responsible for a fortiori strong phase mismatching in
an atomic oscillator.

We seek a solution to Eqs. (2) in the form

(9)

Matrix elements Ri(v) and R(v) correspond to the solu-
tion with strong field G alone. Small corrections ri(v),
r(v), and (v) are due to the presence of probe field Gµ .

Under steady-state and spatially homogeneous con-
ditions, in the first approximation in Gµ , system of
equations (2) after substituting relation (9) and taking
into account condition (7) splits into the following two
subsystems:

(10)

and

(11)

Here, the following notation has been introduced:

(12)

Prime and double prime indicate the real and imaginary
parts of a complex number, respectively. Quantities R,
Ri , r, , and ri appearing in Eqs. (10) and (11) are inte-
grals over velocities of quantities R(v), Ri(v), r(v),

(v), and ri(v), respectively (R ≡ (v)dv, etc.). In

deriving system of equations (11), we used the relation
rm(v) + rn(v) = 0, which is valid under condition (7).

In accordance with generally accepted rules, the
probability of probe field absorption at frequency ωµ

ρi v( ) Ri v( ) 2Re ri v( ) iϕ( )exp[ ] , i+ m n,,= =

ρmn v( ) R v( ) r v( ) iϕ( )exp r̃ v( ) iϕ–( ).exp+ +=

r̃

Γm ν+( )Rm v( ) νRmW v( ) 2Re iG*R v( )[ ] ,–=

Rm v( ) Rn v( )+ Rm Rn+( )W v( ),=

Γ i Ω k v⋅–( )–[ ] R v( )

=  ν̃RW v( ) iG Rn v( ) Rm v( )–[ ]+

Γm ν i ε q v⋅–( )–+[ ] rm v( )
=  νrmW v( ) i Gr̃* v( ) GµR* v( ) G*r v( )–+[ ] ,+

Γ i Ωµ kµ v⋅–( )–[ ] r v( ) ν̃rW v( )=

– 2iGrm v( ) iGµ Rn v( ) Rm v( )–[ ] ,+

Γ i ε Ω– q k–( ) v⋅–[ ]–{ } r̃* v( )
=  ν̃*r̃*W v( ) 2iG*rm v( ).+

Γ
Γm

2
------ ν', Ω+ Ω0 ν'',–= =

Ωµ ωµ ωmn– ν''.–=

r̃*

r̃* R∫
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(the number of radiation absorption events per unit time
per absorbing atom) is defined as

(13)

where N is the concentration of absorbing particles. For
ωµ ≠ ω, oscillating terms exp(–2iϕ) and Rexp(–iϕ) on
the right-hand side of Eq. (13) can be disregarded and
the formula for the probe field absorption probability
assumes the form

(14)

This formula can also be used instead of Eq. (13) for
ωµ = ω if we take into account the fact that phase
shift ϕ0 between the probe and strong waves fluctuates
under real experimental conditions.

Thus, in compliance with the problem formulated
above, we must determine quantity r from system of
equations (10), (11).

3. THE METHOD 
OF PRELIMINARY VELOCITY AVERAGING

In the general case of an arbitrary relation between
the uniform and Doppler widths of the absorption line,
the solution of system of equations (10), (11) leads to a
too complicated and cumbersome expression for the
probe field absorption probability, which can be ana-
lyzed only using numerical methods. It turns out, how-
ever, that an approximate but very simple and effective
approach to solving these equations in velocity-inte-
grated quantities R, Ri , r, , and ri exists in the case of
uniform broadening of absorption line, when the Dop-
pler width kvT is much smaller than the value of Γ,

(15)

This approach can be called the preliminary velocity-
averaging method.

The proposed method can be described as follows.
Equations (11) and the last equation in system (10)
have the same structure and each of these equations can
be written in the form

(16)

where fa ≡ (v)dv; the quantities with subscript a are

the corresponding parameters and functions (for exam-
ple, bearing in mind the last equation in system (11), we
must set in Eq. (16) Γa = Γ, Ωa = ε – Ω , ka = q – k,
fa(v) = (v), νa = , and Qa(v) = 2iG*rm(v)).

Pµ
2
N
----Re iGµ* iϕ–( )ρmnexp[ ]–≡ 2

N
----–=

× Re iGµ* r r̃ 2iϕ–( )exp R iϕ–( )exp+ +[ ]{ } ,

r̃

Pµ
2
N
----Re iGµ*r[ ] .–=

r̃*

Γ  @ kv T .

Γa i Ωa ka v⋅–( )–[ ] f a v( ) νa f aW v( ) Qa v( ),+=

f a∫

r̃* ν̃*
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For integrated quantity fa appearing in Eq. (16), we
obtain the equation

(17)

Taking into account the fact that the relation Γa @ kavT

holds under uniform broadening condition (15), we can
calculate integral Ia using the well-known asymptotic
expansion [17]

(18)

which leads to

(19)

Let us now calculate integral Ja . The integrand Qa(v)
rapidly decreases for |v| > vT; consequently, by virtue of
condition Γa @ kavT , we disregard the Doppler shift
ka · v in the integrand of the expression for Ja , which
immediately leads to Ja = Qa/(Γa – iΩa). Considering
that function Qa(v) exhibits a weak asymmetry (under
uniform broadening conditions (15) for the absorption
line, the interaction of atoms with radiation exhibits a
low velocity selectivity; consequently, the velocity dis-
tribution for atoms in states m and n differs from the
Maxwellian distribution only slightly), we conclude
that small corrections on the order of (kavT)2/|Γa –
iΩa|2 ! 1 are discarded in the expression derived for
integral Ja . It should be noted that, in spite of the iden-
tical structure of integrals Ia and Ja , we cannot disre-
gard the Doppler shift ka · v in the integrand of the
expression for Ia in view of the strong sensitivity of fac-
tor 1 – νaIa in Eq. (17) to the value of kavT (for Γa ≈ νa).

1 νaIa–( ) f a Ja,=

Ia
W v( ) vd
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--------------------------------------------,∫=
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2
------------------+

----------------------------------------------------.=
JOURNAL OF EXPERIMENTAL A
Ultimately, we derive from Eqs. (10) and (11) com-
bined with Eqs. (17) and (19) the following equations,
which are valid to within small corrections on the order
of (kavT)2/|Γa – iΩa|2 ! 1:

(20)

Here, the following notation is introduced:

(21)

System of equations (20) should be supplemented with
the normalization condition Rm + Rn = N (Rm and Rn are
the partial concentrations of absorbing particles at lev-
els m and n and N is the total concentration of absorbing
particles).

System of algebraic equations (20) formally coin-
cides with that for particles at rest (see, for example,
[1–3]). The only difference is that the relaxation con-
stants are generalized to take into account the motion of
particles in accordance with the diffusion law. Solving
Eqs. (20) in standard way, we arrive at the following
expression for probability Pµ of probe field absorption:
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Quantity (Rn – Rm)/N appearing in this equation is the
relative difference between the populations of the
ground and excited states,

(23)

Factor Bµ in formula (22) describes the shape of the
probe field spectrum.

Formula (22) for the absorption probability is a nat-
ural generalization of the corresponding formula for
stationary particles (see, for example, problem 11
in [1]) and coincides with this formula after the substi-
tution Γk , Γµ , Γp  Γ1 and Γq  Γm . Thus, the probe
field spectrum both for stationary and for moving parti-
cles is described by the same general formula (22). The
motion of atoms is manifested only in a change in
relaxation constants Γi , i = k, q, µ, p, due to corrections
reflecting the diffusion law of motion.

Direct comparison of the results of numerical calcu-
lations of dependence Pµ(Ωµ) based on formula (22)
and on the exact formula derived by solving the system
of equations (10), (11) (we do not write here the exact
formula since it is too cumbersome) shows that for-
mula (22) successfully describes the probe field spec-
trum for any radiation intensity in the case of a strong
phase mismatching of an atomic oscillator as a result of
collisions. In the case of phase memory preserving col-
lisions, formula (22) is valid for not very high radiation
intensity, such that

(24)

It should be noted that these conditions depend on
detuning Ω of the radiation frequency and can be satis-
fied even for |G| * Γ for large values of detuning
(|Ω| @ Γ).

4. ANALYSIS OF THE PROBE FIELD SPECTRUM

Let us analyze the effect of collisions on the probe
field spectrum. Let us first investigate the behavior of
the quantities introduced in Eqs. (12) and (21) and
appearing in the final expression for the probe field
absorption probability. In the case of complete conser-
vation of phase memory during collisions, in accor-
dance with relations (6) and (8), we have

(25)

Thus, the following relation holds for completely pre-
served phase memory and a fairly high collision fre-

Rn Rm–
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quency (for  @ Γm/2):

(26)

In the absence of phase memory, it follows from
relations (5), (12), and (21) that

(27)

For partial phase memory, the relation Γ1 < Γ holds and
it may even happen that Γ1 ! Γ. Radiation frequency
detunings Ω , Ω1 and Ωµ , Ω1µ may be different on
account of collision-induced shifts. However, we will
disregard this difference in subsequent analysis and
assume that conditions (25) and (27) hold.

Under the same conditions, by virtue of relation (15),
quantities Γi (21) appearing in formula (22) for the
probe field absorption probability can be treated as real-
valued. In subsequent analysis, it will be implied that
the corresponding substitution

, (28)

i = k, q, µ, p, has already been carried out.

Let us now consider the probe field spectrum for
various values of the parameters of the problem and
write simple analytic relations for some limiting cases.

4.1. Probe Field Spectrum under Conditions
of Its Splitting into Three Components 

It is well known (see, for example, [1–3]) that the
number and position of the absorption (amplification)
spectrum components of the probe field are determined
by the effect of field-induced level splitting (the Autler–
Townes, or dynamic Stark effect). In the problem con-
sidered here, three spectral components must exist in

the general case: for Ωµ = Ω ±  and for
Ωµ = Ω .

We begin our analysis with the case when these
components are spectrally resolved. This occurs when
the following condition is satisfied:

(29)

In this case, formula (22) can be transformed to the fol-
lowing expression, in which the above-mentioned three
spectral components appear in explicit form:

(30)
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here, we have

(31)

The central spectral component lies in the vicinity of

Ωµ = Ω . Its half-width is determined by quantity .

Two side component with half-widths  lie in the

vicinity of Ωµ =  so that the separation between
them is equal to 2ΩR . Quantities A(0) and A(±) character-
ize the amplitudes of the corresponding components.
Both resonance widths and amplitudes in the probe
field spectrum are functions of intensity and radiation
frequency detuning as well as mutual orientation of
wavevectors k and kµ , collision frequency, and the
extent of conservation of phase memory during colli-
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Fig. 1. Dependence of probe field absorption probability Pµ
on frequency detuning Ωµ for collisions preserving the
phase of radiation-induced dipole moment; Ω = 0, |G|/kvT =

1, /kvT = 10, Γm/kvT = 10–2; the solid and dashed curves
correspond to k ↑↑  kµ and k ↑↓  kµ , respectively.

ν
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sions. Let us consider various special cases for expres-
sion (30).

4.1.1. High radiation intensity. For a high radiation
intensity (2|G| @ |Ω|, Γµ, Γp, Γk), formula (30) implies
that the probe field spectrum is described by the for-
mula

(32)

where

(33)

The shape of the spectrum substantially depends on the
relation between |Ω| and Γk . Let us consider two differ-
ent cases for expression (32): exact resonance of the
strong field (Ω = 0) and substantial detuning of the
strong field frequency from the absorption line center
(|Ω| @ Γk).

Exact resonance for the strong field. Let us first
consider the case when Ω = 0. In accordance with rela-
tion (32), profile Pµ(Ωµ) in this case is symmetric rela-
tive to Ωµ = 0 and has two disperse side components
located near Ωµ = ±2|G| (Fig. 1). The central Lorentzian
component is located near Ωµ = 0 and its amplitude is
many time smaller than that of the side components.
The widths of the components depend on the extent of
conservation of phase memory during collisions. As the
unit of measurements in all figures, we use the quantity

which is equal to the absorption probability for probe
radiation at the line center in the absence of the strong
field.

In the absence of phase memory (it should be
recalled that Γ1 = Γ in this case), the broadening of the
side components is determined by quantity Γef = Γ/2,
while the half-width of the central component is

 = Γ.
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In the case when phase memory is completely pre-
served during collisions, in expression (32) we have2 

(34)

where D = /  is the diffusion coefficient for parti-
cles interacting with radiation. In accordance with rela-
tions (34), the widths and amplitudes of resonances in
spectrum Pµ(Ωµ) depend on the diffusion coefficient of
particles and are anisotropic to mutual orientation of
the wavevectors of the strong and probe radiation (see
Fig. 1).

Anisotropy is manifested most clearly for Γm ! k2D.
In the case of unidirectional waves (we will henceforth
use the notation k ↑↑  kµ), for quantities (34) we have

Γef = k2D/2,  = A0 = k2D. In the case of counterprop-

agating waves (k ↑↓  kµ), we have Γef = 9k2D/2,  =
5k2D, and A0 = –3k2D. Thus, for k ↑↓  kµ, the width of
the side dispersive resonances increase by a factor of
nine as compared to the case when k ↑↑  kµ , while their
amplitudes decrease by a factor of nine and the width of
the central Lorentzian resonance decreases by a factor
of five, its amplitude “reversing its sign” (quantity A0

changes its sign).

|W| @ Gk . In this case (but still for |Ω| ! 2|G|), it fol-
lows from Eq. (32) that the line profile Pµ(Ωµ) is asym-
metric relative to point Ωµ = Ω . The side components
are Lorentzian in shape, while the central component is
dispersive (Fig. 2). Near the side component located in
the vicinity of Ωµ = 2|G| , the absorption probabil-
ity Pµ(Ωµ) < 0 (Bµ is negative), which indicates the
amplification of the probe field. Near the other side
component located in the vicinity of Ωµ = –2|G| ,
the probe field is absorbed (Pµ(Ωµ) > 0). In the case of
completely preserved phase memory, the probe field
spectrum is strongly anisotropic relative to mutual ori-
entation of wavevectors k and kµ (see Fig. 2). Upon
variation of the angle between vectors k and kµ , the
widths and amplitudes of all the three resonances

2 The difference between the moduli of wavevectors kµ and k is
small as compared to k: |kµ – k| = k|ε|/ω ! k.
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behave exactly in the same way as in the case Ω = 0
considered above.

4.1.2. Large detuning of strong field frequency.
In the limiting case of large detuning of strong field
frequency (|Ω| @ 2|G|, Γµ, Γp, Γk), formula (30) implies
that the probe field spectrum is described by the
formula

(35)

The spectrum is asymmetric relative to point Ωµ = Ω
and has two side components with half-widths Γµ and
Γp as well as the dispersive central component whose
width is determined by quantity Γq .

Half-width Γµ of the resonance in the vicinity of
Ωµ = 0 does not depend on mutual orientation of
wavevectors k and kµ . In the case of collisions leading
to a strong phase mismatch in an atomic oscillator (for
Γ1 @ (kµvT)2/2Γ), half-width Γ1 ≈ Γ. In the case of col-
lisions preserving the atomic oscillator phase (Γ1 =
Γm/2), the resonance half-width is given by

(36)
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Fig. 2. Dependence Pµ(Ωµ) for collisions preserving phase
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10–2; the solid and dashed curves correspond to k ↑↑  kµ and
k ↑↓  kµ , respectively.
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If, in addition, Γm ! 2k2D, the resonance half-width is
determined only by the diffusion coefficient (Γµ = k2D).

The resonance in the vicinity of Ωµ = 2Ω has half-
width Γp . In the absence of phase memory in collisions,
we have Γp = Γ1 = Γ. When phase memory is com-
pletely preserved during collisions, the resonance half-
width is determined by mutual orientation of wavevec-
tors k and kµ and diffusion coefficient D of particles
interacting with radiation:

(37)

If Γm ! 2k2D, we have Γp = k2D for unidirectional
waves; in the case of counterpropagating waves, the
resonance width increases by a factor of nine (Γp =
9k2D; Fig. 3).

In the vicinity of resonance Ωµ = 2Ω , amplification
of the probe field can take place. It turns out that a con-
siderable contribution to the operation of the probe field
in this region comes from the wing of the resonance line,
which is described by the first term in expression (35).
This contribution is equal to Γµ/4Ω2 (the contribution
from the third term is small). Consequently, in this
region, we have

Γ p
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Fig. 3. Dependence Pµ(Ωµ) in the vicinity of Ωµ = 2Ω for
collisions preserving phase memory; Ω/kvT = 100,

|G|/kvT = 10, /kvT = 10, Γm/kvT = 10–2; the solid and
dashed curves correspond to k ↑↑  kµ and k ↑↓  kµ , respec-
tively.
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(38)

For a high radiation intensity (4|G|4 > Ω2ΓµΓp), the
value of Bµ becomes negative, which corresponds to
amplification of probe radiation in the vicinity of
Ωµ = 2Ω .

In the case of weak phase mismatching of the
atomic oscillator during collisions and for a small rate
of spontaneous decay of the excited level, the condition
Γ1 < γΓ2/4Ω2 can be satisfied. In this case, an interesting
situation takes place: the condition for the emergence
of negative values of Bµ does not depend on strong field
frequency detuning Ω in the region

Figure 3 illustrates the possibility of amplification
of probe radiation in the far wing of the line in the vicin-
ity of Ωµ = 2Ω .

The third term in formula (35) describes the central
dispersive resonance in the vicinity of Ωµ = Ω . The res-
onance width is determined by quantity Γq , which is
defined as

(39)

on account of expression (28). The value of Γq depends
on the diffusion coefficient of particles and is anisotro-
pic to mutual orientation of the wavevectors of strong
and probe radiation.

The following important circumstance is worth not-
ing. Even in the absence of phase memory for an atomic
oscillator, the spectrum of the probe field contains a line
with “diffusion” broadening typical of the Dicke effect,
which is narrowed upon an increase in the buffer gas
pressure. This is due to the fact that the strong and
probe fields induce oscillations (beats) of population
densities (see formula (9) and Eqs. (11)). On the one
hand, these beats are sensitive to the Doppler effect; on
the other hand, their phase is not seriously affected by
collisions since the populations of the levels remain
unchanged during collisions. Thus, we are dealing here
with an almost complete analog of the Dicke effect
leading to the emergence of the corresponding spectral
structure. This structure exhibits a clearly manifested
anisotropy (Fig. 4).

The resonance amplitude is proportional to the
quantity

(40)

This expression implies that the resonance is of a purely
collision origin (the radiation relaxation constants in
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Eq. (40) are compensated). Under uniform broadening
conditions (15), the relation Γ @ k · kµD always holds;
hence, it can be concluded that phase memory effects
“quench” the central resonance.

4.2. Unsplit Probe Field Spectrum for Ω = 0 

Let us consider the probe field spectrum at exact res-
onance for the strong field (Ω = 0) in the case when all
three components overlap (i.e., for a not very high radi-
ation intensity).

The most interesting case is that when collisions
cause a considerable phase breakdown in the atomic
oscillator so that Γ1 @ (k1vT)2/2Γ and we can assume
that Γk = Γµ = Γp = Γ1. In this case, for a moderate radia-
tion intensity (for 2|G| ! Γ1), it follows from relation (22)
that the probe field spectrum is described by the
formula

(41)

where Γq satisfies relation (39) under high pressures of
the buffer gas (  @ Γm).

In accordance with formula (41), the probe field
spectrum contains two Lorentzian profiles summed
with opposite signs. The first term in the braces
describes a Lorentzian absorption line with half-width
Γ1, which is typical in the absence of a strong field. The
second term is due to the above-mentioned beats in
population densities and described a dip with half-
width Γq + 4|G|2/Γ1 against the background of the
Lorentzian profile with half-width Γ1, which is associ-
ated with the first term. The dip width is anisotropic to
mutual orientation of the wavevectors of the strong and
probe radiation. The anisotropy is manifested espe-
cially clearly for a low radiation intensity (4|G|2 !
Γ1Γq), when the dip half-width is equal to Γq . In this
case, the dip width for unidirectional waves is deter-
mined only by the radiative decay rate of the excited
state: Γq = Γm . In the case of counterpropagating waves,
the dip half-width is determined by diffusion coeffi-
cient D of absorbing particles: Γq = Γm + 4k2D. The rel-
ative depth of the dip is 4|G|2/Γ1Γq for a low radiation
intensity.

Figure 5 illustrates anisotropy in the dip width rela-
tive to mutual orientation of wavevectors kµ and k.

The special case corresponding to formula (41) is
the most promising for studying the effects of popula-
tion beats.

With increasing radiation intensity, the dip widths
for unidirectional and counterpropagating waves virtu-
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ally level out, while their depths may still differ sub-
stantially. As the intensity increases further (for 4|G|2 @
Γ1Γq), anisotropy in the probe field spectrum vanishes.

Analysis shows that, in the case of completely pre-
served phase memory, the probe field spectrum exhibits
clearly manifested anisotropy to mutual orientation of
wavevectors kµ and k for any radiation intensity.

0.6

–2 –1 0 1 2
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Ωµ/kvT
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0.7

Fig. 5. Dependence Pµ(Ωµ) for collisions that do not pre-

serve phase memory; Ω = 0, |G|/kvT = 0.1, /kvT = 10,

Γm/kvT = 10–2; the solid and dashed curves correspond to
k ↑↑  kµ and k ↑↓  kµ, respectively.
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5. CONCLUSIONS

We have theoretically investigated the spectrum of
absorption (amplification) of a weak probing field by
two-level atoms located in a strong resonant laser field
and colliding with buffer gas atoms. The analysis was
carried out for uniform broadening of the absorption
line (Γ @ kvT) for high buffer gas pressures, when the
collision frequency is high as compared to the Doppler
width of the absorption line. The problem has been
solved under a relatively mild restriction imposed on
the strong field intensity and under the conditions of an
arbitrary variation of the radiation-induced dipole
moment phase (from complete breakdown to complete
conservation) during elastic collisions of particles.

The fact that the probe field spectrum exhibits a
clearly manifested anisotropy to mutual orientation of
the wavevectors of the strong and probe fields in spite
of uniform broadening of the absorption line appears as
unexpected. In addition, the width and amplitude of
resonances in the probe field spectrum may depend on

diffusion coefficient D = /  of radiation-absorbing
particles (both in the absence of phase memory and in
the case of its conservation). This circumstance may
serve as the basis of a spectroscopic method for mea-
suring the diffusion coefficient (or transport frequency

 of collisions between absorbing and buffer particles).

It is found that the phase memory effects lead to a
very strong qualitative and quantitative change in the
probe field spectrum.

It should be noted that the phase memory effects
cannot be treated as exotic. Let us consider the condi-
tions for their emergence.

The phase memory effects strongly affect the probe
field spectrum in the case when the relation Γ1/Γ ! 1
holds for the parameters introduced in Eqs. (12)
and (21). This is equivalent to the condition of weak
variation of the potential of interaction between excited
and unexcited resonance particles and buffer particles. In
the hard sphere model, this condition can be presented
in the form of a constraint imposed on the relative
difference between the transport frequencies of colli-
sions between particles in excited states and the
ground state [18]:

(42)

where λD = "/µuT is the de Broglie wavelength for the
most probable velocity uT of relative motion, µ is he
reduced mass of colliding particle, and a is the radius of
a spherical particle. For µ = 20 amu, T = 500 K, and
a = 5 × 10–8 cm, condition (42) leads to

(43)
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The typical value of parameter |νm – νn|/νn = 10–50%
for atoms with an excited outer shell [19, 20], and the
conditions for observing the phase memory effects do
not hold. However, in transitions associated with the
excitation of electrons of inner shells (atoms of rare-
earth elements), the phase memory effects can be man-
ifested in view of the screening action of outer filled
shells [21, 22]. Phase memory is preserved almost com-
pletely during collisions involving microwave transi-
tions between energy levels of the hyperfine structure
of the ground state of alkali metal atoms in the atmo-
sphere of inert buffer gases [23, 24]. For this reason,
inert buffer gases are used in alkali metal vapor masers
for eliminating Doppler broadening [24], and one of the
first observations of the Dicke narrowing was carried
out on the transition between the states in the hyperfine
structure of the cesium atom [23]. In some molecules,
the phase memory effects can also be manifested in
vibration–rotation transitions within the same electron
state (see, for example, experimental work [25]). A
strong manifestation of the phase memory effects
should be expected for ions colliding with charged
buffer particles since scattering of particles in this case
is due to the Coulomb interaction and is weakly sensi-
tive to a change in the atomic state of ions during their
excitation.
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Abstract—We study the influence of supermassive black holes on the distribution of stars at the centers of gal-
axies. We analyze relaxation processes associated with encounters between stars and their absorption by black
holes. For an isothermal distribution of stars, we obtain the growth law and estimate the current masses of black
holes. The tidal disruption of stars near black holes is considered as a possible cause of the activity of galactic
nuclei. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

At present, the fact that the compact mass concen-
trations discovered at the centers of most galaxies are
supermassive black holes with masses of 106–109 solar
masses (M() is almost beyond question [1].

There are two scenarios for the origin of supermas-
sive black holes. They can form simultaneously with
their host galaxies (or even earlier) [2] or grow gradu-
ally, starting from a small seed black hole. In this paper,
we consider the possibilities for the growth of black
holes in terms of the latter scenario.

A black hole can affect the surrounding matter in
two ways. First, it is a source of a strong Coulomb
potential that directly affects the motion of the nearest
stars. The corresponding kinetic problem was first con-
sidered in [3]. A black hole can also absorb baryonic
matter (stars, interstellar gas) and cold dark matter from
the central part of the galactic nucleus (bulge), thereby
affecting the distribution of stars and dark matter. For
the nearest stars (whose orbits lie in the region of influ-
ence of the gravitational Coulomb potential of a black
hole), this problem was discussed previously [4–8]. In
particular, it was shown in [7, 8] that the flow of stellar
matter onto a black hole arises from the energy and
angular momentum diffusion of stellar orbits. However,
as was first pointed out in [7], a supermassive black
hole at the center of a typical galaxy must absorb stars
from a region that is much larger than the region of their
own self-consistent Coulomb potential. In this region,
the gravitational potential is determined by the distribu-
tion of stars, interstellar gas, and dark matter. In addi-
tion, we show below that, in contrast to previously con-
sidered stationary solutions, the real process is essen-
tially nonstationary.

The kinetic theory that describes the dynamics of
nonbaryonic cold dark matter alone (without baryons
and a black hole) was developed in [9]. Dark matter was
1063-7761/05/10002- $26.00 0294
shown to break up under its own gravitational forces
into spherically symmetric objects with a singular den-
sity distribution at their centers.1 These objects have
long been observed as giant galactic halos. As baryonic
matter cools down, it sinks to the bottom of the poten-
tial wells produced by dark matter and forms galaxies
with seed black holes [10]. In particular, this scenario
well explains why black holes are located exactly at the
dynamical centers of galaxies [11].

The interaction between baryonic matter and dark
matter at the center of a galaxy and, in particular, the
gravitational scattering of dark matter particles by stars
followed by their capture by a black hole were investi-
gated in [12]. It was shown that this process could give
rise to black holes with masses of (107–108)M( .

In this paper, we analyze the combined dynamics of
cold dark matter and stars in galactic nuclei. We show
that distant encounters of stars with one another and
with dark matter particles play an important role. These
encounters are responsible for the relaxation processes
in a medium of stars and dark matter that eventually
lead to the growth of a black hole. In this case, the role
of a black hole reduces not so much to a direct gravita-
tional influence as to the creation of a boundary condi-
tion that the distribution function satisfies.

This paper is structured as follows. In Section 2, we
write out the kinetic equation that describes the evolu-
tion of the distribution function for stars and dark matter
particles in a closed form. In Section 3, we discuss the
boundary conditions that the distribution function must
satisfy in the presence of a black hole. In Section 4, we
find an approximate solution of the kinetic equation for
stars in the absence of dark matter and interstellar gas
and show that the mass of the black hole as it absorbs
stars increases with time as t1/2. In conclusion, we

1 However, the degree of this singularity is not enough for a black
hole to be formed.
© 2005 Pleiades Publishing, Inc.
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obtain a rough estimate of the energy release during the
absorption of stellar matter and compare it with the
average observed activity of galactic nuclei.

2. THE KINETIC EQUATION

Let us denote the distribution functions of stars and
dark matter particles by f∗ (r, v) and fd(r, v), respec-
tively. The mass of the type-α particles per phase vol-
ume element d3rd3v  is fαd3rd3v.

The combined dynamics of the system is described
by a kinetic equation with the collision term in Lan-
dau’s form [13]:

or

(1)

Here, the Greek subscript denotes the type of particles,
Mα is the mass of the type-α particles,

is the relative collision velocity, Λ ~ ln(N/2) is the grav-
itational Coulomb logarithm, and N is the number of
particles in the system (e.g., N ~ 109 in the bulge of a
typical galaxy). The gravitational potential Ψ(r) satis-
fies the Poisson equation

where ρα(r) is the mass density of the type-α particles.
Discarding the terms of the order of Md/M∗ , we

rewrite Eq. (1) as
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Thus, the evolution of the distribution function for dark
matter particles is determined by the right-hand side of
Eq. (2), which describes their scattering by stars. For
the stars themselves, the corresponding term in Eq. (3)
has a more complex form and contains the term that
corresponds to dynamical friction (against stars and
dark matter particles).

An important feature of the motion of gravitating
particles in real galactic systems is that the collisions
are rare and, therefore, the collision term in the kinetic
equation is small compared to the remaining terms.
This implies that the changes in the orbital parameters
of an individual particle during the orbital period are
also small. This fact is easiest to take into account by
passing to the action–angle variables (I, φ), where I =
(I, m, mz) are the action variables (m is the magnitude of
the angular momentum, mz is its component along the
z axis, and I is the adiabatic invariant; all of the quanti-
ties were normalized to unit mass):

(5)

and f are the corresponding angle variables. In the new
variables, the left-hand side of the kinetic equation con-
tains no derivatives with respect to Ik and is

where ωk are the orbital frequencies that correspond
to Ik . Let us now use the fact that the collisions are rare
and, hence, the collision frequency is much lower than
the orbital frequencies. In this case, we can perform aver-
aging over the angle variables φk [12]. Equations (2) and
(3) then take the form [12, 14]
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angular momentum. It can be shown that, in this case,

and we can eliminate mz from Eq. (6). Finally, the equa-
tions take the form

(9)

(10)

Thus, the kinetic equation (1) reduces to a divergence
equation,

,

in some effective three-dimensional I–m space with a
natural cylindrical structure; the radial action I is along
the z axis, while the magnitude of the angular momen-
tum m acts as the polar radius. The distribution func-
tion, which depends only on I and m, is also cylindri-
cally symmetric.

The flux of matter through a surface in I–m space
can be determined by integrating S over this surface.
Since the I = 0 plane is a nonphysical boundary, the flux
through it must be identically equal to zero. Thus, we
have obtained the first boundary condition

(11)

The second boundary condition arises from the pres-
ence of a black hole and is discussed in the next section.

In the absence of dark matter, the simplest (but
important) solution of Eq. (9) is an isothermal distribu-
tion function:

(12)

which is specified by only one parameter, the stellar
velocity dispersion σ. This is an equilibrium distribu-
tion with a zero flux through an arbitrary surface in I–m
space. Two relations that the coefficients Rk and Rkp
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must satisfy for an isothermal function follow from
this:

(13)

The coefficients Rk and Rkp themselves are calculated
for this case in the Appendix. Here, we present the
result:

(14)

where

The isothermal distribution function written in the
action variables is

(15)

3. A BLACK HOLE: FORMULATION 
OF THE PROBLEM

The collisions of dark matter particles with stars and
their capture by a black hole were considered in detail
in [12]. Here, we assume that dark matter and interstel-
lar gas are present in the region under consideration in
insignificant amounts and discuss only the dynamics of
stars. Therefore, below, we omit the subscript “*”
for f∗ .

A black hole with a mass Mbh disrupts (and then par-
tially absorbs) all of the stars that pass near the tidal
radius

R11
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where ρ∗  is the mean stellar density (we assume it to be
comparable to the solar density ρ(). In terms of the
variables (I, m), this implies that all of the stars within
the loss cone

(16)

will be disrupted during one orbital period. On the other
hand, if the angular momentum is lower than its limit-
ing value

(17)

then the star will be captured by the black hole, irre-
spective of mt [15]. (If the black hole mass Mbh is larger
than ~3 × 108M(, the tidal radius is smaller than the grav-
itational radius rg and all stars are absorbed without dis-
ruption. For dark matter particles, the loss cone is deter-
mined only by mg.) For simplicity, we denote the maxi-
mum of the two values, mg and mt, by mt. Thus, the
capture of a star depends only on its angular momentum.

It is important to note that, since the gravitational
potential of the black hole is spherically symmetric, it
does not change the angular momenta of stars. There-
fore, if the collisions are ignored, then the number of
stars in the loss cone can only decrease (through the
capture by the black hole). The maximum value of this
quantity is determined by the initial distribution func-
tion (before the formation of a black hole). For exam-
ple, for the isothermal function (15), the total mass of
the stars in the loss cone of a black hole [12] is

Simple estimates [12] indicate that the relative increase
in black hole mass, ∆M/Mbh, caused by the capture of
these stars is small. Thus, a significant growth of the
black hole is possible only if the encounters between
stars are taken into account, since this is the only pro-
cess that changes their angular momenta.2 

The disruption of stars at m ≤ mt yields the boundary
condition to Eq. (9):

(18)

This affects the gradient of the distribution function
∂f/∂m near the boundary of the loss cone and gives rise
to a flux of stars in momentum space.

2 Here, we do not consider another effect related to the collective
interaction between stars that can also lead to the filling of the
loss cone (the so-called cone instability).

m mt≤ 2GMbhrt=

≈ 6 1018×
Mbh
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------- 
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 cm2  s –1 ,

m mg≤ 4GMbh/c,=

∆M 2π( )1/2σmt/G.=

f m mt= 0.=
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It follows from Eqs. (6), (9), and Gauss’s theorem
that the black hole growth rate dMbh

 

/

 

dt

 

 is equal to the
flux of stars through the boundary 

 

m

 

t

 

:

Since the last two terms in this equation vanish due to

the boundary condition (18), the expression for 
takes the form

(19)

Thus, to determine the current masses of black holes
and the distribution of stars around them, we must solve
Eq. (9) with the boundary conditions (11) and (18). The
choice of the isothermal function (15) as the initial con-
dition seems most natural, because this is a stationary
distribution with a self-consistent potential and without
any fluxes.

However, the disruption and capture of stars by a
black hole disturb the equilibrium and leads to the evo-
lution of the initial isothermal function. Below, we
assume that the change in the distribution function
affects only slightly the coefficients 

 

R

 

k

 

 and 

 

R

 

kp

 

 (14) cal-
culated for the isothermal function. This is a natural
assumption, since the distribution function appears in
them only via integrals. We also disregard the gravita-
tional potential of the black hole, which changes the
velocities of the particles, thereby affecting the colli-
sion processes, without directly changing their
momenta. In Section 4, we discuss the validity of these
assumptions.

4. AN APPROXIMATE SOLUTION

It appears that Eq. (9) cannot be solved exactly. In
this section, we obtain only some of the integrated char-
acteristics that allow the consumption rate 
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 of stars and
its time evolution to be estimated.

Let us first consider a region near the boundary, 

 

m

 

t

 

 

 

≤

 

m

 

 

 

!

 

  and 

 

I

 

 > 

 

m

 

. It follows from a comparison of
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This implies that the pattern near the boundary is quasi-
stationary. All of the other terms, except two terms
(with R11 and R1, which are singular for m  0
(see (14)), are on the order of R22 f/Im; i.e., they are
smaller. To get rid of the two singular terms, let us inte-
grate Eq. (9) over I and introduce

Thus, we obtain3

(20)

Using the boundary condition at m = mt yields

(21)

The isothermal function (15) remains the solution far
from the boundary,

Substituting (21) into (19), we see that

(22)

The factor C(t) can be determined from the conserva-
tion condition for the total mass

Comparing this equality with (22) and calculating the
integral (joining the two asymptotics at m = mD), we
obtain two equations:

(23)

(24)

Thus, mD is the characteristic scale that defines the
region where the distribution function changes signifi-

3 Here, we disregard the low values of I for which the terms with
R12 and R2 can also be large (but no larger than the term with
R22). In any case, it can be easily verified that the adiabatic invari-
ant near the boundary (and, hence, everywhere) can also increase
with time (since SI > 0). Therefore, the contribution of stars with
low I to the flux S and the function F is small.

F m( ) f I m,( ) I .d∫=
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cantly. If the boundary does not move, mt = const, then
the approximate solution is

(25)

(26)

Knowing the time dependence of the flux S = , we
can find the time dependence of the black hole mass

Substituting f0 yields

(27)

Remarkably, this result depends weakly on mt. There-
fore, solution (25)–(27) also remains valid if we take into
account the increase in mt with time ((16) or (17)) in
accordance with the growth of the black hole mass (27).

Taking Λ = 15 and assuming the typical stellar mass
M∗  to be close to the solar mass, we obtain

(28)

The flux of stars onto the black hole (22) is

(29)

It decreases with time as t–1/2 and is equal to 3.6 ×
1043 erg s–1 at present if σ = 200 km s–1. The value of mD

that corresponds to mass (28) is

Note that at least half of the initial mass always remains
in the region m ≤ mD. Therefore, the change in the distri-
bution function caused by the particle escape into the
loss cone will not significantly affect the coefficients Rkp.

Let us now discuss the influence of the black hole
potential. The following region of space corresponds to
the characteristic angular momentum mD at time t:

(30)

The evolution of the distribution function of stars in this
region is determined by their absorption by the black
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hole. Since this region is much smaller than the bulge
size (~1 kpc), we may disregard the outer boundary of
the distribution. On the other hand, the black hole
potential is significant at distances of 

It thus follows that for black holes whose current
masses do not exceed

(31)

the region of influence of the black hole is always
smaller than the characteristic region rD (30). There-
fore, the stars of interest move outside the region of
gravitational influence of the black hole most of the
time. In general, this conclusion agrees with the esti-
mates from [7].

Let us now briefly discuss the validity range of the
boundary condition (18). Only the quantities averaged
over the orbital period appear in all of the equations
starting from (6). The boundary condition (18) also
implies that all of the particles with the mean angular
momentum lower than mt are captured by the black hole
during one period. However, for fairly elongated orbits,
the change in the particle angular momentum over the
orbital period is comparable to the boundary angular
momentum mt . Thus, the condition for the absorption
of a star by a black hole during one orbital period is
determined not only by its mean angular momentum,
but also by its small fluctuations about the mean. (It can
be shown that the loss cone is smeared at large dis-
tances.)4 In our terms, this condition can be formulated
as follows.

The boundary condition (18) ceases to be valid at
large I > Icrit (i.e., for elongated orbits). The rms devia-
tion of the angular momentum ∆m over the period
T(I, m) is

Icrit can then be defined by the relation

Stars with I ! Icrit and m < mt will be captured by the
black hole during one period, while those with I @ Icrit
will definitely not be captured. On the other hand, as we
saw in Section 3, the main changes in the distribution
function that contribute to the flux occur on scales

4 The importance of this effect was first pointed out in [5, 7], where
the concepts of critical energy and critical radius were intro-
duced.
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where t is the age of the black hole. Hence, the loss-
cone smearing effect under discussion does not affect
the consumption rate of stars by the black hole if

(32)

This estimate can be obtained if we restrict ourselves to
the integration from I to Icrit when determining the func-
tion F(m). Relation (23) will then remain valid if Icrit @

 

m

 

D

 

. Using relation (25), we obtain condition (32).
For large 

 

I

 

 

 

@

 

 

 

m

 

t

 

, the orbital period is

(see Appendix). Given relation (16), it may be con-
cluded that, if the black hole mass at time

 

 t

 

 satisfies the
inequality

(33)

then the existence of 
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 may be disregarded. 
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×

 

10

 

6
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 corresponds to the current time. Comparing the
time dependence (33) with (28), we can easily see that
(only if 

 

σ

 

 does not change greatly) the masses of the
black holes that grow through the described relaxation
mechanism are almost always larger than 

 

M

 

crit

 

.

5. DISCUSSION

In this paper, we derived an equation that describes
the kinetic relaxation of a two-component system (stars
and dark matter) in the vicinity of a supermassive black
hole. We analyzed the possibilities for the growth of a
black hole via the consumption of stars without includ-
ing nonbaryonic cold dark matter and interstellar gas.
We showed that for black holes with current masses
less than 10

 

6

 

M

 

(

 

, (33), individual collisions between
stars near the pericenter can play an important role. At
masses larger than 10

 

8

 

M

 

(

 

, (31), the black hole potential
can strongly affect the consumption of stars. Neverthe-
less, most of the discovered black holes [11] have
masses between 10

 

6

 

M

 

(

 

 and 10

 

8

 

M

 

(

 

 for which the
approximations used above are valid. Thus, the current
masses that correspond to solution (28) are in reason-
able agreement with observational data.

Solution (28) also indicates that 

 

M

 

bh

 

 depends
weakly on time,

Therefore, the differences between the black hole
masses in nearby and distant galaxies are small and
invisible against the background of other effects. On the
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other hand, the observed relations between the black
hole masses and the stellar velocity dispersion in galac-
tic bulges (the M–σ relations: ∝σ 3.7 in [16] and ∝σ 5.3

in [17]) differ from solution (28). However, this dis-
crepancy is not catastrophic for the described theory,
since the measurement errors of the dispersion in the
range 106M( < Mbh < 108M( under discussion is too
large to make the final choice between the theoretical
(28) and empirical M–σ relations. It should also be
noted that, apart from the mentioned M–σ relation, the
Mbh–bulge mass [11] and Mbh–dark matter halo mass
[12, 18] are also discussed in the literature.

Let us now discuss the contribution of nonbaryonic
dark matter, which can increase the black hole mass
compared to (28) in galaxies where dark matter is
present in the central part in significant amounts. Previ-
ously [12], we considered the possibilities for the
growth of a black hole via the consumption of dark mat-
ter. We showed that, if the dark matter mass in the bulge
is comparable to the baryonic mass of the bulge, then its
contribution to the black hole is about an order of mag-
nitude larger than the contribution from stars:

(34)

where MH and RH are the mass and radius of the dark
matter halo, respectively.

This relation and (28) correspond to two limiting
cases where the black hole grows via the consumption
of mainly dark or baryonic matter. Given the natural
spread in parameters, solutions (28) and (34) cover the
range

(35)

which includes most of the observed black holes.
It should be emphasized that accretion of dark and

stellar matter onto black holes is attributed to scattering
by stars. Accordingly, a black hole begins to grow at a
moment t0 when both a seed black hole and its stellar
environment already exist. Thus, it is the starting
moment for all processes allowed for in the theory.
Both in Eqs. (1) and their solutions, the time t is mea-
sured from t0. It is very important the flow of matter to
a black hole behaves as (t – t0)–1/2 at t  t0 (see (28)).
This means that the most intense accretion takes place
during the formation of black hole and stellar bulge.

It is commonly assumed that the consumption of
stars by a black hole is mainly responsible for the activ-
ity of galactic nuclei [19, 20]. Based on this assump-
tion, we analyzed the observed X-ray activity of the
galactic centers using data on 46 galaxies [21]. The data

Mbh dark( ) 8 107M(
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------------------- 
  1/2

×=

×
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------------------- 

 
9/14– σ
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4/7 t
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were obtained mainly from the ROSAT and EINSTEIN
satellites, which recorded X-ray emission in the energy
ranges 0.1 to 2.4 keV and 0.2 to 4.0 keV, respectively.
Because of the high concentration of interstellar gas
and dust, the galactic centers in the low-energy part of
the energy range are usually invisible. The results are
presented in the table. Their comparison with theory
leads us to the following conclusions:

(1) The theory developed here is valid for black
holes with masses in the range 5 × 106M( ≤ Mbh ≤ 2 ×
108M( (see (35)). Most of the black holes listed in the
table (more than 60%) also lie within this range.

(2) In accordance with (29), the total power released
during the disruption of stars within the tidal radius of
a black hole is, on average, 〈S〉  ≈ 3.6 × 1043 erg s–1.
According to the table, the luminosity averaged over
N = 46 sources is

We can assume that the derived close values of 〈S〉  and
〈L〉  indicate that the estimate of the stellar flux into the
tidal radius that follows from the presented theory and
the explanation of the activity of galactic nuclei in
terms of the tidal disruption of these stars are quite
plausible.

(3) We see from the table that there is no correlation
between the masses of black holes and the activity of
galactic nuclei. Moreover, the differences in the lumi-
nosities of nuclei containing close-mass black holes
can be significant (three or four orders of magnitude).
As an example, we can cite the galaxies 3C 120 (Mbh =
2.3 × 107M(, L = 9.8 × 1043 erg s–1) and NGC 1068
(Mbh = 1.6 × 107M(, L = 1.3 × 1041 erg s–1), NGC 4459
(Mbh = 6.5 × 107M(, L = 4.2 × 1039 erg s–1) and PG
0026+129 (Mbh = 4.5 × 107M(, L = 2.8 × 1044 erg s–1).
It would be natural to assume that these differences
stem from the fact that the duration τe of the energy
emission due to the absorption of a star is much shorter
than the mean time between two absorption events, T ≈
M(/S ≈ 2000 years (29). An estimate of τe ≤ T/10 ≈
200 years follows from the observed difference
between the luminosities (three or four orders of mag-
nitude) (assuming the luminosity to decrease exponen-
tially). Therefore, we may conclude that most of the
galaxies with black holes presently radiate very weakly
and are not active at all (as, e.g., our Galaxy). On the
other hand, the maximum luminosity must be much
higher than the mean S from (29). For example, the
highest luminosity observed in PG 0052+251 is 5 ×
1044 erg s–1, which is an order of magnitude higher than
the mean luminosity.

(4) We also see from the table that there is a large
group of galaxies (NGC 4374, NGC 4594, NGC 4649,
NGC 4251 and others) with large black holes (>3 ×

L〈 〉 1
N
---- Lk〈 〉 4 1043×  erg/s.≈

k 1=

N

∑=
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X-ray luminosities and masses of supermassive black holes in galactic nuclei

Object L, erg s–1 Mbh, M( Object L, erg s–1 Mbh, M(

3C 120 (Mrk 1506) 9.772 × 1043 2.3 × 107 NGC 4203 7.471 × 1040 <1.2 × 107

1.343 × 1044 6.424 × 1040

Ark 120 (Mrk 1095) 7.805 × 1043 1.84 × 108 NGC 4258 (M106) 2.914 × 1040 4.1 × 107

Circinus 2.47 × 1040 1.3 × 106 NGC 4261 (3C 270) 1.575 × 1041 5.2 × 108

Fairall 9 6.688 × 1043 8.0 × 107 1.434 × 1041

IC 1459 8.398 × 1040 3.7 × 108 NGC 4291 6.128 × 1040 1.5 × 108

1.051 × 1041 6.769 × 1040

IC 4329A 3.748 × 1043 5 × 106 4.28 × 1040

2.541 × 1043 NGC 4342 2.077 × 1039 3.4 × 108

UGC 3973 (Mrk 79) 2.594 × 1043 5.2 × 107 NGC 4374 (M84) 6.317 × 1040 1.6 × 109

Mrk 110 1.625 × 1044 5.6 × 106 6.657 × 1040

Mrk 335 2.04 × 1043 6.3 × 106 6.138 × 1040

4.916 × 1043 NGC 4459 4.169 × 1039 6.5 × 107

Mrk 509 1.188 × 1044 5.78 × 107 NGC 4473 1.109 × 1040

Mrk 590 (NGC 863) 3.853 × 1043 1.78 × 107 5.089 × 1039 1.0 × 108

8.884 × 1043 NGC 4486 (M87) 3.257 × 1042 3.4 × 109

NGC 205 (M110) <1.172 × 1038 <9.3 × 104 NGC 4593 6.535 × 1042 8.1 × 106

NGC 598 (M33) 1.46 × 1039 <1.5 × 103 NGC 4594 (M104) 3.361 × 1040 1.1 × 109

1.902 × 1039 NGC 4649 1.002 × 1041 2.0 × 109

NGC 1068 (M77) 1.315 × 1041 1.6 × 107 1.587 × 1041

5.124 × 1041 NGC 4697 9.141 × 1039 1.2 × 108

8.81 × 1041 NGC 4945 5.447 × 1039 1.1 × 106

NGC 3115 1.773 × 1039 9.1 × 108 NGC 5548 2.182 × 1043 1.23 × 108

NGC 3227 1.371 × 1042 3.9 × 107 2.154 × 1043

7.127 × 1041 2.778 × 1043

NGC 3516 5.578 × 1041 2.3 × 107 NGC 6251 1.71 × 1042 5.4 × 108

1.084 × 1043 NGC 7469 1.699 × 1043 6.5 × 106

NGC 3608 1.174 × 1040 1.1 × 108 3.34 × 1043

NGC 3783 8.515 × 1042 9.4 × 106 2.071 × 1043

7.384 × 1042 PG 0026+129 2.798 × 1044 4.5 × 107

NGC 3998 1.425 × 1041 5.6 × 108 PG 0052+251 4.766 × 1044 2.2 × 108

NGC 4051 7.609 × 1041 1.3 × 106 PG 1211+143 1.098 × 1044 4.05 × 107

7.624 × 1041 PG 1411+442 5.049 × 1042 8.0 × 107

NGC 4151 9.025 × 1042 1.53 × 107 PG 1426+015 (Mrk 1383) 8.507 × 1043 4.7 × 108

5.578 × 1041 PG 1613+658 (Mrk 876) 1.652 × 1044 2.41 × 108

4.784 × 1041 PG 1617+175 (Mrk 877) 6.188 × 1043 2.73 × 108

Note: The black hole masses were taken from [11].
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108 M() whose activity is low. This corresponds to the
fact mentioned in Section 3 that the gravitational radius
for massive black holes is larger than the tidal radius,
and stars are swallowed entirely without being dis-
rupted and, hence, without emitting energy. The excep-
tions (e.g., galaxy NGC 4486) probably correspond to
the cases where there is much interstellar gas at the
galactic center whose absorption can lead to substantial
energy release [22].
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APPENDIX

Calculating the Diffusion Coefficients Rk and Rkp in (8)
and the Adiabatic Invariant for an Isothermal Potential 

Let us consider the coefficients Wkp and Wk defined
in formula (4). If the distribution function f∗  is isotro-
pic, i.e., depending only on energy, then the tensor Wkp

depends only on the vector v and, therefore, takes the
form

(36)

hence, calculating the convolutions Wkk and Wkpv p , we
obtain

Similarly,

(37)
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To calculate the coefficients 

 

R
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 and 

 

R

 

kp

 

 in (8), it is
convenient to use the new variables

Thus, 
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), and we derive from (8)

Denoting

and using (36) and (37), we obtain for  and 

(38)

where

All of the above results are applicable to an arbitrary
isotropic distribution function. Let us now consider the
special case of an isothermal function (12). It is conve-
nient to use the dimensionless variables

It follows from the condition

that

Thus, for example, for the orbital period, we obtain
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Rij
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It can be verified that (µ) is an almost constant quan-
tity that slowly increases from 1.77 at µ = 0 to 1.9 at
µ ≈ 0.4, the maximum possible µ.

The averaging procedure can now be written as

Calculating A, B, and D for the isothermal distribution
function yields

Note that

which leads to expression (13). Using (38), we obtain

where
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The following approximate equality holds for µ ≤ 10–4:

Finally, let us calculate the adiabatic invariant I defined
by formula (5):

Calculating the integral yields

therefore,

The isothermal function in the variables I and m is

Another useful formula, the dependence of the orbital
period T on I and m, is
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Abstract—The magnetic, magnetoelectric, and magnetoelastic properties of ErMn2O5 single crystals have
been studied at low temperatures and strong magnetic fields (up to 250 kOe) and compared to the analogous
results obtained previously for YMn2O5. Based on these data, the possible mechanisms of various spontaneous
and magnetic-field-induced phase transitions in these compounds are considered within the framework of the

theory of representations of the Pbam-  space group. It is shown that a biquadratic exchange plays an impor-
tant role in the formation (and mutual transformation) of magnetic structures revealed by neutron diffraction in
the RMn2O5 oxide family. © 2005 Pleiades Publishing, Inc. 
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1. INTRODUCTION

The family of antiferromagnetic (AFM) ferroelec-
trics representing RMn2O5 rare earth manganates
(where R3+ is the ion of rare earth element from Nd to
Lu, Y, or Bi) has received much attention of researchers.
This interest is caused by special features of the magne-
toelectric interactions in these compounds character-
ized by closely related magnetic and phase transitions.

According to neutron diffraction data [1], Mn3+ and
Mn4+ ions situated in the ab plane of RMn2O5 exhibit
spin ordering at TN ~ 40 K and form a spatially modu-
lated spin structure with the wavevector k = {1/2, 0, τ}.
At low temperatures, an ordered spin structure in these
compounds can be also formed by rare earth ions. Pre-
viously, we demonstrated [2] that YMn2O5 exhibits a
field-induced electrical ordering at temperatures below
the AFM phase transition temperature.

According to [3, 4], a number of RMn2O5 mangan-
ates (including YMn2O5) exhibit a ferroelectric phase
transition at TC = 20 K, whereby the spontaneous elec-
tric polarization is directed along the b axis of the crys-
tal structure. In [2], we also observed new phase transi-
tions induced by a strong magnetic field, but the nature
of these transitions remains incompletely clear.

The mechanisms of the new phase transitions have
also been studied in ErMn2O5, which is of interest both
independently and in comparison with the data for
YMn2O5 [2] for establishing the general laws in behav-
ior of the RMn2O5 systems. Published data on the mag-
netic structure of manganese ions in ErMn2O5 are
rather contradictory. According to Buisson [1], the
spins of manganese ions in this compound form a heli-
coidal spin structure in the ab plane. Gardner et al. [5]
1063-7761/05/10002- $26.000305
observed an amplitude-modulated structure of these
spins in the ac plane, while the spins of Er3+ ions were
ordered along the c axis of the crystal. ErMn2O5 (in
contrast to YMn2O5) exhibited no ferroelectric phase
transition near 20 K: this transition was shifted toward
higher temperatures.

In order to refine the character of the magnetic and
electrical ordering in ErMn2O5 and to elucidate the gen-
eral mechanisms of phase transitions in RMn2O5 man-
ganates, it was of interest to study the magnetic, mag-
netoelectric, and magnetoelastic properties of ErMn2O5
single crystals in strong pulsed magnetic fields (up to
250 kOe) at low temperatures (10–50 K) and compare
the results to the analogous data obtained previously for
YMn2O5 [2].

As will be demonstrated below, many features of the
interrelated magnetic and ferroelectric phase transi-
tions in the compounds studied can be explained taking
into account both the isotropic exchange interactions
and a special antisymmetric exchange in Mn3+–Mn3+,
Mn4+–Mn4+, and Mn3+–Mn4+ ion pairs.

The intrinsic low-temperature ordering in the sub-
system of rare earth ions R3+ (in cases where these ions
possess magnetic moments) leads, by virtue of the
anisotropy of the R–Mn exchange [6], to additional
interesting features in the behavior of compounds under
consideration.

2. THEORETICAL MODEL

To our knowledge, despite quite long and extensive
investigation into the properties of the RMn2O5 sys-
tems [7, 8], there have been no attempts to construct the
general picture of behavior of these systems featuring
 © 2005 Pleiades Publishing, Inc.
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a variety of phase transitions both in the presence and
in the absence of applied fields. For this reason, it
would be expedient, in addition to presenting the results
of a new series of experiments, to consider in some detail
the underlying theory as well. This consideration will be
restricted to an approximation sufficient for explaining
most of the experimental data reported so far.

Since the elementary cell of RMn2O5 contains four
Mn3+ ions (4h position) and four Mn4+ ions (4f posi-
tion), the magnetic properties of systems under consid-
eration are conveniently described in terms of linear
combinations of the spins (S1, S2, S3, S4) of Mn3+ ions
and the corresponding magnetic modes of the spins (S5,
S6, S7, S8) of Mn4+ ions, which are defined as

(1)

The numbering of ions adopted in expressions (1) fol-
lows that used in the original study of Bertaut et al. [9]
and then in [1]. In determining (within the framework
of the theory of symmetry) the corresponding magnetic
contributions to the total energy of the system, the sym-
metry and multiplicity of the lattice sites occupied by
R3+ ions (4g position) show evidence in favor of intro-
ducing symmetrized combinations of the type (1) for
the magnetically ordered R3+ ions as well. As will be
shown below (by analogy with the manganese sub-
system), the corresponding AFM order parameter is
also characterized by a two-dimensional (2D) represen-
tation. The electric polarization response induced by
virtue of the magnetoelectric interaction is quadratic
with respect to the AFM order parameter [6]. The afore-
mentioned symmetrized combinations, intended for the
description of ordering in the spin system of R3+ ions,
are also expediently used in consideration of the effect
of exchange energies of the Mn3+–R3+ and Mn4+–R3+

ion pairs (f–d exchange) on the properties of RMn2O5
systems at temperatures above that of the intrinsic
ordering of the rare earth ion subsystem (it can be
readily shown that, in our case, this is related to equiv-
alence of the corresponding irreducible representa-
tions).

In order to describe a change in the symmetry of the
system experimentally observed [1] upon a phase tran-
sition at the Neél temperature TN, we will use (accord-
ing to the Landau approach [10]) the theory of space
group representations (here, the Pbam space group) and
the theory of exchange symmetry [11]. Using the
method developed in [9, 11], the AFM structure with
the wavevector k = {1/2, 0, τ} (where τ ≈ 0.26–0.50
according to the results of high-precision experiments
on determining the magnetic structure in RMn2O5 [8])
appearing at the Neél point (TN) will be described in the

A S1 – S2 – S3 + S4, A' S5 – S6 – S7 + S8,= =

G S1 – S2 + S3 – S4, G' S5 – S6 + S7 – S8,= =

C S1 + S2 – S3 – S4, C' S5 + S6 – S7 – S8,= =

F S1 + S2 + S3 + S4, F' S5 + S6 + S7 + S8.= =
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exchange approximation in terms of the 2D representa-
tion Γ1 [9] constructed using two AFM vectors (A and
G) implementing (according to the experimental data
[1]) the main 2D AFM order parameter. One can readily
check that the vector pairs {C, –F} and {C', F'} also
correspond to the same 2D representation Γ1 as that for
the order parameter, while the vector pair {G', –A'} cor-
responds to the second 2D representation Γ2 [9].

Now we will briefly outline the construction of a
thermodynamic potential of RMn2O5 systems (for more
detail, see [2, Ref. 13]). Taking into account bilinear

exchange invariants, the “diagonal” contribution 
can be written (here, for the manganese subsystem
only) as

(2)

Mixed exchange invariants of the second order, respon-
sible for the interaction between the spin subsystems,
are as follows:

(3)

Taking into account the experimental data [1] and
using the main ideas of the Landau theory [10], we con-
clude that the following relations are valid at the phase
transition temperature (TN):

(4)

In a “zeroth” approximation, these relations lead to two
consequences immediately below TN. First, the linear
combinations of spins obey the conditions

(5a)

Second, taking into account that the spins must be uni-
modular (i.e., possess equal absolute values) [12], we
obtain the condition

(5b)

In application to the S1, S2, S3, S4 spins, this implies
(provided that A2 ≠ 0 and G2 ≠ 0) that S1 = –S2, S3 = −S4,
and (S1 – S2) ⊥  (S3 – S4). Therefore, relations (5a) and
(5b) lead to the conclusion that the AFM phase transi-
tion in the orthorhombic system studied result in the
formation of a noncollinear exchange AFM structure
(cross-like). The presence of interaction terms in the
system energy (3) (and a more thorough analysis of the
experimental data [1]) require using a more accurate
approach.

∆Φind
2( )

∆Φind
2( ) 1

2
---Λ1 A2 G2+( ) 1

2
---Λ2 C '2 F '2+( )+=

+
1
2
---Λ3 A'2 G'2+( ) 1

2
---Λ4 C2 F2+( ).+

∆Φind
2( ) Λ12 A C' G F'⋅+⋅( ) Λ13 A C G F⋅–⋅( )+=

+ Λ23 C C'⋅ F F'⋅–( ).

Λ1 TN( ) 0, Λ2 TN( ) 0,>=

Λ3 TN( ) 0, Λ4 TN( ) 0.>>

C' F' A' G' F C 0.= = = = = =

A G⋅( ) 0.=
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Taking into account the above considerations, the
subsequent analysis will be performed for the quadratic
exchange contribution to the thermodynamic potential
involving the following terms:

(6)

In order to take into account the effects of inhomoge-
neous exchange, it was possible to include gradient
exchange terms into expression (6) and consider the
vector pairs {A, G} and {C', F'} as dependent on the z
coordinate. However, as will become clear below, most
of the features in the macroscopic behavior of RMn2O5
systems observed in the temperature interval under
consideration can be explained within the framework of
the main approximation. Thus, at this stage, we may
neglect explicit contributions due to the inhomoge-
neous exchange. These contributions can be readily
taken into account using perturbation theory, but this
paper does not contain such an analysis.

In order to separate the “true,” independent mag-
netic modes in the system under consideration (via
rotation in the spin space), the above expression (6) has
to be diagonalized. As a result, the ground state of the
system will represent a certain combination of simulta-
neously ordering spins of Mn3+ and Mn4+ ions, where
the spin subsystem of Mn3+ ions plays a seeding role. In
what follows, we assume that the corresponding trivial
procedures are accomplished and the resulting second-
order exchange contribution ∆Φ(2) in the new variables
is represented as

, (7)

where the variable vector pair { , } also forms a
basis of the 2D representation Γ1 (the consideration is
restricted to the exchange contribution due to the main
ordering mode).

Besides the obvious (stabilizing) fourth-order
exchange contribution

, (8)

we will also include (taking into account close energies
of various magnetic phases of the RMn2O5 system [1])
the specific biquadratic homogeneous exchange [12]

(9)

The origin of the latter term is related to the fact that the

 –  function is a basis of the 1D representation of
the Pbam space group [9], in which the Py component
of the electric polarization vector is transformed (see

∆Φ̃ 2( ) 1
2
---Λ1 A2 G2+( )=

+ Λ12 A C' G F'⋅+⋅( ) 1
2
---Λ2 C'2 F'2+( ).+

∆Φ 2( ) 1
2
---Λ̃2 Ã

2
G̃

2
+( )=

Ã G̃

∆Φ1
4( ) 1

2
---Λ4

1( ) Ã
2

G̃
2

+( )
2

=

∆Φ2
4( ) 1

4
---Λ4

2( )
Ã

2
G̃

2
–( )

2
.=

Ã
2

G̃
2
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below). The term (9) plays a significant role in explain-
ing the neutron diffraction data [1] (including the pres-
ence of magnetic phases of three types) and, which is
especially important, in interpreting the experimental
data concerning the specific spin reorientation (at T =

T*, where (T*) = 0) with the formation of a two-

domain magnetic state (either  ≠ 0,  = 0 or  = 0,

 ≠ 0).

As can be readily checked, the aforementioned mag-
netic transformation at T* involving the isotropic-
exchange magnetoelectric contribution

(10)

is accompanied by spontaneous appearance of the elec-
tric polarization vector (induced ferroelectric transi-
tion), with the opposite directions of the electric polar-
ization components Py in various magnetic domains.
Apparently, the contribution (10) vanishes at T > T*,

where  > 0 and  = . It should be emphasized
that the contribution (10) is substantially related to the
2D character of the order parameter and, in particular,

the inversion transformation  leads to the following

transformations of the basis set functions:  = –

and  = – , so that (  – ) =  – . The
invariance of expression (10) can be also readily
checked for any other two generators of the Pbam space
group (see [9]).

It should be also noted that, below the Neél temper-
ature TN (i.e., at T* < T < TN), the relativistic interac-
tions in the presence of the antisymmetric exchange
contribution

(11)

also lead to the induced spontaneous polarization Py .
Thus, it is a general result that RMn2O5 systems exhibit
an intrinsic AFM transition and, by virtue of contribu-
tion (1), an induced ferroelectric phase transition at the
Neél point. In accordance with experiment, relation (11)
takes into account that the “AFM cross” of S1, S2, S3,
and S4 spin occurs (due to anisotropy) in the ab plane.

In the case where spins of the manganese ion sub-
system at the Neél point occur in the ac plane, the electric
polarization vector cannot appear via mechanism (11),
but then the spontaneous electric polarization will
appear by virtue of mechanism (10) at a lower temper-
ature corresponding to magnetic reorientation. As can
be readily seen from the form of the magnetoelectric

contributions  and , these terms are
retained in cases where inhomogeneity of the magnetic
structure along the c axis has a helicoidal character
(with spins occurring in the ab plane). The exchange
contribution also retains its form upon the formation of

Λ4
2( )

G̃ Ã G̃

Ã

∆ΦME
ex( ) α1Py Ã

2
G̃

2
–( )=

Λ4
2( ) Ã G̃

1

1Ã G̃

1G̃ Ã 1 Ã
2

G̃
2

G̃
2

Ã
2
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rel( ) α2Py G̃ Ã×[ ] z=
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an amplitude-modulated magnetic structure (with spins
occurring in the ac plane).

From the standpoint of the general pattern of spin
rearrangement, the aforementioned spin reorientation
transition at T* apparently consists in the following [12].
When an antiferromagnetic state appears at TN, where

(12)

(which corresponds to phase Ia according to [1]), the
pairs of AFM-ordered spins S1, S2 and S3, S4 are ori-
ented mutually perpendicularly to form the exchange
cross: (S1 – S2) ⊥  (S3 – S4), |S1 – S2| = |S3 – S4|. As can
be readily shown, the magnetic susceptibility in this
(equiarmed cross) phase according to the general ther-
modynamic considerations is isotropic, which implies
the thermodynamic relation χ⊥  = χ||.

As the temperature decreases and the  value
passes through zero at T = T*, the system apparently
exhibits intrinsic spin flop, whereby the AFM-coupled
S3, S4 pair aligns in the direction of the S1, S2 pair. If
S3 ~ S1 and S4 ~ S2, we obtain the G domain state (cor-
responding to phase IIa according to [1]); by the same
token, for S3 ~ –S1 and S4 ~ –S2, we obtain the A
domain state (corresponding to phase IIb according
to [1]). From this it follows, in particular, that the sys-
tem under consideration will exhibit sharply pro-
nounced magnetoelectric properties near the tempera-

ture T ≈ T*, where  ≥ 0. On the other hand, this
explains the role of the electric annealing field Eb

observed below T* [3]. This field, converting the sam-
ple (by means of magnetoelectric interactions) into a
monodomain state, reveals the presence of two ferro-
electric domains with PY > 0 and PY < 0 [3].

In the case of an RMn2O5 system with R = Er, the
strongly anisotropic behavior of Er3+ rare earth ions
whose spins are aligned in the c axis makes possible the
orientation transition for spins of the Mn subsystem.
Indeed, the spins of Mn3+ and Mn4+ ions can rearrange
via the anisotropic f–d exchange from the initial ab
plane to the ac plane. The stronger the f–d exchange in
the system, the higher the temperature of this transition
(which may even exceed the temperature of intrinsic
ordering in the system of rare earth ions).

Taking into account the above considerations, it is
also possible to explain features observed in the behav-
ior of the magnetoelectric susceptibility in the region of
a low-temperature (TN2 ~ 10 K) intrinsic magnetic
ordering in a rare earth ion system [13], where the addi-
tional electric polarization varied with the temperature
as the square of the magnetic order parameter.

3. EXERIMENTAL RESULTS
AND DISCUSSION

The samples of RMn2O5 single crystals were grown
by method of spontaneous crystallization [14]. The

G2 A2, G ⊥  A=

Λ4
2( )

Λ4
2( )
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magnetization curves in strong pulsed magnetic fields
were measured using the induction technique. The elec-
tric polarization and magnetostriction in strong mag-
netic fields (up to 250 kOe) were studied as described
in [15]. We have studied the magnetic, magnetoelectric,
and magnetoelastic properties of ErMn2O5 single crys-
tals and compared the results to the analogous data
obtained previously for YMn2O5 single crystals [2].

First, let us consider the magnetic-field-induced
phase transition in YMn2O5 with nonmagnetic rare
earth ions. YMn2O5 single crystals studied in [2]
showed some new low-temperature phase transitions
induced by a strong magnetic field H || b. The nature of
these transitions has remained insufficiently clear. It
was pointed out that the magnetic-field-induced longi-
tudinal electric polarization Pb(Hb) along the b axis of
the crystal exhibited a significantly different character
in the temperature intervals 20 K ≤ T ≤ TN = 40 K and
10 K ≤ T ≤ 20 K. In the 10–20 K interval, the Pb(Hb)
value exhibited a jumplike increase at a certain critical
field Hcr . At higher temperatures within the 20–40 K
interval, the Pb(Hb) value was small and exhibited a
quadratic dependence on Hb up to 250 kOe. The
observed change in behavior of the electric polarization
as a function of the magnetic field at high (T > 20 K)
and low (T < 20 K) temperatures suggests that the mag-
netic structures of YMn2O5 in these temperature inter-
vals are different.

According to the neutron diffraction data [1], the
magnetic structure of RMn2O5 admits the existence of
magnetic phases of three types and features phase tran-
sitions between these phases depending on the temper-
ature. Below TN, the magnetic structure of YMn2O5 is
modulated in the ab plane [1] and, according to the the-
ory outlined above, can be characterized in the
exchange approximation by a 2D order parameter con-
structed using two AFM vectors, A and G, obeying the
relations |G| = |A| and (G · A) = 0 (this structure corre-
sponds to type I according to [1]). Since this phase has
the isotropic magnetic susceptibility χ (χ|| = χ⊥ ), no
magnetic-field-induced phase transitions are possible,
which is confirmed by the results of our experiments at
20–40 K. As the temperature is decreased to T* = 20 K,
a term corresponding to the spin reorientation transition
to phase II probably appears in the expression for the

biquadratic exchange (T*) = 0 [1, Eq. (4)]. In this
case, A = 0 and G ≠ 0, so that the exchange cross is
formed with G and F vectors having different absolute
values (|G| @ |F|, (F · G) = 0). This creates prerequisites
for the spin reorientation transitions induced in the
magnetic field H || b, which are accompanied by jumps
in the electric polarization observed in [2].

In the case of ErMn2O5, it is necessary to consider,
in addition to the above mechanisms leading to rear-
rangement of the spin structure of manganese ions, an
additional anisotropy due to the Er–Mn interaction. The
role of this interaction especially increases at low tem-

Λ4
2( )
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peratures. Orientation of the magnetic moment of Er3+

ions in the I15/2(4f ) ground state is determined by the
crystal field, which aligns the spins of Er3+ in the c axis
direction. The exchange field acting upon the rare earth
ions in ErMn2O5 is significantly weaker than the aniso-
tropic field. This makes possible the metamagnetic
transitions of the spin flop type in the AFM sublattices
of rare earth ions. During these metamagnetic transi-
tions, the spins of manganese ions are also reoriented
due to the Er–Mn interaction.

The magnetization curves of ErMn2O5 measured
along the c axis (the direction of alignment for the spins
of Er3+ ions) showed a sharp increase in the magnetic
moment (up to 100 G cm3/g) at T = 10 K in strong mag-
netic fields (Fig. 1). This behavior is associated with a
metamagnetic transition of the ordered spins of Er3+

ions and the accompanying rearrangement of the man-
ganese subsystem. The magnetization of ErMn2O5
along the a and b axes was much smaller and exhibited
a linear dependence on the magnetic field strength
(Fig. 1). In the field H || b at T < TN = 41 K, the electric
polarization Pb(Hb) exhibited a quadratic dependence
on the magnetic field and showed no evidence of field-
induced anomalies. These results probably indicate that
the magnetic subsystem of ErMn2O5 (as well as that of
YMn2O5) is ordered at high temperatures according to
type I [1]. By virtue of the isotropic magnetic suscepti-
bility (χ|| = χ⊥ ), the equiarmed cross of the spins of
manganese ions does not favor magnetic-field-induced
phase transitions for H || b. When the ErMn2O5 crystal
was magnetized along the c axis, it led to the appear-
ance of electric polarization in various crystallographic
directions. This polarization was maximum along the b
axis and exhibited complicated dependence on field and
temperature (Fig. 2). In the region of low temperatures
(10 ≤ T < 20 K) and weak magnetic fields (about
20 kOe), we observed a negative anomaly in the polar-
ization manifested by a sharp change in the sign with
increasing field (Fig. 2a). This behavior is probably
related to rearrangement of the magnetic structures of
both erbium and manganese subsystems, as also evi-
denced by the character of the field dependence of the
magnetostriction in this temperature interval (Fig. 3).
As the field was further increased, the polarization
changed sign again (see the curves for T =15 and 16 K
in Fig. 2a), which probably reflects variations in the rel-
ative contributions of different subsystems.

It should be noted that anomalies were observed not
only in the region of low temperatures, but at 30 < T <
40 K as well. In this interval, the polarization exhibited
jumps at H = Hcr , which were probably related to spin
reorientation (Fig. 2a). The presence of field-induced
anomalies in the case of H || c at temperatures below TN
apparently indicates that spin reorientation in the man-
ganese subsystem under the action of Er–Mn exchange
is accompanied by deviation of spins from the ab plane
toward the c axis. It is natural to assume that the spins
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
of manganese ions are reoriented with decreasing tem-
perature near TR = 30 K from the ab to the ac plane as
a result of the Er–Mn interaction. This behavior is con-
sistent with the neutron diffraction data for ErMn2O5

single crystals [5], according to which the spins of Mn3+

and Mn4+ ions in the temperature range 4.2–25 K form
an amplitude-modulated structure in the ac plane,
where the spin orientation angle decreases with
increasing temperature.
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Fig. 1. Magnetization curves measured along the a, b, and c
axes of an ErMn2O5 single crystal at T = 10 K.
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Fig. 2. Plots of the electric polarization Pb along the b axis
of an ErMn2O5 single crystal versus (a) the magnetic field
Hc oriented along the c axis and (b) the temperature at a
fixed field strength Hc = 160 kOe.
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Application of magnetic field along the c and a axes
changes the orientation of the spins of manganese ions
and may lead to anomalies in the field dependence of
the electric polarization. It should be noted that such
anomalies in Pa(Ha) for H || a were observed only in the
temperature interval of T = 20–33 K in strong magnetic
fields of about 200 kOe (Fig. 4). Correctness of the
assumptions concerning changes in the magnetic struc-
ture of ErMn2O5 as dependent on field and temperature
is confirmed by the behavior of Pb(T) measured at a
fixed magnetic field of 160 kOe (Fig. 2b). As can be
seen, the electric polarization exhibits sharp variation at
low temperatures (near 15 K), which is related to the
rearrangement of both erbium and manganese sub-
systems. Then, polarization increases with temperature
up to TC ≈ 37 K and eventually decreases again due to
the transition to a paramagnetic state. As can be seen
from Fig. 2b, the electric polarization changes sign near
TR ≈ 30 K, which is probably related to reorientation of
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Hc, kOe

26
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–0.5
20

15

Fig. 3. Plots of the longitudinal magnetostriction λc versus
magnetic field along the c axis in an ErMn2O5 single crystal
at various temperatures.
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Fig. 4. Plots of the longitudinal electric polarization Pa
along the a axis of an ErMn2O5 single crystal versus the
magnetic field Ha along this axis at various temperatures.
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the spins of Mn ions from the ab plane to the ac plane
(similar to that observed for YMn2O5 in [2]). Note that
the above conclusion concerning spin reorientation
from the ab plane to the ac plane with decreasing tem-
perature in ErMn2O5 does not remove the discrepancy
between [1] and [5], according to which a modulated
structure in the manganese subsystem of this compound
is formed in different planes.

To summarize, the results of our experimental and
theoretical investigation have revealed the mechanisms
responsible for the formation of various spontaneous
and magnetic-field-induced phase transitions in AFM
ferroelectrics and provided an explanation of the mag-
netoelectric nature of these phenomena.
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Abstract—The existence of two solutions for proximity-induced superconductivity described by the Gin-
zburg–Landau theory is established in the general case. A first-order phase transition can occur between these
states, resulting in superconductive wetting. © 2005 Pleiades Publishing, Inc. 
It has been commonly believed that a critical wet-
ting transition must occur when two superconductors
characterized by different critical temperatures are
brought into contact: as the critical magnetic field
strength is approached, the proximity-induced super-
conducting layer gradually expands into the bulk of the
weaker superconductor [1]. However, it was found that
the normal state of aluminum brought into contact with
tin or tantalum can be substantially overcooled [2].

To resolve the controversy, we have analyzed the
proximity effect by applying the Ginzburg–Landau the-
ory. We have found that a first-order phase transition
can occur in the proximity-induced superconducting
layer, with a jump in the wetting-layer thickness, and
that wetting can take place only in the phase character-
ized by the larger thickness.

The possibility of diverse junction behavior can be
demonstrated under quite general assumptions. Sup-
pose that the wetting-layer thickness L increases indef-
initely as the magnetic field H approaches the critical
value Hc . Then, the system can be described by a mac-
roscopic model.

The order parameter has the equilibrium bulk value
almost everywhere in the thicker layer, deviating from
it only within a distance on the order of the coherence
length ξ from the layer boundaries. Owing to exponen-
tial decay of these deviations into the bulk of the layer,
the NS interface interacts with the junction. Thus, the
energy of the proximity-induced superconducting layer
can be represented as (cf. [3])

(1)

where  = ξ (in conventional notation [4]), σNS is
the energy of the NS interface, and σSS is the junction
energy. Note that, if the Ginzburg–Landau parameter κ
is close to 1/ , then the term proportional to
exp(−L/δ) must also be included to allow for magnetic
field penetration.

σNS σSS

H2 Hc
2–

8π
-------------------L βe L/ ξ̃– ,+ + +

ξ̃ 2

2

1063-7761/05/10002- $26.000311
When the NS interface is repelled from the junction
(β > 0), the following wetting law is obtained by mini-
mizing the energy given by (1): 

(2)

When the NS interface is attracted to the junction
(β < 0), the wetting-layer thickness remains finite as the
field strength approaches the critical value. This state
can be described only by microscopic theory.

Suppose that, in addition to the “long” state, there
exists a locally stable proximity-induced superconduc-
tive state characterized by a finite thickness. A first-
order phase transition between these states of the prox-
imity-induced superconducting layer can occur across a
curve Hs(T) > Hc(T). Since both phases have the same
symmetry, the curve Hs(T) can terminate at some criti-
cal point, as is common for first-order transitions. How-
ever, when the curves Hs(T) and Hc(T) meet at some
point (wetting point) (HWT, TWT), the system exhibits
an uncommon behavior that can also be analyzed in the
framework of a macroscopic model.

On the phase-transition curve, the energy of the
“long” (wetting) solution given by (1) equals the energy
σ of the “short” (nonwetting) one. In the vicinity of the
wetting transition point, the linear magnetic-field
dependence of σ can be neglected as compared to the
stronger dependence expressed by (1). The temperature
dependence can also be neglected by setting T = TWT

everywhere except for

(3)

where the constant C > 0, in agreement with the phase
diagram obtained by computing the Ginzburg–Landau
equation (see below). Minimizing (1) with respect to L

L ξ
Hc

H Hc–
-----------------.ln∝

σ σNS σSS–– C T TWT–( ),=
 © 2005 Pleiades Publishing, Inc.
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and matching the energy of both states, we obtain the
following expression describing the behavior of the
phase equilibrium curve in the neighborhood of TWT:

(4)

Now, we analyze the proximity effect and explore
the applicability of the Ginzburg–Landau theory to the
phase transition. We consider the simplest case of states
that are uniform in the junction plane. Then, the Gin-
zburg–Landau equations reduce to two equations for
the ψ-function and the vector potential A (Eqs. (46.8)
and (46.9) in [4]).

To formulate boundary conditions at the junction,
we must take into account only the term linear in the
order parameter ψ of the weaker superconductor,

(5)

Here, λ represents the coupling between the supercon-
ductors, and α is the value of the order-parameter phase
for the stronger superconductor near the junction.

When λ < 0, the order-parameter phases are equal at
the boundary; when λ > 0, they differ by π (this case is
known as π-junction [5]). We note here that the Gin-
zburg–Landau theory does not make any qualitative
distinction between these states. The only observable
distinction is the presence of a ubiquitous vortex carry-
ing one-half of the magnetic-flux quantum near the
curve where λ changes sign in inhomogeneous struc-
tures.

By virtue of gauge invariance at field strengths that are
low for the stronger superconductor, we can set α = 0.
Furthermore, near the bulk phase transition point,

H Hc –
T TWT–
T TWT–( )ln

------------------------------.∝–

λ ψ*eiα ψe iα–+( ).
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Fig. 1.
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where all characteristic lengths in the weaker supercon-
ductor increase, the finiteness of the magnetic penetra-
tion depth can be ignored. Then, the boundary condi-
tion naturally derived by varying the energy reduces to

(6)

The x axis is directed along the normal to the boundary
into the weaker superconductor. Note that the ψ-func-
tion and its derivative at the boundary have opposite
signs. In dimensionless quantities (see [4]), the bound-
ary condition is rewritten as

(7)

The structure of the boundary between the super-
conductors is readily calculated in the absence of mag-
netic field:

(8)

(it is assumed that λ > 0). The constant c is determined
by using the boundary condition. The corresponding
SS-junction energy contained in (1) is

(9)

where ψ0 is the value of the ψ-function at the boundary.

We have performed a numerical analysis of the
proximity effect and determined the domain of stability
for the solutions obtained. Depending on κ, magnetic
field, and temperature, there exist either one or two
(locally) stable solutions, and a phase transition
between them can occur.

Figure 1 shows the phase diagram for proximity-
induced superconductivity in aluminum calculated for
κ = 0.02 in the case when the wetting transition occurs
in the neighborhood of the critical point Tc . The phase
diagram is universal in the coordinates h = H/HWT and
τ = (T – Tc)/(Tc – TWT). The equilibrium solution below
the transition curve hs(τ) corresponds to wetting.

Figure 2 shows the effective thickness of the surface
solution

plotted versus magnetic field strength at a temperature
above the wetting transition point TWT τ = –0.38.
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At field strengths above the curve hs(τ), the equilib-
rium solution remains its finite thickness. When the sta-
bility boundary for the “short” solution hs– lies below
hc , superconductivity can penetrate into the bulk of the
weaker superconductor only after a critical nucleus
forms either in the bulk or at the junction under the so-
called incomplete wetting conditions.

When the Ginzburg–Landau parameter is small,
both short and long solutions obtained in the neighbor-
hood of the transition point admit analytical descrip-
tion. In particular, the coordinates of the point (HWT,
TWT) can be found. The short solution is characterized

by the thickness , and the corresponding ψ-func-

tion amplitude is small (∝ , see the considerations
that follow after Eq. (46.14) in [4]). The energy of the
short solution is small as compared to that of the SS-
junction energy σSS given by (9) and the NS-interface
energy given by (9) with ψ0 = 0 (see [4, Eq. (46.14)]).
Therefore, the wetting transition occurs at the point
defined by the condition σSS + σNS = 0, which yields the
value of the ψ-function at the SS junction for the long
solution at the wetting transition point, |ψ0| = 21/3, and
Λ = 21/6 – 2–1/2.

The parameter Λ increases as (Tc – T)–1 toward the
critical temperature, and wetting must always be
observed in the neighborhood of the superconducting
transition, in agreement with [1]. The wetting transition
can occur in the close neighborhood of the critical tem-
perature, where it can be described by the Ginzburg–
Landau theory, only if the parameter λ is small, i.e.,
when the superconductors are weakly coupled. If λ is
too small, (the domain of equilibrium wetting lies too

close to Tc and ξ(T) is on the order of /a, where a is
an atomic distance), then the term linear in the ψ-func-
tion must be retained in boundary condition (6)
(see [6]). In this case, the phase diagram may not con-
tain the domain of wetting solution.

A numerical analysis shows that the wetting transi-
tion discussed here can occur only in type I supercon-
ductors, whereas there exists only one surface solution

ξδ

κ

ξ0
2
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for type II superconductors, which has a finite thickness
until Hc2 is reached.
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Abstract—The theory of spin rotation waves (SRWs), representing excitations of a new type arising in two-
dimensional systems with spin–orbit interaction in an external electric field, has been developed. These intrinsic
modes correspond to rotation of the magnetic moment vector in the plane formed by the electric field vector
and the normal to the sample plate surface. An experimental method is proposed for detecting SRWs by mea-
suring the frequency dependence of the magnetic susceptibility, which exhibits a resonance at the intrinsic
mode frequency. A particular calculation is performed for a hopping conductivity model (for small-size
polarons), but it is likely that intrinsic oscillations of the SRW type also take place for the band transport, since
their appearance is related to the symmetry of the system. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The possibility of providing effective control of a
spin flow by means of an electric field [1, 2], by optical
methods [3, 4], and using contacts with a ferromagnet
[5, 6] has attracted considerable attention to the prob-
lem of spin transport in thin films in the presence of
spin–orbit interaction. Two mechanisms of interactions
in such systems were developed previously, one
by Dresselhaus [7] and the other by Rashba and Bych-
kov [8, 9]. Investigations in this direction have been
mainly devoted to materials with a broad electron band
and a weak interaction with phonons [10–15]. An alter-
native, the hopping transport mechanism for localized
electrons in the presence of spin–orbit interaction, was
recently described in [16, 17].

In the presence of spin–orbit coupling, both the
band and hopping transport mechanisms lead to funda-
mentally new phenomena related to symmetry of the
system under consideration. These include the anoma-
lous Hall effect (without an external magnetic field) [18]
and the spin Hall effect (with a transverse spin cur-
rent) [19–21]. In the presence of electric field E, the
macroscopic magnetic moment begins to rotate in the
plane formed by the E vector and the normal to the
sample plate surface. While originally predicted for the
hopping transport only [16, 17], this effect must, for
symmetry considerations, exist for the band transport
as well. It should be noted that, under usual conditions,
both the anomalous Hall effect and the magnetic
moment rotation exhibit a relaxation character. Indeed,
in the absence of an external magnetic field, the mag-
netic moment appears in the initial instant and then
decays as a result of the scattering of carriers on impu-
rities or phonons. For this reason, these effects can only
be observed either in the nonstationary regime or in
1063-7761/05/10002- $26.000314
samples of small dimensions (below the diffusion
length) with spin-polarized carriers injected via the
contact with a ferromagnet.

The situation changes in the presence of an external
magnetic field. In this case, the sample has a magnetic
moment induced by the field and, hence, the rotation of
the magnetization vector can be observed in a station-
ary regime as well. This paper presents the results of a
theoretical investigation of spin transport in the pres-
ence of spin–orbit interaction in an external magnetic
field, in a model of hopping transport (for example, of
small polarons). It will be demonstrated that the pres-
ence of spin–orbit coupling gives rise to the intrinsic
oscillation modes referred to below as spin rotation
waves (SRWs). These intrinsic oscillations can be
excited by means of an external alternating magnetic
field. It is established that this excitation has a reso-
nance character, provided that the external magnetic
field frequency coincides with that of the intrinsic
SRWs, which is manifested in the character of the fre-
quency dependence of the magnetic susceptibility.

2. BASIC EQUATIONS

The model of spin–orbit interaction in a two-dimen-
sional electron gas, which was developed in [8, 9], can
be described (to within an insignificant constant
−"2K2/4m) using the Hamiltonian

(1)

where m is the electron mass, k is the electron wavevec-
tor, s is the spin operator, and K is the vector constant
of spin–orbit coupling. The latter quantity has a dimen-
sion of the wavevector and is directed along the normal

"
2

2m
------- k s K×–( )2,
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to the plate surface (along the z axis). This study is
devoted to materials with a narrow electron band and,
hence, needs generalization. It should be noted that
expression (1) formally resembles a Hamiltonian
describing an electron in an external magnetic field.
Therefore, the required generalization can obtained
using methods developed for the description of elec-
trons in a narrow allowed band in the presence of mag-
netic field. This approach was previously used in the
theory of small polarons [22], where the generalization
was provided by writing Hamiltonian (1) in the form of
ε(k – s × K), where ε(k) is the band energy.

It should be noted that this generalization is for-
mally valid only to within a correction linear in the
parameter s × K. However, it is convenient (for techni-
cal reasons) to use the above expression in the general
form and perform linearization in the final stage.

Within the framework of such generalization, the
Hamiltonian of a system occurring in the external elec-
tric (E) and magnetic (B) fields in the site representa-
tion can be written as

(2)

where a† (a) is the electron creation (annihilation) oper-
ator; λ = 1 or 2; µB is the Bohr magneton; m is the lattice
site number; Rm is the radius vector of the mth site;

(3)

Rm'm = Rm' – Rm; Jm', m is the usual resonance integral
between m'th and mth sites; Hph is the phonon Hamilto-
nian; and Hint is the Hamiltonian of the electron–
phonon interaction. Below, the electron–phonon inter-
action is modeled by the standard Fröhlich Hamiltonian
and does not take into account the electron spin rotation
upon collisions with phonons.

In the study of hopping transport, it is convenient to
use a polaron canonical transformation [23, 24] con-
verting Hamiltonian (2) into

(4)

H Jm' m,
λ' λ, am' λ',

† am λ,

m m' λ λ ', , ,
∑=

– eE Rmam λ,
† am λ,

m λ,
∑⋅

– 2µBB sλ' λ, am λ',
† am λ, H int Hph,+ +

m λ' λ, ,
∑⋅

Jm' m,
λ' λ, Jm' m, λ'〈 | is K Rm'm×[ ]⋅( ) λ| 〉;exp=

H Jm' m,
λ' λ, Φm'mam' λ',

† am λ,

m m' λ λ ', , ,
∑=

– eE Rmam λ,
† am λ,

m λ,
∑⋅

– 2µBB sλ' λ, am λ',
† am λ, Hph,+

m λ' λ, ,
∑⋅
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where

(5)

is a multiphonon operator, b† is the operator of phonon
creation, N is the total number of sites in the crystal lat-
tice, q is the phonon wavevector, and γq is the electron–
phonon interaction constant. As can be seen from
expression (4), the spin–orbit interaction is only mani-

fested by substitution of the matrix element  for
the resonance integral Jm', m . for this reason, the theory
of hopping transport with allowance for the spin–orbit
interaction can be constructed using (naturally general-
ized) methods developed in the theory of small
polarons.

Let us introduce the density matrix in the site repre-
sentation as

(6)

where H0 is the Hamiltonian corresponding to a zero
electric field and β = (kBT)–1. Below we will assume
that the frequency of the alternating field is sufficiently
low, so that the explicit time dependence of the Hamil-
tonian has an adiabatic character. In what follows, we
retain (which is usual for the hopping transport) only
diagonal (with respect to lattice sites) components of

the density matrix, (m) ≡ . For these compo-
nents, we obtain the following balance equation (the
calculation technique is described elsewhere [24]):

(7)

where W(m', m) is the probability of hopping from m'th
to mth site in the presence of external electric and mag-
netic fields and the spin–orbit interaction. Note that
Eq. (7) is written in the Markov form, which is admit-
ted provided that the magnetic field frequency ω is not
very high, in particular, provided that β"ω ! 1. By vir-

Φm' m,
1

2N
-----------
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ρλ'

λ1 m( )–[ ]
λ1

∑⋅

=  ρλ2

λ1 m'( )Wλ2 λ',
λ1 λ,

m' m,( ),
m' λ1 λ2, ,
∑
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tue of the conservation of the number of particles, the
hopping probabilities satisfy the sum rule,

(8)

where S is the plate surface area and n is the electron
density per unit surface area; in addition, the probabili-
ties obey the following relation:

(9)

Equation (7) describes hopping transport in the
presence of external electric and magnetic fields and
the spin–orbit interaction in both ordered and disor-
dered systems. For disordered systems, this equation
can hardly be studied by analytical methods. The quan-
titative analysis requires calculations performed by
numerical methods, while qualitative conclusions can
be derived using ideas from percolation theory. In crys-
talline samples (e.g., for the model of small polarons)
with W(m', m) = W(m' – m), Eq. (7) is strongly simpli-
fied on going to the momentum representation,

(10)

where it takes the form

(11)

For studying Eqs. (7) or (11), it is convenient to pass

from the matrix form of  to a different form of writ-
ing the four-component density matrix. The first com-
ponent,

(12)

is the particle density matrix, and the other three com-
ponents,

(13)

represent the magnetic moment density matrix.

3. RESPONSE
TO ALTERNATING MAGNETIC FIELD

Let the external magnetic field B be the sum of a
constant component B0 and a time-dependent compo-

1
S
--- ρλ

λ m( )
m λ,
∑ n, Wλ1λ

λ2λ
m' m,( )

m λ,
∑ 0,= =

Wλ1λ'
λ2λ

m' m,( ) Wλ2λ
λ1λ'

m' m,( )[ ] *.=

ρλ'
λ k( ) 1

S
--- ρλ'

λ m( ) ik Rm⋅( ),exp
m

∑=

Wλ2λ'
λ1λ

k( ) Wλ2λ'
λ1λ

m( ) ik Rm⋅( ),exp
m

∑=

dρλ'
λ k( )
dt

------------------
2i
"
-----µBB sλ1λ'ρλ1

λ k( ) sλλ 1
ρλ'

λ1 k( )–[ ]
λ1

∑⋅–

=  ρλ2

λ1 k( )Wλ2 λ',
λ1 λ,

k( ).
λ1 λ2,
∑

ρλ'
λ

f m( ) ρλ
λ m( ),

λ
∑=

s m( ) sλ λ ', ρλ'
λ m( ),

λ λ ',
∑=
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nent with the amplitude b. Taking into account only the
response linear in b, we can write the expression for the
field B(t) in the complex form as

Then we perform linearization of the transport equa-
tion (11) with respect to the alternating field compo-
nent amplitude b. In a zero approximation, Eq. (11) is
the equation of transport in a constant electric field.
Considering only a stationary regime, we can omit the

time derivative (k)/dt. Restricting the consider-
ation further to a spatially homogeneous situation, we
may set k = 0 in Eq. (11), after which the equation for
the matrix f(k) becomes trivial (because f ≡ f(k = 0) =
n by virtue of the sum rule (10)) and depends neither on
the character of interactions in the system nor on the
electric and magnetic fields, provided that the number
of electrons in this system is retained.

As for the stationary value of s0 ; s(k = 0) for b = 0,
it can be determined without solving Eq. (11). This
quantity determines the thermodynamically equilib-
rium paramagnetic moment M(B0) = 2µBs0 induced by
the external field B0. It is assumed, that the electric field
does not influence the magnetic moment M.

Now we will proceed to analysis of the linear
response to the alternating magnetic field b and deter-
mine the correction s1 linear in b to the spin density
matrix s. After some transformations in Eq. (11), an
equation for this correction can be written as

(14)

where (0, 1)ρ and (0, 1)W are the corresponding values in
the zero and first approximations with respect to the
alternating field amplitude b; wc = 2µBB0/" is the cyclo-

tron frequency. The quantities  are related to f0, 1

and s0, 1 by relations (12) and (13) (with f0 = n, f1 = 0).
Let us restrict the consideration, as is usual in hop-

ping transport theory, to the lowest (quadratic) approx-
imation with respect to the resonance integral J for the
hopping probabilities (two-site model). However, it
should be borne in mind that the two-site model over-
looks important features such as the anomalous Hall
effect and the spin Hall effect, which can be described
only using hopping probabilities incorporating the
three-site terms [17]. This situation is analogous to that
in the theory of small polarons, where the Hall effect is
also described using a three-site model [22]. The
absence of the anomalous Hall effect and the spin Hall
effect is related to the fact that the two-site model
involves no entanglement between equations for the
electron (f) and spin (s) density matrices in the absence

B t( ) B0 be iωt– .+=

dρλ'
λ

–iωs1 wc s1 ρ0( ) λ1

λ2
W1( ) λ1λ

λ2λ'sλ'λ

λ{ }
∑–×+

=  
1
"
---b M ρ1( ) λ1

λ2
W0( ) λ1λ

λ2λ'sλ'λ ,
λ{ }
∑+×

ρ0 1,( ) λ
λ'
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of an external magnetic field. From the standpoint of
physics, the disappearance of anomalous Hall effects
reflects the absence of quantum interference in the two-
site hopping model [22, 24]. It should be noted that the
electron and spin degrees of freedom also exhibit no
entanglement for the band conduction mechanism in a
spatially homogeneous situation with neglect of scat-
tering [10]. Moreover, it can be shown that no such
entanglement under weak coupling to phonons is
present even with allowance for scattering if the effect
of the spin–orbit coupling is ignored.

However, in the presence of magnetic field, equa-
tions for the electron and spin degrees of freedom are
interrelated and Eq. (14) contains both a contribution
proportional to s0 and proportional to the particle con-
centration n (in the terms proportional to the hopping
probabilities). The latter contribution describes a trivial
variation of the paramagnetic dipole moment
b(dM/dB0) due to a small increment b of the magnetic
field. Below we omit this standard renormalization of
the magnetic moment and, assuming B0 to be suffi-
ciently small, also neglect the influence of a magnetic
field on the hopping probabilities in the right-hand side
of Eq. (14).

The right-hand side of Eq. (14) plays the role of a
driving force in the transport equation. Under condi-
tions of a rather small hopping probability (i.e., a small
value of the resonance integral J), the second term in
the right-hand side of Eq. (14) is small compared to the
first term and can be omitted.

Now let us consider the third term in the left-hand
side of Eq. (14). Note that, even with allowance for the
influence of the magnetic field B0 on the hopping prob-
ability, this term does not link equations for the electron
and spin components of the density matrix since,
according to our assumptions, the concentration of par-
ticle is independent of the magnetic field. Below we
assume the magnetic field to be sufficiently weak
(βµBB0 ! 1) and ignore its influence on the hopping
probability. In this approximation, it is expedient to
restrict the analysis to a linear relation between the
magnetic field and the moment, M = χB0, where the
paramagnetic susceptibility has a standard form χ =

β n. The two-site hopping probabilities in Eq. (14) at
B0 = 0 can be written as

(15)

Here, W(m', m) are the usual two-site hopping probabil-
ities according to the theory of small polarons (with

µB
2

Wλ2 λ',
λ1 λ,

m' m,( )sλ'λ

λ λ ',
∑ W m' m,( )=

× λ2〈 | is K Rmm'×[ ]⋅( )sexp

× is– K Rmm'×[ ]⋅( )exp λ1| 〉

– δm' m, W m m1,( ) λ2〈 |s λ1| 〉 .
m1

∑
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neglect of the spin–orbit coupling) in the presence of an
electric field E. For a not very strong field E, these two-
site hopping probabilities can be represented as [24]

(16)

where Ea is the activation energy for the hopping
between sites and Jm'm is the usual resonance integral
for the hoping between m'th and mth sites

In order to transform expression (15), let us find the
operator

where A = K × Rmm' . Differentiation with respect to τ
yields

Solving this equation with the initial condition s(0) = s,
we obtain

(17)

Substituting expression (17) into Eq. (15), we set τ = 1
and consider the limit A ! 1 (which corresponds to
Ka ! 1, where a is the hopping length, a is the lattice
parameter for small polarons in the case of hopping
between nearest neighbors). Then, to within the terms
on the order of A2,

(18)

Finally, substituting expression (18) into Eq. (14) and
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making transformations, we arrive at

(19)

where

(20)

is the drift velocity in the model of small polarons [24,
Eq. (16)]. Expression (20) takes into account only one
variant of hopping—that between nearest neighbors via
the sites of a square lattice with the parameter a (J is the
resonance integral between the nearest neighbors). For
the square lattice, the relaxation tensor Ωjk = δjkΩj is
diagonal (Ωij = δijΩj) and

(21)

where

(22)

is the tensor of diffusion coefficients. Orienting the x
axis along the electric field and the z axis along the nor-
mal to the plate surface, we have

(23)

–iωs1 j V K×[ ] s1×[ ] j wc s1×[ ] j Ω jks1k+ + +

=  
1
"
--- b M×[ ] j,–

V RmW m( )
m

∑ E
E
---- 1

2
---βeEa 

 sinh= =

× J2a πβ
" Ea

-------------------- βEa–( )exp

Ωx K2Dxx, Ωy K2Dyy,= =

Ωz K2 Dxx Dyy+( ),=

D jj
1
2
--- Rmj

2

m

∑ W m( )=

Dxx
1
2
---βeEa 

  J2a2 πβ
2" Ea

---------------------- βEa–( ),expcosh=
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(24)

In the limiting case of a weak electric field (βeEa ! 1),
the transverse and longitudinal components of the dif-
fusion coefficient are the same (Dxx = Dyy = D). In this
region of electric field strengths, the Ohm law is valid
and the drift velocity V is proportional to the field V =
uE, where u is the drift mobility related to the diffusion
coefficient (24) by the Einstein relation: u = βeD.

In order to solve Eq. (19), let us assume that the con-
stant component of the magnetic field is oriented along
the y axis, perpendicular to the electric field, and occurs
in the plane of the plate, while the alternating compo-
nent occurs in the xz plane and is perpendicular to the
constant component. In this geometry, s1y = 0 and

(25)

(26)

4. SPIN ROTATION WAVES

It can be demonstrated that the frequency depen-
dence of the linear response to the alternating magnetic
field (i.e., of the magnetic susceptibility) determined by
Eqs. (25) and (26) has a resonance character with a
maximum at the frequency of intrinsic spin rotation
modes. The solution of these equations has the follow-
ing form:

Dyy
J2a2 πβ
2" Ea

---------------------- βEa–( ) D.≡exp=

–iω K2Dxx+( )s1x KV ωc–( )s1z+
1
"
---bzM,–=

–iω K2 Dxx Dyy+( )+[ ] s1z

– KV ωc–( )s1x
1
"
---bxM.=
(27)

(28)

s1x
M
"
-----

bz –iω K2 Dxx Dyy+( )+[ ] bx KV ωc–( )+

ω ν– iK2 Dxx Dyy/2+( )+[ ] ω ν iK2 Dxx Dyy/2+( )+ +[ ]
--------------------------------------------------------------------------------------------------------------------------------------,–=

s1z
M
"
-----

bx –iω K2Dxx+( ) bz KV ωc–( )+

ω ν– iK2 Dxx Dyy/2+( )+[ ] ω ν iK2 Dxx Dyy/2+( )+ +[ ]
--------------------------------------------------------------------------------------------------------------------------------------,–=
where

(29)

This solution (27), (28) corresponds to rotation of the
vector of induced magnetic moment s1 along an ellipti-
cally polarized trajectory in the xz plane. Expressions
for the polarization ellipticity parameters are not pre-
sented here because they are very cumbersome. The
most important feature of this rotation is the presence of
a resonance, which corresponds to coincidence of the
magnetic field frequency ω to the characteristic fre-
quency ν. The resonance is caused by the excitation of

ν KV ωc–( )2 K4Dyy
2 /4– .=
intrinsic oscillations representing the SRWs. Recently,
it was demonstrated that the spin–orbit coupling in the
presence of an external electric field leads to rotation of
the magnetic moment in the plane formed by the elec-
tric field vector and the normal to the sample plate sur-
face [17]. In the absence of a constant magnetic field
(for ωc = 0), the frequency ωr of rotation of the mag-
netic moment is described by the formula

(30)ωr
1
2
---= K2D

E2

Ec
2

----- 1– , Ec
K

2eβ
---------.=
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This relation corresponds to the case of a weak electric
field, whereby V = uE, Dxx = Dyy = D, and u = βeD. The
quantity Ec is a minimum electric field strength at
which the magnetic moment begins to rotate.

In the presence of a constant magnetic field, the res-
onance frequency shifts by a value corresponding to the
cyclotron frequency: ω = |ωr ± ωc|, where selection of
the sign depends on the directions of the electric field
and the constant magnetic field. For determining ωr , it
is necessary to perform two measurements for the
opposite directions of the applied electric field. Then ωr

is calculated as half the sum of two measured resonance
frequencies (it is assumed that |ωr| > |ωc|).

The positive role of the constant magnetic field
component B0 in these experiments reduces to polariza-
tion of the spin moment, which makes the stationary
magnetic moment M in formulas (27) and (28) nonzero.
However, the presence of BW0 also leads to an addi-
tional “parasitic” (Larmor-type) precession of vector s1.
For this reason, it is expedient to perform such experi-
ments using magnetic fields without a constant compo-
nent and creating a polarized spin state by some other
means. Such a polarized state with M ≠ 0 can be pro-
vided, for example, by injection of polarized spins via
contact of the sample with a ferromagnetic material.
The experiments should be performed with sufficiently
thin samples, in which a distance between the opposite
sample–ferromagnet contacts is shorter than the spin
diffusion length. In this case, a homogeneous magnetic
moment is created in the sample. Note that, for the hop-
ping transport, the spin diffusion length is K–1 [17]. The
results of such experiments can be also described in
terms of Eqs. (27)–(28) with ωc = 0.

Now it will be demonstrated that the aforemen-
tioned resonance is related to the excitation of intrinsic
oscillation modes in a system with the spin-orbit inter-
action and has common features with a ferromagnetic
resonance in ferromagnets. In order to determine the
spectrum of intrinsic oscillations, let us return to
Eq. (11) for the density matrix in the absence of an exter-
nal magnetic field. Taking into account relation (18) and
performing simple transformations, we arrive at an
expression for the spin vector component r(k) in the
time-dependent Fourier representation:

(31)

where WE(k) is the Fourier component of the two-site
hopping probability (16) in an external electric field.
Using Eqs. (10) and (16), we obtain

where W(k) is the Fourier component of the hopping
probability at E = 0 such that W(k) = W(–k). In the

iωr k( )– WE k( ) WE 0( )–[ ] r k( )=

+ ir k( ) K ∇ k×[ ] WE k( )×

+
1
2
--- r k( ) k ∇ k×[ ] ] K ∇ k×[ ] WE k( )×× ,[

WE k( ) W k ieEβ/2+( ),=
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long-wavelength limit of the approximation linear in
the electric field strength, we obtain to within the terms
proportional to κ2:

(32)

Here, 2D = –(∂2/∂ )W(k)|κ = 0 is the diffusion coeffi-

cient, u = βeD is the mobility,  is the diagonal relax-
ation tensor determined by formulas (21); in a weak
electric field, Ωxx = Ωyy = K2D, Ωzz = 2K2D. Equating to
zero the determinant of the system of equations (32),
we obtain three dispersion relations for the intrinsic
modes:

(33)

(34)

where Ec is the critical electric field strength given be
formula (30).

The ω3(k) mode, which describes a diffusion-relax-
ation dynamics of the magnetic moment along the y
axis, is not of interest for the problem under consider-
ation. The ω1, 2(k) modes just represent the SRWs cor-
responding to rotation of the magnetic moment vector
in the xz plane. In the limit of k  0, the expression
for the SRW frequency simplifies to

(35)

The real part of this relation determines the resonance
frequency ωr (30) for the frequency dependence of the
magnetic susceptibility.

In order to measure the dispersion of the intrinsic
modes (33), it is necessary to create a spatially inhomo-
geneous polarized spin state M(r), for example, by irra-
diating the sample with an interference pattern of polar-
ized light. Then, the equation of motion under the
action of an external driving force can be written as (cf.
Eqs. (32) and (25)–(26))

(36)

,

where q is the wave vector of the interference pattern.
The solution of Eq. (36) exhibits a resonance at ω =
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ω1, 2(q) which makes it possible, in principle, to mea-
sure the dispersion relation of the SRW by varying the
wavelength of the interference pattern. It should be
noted that such a dispersion relation is described
according to Eq. (33) by a dimensionless parameter
κ/K. Note also that, under the conditions of spatial dis-
persion, the mode frequency (33) is shifted by –uEκx ,
which indicates that the mode drifts at a rate of uE in
the external field [25, 26].

In conclusion, let us consider numerical estimates of
the physical parameters describing the SRWs. At room
temperature and K ≈ 105 cm–1 [14, 17, 27], the critical
field according to formula (30) is Ec ≈ 104 V/cm. Esti-
mation of the resonance frequency at E ≈ 105 V/cm (i.e.,
for E @ Ec , whereby ωr ≈ KuE) and u ≈ 1 cm2/(V s)
yields ωr ≈ 1010 s–1. It should be emphasized that this
estimate is closely related to the model of small
polarons used in this study, according to which the
charge carriers possess a small mobility and, accord-
ingly, a low value of the intrinsic SRW frequency. The
resonance peak is well pronounced in cases when the Q
value, defined as the ratio of the resonance frequency to
the inverse lifetime of intrinsic oscillations, is suffi-
ciently large. According to formulas (27) and (28), the
Q value can be estimated for E @ Ec as

(37)

which shows that the condition of high Q is valid in the
region of sufficiently strong electric fields.

In this study, the SRWs were described using the
model of hopping conductivity. However, it is likely
that such elementary excitations in the presence of
spin–orbit coupling possess a universal character and
exist for any charge transport mechanism. This is
related to the presence of the K × V pseudo-vector
(V is the drift velocity), which transforms into K × E in
the region of applicability of the Ohm law. The pres-
ence of this quantity in the system studied is reflected
on the phenomenological level by the form of the equa-
tion of motion for the magnetic moment. Based on the
general considerations, the equation of motion at a non-
zero average velocity of particles can be written in the
κ–ω representation as

(38)

where U(k) = V – iDk is the drift velocity in the pres-

ence of a spatial dispersion and  is the aforemen-
tioned tensor of the inverse relaxation time. For sim-
plicity, Eq. (38) is written here for a plate isotropic in
the xy plane and is valid only in the region of not very
strong electric fields (where D and Ω are independent

Q
ωr

DK2
----------- eEβ

K
----------≈ E

2Ec

---------,= =

iωr k ω,( )– i k U k( )⋅( )r k ω,( )–=

– r k ω,( ) K ∇ k k U k( )⋅( )×[ ] Ω̂ r k ω,( ),–×

Ω̂
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of E). Otherwise, the diffusion coefficient is a tensor

and  is a biaxial tensor (rather than uniaxial as
described above for a weak electric field).

A nontrivial contribution due to the spin–orbit inter-
action is described by the second term in the right-hand
part of Eq. (38). A particular form of this term can be
restored using Hamiltonian (1) or (2), by substituting
the drift velocity U(k) for the random electron velocity
"k/m in the equation of motion for the free spin. The
form of this additional contribution to the equation of
motion indicates that the spin–orbit interaction gives
rise to an effective magnetic field proportional to K ×
∇ k(k · U(k)), which causes precession of the magnetic
moment. Direct comparison of the phenomenological
equation (38) with microscopic equation (32) shows
their complete identity and suggests that Eq. (32) has a
universal character. In particular, it can be expected that
Eq. (38) is also applicable in the case of band transport
(with properly redetermined drift velocity and diffusion
coefficient).

In a microscopic description of the magnetic
moment dynamics for the band transport, a certain
technical difficulty is encountered as a result of the two-
fold role of the electric field in the phenomena nonlin-
ear with respect to the field strength. The field produces
(i) the heating of carriers in a broad electron band and
(ii) the rotation of magnetic moment in the presence of
a directed flow of electrons. For this reason, a simpler
approach is provided by the phenomenological equa-
tion (38), which should be used with certain care. The
problem consists in description of the band transport
leading to the appearance of an additional dimension-
less parameter ∆τ/" = Kl, where ∆ = "2Kk/m is the split-
ting of the spin subbands (see, e.g., [10]) and l = "kτ/m
is the electron mean free path. According to the results
of preliminary analysis, Eq. (38) is valid only for Kl < 1
and requires modification in the case of strong spin–
orbit coupling (Kl > 1). This problem is still waiting to
be solved.

It can be expected that the intrinsic SRW frequency
in materials with high mobility at a given electric field
strength will be much greater than the estimate
obtained for this frequency above for the hopping trans-
port (at low mobility).
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Abstract—The Zeeman effect, magnetization M(H), and differential magnetic susceptibility dM/dH of ErVO4
crystals in a pulsed magnetic field have been experimentally and theoretically studied. In magnetic fields
H || [001] and H || [100], the energy levels of Er3+ ions exhibit mutual approach and crossing (the crossover
effect), which results in the peaks in dM/dH and the jumps in M(H) curves at low temperatures. The anomalies
in the magnetic properties related to the crossover in ErVO4 for H || [001] are highly sensitive to the electronic
structure of Er3+ ion, which allows this effect to be used for refining the crystal field parameters. The influence
of the temperature, field misorientation from the symmetry axis, parameters of pair interactions, and other fac-
tors on the magnitude and character of magnetic anomalies in ErVO4 crystals is considered. © 2005 Pleiades
Publishing, Inc. 
1. INTRODUCTION

The crystal field forming the electronic structure of
rare earth (RE) element ions in crystals also largely
determines their magnetic and magnetoelastic proper-
ties. Knowledge of the crystal field parameters, along
with the parameters of pair interactions in various RE
compounds, allows the magnetic behavior of the RE
crystals to be analyzed and adequately described. The
development of methods for determining and refining
the crystal field parameters in hexagonal and tetragonal
crystals is among currently important tasks in solid
state physics. In order to solve the problem, it is a com-
mon practice to use, in addition to the spectroscopic
data, the results of magnetic measurements (in particu-
lar, of the initial magnetic susceptibility) in weak mag-
netic fields. It is naturally expected that the properties
of materials in strong magnetic fields—including the
magnetization anomalies accompanying the level
crossing—are also determined to a considerable extent
by the crystal field parameters.

Indeed, the results of investigations of the phenom-
enon of energy level crossing (the crossover effect) in
RE compounds provide valuable information about the
electronic structure of RE ions as formed by the crystal
field. The crossover effect was observed and studied in
much detail in a series of RE zircons RXO4 (see,
e.g., [1, 2]) and was also predicted based on the results
of numerical calculations for RE compounds of the
RBa2Cu3O7 – δ system [3]. The dependence of the mag-
netic anomalies observed in the crossover region on the
magnetic field and the temperature is determined to a
considerable extent by the character of intersecting lev-
els and their wavefunctions. The most pronounced
anomalies have been observed in van Vleck singlet
paramagnets, where the “true” (gapless) crossover of
1063-7761/05/10002- $26.000322
the ground-state singlet level and an excited level in the
critical field Hc results in the intense narrow peak in
dM/dH. The magnetic-field-induced mixing of the
wavefunctions of intersecting levels leads to a finite gap
and smoothens the anomalies. Less pronounced anom-
alies in the crossover region can be expected for the
Kramers ions, whereby the lower component of the
lower Kramers doublet exhibits crossing with another
component of an excited or the same doublet.

This paper presents the results of theoretical and
experimental investigations of the magnetic anomalies
related to the crossing of levels of Er3+ ions in ErVO4,
a paramagnet with a zircon structure, observed in
pulsed magnetic fields H || [001] and H || [100]. A com-
parison of experimental data obtained in the pulsed
magnetic fields to the results of numerical calculations
of the magnetic properties allowed us to refine the crys-
tal field parameters and the pair interaction parameters
for the compound studied.

2. EXERIMENTAL RESULTS

The magnetization M(H) of an ErVO4 single crystal
was measured at helium temperatures for a magnetic
field H parallel to the hard magnetization axis [001].
The ErVO4 crystals were grown by method of sponta-
neous crystallization from solution in a PbO−PbF2

based melt and had an average size of 2 × 2 × 3 mm3.
The magnetization measurements were performed
using the induction technique in a pulsed magnetic field
with a pulse amplitude of up to 280 kOe and a rise time
of the field in the pulse of about 3 ms. The M(t) and H(t)
signals from the measuring and field-pick up coils,
respectively, were recorder during the field pulse at an
0.02 ms interval (a total of about 500 points). A decom-
 © 2005 Pleiades Publishing, Inc.
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pensation signal from the measuring coils was recorded
under analogous conditions in the absence of the sam-
ple and then subtracted from the total signal in the stage
of computer data processing, which gave smoothened
curves of the magnetization M(H) and its derivative
dM(H)/dH.

In addition, the magnetization curves of an ErVO4
crystal were measured at various temperatures in the
range from 1.5 to 300 K in stationary magnetic fields
with a strength of up to 80 kOe oriented parallel to the
symmetric crystallographic directions [100], [110], and
[001]. The obtained magnetic data were plotted in the

coordinates of H/M =  + bM2 versus M2 for deter-
mining the magnetic susceptibilities of the first and
third orders. For sufficiently weak magnetic field, the
H/M(M2) curves are linear, and the H/M value at M2 = 0

gives the usual magnetic susceptibility , while the
slope b is related to the nonlinear susceptibility as

 = –b/( )4.

The magnetic susceptibility of ErVO4 is anisotropic
in the directions parallel and perpendicular to the tet-
ragonal axis (Fig. 1). However, owing to the symmetry,
it is isotropic with respect to the [100] and [110] axes in
the basal plane. According to the variation of the
Stevens parameter αJ , the hard magnetization axis at
high temperatures coincides with the tetragonal axis in
the series of vanadates with RE ions from Tb to Ho, and
occurs in the basal plane for the RE vanadates with ions
of erbium (Er), thulium (Tm), and ytterbium (Yb). As

can be seen in Fig. 1, the  curve for ErVO4 at T >
150 K obeys the Curie–Weiss law, although the slopes
of the linear parts of these plots for the c and a axes are
different. This behavior suggests that the crystal field
effects at temperatures about 300 K still play a signifi-
cant role and the magnetic moment does not reach the
value µeff = 9.59µB characteristic of the free Er3+ ion.

The low-temperature magnetization of ErVO4 along
the [001] axis in the fields H < 200 kOe has a shape
characteristic of paramagnets, exhibits a jumplike
change in the vicinity of a critical field (Hc ~ 235 kOe),
and approaches saturation in higher fields (Fig. 2). The
critical field Hc is more reliably determined from the
curves of the differential magnetic susceptibility
dM/dH (Fig. 3). We believe that a small hysteresis
observed in the M(H) and dM(H)/dH curves at low tem-
peratures is probably related to incomplete correction
for the phase decompensation of measuring coils. As
the temperature increases above 10 K, the jumps in the
M(H) curves exhibit rapid smearing, while the critical
field remains almost unchanged.

3. THEORETICAL ANALYSIS

The complete Hamiltonian for a single 4f ion com-
prises a sum of the crystal field Hamiltonian HCF, the

χM
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Fig. 1. Temperature dependences of the reciprocal magnetic

susceptibility  of an ErVO4 crystal measured along the

[100], [110], and [001] directions. Solid and dashed curves
show the results of calculations with neglect of pair interac-
tions for two sets of the crystal field parameters (1 and 2,
respectively, in Table 1).
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Fig. 2. Magnetization curves for an ErVO4 crystal measured
along the [001] direction (for clarity, the curves for T = 9.5,
16.0, and 20.5 K are shifted along the y axis by 1.5 units rel-
ative to each other). Solid and dashed curves show the
results of calculations with neglect of pair interactions for
two sets of the crystal field parameters (1 and 2, respec-
tively, in Table 1).
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Zeeman term HZ (describing the interaction between
the angular momentum J and the external field H), and
the Hamiltonians of bilinear (HB) and quadrupole (HQT)
interactions:

(1)

Using the method of operator-equivalents and the
molecular-field approximation for the bilinear and qua-
drupole pair interactions, these terms can be expressed
as follows (for detail see, e.g., [4]):

(2)

(3)

(4)

(5)

Here,  and  (n = 2, 4, 6; m = 0, 4; m ≤ n) are the

H HCF HZ HB HQT.+ + +=

HCF α J B2
0O2

0 βJ B4
0O4

0 B4
4O4

4+( )+=

+ γJ B6
0O6
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HZ gJµBH J,⋅–=
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Fig. 3. Differential magnetic susceptibility curves for an
ErVO4 crystal measured along the [001] direction. Solid
and dashed curves show the adiabatic dependences calcu-
lated with neglect of pair interactions for two sets of the
crystal field parameters (1 and 2, respectively, in Table 1).
The inset shows the curves of dM/dH for the [100] axis at
T = 2.1 K calculated using sets 1 (curve 1) and 2 (curve 2)
and illustrates the effects of the temperature (T = 8 K,
curve 1') and the misorientation (∆ϕ = 2°, curve 1") for set 1.
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Stevens operators and the crystal field parameters; αJ ,
βJ , and γJ are the Stevens parameters; gJ is the Lande
factor; µB is the Bohr magneton; n is the bilinear
exchange parameter, and Gµ are the quadrupole interac-
tion constants.

The quadrupole constants entering into the general-
ized quadrupole Hamiltonian HQT can be expressed as

,

where  is the contribution due to the single-ion

magnetoelastic interaction Bµ (  is the background
elastic constant in the absence of any interaction) and
Kµ is the quadrupole pair interaction. The magnetoelas-
tic and quadrupole interactions (distortions) are
expressed in terms of symmetrized notations. The mag-
netoelastic modes of the γ and δ symmetry in the qua-
drupole Hamiltonian describe the orthorhombic defor-
mation of a tetragonal crystal along the [100] and [110]
axes, respectively, arising in the external magnetic field
or in a qadrupole-ordered phase. The α mode corre-
sponds to a distortion of the crystal retaining the tetrag-
onal symmetry, that is, to the bulk (α1) and tetragonal
(α2) deformations. We have omitted terms of the ε
symmetry (corresponding to the monoclinic deforma-
tion in the ac plane) in the expression for HQT, because
these terms do not contribute to the Hamiltonian for the
case of the magnetic field orientation in the basal plane
and along the tetragonal axis.

In order to estimate the role of quadrupole interac-
tions of the α, γ, and δ symmetry in the formation of
magnetic anomalies observed in the crossover region,
we used the parameters of interactions derived for the
nearest-neighbor vanadate HoVO4, corrected for the
trends in the RE series [5]. The magnetoelastic coeffi-
cients for the tetragonal modes α1 and α2 in HoVO4 are
comparable in magnitude (Bα1/αJ = –4.05 × 103 K,
Bα2/αJ = 6.75 × 103 K), which yields Gα ~ 0.2 mK for
ErVO4. The magnetoelastic coefficients for the orthor-
hombic modes in HoVO4 (Bγ/αJ = 13.5 × 103 K, Bδ/αJ =
–24.3 × 103 K) yields Gγ ~ 1 mK and Gδ ~ 20 mK for
ErVO4. Since bilinear interactions in ErVO4 are weak
and the ground state in the crystal field is weakly
magnetic, the magnetic ordering in this vanadate can
be expected only at temperatures significantly below
1 K [6]. However, even weak bilinear interactions for
the degenerate ground state in the case of a gapless
crossover may lead to the appearance of a transverse
component of the magnetic moment. Using the temper-
ature of ordering known for the isomorphous com-
pound DyVO4 (TN = 3 K), we have estimated the bilin-
ear exchange constant n = θ/C (θ = –1.4 K) for this
compound. Taking into account the trends in θ for the
RE series, the de Gennes empirical rule yields θ ≈
−0.5 K for ErVO4. The eigenvalues and eigenfunctions
of Er3+ ion necessary for the calculations of magnetiza-

Gµ GME
µ Kµ+ Bµ( )2

/C0
µ Kµ µ γ δ,=( )+= =

GME
µ

C0
µ
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tion and various susceptibilities were determined by
numerical diagonalization of the complete Hamilto-
nian, in which the bilinear and quadrupole interactions
of the α, γ, and δ symmetry (dependent on the elec-
tronic structure) were taken into account in a self-con-
sistent manner.

4. DISCUSSION OF RESULTS

4.1. First- and Third-Order Magnetic Susceptibilities 

Data on the crystal field parameters in pure vanadate
ErVO4 are not available and were only reported for
a doped compound Er : YVO4 (Table 1, set 3) [7]. In
addition, Guo et al. [8] determined the crystal field
parameters for ErVO4 using the Morris–Levit extrapo-
lation procedure (Table 1, set 4). We have also
attempted to describe the obtained experimental results
using the crystal field parameters available for the near-
est-neighbor vanadate (HoVO4). The crystal field
parameters of this compound, determined on the
ground-state multiplet, are commonly accepted as reli-
ably established based on numerous experimental data:

 = –126 K,  = 55 K,  = 1105 K,  = –62 K,

 = –112 K (Table 1, set 2) [5]. However, an analysis
showed that the curves calculated using the aforemen-
tioned sets of crystal field parameters do not provide
sufficiently accurate description of either the initial sus-
ceptibility or the magnetic anomalies in the crossover
region (see below). The best description of experimen-
tal data was provided by the curve calculated using the
set of parameters for HoVO4.

Using experimental data for the first-order magnetic
susceptibility (Fig. 1), it is possible to refine the crystal
field parameters of ErVO4. The curves calculated using
set 2 (Table 1) correctly describe the main features in

the behavior of (T), namely, a small anisotropy at
high temperatures and the change of easy axis at T ~

150 K. However, the curve of (T) calculated with
the same set of parameters for the hard axis [001] sig-
nificantly deviates from experiment at temperatures
below 80 K (see the inset to Fig. 1). The discrepancy
can be removed by slightly (to within 20%) varying the

crystal field parameters. The calculated (T) curve

has proved to be most sensitive to the  and  val-
ues. However a single set of the crystal field parameters
cannot be determined using only data on the initial
magnetic susceptibility. The parameters can further be
refined using the magnetic anomalies in the crossover
region (see below). The final optimized set of the crys-
tal field parameters (Table 1, set 1) provides an ade-
quate (to within the experimental error) description of

the experimental (T) curves for the [001] and [100]
axes (Fig. 1, solid curves).
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The third-order magnetic susceptibility (T) of
ErVO4 is weakly anisotropic and follows the Curie–

Weiss law, whereby ( )–1/3 ∝  (T – θ*) in the temper-
ature interval 10–40 K (Fig. 4). It should be noted that
bilinear and quadrupole interactions in ErVO4 do not

lead to any significant renormalization of . A com-
parison of the curves calculated for various sets of
parameters (cf. solid and dashed curves in Fig. 4) shows
that the optimized crystal field provides for the best
description of these experimental data as well.

4.2. Crystal Field and the Zeeman Effect 

Figure 5b shows the splitting of energy levels of Er3+

ion in the magnetic field (Zeeman effect) oriented along
the [001] and [100] axes calculated with the optimized

χM
3( )

χM
3( )

χM
3( )

Table 1.  Crystal field parameters  of Er3+ ion in RE van-
adate structure

RXO4 Set Ref. , K , K , K , K , K

ErVO4 1 This 
work

–126 55 1215 –56 –90

HoVO4 2 [5] –126 55 1105 –62 –112

Er : YVO4 3 [7] –148 65.5 1394 –62 32

ErVO4 4 [8] –113 56.3 1187 –59 –122

Bn
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Fig. 4. Temperature dependences of the reciprocal third-

order magnetic susceptibility ( )–1/3 of an ErVO4 crys-

tal measured along the [100], [110], and [001] directions.
Solid and dashed curves show the results of calculations
with neglect of pair interactions for two sets of the crystal
field parameters (1 and 2, respectively, in Table 1).

χM
3( )
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crystal field. The total splitting of the multiplet at H = 0
is about 420 K. The data are presented only for the four
lowest doublets whose interaction in the case of
H || [001] determines the main features of the crossover.
In the crystal field of vanadate, the ground-state multip-
let 4I15/2 of Er3+ ion exhibits splitting such that the ground
state corresponds to the “weakly” magnetic Kramers
doublet with the wavefunction {–0.82| ± 7/2〉 – 0.42| 
9/2〉  + …} with a small g-tensor component  sepa-
rated by a gap (on the order of 60 K) from the first and
second excited doublets forming a quasi-quartet (also

with small  values, see Table 2). In contrast, the
third excited doublet has a maximum g-tensor compo-

nent along the z axis (  @ ), with the wavefunc-
tion in the J-, Jz-representation having the form
±0.99| ± 15/2〉 . It is this feature of the spectrum and the
wavefunctions of Er3+ ion in vanadate that accounts for
the levels crossing in the case when the magnetic field
is oriented along the tetragonal [001] axis. It is interest-
ing to note that two sets of the crystal field parame-
ters—the optimized (set 1) and that for HoVO4

+−

gz
gr

gz
ex1 2,

gz
ex3 gx

ex3

Fig. 5. Zeeman effect in an ErVO4 crystal for the field ori-
ented along the tetragonal [001] axis, as calculated with
neglect of pair interactions for (a) set 2 and (b) set 1 of the
crystal field parameters (Table 1). The inset shows the Zee-
man effect for the three lowest doublets calculated using the
optimized set 1 for the field oriented along the [100] axis.
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(set 2)—give very similar spectra of Er3+ ion (Fig. 5),
differing only by inversion of the first and second
excited doublets (Table 2).

The ground-state doublet, as well as the first and
second excited doublets, exhibit not very large split-
ting in the field H || [001]. The crossover in ErVO4 is
due to the third excited doublet, the lower level of
which rapidly decreases in the field H || [001] and
becomes the ground level when the field strength
exceeds Hc ~ 235 kOe. As a result, this sublevel of the
third excited doublet with a large projection 〈Mz〉
approaches the ground level with a small projection
〈Mz〉 , which leads to a jumplike increase in the mag-
netic moment projection.

Since the magnetic field H || [001] produces mixing
of the wavefunctions of interacting levels (sublevels of
the ground-state and third excited doublets), the spec-
trum retains a finite gap at Hc . The width of this gap sig-
nificantly influences the character of magnetic anoma-
lies in the crossover region. For the optimized crystal
field, the gap value is relatively small (~2 K), which
accounts for a sharp change in M(H) and a pronounced
maximum in dM(H)/dH. For the set of parameters cor-
responding to the crystal field in HoVO4, the gap value
is much greater (~13 K). For this reason, the magnetic
anomalies in the crossover region are lower in ampli-
tude and more smeared. The gap value is determined by
the ground-state wavefunction component |+15/2〉
before the crossover. For the set of parameters of the
crystal field of HoVO4, this component is rather signif-
icant because the wavefunction of the excited doublet
closest to the ground state contains such a component.
Thus, the character of wavefunctions of the first excited
doublet significantly influences the magnetic anomalies
in the crossover region.

In addition, ErVO4 is expected to exhibit a rather
unusual crossover for the field oriented in the basal
plane, H || [100], so that the lower component of the
ground-state doublet is crossed by the upper compo-
nent (see the inset in Fig. 5). The crossover is gapless,
since the wavefunctions of the interacting levels are not
mixed by the field, and is accompanied by small but
sharp magnetic anomalies at low temperatures. These
anomalies are rapidly smeared due to the field misori-
entation relative to the symmetry axis and due to the
temperature increase caused by the magnetocaloric
effect in a pulsed magnetic field and by some other fac-
tors. The character of anomalies is virtually the same
for the two sets of crystal field parameters (1 and 2,
Table 1), while the critical field Hc is somewhat higher
for the optimized set (see below).

4.3. Magnetization Curves in Strong Fields 

The crossing or mutual approach of the energy lev-
els of Er3+ ion in a strong magnetic field, as well as a
change in the ground-state in the fields above Hc ,
ND THEORETICAL PHYSICS      Vol. 100      No. 2      2005
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Table 2.  Energies, wavefunctions, and g factors of the lower levels of Er3+ ion in the vanadate structure calculated for the
crystal field parameters according to sets 1 and 2 in Table 1

Ei, K gz |i〉

Set 1, H = 0

0 3.85 {–0.84| ± 7/2 > –0.42|  9/2〉  + 0.35|  1/2〉  + …}

56.4 2.84 {0.83| ± 5/2 > –0.53|  3/2〉  + 0.16|  11/2〉  + …}

62.0 6.52 {±0.88| ± 9/2〉   0.47|  7/2〉  + …}

93.8 18.00 {±0.99| ± 15/2〉  + …}

Set 1, H ≈ Hc

–54.4 {0.66| + 15/2〉  – 0.72| + 7/2〉  + 0.19| – 1/2〉  + …}

–52.1 {–0.75| + 15/2〉  – 0.64| + 7/2〉  + 0.17| – 1/2〉  + …}

Set 2, H = 0

0 5.12 {–0.89| ± 7/2〉  – 0.36|  9/2〉  + 0.30|  1/2〉  + …}

57.5 7.62 {±0.91| ± 9/2〉   0.39|  7/2〉  + …}

64.3 3.30 {0.85| ± 5/2〉  –0.51|  3/2〉  + 0.12|  11/2〉  + …}

89.0 17.83 {±0.99| ± 15/2〉  + …}

Set 2, H ≈ Hc

–62.9 {–0.72| + 15/2〉  – 0.69| + 7/2〉  + 0.16| – 1/2〉  + …}

–50.3 {0.70| + 15/2〉  – 0.69| + 7/2〉  + 0.17| – 1/2〉  + …}

+−  +−

 +−  +−

 +−  +−

 +−  +−

 +−  +−

 +−  +−
results in the anomalies in both the magnetization M(H)
and its derivative dM(H)/dH. Figure 6a shows the cal-
culated isothermal (continuous) and adiabatic (dashed)
magnetization curves for the three symmetric crystallo-
graphic directions [100], [110], and [001]. Figure 6b
presents the corresponding magnetocaloric effects ∆T
for the initial temperatures T = 4.2 and 15 K. The
mutual approach of levels for Er3+ ion in the field
H || [001] (Fig. 5) leads to a sharp and significant jump
∆M ~ 7µB in the magnetization isotherms for the critical
field. After the crossover, the magnetization almost
reaches saturation level, Ms = 9µB. For H || [100], the
critical field is higher (Hc ~ 430 kOe) and the magneti-
zation jump is much smaller (∆M ~ 1.5µB), so that the
magnetization upon crossover does not reach complete
saturation. Calculations for still stronger fields show
that the magnetization reaches saturation in almost a
jumplike manner (∆M ~ 1.5µB) during crossover taking
pace at 3600 kOe. The magnetization along the easy
axis [110] exhibits no anomalies, but reaches saturation
only in a rather strong field (above 600 kOe). The gap
value in the spectrum for H || [001] significantly influ-
ences the character of anomalies on the M(H) and
dM(H)/dH curves. For the optimized set of crystal field
parameters (corresponding to a gap value of about 2 K),
the anomalies are very sharp, while an increase in the
gap value up to about 13 K (for the crystal field of
HoVO4, set 2) leads to a significant decrease and
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
smearing of the anomalies (cf. solid and dashed curves
in Figs. 2 and 3).

The jumps in the M(H) curves observed for the
fields H || [100] and H || [001] depend differently on
temperature. Indeed, for H || [001], the jumps at T =
4.2 K in the isothermal regime remain rather sharp up
to a temperature of about 12 K. In the case of a gapless
crossover for H || [100], the magnetization jump and the
differential susceptibility peak are rapidly smeared as
the temperature increases to about 6 K. This smearing
is related primarily to close values of the gx factor for
the intersecting levels. In contrast, on approaching zero
temperature for a field orientated strictly along the
[100] axis, the anomalies calculated using the adopted
Hamiltonian become infinitely sharp (see thin solid
curves in Fig. 6a for T = 0.5 K).

In order to interpret the magnetic properties of sam-
ples in a pulsed magnetic field at rather short pulse
duration, it is necessary to perform calculations for the
adiabatic magnetization processes. The rate of field rise
in our experiments was close to the estimate of the
upper bound for the adiabaticity condition in [9]. These
estimates have been confirmed by the results of numer-
ous experiments for paramagnetic RXO4 zircons.

Calculations of the magnetic characteristics in the
adiabatic regime for each value of the field strength
from 0 to 600 kOe with a step ∆H = 1 kOe involved
SICS      Vol. 100      No. 2      2005
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numerical diagonalization of the complete Hamiltonian
for determining the energy spectrum and wavefunc-
tions of Er3+ ion. Accordingly, the “elementary” mag-
netocaloric effect ∆T corresponding to the field chang-
ing from H to H + ∆H was calculated as

(6)

where CH is the total heat capacity of the crystal, includ-
ing the lattice contribution Clat = (12π4kBν/5)(T/TD)3

(TD = 275 K is the Debye temperature for the vanadate
lattice [10]; ν = 6) and the magnetic contribution Cmag

(calculated using the RE ion spectrum for each given
field and temperature). Using these data, it is possible

∆T ∂M/∂T( )HT∆H/CH,–=
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Fig. 6. (a) The isothermal (thick solid lines, T = 4.2 K; thin
solid lines, T = 0.5 K) and adiabatic (dashed lines, Tst =
4.2 K) magnetization curves for an ErVO4 crystal along the
three symmetric crystallographic directions [100], [110],
and [001] (calculated with neglect of pair interactions using
set 1 of the crystal field parameters); (b) magnetocaloric
effects ∆T for the initial temperatures Tst = 4.2 K (solid
lines) and 15 K (dashed lines).
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to determine the temperature and adiabatic magnetiza-
tion of ErVO4 crystals for the given field directions.

The jumps in the adiabatic magnetization curves
(dashed curves in Fig. 6) are strongly smeared because
of a significant heating of the sample crystal. The max-
imum magnetocaloric effect ∆T ~ 25 K is observed for
the field oriented along the easy axis [110] (Fig. 6b).
For the fields oriented along the hard [001] and moder-
ate [100] axes, changes in the sample crystal tempera-
ture in the fields below crossover were lower, since the
magnetization was smaller and the sample began to
cool on approaching the critical field Hc . In the fields
above Hc for the same orientations, the sample heating
started again leading to a strong smearing of anomalies
in the crossover region. Here, cooling of the sample in
this region is more significant for the hard [001] axis
and less pronounced for a higher start temperature Tst
(see dashed curves for Tst = 15 K in Fig. 6).

In the case of a finite-gap crossover in ErVO4 for
H || [001], the magnetization jump in the isothermal
regime is less dependent on temperature. For this rea-
son, the jump is less smeared in the adiabatic cycle with
a 20 K increase in the final temperature [cf. isothermal
(solid) and adiabatic (dashed) M(H) curves in Fig. 6].
According to the results of calculations, the anomalies
on the adiabatic curves of M(H) and dM(H)/dH curves
weakly change on heating the sample up to 10 K, then
rapidly smear and decrease as the temperature
increases above 10 K, and practically vanish at T >
20 K. This behavior is related primarily to the character
of the magnetocaloric effect near the crossover. For a
starting temperature Tst < 10 K, an ErVO4 crystal exhib-
its significant cooling near the crossover: at the maxi-
mum of dM(H)/dH, the temperature decreases to about
3 K. For Tst > 10 K, the crystal is cooled less effectively,
the temperature at this maximum is higher, and the
anomalies start smearing.

The curves of low-temperature adiabatic magnetiza-
tion for the [001] axis, calculated for the optimized set
of crystal field parameters describe the main experi-
mental features, including a decrease in the magnetiza-
tion growth rate for the fields about 150 kOe, the jum-
plike increase in M(H) near the critical field Hc ~
240 kOe, and the approach to saturation for the field
strength above the critical level (see solid curves in
Fig. 2). The small difference between the calculated
and experimental Hc values decreases upon taking into
account the quadrupole interactions. Calculations using
the other sets of parameters (e.g., those for HoVO4)
give anomalies in the crossover region, which are more
smeared as compared to experiment (dashed curves in
Fig. 2).

The degenerate ground state in the crossover region
is unstable with respect to various pair interactions
capable of lifting the degeneracy and leading to a finite
gap appearing in the fields close to Hc . The results of
numerical calculations for various compounds belong-
ND THEORETICAL PHYSICS      Vol. 100      No. 2      2005
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ing to the family of RE zircons show that both bilinear
and quadrupole interactions may remove the degener-
acy and lead to the appearance of a transverse (relative
to the magnetic field) component of the magnetic
moment, that is, to its deviation from the magnetic field
direction on approaching the crossover. Since these
effects may, in principle, take place near the gapless
crossover in ErVO4 for H || [100], we have studied the
effect of various pair interactions on the magnetic
anomalies near Hc .

Taking into account bilinear interactions in ErVO4
leads to spontaneous magnetic ordering at H = 0 and the
field-induced ordering at H = Hc . According to these
calculations, the spontaneous ordering of the magnetic
moments of Er3+ ions occurs along the [100] axis at T <
0.2 K (Ms ~ 3.5 µB). Figure 7 shows the isotherms of
longitudinal magnetization M|| and the field depen-
dences of the order parameter M⊥  for H || [100] near the
crossover field, as calculated for an isotropic antiferro-
magnetic exchange with n|| = n⊥  = θ/C (θ = –0.5 K).
Bilinear interactions along the magnetic field are equiv-

alent to an effective field  added to the external field
so as to change the jump width in the magnetization
curve (cf. curves 1 and 3 in Fig. 7).

The magnetic moment component M⊥  (perpendicu-
lar to the field H || [100]) is absent in a weak field but
may appear in the region of Hc at a sufficiently low tem-
perature (Fig. 7). The ordered phase with M⊥  ≠ 0 at T =
0.1 K is stable in the interval of magnetic fields from
423 to 433 kOe (Fig. 7, curve 1'). As the temperature
increases, this intervals exhibits narrowing and van-
ishes at T > 0.22 K. Orientation of the M⊥  component
along the [001] axis in the plane perpendicular to the
magnetic field is determined by the anisotropy. For the
[010] axis (Fig. 7, curves 1a, 1'a), this component has a
much smaller value and exists in a narrower interval of
field strengths.

4.4. Differential Susceptibility in Strong Fields 

By studying the differential magnetic susceptibility
dM/dH, it is possible to trace the dependence of the crit-
ical parameters of the crossover on various factors,
including the magnetic field misorientation relative to
the crystal symmetry axis, the temperature, the pair
interaction parameters, etc. For H || [001], the magnetic
anomalies vary but slightly for small misorientations of
the magnetic field because the energy spectrum of Er3+

retains a finite gap at the crossover. Allowance for the
quadrupole interactions with a parameter of Gα =
0.2 mK in the calculations leads to an almost twofold
increase in the dM(H)/dH peak height and decreases the
critical field for the crossover by approximately
10 kOe.

For the gapless crossover observed at H || [100], the
results of calculations predict a narrow peak in dM/dH

HB
x
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for Hc ~ 430 kOe, which is small as compared to the ini-
tial susceptibility at H = 0 (solid curves in the inset to
Fig. 3). For the set of crystal field parameters in
HoVO4, both the critical field and the dM/dH peak
height somewhat decrease (dashed curve 2 in the inset
to Fig. 3). Even a small misorientation of the magnetic
field relative to the crystal symmetry axis leads to a sig-
nificant decrease in magnetic anomalies, hindering
their experimental observation. In particular, a devia-
tion of the field from the [100] axis in the basal plane
by ∆ϕ = 2° (curve 1" in the inset to Fig. 3), as well as an
increase in the initial temperature up to 8 K (curve 1'),
virtually smear the peak into a plateau. The measure-
ments of the dM/dH curve at T = 2.1 K for an ErVO4

crystal in a pulsed magnetic field H || [100] with an
amplitude of 600 kOe reveal a bending point near
450 kOe, which can be interpreted as a plateau or a
smeared peak (traces of anomaly) [11].

It should be noted that, in the case of H || [100], cool-
ing of a sample in the crossover region as a result of the
magnetocaloric effect significantly influences the peak
height at Hc . Should the magnetization process deviate
from the adiabatic regime and the magnetic subsystem
fail to cool down to about 3 K near Hc , no magnetic
anomalies would be observed at the crossover field. A
strong increase in the spin–lattice relaxation time at low
temperatures may lead to deviation of the magnetiza-
tion process from the adiabatic to isolated regime,

02
410 420 430 440

H,  kOe
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4

6
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Fig. 7. The isotherms of longitudinal (M||) and transverse
(M⊥ ) magnetization in ErVO4 for H || [100], calculated
(1, 1', 2, 2') with and (3) without allowance for bilinear
interactions for T = 0.1 K (1, 1', 3) and 0.2 K (2, 2'); θ|| =
θ⊥  = –0.5 K; curves 1a and 1'a refer to the case of M⊥  ori-
ented along the [010] axis.
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resulting in a significant smoothening of the magnetic
anomalies.

5. CONCLUSIONS
The main results of our investigation of the cross-

over effect in ErVO4 are as follows. Significant advan-
tages of the system studied are that it is relatively sim-
ple and the data are available on the parameters of inter-
actions (at least for the nearest-neighbor compounds),
which makes possible a quantitative comparison of the-
ory and experiment. For an ErVO4 crystal, the cross-
over effects of various types have been predicted and
observed for two special orientations of the external
magnetic field. A special feature of an ErVO4 crystal is
a finite gap value (about 2 K) between the interacting
levels for the crossover at H || [001], while the crossover
at H || [100] is gapless. For this reason, the magnetic
anomalies observed for these orientations have differ-
ent sensitivity to the magnetic field deviation from the
axis of symmetry and to the temperature variations. In
particular, for the gapless crossover at H || [100], factors
such as an increase in the initial temperature, a small
misorientation of the field relative to the axis of sym-
metry, an increase in the spin–lattice relaxation time
(isolated regime) significantly decrease and smoothen
the magnetic anomalies, making them difficult for
experimental observation. In contrast, allowance for the
quadrupole interactions of α symmetry at H || [001]
makes the magnetic anomalies at Hc more sharply pro-
nounced.

Experiments show that the crossover with a finite
gap value in ErVO4 at H || [001] is accompanied by pro-
nounced magnetic anomalies. These anomalies are
determined to a considerable extent by the electronic
structure of the RE ion formed by the crystal field and,
hence, can be used for refining the crystal field param-
eters. Since no direct methods are available for deter-
mining these parameters, it is necessary to solve the
inverse problem. According to the adopted approach, a
minimum of the function of deviation of the experimen-
tal data from the values calculated for various sets of
crystal field parameters is determined. The existence of
a single-valued, reliable solution to this problem signif-
icantly depends on the crystal field symmetry, or the
number of independent parameters, and the set of
experimental data used for the determination of these
JOURNAL OF EXPERIMENTAL A
parameters. Even for crystals of hexagonal and tetrago-
nal symmetry described by four or five crystal field
parameters, the inverse problem frequently has no sin-
gle-valued solution and yields several local minima dif-
fering within the experimental error. The development
of methods for determining and refining the crystal
field parameters based on experimental data for such
crystals is currently an important task. This study
showed that the behavior of crystals in strong magnetic
fields, in particular, magnetization anomalies in the
crossover region determined to a considerable extent by
the excited levels, may be highly informative for the
refinement of crystal field parameters.
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Abstract—We consider singular electron–electron interaction corrections to transport coefficients in disor-
dered metals to test the validity of the Wiedemann–Franz law. We develop a local, quantum kinetic equation
approach in which the charge and energy conservation laws are explicitly satisfied. To obtain the local descrip-
tion, we introduce bosonic distribution functions for the neutral low-energy collective modes (electron–hole
pairs). The resulting system of kinetic equations enables us to distinguish between the different physical pro-
cesses involved in charge and energy transport: elastic electron scattering affects both, while the inelastic pro-
cesses influence only the latter. Moreover, neutral bosons, although incapable of transporting charge, contribute
significantly to energy transport. In our approach, we calculate on equal footing the electric and thermal con-
ductivities and the specific heat in each dimension. We find that the Wiedemann–Franz law is always violated
by the interaction corrections; the violation is larger for one- and two-dimensional systems in the diffusive
regime Tτ ! " and is due to the energy transported by neutral bosons. For two-dimensional systems in the
quasi-ballistic regime Tτ @ ", the inelastic scattering of the electron on the bosons also contributes to the vio-
lation. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

It is well-known that measurement of the thermal
transport coefficient may provide additional informa-
tion about the scattering processes in disordered metals.
In particular, the Wiedemann–Franz [1] law holds as
long as elastic scattering dominates in the system,1

(1.1)

where κ and σ are the respective thermal and electric
conductivities in the system, T is the temperature in
energy units (kB = 1), and e is the electron charge. On
the other hand, for the deep inelastic forward scattering,
the Wiedemann–Franz law is violated [2], and hence
the Lorentz number L is smaller than the universal
value, L < π2/3e2.

Historically, the transport (in particular, thermal
transport) coefficients were first calculated using the
Boltzmann equation (BE) [3]. The advantage of this
approach is that it allows a clear separation of the scales

L
κ

σT
-------

π2

3e2
--------,= =

¶ This article was submitted by authors in English.
1 It was shown by G.V. Chester and A. Thellung [Proc. Phys. Soc.

London 77, 1005 (1961)] that Eq. (1.1) remains valid for arbitrary
scattering strength as long as the scattering rates and the density
of states are smooth (#2) functions of energy near the Fermi
level.
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in the problem: a particle moves freely most of the time
and rarely scatters on other particles or impurities. The
BE is applicable on a time scale much larger than the
time that it takes for the scattering to happen, and hence
all the scattering events are encoded into the local col-
lision integral. All the quantum mechanical part of the
calculation is then reduced to the solving of the scatter-
ing problems for the relevant physical processes. This
gives the precise form of the collision integral but does
not affect the general structure of the BE. The great
advantage of the BE is that its structure illuminates the
relevant conservation laws.

In the late 1950s, an alternative approach became
popular—the so-called Kubo formulas [4]. In this
approach, the transport equation is not derived but
rather the connection of the transport coefficient to the
equilibrium correlation function of certain current
operators is used. (The Kubo approach to thermal trans-
port was claimed to be put on rigorous footing by Lut-
tinger [5] based on the assumption that there exists
some spatial scale in the system such that the gradient
expansion is possible for perturbations smooth at that
scale.) Being exact, the Kubo formulas are formally
applicable even in the regime where the transport equa-
tion cannot be justified (the evolution cannot be sepa-
rated into free motion and rare collisions).

However, in practice, the possibility of explicit cal-
culations within the Kubo formula is somewhat limited.
The most spectacular results of the Kubo-formula cal-
© 2005 Pleiades Publishing, Inc.
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culations—such as the Maki–Thompson [6, 7], Asla-
mazov–Larkin [8], and weak localization [9] correc-
tions to the electrical conductivity—require a small
parameter, which is the same parameter that determines
the applicability of the BE. This means that all these
effects can also be described in terms of quantum cor-
rections to the collision integral (for weak localization,
this was done in [13]). The most relevant effect for this
paper, the Altshuler–Aronov [10] interaction correction
to the electrical conductivity in two dimensions [11, 14]

(1.2)

originates from the elastic scattering of electrons on
a self-consistent potential (Friedel oscillation) [15, 16]
and can be once again obtained from the correction to
the collision integral [17].

The success of the Kubo formulas in describing the
quantum and interaction effects in thermal transport is
by far more modest and controversial. Particularly,
despite a 20-year history, there is no consensus on the
answer to a natural question: how does the logarithmic
correction to conductivity Eq. (1.2) translate into a cor-
rection to Wiedemann–Franz law Eq. (1.1)?

The first attempt to answer this question was made
by Castellani et al. [19] by analyzing Ward identities
for a disordered Fermi liquid; they found that the
Wiedemann–Franz law should hold for interacting dis-
ordered electrons. Their claim was later disputed by
Livanov et al. [20]: in a “quantum kinetic equation”
approach,2 a logarithmic divergence for the thermal
conductivity in two dimensions was even found to have
a sign opposite to the Wiedemann–Franz law. More
recently, Niven and Smith [22] applied the Kubo for-
mula and again found a logarithmically divergent con-
tribution (for the Coulomb, but not a short-range inter-
action) in addition to the one that follows from the
Wiedemann–Franz law.

The reason for this confusion in the literature is two-
fold. Technically, identification of the correct form of
current operator is complicated by the presence of elec-
tron–electron interaction (the energy current operator
in the form defined by Luttinger [5] is cumbersome for
use due to the presence of additional disorder and inter-
action potentials in it, whereas the superficially more
elegant expression in the Matsubara frequency repre-
sentation does not in fact correspond to any conserva-
tion law for the interacting system and violates gauge
invariance, see Appendix B). Physically, the use of the
diagram calculation within the Kubo formula prevents

2 The quantum kinetic equation with the necessary conservation
laws was not actually derived in [20], and we are therefore unable
to compare their approach with ours.

δσAA
e2

2π2
"

------------ "
Tτ
------ 

 ln–=

× 1 3 1
1

F0
σ------ 1 F0

σ+( )ln– 
 + ,
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one from clearly identifying the relevant scattering
processes, because each diagram taken separately
describes some mixture of such processes and does not
have a physical meaning individually.

This situation calls for the development of the
kinetic equation description, which takes the interac-
tion correction of the Altshuler–Aronov type into
account for both the electric and thermal transport. The
advantage of this approach is that it allows keeping
track of the conservation laws explicitly and thus
excludes any ambiguity in defining the currents. This
paper is devoted to the development and application of
this method.

We use units with " = 1 throughout the paper and
restore the Planck constant only in the final results. This
paper is organized as follows: in Section 2, we discuss
some general features of the kinetic equation approach
using a simple “toy model.” In Section 3, we present
our final expression for the kinetic equation describing
interacting electrons in disordered metals. Section 4
summarizes the results for the thermal conductivity and
the specific heat obtained by solving the kinetic equa-
tion. The derivation of the kinetic equation is presented
in Section 5, and calculation of the transport coeffi-
cients and the specific heat is given in Section 6. Some
mathematical details are relegated to the Appendices.

2. STRUCTURE OF THE KINETIC EQUATION:
CURRENTS AND SPECIFIC HEAT

The purpose of this section is to show how the struc-
ture of the kinetic equation permits the proper identifi-
cation of the relevant currents. We first recall how to
calculate the specific heat from the kinetic equation
once the conservation laws are obtained (this makes
possible a direct check against the much simpler ther-
modynamic calculation). We then discuss the locality
requirement for a proper kinetic equation. This require-
ment determines the number of the necessary degrees
of freedom (i.e., independent distribution functions)
that must be introduced into the kinetic description.

2.1. Kinetic Equation and Conservation Laws 

As a specific example, we here consider electron-
like and holelike excitations coupled to neutral bosons
in the presence of an external electric field E. (As we
see later, the system of interacting electrons can be
effectively described at low temperatures by such a
coupled system for the scattering at small momentum
transfer in the particle-hole channel.) The kinetic equa-
tions for electrons and bosons have the form

(2.1a)

(2.1b)

t∂
∂

v Fn ∇ ev Fn E ε∂
∂⋅+⋅+ f Ste f N,{ } ,=

t∂
∂

v ω( )n ∇⋅+ N Stb f N,{ } ,=
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where f = f(ε, n; t, r) is the distribution function for the
electrons with charge e, vF is the Fermi velocity, and n
is the direction of the momentum. The energy ε is
counted from the Fermi level such that f(ε > 0)
describes electron-like excitations and 1 – f(–ε), ε > 0
corresponds to holelike excitations. Concentrating only
on the corrections that are singular in T, we neglect the
dependence of the electron velocity on the energy (the
electron–hole asymmetry) because it does not intro-
duce anything but a small correction that is regular in
powers of T2.

The bosonic function N = N(ω, n; t, r) is the distri-
bution function for the bosons with the velocity v(ω).
All the interaction effects are included into the collision
integrals Ste and Stb; for example, an electron-like exci-
tation can decay into a less energetic electron and a neu-
tral boson, or an electron and a hole can be annihilated
into a neutral bosons, etc. By locality, the collision inte-
grals depend on the same variables as the distribution
functions, i.e., Ste = Ste(ε, n; t, r) and Stb = Stb(ω, n; t, r).

In thermodynamic equilibrium with E = 0, the
Fermi function for fermions and the Planck function for
the neutral bosons,

(2.2)

solve the kinetic equation. The temperature here T is a
constant determined by the initial conditions for the
kinetic equation.

Being an effective description for the slow dynamics
of the original quantum mechanical system, the kinetic
equation must respect the conservation laws of the orig-
inal system: (i) the total charge conservation and (ii) the
total energy conservation. These two conditions are
enforced by the requirements

(2.3a)

and

(2.3b)

for the collision integrals; here, ν is the density of states
(DOS) of the electrons (we neglect its energy depen-
dence) and b(ω) is the density of states of the bosons.
We also introduce the short notation for the angular
integral

(2.4)

where Ωd is the total solid angle in d dimensions.

f F ε( )
1

ε/T( )exp 1+
--------------------------------,=

NP ω( )
1

ω/T( )exp 1–
---------------------------------,=

εν Ste f N,{ }〈 〉 nd∫ 0=

εεν Ste f N,{ }〈 〉 nd∫
+ ωωb ω( ) Stb f N,{ }〈 〉 nd∫ 0=

…〈 〉 n
nd

Ωd

------…,∫≡
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Let the electron density ρ be given by

(2.5)

Integrating Eq. (2.1a) over the energy and the direc-
tion of the momentum and using Eq. (2.3a), we arrive
at the continuity equation

(2.6)

with the electron current density defined as

(2.7)

(Strictly speaking, i.e., Eq. (2.6) fixes only the longitu-
dinal component of the current—an arbitrary curl may
be added to Eq. (2.7). We do not consider the effect of
the magnetic field here and therefore disregard such
magnetization currents.)

We now turn to the analysis of the energy conserva-
tion. We multiply Eq. (2.1a) by νε and integrate over ε
and n. Next, we multiply Eq. (2.1b) by ωb(ω) and inte-
grate over ω and n. Adding the two results together and
using Eqs. (2.3b) and (2.7), we obtain

(2.8)

where

(2.9a)

(2.9b)

(2.9c)

and

(2.10a)

(2.10b)

(2.10c)

The right-hand side of Eq. (2.8) is nothing but the
Joule heat. For a homogeneous system, the gradient
term in the left-hand side vanishes, and by virtue of the
energy conservation, expression (2.9) must be identi-
fied with the total energy density of the system. On the
other hand, for E = 0, Eq. (2.8) has the form of the con-
tinuity equation for the energy density; therefore,
Eqs. (2.10) must be identified with the total energy cur-
rent density. This statement is not entirely trivial. One
could imagine that for an interacting system, the DOS
entering the respective expressions (2.5) and (2.9) for

ρ t r,( ) eν ε f ε n; t r,,( )〈 〉 n.d∫=

∂ρ
∂t
------ ∇ j⋅+ 0,=

j t r,( ) eνv F ε n f ε n; t r,,( )〈 〉 n.d∫=

∂utot

∂t
---------- ∇ jtot

ε⋅+ j E,⋅=

utot ue t r,( ) ub t r,( ),+=

ue t r,( ) ν εε f ε n; t r,,( )〈 〉 n,d∫=

ub t r,( ) ωωb ω( ) N ω n; t r,,( )〈 〉 n,d∫=

jtot
ε je

ε jb
ε ,+=

je
ε t r,( ) v Fν εε n f ε n; t r,,( )〈 〉 n,d∫=

jb
ε t r,( ) ωωb ω( )v ω( ) nN ω n; t r,,( )〈 〉 n.d∫=
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the charge and the energy density are renormalized dif-
ferently. Energy conservation Eq. (2.8) eliminates such
a possibility.

The conservation of energy, Eq. (2.8), is valid for
any rate of the energy flow into and out of the system.
On the other hand, the collision integrals in Eqs. (2.1)
define a certain time scale τin : the dynamics slow at the
scale of τin can be characterized by distribution func-
tions (2.2) with a time-dependent temperature T(t) (cor-
rections to such an adiabatic description are of the order
of τin∂tlnT). Substituting this form of the distribution
function in Eq. (2.9) and then using the result in
Eq. (2.8), we find, for a homogeneous system,

(2.11)

where

(2.12)

is nothing but the specific heat of the system. The latter
quantity may be calculated independently by applying
the standard diagram technique for equilibrium sys-
tems. The agreement of such a calculation with the
structure of the kinetic equation result in (2.12) is the
most important check of the consistency of our descrip-
tion of the thermal transport.

2.2. Locality of the Kinetic Equation and the Number
of the Degrees of Freedom 

The form of the collision integrals local in space and
time is clearly a simplified description. Actually, the
collision integral may be nonlocal at the time scale of
the order of "/T and at the spatial scale of the order of
"vF/T. We say that such a description is local and the
description where the nonlocality is involved at larger
spatial and time scales is nonlocal.

The number of distribution functions to be intro-
duced into the description is governed by the locality of
the kinetic equation. We use the model in Eqs. (2.1) to
illustrate the point. We had a local description in terms
of the fermionic and bosonic distribution functions. But
we can try to eliminate the bosonic distribution func-
tion and obtain a description in terms of the electronic
degrees of freedom only.

Assuming that the deviation of the distribution func-
tion from its equilibrium value is small, we can linear-
ize the bosonic collision integral to the form

, (2.13)

where  is some positive definite integral operator and

 is the functional of the fermionic distribution

cV T( )
∂T
∂t
------ j E⋅ ,=

cV T∂
∂ ν εε f F ε( ) ωωb ω( )NP ω( )d∫+d∫[ ]=

Stb f N,{ } Î N Ñ f{ }–( )–=

Î

Ñ f{ }
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function f(ε) such that for f(ε) = fF(ε),  = NP(ω).
Using Eq. (2.13), we can formally solve Eq. (2.1b) as

(2.14)

Substituting Eq. (2.14) in Eq. (2.1a), we apparently
obtain the kinetic equation in terms of the electron dis-
tribution function only,

(2.15)

If we are interested in the linear response to a weak
and smooth external perturbation, the description in
terms of this single kinetic equation is completely
equivalent to the original coupled system (2.1). How-
ever, there are clear drawbacks: the presence of the

integral operator  in the collision integral makes it
nonlocal on the scale determined by the kinetic equa-
tion itself rather than by temperature. Moreover,
though it is still easy to identify the continuity equa-
tion for the electron charge using Eq. (2.3a), there is
no longer a relation similar to Eq. (2.3b). This is why
the analysis of the energy conservation law becomes
cumbersome: calculation of the specific heat and
energy current requires the time expansion of the col-
lision integral, which in turns seems to require knowl-
edge of the concrete form of the inelastic collision
integral.

The example we have just considered is somewhat
trivial because the system was separated into fermionic
and bosonic modes from the very beginning. The prob-
lem that we consider in this paper is how to include the
collective modes of the interacting electron system into
the kinetic equation. Indeed, in this case, any calcula-
tion gives the result in terms of the electronic distribu-
tion function only, and it is not clear a priori how to
introduce the occupation numbers for the collective
modes into the description.

As we show in what follows, it may be possible to
reverse our previous argument. We consider a system of
interacting electrons find that the interactions are
described by a nonlocal collision integral. We therefore
introduce bosonic degrees of freedom that allow rewrit-
ing of the nonlocal kinetic equation in terms of coupled,
local kinetic equations. This then makes it possible to
identify the energy density and energy current density
as sums of the fermionic and bosonic contributions.

Ñ ω( )

N
1

∂/∂t v ω( )n ∇ Î+⋅+
------------------------------------------------- Î Ñ f{ } .=

t∂
∂

v Fn ∇ ev Fn E ε∂
∂⋅+⋅+ f Ste

? f{ } ,=

Ste
? f{ } Ste f

1

∂/∂t v ω( )n ∇⋅ Î+ +
------------------------------------------------- Î Ñ f{ },

 
 
 

.≡

Î
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A specific example is briefly discussed in the next sub-
section.

2.3. Degrees of Freedom for the Kinetics
of a Disordered Fermi Liquid 

We now focus on the disordered, interacting Fermi
liquid. For simplicity, we consider the interaction in the
singlet channel only. Our goal is to show that the ther-
modynamic result for the interaction correction to
the specific heat has indeed the kinetic equation struc-
ture (2.12). As a result, we are then able to determine
the necessary number of the bosonic degrees of free-
dom for the local kinetic equation. For the paper to be
self-contained, we briefly review the thermodynamic
approach, referring the reader to the literature for fur-
ther details.3 

The thermodynamic calculation of the specific heat
cV is based on the relation between cV and the thermo-
dynamic potential Ω:

(2.16)

The thermodynamic potential can be written as the sum
of the thermodynamic potential Ω0 for noninteracting
quasiparticles and a correction δΩ associated with soft
modes in the system. Keeping such a correction is legit-
imate because it turns out to be a more singular function
of the temperature than the T3 correction due to the
electron–hole asymmetry.

The correction δΩ is given by the sum of the so-
called ring diagrams, see Fig. 1. The Matsubara repre-
sentation for this diagram is

(2.17)

where F is the coupling constant, ωn = 2πTn are the
bosonic Matsubara frequencies, and Π is the polariza-
tion operator. The explicit expression for this operator
is not important for the present discussion and is given
later, see Eq. (5.43a).

A straightforward calculation, relegated to Appen-
dix A, enables us to rewrite Eq. (2.17) as

(2.18)

The explicit expressions for the bosonic propagators
+ρ and +g are not relevant (they can be found from

3 See, e.g., [12, 26] and references therein.

cV T
∂2Ω
∂T2
----------.–=

δΩ T
2
--- ddq

2π( )d
------------- 1

F
ν
---Π i ωn q,( )+ 

  ,ln∫
ωn

∑=

δΩ ωd
2π
------- 1

2
--- ω

2T
------coth 

 ∫–=

× qdd

2π( )d
-------------ImTr +̂

ρ
ln +̂

g
ln–[ ] .∫
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Eq. (3.11), with the trace understood as the sum or inte-
gration over all variables other than ω, q); we just men-
tion here that +ρ = +g in the absence of interaction
(F = 0). Substituting Eq. (2.18) in Eq. (2.16) and inte-
grating over ω by parts, we find

(2.19a)

where the densities of states are defined as

(2.19b)

(2.19c)

The function bρ(ω) has the physical meaning of the
density of states (DOS) of the bosonic degrees of free-
dom in the system (soft electron–hole pairs). The func-
tion bg(ω) has the meaning of the DOS of fictitious
bosons (we call them “ghosts”) that describe soft elec-
tron–hole pairs in the absence of interaction. The phys-
ical meaning of the minus sign in front of bg(ω) is that
with the formation of collective modes, some degrees
of freedom are removed from the description of the
noninteracting system; the ghost bosons in the last term
in Eq. (2.19a) take this reduction into account.

Comparison of Eq. (2.19a) with Eqs. (2.12) and
(2.9) suggests the following expression for the contri-

δcV T∂
∂ ωωNP ω( ) bρ ω( ) bg ω( )–[ ] ,d

0

∞

∫=

bρ ω( )
1
π
---Im

qdd

2π( )d
-------------∂ωTr +ρ

,ln∫=

bg ω( )
1
π
---Im

qdd

2π( )d
-------------∂ωTr +g

.ln∫=

1
3
---+ + . . .

1
2
---+

Fig. 1. Leading singular contribution to the thermodynamic
potential for the clean system. The shaded box corresponds
to F/ν, defined via the two-particle vertex Γw, see [26]; the
solid lines are coherent parts of the electron Green func-
tions. For the disordered system, the polarization bubbles
should be dressed by impurity scattering [12].
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bution of the collective modes to the energy density in
the nonequilibrium case:

(2.20)

here, Nρ = Ng = NP in the equilibrium and must be found
from some kinetic equation otherwise (this definition
requires that Eq. (2.8) hold for an arbitrary distribution
function). A similar expression can be obtained for the
contribution due to the interaction in the triplet channel
by introducing an additional propagator +σ and the dis-
tribution function Nσ. This means that the proper local
kinetic equation must include four distribution func-
tions: one for the fermions, f(ε), and three for the
bosons, Nρ, σ, g(ω). We derive such a description in the
subsequent sections.

3. FINAL FORM OF THE KINETIC EQUATION 
AND SCATTERING PROCESSES

In this section, we summarize the final form of the
quantum kinetic equation, the conservation laws, and
the corresponding currents. The explicit expressions of
the collision integrals are given in Subsection 2. The
detailed derivation of these results is presented in Sec-
tion 5.

In accord with the previous section, the kinetics of
the system is described by the electronic distribution

function f(ε, n; t, r), the “distribution functions” 

and  of the bosonic singlet and triplet excitations,

and the “distribution function”  of the ghost excita-
tion.

The electron distribution function f(ε, n; t, r) is diag-
onal in the space of momentum directions. On the con-
trary, bosonic excitations are characterized by the den-
sity matrices Nα(ω, q; ni, nj; t, r) (α = ρ, σ, g), which
may not be diagonal in the space of momentum direc-
tion n. Only in the thermal equilibrium, with

(3.1)

and with the Fermi and Planck distribution functions
given by Eq. (2.2), the matrices Nα(ω, q; ni, nj; t, r)
acquire the diagonal form.4 But even outside the equi-
librium, these matrices have the property

(3.2)

4 As given in Eq. (3.1), the equilibrium distribution functions

 are defined only for ω > 0; for ω < 0, they are found

using the property in Eq. (3.2).

ub ωω Nρ ω( )bρ ω( ) Ng ω( )bg ω( )–[ ] ;d

0

∞

∫=

N̂
ρ

N̂
σ

N̂
g

f eq ε n; t r,,( ) f F ε( ),=

Neq
α ω q; ni n j; t r,,,( ) Ωdδ ni n j,( )NP ω( )=

Neq
α ω( )

Nα ω q; ni n j,,( )

=  Nα ω q; n j ni,–,–( ) Ωd ni n j,( )+[ ]–
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(hereafter, the spectator t, r variables may be sup-
pressed).

Strictly speaking, f(ε, n; t, r) is a 2 × 2 density matrix
in the spin space and Nσ is a 3 × 3 density matrix in the
angular momentum L = 1 space; however, this is not
important in the calculations below and we write the
equations for the diagonal components only. To account
for the threefold degeneracy of the triplet mode, we
explicitly introduce factors of 3 in the corresponding
collision integrals and currents.

For compactness, we use the operator notation for
matrices in the space of momentum directions, such

that, for example,  should be understood as an oper-
ator acting on a function a(ni) as

(3.3)

3.1. Kinetic Equations and Conserved Currents 

The kinetic equation for the electrons in the electric
field E (we do not consider the magnetic field effects)
has the canonical form

(3.4)

where the first term in the right-hand side is the “bare”
collision integral

(3.5)

with θij = , and the other terms, which will be writ-
ten shortly, take the interaction effects into account.

The bosonic distributions, for α = ρ, σ, g, are gov-
erned by

(3.6)

where the commutator and anticommutator are defined
as

(3.7)

The operators  acting in the angular (momen-

N̂

N̂a[ ] ni( )
n jd

Ωd

--------N ni n j,( )a n j( ).∫≡

∂t v ∇⋅ ev E ε∂
∂⋅+ + f ε n; t r,,( ) Stˆ e ε n; t r,,( ),=

Stˆ e Stˆ τ f Stˆ
e ρ–

f Nρ,{ } 3Stˆ
e σ–

f Nσ,{ }+ +=

– 4Stˆ
e g–

f Ng,{ } Stˆ
e e–

f{ } ,+

Stτ ni n j,( ) 1
τ θij( )
------------- ni n j,( )

nkd
τ θik( )
-------------,∫–=

nin j

ω 1

1 F̂
α

+
---------------; ∂t N̂

α

 
 
 

ŝα ω q,( ); ∇ N̂
α{ }+

ˆ
-----

 
 
 

+ i Ĥe h–
α ω q,( ); N̂

α[ ]

=  Stˆ
α e–

Nα f,{ } ω q; ni n j; t r,,,( ),

Â; B̂{ } 1
2
--- ÂB̂ B̂ Â+( ), Â; B̂[ ] ÂB̂ B̂ Â.–≡≡

Ĥe h–
α
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tum direction) space are defined as

(3.8)

and the velocity operator is

(3.9)

The action of the operators  in the angular space is
the same as in Eq. (3.3); these operators are given by

(3.10)

where Fρ, σ(θ) are the Landau Fermi-liquid interaction
parameters. The angular-independent term νV(q) takes
the long-range part of the Coulomb density–density
interaction into account.

To characterize the density of states for the bosonic

excitations, we introduce the propagators (ω, q; ni,
nj), α = ρ, σ, g as

(3.11)

They describe the propagation of an electron–hole pair
scattered by the disorder potential. This propagation is
affected by the corresponding interactions for α = ρ, σ,
and it reduces to the usual diffusion for the ghosts.

We are now prepared to write the conservation laws
that must be satisfied by the collision integrals indepen-
dently of their explicit form or the particular shape of
the distribution functions. The conservation of the num-
ber of particles is ensured by the condition

(3.12a)

and the impurity collision integral (3.5) preserves the
number of particles on each energy shell,

(3.12b)

The conservation of energy during purely electron–
electron collisions is ensured by

(3.12c)

Finally, the conservation of energy during the electron–

Ĥe h–
α ω q,( ) v q ω
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---------------–⋅=

ŝα ω q,( )
∂Ĥe h–

α ω q,( )
∂q
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1 F̂
α
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---------------

 
 
 

.+= =
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Stˆ
e e–
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e e–
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boson collision is guaranteed by the conditions

(3.12d)

for α = g, ρ, σ, where the trace is defined as

(3.13)

The existence of conservation laws (3.12) immedi-
ately enables us to establish the expressions for the con-
served currents in the spirit of Section 2.1. By integrat-
ing both sides of Eq. (3.4) over ε and n, we find the rela-
tions

(3.14)

which express the conservation of charge in terms of
the usual charge density and electric current density, cf.
Eqs. (2.5)–(2.7).

Turning to the energy conservation, we multiply
Eq. (3.4) by ε and then integrate over n and ε. Similarly,

we multiply Eq. (3.6) by , take the trace (3.13), and
integrate over ω. Adding the results together, we find

(3.15a)

The electronic contributions to the energy density and
current density are given by

(3.15b)
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The contributions of the bosonic neutral excitations are

(3.15c)

for α = g, ρ, σ.

Equations (3.14)–(3.15) constitute our main results:
the conserved currents are defined in terms of the distri-
bution functions of the quasiparticles that describe low-
energy excitations of the interacting electron gas for
interaction in the particle–hole channel. In contrast
with previous calculations [20–23], we explicitly show
the validity of the continuity equation for energy trans-
port; no such proof has been presented before in the
quantum kinetic equation approach.5 Moreover, we
believe that the form of the energy current in those ref-
erences is not correct, because it is not gauge invariant,
see Appendix B for more details. As an additional ben-
efit, our approach enables us to clearly identify the con-
tributions of the collective modes and the scattering
processes involved (this last task is accomplished by
analyzing the explicit form of the collision integrals,
which is also needed to calculate the transport coeffi-
cients). The derivation of the collision integrals can be
found in Section 5; in the next section, we summarize
the results and give them a physical interpretation.

3.2. The Collision Integrals 

In this section, we give the explicit form of various
collision integrals and verify that they satisfy conserva-
tion laws (3.12). To shorten the formulas, we introduce
the combinations of the distribution functions

(3.16a)

and

(3.16b)

It follows from Eq. (3.2) that  has the property

. (3.16c)

5 The current operator used in [21] does not satisfy the continuity
equation for the long-range interaction potential.

uα t r,( ) Tr
1

1 F̂
α

+
---------------+̂

α
ω( )N̂

α ω; t r,( )
 
 
  ω ωd

2π
-----------,∫=

jα
ε t r,( ) Tr ŝα ω( )+̂
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It is easy to check that ϒ = Ψ = 0 in the thermal equilib-
rium (Eq. (3.1)). The combination in (3.16b) enters the
collision integral in the symmetric form

(3.16d)

It is worth noting that the term’s involving four distri-
bution functions f are in fact cancelled from Ψs;
besides, it has the properties

(3.16e)

for any even function a(ω). Finally, we introduce the
vertex γ for the impurity scattering

(3.17)

and the short notation

The boson–electron collision integral is then explic-
itly expressed as

(3.18)

for α = g, ρ, σ. The formula for the electron–boson col-
lision integral can be conveniently decomposed into
local (l) and nonlocal (n) (in the sense of Section 2)
parts

(3.19a)

The local part of the collision integral is

(3.19b)

where the bar denotes Hermitian conjugation,

(3.19c)

Using Eq. (3.11) and definitions (3.13) and (3.17), we
can verify that the pair of equations (3.18), (3.19b) sat-
isfy the energy conservation law Eq. (3.12d) on its own.

The function in Eq. (3.19b) also satisfies the particle
number conservation law (3.12a). To verify this, we
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change the variables as (ω, q)  (–ω, –q) in the terms

containing  and then use Eqs. (3.16b) and (3.19c) to
rewrite the integral in Eq. (3.19b) in terms of +α only:

Performing the n3-integration using the delta functions
in Eq. (3.17), we obtain a result that is antisymmetric
under the n1  n2 permutation. Hence, the above
expression vanishes after the n1, 2-integrations.

The physical meaning of collision integrals (3.18)
and (3.19b) is as follows. In the absence of disorder, the
electron–hole pair propagates for an infinitely long time.
Due to the impurity potential, the decay of the pair into
an electron and a hole moving in different directions as
shown in Fig. 2 is allowed. Equations (3.18) and (3.19b)
are the probabilities for such a decay. (See also Sec-
tion 5 after Eq. (5.67) for further discussion.)

By construction, the nonlocal contribution to the
collision integral

(3.19d)

satisfies its own conservation law

(3.19e)

i.e., preserves the energy and the number of electrons
moving along a given momentum direction n. More-
over, one can see that the collision integral (3.19d) does
not contribute to the linear response at all, because
ϒ = 0 and f is independent of the angle in thermody-
namic equilibrium. The nonlocality of this collision
integral indicates that the task formulated in Section 2
has not been fully accomplished. Technically, this non-
locality can be decoupled by introducing a density
matrix that is nondiagonal in the boson–ghost space.
We choose not to pursue this line because the term in
Eq. (3.19d) does not contribute to any observable
quantity of interest and does not affect any conservation
laws.

+
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The electron–electron collision integral can be split
into elastic, nonlocal, and local parts:

(3.20a)

The elastic term describes the scattering of the electron
on the static self-consistent potential created by all the
other electrons,

(3.20b)

Its physical origin is discussed in detail in [17]. Being
elastic, it preserves the number of particles, for each
energy shell,

(3.20c)

as can be seen from the property  = –  of ver-
tex (3.17).

The nonlocal term

(3.20d)

describes the inelastic electron–electron collisions dur-
ing which the bosons and ghosts act as virtual states.
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Fig. 2. The scattering amplitudes leading to the creation of
the same electron and hole out of different electron–hole
pairs (double lines) (a, b) and their interference contribu-
tion (c). The impurity is denoted by filled circles.
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(The function Ψs was introduced in Eq. (3.16d).) The
real part being an even function, we can use Eq. (3.16e)
to verify that Eq. (3.20d) satisfies the conservation law

(3.20e)

As indicated, the same law is satisfied by the local (and
elastic) term:

(3.20f)

Therefore, Eq. (3.20e) enables us to conclude that both
collision integrals (3.20d) and (3.20f) do not affect the
transport coefficients (in the case where they can be
considered perturbations in comparison to the bare
impurity collision integral).

We note that although it might not be evident, the
present form of the kinetic equation permits the proper
identification of the inelastic kernel that determines the
phase relaxation time; further details can be found in
Appendix G.

4. SUMMARY OF THE RESULTS
FOR THE THERMAL TRANSPORT 

AND SPECIFIC HEAT

In this section, we present our final answers for the
interaction corrections to the thermal conductivity and
the specific heat. They are obtained by solving the
kinetic equations and then substituting the solutions in
definitions (3.15) of the energy and energy current den-
sities. The explicit calculations are performed in Sec-
tion 6. We consider short-range impurities for which
the scattering time τ is independent of the scattering
angle, τ(θ) = τ. We report our results for quasi-one-
dimensional and three-dimensional systems in the dif-
fusive limit Tτ ! "; for two-dimensional systems, we
do not put such a restriction on the temperature range.
However, common to all dimensionalities is the zeroth
harmonic approximation for the Fermi-liquid constants
(see Eq. (6.14)).

4.1. Thermal Conductivity 

In the absence of magnetic field, the thermal con-
ductivity tensor is diagonal, κµν = κδµν , and we write
the expression for the diagonal components simply as

(4.1)

The first term is given by the Wiedemann–Franz law
κWF = LσT with the inclusion of the interaction correc-
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tions to the conductivity and the Lorentz number given
in Eq. (1.1). The second term causes a violation of the
Wiedemann–Franz law. In the diffusive limit and for
low dimensionality, the main contribution to ∆κ is due
to the long-range nature of the bosonic energy trans-
port, which originates from the long-range part of the
interaction in the singlet channel. In the quasiballistic
case, large contribution also is made by the inelastic
scattering of the electron on the bosons. Smaller correc-
tions arise due to the triplet channel bosonic transport
and to the energy dependence of the elastic scattering.

For quasi-one-dimensional and three-dimensional
systems in the diffusive limit, we write

,

where the bosonic corrections include the ghost contri-
butions

(see Eq. (6.12) for the definition of κα) and we neglect
the inelastic contributions δκin, which are smaller by
the parameter Tτ/".

For quasi-one-dimensional systems, the explicit
expressions are

(4.2a)

(4.2b)

(4.2c)

where a is a length on the order of the wire width, k =

 is the inverse screening length in the bulk, and

D = /d is the diffusion constant (in d dimensions).

For three-dimensional systems, the results are

(4.3a)

(4.3b)
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(4.3c)

In these expressions, ζ(x) is the Riemann zeta function,
with ζ(3/2) ≈ 2.612 and ζ(5/2) ≈ 1.341.

For two-dimensional systems, we separate the cor-
rections due to the singlet and the triplet channel inter-
actions:

(4.4a)

With logarithmic accuracy, the singlet channel contri-
bution is

(4.4b)

where k = 2πe2ν is the two-dimensional inverse screen-
ing length. The crossover functions g1 and g2 are given
in Eq. (6.42). Here we note that g1(x), g2(x) ≈ 1 for
x ! 1 and g1(x) ≈ 3/x, g2(x) ≈ 14x2/15 for x @ 1. For the
triplet channel, we have

(4.4c)

In the diffusive limit Tτ ! ", our results are consis-
tent with those in [22], even though the form of the
energy current operator used in this reference is, in our
opinion, incorrect, see Appendix B.

4.2. Specific Heat 

The specific heat is given by

(4.5)

where the first term is the usual noninteracting elec-
tronic contribution and the second term is the bosonic
interaction correction.

For quasi-one-dimensional and three-dimensional
systems,

(4.6)

The two terms in the first brackets are respectively the
singlet and triplet channel contributions. The singlet
channel term is considered in the unitary limit and is
therefore independent of any interaction parameter. On
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the other hand, the Fermi-liquid parameter for the inter-
action in the triplet channel enters Eq. (4.6) as

(4.7)

and the numerical factors a1, 3 are

For two-dimensional systems, with logarithmic
accuracy, the result is

(4.8)

where ζ(3) ≈ 1.202. The first term in the right-hand side
extends the logarithmic behavior known in the diffusive
limit to higher temperatures (the upper cutoff is on the
order of the Fermi energy EF and not "/τ); the second
term becomes relevant in the quasiballistic limit and
coincides with the correction calculated in [29] for the
clean Fermi liquid. In the diffusive limit, our results are
the same as those obtained in [12] by an explicit ther-
modynamic calculation.

5. DERIVATION OF THE KINETIC EQUATION

This section is devoted to the derivation of the local
kinetic equation. We first introduce the Eilenberger
equation and some basic notation. Next, we perform a
(generalized) gauge transformation: this is the crucial
step that enables us to obtain the local description. Then
we introduce the bosonic degrees of freedom and derive
the collision integrals.

5.1. Eilenberger Equation 

Our starting point for the derivation of the kinetic
equation is the Eilenberger equation (Eq. (5.7)). For
disordered metals, the derivation of this equation, start-
ing from the action for the interacting electron gas in
the presence of disorder, can be found in [17]. We
briefly summarize it here to introduce some notation
and a straightforward generalization to the angle-
dependent impurity scattering rate and Fermi-liquid
parameter (see Eqs. (5.8) and (5.15)).

The interaction with small momentum and energy
transfer in the singlet channel (the triplet channel is to
be discussed in Section 5.8) is decoupled using the two
Hubbard–Stratonovich fields φ±(t, r, n). For the purpose
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of the one-loop approximation that we use, these fields
can be considered Gaussian with the propagators

(5.1)

where 〈〈 …〉〉  denotes averaging over the fields φ± . We
use the short notation

(5.2)

where i = 1, 2, … and Ωd is the total solid angle.

We introduce the disorder-averaged Green function
of the electron in the field φ± in its matrix form in the
Keldysh space,

(5.3)

such that its average over the fluctuating field φ± gives
the usual expressions for the physical propagators:

(5.4)

Here, θ(t) is the Heaviside step function, φ† and ψ are
the fermionic creation/annihilation operators in the
Heisenberg representation, and quantum mechanical
averaging 〈…〉  is performed with an arbitrary distribu-
tion function to be found from the solution of the
kinetic equation.

For the disorder-averaged Green function, the semi-
classical approximation is obtained by integrating the

Wigner transform of (1, 2|φ) over the distance from
the Fermi surface:

(5.5)
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where

(5.6)

where A is the vector potential of an external electro-
magnetic field, pF is the Fermi momentum, vF is the
Fermi velocity and ν is the density of states on the
Fermi level. The dynamics of the semiclassical Green
function  in the matrix form is governed by the Eilen-
berger equation [24]

(5.7)

where v = vFn, the action of the “bare” collision inte-
gral on any function a(n) is defined as

(5.8)

and θ12 =  (for the short-range impurity, τ(θ) is
independent of θ; however, the formulas derived here
are valid for an arbitrary impurity scattering). The time

convolution of two matrices  and  is
given by

(5.9)

Defining the commutator between a matrix (t, r, n)
and  as

(5.10)

we express the covariant derivatives in Eq. (5.7) as
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(5.11b)

with  = A K and  = ϕ K . Here, K denotes the unit
matrix in the Keldysh space and ϕ is the scalar potential
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â ° b̂ t3â t1 t3,( )b̂ t3 t2,( ),d∫=
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ĝ ∂t2
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for an external electromagnetic field such that

The vector wc = eB/(mc) has the magnitude of the
cyclotron frequency and the direction of the magnetic

field B. Finally,  is the matrix in the Keldysh space:

(5.12)

The matrix Green function  is subject to the con-
straints

(5.13a)

(5.13b)

In thermal equilibrium, the relation

(5.14)

must hold independently of the form of the spectral
functions gR, A.

In what follows, we assume that there is no mag-
netic field, B = 0 and wc = 0, but no gauge choice is
made: although one could set A = 0 by a gauge transfor-
mation, both the scalar and vector external potentials
are left arbitrary in order to keep track of the gauge
invariance of the equations.

The propagators defined by Eq. (5.1) satisfy the
matrix Dyson equation

(5.15)

where V(r) is the long-range part of the interaction (for
the Coulomb interaction, V(r) = e2/|r|, θ12 = , r12 =
r1 – r2, and t12 = t1 – t2). The matrix propagator is

denoted by  and  is the matrix polarization oper-
ator. They have a structure similar to the Green func-
tion one:
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gK t1 t2,( ) gR
 ° n n ° gA–[ ] t1 t2,( ),=

n t1 t2,( )
εd

2π
------ iε t2 t1–( )( )n ε( ),exp∫=

n ε( ) 1 2 f F ε( )– 2 ε
2T
------tanh= =

D̂ 1 2,( ) D̂0 1 2,( )=

+ 3 4D̂0 1 3,( )Π̂ 3 4,( )D̂ 4 2,( ),d∫d∫
D̂0 1 2,( ) V r12( )

Fρ θ12( )δ r12( )
ν

-------------------------------+ δ t12( )1̂1K ,–=

n1n2

D̂ Π̂

D̂ DR DK

0 DA
 
 
 
 

K

, Π̂ ΠR ΠK

0 Π A
 
 
 
 

K

= =
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derivatives of the solutions of Eilenberger Eq. (5.7),

(5.17a)

(5.17b)

where

(5.18)

with Ωd being the total solid angle.

5.2. The Gauge Transformation 

With Eilenberger Eq. (5.7) at hand, one could pro-
ceed as in [17] in order to derive an equation for the dis-
tribution function. But the resulting inelastic part of the
collision integral, expressed in terms of the electron
distribution function only, is nonlocal and the evalua-
tion, e.g., of the thermal conductivity would require the
time and spatial gradient expansion of this term in the
spirit of Eq. (2.15). As we already discussed, such a
route makes the energy conservation in the kinetic
equation obscure. Here, we follow a different approach,
inspired by the following considerations [25]: if the
fluctuating fields were uniform, they would be elimi-
nated from Eq. (5.7) by the gauge transformation

(5.19)

In other words, the position-independent fluctuations of
the φ fields define a time-dependent position of the
energy levels, but the occupation numbers for such lev-
els do not change. Therefore, such fluctuations affect
neither the electric transport nor the electron contribu-
tion to the thermal transport in the system. Moreover, if
the path of the electron were a straight line, all smooth
fluctuating fields would still be eliminated in the
eikonal approximation and, once again, they should not
affect the electronic contribution to the transport. To
eliminate such spurious contributions, we use the gauge
transformation described below.

We introduce a new matrix field (t, n, r),

(5.20)

which is a functional of the field  and is used to per-
form the “generalized” gauge transformation

(5.21)

ΠR 1 2,( ) Π A 2 1,( )=

=  ν δ12
π
2
---

δgK t1 t1 n1 r1, , ,( )
δφ+ t1 r2 n2, ,( )

----------------------------------------+ ,

ΠK 1 2,( )
πν
2

------
δ gK gZ+( ) t1 t1 n1 r1, , ,( )

δφ– t2 r2 n2, ,( )
--------------------------------------------------------- ,=

δ12 Ωdδ n1n2( )δ r1 r2–( )δ t1 t2–( ),=

ĝ i φ̂ t( ) td

t1

∫–
 
 
 

ĝ i φ̂ t( ) td

t2

∫ 
 
 

.expexp

K̂

K̂
K+ K–

K– K+ 
 
 

,=

φ̂

ĝ e
iK̂ t1 n r, ,( )–

ĝe
iK̂ t2 n r, ,( )

.
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This transformation is unitary and therefore preserves
constraints Eq. (5.13). As we see in what follows, it
leads to the local kinetic equations. Applying the trans-
formation to Eilenberger Eq. (5.7), we obtain

(5.22)

where

The “bare” impurity collision integral and the deriva-
tives are defined respectively in Eq. (5.8) and (5.11).
We suppress the argument r, which is the same in all
functions.

We seek a perturbative solution of the Eilenberger
equation in the form of (5.22) in the one-loop approxi-
mation; for this, it suffices to retain only the terms at
most quadratic in the K fields in the collision integral.
In the lowest order,  has the form

(5.23)

We require that this form be preserved even in the first
and second order in K; i.e., the corrections to the spec-
trum (described by gR, A) be indeed eliminated by the
gauge transformation.

In the linear order, the retarded, advanced, and “Z”
components of Eq. (5.22) vanish if K– satisfies the
equation

(5.24)

The solution of integro-differential Eq. (5.24) can be
written in terms of the diffusion propagator +g(t1, t2; n1,
n2; r1, r2), the retarded solution of the classical kinetic
equation

(5.25)

where δ12 is defined in Eq. (5.18). Using Eq. (5.25), we
find

(5.26)

where we use the short notation in (5.2). In the operator
notation, Eq. (5.26) can be rewritten as

(5.26')

∂̃t v ∇̃⋅+[ ] ĝ i ∂t v ∇⋅+( )K̂ φ̂– ĝ,[ ]–

=  
1
2
--- ĝ , Stˆ τ

φ
ĝ[ ] ,°

Stˆ τ
φ
ĝ[ ] t1 t2 n, ,( )

n1d
Ωd

--------Stˆ τ n n1,( )∫≡

× e
iK̂ t1 n,( )

e
iK̂ t1 n1,( )–

ĝ t1 t2 n1, ,( )e
iK̂ t2 n1,( )

e
iK̂ t2 n,( )–

.

ĝ

ĝ δ t1 t2–( ) gK

0 δ t1 t2–( )– 
 
 
 

.=

∂t v ∇⋅+( )K– Stˆ τK–+ φ–.=

∂t1
v1 ∇ r1

⋅ Stˆ τ–+( )+g δ12= ,

K– 1( ) 2+
g

1 2,( )φ– 2( ),d∫–=

+
g

1 2,( ) +g
2 1,( ),=

K– +
ˆ g

φ–.–=
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To simplify further manipulations, we introduce the
following function of three angular variables:

(5.27)

This function is related to the impurity collision inte-
gral (5.8) by

(5.28)

With δgK denoting the first-order correction to gK,
the Keldysh component of the Eilenberger equations in
the linear order is

(5.29)

with (cf. Eq. (5.11))

Here, the operator  is local in space,

with the kernel

(5.30)

We suppress the spectator argument r, which is the
same in each term of the equation; the last term means
that terms similar to the ones shown, but with the angu-
lar arguments of the Green function switched, must be

γ nk

ni; n j 
 
  1

τ θij( )
------------≡

× Ωd δ n jnk( ) δ nink( )–[ ] γ ij
k .≡

n2d
Ωd

--------γ n3

n1; n2 
 
 

∫ Stˆ τ[ ] n1 n3,( ),=

n1d
Ωd

--------γ n3

n1; n2 
 
 

∫ – Stˆ τ[ ] n2 n3,( ),=

n3d
Ωd

--------γ n3

n1; n2 
 
 

∫ 0.=

i ∂̃t v ∇̃⋅ Stˆ τ–+( )δgK

+ ∂t v ∇⋅ Stˆ τ–+( )K+ φ+; gK–[ ] Q̂K–=

+
n2 n3dd

Ωd
2

-----------------γ n3

n; n2 
 
 

K+ n3( ); gK n2( ) gK n( )–[ ]∫

∂̃tδgK ∂t1
∂t2

+( )δgK i ϕ ; δgK[ ] ,+=

∇̃ δgK ∇δ gK i A; δgK[ ] .+=

Q̂

Q̂K– t3

n1d
Ωd

--------Q t1 t2 n; t3 n1; r,, ,( )K– t3 n1 r, ,( )∫d∫=

Q t1 t2 n1; t3 n2,, ,( )
1
2
---

n3d
Ωd

--------γ n2

n1; n3 
 
 

∫=

× PgK t1 t3 n1, ,( )gK t3 t2 n3, ,( ) n1 n3( )+[ ] .
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added. The principal value sign P in Eq. (5.30) means
that the part of the product of the Green functions that
are divergent as t1  t2,

(5.31)

must be eliminated,

or, equivalently,

It is worth noting that all nonequilibrium effects con-
tribute to the regular part in Eq. (5.31) but not to the sin-
gular part; the states deep in the Fermi sea, which are
not perturbed, contribute to it.

To solve Eq. (5.59), we define a new field  by the
relation

(5.32)

where the operator  is shown below to be related to

certain products of the Green functions , see

Eq. (5.38). The operator  is Hermitian and local in
space but not in the momentum direction and time. We
again use the operator notation

(5.33)

We require K+ to satisfy the equation

(5.34)

whose solution is

(5.35)

The operator notation here is the same as in Eq. (5.26).
The next task is to choose the “best” form for the

operator  to maximally simplify the further perturba-

tive expansion. Writing  =  + , we obtain
the equations

(5.36a)

(5.36b)

gK t1 t2 n r, , ,( ) t1 t2→
2i

π t1 t2–( )
--------------------– regular,+=

PgK t1 t3,( )gK t3 t2,( )

≡ gK t1 t3,( )gK t3 t2,( ) 4δ t1 t3–( )δ t3 t2–( ),–

PgK t1 t3,( )gK t3 t2,( )

≡ 1
2
--- gK t1 t3 σi0+,( )gK t3 σi0 t2,+( ).

σ 1±=

∑

K̃–

K̃– t n r, ,( ) i∂t( ) 1– M̂K–,=

M̂

gK

M̂

M̂K– t1

n1d
Ωd

--------M t n; t1 n1; r,,( )K– t1 n1 r, ,( ).∫d∫≡

∂t v ∇ Stˆ τ–⋅+( )K+ φ+ 2K̃–,–=

K+ +̂
g
φ+ 2+̂

g
K̃–.–=

M̂

δgK δg+
K δg–

K

iL̂δg–
K Q̂K– 2 K̃– gK,[ ] ,+=

i L̂ g+
Kd

n2 n3dd

Ωd
2

-----------------γ n3

n; n2 
 
 

∫=

× K+ n3( ) gK n2( ) gK n( )–( ),[ ] ,
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where  ≡ (  + v ·  – ).
We note that the right-hand side of Eq. (5.36b) van-

ishes in equilibrium, because  = . Therefore,

 also vanishes in equilibrium and cannot contribute
to the equilibrium properties such as the specific heat.

Moreover, even outside the equilibrium, (t1, t1, n,
r) = 0, because the right-hand side of Eq. (5.36b) van-
ishes, see the remark after Eq. (5.31). This means that

 does not contribute to the electron density or
current.

We are now ready to choose the operator . We

require that (t1, t1, n, r) = 0; i.e.,  does not con-
tribute to the electron density or current either. This
means that the right-hand side of Eq. (5.36a) must van-
ish for t1 = t2 for any field K–. Imposing this require-
ment, we obtain

(5.37)

Together with Eq. (5.30), it yields

(5.38)

Expression (5.27) for the vertex γ enables us to estab-
lish the following properties of kernel (5.38):

(5.38')

the operator  is therefore Hermitian.

It is instructive to find  in the thermal equilibrium.
With Eq. (5.14), because Eq. (5.24) implies that the
retarded and advanced components of  are still given
by Eq. (5.23), it follows from Eqs. (5.28) and (5.38) that

(5.39)

Equation (5.39) is useful in checking the fluctuation–
dissipation theorem.

5.3. Polarization Operators and Propagators 

Knowledge of the linear-order corrections to the
Green function permits the calculation of the polariza-
tion operators as variational derivatives of the original
Green functions (i.e., before the gauge transformation)

L̂ ∂̃t ∇̃ Stˆ τ

gK gK〈 〉 n

δg+
K

δg+
K

δg+
K

M̂

δg–
K δg–

K

M̂ t1 t2 n ñ r, , , ,( )
π
4
---Q̂ t1 t1 n; t2 ñ; r,, ,( ).=

M t1 n1; t2 n2; r,,( )
π
8
---

n3d
Ωd

--------γ n2

n1; n3 
 
 

∫=

× PgK t1 t2 n1, ,( )gK t2 t1 n3, ,( ) n1 n3( )+[ ] .

M t1 n1; t2 n2,,( ) M t1 n2; t2 n1,,( )=

=  M t2 n2; t1 n1,,( );

M̂

M̂

ĝ

Meq t1 n1; t2 n2; r,,( )

=  
ωd

2π
-------e

iω t2 t1–( )
M̂eq ω; n1 n2,( ),∫

Meq ω; n1 n2,( ) ω ω
2T
------ 

  Stˆ τ[ ] n1 n2,( ).coth–=
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in the limit t2  t1, see Eq. (5.17). In the linear order,
the corrections to the original Green functions are given
by the relations (cf. Eq. (5.21))

(5.40a)

(5.40b)

By construction in the previous subsection,

(5.41)

and using Eq. (5.31), we have

(5.42)

Substituting these results in Eq. (5.17) and using
Eqs. (5.26), (5.32), and (5.35), we obtain

(5.43a)

we use notation (5.2) throughout this subsection. The
result for the Keldysh component is

(5.43b)

The actions of the operators  and  are defined in
Eqs. (5.26) and (5.33).

It is easy to check that the fluctuation–dissipation
relation between the polarization operators holds in the
thermal equilibrium. As follows from Eqs. (5.25) and
(5.26),

(5.44)

We perform the time Fourier transformation for all the
propagators and the polarization operators in thermo-
dynamic equilibrium,

(5.45)

Substituting Eqs. (5.39) and (5.44) in Eq. (5.43b), we
obtain that in equilibrium,

(5.46)

With the help of Eq. (5.15), we then derive the fluctua-
tion–dissipation relation

(5.47)

With the expressions for the polarization operators
obtained above, we can solve Dyson Eq. (5.15) and

δgK δgK i K+ gK,[ ] 2K–δ t1 t2–( ),––

δgZ 2K–δ t1 t2–( ).

δgK t1 t2 n r, , ,( )
t2 t1→
lim 0,=

i K+ gK,[ ]–
t2 t1→
lim

2
π
---∂tK+ t n r, ,( ).–=

ΠR 1 2,( ) ν δ12 ∂t1
+g

1 2,( )–[ ] ,=

Π A 2 1,( ) ν δ12 ∂t2
+

g
1 2,( )–[ ] ;=

ΠK 1 2,( ) 2iν +̂
g
M̂+

ˆ g

[ ] 1 2,( ).=

M̂ D̂

2+̂
g
Stˆ τ+

ˆ g

– +̂
g

+
ˆ g

.+=

A 1 2,( )
ωd

2π
-------e

iω t2 t1–( )
A ω; 1∗ 2∗,( ).∫=

Πeq
K ω; 1∗ 2∗,( )

=  ΠR ω; 1∗ 2∗,( ) Π A ω; 1∗ 2∗,( )–[ ] ω
2T
------.coth

Deq
K ω; 1∗ 2∗,( )

=  DR ω; 1∗ 2∗,( ) DA ω; 1∗ 2∗,( )–[ ] ω
2T
------.coth
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obtain the explicit expressions for the interaction prop-
agators. In the operator notation,

(5.48a)

(5.48b)

(5.48c)

where the action of the operator  on any function
a(t, n, r) is defined by

(5.49)

see also the text after Eq. (5.15).

To find the propagators for the fields K± given in
Eqs. (5.26') and (5.35), defined as

(5.50)

we use Eqs. (5.1) and (5.48) and obtain the retarded and
advanced propagators

(5.51a)

whereas the result for the Keldysh propagator is

(5.51b)

The fluctuation–dissipation relation between the D

propagators in Eq. (5.47), the equilibrium form for 
in Eq. (5.39), and identity (5.44) allow us to verify the
fluctuation–dissipation relation for the _ propagators:

(5.52)

νD̂
R 1

1 F̂ ∂t F̂+̂
g

–+
----------------------------------F̂,–=

νD̂
A

F̂
1

1 F̂ ∂t+
ˆ g

F̂+ +
-----------------------------------,–=

D̂
K

2iνD̂
R
+̂

g
M̂+

ˆ g

D̂
A
,=

F̂

F̂a[ ] t; n r,( )
n1d

Ωd

--------∫≡

× Fρ nn1( )a t n1 r, ,( ) r1νV r r1–( )a t n1 r1, ,( )d∫+[ ] ,

K+ 1( )K+ 2( )〈 〉〈 〉 i
2
---_K

1 2,( ),=

K+ 1( )K– 2( )〈 〉〈 〉 i
2
---_R

1 2,( ),=

K– 1( )K+ 2( )〈 〉〈 〉 i
2
---_A

1 2,( ),=

K– 1( )K– 2( )〈 〉〈 〉 0,=

_̂
R

+̂
g
D̂

R
+̂

g
, _̂

A
+
ˆ g

D̂
A
+
ˆ g

,= =

_̂
K

+̂
g
D̂

K
+
ˆ g

–=

+ 2i +̂
g

∂t( )
1–
M̂+

ˆ g

D̂
A
+
ˆ g

+̂
g
D̂

R
+̂

g
M̂ ∂t( )

1–
+
ˆ g

–[ ] .

M̂

_eq
K ω; 1∗ 2∗,( )

=  _R ω; 1∗ 2∗,( ) _A ω; 1∗ 2∗,( )–[ ] ω
2T
------.coth
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5.4. Additional Bosonic Fields 

Equation (5.51b), together with Eqs. (5.51a) and
(5.38), allows expressing the Keldysh propagator _K in
terms of the electron distribution function. This rela-
tion, however, is nonlocal on a spatial scale much larger
than the temperature length

(5.53)

recall the discussion in Section 2.2. Indeed, the colli-
sion integral and all physical quantities are then given
by integrals of the type

where the function f(ω) depends on its argument at the
characteristic scale of T. A retarded function is an ana-
lytic function of ω at Imω > 0, which implies that for
α = R, the integral is determined only by singularities
of f(ω), i.e., (R ≈ _R(ω = iT). This immediately restricts
the spatial scales to LT . The same argument applies to
the advanced case, because of the analyticity at
Imω < 0. But the function _K(ω) is not analytic. More-
over, according to Eq. (5.51b), it contains overlapping
singularities of the retarded and advanced propagators.
This means that the characteristic frequencies entering
(K are determined by the poles of the propagator rather
than by the width of the function f; i.e., the spatial scale
may far exceed LT and any expression of type (K is
therefore nonlocal.

To overcome this difficulty, the standard parameter-
ization of the Keldysh function DK = DR ° N – N ° DA is
usually introduced and the kinetic equation for the dis-
tribution function N is then derived. All nonlocality in
the problem is then contained in the partial solution of
the kinetic equation, to be compared with Eq. (2.14),
whereas the kinetic equation itself is local. In what fol-
lows, we adopt this program in a slightly modified
form. We introduce a new retarded propagator +ρ(1, 2)
(to be compared with Eq. (5.25))

(5.54)

and its advanced counterpart (1, 2) = +ρ(2, 1). The
multiplications in Eq. (5.54) are to be understood in the

operator sense, and the action of the operator  on a
function a(t, n, r) is defined by Eq. (5.49).

For  = 0, +ρ ( ) reduces to the usual diffusion

+g ( ). Physically, +ρ describes the spectrum of a

LT min
"v F

T
---------- v F

"τ
T
------, ,≈

(α ω f ω( )_α ω( ), αd∫ R A K ,, ,= =

iĤe h– (i∂t1
i∇ 1)– Stˆ τ–,[ ] +ρ δ12,=

Ĥe h– ω q,( ) v q⋅ ω
1 F̂+
-------------–=

+
ρ

F̂

F̂ +
ρ

+
g
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propagating electron–hole pair and the operator in the
left-hand side of Eq. (5.54) corresponds to the kinetic
equation for the collective mode in the Fermi liquid the-

ory [26]. The operator (ω, q) can be interpreted as
a “Hamiltonian” (cf. Appendix C) of the interacting
electron–hole pair.

In terms of +ρ and +g, Eqs. (5.51) acquire the form

(5.55a)

(5.55b)

We introduce two bosonic “distribution functions” (the

density matrices, to be more precise)  and  that
satisfy the equations

(5.56a)

(5.56b)

The operator  is defined in Eqs. (5.33) and (5.38)
and, in a more explicit notation, the action of the oper-

ators  on any function a(t, n, r) is understood as

where short notation (5.2) is used. We note that the

above equations imply that the bosonic functions 
are symmetric:

(5.57)

Equations (5.56) allow us to rewrite Eq. (5.55b) as

(5.58)

This expression is local in the sense discussed above
and is used in the construction of the conserved energy
current. Obtaining the local expression, however,
requires the introduction of two additional bosonic dis-
tribution functions: 1ρ, describing the interacting elec-
tron–hole pairs, and the ghost field distribution 1g, sub-
tracting the contribution of the electron–hole pairs in
the absence of interactions.

Ĥe h–

ν_̂
R

∂t( ) 1– +̂
g

+̂
ρ

–[ ] ,=

ν_̂
A

+
ˆ g

+
ˆ ρ

–[ ]– ∂t( ) 1– ,=

ν_̂
K

2i ∂t( ) 1––=

× +̂
g
M̂+

ˆ g

+̂
ρ
M̂+

ˆ ρ
–[ ] ∂ t( ) 1– .

1̂
g

1̂
ρ

+̂
g

( )
1–
1̂

g
1̂

g
+
ˆ g

( )
1–

+ 2M̂,=

+̂
ρ

( )
1–
1̂

ρ
1̂

ρ
+
ˆ ρ

( )
1–

+ 2M̂.=

M̂

1̂
ρ g,

1̂
ρ g,

a[ ] 1( ) 21ρ g,
1 2,( )a 2( ),d∫=

1ρ g,

1ρ g,
1 2,( ) 1ρ g,

2 1,( ).=

ν_K
i ∂t( ) 1– +̂

g
1̂

g
1̂

g
+
ˆ g

+[ ] ∂ t( ) 1––=

+ i ∂t( ) 1– +̂
ρ
1̂

ρ
1̂

ρ
+
ˆ ρ

+[ ] ∂ t( ) 1– .
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Closing this subsection, we rewrite Eq. (5.56) in a
form resembling the kinetic equation in Section 2. We
substitute Eqs. (5.25) and (5.54) in Eq. (5.56) and
obtain

(5.59a)

(5.59b)

where the collision integrals are

(5.59c)

for α = g, ρ. They depend on gK via  and we use the
notation

(5.60)

We perform the time and space Wigner transforma-
tions of Eqs. (5.59) to introduce the bosonic distribu-
tion functions Ng, ρ,

(5.61)

where t = (t1 + t2)/2, r = (r1 + r2)/2. Symmetry rela-
tion (5.57) transform into the condition

(5.62)

The physical meaning of this relation is the Bose statis-
tics: at ω > 0, Ng, ρ corresponds to the occupation num-
bers entering the probability of the absorption of the
bosons, whereas the ω < 0 part describes the boson
emission.

The fermionic distribution function f is obtained in
two steps: (a) we introduce the gauge-invariant Green
function g (also see the next subsection) and (b) we per-
form the time Wigner transformation:

(5.63a)

(5.63b)

Performing such Wigner transformations of

∂t v ∇ ; 1̂
g

⋅+[ ] Stˆ
b

1g
gK,{ } ,=

iĤe h– i∂t1
i∇ 1–,( );   1 ˆ  

ρ
 [ ] Stˆ 

b
 1 

ρ g 
K ,{ } ,=

Stˆ
b

1g
gK,{ } 2 Stˆ τ ; 1̂

α
{ } 2M̂+≡

M̂

Â; B̂{ } 1
2
--- ÂB̂ B̂ Â+( ),≡

Â; B̂[ ] ÂB̂ B̂ Â.–≡

1̂
g ρ,

1 2,( )
ωd

2π
-------e

iω t1 t2–( )–

∫ qdd

2π( )d
-------------e

iq r1 r2–( )⋅

∫=

× ω 2Ng ρ, ω q; n1 n2; t r,,,( ) Ωdδ n1 n2,( )+[ ] ,
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JOURNAL OF EXPERIMENTAL A
Eqs. (5.56) and (5.38), we find

(5.64a)

(5.64b)

where the collective mode velocity operator is

(5.65)

In the left-hand side of Eq. (5.64b), we limited our-
selves to the leading Poisson brackets (the equation
becomes exact for a short-range interaction because

∂q  = 0, and in the unitary limit,   ∞). However,
no Poisson brackets arise in the right-hand sides of
Eqs. (5.64) as a consequence of the locality of the
kinetic equations.

The right-hand sides of Eq. (5.64) describe the
decay of an electron–hole pair into an electron and a
hole moving in different directions. To write the expres-
sion for this collision term, it is convenient to introduce
the following object:

(5.66)

It is easy to see that ϒg, ρ = 0 in thermal equilibrium,
Eq. (3.1).

In terms of this object and vertex (5.27), we have

(5.67)

where we suppress the spectator arguments t, r, and q
in the right-hand side of the equation. In deriving
Eq. (5.67), we used Eqs. (5.28) and (5.38') and the
property

To understand the physical meaning of the processes
described by collision integral (5.67), we use the
explicit form of the vertex γ (Eq. (5.27)) for the isotro-
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pic impurity scattering τ(θ12) = τ. Then the collision
integrals can be decomposed into the sum of two con-
tributions:

The first term in the right-hand side can be obtained
from a simple counting of the probabilities of the pro-
cesses depicted in Figs. 2a and 2b:

The second term in the right-hand side originates from
the interference of two scattering processes, see Fig. 2c.

It therefore makes contributions to  that are not diag-
onal in the momentum directions:

5.5. The Collision Integral for Electrons 

With the bosonic propagators _ at hand, we can
proceed with the calculation and include the second-
order contributions in the fluctuating fields K± to the
collision term of Eilenberger Eq. (5.22). With the fluc-
tuating fields K± given by Eqs. (5.26') and (5.35), the
Eilenberger equation becomes

(5.68)

where we use notation (5.11) for the derivatives,  is

defined after Eq. (5.22),  is defined in Eq. (5.32), and

 is the Pauli matrix.

We expand the right-hand side of Eq. (5.68) up to

the second order in , see Fig. 3a; then we average it
to obtain Fig. 3b. The resulting second-order contribu-
tions can have two different origins: (1) they can arise
from the expansion of the exponentials truncated at the

second order, the term  in Fig. 3c, or (2) they are
obtained as products of the linear correction δgK of
Eq. (5.36a) and the first-order expansion of the expo-

nentials, the term  in Fig. 3c.
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b
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The Eilenberger equation for the averaged Green
function takes the form

(5.69)

where  contains both zeroth and second-order contri-
butions. We find (see Appendix D for details on the can-
cellation of second-order corrections in the R, A, Z
sectors)

(5.70)

where  = –  = δ(t1 – t2). This means that the matrix
Green function of form (5.23) is still a solution of the
Eilenberger equation—the main gain of gauge transfor-
mation (5.21)—provided that the kinetic equation for
the Keldysh component is satisfied; accordingly, we
concentrate on this component only.

Performing gauge transformation (5.63a) of the
Keldysh component of the Eilenberger equation, we
arrive at the explicitly gauge-invariant form of the
kinetic equation

(5.71)

In the collision integral , we use

 to denote contributions of type (1) and

∂̃t v ∇̃⋅+[ ] ĝ St ĝ Nρ Ng, ,{ } ,= ˆ

St̂

St g0
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∫⋅+⋅+ + g
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= + + +

=

= + +

(a)

(b)

∂̃t v ∇̃⋅+( )

∂̃t v ∇̃⋅+( )

K̂ K̂ K̂

Stˆ

Stτ
ˆStˆ St1

ˆ St2
ˆ

∂̃t v ∇̃⋅ Stˆ τ–+( )–1=

Fig. 3. Schematic representation of averaging over the fluc-

tuation fields . (a) Expansion of Eilenberger Eq. (5.68)
before averaging. (b) The equation for the Green function

averaged over , see Eq. (5.69). (c) The contributions to
the total collision integral in the one-loop approximation.

K̂

K̂

(c)

. . .

_̂ _̂
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 for those of type (2);6 

(5.72)

where  is defined in Eq. (5.8). The numerical factors
in front of the last two terms are introduced to facilitate
the transformation to the canonical form of the kinetic
equation in subsequent sections.

The expression for  written in terms of the _
propagators (5.50) and the γ vertex (5.27) is

(5.73)

We introduce the short notation

(5.74)

and

We omit the variable r, which always appears in the dis-
tribution function as g(t1, t2, n, r) and in the propagators
as _(t1, n1, r; t2, n2, r). The dependence on the electron
distribution function g is explicit, whereas the depen-
dence on the bosonic distribution functions is hidden
into the propagators, see Eq. (5.58). For reasons that
will become clear in the next subsection, we split
Eq. (5.73) into two parts:

(5.75a)

(5.75b)

6 This separation has no particular physical meaning; it is just a
matter of practicality in the calculations; we return to the physical
aspects when we analyze the conservation laws in the next sub-
section.
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(5.75c)

As regards , it is convenient to separate it into
two parts, depending on which field, K+ or K–, we retain
in the expansion,

(5.76a)

where 〈〈 …〉〉  denotes averaging over the fluctuating
fields K± with propagators (5.50) and

(5.76b)

(5.76c)

The commutator is defined in Eq. (5.10) and the ker-
nel δQ is the first variation of operator (5.30) with
respect to the Keldysh component of the electron
Green function,

(5.76d)

Finally, the functions δg± and δg = δg+ + δg– are
obtained by solving Eqs. (5.36a) and (5.36b) (after
transformation (5.63a)); with the help of Eq. (5.37), we
have

(5.77)
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(5.78)

where t12 = t1 – t2 and notation (5.2) is used.7 

For future use, we note the properties (see also the
discussion following Eq. (5.36))

(5.79)

which follow from Eqs. (5.77)–(5.78) and from defini-
tions (5.76d) and (5.27).

The canonical form of the kinetic equation is
obtained by performing the time Wigner transforma-
tion (5.63b) of both sides of Eq. (5.71). It is clear from
the structure of the collision integrals that this proce-
dure leads to the appearance of Poisson brackets in the
right-hand side of the kinetic equation. We choose
another route, however: we prove the existence of the
conservation laws before the Wigner transformation.
This then allows us to argue that these Poisson brackets
(in our formulation of the kinetic equation) give only
small contributions, which can be neglected within the
accuracy of the kinetic equation.

5.6. Conservation Laws 

The derivation of the conservation laws is based on
the following properties of the collision integrals in the
previous subsection:

(5.80a)

(5.80b)

(5.80c)

The physical meaning of conditions (5.80) is that the
corresponding terms in the collision integral preserve
the number of particles within the energy shell. Equa-

7 These solutions are exact only in the absence of the electric field,
because in its gauge invariant form, the operator acting on δg± is
the same that appears in the left-hand side of Eq. (5.71). We could
perturbatively include field-dependent corrections into our
expressions, which would be of the first order in E for δg– and of
the second order for δg+ (because δg+ vanishes in equilibrium).
However, as noted above, the first property in Eq. (5.79) implies
that these corrections cannot contribute to the physical quantities
in which we are interested, and therefore we do not include them
in our calculations.
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tions (5.80) follow immediately from definitions (5.8),
(5.75b), (5.76b), (5.76d), and (5.79).

The two remaining contributions to the collision
integral have the properties

(5.81a)

(5.81b)

and

(5.82a)

(5.82b)

where we use notation (5.74) and the vertex is defined
in Eq. (5.28). Equations (5.81a) and (5.82a) immediately
follow from definition (5.76c) and condition (5.79). Der-
ivations of Eqs. (5.81b) and (5.82b) are given in Appen-
dix E.

Expressions (5.81) mean that, while not preserving
the number of particles for a given energy shell, the

terms  and  preserve the total number of parti-
cles for a given direction (small-angle inelastic scatter-

ing). Equation (5.82a) means that the inelastic  term
preserves not only the number of particles but also the
energy for a given direction. Equation (5.82b) means

that the  term does not preserve the energy for a
given direction, thus describing the energy exchange
between quasiparticles and electron–hole pairs dis-
cussed in Section 5.3.

The possibility of finding the conserved energy cur-
rent is based on a certain relation between Eq. (5.82b)
and the collision integral for electron–hole pairs. We
now turn to the discussion of this relation.

We substitute Eqs. (5.55a) and (5.58) in Eq. (5.82b)
and average the result over n; then using the analytical
property

(5.83)

together with +ρ(1, 2) = (2, 1), +g(1, 2) = (2, 1),
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1ρ, g(1, 2) = 1ρ, g(2, 1), and Eq. (5.38), we find

(5.84)

where  is defined in Eq. (5.8) and Trn acts as

(5.85)

The corresponding traces of the collision integrals
for the electron–hole pairs, Eq. (5.59c),8 are

(5.86a)

(5.86b)

Comparing Eqs. (5.84) and (5.86) and using Eqs. (5.25)
and (5.54) once again, we obtain the desired relation
between the collision integrals:

(5.87)

The left-hand side of Eq. (5.87) is the quantum
counterpart of relation (2.3b), and Eqs. (5.80)–(5.81)
are related to Eq. (2.3a); we now derive the expressions
for the electric and energy currents in the spirit of our
discussion in Section 2.1.

We begin with the conservation of electric charge.
According to Eqs. (5.4) and (5.6), the charge density is
given by

(5.88)

Taking the limit t1  t2  t in both sides of
Eq. (5.71) and using Eqs. (5.72), (5.80), and (5.81), we
obtain the continuity equation

(5.89)

where

(5.90)

to be compared with Eqs. (2.5)–(2.7).

8 The operator  is gauge-invariant and has the same form in

terms of g or gK.
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Having found the usual equation for the electric cur-
rents, we turn to the energy conservation. Acting with
the operator (  – ) on both sides of Eq. (5.71) and
introducing the quantities

(5.91)

we find

(5.92)

The expression in the left-hand side of Eq. (5.92) has
the form of a continuity equation for the energy current
of electrons: the first term in the right-hand side is the
Joule heat acting as an energy source. The last term in
the right-hand side indicates that the electron system is
open by itself, due to the energy exchange with elec-
tron–hole pairs. As we discussed in Section 2.1, this
means that the contribution of these degrees of freedom
must be taken into account in the definition of the con-
served energy and energy current densities. For this, we

multiply Eqs. (5.59a) and (5.59b) by  and ,
respectively. Using Eqs. (5.25), (5.54), and (5.59c) and
taking the trace Trn (see Eq. (5.85)) of both sides, we
obtain

(5.93a)

(5.93b)

where the energy densities uρ, g and currents  are
defined as

(5.93c)

(5.93d)

The velocity operator  is defined in Eq. (5.65), and
notation (5.60) is used.
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We now add Eq. (5.93a) to Eq. (5.92) and subtract
Eq. (5.93b). According to Eq. (5.87), all the collision
terms and the commutators cancel, and we obtain the
energy balance equation (compare with Eq. (2.8)):

(5.94a)

(5.94b)

(5.94c)

Equations (5.94), (5.91), (5.93c), and (5.93d) con-
stitute the main result in this subsection. They define
the conserved currents in terms of quantities to be
found from the kinetic equations. We emphasize that
the conservation laws thus found are exact (at one loop)
in the sense that no approximation has been made
beyond the usual Fermi-liquid theory: specifically, no
gradient or harmonic expansion has been made and no
time or space Poisson brackets have been neglected yet
(except those suppressed by the factor q/pF).

Within the same accuracy with which kinetic equa-
tions (5.64) were derived, performing Wigner transfor-
mations (5.61)–(5.63) of Eq. (5.90), (5.91), and
(5.93d), we find

(5.95)

for the electric current density and

(5.96a)

(5.96b)

(5.96c)

for the energy current densities, in agreement with
Eqs. (3.14)–(3.15).

It remains to reduce the found expressions to the
usual form of the quantum BE. This is the subject of the
next subsection.

5.7. The Quantum Kinetic Equation 

After Wigner transformations (5.61)–(5.63b),
Eq. (5.71) becomes

(5.97)

∂tutot ∇ jtot
ε⋅+ j E,⋅=

utot t r,( ) ue t r,( ) uρ t r,( ) ug t r,( ),–+=

jtot
ε t r,( ) je

ε t r,( ) jρ
ε t r,( ) jg

ε t r,( ).–+=

j ev Fν ε n f ε n; t r,,( )〈 〉 nd∫=

je
ε v Fν εε n f ε n; t r,,( )〈 〉 n,d∫=

jρ
ε ωd

2π
-------ω qdd

2π( )d
-------------∫∫=

× ŝ ω q,( ); +̂
ρ

ω q,( )N̂
ρ ω q; t r,,( ){ } n,

jg
ε ωd

2π
-------ω qdd

2π( )d
-------------∫∫=

× v+̂
g

ω q,( )N̂
g ω q; t r,,( ) n,

∂t v ∇⋅ ev E ε∂
∂⋅+ + f ε n; t r,,( )

=  Stˆ f Nρ Ng, ,{ } .
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The collision integral is the sum of the inelastic and
elastic parts,

(5.98)

The elastic part is obtained by adding the transform
of the “bare” collision integral (the first term in the

right-hand side of Eq. (5.72)) to the transforms of ,

Eq. (5.75c), and , Eq. (5.76b). The inelastic part is

given by the transform of , Eq. (5.75b), plus the

transform of , Eq. (5.76c). However, for the sake of
compactness, we do make no such distinction between
elastic and inelastic contributions and, using a notation
resembling that in Section 5.5, write the collision inte-
gral in the form

(5.99)

where the first term in the right-hand side is the trans-
form of the bare collision integral and the other terms
are given below.

With the elastic and inelastic parts of collision inte-
gral (5.73) kept in a single formula, the corresponding
contribution is obtained by first substituting Eqs. (5.58)
and then performing Wigner transformations (5.61)–
(5.63) (and using their property (5.83)). We decompose
the result into distinct contributions due to the two
bosonic degrees of freedom:

(5.100)

As usual, the collisions with the ghost particles enter
with the opposite signs. In terms of combination (5.66)
of distribution functions denoted by ϒ and vertex (5.28),
these contributions are (we suppress the spectator argu-
ments t and r in both sides of the equations)

(5.101a)

(5.101b)

Here and below, the short notation

Stˆ f Nρ Ng, ,{ } Stˆ in f Nρ Ng, ,{ } Stˆ el f{ } .+=

Stˆ 1
el

Stˆ –

Stˆ 1
in

Stˆ +

Stˆ f Nρ Ng, ,{ } Stˆ τ f=

+ Stˆ 1 f Nρ Ng, ,{ } Stˆ – f{ } Stˆ + f Nρ Ng, ,{ } ,+ +

Stˆ 1 ε n; t r,,{ }

=  Stˆ 1
e ρ–

ε n; t r,,( ) Stˆ 1
e g–

ε n; t r,,( ).–

Stˆ 1
e ρ–

ε n1,( )
1
ν
--- ωd

2π
------- 1

ω
---- qdd

2π( )d
-------------

n2 n3 n4ddd

Ωd
3

--------------------------∫∫∫=

× γ12
3 +34

ρ ϒ41; 21
ρ ε ω q, ,( ) ϒ34; 21

ρ ε ω q, ,( )+41
ρ

+[ ]{

+ γ21
3 +34

ρ ϒ42; 21
ρ ε ω q, ,( ) ϒ34; 21

ρ ε ω q, ,( )+42
ρ

+[ ] } ,

Stˆ 1
e g–

ε n1,( )
1
ν
--- ωd

2π
------- 1

ω
---- qdd

2π( )d
-------------

n2 n3 n4ddd

Ωd
3

--------------------------∫∫∫=

× γ12
3 +34

g ϒ41; 21
g ε ω q, ,( ) ϒ34; 21

g ε ω q, ,( )+41
g

+[ ]{

+ γ21
3 +34

ρ ϒ42; 21
g ε ω q, ,( ) ϒ34; 21

g ε ω q, ,( )+42
g

+[ ] } .

+ij
α +α ω q; ni n j,,( ), α g ρ,= =
SICS      Vol. 100      No. 2      2005



354 CATELANI, ALEINER
is used. It is readily seen that these contributions coin-
cide with the local electron–boson collision integral in
Eq. (3.19b).

Proceeding as above, we obtain the transform of
Eq. (5.76b) as

(5.102a)

(5.102b)

(5.102c)

Equation (5.102b) is (the singlet part of) the elastic
electron–electron collision integral, Eq. (3.20b). To
obtain Eq. (5.102c) in the given form, we used the ana-
lytic properties of the propagators and changed the vari-
able as ε1  ε1 + ω in some of the terms.

We finally transform Eq. (5.76c) and obtain

(5.103a)

The first term is given by (the singlet part of)
Eq. (3.20d). The second term is

(5.103b)

with  given by Eq. (3.19d) excluding the last line.
The third term is

(5.103c)

Adding Eqs. (5.103c) and (5.102c), we recover the last
line in Eq. (3.19d) and (the singlet part of) the local
electron–electron collision integral, Eq. (3.20f). This

Stˆ – ε n1,( ) Stˆ el ε n1,( ) Stˆ – l, ε n1,( ),+=

Stˆ el
2
ν
---Re

ωd
2π
------- 1

ω
---- qdd

2π( )d
-------------

n2… n6dd

Ωd
5

-----------------------γ13
2 γ46

5∫∫∫=

× +ρ +g
–[ ] 52 f ε ω– n6,( ) f ε ω– n4,( )–[ ]

× +14
g

f ε n3,( ) +34
g

f ε n1,( )+[ ] ,

Stˆ – l,
1
ν
--- ωd

2π
------- 1

ω2
------ qdd

2π( )d
-------------

n2… n6dd

Ωd
5

-----------------------γ13
2 γ46

5∫∫∫=

× 2 f ε n4,( ) f ε ω– n4,( )–[
– f ε ω+ n4,( ) n4 n6( )– ]

× ε1 f ε1 n1,( ) 1 f ε1 ω– n3,( )–[ ] n1 n3( )+[ ]d∫
× +ρ +g

–[ ] 52+14
g 1

2
--- +ρ +g

–[ ] 52 +14
g +34

g
–[ ] .+

Stˆ + ε n1,( ) Stˆ n
e e–

ε n1,( )=

+ Stˆ + n, ε n1,( ) Stˆ + l, ε n1,( ).+

Stˆ + n, Stˆ + n,
e ρ–

Stˆ + n,
e g–

–=

Stˆ + n,
e α–

Stˆ + l,
1

2ν
------ ωd

2π
------- 1

ω
---- qdd

2π( )d
-------------

n2… n6dd

Ωd
5

-----------------------γ13
2 γ46

5∫∫∫=

× 2 f ε n4,( ) f ε ω– n4,( )–[
– f ε ω+ n4,( ) n4 n6( )– ]

× +ρ
2Nρ 1+( ) +ρ

2Ng 1+( )–[ ] 52 +34
g +14

g
–[ ] .
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concludes the derivation of the quantum kinetic equa-
tion for the singlet channel.

5.8. The Triplet Channel 

Inclusion of the interaction in the triplet channel is
straightforward; in Eilenberger Eq. (5.7), we add the
term

(5.104)

to the left-hand side, where σi are the Pauli matrices

(i = x, y, z) and the fluctuating field  is a 3-component
vector in the L = 1 angular momentum space. There-
fore, all the triplet channel propagators, polarization
operators, and density matrices should be considered
3 × 3 matrices; for example, we have

(cf. Eq. (5.15)) and the retarded polarization operator is
given by

where the trace is over spin indices.

The trace of triplet channel operators includes the
sum over the indices i, j. In the absence of the magnetic
field, all the operators are diagonal, e.g.,

and the trace results in extra factors of 3 in comparison
to the singlet channel. The derivation can therefore be
repeated with simple modifications and it gives the
quantum kinetic equation presented in Section 3. We
only note one main difference in the derivation for the
triplet channel: the gauge transformation, which has the
form

does not commute with interaction term (5.104). Addi-
tional second-order terms arise due to commutators of
the Pauli matrices; however, these terms vanish in the
one-loop approximation and we can neglect them.

In the next section, we use the quantum kinetic
equation to calculate the interaction corrections to the
transport coefficients and specific heat.

i f̂ s⋅ ; ĝ[ ]

φ̂i

D0[ ] ij 1 2,( )
Fσ θ12( )δ r12( )

ν
--------------------------------δ t12( )δij–=

Π ij
R 1 2,( ) ν δ12

π
4
---Tr σi

δgK t1 t1 n1 r1, , ,( )
δφ+ j t2 r2 n2, ,( )

----------------------------------------+
 
 
 

,=

+σ[ ] ij +σδij,=

ĝ e iK̂– s⋅ ĝeiK̂ s⋅ ,
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6. DERIVATION OF TRANSPORT COEFFICIENTS 
AND SPECIFIC HEAT

In this section, we calculate the transport coeffi-
cients for quasi one-dimensional, two-dimensional, and
three-dimensional systems; the evaluation of the inter-
action correction to the specific heat is in the final sub-
section.

To calculate the currents in the presence of an exter-
nal field (electric field E or temperature gradient ∇ T),
we need to solve the kinetic equations. We assume that
the external fields are weak, i.e.,

with the temperature length defined in Eq. (5.53). These
conditions ensure that the deviations from the equilib-
rium distribution functions are small and we can solve
the equations by iteration.

In the lowest order, the distribution functions should
turn the collision integrals in Eqs. (3.4) and (3.6) to
zero, and the sought corrections δf, δNα are linear in the
electric field or in the gradients of the distribution func-
tions. In other words, we seek a solution of the kinetic
equations of the form

(6.1)

where the Fermi and Planck distribution functions (2.2)
depend on the spatial coordinate only through the tem-
perature T(r). For compactness, we consider only the
singlet channel explicitly and indicate how to include
the triplet channel.

We start from the electron part of the kinetic equa-

tion. The bare impurity collision part  is larger than
the other terms, and it therefore suffices to calculate the
latter in the first order of perturbation theory. Consider-
ing short-range impurities, such that τ is independent of
the scattering angle, we find

(6.2)

where  is the linearized collision integral. We note
that according to the discussion of the conservation
laws in Section 3, we need to consider only the local
electron–boson contribution, Eq. (3.19b), and the elas-
tic electron–electron one, Eq. (3.20b).

Expression (6.2) is to be substituted in Eqs. (3.14)
and (3.15b) to find the electric current and the electron
component of the energy current. Integration of the δf0
term is straightforward. Due to the structure of collision

eELT  ! T , ∇ T LT  ! T ,

f ε n; r,( ) f F ε; r( ) δ f ε n; r,( ),+=

N̂
α ω q; r,( ) NP ω; r( )1̂ δN̂

α ω q; r,( ),+= 1

Stˆ τ

δf δ f 0 δ f 1,+=

δ f 0 τv eE ε∇ T
T

-----------– 
  ∂ f F ε( )

∂ε
---------------– 

  ,⋅=

δ f 1 τδStˆ f F δ f 0 NP δNρ NP δNg+,+,+{ } ,=

δStˆ
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integrals (3.19)–(3.20), the integration over ε can be
performed before the ω and q integrations in the δf1
term. For the combination of distribution functions
entering Eq. (3.16a), we find

(6.3)

where we next use the identities

(6.4a)

(6.4b)

to obtain

(6.5a)

(6.5b)

where

(6.6)
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We here retained only the contribution odd in ω
because the even part vanishes after the ω integration in
the relevant collision integral, see Eq. (3.19b).

The combination of the distribution functions enter-
ing the elastic collision part, Eq. (3.20b), gives

(6.7a)

(6.7b)

where we again retained only the part that is odd in ω,
nonvanishing after the ω integration in Eq. (3.20b).

Using Eq. (3.14), we find the electric current j = E
with the conductivity tensor  given by

(6.8)

where σD = /d is the Drude conductivity. With
the spatial indices denoted by µ, ν = 1, …, d, the elastic

kernels  and %µν , which originate from Eq. (3.19b)
and Eq. (3.20b) respectively, are given by

,

(6.9)

where we keep only the singlet channel correction for
compactness; inclusion of the triplet channel contribu-

1
2
--- ε f F ε( ) δ f ε ω n,–( ) δ f ε ω+ n,( )–[ ]d∫
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-------------------------
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σ̂
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d
πων
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2π( )d
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2π( )d
-------------∫=
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tion is straightforward.9 We show in Appendix F that
our expression for the conductivity coincides with the
one in [17]. It is natural that the conductivity does not
involve any bosonic distribution function (cf.
Eq. (6.5a)), because the inelastic electron collision with
such bosons changes the energy of the electron but not
the direction of its motion.

In contrast, even the electron contribution to the

thermal conductivity tensor , such that  = – ,
is sensitive to the bosonic distribution functions. We
represent the total thermal conductivity as

(6.10)

The first term in this expression obeys the Wiedemann–
Franz law with the interaction corrections to the electric
conductivity included, i.e.,  = L T, with the
Lorentz number given by Eq. (1.1). The second term
represents the (electronic) correction to the Wiede-
mann–Franz law due to the energy dependence of the
elastic scattering and due to the inelastic electron scat-
tering on bosons. Finally, the third and the fourth terms
represent the contribution of the ρ and g bosons to the
thermal transport. These additional contributions are
given by

(6.11a)

(6.11b)

(6.11c)

(6.12)

where

(6.13)

Equations (6.8)–(6.12) are the complete expressions
for the electric and thermal transport coefficients. To
obtain an explicit result, we must solve Eqs. (3.6) to
find the distribution functions δNα. We do this by

9 By the simple substitution +ρ – +g  +ρ + 3+σ – 4+g in the
kernels.
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ε κ̂ ∇ T
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δκ̂ δκ̂el δκ̂in,+=

δκel[ ] µν
σD

e2T
--------=

× ω 6µν
el ω( ) 2%µν ω( )–[ ] ω3

12
------

∂NP

∂ω
---------- ,d∫

δκin[ ] µν
σD

e2T
-------- ω 6µν

12 ω( ) 6µν
11 ω( )–[ ] ω3

4
------

∂NP

∂ω
----------d∫=

+ v F
ωd

2π
-------ω qdd
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g +23
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g δνN21
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κµν
α ωd
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n1 n2dd
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restricting ourselves to the diffusive Tτ ! 1 regime,
except for two-dimensional systems for which we con-
sider an arbitrary temperature range.10 Moreover, for
the Coulomb interaction, we consider the unitary limit
(for infrared-finite momentum integrals), which
enables us to drop all the terms that depend on ∂q .

From now on, we retain only the zeroth harmonic of
the Fermi-liquid constants, for which we use the nota-

tion . For the singlet channel, this means

(6.14a)

and for the triplet channel,

(6.14b)

We recall that Fg = 0 and that the Coulomb interaction
potential is given by

(6.14c)

where a is a length of the order of the quasi one-dimen-
sional wire width.

6.1. Diffusive Regime 

We first consider the distribution function Ng; sub-
stituting expression (6.1) in Eq. (3.6), in the linear order
in ∇ T, we obtain

(6.15)

with  defined in Eq. (6.6). The (exact at this order)
solution for δNg(ω; n1, n2) is

(6.16)

10The Boltzmann equation description of strictly one-dimensional
systems is not applicable and considering the quasi-one-dimen-
sional ballistic case within our scheme is meaningless because of
the effects of boundary scattering. The ballistic regime in three
dimensions also cannot be considered within our scheme because
the main effect on the thermal conductivity is due to the inelastic
scattering processes with momentum transfer of the order of kF.

F̂
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------Fρ θ( ) νV q( )+∫≡

F0
σ θd

2π
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4πe2
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-----------, d 3=
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ω
T
----v1 ∇ T

∂NP
12 ω( )
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+ v F
ω
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For the distribution function Nρ, the above is only
the starting point for the iterative solution:

(6.17)

The equation for δN1 is

(6.18)

In the diffusive limit Tτ ! 1, the (first iteration) solution
would be of the form

for a vector V with a magnitude on the order of one.
However, contributions from frequencies ω larger than
the temperature T are exponentially suppressed, i.e.,
ωτ & Tτ ! 1; therefore, δN1 can be neglected in com-
parison to δNg. Thus, in the diffusive limit,

(6.19)

For the propagators +α in Eq. (3.11), the diffusive
approximation amounts to the substitution

which leads to the expression

(6.20)

where the functions  depend on ω, q only and are
explicitly given by

(6.21a)

(6.21b)

(6.21c)

Here, D = τ /d is the diffusion constant. These for-
mulas are valid whenever ω, Dq2 ! 1/τ.

Within this approximation, we have
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This means that in both  and  (see Eqs. (6.8) and

(6.11)), we can neglect the contributions of the  ker-
nels (we note that by inserting solution (6.19) in
Eq. (6.11c),  is given by twice the first line of that
equation). Indeed, the leading contribution is given by

the kernel  in Eq. (6.11b). This kernel has the approx-
imate form

(6.22)

Finally, the bosonic contributions (cf. Eq. (6.12)) to
thermal conductivity (6.10) can be written as11 

(6.23)

with

(6.24)

The next step is to evaluate the momentum integrals;
we first give the results for the short-range interaction
described by (the zeroth harmonic of) the Fermi-liquid
constant F0, and then we indicate the modifications
needed to account for the long-range part of the Cou-
lomb interaction in the singlet channel. The triplet
channel contributions are obtained by multiplying the

obtained results by three and identifying F0 with .

For the elastic kernel, we find

(6.25)

The expression for the Coulomb interaction is obtained
by taking the unitary limit F0  +∞.

The result for the bosonic kernel is

(6.26)

For d = 3, the limit F0  +∞ gives the correct formula
for the long-range contribution, but for d = 1, the limit

11We choose to collect the bosonic contributions into a single ker-
nel such that the resulting momentum integral is convergent.
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diverges. However, with the full form of the interaction
potential retained, this infrared divergence is cut off at
the inverse screening radius. With logarithmic accu-
racy, the result for the Coulomb interaction is found by
substituting […]  –akln1/2(Dk2/|ω|), where a is a
length on the order of the wire width and k2 = 4πe2ν is
the square of the inverse screening radius (in the bulk).

We can now proceed with the calculation of the inte-
grals over ω in Eqs. (6.8), (6.11), and (6.23) using the
identity

(6.27)

Here, ζ(x) is the Riemann zeta function, whose values
at the points relevant for our discussion are

and Γ(x) is the Euler gamma function, with the values

Performing the final ω integrations, we obtain

(6.28)

(6.29)

(6.30)

where in the absence of magnetic field σµν = σδµν and a
similar relation holds for the thermal conductivity.
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According to the previous discussion, for the Coulomb
interaction, the correct expressions are given by the
limit F0  +∞, with the exception of the term κρ – κg

in the case where d = 1 for which, with logarithmic
accuracy, the result is obtained by substituting […] 
–akln1/2(Dk2/T). The final answers for the corrections to
the thermal conductivity are given in Eqs. (4.2)–(4.3).

We note that for d = 3, the ω integration in  and
 is actually ultraviolet-divergent. This divergence

can be incorporated as a renormalization into the Drude
results; this renormalization, however, does not invali-
date the Wiedemann–Franz law.

6.2. Two-Dimensional System 

To evaluate the interaction corrections for the entire
temperature range, we need the exact form of the prop-
agators. In two dimensions, they are given by

(6.31)

where

(6.32)

We note that the variables ω and vFq are now bounded
only by the Fermi energy EF.

As before, we need to find the nonequilibrium cor-
rections δNρ, g to the bosonic distribution functions.
These are again given by Eqs. (6.16), (6.17), but to
obtain the thermal conductivity in an arbitrary temper-
ature range, we calculate the solution of Eq. (6.18)
exactly (in the linear order in ∇ T):

(6.33)

where the bar denotes complex conjugation and we
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introduce the quantities

(6.34)

We do not calculate the corrections to the electric
conductivity, which would reproduce the results
in [17], as shown in Appendix F (see also [18] for the
generalization to arbitrary disorder). For convenience
in the calculations, we separate the contributions due

to δN0 and δN1 in  and  (cf. Eqs. (6.11c)
and (6.23)):

(6.35a)
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(6.35c)

(6.36a)
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where, as in Eq. (6.13), we use δνN1 to denote the vari-
ational derivative with respect to the temperature gradi-
ent and

(6.36d)

Expressions (6.8) for the electric conductivity
and (6.11b) for the elastic correction to the thermal
conductivity and definition (6.9) for the kernels remain
unchanged. The momentum and angular integrals
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in (6.9) can be calculated exactly; for the singlet chan-
nel in the unitary limit, we find

(6.37a)

(6.37b)

(6.37c)

with the function H defined as

(6.37d)

To perform the momentum integral in Eq. (6.36d), we
must keep the full form of the propagator in order to
avoid the infrared divergence that we would obtain in
the unitary limit,

(6.37e)

where k = 2πe2ν is the inverse screening radius. Next,
we calculate the angular integrals in Eqs. (6.35c) and
(6.36c) as well as the angular part of the momentum
integrals, with the result
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(6.38b)

The function # is defined in Eq. (6.32) and b' is given

by the F0  +∞ limit of b in Eq. (6.34), where  is
also defined. The remaining integrals over the magni-
tude of the momentum can be evaluated approximately;
the result can be written as

(6.39a)

with

(6.39b)

In the above kernel, the first term in the curly brackets

originates from  only: as discussed in Section 5.2, no
long-range terms can be present in the electron contri-
bution to the thermal conductivity. We note that the sec-
ond term in the above expression is beyond the logarith-
mic accuracy of our approximate calculation and must
be dropped. Similarly, most of the terms in the other
kernels can be neglected, and collecting the logarithmic
contributions, we obtain

(6.40)
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Ñ

δκ̂in
1 κ̂1

ρ+
σD

e2T
-------- ω@̂

1
ω( )

ω3

4
------

∂NP

∂ω
---------- ,d∫=

@µν
1 ω( )

e2δµν

σD2π2
---------------τ 2ωτ

1 ωτ( )2+
-----------------------

v Fk
2 ω
---------- 

 ln




=

– ωτarctan ωτ
EF

ω2 τ 2–+
-----------------------

 
 
 

ln–




.

κ̂1
ρ

∆κ s
1

2π2T
------------ ω ω2

4
------

∂NP

∂ω
----------d∫–=

× ωτ( )2 EF

ω
------ 

 ln
2

1 ωτ( )2+
-----------------------

v Fk
ω

--------- 
 ln+





+
7
12
------ ωτ( )2 5

6
---–

16
3
------ 1

4 ωτ( )2+
-----------------------+ 1 1

ωτ( )2
--------------+ 

 ln




,

κ κ WF–[ ] µν ∆κ s 3∆κ t+( )δµν.=
ND THEORETICAL PHYSICS      Vol. 100      No. 2      2005



INTERACTION CORRECTIONS TO THERMAL TRANSPORT COEFFICIENTS 361
logarithmic accuracy; we find (cf. Eq. (4.4b))

(6.41)

where

(6.42a)

(6.42b)

and ψ' is the derivative of the digamma function.
Because the asymptotic behavior of g1(x) is

(6.42c)

both these functions tend to 1 as Tτ  0; therefore, in
the diffusive limit, the main contribution is
Tln(Dk2/T)/12. On the other hand, for Tτ @ 1, the first
term in Eq. (6.41) is the dominant one.

Turning to the triplet channel, we restrict ourselves
to the limiting diffusive and quasiballistic cases for
simplicity, although one can extend the calculation to
the entire temperature range, as is done in [17] for the
electric conductivity.

In the diffusive limit Tτ ! 1, we know from our pre-
vious analysis that we can discard the @1 term as well
as the 6 terms. The relevant kernels are then12 
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Their substitution in Eqs. (6.11)–(6.36b) gives
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divergence at large momenta in the kernel @1:

(6.46)

Then the correction to the thermal conductivity is

(6.47)

which concludes the derivation of Eq. (4.4c).

This correction to the thermal conductivity (and the
corresponding one in the singlet channel) is the contri-
bution of inelastic processes to the energy relaxation
rate.13 In a clean system, such inelastic processes can-
not relax momentum (because of the Galilean invari-
ance), and hence they do not affect the electric conduc-
tivity, but they can contribute to the energy relaxation
rate Γε . In the kinetic theory, the thermal conductivity
can be written, up to a numerical coefficient, as

and the rate is given by the sum of the rates for the rel-
evant processes, namely, the electron–impurity and
electron–electron scattering rates,

with Γimp = 1/τ and

Here, a is a constant whose exact value is irrelevant for
our argument. In the limit (T2/EF)ln(EF/T) ! 1/τ, we can
expand the expression for the total rate, substitute the
result into the above formula for κ and obtain

The first term in the right-hand side is the usual Drude
result for the thermal conductivity and the second term
has the form of correction (6.47). We note that in the
opposite limit (clean system), the result is

in agreement with the result in [30].

13A similar argument is presented in [21].
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6.3. Specific Heat 

Recalling our discussion on the structure of the
kinetic equation in Section 2, we write the total specific
heat as the sum of the electronic and bosonic contribu-
tions,

(6.48a)

(6.48b)

(6.48c)

where, in accordance with Eq. (5.93c), the bosonic
energy densities (in the equilibrium (3.1)) are

(6.49)

with14 

(6.50)

As before, we explicitly consider the singlet-channel,
short-range interaction in the zeroth harmonic approxi-
mation for the Fermi-liquid constant (denoted by F0).
The results for the long-range interaction in the unitary

limit are obtained by letting   +∞. For the triplet

channel, we must substitute  with  and multiply
by an overall factor of 3. The final answer with the cor-
rect coefficients is given in Section 4.2.

In the diffusive limit, to which we restrict our atten-
tion for d = 1, 3, we have

(6.51)

with the functions  defined in Eqs. (6.20) and (6.21).
After the momentum integration, we find

(6.52)

14This definition of the density of states is half of that in
Eqs. (2.19) because of the different limits for the ω integration in
the energy density and the specific heat.
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Inserting this in Eq. (6.48c) gives

(6.53)

The relevant numerical values for the zeta and gamma
functions are given after Eq. (6.27), which has been
used to evaluate the ω integral.

For d = 2, we can keep the full form of the propaga-
tors to find the singular contribution to the specific heat
at an arbitrary value of Tτ,

(6.54)

with # and b defined respectively in Eqs. (6.32) and
(6.34). The first term in the integral is formally diver-
gent as |q |  ∞; this divergence gives a linear-in-T
contribution to the specific heat that does not depend on
disorder. This term must be disregarded because all the
linear terms are included in the definition of the effec-
tive electron mass, and taking it into account would
lead to a double counting. To regularize the integral, we
replace 1/(# – b)  1/(# – b) – 1/# in the first line.

Evaluating the momentum integral, we obtain

(6.55)

The final answer for the correction to the specific heat
is then

(6.56)
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where ζ(2) ≈ 1.645, ζ'(2) ≈ –0.938, and ζ(3) ≈ 1.202. In
the quasiballistic limit τ  +∞, only the last line is
relevant:

This T2 correction to the specific heat has the same
form as the correction found for two-dimensional
Fermi liquids [28] and agrees (in the appropriate limit)
with the result in [29].

As discussed before, the long-range interaction can

be taken into account by passing to the limit as  
+∞, while the triplet channel contribution is three times
as large (cf. Section 4.2).

7. CONCLUSIONS

Locality at the scale determined by the temperature
and the validity of the conservation laws are two main
requirements for a proper kinetic description of any
system. In the present paper, we derived such a descrip-
tion for the interaction effects in disordered metals
(assuming that the clean counterpart of the system is a
stable Fermi liquid).

We showed that this description requires the intro-
duction of bosonic distribution functions in addition to
the usual fermionic quasiparticle distribution function.
These neutral bosons are of two types: (i) the ones
describing oscillations in charge density (singlet) or
spin density (triplet) and (ii) fictitious (ghost) bosons
that prevent overcounting the degrees of freedom (elec-
tron–hole pairs) already included in the fermionic part.
The conservation laws obtained together with gauge
invariance allow an unambiguous definition of the cor-
responding electric and energy currents.

For the electric transport, the neutral bosons are not
important and our description reproduces the known
results for the correction to the conductivity obtained
in [11] for the diffusive regime and in [17] in the ballis-
tic and crossover regimes.

The neutral bosons, however, are crucial for the
thermal properties of the system. Namely, their contri-
butions to the energy density are responsible for nonan-
alytic corrections to the specific heat, see Eqs. (4.6)
and (4.8). Our kinetic equation approach reproduces
the results for the interaction corrections to the specific
heat previously calculated within the equilibrium dia-
gram technique [12]. Moreover, the neutral boson con-
tributions to the energy current violate the Wiedemann–
Franz law, see Eq. (4.1) and the discussion that follows
it. The violation is stronger for lower dimensional sys-
tems (d = 1, 2) in the diffusive regime, see Eqs. (4.2)
and (4.4b). Other effects contributing to the violation of
the Wiedemann–Franz law are the energy dependence
of the electron elastic scattering and the inelastic scat-
tering of the electrons on the neutral bosons. The latter

δcV
3

2π
------ζ 3( )

F0
ρ

1 F0
ρ+

---------------
 
 
 

2
T2

v F
2

------.–=

F0
ρ
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effect was found to be relevant in the quasiballistic
regime Tτ @ " for two-dimensional systems, see
Eqs. (4.4).

The violation of the Wiedemann–Franz law was
investigated before in the diffusive regime in [20] and
[23] within the “quantum kinetic equation” approach
and by the Kubo formula in [22]. Ironically, even
though the forms of the energy current operator used in
those references are wrong, the final results for the ther-
mal conductivity are consistent with our Eqs. (4.2)–
(4.4). We think that this agreement is accidental.
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APPENDIX A

Correction 
to the Thermodynamic Potential

A standard analytic continuation of Eq. (2.17) gives

(A.1)

In the second line, we use the operator notation (see
Eqs. (3.3) and (3.13)), which gives the correct general-
ization for the momentum-dependent Fermi-liquid
parameter. Substituting the transform of the explicit
expression (5.43a) for the polarization operator, we
rewrite the argument of the logarithm as

According to definition (3.11), the term in the square

brackets is . Using the property

and the fact that ln(1 + ) does not contribute to the
imaginary part, we conclude that

Substituting this identity in Eq. (A.1), we finally obtain
Eq. (2.18).

δΩ ωd
4π
------- ω
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  qdd

2π( )d
-------------∫coth∫=

× Im 1
F
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 ln
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-------1

2
--- ω
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------ 

  ImTr 1
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  .lncoth∫

1 F̂+( ) +̂
g
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1– F̂

1 F̂+
-------------iω+ +̂
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.
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ρ
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ImTr 1
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ν
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+ 
 ln ImTr ln+̂

ρ
+̂

g
ln–[ ] .–=
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APPENDIX B

The Microscopic Form 
of the Energy Current Operator

The action entering the partition function that
describes the electron gas in the presence of an external
electric field is given by

(B.1)

with the condition ∇ ×  A = 0 that ensures the absence
of the magnetic field. The variables (t, r) on which all
the fields depend are suppressed. The gauge-invariant
part of the Hamiltonian for the noninteracting system
has the usual form

(B.2)

where Vimp is the impurity potential and the potentials ϕ
and A describe the external electric field:

As usual, the charge conservation law

(B.3)

follows from the requirement of gauge invariance, with
the charge and current densities given by

(B.4)

The invariance of the action under the replacement

(and a similar replacement for ψ†) underlies for the der-
ivation of the energy conservation law. A straightfor-
ward calculation gives

(B.5)

where the prime means that the derivative acts on ψ, ψ†

only. By adding and subtracting terms proportional to ϕ
in the last bracket and to ∂tA in the first term, we find
the energy conservation law

(B.6)

S t rd iψ†∂tψ ψ†Ĥgiψ– ψ†ϕψ–[ ]dd∫=

ψ†Ĥgiψ
1

2m
------- i∇ A+( )ψ† –i∇ A+( )ψ=

+ ψ†V impψ,

eEext –∇ϕ ∂ tA.+=

∂tρ ∇ j⋅+ 0=

ρ eψ†ψ,=

j
e

2m
------- ψ† –i∇ A+( )ψ i∇ A+( )ψ†ψ+[ ] .=

ψ t r,( ) ψ t α t r,( )+ r,( )

δS
δα
------- 0 ∂t' ψ†Ĥgiψ( ) ϕ∂ t ψ†ψ( )+= =

–
i

2m
-------∇ ∂ tψ† –i∇ A+( )ψ i∇ A+( )ψ†∂tψ–[ ] ,⋅

∂tu0 ∇ j0
ε⋅+ j Eext⋅ 1

e
---ϕ ∂ tρ ∇ j⋅+[ ] ,–=
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where

(B.7a)

(B.7b)

The first term in the right-hand side of Eq. (B.6) is the
usual Joule heat; the last term in that equation is not
gauge invariant, but it vanishes because it is propor-
tional to the left-hand side of continuity Eq. (B.3).

We now consider the generalization to the interact-
ing case. The Hamiltonian then contains the additional
term

where V(r) = e2/|r| describes the density–density Cou-
lomb interaction, which can be decoupled by the Hub-
bard—Stratonovich transformation. This amounts to
introducing of the quantum fields φ and A in the action
by adding the term

(B.8)

and redefining the vector potential as the sum of the
external and fluctuating ones:

(B.9)

The variation of the action with respect to the fluctuat-
ing potentials results in the first and fourth Maxwell
equations relating the fluctuating electric field to the
charge and current densities,

(B.10)

where the electric current is defined in Eq. (B.4), but
with substitution (B.9) performed.

To obtain the energy conservation law, we must con-
sider the further transformation

and a similar one for A. Proceeding as before, we find
the conservation law

(B.11)

where u0 ,  are defined in Eq. (B.7) (with substitu-
tion (B.9)). Given the form of Eq. (B.11), one might be

u0 ψ†Ĥgiψ,=

j0
ε 1

2m
------- i∂t ϕ+( )ψ† –i∇ A+( )ψ[–=

– i∇ A+( )ψ† i∂t ϕ–( )ψ ] .

1
2
--- rd

1ψ†ψ r( )V r r1–( )ψ†ψ r1( ),d∫

–ψ( )†φψ 1
2
---E fl

2 , eE fl+ ∇φ– ∂tA+=

A Aext A.+

∇ E fl⋅ ρ, 0 – j ∂tE fl,+= =

φ t r,( ) φ t α t r,( )+ r,( )

∂u?

∂t
-------- ∇ j?

ε⋅+ j Eext,⋅=

u? u0
1
2
---E fl

2–
1
e
--- ρφ ∂A

∂t
------- E fl⋅+ ,+=
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ε 1
e
---φj–

1
e
--- φj
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------E fl– ,+=
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tempted to call u? and  the energy and energy current
densities, in terms of which the conservation law takes
exactly the same form as in the noninteracting case. But
such a redefinition would result in gauge-dependent
expressions for the densities, because the terms in the
square brackets taken separately are not gauge invari-
ant. Hence, this naive redefinition of the conserved
quantities is nonphysical, because any physical pertur-
bation can be coupled only to gauge-invariant quanti-
ties. To find gauge-invariant definitions, we rewrite the
contribution of those gauge-noninvariant terms as

Here, the second line vanishes because of charge con-
servation, Eq. (B.3), and because of the first Maxwell
Eq. (B.10). In the third line, we use the second Maxwell
equation to eliminate the current; in the result, we sub-
stitute the definition of the fluctuating field given in
Eq. (B.8) and obtain that the third line of the above

equation is equal to . This enables us to conclude
that the correct gauge-invariant expressions for the
energy and energy current densities are

(B.12)

(B.13)

where the potentials are total ones:

.

We note that these expressions are gauge-invariant with
respect to gauge transformations of both the external
and fluctuating potentials. We believe that only such
quantities can be coupled to the “gravitational field” in
the Luttinger scheme for the calculation of the thermal
conductivity [5].

The same final answer is obtained if the interaction
is decoupled in the “gauge-fixed” form A = 0. In this
case, which is the most widely used in the literature,
there are two contributions to the energy current vertex
in the diagram approach, see Fig. 4: in addition to the
usual vertex of the noninteracting case, which arises
from the terms ∂τψ†∇ψ , there is a vertex from the
φψ†∇ψ  terms. These vertices were not taken into
account in [20, 22, 23]. However, analogous vertices

j?
ε

t∂
∂ ρφ ∂A

∂t
------- E fl⋅+ ∇ φ j

∂φ
∂t
------E fl–+

=  
1
e
---φ ∂tρ ∇ j⋅+[ ] 1

e
---∂φ

∂t
------ ρ ∇ E fl⋅–[ ]+

+
1
e
---

t∂
∂ ∂tA ∇φ–( ) E fl

1
e
--- ∇φ j⋅ ∂tA∂tE fl+[ ] .+⋅

∂tE fl
2

u ψ†Ĥgiψ
1
2
---E fl

2 ,+=

jε 1
2m
------- i∂t ϕ+( )ψ† –i∇ A+( )ψ[–=

– i∇ A+( )ψ† i∂t ϕ–( )ψ ] ,

A Aext A, ϕ+ ϕext φ+= =
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were previously considered in the calculations of the
thermoelectric coefficient15 with the inclusion of the
electron–electron interaction in the particle–hole chan-
nel [31] and in the Cooper channel [32] and for the elec-
tron–phonon interaction [33].

APPENDIX C

Alternative Parameterization

The operator  defined in Eq. (5.54) is clearly
not a standard Hamiltonian. However, we can introduce
a different definition of the propagator +ρ,

(C.1)

such that the (new)  operator is indeed a Hamilto-
nian:

(C.2)

(the action of the operator  is defined in Eq. (5.49)).
Proceeding as in Section 5.4, we obtain the following
expressions for the _ propagators:

(C.3a)

(C.3b)

15A derivation similar to that in this appendix was performed inde-
pendently by M.Yu. Reizer (private communication).

Ĥe h–

t1∂
∂

iĤe h– i∇ 1–( ) Stˆ s
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–+ +ρ δ12,=

Ĥe h–

Ĥe h– q( ) ^̂v q^̂, Stˆ s
out

^̂Stˆ τ^̂,≡⋅≡

^̂ 1 F̂+( )1/2≡

F̂

ν_̂
R

∂t( ) 1– +̂
g

^̂+̂
ρ
^̂–[ ] ,=

ν_̂
A

+
ˆ g

^̂+
ˆ ρ

^̂–[ ] ∂ t( ) 1– ,–=

ν_̂
K

i ∂t( ) 1– +̂
g
1̂

g
1̂

g
+
ˆ g

+[ ] ∂ t( ) 1––=

+ i ∂t( ) 1– ^̂ +̂
ρ
1̂

ρ
1̂

ρ
+
ˆ ρ

+[ ] ^̂ ∂t( )
1–
.

Fig. 4. (a) The energy current vertex for the noninteracting
case; (b) the additional vertex induced by the interaction.
The solid lines with arrows are the electron Green func-
tions, the wavy line is the interaction propagator, the dashed
lines are the “standard” (noninteracting case) energy and
electric current operators defined respectively in Eqs. (B.7b)
and (B.4).

(a) (b)
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The “kinetic equation” for 1g, Eq. (5.64a), remains
unchanged, while 1ρ now satisfies the equation

(C.4)

where

(C.5)

or, after Wigner transformations (5.61)–(5.63),

(C.6)

(C.7)

with definitions (5.27) and (5.66) for γ and ϒ.

We can then proceed as in Section 5.6 and obtain
conservation laws (5.89) and (5.94); the only formal
difference is in the definition of the bosonic energy den-
sity, which is now

In the alternative parameterization, the formalism
can be developed with not more difficulties than in the
original one. However, the evaluation of the thermal
conductivity becomes cumbersome. In the original
parameterization, it is also easier to include (at least
perturbatively) the effects due to higher harmonics of
the Fermi-liquid parameters.

APPENDIX D

Derivation 
of the Electron Collision Integral

The calculation of the matrix collision integral is
simplified by the introduction of two functions A(t, r, n,

) and B(t, r, n, ) such that

(D.1)

We recall that  = K+  + K–  and

.

∂t Ĥe h– i∇–( )+ ; 1̂
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The collision integral (i.e., the right-hand side of
Eq. (5.22)) in the matrix notation is then

(D.2)

where the open dot indicates the time convolution (cf.
Eq. (5.9)) and the time argument of the functions A and
B is the first (second) time argument of the Green func-
tion on their right (left), e.g.,

Substituting the matrix Green function of form (5.23),
we find that the collision integral becomes

(D.3)

The explicit expressions for the retarded, advanced, and
“Z” components are

where the (equal-time) commutator is

The calculations performed so far are exact. But at the
one-loop level, we are interested in terms up to the sec-
ond order in the fluctuating fields. Then expansion of
the exponentials in Eq. (D.1) shows that any product of
two functions B is proportional to terms of the form
K−K–, which vanish after averaging over the fluctuating
fields; accordingly, we drop such terms. The remaining
terms are all commutators, whose explicit (approxi-
mate) form is

(D.4)

We note that the second-order terms cancel each other
exactly. The surviving first-order terms lead to
Eq. (5.24) for K–.

For reference, we present the expression for 
from which Eq. (5.73) and Eq. (5.76) are derived (with
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----- ĝ n( ) ° A1̂ K Bσ̂K
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x+( )n ñ, ĝ ñ( ) A1̂ K Bσ̂K
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the exception of the last line in Eq. (5.76b), which is a
consequence of requirement (5.34) for K+):

(D.5)

APPENDIX E

Derivation of Equations (5.81b) and (5.82b)

We start the derivation by separating the contribu-
tions of the Keldysh and retarded/advanced propagators

to  in Eq. (5.75b):

(E.1)

(E.2)

For convenience, we rewrite the Keldysh part in terms
of the new time variables , δt:

(E.3)

We then consider the limit of Eq. (E.1) as t2  t1;
clearly, as δt  0, the square bracket vanishes. But we
know that in this limit, g  –2i/πδt (cf. Eq. (5.31)): in
principle, there could be a nonvanishing contribution
from the first-order expansion of the propagators in δt.
The last two Keldysh propagators depend on δt in their
first variable, but with opposite signs, and hence their
respective first-order terms cancel each other. As for the
first propagator, the property _K(1, 2) = _K(2, 1) trans-
lates into _K(t, δt) = _K(t, –δt), which ensures the
absence of first-order terms. We conclude that in the
limit as δt  0, the Keldysh propagator terms vanish.
Similarly, from the property _A(1, 2) = _R(2, 1), it fol-
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lows that Eq. (E.2) vanishes for t2 = t1; this concludes
the proof of Eq. (5.81b).

We now turn to Eq. (5.82b). Because  –  =

2 , we must expand the Keldysh propagators to the
second order in δt. At this order, the square bracket in
Eq. (E.1) is (up to the proper combination of angular
variables)

where we restored the original time variables. In the
operator notation, this is

Therefore,

which proves the first part of Eq. (5.82b).

As regards Eq. (E.2), using the analytic property
_A(1, 2) = _R(2, 1) again, we conclude that when the
derivatives ,  act on the distribution functions g,
the terms in the second line cancel each other. However,
there are nonvanishing contributions when a derivative
acts on the propagators, such as

Collecting all the terms, we arrive at

which concludes the derivation of Eq. (5.82b).
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APPENDIX F

Elastic Kernels in Terms 
of the Interaction Propagator D

To compare the kernels in Eq. (6.9) with the corre-
sponding expressions in [17], we use the Fourier trans-
forms of Eqs. (5.51) and (5.55a) to obtain

(F.1)

If we assume, as is done in [17], that the Fermi-liquid
parameters are independent of the momentum direc-
tion, then the interaction propagators DR, A are also
independent of it and the above equation becomes

(F.2)

where we generalized the angular integral notation such
that

We recall that our ghost propagator +g coincides with
the diffusion propagator D in [17].

By substituting Eq. (F.2), we rewrite kernels (6.9)
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(F.5)

The first square bracket in the kernel % can be
expressed as
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Using the identity

(F.7)

Re +̂
ρ

+̂
g

–[ ] νωIm +̂
g
D̂

R
+̂

g
[ ] .–=

Re +ρ +g
–[ ] νωIm +g〉 DR〈+g[ ] ,–=

〈+g n1d
Ωd

--------+g n1 n2,( ), +g〉∫
n2d

Ωd

--------+g n1 n2,( ).∫= =

6µν
11 ω( )

2
π
---δµν=

× qdd

2π( )d
------------- +g〈 〉 +g〈 〉 +g+g〈 〉–( )DR,∫

6µν
12 ω( ) 2d

π
------ qdd

2π( )d
------------- nα+g〈 〉 +g

nβ〈 〉 DR,∫–=

%µν ω( )
d
πτ
------Im

qdd

2π( )d
-------------DR +g

nα+g
nβ〈 〉 +g〈 〉[∫=

– +g
nα+g〈 〉 nβ+g〈 〉 +g

nα〈 〉 +g
nβ〈 〉 +g〈 〉+

– +g〈 〉 nα+g
nβ〈 〉 +g〈 〉 ] DR +g〈 〉 nα+g

nβ+g〈 〉[+

– +g
nα〈 〉 +g

nβ+g〈 〉 +g
nα+g

nβ+g〈 〉– ] .

τ +g
nα+g

nβ; Stˆ τ[ ] +g〈 〉[

+ +g
nα ; Stˆ τ[ ] +g

nβ〈 〉 +g〈 〉 ] .

+g n; Stˆ τ[ ] +g n; +g[ ] ,=
JOURNAL OF EXPERIMENTAL A
we rewrite it as

(F.8)

In the second square bracket, we use the identity

(F.9)

to obtain

(F.10)

Finally, the identity

(F.11)

enables us to conclude that the sum of the three kernels

that determines the correction to the conductivity
(Eq. (6.8)) coincides with the combination (K0 – K1 –
L0/vFτ) in the expression for the conductivity in [17].

APPENDIX G

Inelastic Kernel
for the Phase Relaxation Time

We consider a uniform system in which the bosons
are assumed to be in equilibrium with the electrons. In
other words, the distribution function f is independent
of r, n and the boson–electron collision integral (3.18)
must vanish. The latter condition enables us to express
the bosonic distributions Nα in terms of f and obtain

(G.1)

(from now on, irrelevant angular and momentum vari-
ables are omitted; all relevant definitions can be found
in Section 3). The former condition implies that colli-
sion integrals (3.19d), (3.20b), and (3.20f) vanish, and
therefore the kinetic equation for (the zeroth harmonic
of) f reduces to

(G.2)
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where

(G.3)

We substitute Eq. (F.1) and a similar relation for the trip-

let channel (  being the triplet channel propagator) in
the expression for A(ω); we then use identity (5.44) and
obtain

(G.4)

Using Eq. (5.44) again, we immediately recover the
form of the inelastic kernel A(ω) given in [27].
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Abstract—Langmuir waves and particle–particle collisions in an equilibrium two-component plasma consist-
ing of nondegenerate electrons and singly charged ions are studied by molecular dynamics simulation. Disper-
sion of frequency and damping rate is determined for Langmuir waves. A method is outlined for extending the
theory of Langmuir waves developed for ideal plasmas to nonideal plasmas. Conductivity and dynamic colli-
sion frequency are determined as functions of perturbation frequency. Relaxation of electron and ion energy in
nonequilibrium plasmas is analyzed. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Nonideal plasmas arise in experimental studies of
shock waves in gases [1–3] and solids [4–6], Coulomb
explosions in semiconductors [7, 8], and other phenom-
ena. However, the development of the kinetic theory of
nonideal plasmas is impeded by substantial difficulties,
in particular, because screening in nonideal plasmas
differs from that in an ideal plasma. Theoretical results
obtained for ideal plasmas rely on the assumption that
the Debye sphere contains many particles and particle–
particle collisions are so weak that the scattering angles
are small. In a nonideal plasma, the screening length is
comparable to the mean distance between particles, and
the Debye sphere formally contains less than one parti-
cle (tenths or even hundredths of a particle). Therefore,
straightforward extension of theoretical results
obtained for an ideal plasma leads to incorrect results in
various problems and to substantial disagreement with
experimental observations. An adequate model of colli-
sions in nonideal plasmas is necessary to investigate the
following problems:

(i) static and dynamic conductivity;

(ii) existence conditions and damping rate for Lang-
muir waves;

(iii) relaxation mechanisms and equilibration times
for nonequilibrium nonideal plasmas;

(iv) absorption of electromagnetic energy by plasmas.

Among the items enumerated above, Langmuir
waves are of special importance. An extension of the
Landau theory [9] predicts that Langmuir waves cannot
propagate in a nonideal plasma [10]. However, both
Langmuir and ion-acoustic waves have been revealed in
theoretical [11–14] and numerical [15–19] studies of
nonideal plasmas. These results were supported by
experimental observations reported in [20, 21]. Never-
1063-7761/05/10002- $26.000370
theless, these findings have never been fully acknowl-
edged. For this reason, the properties of Langmuir
waves, such as dispersion and damping rate, remain rel-
atively poorly studied.

Since the theory of ideal plasmas [9, 10, 22–25] is
well developed and can be applied to various processes
involving Langmuir waves, one should find parameters
that could be modified so as to extend the scope of the
theory to problems concerning nonideal plasmas. In
this paper, the complex effective collision frequency
evaluated by means of molecular dynamics (MD) sim-
ulation is treated as a free parameter. The existence of
Langmuir waves in nonideal plasmas, being supported
by MD simulation results, offers an opportunity for
applying the wide variety of theoretical methods devel-
oped for ideal plasmas.

Even though the Landau formula for energy relax-
ation rate in a two-temperature system [9] was derived
in the approximation of weak collisional damping, it is
widely used to evaluate relaxation rates for nonideal
plasmas. However, it was found in [4, 6] that discrep-
ancy between experimental data and theoretical predic-
tions amounts to several orders of magnitude. Further-
more, an analysis of conductivity measurements in
nonideal plasmas [20, 21] suggests that nonequilibrium
states can persist over times much longer than the relax-
ation time calculated by using formulas derived for
ideal plasmas. For this reason, we use MD simulation
to analyze the characteristics and durations of relax-
ation processes in fully ionized, highly nonequilibrium,
nonideal plasmas.

In Section 2, we specify the parameter region to be
explored, describe the plasma model, and outline the
simulation method. In Section 3, we discuss dispersion
and damping rate for Langmuir waves in nonideal plas-
mas. We briefly review the theory of ideal plasmas,
demonstrate how it can be extended to describe non-
 © 2005 Pleiades Publishing, Inc.
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ideal plasmas, and discuss the scope of the extension. In
Section 4, we present numerical results on conductivity
and effective collision frequency, which is related to
conductivity. Both static case and dependence on per-
turbation frequency are considered. In Section 5, we
analyze energy relaxation in a plasma, starting from
various nonequilibrium states. Dependence of collision
frequency on the electron-to-ion mass ratio m/M for
various degrees of nonideality is discussed in subsec-
tions 2.1, 4.3, and 5.3. The principal results of this
study are summarized in Section 6.

2. PLASMA MODEL

2.1. Physical Modeling 

Physical modeling of a nonideal plasma begins with
choice of the scope of a study, including degree of ion-
ization, quantum-mechanical effects, number of parti-
cles per cell, and possible dependence of results on M/m.

In this study, we consider a nondegenerate two-
component system of singly charged particles, elec-
trons and ions, with masses m and M, respectively. The
basic plasma parameters include the nonideality param-
eter Γ, the number ND contained in the Debye sphere,
the plasma frequency ωp and the period τe of electron
plasma oscillations, and the Debye length rD:

where ne is the electron concentration, e is the electron
charge, T is temperature, and kB is Boltzmann’s con-
stant. The nonideality parameter is varied over the
interval 0.1 < Γ < 4 (4 > ND > 0.03). The plasma under
analysis is fully ionized, which means that ne ~ 1017–
1024 cm–3 and T ~ 104–106 K (Fig. 1) in the case of an
equilibrium plasma. In Fig. 1, the corresponding region
is hatched. Its left vertical boundary is drawn arbi-
trarily, because its location depends on the chemical
element. A plasma is treated as fully ionized if the
degree of ionization is at least 10–1, in which case colli-
sions with neutral particles can be neglected.

A nonequilibrium nonideal plasma can exist at tem-
peratures below 104 K, even below room temperature.
Supercooled metastable nonideal plasmas were ana-
lyzed theoretically in [26, 27]. The results presented
in [28, 29] were interpreted in [27] as experimental evi-
dence of the existence of such plasmas. Ultracold plas-
mas at temperatures of about 1 K have been the subject
of recent experimental investigations [30]. The results
obtained in the present study apply to low-temperature
nonequilibrium nonideal plasmas as well.

Even though the study deals with a nondegenerate
plasma, quantum-mechanical effects on pair interac-

Γ
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tions between charged particles must be taken into
account, because only these effects can ensure stability
of a nonideal plasma. The key role played by the
Fermi–Dirac statistics in preventing a Coulomb system
from collapsing was demonstrated in [31]. However,
allowance for quantum-mechanical effects in pair inter-
actions is sufficient to ensure thermodynamic stability
of a nonideal nondegenerate plasma [32]. In the present
study, this is done by using pseudopotentials [33]. The
contribution of quantum-mechanical effects to scatter-
ing weakens repulsion between electrons and attraction
between electrons and ions.

Since we focus on the subsystem of free charged
particles, the possibility of bound states forming must
be ruled out in the model. This is done by truncating the
electron–ion pseudopotential at short distances [33].
We make use of the Kelbg semiclassical pseudopoten-
tial [34]. The inset to Fig. 1 shows several electron–ion
interaction potentials Vei(r) used in nonideal plasma
models. The electron–electron interaction potential
Vee(r) corresponding to curve 3 is the Coulomb poten-
tial, and the remaining potentials are characterized by
less repulsive potentials Vee(r).

The Kelbg potential is advantageous as compared to
the truncated potential from [33] and the Deutsch high-
temperature potential [35, 36] in that both its value and
its first derivative at the origin agree with the analytical
solution to the quantum-mechanical two-body scatter-
ing problem. At the same time, since the relative vol-
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Fig. 1. Temperature–concentration diagram for electrons.
Region between ND = 1 and εF = kBT: nondegenerate non-

ideal plasmas. region between εF = kBT and e2/a = εF:
degenerate nonideal plasmas (εF is Fermi energy, a =

(4πne/3)1/3 is mean interparticle distance). Hatched region
is explored in this study. Electron–ion interaction potentials
(inset): (1) Coulomb; (2) Deutsch [35, 36]; (3) [33]; Kelbg
[34] for T = (4) 105, (5) 3 × 104, and (6) 104 K. Landau
length rL = e2/kBT.
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ume occupied by bound states is small in the parameter
region considered here [33], the specific form of the
potential at small distances is not essential. In the com-
putations reported below, we used the Kelbg potential
for T = 30000 K (curve 5 in Fig. 1). The accuracy of this
approximation deteriorates with decreasing T, and addi-
tional computations using different pseudopotentials
are required for ultracold plasmas.

For physical reasons, the number of particles N in a
cell must be such that the cell size is much larger than
rD for an ideal plasma or much larger than the long-
range correlation (screening) radius for a strongly non-
ideal plasma. If Γ * 1, then N ≈ 100 is sufficient for
computing both thermodynamics of equilibrium plas-
mas and electron–ion equilibration in nonequilibrium
plasmas (see [37]). In studies of Langmuir wave disper-
sion, the minimal value of N depends on the wavevector
k. Therefore, computations with different N should be
performed for the same k.

With regard to the value of ion mass, we note that
the time complexity of a computation increases with
ion mass, because time step and MD run length are
determined by electron motion and the mixing time for
ion paths, respectively. Therefore, the largest M
depends on computer performance (see subsection 2.2).
To reduce computational costs, interpolation and
extrapolation formulas should be found instead of per-
forming simulations for each value of M.

According to elementary formulas of mechanics of
collisions between particles of different mass, it should
be expected that the characteristics of collisions would
fall into two groups. In one group, the dominant role is
played by electron–electron collisions, while collisions
with heavy ions can be treated as background processes,
and the dependence on M should be neglected for M/m
above a certain value. This value is found by performing
MD simulations: M/m = 102 (see subsection 4.3).
Another group of collisions is responsible for energy
transfer between electrons and ions, and the corre-
sponding characteristics must depend on M/m. The
dependence is well known for ideal plasmas, and MD
simulations required to find an analogous dependence
for nonideal plasmas (see Section 5).

2.2. Numerical Simulation 

The apparatus of an MD simulation study includes a
integration scheme, a method for calculating forces, an
averaging algorithm with an acceptable statistical error,
and various diagnostic tools required to calculate
observable quantities by using computed electron and
ion trajectories.

Equations of motion were computed by using the
second-order leapfrog scheme. The time step was such
that the total energy was conserved up to 0.1% (see [38]
for detailed discussion of energy conservation). The
forces acting on particles in a cell were calculated by
JOURNAL OF EXPERIMENTAL A
using periodic boundary conditions and the nearest-
image convention.

The total number of particles per cell N varied from
128 to 5000. The thermodynamic variables and correla-
tion functions calculated by using MD simulation
results obtained for small N are characterized by con-
siderable statistical errors. Since the time complexity
increases as N2, we averaged the results over an ensem-
ble of I independent initial states. In this approach, the
time complexity increases as I, and the statistical error
is on the order of (NI)–1/2.

According to [38], when small errors of numerical
integrations are combined with Lyapunov divergence,
an MD trajectory departs from a Newtonian trajectory
in a dynamic memory time tme and thus “forgets” its
history, while the macroscopic plasma characteristics
remain constant. This natural stochastization of MD
systems facilitates the generation of a statistical ensem-
ble, because particle configurations computed in the
same run at instants separated by time intervals longer
than the dynamic memory time are statistically inde-
pendent. Thus, a single MD run of length (103–105)tme
can be used to generate an ensemble of independent
states.

When computing dynamics of electrons over a time
interval equal to several periods τe of electron plasma
oscillation, one can ignore the motion of ions. How-
ever, a path with immobile ions cannot be used in aver-
aging over ion configurations. For this reason, M/m =
100 is used in Sections 3 and 4. Even though the ion
motion does not reflect real plasma dynamics in this
case, it weakly affects the electron dynamics over short
time intervals and, at the same time, can be used to per-
form long-time averaging over ion configurations (see
subsection 4.3).

In Section 5, we examine energy relaxation, in
which the ion mass plays an essential role. To generate
an ensemble of initial states, we compute an auxiliary
equilibrium path with M/m = 1 and use the configura-
tions taken at points separated by tme to compute energy
relaxation and perform averaging as described in sub-
section 5.1. While the ensemble of equilibrium config-
urations is independent of the value of M/m, the time
required to compute an equilibrium run is substantially
reduced by using M/m = 1. Then, relaxation is com-
puted by using the required mass ratio and appropri-
ately renormalized ion velocities.

Diagnostic tools are described below in the context
of the discussion of each particular problem.

3. LANGMUIR WAVES
IN EQUILIBRIUM PLASMAS

3.1. Langmuir Waves in Ideal Plasmas

Let us recall the basic expressions for the dielectric
constant of an ideal plasma [9, 22], writing them in
dimensionless form. All times and frequencies are nor-
ND THEORETICAL PHYSICS      Vol. 100      No. 2      2005
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malized to the plasma frequency ωp: ω/ωp  ω,
ν/ωp  ν, σ/ωp  σ, δ/ωp  δ; all lengths and
wavevectors, to the Debye length rD: krD  k. Solving
the Landau dispersion equation

(1)

for the dielelectric constant [9], we find the dispersion
and damping rate for Langmuir waves:

(2)

(3)

where δc = ν/2 and δL are the collisional and Landau
damping rates, respectively.

The effective electron–ion collision frequency ν is
expressed as follows [9]:

(4)

This formula is not valid when Γ > 1 because of the
divergence of the expression for Le . When this formula
is extended to a nonideal plasma with the constant Cou-
lomb logarithm Le = 3.2 [39], the value of δc exceeds
unity at Γ > 1.2, which sets a limit for the domain of
existence of Langmuir waves. However, an extrapola-
tion of this kind goes far beyond the scope of the Lan-
dau theory. More accurate estimates [14] show that the
value of ν reaches a maximum with increasing Γ,
remaining less than unity. Thus, we can expect that
Langmuir waves exist in nonideal plasmas, and their
Landau damping and dispersion characteristics change
insignificantly [14].

Since expressions (2) and (3) are obtained in the
long-wave approximation, we should use the model
proposed in [22] at large k:

(5)

where

(6)

In this case, dispersion equation (1) is solved nume-
rically.

3.2. Dynamic Structure Factor 

Langmuir waves in a nonideal plasma can be ana-
lyzed by computing the charge–charge dynamic struc-
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ture factor (DSF). Its real part is related to the imagi-
nary part of dielectric constant as follows [23, 40]:

(7)

In this study, DSF was determined from MD simu-
lation results. First, we used an equilibrium MD trajec-
tory to calculate density autocorrelation functions for
electrons and ions,

(8)

where rj(t) is the coordinate of the jth particle; c, d = e,
i refer to particle species. Averaging was performed
over the initial configurations r(0) and the directions of
the wavevector k (for isotropic plasma). Since MD cells
are finite-sized, the corresponding spectra of k = 2πl/L
are discrete and the minimal wavevector value is k =
2π/L, where L is the cell edge and l is an integer. To
approach the limit of k  0, MD cells must be
enlarged. This leads to an increase in N and, therefore,
in time complexity.

The desired DSF is found by performing the Fourier
transform:

(9)

(10)

The DSF calculated for a weakly nonideal plasma in the
neighborhood of ω = ωp (see Fig. 2) are in good agree-
ment with the theoretical curve obtained by using
expressions (5) and (7).1 

The high-frequency portion of the DSF can be
approximated by a power law: S(ω, k) ~ ω–9/2. Gener-
ally, this asymptotic behavior is determined by the
short-range part of the interaction potential. Since it is
consistent with a theoretical calculation for the Cou-
lomb potential [18], we conclude that the short-range
part of the Kelbg potential used in [34] does not signif-
icantly contribute to the DSF.

3.3. Dispersion of Frequency and Damping Rate

Dispersion and damping rate can be evaluated by
analyzing the DSF peak in the neighborhood of the

1 The DSF is calculated up to a normalization factor, because we
need only width and location of the peak in the neighborhood of
the plasma frequency.

S ω k,( )
kBT

4π2e2
-------------k2

ω
----Im

1
ε ω k,( )
-----------------.–=

Fcd k t,( ) 1
NcNd

-------------=

× ik– r j t( ) rk 0( )–( )⋅{ }exp
k 1=

Nd

∑
j 1=

Nc

∑ ,

S ω k,( ) 1
2π
------ Fzz k t,( )eiωt t,d

0

∞

∫=

Fzz
1
2
--- Fii Fee 2Fei–+( ).=
SICS      Vol. 100      No. 2      2005



374 MOROZOV, NORMAN
plasma frequency. This is done by applying the proce-
dure illustrated by Fig. 3, where data points around the
peak are approximated by a parabola. The ensuing error
depends on the approximation procedure.

The peak location ωmax and height Smax = S(ωmax, k)
obtained by interpolation are used to find the half-width
at half-maximum (HWHM) δhw (see Fig. 3). This is
done for the right half-width of the peak, because the
curve on its left is distorted by the ion-acoustic maxi-

mum located at Ωi = ωp  ! ωp (not shown).
Additional linear interpolation is used to find the inter-
section of the horizontal line S = Smax/2 with the MD
curve.

Note that the HWHM δhw for the DSF obtained by
using (5) and (7) with ν = 2δ is in good agreement with

m/M

0.5 1.0 1.5 2.0 2.5 3.0
ω/ωp

0

0.5

1.0

1.5

S

Fig. 2. Dynamic structure factor: MD simulation (circles);
theory of nonideal plasmas (5)–(7) (curve). Γ = 0.26, ND =
1.5, krD = 0.48.
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Fig. 3. Determination of DSF peak location ωmax and half-
width δhw from MD simulation results (circles).
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the value of δ at δ < 0.8. For this reason, we also used
δhw to calculate damping rates for nonideal plasmas.

Figures 4 and 5 show ωmax and δhw as functions of
wavevector. Since the spectra of k obtained in MD sim-
ulations are discrete and bounded from below for a spe-
cific N, we performed computations for several values
of N. Agreement between numerical results obtained
for the same k and different N means that numerical
results are independent of boundary conditions; i.e., the
MD cell size L was correctly chosen with regard to
screening radius.

The behavior of δ(k) and δhw(k) shown in Figs. 4a
and 5a at large k demonstrates that Landau damping
does not change substantially as we extend our analysis
to a nonideal plasma. As k  0, the Landau damping
rate vanishes, and the damping rate is determined only
by the contribution due to collisions, δc = ν/2. To calcu-
late an effective collision frequency ν, we used model (5)
with ν treated as an adjustable parameter. The figures
show that theoretical curves accurately approximate MD
simulation results under an appropriate choice of ν.

Now, consider the DSF peak location ωmax plotted
versus k in Figs. 4b and 5b. The dispersion relation found
for an ideal plasma (ν = 0) by using formulas (5)–(7) is
represented by dashed curves. For collisionless plas-
mas, ω0(k) is localized at the point of the DSF maxi-
mum ωmax(k). At the values of ν mentioned above, the
DSF maximum may be shifted toward lower frequen-
cies by a significant amount; i.e., the value of ωmax(k)
may differ from the corresponding root of the equa-
tion ε(ω0 – iδ, k) = 0. Figure 6 shows an example cal-
culated for ν = 0.8 in which the zero of the function
ε(ω0 – iδ, k) is substantially shifted off the real axis.
Since the DSF is defined on the real axis, it follows that
ωmax < ω0.

Using values of ν corresponding to the graph pre-
sented in Figs. 4a and 5a, one can analytically calculate
the shift of the DSF peak relative to ω(k) and plot
curves of ωmax(k) allowing for this effect. These are the
solid curves in Figs. 4b and 5b. Calculations show that
theoretical curves are in good agreement with MD sim-
ulation results when Γ < 3 (ND > 0.04) (see Fig. 4b).
This implies that dispersion in a nonideal plasma is
similar to ω0(k), and negative dispersion is characteris-
tic only of the location of the DSF peak ωmax(k)
obtained for relatively large ν.

The calculated curve and MD simulation results for
Γ = 3.84 are in poor agreement. This implies that dis-
persion in strongly nonideal plasmas with Γ > 3 (ND <
0.04) is qualitatively different from that predicted by
model (5).

Thus, MD simulation results show that the effective
collision frequency ν can be used to extend standard
formulas of the theory of ideal plasmas [9, 22, 24] to
nonideal plasmas with Γ < 3. Note also that Langmuir
waves were directly observed in a recent experiment
with an ultracold nondegenerate nonideal plasma [30].
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3.4. Collective Degrees of Freedom 

The existence of Langmuir waves in ideal plasmas
was used by Bohm [41] to introduce collective vari-
ables, or collective degrees of freedom. The relative
number of such degrees of freedom in ideal plasmas is
on the order of 1/rD, i.e., very small. Estimates [14]
show that the relative number of collective degrees of
freedom increases with nonideality and levels off,
reaching a maximum value of about 1/3 at ND ≈ 1. The
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krD

Fig. 4. DSF peak half-width and location for Γ = 1.28
(ND = 0.13). Dashed curves: (a) Landau damping δL (3);
(b) Eqs. (5)–(7) for ν = 0. Solid curves: DSF for ν = 0.42,
Eqs. (5)–(7). MD results: N = 3000 (diamonds), 800 (trian-
gles), 500 (squares), 200 (circles).
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approach developed in this study makes it possible to
substantiate the description of nonideal plasmas in
terms of collective variables, which requires evaluation
of a limit k for Langmuir wave dispersion, rather than
the point kmax of maximum DSF considered in this
study. The shift of the DSF maximum toward lower fre-
quencies leads to the disappearance of the maximum at
ωmax(kmax) = 0 (see Figs. 4b and 5b). In a nonideal
plasma, kmax is smaller than the maximum admissible k
determined by the condition δ(k) = ω(k). Thus, Lang-
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Fig. 5. DSF peak half-width and location for Γ = 3.84
(ND = 0.026). Curves: ν = 0.32, see caption to Fig. 4. MD
results: N = 800 (triangles), 128 (stars).
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muir waves can exist at k > kmax. However, their fre-
quency and damping rate cannot be found by the
method used here.

As the nonideality parameter increases to Γ * 2,
both collisional damping rate and the domain of Lan-
dau damping begin to decrease, in agreement with esti-
mates presented in [14]. Thus, with further increase in
Γ, collective degrees of freedom become better defined.
This tendency suggests that collective degrees of free-
dom can provide an adequate basis for developing a
theory of nonideal plasmas.

4. COLLISIONS IN EQUILIBRIUM PLASMAS

In contrast to ideal plasmas, several definitions of
effective collision frequency can be given for nonideal
plasmas.

4.1. Collisional Damping of Langmuir Waves 

The dependence of ν = 2δc on the nonideality
parameter is illustrated by Fig. 10 (see subsection 4.5).
The open circles reach a maximum at Γ ≈ 2 (ND ≈ 0.07),
remaining smaller than the plasma frequency. This
behavior reflects a change in collisional processes. In
nonideal plasmas, screening length is comparable to
interparticle distance, which decreases with increasing
Γ at constant temperature. The effective cross sections
of collisional processes decrease accordingly. When
Γ ! 1, MD simulation results agree with expression (4)
given by the Landau theory.

4.2. Autocorrelation Functions 

MD simulations are performed to evaluate the auto-
correlation functions for various variables, because
these functions can be used to determine the properties
of equilibrium systems, such as conductivity of an equi-
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Fig. 6. Dynamic structure factor by Eq. (5): ν/ωp = 0.8,
krD = 0.2. Inset illustrates shift of DSF peak relative to zero
dielectric constant due to strong damping.
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librium plasma, by applying linear response theory. The
wavenumber dependence of conductivity is important
only if the wavelength of the radiation interacting with
the plasma is comparable to the screening radius rD.
Since λ @ rD in most experimental studies, the present
analysis is restricted to the long-wavelength limit k 
0, and the dependence on k is not specified. Treating the
internal electric field in the plasma as perturbation and
the current density J as response, we can express the
“internal” plasma conductivity σ in terms of current
fluctuations at equilibrium [23]:

(11)

where Ω0 is the volume of the system, β = 1/kBT,
〈Jz; Jz〉ω + iη is the power spectral density for the z com-
ponent of current,

(12)

Here, η is introduced to eliminate singularity and is set
to zero after taking the thermodynamic limit. These dif-
ficulties do not arise in MD computations. The mean
current density for an MD system can be calculated
directly by using the electron and ion velocities:

(13)

To facilitate further analysis, we define the dimension-
less autocorrelation function and its Fourier transform
as follows:

(14)

(15)

Here, the coefficients are found by invoking expres-
sions for characteristics of fluctuations in an equilib-
rium plasma:

(16)

In MD simulations, the autocorrelation function
K(t) is calculated by using the values of (13) for a set of
points in time. The averaging is performed over I =
2000–50000 initial configurations of which 200 to
5000 are statistically independent. The choice of these
numbers is dictated by the computing performance.
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Fig. 7. Velocity autocorrelation functions for electrons, ions, and current: (a) Γ = 0.13 (ND = 4.2); (b) Γ = 1.28 (ND = 0.13);
M/m = 100.
The Fourier transform in (15) is performed numeri-
cally. Figure 7b shows the computed current autocorre-
lation function K(t) and electron and ion velocity auto-
correlation functions

(17)

Each autocorrelation function shown in Fig. 7b exhibits
nonexponential decay over t ≈ 0.2τe and exponential
decay at longer times. With decreasing degree of non-
ideality, the decay of K(t) approaches an exponential.
At Γ = 0.13, it can be accurately approximated by
K(t) = exp(–νjt). Thus, the nonexponential decay
reflects plasma nonideality.

4.3. Dependence on Ion Mass 

Figure 8 shows the exponents in the autocorrelation
functions Ke(t) = exp(–νet) (electrons), and K(t) =
exp(−νjt) (current) as functions of M/m. Since νe and νj

are virtually independent of the mass ratio, M/m = 100
can be used as a good approximation in a study of elec-
tron-gas dynamics in a real plasma. The effective colli-
sion frequency ν(0) discussed below is also indepen-
dent of M at M/m > 100.

Computations have shown that the exponent of the
ion velocity autocorrelation function Ki(t) = exp(–νit)
can be approximated by a power law: νi ∝  (M/m)–α. The
value of α may differ from the expected α = 0.5, which
follows from an expression for the ion thermal velocity

Kc t( )
vc t( )vc 0( )〈 〉

vc
2〈 〉

------------------------------, c e i.,= =
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vT, i ∝  1/ . MD simulation results yield α = 0.6 ±
0.04 for Γ = 1.28 and α = 0.5 ± 0.04 for Γ = 3.84.

4.4. Conductivity 

Conductivity of nonideal plasmas has been studied
both theoretically [12, 16, 20, 42–46] and experimen-
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Fig. 8. Dependence on ion mass: effective collision fre-
quency ν(0) for (1) Γ = 1.28 (ND = 0.13), (2) Γ = 3.84
(ND = 0.026). Exponents in autocorrelation functions for
Γ = 1.28: (3) electrons, νe; (4) current, νj. Solid curves:

approximation ν(M) = ν(∞)(1 + B(M/m)–ξ).
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tally (e.g., see reviews in [12, 21, 39]). However, certain
difficulties have yet to be resolved. In [20, 42], a vast
amount of experimental data concerning conductivity
was examined for various materials over ranges of den-
sity and temperature. The contribution of Coulomb
interactions to conductivity is shown in Fig. 9 as a func-
tion of the nonideality parameter

The highest conductivity values correspond to curves 1
and 3, which were calculated by using formulas for an
ideal plasma. Curve 4 in Fig. 9 represents the conduc-
tivity evaluated for an equilibrium plasma in [12, 43].

The figure illustrates the wide scatter of results
observed in experiments (closed symbols), whereas
theory predicts a unique dependence σ(γ). It was
hypothesized in [44] that an important role in nonideal
plasma dynamics is played by the electron scattering by
collective modes. In laboratory plasmas, these modes
can be heated to a suprathermal level. In this case, the
conductivity of a nonequilibrium nonideal plasma is
lower than that of an equilibrium plasma. The fact that
almost all experimental data lie below curve 4 indicates
that there is a certain deviation from nonequilibrium in
any experiment. Horizontal line 5 corresponds to the
highest attainable degree of excitation of Langmuir

γ
e2 ne ni+( )1/3
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1.28
----------.≈=

10–1 1 γ

10–1
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5

Fig. 9. Static conductivity vs. nonideality parameter γ =
e2(ne + ni)

1/3/kBT ≈ Γ/1.28. Closed symbols: experiment,
including [47] (diamonds). Open symbols: MD results,
including present study (triangles) and [16] (diamond and
squares); analytical calculations [48] (stars). Calculated
curves: (1) standard Landau theory, (2) Le = 3, (3) Le =

/2 (Λ = rD/rL [14]; (4) [43]; (5) σ = ωp/4π.Λ2
1+
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waves [43], in agreement with experimental results
reported in [47].

The results obtained in the present study are repre-
sented by open triangles in Fig. 9. Conductivity was
calculated by substituting autocorrelation function (13)
into (11). It is clear that these results are in good agree-
ment with the estimates from [12, 43] (curve 4) at γ < 2
(Γ < 2.5, ND > 0.03). Thus, the theory presented in [43]
and the MD results obtained in this study are mutually
consistent. Good agreement is also achieved with the
results of independent computations based on a liquid-
metal model [48].

4.5. Effective Collision Frequency 

The effective collision frequency ν(ω) is defined by
the generalized Drude formula for σ or the correspond-
ing expression for the dielectric constant:

(18)

(19)

The term collision frequency should not be interpreted
literally. It is just a convenient characteristic of colli-
sional processes in plasmas. In the theory of ideal plas-
mas, ν is given by (4) and is independent of perturba-
tion frequency. It is shown below that this approxima-
tion is not valid for nonideal plasmas. However, if ν(ω)
is defined as a complex quantity depending on the per-
turbing-field frequency ω [11, 49], then Eqs. (18) and
(19) only express the algebraic relationship between
ν(ω), σ(ω), and ε(ω) without imposing any restrictions
associated with the Drude’s theory.

First, we consider the static limit. The zero-fre-
quency value ν(0) is inversely proportional to (15). In
the case of an ideal plasma, it is equal to the exponent
νj in the current autocorrelation function. In the case of
a nonideal plasma, its value is higher than νj because of
the nonexponential part of K(t).

Figure 10 compares the dependence of ν(0) on the
nonideality parameter with the prediction of the Lan-
dau theory [9]. At low degrees of nonideality, the MD
simulation results are in good agreement with the for-
mulas for ideal plasmas. However, when extrapolated
into the domain of nonideality, even with a constant
Coulomb logarithm, these formulas substantially over-
estimate the effective collision frequency. The exist-
ence of a maximum of ν(Γ) agrees with the asymptotic
analysis presented in [14]. Its steep decrease can be
explained by inaccuracy of a pseudopotential model.
The MD simulation results obtained for ν(0) are in
good agreement with independent calculations per-
formed in [50] for Γ < 3.

The inset to Fig. 11 shows the real part of the
dynamic collision frequency ν as a function of pertur-
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bation frequency. In ideal plasmas, ν(ω) is virtually
constant. This is clear from Fig. 10, where the differ-
ence between ν(ωp) and the static collision frequency
ν(0) increases with Γ. The increase in the maximum
value of ν(ω) with Γ is followed by a decrease because
it is related to ν(0).

The numerical values of ν(ωp) are in good agree-
ment with ν = 2δc , where δc is the collisional damping
rate for Langmuir waves (see subsection 4.1). Thus, the
model is self-consistent.

4.6. Behavior of ν(ωp) 

Turning back to ν(ωp), we should note that the exist-
ence of a maximum of the effective collision frequency
(plotted versus degree of nonideality in Fig. 11) can be
explained as follows. Define a collision time as the time
of electron–ion interaction inside a “screening” sphere
of radius rs:

(20)

where vT =  is the electron thermal velocity.

In an ideal plasma, the value of rs is determined by
the Debye length rD. When Γ > 1/3, the latter parameter
is meaningless since it is smaller than the mean inter-

particle distance a = rD, and the average screening
length should be a rather than rD (see [33]). This con-
jecture is supported by the behavior of the electron–ion
pair correlation functions shown in Fig. 12, which were
calculated over MD paths with T = (200–1000)τe by
using 5000 to 20000 particle configurations.

The frequency ωcol =  does not play any signifi-
cant role in ideal plasmas, where close collisions are
rare. As their role increases, one should expect a reso-
nant absorption peak at ω = ωcol .

Substituting the screening radius

(21)

into (20), we find that ωcol/ωp ~ Γ–1/2 for nonideal plas-
mas (Γ ≥ 1/3) (Fig. 11), which is qualitatively consis-
tent with MD simulation results.

To evaluate ωcol more accurately, equations of
motion for an electron moving inside a screening
sphere in the centrally symmetric field generated by an
ion should be integrated [34]:

(22)
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where E = m /2 is the electron energy at infinity, ρ is
the impact parameter corresponding to the maximum
value of τcol , and rmin is the minimal distance between
the electron and the ion. Figure 11 shows the calculated
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Fig. 11. Shift of maximum Reν(ω) toward low frequencies
vs. nonideality parameter: MD results for maximum
Reν(ω) (symbols); qualitative estimates for ωcol by (20)
(dashed curve) and (22) (solid curve). Inset: real part of
effective collision frequency vs. perturbation frequency for
Γ shown at curves. Solid curves: averaged MD results.
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Fig. 10. Effective collision frequencies: from current auto-
correlation function at ω = 0 (squares) and ω = ωp (trian-
gles); Langmuir wave damping rate 2δc (circles); (1) theory
of ideal plasmas, (2) Le = 3.2: (3) [50]; (4) asymptotic result
from [14] for Γ > 1.
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ωcol = . Good agreement with simulation results
corroborates the proposed interpretation.

The discussion above provides only a qualitative
explanation of the behavior of ν(ω). A more rigorous
theoretical analysis can be found in [49].
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Fig. 12. Electron–ion pair correlation function (a = interpar-
ticle distance). Arrows: Debye length rD for Γ shown at
curves.
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Fig. 13. Electron energy relaxation to equilibrium:
(1) Te (electrons), (2) T (mean kinetic energy), (3) Ti (ions)
for Γ = 3.3, M/m = 100.
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5. ENERGY RELAXATION 
IN NONEQUILIBRIUM PLASMAS

5.1. General Mechanism of Relaxation 

In most experiments, the plasma produced by ion-
ization is far from equilibrium at the initial stage. The
details of a nonequilibrium state depend on experimen-
tal conditions. In the plasma produced in a shock front,
the ion temperature is much higher than the electron
temperature. Conversely, target ionization by a short
laser pulse creates a high-temperature electron gas,
while ions are relatively cool. According to available
experimental data, the theory of ideal plasmas fails
when Γ ≈ 0.2 (ND ≈ 2).

In this study, we examine energy relaxation for sev-
eral types of initial plasma nonequilibrium: Te ! Ti

(plasma behind a shock front), Te @ Ti (laser heating of
plasmas), and Te = Ti = 0 (a model example). For Te @
Ti , we consider two cases of ion distribution: a crystal
lattice and a distribution corresponding to an equilib-
rium state.

To create an ensemble of nonequilibrium states, we
use the procedure described in [37]. At the first stage,
we compute a sufficiently long equilibrium MD run.
Then, we take 50 to 200 statistically independent states
on the equilibrium trajectory and kick the system out of
equilibrium by stopping the motion of electrons, ions,
or all particles. When a crystal lattice is used, the equi-
librium trajectory is computed for immobile ions.

As an illustration of relaxation process, consider the
case when both electrons and ions are stopped at the
initial moment (see Fig. 13). This example demon-
strates that, in addition to collisional relaxation charac-
teristic of ideal plasmas, relaxation in a nonideal
plasma includes evolution toward equilibrium between
the mean kinetic energy T = (Te + Ti)/2 of electrons and
ions (curve 2) and the potential energy U of their inter-
action (U = 0 for ideal plasmas). In the course of a com-
putation, we hold 2T + U = const. Note that oscillatory
behavior may be observed at the initial stage of the
process.

At an early stage, the electron energy rapidly
increases (see Fig. 13), and a Maxwellian energy distri-
bution is approached, with temperature equal to two-
thirds of the mean kinetic energy (see Fig. 14). For
example, when M/m = 100 and Γ = 3.3 (ND = 0.03),
relaxation to the Maxwellian velocity distribution with
temperature corresponding to the mean kinetic energy
of particles requires a time of about τe for electrons
(Fig. 14a) and 15τe for ions. At the next stage, electron–
ion relaxation is observed in a two-temperature system.
In parallel with this process, conversion of potential
energy into kinetic energy continues, as manifested by
the continuing growth of kinetic energy (curve 2 in
Fig. 13). Note that the ion velocity distributions slightly
exceeds the Maxwellian distribution in the tail region
(E > 2kBT).
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Fig. 14. Electron (columns) and ion (circles) energy distributions at t = (a) 0.15τe and (b) 0.58τe . Curves: Maxwell distributions for
electrons (solid) and ions (dashed) at temperatures corresponding to respective mean kinetic energies. Te(0) = Ti(0) = 0, Γ = 3.3,
M/m = 100.
Thus, the process can be characterized by two time
scales: the time τnB of initial (nonexponential) relax-
ation of ∆T = |Te – Ti | and the time τB of exponential
decay ∆T ∝  exp(–t/τB). The latter process requires a
time of about 5τe and begins before the Maxwellian dis-
tribution for ions is approached in the example illus-
trated by Fig. 13.

Other examples of time evolution of the electron and
ion energies were discussed in [37, 51]. Here, we focus
on the dependence of τnB and τB on Γ, which was not
considered in [37, 51].

5.2. Nonexponential Relaxation Time 

Figure 15 shows τnB as a function of the nonideality
parameter for three sets of initial conditions: Ti(0) = 0,
Te(0) = 0, and Te(0) = Ti(0) = 0. The difference in τnB
between these cases does not exceed an order of mag-
nitude. Irrespective of the initial conditions, τnB
increases with Γ.

To elucidate the physical meaning of τnB, we recall
an equation describing relaxation of the difference
between electron and ion temperatures in an ideal
plasma (e.g., see [25]):

(23)

Here, the relaxation time τei = ( )–1 corresponds to

d∆T
dt

---------- νei
ε ∆T .–=

νei
ε
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electron–ion collisions:

(24)

The initial nonexponential relaxation cannot be
described by solving Eq. (23). Since (23) is derived
from a kinetic equation by assuming that the system is
stochastic and individual particle–particle collisions are
statistically independent, it should be valid only at t >
tme, where tme is the dynamic memory time for the elec-
tron subsystem [38]. Indeed, according to Fig. 15, the
nonexponential relaxation time is comparable to tme in
all cases. By definition, τme is the upper limit for the
validity of solutions to Cauchy problems computed by
MD simulation [38, 52]. Therefore, the nonexponential
and exponential relaxation stages correspond to
dynamic and stochastic regimes. No appreciable
dependence of τnB or tme on M has been found for
M/m > 100. The nonexponential relaxation stage van-
ishes in an ideal plasma as Γ  0.

5.3. Exponential Relaxation Time 

The dependence of τB on M/m is not linear, as it
would be in the case of an ideal plasma. However, it
can be approximated by a power law: τB ∝  (M/m)α

(see Fig. 16). Both τB and α are virtually independent
of the type of initial deviation from equilibrium. As

τei
3
8
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Γ  0, α(Γ) approaches the theoretical value α = 1.
For a nonideal plasma, it can be approximated by the
expression

(25)α 1 0.15Γ– 0.035Γ2, Γ 4.<+=
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Fig. 16. Exponential relaxation time vs. ion mass for Γ =
3.3: Te(0) = 0 (diamonds); Ti(0) = 0 (squares); Ti(0) = 0,
crystal (circles); power-law approximations (lines). Curves
(inset): Landau theory (solid); Le = 3.2 (dashed).
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Fig. 15. Nonexponential relaxation time vs. nonideality
parameter: Ti(0) = 0 (squares), Te(0) = 0 (diamonds), Te(0) =
Ti(0) = 0 (triangles). Dynamic memory time tme for equilib-
rium plasma is shown by crosses. Curve: linear approxima-
tion for tme. M/m = 100.
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Its minimal value, α = 0.84, is reached at Γ = 2.1. An
effective electron mass can be introduced tentatively
for a nonideal plasma.

To analyze the dependence of τB on Γ, we represent
it as

(26)

The dependence (Γ) is shown in the inset to Fig. 16.
Using (26), one extend it to any M/m. The error in α
does not exceed 5%, which entails an error of about
40% in τB calculated for aluminum. This accuracy is
sufficient for order-of-magnitude relaxation-time esti-
mates.

Figure 16 shows that the relaxation rate evaluated
by  extrapolating the results obtained for an ideal
plasma [25] with a constant Coulomb logarithm
(dashed curve) may exceed that obtained for a nonideal
plasma by several orders of magnitude. This agrees
with the results of experiments on relaxation in shock-
compressed aluminum and silicon [4, 6]. Quantitative
comparison is impossible because of the role played by
degeneracy under the conditions considered in [4, 6].

The results of our analysis of energy relaxation rates
can be compared with those concerning momentum
relaxation. For an ideal plasma, the energy and momen-

tum relaxation times,  and ν–1, are related as follows
[9, 25] (in reduced units):

(27)

MD simulation results show that relation (27) is not
valid for nonideal plasmas,

(28)

where ν(0) is the effective collision frequency found in
Section 4. In the range of nonideality parameter exam-

ined in this study,  and  differ by a factor of 2 to 3.

Thus, relaxation in nonideal plasmas is character-
ized by several effective time scales.

6. CONCLUSIONS

MD simulations of equilibrium and nonequilibrium,
highly ionized, nondegenerate, nonideal plasmas have
been performed for 0.1 < Γ < 4 (4 > ND > 0.03) with the
use of the Kelbg pseudopotential. An analysis of the
results obtained leads to the following conclusions.
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It is shown that the peak in the dynamic structure
factor corresponding to Langmuir waves persists over
the entire range of the nonideality parameter examined
in this study. Dispersion of the frequency and damping
rate is determined for Langmuir waves. It is found that
the damping rate has a maximum at Γ ≈ 2 (ND ≈ 0.07),
remaining lower than the plasma frequency by a factor
of four. Thus, extrapolation of the expressions describ-
ing collisional damping in the theory of ideal plasmas
to Γ > 0.1 (ND < 10) with a constant Le leads to incorrect
results. However, no significant difference in character-
istics of Landau damping is found between ideal and
nonideal plasmas in the parameter range under study.

It is shown that expression (5) for the dielectric con-
stant of an ideal plasma [22] can be applied, with a
modified collision frequency, to describe Langmuir
waves in nonideal plasmas for Γ < 3 (ND > 0.04). It is
noted that the negative dispersion of the dynamic struc-
ture factor with respect to frequency is due to a shift of
the zero of the dielectric constant into the complex
plane, which is explained by collisional damping in
nonideal plasmas. The MD simulation results obtained
for Γ > 3 have yet to be given a theoretical interpreta-
tion.

It is shown that, in contrast to ideal plasmas, parti-
cle–particle collisions cannot be described in terms of a
single effective collision frequency in the framework of
the theoretical model employed here. In particular,
equilibrium plasmas are found to be characterized by a
static collision frequency (at ω = 0) and a collision fre-
quency for a perturbing field with ω = ωp. The latter is
determined by two independent methods: from the
damping rate for Langmuir waves with small k and
from the current autocorrelation function. Agreement
between the respective results corroborates the
approach developed in this study. Collision frequency
is found as a function of ω for several values of the non-
ideality parameter, and a qualitative explanation of its
behavior is presented. The results concerning the static
collision frequency are consistent with the theory of
ideal plasmas at Γ < 0.3 (ND > 1.2), with asymptotic
estimates presented in [14] at Γ > 2 (ND < 0.07), and
with the theoretical calculations performed in [50] at
intermediate Γ & 2.

Model computations performed for ions having a
small mass have shown that collision frequency is inde-
pendent of the ion-to-electron mass ratio M/m for
M/m > 102. Thus, both collision frequencies and disper-
sion laws obtained here are valid for any realistic value
of M/m. The static conductivity of a nonideal plasma is
calculated for 4 > ND > 0.03. The results are compared
with those obtained in experimental data and other the-
oretical studies.

Relaxation of electron and ion energy in nonequilib-
rium plasmas is analyzed for three types of initial
plasma nonequilibrium: Te ! Ti, Te @ Ti , and Te = Ti = 0.
It is shown that evolution toward equilibrium between
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the total kinetic energy of electrons and ions and the
energy of their interaction continues during the entire
relaxation period (this process does not take place in
ideal plasmas). Another distinction of ideal plasmas is
the existence of an initial relaxation stage characterized
by a nonmonotonic time dependence of ∆T = |Te – Ti |.
This dependence cannot be described by a kinetic equa-
tion with an effective collision frequency. The duration
τnB of this stage is related to the dynamic memory time
tme for electrons. At t > τnB, the variation of ∆T follows
an exponential law, ∆T ∝  exp(–t/τB); i.e., stochastic
relaxation is observed. The relaxation time τB is calcu-
lated, and interpolation formula (26) is proposed for a
nonideal plasma with ions of arbitrary mass. The pro-
posed formula, τB(M) ~ (M/m)α(Γ) differs from the lin-
ear scaling characteristic of ideal plasmas. The expo-

nent α(Γ) is determined. The factor (Γ) independent
of M/m correlates with collision frequency ν for equi-

librium plasmas, but the relation between  and ν dif-
fers from that characteristic of ideal plasmas.

An analysis of the MD simulation results concern-
ing collision frequencies and relaxation times shows
that both momentum and energy relaxation times
exceed those obtained by extrapolating the Landau the-
ory by several orders of magnitude. Momentum relax-
ation has a direct effect on microscopic properties, such
as conductivity, dielectric constant, and reflectivity. The
relatively large values of the estimated relaxation time
implies that effects due to nonequilibrium, such as
suprathermal excitation of Langmuir waves [20], may
substantially contribute to measurement results.
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Abstract—The paper presents the results of an experimental study of the percolation transition in filling by
nonwetting liquids of nanoporous bodies of various natures with different specific surface areas and mean pore
and granule sizes. The liquid that we used was an aqueous solution of ethylene glycol. The hysteresis and non-
outflow phenomena observed in this transition at various (known) surface energies of liquids were studied by
varying the concentration of ethylene glycol. This helped us explain the mechanism of the percolation transition
in filling nanoporous bodies with nonwetting liquids. It was shown that, to quantitatively describe the observed
dependences in terms of percolation theory taking into account energy barriers to filling, we must use a non-
scaling distribution function of clusters of accessible and filled pores that admits the formation of pore clusters
of arbitrary dimensions. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

In spite of a long history of studies of phenomena
related to filling porous bodies with nonwetting liquids,
many questions still remain unanswered. These include
capillary phenomena in superthin channels, the dynam-
ics of filling of disordered porous solids, and the problem
of unwettability (wettability) of porous bodies [1, 2]. The
corresponding phenomena are related to transport of
nonwetting liquids in porous solids with nanoscale
pores, which is currently of special interest both for
basic science and in view of numerous nano and mem-
brane technology applications [1–5]. One of the prom-
ising directions of basic research in this field is the
development of devices for the absorption and accumu-
lation of mechanical energy [6, 7]. Such devices can be
created by exploiting the phenomenon of filling nano-
porous solids with nonwetting liquids.

The common approach to describing the filling of
porous solids by nonwetting liquids is based on perco-
lation theory [8, 9]. The filling process is then described
as a hydrodynamic process that occurs at the Laplace
pressure pL . If a porous body has a pore-size distribu-
tion, percolation through an infinite cluster of filled
pores takes place at the pressure at which the number of
filled pores reaches the percolation threshold. Hystere-
sis and nonoutflow phenomena are observed in filling
nanoporous solids with nonwetting liquids [10, 11].
These phenomena are related either to the special struc-
ture of pores [12–14] or to changes in the wetting angle
during inflow–outflow [10, 11, 15]. For instance, it is
assumed that nanoporous solids contain blind pores
that a liquid cannot escape from when excess pressure
1063-7761/05/10002- $26.000385
decreases to zero. The hysteresis phenomenon is
related to the existence of narrow-necked (“bottle-
shaped”) pores [9]. An alternative explanation of the
hysteresis and nonoutflow phenomena is based on the
introduction of a distribution of clusters in percolation
theory [16] and an energy barrier to filling nanoporous
solids with nonwetting liquids [17]. The surface energy
of the formation of liquid nanoparticles is then compa-
rable to their volume energy. Near the critical filling
pressure (pc ~ pL), the energy of fluctuation formation of
nanoparticles of a liquid changes from several electron
volts to an energy comparable to the temperature [17],
which results in the fluctuation formation of pore clus-
ters filled with a liquid at p ~ pc . The formation of sim-
ilar clusters in the vicinity of the percolation transition
reduces to the problem considered in [16]. In the theory
suggested in [17], both hysteresis and nonoutflow phe-
nomena are described taking into account the energy
barrier to filling without additional assumptions con-
cerning the special geometry of pores and wetting angle
changes. The volume of the liquid that remains in a
porous body should then strongly depend on the surface
energy of the nonwetting liquid.

In this work, we experimentally studied the filling of
nanoporous solids of various natures with a nonwetting
liquid. The solids had different specific surface areas
and mean pore and granule sizes. The liquid was
an aqueous solution of ethylene glycol, for which the
concentration dependence of surface energy is well
known [18]. We varied the concentration of ethylene
glycol to study the hysteresis and nonoutflow phenom-
ena at various liquid surface energies σ. Performing
 © 2005 Pleiades Publishing, Inc.
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such experiments makes it possible in principle to
answer the question of the mechanism of the percola-
tion transition in filling nanoporous solids by nonwet-
ting liquids.

A comparison of our experimental dependences
with theoretical calculations, however, showed that the
theory suggested in [17] did not describe the totality of
the experimental data. We found this to be caused by
the use of a scaling distribution function for filled pore
clusters in [17]. Such a function only takes into account
the formation of fractal clusters close to the percolation
threshold of dimensions not larger than the correlation
length [8]. At the same time, an important role in
inflow–outflow processes can be played by clusters
whose size is comparable to the characteristic size of
porous bodies (granule size). Such clusters are formed
as a result of the interaction (coalescence) of small clus-
ters. Their formation can broaden the percolation tran-
sition region.

In the second section, we describe the procedure for
measurements and experimental results. It was found
that the inflow and outflow pressures dropped as σ
decreased for all porous media that we used. The frac-
tion of the liquid that remained in porous solids simul-
taneously increased even to complete nonoutflow. We
show in the third section that the observed dependences
can be described quantitatively in terms of percolation
theory taking into account the energy barrier only if we
use a nonscaling distribution function for clusters [16]
of accessible and filled pores. Such a function should
admit the formation of pore clusters of arbitrary sizes.

2. PROCEDURE 
AND MEASUREMENT RESULTS

The pores of hydrophobic nanoporous solids were
filled with a liquid as follows: A porous solid of a fixed
mass (m = 1–4 g) was placed into a hermetic high-pres-
sure chamber of volume 65 cm3. The remaining free

45

0 20

σ, mJ/m2

ë, %
40 60 80 100

40

50

55

60

65

70

75

Fig. 1. Surface energy of water–ethylene glycol solutions as
a function of the concentration of ethylene glycol in wt %.
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volume of the chamber was filled with the liquid. A rod
of length 17 cm and cross section area 0.8 cm2 was
inserted into the chamber through a gasket. The assem-
bled chamber was mounted on a test bench that allowed
the rod inside the chamber to move under the action of
an applied force, which was measured by a strain gauge
with a working measurement range from 1 to 2000 kgf.
Changes in the volume of the liquid–porous solid sys-
tem were recorded using a displacement pickup by
measuring the length of the rod introduced into the
chamber. The error of pressure and volume change data
did not exceed 10%. The rate of pressure changes was
no more than 1 atm/s. The estimates given in Section 3
show that the process can be considered quasi-static
under these conditions. The experimental dependences
could therefore be analyzed without introducing cor-
rections for liquid viscosity. Signals from the displace-
ment pickup and strain gauge were fed into an analog-
to-digital converter, stored in a computer, and pro-
cessed to construct the pressure dependence of volume
changes for the porous solid–liquid system under study.

Measurements were performed for four hydropho-
bic porous solids. These were silasorb S18, silasorb S8,
polysorb-1, and libersorb 2U-8. The first two solids
were modified sorbents with a SiO2 framework, their
specific surface areas of pores were 300 m2/g, the mean
pore radius was about 5 nm, and the size of granules
was about 7.5–10 µm [19]. Porous polymeric sorbent
polysorb-1 had specific surface area of about 220 m2/g,
mean pore radius of about 6.5 nm, and granule size of
about 250–500 µm [20]. Libersorb 2U-8 was KSK-G
silica gel with a SiO2 framework (specific surface area
about 400 m2/g, mean pore radius about 4 nm, and
granule size 10–63 µm). The surface of KSK-G was
subjected to hydrophobization by chemical modifica-
tion with octyldimethylchlorosilane and additional
silanization with trimethylchlorosilane [21]. Aqueous
solutions of ethylene glycol were used as nonwetting
liquids. The surface energy of water and ethylene gly-
col at 25°C was 72 [22] and 49 mJ/m2 [23], respec-
tively. According to [18], the surface energy of water–
ethylene glycol solutions decreases as the concentra-
tion of ethylene glycol C grows (see Fig. 1). The con-
centration of ethylene glycol was varied from 0 to 60%
in our experiments. The compressibility of the chamber
and liquid was determined in additional experiments in
the absence of porous solids.

Typical plots describing a decrease in volume (–δV)
as a function of pressure p excess over atmospheric
pressure are shown in Fig. 2 for the libersorb 2U-8–
water system. These dependences were obtained by
subtracting the compressibility of the chamber and liq-
uid from the results of measurements. The linear seg-
ment (curve I) from p0 = 0 to p1 = 200 atm (point 1) cor-
responds to volume changes related to the elastic strain
ND THEORETICAL PHYSICS      Vol. 100      No. 2      2005
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of the unfilled porous solid. The data on the compress-
ibility of the unfilled porous solid determined as

where Vs is the volume of the porous solid sample, are
listed in the table. At pressures p > p1 (starting with
point 1), we observe a substantial decrease in the vol-
ume of the system caused by pore filling as the pressure
increases. Note that the change in the system volume on
account of elastic porous body compression as pressure
increases from 200 to 400 atm (points 1–3) does not
exceed 3%. The compressibility of the system mono-
tonically increases over the region p1 – p2 ≈ 220 atm
(points 1, 2) and reaches a maximum at point 2.
According to [17], the susceptibility (compressibility)
of the system

takes on the largest value at this point (see Fig. 3)
because of the filling of the porous body. Pressures p2
and susceptibilities λ for the other systems studied in
this work are listed in the table.

The system volume increases and the liquid flows
out of the porous solid pores as pressure decreases
(curve II). We found that the major part of the liquid
(>70%) flows out at pressure p < 10 atm. When pres-

χ Vs
1– V1/ p1,=

λ d δV p( )( )
dp

------------------------=
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sure is again increased (curve III, points 0'–3), the sys-
tem volume begins to decrease at point 0' (Fig. 2). The
0–0' segment corresponds to the volume V0 = δV0' – δV0

of the liquid that remains in pores when pressure excess
is zero. The δV(p) dependence for the second liquid

0.1

0 200

–δV, cm3

p, atm
400 600

0.2

0.3

0.4

0.5

0'

III

II

I
1

2

3

Fig. 2. Pressure dependence of volume changes for the
libersorb 2U-8–water system (curve I, pressure rise;
curve II, pressure drop; and curve III, repeated pressure
rise).
Table

Ethylene glycol
concentration, % σ, mJ/m2 λ, 10–3 cm3/atm p2, atm ψ δσ, mJ/m2 σ/δσ R0, nm

Libersorb 2U-8
 = 3.6 nm, δR = 0.4 nm, Vpor = 0.38 ± 0.03 cm3/g, ϕ = 0.33, χ = (0.8 ± 0.1) × 10–3 atm–1

0 72.0 6.4 220 0.05 23.0 3.1 3.2

6 68.5 6.1 200 0.24 21.0 3.3 3.3

11 66.3 6.3 190 0.66 19.0 3.5 3.5

16 64.4 6.1 175 0.76 17.0 3.8 3.8

60 55.6 5.5 125 1.00 12.5 4.5 4.1

Silasorb S8
 = 5.0 nm, δR = 0.5 nm, Vpor = 0.40 ± 0.04 cm3/g, ϕ = 0.45, χ = (1.2 ± 0.2) × 10–3 atm–1

0 72.0 7.7 135
1.00

11.0 6.6 7.6

60 55.6 10.8 90 6.0 9.3 8.8

Silasorb S18
 = 5.0 nm, δR = 0.5 nm, Vpor = 0.48 ± 0.05 cm3/g, ϕ = 0.45, χ = (1.2 ± 0.2) × 10–3 atm–1
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 = 6.5 nm, δR = 0.9 nm, Vpor = 0.95 ± 0.07 cm3/g, ϕ = 0.55, χ > 10 × 10–3 atm–1
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Fig. 3. Susceptibility of the libersorb 2U-8–water system as
a function of pressure.
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outflow repeats dependence II obtained in the first
cycle. After the second inflow–outflow cycle, the vol-
ume of the liquid that remains in the porous solid does
not change.

The experimental δV(p) dependences were used to
determine the specific volume of pores

and the relative volume of the liquid remaining in the
porous body,

after the first inflow–outflow cycle.
To visually represent the results, the experimental

relative volume δV/Vpor values at various pressures are

Vpor δV3 δV1–=

ψ V0/Vpor,=
1.0

0.8

0.6

0.4

0.2

0 100 200 300 400 500
p, atm

δV/Vpor

(a)
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0.8

0.6

0.4
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δV/Vpor

(b)
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(c)

Fig. 4. Pressure dependences of changes in the relative liquid volume in a porous body for the systems (a) libersorb 2U-8–water,
(b) libersorb 2U-8–aqueous ethylene glycol (6%), and (c) libersorb 2U-8–aqueous ethylene glycol (60%) [solid circles correspond
to experimental data and solid lines to calculations by (6), (7), (14), and (16)].
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shown in Fig. 4 (solid circles) for the system libersorb
2U-8–aqueous ethylene glycol. Compared with Fig. 2,
the dependences were corrected for porous body defor-
mation. Hysteresis and incomplete liquid outflow were
observed at concentrations of C = 0 and 11% (Figs. 4a,
4b). The relative volume of the liquid that remained in
pores increased from ψ = 0.05 ± 0.01 to 0.66 ± 0.06 as
the concentration increased to 11% (see table). At a C =
60% ethylene glycol concentration, no liquid flowed
out of the pores (ψ ≈ 1.0). The pressure of pore filling
then decreased from p2 = 220 atm for pure water to p2 =
125 atm at C = 60% (see table).

Figure 4 shows that an increase in the concentration
of ethylene glycol from 0 to 60% shifts the inflow and
outflow curves toward lower pressures and causes an
increase in the volume of the liquid that remains in the
pores after decreasing the pressure to atmospheric, even
to complete nonoutflow of a 60% solution of ethylene
glycol (see table). Note that a 25% relative change in
the surface energy of the solution decreases the filling
pressure p2 by more than 50%. This is evidence that the
surface energy dependence of the filling pressure is not

0.2

0 50

δV/Vpor

100 150 200 250 300

0.4

0.6

0.8

1.0

(a)

0.2

0 50
p, atm

100 150 200 250 300

0.4

0.6

0.8

1.0

(b)

Fig. 5. Pressure dependences of changes in the relative liq-
uid volume in a porous body for the systems (a) silasorb S8–
water and (b) silasorb S8–aqueous ethylene glycol (60%)
[solid circles correspond to experimental data and solid
lines to calculations by (6), (7), (14), and (16)].
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described by the Laplace equation (pL ≈ σ/R, where R
is the radius of the pores).

The pressure dependences of the specific volume
δV/Vpor for the silasorb S8–water, silasorb S8–aqueous
ethylene glycol (60%) and silasorb S18–water, silasorb
S18–aqueous ethylene glycol (60%) systems are shown
in Figs. 5 and 6. In these systems, pore filling was
observed at p2 = 135 and 90 atm, respectively (see
table). These pressures are different although the mean
radii of pores are equal in these porous media and the
surface energies of the liquids are also equal. The fig-
ures show that, as with libersorb 2U-8, a decrease in the
surface energy of the liquid decreases the pressure p2 of
porous body filling by the liquid (see table). Complete
nonoutflow of the liquid from the porous bodies (ψ = 1)
was also observed for these systems.

The pressure dependences of δV/Vpor for the
polysorb-1–aqueous ethylene glycol (0 and 60%) sys-
tems are shown in Fig. 7. For these systems also, we
observe a decrease in the pressure of pore filling from
p2 = 30 atm (at C = 0) to p2 = 15 atm (at C = 60%) and
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0.4
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Fig. 6. Pressure dependences of changes in the relative liq-
uid volume in a porous body for the systems (a) silasorb
S18–water and (b) silasorb S18–aqueous ethylene glycol
(60%) [solid circles correspond to experimental data and
solid lines to calculations by (6), (7), (14), and (16)].
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complete liquid nonoutflow at both ethylene glycol
concentrations.

3. RESULTS AND DISCUSSION

Our experiments show that the hysteresis and non-
outflow phenomena are observed in the aqueous ethyl-
ene glycol–hydrophobic nanoporous medium systems
studied in this work. The assumption of a special struc-
ture of pores, when large-sized pores are surrounded by
small-sized ones (bottle-shaped pores) leads us to con-
clude that a decrease in pressure after complete filling
should cause the liquid first to flow out of small-sized
pores under Laplace pressure action irrespective of its
surface energy. The liquid then remains in large-sized
pores. However according to the results obtained in this
work, the volume of the liquid that remains in pores
depends on σ. For this reason, the nonoutflow phenom-
enon cannot be explained by the special structure of the
pores of the porous media that we studied. Our experi-
ments also show that the pressure of the second filling,

0.2

0 20

δV/Vpor

40 60 80 100 140

0.4

0.6

0.8

1.0

(a)

120
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(b)

120
p, atm

Fig. 7. Pressure dependences of changes in the relative liq-
uid volume in a porous body for the systems (a) polysorb-
1–water, (b) polysorb-1–aqueous ethylene glycol (6%), and
(c) polysorb-1–aqueous ethylene glycol (60%) [solid circles
correspond to experimental data and solid lines to calcula-
tions by (6), (7), (14), and (16)].
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when part of the pores are filled in the initial state, coin-
cides to within errors with the pressure of the first fill-
ing of the initially empty porous body. This is evidence
that the liquid does not flow out of small-radius pores;
otherwise, the pressure of the second filling would be
higher than that of the first filling.

The experimental data on nonwetting liquid flow in–
flow out of the nanoporous bodies and the hysteresis
and nonwetting liquid nonoutflow phenomena will be
described following [17] in terms of percolation theory
taking into account energy barriers to nonwetting liquid
inflow into and outflow from the pores.

Let us consider a porous solid immersed into a non-
wetting liquid. The applied pressure is p, and this pres-
sure does work when the porous solid is filled. Let
δA(p, R) be the work done to perform the fluctuation
filling of one pore of radius R in the porous body. As the
pore can be either filled (probability w ≈ 1, δA(p, R) <
0) or empty (w = 0, δA(p, R) > 0), the normalized prob-
ability can be written as

(1)

We ignore the elastic interaction of the pores with each
other. The work δA(p, R) done to fill the pore in a
porous body then consists of the work of liquid expan-
sion into the volume v  of the empty pore  the
energy per unit area of the liquid–porous body interface

,

where σsl is the surface energy of the solid–liquid inter-
face and σsg is the surface energy of the solid–gas inter-
face, and the energy per unit area  of menisci of the
liquid in the throats of the filled pore (η is the ratio
between the area of the menisci and the area of the sur-
face of the pore). For simplicity, let the pore be spheri-
cal and have radius R. The work is then written as

(2)

It follows from (2) that the Ai(p, R) value changes sign
at the pressure

(3)

For two communicating pores with different radii,
the ratio between the meniscus surface area and the sur-
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face area of the pore is larger for the pore with a smaller
diameter. The η value can therefore be written as

(4)

Here, ϕ is the porosity of the porous body equal to the
volume ratio between the pores and the body and Rmin
is the smallest observed radius of the pores. At pressure
p = 0.9pi , σ = 0.1 J/m2, δσ ≈ 0.1 J/m2, η = 0.5, and  =
5 nm, we have δAi ≈ 1 eV. Therefore, according to (1)–(4),

at T = 300 K, and the probability changes from zero to
one at pressures in a small neighborhood of pi .

For a nonwetting liquid, δσ > 0. It therefore follows
from (3) and (4) that δAi > 0 at low pressures p < pi .
According to (1), the probability of filling pores of
radius R is then small at δAi @ T (wi ! 1). Conversely,
δAi < 0 at p > pi , and, at |δAi | @ T, the probability wi

approaches one. At a slow (quasi-static) increase in
pressure, porous body filling begins when the relative
volume ϑ  of the pores accessible to filling becomes
close to the percolation threshold ϑc . For a nonwetting
liquid, the fraction of the accessible pores is determined
by the external pressure, from condition (3) of the
development of filling fluctuations. It follows from (1)
and (3) that increasing pressure increases the number of
pores accessible to filling in porous media containing
differently-sized pores. If the pore-size distribution
function f(R) is known for a porous body, the relative
volume of all accessible pores can be written in the
form

(5)

According to percolation theory, percolation in a
disordered three-dimensional medium occurs at ϑ  =
ϑc = 0.16 [8]. This means that an infinite fractal cluster
of accessible pores is formed in a porous medium at the
pressure that satisfies condition (3), as the ϑ in(pin) =
ϑc = 0.16 value is attained with increasing the pressure,
and porous body filling should occur close to the perco-
lation threshold.

It follows from (1) that, during porous body filling,
the pores in the system under consideration can at each
time instant be divided into three types: inaccessible
[for which δA(p, R) > 0] and therefore empty, accessi-
ble [δA(p, R) < 0] but empty (accessible pores in what
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follows), and filled. Porous body filling under slow
pressure variations involves the formation of clusters of
accessible and filled pores followed by filling clusters
of accessible pores by a liquid as a result of its flow
from filled to accessible pores and growth of filled pore
clusters.

The transformation of accessible into filled pore
clusters can be treated as their interaction. The problem
of describing inflow–outflow processes then reduces to
the problem of calculating the distribution of clusters
F(n) according to the number of pores in them n; this
problem was considered in [16]. According to [16],
under the conditions of slow (quasi-stationary) porous
body filling, this function, which takes into account the
interaction of accessible and filled pore clusters, has the
form

(6)

for three-dimensional systems. Here, ϑ in(p) is the frac-
tion of pore volume filled at the given pressure
[Eq. (5)]. The exponent τ determines the dependence of
the number of clusters on the number of pores in them
close to the percolation threshold at

(see [8]), and the index σ characterizes the number of
pores in a cluster whose size equals the correlation
length ξ ~ |ϑ – ϑc|–v close to the percolation threshold
[8]. For three-dimensional systems, we have τ = 2.2,
σ = 0.44, and v  = 0.89 [8]. Note that the inflow–outflow
percolation transition was described in [17] using the
scaling distribution function

(7)

Here, n(ξ) = |ϑ – ϑc|–1/σ is the number of pores in a clus-
ter whose size equals the correlation length ξ [8, 16]. It
follows from (6) and (7) that the use of a scaling distri-
bution function in form (7) exaggerates the number of
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clusters containing n pores at 1 < n < n(ξ) and ignores
the formation of clusters whose size exceeds the corre-
lation length. In contrast, nonscaling function (6) takes
into account the formation of fractal clusters of larger
and smaller dimensions compared with the correlation
length. We show below that this difference is essential
to the quantitative description of liquid outflow from a
porous body.

Filled pores are only formed from accessible pores.
According to (5) and (6), the equation describing the
filled volume of the pore space can therefore be written
in the form

(8)

Here, γ(x, y) is the incomplete gamma-function. The
filled volume value [Eq. (8)] is determined by the prob-
ability of formation of pores accessible at the given
pressure and depends on |ϑin(p) – ϑc|,

It follows from (5) that the ε parameter decreases as the
pressure increases. Close to the percolation threshold,
we have

and the filled volume value remains finite at τ > 2,

[A(τ, σ, ϑc) and B(τ, σ, ϑc) are positive values depend-
ing on the indices τ and σ and percolation threshold ϑc].

It follows from (1) and (5) that the relative volume
of the accessible pores can be written as

(9)

Here, R(p) is determined from the condition of the van-
ishing of the work necessary for the formation of a pore
accessible at the given pressure [Eq. (2)]. It follows
from (9) that, in conformity with (2), R(p) decreases
and the relative volume of the accessible pores ϑ in(p)
increases as the pressure grows. Simultaneously, the
size of the cluster of accessible pores monotonically
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increases because the relative volume of the accessible
pores [Eq. (5)] approaches the percolation threshold ϑc .
As a porous body can only be filled by sequentially fill-
ing communicating pores, the filling of the whole
porous body volume is a result of the formation of an
infinite fractal cluster of filled pores. Such a cluster is
formed when the relative volume of the accessible
pores [Eq. (5)] is close to the percolation threshold ϑc .
Calculations show that, although the filling process is
controlled by the number-of-pores distribution of clus-
ters F(n, p) given by (6), the difference between func-
tion (6) and scaling function (7) is then inessential to
filled volume calculations. The differentiation of (8)
allows the behavior of the susceptibility of the liquid–
porous body system to be calculated close to the filling
percolation transition,

The well-known dependences of the τ and σ indices on
the basic critical indices v  and β,

(d is the space dimensionality), which determine the
dependence of the correlation length and the probabil-
ity of infinite cluster formation close to the percolation
threshold, can be used to obtain

For three-dimensional systems, the critical infinite
cluster index is β = 0.42 [8]. It follows that the critical
susceptibility index is determined only by the critical
index of the probability of infinite cluster formation.

The pressure pi in (3) depends on the surface energy
of the liquid σ and the energy δσ, and the pore-size dis-
tribution f(R) can be characterized by the mean pore
radius  and the distribution half-width δR. The filled
volume Vin(p) at the given pressure in (7) is therefore
also a function of these parameters.

Equation (8) can only be used to describe filling
when the pressure increases slowly and viscous energy
dissipation during liquid movement in the space of
pores can be ignored. The liquid moves under the action
of the pressure δp = p – pi , that is, when pressure p rises
above the pi value. The characteristic time τ of filling N
pores with a liquid with the viscosity coefficient µ can
be estimated as

For a porous body with the granule size , pore size

, porosity ϕ, and sample compressibility λ = dV/dp,
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the number of pores δN filled when the pressure
increases by δp is given by the equation

(10)

(Vobr is the volume of the pores in the sample of mass m).
For the porous bodies under investigation, for

instance, for libersorb 2U-8, we have  ≈ 20 µm,  ≈
3.6 nm, λ ≈ 5 × 10–3 cm3/atm, ϕ ≈ 0.5, µ = 0.8 ×
10−3 Pa s, and Vobr ≈ 1.6 cm3 (m = 4 g). The number of
pores filled when the pressure increases by δp = 1 atm
is therefore δN/δp ≈ 106 1/atm, and the characteristic
time of filling is τ ≈ 10–2 s. The time of increasing the
pressure by 1.0 atm was approximately 1 s in our exper-
iments. It follows that the condition of quasi-static fill-
ing was fulfilled, and Eqs. (1)–(8) could be used to
describe the experimental data on filling.

Next, let us consider the stability of the state of the
system “a nanoporous body immersed into a nonwet-
ting liquid with initially filled pores at p > pin .” The
nonwetting liquid can flow out of the porous body as
the pressure decreases. The normalized probability of
empty pore formation is

(11)

Here, δA0 is the work done to form an empty pore. It
consists of the work done by the liquid in outflow from
the pore (pv ), the energy of formation of liquid menisci
in the pores connected with the emptied pore (ση), and
the energy of formation of the liquid–porous body
interface [–δσ(1 – η)]. For a spherical pore of radius R,
we have

(12)

According to (12), δA0 changes sign at the pressure

(13)

For a nonwetting liquid, δσ > 0, and it follows
from (13) that δA0 > 0 for pores of radius R at a high
pressure p > p0. At δA0 @ T, the probability of empty
pore formation is close to zero (w0 ≈ 0). At pressure p <
p0, work δA0 < 0, and, at |δA0| @ T, the nonwetting liquid
can flow out of the pores (w0 ≈ 1). It follows from (4)
and (13) that the pressure p0 is maximum and equals
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for pores of radius

(14)

This means that, after complete filling followed by a
decrease in the pressure, the nonwetting liquid flows
out first at p0 max from pores of radius Rn . The liquid,
however, begins to flow out of the porous body at a
pressure lower than p0 max, when the relative volume of
the pores capable of releasing the liquid is close to the
percolation threshold (ϑc = 0.16),

(15)

Equation (15) and the distribution function of clus-
ters according to the number of pores in them [Eq. (6),
we must substitute ϑout(p) into it for ϑ in(p)] can be used
to calculate the volume of the liquid–porous body sys-
tem with the initially completely filled pore volume
when the pressure decreases to a p value close to pout ,

(16)

The volume Vout(p) [Eq. (16)] is determined by the
probability of empty pore formation at the given pres-
sure and depends on |ϑout(p) – ϑc|,

It follows from (16) that the ε parameter decreases as
the pressure lowers, and, close to the percolation
threshold,

Like the filled volume value [Eq. (7)], Vout remains
finite at τ > 2,

An analysis shows that the relative volume of the
pores capable of releasing the liquid [Eq. (15)] can be
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represented in the form

(17)

Here, R1(p) and R2(p) are found from condition (12) of
the vanishing of the work (δA0 = 0) that should be done
to form an empty pore [17]. The probability of empty
pore formation with radius R1(p) < R < R2(p) is then
nonzero. The outflow of a liquid from a porous body
occurs as a result of the formation of clusters of empty
pores in it. On the other hand, an analysis of the exter-
nal pressure p dependences R1(p) and R2(p) shows that
a small decrease in external pressure at

corresponds to a substantial change in the relative vol-
ume of the pores capable of releasing the liquid,
see (17). As a result, the difference between the non-
scaling and scaling distribution functions [Eqs. (6) and
(7), respectively] becomes essential to the description
of the outflow of a liquid from a porous body.

The differentiation of (16) allows us to calculate the
behavior of the susceptibility of the liquid–porous body
system close to the outflow percolation threshold. In
this case also, the critical susceptibility index is only
determined by the critical index of the probability of
infinite cluster formation,

We stress that the work δA0 [Eq. (12)] of empty pore
formation depends on the difference of the surface
energies of the liquid and the interface rather than their
sum. For this reason, the p0 pressure is lower than pi .
Like inflow, outflow occurs when condition (15) of the
percolation transition is met, but at the pout pressure,
which is lower than pin .

It follows that the hysteresis phenomenon in the sys-
tem under consideration is related to different energy
barriers to the development of inflow fluctuations and
nonwetting liquid outflow; this difference is caused by
the difference in the initial system states.

According to (13) and (4), the pressure p0 changes
sign and becomes negative for pores whose radius is
smaller than R0,

(18)

This means that energy barrier (12) to empty pore for-
mation and outflow probability (11) can be close to one
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only at a pressure lower than atmospheric, that is, when
the system is evacuated. For this reason, in experiments
in which pressure is changed from atmospheric to p >
pin and then decreased to atmospheric, the pores of radii
R < R0 should remain filled. In conformity with (18),
the relative volume of the remaining liquid can be cal-
culated by the equation

(19)

A nonwetting liquid does not flow out of a porous
body because energy expenditures for the formation of
menisci when small-sized (R < R0) (Eq. (12)) pores are
emptied are not compensated for by the energy of gas–
porous body interface formation in the pores.

Equations (8), (16), and (19) are used below to
describe the experimental data obtained in this work
(see Figs. 4–7). The volume of the system after liquid
outflow and the volume of the liquid remaining in a
porous body, as well as the volume of the system when
the porous body is filled, depend on the parameters σ,
δσ, , and 
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 and porosity 

 

ϕ

 

. In our experiments, the
surface energy of the liquid 
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 was varied (decreased) by
adding ethylene glycol to water. The  and 

 

ϕ

 

 values for
the porous media were taken from [19, 20].

The experimental data on the libersorb 2U-8–water
system (surface energy 
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) are compared in
Fig. 4a with the dependences calculated by (8), (16),
and (19). Calculations of dependences (8) and (16) and
volume (19) requires selecting the 

 

δ

 

R

 

 and 

 

δσ

 

 parame-
ters. The specific volume of libersorb 2U-8 pores is
0.38 cm

 

3

 

/g (see table), whereas the specific pore vol-
ume of initial KSK-G silica gel, whose surface was
modified to prepare libersorb 2U-8, is 0.73 cm

 

3

 

/g. After
the modification of KSK-G, the radius of pores
decreases, and the mean radius of libersorb 2U-8 pores
is therefore smaller than the  = 4 nm value tabulated
for KSK-G. Based on the measured specific volume of
libersorb 2U-8 pores, their mean radius was estimated
at  

 

≈

 

 3.3 nm. At the same time, small-sized libersorb
2U-8 pores can be filled by modifier molecules. For this
reason, we selected the mean value  = 3.6 nm for use
in calculations. The pore-size distribution functions of
KSK-G and libersorb 2U-8 are not known. We there-
fore used a Gauss distribution with the mean radius

 = 3.6 nm and the distribution half-width 

 

δ

 

R

 

 = 0.4 nm
characteristic of porous media of the type of silica gels
and silochroms (2

 

δ

 

R

 

/  

 

≈

 

 20%). The 

 

δσ

 

 parameter was
adjusted to describe both 

 

V

 

in

 

(

 

p

 

) and 

 

V

 

out

 

(

 

p

 

) dependences
and the volume 

 

V

 

0

 

 of the liquid remaining in the porous
body fairly accurately, to within measurement errors

V0
4
3
---πR3 f R( ) R.d

0

R0

∫=

R

R

R

R

R

R

R
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(see Fig. 4a). The δσ value answering this requirement
was 23 mJ/m2.

The experimental data on libersorb 2U-8 and aque-
ous ethylene glycol were described by setting the
porous body parameters , δR, Vpor , and ϕ equal to
their values determined in experiments with pure water.
The surface energy values of water–ethylene glycol
mixtures were taken from the dependence shown in
Fig. 1. It was found (see Figs. 4b, 4c) that the theoreti-
cal pressure dependences of system volume Vin(p)
(pressure increase) and Vout(p) (pressure decrease) and
the calculated volume of the solution remaining in the
porous body coincided to within measurement errors
with the experimental data for all ethylene glycol con-
centrations at the δσ values listed in the table. The
dependence of δσ on σ (therefore, on the concentration
of ethylene glycol) obtained this way is plotted in
Fig. 8. The figure shows that δσ monotonically
decreases as the concentration of ethylene glycol
increases and σ lowers. This dependence explains why
the characteristic pressures p2 of porous body filling
decrease and the volume V0 of the liquid remaining in
the porous body increases as the concentration of ethyl-
ene glycol increases.

In agreement with (5), the pressure pi can be written
in the form

(20)

According to (20), a decrease in σ and δσ causes a
decrease in pi and, according to (5), the critical pressure
pin . It follows that a decrease in the inflow pressure as
the concentration of ethylene glycol grows is caused by
a decrease in the work δA spent for fluctuation pore
filling.

R

pi
3δσ

R
---------- 1 η–( ) 3σ

R
------η .+=

12

50 55

δσ, mJ/m2

σ, mJ/m2

60 65 70 75
10

14

16

18

20

22

24

26

Fig. 8. Energy of liquid–solid interface formation as a func-
tion of the surface energy of the liquid for libersorb 2U-8 as
a porous body.
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At the same time, an increase in the concentration of
ethylene glycol increases the σ/δσ ratio from 3.1 at C =
0 to 4.5 at C = 60%. According to (18), the radius R0
simultaneously increases from 3.2 to 4.1 nm. In confor-
mity with the Gauss pore-radius distribution, the pores
largely have radii from  – δR to  + δR. In addition,
for the porous body under consideration,

We therefore have R0 > Rmax at the concentration C =
60%. This means that the pressure at which the work of
fluctuation empty pore formation is close to zero is
lower than atmospheric. For this reason, almost all of
the nonwetting liquid should remain in the porous body

R R

Rmax R δR+ 4.0 nm.= =

0.2

0 100

δV/Vpor

200 300 400 500

0.4

0.6

0.8

1.0

(a)

0.2

0 100 200 300 400 500

0.4

0.6

0.8

1.0

(b)

p, atm

Fig. 9. Pressure dependences of changes in the relative liq-
uid volume in a porous body for the libersorb 2U-8–water
system [solid circles correspond to experimental data and
solid lines to calculations by (14) and (16) with (a) scaling (7)
and (b) nonscaling (6) functions for the distribution of
clusters].
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(V0 ≈ 1) at the concentration C = 60%. Just this is
observed for the system libersorb 2U-8–aqueous ethyl-
ene glycol (60%).

The theoretical dependences Vin(p) and Vout(p) and
the calculated V0 values are compared with the experi-
mental data on silasorb S8, silasorb S18, and polysorb-1
as porous media and water as the liquid in Figs. 6 and 7.
The , δR, and ϕ values used in the calculations are
listed in the table, they correspond to the literature data
on these systems [19, 20]. Dependences (8) and (17)
describe the experimental data to within measurement
errors. The δσ values that we obtained are listed in the
table. The special feature of silasorb S8–, silasorb
S18−, and polysorb-1–aqueous ethylene glycol systems
is complete liquid outflow after filling the porous bod-
ies followed by pressure lowering irrespective of ethyl-
ene glycol concentration. For water and silasorb S8,
silasorb S18, and polysorb-1 porous bodies, the R0 radii
(R0 is the upper limit of the size of pores from which the
liquid can flow out) were larger than the maximum pore
radii of the corresponding pore-size distributions (see
table). For instance, for the silasorb S8–water system,
we have

σ/δσ = 6.9, and, according to (13), R0 = 7.6 nm.

4. CONCLUSIONS

To summarize, our analysis of the experimental data
shows that nonwetting liquid inflow–outflow processes
can be quantitatively described for the porous bodies
studied on the basis of percolation theory taking into
account energy barriers to fluctuation filling of pores
with a liquid and empty pore formation as the pressure
decreases. Our experiments showed that porous body
filling occurred in a narrow neighborhood of the perco-
lation threshold ε ! 1. As distinct from what was done
in [17], the experiments were described using nonscal-
ing distribution function (6) for filled pore clusters,
F(n, p), which took into account the interaction of clus-
ters with each other and the formation of fractal clusters
of arbitrary dimensions. We found that taking such
clusters into account close to the percolation inflow
transition had no substantial (exceeding measurement
errors) effect on the pressure dependence of the filled
volume Vin(p) for the porous bodies studied, which con-
sisted of finite-size granules (Fig. 9). Indeed, the prob-
ability of porous body filling [Eq. (1)] is noticeably dif-
ferent from one only in a narrow neighborhood of the
critical pressure pin determined by the equation
ϑ in(pin) = ϑc . Therefore, as follows from (8) and (9),
porous body filling occurs only in a narrow neighbor-
hood of the percolation threshold. Figure 9 shows that
the difference between the nonscaling function that we
used [Eq. (6)] and the scaling function [Eq. (7)] is of

R

Rmax R δR+ 5.5 nm,= =
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importance for describing liquid outflow from a porous
body. Indeed, a small decrease in external pressure at

corresponds to a substantial change in the relative vol-
ume of the pores capable of releasing liquid, which
requires taking into account fractal clusters of empty
pores of arbitrary dimensions when the liquid flows out.
The distribution of such clusters is described by non-
scaling function (6).

It follows that, whereas the scaling function is capa-
ble of only qualitatively describing Wood alloy inflow
into and outflow from silochroms as porous bodies [17],
the nonscaling function gives a quantitative description
of the experimental data on the liquid–porous body sys-
tems studied in this work. This is substantiated by the
results shown in Fig. 9, from which it follows that the
scaling function of the distribution of filled pore clus-
ters incorrectly describes inflow–outflow processes and
hysteresis phenomena.

Percolation theory taking into account the energy
barriers to the development of inflow–outflow fluctua-
tions is capable of describing the phenomenon of the
nonoutflow of a nonwetting liquid from a porous body
without assumptions on the special geometry of the
space of pores such as were made in [9, 12–14]. It turns
out that to remain filled is energetically favorable for
small-sized pores for which the work δA0 changes sign
when the pressure of liquid outflow is lower than atmo-
spheric. The hysteresis of nonwetting liquid inflow into
and outflow from a porous body is also related to the
energy conditions of the attainment of the percolation
transition ϑ in, out = ϑc = 0.16.
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Abstract—An approach based on the memory functions formalism is applied to derive non-Markovian equa-
tions of motion for the magnetization components of localized and quasi-localized electron spins under electron
paramagnetic resonance (EPR) conditions using the example of manganites with colossal magnetoresistance.
General Hasegawa–Bloch-type equations are applied to describe certain experimental data concerning the
shape and the width of EPR lines and the longitudinal and transverse relaxation rates. Particular cases of these
equations reproduce well-known theoretical results concerning EPR in manganites with colossal magnetoresis-
tance. The results obtained explain certain well-known experimental phenomena and may stimulate further
research. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The formalism of memory functions is a powerful
and simple method in nonequilibrium statistical phys-
ics. It is associated with the name of Zwanzig, who was
the first to introduce a projection operator P into non-
equilibrium statistical mechanics. He also obtained a
basic kinetic equation for a statistical operator ρ(t) and
a non-Markovian basic kinetic equation that describes
the evolution of a macroscopic state of a physical sys-
tem. In addition, Zwanzig proposed a procedure for
deriving kinetic transfer kernels (integral kernels of
integro-differential equations—memory functions) in
the most general form, which saved one the trouble of
solving a rather difficult problem of constructing a non-
equilibrium statistical operator ρ(t). The formalism of
memory functions is also associated with the name of
Mori, who proposed a method for constructing a pro-
jection operator P (a superoperator) and thereby laid
the foundation for modified nonequilibrium dynamics
in its present form [1–3].

In the theory of magnetic resonance, the formalism
of memory functions was first employed by Lado,
Memory, and Parker [4–6].

The non-Markovian theory of magnetic resonance
in solids for a system of localized spins with dominant
dipole–dipole interaction was constructed in [7, 8].

In the present paper, we follow [7] and derive gen-
eral expressions for the equations describing the trivial
and nontrivial (relaxation) non-Markovian dynamics of
magnetization for three components of localized elec-
tron spins and three components of quasi-localized
electron spins (for s and e electrons, respectively) under
EPR conditions. The general equations obtained in this
1063-7761/05/10002- $26.00 0398
paper will be used to determine the relaxation rates, the
EPR line shape, and the temperature dependence of the
EPR linewidth, as well as to investigate a relaxation
bottleneck. For definiteness, we consider the spin sys-
tem of manganite compounds.

Manganites with the perovskite structure that are
doped with alkaline earth metals and described by the
general formula  (where A = La, Pr, …
and A' = Ca, Sr, Ba, …) are of much interest because of
the colossal magnetoresistance effects observed in
these materials. EPR investigations have been carried
out on various samples of manganites with colossal
magnetoresistance in a wide range of temperatures. In
particular, the EPR linewidth, the transverse (T2) and
longitudinal (T1) electron spin relaxation times, the
electron spin susceptibility, and the behavior of the spin
system as a function of temperature and the concentra-
tion of divalent ions, etc., have been studied (see, for
example, [9–17]).

The formalism of memory functions was first
applied to study manganites with colossal magnetore-
sistance in [9], where the authors analyzed and inter-
preted data concerning the EPR linewidth, which was
identified with the relaxation rate of the transverse
(with respect to the external dc magnetic field) compo-
nent of the total spin. Before starting to solve the prob-
lem, i.e., to apply the memory functions formalism to
construct non-Markovian dynamics for the spin system
of a manganite, we make a few general remarks.

The drawback of this method (which, in our opin-
ion, is insubstantial) is characteristic of all modern the-
ories of nonequilibrium processes: this is the absence of
a criterion for choosing a set of relevant operators. This

A1 x– Ax' MnO3
© 2005 Pleiades Publishing, Inc.
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choice is made intuitively, with regard to previous
experimental and theoretical data, and, as a rule, proves
quite successful. If the set of relevant operators turns
out to be incomplete, then the characteristics of a non-
equilibrium process—kinetic coefficients (relaxation
rates, transfer coefficients, etc.)—are determined only
approximately. If this set contains more operators than
necessary to describe a nonequilibrium state, then this
has no effect on the calculation of kinetic coefficients [2].
Among the advantages of the formalism of memory
functions are the following. The equations of dynamics
obtained by this method are valid for any type of inter-
action and are exact, because no approximation has
been used when deriving the basic kinetic equation of
Zwanzig [1, 5, 6]. Moreover, as pointed out above,
there is no need to apply a complicated procedure of
constructing and using a nonequilibrium density
matrix; this, which is quite important, allows one to
avoid the introduction of the concept of spin tempera-
ture [6]. Finally, this method is simple in application
because almost everything reduces to the calculation of
commutators or (and) to operations with the derivatives
of relevant operators (fluxes) under the sign of Sp in
memory functions (in appropriate correlation functions
composed of flux operators), as well as to the applica-
tion of (Gaussian (most frequently), Lorentzian, etc.)
approximations to the above-mentioned correlation
functions [1, 18].

2. HAMILTONIAN

Consider a magnetic system as an ensemble of two
subsystems of localized and quasi-localized electron
spins with the Hamiltonian

(1)

Here,

(2)

is the isotropic Heisenberg superexchange interaction
between manganese ions at sites i and j (it may consist
of two components with the exchange constants in the
ac plane and between planes ac [9]),

(3)

is the double-exchange Hamiltonian [19],

(4)

is the Hund Hamiltonian,

(5)

H Hex
is Hex

doub Hanis Hz H1.+ + + +=

Hex
is λ ij

isMsiMsj

ij

∑=

Hex
doub HH Ht+=

HH λH MsiMei

i

∑–=

Ht t ciσ
† c jσ ciσc jσ

†+( )
ijσ
∑–=
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is the Hamiltonian of hopping electrons, and 

(6)

(7)

is the Hamiltonian of the interaction of manganese ions
with the noncubic crystalline field produced by neigh-
boring oxygen ions [9]. The term

(8)

describes the Dzialoshinsky–Moriya antisymmetric
exchange interaction between localized spins [15, 20],
where

(9)

(10)

the axes X, Y, and Z are fixed crystallographic axes a, b,
and c; the axis Z is parallel to the axis c; and the external
magnetic field H0 is parallel to the axis z and is directed
at polar (θ) and azimuthal (ϕ) angles with respect to the
axis c,

(11)

is the Zeeman interaction between spins and the field
H0, and H1 is the interaction between spins and an
external ac (radio-frequency (RF)) field,

are the magnetizations of localized Ms and quasi-local-

ized Me spins; (ciσ) are the creation (annihilation)
operators of a quasi-localized electron with the spin ori-
entation s(ν); and τσν are the Pauli spin matrices,
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where Jij , JH, and dij are the constants of superex-
change, Hund, and Dzialoshinsky–Moriya exchange
interactions; E and D are the crystalline-field constants;
t is the hopping integral; γs, e and gs, e are the gyromag-
netic ratio and the g factor of the spins S and s, respec-
tively; and µB is the Bohr magneton.

3. EQUATIONS OF MOTION

In this case, the choice of a relevant set is obvious:
these are the x, y, and z components of the magnetiza-

tion operators  (α = x, y, z, k = s, e) of localized and
quasi-localized electron spins. Using these compo-
nents, we will describe the dynamics of the spin system
of a manganite. In contrast to [7], where the secular part
of the dipole–dipole interaction takes part in the non-
trivial spin dynamics by broadening the magnetic reso-

nance linewidth [21], we do not take, say , as a rel-
evant operator, because it commutes with the x, y, and z
components of magnetization.

In such a statement, the Mori projection operator is
expressed as

(12)

where 〈Q|Q〉  = Sp(Q)2. Moreover, the identity P2 = P
holds, which is characteristic of this superoperator.

Following [5–7], we can obtain equations of motion

for the magnetizations :

(13)

where the terms

(14)

and

(15)

describe trivial and nontrivial (relaxation) dynamics,
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respectively; the functions

(16)

represent memory functions, where τ = t – t ', α ≠ β = x,
y, z, k ≠ l = s, e; and

Note that, to simplify the problem, we made the follow-
ing assumptions when deriving the integrals (15) and
(16) of nontrivial dynamics. In the exponential multi-
pliers of the memory functions, we took into account
that

since

In the Hamiltonians contained in the commutators, we
dropped the Zeeman and RF terms (the latter terms
were dropped in (14) as well) and then took into
account that

because

If we calculate the commutators in (14) and (15)
(see also (16)) and drop, for short, the angular brackets
and the brackets containing functions of time t, then
from Eqs. (13) we obtain

(17)

(18)

Here, the terms

(19)

and

(20)

represent analogs of the Hasegawa–Bloch equations,
which were obtained earlier phenomenologically to
describe EPR in metals (one can even say that for-
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mulas (17) and (18) are Hasegawa–Bloch-type equa-
tions) [22, 23]. The terms

(21)

describe the trivial dynamics of the operators  and

 (here, as pointed out above, we neglected the RF

field). The terms (  – )/ , which are added
to the right-hand side of Eqs. (19) and (20) phenomeno-
logically, describe the spin–lattice relaxation of s and e
spins; for clarity, they are extracted from the nontrivial
dynamics (these terms can also be obtained by the
memory functions formalism by adding appropriate
interactions to the Hamiltonian of the problem). The
term

(22)

represents an explicit expression for the nontrivial
dynamical part of Eqs. (19) and (20) (without spin–lat-
tice dynamics). The terms

(23)

and

(24)

describe the relaxation of the components of  due to
the interaction with the crystalline field and due to the
Dzialoshinsky–Moriya interaction, respectively. The
term

(25)

is a cross contribution of two components of  to the
relaxation of the third component. The quantities
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are memory functions obtained from (16);

(29)

(30)

(31)

are the contributions of the Hund and anisotropic inter-
actions to the second moment M2 of the resonance line
because M2 = K(0) [12, 13]; and

(32)

(33)

are four-spin correlation functions. Here, we also used
the notation

(34)

Note that we used a molecular-field approxima-
tion [24] when deriving Eqs. (21) of trivial dynamics.
The trivial part of Eqs. (21) shows that localized and
quasi-localized spins shift the resonance frequencies of
each other.

Note also that, after switching off the RF field, the
quantities 〈Mx, y(t)〉  tend to zero, while 〈Mz(t)〉  tends to

its equilibrium value 〈Mz〉0 = . Therefore, in all
expressions for 〈Mz(t)〉  in Eqs. (22)–(25) (recall that
〈Q(t)〉  = Sp{Qρ(t)}), one should change ρ  ρ – ρ0
(ρ0 is the equilibrium density matrix), as is done in [25];

i.e., one should take 〈Mz(t)〉  –  instead of 〈Mz(t)〉 .
Note also that, in contrast to [9], relaxation in our

analysis is of tensorial nature. Moreover, one can see
that, due to the presence of products of different
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constants of the Dzialoshinsky–Moriya interaction
(see (25), (28), (31), and (33)), the contribution of cross
relaxation rates to the relaxation of localized spins
depends on the structure of a manganite with colossal
magnetoresistance and on experimental conditions (the
direction of the magnetic field, etc.). For example, if we
assume that the vector dij is directed along axis c and
the field H0 is parallel (i.e., θ = 0) or perpendicular (i.e.,
θ = π/2) to axis c in Eqs. (8)–(10), then, according
to (34), the contribution of cross relaxation (25) van-
ishes. The contribution of the cross relaxation also van-

ishes, for example, when θ = π/2, ϕ = π/4,  = , and

 ≠ 0. If , ,  ≠ 0, then one may face different,
more complicated, situations. In particular, for an arbi-
trary direction of H0 (for arbitrary polar θ and azi-
muthal ϕ angles), the contribution of the cross relax-
ation (26) is different from zero in most cases. More-
over, when, for example, θ = ϕ = 0, i.e.,

the contribution of localized s spins to relaxation may
be either positive or negative (the EPR linewidth may
either increase or decrease). Note that the tensorial
nature of relaxation and, possibly, a significant contri-
bution of the cross terms to the relaxation of localized
spins, which is revealed in our theoretical analysis, may
also manifest themselves in the variation of, say the
EPR linewidth, under the variation of experimental
conditions (magnetic field direction, etc.) or when var-
ious samples of manganite with colossal magnetoresis-
tance are used in the experiment.

One can obtain the following well-known results
from Eqs. (17) and (18).

1. In the equilibrium state, one can easily derive the
following relations from Eqs. (17) and (18) (more pre-
cisely, from Eqs. (19)–(21)) [23, 26]:

(35)

It should be noted that the classical expressions, with
which we compare relations (35), contain individual
susceptibilities for Mn3+ and Mn4+ ions. According to
our model, one of the susceptibilities in (35) is associ-
ated with the total magnetization of localized s spins (of
Mn3+ and Mn4+ ions), and the other is associated with
the magnetization of quasi-localized electron spins e.
When the isotropic exchange interaction is dominant,
this model seems to be more general and adequate.

2. Let us take (t) and (t) outside the sign of
integral in Eqs. (23) and replace the upper limit of inte-
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gration by infinity; this procedure is incorrect as

applied to (t), but it allows one to qualitatively esti-
mate the behavior of the spin system of quasi-localized
electrons e. Then, in the equilibrium state, we obtain

(36)

This is a well-known result (see, for example, [27]).
Quantitative estimates for the transverse and longi-

tudinal relaxation rates; the shape and width of the res-
onance line; and their dependence on the impurity con-
centration, temperature, and sample structure can be
obtained from a rigorous solution and a detailed analy-
sis of Eqs. (17) and (18). However, such as analysis is
beyond the scope of the present paper.

4. THE WIDTH AND THE SHAPE OF EPR LINE: 
APPROXIMATIONS AND CONCLUSIONS

Let us consider several approximations for the cor-
relation functions (32) and (33) and the second
moments (30) and (31), which constitute the memory
functions (26)–(28). This might allow us to assess the
shape and the width of a resonance line and its temper-
ature dependence, as well as the “type” of a spectral
EPR line.

4.1. Gaussian Approximation 
for Correlation Functions: Shape and Width

of a Resonance Line (Relation 
between the Second Moments and Correlation Times 

of Memory Functions with the Second
and Fourth Moments of EPR Lines)

For the memory functions (16) (see also their
explicit expressions (26)–(28)), or, more precisely, for
the correlation functions (32) and (33) appearing in
them, we can take the well-known Gaussian approxi-
mation [5, 6, 8, 24]

(37)

(38)

where

(39)

N2 is the second moment of a memory function, and M2
and M4 are the second and fourth spectral moments of
the EPR line.

Note that, if we use the Gaussian approximation

defined by the correlation time τINT (where “INT” =
“H,” “CF,” “DM”), for the correlation functions (32)

Me
α

Tes
α /T se
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and (33), then we can easily establish a relation
between the corresponding quantities N2 and τINT:

(40)

According to [5, 6], we can argue that

(a)

under exchange narrowing, because M4/  @ 1 in this
case and the shape of the EPR line is close to the
Lorentzian shape;

(b) in the absence of exchange narrowing, τINT =

, because M4/  ≈ 3 in this case and the shape
of the EPR line is of Gaussian form.

Note that the superexchange interaction  makes
a contribution to the resonance line of localized spins
only via N2CF and N2DM (via M4CF and M4DM); therefore,
only localized spins can contribute to the exchange-nar-
rowed EPR line with a Lorentz-type shape, whereas
spins of both types contribute to the EPR line of Gaus-
sian form. It should also be noted that, if there is a sin-
gle EPR line, then it certainly contains contributions of
spins of both types; however, since one of the interac-

tions Hdoub or  is dominant, either the Gaussian line
dominates the Lorentzian line or vice versa (the case of
a single Lorentz-type line is considered below in Sec-
tion 6 and in the Appendix). If the resonance frequen-
cies of localized and quasi-localized spins are suffi-
ciently well separated so that there are two EPR lines,
then each of them can be identified with a certain type
of spins, provided that the line shape is purely Gaussian
or purely Lorentzian (the Lorentzian line corresponds
to localized and Gaussian, to quasi-localized spins).
When both lines are Gaussian (in this case, Hdoub >

), the identification can be made only by resonance
frequencies. Thus, the shape and the resonance fre-
quency of an experimental EPR line may help one to
determine which of the spin–spin interactions domi-
nates and to which type of electrons the resonance line
corresponds. Here, one must keep in mind that the real-
ity may be more complicated because interactions that
are not taken into account by the present theoretical
approach (perturbations of the electronic structure of
manganese ions and the crystalline field that are associ-
ated with hopping conductivity, inhomogeneity of a
magnetic field, the presence of unaccounted impurities,
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etc.) may also contribute to the width and the shape of
the EPR line.

4.2. Approximation
from the Bloch–Vangsness–Redfield Theory:

Spin in a Fluctuating Field 

In this approximation [25], we can represent, for

example, the product  taken from the four-spin
correlation functions (32) and (33) as

(41)

where  =  are the rms fluctuations
of the fields produced by the spin s(e) and acting on the

spin e(s) and δ  =  – 〈 〉 . Moreover, the
theory of [25] uses the approximation

(42)

where the upper bar denotes averaging over an ensem-
ble and τs, e are the correlation times of the fluctuating
fields created by the localized s and quasi-localized e
electron spins, respectively.

Now, using Eqs. (17) and (18) and the approxima-
tions of the theory of [25] given above, we obtain, for

example, expressions for the rates ( )–1 of the Hund
relaxation of localized spins s to quasi-localized spins

e. To this end, we write the expression for ( )–1 in
explicit form, using relations (23), (29), and (34):

(43)

Note that the time dependence of the four-spin cor-
relation functions under the sign of integral in (43) is
determined by exponential multipliers of the form

exp[i(HDM + HCF + HH +  + )t] with noncommu-
tative operators (the operator HDM + HCF + HH does not

commute with , and HH does not commute with ).

Thus, using formula (43) and taking into account
that, for example,
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we can easily derive

(44)

(45)

where ⊥  = x, y, and ωs, e are the Zeeman frequencies of
s and e spins. Note that thermal averaging allows one to
make the following substitution in (44) and (45):

One can see that the expressions obtained resemble
those used in the Bloch–Vangsness–Redfield theory for

 and  (see formulas (5.210) from [25]). An anal-
ysis of similar expressions can be found in [25]. Recall

that the superexchange interaction  does not con-

tribute to the relaxation rates ( )–1 and, just as in [25],

these rates are proportional to ( )2. Note that τe is

different from τs because [ , Hanis] = 0 and

[ , Hanis] ≠ 0; however, this difference may be incon-

sequential since  does not commute with the inter-
action Hdoub (more precisely, with its Hund component
HH), which may prove dominant in manganites with
colossal magnetoresistance in a certain range of impu-
rity concentrations and temperatures. Moreover, due to
the difference between the approximation of fluctuating
fields and the approximation associated with the Gaus-
sian approximation in the memory functions formal-
ism, the quantities τe, s and τINT differ from each other:

the former characterize the correlation between (0)

and (t), i.e., actually between (0) and (t),
whereas the latter characterize the correlation between

(0) and (t), i.e., between [ , H](0) and
[Ms, e, H](t) from (16). In our opinion, the advantage of
the memory functions formalism consists in the fact
that the times τH, CF, DM can be calculated quantitatively,
in terms of the second moment of an appropriate mem-

T se
⊥( ) 1– γs

2
---- 

 
2

=

× Hei
⊥( )2τe Hei

z( )2 τc

1 ωs
2τe

2
+

--------------------
Sp Mei

α( )2

Sp Msi
α( )2

----------------------++




i

∑

× Hsi
⊥( )2τ s Hsi

z( )2 τ s

1 ωe
2τ s

2
+

--------------------+




,

T se
z( ) 1– γs

2
---- 

 
2

Hei
y( )2 τe

1 ωs
2τe

2
+

--------------------




i

∑=

+
Sp Mei

α( )2

Sp Msi
α( )2

---------------------- Hsi
x( )2 τ s

1 ωe
2τ s

2+
--------------------





,

Sp Me
α( )2

/Sp Ms
α( )2 χe

α T( )/χs
α T( ).=

T2
1– T1

1–

Hex
is

T se
α

Hs e,
α

Me
α

Ms
α

Ms e,
α

Hs e,
α

Hs e,
α Ms e,

α Ms e,
α
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ory function (38), i.e., in terms of the corresponding
second and fourth moments of the EPR line (in terms of
M2 and M4). This formalism also allows one to take into
account higher order moments of the EPR line [5, 6].

Finally, note that in the fast-motion limit, we have

 = , whereas, in the opposite case, when

ωs, eτe ! 1, the ratio /  is large [10–12].

4.3. Temperature Approximation: Relaxation
and Resonance Linewidth 

Following [9], we can obtain the following general
expression for the kinetic coefficients of Eqs. (22)–(25)
of nontrivial dynamics, more precisely, for their non-
Markovian version (49)–(52), i.e., for the spin relax-
ation rates:

(46)

Here, the expressions Sp{[d (t)/dt][d (0)/dt]}
represent the numerators of the memory functions
from (16) in the general form, χs, e(T) is the tempera-
ture-dependent susceptibility, χ0s, e = C/T is the Curie
susceptibility, C is the Curie constant, k is the Boltz-
mann constant, and T is temperature.

Taking into account (46), we can easily obtain the
Huber law for the EPR linewidth [9]:

(47)

where

(48)

In the case of a paramagnetic state considered here, the
most reasonable approximation for the susceptibility is
the Curie–Weiss law [10–12],

where Θ is the Curie–Weiss temperature. The substitu-
tion of the Curie–Weiss law into (47) yields a good
agreement with the set of experimental data for the tem-
perature dependence of the susceptibility, the EPR line-
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width, and the transverse and longitudinal relaxation
rates in a wide range of temperatures and impurity con-
centrations [10–12].

5. RELAXATION BOTTLENECK

Now, we demonstrate the potential of Eqs. (17) and
(18) as applied to investigating relaxation and relax-
ation bottleneck in a coupled system of localized s and
quasi-localized e spins in the cases of weak and strong
coupling between them.

For simplicity, we neglect the contribution of cross

terms, (d /  = 0 (see the remark in Section 3).
In addition, to simplify the nontrivial part of Eqs. (17)
and (18), we notice the following. The commutation
relations

imply that exp(–i t) exp(i t) = , [ ,

exp(i t)] = 0, and exp(–i t) exp(i t) =

(t), i.e., the operator  is missing in the

exponential multipliers of (t) and (t) but appears

in the exponential multipliers of (t). Therefore,

if the interaction  dominates Hdoub and other inter-

actions, then the function (t) varies (decreases)

rapidly, but the functions (t) and (t) vary slowly.

Hence, the magnetizations (t) in Eqs. (23)–(25)
decrease slower than the corresponding memory func-
tions; therefore, as pointed out in subsection 1 (Sec-
tion 3), we can apply a Markov approximation: take

(t) outside the integral sign and change the upper
limit of integration to infinity. In this case, along with

the functions (t) and (t), the function (t) also
varies slowly; therefore, this approximation is inapplica-
ble to the integrals of Eqs. (19) and (20) (see also (22)).

When  < Hdoub, a similar Markov approximation is
totally inapplicable, because all variables under the
integral sign vary equally rapidly (the corresponding
operators do not commute with Hdoub). Thus, to solve
system of equations (17) and (18) rigorously, one should
apply the Laplace transform to this system, as was done,
for example, in [7]. However, to qualitatively estimate
the behavior of a spin system, we apply a Markov
approximation to the equations of motion (19)–(25).
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Then, the nontrivial terms of these equations (see (22)–
(25)) are rewritten as

(49)

(50)

(51)

(52)

Thus, taking into account Eqs. (49)–(52), we obtain the
following relations for the nontrivial part of Eqs. (17)
and (18):

(53)

(54)

where ( )–1 and ( )–1 are represented by kinetic

coefficients in front of the terms (t) on the right-
hand sides of Eqs. (50) and (51). The relaxation rates

( )–1 and ( )–1 can be represented by kinetic coef-
ficients either from Eqs. (49) or from (44) and (45),
depending on the choice of the approximation to the

memory functions. Recall that  = 0 in Eqs. (53)
and (54).

Thus, to study relaxation (relaxation bottleneck) in
a system of coupled s and e spins, we have Eqs. (17)
and (18) with the trivial part in the form (21) (these
expressions contain terms associated with the interac-
tion of spins with the RF field) and the nontrivial part in
the form (53) and (54). Here, we assumed that the
g-factors of s and e spins are equal because, to solve this
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system of equations, we use the results of [28, 29],
where, for simplicity, the authors considered precisely
this case when solving phenomenological Hasegawa–
Bloch equations by the theory of coupled oscillators.
Moreover, it was assumed in those papers that both
localized and delocalized spins are equal to 1/2,
whereas the structure of manganese ions in manganites
with colossal magnetoresistance has a spin of 3/2.
However, this difference does not affect the estimated
results of the present section. Note also that, in those

papers, the role of ( )–1 and ( )–1 is played by the
Corring and Overhauser relaxations, respectively. Now,
let us consider a solution to Eqs. (53) and (54) together
with (21) (a simplified version of Eqs. (17) and (18)) in
the cases of strong and weak coupling between local-
ized s and quasi-localized e spins mentioned above.
Everywhere below, we will borrow notation from [28,
29] and assume that α = x, y.

5.1. Strong Coupling of s and e Spins 
(Relaxation Bottleneck) 

In this situation, the condition

holds, where σα is the coupling parameter of the s and
e spin subsystems,

Note that, in [28, 29], the authors used a dipole–dipole
interaction of localized s spins as a broadening interac-
tion that makes the main contribution to δ0α. This inter-
action is insignificant in manganites with colossal mag-
netoresistance [9]. Therefore, for the normal relaxation
of the transverse magnetization components of s and e
spins, i.e., as solutions to Eqs. (53) and (54), respec-
tively, we can use expressions (19) from [29]:

(55)

where  and  are normal relaxation rates (observ-
able EPR linewidths), t indicates a mode and takes val-
ues “+” or “–”; the t mode is always s-like, while the
(−t) mode is e-like.
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5.2. Weak Coupling 
between the s and e Spin Subsystems (σα ! 1)

Here, we should use expressions (11) from [29] as a
solution to Eqs. (53) and (54):

(56)

(57)

When deriving Eqs. (56) and (57), we used the condi-
tion

which can also be realized in manganites with colossal
magnetoresistance.

Note that the situation considered in [28, 29] implies
that a secular dipole–dipole interaction between local-
ized s spins contributes only to the transverse relaxation
(to T2). In our case, the crystalline-field and Dzialoshin-
sky–Moriya interactions, and thereby the superex-
change interaction, contribute both to T2 and to the lon-
gitudinal relaxation T1.

A detailed analysis of the expressions that entail for-
mulas (54)–(57) can be found in [28, 29].

Thus, the application of Eqs. (17) and (18) in this
section shows that they represent a quantum-statistical
analog of Hasegawa–Bloch-type equations; each phe-
nomenological term in the latter equations corresponds
to a certain term in Eqs. (17) and (18), which is natu-
rally derived by a method of statistical physics of non-
equilibrium processes—the formalism of memory
functions.

6. BLOCH EQUATIONS

Now, let us apply Eqs. (17) and (18) to describe a
situation when there is a single Lorentz-type EPR line.
Such a situation may arise when a manganite with
colossal magnetoresistance is in paramagnetic and
insulating states.1 

In this case, as pointed out above,  is the domi-
nant interaction within the model proposed, and the
EPR line—a Lorentz-type line associated with local-
ized spins—overlaps the Gaussian-type resonance line

1 For example, in the phase diagrams for La1 – xSrxMnO3 and
La1 − xCaxMnO3 in [15, 30], such domains are indicated as O/I,
PM; O'/I, PM; and PI. Similar domains of impurity concentra-
tions and temperatures can be found in [10–13].
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associated with the spins of both types. Therefore, we
can neglect the role of quasi-localized spins and set
Me = 0.

As a result, we obtain Bloch-type equations from (17)
and (18) (see Appendix):

(58)

where

( )–1 are kinetic (relaxation) coefficients in
Eqs. (50) and (51) in front of appropriate components

of magnetization Ms; the term  is given
by expressions (25) and (52); and i, j, and k are unit
vectors directed along coordinate axes x, y, and z,
respectively. This case corresponds to the situation con-
sidered in [9, 31] because the magnetization Ms is a
sum of magnetizations of the localized spins of Mn3+

and Mn4+ ions. Moreover, due to the exchange narrow-
ing [5, 6], the inequality µ @ 1 holds. Therefore,
from (39) we obtain

Thus, using the kinetic (relaxation) coefficients from
Eqs. (49)–(52), we can draw the following qualitative
conclusions from the aforesaid.

1. Taking into account that µ @ 1 (N2 ≈ M4/M2) and
K(0) = M2, we easily derive the following expression
from the relaxation coefficient in (50):

(59)

which is in agreement with the results of [9, 32]. If we
apply the second and fourth moments from [9], then,
according to (59), we obtain

where 〈J〉  is the superexchange constant for nearest
neighbors. The contribution of the Dzialoshinsky–
Moriya interaction to the transverse relaxation (59) is
of the same order of magnitude.
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2. Following [9], we obtain the following expression
for the linewidth:

(60)

Naturally, the contributions of the crystalline-field and
Dzialoshinsky–Moriya interactions to the linewidths
can be estimated in the same way as it was done in the
previous subsection of this section. As pointed out
above, in this case, the isotropic superexchange interac-
tion (via the contribution to M4) is responsible for the
exchange narrowing of the resonance line.

3. If we neglect anisotropy in this range of tempera-
tures and impurity concentrations, which (as is shown
in the Appendix) is quite realistic due to the presence of

the dominant contribution , then we can assume
that all second and fourth moments for the directions x,

y, and z are equal, i.e.,  =  = . Hence,
the corresponding relaxation times from Eqs. (58) asso-
ciated with these moments are also equal (see formu-
las (50)–(52)): Tx = Ty = Tz = T1 = T2. This result is in
agreement with the experimental results of [10–12].

7. CONCLUSIONS

We have obtained the following original results.
1. Using the formalism of memory functions, we

have obtained a system of equations in the general form
that describes trivial and nontrivial (relaxational)
dynamics for the x, y, and z components of spin magne-
tization for localized and quasi-localized electrons in a
manganite with colossal magnetoresistance under EPR
conditions.

2. From the equations of dynamics pointed out
above, we have obtained, as particular cases, Haseg-
awa–Bloch-type equations, Bloch-type equations, and
expressions similar to those derived from the Bloch–
Vangsness–Redfield theory in which each kinetic coef-
ficient (relaxation rate) in front of a dynamical variable
is quantitatively connected with a certain interaction in
the spin system of a manganite. The equations obtained
reproduce many well-known theoretical results and
describe certain experimental data concerning the
transverse and longitudinal relaxation rates in mangan-
ites with colossal magnetoresistance.

3. The application of the approximation connected
with the method of moments to the correlation func-
tions of kinetic coefficients allows one to determine, by
the shape of EPR line, which of the spin–spin interac-
tions is dominant and to which of the two types of spins
the EPR line corresponds. On the other hand, the appli-
cation of the approximation of nearest neighbors to the
above correlation functions yields the well-known tem-
perature dependence of the EPR linewidth—the Huber
law—which also makes it possible to identify EPR
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lines with a certain type of spins in the spin system of a
manganite.

4. A tensorial character of relaxation in a system of
manganites with colossal magnetoresistance has been
revealed for the first time. Expressions have been
obtained for the so-called cross relaxation rates, and the
possibility of experimental observation of their effect
on the relaxation and the EPR linewidth has been
pointed out.

Finally, note that a more detailed investigation of the
spin system of manganites with colossal magnetoresis-
tance and the specification of the qualitative results
obtained in this paper, as well as obtaining new results
(for example, the dependence of the shape of the EPR
line on the direction of external magnetic fields, etc.),
require the use of information on the structure of a spe-
cific manganite with colossal magnetoresistance and on
the experimental conditions. The theoretical approach
developed makes it possible to investigate the dynamics
of the spin system of a manganite with colossal magne-
toresistance under conditions of ferromagnetic reso-
nance (in the range of temperatures and impurity con-
centrations where the material is in a ferromagnetic
state).
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APPENDIX

Here, we demonstrate the application of, say,
Eqs. (58). Let us introduce a system of coordinates that
rotates with angular frequency ω, restore the terms of
trivial dynamics associated with the RF field in
Eqs. (58), and, for simplicity, restrict ourselves to the
case, considered in Section 5, when the cross relaxation
terms vanish. Then, Eqs. (58) yield the classical Bloch
equations [32] with Tx and T y in place of T2 and Tz in
place of T1:

(A.1)

(A.2)

(A.3)
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Here, ∆ = ω – ωs, ωs is the Zeeman frequency of local-
ized spins, ω1 is the amplitude of the RF field,

(A.4)

(A.5)

(A.6)

(see (50) and (51)). Taking into account formulas (49),
the equality K(0) = M2, and the fact that µ @ 1 under
exchange narrowing, we can easily derive expressions
similar to (59) from (A.4)–(A.6). Choosing the con-
stants of crystalline-field and Dzialoshinsky–Moriya
interactions and calculating M2 and M4, we can obtain
relaxation rates for a specific material with colossal
magnetoresistance.

Note that, in contrast to the assumption about total
isotropy in the general remarks in Section 4, here Tx is
different from Ty and Tz. However, this difference is
insignificant and cannot spoil the general picture due to
the presence of the constant of superexchange interac-

tion  in the expression for M4.

Setting to zero the right-hand sides of expressions
(A.1)–(A.3), we can easily obtain steady-state values of

 and, hence, expressions for the shape of resonant
absorption and dispersion. In particular, for a steady-

state value of , we have

(A.7)

which is exactly the same as in [32], except that Tx and
Ty are replaced by T2 and Tz is replaced by T1 as above.
By analogy with [32], we can conclude from (A.3) that
the line of resonant absorption in the absence of appre-

ciable saturation ( TyTz ! 1) has a Lorentzian shape
with the half-width at half maximum equal to (Ty)−1

from (A.4). Moreover, closer to the line center, where
∆ ≈ 0, the linewidth is determined solely by (Ty)–1, i.e.,
by expression (60), in which the moments M2 and M4
are associated with the Dzialoshinsky–Moriya interac-
tion without any contribution from the crystalline-field
interaction; as pointed out above, this is inessential due

to the contribution of the interaction  to M4.
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Finally, note that, substituting the second and fourth
moments, say, from [9], to the expressions for Tx, Ty,
and Tz by using (A5)–(A7), one can obtain a graphic
picture of the shape of the resonant absorption line [8].
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Abstract—A phase transition is discussed that can occur in a plasma with substantially different transverse and
longitudinal temperatures of electrons moving in a magnetic field, T⊥ /T|| @ 1. The Debye cloud surrounding an
ion sharply contracts as T|| decreases or the magnetic field increases. The effect of larger radiative electron–ion
recombination cross sections compared with their theoretical values is explained; this effect is observed in stor-
age rings with electron cooling systems (coolers). The role played by the phase transition in the crystallization
of ion beams is discussed. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Because of kinematic cooling of the accelerated
beam, the distribution of electrons in a cooler is strongly
compressed in the longitudinal direction [1–4]:

(1)

(2)

where

and v ⊥  and v || are the transverse and longitudinal elec-
tron velocities with respect to the magnetic field direc-
tion, respectively. Two electrons emitted from a cath-
ode heated to T0 ≈ 0.1 eV typically have initial longitu-

dinal velocities of v 0 ≈ , which differ by
∆v 0 ~ v 0. The difference in their energies does not
change when the electrons are accelerated. Therefore,
after gaining a speed v  and an energy E = mv 2/2, they
have longitudinal velocities differing by

Taking into account electron–electron interaction, we
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conclude that

(3)

in an accelerated electron beam [2–4]. Here, T⊥  and T||

are the transverse and longitudinal temperatures of
electrons moving in the magnetic field, respectively;

T1 = /E; and  = e2/  is the mean energy of Cou-

lomb repulsion between electrons in the beam (  =
n−1/3 is the mean distance between electrons when their
concentration is n). As an example, consider the exper-

iments on fully stripped uranium ions  (Z0 = 92)
reported in [5], with

(4)

Under these conditions,

i.e.,

(5)

In [5], the electron plasma was ideal with respect to
transverse motion (ξ⊥  = T⊥ /  ~ 104) and nonideal with
respect to longitudinal motion,

(6)

According to a theory taking into account both col-
lective and collisional processes [6–11], the electron–

T ⊥ T0, T || T1 U+∼∼

T0
2 U R

R

U
+Z0

n 106 cm 3– , T ⊥ 0.12 eV, E 160 keV,≈≈≈

T1 10 3–  K, U 0.15 K, H 1000 G.≈≈≈

T1 ! U , T || U 0.15 K, T ⊥ 1300 K;≈≈∼

T ⊥ /T || @ 1.

U

ξ|| T ||/U 1.∼=
 © 2005 Pleiades Publishing, Inc.
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electron equilibration time exceeds 1 µs for all coolers
currently in use. This time scale corresponds to a dis-
tance of more than 200 m traveled by an electron in the
laboratory frame. Since the length of a cooler is Lc ≈
3 m, distribution function (1) can be treated as invariant.

2. LINEAR SCREENING MODEL

The Fourier component of the charge density in the
Debye cloud surrounding an ion that is immobile in the
laboratory frame is [12–14]

(7)

where

(8)

is the longitudinal part of the plasma dielectric tensor
εαβ(k, ω),

is the plasma frequency;

is the Larmor frequency;

is the Larmor radius; and Js is a Bessel function, qα =
kα /k. The sum in (8) runs over all integer s in the inter-
val (−∞, ∞). It can be replaced by an integral as H 
0. (However, it is simpler to use the expression for ε at
H = 0 from the outset; e.g., see [15].) This gives

(9)

(10)

where
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and the z axis is directed along the magnetic field H. It
follows that the Debye cloud at H = 0 is an oblate spher-
oid with the semiaxes

Next, consider the case of a strong magnetic field
(subject to a condition given below), assuming that the
Debye length is small,

(11)

This assumption is confirmed by further calculations
and substantiated by physical considerations. As

(12)

the Bessel function can be approximated by the asymp-
totic expression

(13)

which is obtained by replacing a squared cosine with
mean value 1/2. Since the integrand in (8) is invariant
under the inversion

,

the singular factor can be replaced by its principal value

(14)

Equations (12)–(14) lead us to conclude that, if

(15)

then (8) is dominated by the term with s = 0:
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Expression (19) can be used to determine the longitudi-
nal and transverse Debye lengths:

(20)

It follows from (20) that (15) is equivalent to the condi-
tion

(21)

However, if

, (22)

then the sum over s in (8) can be replaced by an integral,
which corresponds to the limit ωH  0 (H  0). It
is therefore clear that (9) and (10) are valid under con-
dition (22), rather than the seemingly obvious condition

 @ R⊥ , which pertains to case (5).

It follows from (20) that the initial assumption
[Eq. (11)] holds under the condition

(23)

combined with (21). The latter inequality sets a limit
for magnetic field magnitudes at which (20) is valid.
We always have then

(24)

Now, consider the case of an extremely strong mag-

l⊥ l|| rD∼ ∼ 1
q0
----- R||

2rH( )1/3
.∼=

rH ! R||
∆⊥

∆||
------.

rH @ R⊥
∆⊥

∆||
------

rH

R|| ! rH,

R|| ! rD ! rH.

z

y

R

Y

x

rC

zC

sC

ρC

ϕC ϕC

Fig. 1. Electron ring coordinates relative to the ion located
at the origin: rC is the radius vector of the ring center; jC
and sC are the unit vectors, sC || rC, jC ⊥  sC.
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netic field defined by the condition

, (25)

also called the case of magnetized electron gas [2, 3]. In
this limit, we can set the Larmor radius to zero, i.e.,
consider electrons that move only along magnetic field
lines like small beads threaded on stretched strings.
Their motion is characterized by the temperature T||.
If (25) holds, then

(26)

and we have the spherically symmetric Debye cloud
described by (10) with R⊥  replaced by R||. Indeed, by
virtue of (25), estimate (12) can be rewritten as

and we therefore have k⊥ rH ! 1 in (8). This allows us to
discard the terms with s ≠ 0 and assume that

We finally obtain

(27)

which substantiates the above comments concerning (26).
Relation (25) is the condition of electron-gas mag-

netization with respect to collective interaction. It must
be distinguished from the magnetization condition with
respect to pair interactions,  ! , when an electron
colliding with an ion behaves as a bead that only moves
along a magnetic field line.

3. ELECTRON-RING SCREENING MODEL

Both starting equations (7) and (8) and all results
presented in the preceding section are obtained by
using the Maxwell equations and the linearized Vlasov
equation [12–15]. However, certain phenomena
observed in cooler plasmas require an analysis going
beyond the scope of a linear approximation.

It is clear from (5) that averaging can be performed
over the fast Larmor rotation of electrons. Every elec-
tron is then represented by a ring of radius rH with the
linear charge density e/2πrH . The potential energy of
the ring in the field of an ion is (see Fig. 1)

(28)

rH ! R||

l⊥ l|| rD R||,= = =

k ⊥ k ||
1
rD
-----  ! 

1
rH

-----,∼ ∼

J0 k ⊥ rH( ) 1.≈

ε k 0,( ) 1
1

k2R||
2

-----------, ∆ρ k( )+≈
eZ0

1 k2R||
2+

--------------------,–=

rH R

U rC( )

Z0e2

2πrH

------------
rH

R
----- 

  , R ! rHln–

Z0e2

rC
----------, rC @ rH,–









≈
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where R is the distance from the ion to the nearest point
on the ring. Expression (28) for R ! rH describes the
interaction of the ion with a rectilinear charged thread.

The ring executes a one-dimensional motion along
the z axis characterized by the temperature T||. The con-
centration of the ring centers is described by the Boltz-
mann distribution

(29)

If R ! rH , then we have

(30)

where

(31)

The combination of an exponential and a logarithm
in (29) and (28), respectively, and the power law in (30)
suggest the possibility of a phase transition that is
mathematically (but not physically) analogous to the
Berezinskii–Kosterlitz–Thouless transition [16, 17].
Prior to considering this effect, we must substantiate
the electron-ring model. This can be done by showing
that, in the linear approximation, when

(32)

the ring model yields the results of the linear theory
developed in the preceding section. Qualitatively, this is
clear from the following estimates. The rings are
grouped around an ion: their centers are separated from
the ion by a distance of about rH; the nearest ring
boundaries, by distances R ! rH . Thus, the ion is sur-
rounded by a Debye cloud of size rD ! rH . According
to (32) and (28),

The fraction of the ring charge contained in the Debye
sphere is estimated as rD/rH . The ring centers are
grouped in the annulus between coaxial cylinders of
radii,

.

Its thickness in the z direction is estimated as rD, and its

nC rC( ) n
U rC( )

T ||
---------------– 

  .exp=

nC rC( ) n
rH

R
----- 

 
γ

,=

γ
Z0e2

πrHT ||
--------------.=

nC rC( ) n ∆nC rC( ),+≈

∆nC rC( )
nU rC( )

T ||
------------------,–=

∆nC

Z0e2n
rHT ||

--------------.∼

ρ1 rH, ρ2 rH rD+≈≈
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volume is

The number of excess electrons in the Debye cloud is

(33)

Substituting this into the screening condition

(34)

yields (20).
When a ring is translated, the shift vectors of all its

points are equal. The ring charge density at an arbitrary
point r therefore depends only on r – rC:

The excess charge density created by all rings at a point
r is

(35)

Here, ∆nC(rC) is given by (32), and the potential energy
of the ring is

(36)

where φ(r) is the total electric potential at point r. Using
the Poisson equation

,

we obtain

(37)

It follows from (35), (36), and (32) that

(38)

For a ring in the xy plane (see Fig. 2), we have

where s = r/ρ. Therefore, the form factor of the ring

VC rHrD
2

.∼

∆Ne VC∆nC

rD

rH

----- 
  .∼

∆Ne Z0=

ρ0 r rC,( ) ρ0 r rC–( ).=

∆ρ r( ) ∆nC rC( )ρ0 r rC–( )d3rC.∫=
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∆φ r( ) 4πZ0eδ r( ) 4π∆ρ r( )––=

k2φ k( ) 4πZ0e 4π∆ρ k( ).+=

∆ρ k( ) ∆nC k( )ρ0 k( )=

=  
nρ0 k( )U k( )

T ||
------------------------------–

n ρ0 k( ) 2φ k( )
T ||

----------------------------------.–=

ρ0 r( ) e
φd

2π
------δ r rHs–( ),

0
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charge is

(39)

Averaging over distribution (1) and oscillations of a
squared cosine for k⊥ rH @ 1 (compare Section 2), we
obtain (18) from (39), (38), and (37). Thus, the elec-
tron-ring model is applicable when the Larmor radius
satisfies (23) and (21). (Under condition (25) of electron-
gas magnetization, the applicability of the ring model
follows from the discussion at the end of Section 2.) The
physical reason for the validity of the ring model is
clear from (5): according to (28), the characteristic ion–
ring interaction energy is low as compared to the
kinetic energy of an electron:

4. PHASE TRANSITION

Recall a simple method for estimating the Debye
length rD in an equilibrium plasma at temperature T. A
linearized Boltzmann distribution yields an estimate for
the excess electron density:

Inside the Debye cloud,

(40)

at r ~ rD. By analogy with (33), we have

ρ0 k( ) d3r ik– r⋅( )ρ0 r( )exp∫=

=  e
φd

2π
------ ik srH⋅–( )exp

0

2π

∫– eJ0 k ⊥ rH( ).–=

T ⊥   @  U Z 0 e 
2 / r H . ∼

∆n n eφ/T( ).≈

φ φ0∼
Z0e

r
--------

Z0e
rD

--------,∼=

∆Ne ∆nrD
3 Z0ne2rD

2
/T .∼ ∼

            

z

y

x

s
ϕ

Fig. 2. Explanation of form factor calculations for the elec-
tron ring charge.
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Substituting this into (34), we obtain the usual formula

According to (40), we can use the energy of
unscreened ion–electron interaction instead of the true
potential energy U = –eφ of an electron to estimate the
Debye length. Similarly, we can use (30) in the ring
model to elucidate the nature of physical phenomena
outside the scope of the linear approximation consid-
ered in the preceding sections. For simplicity, let us first
assume that the Larmor radii are equal for all electrons:

(41)

The electron charge density in the vicinity of an ion is
(see Fig. 1)

(42)

For

, (43)

the rim of the ring can be approximated by a line.
Accordingly,

(44)

where sC = rC/

 

ρ

 

C

 

. Under condition (43), we can write
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). By virtue of axial
symmetry,

The integral in (42) can therefore be performed by
assuming that 
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⊥
 

, 0, 
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xz
 

plane):

(45)

This yields the limit expressions

(46)
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which can be unified into the following formula by
interpolation:

(47)

Here, z1 is the value of R at which the electron-ring
approximation fails. For an equilibrium Debye cloud,

. (48)

(It is shown below that Debye clouds in coolers cannot
reach complete equilibrium, and the actual longitudinal
cloud size z1 is therefore much larger than RT .) The
charge of the Debye cloud can be calculated as

(49)

(50)

Here, l⊥  is the cross size of the cloud determined by the
equation given below.

It follows from (49) and (50) that there is a critical γ
value,

(51)

If

(52)

then the major contribution to the integral J is due to
large |z|. Physically, this means that the linear theory
developed in Section 2 is applicable when (52) is satis-
fied. If

(53)

then the major contribution to J is due to small |z|,

(54)

It follows that the Debye cloud contracts when the tem-
perature T|| decreases to

(55)

(see table). The Debye cloud also contracts at T|| =
const, when the magnetic field increases to HC and the

ρ r⊥ z,( ) en
r

------rH
γ z2 z1
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.–≈

z1 RT≈
Z0e2
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----------=
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γC 2.=

γ γC<
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Larmor radius therefore decreases to

Since the contraction of the Debye cloud changes the
correlation energy of electrons (e.g., see [18]), it can be
interpreted as a first-order phase transition analogous to
crystallization of a liquid. However, this conclusion is
valid only if (41) holds. In reality, rH varies from one
electron to another, and the phase transition spans a
temperature interval ∆t|| ~ TC, i.e., is rather similar to
liquid solidification into an amorphous state. Another
reason is explained as follows. The value of γ decreases
to γC = 2 as T|| approaches TC. As T|| decreases below TC,
the number of electrons in the cloud surrounding the
ion increases. As a result, the total charge Z of the ion
and cloud decreases, but the condition

holds. Therefore, the decrease in total charge follows
the law

Since a charge is screened in a plasma, the total charge
of the Debye cloud is equal in magnitude and opposite
in sign to the ion charge:

(56)

In an equilibrium ideal plasma at a temperature T, the
number of electrons contained in the Debye sphere is

where the parameter

rcr Z0e2/2πT ||.=
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πrHT ||
-------------- 2= =

Z Z0

T ||

TC
------ 

  .=

QD Z0e.–=

ND nrD
3 ξ3/2,≈ ≈

ξ T /U T R/e2
 @ 1= =

Debye cloud size at various temperatures T|| in intermediate
[conditions (21) and (23)] and high [condition (25)] mag-
netic fields

Radius rH
Cloud size 
denotation T|| > TC T|| < TC

(21), (23) l⊥

l|| RT

(25) l⊥ R|| rH

l|| R|| RT

R||
2rH( )

1/3
R||
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characterizes the degree of ideality of the plasma. The
small excess of electrons created in the Debye sphere
by the field of the ion makes the total charge of the
cloud equal to (56). For the nonequilibrium anisotropic
plasma considered here (see (5)), in the domain of lin-
ear behavior at T|| > TC, this follows from (18) and (27)
and the relation QD = ∆ρ(k = 0). At T|| < TC, the Debye
cloud consists of two parts: a bunch near the ion with
small longitudinal size (54) and charge

and an outer part with size rH and charge

When conditions (21) and (23) hold, the number of
electrons in the Debye cloud can be estimated as the

number of ring centers in the volume VC ≈ rH  intro-
duced in deriving (33):

(57)

Such a cloud is therefore a collective formation. It
quickly forms in the time τp ≈ 1/ωp ≈ 3 ns characteristic
of collective interactions.

Under condition (25) of electron-gas magnetization,

(58)

at T|| > TC. According to (6), the Debye cloud is a natu-
ral shell surrounding an ion and consisting of weakly
bound electron rings. The relative fluctuations of the
shape and size of this cloud are on the order of unity. At
T|| > TC, it forms in the time τp ≈ 1/ωp . The kinetics of
cloud formation at T|| > TC requires a detailed analysis,
which is outside the scope of the present study. A crude
estimate for the formation time is given in the next sec-
tion. When condition (25) holds, the phase transition
temperature is substantially different from (55). Indeed,
according to (49) and (50), the number of electrons in
the contracted cloud is

(59)

Combining this with the screening condition ND = Z0
(neutrality of the ion–shell system), we obtain

(60)

The phase transition discussed here occurs if condi-
tion (5) is satisfied, i.e., when the electron energy is
characterized by a highly anisotropic and nonequilib-
rium distribution. Probably, “the formation of a non-
equilibrium dissipative structure” would be a more
appropriate term for this transition.
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5. COMPARISON WITH EXPERIMENTS 
AND DISCUSSION

There is no direct experimental evidence of the effect
under consideration. Indirect support to its existence is
provided by the observation that the experimental rates
of radiative recombination of electrons with fully
stripped ions exceed their theoretical values [5, 19–21].
An increase in recombination is easy to explain by
assuming that a decrease in T|| or the ion velocity rela-
tive to an electron cloud whose temperature is T|| < TC
leads to an increase in electron density around the ion.
Estimates made by using (55) and (60) agree with the
observed energies of electron motion relative to ions at
which the recombination cross section begins to
increase. In particular, for uranium ions and a plasma
with parameters (4) and (5), it follows from (60) that
TC = 0.001 eV, which agrees with results obtained
in [5]. For fully stripped carbon ions at T⊥  = 0.008 eV
(obtained by adiabatic transverse expansion of an elec-
tron beam diverted into a low magnetic field region),
H = 400 G, and n = 107 cm–3, we find that TC = 5 ×
10−5 eV, in agreement with results obtained in [21]. Let
us discuss the possibility of explaining beam crystalli-
zation [22–26] by the phase transition].

In [22, 23], it was found that the proton momentum
spread in the NAP-M proton storage ring began to
decrease rapidly as the number of ions Ni in the ring
decreased to Ni ≈ 3 × 107. This corresponded to a
decrease in the proton temperatures τ|| and τ⊥  to the
lowest attainable value, τ|| ≈ τ⊥  ≈ T|| ≈ 10–4 eV [2]. The
Schottky noise level in the beam dropped simulta-
neously, manifesting the onset of correlation between
proton locations in the beam. For the number of protons
in the ring specified above and the ring length Cring =
65 m, the mean distance between protons is l|| ≈ 3 ×
10−4 cm, and the mean energy of their repulsion is  ≈
e2/l|| ≈ 5 K. These observations suggest that the protons
in the beam are lined up in an equally spaced arrange-
ment [24, 25]. A similar effect was observed in experi-
ments with heavy ions, such as uranium ions [26],
where it was found that the momentum spread narrowed
by two orders of magnitude as the number of ions in the
ring decreased to Ni ≈ 103, which corresponded to  ~

e2/l|| ~ 5 K at Cring = 108 m. The following possible
explanation of this effect was given in [27]. The time-
dependent ion temperatures τ|| and τ⊥  in a storage ring are
described by the approximate equations

(61)

where the transverse heating of ions in the beam due to
machine resonances [2] is represented by q; λ is the rate

U

U

Z0
2

dτ⊥

dt
-------- q λ τ ⊥ τ ||–( )– λCτ⊥ ,–=

dτ||

dt
------- q λ τ ⊥ τ ||–( )– λCτ||,–=
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constant for the transverse–longitudinal relaxation of
ions through the so-called in-beam ion–ion scattering,
which results in energy exchange between transverse
and longitudinal ion motions; and λC is the rate constant
for electron cooling of ions. (For simplicity, it is
assumed in (61) that the values of λC for transverse and
longitudinal motions are equal). Under steady beam
conditions, Eq. (61) reduces to

(62)

(63)

where

(64)

Here, we use the fact that, typically, λ ! λC and there-
fore τ|| ! τ⊥ ; more precisely (see [28]),

(65)

If τ|| ! τ⊥ , then λC can be treated as independent of τ||.
This approximation is, however, inapplicable to λ:
according to calculations [29], the in-beam scattering
constant λ reaches a maximum at τ|| ≈ 1 K. The physical
nature of this maximum is explained as follows. At τ|| @
1 K, the beam is a gas of freely moving ions, and their
transverse–longitudinal relaxation is controlled by their
interactions at scattering distances estimated as

(following [29], we consider the case when τ|| ≈ τ⊥  ≡ τ).
Since RTi decreases as τ increases, λ also decreases (as
τ1/2). At τ < 1 K, the ions line up into a stable one-
dimensional chain. The amplitude of their longitudinal
oscillation scales with τ1/2 as τ grows, and λ increases
accordingly. Therefore, the function λ(τ) has a maxi-
mum (Fig. 3). As τ  0, the transverse–longitudinal
relaxation due to accidental (e.g., magnetic field) inho-
mogeneities becomes essential, and the right-hand side
of (62) tends to a nonzero constant (see Fig. 3). The dis-
tance l|| between ions in the storage ring increases as
their number Ni decreases. Therefore, λ = λ(τ, l||) also
decreases. Thus, Eq. (62) has three roots τ|| ≡ τ if Ni >
NC (τ1 < τ2 < τ3) and only one root if Ni < NC. The root
τ2 corresponds to an unstable solution to (61): if the ini-
tial ion temperature τ0 lies in the interval τ1 < τ0 < τ2,
then cooling is faster than the heating via in-beam scat-
tering, and therefore τ  τ1 with time elapsed. Simi-
larly, if τ2 < τ0 < τ3, then τ  τ3. When Ni = NC, the
beam state bifurcates: the ion temperature drops from

τ|| Λq,=

τ||
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λC
------,≈=

Λ λ
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2
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τ3 (which coincides with τ2) to τ1, in agreement with
experiment. In reality [see Eq. (65)], λ begins to
decrease with increasing τ|| only at τ|| > τ⊥  ≈ 2000 K;
that is, the temperatures τ2 and τ3 are two to three orders
of magnitude higher than τ1. Therefore, the validity of
the bifurcation mechanism proposed in [27] should be
proved by additional calculations.

Let us now analyze another mechanism of beam
crystallization that can be inferred from (62) and (64):
a sharp increase in λC due to the phase transition con-
sidered in here (this possibility was brought to my
attention by A.O. Sidorin). When an ion enters a cooler,
an electron cloud (coat) immediately forms around it
(see estimates below), with an electron binding energy
ε ≈ (2–3)T||. An ion leaving the cooler passes through
the region of transverse magnetic field H1 ≈ 50 G used
to divert the electron beam into a collector. In the ion
rest frame, this field acts as the electric field E = H1v /c,
where v  is the ion velocity in the laboratory frame. The
potential difference across the coat (~rH) is sufficiently
large (eErH ~ 30 eV @ ε) to strip the ion as it leaves the
cooler. (This process is sometimes called Lorentz ion-
ization, because it is the difference between the accel-
erations gained by the electrons and the ion under the
Lorentz force acting in the laboratory frame, due to the
difference in their respective e/m, that destroys the
coat.) Thus, every ion that enters the cooler captures Z0
electrons and carries them along as it passes through the
cooler. All electrons contained in a in-beam cylindrical
region of length l ~ Z0/nS are captured by each ion,
where S is the beam cross section. If

, (66)

then the number of available electrons is not sufficient
for all ion to be coated. Conversely, if Ni > , then all
ions are coated. If the frictional force exerted by elec-

Ni NC'>
Cring

l
----------=

NC'

f(τ)

τ1 τ2 τ3 τ

1

2

3

Fig. 3. Graphic solution of (62) at τ|| = τ⊥  = τ: (1) f(τ) = τ
(left-hand side of (62)): (2, 3) f(τ) = Λq (right-hand side
of (62)) at Ni > NC and Ni < NC, respectively.
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trons on the ion (calculated below) increases, then so
does λC. In a pioneering experiment with protons [22],
the proton energy was EI = 65 MeV and the remaining
parameters were n = 2.4 × 108 cm–3, S ≈ 0.8 × 10–4 cm2,
and Z0 = 1. Therefore, l ≈ 0.5 × 10–4 cm, and (66) yields

 ≈ 10 × 107. In the experiment reported in [26], Ei =
400 MeV/nucleon, n = 2 × 106 cm–3, S ≈ 0.5 × 10–5 cm2,
and Z0 = 92; therefore, l ≈ 10 cm and  ≈ 103. These
estimates agree with the measured critical numbers of
ions given above,  ~ NC, suggesting that beam crys-
tallization can be attributed to the formation of ion
coats.

To show that the coats do form, let us estimate the
probability for an electron ring to be captured into a
bound state by an ion under condition (25). The energy
of ions in the electron-cloud rest frame is on the order
of T||; they can therefore be treated as immobile.
According to (28), the energy of ion–ring interaction in
a typical collision with an impact parameter on the
order of rH is

(67)

As the ring enters the region |z| < rH , it accelerates and
therefore emits plasmons via the bremsstrahlung effect.
Then, the ring is decelerated by the arising frictional
force F, losing its total energy until it ends up in a bound
state. Estimates show that this is the most effective
mechanism of capturing. The ring is treated as a point
charge q = –e moving along a trajectory r = rC(t).
According to [12–14],

(68)

As noted at the end of Section 2, we can ignore the
terms with s ≠ 0 in (8) and assume that k⊥ rH ! 1 if con-
dition (25) holds. For estimation purposes, it is suffi-
cient to consider the cold-plasma limit T||  0 (which
should be taken after calculating the integral with
respect to dv || in (8) by parts):

(69)

where ω(k) = ωp|kz|/k is the dispersion relation for
Langmuir waves in a magnetized electron cloud.
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Using (68), we find the longitudinal momentum lost
by the ring through emission of plasmons:

(70)

According to (67),

(71)

where V ≈ ∆|| is the longitudinal ring velocity in the
region of its interaction with an ion and τ = rH/V . In
expression (70) use is made of the fact that, by virtue
of (25),

(72)

Combining Eqs. (70) and (71), we obtain the estimate

(73)

where the divergence at large k arises as the ring is
replaced by a point particle; in reality, k < kmax ≈ 1/rH.
Furthermore, since RT is small, the most probable pro-
cess is the ring–ion recombination into a state with ε ≈
T|| and

(74)

followed, with a probability of about 1/2, either by lib-
eration of the ring or its relaxation into a strongly bound
state with

Estimates show that, since RT/rH is small, the ion resi-
dence time in the cooler is not sufficient for complete
relaxation. Therefore, if T|| < TC and condition (25)
holds, then the dimensions of the electron cloud are
given by (74) rather than the tabulated values. Combin-
ing (73) with (6), we obtain

which implies that the probability for a ring to be cap-
tured by an ion in a collision with an impact parameter
on the order of rH is

(75)

∆p tF t( )d
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∞

∫ 2π( ) 2– ωp
2

–= =
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3
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An ion captures one ring from a cylindrical region of
length estimated as

(76)

The fact that this length is small quantitatively substan-
tiates the above-described qualitative model of coat for-
mation around an ion.

Since the increase in λC necessary for beam crystal-
lization requires a frictional force that increases in the
course of coat formation, let us estimate the frictional
force F that acts on an ion. This can be done by the sim-
ple method illustrated here by estimating F for an equi-
librium plasma at a temperature T and H = 0 (the corre-
sponding F value was rigorously calculated, e.g.,
in [12]). An estimate can be obtained by retaining only
the collective term in F (68) [2, 3] and ignoring the con-
tribution due to pair interactions [30]. If V = 0, then the
Debye cloud is spherically symmetric and the mean
force acting on an ion is zero. If

,

then the Debye cloud is centered at a distance x ≈ rDV/∆
behind the ion. Therefore, a nonzero electric field ED is
generated by the Debye cloud at the ion, location, and
the ion is decelerated by the force

(77)

If V > ∆, then the ion is at the periphery of a cloud of
size

(78)

because the response of electrons to the field of the ion
is delayed by τp ≈ 1/ωp and the corresponding distance
traveled by the ion is L. Hence,

If conditions (21), (23), and T|| > TC are met, then, by
virtue of (57), the electron density in the Debye cloud
is comparable to n, and the rearrangement of charge-
rings that move along axis z with velocities on the order
of ∆|| takes a time τp ≈ rD/∆||. Therefore, the cloud moves
at a distance x ≈ Vτp ≈ rDV/ωp behind the ion (for sim-
plicity, it is assumed hereinafter that the ion moves
along H). By analogy with (77), if V < ∆||, then

(79)

1

nrH
2
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When V ~ ∆||, the ion is at the periphery of an approxi-
mately spherical Debye cloud, and the frictional force
reaches a maximum,

(80)

If

where

then the charge moves faster than the rings, and the
rearrangement of ring positions takes a time on the
order of 1/ωp. For this reason, R|| = ∆||/ωp should be
replaced by L = V/ωp in (80), by analogy with (78). This
yields

(81)

(Note that result can be derived from rigorous equa-
tions (68) and (8).) In this case, the Debye cloud is
approximately spherical, its radius is

and the ion is at its periphery. For

we have

Finally, if V > V0, then Larmor orbits can be treated as
point charges moving along H. The major contribution
to the frictional force is then due to the pole in (68) (i.e.,
to ω = k · V at which ε(k, ω) = 0, which corresponds to
emission of Cherenkov plasmons by the ion [31],

Of all velocity intervals considered above, the case
of V ! ∆|| is of primary interest for practice. According
to the table, a spherical Debye cloud of radius on the
order of rD transforms into a thin disk having the same
cross radius at T|| < TC. The electric field at the disk
boundary is 2 to 3 times stronger than on the boundary
of the sphere that has transformed into the disk. Being
attracted by the ion, electron rings move chaotically
inside the disk with velocity ∆ higher than ∆||,

F
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e

2
rHR||

2( ) 2/3–
.≈ ≈

∆|| V V0,< <

V0 ∆||rH/R||,=

F Z0
2
e2 rHR||

2( ) 2/3– ∆||

V
----- 

 
4/3

.≈

rD' rHL2( )1/3
,≈

V V0, rD' rH,≈≈

F
Z0

2
e2

rD'
2

-----------
nz0

2e4

mV0
2

------------.≈ ≈

F
2πnZ0

2e4

mV2
---------------------.≈

∆ 2–3( )∆||.≈
SICS      Vol. 100      No. 2      2005



420 MEN’SHIKOV
Substituting it into (79) instead of ∆||, we find that the
frictional force does not change substantially as a result
of the phase transition if conditions (21), (23) are met.

Now, consider the case when (25) holds, as in the
beam crystallization experiments considered here.
According to (75), for T|| < TC and a fully developed
coat, the frictional force is

(82)

Expression (82) reflects the transfer of a momentum on
the order of m∆|| from every captured electron ring to
the ion and the dynamic equilibrium between the num-
ber of rings captured by an ion per unit time and the
number of rings lost in collisions with electrons.
According to (25) and (26), the frictional force at T|| >
TC can be estimated as follows:

In view of (55), this result coincides with (82).
It follows that, both in the case when (21) and (23)

and under condition (25), the frictional force does not
change substantially in the phase transition. Thus, ion
beam crystallization can currently be explained only
within the framework of the bifurcation model [27].

6. CONCLUSIONS

The phase transition discussed in this paper explains
why the radiative electron–ion recombination cross
sections observed experimentally [5, 19–21] exceed
their calculated values. According to the estimates
given above, this transition is not related to ion beam
crystallization [22–26]. Indeed, the formation of a
small electron cloud around an ion can not cause a
sharp increase in the frictional force that acts on the ion.

A key role in the phase transition under consider-
ation is played by the sharp anisotropy of electron dis-
tributions in coolers characterized by condition (5). As
the magnetic field strength H increases, this anisotropy
changes the character of ion–electron interaction.
When H = 0, an electron interacts as a point particle,
whereas, it can be considered a ring of radius rH with a
uniformly distributed charge under condition (21). This
change leads to a phase transition as T|| decreases.
Mathematically (but not physically), the phase transi-
tion is analogous to the Berezinskii–Kosterlitz–Thou-
less transition [16, 17]. At T|| ≈ TC, the Debye cloud sur-
rounding an ion contracts as demonstrated in the table.
However, the actual ion residence time in a cooler is not
sufficiently long for the cloud to contract to the longitu-
dinal size RT . The actual size is substantially larger.
This also follows from the logarithmic dependence on
z1 obtained by substituting γ = 2 into (49) and (50)
when, as explained at the end of Section 4. Rigorous

F m∆||nrH
2 ∆||

V
∆||
----- 

 ≈ mnrH
2 ∆||V .=

F Z0
2e2R||

2– V /∆||( ).≈
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longitudinal size calculations can be performed by
solving the Bogolyubov–Born–Green–Kirkwood–
Yvon chain of equations [34, 35]. These calculations
can also be used to determine the type of phase transi-
tion. According to the argumentation at the end of Sec-
tion 4, it should be a second-order phase transition.
This, however, requires a separate study.

The phase transition is totally unrelated to nonideal-
ity of the initial plasma. In particular, for a plasma mag-
netized with respect to pair collisions,

(83)

the relation

(84)

follows from phase transition condition (55). There-
fore, if (83) holds, then the phase transition can occur
only in a plasma that is ideal with respect to longitudi-
nal motion (84). (A fortiori, by virtue of inequality (5),
this plasma is ideal with respect to transverse motion.)
Note also the essential difference between the phase
transition in question and the nonlinear Debye screen-
ing studied in [32, 33].
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Abstract—We study pyroelectric and electromechanical effects in the prototype antiferroelectric liquid crystal
4-(1-methylheptyloxycarbonyl-phenyl)4'-octylbiphenil-4-carboxylate (MHPOBC). The linear electromechan-
ical effect in the freely suspended liquid crystal films of MHPOBC has been detected in the broad temperature
range inclusive of the antiferroelectric  as well as paraelectric SmA. The anomalous behavior of the

hysteresis loop of  in the (pyroelectric coefficient, dc bias electric voltage) coordinates has been found.
© 2005 Pleiades Publishing, Inc. 

SmCA*

SmCβ*
1. INTRODUCTION

Antiferroelectricity of a liquid crystal was first dis-
covered in 4-(1-methylheptyloxycarbonyl-phenyl)4'-
octylbiphenil-4-carboxylate (MHPOBC) [1, 2]. This
material has three chiral smectic subphases ( ,

, and ) between paraelectric SmA and

antiferroelectric . The arrangements of the mol-
ecules in these phases are shown in Fig. 1. Different
experimental techniques, such as resonant X-ray scat-
tering [4], dielectric spectroscopy [5, 6], optical rota-
tion [7], conoscopic observation [8], ellipsometry on
freely suspended films [9], differential scanning calo-
rimetry [10], and electric current and optical transmit-
tance responses [1, 11] have been used to identify and
characterize the structure of these phases.

In chiral mesophases, a spontaneous polarization
arises as a secondary order parameter due to a molecu-
lar tilt with respect to the smectic layer normal; the Ps

vector lies in the tilt plane, reflecting the polar proper-
ties of a liquid crystal [12]. Chirality plays a crucial role
for the emergence of polarization in the direction of the
tilt plane normal. In smectic phases, where rod-like
molecules are organized into fluid stacks of planar lay-
ers, weak chiral twisting forces induce a helical order
with the helical axis parallel to the layer normal.

The resulting helical pitch is in the optical wave-
length range. If the pitch is large, it is easy to unwind
the helix by application of a weak strain, for example,
imposed by a mechanical shear or by a weak applied

SmCα*

SmCβ* SmCγ*

SmCA*

¶ This article was submitted by authors in English.
1063-7761/05/10002- $26.000422
electric field. Then the sample has a ferroelectric
response under moderate applied electric and mechan-
ical fields.

In this paper, the polar properties of chiral smectic
subphases of the classic antiferroelectric liquid crystal
MHPOBC are investigated by recording its pyroelectric
coefficient and studying the vibration of freely sus-
pended films induced by alternating electric voltage
(the so-called linear electromechanical effect) [13]. The
pyroelectric activity of the “unwound” chiral liquid
crystal confirms the polar structure of mesophases,
whereas the thermal behavior of the linear electrome-
chanical response reveals specific features related
to phase transitions of smectic subphases and their
structure.

2. EXPERIMENTAL

2.1. Pyroelectric Set-Up and Cell 

To study the antiferroelectric and ferrielectric
behavior of our material, we used a pulse pyroelectric
setup shown in Fig. 2 [14]. A 100 µs pulse of a Nd3+

YAG laser was used to provide a small local tempera-
ture change in the sample. Laser radiation (λ =
1.06 µm) was partly absorbed in indium-tin-oxide
(ITO) layers. The pyroelectric response was measured
as a pulse voltage across the load resistor RL = 100 kΩ
with a wideband amplifier and a storage oscilloscope. A
dc field of various strengths was applied to the sample
in order to measure hysteresis loops in the coordinates
(pyroelectric response, dc bias voltage).

The temperature dependence of the spontaneous
polarization (on an arbitrary scale) was calculated by
 © 2005 Pleiades Publishing, Inc.
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SmA SmC* SmCγ
* SmCβ

* SmCA
*

Fig. 1. Model structures of the paraelectric SmA, ferroelectric SmC*, ferrielectric , , and antiferroelectric 

phases. The unit cells are marked by frames. In  (not shown in the picture), the superlattice incommensurate period (corre-

sponding to the helical pitch) ranges between 5 and 8 smectic layers [3].

SmCγ* SmCβ* SmCA*

SmCα*
integrating the pyroelectric coefficient γ in accordance
with the expression [14]

(1)

where Ti is the temperature of the transition to the
paraelectric phase. Then the correct scale for γ and Ps

was introduced by comparison of the pyroelectric
response at a certain temperature with the value mea-
sured for a well-known ferroelectric liquid crystal.
Strictly speaking, Eq. (1) is valid only for the field-off
regime. When an external dc field is applied to prepare
a ferroelectric monodomain or an “unwound” antiferro-
electric (or ferrielectric), the actually measured quan-
tity is the total polarization P = Ps + Pi , where Pi is the
field-induced contribution, for example, observed in the
isotropic phase. Because Pi is much smaller than Ps , we
can use Eq. (1) for the measurements of Ps in the
“unwound” antiferroelectric phase.

The shape of the hysteresis loop is one of the major
criteria to refer the nonlinear dielectrics to ferro-, ferri-,
or antiferroelectric types. Hysteresis loops are usually
represented in coordinates of the electric displacement
against the external electric field. But it is possible to
demonstrate that the representation of hysteresis loops
in the coordinates given by the pyroelectric coefficient
vs the external electric field differs only quantitatively.

Ps T( ) γ T( ) T ,d

Ti

T

∫=
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Indeed, using the definition of the volume polarization
Ps = (Nµ/V)〈cosϕ〉  and the pyroelectric coefficient

where N is the number of dipoles of moment µ within
the volume V and 〈cosϕ〉  is the average value of the
cosine of the angle between the dipole direction and the
net polarization direction, we can deduce that the ratio
Ps/γ is constant at a given temperature.

γ dµ
dT
------ N

V
---- ϕcos〈 〉 ,=

Fig. 2. Pulse pyroelectric set-up: 1—liquid crystal cell,
2—amplifier, 3—time-delay line, 4—oscilloscope, 5—pho-
tomultiplier to control the form of the laser pulse, 6—pho-
tomultiplier to start-up the line scanning, 7—load resistor
(100 kΩ), 8—YAG laser.
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Fig. 3. Schematic representation of a smectic liquid crystal
freely suspended film: 1—frame, 2—meniscus, 3—uniform
part of the freely suspended film. The insets illustrate a
mechanism responsible for the development of a viscous
stress σxy in both ferroelectric and paraelectric phases. ϕlc(t)
and θlc(t) are the respective variable azimuthal and zenithal
angles. V is the liquid crystal velocity field, inhomogeneous
along the z axis, P is the spontaneous polarization. Roman
numerals I and II correspond to the respective positions of
liquid crystal molecules for the positive and negative elec-
tric field.
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Fig. 4. Experimental set-up for the study of the linear elec-
tromechanical effect in freely suspended films. 1—ferro-
electric freely suspended liquid crystal film (MHPOBC),
2—two Au electrodes, 3—He–Ne laser (s-polarization),
4—two polarizers, 5—slit diaphragm, 6—photodiode,
7—lock-in amplifier, 8—audio frequency generator, 9—two
glasses placed near the film surfaces to prevent the influence
draughts, 10—polarization microscope.
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2.2. Linear Electromechanical Effect 
in Ferroelectric Freely Suspended Film 

Unlike in the standard case of a liquid crystal sample
in a confined geometry, the surface of a freely sus-
pended liquid crystal film can easily be deformed under
the action of weak acoustic or electric fields [15, 16].
Such a film is considered a perfect membrane, whose
vibrational motion depends only on the film geometry,
the isotropic surface tension σ, and the homogeneous
two-dimensional density ρs (including the inertia of the
air moving with the film) [17]. For excitation of the
transverse film vibrations, a linear coupling of the lat-
eral electric field to the spontaneous polarization of a
ferroelectric liquid crystal has been exploited [13]. In
the experiment, the azimuthal motion of the liquid crys-
tal director is accompanied by the so-called back-flow,
which induces viscous stress acting on the film surface
as shown in Fig. 3. This mechanism assumes a velocity
gradient along the normal to the film surface, which
implies the presence of an internal structure in freely
suspended films. The resulting film deformation
strongly depends on the surface viscosity of the liquid
crystal and also on the value and sign of spontaneous
polarization. This combination of properties makes the
measurements of freely suspended film oscillations a
useful tool for studying the spontaneous polarization
phenomenon in liquid crystals [13].

The periodical displacement of the film surface
results in deflection of the probing beam of a low-
power He–Ne laser (Fig. 4). By passing the beam
through an iris diaphragm, the deflection of the beam is
converted into an amplitude modulation of the laser
intensity, detected by a photodiode. The photodiode
response current is analyzed by a lock-in amplifier
tuned to the first harmonic of the control voltage.
Microscope observations were carried out by inserting
the sample holder on the turntable of the polarization
microscope.

2.3. Materials and Samples 

The antiferroelectric liquid crystal used in our
experiment is S-MHPOBC with a moderate spontane-
ous polarization (about 70 nC/cm2 at 112°C) and the
following sequence of phase transitions:

For pyroelectric measurements, the liquid crystal
was introduced in a flat capillary cell made up of ITO-
covered, nontreated glass plates with 10-µm thick
Teflon spacers. ITO surfaces were cleaned with acetone
and used without any orienting layers. The cell with the
area between electrodes A = 5 × 5 mm2 was filled with
the liquid crystal in the isotropic phase. Cells were
placed in a thermal jacket with optical windows.

Iso– 149.8°C( )–SmA– 122°C( )–SmCα*– 120.9°C( )

–SmCβ*– 119.2°C( )–SmCγ*– 118.4°C( )–SmCA*.
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The electromechanical effect was studied in freely
suspended films fabricated by the standard procedure
described in [18]. The experiment was performed with
a glass frame of fixed geometry (a rectangular slit with
an area of 2 × 10 mm2 and a thickness of 1 mm). A
frame with a spanned film of MHPOBC was mounted
in a heating stage and the film could be stabilized at a
given temperature to ±0.3°C.

3. RESULTS AND DISCUSSIONS

Figure 5 presents the results of the measurements of
the pyroelectric coefficient γ and spontaneous polariza-
tion Ps as functions of the temperature obtained in the
cooling process. In Fig. 5, from an analysis of the pyro-
electric curve, we can clearly distinguish three ferri-
electric phases ( , , and ) from

SmA and . According to this plot, the pyroelec-
tric signal is detectable not only in polar ferrielectric
phases but also in antiferroelectric . The pyro-
electric signal in these phases appears to be due to a dis-
tortion of the helical structure induced by the external
electric field. The maximum of the pyroelectric effect
occurs in ferrielectric  (which some authors
identified as SmC* [19]) at T = 120.3°C. It is interest-
ing to note that the temperature dependence of the real
part of the dielectric constant of MHPOBC peaked at
the same temperature [20]. A similar behavior has also
been detected in other antiferroelectric systems [21].

The polarization shown in Fig. 5 is obtained by inte-
grating the pyroelectric coefficient over temperature,
starting from the temperature T0 = 126°C, about 4°C
above the transition from paraelectric SmA to ferrielec-
tric : a small pyroelectric signal induced by the
field in SmA (about 0.04 nC/(cm2 K)) was subtracted as
a background value. The maximum value of polariza-
tion in  of 60 nC/cm2 is comparable with that
obtained by the repolarization current technique [22].

The bias dependence of the sum of the induced and
spontaneous pyroelectric coefficients measured at T =
120°C in  is shown in Fig. 6. This plot drasti-
cally differs from the standard hysteresis loop of solid
ferroelectrics [23]. First of all, the hysteresis loop
shrinks to a thin line, which is typical of ferroelectric
liquid crystal materials, where dipoles are ordered in a
helical fashion [24]. Second, the nonmonotonic behav-
ior of the pyroelectric signal, shown in this plot, is not
common for solid and liquid ferroelectrics. The initial
linear growth corresponding to the helix distortion is
followed by the decrease of the pyroelectric response at
elevated bias field. A decrease in the pyroelectric
response with a further increase in the field can be a
consequence of two reasons. One of them is explained
in [21] as the effect of the competition between the
induced and spontaneous polarizations having the

SmCα* SmCβ* SmCγ*

SmCA*

SmCA*

SmCβ*

SmCα*

SmCA*

SmCβ*
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opposite signs of the pyroelectric coefficients. The
other cause can be connected with the electroclinic
effect, promoting a decrease in pyroelectric response
with increasing dc bias voltage [25].

Figure 7 demonstrates the temperature dependence
of the linear and quadratic electromechanical effects in
a relatively thick, about 800 nm, freely suspended film
made from MHPOBC. Such a thickness corresponds
approximately to two complete turns of the natural
smectic helix in long-pitch phases. According to these
plots, the linear and quadratic electromechanical effects
are present in all phases (with the exception of 
in the case of the linear electromechanical effect). The
linear effect is rather strong in , , and

(unexpectedly) . The temperature dependence of

SmCα*

SmCβ* SmCγ*

SmCA*

Fig. 5. The pyroelectric coefficient γ (open circles) and the
spontaneous polarization Ps (filled circles) of 10 µm-thick
cell measured as functions of temperature for the bias dc
voltage 10 V.
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Fig. 6. Hysteresis loop in the coordinates (pyroelectric coef-
ficient, bias dc voltage) for MHPOBC measured at the fixed

temperature T = 120°C corresponding to the  phase.
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Fig. 7. Temperature dependence of the vibration amplitude
in a freely suspended film in MHPOBC of the linear (filled
circles) and quadratic (open circles) electromechanical
effects. Quadratic amplitudes were multiplied by the factor
3.5. The cooling rate is 5°C/min with the temperature reso-
lution 0.3°C. The rectangular film size is 2 × 10 mm2 (a =
2 mm, b = 10 mm). The number of layers is N = 205. Sinu-
soidal voltage with the amplitude U = 115 V and frequency
ν = 2200 Hz was applied to electrodes. A photovoltage of
10 mV corresponds to displacement of the film surface by
800 nm.
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the quadratic electromechanical effect correlates
closely with the temperature dependence of the real
part of the dielectric permittivity [20]. This condition is
not random; it simply reflects the influence of the
dielectric torque, quadratic in the electric field, on the
shape of the film surface. Thus, the cause of the qua-
dratic effect in a freely suspended film is electrostric-
tion, whereas the dominant ferroelectric torque is
responsible for the linear effect in unwound ferroelec-
trics. In the general case of chiral smectics, one should
also take flexoelectric and “electroclinic” torques into
account. (We use “electroclinic” in quotation marks
because the electric field exerts no torque on the direc-
tor in the electroclinic action but influences only the
whole medium, shifting the direction of the equilibrium
in space [24].) Obviously, the linear electromechanical
effects, shown in Fig. 8, in antiferroelectric  and
paraelectric SmA are due to the influence of the sum of
the flexoelectric and “electroclinic” torques. The exter-
nal torques induce a “back-flow,” which is linearly cou-
pled with a mechanical stress tensor [26]. Accordingly,
the films vibrate with the fundamental and double fre-
quencies of the applied ac electric field.

As one can see in Fig. 7, the linear electromechani-
cal effect is absent in incommensurate tilted .
This phase has an extremely short helical period that
typically extends over ten smectic layers and, conse-
quently, requires large power expenses for its distur-
bance, which evidently could not be realized by rela-
tively weak lateral electric fields used in the experiment
(of the order 0.05 V/µm). The difficulty in generating
the linear effect is also favored by smallness of the
spontaneous polarization in , as one can see in
Fig. 5, and space averaging of the flexoelectric and
spontaneous polarization over the chiral structure.

4. CONCLUSIONS

By pyroelectric and electromechanical methods
sensitive to both the polar and non-central-symmetric
ordering of molecules in liquid crystalline media, we
investigated the prototype antiferroelectric liquid crys-
tal MHPOBC. Our observations confirm the polar
properties of MHPOBC in ferrielectric phases and in
the “unwound” antiferroelectric state. We also found
that MHPOBC manifests a linear electromechanical
effect in unipolar non-central-symmetric SmA and

. This phenomenon can be interpreted as the
effect of electroclinic and flexoelectric torques. In addi-
tion, we did not succeed in observing the linear electro-
mechanical effect in noncommensurate , which
is seemingly connected with its nanoscale orientational
order.

SmCA*

SmCα*

SmCα*

SmCA*

SmCα*
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Abstract—We study the resonance properties of an ionized spherical cluster that interacts with an optical radi-
ation field in terms of linear hot-plasma polarizability models. Based on a generalization that includes spatial
dispersion in the well-known Mie problem of the diffraction of a plane wave by a small-size plasma sphere, we
calculate the eigenfrequencies, the radiative and collisional damping constants, and the resonance amplitudes
of the cluster surface and bulk plasmon fields. The role of collisionless dissipation processes is analyzed in
terms of a one-dimensional kinetic model. The latter allows the corresponding damping constants for both types
of plasmons to be determined as functions of the characteristic electron–plasma boundary collision frequency.
We show that both types of plasmons in certain domains of cluster and external-radiation parameters can
undergo a strong resonance that causes both the amplitude of the scattered wave and the absorbed power and
the field inside the cluster to increase significantly. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

A number of new interesting effects observed during
the breakdown of atomic clusters by intense laser radia-
tion (anomalously strong absorption, the generation of
X-ray radiation and multiply charged ions [1–8]) are
probably related to resonance phenomena in a bounded
plasma [4–6, 8–11]. The theoretical studies of these
phenomena in a hot laser-cluster plasma have been
based so far mainly on the simplest model of the elec-
trostatic dipole resonance of a dielectric sphere (also
known as the geometrical, Mie, or surface-plasmon res-
onance) [4–6, 8, 12]. This model, which disregards the
collisionless and radiative damping of oscillations and
the possibility of the resonant excitation of bulk plas-
mons,1 is inadequate at low electron collision frequencies
or when the cluster radius a is not too small compared to
the wavelength of the electromagnetic wave λ0 (e.g., at
the ratios a/λ0 = 0.03–0.10 even at the initial cluster
breakdown stage in experiments [3, 10]). The shortcom-
ings of this model cannot be properly compensated for,
even based on the well-known results of the works in
which the bulk and surface plasmons of cold metal
clusters were studied (see, e.g., [15, 16] and references
therein), because the approaches used are inapplicable
to the hot plasma of an optical breakdown. In this paper,
we present the results of our analysis that demonstrates
the role of basic dissipation processes at the resonances
of both types in terms of a linear classical model that
includes the spatial dispersion due to the thermal
motion of cluster electrons and the radiative terms in
the relations defining the cluster polarization response.

1 The role of bulk and surface plasmons in forming the one-
dimensional nanostructure of an optical breakdown was studied
in [13, 14].
1063-7761/05/10002- $26.000428
However, this model, which is valid only in moderately
intense fields, predicts the conditions under which a
resonant growth of the field in plasma begins and where
the appearance of strong nonlinear effects might be pri-
marily expected.

Setting aside the problems of cluster ionization and
dynamics of the forming plasma, we will focus our
attention on analyzing the linear resonance parameters
(eigenfrequencies, damping constants, resonance
dipole moments, field amplitude, and absorbed power)
of an ionized spherical cluster with given radius and
plasma density. Based on the results of [17, 18] that
generalize the solution of the well-known Mie problem
[12, 19] of the diffraction of a plane wave by a homo-
geneous dielectric sphere by including spatial disper-
sion, we initially (Section 2) describe the complex
eigenfrequency spectrum for plasmons of different
types in the hydrodynamic approximation that disre-
gards the Landau damping. Subsequently, based on the
kinetic one-dimensional (capacitor) model described in
Section 3, whose resonance spectrum qualitatively cor-
responds to the complete dipole resonance spectrum of
the real three-dimensional object, we roughly estimate
the damping constants determined by collisionless
absorption, which can be interpreted here as the absorp-
tion due to the collisions of electrons with the plasma
boundaries. In Section 4, we use the Lorenz approxima-
tion of the resonance line shape, which describes the
response of any linear oscillator near the resonance for
small losses, to analyze the resonance properties of a
plasma sphere by taking into account all of the types of
losses considered in Sections 2 and 3. We determine the
domain of parameters (the sphere radius, the wave-
length of the electromagnetic wave, and the thermal
electron velocity) where the hitherto disregarded reso-
nances of bulk plasmons cause a larger growth of the
 © 2005 Pleiades Publishing, Inc.
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field and the absorbed power than does the Mie reso-
nance.

2. SURFACE 
AND BULK PLASMON RESONANCES: 
HYDRODYNAMIC APPROXIMATION

The solution of the Mie problem [12, 19] of the dif-
fraction of a plane electromagnetic wave by a dielectric
sphere was generalized in [17, 18] to the case where the
dielectric is a warm nondegenerate plasma, i.e., a
medium with spatial dispersion taken into account in
the hydrodynamic approximation.2 The electromag-
netic field in such a medium acquires an additional
degree of freedom related to the possibility of the exci-
tation of longitudinal waves (bulk plasmons), which
requires setting an additional boundary condition at the
plasma boundary. The continuity condition for the nor-
mal electric field component that corresponds to the
model of the mirror reflection of electrons at the bound-
ary was taken as a condition that complements the well-
known continuity conditions for the tangential electric
and magnetic field components. This generalization
was used in [18] to study (in the collisionless approxi-
mation) the multipole electric resonances of a small-
size plasma sphere related to the excitation of both sur-
face and bulk plasmons. Below, based on the results of
this work and including electron collisions, we analyze
the resonance properties of a sphere in the dipole
approximation by disregarding the excitation of high
electric multipoles and magnetic oscillations. Although
the former are capable of resonating in the same fre-
quency range as the dipole oscillations, they prove to be
less significant due to their stronger suppression by var-
ious internal dissipation mechanisms. The latter actu-
ally do not exhibit any resonance properties at all, since
their eigenfrequencies correspond to wavelengths
shorter than or on the order of the sphere radius and,
therefore, are comparable to the radiative damping con-
stants. The fields of the magnetic oscillations inside and
outside a plasma in the frequency range of interest are
negligible compared to the field found in the dipole
approximation.

In the dipole approximation, the solution to the
problem of the diffraction (scattering) of a plane elec-
tromagnetic wave

(1)

(k0 = ω/c, ex and ez are the unit vectors along the x and
z axes) by a homogeneous plasma sphere with radius a
centered at the coordinate origin can be expressed in

terms of the first-order vector spherical functions 

and  [19]. In a spherical r, ϑ , ϕ coordinate system
with the polar z axis and the azimuthal angle ϕ mea-

2 A similar problem for the cold degenerate plasma of a metal clus-
ter was considered in [20].

E0 exE0 ik0z iωt–( ), H0exp ez= = E0×

ne11
1 3,( )

le11
1( )
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sured in the xy plane from the x axis, we have for the
electric field of the scattered wave E(r) and the field
inside the sphere E(i)

(2)

(3)

(4)

(5)

(6)

Here, j1(ξ), n1(ξ), and (ξ) = j1(ξ) + in1(ξ) are the
first-order Bessel, Neumann, and Hankel spherical
functions, respectively; f(ϑ , ϕ) = sinϑ cosϕ; r is the

radius vector of the point; k = k0  and kp = k0 /βT

are the wavenumbers of the transverse and longitudinal

waves, respectively; ε = 1 – /[ω(ω + iν)] is the com-

plex permittivity of a cold plasma; ωp =  is
the plasma (Langmuir) frequency; e and m are the elec-
tron charge and mass, respectively; N is the electron
(plasma) density; ν is the effective collision frequency

between electrons and heavy particles; βT = VT/c;

VT =  is the thermal velocity; T is the electron
temperature; and kB is the Boltzmann constant. The
condition βT ! k0a, which is equivalent to the require-
ment that the Debye length rD = VT/ωp be small com-
pared to the sphere radius at frequencies ω ~ ωp , is
assumed to be satisfied. Outside the sphere (r > a), the
total field is the sum of the fields of the incident (1) and
scattered (2) waves; the field E(i) inside the sphere (r <
a) is a superposition of the vortex (transverse) field

Et ∝   and the potential (longitudinal) field Ep ∝  
defined by the equations

(7)

(8)

The continuity conditions for the field components
Hϕ , Eϑ , and Er at r = a lead to the following expressions

E r( ) 3E0

2
---------brne11

3( ) iωt–( ),exp=

E i( ) 3E0

2
--------- btne11

1( ) bple11
1( )+( ) iωt–( ),exp=

ne11
3( ) 1

k
--- ∇ ∇ rh1

1( ) k0r( ) f ϑ ϕ,( )×[ ] ,×=

ne11
1( ) 1

k
--- ∇ ∇ r j1 kr( ) f ϑ ϕ,( )×[ ] ,×=

le11
1( ) 1

k
--- ∇ j1 kpr( ) f ϑ ϕ,( )[ ] .=

h1
1( )

ε ε

ωp
2

4πe2N /m

3

kBT /m

ne11
1( ) le11

1( )

∇ Et⋅ 0, ∆Et k2Et+ 0,= =

Ep ∇ϕ p, ∆ϕ p kp
2ϕ p+– 0.= =
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for the coefficients br, bt, and bp:

(9)

where

(10)

the primes denote the derivatives with respect to the
arguments of the Bessel functions; the expression for G
can be derived from the expression for F by substituting
n1(k0a) for j1(k0a):

(11)

The coefficients bt and bp determine, respectively, the
amplitudes of the transverse and longitudinal fields in a
plasma, while the coefficient br determines the dipole
moment of the sphere,

, (12)

and the total dipole scattering cross section,

(13)

In the absence of collisions, the dipole resonance
frequency spectrum for the sphere is determined by the
condition

(14)

If this condition is satisfied, then the coefficient br, the
dipole moment, and the scattering cross section reach
their maximum absolute (resonance) values,

(15)

which are the same for all types of dipole resonances
and that do not depend on the radius a. For k0a ! 1, the
resonance condition can be approximately written as
the equation

(16)

that defines the resonance frequencies ωres of the whole
series of bulk plasmons and one surface plasmon. The
bulk plasmon resonances (i.e., the plasma resonances

br F
F iG+
----------------, bt–

j1 k0a( ) brh1
1( ) k0a( )+

ε j1 ka( )
--------------------------------------------------,= =

bp 2 ε 1–( )bt j1 ka( )
ka j1' kpa( )

----------------------------------------,=

F 1 ε–( ) j1 kpa( ) j1 ka( ) j1 k0a( )=
kpa
2

-------- j1' kpa( )+

× ε j1 ka( ) k0a j1 k0a( )[ ] ' j1 k0a( ) ka j1 ka( )[ ] '–{ } ,

G F j1 k0a( ) n1 k0a( ){ } .=

p 3ibrE0/2k0
3–=

σ 6π br 2
/k0

2.=

G k0a kpa ε,,( ) 0.=

br 1, p– pres

3iE0

2k0
3

-----------, σ 6π
k0

2
------,= = = =

1 ε–( ) j1 kpa( )
kpa
2

-------- j1' kpa( ) ε 2+( )– 0,=
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proper, the resonances of standing plasma waves) occur
for certain relationships between the wavelength of the
plasma wave and the sphere radius; their frequencies ωn

lies at ε > 0:

(17)

where αn = kp(ωn)a is a coefficient that depends on the
resonance number n = 1, 2, 3, … (α1 = 5.76, α2 = 9.09,
αn(n @ 1) ≈ π(n +1)). At fixed field frequency, Eq. (17)

defines a set of resonance values  (plasma density)
whose number in the hydrodynamic approximation

used, βT/k0a = VTωa ! 1, can be fairly large, but, in
any case, it does not exceed k0a/βT – 1. The charge den-
sity ρ in a bulk plasmon has the same spatial distribu-
tion as does the potential ϕp:

(18)

Here, ψ =  is the angle between the
radius vector and the vector of the external electric
field. Distributions (18) for the first two bulk plasmons
(n = 1, 2) are shown in Fig. 1.

The resonance of a surface plasmon (known as the
Mie resonance in optics and as the geometrical reso-
nance in the microwave and radio frequency ranges, or
the first of the Tonks–Dattner resonances [21]) lies at
ε < 0; its frequency ωs can be approximately deter-
mined by solving the corresponding electrostatic prob-
lem and depends on the geometrical shape of the
objects (ε(ω) = –2 and –1 for a sphere and a cylinder,
respectively). The electric field inside the sphere at this
resonance (when βT ! k0a ! 1) is nearly uniform, and
the charge is concentrated mainly near the boundary.
The general resonance condition G = 0 allows us to
refine the electrostatic formula by applying the wave
(~(k0a)2 ! 1) and thermal (~βT/k0a ! 1) corrections:

(19)

(only the thermal part of the total correction δ can be
found from Eq. (16) in which the terms on the order of
(k0a)2 were discarded).

The radiative width γr of each resonance line can be
calculated as the difference between the frequencies
that correspond to the conditions G = 0 and F. For the
bulk and surface plasmon resonances (below, these are

ωn
2 ωp

2 3αn
2VT

2 /a2,+=

ωpn
2

3

ρ r ψ,( )
∆ϕ p

4π
----------–

kp
2ϕ p

4π
-----------,= =

ϕ p r ψ,( ) 3
2
---bp j1 kpr( )E0 ψ.cos–=

ϑ ϕcossin( )arccos

ε ωs( ) –2 δ, ωs+ ωp/ 3 δ– ,= =

δ
3 2βT

k0a
----------------

12
5
------ k0a( )2–=
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Fig. 1. Isolines in the meridional section and radial charge density profiles in the first two bulk plasmons.
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called the bulk and surface resonances for short), we
have

(20)

In view of the condition βT ! k0a ! 1, the bulk reso-
nances in the absence of internal losses are well

resolved ( /(ωn + 1 – ωn) ~ k0a ! 1) and have a
much smaller radiative width than does the surface res-

onance ( /  ~ (βT/k0a)4 ! 1).

3. THE COLLISIONLESS DAMPING
OF BULK AND SURFACE PLASMONS: 

THE PARALLEL-PLATE CAPACITOR MODEL

Generalizing the results obtained in the previous
section based on a kinetic description involves signifi-
cant difficulties attributable to the necessity of satisfy-
ing the boundary conditions for the electron velocity
distribution function on a spherical (not plane) surface.
However, to get a qualitative idea of the role of the
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kinetic effects disregarded in the hydrodynamic
approximation, we can restrict ourselves to an analysis
of the resonances of a bounded plasma in terms of the
so-called capacitor model by considering the oscilla-
tions of a plane plasma layer that partially fills the space
between the plates of a parallel-plate capacitor. This
one-dimensional model, which was previously studied
only in the hydrodynamic approximation [21], can be
kinetically described by representing the solution as an
expansion in terms of the normal longitudinal waves of
a homogeneous plasma.

Let us consider a system (Fig. 2) that is a plane
plasma layer of thickness L located inside a parallel-
plate capacitor parallel to its plates with the spacing
Lc = L + L0 (L0 is the width of the vacuum gap that is not
occupied by plasma). An extraneous source maintains a
variable voltage of fixed frequency and amplitude
between the plates, U = U0exp(–iωt), that generates a
variable field E = exE(x)exp(–iωt) (x axis is perpendic-
ular to the plates) inside the capacitor. Since the sizes of
the plates are large compared to their spacing, we may
consider the problem as one-dimensional. At the x = 0
and L boundaries of the plasma layer, the electron
SICS      Vol. 100      No. 2      2005
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velocity distribution function satisfies the mirror reflec-
tion condition

(21)

Since this boundary condition is automatically satisfied
in all nodal planes of the standing longitudinal wave in
a homogeneous unbounded plasma, the fields of the
normal (free) layer oscillations are functions of the
form sinknx, where kn = nπ/L (n = 1, 2, 3, …), in the
interval 0 < x < L. The amplitudes of the x components
of the electric induction D and the electric field in
plasma E(x) can be represented as Fourier expansions
in terms of these normal oscillations:

(22)

Since D = const = Ec , where Ec is the uniform electric
field in the vacuum gap, in the one-dimensional prob-
lem under consideration and since the amplitudes of the
Fourier components of the induction and the field are
related by the standard relations of the kinetic theory of
waves in a homogeneous plasma, Dn = ε||(ω, kn)En , we
obtain

(23)

(24)

Here, ε|| is the longitudinal permittivity, which is
defined for the Maxwellian electron velocity distribu-
tion by the expression [22]

(25)

f V x Vy Vz, ,( ) f V x– Vy Vz, ,( ).=

D Dn knx, Esin∑ En knx,sin∑= =

kn nπ/L, n 1 2 … ., ,= =

D2n 0, D2n 1–

4Ec
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----------------,= =
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Fig. 2. The one-dimensional (capacitor) model used for the
kinetic description of the surface and bulk plasmons of a
spherical cluster.
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where

At small wavenumbers (kVT ! ω),

(26)

(27)

Note that series (24) converges uniformly in the entire
interval (0, L), except for its boundary at which the field
may be taken to be equal to the limit of (24), limE(x) =
Ec , for x  +0 and x  L – 0.

The constant Ec in (24) can be expressed using the
relation

(28)

in terms of the fixed voltage on the capacitor plates:

(29)

The condition

(30)

determines the complex eigenfrequency spectrum for
the system under consideration. Let us analyze this
spectrum in the case of weak spatial dispersion
(VT/ωL ! 1). Disregarding Imε|| and taking Eq. (26) for
Reε||, we obtain an equation from (30) using the well-
known identity

(31)

that defines the real parts of the eigenfrequencies:

(32)

where x = ω2L/πVTωp . At L ~ L0, this equation has
a set of roots ωn in the range 0 < ε ! 1, where it takes
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the form  = πx/2, and one root ωs defined by
the condition ε = –L/L0 in the range ε < 0, where  =

, |x| @ 1. For the real eigenfrequencies, we
have

(33)

(34)

Equation (33) defines the resonance spectrum of one-
dimensional bulk plasmons at fixed voltage U. It is
approximately valid only for a limited number of oscil-
lation types (ε(ωn) ! 1). Equation (34) defines the sur-
face plasmon frequency in our one-dimensional model
(it is lower than the plasma frequency and depends on
the geometry of the object, i.e., on the relationship
between the lengths L and L0). When the frequency ω
of the extraneous source coincides with one of the
eigenfrequencies (33) and (34), the real part of the
function K(ω) becomes equal to zero, while the field
amplitude Ec reaches its resonance maximum

The line width γk of each resonance determined by
kinetic losses can be calculated as the difference
between the nearest real frequencies for which
ReK(ω) = 0 and ReK(ω) = ImK(ω). However, this cal-
culation can no longer be performed using the simpli-
fied expression (26), because the high-order terms for
which k2n – 1VT/ω ~ 1 make a major contribution to the
infinite sum that, according to (30) determines ReK(ω).
An analysis based on the general expression (25) for
ε||(ω, k) yields the following results in the case under
consideration (VT ! ωL, L ~ L0):

(a) for the bulk plasmons of the lowest types
(ε(ωn) ! 1)

(35)

(b) for the surface plasmon

(36)
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Here, g ≈ 1.07 is a coefficient that is calculated numer-
ically. It should be noted that the Landau damping con-
stant [22]

(37)

for the wavenumbers k(ωn) ≈ (2n + 1)π/L that corre-
spond to the resonances of the bulk plasmons of the
lowest types is exponentially small; the line width (35)
for them is determined by the damping at the high-order
spatial harmonics of expansion (24). The high-order
resonances broaden with increasing number n and
parameter VT/ωL faster than that given by Eq. (35) and
are completely suppressed under the condition
k(ω)VT/ω > 0.2, i.e., starting from nVT/ωL ≈ 0.03 for
which the Landau damping ceases to be exponentially
small and becomes comparable to the separation

between the neighboring lines. The line width  for
the nth-order bulk plasmon in the entire domain of its
existence can be approximated by the sum

(38)

Note also that the damping described by Eqs. (35)
and (36) may be considered to be the result of electron
collisions with the plasma boundaries. In this approach,
the damping rate is determined by the energy conver-
sion rate of the ordered (oscillatory) electron motion at
the time of collision with the boundary into thermal

energy. In this case, the line width  for the surface
plasmon at L0 ~ L is on the order of the characteristic
electron–boundary collision frequency νb = VT/L. The
small ratio of the field amplitude at the boundary to the

field amplitude at the center of the plasma layer  ~
ω(VT/ωL)5 is responsible for the much smaller line
width of the bulk plasmons of the lowest types.

Figure 3 shows the results of our numerical calcula-
tions of the resonance line widths for the surface plas-
mon and several first bulk plasmons as a function of the
parameter VT/ωL. The calculations were performed
using general formulas (25), (29), and (30) for L/L0 = 2,
which corresponds the same surface plasmon reso-

nance frequency, ωs/ωp = 1/ , as that for a spherical
cluster. Curves 1–3 for the bulk plasmons are in good
agreement with approximation (38). Their initial (gen-
tly sloping) parts are described by Eq. (35); as the ther-
mal velocity increases, the passage to a faster increase

in damping (  ≈ γL(k2n + 1)) initially takes place, and,
subsequently, the resonance is completely suppressed.
The line width for the surface plasmon (curve S) fol-
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lows Eq. (36) up to VT/ωL ~ 0.1, starting from which its
increase also becomes faster.

4. THE TOTAL LINE WIDTH: 
THE RESONANCES OF THE FIELD, 

THE DIPOLE MOMENT, 
AND THE ABSORBED POWER

The total line width (damping constant) γt of each
dipole resonance of a spherical cluster is the sum of the
radiative width γr found in Section 2 and the width γi

determined by the internal losses that consist primarily
of the losses due to the collisions of electrons with
heavy particles and collisionless (kinetic) absorption:

(39)

In the strong-resonance case of interest (γi ! ∆ω, where
∆ω is the interval between the neighboring lines), each
of the terms γr, γν, and γk can be calculated indepen-
dently, i.e., by assuming that the corresponding loss
mechanism is unique. The term γν, which includes the
collisional losses, can be easily calculated from the
general characteristic equation that defines the complex
oscillation eigenfrequency. In the absence of other
types of losses, this equation for any of the plasmons
considered can be written as

γt γr γi, γi+ γν γk.+= =

ε ω( ) 1 ωp
2 /ω ω iν+( )– εres,= =

10–8

S

10–2

γk/ω

VT/ωL

10–110–3
10–10

10–6

10–4

10–2

3 2 1

Fig. 3. Kinetic (collisionless) damping constant γk versus
VT/ωL for the first three bulk (curves 1–3) plasmons and the
surface (curve S) plasmon at L/L0 = 2.
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where εres is a real constant (that depends on the cluster
parameters and the type of oscillations). It thus follows
that the imaginary part of γν for all resonances is the
same and equal to γν = ν/2.

The kinetic damping constant γk can be roughly esti-
mated using the results of the previous section by tak-
ing a plasma layer of thickness L equal to the cluster
diameter 2a as the spherical cluster model. For this
choice of the thickness L, the locations of the bulk plas-
mon resonance lines in both (plane and spherical) mod-
els prove to be close: the frequency differences are
about 20% for the first plasmon (n = 1), rapidly
decrease with increasing number n, and completely dis-
appear in the limit n  ∞. As was noted above, the
surface plasmon frequencies closely coincide (ε = –2,

ωs = ωp/ ) under the condition L = 2L0. The constants

 and  are calculated in this model using Eqs. (35)–
(38) and can be expressed in terms of the characteristic
electron–cluster boundary collision frequency νb =
VT/2a. As we noted above, with regard to the surface
plasmon damping, the collisions with the boundary
play the same role as the collisions with heavy parti-

cles: the damping constant is  ≈ (4/3π)νb, so the
internal losses for this plasmon are roughly determined
by the total collision frequency: γi ≈ (ν + νb)/2 (see
also [16, 23]). However, the kinetic damping constant
for the bulk plasmons proves to be of a higher order of
smallness:

The ratios of γk defined by Eq. (35) and (36) to the cor-
responding radiative damping constants γr for both
types of plasmons differ only by a constant factor and
are completely determined by the parameter βT/(k0a)4:

(40)

The resonance curves br(ω) that characterize the fre-
quency dependence of the linear polarization response
of a cluster in an external field have a Lorenz shape in
the immediate vicinity of each resonance ωres in which,
apart from the radiative losses, the internal losses can
also be taken into account in an obvious way under the
condition γt ! ∆ω:

(41)

The excitation coefficient in this formula (the numera-
tor of the fraction, or the oscillator strength in optical
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terminology) coincides with the radiative width γr, so
br(ωres) reaches its maximum absolute value (12) deter-
mined by radiative losses only under the condition γi !
γr. For the surface resonance, this condition imposes a
constraint on the total collision frequency of electrons
with heavy particles and the cluster boundary: (ν +
νb)/ω ! (k0a)3. At relatively large k0a, in particular, at
a/λ0 = k0a/2π = 0.1, the radiative losses for this reso-
nance are significant (and |br(ωs)| ~ 1) up to (ν + νb)/ω ~
0.2–0.3. However, for βT @ (k0a)4, the radiative losses
play a minor role (even at low ν), and the amplitude of
the dipole moment at the surface resonance decreases
to |br(ωs)| = γr/(ν + νb) ! 1. The bulk resonances with a

very small radiative width,  ! , are suppressed
more strongly by internal losses and play a lesser role

in the scattered radiation: in the range  ! γi ! ∆ωn,
the corresponding peaks of the dipole moment at the
same collision frequencies are much lower than those at
the surface resonance. In particular, at k0a/2π = 0.1 and
βT = 0.03, the lower and upper boundaries of this γi

range correspond to the collision frequencies ν/ω ~ 3 ×
10–5 and ~10–1, respectively (the kinetic losses for the

lowest bulk plasmons are negligible in this case:  !

). For ν > ∆ωn , the bulk resonances are virtually sup-
pressed completely.

There is a different relationship between the peak
field amplitudes inside the cluster at resonances of dif-
ferent types. In contrast to the resonance of the dipole
moment, the field resonance in a certain range of colli-
sion frequencies proves to be strongest precisely in the
case of bulk plasmon excitation. This is attributable to
the oscillating pattern of the radial distribution of the
potential field of the plasma oscillations Ep , which
causes the dipole moment to decrease greatly at the
same field maximum. Determining the electric field
amplitudes at the cluster center near the bulk (En) and
surface (Es) resonances using the general relations (9)–
(11) and generalizing the derived Lorenz dependences
of type (41) by taking into account all types of losses
(for γi ! ∆ω), we obtain

(42)

(43)

As follows from these expressions, the bulk resonance

for negligible internal losses (in the range ν/2 +  !
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) causes a much larger increase in the field amplitude
than does the surface plasmon:

The inequality En > Es holds up to values of the sum

ν/2 +  ~ ω k0a  that greatly exceed the radiative

width , i.e., those that lie in the range where the rela-
tionship between the maxima of the cluster dipole
moment at the resonances of the two types is inverse

(| | @ | |). In the case where a/λ0 = 0.1 and βT = 3 ×
10–2 considered above, the field at the resonance of the
first bulk plasmon is stronger than that at the surface
plasmon resonance up to ν/ω ~ 10–2.

Figure 4 presents the resonance curves that show the
dependences of the normalized dipole moment |br| =

2 |p|/3E0 (Figs. 4a and 4b) and field amplitude at the
cluster center (Figs. 4c and 4d) on the plasma density N
normalized to the critical value of Ncr = mω2/4πe2. The
curves were calculated using the general expressions (9)–
(11) at various values of the parameter ν/ω for k0a = 0.5
and βT = 10–2.

The kinetic losses in our calculations were taken
into account using the results of this and previous sec-
tions by substituting ν + 2γk for the collision frequency
ν in the expression for the complex permittivity ε of a
cold plasma. The dependence of the kinetic damping

constant γk on the ratio /ω2 = N/Ncr was determined
using Eqs. (35)–(38). Our results show the presence of
many resonance peaks related to the excitation of a sur-

face plasmon at N ≈ 3Ncr (ω ≈ ωp/ ) and a series of
bulk plasmons at N < Ncr (ω > ωp). The differences in
the behavior of both types of resonances described
above for the field in plasma and for the dipole moment
with increasing electron collision frequency are clearly
traceable. The bulk resonances of the dipole moment
(Figs. 4a and 4b) are strongly suppressed even at rela-
tively low collision frequencies (ν/ω ~ 10–4), while the
bulk resonances dominate in the pattern of field reso-
nances (Figs. 4c and 4d) up to ν/ω ~ 10–2. The latter is
also illustrated by the curves in Fig. 5, which show the
dependence of the field amplitudes at the cluster center
at resonances of different types on the electron collision
frequency.

In a real experiment, the parameters VT and ν that
determine the internal losses depend significantly on
the cluster breakdown conditions. In particular, under
tunneling or above-threshold ionization conditions at
laser intensities I ~ 1014–1016 W cm–2, the model in
which the thermal electron energy is assumed to be
equal in order of magnitude to the energy of the elec-
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Fig. 4. Normalized dipole moment |br| = 2 |p|/3E0 of the cluster (a, b) and field E/E0 at the cluster center (c, d) versus plasma

density for k0a = 0.5 and βT = 10–2 at ν/ω = 0 (a), 10–4 (b), 10–3 (c), and 10–2 (d).
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tron oscillatory motion in an optical field and the colli-
sion frequency ν is determined by the Coulomb elec-
tron–ion interaction seems realistic enough. The results
of our calculations based on this model (under the

assumption that VT = eE0/ mω) presented in Fig. 6
for λ0 = 400 nm, a = 30 nm, and two intensities also
show the possibility of resonant field enhancement in
plasma at the frequencies of both the surface and bulk
plasmons. Since the parameter k0a = 0.47 is relatively
large, the line width and the field maximum for the sur-
face resonance in both cases are determined by the radi-

2
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ative losses (  ≈ 3.5 × 10–2ω), which exceed the losses
due to the collisions of electrons with ions and the clus-
ter boundaries by about an order of magnitude. How-
ever, the losses at the bulk resonances are attributable
mainly to electron–ion collisions, while their number is
determined by the kinetic losses (the Landau damping
that admits the existence of two bulk plasmons at I ~
1015 W cm–2 and only one bulk plasmon at I = 2 ×
1015 W cm–2). Interestingly, the field amplitude of the
second bulk resonance (corresponding to lower plasma
densities) is approximately twice the amplitude of the
first one at I ~ 1015 W cm–2. This is because its excita-

γs
r
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tion coefficient (oscillator strength) in the Lorenz for-

mula (42) increases with resonance number n,  ~

 ≈ π2(n + 1)2, while the internal losses for the first
two resonances, which are determined in this case, as

γn
r

αn
2

10

1
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E/E0
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10–5 10–3 10–1
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103

104

105

1

23
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S

Fig. 5. Field at the cluster center at bulk plasmon resonances
(curves 1–5) and at surface plasmon resonance (curve S)
versus electron collision frequency; k0a = 0.5 and βT = 10–2.
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was noted above, mainly by electron–ion collisions, are
approximately the same.

The mean power (the power of the internal losses)
absorbed in plasma, Qi, can be calculated in the dipole
approximation as the difference between the total
power

given up by the incident wave field and the power of the
dipole radiation

(the angular brackets denote time averaging). Based on
Eq. (41) that defines the resonance dipole moments, we

obtain the resonant absorption  at γi ! ∆ω:

(44)

Here, Q0 is the maximum absorbed power that is
reached when the radiative and total internal losses are
equal (γi = γk + ν/2 = γr) and that depends only on the
parameters of the incident wave. In Fig. 7, the power
absorbed by the cluster at the resonances of the surface
and several first bulk plasmons is plotted against the
collision frequency for k0a = 0.5 and βT = 10–2. At low
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Fig. 6. Normalized field E/E0 at the cluster center versus plasma density for two laser intensities, (a) I = 1015 W cm–2 and (b) I =

2 × 1015 W cm–2, under the assumption that the collision frequency and thermal velocity of the electrons are determined by the
velocity of their oscillatory motion; the wavelength is λ0 = 400 nm, and the cluster radius is a = 30 nm.
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ν/ω, the absorption at bulk resonances is stronger than
that at surface resonance. As follows from (20), (35),
(36), and (39), this relationship is reversed at ν/ω ≈
αn k0a/ .

5. CONCLUSIONS

The hydrodynamic and kinetic models that we con-
sidered allowed us to analyze the dipole resonance
spectra for a small-size homogeneous spherical cluster
((k0a)3 ! 1, k0 = ω/c, a is the cluster radius) with the
inclusion of radiative, collisional, and kinetic (colli-
sionless) losses. Although the cluster plasma in these
models was assumed to be nondegenerate, the results
obtained also remain qualitatively valid (with the sub-
stitution of the Fermi velocity VF for the mean thermal
velocity VT) for a degenerate plasma (in particular, for
metal clusters at normal temperature).

In general, the cluster resonance spectra contain the
lines that correspond to the excitation of both a surface

plasmon (at a frequency ω ≈ ωp ) and a series of bulk
plasmons (at frequencies ωn ≈ ωp). At a small Debye

length, rD ~ VT/ωp ! a, the radiative (  ∼  ω(k0a)3) and

kinetic (  ∼  VT/a) damping constants for the surface

plasmon (the Mie resonance) greatly exceeds the corre-
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Fig. 7. Power absorbed by the cluster at bulk plasmon
(curves 1–5) and surface plasmon (curve S) resonances ver-
sus electron collision frequency; k0a = 0.5 and βT = 10–2.
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sponding values of  and  for the bulk plasmons:

Whereas the inclusion of kinetic losses for the surface
plasmon causes the resonance line to broaden by a
value on the order of the characteristic electron–cluster

boundary collision frequency (  ∼  νb ∼  VT/a), the cor-
responding line broadening for the bulk plasmons is

proportional to the fifth power of this frequency (  ∼
ω(νb/ω)5). The ratio of the kinetic (γk) and radiative (γr)
damping constants is the same in order of magnitude
for both types of resonances:

The maximum intensity of the dipole wave scatter-
ing by the cluster reached when the internal losses are
negligible compared to the radiative losses is the same
for all types of resonances: the total scattering cross
section at resonance under these conditions is

The cross section reaches its maximum,

which does not depend on the type of resonance and the
cluster size either, when the radiative and internal
losses are equal, γr = γk + ν/2. The maximum amplitude
of the field E at the cluster center, which determines the
possibility of the development of various nonlinear pro-
cesses in plasma, is an important resonance parameter.
For negligible internal losses, this parameter is largest
for the bulk resonances (En/Es ~ (a/rD)2 @ 1).

The ratio of the radiative damping constant γr

(which also acts as the plasmon–external field coupling
parameter) to the total line width, γt = γr + γk + ν/2,
essentially determines whether resonances of various
types can appear under specific conditions and what
their relative role is. The resonances for which this ratio
is small are poorly represented in the general spectrum.
This can explain the absence of bulk resonances in the
absorption and scattering spectra for metal clusters
with relatively high electron collision frequencies
(ν/ω > 0.1) at normal temperature that were studied in
detail (see, e.g., [16]). However, the bulk resonances in
the hot cluster plasma produced by intense laser pulses
can be fairly strong. The thermal electron velocities in
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such a plasma are higher than or on the order of the
ordered velocity of their oscillatory motion. For this
reason, at energy flux densities ~1015 W cm–2, the cor-
responding Coulomb collision frequencies decrease to
ν ~ (10–2–10–3)ω, which, as we showed here, admit
effective resonant excitation of bulk plasmons. The
related resonances of the powers scattered and
absorbed by the cluster at given ν are still indistinct
(which, of course, makes it difficult to directly observe
them in an experiment). However, at comparatively
large cluster sizes (k0a ~ 0.2–0.5), the bulk plasmon res-
onance causes the electric field amplitude in plasma to
increase greatly. Although we calculated this field
enhancement in terms of the linear theory, it suggests
that strong nonlinear processes (the generation of fast
electrons, the electron detachment from deep atomic
levels, and their escape from the cluster) can arise even
at densities N ≈ Ncr , and not only for the Mie resonance
at a factor of three higher values of N. In particular, we
may assume that precisely this bulk plasmon excitation
effect is responsible for the nonlinear phenomena
observed during the X-ray breakdown of clusters in the
experiments [3] where the electron density for single
atomic ionization, i.e., at the initial stage of the nonlin-
ear process, could not exceed its critical value. The high
energy transferred to the cluster plasma in these exper-
iments can probably be explained by the bulk resonance
when the internal and radiative losses are approxi-
mately equal.
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Abstract—We experimentally investigated the dynamics of ionization processes and the formation of a plasma
wave channel during the interaction of intense microwave pulses with a magnetized inhomogeneous plasma in
the presence of hybrid resonance. The competition between fast electron and slow ionization plasma nonlinear-
ities was studied under conditions when the electron oscillation energy in the wave field was much higher than
the atomic ionization energy of the working gas. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The phenomenon of plasma resonance plays an
important role in the ionization formation of plasma
under intense microwave and laser emission. Accord-
ing to [1, 2], the significant increase in the projection of
the electric field of the electromagnetic wave onto the
plasma density gradient direction that takes place at a
critical plasma density and the generation of Langmuir
waves in this region determine both the ionization front
localization and the density growth dynamics. At the
same time, the excitation of slow plasma waves in this
region also significantly facilitates the conditions for
the manifestation of fast electron plasma nonlinearities.
In particular, the condition for the equality between the
wave phase velocity and the electron oscillation veloc-
ity in the wave field is relatively easily satisfied near
plasma resonance, which makes the plasma wave
breaking possible [3–5]. The breaking effect, which
was disregarded in the theoretical analysis [1, 2], is
accompanied by the wave energy transfer to very fast
electrons. This can change significantly the plasma ion-
ization pattern.

In this paper, we investigate the influence of the
competition between fast electron and relatively slow
ionization nonlinearities on the formation of a plasma
waveguide channel in model experiments on the
absorption of an intense microwave pulse near the point
of hybrid resonance in a two-dimensional inhomoge-
neous magnetoactive plasma. The first results of these
experiments were published previously [6]. However,
no detailed studies were carried out at that time, and the
observed phenomena were not explained.

This paper is structured as follows. The experimen-
tal setup and the pattern of wave propagation are
described in Section 2. The observational results on the
dynamics of the fast electron generation, the plasma
1063-7761/05/10002- $26.000440
density growth, and the behavior of the plasma emis-
sion after a microwave pulse was switched on are pre-
sented in Section 3. These results are then discussed in
Section 4, where the increase in the frequency of the
wave reflected from the region of hybrid resonance is
interpreted.

2. THE EXPERIMENTAL SITUATION

The experiments were carried out at the Granit lin-
ear plasma facility [7]. Plasma was produced by elec-
tron cyclotron breakdown in a quartz tube 1 (Fig. 1)
with an inner diameter of 2r0 = 1.8 cm and a length of
about 1 m filled with argon at a pressure of 3 Pa and
placed in a longitudinal magnetic field about 3 kG in
strength. A monotonically decreasing (along the mag-
netic field) distribution of the plasma electron density

1

23 4 5 6

7

P0

Ps Pr

Ps
Pt

ne = nc

Focal point

Fig. 1. The experimental setup: P0 , Pr , Ps , and Pt are the
incident, reflected, scattered and transmitted waves,
respectively; (1) quartz tube; (2) waveguide; (3) magnet
coil; (4) optical system; (5) Rogowski loop; (6) cavity;
(7) analyzer.
 © 2005 Pleiades Publishing, Inc.
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ne was established in the middle part of the tube. This
distribution can be fitted by

(1)

where l = 5 cm is the plasma inhomogeneity scale length

along the magnetic field, β = 4, and nc = πm /e2 is the
critical electron density (f is the microwave frequency).

A microwave was applied to the plasma from one
side through a 7.2 × 3.4 cm2 waveguide 2; the electric
field of the microwave was parallel to the external mag-
netic field. The typical plasma parameters at the
entrance were ne < 1012 cm–3 and Te ≈ 2 eV. When the
density on the tube axis exceeded appreciably its criti-
cal value for the input microwave frequency f0, an
oblique Langmuir wave was excited in the plasma pre-
dominantly in the form of a fundamental radial Trievel-
piece–Gould mode. The dispersion relation for this
mode in an inhomogeneous plasma is

where k|| and k⊥  are the components of the wavevector
parallel and perpendicular to the magnetic field. The
transparency region for this wave is a dense plasma
with a density higher than the critical value, ne > nc . The
near-axis plasma region (Fig. 1) is a plasma waveguide
for it with weak axial inhomogeneity. While propagat-
ing through this waveguide toward the lower densities,
the wave slows down. At the point at which the external
magnetic field lines are perpendicular to the surface of
the critical density ne = nc (focal point), the wave lin-
early transforms into a “warm” plasma wave, while its
field reaches the largest strengths given by

(2)

where  = κP0 is the fraction of the power applied to
the plasma P0 that goes into the excitation of the funda-
mental radial Trievelpiece–Gould mode (κ ≈ 0.2 [7]),
rD is the Debye length, and k0 is the component of the
wavevector k along the external magnetic field. The lat-
ter can be determined near the focal point from the
equation

(3)

where a ≈ l = 5 cm and b ≈ r0β–0.5 = 0.4 cm are the
experimentally determined parameters of the plasma
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density distribution near the focal point. Thus, the
expression for the longitudinal plasma permittivity is

Using Eq. (2), the electron vibrational energy at the
focus can be written as

(4)

For k0 ≈ 40 cm–1 (a typical value for the wavenumber
at the focus), we can derive the relation

For  = 5 W, the electron vibrational energy, W~ =
16 eV, is higher than the ionization energy for argon
atoms, Ei = 15.76 eV. In this case, one might expect
very fast ionization in the region of a strong microwave
field and, as a result, a displacement of the point of
hybrid resonance from the input region. At the same
time, according to [8], the plasma wave breaking
accompanied by the acceleration of electrons to an
energy of 1 keV occurs at these powers.

Various diagnostic techniques were used in the
experiments: a 10-cm-band cavity controlled the
plasma density distribution; optical diagnostics pro-
vided information about the change in plasma emission
both along the axis of the quartz tube and along the
radius and allowed the microwave absorption region to
be determined; a multigrid analyzer controlled the elec-
tron distribution function both in the unperturbed
plasma and under exposure to a pumping wave; a
Rogowski loop was used to change the component of
the current through the plasma along the external mag-
netic field; information about the wave processes in the
plasma was extracted by analyzing the spectra of the
signals from the waveguide. The experiments were car-
ried out at the following pumping parameters: a fre-
quency of f0 = 2840 MHz, a pulse power of P0 =
40−2000 W, a pulse duration of t = 0.4–2.5 µs, a pulse
front duration of tf ≈ 40 ns, and a repetition frequency
of 300 Hz.

3. EXPERIMENTAL RESULTS

The shape of the microwave pumping pulse with a
duration of about 2.4 µs and a power of ~50 W in the
absence of plasma is shown in Fig. 2a. In the presence
of plasma, low-frequency oscillations with a frequency
of 20–30 MHz are observed in the discharge tube on the
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microwave signal envelope after the homodyne detec-
tion at t ≈ 1 µs from its beginning (Fig. 2b). Their fre-
quency decreases to 3–5 MHz at the end of the pulse.
The low-frequency oscillations are the beats between
two waves: the transmitted wave Pt and the wave Ps

scattered into the waveguide duct from the plasma (see
the wave propagation scheme in Fig. 1).

The multigrid analyzer located behind the focus at a
distance of about 25 cm from it on the side of low den-
sities records the electron current (Fig. 2c). The oscillo-
gram of the current pulse has two peaks: one at the
beginning of the pulse and the other near the first
microsecond. The first peak increases in amplitude with
power and is slightly displaced to the beginning of the
pulse. The nature of this peak was studied in detail
in [8]. Electrons with energies of several hundred elec-
tronvolts make a major contribution to it. The second
peak also increases with power, narrows, and is dis-
placed to the beginning of the pulse; this displacement
is much faster than that for the first peak. The time at
which the low-frequency oscillations appear on the
oscillogram of the homodyne detector signal is also dis-
placed almost simultaneously with the displacement of
the second peak. In general, the low-frequency oscilla-
tions develop after the second peak of the electron cur-
rent is reached.

As we see from Fig. 2d, the signal of the Rogowski
loop has two positive peaks. Their displacement
dynamics as the microwave pulse power changes is the
same as that for the current pulses of the analyzer. Since
the time constant of the Rogowski loop is about 40 ns,

0

a

t, µs
1 2 3 4 5

b

c

d

e

Fig. 2. Oscillograms for the incident (a) and scattered (b)
microwave pulses, the current of the charged particle ana-
lyzer (c), the signal of the Rogowski loop (d), and the inten-
sity of the light at the focus (e).
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its signal reflects the derivative of the current pulse of
accelerated electrons.

As we see from Fig. 2e, which shows an oscillogram
for the current signal of the photomultiplier, the plasma
emission increases in intensity near the focus almost
simultaneously with the application of a microwave
pulse. It should be noted that the light pulses are char-
acterized by a slower decay (several microseconds)
after the microwave signal termination than the decay
of the electron current (less than 1 µm).

The electron energy. The amplitude and shape of
the current pulse of the charged particle analyzer
depend on the power of the applied microwave pulse
and the retarding potential of the charged particle ana-
lyzer. In the experiment, the analyzer was located at a
distance of about 25 cm from the focal point on the side
of low densities. Figure 3a shows the current pulses of
the analyzer at a retarding potential of Ua = –10 V for
various powers of the applied microwave pulses. We
see that the second peak of the current is rapidly dis-
placed to the beginning of the pulse as the power
increases. If the pulse power increases further, then
these two peaks merge together at P ≈ 1 kW. The peaks

0 0.5 1.0 1.5 2.0 2.5

6

4

3

2

1

t, µs

(a)

0 0.5 1.0 1.5 2.0 2.5

t, µs

2'

1'

3'

4'
5'

6'

(b)

Fig. 3. Oscillograms for the current of the charged particle
analyzer at various microwave pulse powers P (a) and
retarding potentials Ua (b): P = 15 (1), 20 (2), 30 (3), 50 (4),
160 (5), 220 W (6); Ua = 0 (1'), –10 (2'), –50 (3'), –100 (4'),
–200 (5'), −500 V (6').

5

Ua = –10 V

P = 50 W
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behave differently at various retarding potentials and
fixed power, as demonstrated in Fig. 3b for a pulse with
P = 50 W. The first peak produced by electrons with
energies of several hundred electronvolts decreases by
a factor of about 5 at a retarding potential of Ua ≈
−500 V. The second peak virtually disappears even at
Ua ≈ –200 V. This indicates that the energies of the elec-
trons that contribute to these current peaks differ signif-
icantly.

Figure 4a shows the current–voltage characteristics
for the charged particle analyzer on a semi-logarithmic
scale at various times from the beginning of the pulse at
P = 50 W. They have nearly linear segments (dotted
lines) at energies W @ Te in which the electron energy
can be characterized by the effective temperature Th .
We see that the slope of the characteristics from the
beginning to the end of the pulse changes nonmonoton-
ically. This can also be seen in the corresponding time
dependence of the effective temperature Th shown in
Fig. 4b. It follows from this figure that the first peak of
the current is produced by high-energy electrons with
an effective temperature of Th ≈ 400 eV. The generation
of such electrons lasts for 0.5 µs and is then abruptly
interrupted; the electron energy at the end of the first

1

–600 –400

I, arb. units

Ua, V
–200 0

0.1

(a)
1

2

3

4

100

0 0.5

Th, eV

t, µs
1.0 2.5

(b)

1.5 2.0

10

1

5
6

Fig. 4. Current–voltage characteristics (a) and accelerated
electron energies (b) at various times: t = 0.2 (1), 0.4 (2),
0.6 (3), 0.8 (4), 1.2 (5), 1.6 µs (6).
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microsecond is about 10 eV. The effective electron tem-
perature during the second peak is much lower than that
during the first peak, being about 40 eV, and again
decreases to 10 eV at the end of the pulse (2 µs). After
pulse termination, the suprathermal electrons disappear
rapidly, in less than one microsecond. Their disappear-
ance is probably responsible for the presence of a small
minimum in the signal of the Rogowski loop (Fig. 2d)
after the microwave pulse termination.

The effective temperature of the electrons acceler-
ated near the focus is much higher than the electron
energy in the initial plasma, Th @ Te , during both the
first and second fast electron generation peaks. This
allows both peaks to be associated with the Landau
damping of the plasma wave, which is definitely [8] and
presumably nonlinear in the former and latter cases,
respectively (plasma wave breaking).

Electron density dynamics. The electron density
was controlled with a 10-cm-band cavity, which allows
the density averaged over the plasma volume in the cav-
ity to be determined. Since the experiment was carried
out in the regime of repetitive pulses, the densities at var-
ious times could be obtained by using a stroboscopic
technique.

2

n–e , 1010 cm–3

4

6

8

10

12

0

500

300

100

P = 1000 W(a)

2

10–2 100

t, µs
102 104

4

6

8

10

12

0

0.4 µs

0.2 µs

(b)
0.8 µs

Fig. 5. Time dependences of the mean electron density at
the focus at various pumping powers P (a) and various pulse
durations (b) for a power of 50 W.
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Figure 5 shows time dependences of the electron
density at the focus for various microwave pulse pow-
ers and durations. We see from Fig. 5a that, depending
on the pulse power, an appreciable increase in density
begins 200–300 ns after the beginning of the pulse. The
pulse duration in this experiment was 0.4 µs and is
marked by the hatched rectangle in Fig. 5a. The elec-
tron density reaches its maximum in all cases after the
pulse termination between the first and tenths micro-
seconds. Subsequently, the plasma slowly relaxes to its
initial state. The critical density is indicated in Figs. 5a
and 5b by the dash–dotted horizontal lines. As can be
inferred from Fig. 5a, the plasma decay finishes at the
first microsecond for almost all powers. The dashed
lines in Fig. 5a represent the exponential dependences
that reflect the decrease in electron density:

ne nm t t'–( )τd–[ ] ,exp=

2

0 0.2

∆n– e, 1010 cm–3

t, µs
0.4 0.6

4

6

8
(a)

1

2

345

107

105

101

v i/p, s–1 torr–1

P, W
102 103 10410010–1

106

108

109

1010

(b)

Fig. 6. (a) The increase in density at the focus at the initial
time for various pumping powers: 100 (1), 300 (2),
500 (3) W, 1 (4), and 2 (5) kW; (b) argon ionization rate ver-
sus microwave signal power: the filled circles represent the
data from [9].
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where nm is the maximum electron density for each
power, t' is the time at which the density decay begins,
and τd is the decay constant. In all cases, the density
decay constant proved to be the same, about 200 µs.

The maximum density after the pulse depends on
the pulse duration (Fig. 5b): the density increases with
pulse duration. The duration of the plasma decay phase
changes only slightly: from 0.6–0.7 to 1 ms.

Let us consider in more detail the change in density
during the initial period of the pulse shown in Fig. 6a
for various pumping powers. We see that the density
growth rate increases with pulse power. Since these
dependences are satisfactorily fitted by a linear function
(dashed lines), we can calculate the ionization rate v i at
the focal point normalized to the gas pressure p in the
discharge tube by using them:

The ionization rates calculated in this way are shown in
Fig. 6b as a function of the microwave pulse power.
This figure also shows the data from [9] obtained with
the same experimental setup for pulse powers up to
10 W. The horizontal dashed line in this figure indicates
the ionization rate in the initial plasma, and the solid
line represents the linear power dependence, v i ∝  P.

As we see from Fig. 7, which shows the longitudinal
distribution of the mean electron density at various
times for an incident microwave pulse power of about
100 W, the density increases not only near the initial
position of the resonance, but also far from it. Indeed,
the increase in density at the initial time (t < 0.5 µs) is
localized near the resonance at a distance of z =
20−25 cm from the pumping input point. However, at
t > 0.5 µs, the density increases mainly in low-density
regions of the initial plasma (z > 25 cm). This effect can
be explained in terms of both the ionization produced
by accelerated electrons at the initial phase of the pulse
and the plasma channel burning, and the displacement
of the resonance region at later phases of the pulse.

Optical emission. Plasma emission spectra near the
resonance in the wavelength range 400–500 nm were
recorded in the experiment. Using a stroboscopic tech-
nique to record them allowed us to trace their change
with time since the application of a microwave pulse.
At the beginning of the pulse, when electrons with
energies of several hundred electronvolts are generated,
the neutral argon lines in this part of the spectrum are
much weaker than the ion lines, and the spectrum is
represented mainly by Ar II lines. The transverse inten-
sity distributions of the Ar II (454.5 nm) spectral line
were recorded in various cross sections along the length
of the plasma column. The transverse distributions
were also recorded at various times by using a strobo-
scopic technique. These data were used to construct the
spatial intensity distributions of the Ar II 454.5-nm line
shown in Fig. 8. We see that the peak of the line inten-
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sity at the initial time (t < 0.2 µs) corresponds to the
position of the resonance region. The intensity
increases with time, with the emission growing more
strongly on the side of low densities; an extended chan-
nel of enhanced emission is formed behind the focus at
t > 1 µs. The size of this channel (the separation between
the points at which the intensity accounts for half of the
intensity on the channel axis) is 1.5–2 mm across. For
comparison, the size of the initial plasma emission
region at half intensity reaches 4–6 mm across.

Since the degree of plasma ionization behind the
focus does not exceed 0.01%, it is justifiable to use a
coronal model to interpret the results of the plasma
emission measurements. In this model, atoms and ions
are excited from the ground atomic state through colli-
sions with electrons and deexcited through spontaneous
emission. According to [10], the excitation functions of
argon atomic and ionic lines are at a maximum near
their ionization potentials. At electron energies on the
order of several hundred electronvolts, they decrease
severalfold. That is why the accelerated electrons pro-
duce only weak emission far from the focus (at z >
25 cm) at the initial phase of the pulse, which corre-
sponds to the first peak of the current at t < 0.5 µs (see
Fig. 2c). The growth of the emission in these regions
begins with the increase in density and with the dis-
placement of the plasma resonance to this region. Since
the electrons at this time have a much lower energy
close to the maximum of the line excitation function,
they are capable of more effectively exciting and ioniz-
ing the argon atoms.

Low-frequency oscillations. Low-frequency oscil-
lations appear on the microwave pulse envelope at a
power of about 50 W in the middle of the pulse (t ≈
1 µs, see Fig. 2b). The variations of their frequency
with time at various powers of the pumping pulse are
shown in Fig. 9. The oscillation frequency is seen to
rapidly decrease from 20–25 to 5 MHz. This time evo-
lution of the oscillation frequency is preserved as the
power increases, but the onset of the development of
oscillations is displaced to the beginning of the pulse.

Oscillations are also observed on the signal of the
sounding wave that was applied to the plasma through
the same waveguide as the pumping at f0 = 2840 MHz.
The frequency of the sounding wave was fζ =
2400 MHz and differed significantly from the pumping
frequency, fζ < f0, while its power was several orders of
magnitude lower than the pumping power. The signal
from the waveguide duct was split into two measuring
channels. Rejection filters at the pumping and sound-
ing wave frequencies were placed in the first and sec-
ond channels, respectively. The homodyne detection
signals from both channels were recorded by a digital
oscillograph.

Figure 10a shows oscillograms for the signals from
the microwave detectors placed in the pumping and
sounding wave ducts at frequencies of 2840 and
2400 MHz, respectively. An analysis of these oscillo-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
grams indicates that the oscillations begin almost
simultaneously, irrespective of the wave frequency.
However, the oscillation period for the sounding wave
at each given time is a factor of 1.2 to 1.5 longer than
that for the pumping wave. This difference increases as

t = 0.2 µs30
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20

15

10

z, cm

–1
0

1

r, cm

t = 1 µs

t = 2 µs

Fig. 8. The spatial intensity distribution of the ArII
454.5-nm line at various times.

2

15

∆n– , 1010, cm–3

z, cm
30

8

12

4

20 25 35

0

4

6

10

14

5

3

2
1

Fig. 7. The axial distribution of the mean electron concen-
tration at various times: initial plasma (1), t = 0.5 (2),
1.1 (3), 1.7 (4), 2.4 µs (5).
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the frequency difference between the pumping and
sounding waves increases. It should be noted that the
oscillations on the detector signal in the sounding wave
duct are also observed for 1 to 2 µs after the pumping
pulse termination, with their period being longer than
that during pulse. Like the duration of the oscillations,

10

0.5 1.0

∆f, MHz

t, µs

1.5 2.0 2.5
0

15

20

5

5
4
3
2
1

Fig. 9. Variations of the oscillation frequency with time at
various microwave pulse powers: 40 (1), 60 (2), 87 (3),
125 (4), and 155 W (5).
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Fig. 10. Oscillograms of the detector signals for frequencies
of 2840 (solid line) and 2400 (dashed line) MHz (a) and
spectra of the scattered signal during the pulse (b) and after
its termination (c).
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it depends on the power and duration of the pumping
pulse. For example, the oscillation frequency changes
from 4 to 1 MHz as the power increases from 50 to
150 W and from 6 to 1 MHz as the pulse duration
changes from 1 to 3 µs at a constant power of 100 W.

We studied the spectrum of the signal scattered into
the waveguide duct by using an S4-80 pulsed signal
spectrum analyzer for a window duration of 0.4 µs. The
plasma-scattered pumping and sounding wave signals
were found to have higher frequencies than the corre-
sponding frequencies of the applied waves. During a
pumping pulse, the scattered signals show up in the
form of satellites in the anti-Stokes spectral region of
both waves (Fig. 10b). At the same time, the sounding
wave spectrum after the pumping pulse termination
changes sharply: a satellite with a smaller frequency
shift appears in the Stokes region (Fig. 10c).

4. DISCUSSION

As we noted above, the electron densities measured
with a 10-cm-band cavity are the values averaged over
the cavity volume. To construct the spatial density dis-
tribution over the plasma column, the data for the axial
distributions of the mean density (see Fig. 7) must be
supplemented with the radial electron density distribu-
tions in various axial cross sections. The radial intensity
distributions of the plasma emission (see Fig. 8) were
used as such distributions. We used this method for
constructing the spatial electron density distributions
previously [8].

Figure 11 shows lines of equal density at various
times. Ten shades of gray in the figure are used as the
density scale. The lightest shade of gray corresponds to
an electron density of 5 × 1011 cm–3; the darkest shade,
to the minimum electron density. The derived pictures
of the lines of equal density clearly illustrate the forma-
tion of an extended narrow plasma channel that is a
plasma waveguide for an oblique Langmuir wave. The
region of propagation for this wave is the region with
ne > nc whose boundary advances along the magnetic
field in the direction opposite to the density gradient. At
a distance of about 45 cm from the input waveguide,
which corresponds to the edge of the electromagnet, the
external magnetic field weakens sharply. This appears
to result in a sharp change of the propagation conditions
for the wave at this location and, hence, to its reflection.
When the multigrid analyzer was placed in the tube
closer to the initial position of the focal point than the
edge of the magnet, the wave was reflected from its sur-
face. The reflected wave propagated in the opposite
direction in the same nonstationary plasma channel
with an increasing plasma density, which must cause its
frequency to shift toward the higher frequencies. To
some extent, this upward frequency conversion mecha-
nism for the reflected wave is similar to that discussed
in [2, 11] and related to the Langmuir wave conversion
frequency during ionization at plasma pumping reso-
ND THEORETICAL PHYSICS      Vol. 100      No. 2      2005
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Fig. 11. Lines of equal electron density at various times.
nance. It should be emphasized that the frequency shift
of the reflected wave in our experiment reaches 20 MHz
and is more than twice the ion plasma frequency near
the resonance. This makes it difficult to explain the
observed effects in terms of plasma acceleration under
a ponderomotive force [12].

Let us consider some of the corollaries of the sug-
gested frequency conversion mechanism. As a wave
propagates to and fro in a plasma waveguide with
length L, the wave phase shift is δΦ = –2k0L. Since the
waveguide is nonstationary, the wavenumber k0
depends not only on the longitudinal coordinate in
accordance with Eq. (3), but also on time. Taking into
account this dependence, we can obtain

The expression for the phase factor is

hence, we can write for the wave frequency

and derive an expression for the frequency difference in

δΦ 2L
b

------
nc f c( )

ne z t,( ) nc f ζ( )–
--------------------------------------.–=

Φ ω0t 2 k0 z,d∫–=

ω dΦ
dt
------- ωp

dδΦ
dt

-----------,+= =
 OF EXPERIMENTAL AND THEORETICAL PHY
the form

(5)

The change in density at the focus can be represented as

where the function α(t) describes the change in density
with time. Then,

(6)

Let us make certain assumptions about the function
α(t). We assume (in accordance with Fig. 5a) that the
rate of change in electron density at the focus is con-
stant, i.e.,

Then,

δ f ζ
δωζ

2π
---------

L
πb
------

nc f ζ( )
ne z t,( ) nc f ζ( )–[ ] 2

---------------------------------------------
dne

dt
--------.= =

nc 1 α t( )+[ ] nc f 0( ),=

δ f ζ
L

πb
------

dne/dt

α
nc f 0( ) nc f ζ( )–

nc f 0( )
-------------------------------------+

2

nc f 0( )
----------------------------------------------------------------------.=

dne

dt
--------

dα
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-------nc f 0( ) const.= =

α t( )
dne
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nc f 0( )
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where t∗  is the plasma channel burning time. Substitut-
ing this expression for α(t) into Eq. (6) yields

(7)

It follows from Eq. (7) that the oscillation frequency on
the sounding duct detector must decrease both with
time as 1/(t – t∗ )2 as with increasing frequency differ-
ence f0 – fζ . The results of our calculations of the oscilla-
tion frequency performed using Eq. (7) at a power of
about 100 W are presented in Fig. 12. We see that there
is good agreement between the calculated and experi-
mental values for both the pumping and sounding waves.

5. CONCLUSIONS

Thus, the competition between fast (electron) and
slow (ionization) nonlinear mechanisms is observed
near hybrid resonance during the interaction of an
intense electromagnetic pulse with an inhomogeneous
magnetized weakly ionized plasma. Fast electron non-
linearities, which cause wave breaking and strong elec-
tron acceleration near the point of resonance at the ini-
tial phase of the pulse, dominate at the first stage. Thus,
for example, this occurs over a period of less then
0.5 µs at a power of about 50 W. At longer times (t >
0.5 µs), a narrow homogeneous plasma channel is
formed through violent ionization attributable to the
electron oscillations in the wave field. In this channel,
the wave amplitude is below the breaking threshold due
to the increase in group velocity and collisional damp-
ing; as a result, the electron acceleration effect is tem-

δ f ζ
L

πb
------

nc f 0( )

t t*–( )
dne

dt
-------- nc f 0( ) nc f ζ( )–+

2
-----------------------------------------------------------------------------

dne

dt
--------.=
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Fig. 12. Time dependences of the frequency shift: experi-
mental (dots) and calculated (curves) data for f0 =
2840 MHz (circles and solid line) and f0 = 2400 MHz (tri-
angles and dotted line).
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porarily suppressed. When the plasma channel is
burned up to the boundary of the system, the conditions
for the formation of a resonant field structure, wave
slowdown, increase in wave amplitude, and, hence,
intense interaction with electrons again arise for a short
time. The reflection of the intense wave is observed
immediately after the recurrent peaks of accelerated
electrons, at t > 1 µs. The propagation of the incident
and reflected waves in a plasma waveguide with an
increasing electron density causes a rapid change in the
phase shift of the reflected wave and, as a result, in its
significant upward displacement in frequency. Analysis
of the wave reflection and propagation using our simple
model confirms this picture.
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Abstract—A consistent theory describing the initial stage of spinodal decomposition of a two-component sys-
tem is proposed. It is shown that the structure factor S(q, t) has two maxima as a function of wavenumber at this
stage. The main maximum point q+ varies with time, first moving from qsaddle to qm (given by expressions (22)
and (12), respectively) and then back after the turning point in time given by (26) is passed. The other maximum
point is localized at q ≈ 0, and the corresponding peak amplitude is virtually independent of time. The charac-
teristics of the main maximum are sensitive to the existence of the “zero” peak. Available experimental obser-
vations support the predictions of the theory. © 2005 Pleiades Publishing, Inc. 
Detailed experimental studies of the behavior of the
structure factor S(q, t) at the early stages of spinodal
decomposition in various systems, when they span a
wide range of wavenumber q, reveal that it has two
maxima characterized by essentially different proper-
ties (see [1–4]). The main maximum point is separated
from the origin in the q space, and its location varies
with time as the instability evolves. The other one,
being less distinct, is located in the neighborhood of
q = 0 and is virtually time-independent.

The time-independent maximum is either ignored
[1, 2] or attributed to instrumental noise [3]. However,
a spurious peak in the neighborhood of q = 0 must not
affect the characteristics of the main maximum of
S(q, t), which disagrees with observations.

In this paper, we propose a scenario that attributes
the existence of a time-independent “zero” maximum
of S(q, t) to the influence of initial conditions, which
cannot be ignored in any analysis of spinodal decompo-
sition. The persistence of this maximum as a distinct
entity against the background exponential growth of the
main peak can be explained, first, by their localization
in separate intervals of the q axis and, second, by spe-
cial properties of relaxation time, which is anomalously
long for small wavenumbers, τ–1(q  0) ∝  q2.

In conventional theories of spinodal decomposition,
analysis of effects due to initial conditions is avoided
when the properties of S(q, t) are determined (see [5–10]).
It is assumed that decomposition in the domain of linear
behavior with respect to the S(q, t) amplitude is “trig-
gered” by a Langevin force. Correct definition of these
forces for the spinodal portion of the phase diagram
requires a special analysis (see [5–7]). A formal analy-
sis leads to an equation that is similar to (6), but is sup-
1063-7761/05/10002- $26.00 0449
plemented with an inhomogeneous term L(t) represent-
ing a Langevin force:

The solution to this equation obtained without using
any initial conditions,

,

is not “strictly” exponential (e.g., see Eq. (12)), unlike
the function

where S0(q) is an initial distribution. However, strictly
exponential behavior is believed to be a qualitative
indication of the spinodal nature of decomposition and
is regularly demonstrated by experimentalists [1–4]
(see comments to Eq. (8) below). These considerations
are additional motivation an analysis of initial condi-
tions as a factor that ensures exponential behavior of
the linear part of spinodal decomposition and suggest
specific experimental schemes that make it possible to
completely expose their role, as in the measurements of
“mechanically triggered” spinodal decomposition
reported in [1, 2]. Consider a liquid solution whose
equilibrium characteristics lie in the spinodal instability
region. Mechanical mixing brings the solution into an
unstable quasi-homogeneous state, which begins to
decompose as soon as the mixer is switched off. The
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kinetics of the ensuing decomposition was measured
in [1, 2]. Since the Langevin force is characterized by
certain specific scales due to its thermal nature, it is
clear that they cannot have any substantial effect on the
kinetics of a mechanically stimulated decomposition at
its initial stage. A detailed description of the scenario
discussed in [1, 2] is given below.

1. The starting nonlinear equation for the Fourier
component S(q, t) of the structure factor proposed in [7]
is written as

(1)

(2)

(3)

where c0 is the mean solution concentration, angle
brackets denote averaging over a distribution function

 preserving translational symmetry, and M is a phe-
nomenological quantity proportional to the mobility of
the separating components.

Both function f(c) and kinetic coefficient K arise
when Eq. (1) is derived by invoking the Flory–Higgins
free energy for a binary system,

(4)

where χ is a coupling parameter and  = a2N/6 is the
gyration radius. It is assumed in (1) that N1 = N2 ≡ N and
a1 = a2 ≡ a (a is an elementary length).

The quantities denoted by Sn are the Fourier compo-
nents of the higher order correlation functions

(5)

Equation (1) is the first in the hierarchy of equations
of motion for correlation functions that arises when
higher order moments of the corresponding master
equation are calculated (see [7]). Dropping all non-
linear terms in (1), we obtain Cahn’s linear equation
for S [8]:

(6)
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where

(7)

For negative , i.e., in the neighborhood of c0

corresponding to spinodal instability, the factor R(q) is
positive at q < qc , where

(8)

and has a maximum at q = qm = qc/ . In this approx-
imation, when q is close to qm, fluctuations grow expo-
nentially into a quasiperiodic structure with period λm =
2π/qm. A standard analysis of scattering data reduces to
finding the logarithmic time derivative of scattering
intensity as a function of q2. If the result is a line, then
the assumption about exponential behavior at the initial
decomposition stage is valid, and the corresponding
graph provides information about R(q)/q2.

The nonlinear form of (1) can be simplified by
applying the mean-field approximation developed
in [7]. In this model, all odd correlations vanish, while
the even ones (restricted to S4 here) take the form

(9)

with

(10)

The resulting equation for S(q, t) (up to S4), again

(cf. (6)), is linear, but the constant ∂2f/∂  is replaced
here by the time-dependent quantity

(11)

2. It is convenient to start an analysis of Eq. (1) from
its linear form (6). Using the initial conditions and
introducing appropriate dimensionless variables, we
obtain

(12)
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where x is the dimensionless wavenumber, xm is the
“linear” maximum point, x0 is the standard deviation in
the initial distribution, and τ is a relaxation time propor-
tional to the coefficient M in (1). The form of the initial
conditions in (12) corresponds either to the Ornstein–
Zernike structure function in thermal transition to the
spinodal region, as was done in [3, 4], or to mechanical
preparation of the initial state (approximately described
by the Lorentzian distribution) starting from the spin-
odal instability zone [1, 2]. The quantities χ and χs cor-
respond to Flory–Higgins interaction in the transition
and equilibrium regions, respectively. (Calculations are
performed here in general form, but the available mea-
surements discussed below are taken from polymer
studies.) The characteristic size R, for example, in the
case of mechanical preparation of the initial state [1], is

(12a)

where q0 is the characteristic wavenumber for a
mechanically prepared initial state. According to [1],
q0 ≈ 10–3 nm–1.

When S(x, t) in (12) is known, one can readily find
the extrema of this function by solving the equation

(13)

which has three roots. The root

(14)

is time-independent.
The remaining roots are expressed as

(15)

Roots (15) are meaningful if two conditions are sat-
isfied:

(16)

The second inequality in (16) determines the mini-
mal time tmin required for a shifted maximum of S(q, t)
to develop:
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Thus, the function S(x, t) has two maxima, x1 and x+,
in the interval tmin ≤ t ≤ tmax, where tmin and tmax are
defined by (17) and (18), respectively. At t > tmax, the
equation dS/dq = 0 has only two roots: a minimum at
x = 0 and a maximum at the point defined as

(19)
x+

2 0.5xm
2

x0
2

–( )=

+ 0.5xm
2 x0

2–( )2
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Fig. 1. Typical behavior of S(x, t): (a) two maxima when
condition (16) is satisfied, x0 = 0.7, xm = 3.16; (b) alternative
possibility, x0 = 0.7, xm = 0.67; t/τ values are shown at
curves.
ICS      Vol. 100      No. 2      2005
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It is clear from (19) that x+ ≠ xm even at t > tmax. Only
in the limit of τ/t  0, we have x+  xm.

Figure 1 shows typical shapes of S(x, t) correspond-
ing to several values of xm and x0.

3. The results obtained here can be used to interpret
the data reported in [1, 2], where a liquid symmetric
polymer solution was prepared in an unstable state (the
parameter e in (12) was positive). The solution was
thoroughly stirred to obtain as homogeneous a state as
possible at the initial moment. After the mixer was
switched off, spinodal decomposition was observed.
The process could be monitored by using light-scatter-
ing data. It was shown that the main spinodal extremum
S(q, t) grew exponentially during an early decomposi-
tion stage (see Fig. 4 in [1]). Therefore, there exists a
finite time interval, 0 ≤ t < t∗ , where the exponential
representation (12) corresponding to a linear approxi-
mation is reasonable.

Now, we note that the measured profile of S(q, t) has
a maximum at q  0 as t  0 (see Fig. 4 in [1]).
This behavior can be approximated by using S(x, 0)
from (12) with R from (12a). An adjustment leads to the
following estimate for x0 in S(x, 0) (1):

(20)

We can also estimate xm:

(21)

In calculating (20) and (21), a new normalization of

x0 3.8.≈

xm 9.6, x q/q0, q0 10 3–  nm 1– .= = =

10

9
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5

xm

x+

30 40 50 60 70 80

t, min

Saddle point

Fig. 2. Trajectory x+(t) (solid curve) for data from [1] (sym-
bols) with parameters S(x, t) in (12) adjusted at the initial
stage of decomposition. Nonlinear correction of x+(t) is
necessary after t ≥ 70–80 min.
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variables is used. Instead of the relations in (12), which
are well suited for general analysis, define a new scale
in the q space: q0 = 103 nm–1.

Using (20) and (21), we find that the first condition
in (16) is satisfied,

.

Therefore, S(q, t) can have two maxima. The location q
of the “saddle” point that corresponds to the appearance
of a peak at x+ is

(22)

This result is consistent with the saddle-point location
for the data reported in [1] (see Fig. 4 therein).

Using (17), we can also estimate τ/tsaddle:

(23)

In the experiments in [1], τ = /4Rm, where Rm =

R(qm) = 0.5 Deff ≈ 3 × 10–4 s–1; i.e.,

(24)

Furthermore, according Fig. 3 in [1], tsaddle ≈ 33 min.
Using data from [1], we obtain

(23a)

Agreement between (23a) and (23) is obvious.
Let us discuss the behavior of the time-dependent

maximum point x+ given by (19). In the linear represen-
tation of (19), this point moves from xsaddle defined
by (22) toward the asymptotic location xm as t  ∞.
Figure 2 provides an illustration based on data from [1].
In particular, this behavior explains why the root xm

obtained by analyzing the exponential part of R(x)/x2,

where R(x) ~ x2(1 – 0.5x2/ ) (xm = 9.6 under the con-
ditions of [1]), is distinct from the root x+ given by (19)
under the condition dS/dx = 0. The answer is obvious:
x+ is sensitive both to xm and to x0.

Figure 2 also illustrates the early nonlinear behavior
in the development of spinodal decomposition: at t >
70 min, the experimental data points representing x+(t)
fall below the solid curve predicted by the linear theory.
This phenomenon is explained below.

Figure 3 shows the general behavior of S(q, t) under
the conditions of [1]. The parameters S0 and x0 are
adjusted to match the data from [1] at t = 2.97 and
22.2 min with q = 4 nm–1. Thus, we have S0 = 66 and
x0 = 3.8. Under this normalization, expressions (12) for
S(x, t) and (12a) for R accurately reproduce the data
from [1]. Unfortunately, the no data concerning small
wavenumbers were presented in [1] (the initial data cor-
respond to q ≥ 4 × 103 nm–1); i.e., no information is

0.5xm
2 x0

2 0>–

xsaddle
2 0.5xm

2 x0
2– 31.64, xsaddle 5.62.≈= =

τ
tmin
------- τ

tsaddle
-----------≡ 2x0

2 0.5xm
2 x0

2–( )2

xm
2

-------------------------------+ 39.7.= =

xm
2

qm
2

τ 7.9 104 s.×≈

τ /tsdaddle 39.9.≈

xm
2
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available about the time-independent extremum
S(q  0, t). Nevertheless, Fig. 3 adequately illustrates
the situation in the neighborhood of the saddle point
and the evolution of the main maximum point x+. It is
obvious that initial conditions play a significant role in
the kinetics of the main maximum point at an early
decomposition stage.

4. Now, consider the turning point in Fig. 2. Here,
two processes begin to compete: one of them is respon-
sible for the upward movement of x+(t); the other (of
nonlinear nature) moves x+(t) to the downwards. The
competition determines the evolution of the moving
root near the turning point. To describe it, we solve the
general equation (11). Instead of (15), we obtain

(25)

Here, 〈δ (t)〉  is calculated by using (9) and (10) with
linear expression (12) for S(x, t) in the integrand. Note
that the data concerning S(q, t) in [1] are relative: the
value of S0 cannot be extracted from them. Therefore,

the numerical value of 〈δ (t)〉  in x+(t) remains unde-
termined, and we have to introduce a factor β and adjust
it to match the data from [1] in the neighborhood of the
turning point tturn . The quality of the adjustment is then

checked by comparing the theoretical location 

with experimental result  from [1]:

(26)

This yields

(27)

Accordingly,

(28)

It is obvious that  agrees with .

x+
2 t( ) 1

2
---xm

2
x0
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2 t( )〈 〉 td

0

t

∫–=

+
1
2
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2
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x0 3.8, xm 9.6,
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τ
-------- 0.061,= = =
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exp 8.5.=

β 0.00013.=

xturn
calcul 8.35.=
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exp
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Figure 4 illustrates the behavior of x+(t) near tturn

corresponding to the parameter values in (26) and (27).
The data points are borrowed from [1]. Calculations are
in fair agreement with experiment.

9

8

7

6

x+

0.02 0.04 0.06 0.08 0.10
t/τ

4

3

2

1

Fig. 4. Evolution of x+(t) (25) for β = (1) 0, (2) 0.0001,
(3) 0.000125, and (4) 0.00015.

300

200

100

0

S

4 6 8
q × 103, nm–1

2.97

22.2

41.5

51.2

60.8

70.5

80.0

t, min

Fig. 3. Structure of S(q, t) (12) at several instants normal-
ized to data from [1] (symbols) at t = 2.97 and 22.2 min for
q = 4 nm–1. Solid curves: normalized structure, S0 = 66, x0 =
3.8, x = q/q0 with q0 defined by (12a). Dotted curve corre-
sponds to the saddle line with tsaddle ~ 33 min and
xsaddle ~ 5.62.
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According to Figs. 2 and 4, the nonlinearity of the
problem begins to manifest itself at t/τ ≥ 0.06 under the
conditions of [1]. (Nonlinear terms in (1) must be small
as compared to the linear part of the equation.)

We conclude that initial conditions play an apprecia-
ble role in description of spinodal decomposition kinet-
ics at an initial stage. First of all, the present analysis
explains the “two-hump” form of the function S(x, t)
and the stability of the “zero” extremum (τ–1(q 
0) ∝  q2). Furthermore, an analysis of the data presented
in [1] gives an answer to the following question: Why
is the main extremum point x+ in the linear treatment of
spinodal decomposition does not coincide with the
point xm obtained in a standard analysis of exponential
behavior of S(x, t) at this stage. It turns out that these are
different quantities. In the general case, x+(t) < xm, and
x+ is time-dependent. Figure 2 illustrates the difference
between xm (dashed curve) and x+(t) (solid curve) for
the system studied in [1]. Also of interest is the exist-
ence of a turning point in the evolution of x+(t). Details
of this nonlinear phenomenon are illustrated by Fig. 4.
JOURNAL OF EXPERIMENTAL A
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