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Abstract—TheHe/H abundances in HII regions in Blue Compact Dwarf Galaxies are redetermined using
the new recombination coefficients of Benjamin et al. The electron number density ne in the He+ region,
optical depth τ3889 in the HeI λ3889 Å line, and coefficient of underlying stellar absorption aHeI are deter-
mined using the self-consistent method of Olive and Skillman. The primordial helium abundance and its
enrichment are found using the helium abundances obtained in this paper and heavy-element abundances
from our recent paper I: Yp = 0.244 ± 0.004 and dY/dZ = 8.8 ± 4.6. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Blue Compact Dwarf Galaxies (BCDGs) are
characterized by active star formation; giant HII re-
gions are observed near the sites hosting these pro-
cesses. These have low metallicity and have evolved
from material that has not yet taken part in stellar
evolution. Therefore, they are important objects for
determining the primordial helium abundance Yp and
the rate of its enrichment dY/dZ during the chemical
evolution of the stellar material in our Metagalaxy.
In our previous paper [1], we determined the

chemical compositions of HII regions in BCDGs
using new ionization correction factors derived from
a calculated grid of photoionization models for the
emission [2]. The observations used for this purpose
were spectra of the HII regions obtained by Izotov
et al. [3, 4]. Based on the chemical compositions
obtained, we determined the primordial helium abun-
dance, Yp = 0.244 ± 0.002, and rate of its enrich-
ment, dY/dZ = −4.02 ± 2.46. These values of Yp

and dY/dZ were obtained using the recombination
coefficients of Smits [5] and the collisional coefficients
of Kingdon and Ferland [6] for theHeI lines. However,
the value of dY/dZ turned out to be negative, in basic
contradiction to the theory of the chemical evolution
of stellar material, according to which the helium
abundance should increase, not decrease, with time.
Recently Benjamin et al. [7, 8] published new

approximate expressions for the recombination co-
efficients of He+, which self-consistently take into
account the collisional excitation of He+ ions and
radiative transfer in HeI lines. Given the importance
of determining He/H, we decided to rederive this ratio
and, accordingly, revise our previous values of Yp and
dY/dZ.
1063-7729/05/4909-0671$26.00
We report here the results of redetermining the
He/H abundance taking into account the above
factors.

2. TECHNIQUE FOR DETERMINING
THE HELIUM ABUNDANCE

The traditional method for determining the He/H
abundance ratio is based on using the helium ion
content He+/H+ and He++/H+ together with the
ionization-correction factors for He, which take into
account unobserved H and He atoms. The results
of [1, 3, 4] demonstrate that the He+/H+ ratios
found using the recombination coefficients of Brock-
lehurst [9] and Smits [5] differ systematically. Using
different coefficients for the collisional excitation of
HeI lines also affects the results; however, the main
role in determining He/H is played by the recom-
bination coefficients. Though the data of Smits [5]
are considered to be more correct, they (as well as
the data of Brocklehurst [9]) do not take into account
radiative transfer in HeI lines.
In two recent papers, Benjamin et al. [7, 8] (BSS)

present new expressions for the recombination co-
efficients taking into account radiative transfer and
collisional excitation of theHeI lines. The results of [8]
show that the He/H values obtained in [3, 4] can sub-
stantially change when radiative transfer in HeI lines
is taken into account. Accordingly, we decided to
redetermine the He+/H+ and He++/H+ ratios using
the BSS recombination coefficients.
As a rule, two unknown parameters are involved

when determining the He+/H+ ratio: the electron
density ne(HeI) in the HeI region and the optical
depth τ3889 in the HeI λ3889 Å line, which charac-
terizes the radiative transfer in the HeI lines. When
c© 2005 Pleiades Publishing, Inc.
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Values ofne(HeI), τ3889, aHeI and, accordingly, y+, y++ for four cases including different numbers ofHeI lines. (TheHe/H
abundances were obtained using our ionization-correction factors from [2].)

Included lines ne, cm−3 τ3889 aHeI y+
aver y++ He/H χ2

min

1 2 3 4 5 6 7 8

Object: 0723+692A

3 lines 140 ± 130 0.0 ± 3.0 0.3 ± 0.2 0.0830± 0.0008 0.00078± 0.00009 0.0838± 0.0048 0.002

4 lines 117 ± 110 1.3 ± 0.5 0.3 ± 0.2 0.0831± 0.0017 0.00078± 0.00009 0.0839± 0.0051 0.006

5 lines 110 ± 120 1.3 ± 0.5 0.6 ± 0.1 0.0844± 0.0015 0.00078± 0.00009 0.0852± 0.0051 1.690

6 lines 300 ± 5 0.5 ± 0.1 0.3 ± 0.1 0.0782± 0.0007 0.00078± 0.00009 0.0790± 0.0045 135

Object: 0723+692B

3 lines 10 ± 66 0.0 ± 2.5 1.1 ± 0.2 0.0905± 0.0025 0.0012± 0.0004 0.0915± 0.0030 4.23

4 lines 10 ± 4 0.0 ± 0.0 1.2 ± 0.2 0.0885± 0.0015 0.0012± 0.0004 0.0895± 0.0022 19.8

5 lines∗ 10 ± 4 0.0 ± 0.0 1.2 ± 0.1 0.0886± 0.0015 0.0012± 0.0004 0.0896± 0.0022 20.5

Object: 0741+535

3 lines 10 ± 290 0.0 ± 3.0 0.1 ± 0.2 0.0850± 0.0060 0 ± 0 0.0821± 0.0063 0.300

4 lines 10 ± 97 0.0 ± 0.4 0.1 ± 0.2 0.0846± 0.0060 0 ± 0 0.0817± 0.0062 0.361

5 lines∗ 10 ± 95 0.0 ± 0.3 0.0 ± 0.1 0.0793± 0.0026 0 ± 0 0.0766± 0.0034 9.32

Object: 0907+543

3 lines 10 ± 190 0.0 ± 3.0 0.1 ± 0.8 0.0947± 0.0051 0.0025± 0.0001 0.0966± 0.0058 4.16

4 lines 10 ± 97 0.1 ± 0.4 0.1 ± 0.8 0.0949± 0.0043 0.0025± 0.0001 0.0968± 0.0051 4.18

5 lines 10 ± 120 0.3 ± 0.3 0.6 ± 0.1 0.0978± 0.0022 0.0025± 0.0001 0.0997± 0.0036 4.61

6 lines 87 ± 86 0.0 ± 0.6 0.5 ± 0.1 0.0943± 0.0039 0.0025± 0.0001 0.0962± 0.0047 9.26

Object: 0917+527

3 lines 10 ± 220 0 ± 3 0.1 ± 0.1 0.0834± 0.0017 0.0020± 0.0003 0.0850± 0.0022 0.079

4 lines 10 ± 8 0 ± 0 0.2 ± 0.1 0.0833± 0.0020 0.0020± 0.0003 0.0848± 0.0025 5.90

5 lines 10 ± 7 0 ± 0 0.1 ± 0.0 0.0814± 0.0000 0.0020± 0.0003 0.0829± 0.0015 6.49

6 lines 10 ± 7 0 ± 0 0.1 ± 0.0 0.0812± 0.0000 0.0020± 0.0003 0.0827± 0.0015 7.50

Object: 0926+606

3 lines 10 ± 43 0.0 ± 1.4 0.8 ± 0.1 0.0882± 0.0022 0.0014± 0.0002 0.0870± 0.0033 12.0

4 lines 10 ± 47 0.6 ± 0.2 0.8 ± 0.1 0.0880± 0.0011 0.0014± 0.0002 0.0869± 0.0027 12.4

5 lines 11 ± 66 0.6 ± 0.3 0.6 ± 0.0 0.0854± 0.0018 0.0014± 0.0002 0.0843± 0.0029 13.9

6 lines 10 ± 41 0.6 ± 0.2 0.6 ± 0.0 0.0855± 0.0012 0.0014± 0.0002 0.0845± 0.0027 17.5

Object: 0940+544N

3 lines 236 ± 190 2.9 ± 2.9 0.4 ± 0.5 0.0820± 0.0034 0 ± 0 0.0803± 0.0036 1 × 10−7

4 lines 199 ± 130 0.0 ± 0.8 0.4 ± 0.5 0.0828± 0.0038 0 ± 0 0.0811± 0.0041 0.203

5 lines 10 ± 44 1.1 ± 0.4 0.0 ± 0.0 0.0856± 0.0007 0 ± 0 0.0839± 0.0017 16.9

6 lines 10 ± 53 1.1 ± 0.5 0.0 ± 0.0 0.0854± 0.0009 0 ± 0 0.0837± 0.0018 18.1

3 lines 300 ± 200 3.0 ± 3.0 0.0 ± 0.1 0.0796± 0.0011 0.0014± 0.0001 0.0798± 0.0025 0.488

4 lines 290 ± 170 0.0 ± 0.5 0.0 ± 0.1 0.0799± 0.0021 0.0014± 0.0001 0.0800± 0.0030 0.949

5 lines 277 ± 160 0.0 ± 0.7 0.5 ± 0.1 0.0870± 0.0033 0.0014± 0.0001 0.0870± 0.0040 7.510

6 lines 277 ± 160 0.0 ± 0.5 0.5 ± 0.1 0.0870± 0.0030 0.0014± 0.0001 0.0870± 0.0038 7.510
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Table. (Contd.)

1 2 3 4 5 6 7 8

Object: 0948+532

3 lines 300 ± 200 3.0 ± 3.0 0.0 ± 0.3 0.0799± 0.0026 0.0008± 0.0001 0.0808± 0.0036 1.20

4 lines 300 ± 190 0.6 ± 0.7 0.0 ± 0.3 0.0800± 0.0031 0.0008± 0.0001 0.0808± 0.0040 1.54

5 lines 300 ± 150 0.5 ± 0.6 0.8 ± 0.0 0.0876± 0.0009 0.0008± 0.0001 0.0884± 0.0028 5.97

6 lines 293 ± 250 0.6 ± 0.9 0.8 ± 0.0 0.0878± 0.0014 0.0008± 0.0001 0.0886± 0.0030 8.28

Object: 1030+583

3 lines 10 ± 28 0.0 ± 1.1 0.6 ± 0.1 0.0867± 0.0014 0.0021± 0.0002 0.0888± 0.0021 7.17

4 lines 10 ± 34 0.7 ± 0.2 0.6 ± 0.1 0.0866± 0.0012 0.0021± 0.0002 0.0886± 0.0020 7.79

5 lines 10 ± 60 0.7 ± 0.3 0.2 ± 0.0 0.0803± 0.0012 0.0021± 0.0002 0.0824± 0.0019 17.8

6 lines 25 ± 110 0.6 ± 0.5 0.2 ± 0.0 0.0801± 0.0019 0.0021± 0.0002 0.0821± 0.0024 21.7

Object: 1054+365

3 lines 300 ± 290 3.0 ± 3.0 0.1 ± 0.3 0.0803± 0.0034 0 ± 0 0.0796± 0.0040 0.026

4 lines 106 ± 96 0.0 ± 0.5 0.3 ± 0.3 0.0846± 0.0029 0 ± 0 0.0839± 0.0037 0.596

5 lines 122 ± 110 0.0 ± 0.6 0.4 ± 0.1 0.0853± 0.0028 0 ± 0 0.0846± 0.0037 1.41

6 lines 134 ± 71 0.0 ± 0.2 0.4 ± 0.1 0.0845± 0.0014 0 ± 0 0.0838± 0.0027 7.96

Object: 1116+583B

3 lines 231 ± 220 3.0 ± 3.0 0.0 ± 0.8 0.0766± 0.0011 0.0022± 0.0009 0.0784± 0.0110 0.004

4 lines 253 ± 240 0.0 ± 1.9 0.0 ± 0.8 0.0766± 0.0097 0.0022± 0.0009 0.0784± 0.0098 0.007

5 lines 10 ± 290 1.8 ± 1.6 0.0 ± 0.6 0.0796± 0.0074 0.0022± 0.0009 0.0814± 0.0076 14.1

Object: 1124+792

3 lines 10 ± 36 0.0 ± 1.4 0.1 ± 0.2 0.0820± 0.0017 0 ± 0 0.0804± 0.0022 5.14

4 lines 10 ± 1 0.0 ± 0.0 0.0 ± 0.1 0.0783± 0.0009 0 ± 0 0.0768± 0.0016 33.9

5 lines 10 ± 1 0.0 ± 0.0 1.1 ± 0.1 0.0875± 0.0011 0 ± 0 0.0858± 0.0019 75.9

6 lines 10 ± 1 0.0 ± 0.0 1.0 ± 0.1 0.0862± 0.0011 0 ± 0 0.0845± 0.0019 79.8

Object: 1128+573

3 lines 300 ± 290 3.0 ± 3.0 0.2 ± 0.4 0.0740± 0.0074 0 ± 0 0.0740± 0.0090 0.384

4 lines 10 ± 27 0.0 ± 0.1 0.0 ± 0.3 0.0684± 0.0052 0 ± 0 0.0684± 0.0070 9.17

5 lines 10 ± 27 0.0 ± 0.1 0.0 ± 0.3 0.0684± 0.0050 0 ± 0 0.0684± 0.0069 9.18

Object: 1135+581

3 lines 300 ± 64 3.0 ± 1.9 0.4 ± 0.1 0.0815± 0.0013 0.0016± 0.0001 0.0807± 0.0026 2.97

4 lines 228 ± 50 0.0 ± 0.1 0.4 ± 0.1 0.0821± 0.0011 0.0016± 0.0001 0.0813± 0.0025 6.18

5 lines 211 ± 140 0.0 ± 0.5 0.0 ± 0.0 0.0772± 0.0012 0.0016± 0.0001 0.0766± 0.0025 21.8

6 lines 213 ± 90 0.0 ± 0.3 0.0 ± 0.0 0.0771± 0.0008 0.0016± 0.0001 0.0765± 0.0023 23.7

Object: 1152+579

3 lines 300 ± 43 3.0 ± 2.3 0.2 ± 0.2 0.0803± 0.0011 0.0010± 0.0001 0.0813± 0.0061 2.12

4 lines 300 ± 40 1.3 ± 0.2 0.2 ± 0.2 0.0804± 0.0012 0.0010± 0.0001 0.0815± 0.0061 2.83

5 lines 300 ± 46 1.3 ± 0.3 0.0 ± 0.0 0.0793± 0.0003 0.0010± 0.0001 0.0804± 0.0059 4.02

6 lines 300 ± 40 1.3 ± 0.2 0.0 ± 0.0 0.0792± 0.0002 0.0010± 0.0001 0.0803± 0.0059 5.58
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Table. (Contd.)

1 2 3 4 5 6 7 8

Object: 1159+545

3 lines 300 ± 83 3.0 ± 3.0 0.0 ± 0.4 0.0708± 0.0023 0.0007± 0.0001 0.0701± 0.0026 1.23

4 lines 202 ± 82 0.0 ± 0.3 0.0 ± 0.4 0.0719± 0.0021 0.0007± 0.0001 0.0712± 0.0025 3.55

5 lines 216 ± 92 0.0 ± 0.3 0.1 ± 0.1 0.0719± 0.0017 0.0007± 0.0001 0.0712± 0.0021 3.84

6 lines 223 ± 120 0.0 ± 0.4 0.1 ± 0.1 0.0720± 0.0018 0.0007± 0.0001 0.0713± 0.0022 5.77

Object: 1205+557

3 lines 10 ± 290 0.0 ± 3.0 0.0 ± 0.2 0.0813± 0.0045 0.0016± 0.0006 0.0790± 0.0049 0.445

4 lines 10 ± 9 0.0 ± 0.0 0.6 ± 0.2 0.0898± 0.0058 0.0016± 0.0006 0.0871± 0.0061 20.6

5 lines 10 ± 9 0.0 ± 0.0 0.2 ± 0.0 0.0793± 0.0000 0.0016± 0.0006 0.0771± 0.0023 25.9

6 lines 10 ± 9 0.0 ± 0.0 0.2 ± 0.0 0.0787± 0.0000 0.0016± 0.0006 0.0766± 0.0023 27.4

Object: 1211+540

3 lines 10 ± 160 0.0 ± 3.0 0.4 ± 0.1 0.0829± 0.0011 0.0023± 0.0001 0.0848± 0.0026 0.038

4 lines 13 ± 140 0.6 ± 0.6 0.4 ± 0.1 0.0828± 0.0022 0.0023± 0.0001 0.0847± 0.0026 0.084

5 lines 54 ± 95 0.4 ± 0.4 0.5 ± 0.0 0.0830± 0.0009 0.0023± 0.0001 0.0849± 0.0018 1.21

6 lines 87 ± 77 0.2 ± 0.5 0.5 ± 0.0 0.0825± 0.0011 0.0023± 0.0001 0.0844± 0.0019 2.49

Object: 1222+614

3 lines 300 ± 180 3.0 ± 3.0 0.0 ± 0.0 0.0743± 0.0002 0.0015± 0.0002 0.0751± 0.0021 1.01

4 lines 20 ± 24 0.0 ± 0.1 0.0 ± 0.0 0.0764± 0.0005 0.0015± 0.0002 0.0772± 0.0022 4.79

5 lines 29 ± 22 0.0 ± 0.1 0.2 ± 0.0 0.0796± 0.0004 0.0015± 0.0002 0.0804± 0.0023 9.32

6 lines 33 ± 23 0.0 ± 0.1 0.2 ± 0.0 0.0793± 0.0004 0.0015± 0.0002 0.0801± 0.0023 11.8

Object: 1223+487

3 lines 10 ± 18 0.0 ± 0.7 0.7 ± 0.1 0.0854± 0.0006 0.0010± 0.0001 0.0864± 0.0016 7.88

4 lines 10 ± 22 0.5 ± 0.1 0.7 ± 0.1 0.0854± 0.0006 0.0010± 0.0001 0.0865± 0.0016 8.74

5 lines 10 ± 14 0.5 ± 0.1 0.4 ± 0.0 0.0837± 0.0002 0.0010± 0.0001 0.0847± 0.0015 13.7

6 lines 95 ± 56 0.1 ± 0.3 0.3 ± 0.0 0.0813± 0.0008 0.0010± 0.0001 0.0823± 0.0016 19.4

Object: 1256+351

3 lines 10 ± 32 0.0 ± 0.9 0.6 ± 0.1 0.0858± 0.0008 0.0009± 0.0001 0.0859± 0.0025 5.16

4 lines 10 ± 42 1.5 ± 0.2 0.6 ± 0.1 0.0855± 0.0010 0.0009± 0.0001 0.0855± 0.0026 6.90

5 lines 10 ± 70 1.5 ± 0.3 0.7 ± 0.0 0.0861± 0.0007 0.0009± 0.0001 0.0861± 0.0025 11.5

6 lines 120 ± 90 1.0 ± 0.4 0.7 ± 0.0 0.0852± 0.0010 0.0009± 0.0001 0.0853± 0.0026 18.9

Object: 1319+579A

3 lines 10 ± 29 0.0 ± 0.7 0.2 ± 0.0 0.1010± 0.0001 0.0007± 0.0001 0.1010± 0.0028 14.0

4 lines 243 ± 42 3.0 ± 0.1 0.1 ± 0.0 0.0885± 0.0003 0.0007± 0.0001 0.0887± 0.0025 40.3

5 lines 298 ± 68 1.7 ± 0.2 0.0 ± 0.0 0.0766± 0.0004 0.0007± 0.0001 0.0768± 0.0022 105

6 lines 300 ± 11 1.6 ± 0.1 0.0 ± 0.0 0.0756± 0.0002 0.0007± 0.0001 0.0759± 0.0021 200

Object: 1319+579C

3 lines 10 ± 290 0.0 ± 3.0 0.0 ± 0.1 0.0807± 0.0019 0.0012± 0.0003 0.0779± 0.0020 0.701

4 lines 10 ± 7 0.0 ± 0.0 0.3 ± 0.1 0.0840± 0.0024 0.0012± 0.0003 0.0809± 0.0025 18.9

5 lines∗ 10 ± 6 0.0 ± 0.0 0.3 ± 0.1 0.0842± 0.0024 0.0012± 0.0003 0.0812± 0.0025 20.2
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Table. (Contd.)

1 2 3 4 5 6 7 8

Object: 1331+493N

3 lines 300 ± 240 3.0 ± 3.0 0.4 ± 0.3 0.0790± 0.0024 0 ± 0 0.0790± 0.0029 0.017

4 lines 26 ± 39 0.0 ± 0.2 0.5 ± 0.3 0.0837± 0.0020 0 ± 0 0.0837± 0.0026 2.11

5 lines 38 ± 36 0.0 ± 0.2 0.2 ± 0.1 0.0804± 0.0018 0 ± 0 0.0804± 0.0024 2.94

6 lines 39 ± 36 0.0 ± 0.2 0.2 ± 0.1 0.0802± 0.0018 0 ± 0 0.0802± 0.0024 3.59

Object: 1437+370

3 lines 10 ± 240 0.0 ± 3.0 0.3 ± 0.3 0.0840± 0.0035 0.0025± 0.0002 0.0848± 0.0042 0.306

4 lines 10 ± 11 0.0 ± 0.2 0.5 ± 0.2 0.0851± 0.0029 0.0025± 0.0002 0.0859± 0.0038 4.08

5 lines 10 ± 3 0.0 ± 0.0 0.0 ± 0.0 0.0833± 0.0000 0.0025± 0.0002 0.0841± 0.0024 175

6 lines 10 ± 3 0.0 ± 0.0 0.0 ± 0.0 0.0837± 0.0000 0.0025± 0.0002 0.0845± 0.0024 181

Object: 1533+574A

3 lines 10 ± 290 0.0 ± 3.0 0.1 ± 0.1 0.0840± 0.0055 0 ± 0 0.0827± 0.0056 0.273

4 lines 10 ± 39 0.0 ± 0.1 0.1 ± 0.0 0.0832± 0.0003 0 ± 0 0.0819± 0.0015 0.747

5 lines∗ 10 ± 42 0.0 ± 0.1 0.1 ± 0.0 0.0829± 0.0003 0 ± 0 0.0816± 0.0015 2.59

Object: 1533+574B

3 lines 10 ± 290 2.6 ± 2.6 0.1 ± 0.1 0.0828± 0.0017 0.0009± 0.0002 0.0822± 0.002 0.035

4 lines 54 ± 250 1.5 ± 1.0 0.1 ± 0.1 0.0827± 0.0039 0.0009± 0.0002 0.0821± 0.0044 0.036

5 lines 300 ± 290 0.6 ± 1.1 0.4 ± 0.0 0.0864± 0.0033 0.0009± 0.0002 0.0858± 0.0041 6.40

6 lines 300 ± 66 0.7 ± 0.2 0.4 ± 0.0 0.0850± 0.0007 0.0009± 0.0002 0.0843± 0.0025 39.3
∗ The HeI λ4026 Å line is absent; we have taken instead the HeI λ3889 Å line.
the effect of the radiative transfer is included, the
intensity of the HeI λ3889 Å line decreases, while
the intensities of most of the remaining HeI lines
increase. There is also a third important parameter
for HII regions in BCDGs: aHeI, which characterizes
the so-called underlying stellar absorption. This effect
arises because observations of HII regions in BCDGs
measure the integrated spectrum, which is a super-
position of the emission spectrum from the HII region
and the stellar absorption spectra. If this contribution
is important, the observed intensities of the HeI lines
are lower than the “pure” intensities; this results,
in turn, in underestimated He abundances for the
HII regions.We took the underlying stellar absorption
into account using equivalent widths in HeI lines of
the HII regions, EW(λ), kindly supplied to us by
Yu.I. Izotov. The general expression for determining
the ion content y+ ≡ He+/H+ from the intensity of
an HeI line I(λ) is [10]

y+(λ) =
I(λ)

I(Hβ)
F (ne, Te)

f(ne, Te, τ3889)
EW(λ) + aHeI
EW(λ)

, (1)
ASTRONOMY REPORTS Vol. 49 No. 9 2005
where I(λ)/I(Hβ) is the relative intensity in a
HeI line, and F (ne, Te) and f(ne, Te, τ3889) are the
approximation functions of BSS for the recombina-
tion coefficients and for taking into account the ra-
diative transfer in HeI lines, respectively. The electron
temperature Te in the HeII region was taken to be
equal to the electron temperature in the [OIII] re-
gion [3, 4]. The electron density ne in the HeII region,
optical depth τ3889, and underlying stellar-absorption
factor aHeI were taken to be unknown. We estimated
these quantitites using the technique of Olive and
Skillman [10], which is based on finding the mean
weighted abundance

y+
aver =

∑
λ

y+(λ)
σ(λ)2

∑
λ

1
σ(λ)2

, (2)

where we have used the errors in the relative inten-
sities of the observed lines for σ(λ), and the y+(λ)
values were calculated using (1) for different HeI
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Fig. 1. Y−Z relationships found for cases including (a) three, (b) four, (c) five, and (d) six HeI lineswhen determiningHe+/H+.
lines. Searching for the most probable values of ne,
τ3889, and aHeI reduces to finding the minimum of the
χ2 function

χ2 =
∑

λ

(y+(λ) − y+
aver)2

σ(λ)2
. (3)

3. RESULTS AND DISCUSSION

The table lists the values of ne, τ3889, aHeI, and
y+, y++ we obtained, together with the correspond-
ing value of χ2

min, for the objects that were used
in [4] to derive the primordial helium abundance. Like
Olive and Skillman [10], we considered four types
of HeI line combinations: (1) the three lines λ4471,
λ5876, λ6678, (2) the four lines λ4471, λ5876, λ6678,
λ7065, (3) the five lines λ4026, λ4471, λ5876, λ6678,
λ7065, and (4) the six lines λ3889, λ4026, λ4471,
λ5876, λ6678, λ7065. The expressions needed to de-
termine He/H with the He ionization-correction fac-
tors we obtained from photoionization-model calcu-
lations are given in [2].
The resulting He/H ratios in the studied HII re-

gions and their standard deviations ∆(He/H) are
presented in the table for each of the four HeI line
combinations noted above.
We determined Yp and dY/dZ using a Y−Z rela-

tionship, where Y and Z are the mass abundances of
helium and heavy elements (see formulas (5) in [1]).
We described the procedure used to derive Yp and
dY/dZ in [1]. We obtained the following approxima-
tion relationships for the various cases for determin-
ing He+/H+ (see above):
Including three HeI lines:

Z = 15.11 O/H+ 4.72 × 10−5. (4)

Including four HeI lines:

Z = 15.22 O/H+ 3.55 × 10−5. (5)

Including five HeI lines:

Z = 15.35 O/H+ 3.01 × 10−5. (6)

Including six HeI lines:

Z = 15.55 O/H+ 2.20 × 10−5. (7)

Thus, having the O/H abundance, which is al-
ways determined most firmly, we can find Z using
expressions (4)–(7). We have plotted the resulting
Y−Z relationships (Fig. 1) for the objects considered
for all the cases noted above. Linear approximations
to each of these relations, weighted with the standard
deviations of the corresponding values, yield

Including three HeI lines:

Y = 0.241(±0.004) + 12.2(±4.2)Z. (8)

Including four HeI lines:

Y = 0.244(±0.004) + 8.8(±4.6)Z. (9)

Including five HeI lines:

Y = 0.247(±0.003) + 2.7(±3.8)Z. (10)

Including six HeI lines:

Y = 0.245(±0.003) + 1.3(±3.5)Z. (11)
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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4. CONCLUSIONS

We have redetermined the He/H abundance ra-
tios for 23 HII regions in BCDGs using the new
recombination coefficients of [8]. When finding this
ratio, we took into account the parameters of the
HeI region, such as ne, τ3889, and aHeI. We used the
heavy-element abundances from [1] to analyze the
Y−Z relation, and have revised our previous values
for the primordial helium abundance, Yp, and the rate
of its enrichment, dY/dZ.
Our results demonstrate that the new Yp and

dY/dZ values coincide with those obtained by Izotov
et al. [4, 11] within 1σ. In cases when three and four
HeI lines were used, we can derive two dY/dZ values,
and, in the cases of five and six lines, another pair of
dY/dZ values; the former are greater than the latter
values. This discrepancy could be due to inaccuracy
in the intensities of the HeI λ4026 Å and λ3889 Å
lines. For instance, the λ3889 Å line is blended with
the H8 line. As in [4], we took the H8 intensity to
be 0.106. However, there is no guarantee that it is,
in fact, equal to this value. The HeI λ4026 Å line is
characterized by a very small equivalent width, which
makes this line extremely sensitive to effects such as
underlying stellar absorption. In addition, the faint
intensity of this line gives rise to a lower signal-to-
noise ratio than for the other lines. Therefore, the
HeI λ4026 Å line cannot be considered a reliable
indicator of the He/H content. Thus, we consider
the result obtained using four HeI lines (9) to be the
most reliable; i.e., Yp = 0.244 ± 0.004 and dY/dZ =
8.8 ± 4.6.
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Abstract—The conditions for the acceleration of the spatial motions of stars by close-binary supermassive
black holes (SMBHs) in galactic nuclei are analyzed in order to derive the velocity distribution for stars
ejected from galaxies by such black holes. A close binary system consisting of two SMBHs in circular orbits
was subject to a spherically symmetrical “barrage” of solar-mass stars with various initial velocities. The
SMBHs were treated as point objects with Newtonian gravitational fields. Models with binary component-
mass ratios of 1, 0.1, 0.01, and 0.001 were studied. The results demonstrate the possibility of accelerating
neutron stars, stellar-mass black holes, and degenerate dwarfs to velocities comparable to the relative
orbital velocities of the binary-SMBH components. In the stage when the binary components are merging
due to the action of gravitational-wave radiation, this velocity can approach the speed of light. The most
massive binary black-holes (M � 109 M�) can also accelerate main-sequence stars with solar or subsolar
masses to such velocities. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The rotational space velocities of most stars be-
longing to the disk component of our Galaxy and
the velocities of spherical-component stars are both
200–300 km/s. Essentially, these velocities were
reached due to the acceleration of gas and stars
during the initial collapse of the Galaxy. Other mech-
anisms for the acceleration of single and binary stars
are also known, such as the disruption of unstable
triple stellar systems. In order to be stable, a triple
system must have a hierarchical structure, in which
two stars form a binary and the third rotates about
this binary. According to the observations of [1], the
ratio of the rotational period of the third star and
the orbital period of the binary must exceed some
critical value, which is close to eight and depends on
the component-mass ratio of the system. This period
ratio corresponds to a ratio of the system semimajor
axes that is close to four. It is obvious that closer
triple stars will be disrupted due to instability, forming
binaries and, as a rule, ejecting the lower-mass
component with a velocity of the order of the orbital
velocity of the remaining binary components. For the
closest binaries that remain bound, the velocity of the
ejected star can reach 100–200 km/s. Stars of any
mass, from 0.1M� to 100M�, can be accelerated in
this way.

Another way in which single stars can be accel-
erated by binaries is during collisions between single
and close binary stars. Hill [2, 3] was the first to
consider this case; these studies were later continued
1063-7729/05/4909-0678$26.00
by Hut [4–6]. The main goal of these investigations
was to determine the conditions for the acceleration
of single stars in globular clusters due to interactions
with close binaries.

Extensive calculations of the evolution of globular
clusters in the framework of the N-body problem car-
ried out by Baumgardt et al. [7] showed that, due to
collisions (close passages) of single stars, more than
half the stars leaving the parent cluster gain velocities
of the order of the velocity dispersion of the cluster
stars. As a rule, the simulated characteristic velocities
gained by the stars reach several tens of km/s, which
is sufficient for a star to leave the cluster.

Another means of acceleration that is possible for
the most massive single and binary stars is provided
by supernova explosions in the closest binaries [8].
These supernovae are of types Ib,c, whose precursors
are helium stars—products of mass transfer in close
binaries with similar initial component masses. As
a result, so-called “runaway” stars are formed [8].
This mechanism is potentially very efficient, and the
products of such disrupted systems can gain veloc-
ities of up to 1000 km/s, as is exemplified by ra-
dio pulsars that are the products of type-Ib,c super-
novae in closest binaries. The mechanism can also
efficiently accelerate low-mass main-sequence (MS)
stars. For example, let us suppose that an initial
binary consists of a helium star with mass 10M�
(sufficient to provide the formation of a neutron star
with a mass of 1.3M� after the supernova) and a
MS star with a mass below ∼1.5M�. The radii of
MS stars of such masses are related to their masses
c© 2005 Pleiades Publishing, Inc.
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as R/R� ≈ M/M�. To estimate the highest possible
orbital velocity of a MS star, let us assume that it fills
its Roche lobe. In this case, its orbital velocity will
be ∼600(M/M�)−1/3 km/s. A solar-type “runaway”
star leaving the Galaxy with a velocity of ∼700 km/s
was recently detected by Brown et al. [9]; the distance
to this star is ∼50 Kpc, and its velocity appreciably
exceeds the escape velocity from the Galaxy at this
distance,∼300 km/s. Thus, close binaries may form a
kind of “wind” consisting of MS stars, neutron stars,
and stellar-mass black holes that are leaving their
parent galaxies and populating intergalactic space.

Observations show that the intergalactic space
in clusters of galaxies contains 10−20% of all the
stars [10]. Some of these stars display velocities
corresponding to the escape velocities from the halo
of our own Galaxy [11]. There is no doubt that
most of these stars have ended up in intergalactic
space due to collisions between galaxies, with their
partial disruption in dense clusters of galaxies. In
such clusters, galaxies move with velocities of up
to 500–1000 km/s [12], and their collisions fill the
intergalactic space (and the galaxies themselves)
with rapidly moving stars with velocities comparable
to those of their parent galaxies. Thus, collisions
between galaxies, which are very frequent in dense
clusters of galaxies, represent another, and possibly
the most likely, means to produce stars with ve-
locities reaching ∼1000 km/s. This primarily refers
to long-lived MS stars with subsolar masses, and
also to degenerate dwarfs, neutron stars, and black
holes (BHs).

Another interesting implication of the existence
of high-velocity stars follows from the fact that the
Universe contains clusters of galaxies with masses of
up to ∼1015 M� at distances ∼80 Mpc [7]. Assuming
a Hubble constant of ∼70 km/s Mpc, adjacent clus-
ters move apart with velocities of ∼5000–6000 km/s.
Hence, the most rapid objects originating in galaxies
will be able to fill the intercluster space, “overcoming”
cosmological expansion, so that adjacent clusters of
galaxies, as we shall see later, can even “exchange”
their fastest stars.

The above acceleration mechanisms are not able
to yield stellar velocities higher than ∼1000 km/s.
However, neutron stars and stellar BHs can poten-
tially gain even higher velocities. If the ejection of
neutrino energy during a supernova explosion that
gives rise to a neutron star or BH is asymmetri-
cal, the neutron star or BH can acquire a “kick,”
which is potentially capable of accelerating them to
∼30 000 km/s. On the other hand, the currently ob-
served velocities of radio pulsars are no higher than
∼1000 km/s. Such velocities can be explained by the
ASTRONOMY REPORTS Vol. 49 No. 9 2005
disruption of close binaries in the second supernova
in the binary [13]. Therefore, the role of the “kick” in
the acceleration of neutron stars remains unclear.

For completeness, we should point out another
mechanism for accelerating compact objects to high
velocities, which can occur only around a single su-
permassive black hole (SMBH, which are probably
common in galactic nuclei). This mechanism is re-
lated to binary “collisions” (close passages) of two
single, unrelated stars, or of a very close binary in the
vicinity of a SMBH. The essence of the mechanism
is that the energy of the forming connection between
the SMBH and the more massive of the two stars is
transformed into kinetic energy of the less massive
star. Let MBH be the BH mass, and M and m the
masses of the more massive and less massive star.
When the initial semimajor orbital axes of the col-
liding stars are large, their initial energy can be ne-
glected if the orbits have a sufficiently high eccentric-
ity. Let us assume that, after the collision, the more
massive star acquires a circular orbit at a distance A
around the BH. The law of energy conservation can
then be written

GMMBH

2A
=

GmMBH

A
+

mv2

2
, (1)

where v is the velocity of the runaway star at infinity.
Hence, this velocity can be estimated:

v =
[
GMBH

A

(
M

m
− 2
)]1/2

. (2)

A can be of the order of the gravitational radius
of the BH, which for M > 2m provides a nearly
relativistic velocity v for a point-like mass. In reality,
however, the velocities will be restricted to their
parabolic values on the surfaces of the colliding
stars. Therefore, only degenerate dwarfs, neutron
stars, and stellar-mass BHs, which are relatively
rare (10−3–10−2) but natural for a stellar population
surrounding an SMBH at the center of a galaxy, can
be accelerated to nearly relativistic velocities. De-
generate dwarfs bound to the same dwarfs, neutron
stars, or BHs can be accelerated to ∼4000 km/s, and
neutron stars or stellar-mass BHs to∼100 000 km/s.
Specially designed modeling that takes into account
the diffusion of stars in the space around an SMBH
and the variation of their velocity distribution with
time is needed to estimate the contribution of this
mechanism.

In collisions with SMBHs, MS stars (not to
mention red giants) will be disrupted by tidal forces
while crossing the boundary of the Roche lobe of the
SMBH, preventing them from being accelerated to
higher velocities. In ordinary galaxies with central
BHs with masses of 106–108 M�, the frequency of
such events is 10−4–10−5/year [14]. There has been
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little observational evidence for such events; however,
it is important that they are seen as optical and X-ray
flares lasting from months to years [15–19]. After an
MS star is disrupted, the SMBH accretes part of
its matter over several months or years. It is likely
that some fraction of the disrupted star is evaporated
by X-ray radiation originating during the accretion
of the disk formed from the star (polar jets may
be seen in this case). If stars of a galactic nucleus
possess angular momentum, some of the matter of
the disrupted stars may form a stationary compact
gaseous disk around the central SMBH. If this disk
is dense enough, star formation may even occur in it.
Some evidence for this is provided, for example, by
the detection of massive young stars around the BH
in the nucleus of our Galaxy [20].

Finally, we consider another possible mechanism:
the acceleration of stars by a close binary SMBH in
the nucleus of the product of a galaxy merger [21, 22].
Here, we study the interaction of stars in a galactic
nucleus with a central close-binary SMBH. We wish
to obtain the velocity spectrum of the stars that
are accelerated as a result of this interaction under
these conditions. We also consider the distribution of
the incoming and outgoing regions occupied by the
accelerated stars on the sky as a function of their final
velocity. In particular, we pay special attention to the
closeness of approach of the components of the binary
SMBH by the accelerated stars, in order to estimate
the role of tidal forces, which are capable of disrupting
these stars under certain conditions. These stars
may provide an important source of matter accreted
by the BH, despite the fact that a disrupted star is
excluded from the stars that can be accelerated.

2. ACCELERATION OF STARS BY BINARY
SMBHs IN GALACTIC NUCLEI

2.1. Formation and Evolution of Binary SMBHs

Close-binary SMBHs originate in collisions be-
tween galaxies containing SMBHs in each of their
nuclei [22]. The stellar components of the galaxies
integrate, forming an elliptical galaxy, which is gener-
ally free of gas, while the SMBHs are tidally deceler-
ated by the stellar component of the merger product,
forming a close-binary SMBH.

Such binary SMBHs are indeed observed in
galactic nuclei; some examples are presented by
Komossa [23]. Binary nuclei were detected in 5 of
77 elliptical galaxies studied by Lauer et al. [11]. The
nucleus of the galaxy Mkn 501 contains two BHs
with masses of 108 M� and 109 M� [24]. A binary BH
with component masses ∼7 × 108 M�, semimajor
axes ∼0.33 pc, and an orbital period of ∼480 yr was
suspected in the nucleus of the galaxy 3C 345 [25].
The orbital velocities of the components of this sys-
tem are ∼1000 km/s. Even among the most nearby
galaxies, merging galaxies with two [26, 27] and
even three [28] nuclei are observed. Binary quasars
with SMBHs separated by only ∼20 kpc [29] and
even ∼8 kpc at z = 2.24 [30] are known. These facts
present additional arguments in support of studies of
the behavior of stars in the gravitational field of close-
binary SMBHs. The very fact that quasars originated
when the age of the Universe was as small as ∼109 yr
underlines the efficiency of collisions of galaxies in
dense clusters [31]. Another possible way for a close-
binary SMBH with a large component-mass ratio to
form in a galactic nucleus is when a globular cluster
of a galaxy merges with the SMBH at its center. This
mechanism may represent the main way in which the
masses of SMBHs in galactic nuclei grow [22].

At late stages in the evolution of a close-binary
BH, its components merge due to the loss of momen-
tum from the system via gravitational-wave radiation.
The characteristic time for the approach of two BHs
with masses M1 and M2 and an orbital semimajor
axis A is given by the expression

τGWR ≈ 108

(
A

R�

)4 M3
�

M1M2(M1 + M2)
yrs. (3)

Assuming for simplicity that the components have
the same mass M and τGWR = 1.3 × 1010 yr, we
can find the size of systems that coalesce over the
Hubble time and the minimum orbital velocities of
their components. The minimum semimajor axis is
equal to Amin ≈ 3.4(M/M�)3/4 R�, while the rel-
ative orbital velocity of the components is Vorb ≈
240(M/M�)1/8 km/s. It is obvious that, if the time for
the components to merge is smaller than the Hubble
time, the orbital velocities of the components will
increase to values close to the speed of light as the
orbital semimajor axis decreases.

2.2. The Velocity Distribution for Ejected Stars

The observed masses of BHs in galactic nuclei
are confined to the interval 104–1010 M� [32]. As
we will see below, the orbital velocities of the com-
ponents of close-binary SMBHs are the same as
the characteristic velocities of the stars accelerated
by them. Therefore, based on general reasoning, we
conclude from the last expression that the character-
istic velocities gained by accelerated stars from close-
binary SMBH components that coalesce over the
Hubble time should be confined to the interval 600–
4000 km/s. Both the upper and lower limits exceed
the velocity needed for a star to escape from the parent
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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galaxy. Naturally, the approach of the binary compo-
nents under the action of gravitational radiation de-
creases the lifetime of the system [formula (3)]; it also
gradually increases the velocities of the ejected stars.

Let us estimate the velocity spectrum of stars
ejected due to interactions with close-binary
SMBHs. We will assume that a binary SMBH with
mass M is immersed in a cluster of solar-mass
stars with density n and velocity v. The radius of
gravitational capture of stars by the binary SMBH
will be r = GM/v2, where G is the gravitational
constant. The number of accelerated stars N will
then be

N = πr2nvτGWR ∼
(

M

M�

)3 n

V 8
orbv

3
. (4)

This expression yields the conditions for the accel-
eration of stars by a binary SMBH. The number of
accelerated stars increases with increasing mass of
the binary components and with decreasing velocity
dispersion of the stars surrounding the system. It is
natural that increasing the density of field stars also
increases the number of accelerated stars. The main
property of the velocity spectrum (4) is its strong de-
pendence on the orbital velocity of the binary SMBH.
This is due to the rapid decrease of the time for
the merger of the close-binary SMBH components,
together with the decreasing distance between them
[see formula (3)].

2.3. Tidal Disruption of Stars around SMBHs

Tidal forces from the components of close-binary
SMBHs may disrupt stars interacting with them.
Tidal disruption is also possible in the gravitational
field of a single SMBH. Let us estimate the condi-
tions for the disruption of various types of stars in
the gravitational field of such a BH. A star under-
goes tidal disruption when it enters a region where
the average density determined by the BH exceeds
that of the star. This average density is specified
by ρ̄ = 3MBH/4πR3, where R is the distance from
the star to the BH and MBH the mass of the BH.
The average density of low-mass MS stars (below
1–5M�) is ρ∗ ≈ (M∗/M�)−2 g/cm3, for degener-
ate dwarfs it is ρ∗ ≈ 106(M∗/M�)2 g/cm3, and for
neutron stars it is ρ∗ ≈ 1015 g/cm3. The radius of
the BH is given by the formula RBH = 2GMBH/c2 or
RBH/R� ≈ 10−6 MBH/M�.

We can now estimate the limiting distance for a
star to approach an SMBH, denoting K = R/RBH,
where K > 1. The preservation of an MS star re-
quires that MBH/M� > (109/K3/2)(M∗/M�). This
means that solar-mass MS stars can approach
the surface of an SMBH; hence, their interaction
ASTRONOMY REPORTS Vol. 49 No. 9 2005
with a close-binary SMBH can accelerate them
to velocities comparable to the speed of light, if
the mass of the components exceeds ∼109 M�.
The preservation condition for degenerate dwarfs is
weaker: MBH/M� > (106/K3/2)(M�/M∗). There-
fore, solar-mass degenerate dwarfs will also be accel-
erated to very high velocities during interactions with
close-binary SMBHs with masses of ∼106 M�. The
preservation condition for a neutron star is MBH >

30M�/K3/2. Thus, even a stellar-mass BH can
accelerate a neutron star to relativistic velocities.

Summarizing the estimates made in this Section,
we conclude that neutron stars/stellar-mass BHs,
white dwarfs, and solar or subsolar-mass MS stars
and planets can be efficiently accelerated with-
out tidal disruption during interactions with close-
binary SMBHs with masses exceeding ∼100M�,
∼106 M�, and ∼109 M�, respectively. BHs with
such masses are observed in galactic nuclei [32].
However, some fraction of the accelerated stars,
primarily MS stars, will undoubtedly be disrupted by
tidal forces and their matter partially merged with the
SMBH through an accretion–decretion disk. Such
a scenario is described by de Vries et al. [33], who
analyzed observations of 3791 quasars with redshifts
0 < z < 4.5 on time scales from several months to
50 yr in order to search for transient events in a
“mean” quasar on long time scales. The transient
events took the form of bursts lasting several years,
which occurred after ∼200 yr. These bursts can be
explained by variability of the accretion rate due to
some kind of instability of the accretion disk; however,
they could also be associated with the tidal disruption
of MS stars in the gravitational field of a BH with
a characteristic mass of ∼107 M�. Further detailed
comprehensive studies of the observed bursts are
needed to identify their true origin.

3. THE MODEL

In order to study the motion of stars in the gravi-
tational field of a close-binary SMBH, we considered
a binary SMBH in which one of the components (the
primary) has a mass of 106 M� and the other (the sec-
ondary) has a mass of either 106, 105, 104, or 103 M�.
This variation of the secondary mass was introduced
to study the dependence of the acceleration and
velocity spectrum of the ejected stars on the binary
component-mass ratio. The SMBHs were treated as
point objects, and their gravitational fields taken to
be Newtonian. We assumed that the binary orbit was
circular and fixed. In most of the computations, the
orbital semimajor axis was taken to be 105 R�. For
component-mass ratios q = 1.0, 0.1, 0.01, 0.001, the
orbital periods of the close-binary SMBH are equal to
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7.10, 9.57, 9.99, and 10.03 yr, and the relative orbital
velocities of the binary SMBH components are 1.95,
1.45, 1.39, and 1.38 thousand km/s, respectively. For
q = 1, the time for the binary components to merge
due to gravitational radiation is 7.6 billion yr, while
the merger time scale exceeds the Hubble time for the
other q values.

To derive the velocity spectrum for the stars ejected
due to gravitational acceleration, we initially placed
these stars uniformly on the celestial sphere, with the
close-binary SMBH at the center of this distribu-
tion. In most of the models, the initial velocities of
the stars were assumed to be directed towards the
center of mass of the binary SMBH. To display the
incoming and outgoing directions of these stars on
the celestial sphere, we used a planar projection with
an area equal to that of the sphere. This projection
was constructed by transforming the latitude φ and
longitude l (in radians) into planar coordinates X
and Y using the formulas Y = φ, X = l cos φ for
l < π and X = (l − 2π) cos φ for l > π. This yields
a planar figure (see Figs. 1–9 below) whose area
is equal to that of the sphere, with the coordinates
varying in the ranges X from −π to π, Y from −π/2
to π/2. The inverse transformation is also simple:
φ = Y , l = X/ cos φ for X > 0 and l = 2π + X/ cos φ
for X < 0. This coordinate transformation enables us
to easily specify a uniform distribution of incoming
stars over the celestial sphere (via a uniform distribu-
tion in the planar figure) and to conveniently display
the directions of incoming and outgoing stars accel-
erated by the close-binary SMBH.

The meridian that contains the radius vector from
the primary to the secondary at the initial time was
taken as the initial meridian of the sphere (which is
transformed to the vertical axis of the planar figure).
The oppositemeridian is transformed into two bound-
ary curves of the planar figure. The distribution of
incoming directions for the stars was specified by di-
viding the X axis of the planar figure into 100 sections
and the Y axis into 50 sections. Points located at the
centers of the formed squares and lying within the
planar figure (the projection of the sphere onto the
plane) corresponded to the directions of the incoming
stars. This procedure provides a uniform, spherically
symmetrical distribution of incoming directions of
stars. The number of test stars (directions) was 3192.

We computed the motion of a star in the region of
the binary SMBH in a nonrotating coordinate system
X,Y,Z with its origin at the center of mass of the
binary and the XY plane coinciding with the orbital
plane of the binary. The binary components were as-
sumed to be located on the X axis at the initial time,
with the coordinate of the primary being negative. The
three-dimensional motion of a star in the gravitational
field of the binary BH was computed by solving the
classical equations

d2X

dt2
= −GM1

R3
1

(X − X1) −
GM2

R3
2

(X − X2), (5)

d2Y

dt2
= −GM1

R3
1

(Y − Y1) −
GM2

R3
2

(Y − Y2), (6)

d2Z

dt2
= −GM1

R3
1

(Z − Z1) −
GM2

R3
2

(Z − Z2). (7)

Here, X,Y,Z are the coordinates of the star,
X1, Y1, Z1 the coordinates of the binary primary,
X2, Y2, Z2 the coordinates of the secondary, and
R1 and R2 the distances from the star to the corre-
sponding binary components.

The components of the binary SMBH rotate in
circular orbits about their center of mass in the
XY plane. The radii of the primary and secondary
orbits are A1 = Aq/(1 + q) and A2 = A/(1 + q),
respectively, where A is the orbital semimajor axis of
the binary SMBH. The rotation angle of the system
at time t is equal to φ = 2πt/Porb, where Porb is
the orbital period of the binary. As a result, the
coordinates of the components at time t are specified
by the expressions

X1 = −A1 cos φ, (8)

Y1 = −A1 sinφ, (9)

Z1 = 0, (10)

X2 = A2 cos φ, (11)

Y2 = A2 sin φ, (12)

Z2 = 0. (13)

This system of equations was solved using the Kutte–
Merson method. The relative accuracy of the integra-
tion was on the order of 10−8.

We estimated the applicability of the technique by
computing the trajectory of a star that “falls” in the
polar direction towards the center of mass of a binary
with equal component masses. In the absence of any
perturbations, such a star should become a “pen-
dulum” oscillating with a constant amplitude along
the rotational axis of the system, which goes through
the center of mass and is perpendicular to the orbital
plane. The test computation showed that such oscil-
lations along the rotational axis of the system indeed
occurred during approximately 160 orbital periods of
the binary (about ten periods of the pendulum); later,
however, the accumulation of numerical errors results
in a deviation of the trajectory of the pendulum from
the axis. This causes the type of motion to change
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 1. Computation results for q = 1, V0 = 0, R0 = 10 A. (a) Direction distribution for stars incoming towards the close-
binary SMBH on the projection plane of the celestial sphere; (b) direction distribution for stars leaving the close-binarySMBH.
Different symbols denote stars with different final velocities V . Large filled circles correspond to V > Vorb, hollow circles to
0.5Vorb < V < Vorb, and small filled circles to 0 < V < 0.5 Vorb, where Vorb is the relative orbital velocity of the close-binary
SMBH component. (c) Numbers of stars with different ratios of the final velocity and the relative orbital velocity of the binary
SMBH components. (d) Final velocity of outgoing stars as a function of the logarithm of the minimum distance to the binary
SMBH components Rmin (in units of A).
rapidly (on the orbital time scale), and the pendulum
is ejected from the system. Increasing the relative ac-
curacy of integration to 10−10 does not affect the cal-
culated orbit of the pendulum. Therefore, we conclude
that the computation method used yields satisfactory
results during at least two hundred orbital periods of
the binary.

To study the stability of the results, in addition
to varying the binary component-mass ratio, we also
varied the initial velocity of a star V0 and its initial
distance to the binary center of mass R0. We adopted
values for R0 of 10 and 100A, where A is the orbital
semimajor axis of the binary, while V0 was assigned
values of 0 and 1000 km/s. In most of the compu-
tations, the initial velocity of the star was directed
towards the center of mass of the system. For q = 1,
ASTRONOMY REPORTS Vol. 49 No. 9 2005
we also considered the case where the initial velocity
is directed towards the point where one of the bi-
nary components was located at the initial time. It
is obvious that these V0 and R0 do not exhaust the
possible range of parameters of stars moving in the
vicinity of a galactic nucleus. However, we restricted
our consideration to these values, since we were es-
sentially interested in demonstrating the fundamental
possibility of efficiently accelerating stars via their
interaction with a close-binary SMBH.

We present the results of our computations using
four plots (Figs. 1–9). Plot (a) presents the direc-
tion distribution for stars incoming toward the close-
binary SMBH on the projection plane of the celestial
sphere. Only stars that leave the binary are shown.
Various symbols are used to indicate the incoming
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Fig. 2. Same as Fig. 1 for q = 1, V0 = 1000 km/s, and R0 = 10 A.
directions, depending on the final velocity of the star
leaving the system. Thus, darker regions in the plot
correspond to incoming directions for stars achieving
the highest velocities. Plot (b) presents the direction
distribution for stars leaving the close-binary SMBH
on the projection plane of the celestial sphere. The
final velocities of the stars are denoted using the same
symbols as in (a). Thus, the darkest regions of plot (b)
correspond to directions into which most stars accel-
erated to highest velocities go.

Plot (c) displays the distribution of the velocity
at infinity for stars leaving the system, measured in
units of the relative orbital velocity of the close-binary
SMBH components. Plot (d) presents the correlation
between the outgoing velocity of a star and the mini-
mum distance of approach of the binary components.

We present here results of computations of the
motion of a star over 200 (for R0 = 10A) or 400 (for
R0 = 100A) orbital periods of the binary SMBH. In
the latter case, the computation time was increased,
since the time when the star reaches the vicinity of the
close-binary SMBH is already close to 200 periods.
We also carried out test computations of the motion
of a star during 104 periods. The main difference is
that more stars are accelerated over the longer time,
since they have more opportunities to come into the
close vicinity of one of the components of the close-
binary SMBH. However, the accumulation of numer-
ical errors makes the details of such computations
unreliable.

4. RESULTS OF THE SIMULATIONS

4.1. Mechanism for the Acceleration of the Stars

The acceleration of the motion of a star interact-
ing with a close-binary SMBH is due to the “sling-
shot effect.” A star that has closely approached a
rapidly moving close-binary SMBH component is
“captured,” and thus accelerated. Detailed studies
of this mechanism make it clear that the “throw”
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 3. Same as Fig. 1 for q = 1, V0 = 0, and R0 = 100 A.
always occurs at the same phase of the motion of an
unstable triple system, when all the components lie
almost precisely along a straight line and rotate in
the same direction. In the case of equal component
masses, the force of the “throw” is determined by the
proximity to the accelerating component of the close-
binary SMBH (Fig. 1d). The closer the accelerated
star is to the accelerating BH, the larger the velocity
at infinity it reaches (Fig. 1d). This dependence dis-
plays a large scatter, probably due to the phase of the
secondary component of the close-binary SMBH and
the direction of the velocity of the accelerated star.
The situation is different for q = 0.1 (Fig. 4d). The
acceleration gained in the interaction with the lower-
mass component, which has higher orbital velocity,
enables the star to reach a higher outgoing veloc-
ity; however, such approaches occur less frequently,
partly due to our assumption that the initial velocity of
the star is directed towards the center of mass of the
close-binary SMBH, which is located substantially
ASTRONOMY REPORTS Vol. 49 No. 9 2005
closer to the secondary. Due to its low orbital velocity,
the more massive component is unable to acceler-
ate an ejected star to a high velocity. Therefore, the
correlation is less pronounced in Fig. 4d. Finally, for
q = 0.01 (Fig. 7d), the highest velocities are gained by
the still rarer stars that are accelerated by the lower-
mass component, while the correlation between the
closeness of approach and the velocity essentially
disappears for small final velocities.

4.2. Computation Results for q = 1
Figures 1–3 present our computation results for

q = 1. Figure 1 shows that the incoming directions
for stars accelerated to the highest velocities are pri-
marily concentrated in two “spots” that are sym-
metrically located on the equator of the close-binary
SMBH, while the outgoing directions for these stars
are concentrated on two symmetrical meridians. Es-
sentially no stars are ejected along the polar direc-
tions. Stars incoming from some directions are not
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Fig. 4. Same as Fig. 1 for q = 0.1, V0 = 0, and R0 = 10 A.
ejected from the system over the computed time in-
terval, but are instead captured in quasi-stable orbits
around one of the components. These directions cor-
respond to “gaps” in the planar projection, indicating
the directions of these incoming stars (Fig. 1a). Our
modeling showed that the number of stars captured
in this way increases with the component-mass ratio
of the binary SMBH (Figs. 1–9). We should bear
mind, however, that if the components of the binary
SMBH coalesce over the Hubble time, these stars
will also be ejected from the system with velocities
comparable to the orbital velocity of the components,
since the semimajor axis of the system will gradually
contract. In addition, they may be tidally disrupted by
the components of the binary SMBH.

A comparison of Figs. 1 and 2 shows the influence
of the initial velocity of the star. Figure 1 corresponds
to zero initial velocity and Fig. 2 to an initial velocity
of 1000 km/s, which is comparable to the absolute or-
bital velocity of the close-binary SMBH components.
A comparison of Figs. 1 and 3 shows the effect of an
order-of-magnitude (from 10 A to 100 A) increase of
the initial distance from the star to the center of mass
of the close-binary SMBH. As we can see, varying V0

and R0 does not substantially affect our main result
for the velocity distribution for the outgoing stars
[plots (c)]. Only details of this distribution vary within
the overall dispersion (N1/2), while the maximum
velocities remain approximately the same. The ratio
of these velocities and the relative orbital velocity of
the close-binary SMBH components is close to 1.5,
while their ratio to the absolute orbital velocity of
the components is close to 3. We therefore conclude
that, within a broad range of initial parameters for
stars approaching a close-binary SMBH, some frac-
tion of these stars can be accelerated to velocities
exceeding the orbital velocity of the components of
the SMBH by a factor of two to three. For q = 1, we
also considered the case when the initial velocity of
the star is directed towards the point where one of the
binary components is located at the initial time, rather
than towards the binary center of mass. However,
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 5. Same as Fig. 1 for q = 0.1, V0 = 1000 km/s, and R0 = 10 A.
this likewise did not appreciably change the velocity
distribution for the outgoing stars; the only variations
were essentially in the distribution of stars leaving the
system on the celestial sphere.

The main result of our modeling is the possibility
for compact stars—primarily, stellar BHs and neutron
stars—to be accelerated to velocities of the order
of the orbital velocities of the components of close-
binary SMBHs, which can reach the speed of light
over the time scale for themerging of the components.
This implies that acceleration by a SMBH is able to
produce neutron stars and stellar BHs with veloc-
ities approaching the speed of light. Obviously, the
number of such rapidly moving compact stars cannot
be large [see (2)], and we have only made the first
steps towards understanding such stars. During their
acceleration, some of the stars that are accelerated
to high velocities approach the BH to distances of
∼10−3–10−7 of the semimajor axis of the system. It
is obvious that tidal disruption or merging of these
stars with the BH restricts the maximum velocity of
ASTRONOMY REPORTS Vol. 49 No. 9 2005
the accelerated stars to ∼cR
1/2
min, where c is the speed

of light and Rmin the minimum distance to the close-
binary SMBH components in units of the semimajor
axis. Therefore, only binary BHs with comparable
component masses can accelerate compact stars to
relativistic velocities. To obtain the actual velocity
spectrum, this problem must be treated in the frame-
work of general relativity and the approach of the
close-binary SMBH components under the action of
gravitational radiation in the acceleration phase must
be taken into account.

4.3. Computation Results for q = 0.1

Figures 4–6 present our computation results for
q = 0.1. In these figures, the distribution of initial
parameters is the same as for q = 1. In this case,
the maximum initial velocity of a star (1000 km/s)
is equal to 0.76 of the absolute orbital velocity of the
close-binary SMBH secondary, which is 1320 km/s.
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Fig. 6. Same as Fig. 1 for q = 0.1, V0 = 0, and R0 = 100 A.
The main difference between the results for q = 0.1
and q = 1.0 is the final velocity distribution for the
outgoing stars [plot (c)]. In this case, the relative
number of stars accelerated to high velocities de-
creases, since the main accelerating component of
the close-binary SMBH is the more massive compo-
nent. Some 99% of stars approach the more massive
component, whose orbital velocity is, naturally, com-
paratively small. Note that the maximum velocities
of the accelerated stars exceed the orbital velocity of
the secondary by almost a factor of two. Here, the de-
pendence on V0 is pronounced more strongly than for
close-binary SMBHs with equal-mass components.

When q = 0.1, the direction distributions for the
incoming and outgoing stars on the projection plane
of the celestial sphere become more nonsymmetri-
cal, which can naturally be explained as an effect
of the different masses of the close-binary SMBH
components and the advantage of the less massive
component as an efficient accelerator.
4.4. Computation Results for q = 0.01

Figures 7–9 present the computation results for
q = 0.01. In this case, the maximum initial velocity
of a star (1000 km/s) is 0.73 of the absolute or-
bital velocity of the close-binary SMBH secondary,
1370 km/s. The most important difference from pre-
vious results is that, in the case of low initial velocities
of the incoming stars, a substantial number remain in
the binary rather than leaving it, due to their very close
approach to the more massive binary component.
Such stars are captured into comparatively stable or-
bits around this component. When q = 1, the fraction
of stars remaining in the system (for a computation
time of about two hundred orbital periods of the close-
binary SMBH) was around 6% for small V0, rising
to 10% for q = 0.1. However, this fraction increases
appreciably when q = 0.01, reaching 94% for R0 =
10A and 60% for R0 = 100A when V0 = 0. Only
for V0 = 1000 km/s do all the stars leave the close-
binary SMBH.
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 7. Same as Fig. 1 for q = 0.01, V0 = 0, and R0 = 10 A.
The decrease in the number of outgoing
stars appreciably affects their velocity distributions
(Figs. 7d, 8d). In addition, the number of stars
accelerated to velocities comparable with the orbital
velocity of the less massive binary component de-
creases dramatically. As a result of our assumption
that the initial velocity of a star is directed towards
the center of mass of the system (which for q = 0.01
essentially coincides with the direction towards the
primary), stars essentially end up in the vicinity of the
more massive component of the close-binary SMBH;
this favors their capture by this component, while only
a few approach the less massive component, which is
the efficient accelerator. Recall that the “captured”
stars will also eventually either be ejected from the
SMBH, if this binary coalesces over the Hubble time,
or be disrupted by tidal forces from the SMBH.

4.5. Computation Results for q = 0.001
Let us briefly describe what makes this case qual-

itatively different from the previous one. As the close-
ASTRONOMY REPORTS Vol. 49 No. 9 2005
binary SMBH component-mass ratio decreases
further, stars end up even closer to the massive
component. As a result, the number of stars leaving
the binary decreases even more dramatically. Their
minimum distance from the primary becomes approx-
imately 10−5–10−8 of the orbital semimajor axis, so
that they are very likely to be distupted. The average
velocity of the stars leaving the system decreases;
however, when R0 = 100A, individual stars can be
accelerated to velocities a factor of four to five greater
than the relative orbital velocities of the close-binary
SMBH components, which was not the case for
large q. In this case, a SMBH coalescing over the
Hubble time will either disrupt the “captured” stars or
eject them from the system with velocities compara-
ble to the orbital velocity of the SMBH components.

5. CONCLUSION

We have modeled a close-binary SMBH formed in
the nucleus of two merged galaxies that accelerates
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Fig. 8. Same as Fig. 1 for q = 0.01, V0 = 1000 km/s, and R0 = 10 A.
MS stars, degenerate dwarfs, neutron stars, and stel-
lar BHs in the nucleus. Our calculations indicate that,
within a broad interval of component-mass ratios
of the close-binary SMBH, the SMBH acts as an
efficient accelerator of stars that end up within the
sphere of its gravitational influence. In the case of
comparable component masses for the close-binary
SMBH, the characteristic velocities of the acceler-
ated stars at infinity are of the order of the orbital
velocities of the binary components. As the mass
of the close-binary SMBH secondary decreases, the
mean velocity of the ejected stars also decreases. This
is partly due to the decrease in the total mass of the
system, and hence of the component velocities. In
addition, in the case of small component-mass ratios,
the more massive component, in whose vicinity more
stars end up, becomes the main (though less efficient)
accelerator. Thus, as a result of the acceleration,
compact neutron stars and stellar-mass BHs can
acquire velocities comparable to the orbital velocity of
the close-binary SMBH components. Just before the
components merge, this orbital velocity can reach the
speed of light. Therefore this mechanism can accel-
erate neutron stars, stellar BHs, degenerate dwarfs,
and, if MBH � 109 M�, MS stars to relativistic veloc-
ities. To derive a more accurate velocity spectrum for
the stars ejected by coalescing close-binary SMBH
components, this problem must be solved taking into
account general-relativistic effects and the merging
of the components under the action of gravitational
radiation by the system during the acceleration of the
ejected stars.

The characteristic relative orbital velocities of
equal-mass close-binary SMBH components that
coalesce over the Hubble time [formula (3)] are
∼250(MBH/M�)1/8 km/s. Since, according to
the Tully–Fisher relation [34], the stellar escape
velocity from a galaxy with mass MG is vesc ∼
0.7(MG/M�)1/4 km/s, while MBH ∼ 0.001MG [35],
nearly all the stars that are accelerated by a binary BH
will be ejected from their parent galaxies, increasing
the stellar population of the intergalactic medium.
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 9. Same as Fig. 1 for q = 0.01, V0 = 0, and R0 = 100 A.
The phase of BH merging in the nuclei of merging
galaxies can be divided into two main stages. In
the first, for A > 10−7(MBH/M�)3/4 pc, the relative
velocities of the BHs are low, and they decelerate to
velocities lower than the escape velocity, primarily
due to tidal forces and the acceleration of field stars.
This process increases the galactic-bulge population.
In the second stage, when the BH orbital velocities
reach 200–500 km/s, the binary nucleus begins to
eject stars from the galaxy, forming a corona with a
power-law decrease in the stellar density, as is seen
for the Andromeda Galaxy [36, 37], as well as an
intergalactic stellar population [10]. The detection of
this latter population requires studies of the radial
velocities of its brightest members—(super)giants
and planetary nebulae, whose radial velocities can be
determined in a large volume of space.

Our study of the acceleration of stars by close-
binary SMBHs with high component-mass ratios
demonstrates the possible appearance of a large
number of stars with high orbital eccentricities. This
ASTRONOMY REPORTS Vol. 49 No. 9 2005
mechanism may explain the presence in the nucleus
of our Galaxy of stars rotating about the central
SMBH with orbital velocities of several thousands
of km/s and orbital eccentricities of 0.5–0.98 [38].
These stars could have been accelerated by one of
the close binary SMBHs that may originate from
time to time in the nucleus of our Galaxy due to
the merging of globular clusters located close to the
Galactic center and containing intermediate-mass
BHs with the Galactic bulge during the formation of
the central supermassive black hole [22]. Some of the
accelerated stars were ejected from the nucleus, while
others remained in the currently observed eccentric
orbits.
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Abstract—We report an analysis of the kinematic properties of stars in the old open cluster M67 based on
proper motions taken from a master catalog made up of nine different catalogs containing proper motions
of stars in the cluster field. A modified Sanders method is used to identify 511 probable cluster members.
The dependence of the mean radial components of the proper motions of cluster members on clustercentric
radius indicates that the cluster core is expanding with a velocity of 0.4 km/s. The radial dependence of
the mean tangential components of the proper motions suggests the possible rotation of the cluster core.
The dispersions of the velocity components of the cluster members show no evidence for the dominance of
elongated stellar orbits in the cluster. The kinetic energy of the cluster stars depends strongly on their mass.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Proper motions of stars in an open star clus-
ter bear important information about the kinematics
of the cluster members. Many independent proper-
motion determinations for extensive samples of stars
are now available for a large number of clusters; if
reduced to a single system, these data can be used to
determine high-accuracy proper motions for further
analysis. The available proper-motion measurements
for a large number of stars in rich open clusters
provide extensive samples for analyses of the kine-
matic properties of open clusters, making it possible
to study the systematic motions of the cluster stars
and the behavior of the residual velocity dispersion as
a function of stellar mass and the coordinates in the
cluster. We decided to perform the first such analysis
for stars in the open cluster M67. We chose M67 for
our first attempt of a detailed proper-motion analysis
of the kinematics of its members for several reasons.
First, M67 is a well-studied cluster, for which sev-
eral independent catalogs of relative proper motions
are available. Second, it is a rich cluster, so that
sufficiently trustworthy statistical estimates can be
obtained for its dynamical and kinematic parameters.
Third, M67 is a fairly distant cluster, so that we
can estimate the current limits for analyses based on
proper motions, which are the most extensive source
of stellar data. Fourth, M67 is an old open cluster,
which is very likely to be in an almost dynamically
stable state, so that the kinematics of its stars should
not be too confused by group motions.

Until now, only a few authors have analyzed the
kinematics of stars in open clusters, most notably
stellar motions in the Coma [1], Hyades [2], and
1063-7729/05/4909-0693$26.00
Pleiades [3] clusters. However, even studies of clus-
ters located in the nearby solar neighborhood were
limited in practice to determining the velocity dis-
persion of the entire cluster, with only the first steps
taken toward analyzing the behavior of these quan-
tities in relation to the properties of stellar orbits in
the clusters. It was the need to further develop the
observational base for analyses of the dynamics of
open clusters that stimulated this research.

2. INITIAL DATA
To analyze stellar motions in a cluster, we must

have high-accuracy proper motions, which can be
calculated by reducing the data provided by various
catalogs of absolute and relative stellar proper mo-
tions in the cluster field to a single system. A descrip-
tion of the technique used to combine the data for
different catalogs is described in [4]. Below, we briefly
review the underlying ideas of such a compilation.
To produce a master catalog, we first choose one of
the proper-motion catalogs used as a reference to
which we reduce the proper-motion systems of all the
other catalogs. We adopted the Tycho-2 catalog as
this reference catalog.We reduced the proper motions
of each catalog to the Tycho-2 system using linear
transformations of the form




µx1 = axµx2 + bxµy2 + cxV + dx,

µy1 = ayµx2 + byµy2 + cyV + dy.
(1)

We determined the transformation coefficients for (1)
via a least-squares fit. The coefficients ax, bx, ay ,
and by describe the rotation and contraction or expan-
sion of the system of proper motions, dx and dy de-
scribe the offset, and cx and cy are responsible for the
c© 2005 Pleiades Publishing, Inc.
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Table 1. Proper-motion sources and their weights

Source σx,mas/yr σy ,mas/yr Weight

Ebbighausen [6] 2.60 2.75 0.14

van Maanen [7] 1.70 1.41 0.21

Murrey and Clements [8] 1.78 1.54 0.36

Tycho-2 3.24 2.68 0.12

Sanders [9] 1.33 0.98 0.25

Murray and Clements [10] 2.25 2.12 0.21

Girard et al. [11] 1.21 1.09 0.76

Zhao et al. [12] 2.12 1.91 0.25

Frolov and Anan’evskaya [13] 2.10 2.19 0.22
eventual magnitude equation. We ignored the color
equation, since the magnitudes of stars in cluster
fields are tightly correlated with their colors.

The use of (1) poses the following problems [4].
First, the least-squares estimates of the coefficients
in the transformation equations are biased due to
the appreciable random errors in the proper motions,
which appear on both the right-hand and left-hand
sides of (1), with the magnitude of the bias depending
primarily on the ratio of the variances for the errors
on the right- and left-hand sides of the equations. In
addition, the observational errors broaden the distri-
butions of the proper motions, resulting in overesti-
mated mean proper motions. This effect shows up as
an additional deviation from unity of the determinant
of the matrix of the transformation coefficients, in ad-
dition to the eventual deviation due to the expansion
or contraction of the system of proper motions. The
latter may affect both the estimated stellar-velocity
dispersion and the analysis of the eventual expansion
or contraction of the cluster.

To minimize the effect of the above factors, Lok-
tin [4] suggested a technique for the iterative reduc-
tion of catalogs. At the first stage, the second cata-
log is reduced to the system of the chosen reference
catalog, after which the proper motions of the two
catalogs are averaged with weights inversely propor-
tional to the catalog-averaged errors in the proper
motions. The resulting catalog is then used as the
new reference catalog to reduce the next independent
catalog, etc. The reduction of the last catalog yields
a first approximation for the master catalog. This
first-approximation catalog is then again reduced to
the system of the reference catalog. The reduction
of the first approximation for the master catalog to
the proper-motion system of the reference catalog
yields more reliable results, since the random errors
of the proper motions in the first-approximation mas-
ter catalog are smaller. The magnitude equation for
the resulting catalog is checked, which, in the case
of sufficiently rich open clusters, can easily be done
usingµx−V and µy−V plots, where V is the apparent
magnitude. The procedure for reducing each catalog
is then repeated using the first-approximation catalog
as the reference catalog: the small random errors in
the proper motions in this catalog simplify the cor-
rection for the effect of the errors on the least-squares
estimates. The reduction of the systems of the individ-
ual catalogs to the system of the first-approximation
catalog is based on the maximum number of common
stars, thereby minimizing the errors in the estimated
coefficients of transformation (1). The weights of the
individual catalogs are calculated from the standard
deviations of the corresponding reduction formulas.

We analyzed the kinematic parameters of the open
cluster M67 based on data from the master proper-
motion catalog for stars in the cluster field compiled
by Loktin [5] from various published data. We added
several sources to the data of this catalog to produce
a new master catalog. All the data sources are listed
in Table 1. We specified the weights of the individual
catalogs to be inversely proportional to the disper-
sions (standard deviations) from the linear reductions
of the catalogs to the first-approximation catalog
with the magnitude-equation term included. These
dispersions, σx and σy , and the adopted weights of
the catalogs are listed in columns 2–4 in Table 1,
respectively. Here and below, the proper motions and
their errors are in arcs/1000 yr. It is obvious from
the table that the mean errors σx somewhat exceed
the mean errors σy for almost all catalogs. However,
the ratio of these quantities is close to unity, and we
decided to use the same weights for both components
of the proper motion.
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 1.Vector diagram of the stellar proper motions in the
field of the open cluster M67.

The master prop-motion catalog for stars in the
field of M67 contains a total of 1212 stars, each ap-
pearing in at least two initial catalogs. We did not use
the stars appearing in only one catalog, due to the low
accuracy of their proper motions and the high prob-
ability of spurious identification. We calculated the
weighted averages of the proper-motion components
and the associated standard errors for the remaining
stars.

Our next step was to identify cluster members.
We excluded from the resulting catalog 33 stars with
the largest estimated errors in the total proper mo-

tions s =
√

s2
x + s2

y, where sx and sy are the errors

of the proper-motion components in right ascension
and declination, respectively. Such stars should be
excluded, due to the uncertainty of the membership
of stars with large proper-motion errors.

Figure 1 shows a vector diagram of the proper
motions of stars included in the resulting master cat-
alog. This figure shows a well-defined concentration
of cluster stars. It is obvious that cluster stars can be
identified quite reliably. We used Loktin’s [5] modifi-
cation of the Sanders method to identify 511 stars as
probable cluster members (with membership proba-
bilities of more than 50%). The central coordinates of
the concentration of cluster stars on the vector dia-
gram (Fig. 1) obtained by estimating the parameters
of a corresponding approximating normal distribution
are µxc = −7.48 and µyc = −3.83. The number of
cluster members noted also provides an estimate of
the corresponding parameter. Obviously, these esti-
mates are functions of the proper-motion errors, and
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 2. Frequency distribution of the estimated member-
ship probabilities P for stars in the field of M67.

depend on the adequacy of the fitting of the proper-
motion distribution using a superposition of two nor-
mal distributions, since any errors that change the
parameters of the distribution of data points in Fig. 1
bias the parameters of the approximating distribution.

Figure 2 shows the frequency distribution for the
membership probabilities of the cluster stars. As ex-
pected, cluster stars can be confidently distinguished
from field stars. However, a few objects have mem-
bership probabilities from 0.1 to 0.9, probably due to
the inhomogeneity of the resulting master catalog in
terms of random errors.

The mean errors in the proper-motion compo-
nents of the identified cluster members are 〈sx〉 =
0.58 and 〈sy〉 = 0.59, which corresponds to 2.5 km/s
for the adopted heliocentric distance of the cluster,
908 pc [14]. Figure 3 shows the frequency distri-
butions of the errors of the x and y proper-motion
components for the identified cluster members. The
solid and dashed lines in the figure show the error
distributions for the x and y components, respectively.
It is clear that the overwhelming majority of stars
in the sample to be used for analyzing the kinemat-
ics of M67 have proper-motion errors of less than
0.001′′/yr. Note that the error distributions for the two
proper-motion components are almost identical. Re-
call that most of the measurements used to determine
the relative proper motions were made in the central
part of the cluster, while the proper motions derived
for stars at the cluster peripherymay have lower accu-
racy. Figure 4 illustrates this effect for the stars in our
sample. It is evident from Fig. 4 that the increase in
the errors with clustercentric distance is only slightly
visible out to an angular distance of 0.3◦ and is very
weak out to 0.6◦. This indicates, in particular, that the
sample is complete out to this latter distance—even
at the periphery of the cluster, the data are based on
a sufficiently large number of catalogs for the radial
increase of the errors to be small.
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Fig. 4. Dependence of the errors of the proper motions of
the M67 members on clustercentric distance d.

We calculated the angular clustercentric distances
using the equatorial coordinates αc = 132.825◦ =
8h49m30s and δc = +11.796◦ = +11◦47′46′′ for the
cluster center, calculated as the modes of the right-
ascension and declination distributions for the prob-
able cluster members.

To verify that the proper-motion components of
the sample stars contain no magnitude equation, let
us consider the magnitude dependence of the proper
motions of probable cluster members (Fig. 5). It is
clear from plots (a) and (b) of Fig. 5 that neither of
the proper-motion components shows evidence for a
significant magnitude equation.
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Fig. 5. Apparent-magnitude dependence of the proper
motions of the M67 cluster members.

3. MEAN VELOCITIES OF STARS
IN THE CLUSTER

To analyze the properties of the dispersion of the
residual velocities of the stars, we must eliminate
all possible sources of systematic motions with any
origin: both real motions, such as expansion or con-
traction of the cluster or parts of the cluster or rotation
of the cluster, and fictitious motions, such as residual
systematic errors or the geometric effect of the con-
vergence toward the radiant.

To analyze the motions of stars in a cluster based
on the proper motions of its members, we subtracted
the motion of the cluster as a whole. We determined
the components of this mean cluster motion by
calculating the modes of the distributions of the
proper-motion components in two coordinates for
200 cluster members located within 7′ of the cluster
center. We set the angular radius of the cluster
equal to 7′ based on the radial distribution of the
space density of its members. The components of
the mean proper motion are 〈µx〉 = −7.32 ± 0.02 and
〈µy〉 = −3.76 ± 0.02 in the units of 0.001′′/yr. We
then decomposed the total residual proper motions
of the stars into components directed radially (µR)
and tangentially (µθ) relative to the cluster center. We
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Table 2. Average residual proper motions of the M67 cluster members

No. Interval of r, pc 〈d〉, arcmin N 〈µR〉, mas/yr 〈µθ〉, mas/yr

1 0–0.71 1.85 57 +0.064± 0.060 +0.026± 0.047

2 0.72–1.18 3.60 57 +0.109± 0.057 −0.041± 0.051

3 1.18–1.56 5.15 57 +0.028± 0.060 −0.011± 0.062

4 1.57–2.09 6.96 57 +0.070± 0.063 −0.095± 0.059

5 2.13–2.75 9.07 58 +0.108± 0.070 −0.098± 0.058

6 2.76–3.46 11.76 58 −0.015± 0.069 −0.157± 0.063

7 3.46–4.62 15.04 58 −0.011± 0.070 +0.021± 0.084

8 4.63–7.23 21.33 59 −0.133± 0.080 −0.017± 0.085

9 7.24–12.92 33.55 46 −0.095± 0.138 −0.224± 0.113
then averaged the resulting residual proper motions
within nine groups of clustercentric distance.

The results of this averaging are listed in Table 2
and shown in Figs. 6 and 7. The columns of Table 2
give (1) the running number of the interval, (2) the
interval of clustercentric distances in pc, calculating
using the adopted heliocentric distance of the cluster,
(3) the weighted average of the clustercentric dis-
tances of the stars in the group, (4) the number of
stars in the group, (5), (6) the weighted averages of
the proper-motion components (in mas/yr) and their
standard errors. Recall that 1 mas/yr corresponds
to 4.3 km/s at the adopted distance of the cluster.
For convenience, Figs. 6 and 7 also show the radial
dependences of the mean proper motions.

Consider now the clustercentric-distance depen-
dence of the radial component of the mean proper
motion, which is related to the expansion/contraction
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velocity of the cluster (Fig. 6). When analyzing this
dependence, we must take into account the conver-
gence of the proper motions of the cluster members
toward the radiant, since M67 has a significant radial
velocity. According to the published data we have
compiled, the mean radial velocity of the cluster is
+33.6 km/s. The component of the proper motion
responsible for the convergence effect can easily be
calculated using the formula

µR = −0.4602vR tan(d/2)/r, (2)

where vR is the radial velocity of the cluster as a
whole (in km/s), d the angular clustercentric distance
(in arcmin), and r the heliocentric distance of the
cluster. Formula (2) for the geometric estimation of
the heliocentric distance of the cluster without deter-
mining the position of the radiant can be easily derived
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from elementary geometric considerations, as is done
by Loktin and Matkin [15].

The solid line in Fig. 6 shows the dependence (2)
for M67. On the whole, the points in this figure fol-
low the slanting curve. However, all the stars in the
vicinity of the cluster (the five leftmost points in the
figure) clearly lie above this curve, which may indicate
the expansion of the cluster core with a mean velocity
of about 0.38± 0.07 km/s.We calculated this velocity
by converting the average excess proper motion of the
five leftmost points in Fig. 6 above the curve to linear
units. Recall that most, but not all, the sample stars
are located near the plane of the sky, so that the con-
traction velocity noted above is only an underestimate
of the actual value. The remaining four points in the
figure do not deviate significantly from the solid curve,
implying that the cluster halo exhibits no significant
expansion/contraction within the errors determined
from the actual accuracy of the proper motions.

Consider now the tangential components of the
residual proper motions (Fig. 7). It is clear that the
points corresponding to the inner parts of the cluster
exhibit a well-defined systematic trend, which may
indicate rotation of the cluster core. A linear least-
squares fit to these data points yields the formula
vt = 0.21 − 0.05d for the linear rotational velocity,
where vt and d are in km/s and arcmin, respectively.
The standard errors of the coefficients are 0.09 and
0.01 km/s, respectively. Thus, this trend is statis-
tically significant, and the linear rotational velocity
reaches 0.7 km/s at the core periphery. Except for the
outermost, least reliable data point, the data points
lying outside the cluster core appear to exhibit no
signs of rotation.

The calculations of all the mean residual proper
motions considered above are affected by the extent
of the cluster along the line of sight: on average, the
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nearest stars have larger proper motions than the
most distant stars. This effect is insignificant if the
cluster is spherically symmetrical; thus, the above
qualitative conclusions remain valid if the cluster is
spherically symmetrical. Note also that the line-of-
sight extent at M67 has little effect on the proper
motions at the adopted heliocentric distance—the
difference between the nearest and the furthest cluster
stars is less than 4%.

If the cluster rotational axis does not coincide with
the line of sight, the effect of rotation should also
be manifest in the stellar radial velocities. Figure 8
shows the radial velocities of probable cluster mem-
bers adopted from Mathieu et al. [16] as a func-
tion of the position angle in the cluster. In the case
of appreciable rotation, the plot should display one
period of a sine curve; however, we can see that it
shows a virtually uniform distribution. This leads us
to conclude that the cluster shows no visible rotation
around any axis lying near the plane of the sky.

The residual proper motions, which, in our case,
yield estimates of the core rotational and expansion
velocities, are very small, and we cannot be sure that
they are not due to some local distortions of the
proper-motion field. Increasing the firmness of the
results obtained, new high-precision proper motions
are required for the stars in a field that is at least 1◦ in
size and centered onM67. Note, however, that our re-
sults agree fully with the preliminary results published
in [17], where we did not use the additional three
catalogs of relative proper motions that we employed
in the current study.

4. DISPERSIONS OF THE RESIDUAL
VELOCITIES

The chief difficulty in calculating the velocity dis-
persions of the cluster stars from the proper motions
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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is the unequal accuracies of the latter, associated with
both the measurements of the stellar positions and
the process of combining the various proper-motion
catalogs into a single catalog. The estimated velocity
dispersions must therefore be treated with caution.
The dispersion ratios are a different matter, since the
above errors cancel each other out to some extent in
this case.

Figure 9 shows frequency-distribution polygons
for the proper-motion components of identified mem-
bers of M67. It is clear that the shapes of the two
distributions differ little, as do the dispersions of the
residual velocities, indicating that the distribution of
the residual velocities of the cluster as a whole is
almost spherically symmetric.

Let us now consider the radial variations of the
components of the residual-velocity dispersions. Fig-
ure 10 shows the dispersions of the residual veloci-
ties in the radial (open circles) and tangential (filled
circles) directions as a function of clustercentric dis-
tance in parsecs. To allow for the effect of proper-
motion errors, we subtracted the mean square of the
proper-motion errors for the group of stars considered
from the calculated squares of the residual-velocity
dispersions. The velocity dispersions are in km/s.
There is a slight increase in the velocity dispersion
with clustercentric distance, probably due to mass
segregation. On average, the ratio of the radial and
tangential velocity dispersions is close to unity. In the
case of purely radial orbits, the radial motions should
dominate the tangential motions, making the above
ratio significantly higher than unity. This casts doubt
on the hypothesis that some open-cluster stars have
strongly elongated orbits.

To analyze the dependences of the velocity dis-
persion of the cluster stars on their masses, we sub-
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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divided the cluster stars into seven groups accord-
ing to their location in the color–magnitude diagram
(HR diagram). These groups are separated by broken
lines in Fig. 11, which shows the HR diagram for
the probable cluster members we have identified. It is
clear that group 1 corresponds to red giants, group 2
to subgiants, group 3 to blue stragglers, group 5 to
main-sequence (MS) binaries, groups 6 and 7 mostly
to single MS stars, and group 4 to the region of the
MS turnoff, where the sequences of single and binary
stars merge. Table 3 gives the estimated radial and
tangential dispersions of the stellar velocity compo-
nents, together with a measure of the characteristic
mean kinetic energy of the stars for each group.

The columns of table give the number of the group,
the number for stars used to estimate the velocity dis-
persions, the average stellar mass (in solar masses)

Table 3. Velocity-dispersion estimates for groups of stars
in M67

Group N m, M� σR, km/s σθ, km/s mW 2

1 31 1.47 0.84 ± 0.47 0.77 ± 0.41 0.953

2 26 1.45 1.08 ± 0.36 0.83 ± 0.38 1.322

3 17 − 0.20 ± 0.36 – −
4 135 − 1.01 ± 0.18 1.04 ± 0.18 −
5 46 − 1.77 ± 0.48 1.34 ± 0.39 −
6 99 1.14 1.45 ± 0.27 1.36 ± 0.24 2.250

7 85 1.01 1.26 ± 0.33 1.26 ± 1.89 2.505
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calculated from the evolutionary tracks of [18], and
the estimated radial and tangential velocity disper-
sions in km/s corrected for the average velocity er-
rors along the corresponding axis. The last column
of the table gives the square of the velocity disper-
sion averaged over the two directions,W 2 = σ2

R + σ2
θ ,

multiplied by the mass, as a characteristic measure
of the average kinetic energy of the stars of a given
group. We did not estimate the average masses for
groups 4 and 5, since these groups include both single
and binary stars, and their mean masses cannot be
estimated without knowing the essentially unknown
fraction of binary stars in this part of the HR di-
agram and the distribution of binaries in terms of
their component-mass ratios. We can make the crude
assumption that the mean mass in these parts of the
HR diagram is one and a half times higher than in the
adjacent regions. We likewise do not give an average
mass for the blue stragglers, since the masses of
these stars are unknown. The small size of the sample
prevented us from determining the velocity dispersion
for the blue stragglers: one of the velocity components
differed only insignificantly from zero, and we could
not estimate the other component, since the square of
the velocity dispersion was smaller than the square of
the standard error for the stars of this group.

The velocity-dispersion estimates listed in Table 3
lead to the following conclusions. The velocity dis-
persions for the single (groups 6 and 7) and binary
(group 5) MS stars are virtually the same, although
we might expect single and binary stars to interact
with other stars with different degrees of “elasticity.”
The average kinetic energy appears to increase some-
what with decreasing mass; in any case, according to
the estimates in Table 3, on average, single MS stars
have twice the kinetic energy of the somewhat more
massive red giants and subgiants (groups 1 and 2).
This could be due to mass segregation in the cluster,
when the more massive stars are concentrated toward
the cluster center and do not move far from the center
during their orbital motions. Note that groups 1 and 2
include single stars, whereas our numerical simu-
lations of the structure of the HR diagram of M67
(which we describe in another paper) show that the
regions occupied by giants and subgiants in Fig. 11
contain virtually no binaries.

5. CONCLUSIONS

Combining catalogs of relative and absolute
proper motions into a single master catalog has
enabled us to obtain an extensive sample of high-
precision proper motions for stars in the field of
the open cluster M67. This has made it possible to
confidently identify probable cluster members and
analyze their motions. Our experience leads us to
conclude that even old proper-motion measurements
have sufficient accuracy to be used along withmodern
catalogs. Objects with heliocentric distances within
1 kpc can be used to analyze the kinematics of stars
in open clusters.

Unfortunately, the very narrow interval of observed
stellar masses in such old clusters as M67 make it
impossible to confidently analyze the dependence of
the average kinetic energy of the stars on their mass.
We plan to carry out a similar analysis for stars of the
younger Pleiades and Praesepe clusters in the future.

It is clear from our results that analyses of the
phase-density functions of open clusters must take
into account various large-scale motions, such as the
expansion/contraction of the cluster as a whole or of
parts of the cluster (core and halo) and rotation of the
cluster.

Some of the conclusions we have drawn here are at
the limit of statistical significance. It would be highly
desirable to obtain at least one more independent set
of stellar proper motions down to a limiting magni-
tude of at least V ≈ 15m in a 2◦ × 2◦ field centered
on M67, in order to refine our conclusions.
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Abstract—A thickening at the outer edge of the accretion disk is usually invoked to explain the dips in the
light curves of cataclysmic variables with stationary disks at phases ∼0.7. The noncollisional interaction
between the stream and the disk in the stationary solution raises the question of why matter appears at a
considerable height above the accretion disk in such systems. Our three-dimensional numerical modeling
demonstrates that a thickening of the halo above the disk can appear even in the absence of a direct collision
between the stream and the disk. In the gas-dynamical flow pattern described with the “hot-line” model, a
considerable fraction of the matter is accelerated in the vertical direction during the flow’s interaction with
the circumdisk halo. The vertical motion of the gas due to the presence of the z component of the velocity
leads to a gradual thickening of the circumdisk halo. The computations reveal the strongest thickening of
the halo above the outer edge of the disk at phases∼0.7, in agreement with observations for stationary-disk
cataclysmic variables. This supports the hot-line model suggested earlier as a description of the pattern of
the matter flows in semidetached binaries and presents new possibilities for interpreting the light curves of
such systems. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Observations of low-mass X-ray binaries
(LMXBs) have revealed dips in the X-ray light
curves for several systems. Explanations of these
dips have hypothesized the presence of a thickening
at the accretion disk’s outer edge at phase ∼0.8,
which corresponds to the position of this feature in
the light curves ([1, 2] and references therein). The
presence of matter surrounding the X-ray source
at a considerable height above the system’s orbital
plane, along with the matter’s uneven distribution
in azimuth, can be explained in terms of either the
companion’s gravitational action on the accretion
disk or the interaction between the stream of matter
from the inner Lagrangian point (L1) and the disk.
The coincidence of the phase of the observed dips
with the assumed position where the stream from L1

approaches the outer edge of the disk, has tended
to focus study on this particular region. Beginning
with [3–5], numerical studies of variations of the
disk’s scale height due to its interaction with the
stream were initiated. Currently, the idea that the
stream ricochets off the disk’s outer edge is consid-
ered the best way to explain the presence of matter
at heights considerably exceeding the disk thickness.
The possibility that the stream flows around the edge
of the disk was first discussed in [6–9]; in 1996,
1063-7729/05/4909-0701$26.00
the gas-dynamical computations of Armitage and
Livio [10] showed that a considerable fraction of
the stream’s matter can ricochet off the edge of the
accretion disk. In their model, after colliding with the
disk edge, some of the matter in the stream rises to a
considerable height (compared to the disk thickness),
forming a stream towards the inner parts of the disk.
The computations of [10] demonstrated that this
stream of matter could explain the presence of the
dips observed in LMXB light curves.

It is easiest to identify dips due to the presence
of matter located high above the disk in LMXBs,
since they contain a very compact source at the center
of the disk. However, similar light-curve features in
various wavelength ranges have also been recorded
for a number of cataclysmic binaries in outburst, such
as U Gem [11, 12], OY Car [13, 14], and Z Cha [15].
Further observations showed that light-curve dips
can also appear when a system is in a stationary
state. Studies of the ultraviolet light curves of the
eclipsing novalike cataclysmic binaries UX UMa and
RW Tri [16] confirmed this result and suggested that
this phenomenon was universal in semidetached bi-
naries with accretion disks. As an example, Fig. 1
presents the observed light curves for UX UMa (left
panel) and RW Tri (right panel) from [16]. It is inter-
esting that, in contrast to the cataclysmic systems,
c© 2005 Pleiades Publishing, Inc.
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Fig. 2. Three-dimensional surface of constant density ρ = 5 × 10−11 g/cm3.
systems with stationary disks display preeclipse dips
at much earlier phases,1 0.6–0.7 [16, 17] (Fig. 1).

This raises the question of what leads to the
presence of matter at considerable heights above
the accretion disk in the case of a stationary in-
teraction between the stream and the disk. Gas-
dynamical studies of the terminal flow pattern in
semidetached binaries demonstrate that the interac-
tion between the stream and the disk is collisionless in
this case [18–24]. In contrast to the hot-spot model,
which assumes that the stream impacts the edge of
the accretion disk, the stream interacts with gas of

1As usual in the analysis of observational data, the phase
angle, φ, is measured from the line connecting the centers
of the two stars, with the phase increasing in the direction
opposite to the system’s rotation.
the circumdisk halo in the stationary case, forming
an extended region of enhanced energy release, or so-
called “hot line.” This means that there will be no
ricochet of the stream in the steady-state mode, and
hence this model cannot explain the dips in the light
curves of binaries with stationary disks.

Our aim here is to study possible ways of thick-
ening the halo above a disk, ways that give rise
to eclipses of the central source and the presence
of dips in the light curves during the stationary
flow of matter in semidetached binaries. Our three-
dimensional modeling of the flow structure demon-
strates that, during the stream’s interaction with the
circumdisk halo, a considerable fraction of the matter
is accelerated in the vertical direction and rises to
heights appreciably exceeding the disk scale height.
The strongest thickening of the halo above the outer
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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in the region of interaction between the stream and the circumdisk halo, in the system’s equatorial plane. This figure was first
published in [22].
edge of the disk occurs at phase ∼0.7, in agreement
with observations of systems with a continuous
accretion regime. This provides new possibilities for
interpreting the light curves of such systems.

2. THE MODEL

We used the model of [22] in our numerical study
of the gas dynamics of the matter flows in a semide-
tached binary. We described the flow pattern using
a three-dimensional system of gravitational gas-
dynamical equations including the effects of radiative
heating and cooling of the gas:





∂ρ

∂t
+ divρv = 0,

∂ρv
∂t

+ div(ρv ⊗ v) + gradP

= −ρgradΦ − 2[Ω × v]ρ,

∂ρ(ε + |v|2/2)
∂t

+ divρv(ε + P/ρ + |v|2/2)

= −ρvgradΦ + ρ2m−2
p (Γ(T, Twd) − Λ(T )) .

(1)

Here, ρ is the density, v = (u, v,w) is the velocity
vector, P is the pressure, ε is the internal energy,
Φ is the Roche potential, mp is the proton mass,
and Γ(T, Twd) and Λ(T ) are the radiative heating and
cooling functions, respectively. The system of gas-
dynamical equations was closed with the equation of
state for an ideal gas, P = (γ − 1)ρε, where γ is the
adiabatic index. The parameter γ was taken to be 5/3.
ASTRONOMY REPORTS Vol. 49 No. 9 2005
We solved this system of equations using the
Roe–Osher technique [21, 25, 26] adapted for multi-
processor computers. The modeling was carried out
in a noninertial frame of reference rotating with the
binary, in Cartesian coordinates, on a rectangular
three-dimensional grid. Since the problem is sym-
metric about the equatorial plane, we modeled only
half of the space occupied by the disk. The size of the
modeled region, 1.12A × 1.14A× 0.17A (whereA is
the distance between the system’s components), was
chosen to completely include the disk and the stream
of matter from the point L1. The computational grid
had 121 × 121 × 62 cells distributed among 81 pro-
cessors forming a 9 × 9 two-dimensional array. The
grid was made denser in the region of interaction
between the stream and the disk in order to improve
the accuracy of the solution in this region. The grid
was also denser near the equatorial plane, providing
good resolution of the disk’s vertical structure.

The solution obtained for the model without cool-
ing was used for the initial conditions [27]. Before the
solution converged, the model with cooling was com-
puted for ≈5 orbital periods of the system as a whole.
The total computation time was ≈1000 hours at the
MVS1000A computer of the Joint Supercomputer
Center (JSCC).

A free boundary condition with constant density
ρb = 10−8ρL1

, a temperature of 13 600 K, and zero
velocity was imposed at the outer boundaries of the
computational region (except near L1), where ρL1

is
the matter density at L1. The accretor was taken to
be a sphere of radius 10−2 A. All the matter entering
the accretor cells was assumed to fall onto the star.
The stream was specified as a boundary condition:
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Fig. 5. Fragments of streamlines emerging from the neighborhood of L1.
matter with a temperature of 5800 K, density of ρL1 =
1.6 × 10−8 g/cm3, and velocity along the x axis vx =
6.3 km/s was injected into a region of radius 0.014A
around L1.

We considered a semidetached binary consisting
of a donor with mass M2 that fills its Roche lobe and
an accretor with mass M1. The following parameters
were adopted for the system: M1 = 1.02M�, M2 =
0.5M�, and A = 1.42R�, corresponding to Porb =
3.79h. The disk in the model had a temperature of
13 600 K. For the specified rate of matter entering the
system, the corresponding accretion rate in the model
was ≈10−10 M�/yr.

3. RESULTS OF COMPUTATIONS
We described the morphology of the matter flows

in a semidetached binary with a stationary, cool (T =
13 600 K) disk in [22]. Let us briefly summarize the
main features of the computed flow structure. Fig-
ure 2 shows a three-dimensional surface of constant
density of ρ = 5 × 10−11 g/cm3. The region of the
interaction between the stream and circumdisk halo
is shown enlarged in Fig. 3 [22, Figs. 7, 8]. The left
panel of Fig. 3 displays contours of constant density
and velocity vectors, while the right panel of Fig. 3
is the so-called texture: a visualization of the velocity
field by means of numerous tracks of test particles.

The results presented demonstrate that the inter-
action between the circumdisk halo and the stream
possesses all the characteristic features of an oblique
collision of two flows. The resulting structure of two
shock waves with a tangential discontinuity between
them is clearly visible in Fig. 3. The region of the
shock interaction between the stream and halo has
a complex shape. The parts of the halo far from the
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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disk have low density, and the shock due to their
interaction with the stream lies along the edge of the
stream. The shock bends as the gas density in the
halo increases, finally assuming a position along the
edge of the disk. Note that the solution for the cool
case has the same qualitative features as the solution
for hot outer parts of the disk [27]: the interaction
between the stream and the disk is collisionless; the
region of enhanced energy release is due to the inter-
action between the gas in the circumdisk halo and in
the stream and is located outside the disk; and the
resulting system of shocks is extended and can be
considered as a hot line.

It follows from the above general features of the
flow pattern that, at the interaction zone, the halo
gas and stream gas pass through the shocks cor-
responding to their own flows, are mixed, and then
move along the tangential discontinuity between the
two shocks. Subsequently, the disk itself, halo, and
intercomponent envelope are formed of precisely this
matter. The jump in the gas parameters after the
passage of the shock leads to the increase of density
and temperature in the region between the shocks
and, consequently, to the appearance of a pressure
gradient along the z axis, perpendicular to the sys-
tem’s plane of rotation. As a result, the gas begins to
expand vertically, increasing the z component of the
velocity, until the pressure gradient is balanced by the
gravitational force.

The vertical gas pressure due to the presence of
the z component of the velocity, together with the
motion of the gas along the tangential discontinuity
at the disk’s outer edge, lead to a gradual increase
of the thickening of the circumdisk halo (along the
z axis). This thickening of the halo along the outer
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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edge of the accretion disk is clearly visible in the
three-dimensional constant-density surface shown in
Fig. 2, as well as in Fig. 4, which displays constant-
density curves in the section of the flow structure that
is perpendicular to the equatorial plane and drawn
through the accretor and the maximum thickening
of the halo (φ = 0.7). An additional illustration of
the halo thickening above the disk is provided by
Fig. 5, which shows fragments of computed stream-
lines emerging from the vicinity of L1. We can see
that the streamlines diverge after acquiring a vertical
acceleration in the region between the shocks, then
converge again toward the system’s equatorial plane.
The region of vertical acceleration is restricted to the
hot-line zone. After passing this region, the gas has a
large vertical velocity component that makes it climb
higher, until its store of kinetic energy is exhausted.
The point where the upward motion ceases corre-
sponds to the maximum height, which is reached
at phase ∼0.7, i.e., already considerably outside the
hot line.

To quantitatively analyze the thickening of the
halo above the disk, let us consider the behavior
of the streamlines and the distributions of the gas
parameters along them. In a cylindrical coordinate
system with its origin coincident with the accretor
(x = A, y = 0.0, z = 0.0) and the angle φ measured
from the point L1 opposite to the direction of rotation
of the matter (coincident with the system’s direction
of rotation), each point of the streamline is described
by the coordinates (r, φ, z). The z(φ) relations for
four streamlines originating at points in the neighbor-
hood of L1 are presented in Fig. 6. We can see that,
after entering the hot-line region (phase ∼0.975),
the streamlines begin to climb due to the increase
of the velocity’s z component. The phase relation of
the vertical velocity for the same four streamlines is
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displayed in Fig. 7. When the gas emerges from the
hot line (phase ∼0.8), the force due to the pressure
jump behind the shocks disappears, and the gas sim-
ply moves in the accretor’s gravitational field. The
vertical velocity of the gas becomes zero at phase
∼0.7, corresponding to the maximum ascent of the
streamlines. The height of the halo at this position
reaches ∼0.04A.

In addition to the primary maximum, the system
also exhibits a minimum height at phase ∼0.3, when
z ∼ (0.005–0.006)A, and a secondary maximum at
phase ∼0.1, when the height of the halo is ∼0.01A.
Due to the effects of viscous dissipation, the mini-
mum and secondary maximum are considerably less
pronounced than the primary maximum. Eventually,
viscosity leads to complete damping of the vertical ve-
locity oscillations, so that the gas no longer possesses
a significant vertical velocity when it next approaches
the region of the interaction with the stream.

Figure 8 is the phase dependence of the den-
sity for the same four streamlines as in Fig. 6. The
densities correspond to the mass-exchange rate in
the RW Tri system (∼10−8 M�/yr [28]). We can see
from these results that a strong density decrease is
observed in the region of maximum ascent of the
streamlines. This behavior of the density can lead to a
displacement of the light-curve dips towards regions
of higher ρ; i.e., towards higher phases. This should be
manifest most strongly in short-wavelength observa-
tions, since higher densities are required to absorb
harder radiation. It is also interesting that the gas
density is much higher near the secondary maximum,
at phases∼0.1, than near the first thickening.

To evaluate whether the central source can be
eclipsed by the thickening of the halo, we computed
the optical depth of the halo matter, τ . The optical
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depth is the product of the density, the layer’s geomet-
rical depth, and the absorption coefficient: τ = ρlκ.
To estimate τ near the region of thickening, let us
use the densities presented in Fig. 8, taking the char-
acteristic linear size of the thickening to be its half-
height (Fig. 6).We estimate the absorption coefficient
using the approximation formulas from [29] with a
temperature of∼13 600 K and a characteristic density
corresponding to the value at the thickening’s half
maximum. Our estimates of τ are presented in Fig. 9,
which shows the relations between the optical depth
and the phase, τ(φ), along the same four streamlines
as in Fig. 6. An analysis of these estimates of τ
shows that the thickening is optically thick, even at
its greatest heights, and the value of τ at the half
maximum can reach ∼102. This means that the halo
thickening is capable of eclipsing the central source,
giving rise to the dips observed in the light curves of
semidetached binaries with stationary disks.

Obviously, in stationary systems, when there is
no collision between the stream and the outer edge
of the disk, there can be no ricochet and no transfer
of a substantial fraction of the stream’s matter into
the inner parts of the disk. However, the momentum
of the stream matter is lower than that of the halo
gas, so that some of the stream gas at great heights
can slide down into inner orbits, appearing as if the
stream is flowing around the outer edge of the disk.
This sliding-down can take place only in the hot-
line region, where the momenta of the matter in the
stream and in the halo have not yet become equalized.
Indeed, when considering the streamlines that reach
high heights from the stream’s center (Fig. 10), we
can see that some of them leave the interaction region
of the stream and halo, envelop the disk from the
upper side, and get into its inner regions. The results
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 10. Same as Fig. 5, also showing fragments of the streamlines emerging from a wider vicinity of L1.
of our computations demonstrate that the total flux
of matter associated with this effect is small, and
apparently cannot significantly influence the visibility
of the central object.

4. CONCLUSIONS

Observations of semidetached binaries with sta-
tionary accretion disks reveal dips in their light curves
at phase∼0.7. These dips are usually explained by in-
voking the presence of a thickening at the outer edge
of the accretion disk, without explaining how matter
appears at considerable heights above the accretion
disk in the case of a stationary interaction between the
stream and disk. It is important to resolve the problem
of the formation of this thickening of the halo above
a stationary disk if we wish to correctly interpret the
observations and more fully understand the nature of
matter-exchange processes in these stars.

The results of our three-dimensional numerical
modeling of the matter-flow structure in semide-
tached binaries with stationary disks confirm our
earlier conclusions [21, 22, 27] that the interaction
between the stream and disk is collisionless, the
region of increased energy release is due to the
interaction between the gas in the circumdisk halo
and the stream and is located outside the disk, and
the system of shocks that forms is extended and can
be considered as “hot line.” The interaction between
the circumdisk halo and the stream possesses all
RONOMY REPORTS Vol. 49 No. 9 2005
the characteristic features of an oblique collision of
two flows that results in the formation of a structure
consisting of two shock waves and a tangential
discontinuity.

In the hot-line region, the halo and stream gases
pass through the shocks corresponding to their own
flows, are mixed, and then move along the tangential
discontinuity between the two shocks. During the
interaction between the stream and the circumdisk
halo, a considerable fraction of the matter acquires a
vertical acceleration. The vertical motion of the gas
due to the z component of the velocity, together with
its motion along the tangential discontinuity at the
outer edge of the disk, results in a gradual growth
of the thickness of the circumdisk halo. The region
of vertical acceleration is restricted to the hot-line
zone, and its angular size does not exceed ∼65◦.
However, once it has passed this region, the gas has
a sufficiently large vertical velocity component to rise
until its store of kinetic energy is exhausted. The
point where the upward motion ceases corresponds
to the maximum height, which is reached at phase
∼0.7, already considerably outside the hot line. The
thickening extends appreciably higher than the scale
height of the disk, reaching values of ∼0.04A (this
corresponds to a ratio of the thickening’s height to the
distance to the accretor of >0.1), and its angular size
exceeds ∼130◦. Our computations also show that, in
addition to the primary maximum, the system also
displays a height minimum at phase ∼0.3, when z ∼
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(0.005–0.006)A, and a secondary maximum at phase
∼0.1, when the height of the halo is∼0.01A.

Our analysis of these results leads us to conclude
that the dips in the light curves of semidetached bi-
naries with stationary disks (i.e., in the absence of a
collisional interaction between the stream and disk),
can be explained by the formation of a thickening of
the halo above the outer edge of the disk. The origin
of this thickening is described well by the hot-line
model, and its quantitative features are consistent
with observations. The proposedmodel can be applied
to both semidetached systems (LMXBs, cataclysmic
variables) in their stationary state and to dwarf novae
in outburst, provided that the outer parts of the disk
are not strongly distorted in the outburst.
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Abstract—Observations of eclipses of the radio pulsar B1259-63 by the disk of its Be-star companion
SS 2883 provide an excellent opportunity to study the winds of stars of this type. The eclipses lead to
variations in the radio flux (due to variations in the free–free absorption), dispersion measure, rotation
measure, and linear polarization of the pulsar. We have carried out numerical modeling of the parameters
of the Be-star wind and compared the results with observations. The analysis assumes that the Be-star
wind has two components: a disk wind in the equatorial plane of the Be star with a power-law fall-off in
the electron density ne with distance from the center of the star ρ (ne ∼ ρ−β0), and a spherical wind above
the poles. The parameters for a disk model of the wind are estimated. The disk is thin (opening angle 7.5◦)
and dense (electron density at the stellar surface n0e ∼ 1012 cm−3, β0 = 2.55). The spherical wind is weak
(n0e � 109 cm−3, β0 = 2). This is the first comparison of calculated and observed fluxes of the pulsating
radio emission. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION
The first binary system consisting of a radio pulsar

and a Be star was discovered more than ten years
ago using the Parkes radio telescope [1, 2]. This is
the B1259-63 system, in which the pulsar moves
along a very elongated orbit (e ≥ 0.87) around its
companion—the 10m Be star SS 2883.

The first theoretical estimates of the number of
such systems, carried out in 1983–1987 using the
so-called “scenario machine” [3–6], showed that
approximately one in 700 observed radio pulsars
should have an OB companion. The detection of the
B1259-63 system not only confirmed the possibility
of the evolutionary scenario obtained by the authors
of [3–6], but also provided a powerful tool for studies
of the associated stellar wind, as was also predicted
in these studies. Currently, ≈1500 radio pulsars are
known, of which at least two are in binary systems
with OB companions (B1259-63 and J0045-7319),
consistent with the above estimate.

In 1997–1998, possible evolutionary tracks for the
B1259-63 and J0045-7319 systems were computed
using the scenario machine [7]. These computations
were based on an evolutionary scenario that predicts
the existence of systems consisting of a radio pulsar
and a massive optical component. The high eccen-
tricity of the orbit is explained as an effect of the
“kick” given by the anisotropic supernova explosion
that gave rise to the pulsar. Possible magnitudes and
the direction of the kick velocity in the B1259-63
system were also derived [8].

In 2003, the scenario machine was used to es-
timate the number of such systems in which the
1063-7729/05/4909-0709$26.00
orbital plane of the pulsar and the equatorial plane
of the Be star do not coincide [9]. For characteristic
anisotropic kick velocities of 50–200 km/s, these two
planes should be inclined relative to one another by
several tens of degrees in more than half of these
systems.

A Be star is a main-sequence star of spectral
class B which has one or more Balmer emission lines
in its spectrum, with these lines usually displaying
two peaks. Struve proposed in 1931 that this spectral
characteristic could be explained as radiation from a
rotating disk associated with the Be star. These disks
have now been observed in the optical, infrared, and
radio. They are comprised of dense, slowly rotating
material that is located in or near the equatorial plane
of the Be star. In addition, Be stars produce winds
with low density and high velocity.

Observations of the transit of PSR B1259-63 pro-
vide a unique opportunity for studying the charac-
teristics of the disk of the Be star based on the ob-
served variations of the radio flux, linear polarization,
rotation measure, and pulse delay. This is possible
because the disk of SS 2883 is inclined relative to the
orbital plane of its companion, so that the pulsar is
sometimes eclipsed by the disk.

Attempts were undertaken to construct a model
for the Be-star wind and compare the calculated pa-
rameters with the observed dispersion measure, rota-
tion measure, and pulse delay time. A disk model with
an exponential fall-off of the electron density with
distance from the Be star and with height above the
plane of the disk was considered in [10].
c© 2005 Pleiades Publishing, Inc.
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Fig. 1.Schematicmodel for a system consistingof a radio
pulsar and a Be star. The X axis is directed along the
line of sight toward the observer. ω is the longitude of
the ascending node, i is the orbital inclination (the angle
between the plane of the sky Y Z and the orbital plane
of the pulsar), P indicates the pulsar and Be the Be star,
ib is the angle between the XY plane and the plane of the
Be-star disk, and Ωb is the angle between the Y axis and
the line corresponding to the intersection of theXY plane
and the disk of the Be star.

A model with a power-law fall-off of the density
in the disk is more physically justified, however [11];
with some parameters, this model was able to explain
the observed variations in the dispersion measure
near periastron. A model with a clumpy disk wind
from the Be star has also been developed [12, 13]
(in addition to, not replacing, the power-law disk).
Rapidly moving bubbles (velocities of ≈2000 km/s)
with electron densities that differ from the value in the
surrounding region (ne ∼ 106 cm−3 and dimensions
<1010 cm at a distance of 20–50 stellar radii) give
rise to appreciable fluctuations in the electron density
along the line of sight, and thereby to fluctuations in
the flux, dispersion measure, and rotation measure.

An attempt to establish the position of the orbital
plane of PSR B1259-63 relative to the equatorial
plane of SS 2883 was made using timing measure-
ments for the pulsar [14, 15]. However, it proved
impossible to construct a unique model for the system
due to the noise level and the prolonged eclipses of the
pulsating radio emission.

A disk model for the Be-star wind is also consid-
ered, for example, in [16, 17], where the ratio N of the
densities of the outflowing material in the equatorial
plane and at the poles is derived. If the Be star rotates
 

Be star

Pole

Pole

 

ϕ

 

Equatorial plane

Fig. 2. Model Be-star wind. There is a disk wind with a
power-law fall-off in the electron density in the equatorial
plane and a spherical wind above the poles.

with a velocity v that is 90% of the critical veloc-
ity vcrit, then N = 150; slower rotation lowers this
value (when v = 0.70 vcrit, N ≈ 15−20). According
to [18], the rotational velocity of SS 2883 is approxi-
mately 70% of the critical velocity.

We consider here the absorption of the radio emis-
sion in a model with a power-law disk wind in the
equatorial plane and a spherical wind above the poles
of the Be star (without including the effect of clumpi-
ness). In contrast to previous studies, we compare
the calculated and observed fluxes of pulsating radio
emission. The derived parameters of the wind differ
from those presented in [11]. The available rotation-
measure data are sufficient only to derive order-of-
magnitude estimates of the magnetic-field strength
in the wind (in particular, in bubbles), as was done
in [11–13]. Accordingly, we will consider further only
the radio flux and dispersion measure.

2. MODEL Be-STAR WIND

Figure 1 depicts a schematic model of a binary
system consisting of a radio pulsar and a Be star. In
this figure, ω is the longitude of the ascending node,
i is the orbital inclination (the angle between the plane
of the sky Y Z and the orbital plane of the pulsar),
P indicates the pulsar and Be the Be star, ib is the
angle between the XY plane and the plane of the
Be-star disk, and Ωb is the angle between the Y axis
and the line corresponding to the intersection of the
XY plane and the disk of the Be star. The X axis is
oriented along the line of sight toward the observer.

The calculated model for the wind of SS 2883 is
presented in Fig. 2. There is a disk wind with opening
angle ϕ in the equatorial plane, and a spherical wind
above the poles, which we take here to be isothermal
and to have a constant radial speed. We assume that
the outflowing gas is fully ionized.

The electron density ne a distance ρ from the star
is calculated using the formula

ne = n0e (ρ0/ρ)β0 . (1)

Here, n0e is the electron density at the stellar surface
(i.e., at a distance ρ0 from its center). For the spherical
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 3. Dependence of the 1384 MHz radio flux of
B1259-63 on the position of the pulsar relative to
SS 2883; v is the true anomaly. The hollow squares show
the observational data with their errors. The solid curve
denotes the calculated model.

wind, β0 = 2; this is a free parameter for the disk wind,
whose value is one of the parameters we seek.

We also assumed that the temperature of the disk
wind can be determined by the power-law relation

T = T0 (ρ0/ρ)β1 . (2)

Here, T is the temperature of the plasma a distance ρ
from the star and T0 is the temperature at the stellar
surface.

The optical depth to radio emission can be calcu-
lated using the formula [19]

τ = 0.34
(

1 GHz
ν

)2.1(104 K
T

)1.35 EM
106 pc cm−6

.

(3)

Here, ν is the frequency of the radio emission, T the
temperature of the wind (2), and EM the emission
measure, which is defined to be

EM =
∫

n2
edl. (4)

The dispersion measure is given by the formula

DM =
∫

nedl. (5)

The quantity ne in (4) and (5) is calculated using (1).

3. RESULTS

We carried out theoretical calculations of the flux
and dispersion measure of the radio emission of the
B1259-63 pulsar as a function of its position relative
to its companion—the Be star SS 2883. These cal-
culated values were compared with the observations.
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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The observational data on the radio fluxes were
taken from Table 2 of [13], and on the dispersion
measures from Table 1 of [10], Table 2 of [11], and
Table 3 of [13]. The longitude of the ascending node of
the pulsar orbit in the B1259-63 system is ω = 138◦,
the orbital inclination is i = 36◦, the characteristic
radius of the star is ρ0 = 6R�, the mass of the
optical star is M = 10M�, and the projection of
the semimajor axis onto the line of sight is a sin i =
1295.98 light seconds [2]. The interstellar contribu-
tion to the dispersion measure of the B1259-63 pulsar
is 146.8 pc/cm3 [13].

The velocity of the Be-star wind at infinity is
V∞ = 1000−1300 km/s in the equatorial plane and
V∞ ≈ 2300 km/s at the poles [17] (the characteristic
wind velocity at infinity for SS 2883 is ≈1350 ±
200 km/s [20]). The radial outflow velocity of the disk
material at the Be-star surface is 5–10 km/s [21].

To check the resulting parameters of the stel-
lar wind, we must compare the mass-loss rate in
the model obtained with the characteristic values for
Be stars. The rate at which matter flows from the star
can be found from the expression

Ṁ = Ωρ2nmiV, (6)

where ρ is the distance from the star; n, the parti-
cle density of the wind at the distance ρ, which is
calculated using (1); mi, the mean mass of the ions
in the wind; V , the wind velocity at the distance ρ;
and Ω, the solid angle into which the given type of
wind (spherical or disk) flows.

Themass loss of Be stars was investigated in detail
in [22]. A Be star with an initial mass of 10M� loses
mass at the rate Ṁ = 3 × 10−9 M�/yr.

We carried out numerical computations in order
to determine the best-fit orientation of the disk of
the Be star SS 2883 relative to the orbital plane of
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Fig. 5. Same as Fig. 3 for 4800 MHz.

PSR B1259-63, which is given by the parameters
Ωb and ib (Fig. 1). We also wished to determine the
best-fit values of β0 for the disk wind and the electron
density at the stellar surface n0 for both the disk and
spherical winds (β0 = 2 for the spherical wind). We
constructed theoretical light curves for the pulsar at
1384, 2496, 4800, and 8400 MHz together with the
dependence of the dispersion measure of the pulsar
radio emission on the position of the pulsar relative
to its companion.

The results of the numerical simulations are
shown in Figs. 3–7 together with the observational
data. The criterion used to evaluate the correctness of
a model is the closeness of the computed curves to the
observational data. In addition, the model should not
contradict our understanding of the matter outflow
rate in Be stars.

The computations yielded the following best-fit
parameters for the diskmodel. The disk opening angle
was ϕ = 7.5◦, the electron density in the disk at the
stellar surface was n0e ≈ 1012 cm−3, and β0 = 2.55.
The spherical wind was weak (n0e � 109 cm−3,
β0 = 2). The orientation of the SS 2883 disk relative
to the orbital plane is described by the parameters
Ωb and ib (Fig. 1), which have the values Ωb = 12◦
and ib = 67◦ in the best-fit model. The disappearance
of the pulsating emission of B1259-63 near perias-
tron is due to eclipses of the pulsar by the Be-star
disk. The weak spherical wind does not make an
appreciable contribution to either the decrease in the
radio flux or the increase in the dispersion measure.
The model mass-loss rate via the SS 2883 wind
estimated using (6) is consistent with our current
understanding of the mass-loss rates of Be stars:
Ṁ ≈ 3 × 10−9M�/yr, in good agreement with the
results of [22].
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Fig. 6. Same as Fig. 3 for 8400 MHz.

Although we have assumed that the temperature
of the wind may depend on the distance from the
Be star (2), the best-fit model was obtained for a con-
stant temperature, equal to 104 K. Substituting (1)
and (2) into (3), we can see that the behavior of the
light curve will not change if 2β0 − 1.35β1 = 5.1,
if we suppose that β1 �= 0 (so that consequently
β0 �= 2.55). However, the variations of β0 must not
be in contradiction with the observed dispersion
measures, and cannot be large.

Figure 3 clearly displays a secondary minimum of
the light curve at values of the true anomaly v from
100◦ to 120◦. Our model for the wind is not able to fit
this observational feature. The computations yielded
a model with Ωb ≈ −55◦ that can fit this secondary
minimum, whose presence is then explained by the
absorption of the radio emission in the disk. However,
in this case, the pulsar and observer are located on
the same side of the disk at periastron, and we must
introduce a strong spherical wind in order to fit the
decrease in the radio flux. This led to an implausibly
high mass-loss rate (Ṁ ≈ 3 × 10−7 M�/yr). In ad-
dition, a strong spherical wind would make an ap-
preciable contribution to the dispersion measure, so
that it would be necessary to appreciably lower the
interstellar dispersion measure (from 146.8 pc/cm3

to 135–140 pc/cm3). We, accordingly, rejected this
second model.

The parameters of the best-fit model presented
here differ substantially from the results of [11], where,
in particular, it was found that β0 = 4.2 in the disk
and that the mass-loss rate of the optical star is Ṁ =
5 × 10−8 M�/yr.

4. CONCLUSIONS
Our computations have yielded the following best-

fit parameters for the disk model used. The opening
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 7.Dependence of the dispersion measure on the true
anomaly v of the B1259-63 pulsar. The hollow squares
indicate the observational data with their errors. The solid
curve denotes the model with a thin and dense disk wind
and a negligibly small spherical wind (we took the in-
terstellar contribution to the dispersion measure to be
146.8 pc/cm3).

angle of the disk is ϕ = 7.5◦, the electron density in
the disk at the stellar surface is n0e ≈ 1012 cm−3,
and β0 = 2.55. The spherical wind is weak (n0e �
109 cm−3, β0 = 2), and cannot make a significant
contribution to either the decrease in the radio flux
or the increase in the dispersion measure near peri-
astron. The orientation of the SS 2883 disk relative
to the pulsar’s orbital plane is fit by the parameters
Ωb = 12◦ and ib = 67◦ (Fig. 1). The mass-loss rate in
the SS 2883 wind estimated using (6) is consistent
with current thinking about the mass-loss rates of
Be stars: Ṁ ≈ 3 × 10−9 M�/yr, in good agreement
with the results of [22]. The disappearance of the
pulsating radio emission of B1259-63 near periastron
is due to eclipsing of the pulsar by the dense disk of
the Be star.

ACKNOWLEDGMENTS

The author thanks the anonymous referee for use-
ful comments.

REFERENCES
1. S. Johnston, R. N. Manchester, A. G. Lyne, et al.,

Astrophys. J. Lett. 387, L37 (1992).
ASTRONOMY REPORTS Vol. 49 No. 9 2005
2. S. Johnston, R. N. Manchester, A. G. Lyne, et al.,
Mon. Not. R. Astron. Soc. 268, 430 (1994).

3. V. G. Kornilov and V. M. Lipunov, Astron. Zh. 60, 284
(1983) [Sov. Astron. 27, 163 (1983)].

4. V. G. Kornilov and V. M. Lipunov, Astron. Zh. 60, 574
(1983) [Sov. Astron. 27, 334 (1983)].

5. V. G. Kornilov and V. M. Lipunov, Astron. Zh. 61, 686
(1984) [Sov. Astron. 28, 402 (1984)].

6. V. M. Lipunov and M. E. Prokhorov, Astron. Zh. 74,
1189 (1997) [Astron. Rep. 41 (1997)].

7. N. V. Raguzova and V. M. Lipunov, Astron. Zh. 75,
857 (1998) [Astron. Rep. 42, 757 (1998)].

8. M. E. Prokhorov and K. A. Postnov, Pis’ma Astron.
Zh. 23, 503 (1997) [Astron. Lett. 23, 439 (1997)].

9. A. I. Bogomazov, Astron. Astrophys. Trans. 23, 71
(2004).

10. A. Melatos, S. Johnston, and D. B. Melrose, Mon.
Not. R. Astron. Soc. 275, 381 (1995).

11. S. Johnston, R. N. Manchester, A. G. Lyne, et al.,
Mon. Not. R. Astron. Soc. 279, 1026 (1996).

12. S. Johnston, N. Wex, L. Nicastro, et al., Mon. Not.
R. Astron. Soc. 326, 643 (2001).

13. T. W. Connors, S. Johnston, R. N. Manchester, and
D. McConnell, Mon. Not. R. Astron. Soc. 336, 1201
(2002).

14. N. Wex, S. Johnston, R. N. Manchester, et al., Mon.
Not. R. Astron. Soc. 298, 997 (1998).

15. N. Wang, S. Johnston, and R. N. Manchester, Mon.
Not. R. Astron. Soc. 351, 599 (2004).

16. F. X. de Araujo and J. A. de Freitas Pacheco, Mon.
Not. R. Astron. Soc. 241, 543 (1989).

17. F. X. de Araujo, J. A. de Freitas Pacheco, and
D. Petrini, Mon. Not. R. Astron. Soc. 267, 501
(1994).

18. J. M. Porter, Mon. Not. R. Astron. Soc. 280, 31
(2001).

19. S. A. Kaplan and S. B. Pikel’ner, Physics of the In-
terstellar Medium (Nauka, Moscow, 1979) [in Rus-
sian].

20. B. McCollum, Bull. Am. Astron. Soc. 25, 1321
(1993).

21. L. B. F.M.Waters, J. Cote, andH. J.G. L.M. Lamers,
Astron. Astrophys. 185, 206 (1987).

22. A. V. Tutukov and A. V. Fedorova, Astron. Zh. 80, 896
(2003) [Astron. Rep. 47, 826 (2003)].

Translated by D. Gabuzda



Astronomy Reports, Vol. 49, No. 9, 2005, pp. 714–723. Translated from Astronomicheskĭı Zhurnal, Vol. 82, No. 9, 2005, pp. 803–813.
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Abstract—An analysis of high-resolution CCD spectra of the giant 25 Mon, which shows signs of
metallicity, and the normal giant HR 7389 is presented. The derived effective temperatures, gravitational
accelerations, and microturbulence velocities are Teff = 6700 K, log g = 3.24, and ξt = 3.1 km/s for 25 Mon
and Teff = 6630 K, log g = 3.71, and ξt = 2.6 km/s for HR 7389. The abundances (log ε) of nine elements
are determined: carbon, nitrogen, oxygen, sodium, silicon, calcium, iron, nickel, and barium. The derived
excess carbon abundances are 0.23 dex for 25 Mon and 0.16 dex for HR 7389. 25 Mon displays a modest
(0.08 dex) oxygen excess, with the oxygen excess for HR 7389 being somewhat higher (0.15 dex). The ni-
trogen abundance is probably no lower than the solar value for both stars. The abundances of iron, sodium,
calcium (for HR 7389), barium, and nickel exceed the solar values by 0.22–0.40 dex for both stars. The
highest excess (0.62 dex) is exhibited by the calcium abundance for 25 Mon. Silicon displays a nearly solar
abundance in both stars—small deficits of −0.03 dex and −0.07 dex for 25 Mon and HR 7389, respectively.
No fundamental differences in the elemental abundances were found in the atmospheres of 25 Mon and
HR 7389. Based on their Teff and log g values, as well as theoretical calculations, A. Claret estimated the
masses, radii, luminosities, and ages of 25 Mon (M/M� = 2.45, log(R/R�) = 0.79, log(L/L�) = 1.85,
t = 5.3 × 108 yr) and HR 7389 (M/M� = 2.36, log(R/R�) = 0.50, log(L/L�) = 1.24, t = 4.6 × 108 yr),
and also of the stars 20 Peg (M/M� = 2.36, log(R/R�) = 0.73, log(L/L�) = 1.79, t = 4.9 × 108 yr) and
30 LMi (M/M� = 2.47, log(R/R�) = 0.73, log(L/L�) = 1.88, t = 4.8 × 108 yr) studied by the author
earlier. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Various stars with peculiar chemical compositions
are observed among star of spectral types A–F on the
Hertzsprung–Russell diagram. Classical Am stars,
whose distinguishing characteristic is an increase
in the abundances of elements with growth in their
atomic number and underabundances of calcium and
scandium, are concentrated near the main sequence.
A qualitatively similar pattern of abundance anoma-
lies is observed for pulsating δ Sct stars, but with
only some of them displaying a slightly underabun-
dance of calcium and scandium (see, for example, [1]).
Kurtz [2] concluded that δ Sct stars are evolved Am
stars. Analysis of the spectra of eight A–F giants
that show signs of metallicity according to the pho-
tometric observations of Hauck [5] led Berthet [3, 4]
to conclude that they displayed abundance anoma-
lies similar to δ Sct stars. Later, taking into con-
sideration the results of [3–5], Berthet [6] proposed
that, during their evolution, classical Am stars lose
their deficiencies of calcium and scandium and enter
a δ Sct stage, then a stage in which they become
A–F giants with some characteristics of Am stars.
Kunzli and North [7] criticize this hypothesis, since
Am stars and A–F giants should then have the same
1063-7729/05/4909-0714$26.00
frequency of binarity and similar distributions of their
rotational velocities v sin i, which is not the case.
In their comparative study of the elemental abun-
dances of 18 A–F giants with signs of metallicity and
17 normal giants, Erspamer and North [8] found that
the former display somewhat higher abundances of
at least eight elements: Al, Ca, Ti, Cr, Mn, Fe, Ni,
and Ba.

In two previous papers, we present results of
studies of the atmospheric abundances of C, N, O,
and some other elements in the giants 20 Peg [9]
and 30 LMi [10], which were also considered earlier
by Berthet [3, 4]. In contrast to Berthet, our esti-
mates displayed only small differences between the
abundances of these elements in these stars and in
the Sun.

The main goal of the present work is similar to
that of these previous studies. We present results of
spectral analyses for 25 Mon and HR 7389. Accord-
ing to Hauck [5], 25 Mon is a giant that displays
some characteristics of an Am star, while HR 7389
is a normal giant. Some data about these stars are
presented in Table 1. The parameters presented in
columns (1)–(6) are taken from the catalog [11],
c© 2005 Pleiades Publishing, Inc.
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Table 1. Some parameters of 25 Mon and HR 7389

HR HD Name mv Sp v sin i, km/s β c1 b − y [c1]

2927 61064 25 Mon 5.12 F6III 25 2.675 0.643 0.284 0.586

7389 182900 5.74 F6III 30 2.659 0.541 0.302 0.481
and those from columns (8) and (9) from Hauck and
Mermilliod [12].

2. OBSERVATIONAL MATERIAL

The observations were obtained on the 2.6-m
reflector of the Crimean Astrophysical Observatory
using a 1024 × 256 EEV15–11 American CCD
array mounted at the Coude focus. 25 Mon was
observed episodically from February 1998 through
December 2003, and HD 7389 from August–
September 2003. All the spectra were recorded in the
second order of the diffraction grating, and encom-
passed an interval of about 70 Å. The inverse linear
dispersion of the spectra is 3 Å/mm, with a spectral
resolution of 30 000. The signal-to-noise ratios are in
the range S/N = 50–150. The spectra were reduced
using standard techniques (see, for example, [13]).
As earlier, with the aim of estimating the C, N, and O
abundances, we recorded spectral intervals centered
on the CI λ 5052, NI λ 8683, and OI λ 6156 lines.
However, since we were not able to find enough
unblended lines in these intervals for 25 Mon and
HD 7389 to estimate the microturbulence velocities,
we carried out additional observations in other spec-
tral intervals as well. In oriented our choice of these
intervals first and foremost toward FeI lines, which
are most numerous in the spectra of these stars.
The centers of the chosen wavelength intervals are
λλ 6065, 6096, 6265, 6380, 6425, 6484, and 6810. We
also obtained observations of Hα and Hβ in order to
determine the parameters of the stellar atmospheres.

When possible, the abundance estimates were de-
rived from the equivalent widths Wλ of lines free
from blending, and otherwise via fitting of synthetic
spectra.

3. EQUIVALENT WIDTHS. OSCILLATOR
STRENGTHS

We used the line list of the Vienna spectroscopic
database [14] to identify the lines in the spectra of
25 Mon and HR 7389; a list of the lines used is
presented in Table 2. The first three columns present
the wavelengths λ, excitation potentials for the lower
level χ, and oscillator strengths log gf for the lines,
in accordance with [14]. Oscillator strengths for CI
from other sources are also given. The fourth and fifth
ASTRONOMY REPORTS Vol. 49 No. 9 2005
columns present the line equivalent widths Wλ, and
the sixth and seventh the elemental abundances log ε
found from individual lines. If no equivalent widths are
given in the fourth and fifth columns, the abundance
derived from that line is based on a fitted synthetic
spectrum. Oxygen abundances log ε were obtained
for several values of the oscillator strengths.

4. ATMOSPHERIC PARAMETERS

The effective temperatures and gravitational
accelerations for 25 Mon and HR 7389 were de-
termined by comparing the observed and theoret-
ical parameters corresponding to a model of Ku-
rucz [17]. The parameters used were (1) the equiva-
lent widths Wλ of the Hα and Hβ Balmer lines; (2) the
photometric index [c1] = c1 − 0.2(b− y) (Table 1) in a
four-color system, which is known to be free from
interstellar absorption; and (3) the photometric in-
dex β (Table 1). The corresponding theoretical pa-
rameters are presented by Kurucz [17]. The values
of c1 and b − y for the calculation of [c1] and β were
taken from Hauck and Mermilliod [12] and are pre-
sented in Table 1. Since the CCD array we used did
not enable us to obtain a full profile of the hydrogen
lines, complete with the line wings and surrounding
intervals required for correct construction of the con-
tinuum level, we applied the method described by us
in [9] to measure the equivalent widths Wλ for the
Hα and Hβ lines; the essence of this method is com-
paring the observed “truncated” hydrogen-line profile
with a theoretical profile based on a Kurucz model in
order to calculate the total equivalent width. The re-
sulting equivalent widths were W (Hα) = 6.00 Å and
W (Hβ) = 8.30 Å for 25 Mon and W (Hα = 6.10 Å
and W (Hβ) = 7.60 Å for HR 7389. These Wλ values
were used to determine the models.

The effective temperatures Teff and gravitational
accelerations log g were found by averaging the pa-
rameters corresponding to points of intersection of
the β, Hα, and Hβ curves with the [c1] curve (Fig. 1).
The chosen models for 25 Mon and HR 7389 are
denoted by the points in Fig. 1. The results obtained
are collected in Table 3; the presented errors in the
temperature and gravitational acceleration estimates
are formal. We can see that 25 Mon and HR 7389
have similar temperatures. We also present in Table 3
values of Teff and log g derived by other authors.
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Table 2. Studied lines in the spectra of 25 Mon and HR 7389

Line λ, Å χ, eV log gf
Wλ, mÅ log ε

25 Mon HR 7389 25 Mon HR 7389

CI

5052.17 7.68 −1.65 8.70 8.75

−1.49[15] 8.65 8.60

−1.30[16] 8.50 8.30

NI

8683.40 10.33 +0.09 47 20 8.14 7.74

OI

6155.98 10.74 −0.66 8.75 8.80

6156.77 10.74 −0.48 8.75 8.85

6158.18 10.74 −0.31 8.80 8.85

NaI

6154.23 2.10 −1.56 6.55 6.50

SiI

6125.02 5.61 −0.93 38 35 7.40 7.29

6145.02 5.62 −0.82 49 47 7.45 7.37

6155.13 5.62 −0.40 7.40 7.40

6155.69 5.62 −1.69 7.35 7.65

6237.32 5.61 −0.53 64 7.32

6244.13 5.62 −0.69 56 7.36

SiII

6371.37 8.12 −0.00 137 109 7.94 7.88

CaI

6122.22 1.89 −0.39 200 170 7.14 6.85

6166.44 2.52 −1.16 77 6.86

6439.08 2.53 +0.39 212 173 7.02 6.58

6471.66 2.53 −0.65 120 86 6.86 6.44

6499.65 2.52 −0.72 121 96 6.93 6.63

FeI

5044.21 2.85 −2.04 67 61 7.77 7.64

5049.82 2.28 −1.36 159 138 7.82 7.65

5051.28 4.22 −1.19 7.70 7.70

5051.63 0.92 −2.80 7.60 7.70

6056.00 4.73 −0.46 82 77 7.91 7.86

6065.48 2.61 −1.53 133 108 7.79 7.53

6096.66 3.98 −1.93 30 8.00

6127.91 4.14 −1.40 44 34 7.89 7.69

6136.62 2.45 −1.40 7.65 7.70
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Table 2. (Contd.)

Line λ, Å χ, eV log gf
Wλ, mÅ log ε

25 Mon HR 7389 25 Mon HR 7389

6136.99 2.20 −2.95 7.65 7.70

6137.27 4.58 −1.94 7.65 7.60

6141.71 3.60 −1.46 7.70 7.75

6147.83 4.08 −1.67 7.65 7.75

6151.62 2.18 −3.30 34 7.89

6157.73 4.08 −1.26 7.70 7.85

6230.72 2.56 −1.28 148 7.68

6232.64 3.65 −1.22 72 7.62

6252.56 2.40 −1.69 128 130 7.69 7.80

6265.13 2.18 −2.55 76 86 7.74 7.84

6380.74 4.19 −1.38 45 7.91

6393.60 2.43 −1.43 141 137 7.68 7.61

6411.65 3.65 −0.60 132 123 7.67 7.73

6419.95 4.73 −0.24 91 94 7.79 7.86

6421.35 2.28 −2.03 114 109 7.73 7.71

6430.85 2.18 −2.00 113 116 7.71 7.61

6810.26 4.61 −0.99 36 37 7.76 7.71

7780.55 4.47 −0.25 119 7.86

FeII

6147.74 3.89 −2.72 7.65 7.75

6149.26 3.89 −2.72 7.60 7.75

NiI

6108.11 1.68 −2.45 42 57 6.47 6.56

6111.07 4.09 −0.87 30 33 6.73 6.69

7788.94 1.95 −2.42 67 6.85

7797.59 3.90 −0.26 72 6.44

BaII

6141.73 0.70 −0.08 2.50 2.40

Table 3. Atmospheric parameters for 25 Mon and HR 7389

Star Teff, K log g ξt, km/s Reference

25 Mon 6700± 250 3.24 ± 0.37 3.1 This work

6360 3.10 2.4 [3]

HR 7389 6630± 100 3.71 ± 0.15 2.6 This work

6338 3.73 1.5 [8]
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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ξt = 2.9 km/s for 25 Mon and ξt = 3.3 km/s and ξt = 2.3 km/s for HR 7389.
Themicroturbulence velocity ξt is an important
parameter that must be known when analyzing ele-
mental abundances in stellar atmospheres. It is espe-
cially important to determine ξt as reliably as possible
if strong lines are used to estimate log ε, since these
are especially sensitive to microturbulence; other-
wise, it is possible to derive erroneous values of log ε.
The quantity ξt is determined from the condition that
the abundance of an element log ε calculated based on
lines of a certain ion does not display any systematic
variations with increasing equivalent width Wλ. This
requires that the lines be sufficiently numerous and
that their equivalent widths cover a sufficiently large
interval. We used FeI lines to calculate ξt for both
stars, as well as CaI lines, which are not as numer-
ous as the FeI lines but whose equivalent widths
can be determined with confidence from the obser-
vations. Figure 2 shows that there is no correlation
with equivalent width for 25 Mon for the FeI lines
when ξt = 2.9 km/s, and for the CaI lines when ξt =
3.6 km/s; the corresponding values for HR 7389 are
ξt = 2.3 km/s for the FeI lines and ξt = 3.3 km/s for
the CaI lines. Assigning weights in accordance with
the numbers of FeI and CaI lines used yielded the
values ξt = 3.1 km/s for 25 Mon and ξt = 2.6 km/s
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Table 4. Elemental abundance in the atmosphere of 25 Mon and HR 7389

25 Mon HR 7389

Element log ε σ [X ] log ε σ [X ]

CI 8.62(1) +0.23 8.55(1) +0.16

NI 8.14(1) +0.31 7.74(1) −0.09

OI 8.77(3) 0.02 +0.08 8.84(3) 0.02 +0.15

NaI 6.55(1) +0.25 6.50(1) +0.20

SiI 7.40(4) 0.04 7.40(6) 0.12

SiII 7.94(1) 7.88(1)

Si 7.51(5) −0.03 7.47(7) −0.07

CaI 6.96(5) 0.11 +0.62 6.62(4) 0.15 +0.28

FeI 7.73(25) 0.09 7.73(23) 0.11

FeII 7.62(2) 0.02 7.75(2) 0.00

Fe 7.72(27) +0.25 7.73(25) +0.26

NiI 6.62(4) 0.17 +0.40 6.62(2) 0.06 +0.40

BaII 2.50(1) +0.32 2.40(1) +0.22
for HR 7389, which are presented in Table 3. We used
these values for our final abundance calculations.
Berthet [3] obtained the value ξt = 2.4 km/s using the
FeI lines for 25 Mon using the same method as we did,
while Erspamer and North [8] obtained ξt = 1.5 km/s
via synthetic spectra calculations. Table 3 shows that
our estimates of ξt for both stars are slightly higher
than the values of these other authors [3, 8].

5. CHEMICAL COMPOSITION

The elemental abundances log ε(El) =
log [N(El)/N(H)] + 12 (the abundance of hydrogen
is log ε(H) = 12 on this scale) were estimated using
the parameter values Teff = 6700 K, log g = 3.24, ξt =
3.1 km/s for 25 Mon and Teff = 6630 K, log g = 3.71,
ξt = 2.6 km/s for HR 7389. The calculations as-
sumed LTE. The abundances calculating using indi-
vidual lines for 25 Mon and HR 7389 are given in the
sixth and sevenths columns of Table 2. If no equiva-
lent width is given for a particular line in the fourth
and fifth columns, this indicates that log ε(El) was
derived by fitting a synthetic spectrum. Our synthetic
spectrum calculations yielded rotational velocities of
v sin i = 27 km/s for 25 Mon and v sin i = 28 km/s
for HR 7389, which are 2 km/s higher and 2 km/s
lower, respectively, than the corresponding values
of [11] presented in Table 1.

The values of log ε averaged over the results for
various ions are presented in the second (25 Mon) and
ASTRONOMY REPORTS Vol. 49 No. 9 2005
fifth (HR 7389) columns of Table 4, with the number
of lines used in the average indicated in parentheses.
The third and sixth columns of this table give the rms
deviation from the mean abundances, σ. The fourth
and seventh columns give the difference between
our abundances estimates and those of Lodders [18]
for the Sun, [X] = log ε(El)∗ − log ε(El)�, where we
have used the mean weighted value log ε(El) for the
stars if an element was observed in various ionization
states. We will now consider our results for each
element separately, comparing our results with those
obtained in other studies of 25 Mon and HR 7389.
Note that there are no previously published nitrogen
abundances for these stars.
Carbon. We observed one line of this element,

CI λ5052.17, which is blended with FeI λ5051.63 line
in the spectra of 25 Mon and HR 7389. Accordingly,
we derived the carbon abundance using a calculated
synthetic spectrum. Since various published oscilla-
tor strengths for CI λ5052.17 differ strongly (Table 2),
we calculated carbon abundances for each of three
values of log gf , which are presented in the sixth and
seventh columns of Table 2. The differences between
the maximum and minimum abundances log ε(C) are
0.20 dex for 25 Mon and 0.45 dex for HR 7389.
The mean values log ε(C) = 8.60 for 25 Mon and
log ε(C) = 8.52 for HR 7389 are presented in Table 4.
According to Rentzsch-Holm [19], the non-LTE cor-
rections to the carbon abundances of 25 Mon and
HR 7389 comprise approximately −0.1 dex, which
is smaller than the scatter in the carbon abundances
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due to the uncertainty in the oscillator strengths. The
abundance log ε(C) = 9.41 for 25 Mon was estimated
by Berthet [3] based on three lines in the ultraviolet.
According to [14], one of these three lines is a blend;
however, if we take into account only the two other
lines used by Berthet [3], the resulting abundance is
still 0.8 dex lower than our own estimate. The carbon
abundance of 25 Mon indicated by our estimates is
0.23 dex higher than to the solar value (Table 4,
column 4). Our log ε(C) estimate for HR 7389 is
0.16 dex higher than the solar value. Erspamer and
North [8] found log ε(C) for HR 7389 to be 0.22 dex
higher then the solar value.

Nitrogen. We were able to estimate the ni-
trogen abundances only using the NI λ8683.40
line, which yielded log ε(N) = 8.14 for 25 Mon and
log ε(N) = 7.74 for HR 7389, with the accuracy of
these estimates being only modest. Nevertheless,
comparing with the solar value (Table 4), we can
assert that the nitrogen abundance of 25 Mon is at
least not lower than the solar value, while the nitrogen
abundance of HR 7389 is consistent with the solar
value.
Oxygen. The oxygen abundances derived using

three lines and synthetic spectra differ only slightly
for each star (Table 2), with the corresponding
mean values being log ε(O) = 8.77 for 25 Mon and
log ε(O) = 8.84 for HR 7389 (Table 4). By means
of illustration, Fig. 3 compares the observed and
synthetic spectra at wavelengths of 6153–6160 Å,
which are in fairly good agreement. We can see
from Table 4 that the oxygen abundances are only
slightly higher than the solar values: by 0.08 dex
and 0.15 dex, respectively, for 25 Mon and HR 7389.
According to Takeda [20], the non-LTE corrections to
the oxygen abundances of both 25 Mon and HR 7389
do not exceed −0.04 dex. Erspamer and North [8]
derived a substantially higher oxygen overabundance
for HR 7389, equal to 0.65 dex.
Sodium. The sodium abundances for 25 Mon

and HR 7389 were calculated using only the NaI
λ6154.23 line, which yielded log ε(Na) = 6.55
and 6.50, respectively. The sodium abundances of
25 Mon and HR 7389 are 0.25 dex and 0.20 dex
higher than the solar value (Table 4). The sodium
overabundance derived for HR 7389 by Erspamer and
North [8], 0.18 dex, is similar to our own estimate.
Silicon. The silicon abundances of 25 Mon and

HR 7389 (Table 2) were calculated using several SiI
lines and one SiII line, with this last line yielding
a log ε(Si) value that was approximately 0.50 dex
higher than the mean abundance for all the SiI
lines for both stars. The mean weighted abun-
dances log ε(Si) for the lines of both neutral and
ionized silicon (Table 4) are very close to the solar
values: −0.03 dex for 25 Mon and −0.07 dex for
HR 7389. Similar results were obtained for HR 7389
by Erspamer and North [8].
Calcium. Our calcium abundance for 25 Mon

is rather high (log ε(Ca) = 6.96), while that for
HR 7389 is somewhat lower (log ε(Ca) = 6.62). This
yields overabundances relative to the solar value of
0.62 dex for 25 Mon and somewhat lower (0.28 dex)
for HR 7389 (Table 4). We can see from Table 2
that the CaI lines we observed in the spectra of both
stars have rather high equivalent widths. As we noted
above, the abundances derived from strong lines are
more subject to uncertainty in the microturbulence
velocity. Figure 2 shows that the microturbulence ve-
locities ξt = 3.6 km/s for 25 Mon and ξt = 3.3 km/s
for HR 7389 derived based on the CaI lines are
higher than the final values we adopted for the
calculations (Table 3). Recalculation of the calcium
abundances using ξt = 3.6 km/s and ξt = 3.3 km/s
yielded the lower values log ε(Ca) = 6.79 for 25 Mon
and log ε(Ca) = 6.42 for HR 7389. In this case,
the corresponding overabundances are 0.45 dex for
25 Mon and 0.08 dex for HR 7389. This suggests that
25 Mon displays a calcium overabundance relative
to the solar value, while the calcium abundance of
HR 7389 is only slightly higher than or close to
the solar value. Erspamer and North [8] obtained a
calcium overabundance of 0.14 dex for HR 7389.
Based on CaI lines in the violet, Berthet [3] derived
a calcium abundance for 25 Mon of log ε(Ca) = 6.52.
Iron. Our estimates of the iron abundances for

25 Mon and HR 7389 are log ε(Fe) = 7.72 and
log ε(Fe) = 7.73, respectively, which are approxi-
mately 0.24 dex higher than the solar value. Non-LTE
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Table 5.Masses, radii, luminosities, and ages of the giants 25 Mon, HR 7389, 20 Peg, and 30 LMi

Parameters 25 Mon HR 7389 20 Peg 30 LMi

M/M� 2.45 ± 0.47 1.87 ± 0.21 2.36 ± 0.30 2.47 ± 0.17

log(R/R�) 0.79 ± 0.15 0.50 ± 0.05 0.73 ± 0.05 0.75 ± 0.06

log(L/L�) 1.85 ± 0.31 1.24 ± 0.12 1.79 ± 0.15 1.88 ± 0.13

t, 108 years 5.3 ± 2.0 4.6 ± 2.1 4.9 ± 1.4 4.8 ± 1.0
corrections do not exceed +0.07 dex [19]. According
to the data of Berthet [3, Table 2], even if we exclude
blended lines [14], the iron abundance of 25 Mon
is log ε(Fe) = 8.05, which exceeds our estimate by
approximately 0.30 dex. Erspamer and North [8]
obtained a nearly solar iron abundance for HR 7389,
differing from the solar value by only +0.02 dex.
Nickel. We estimated the nickel abundances

of 25 Mon and HR 7389 to be the same,
log ε(Ni) = 6.62, which is 0.40 dex higher than the
solar value. Berthet [3] derived a higher value for
25 Mon (log ε(Ni) = 6.79). Erspamer and North [8]
obtained a log ε(Ni) value for HR 7389 that was
only 0.02 dex higher than the solar, as was the case
for iron.
Barium. We estimate the barium abundances of

25 Mon and HR 7389 to be log ε(Ba) = 2.50 and
log ε(Ba) = 2.40, respectively, which exceed the so-
lar value by 0.32 dex for 25 Mon and 0.22 dex for
HR 7389. The estimate of Berthet [3] for 25 Mon,
log ε(Ba) = 2.54, is close to our value. Erspamer and
North [8] estimated log ε(Ba) for HR 7389 to be
0.33 dex higher than the solar value.

6. COMPARISON WITH EVOLUTIONARY
COMPUTATIONS

We used the values of Teff and log g (Table 3) to
estimate the masses of 25 Mon and HR 7389, as well
as the stars 20 Peg (Teff = 6970 K, log g = 3.35) and
30 LMi (Teff = 7210 K, log g = 3.86) studied by us
earlier [9, 10] via a comparison with the evolutionary
computations of Claret [21]. The resulting estimates
are collected in Table 5, which also presents the as-
sociated errors in the masses due to the errors in Teff
and log g. Figure 4 shows the positions of these stars
relative to the evolutionary tracks for stars of various
mass, according to [22]. Once we have estimated the
masses of the stars, we can determine their radii and
luminosities using the relations

log(R/R�) = 2.22 + 1/2 log(M/M�) − 1/2 log g,

log(L/L�) = −15.045 + 2 log(R/R�) + 4 log Teff.

The resulting R and L values are also presented in Ta-
ble 5, together with the ages t for 25 Mon, HR 7389,
ASTRONOMY REPORTS Vol. 49 No. 9 2005
20 Peg, and 30 LMi, based on the computations of
Claret [22].

We can see from Table 5 that the more evolved
stars 25 Mon, 20 Peg, and 30 LMi have similar
masses, radii, and luminosities, which are higher than
the corresponding values for the less evolved star
HR 7389.

7. DISCUSSION

The fourth column of Table 4 presents a compari-
son of the abundances [X] = log ε(El)∗ − log ε(El)�
in the atmospheres of 25 Mon and HR 7389 ac-
cording to our estimates and the solar abundances of
Lodders [18].

First and foremost, the most reliably determined
abundance value—that of iron—is similar for the two
stars and 0.25–0.26 dex higher than the solar value.
The differences between the log ε(Fe) values for the
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giants 20 Peg [9] and 30 LMi [10] previously studied
by us and the solar iron abundance are somewhat
lower—+0.16 dex and +0.04 dex, respectively.

The carbon abundance exceeds the solar value
by a similar amount: +0.23 dex for 25 Mon and
+0.16 dex for HR 7389. Recall that the log ε(C)
values for 20 Peg and 30 LMi likewise differ from the
solar value by a comparable amount: by 0.21 dex and
0.19 dex, respectively.

As we noted above, our estimates of the nitrogen
abundances of both 25 Mon and HR 7389 were not
fully trustworthy; nevertheless, we can conclude that
the log ε(N) value for 25 Mon is 0.31 dex higher than
the solar value, while and this abundance for HR 7389
is close to the solar value (−0.09 dex). A similar result
for the nitrogen abundance is observed for 20 Peg
(an excess of 0.37 dex), while a nearly solar abun-
dance is observed for 30 LMi (−0.02 dex). Note that
no previous estimates of the nitrogen abundances of
stars of this type are available.

The oxygen abundances log ε(O) of 25 Mon and
HR 7389 are 0.08 dex and 0.15 dex higher than the
solar value, respectively; we obtained similar results
for 20 Peg (+0.14 dex) and 30 LMi (+0.07 dex).

According to our estimates, the sodium abun-
dance of both stars exceed the solar value, by 0.25 dex
(25 Mon) and 0.20 dex (HR 7389), while this differ-
ence is only +0.07 dex for 20 Peg, and only −0.04 dex
for 30 LMi. Note that the accuracy of the estimates is
lower for 25 Mon and HR 7389, since these estimate
were obtained using only one line.

The silicon abundances of 25 Mon (−0.03 dex)
and HR 7389 (−0.07 dex) are close to solar, as is also
true of 30 LMi (+0.03 dex), while 20 Peg displays a
log ε(Si) overabundance of 0.31 dex.

The calcium abundance of 25 Mon is noteworthy,
as it exceeds the solar value, and also the values for
the other three stars, by 0.62 dex. The difference is
somewhat lower for HR 7389: +0.28 dex. The abun-
dances log ε(Ca) for 20 Peg (+0.10 dex) and 30 LMi
(+0.04 dex) are closest to the solar value.

A similar situation is observed for the nickel abun-
dance: the differences of log ε(Ni) from the solar value
are +0.40 dex for 25 Mon and HR 7389, +0.10 dex for
20 Peg, and +0.12 dex for 30 LMi.

The estimated barium overabundances were
0.32 dex for 25 Mon, 0.22 dex for HR 7389, and
0.90 dex for 20 Peg; no barium lines were observed
30 LMi.

As we noted above, three of our studied stars—
25 Mon, 20 Peg, and 30 LMi—are known as gi-
ants showing signs of metallicity [5] and were stud-
ied earlier by Berthet [3, 4]. A comparison of the
results of [3, 4] and our own indicates that, many
elements display higher abundances in the results of
Berthet [3, 4] than in our own estimates. One prob-
able origin for this difference is that the line list used
by Berthet [3, 4] includes line blends along with single
lines [14]. This is especially important for iron lines of
25 Mon.

Note that, according to our estimates, HR 7389,
which is a normal giant [5], did not show the smallest
deviations from the elemental abundances found for
the giant 25 Mon, which possess signs of metallic-
ity [5].

To see how our results fit in with the results of the
study by Erspamer and North [8] of 18 giants with
signs of metallicity and 17 normal giants, we plotted
25 Mon, HR 7389, 20 Peg, and 30 LMi on the plot
presented in Fig. 10 of [8]. The C, O, Na, Si, Ca, Fe,
Ni, and Ва abundances for these four stars are with-
in the ranges found in [8]. Unfortunately, Erspamer
and North studied only one star from our program—
HR 7389; they found that giants with signs of metal-
licity display, on average, higher abundances of at
least eight elements compared to normal giants: Al,
Ca, Ti, Cr, Mn, Fe, Ni, and Ba. Thus, in general, our
results are consistent with the results of [8].

8. CONCLUSIONS

The main results of our study of the giant with
signs of metallicity 25 Mon [5] and the normal giant
HR 7389 [5] are as follows.

We have determined the effective temperatures,
gravitational accelerations, and microturbulence ve-
locities Teff = 6700 K, log g = 3.24, and ξt =
3.1 km/s for 25 Mon, and Teff = 6630 K, log g = 3.71,
and ξt = 2.6 km/s for HR 7389.

We have determined the abundances of nine ele-
ments: C, N, O, Na, Si, Ca, Fe, Ni, and Ba. For both
stars, the abundances of all these elements proved
to be either slightly higher than or close to the solar
values.

Regarding elements C, O, one can suppose that
the log ε(C) values for both stars only slightly
(by 0.23 dex for 25 Mon and 0.16 dex for HR 7389)
exceed the solar value, while log ε(O) is even closer to
the solar value (+0.08 dex for 25 Mon and +0.15 dex
for HR 7389). Our nitrogen abundances are relatively
uncertain, but indicate that the log ε(N) values for
25 Mon and HR 7389 are not lower than the solar
value.

The iron abundances for 25 Mon and HR 7389
are enhanced by 0.25 dex and 0.26 dex, respectively.
The sodium abundances for both stars (+0.25 dex for
25 Mon, +0.20 dex for HR 7389), calcium abundance
for HR 7389 (+0.28 dex), and barium abundance
for HR 7389 (+0.22 dex) exceed the solar value by
similar amounts; log ε(Ba) for 25 Mon exceeds the
solar value by 0.32 dex.
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ABUNDANCES OF CARBON, NITROGEN, OXYGEN 723
The largest observed overabundance is 0.62 dex,
for the calcium abundance of 25 Mon.

The overabundance of nickel is the same for both
25 Mon and HR 7389, and equal to 0.40 dex.

The silicon abundances were nearly equal to the
solar value: −0.03 dex for 25 Mon and −0.07 dex for
HR 7389.

Overall, we did not find any fundamental differ-
ences in the atmospheric elemental abundances of
25 Mon and HR 7389.

We used the Teff and log g values and the evo-
lutionary tracks of [22] to determine the masses,
radii, luminosities, and ages of 25 Mon
(M/M� = 2.45, log(R/R�) = 0.79, log(L/L�) =
1.85, t = 4.9 × 108) and HR 7389 (M/M� =
2.36, log(R/R�) = 0.50, log(L/L�) = 1.24, t =
4.6 × 108), as well as the two stars studied by us ear-
lier in [9, 10] 20 Peg (M/M� = 2.36, log(R/R�) =
0.73, log(L/L�) = 1.79, t = 4.9 × 108) and 30 LMi
(M/M� = 2.47, log(R/R�) = 0.73, log(L/L�) =
1.88, t = 4.8 × 108). The stars 25 Mon, 20 Peg, and
30 LMi were found to be more evolved than HR 7389.
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Abstract—We calculate the electron shear viscosity of dense matter (determined by Coulomb electron
collisions) in a wide range of parameters typical for white dwarf cores and neutron star crusts. In the
density range from ∼103 g/cm3 to 107–1010 g/cm3 we consider the matter composed of widely abundant
astrophysical elements, from H to Fe. For higher densities, 1010–1014 g/cm3, we employ the ground-state
nuclear composition, taking into account finite sizes of atomic nuclei and the distribution of proton charge
over the nucleus. Numerical values of the viscosity are approximated by an analytic expression convenient
for applications. Using the approximation of plane-parallel layer, we study frequencies, eigenmodes, and
viscous damping times of oscillations of high multipolarity, l ∼ 500–1000, localized in the outer crust of
a neutron star. For instance, at l ∼ 500 oscillations have frequencies f � 40 kHz and are localized not
deeper than about 300 m from the surface. When the crust temperature decreases from 109 K to 107 K,
the dissipation time of these oscillations (with a few radial nodes) decreases from ∼1 year to 10–15 days.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The shear viscosity of dense stellar material (with
densities ρ � 1014 g/cm3) is important for a number
of astrophysical problems, including the computa-
tions of the viscous damping of oscillations of white
dwarves and the envelopes of neutron stars. The total
shear viscosity can be presented as a sum of various
matter components. In the case of the outer crust
of a neutron star or the core of a white dwarf, it is
determined by electrons and ions: η = ηe + ηi; it is
necessary to add a contribution due to free neutrons,
ηn, in the inner crust of a neutron star. The electrons
are strongly degenerate and form an ideal Fermi gas,
while the ions are fully or partially ionized and form
strongly nonideal Coulomb fluid or Coulomb crystal.
Under these conditions, the electrons become the
most important carriers of heat, charge (see, for ex-
ample, [1]), and momentum, and the main process de-
termining kinetic coefficients (thermal conductivity,
electrical conductivity, and viscosity) is the scattering
of electrons by ions (atomic nuclei).

The shear viscosity of the dense stellar material
determined by electron–ion scattering has been con-
sidered in a number of papers. For example, the elec-
tron viscosity of a strongly nonideal Coulomb fluid
was calculated in [2–4] from variational principle. The
results of these computations are in good agreement.
However, they were carried out without including
the quasi-order of ions, which is important near the
melting point. Inclusion of this quasi-order in a fluid
together with multiple-phonon process of electron
scattering in a crystal led to the disappearance of
1063-7729/05/4909-0724$26.00
appreciable (by a factor of two to four) jumps in the
electrical and thermal conductivities [1].

Previous computations of the viscosity were car-
ried out in the Born approximation. However, the
non-Born corrections are important when calculat-
ing the electrical and thermal conductivities of mat-
ter containing chemical elements with high charge
numbers Z (see, for example, [1]). We include these
corrections and show that they are equally important
for calculations of the viscosity.

When studying oscillations of the envelopes of
neutron stars, it is necessary to know the viscosity
of matter with the density of ρ � 1014 g/cm3. When
ρ ∼ 1013 g/cm3, the dimensions of atomic nuclei be-
come comparable to the distances between them, and
it is necessary to take into account the distribution
of proton charge within the nuclei. This effect was
included in the electrical- and thermal-conductivity
computations of [5, 6] by introducing the form factor
for the atomic nuclei. No such computations have
been carried out for the viscosity.

In the current study, we have performed computa-
tions of the shear viscosity taking into account non-
Born corrections and the form factor of the nuclei,
the quasi-order in a Coulomb fluid, and multiphonon
process in a Coulomb crystal. The results are approx-
imated by analytical formulas that are convenient for
astrophysical applications.

Various types of oscillation modes can be excited
in neutron stars. Generally speaking, these oscilla-
tions carry important information about the internal
c© 2005 Pleiades Publishing, Inc.
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structure of neutron stars. Specific types of oscilla-
tions (such as r modes) can be accompanied by the
radiation of gravitational waves. Interest in studies
of neutron-star oscillations has been continuously
growing. Since neutron stars are relativistic objects,
theoretical studies of their oscillations must be carried
out in the framework of general relativity. The rela-
tivistic theory of oscillations was developed in a series
of papers by Thorne and coauthors [7–12]. In partic-
ular, the rapid (∼1 s) damping of p-mode oscillations
with multipolarity l = 2 due to gravitational-wave
radiation was demonstrated in [9]. Exact inclusion
of general-relativistic effects is labor-intensive, but,
in many cases, it is possible to use the relativistic
Cowling approximation [13]. A similar analysis of
various oscillation modes and mechanisms for their
dissipation is carried out in [14]. We also note the
recent review of Stergioulas [15], which contains an
extensive bibliography. As a rule, oscillations with low
values of l have been considered in the literature.

Although neutron stars are in the final stage of
stellar evolution, they can be seismically active for
many reasons. Possible mechanisms for the gener-
ation of oscillations have been widely discussed in
the astrophysical literature (see, for example, [14, 15]
and references therein). Much attention has recently
been paid to r modes—vortex oscillations that can be
generated in rapidly rotating neutron stars and are
accompanied by powerful gravitational radiation. In
addition, oscillations can be excited in neutron stars,
for example, during X-ray bursts (nuclear explosions
on the surfaces of accreting neutron stars), the burst-
ing activity of magnetars (anomalous X-ray pulsars
and soft gamma-ray repeaters; see, for example, [16]),
and glitches (sudden changes of spin periods) of
ordinary pulsars.

In this paper, we study the damping of oscillations
in the context of illustrating the results of viscos-
ity computations. We therefore choose the simplest
example—p-mode oscillations that are localized in
the outer crust due to a high value of the orbital
number l � 500.

2. SHEAR VISCOSITY OF DENSE STELLAR
MATERIAL

2.1. Parameters of Equilibrium Dense Material

The state of strongly degenerate electrons can
conveniently be described using their Fermi momen-
tum pF or wave number kF:

pF ≡ �kF = �
(
3π2ne

)1/3 = mecxr,

where � is Planck’s constant, me and ne are
the mass and number density of electrons, xr ≈
1.009 (ρ6Z/A)1/3 is the relativistic parameter of the
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electrons, Ze and A are the charge and atomic
number of the ions (nuclei), and ρ6 is the density
in units of 106 g/cm3. The electron degenerating
temperature is

TF =
(
εF −mec

2
)
/kB

≈ 5.93 × 109
(√

1 + x2
r − 1

)
K,

where kB is Boltzmann’s constant and

εF ≡ m∗
ec

2 = mec
2
√
1 + x2

r

is the Fermi energy of electrons. In our study, we
consider matter with T � TF and T � 5× 109 К (the
latter is required in order to avoid dissociation of the
atomic nuclei).

Further, we will use the Fermi velocity of the elec-
trons:

vF ≡ cβr = pF/m
∗
e .

The electrostatic screening of a test charge by the de-
generate electrons is described by the Thomas-Fermi
wave number kTF (the inverse screening radius):

k2
TF = 4πe

2 ∂ne

∂µ
≈ α

πβr
(2kF)

2 ,

where µ ≈ εF is the chemical potential of electrons
and α = e2/�c ≈ 1/137.036 is the fine-structure
constant.

The state of the system of ions is described by the
classical Coulomb coupling parameter

Γ =
Z2e2

akBT
≈ 22.75Z2

T6

(ρ6

A

)1/3
,

where a = (3/4πni)
1/3 is the radius of the ion sphere;

ni = ne/Z, the number density of ions; and T6, the
temperature in units of 106 K. When Γ� 1, the ions
form a nearly ideal Boltzmann gas. If Γ � 1, they
form a strongly nonideal Coulomb fluid. Finally, when
Γ > Γm (corresponding to temperatures T < Tm), the
ions crystallize. The crystallization of a classical sys-
tem of ions corresponds to Γm ≈ 175 (see, for exam-
ple, [17]).

Quantum effects in the system of ions become
important whenΘ ≡ T/Tp � 1, where

Tp = �ωp/kB ≈ 7.832 × 106(Z/A)ρ1/2
6 K

is the ion plasma temperature, ωp =(
4πZ2e2ni/mi

)1/2 is the ion plasma frequency, mi =
Amu is the mass of an ion, and mu = 1.6605 ×
10−24 g is the atomic mass unit.
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2.2. General Formalism

In the case of isotropic matter, the viscous-stress
tensor has the simple form

σ′
αβ = η

(
∂Uα

∂xβ
+

∂Uβ

∂xα
− 2
3
δαβ∇ · U

)
(1)

+ ζδαβ∇ ·U,

where U is the hydrodynamical velocity of the matter,
η is the shear viscosity, and ζ is the bulk viscosity (this
last quantity is especially important for the uniform
compression and rarefaction of matter).

Generally speaking, crystalline matter is aniso-
tropic, and expression (1) for the viscous-stress ten-
sor may not be formally applicable. However, in dense
matter, ions crystallize with the formation of a high-
symmetry face or body centered cubic lattice. In this
case, the viscous-stress tensor for a monocrystal is
determined by three independent coefficients (see, for
example, [18]), and can be written in the form (1)
with an additional term of the form κδαβ∂Uα/∂xα (the
sum over α is not carried out). The quantity U should
be understood as the velocity field for shifts of the
ions in their lattice sites. When studying any trans-
port processes on scales exceeding the characteristic
monocrystal size, the matter can be considered to be
isotropic. As in all the literature concerned with the
kinetics of the crystalline matter of white dwarves and
neutron stars without magnetic fields, we will restrict
our analysis to this case (assuming κ = 0).

The shear viscosity of the envelopes of neutron
stars and the cores of white dwarves is primarily de-
termined by the strongly degenerate electrons. It is
convenient to present this viscosity in the form

ηe =
nepFvF

5νe
,

where νe = 1/τe is the effective electron collision fre-
quency, which is related to the effective electrons
relaxation time τe. If the electron scattering is deter-
mined by several independent processes, these can be
studied separately, and the total collision frequency
will be the sum of the partial ones. For the dense
matter of white dwarf cores and envelopes of neutron
stars,

νe = νei + νimp + νee,

where νei, νimp, and νee correspond to electron scat-
tering by ions, impurity atoms, and electrons, re-
spectively. The dominant process is electron–ion
scattering, to which the current paper is dedicated.
Electron–ion scattering also determines the thermal
and electrical conductivities of dense matter (see, for
example, [1]). With small variations, the formalism
proposed by Potekhin et al. [1] is also applicable for
computations of the viscosity.
In crystalline matter, the electron–ion interaction
can adequately be described in terms of the emission
and absorption of phonons [19]. This description can
be realized using an ion dynamical structure factor [2].

The frequency of electron–ion collisions (ei scat-
terings) can be written as

νei = 12π
Z2e2Λeini

p2
FvF

=
4ZεF
π�

α2Λei, (2)

where Λei is the effective Coulomb logarithm, which
can be calculated using the variational method (see,
for example, [19]). When using the simplest trial func-
tion in the Born approximation for a strongly nonideal
ion plasma (Γ � 1), one obtains

Λei =

2kF∫

q0

q3u2(q)
(
1− q2

4k2
F

)
(3)

×
[
1− 1

4

(
�q

m∗
ec

)2
]
Sη(q)dq,

where q0 is the minimum momentum transfered in
an ei scattering event; q0 = 0 for the liquid phase
and q0 = qB in the crystalline phase, where qB =
(6πni)

1/3 is the radius of a sphere of the same volume
as the Brillouin zone. The value q0 = qB was intended
to select umklapp processes (i.e., those involving
variations in the electron momentum ��qB) in an
ei scattering event. At temperatures that are not
too low, the contribution of such processes to the
Coulomb logarithm Λei,

T � Tu ∼ TpZ
1/3α/3βr,

is much higher than the contribution of normal pro-
cesses occurring when q < qB (see, for example, [20]).
However, at low temperatures (T � Tu), umklapp
processes are “frozen” and the viscosity is determined
by normal processes. We will neglect this effect below,
restricting our consideration to temperatures T � Tu.

The function u(q) in (3) describes the Coulomb
interaction between an electron and an atomic nu-
cleus, as discussed in Section 2.3. The factor in
square brackets describes the kinematic effect of the
backward scattering of the relativistic electrons (see,
for example, [21]); Sη(q) is an effective static structure
factor that takes into account ion correlations. This
factor coincides with the effective structure factor
determining the electrical resistivity of the dense mat-
ter, which was computed and approximated in [22].
Note that the structure factor of a strongly nonideal
Coulomb fluid is known only in the classical limit
(Θ
 1). We also define a simplified structure factor,
based on the following approximations:

• Neglecting quasi-ordering in ion positions in the
Coulomb fluid (see, for example, [1]).
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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• Single-phonon approximation for the inelastic
structure factor of the Coulomb crystal (see, for ex-
ample, [20]).

We will call the viscosity calculated using the sim-
plified structure factor the simplified viscosity. Note
that previous computations of the shear viscosity by
Flower and Itoh [2, 3] and Nandkumar and Pethick [4]
were carried out for a Coulomb fluid using the simpli-
fied structure factor.

To take into account corrections to the Born ap-
proximation, we also multiply the integrand by the ra-
tio of the exact and Born cross sections for Coulomb
scattering. This method was proposed in [23] and
was used to calculate the transport coefficients by
Potekhin et al. [1, 24].

The effective frequency of electron scattering by
impurities (assuming that the impurity atoms ran-
domly occupy some of the sites of the crystal lattice) is
similar to the frequency of scattering by ions [see (2)]:

νimp =
12πe4

p2
FvF

∑

imp

(
Z − Zimp

)2
nimpΛimp,

where Zimp is the charge number of the impurity
ion and the Coulomb logarithm Λimp is calculated
using (3), but assuming the impurity atoms are only
weakly correlated (corresponding to the structure
factor Simp ≡ 1, while the screening of the impurities
is taken into account in the factor u(q)). In the sim-
plest model with Debye screening (with a screening
radius of q−1

Simp),

Λimp =
1
2
(
1 + 3β2

r ξ
2 + 2ξ + 2ξβ2

r

)

× ln
(
1 + ξ

ξ

)
− 3
2
β2

r ξ −
1
4
β2

r − 1,

where ξ = qSimp/(2kF) and q2
Simp = k2

TF + k2
imp. Here,

kimp is the wave number for the Debye screening of
the test charge by impurities (the inverse correlation
length of the impurities). This weakly influences the
result (kTF 
 kimp), and can be estimated as kimp =
(4πnimp/3)1/3, where nimp is the number density of
the impurities. Scattering on impurities is important
at low temperatures, when scattering on the crystal
lattice is suppressed by quantum effects.

The expression for the frequency of electron-
electron collisions νee was obtained by Flowers and
Itoh [2]. Their result can be written in the form

νee =
5π2α2k2

BT
2

2m∗
ec

2�

(
kF

kTF

)(
1 +

6
5x2

r
+

2
5x4

r

)
(4)

≈ 4.473 × 1011
(

kF

kTF

)(
n0

ne

)1/3

T 2
8 s−1,
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where the latter expression is presented for an ultra-
relativistic electron gas (xr 
 1), n0 ≈ 0.16 fermi−3

is the number density of nucleons in the atomic nu-
clei, and T8 is the temperature in units of 108 К.

2.3. The Form Factor of the Atomic Nuclei

The function u(q) describing the Coulomb inter-
action between an electron and an ion in (3) has
the form

u(q) =
F (q)

q2|ε(q)| ,

where ε(q) is the static longitudinal dielectric function
of the degenerate electron gas [25], which describes
the electronic screening of the ion field. Here,

F (q) ≡ 1
Z

∫
enp(r) exp(ır · q)dV (5)

=
4πe
Z

rp∫

0

np(r) sin(qr)
q

rdr

is the nuclear form factor characterizing the distri-
bution of proton charge within the atomic nucleus.
The integration in (5) is carried out over the atomic
nucleus, np(r) is the local number density of protons,
and rp is the radius of the proton core. In white
dwarves and the outer envelopes of neutrons stars
(ρ � 1011 g/cm3), the atomic nuclei can be taken to
be pointlike, F (q) ≡ 1. At densities ρ � 1013 g/cm3,
the proton charge can with good accuracy be taken to
be uniformly distributed throughout the nucleus. In
this case, it is a good approximation to write the form
factor as

F (q) =
3

(qrp)3
[
sin(qrp)− qrp cos(qrp)

]
, (6)

where rp is the radius of the proton core in the
atomic nucleus. When ρ � 1013 g/cm3, the proton-
density profile differs strongly from a step function,
and the form factor (6) becomes unacceptable. In this
case, we determined the nuclear form factor using
the model of the ground-state matter with smoothed
dependences of the parameters on the density of the
matter [26].

2.4. Analytical Approximation for the Viscosity

We have obtained an analytical approximation for
the Coulomb logarithm of ei scattering using the
method of the effective electron–ion scattering po-
tential proposed in [1] for the electrical and ther-
mal conductivities. The properties of matter with the
density of ρ � 1010 g/cm3 were studied in [1], where
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the form factor of the atomic nuclei was taken to be
unity. Later, Gnedin et al. [27] extended this method
to higher densities. As we noted above, the effective
structure factors for the viscosity and electrical con-
ductivity coincide. This simplifies generalization of
the effective-potential method for the approximation
of the shear viscosity. Following [27], we write in place
of u2(q)Sη(q) in (3)

[
u2(q)Sη(q)

]
eff =

1
(
q2 + q2

S

)2 (7)

×
[
1− e−s0q2

]
e−s1q2

GηD.

The factor
(
q2 + q2

S

)−2 corresponds to Debye screen-
ing of the Coulomb interaction with the effective
screening radius q−1

S ; the term in square brackets de-
scribes the ion correlations. The functions Gη and D

describe ion quantum effects. The factor exp
(
−s1q

2
)

added in [27] takes into account the influence of the
atomic-nucleus form factor. The numerical values
of the shear viscosity obtained based on the exact
theory are reproduced for the same parameters as the
electrical and thermal conductivities in [27]:

s ≡
(

qS

2kF

)2

= (si + se)e−βZ ;

βZ = παZβr; si = sD(1 + 0.06Γ)e−
√

Γ;

sD = (2kFrD)−2;

w ≡ (2kF)2s0 =
u−2

sD

(
1 +

βZ

3

)
;

w1 ≡ (2kF)2s1 = 14.73x2
nuc

×
(
1 +

Z

13
√
xnuc

)(
1 +

βZ

3

)
;

Gη =
(
1 + 0.122β2

Z

)
(
1 + 0.0361

Z−1/3

Θ2

)−1/2

;

D = exp
[
−0.42u−1

√
xr

AZ
exp(−9.1Θ)

]
,

where se ≡ k2
TF/(2kF)2 = α/πβr is the electron-

screening parameter, rD = a/
√
3Γ is the ionic Debye

radius, xnuc is the ratio of the mean-square radius of
the distribution of the protons in the atomic nucleus
and the radius of the ion sphere, and u−1 ≈ 2.8 and
u−2 ≈ 13 are the parameters of the phonon spectrum
in the Coulomb crystal. Note that the function Gη

coincides with the function Gσ from [27].
After integrating in (3) with the effective poten-

tial (7), we obtain
Λ = [Λ0(s,w + w1)− Λ0(s,w1)]GηD,
where the functions

Λ0(s,w) = Λ1(s,w)

−
(
1 + β2

r

)
Λ2(s,w) + β2

r Λ3(s,w),

with

2Λ1(s,w) = ln
s+ 1
s

+
s

s+ 1
(
1− e−w

)

− (1 + sw)esw [E1(sw)− E1(sw + w)] ,

2Λ2(s,w) =
e−w − 1 + w

w

− s2

s+ 1
(
1− e−w

)
− 2s ln s+ 1

s

+ s(2 + sw)esw [E1(sw)− E1(sw +w)] ,

2Λ3(s,w) = 3s2 ln
1 + s

s
+
1
2
2s3 − 4s2 − 3s + 1

1 + s

− s3

(1 + s)
e−w +

e−w

w
+
(2sw − 1) (1− e−w)

w2

− s2(3 + sw)esw (E1(sw)− E1(sw + w)) .

Here, E1(x) ≡
∫∞
x y−1e−ydy is the exponential in-

tegral (see, for example, [28]). The maximum error
in the approximation for the viscosity does not ex-
ceed 20%.

2.5. Main Properties of the Shear Viscosity

Let us discuss the results of our computations
of the shear viscosity without taking into account
the freezing out of umklapp processes (Section 2.2).
Figure 1 presents the temperature dependence of the
shear viscosity for a carbon plasma with density ρ =
104 g/cm3. The upper horizontal scale plots the non-
ideality parameter Γ of the plasma. Since the charge
number is fairly low, Z = 6, the non-Born corrections
are modest, and are not visible on the scale of Fig. 1.
All the data presented in the figure except for the
dot-dashed curves correspond to the scattering of
electrons by ions of single type.

The bold points in the figure show the numerical
results. The solid curve is the analytical approxima-
tion for the viscosity. The dashed curve shows the
viscosity computed using the simplified structure fac-
tor (Section 2.2). The large jumps in this “simpli-
fied” viscosity at the melting point are clearly visible.
These jumps (by a factor of two to four) are present
for all chemical elements and all plasma parameters.
Modification of the structure factor (Section 2.2) in-
creases the accuracy of the computations in the liq-
uid and solid phases, and makes the viscosity jumps
insignificant for all elements. This makes it possible
to introduce a single approximation for both phases
(Section 2.4).
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 1. Temperature dependence of the shear viscosity for
a carbon plasma with density ρ = 104 g/cm3. The solid
curve shows the analytical approximation of the viscos-
ity. The bold points present the results of the numeri-
cal calculations. The dashed curve shows the “simpli-
fied” viscosity, which demonstrates a jump at the melting
point. The dot-dashed curves correspond to matter with
16O impurities with concentration of 2 and 4%.

However, appreciable viscosity jumps are present
at the melting point in our computations for high
densities, where zero point oscillations of ions become
important. We assume, as did Potekhin et al. [1]
for the electrical and thermal conductivity, that these
jumps are a consequence of using the classical struc-
ture factor in the ion fluid under conditions when
quantum effects are important (while quantum effects
are included in the solid phase). Since the numerical
data used to construct the analytical approximation
include both the liquid and solid phases, the general
analytical approximation shifts the viscosity in the
liquid phase to the viscosity in the solid phase. We
suppose that, for an ionic fluid at high densities, this
approximation is more exact than our original nu-
merical data. It will be possible to verify this in the
future, when the ionic structure factors in a fluid are
calculated taking into account quantum effects.

The dot-dashed curves in Fig. 1 demonstrate the
influence of scattering by charged impurities. We
considered oxygen impurities with concentrations
of 2 and 4%. The presence of these impurities weakly
manifested at high temperatures, but dominates at
low temperatures, T � Tp, when scattering of elec-
trons by phonons in the Coulomb crystal is strongly
suppressed by quantum effects.

Figure 2 presents the temperature dependence of
the shear viscosity for an iron plasma with density
ρ = 108 g/cm3. The upper horizontal scale plots the
plasma nonideality parameter Γ. The bold points
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 2. Temperature dependence of the shear viscosity for
an iron plasma with density ρ = 108 g/cm3. The solid
curve shows the analytical approximation of the viscosity.
The bold points present the results of the numerical com-
putations. The hollow circles correspond to the Born ap-
proximation. The dashed curve presents the “simplified”
viscosity computed in the Born approximation.

present our numerical results, while the solid curve
shows the approximation. The dashed curve depicts
the computations using the simplified structure factor
neglecting non-Born corrections. As in Fig. 1, the
simplified viscosity displays jumps at the melting
point, while the new results pass smoothly through
this point. The charge number of iron (Z = 26) is high
enough for the non-Born corrections to be apprecia-
ble. To demonstrate this effect, the hollow circles in
Fig. 2 show the results of numerical computations of
the viscosity in the Born approximation. We can see
that the non-Born corrections reduce the viscosity by
approximately 20%.

Figure 3 depicts the density dependence of the
shear viscosity for hydrogen, helium, carbon, and
iron plasmas at a temperature of T = 107 К. Let us
consider the densities typical for the cores of white
dwarves and the outer envelopes of neutron stars.
The bold points show the numerical results, and the
curves are the approximations. The strong depen-
dence of the plasma viscosity on the chemical com-
position is due to the dependence of the frequency of
electron–ion collisions on the charge number Z. In
contrast to the thermal conductivity (see, for exam-
ple, [1]), the influence of electron-electron collisions
on the viscosity is insignificant at the considered den-
sities, even for hydrogen.

Figure 4 demonstrates the density dependence of
the shear viscosity of the plasma in the range from
106 to 1015 g/cm3 for the three temperatures T =
107, 108, 109 К. The ground state nuclear composi-
tion with smoothed parameters was used. The points
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the numerical results and the curves show the analytic fit.

show the numerical results, and the curves are the
approximations. In contrast to the thermal conduc-
tivity [1], the shear viscosity decreases strongly with
growing temperature. Note that the ratio ρ/η grows
with increasing density in the outer crust of a neutron
star. These results are important when computing the
damping of oscillations in the crust of a neutron star
(see Section 3.3).

For illustrative purposes, the plot is continued
beyond the crust into the stellar core (densities ρ ≥
1.5 × 1014 g/cm3). In the core, we used the equation
of state of the matter presented in [29]. It is assumed
that the core material consists of neutrons, protons,
and electrons and is not superfluid. The electronic
viscosity in the core of such a star is primarily deter-
mined by the scattering of electrons by the degener-
ate protons. The corresponding collision frequency is
obtained analogously to the rate of electron-electron
collisions [see (4)], and is equal to

νep = π2α2

(
kF

q0

) (kBT )
2 m∗

p
2

�p3
F

c

≈ 1.434 × 1012
(
kF

q0

)
T 2

8

(
m∗

p

mp

)2
n0

ne
s−1,

where mp ≈ 1.672 × 10−24 g is the proton mass and
m∗

p is its effective mass, which differs from mp due to
multiple-frequency effects (it is assumed that m∗

p =
0.7mp). The Debye-screening parameter in the stellar
core is equal to

q2
0 = 4π

∑

j

e2
j

∂nj

∂µj
,
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Fig. 4. Shear viscosity of the ground state matter as
a function of the density ρ for the three temperatures
T = 107, 108, 109 К. The solid curves show the analytical
approximation of the viscosity. The bold points represent
the results of our numerical computations. The vertical
dotted lines indicate the neutron drip density and the
boundaries of the crust and core of a neutron star (ρ =
1.5 × 1014 g/cm3 in our computations). The electronic
viscosity in the stellar core determined by the scattering
of electrons by degenerate protons is presented for com-
parison.

where the sum is taken over all types of charged
particles (electrons and protons); ej , nj , and µj are
the charge, number density, and chemical potential
of particles of sort j. Due to the strong suppression
of scattering by the proton degeneracy, the electronic
viscosity in the core grows by approximately a factor
of 1000 compared to its value in the crust.

3. P MODES OF OSCILLATIONS
OF A NEUTRON STAR CRUST

This section is dedicated to a study of the p modes
of the oscillations (i.e., oscillations in which perturba-
tions of the pressure dominate over the buoyant force)
with high orbital numbers (multipolarity), l � 500,
localized in the outer crust of a nonrotating neu-
tron star.

3.1. General Formalism

3.1.1. Flat Metric for the Envelope
of a Nonrotating Neutron Star

The standard spacetime metric for a nonrotating
neutron star [30] can be written as

ds2 = c2e2Φdt̃2 − e2λdr2 − r2dΩ2, (8)

where dΩ2 = dθ2 + sin2 θdϕ2, t̃ is the time coordi-
nate, r is the radial coordinate, θ and ϕ are the
polar and azimuthal angles, and the functions λ(r)
and Φ(r) determine the curvature of spacetime. In the
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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case of interest to us of the thin envelope, we can
neglect variation of the functions λ(r) and Φ(r) on
the scale of the crust and use the value at the stellar
surface:

e2Φ(R) = e−2λ(R) = 1− 2GM

c2R
,

where M is the gravitational mass of the neutron star.
Neglecting variations in r in the envelope compared
to the stellar radius R (in the approximation of a thin
envelope layer), we can rewrite (8) in the form

ds2 = c2
(
1− RG

R

)
dt̃2

−
(
1− RG

R

)−1

dr2 −R2dΩ2,

where RG = 2GM/c2 ≈ 2.953(M/M�) km is the
gravitational radius. Introduction of the local time t
and local depth z, specified by the relations

t = t̃
√
1−RG/R, z = (R − r)/

√
1−RG/R,

(9)

we come to a flat coordinate system that is the same
for the entire neutron-star crust:

ds2 = c2dt2 − dz2 −R2dΩ2. (10)

This metric coincides with the metric of a thin spher-
ical layer in a flat spacetime.

3.1.2. Equilibrium Structure
of the Neutron Star Crust

The structure of the neutron star is determined
by the equation of hydrostatic equilibrium,
including the effects of general relativity
(the Tolman-Oppenheimer-Volkov equation; see, for
example, [30]). This equation is greatly simplified
in the envelope, and can be rewritten in the planar
coordinate system (9):

c2s
dρ0

dz
=

dP0

dz
= gρ0, (11)

where P0 and ρ0 are the equilibrium pressure and
density, c2s ≡ ∂P0/∂ρ0 is the square of the local sound
speed, and

g =
GM

R2
√
1−RG/R

≈ 1.327 × 1014 M

M�

(
10 km

R

)2/√
1−RG/R

cm
s2

is the gravitational acceleration.
The computations used the equation of state for a

fully degenerate electron gas with electrostatic cor-
rection to the pressure. The chemical composition
ASTRONOMY REPORTS Vol. 49 No. 9 2005
of the matter was determined using a model with a
smoothed equilibrium nuclear composition. We also
used a polytropic model for the envelope, in which the
pressure is determined by the degenerate electrons,
which are taken to be relativistic at all densities, and
the matter is assumed to consist of 56Fe nuclei.

3.1.3. Oscillation Equation

In the outer envelopes of neutrons stars, the main
contribution to the pressure is produced by the de-
generate electrons. Therefore, when considering the
p modes of the oscillations, we can use a single equa-
tion of state to describe the equilibrium configuration
of the star and perturbations.

Let us write the Euler equation in a planar met-
ric (10):

∂U
∂t

+ (U · ∇)U = −∇P

ρ
+ g,

where P is the pressure of the matter. The continuity
equation must also be satisfied:

∂ρ

∂t
+∇ (ρU) = 0.

Taking the velocity U to be small and introducing
Euler perturbations of the pressure δP = P − P0 and
density δρ = ρ− ρ0, we obtain the linearized Euler
equation

∂U
∂t

=
δρ

ρ2
0

∇P0 −
1
ρ0

∇δP

and the continuity equation

∂δρ

∂t
+∇ (ρ0U) = 0, (12)

while the equation of state for the perturbations can
be rewritten in the form

δP = c2sδρ. (13)

We will consider irrotational motion and write the
velocity in the form U = ∇φ, where φ is the veloc-
ity potential, which is a scalar function of coordi-
nates and time. Formally, the function φ is determined
with accuracy to within an arbitrary function of time,
which we choose so that the Euler equation can be
rewritten [using (11) and (13)]

∂φ

∂t
= −δP

ρ0
= −c2s

δρ

ρ0
. (14)

Differentiating (14) with respect to the local time t
and taking into account (12) and (11) yields

∂2φ

∂t2
= c2s∆φ+ g · ∇φ, (15)
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where we have introduced the Laplace operator

∆ ≈ ∂2

∂z2
+

1
R2

(
∂2

∂θ2
+

1
sin2 θ

∂2

∂ϕ2

)
.

An equation that coincides with (15) was obtained by
Lamb [31] for atmospheric oscillations. The variables
in (15) can be separated if we write

φ = eıωtYlm(Ω)F (r),

where ω is the oscillation frequency, Ylm(Ω) are
spherical harmonic functions (see, for example, [32]),
and F (z) is an unknown function of depth that is
determined by the equation

d2F

dz2
+

g

c2s

dF

dz
+
(
ω2

c2s
− l(l + 1)

R2

)
F = 0. (16)

The first boundary condition for this equation,

function F (z) is bounded as z → 0, (17)

follows from the requirement that the amplitude of the
oscillations at the stellar surface be finite. The sec-
ond boundary condition is imposed artificially. In the
current study, we solved equations that were appli-
cable only in the thin crust of the star. Therefore, the
oscillations should become damped with depth. For
simplicity, we formally move this boundary condition
to infinity along z and will monitor the true region of
localization of the oscillations (see Section 3.3). In
this case, the boundary condition can be written

F (z)→ 0 as z → ∞. (18)

Together with the boundary conditions (17) and (18),
Eq. (16) specifies the eigenfrequencies and modes of
the oscillations. Moreover, the following asymptotics
are valid at large and small depths:

F (z) ∝





1− ω2z/g z → 0,

exp
(
−
√

l(l + 1)z/R
)

z → ∞.
(19)

Perturbations of the pressure and density are ex-
pressed in terms of the function φ(r) using rela-
tion (14):

δP = −ıωρ0φ, δρ =
δP

c2s
= −ı

ωρ0

c2s
φ.

Due to the boundary condition (17), variations of the
pressure and density, δP and δρ, are zero at the stellar
surface (since ρ0(R) = 0). We can see from these last
expressions that the number of zeros of the velocity
potential with depth (k) coincides with the number
of nodes of the pressure and density variations. Fur-
ther, we will call k the number of radial nodes of
the mode.
The displacement vector for a matter element in
the case of oscillations can be written in the form

ξ ≡
∫

Udt = − ı

ω
∇ · φ.

The z component of this vector is

ξz = − ı

ω
Ylm(θ, ϕ)

dF

dz
,

and the magnitude of the horizontal displacement can
be estimated as

|ξh| ≈
l

ωR
|F (z)| .

The quantities lF (z)/R and dF/dz appear on equal
footing in (16). Therefore, horizontal and radial dis-
placements should have the same order of magnitude
for the oscillations considered.

Oscillations of a polytropic envelope in a plane-
parallel approximation were studied earlier by
Goch [33] assuming that the equation of state of
the unperturbed matter and the perturbations are
described by polytropes with different indices. In the
limiting case of equal polytropic indices n, his result
can be presented as follows: the mode containing
k radial nodes has the eigenfrequency

ω2
k =

g

R

√
l(l + 1)

(
2k
n
+ 1
)

(20)

≈ 108g14

(
10 km

R

)√
l(l + 1)

(
2k
n
+ 1
)

s−2,

while the velocity potential is specified by the function

Fk(z) = exp
(
−
√

l(l + 1)
z

R

)

× L
(n−1)
k

(
2
√

l(l + 1)
z

R

)
,

whereL
(n−1)
k (x) is a generalized Laguerre polynomial

(see, for example, [28]) and g14 is the gravitational ac-
celeration at the stellar surface in units of 1014 cm/s2.
Note that the eigenfrequencies agree with the simple
estimate ω2 ∼ g/a, where a ∼ R/l is the characteris-
tic scale for the localization of the oscillations.

Note that the mode with k = 0 does not have
any radial nodes. It corresponds to the vanishing
Langragian variation of the pressure and density
[∇ ·U = 0, see (26)]; its parameters do not depend
on the adiabatic index. Adding the condition ∇ · U ≡
∆φ = 0 to (15), it is easy to show that this mode,
which is described by the function F (z) =

exp
(
−
√

l(l + 1)z/R
)

and has the frequency

ω2
0 =

g

R

√
l(l + 1) (21)

≈ 108g14

(
10 km

R

)√
l(l + 1) s−2,
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exists for any equation of state. Therefore, the fre-
quency ω0 will further be used to make the eigenfre-
quencies of the oscillations dimensionless.

The frequencies ω computed here refer to the coor-
dinate system of the stellar envelope [see (9)] and can
easily be transformed to the frequencies ω̃ as detected
by a distant observer:

ω̃ = ω
√
1−RG/R.

3.2. Viscous Damping of the Oscillations

In this section, we consider the damping of
oscillations with velocity potentials of the form
eıωtYlm(Ω)F (r) in a spherically symmetrical star
under the action of shear viscosity. We take the space-
time metric to be flat. This treatment is applicable to
the oscillations studied in Section 3.1, since the flat
metric (10), which coincides with the metric for a thin
spherical layer in a flat spacetime, can be introduced
in the region, where oscillations are localized. As
a result, it is sufficient to consider the oscillation
damping time in a flat metric and transform this time
[in accordance with (9)] into the frame of a distant
observer.

We define the oscillation damping time τ as

τ = E/|dE/dt|, (22)

where

E =
∫

εdV =
∫

ρ
|U |2
2

dV (23)

is the total energy of the oscillations and

ε =
1
4

(
ρ0|U |2 + c2s

ρ0
|δρ|2

)

is the energy density of the oscillations at a given
point averaged over the period (see, for example, [34]).
The additional factor of 1/2 in the expression for ε
is required due to the averaging over the oscillation
period. The integration is carried out over the en-
tire volume of the star (in practice, over the region
where the oscillations are localized). We neglect the
perturbation of the gravitational potential. The last
equality in (23) is determined by the equality of the
mean kinetic and potential energies in the case of
small harmonic oscillations. Note that a number of
authors have considered the damping time for the
oscillation amplitude rather than the damping time for
the oscillation energy (22).

When calculating the energy using (23), the an-
gular integration can be carried out analytically:

E =
1
2

R∫

0

ρ

[(
F ′)2 + l(l + 1)

r2
F 2

]
r2dr.
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The period-averaged rate of viscous dissipation of the
energy is (see, for example, [34])

dE

dt
= −1

4

∫
σ′

ik

(
∂U∗

i

∂xk
+

∂U∗
k

∂xi

)
dV, (24)

where the viscous-stress tensor σ′
αβ is given by (1).

As in the computation of the oscillation energy E, the
additional factor of 1/2 is required owing to the aver-
aging over the oscillation period. It is easy to see that
the rate of dissipation of energy separates into a sum
of terms associated with shear and bulk viscosities.
We will only consider the dissipation determined by
the shear viscosity. The integration over the angular
variables in (24) can be carried out analytically (see
the Appendix).

3.3. Discussion of the Numerical Results

As an example, we choose a “canonical” model
for a neutron star with a mass of M = 1.4M� and a
radius of R = 10 km. For this model,

ω0 ≈ 1.56 × 105
(
l(l + 1)
104

)1/4

s−1,

and for a distant observer

ω̃0 ≈ 0.766ω0 ≈ 1.19× 105
(
l(l + 1)
104

)1/4

s−1.

The thickness of the outer crust of such a star
(ρ < 4× 1011 g/cm3 before the neutron drip point)
is ≈410 m.

The eigenfrequencies of the oscillations were
found via a series of iterative trials, testing for the
coincidence of the mode number with the number of
radial nodes.

3.3.1. Eigenfrequencies of the Oscillations

The dependence of the eigenfrequencies of the os-
cillations specified by (16) with the boundary con-
ditions (17) and (18) on l is presented in Figs. 5
and 6. As we indicated above, the frequency of the
fundamental mode, which does not have any radial
nodes, is determined by (21) for all l.

With decreasing l, the oscillations penetrate
deeper regions of the outer crust, where the equation
of state is softened due to the relativistic nature of the
electron gas and beta captures. This gives rise to a
gradual decrease in the dimensionless eigenfrequen-
cies of the oscillations. As in the model with the poly-
tropic equation of state [see (20)], the distance be-
tween the squares of the dimensionless eigenfrequen-
cies for a fixed l is nearly constant. Theweak approach
of the frequencies with growth in the number of radial
nodes is due to the penetration of the oscillations to
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Fig. 5. Eigenfrequencies of oscillations localized in the
crust of a “canonical” neutron star. The numerical values
are normalized to the frequency ω0 given by (21). The
numbers next to the curves indicate the number of radial
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plitude of the radial displacements of matter for modes
with l = 500. The subscript of ξ indicates the number
of radial nodes. The root-mean-square amplitude of the
radial displacements at the stellar surface has been set
equal to 1 m.
deeper layers of the star, where the equation of state is
softened. When l ∼ 500, the main oscillation energy
is localized in the region 50 m � z � 400 m, where
the equation of state of the degenerate, relativistic
electron gas is described well by the profile of the
sound speed. Therefore, the estimate (20) for the
eigenfrequencies obtained in the polytropic model for
the envelope with polytropic index n = 3 is valid (with
accuracy to within several percent).

3.3.2. Modes of the Oscillations

Figure 7 presents profiles of the radial displace-
ments of the matter for modes with l = 500. The
mean squared amplitude of the radial displacements
of the stellar surface was taken to be 1 m. Since we
are considering linear oscillations, this quantity is an
arbitrary (sufficiently small) constant that normalizes
the solution. It is easy to determine from Fig. 7 the
magnitude of the radial displacements in the star for
any other amplitude of the radial displacements at the
surface. With growth of the depth z, there is a de-
crease in the amplitude of the radial displacements ξz ,
associated with oscillations. At z � 300 m, the de-
crease becomes monotonic and gradually emerges
onto the exponential asymptotic (19). This makes it
reasonable to speak of the localization of the oscilla-
tions in the outer crust of the star.

This effect is manifested even more clearly in the
energy density of the oscillations. Figure 8 presents
the dependence of the total energy density ε aver-
aged over the angular variables as a function of the
depth z for oscillations with l = 500. The amplitude
of the mode is normalized in the same way as in
Fig. 7. In our approximation, the energy density of the
oscillations is proportional to the square of the nor-
malized amplitude of the radial displacements of the
surface. The depicted modes are localized in the outer
crust of the neutron star. The energy density of the
oscillations varies comparatively weakly within the
“critical” depth z � 100–200m, after which it falls off
exponentially. The energy density decreases by more
than two orders of magnitude toward the boundary
between the outer and inner crust of the star.

As was noted in Section 3.3.1, when l ∼ 500, the
oscillation frequencies are reproduced well by a poly-
tropic model for the crust. The situation is somewhat
different for the eigenmodes. Normalization at the
stellar surface is not expedient for these modes, since
this model poorly reproduces the structure of the star
at low depths z � 40 m. Consequently, such normal-
ization leads to large errors at the depths of interest
to us, z � 100–200 m, where the main oscillation
energy is concentrated. Therefore, we need some kind
of special normalization to compare modes. Figure 9
ASTRONOMY REPORTS Vol. 49 No. 9 2005



OSCILLATIONS OF NEUTRON STAR CRUST 735
(like Fig. 8) depicts the angle-averaged energy den-
sity of the oscillations ε as a function of z. The sym-
bols show the results of the numerical computations,
while the curves show profiles in the polytropic model,
normalized so as to being the results into agreement
in the region, where oscillations are localized. We
can see that the polytropic model for the outer crust
satisfactorily reproduces the energy density of the
oscillations at depths of 60 m � z � 500m for modes
with l ∼ 500.

3.3.3. Damping of the Oscillations

In the further computations, the neutron-star
crust was taken to be isothermal. This approximation
describes well the intrinsic temperature profile: the
temperature is nearly independent of depth due to
the high thermal conductivity of the degenerate
electron gas. In our computations, the frequency and
damping time of the oscillations did not depend on the
normalization amplitude (the amplitude of the radial
displacements of the surface).

Figures 10, 11, and 12 present the dependence of
the damping time τ of the oscillations (for a distant
observer) on l for canonical neutron star with crust
temperatures of T = 107, 108, and 109 K.

The strong temperature dependence of the oscilla-
tion damping time is due to the appreciable decrease
in the viscosity with increasing temperature (Fig. 4).

The oscillation damping time can be estimated
based on the characteristic parameters of the oscil-
lations:

τ ∼ ε/ε̇ ∼ ρU2

/
η

(
U

λ

)2

∼ λ2 ρ

η
,

where ε̇ is the local viscous-dissipation rate and
U and λ are the characteristic velocity and scale for
variations of this quantity in the region of localization
of the oscillations.

Let us consider Fig. 11 in more detail. Oscillations
with l ∼ 500 are localized at z � 100 m (Fig. 8),
which corresponds to densities ρ � 1010 g/cm3.
Under these conditions, the ratio ρ/η is ∼3 s/cm2

(Fig. 4) and grows with increasing l (due to the
decrease of the density in the region of localization
of the oscillations). We present further estimates for
modes with l ∼ 500. The scale for variations in the
velocity can be estimated as λ ∼ R/l. Note that this
scale decreases for high modes (with a large number
of radial nodes), accelerating the damping of the
oscillations. For the fundamental mode (without any
radial nodes), the damping time (transformed to the
frame of a distant observer) can be estimated as

τ ∼ 1.2 × 104(500/l)2 s ≈ 120(500/l)2 day,
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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in good agreement with the numerical results for
l ∼ 500. The damping time drop weaker than ∝ l−2

is due to the growth in the ratio ρ/η for higher l, due to
the decrease of the density in the region of localization
of the oscillations.

For the outer crust of a star with a temperature
of T = 109 K, the ratio ρ/η does not depend very
strongly on the density ρ. Therefore, the oscillation
damping time well obeys the law τ ∝ l−2.

The dependence of the damping time on the crust
temperature is presented in Fig. 13, where we have
chosen modes with l = 500 as an example. The
damping time grows by approximately two orders
of magnitude as the temperature varies from 107 to
108 K. When the temperature increases by another
order of magnitude, the damping time grows further
by a factor of three. This is due to the nonlinear drop in
the viscosity with growth in the temperature (Fig. 4).

There exist many other damping mechanisms in
addition to the viscous damping of oscillations of
a neutron star considered here [14]. For example,
damping due to the radiation of gravitational and
electromagnetic waves (due to oscillations of the stel-
lar matter with a frozen-in magnetic field) are often
studied. In our case, these mechanisms are inefficient
due to the high multipolarity considered, l � 500.
When l is high, we expect gravitational or electro-
magnetic radiation to be generated by an ensemble of
closely spaced coherent elementary radiating regions,
which radiate in antiphase and cancel each other out.
Formally, the weakness of this radiation is mani-
fested by the presence of large factors (2l + 1)!! in
the denominators of the expressions for the radiation
intensities (see, for example, [35, 36]). Analysis shows
that the damping of the oscillations we consider here
is determined to a substantial extent by the shear
viscosity.

A detailed analysis of the evolution of the pulse
shapes of some radio pulsars provides evidence that
high-multipole oscillations are, indeed, excited in
them (see, for example, the recent study [37]). How-
ever, reliable observational data on the existence of
such oscillations have not yet been obtained.

4. CONCLUSIONS

We have carried out computations of the shear
viscosity of the dense stellar matter for a broad
range of parameters that are typical for the cores of
white dwarves and the envelopes of neutron stars.
We considered matter consisting of important as-
trophysical elements from H to Fe at densities from
102–104 g/cm3 to 107–1010 g/cm3. At higher densi-
ties, 1010–1014 g/cm3, we considered matter with an
equilibrium nuclear composition taking into account
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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the finite size of the atomic nuclei and the distribution
of proton charge within the nuclei. Under the condi-
tions described above, the viscosity is determined by
the Coulomb scattering of the degenerate electrons
by atomic nuclei. We used the modified ion structure
factor proposed by Baiko et al. [22] and applied by
Potekhin et al. [1] to compute the thermal and electri-
cal conductivities. In an ionic fluid, this modification
approximately takes into account the quasi-ordering
in ions positions, which reduces the scattering of
electrons by the ions. In the crystalline phase, the
new structure factor takes into account multiphonon
processes, which are important near the melting
temperature Tm. The new results near the melting
point differ appreciably from those of Flowers and
Itoh [2, 3] obtained for a Coulomb fluid. The numerical
results were approximated by an analytical expression
that is convenient for astrophysical applications.

We investigated the frequencies and modes of os-
cillations localized in the outer crust of a neutron star
in a plane–parallel approximation. A polytropic model
for the crust can reproduce the eigenfrequencies of the
oscillation modes with multipolarity l ∼ 500 reason-
ably well. The viscous-damping time for the oscilla-
tions was also computed. There is a sharp decrease
in the damping time with increasing temperature of
the neutron-star crust. For example, for a neutron
star with mass M = 1.4M�, radius R = 10 km, and
a crust temperature of T = 108 К, the damping time
for the fundamental mode with l = 500 is ∼160 day.
When the temperature decreases to T ∼ 107 К, the
damping time falls to ∼15 day.

In our computations, we used a model of the
ground state matter for the neutron star crust with a
smoothed dependence of the parameters of the atomic
nuclei on the density of the matter. More accurate
computations would require the use of an exact model
for the equilibrium nuclear composition, in which
this composition was varied with depth in the crust
in a jumpwise fashion (there arises a series of weak
phase transitions of the first kind at specific depths).
The presence of these jumps could strengthen the
damping of the oscillations. We plan on considering
this problem in a future study.
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APPENDIX

INTEGRATION OF THE LOCAL RATE
OF VISCOUS DISSIPATION OF ENERGY

OVER THE ANGULAR VARIABLES

When calculating the angular integral in (24), it is
convenient to introduce the notation

σ̃ik ≡ ∂Ui

∂xk
+

∂Uk

∂xi
.

Then, the part of (24) that is associated with the shear
viscosity can be written as

dE

dt
= −1

4

R∫

0

ηr2dr

∫ [
σ̃ikσ̃

∗
ki −

4
3
|∇U|2

]
dΩ

(25)

= −1
4

R∫

0

r2η

(
I1 −

4
3
I2

)
dr,

where dΩ is an element of solid angle,

I1 ≡
∫

σ̃ikσ̃
∗
kidΩ and I2 ≡

∫
|∇U|2 dΩ.

Here, we have assumed that the unperturbed star is
spherically symmetrical, so that the shear viscosity η
does not depend on the angular variables. The inte-
grals I1 and I2 were computed analytically for veloci-
ties of the form U = ∇φ, where the velocity potential
is φ = eıωtYlm(θ, ϕ)F (r).

The integral I1 can be computed if we write the
components of the tensor σ̃ik in spherical coordinates
(see, for example, [34]). After this, the integration over
the angles can be carried out analytically (using the
properties of the function Ylm(θ, ϕ); see, for exam-
ple, [32]). This yields

I1 = 4

{
(
F ′′)2 + 21 + l(l + 1)

r2

(
F ′)2

− 6 l(l + 1)
r3

F ′F + l(l + 1)
1 + l(l + 1)

r4
F 2

}

≈ 4

{
(
F ′′)2 + 2 l(l + 1)

R2

(
F ′)2

+ l(l + 1)
l(l + 1)

R4
F 2

}
,
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where the last equality is valid in the plane-parallel
layer approximation.

Let us now consider the integral I2. For this, we
write the divergence of the velocity:

∇U = ∆φ =

(
1
r2

∂

∂r
r2∂F

∂r
Ylm(θ, ϕ) (26)

+ F∆ΩYlm(θ, ϕ)

)
eıωt

=
(
F ′′ +

2F ′

r
− l(l + 1)

r2
F

)
Ylm(θ, ϕ)eıωt,

where ∆Ω is the angular part of the Laplacian. The
integral I2 can easily be calculated:

I2 =
(
F ′′ +

2F ′

r
− l(l + 1)

r2
F

)2

≈
(
F ′′ − l(l + 1)

R2
F

)2

,

where this last equality is valid in the plane-parallel
layer approximation. As expected, expression (25)
does not depend on the azimuthal number m (due
to the spherical symmetry of the unperturbed star).
It can be shown that it is nonnegative for all allowed
values l = 0, 1, 2, . . ..
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Abstract—The theory required to calculate the phase matrix for resonance scattering in the presence of a
magnetic field is set out. Interference effects between radiation from individual magnetic sublevels of the
atom are taken into account. Errors in the algorithms used to calculate the phase matrix published earlier
by other authors are identified. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Weak magnetic fields of the order of several
Gauss can be measured directly—for example, us-
ing magnetographs—only with great difficulty. The
strength of a weak magnetic field can be estimated
using the Hanle effect: the depolarization of atomic
resonance radiation by a weak external magnetic field.
Limits on the magnetic-field strength can be placed
based on the absence of linear polarization in this
radiation or deviations of the degree of polarization
from the theoretically expected value.

The theory of the Hanle effect has been developed
by many authors; we note here only those works
that we will reference further below. Stenflo [1, 2],
House [3–5], and M. Landi Degl’Innocenti and
E. Landi Degl’Innocenti [6] considered the Hanle
effect, taking into account only interference effects. In
the calculations presented below, we likewise limited
our analysis to the influence of interference between
radiation from different magnetic sublevels of the
atom. In particular, depolarization due to collisions
with atoms is not considered.

The theory presented here essentially corresponds
to that worked out by Stenflo [1, 2] and House [3–5],
although we present a more complete set of formulas.
We also derive certain necessary phase factors, with-
out which some of the formulas presented by Sten-
flo [1] and House [3] for certain spectral lines yield
inexact results. In contrast to the approach of Sten-
flo [1], our algorithm for calculating the phase matrix
enables us to calculate this matrix for each frequency
within a spectral-line profile, not only separately for
the center and wings. We show using a numerical
example that the computations obtained using our
formulas and those obtained using the formulas pre-
sented in the work of M. Landi Degl’Innocenti and
1063-7729/05/4909-0739$26.00
E. Landi Degl’Innocenti [6] virtually coincide for the
line center.

2. THEORY

Our starting point will be the formalism of Hamil-
ton [7], but assuming the presence of a weak external
magnetic field. We will take the quantization axis Z
to be in the direction of the external magnetic field H.
Figure 1 shows the basic coordinate system X,Y,Z
and the unit vectors xf , yf , and xs, ys associated with
the incident and scattered radiation, denoted by the
vectors F and S.

The probability that a photon in the direction F
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Fig. 1. Angular characteristics of the incident
(F(θf , χf , γf )) and scattered (S(θs, χs, γs)) radiation.
The vectors xf ,yf and xs,ys lie in planes perpendicular
to the vectors F and S, respectively, and determine the
polarization of the radiation.
c© 2005 Pleiades Publishing, Inc.
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with polarization corresponding to the vector e(f) is
scattered into the direction S with the polarization
e(s) is given by the formula

W (S, e(s),F, e(f)) (1)

=
∑

k,p

∣∣∣∣∣
∑

m

(
e(s),∗P(s)

m,p

)(
e(f)P(f)

k,m

)∣∣∣∣∣

2

,

where the indices k, p denote the magnetic quantum
numbers for the initial and final states, respectively,
and m denotes the quantum number for the interme-
diate state.

It follows from (1) that radiation with different
pairs of quantum numbers k, p is phase-independent,
so that the corresponding Stokes parameters are ad-
ditive.

We will characterize the radiation using the
circular-polarization vectors

e(f),(s)
± = ∓xf,s ∓ iyf,s√

2
. (2)

We represent the instantaneous electric vector of the
radiation in terms of circularly and linearly polarized
components:

E = E+e+ + E−e− = Exx + Eyy. (3)

Here, E+, E− and Ex, Ey are certain complex ampli-
tudes of the electric vector. The relation between these
quantities can be written


E+

E−



 =



−1 −i

1 −i







Ex

Ey




/

√
2,



Ex

Ey



 =



−1 1

i i







E+

E−




/

√
2.

Using (1), we can write for some specific pair of
quantum numbers k, p



E+

E−




(s)

=
∑

m




(
e(s),∗

+ P(s)
m,p

)

(
e(s),∗
− P(s)

m,p

)



 (4)

×
((

e(f)
+ P(f)

k,m

)
,
(
e(f)
− P(f)

k,m

))


E+

E−




(f)

.

We have for the vectors P(s)
m,p,P

(f)
k,m

P(f)
k,m =

√
gk,mem−k, P(s)

m,p =
√
Gm,pep−m. (5)

For permitted dipole transitions, the quantities
m− k and p−m take on the values±1, 0.

The coefficients gk,m and Gm,p are calculated in
accordance with [8]. We present here a table of values
of the coefficients gk,m, Gm,p:
J → J − 1 J → J + 1

mJ → mJ ± 1
1
2
(J ∓mJ)(J ∓mJ − 1)

1
2
(J ±mJ + 1)(J ±mJ + 2)

mJ → mJ (J +mJ)(J −mJ) (J +mJ + 1)(J −mJ + 1)

J → J

MJ → mJ ± 1
1
2
(J ∓mJ)(J ±mJ + 1)

mJ → mJ m2
J

Here, J andmJ are the quantum numbers for the level
from which the emission or absorption transition is
initiated. We denote

qf = m− k, (6)

qs = p−m.

Let us find the relation between the vectors
xf,s,yf,s and X, Y, Z for the basic coordinate
system (Fig. 1):

xn = (cosχn cos θn cos γn − sinχn sin γn)X
+ (sinχn cos θn cos γn + cosχn sin γn)Y

− sin θn cos γnZ,
(7)

yn = (− cosχn cos θn sin γn − sinχn cos γn)X
+ (− sinχn cos θn sin γn + cosχn cos γn)Y

+ sin θn sin γnZ, n = f, s.
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Using (2), (5), and (7) for the products e(n)
α P(n)

q ,
we can obtain

e(s),∗
α P(s)

qs
=
√
Gqse

−i(αγs+qsχs)dqs,α(θs), (8)

e(f)
α P(f)

qf
=
√
gqf

(−1)qf ei(αγf−qfχf )d−qf ,α(θf ),

α = ±1, q = 0,±1.

The dependence of dq,α(θ) on the angle θ will be
omitted below.

We thus have

dq,α =
1
2
(1 + qα cos θ) q, α = ±1,

dq,α =
α√
2

sin θ q = 0, α = ±1.

Substituting (8) into (4) yields


E+

E−




(s)

=
∑

m

√
gk,mGm,pe

−i(qsχs+qfχf ) (9)

×



e
−iγsdqs,+

eiγsdqs,−





× (−1)qf (eiγf d−qf ,+, e
−iγf d−qf ,−)



E+

E−




(f)

.

Relation (9) can be written succinctly in the form

E(s)
α = wαβE

(f)
β ,

where the indices α, β run over the values ±1. We
have for the elements of the matrix wα,β

wα,β =
∑

m

√
gk,mGm,pe

−i(qsχs+qf χf+αγs−βγf )

× dqs,αd−qf ,β(−1)qf .

For brevity in writing (9), we introduce the vectors

E(s),(f) =



E+

E−




(s),(f)

,

l(s)qs
= e−iqsχs



e
−iγsdqs,+

eiγsdqs,−



 ,

l(f)
qf

= (−1)qf e−iqf χf



 eiγf d−qf ,+

e−iγf d−qf ,−



 .

Relation (9) then takes the form

E(s) = wE(f), (10)
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where

w =
∑

m

√
gk,mGm,pl(s)qs

l̃(f)
qf
. (11)

Let us now turn from the amplitude Eα to the
complex Stokes parameters I+:

E+ = (E+E∗
+, E−E∗

−, E+E∗
−, E−E∗

+). (12)

An overline in (12) denotes averaging over an ensem-
ble of oscillations of the electric vector. The relation
between the incident and scattered radiation can be
formally written

I(s)
+ = w ⊗ wI(f)

+ = W · I(f)
+ .

Substituting (3) into (12), it is straightforward to
determine the matrix element

Wi,j = wa(i),a(j)wb(i),b(j),

where the rows a and b are defined to be
a = (1,−1, 1,−1), b = (1,−1,−1, 1). (13)

The translation from the parameters I+ to the
Stokes parameters

IX = (ExE∗
x, EyE∗

y , 2ReExE∗
y ,−2ImExE∗

y)

= (Ix, Iy, U, V )

is brought about by the transformation

IX = L · I+, I+ = L−1 · IX , (14)

where

L =
1
2





1 1 −1 −1

1 1 1 1

0 0 2i −2i

−2 2 0 0




,

L−1 =
1
2





1 1 0 −1

1 1 0 1

−1 1 −i 0

−1 1 i 0




.

Thus far, we have considered the case of linear
unit vectors xf , yf ;xs, ys oriented arbitrarily relative
to the scattering plane. Of special interest is the case
when the unit vectors lie in or perpendicular to the
scattering plane. In this case, if we calculate the phase
matrix with and without a magnetic field, we can
estimate the influence of the magnetic field on the
polarization of the scattered radiation. The transition
to the limiting case of no magnetic field in this co-
ordinate system serves as an additional test of the
correctness of the calculations.
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We can see from an examination of the spherical
triangle FHS in Fig. 1 that, in order for the xf and xs

axes to lie in the scattering plane, we must have

γf = π − F, γs = S,

where F and S are the angles of the spherical triangle
FHS at the corresponding vertices, which are given
by the formulas

F = arctan
sin(χs − χf ) sin θs

cos θs sin θf − sin θs cos θf cos(χs − χf )
,

(15)

S = arctan
sin(χs − χf ) sin θf

cos θf sin θs − sin θf cos θs cos(χs − χf )
.

Since γf and γs lie in the interval (0, π), formula (15)
uniquely defines the quadrant in which the an-
gles F, S lie.

Let us now turn to the means for finding the
indices of the matrix w in (11). The choice of the
indices k,m, p in (11) must take into account the
selection rules. No simple, transparent formulas can
be obtained. However, we can formulate a straight-
forward procedure for computating these indices.

As was noted above, transitions with different
pairs of indices k, p are phase-independent. There-
fore, calculations for a specific pair k, p must be
carried out right to the determination of the Stokes
parameters of the scattered radiation. Let JL, JU

be the orbital quantum numbers of the lower and
upper levels, respectively. We can take into account
interference effects in (10) in a convenient way by
distinguishing three types of transitions:

1. The initial and final magnetic quantum numbers
coincide, k = p. In this case, we can write out expres-
sion (10) as follows:

E(s) =
JL∑

i=−JL

(√
gi,i+1Gi+1,il

(s)
− l̃(f)

+ (16)

+
√
gi,iGi,il

(s)
0 l̃(f)

0 +
√
gi,i−1Gi−1,il

(s)
+ l̃(f)

−

)
E(f).

2. The initial and final quantum numbers differ by
unity, p = k ± 1. In this case,

E(s) =
JL∑

i=−JL

(√
gi,iGi,i±1l

(s)
± l̃(f)

0 (17)

+ kz
√
gi,i±1Gi±1,i±1l

(s)
0 l̃(f)

±1

)
E(f),
where kz is a certain sign factor, whichwewill discuss
further below.

3. The initial and final quantum numbers differ by
two, p = k ± 2. In this case, we have

E(s) =
JL∑

i=−JL

(
√
gi,i±1Gi±1,i±2l

(s)
± l̃(f)

± )E(f). (18)

When summing over the index i in (16)–(18), the
product gi,lGl,j must be set equal to zero if |i| > JU

or |j| > JL. Note that certain terms in (16)–(18) may
be absent.

These formulas enable us to calculate the phase
matrix of the scattered radiation without taking into
account the influence of the magnetic field. The coin-
cidence of the form of the phase matrix with the form
presented by Chandrasekhar [9] served as a test of
these computations. It turned out that this condition
is not fulfilled for all lines with different JLJU . We
found that it is necessary to choose the sign of the
terms for transitions p = k ± 1 in some definite way.

For example, for lines corresponding to changes
in the quantum numbers ∆J = ±1, the terms in (17)
must have different signs. For lines with ∆J = 0, the
terms (17) must have the same sign, except when
2J is odd and simultaneously |k| = |p| = 1/2. We
propose an empirical formula to determine the sign of
the second term in (17):

kz = (−1)[(2J+1+|mk |+|mp|)(|∆J |+1)+∆J ]. (19)

Let us briefly describe how we derived this sign
rule. In the work of Hamilton [7], the quantization axis
is chosen to coincide with the direction of the incident
radiation. Since transitions k = p± 1 are not realized
in this case, we suppose that the signs in (17) can
be different. When choosing the unit vectors of the
system to be associated with the scattering plane, the
phase matrix has the form [9]

I(s)
X =

1
8π



3E1





cos θ2 0 0

0 1 0

0 0 cos θ





+ E2





1 1 0

1 1 0

0 0 0







 I(f)
X ,

V (s) =
3
8π

E3 cos θV (f), (20)

I
(s)
X = (Il, Ir, V, U),
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where θ is the angle between the incident and scat-
tered rays.

In the phase matrix determined by (20), terms with
indices (1,3) and (3,1) are equal to zero. We wrote
a program to change the signs of all components
of transitions k = p± 1. When the matrix term with
indices (1,3) vanishes, the corresponding system of
signs was stored. The condition that the empirically
calculated coefficients E1, E2 coincided with the the-
oretical values served as an additional criterion.

The next step in our computations is taking into
account the frequency dependence in (11). This de-
pendence is given, for example, by Stenflo [1], but we
present it here for the sake of completeness and due
to the need to refer to it in our subsequent analysis.

We can allow for this frequency dependence by
introducing the following factor in formula (11):

1

ωm,p − ω − 1
2
iγm

,

where γm is the decay constant for the upper levelm,

ωm,p = ω0 + ∆ωm,p,

∆ωm,p = (mgU − pgL)ωLH, ωL = e/2cme,

g = 1 +
J(J + 1) + S(S + 1) − L(L+ 1)

2J(J + 1)
.

We can thus write (11) in the form

w =
C

ω0 + ∆ωm,p − ω − i

2
γm

(21)

×
∑

m

√
gk,mGm,pl

(s)
p−ml̃(f)

m−k,

where C is a constant that does not depend on k, p,
which can be determined via normalization after sum-
ming all the independent Stokes parameters.

When computing the Stokes parameters based
on (21), the frequency factor will appear via the
product

ϕ(ω) =
1

(ω0 + ∆ωm,p − ω − i

2
γm)

× 1

(ω0 + ∆ωm′,p − ω +
i

2
γm′)

.

Taking into account the thermal motion of the atoms,
we must replace ω by ω + ∆ω in this expression, then
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integrate over ∆ω from −∞ to +∞. We thus obtain

f(ω) =

∞∫

∞

e
−( ∆ω

∆ωD
)2
ϕ(ω − ∆ω)

∆ω

∆ωD
.

Denoting

am =
γm

2∆ωD
, vm,p =

(ω − ω0) − ∆ωm,p

∆ωD

and integrating, we find

fm,m′(ω) =
c

(2a− i(vm,p − vm′,p))
(22)

× [H(vm,p, a) + H∗(vm′,p, a)],

where we have introduced the notation

H(v, a) = H(v, a) − 2iF (v, a),

where H(v, a) is the complex Voigt function.

Using transitions of the type k = p as an exam-
ple, we propose the following procedure to take into
account the frequency dependence.

1. We store the sequence of magnetic quantum
numbers m for the upper level. Let these numbers be
m1,m2,m3.

2. We successively determine the matrices

w(m1) =
√
gk,m1Gm1,pl

(s)
p−m1

l̃(f)
m1−k,

w(m2) =
√
gk,m2Gm2,pl

(s)
p−m2

l̃(f)
m2−k,

w(m3) =
√
gk,m3Gm3,pl

(s)
p−m3

l̃(f)
m3−k.

If some of these matrices are zero, this has no mean-
ing here.

3. Using (22), we construct the frequency matrix

f =





fm1,m1 fm1,m2 fm1,m3

fm2,m1 fm2,m2 fm2,m3

fm3,m1 fm3,m2 fm3,m3



 .

If there are two terms or one term in (16), some of the
elements of the matrix f can be set equal to zero.

4. Finally, the elementWi,j of the phase matrix for
a transition k = p in the system of Stokes parame-
ters I+ will be given by the formula

Wi,j =
∑

k1

∑

k2

fk1,k2w
(k1)
a(i),a(j)

w
(k2),∗
b(i),b(j)

,

k1, k2 = m1,m2,m3.
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The vectors a,b are given by (13).

The full phase matrix in the system of complex
Stokes parameters I+ is equal to

W =
∑

k

(Wp=k + Wp=k+1

+ Wp=k−1 + Wp=k−2 + Wp=k+2),

|k| ≤ JL.

Thus, the relationship between the incident and scat-
tered radiation can be written in the form

I(s)
X = PR · I(f)

X , (23)

where

PR = L ·W · L−1.

The formulas presented above enable computation
of the phase matrix for resonance scattering in the
presence of a weak magnetic field. Stenflo [1, 2],
House [3], and M. Landi Degl’Innocenti and E. Landi
Degl’Innocenti [6] also present theory for calculating
the phase matrix in an approximation analogous to
our own. It is of interest to compare the results of
computations carried out using these methods.

We will turn first to the work of M. Landi
Degl’Innocenti and E. Landi Degl’Innocenti [6], who
present rather complex analytical formulas defining
the phase matrix. There is no dependence on the
frequency of the radiation in these formulas; they
apparently correspond to scattering at the line center.
We will not present these formulas here, only noting
that they are appreciably simplified when the direction
of the magnetic field is chosen to coincide with the
Z axis, as we have done.

It is convenient to chose the unit vectors xf , xs to
coincide with the scattering plane, in which case the
effect of the external magnetic field on the polarization
of the scattered radiation is clearly visible.

We denote PL to be the phase matrix calculated
in accordance with [6]. This expression for the phase
matrix was obtained in the system of Stokes param-
eters IQ = [I,Q,U, V ], while our results were ob-
tained for the Stokes parameters in the form IX =
[Ix, Iy, U, V ]. Accordingly, we must carry out certain
transformations.

In [6], the xf , xs axes are directed alongmeridians,
so that we must carry out rotations of the xf , yf and
xs, ys coordinate systems by π − F and S, respec-
tively (Fig. 1). The angles F, S are determined by
formula (15). Upon rotation through the angle S, the
Stokes parameter IQ transforms as

I′Q = G(S) · IQ,

where

G(S) =





1 0 0

0 cos 2S sin 2S 0

0 − sin 2S cos 2S 0

0 0 0 1




.

We must also carry out the transition from the pa-
rameters IQ to IX and back; this transition is given by

IQ = T · IX , IX = T−1 · IQ,

where

T =





1 1 0 0

1 −1 0 0

0 0 1 0

0 0 0 1




,

T−1





0.5 0.5 0 0

0.5 −0.5 0 0

0 0 1 0

0 0 0 1




.

Thus, in order to compare with our results, we
must calculate

I(s)
X = T−1 ·G(S) ·PL ·G(−π + F ) · T · I(f)

X .
(24)

Before turning to an analysis of the methods used
by Stenflo [1] and House [3–5] to compute the phase
matrix, we must compare the notation for the quan-
tum numbers used there and in our own study. We
have the following set of correspondences:
Our study Stenflo [1] House [3–5]

JL, JU , k,m, p Ja = Jf , Jb, µa,m, µf J, J ′′,M,M ′′,M ′
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Let us now turn to the method used by Stenflo to
calculate the phase matrix [1]. The initial formula has
the form

ωαβ ∼
∑

Jb,m
(−1)rab+rfb (25)

×
√
fabffb

√
(2Ja + 1)(2Jf + 1)

×



 Jb Jf 1

−m −µf −q





×



 Jb Ja 1

−m −µa −q′



 (−1)q−q′Φmµf
(ν)εα∗

q εβ
q′ .

We are considering scattering under the condition
Ja = Jf and without summing over the orbital quan-
tum number Jb. The absolute value of expression (25)
must be taken. Since the indices rab, rfb,(q − q′)
do not depend on the magnetic quantum num-
ber m [1, 2], the sign factors in (25) can be omitted.
Expression (25) is analogous to our expression (21);
therefore, computations carried out using (25) will
differ from our own only if the signs of individual
components in (25) differ from the corresponding
signs in (21). The signs of the components in (25)
are determined by the product

√
2Ja + 1

√
2Jf + 1 (26)

×



 Jb Jf 1

−m −µf −q







 Jb Ja 1

−m −µa −q′



 ,

which is proportional to the expression
√
gk,mGm,p

we have used. Applying the formulas for the 3j sym-
bols [10], we compared the signs of components for
transitions p = k and p = k ± 1 obtained using (26)
and using our formula (19). In order for these signs
to be in agreement, it is necessary to change the sign
of one of the components of the p = k ± 1 transition
in (26).

Thus, the phase matrix determined in [1] is slightly
incorrect.

We will now carry out an analogous analysis for
the signs of the components of the phase matrix pre-
sented by House [3]. The formula for the probability
that a photon with linear polarization ēα is reradiated
with linear polarization ēα′

has the form [3]

W ∼
∣∣∣∣∣
∑

M ′′

fM ′,M ′′gM ′′,M ′

M,M ′′ εM−M ′′ε′M ′′−M ′

∣∣∣∣∣

2

.

We have written here only that part of this expres-
sion that determines the interference of the line com-
ponents. In this expression, fM ′,M ′′ determines the
ASTRONOMY REPORTS Vol. 49 No. 9 2005
frequency dependence of the components, and does
not affect their signs. In our notation, the product
εM−M ′′ε′M ′′−M ′ is equal to

εM−M ′′ε′M ′′−M ′ = (xfen−k)(xsep−n)

and likewise has the same sign for all components.

Let us now write an expression for gM ′′,M ′

M,M ′′ :

gM ′′,M ′

M,M ′′ = (−1)J
′′−M ′′+J−M ′

(27)

×



 J ′′ 1 J

−M ′′ (M ′′ −M) M





×



 J 1 J ′′

−M ′ (M ′ −M ′′) M ′′



 .

When analyzing the signs of this expression, it
is convenient to move to the notation for the in-
dices and symbols used by Stenflo [1]. Replacing
J ′′, J,M ′′,M ′,M in (27) with Jb, Ja,m, µf , µa, re-
spectively, and manipulating the 3j symbols, we
obtain

gM ′′,M ′

M,M ′′ = (−1)1+(m−µf ) (28)

×



 Jb J 1

−m µa −q′







 Jb J 1

−m µf −q



 .

The factor (−1)1+(m−µf ) in (28) provides correct
signs for transitions k −→ k ± 1 and incorrect signs
for transitions k −→ k, since the signs of all compo-
nents should be the same for transitions k −→ k.

3. SOME COMPARATIVE RESULTS

In order to illustrate the derivations described
above with numerical computations, we computed
the dependence of the degree of polarization of the
scattered radiation on the strength of the external
magnetic field. The Stokes parameters of the incident
radiation were taken to be IX = (1, 1, 0, 0). We chose
a line with quantum numbers for the upper and lower
levels JU = 1.5, JL = 0.5. This line has transitions of
both type k = p and type k = p± 1. As we showed
above, the theoretical formula given by Stenflo [1]
incorrectly determines the relative signs of the com-
ponents of a k = p± 1 transition. The theoretical
formula applied by House [3] incorrectly determines
the signs of the components of a transition k = p.

We also carried out the same computations us-
ing the analytical formulas presented by M. Landi
Degl’Innocenti and E. Landi Degl’Innocenti [6].
There is no averaging of the frequency factor over the
thermal motions of the radiating atoms in [6]. The fre-
quency factor depends on the decay parameter γ. We
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Fig. 2. Comparison of the degree of linear polarization
of the scattered radiation as a function of the strength
of the external magnetic field according to the results of
various authors. The line JU = 1.5, JL = 0.5 is consid-
ered, with If = (1, 1, 0, 0), γf = 0, θf = 30◦, χf = 0◦,
γs = 0, θs = 70◦, and χs = 30◦. The Voigt parameter is
a = 0.003, and the decay parameter is γ = 10−8. The
curves marked “Stenflo” and “House” were obtained us-
ing our own program, but taking into account the sup-
posed errors.

adopted the value γ = 108; this quantity is denoted
AJ ′,J in [6]. In the theory we have developed, this cor-
responds to the Voigt parameter a = γ/2∆ωD. When
∆ωD = 1.53 × 1010 (Teff ≈ 5000 К), a = 0.00328.

The results of the computations are presented in
Fig. 2. We can see that there is good agreement
between our computations and the computations car-
ried out using the analytical formulas of [6]. This

agreement is preserved if γ/a = ∆ω
(T=5000 К)
D /π. The

coincidence of the curves begins to be disrupted for
other values for this ratio.

We can also see in Fig. 2 appreciable discrepan-
cies between our results and those computed using
the formulas presented by Stenflo [1] and House [3].
Note that, since the computations were carried out
using our formulas, the curves denoted “Stenflo” and
“House” in Fig. 2 can only conditionally be consid-
ered the results for the corresponding theories of these
authors. These curves only demonstrate the influence
of possible errors in the signs of the amplitudes of
certain quantum transitions in the formulas used by
these authors.

4. CONCLUSION

We have developed a detailed algorithm for com-
puting the phase matrix for resonance scattering in
the presence of a weak external magnetic field. The
frequency dependence of the phase matrix is exactly
taken into account. A specific numerical example (for
the line center) shows good agreement between our
computations and those obtained using the theoret-
ical formulas published in [6]. Computations of the
phase matrix using the algorithms proposed in [1]
and [3] will yield inexact results due to certain errors
in the signs of the amplitudes of some quantum tran-
sitions.
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Abstract—Thermal cyclotron emission features from a sunspot-associated source in a solar active region
are considered in the framework of a three-level temperature model with a hot layer. The images of the
source have a complex fine structure, with rings with different brightness temperatures and different signs
of circular polarization. The proposed model suggests the possibility of a double or multiple reversal of the
sign of polarization, as well as a significant increase of the fluxes in the 3–4 cm range, as is typical of active
regions associated with proton flares. Energetic particles of the halo cannot provide the required tempera-
tures of the layers. Alternative heating mechanisms are discussed. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Observations indicate that the microwave emis-
sion of solar active regions (ARs) is determined by
sources that are associated with sunspots, flocculi,
coronal arches, etc. [1–3]. At the same time, it is not
always possible to identify these radio sources with
optical, ultraviolet, or X-ray objects. For instance,
decimeter-wavelength halos, which represent vast,
diffuse regions of enhanced radio emission, cannot
be unambiguously distinguished in other wavelength
ranges. Searches for generic connections between
various structures in ARs based on the characteristic
features of their emission are clearly of interest.

Sunspot-associated sources display the most
contrast at 3–4 cm. Microwave observations with
high angular resolution show that their structures
resemble either horseshoes or rings [4–6]. The de-
gree of polarization in the short-wave range can
reach 100%. Typical brightness temperatures Tb

are (0.5–2.5) × 106 K, reaching (4–6) × 106 K in
some cases. There is no doubt that the emission
of the sunspot component is dominated by thermal
cyclotron emission at the first four harmonics of the
gyrofrequency (see, e.g., [3, 7, 8]).

The decimeter-wavelength halo covers the en-
tire AR, with its emission (with Tb = (2–5) × 106 K)
dominating at 10–20 cm [9, 10]. The spectral index
grows beginning from λ = 4 cm, but the spectrum is
not very steep, as a rule, having spectral indices from
one to two. Attempts to interpret this component as
thermal emission encounter serious difficulties. The
1063-7729/05/4909-0747$26.00
best-grounded alternative hypothesis is that nonther-
mal electrons that generate gyrosynchrotron emis-
sion are responsible for the halo emission [2]. This
suggests that there is a large-scale magnetic trap
at heights ∼105 km that can accumulate energetic
electrons, like the Earth’s radiation belts.

Reversals of the sign of circular polarization of the
microwave emission are observed fairly frequently in
powerful ARs and can be multiple when the entire
wavelength range is considered [10–14]. Peterova
and Korzhavin [14] distinguished such ARs as a
separate subclass of sunspot-associated sources.
As before, the origin of the sign reversals remains
unclear; they are usually attributed to the propagation
of electromagnetic waves through regionswith quasi-
transverse magnetic fields [7]. However, in at least
some cases, the spectrum of the polarized emission
and its independence of location in the AR structure
suggest that the ordinary emission dominates due to
the conditions under which the emission is generated
in the source [15]. The relevance of this approach also
follows from observations of the low-lying, bright,
compact sources of emission above sunspots, which
display a thermal bremsstrahlung spectrum [14].
Therefore, the preferred approach for individual cases
is that first proposed by Gel’freı̆kh et al. [15], in which
the polarization sign reversal is due to the presence
of local high-temperature regions in the source (see
also [16]).

Hot plasma layers can be formed by many pro-
cesses, such as the interaction of “precipitating” non-
thermal halo particles with dense layers of the lower
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Schematic of the region of emission of a sunspot-associated source. The temperature of the hot layer at a height of
(1–4) × 103 km varies from 1.5 × 106 to 8 × 106 K.
corona and upper chromosphere. This scenario is
quite similar to that used to interpret the hard X-ray
and microwave emission of solar flares [17]. We also
cannot exclude the possibility of more efficient dis-
sipation of the magnetic field or magnetohydrody-
namic waves near the transition layer [18]. In this
connection, we point out that attempts to relate the
reversal layer to the horizontal part of a hot coronal
loop above the source [19] are unconvincing. Since
the loop feet are concentrated in the sunspot region,
the loop tops are hardly able to cover the sunspot
component, having at the same time a strong mag-
netic field (�500 G).

In this work, which is a continuation of [20], we
present follow-up studies of the properties of the
AR microwave emission. The next section describes
the main features of a model for a sunspot-associated
source with a hot layer. We discuss the adopted re-
strictions and main theoretical premises. Section 3 is
dedicated to the results of our numerical calculations,
while Section 4 considers the problem of heating of
the hot plasma layer. The main results are formulated
in the conclusion.

2. MODEL FOR A SUNSPOT-ASSOCIATED
SOURCE WITH A TEMPERATURE

GRADIENT

To calculate the radio emission of a unipolar spot,
we used a temperature model that is simpler than the
model of [21] (Fig. 1). It includes a cool transition
zone with a kinetic temperature of T = 104 K, shown
as a black strip above the photosphere; a layer of hot
plasma, whose temperature (T = (1.5–8) × 106 K)
was varied for a family of models; and the corona
region (T = 1.5 × 106 K). We chose the parameters
so that the ordinary wave (λ ≈ 3 cm, the second
harmonic of the gyrofrequency) was generated in a
layer with a higher temperature than the extraordinary
wave (the third harmonic). Three possible shapes of
the hot layer were specified: (1) a cylinder (solid lines
of the rectangle in Fig. 1), which included the emis-
sion region for the second harmonic for λ = 3 cm;
(2) a cone (dashed line); and (3) a “cap” (dashed–
dot line). We either assumed a constant electron den-
sity (n = (0.3–1) × 1010 cm−3) or determined this
density from the condition of constant pressure (n =
1.5 × 1016/T cm−3).

We assumed a dipolar sunspot magnetic field, with
B = 3100 G at the photosphere level. The vertical
dipole was placed at a depth of 2 × 104 km below the
solar surface. A region of 30 × 30 thousand km was
calculated in steps of 200 km. The sunspot longitude
was varied over the entire solar disk.

The optical depth τjs of the gyroresonant layer at
the harmonics s = 2–4 for the mode j propagating at
an angle θ to the magnetic field B was found from the
formula [7]

τjs =
s2s

2ss!
πe2

mec2
β2s−2

T LBnλ sin2s−2 θ (1)

× (
√
u sin2 θ + 2cos2 θ ±

√
u sin4 θ + 4cos2 θ)

u sin4 θ + 4cos2 θ ±√
u sin2 θ

√
u sin4 θ + 4cos2 θ

.

Here, we use the standard notation and take βT =
vT /c to be the ratio of the thermal velocity of the elec-
trons to the speed of light; LB = B(dB/dl)−1 is the
characteristic scale of the magnetic-field variations
and u = ω2

B/ω
2. Plus signs on the right-hand side

of (1) correspond to the extraordinary wave (j = 1),
and minus signs, to the ordinary wave (j = 2).

We calculated the optical depth for the emission
of the ordinary wave at the first harmonic using the
formula [7]

τ21 = π
ω

c
β2

T sin4 θ
(1 + 2 cos2 θ)2

(1 + cos2 θ)3
LB. (2)
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Fig. 2. Two-dimensional maps of the distribution over the source of the difference (upper row) and sum (lower row) of the
brightness temperatures of the ordinary and extraordinary emission modes at 2.0, 2.5, 3.0, 3.5, 4.0, and 6.0 cm, calculated for
the family of models with the temperature of the cylindrical hot layer equal to 6 × 106 K.
Expressions (1) and (2) are valid only for a rar-
efied magnetized plasma (u � 1, ω2

L/ω
2 � 1) with

a refractive index close to unity. Therefore, in our
model calculations, we restricted our consideration
to gyroresonant emission in the microwave range
(λ = 1–10 cm). Note also that, in the bremsstrahlung
mechanism, the optical depth is inversely propor-
tional to the temperature (τj ∝ T−3/2) and the
bremsstrahlung contribution to the emission can be
neglected for T > 106 K [22].

We obtained the brightness temperatures for the
extraordinary (Tb1) and ordinary (Tb2) waves taking
into account emission and absorption at the first four
gyrolevels, taking the corresponding kinetic temper-
atures Ts at the points of intersection with the con-
sidered beam. Thus, the main formula simplified to [8]

Tb1 = T2(1 − e−τ1,2)e−τ1,3−τ1,4

+ T3(1 − e−τ1,3)e−τ1,4 + T4(1 − e−τ1,4),

Tb2 = T1(1 − e−τ2,1)e−τ2,2−τ2,3

+ T2(1 − e−τ2,2)e−τ2,3 + T3(1 − e−τ2,3).

The first and second subscripts on the right-hand
sides of these equations denote the emission mode j
and the gyrolevel number s.

We used the Rayleigh–Jeans approximation to
translate from brightness temperatures Tb to the cor-
responding fluxes F :

F =
k

λ2

∫
TbdΩ, (3)

where k is Boltzmann’s constant and dΩ =
sin ΘdΘdα is an element of the source solid angle.
ASTRONOMY REPORTS Vol. 49 No. 9 2005
The hot layers canmake a substantial contribution
to the soft X-ray radiation of ARs. Therefore, before
carrying out the numerical calculations, we must de-
termine the constraints imposed on the thermody-
namic parameters of the plasma in these structures.
We addressed this problem using solar observations
obtained with the GOES satellite.

According to results obtained using the technique
of Thomas et al. [23], a cylindrical region with a ra-
dius of 12 000 km and a thickness of 3000 km heated
to T = 6 × 106 K will emit a 1–8 Å flux of less than
7 × 10−4 ergm−2 s−1 if the density of thermal elec-
trons is n � 4.5 × 1010 cm−3. This flux is at the sen-
sitivity limit of the receiver. In turn, the minimum de-
tectable flux for the GOES detector with a passband
of 0.5–4 Å is approximately 3 × 10−6 ergm−2 s−1;
applied to the model with a cylindrical layer, this cor-
responds to an electron density of 1.5 × 1010 cm−3.
Since the emission measure for a conical or cap-
shaped hot layer is even smaller, the contribution of
the hot layer to the total flux of soft X-ray radiation
from all ARs can be neglected when n � 1010 cm−3

and T ∼ 6 × 106 K.

3. RESULTS OF NUMERICAL
CALCULATIONS

As an example, Fig. 2 presents the distributions
over the source of the sum and difference of the
brightness temperatures of the ordinary and ex-
traordinary modes of the microwave emission for
a cylindrical hot layer with T = 6 × 106 K. This
temperature was chosen because it best matches
the observations. Calculations were carried out for
a spot near the equator in the western part of the
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cylindrical hot layer (T = 6 × 106 K).
solar disk at longitude 20◦. The maps for different
wavelengths were reduced to a common temperature
scale for the difference (∆Tb = Tb2 − Tb1) and sum
(TΣ = Tb1 + Tb2) of the brightness temperatures. In
the two-dimensional maps in Fig. 2, the source con-
sists of ring-shaped regions with various brightness
temperatures Tb and values of ∆Tb with alternating
signs. If the source is shifted from the center to the
limb of the solar disk, the rings begin more and more
to resemble horseshoes.

Figure 3 shows strip scans of the intensity and
polarization of a sunspot-associated source with
a cylindrical hot layer recalculated from the two-
dimensional maps. To obtain these scans, we inte-
grated over only coordinate α in (3). We can see that
these distributions have a complex alternating-sign
structure with sharp changes in wavelength; this may
be consistent with the observations of Bogod and
Tokhchukova [12]. In the 3–7 cm range, some of the
polarized emissions become negative (inverted) with
the predominant ordinary mode.

Thus, the examples of two- and one-dimensional
maps of a sunspot-associated source presented in
Figs. 2 and 3 testify to a strong wavelength depen-
dence for these images. Additional calculations show
that the source images also depend strongly on the
chosen geometry for the hot layer (cylindrical, conical,
cap-shaped). This shape is unlikely to be station-
ary under the conditions in the solar atmosphere;
therefore, the corresponding variations of the one-
dimensional source images with wavelength and time
may be relevant for interpretations of the observations
described in [12].

Figure 4 shows the calculated spectra of the total
flux and degree of polarization of the emission for
a family of models with different temperatures of a
(a) cylindrical, (b) conical, and (c) cap-shaped hot
layer. All these plots are given for a spot located at
the disk center. According to Fig. 4, the sign alter-
nation of the polarization at 3–6 cm is manifest to
some extent in all the models and can be multiple.
We especially emphasize that the emission spectra
for the models with cylindrical layers (Fig. 4a) have a
characteristic peak at 2–3 cm; in contrast to the other
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 4. Total flux (upper row) and degree of polarization (lower row) of the emission as functions of the wavelength for a source
at the disk center for a family of models with different temperatures for (a) cylindrical, (b) conical, and (c) cap-shaped hot
layers.
layer shapes, the peak height appreciably increases
with increasing temperature of the layer. In this case,
the inverted polarized flux at 3–4 cm also grows
with temperature. The calculated spectra for a conical
layer (Fig. 4b) have a flat maximum and the least
pronounced polarization reversal. The most complex
spectra are those for models with a cap-shaped hot
layer (Fig. 4c), which display three maxima, at 1.7,
2.5, and 4.6 cm. A detailed analysis shows that these
are due to the relative increase of the effective area of
the gyrosheets penetrating the hot layer, which make
the main contribution to the extraordinary emission
at the second and third harmonics, as well as to the
ordinary emission at the first harmonic.

Additional calculations established that the mo-
tion of a sunspot-associated source over the solar
disk does not produce substantial changes in the
pattern described above (Fig. 5). It is also of interest
that the maximum of the polarized-flux spectrum is
shifted toward shorter wavelengths with decreasing
height of the layer, and toward longer wavelengths
with increasing height.

4. MECHANISMS FOR HEATING
THE HOT-LAYER PLASMA

Let us consider the heating of plasma by fast
electrons captured in a magnetic trap (halo). When
ASTRONOMY REPORTS Vol. 49 No. 9 2005
scattered into the loss cone, these electrons lose their
energy due to Coulomb collisions near the loop feet.

According to our current understanding, there are
three modes of pitch-angle diffusion of the captured
electrons into the loss cone: weak, moderate, and
strong [17]. Particles escape from the magnetic trap
most efficiently in the moderate diffusion mode. The
distinctive feature of this mode is that the distribution
function of the captured electrons is almost isotropic.
In this case, we have for the total flux of the passing
particles at the loop feet [17]

dN

dt
≈ N v

σL
,

where N and N are the numbers of the passing and
captured electrons, respectively, σ is the mirror ratio,
L is the loop length, and v is the mean velocity of the
electrons. Then, assuming N = 1034–1035, σ = 10,
L = 1010 cm, and v = 6 × 108 cm/s (≈10 keV), we
estimate the total flux of electrons escaping from the
trap to be dN/dt � 6× (1032–1033) s−1—one or two
orders of magnitude lower than typical values adopted
for solar flares [24].

Following Somov and Syrovatskiı̆ [25], we repre-
sent the spectrum of the passing electrons that pene-
trate the lower corona and transition layer beginning
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from some adopted height s = 0 as

N(E, 0) = KE−(γ+1/2)Θ(E − E0), (4)

where K is a normalization factor and Θ(x) is the
Heavyside function. If γ > 2, the energy flux of the
accelerated electrons is

F (0) =

∞∫

E0

EvN(E, 0)dE =
K

γ − 2

√
2
m
E2−γ

0 . (5)

In turn, since the change of the energy of a fast elec-
tron due to Coulomb collisions with the background
plasma is

dE

ds
= −an

E
, (6)

where a = 3× 10−12 eV2 cm2, then, assuming a uni-
form “target,” the energy flux of the electrons is

F (s) =

∞∫

E′
0

EvN(E, s)dE, (7)

where E′
0 =

√
E2

0 − 2asn.
We obtain from the continuity equation

∂

∂s

[
vN(E, s)

]
+

∂

∂E

[
dE

ds
vN(E, s)

]
= 0,

and from (7)

N(E, s) = KE1/2(E2 + 2asn)−(γ+1)/2 (8)

× Θ(
√
E2 + 2asn− E0).
Substituting (8) to (7) and using (5) and (6) yields

F (s)
F (0)

=
γ − 2

2
B

(
3
2
,
γ − 2

2

)(s0

s

)(γ−2)/2
, (9)

where B(x, y) is the beta function, s = E2/(2an),
and s ≥ s0 = E2

0/(2an). Then, according to (9), the
flux of thermal energy released from the propagation
of electrons to depth s is

δQ = F (0) − F (s) (10)

= F (0)
[
1 − γ − 2

2
B

(
3
2
,
γ − 2

2

)(s0

s

)(γ−2)/2
]
,

where B/2 = 0.785, 0.333, 0.196, 0.137 for γ = 3, 4,
5, 6, respectively. In particular, for s = 2s0 and γ = 4,
we find from (10) that δQ ≈ 0.7F (0); i.e., the ac-
celerated electrons crossing the depth s ∼ s0 lose
almost all their energy. In this case, the determining
contribution to plasma heating is made by low-energy
electrons with E � E0.

Using (4), we can represent the total flux of accel-
erated electrons as

dN

dt
= A

∞∫

E0

N(E, 0)vdE =
AK

γ − 1

√
2
m
E1−γ

0 , (11)

where A is the cross sectional area of the electron
beam. Substituting (5) into (11) yields

dN

dt
= A

γ − 2
γ − 1

F (0)
E0

. (12)

Let us estimate the minimum density nmin of the
background plasma that is able to provide an effi-
cient transfer of energy from the accelerated electrons
to thermal particles via Coulomb collisions. Taking
s0 = 108 cm and E0 = 3–10 keV, we find nmin =
E2

0/2as0 = 1010–1011 cm−3, consistent with the re-
strictions adopted in the previous section.

Estimates show that, in the case of hot and rel-
atively rarefied plasma, radiative losses are consider-
ably smaller than heat-conductive losses, for which

FT = ηT 5/2 dT

ds
≈ 10−6T

7/2

s
erg/cm2 s. (13)

Then, using the energy-balance equation
FT ≈ F (0) with T = 6 × 106 K, s = 108 cm, and
E0 = 3–10 keV, we find from (12) and (13) that
dN/dt = 3 × (1035–1036) s−1.

The resulting estimates of dN/dt considerably ex-
ceed the values that follow from the coronal
magnetic-bottle model and are comparable to the
typical values invoked to interpret the hard X-ray
radiation of solar flares [24]. In addition, the value of
dN/dt is obviously underestimated, since we have not
taken into consideration energy losses due to plasma
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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“evaporation,” which are also are quite substantial.
Indeed, we can estimate the energy flux due to the
evaporation of the hot plasma layer as

Fev ≈ nkTs.

Hence, according to (13), we have

FT

Fev
≈ 7 × 109T

5/2

ns2
. (14)

Setting in (14) n = 1010–1011 cm−3, T = 6 × 106 K,
and s = 108 cm, we obtain FT /Fev = 0.6–6; i.e.,
plasma evaporation can play a fairly important role
in the energy balance. This also testifies that the
energy of the accelerated electrons alone is usually
not sufficient to produce high-temperature plasma
layers in the lower corona and transition region of the
Sun. However, their role can considerably increase
during powerful flare activity [26].

MHD waves generated by convective motions in
the photosphere can also be responsible for heating.
In this case, the energy flux of acoustic waves is
rather small [27]; therefore, these modes are not able
to make an important contribution to the production
of high-temperature plasma layers. At the same time,
Alfvén waves with periods of 10–40 s can certainly
provide coronal temperatures [27]. It is natural to
attribute their efficient dissipation in the transition
region to an increase of the magnetic-field gradient,
which creates favorable conditions for the realization
of phase mixing or the resonant absorption of waves.
An important role for the reconnection of magnetic
lines should likewise not be excluded.

5. DISCUSSION AND CONCLUSIONS

We have used numerical modeling to consider the
effect of thin, hot plasma layers on the properties
of the thermal gyroresonant emission of sunspot-
associated sources. We have also analyzed mech-
anisms that can result in the formation of high-
temperature layers in the upper chromosphere and
lower corona of the Sun.

Our results suggest that images of a sunspot-
associated source should resemble either rings or
horseshoes, depending on the source’s location on the
solar disk. This suggests that these features could be
detected in observations with high angular resolution
(∼1′). In this case, an alternation of the sign of polar-
ized emission within the source should be manifest;
in our model, this is especially pronounced at 2.5–
3.5 cm.

We have shown that, for a cylindrical layer, the
fluxes of microwave emission at 2–4 cm increase
considerably with increasing temperature, as is char-
acteristic of proton events. We have established the
possibility of double, and even multiple, reversals
ASTRONOMY REPORTS Vol. 49 No. 9 2005
of the polarization sign for hot layers with various
shapes. Thus, our model agrees fairly well with
the observations and can be applied to the inter-
pretation of sources with dominant ordinary wave
emission [10–14].

Our analysis neglected the condition of hydro-
static equilibrium; at first glance, this seems a quite
crude approximation. However, this assumption is
consistent with the observational data obtained with
TRACE, which show that up to 70% of coronal loops
display high-velocity plasma flows that propagate at
close to the sound speed [28]. In our opinion, this
testifies to nonstationary energy release at the feet of
coronal loops, which results in a violation of hydro-
static equilibrium. This conclusion is supported by
the results of Aschwanden [29], which indicate that
the heating of coronal loops is localized at their feet.

In the context of a coronal magnetic-bottle model,
we have analyzed the formation of a hot layer as-
sociated with the precipitation of energetic electrons
captured in a magnetic trap (halo) in the lower corona
of the Sun. According to our estimates, the energy of
the electrons is not sufficient to provide the required
temperatures. Note that, even in fairly powerful flares,
the high-velocity electrons are not always capable of
providing the observed thermodynamic parameters of
the flare plasma [30–32]. The flux of acoustic energy
is rather small; therefore, in our opinion, Alfvénmodes
or microflare processes due to magnetic reconnection
are most likely responsible for the possible tempera-
ture inversion in the lower corona and upper chromo-
sphere.
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Abstract—This paper presents a statistical study of various integrated parameters of solar active regions,
such as the distance between the polarity centroids, the inclination of the magnetic axis, the flux imbalance
between the polarities, and the interosculation parameter of the magnetic fluxes of opposite polarities.
The study is based on observations of the longitudinal photospheric magnetic field. We analyze ten active
regions for which an appreciable volume of data with good spatial resolution are available. The distributions
of the above parameters with field strength are very different for quiet and flare-productive active regions
and for quiet and flare-active evolutionary phases of the same active region. Some distributions exhibit sub-
stantial and characteristic variations during the development of certain flare processes. The first moments
of the distributions reflect specific features in the configuration of the photospheric magnetic fields and are
correlated with the level of eruptive processes in the active regions. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Studies of solar active regions (ARs) are of great
practical and general scientific importance. ARs are
a basic and fundamental element of solar activity.
The investigation of ARs is an important problem,
not only from the standpoint of numerous applica-
tions, but also in the context of understanding the
phenomenon of solar and stellar activity as a whole.
Moreover, solar ARs present a unique opportunity for
studying plasmas under physical states that cannot
be realized in the laboratory. Strong local magnetic
fields are the basic pattern-forming element of solar
ARs. Studies of the physics of the processes under-
lying the origin and dynamics of magnetic-flux struc-
tures in an AR provide clues to the evolution of ARs
and their production of geo-efficient factors. It is thus
natural that analyses of relationships between the
structural morphology of the photospheric magnetic
fields in solar ARs and their flare activity and coronal-
eruptive activity have been the subject of numerous
studies over the past several decades.

In simple cases, the magnetic fields of ARs are
essentially dipolar and display very small local twists
of the field vector. Themagnetic fields in such ARs are
nearly potential, i.e., their energy is nearly minimum.
In complex cases, an AR presents a complicated pat-
tern of magnetic fluxes on various scales and with
various strengths. The photospheric cross sections of
major fluxes are manifest in white light as sunspots
in various evolutionary stages. This almost chaotic
1063-7729/05/4909-0755$26.00
landscape is constantly changing due to the emer-
gence of new flux, the disappearance of old flux, and
slow or fast movements of sunspots and pores in var-
ious directions. The magnetic fields of ARs with such
complex morphologies only rarely represent a low-
energy potential field. The complex structure and fast
dynamics result in the formation of structures that
can be qualitatively described as twisted, sheared, etc.
Such structures provide evidence for strong depar-
tures from potentiality, the storage of excess energy in
the magnetic fields, and the presence of major current
systems in them.

It is usually believed that the mechanism for the
release of the energy stored in such fields is mag-
netic reconnection. This mechanism can ensure a
rapid conversion of magnetic energy into kinetic and
thermal energies. Details of the energy accumulation
and the subsequent energy release are now under-
stood fairly well. A magnetic energy of the order of
1029–1032 erg, required for flares, is accumulated
in nonpotential fields with considerable field-aligned
currents (see, e.g., [1–4]). The origin and dynamics
of such configurations in the chromosphere is directly
dependent on specific morphological and kinematic
features of the photospheric magnetic fields in the
ARs. It is therefore clear that investigations of the
state of themagnetic fields in ARs at the photospheric
level and analyses of magnetic-field stability against
flares are of paramount importance.

Numerous studies have shown that the frequency
and intensity of solar flares correlate fairly well with
c© 2005 Pleiades Publishing, Inc.
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the size and complexity of the AR in which they de-
velop [5, 6]. The flare productivity is also related to the
presence of rapidly emerging fresh magnetic flux (see,
e.g., [7–10]) and overall restructuring of the magnetic
fields [11, 12]. However, there is no exact correlation:
some regions give rise to major flares when they have
their simplest morphology, and far from all ARs with
complex morphologies produce such flares [6, 13].
Thus, one problem is that nobody has discovered a
set of rules or signatures that unambiguously relate
specific features of the photospheric magnetic-field
configuration with violent ejections of thermal and
kinetic energy in the chromosphere and corona.

Most recent studies have concentrated on the
magnetic shear transverse to the inversion line of the
radial field component [14, 15] (see also references
therein) and the spatial and temporal correlations
between this shear and the occurrence of X-ray flares.
However, results obtained by different observers for
different ARs often disagree, due to both technical
and fundamental reasons. Technical reasons include
the relatively low accuracy with which the transverse
component of the field can be measured, the depen-
dence of the final spectral and polarimetric observa-
tional results on seeing conditions and instrumental
factors, the 180◦ ambiguity, etc. [16, 17]. These tech-
nical difficulties can be successfully overcome (see,
e.g., [14]). However, it is very difficult to overcome
fundamental difficulties, which are associated, first
and foremost, with the weak spatial correlations
between flare processes and structural features or
local variations in the photospheric fields [18].

In our view, these weak correlations indicate that
various fine-structure features of the diverse mor-
phologies do not represent the basic origin and source
of flares, but instead may serve as a triggering mecha-
nism that releases the energy stored inmagnetic fields
on scales comparable to the size of the entire AR. If
this is the case, it does not matter which of the trigger
mechanisms will operate at a given time and where it
will operate; it is only important whether a sufficient
amount of energy is accumulated in the field and how
stable the corresponding configurations are against
such local disturbances.

In this context, it seems reasonable to pay greater
attention to a more detailed study of various inte-
grated parameters of ARs rather than to the local
dynamics and fine-structure morphology of the field.
These parameters should directly or indirectly re-
flect the overall excess of accumulated energy on the
scale of the entire AR and the stability of the entire
magnetic-field configuration in the AR against local
disturbances. For example, such parameters include
quantities describing the departures of the photo-
spheric magnetic field from a potential field. Note,
however, that the results of investigations of this sort
have thus far remained inconclusive [19–21]. This
could be due to a somewhat inadequate choice of
characteristic parameters and analysis techniques.
Our own experience [22] has demonstrated that sim-
ilar approaches are fairly promising in addressing the
above problems. Here, we will demonstrate this by
considering observational data on the line-of-sight
components of the magnetic fields in ten ARs.

2. OBSERVATIONAL DATA

The magnetometric observations of solar ARs
were carried out at the Beijing Astronomical Obser-
vatory of the Chinese Academy of Science in 1989–
2001. The observations were obtained using the Solar
Magnetograph (with an aperture of 350 mm), which
is part of the Solar Multichannel Telescope, which
comprises a system of four separate solar instruments
with a common parallactic mounting [23, 24].

The solar magnetograph is used to obtain data on
the magnetic fields (full vectors) and line-of-sight ve-
locities in ARs on a regular basis. Observations have
been carried out since 1987 in the FeI (5324.19 Å)
and Hβ (4861.34 Å) lines. The instrument is a so-
called video magnetograph, in which a narrowband
birefringent filter replaces the spectrograph. The Bei-
jing video magnetograph is distinguished for its high
sensitivity and high spatial and temporal resolutions.

The magnetograph has undergone several recon-
structions since 1987. Currently, the telescope’s field
of view projected onto the CCD array (512 × 512 pix-
els) is 4′ × 5.5′ (more accurately, 3.75′ × 5.45′, or
163 Mm× 237 Mm), making it possible to study a
substantial part of an AR rather than only a frag-
ment. Thus, one pixel of the ССD array corresponds
to approximately 0.4′′ × 0.7′′, or an area on the Sun
(near the disk center) of ∼1.8 × 1015 cm2 = 1.8 ×
105 km2 = 0.180 Mm2 = 0.06 millionths of the hemi-
sphere. The area on the Sun that corresponds to the
entire ССD array is 38 631 Mm2. Time resolutions
as high as 1 min are possible. The actual accuracy
is ±10 G for the line-of-sight and ±15 . . .±25 G
for the transverse components of the magnetic field.
More detailed information on the Solar Multichannel
Telescope of the Beijing Astronomical Observatory
can be found in [23, 24] and other publications of
the Beijing Astronomical Observatory of the Chinese
Academy of Sciences.

More than 300 magnetograms of the line-of-sight
component of the magnetic field at the FeI 5324 Å
wavelength were selected for reduction over all ten
ARs. Only data for the selected ARs obtained under
conditions of excellent or good seeing were chosen for
analysis. Information on solar flares in the ARs were
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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obtained from the corresponding issues of the Solar
Geophysical Data.

Solar flares represent a complex phenomenon that
is accompanied by an abrupt release of nonpotential
energy in the upper layers of the solar atmosphere.
Their spatial and temporal parameters are tradition-
ally referenced to the chromospheric ejections of en-
ergy that can be observed in Нα. However, they are
also frequently observed as impulsive events in hard
X-ray emission and/or sharp enhancements in soft
X-rays (SXRs) and are accompanied by high-energy
particle fluxes [2, 24] (see also references in [2]). Here,
we regard flares primarily as SXR events, particularly
marking the onset of the flare according to the GOES
SXR data in the NOAA Space Environment Center’s
listings of events (Solar Geophysical Data, 1989–
2002). This is mainly because these events are well
documented in terms of their amplitude, time, and
spatial position, with virtually no gaps in the obser-
vation series.

To avoid edge effects, we analyzed observational
data obtained at longitudes within ±60◦ of the cen-
tral meridian; a normal correction for latitude and
longitude projection effects was applied, so that all
magnetic-field values, lengths, and areas were re-
duced to the disk center. This made it possible to
compare parameters for different ARs and different
states of the same AR in a unified, physically inde-
pendent heliographic coordinate system.

3. PARAMETERS ANALYZED

A number of integrated parameters appropriate for
quantitative descriptions of the current state of an AR
based on magnetometric and Doppler observations
were suggested in [25–27]. The numerical values
of these parameters depend on the corresponding
magnetic-field strength. It is well known that several
types of magnetic fields can coexist in an AR, viz.,
background fields with various levels of organization,
the fields of decaying old ARs, the fields of newly
emerging magnetic fluxes, etc. Any of these fields
has its own flux distribution, in accordance with the
magnetic-field strength and the spatial topology of
the magnetic fluxes. The state of an AR is determined
by a complex interplay of all these fields coexisting in
the AR. Moreover, the observational data are subject
to noise due to various types of errors. It is desir-
able that the contributions of all the fields present
in the AR be taken into account with corresponding
weights in the calculated integrated parameters and
that the contribution of random errors be minimized.

We present here some results of examining the
properties of the radial photospheric magnetic fields
in ten solar ARs derived from the integrated char-
acteristics of these fields. We consider the following
ASTRONOMY REPORTS Vol. 49 No. 9 2005
four parameters quantifying the current integrated
properties of the magnetic fields in the AR:

(1) the distance (in Mm) between the centroids
of the polarities in the AR weighted by the field
strength, Rns;

(2) the angle (in degrees) between the vector Rns
(the magnetic axis of the AR) and the local paral-
lel, Fi;

(3) the interosculation parameter of the magnetic
fluxes, or the complexity parameter of the AR, Hu =
(Rn+Rs)/Rns;

(4) the flux imbalance, Ov = (Fs+ Fn)/Fc.
Here, Fn and Fs are the magnetic fluxes (in Wb)

of northern- and southern-polarity fields, respec-
tively, determined from the radial component of the
magnetic field;Fa = |Fn|+ |Fs|;Rn = (Nn)1/2 and
Rs = (Ns)1/2 are the equivalent linear sizes (in Mm)
of theN and S polarities; andNn andNs are the areas
of the N and S polarities. More detailed information
on these and some other integrated parameters,
together with a description of the procedures used
to extract them from the observational data, can be
found in the already cited papers [22, 25–27], as well
as in [28].

Our choice of precisely these four parameters out
of the numerous possible integrated characteristics
of ARs was dictated by the results of our previous
studies (see [22, 28] etc.). We found that, if we con-
sider only the radial magnetic field of an AR, these
four parameters are the most variable and sensitive to
changes in the field. Furthermore, these parameters
have a number of other useful properties: (1) they can
be derived from the most reliable observational data
(the radial field); (2) they are derived via summation
and averaging, i.e., the operations normally used to
suppress random errors and enhance the signal-to-
noise ratio (we intentionally did not use parameters
based on data of different accuracies and on numerical
differentiation, subtraction, division, etc., such as ra-
dial currents, helicities, and others, which lead to sub-
stantial increases in the random errors); (3) since the
four parameters are geometric (Rns, Fi) or dimen-
sionless (Hu,Ov) characteristics of the ARmagnetic
field, they are basically insensitive to variations in the
observed output signal due to changes in atmospheric
conditions during an observation. This allowed us to
avoid complex, sometimes questionable, and not very
trustworthy procedures for correcting the calculated
parameters for seeing conditions.

We note here the basic properties of the param-
eters considered that are required to understand the
results presented in Section 4 below.

Theoretically, the distance between the polarities
in the AR averaged using the radial magnetic field
as a weighting factor, Rns, can range from zero to
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200 Mm or so (the characteristic length on the Sun
specified by the field of view of the recording sys-
tem; see the preceding section). In fact, as we will
see below, Rns ranges from 10 to 100–120 Mm.
It is obvious that, if we compare ARs with similar
net magnetic fluxes, larger field gradients and more
complex magnetic-flux topologies can be expected in
ARs for which this parameter is smaller. Among the
advantages of this parameter are its clear meaning,
simple computability, good variability, and high sta-
bility against noise. One drawback is that it does not
incorporate the net magnetic flux of the AR: a highly
developed AR with a complex configuration and a
simple pair of pores can give the same value for this
parameter. Therefore, comparisons between various
ARs based on this parameter alone are of limited
interest. It makes sense to consider this parameter for
a single AR in the course of its evolution, provided
that the net flux is relatively stable, or in combination
with other parameters, such as the net flux.

The angle between the magnetic axis of the AR
and the local parallel has been considered by many
researchers. Noteworthy among recent studies is the
fundamental investigation by Wang [29] (see refer-
ences for preceding studies therein). Wang [29] inves-
tigated the statistical relationship between this angle
and the net flux, latitude, distance between the polari-
ties, etc. Our technique for calculating the angle Fi is
somewhat different from that employed by Wang, but
these differences are not important, and our results
are consistent with his statistical conclusions. Our
procedure for calculating Fi as the arctangent of the
inclination to the local parallel,Rns, proves to be less
affected by random errors. This parameter and Rns
have nearly the same advantages and disadvantages.
In the context of our problem, it makes sense to
consider this parameter (orRns) for a given AR either
along when tracing the evolution of this AR or jointly
with other integrated characteristics.

The interosculation parameter of the magnetic
fluxes, or the complexity parameter of the AR con-
figuration, Hu, that we introduced shares all the
advantages of Rns, but is virtually free of drawbacks.
Since the area and magnetic flux of some polarity in
the AR are related by fairly simple power laws [30], the
equivalent linear dimension of this polarity enables
us to consider both the magnitude and degree of
concentration of its flux. At the same time, the ratio
of the sum of the equivalent linear dimensions of the
polarities to the weighted mean distance between
their centroids can be used to determine the degree
of interosculation for magnetic fields of opposite
polarities. This parameter is easy to determine and
stable to variations in the seeing, and can be fairly
reliably obtained even from data withmoderate spatial
resolution. In addition, this parameter can be used to
compare the degrees of complexity of different ARs,
via comparison of the degree of interosculation of
magnetic fields of opposite polarities. In this respect,
it can be viewed as a fairly universal structural param-
eter of the AR reflecting the topological complexity of
its magnetic fluxes. This parameter is dimensionless
and, theoretically, it can range from zero to infinity.
Zero corresponds to infinitely largeRns and infinity to
zero Rns. The geometrical meaning of Hu suggests
that values between zero and approximately 0.5
correspond to well-separated bipolar configurations,
or β configurations, according to the Mt. Wilson
magnetic classification of ARs. Values in the range
0.5–1.0 correspond to βγ configurations; values from
1.0 on up, to γδ and δ configurations of varying
degrees of complexity. In practice, as we will see
below, Hu assumes values ranging from 0.1 for
quiet ARs to about 10.0 for preflare states in most
flare-productive regions. The high sensitivity of this
parameter to any changes in the magnetic field, the
ability to interpret its values in a clear and obvious
way, and its relative universality and stability against
noise make it a convenient tool for absolute and
relative estimates of the structural complexity of ARs.
We will give particular attention to this parameter
below.

The relative magnetic-flux imbalance between the
two polarities—the parameter Ov—provides a quan-
titative estimate of the degree of closure of the mag-
netic fluxes within an AR. As can be seen from its
definition above, this parameter is also dimensionless
and can range from +1.0 to −1.0. These limiting val-
ues correspond to unipolar configurations, while val-
ues near zero correspond to ARs with well-balanced
fluxes. Any intermediate value yields a quantitative
estimate of the degree of openness of the AR; i.e.,
the degree to which it is connected to other ARs by
magnetic fluxes.

We calculated all these parameters for each AR at
50-G intervals to obtain the field-strength distribu-
tions of the parameters. Next, we calculated the first
four moments of each of these distributions,

Mx =
1
n

n−1∑

j=0

xj,

Dx =



 1
n− 1

n−1∑

j=0

(Mx− xj)2




1/2

,

Sx =
1
n

n−1∑

j=0

[
xj −Mx

Dx

]3

,

Kx =
1
n

n−1∑

j=0

[
xj −Mx

Dx

]4

− 3,
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Table 1.Main data for non-flare-productive ARs

NOAA HSOS Date Time (UT) X Y Fa, 10−14 Wb MC

5572 89159 08.07.1989 2:03 22.7 −16.8 4.453 B

6239 90200 01.09.1990 4:54 −21.9 15.2 1.503 A

6878 91209 17.10.1991 2:52 −3.9 −25.8 2.458 B

7555 93101 02.08.1993 5:41 13.7 10.9 1.563 B

7568 93112 28.08.1993 2:59 18.3 10.5 0.28 B

7737 94057 24.06.1994 1:32 7.5 −16.7 0.449 B

7896 95050 07.08.1995 4:36 26.1 1.5 2.361 B

7901 95053 24.08.1995 5:29 7.3 4.2 0.324 B

Table 2.Means and standard deviations for the four parameters

NOAA MRns MFi MHu MOv DRns DFi DHu DOv

6239 77.9 24.5 0.188 −0.161 24.87 13.20 0.231 0.453

7555 63.5 297.2 0.264 −0.012 29.68 9.38 0.303 0.172

7896 45.5 11.7 0.281 −0.014 13.66 6.80 0.339 0.359

5572 46.6 178.3 0.348 0.308 19.13 53.57 0.326 0.323

6878 96.5 206.1 0.166 −0.135 28.29 55.17 0.187 0.241

7901 37.4 33.3 0.342 −0.064 14.83 20.49 0.412 0.152

7737 50.2 160.2 0.222 −0.109 19.83 52.03 0.216 0.171

7568 59.8 84.7 0.12 0.153 25.60 14.79 0.109 0.291

Mean 59.7 0.241 −0.004 22 28.2 0.265 0.27

St. dev. 19.5 0.082 0.15 6.02 21.4 0.097 0.106
thus extracting 16 parameters from each magne-
togram. Here,Mx is the average over the distribution
for each parameter, Dx is the standard deviation,
which provides an estimate for the departure of a
given parameter from its mean value in the given
distribution, and Sx is the third moment, which de-
scribes the asymmetry of the distribution—its value
indicates the direction and magnitude of the displace-
ment of the maximum relative to the mean, or the
degree of asymmetry of the distribution relative to its
maximum. A Gaussian distribution has zero asym-
metry, so that Sx can be regarded as the degree of de-
viation of our distribution from a normal distribution.
Finally, Kx is the fourth moment, or excess, which
also differs from zero for non-Gaussian distributions
or distributions consisting of several Gaussian dis-
tributions. This quantity describes the sharpness of
the peak or the degree to which a given distribution
is elongated.

It is noteworthy that the dependence of the radial
ASTRONOMY REPORTS Vol. 49 No. 9 2005
component of the field Bz on the height z in a force-
free approximation can be represented by the simple
expressionBz(z) = B0J0(kR) exp(−lz), whereB0 is
the field at the photospheric level, J0(kR) the zeroth-
order Bessel function, R the radius in a cylindrical
coordinate system (R, φ, z), and l a scaling con-
stant [3]. If l = k, the field is potential (the shear angle
vanishes). As l varies from k to 0, the shear increases
from 0 to π/2, and the field becomes progressively
more twisted. This expression for Bz(z) indicates
that, for a given k and l, any fixed value of Bz(z)
will be observed at higher altitudes, the greater B0.
In other words, our field-strength distributions for the
parameters can also be interpreted, in a sense, as their
height distributions.

The variation in the rotation of the magnetic axis,
Fi, with field strength can be treated as a shear on the
scale of the entire AR. The mean value of this angle,
MFi, is not as important as its standard deviation
DFi. It is this quantity that characterizes the range
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Table 3. Asymmetries and excesses for four parameters

NOAA SRns SFi SHu SOv KRns KFi KHu KOv

6239 −2.021 −0.397 2.111 −0.068 4.077 −1.271 4.225 −1.571

7555 0.022 −2.075 1.415 1.491 −0.393 2.448 1.428 1.445

7896 −2.243 −0.311 2.401 −1.298 4.921 −0.838 6.205 0.632

5572 −0.591 −2.292 1.055 −0.306 −0.023 5.016 0.447 −1.209

6878 −2.332 −3.346 1.458 0.148 5.998 9.582 1.332 −0.83

7901 −0.852 0.997 2.049 −0.661 0.362 0.613 3.966 −0.687

7737 −1.186 −2.621 2.104 −1.158 1.071 5.181 4.841 0.742

7568 −0.298 1.507 1.719 −0.242 −0.354 0.319 2.438 0.251

Mean −1.19 −1.07 1.79 −0.26 1.96 2.63 3.11 −0.15

St. dev. 0.91 1.77 0.45 0.87 2.61 3.73 2 1.07
of variation of the angle, and can serve as an indicator
for excess magnetic energy stored on the scale of
the whole AR. This angle does not vary uniformly
with growth of the field. The field strength (height)
at which these variations reach large amplitudes is of
particular importance. If the variations in this angle
are large in the presence of strong fields (the asym-
metries SFi have large magnitudes), this can provide
an additional indicator for the growth of nonpotential
energy in strong fields.

The mean value of the polarity-interosculation
parameter, MHu, quantitatively characterizes the
structure of the AR and reflects the magnitudes of
gradients and the topological complexity and overall
instability of the magnetic configuration, while its
standard deviation, DHu, describes the range of
variations in the structural complexity with field
strength (height). Large positive asymmetries of this
parameter, SHu, represent evidence for high com-
plexity and instability of the magnetic configuration
in the presence of strong fields. Large excessesKHu
also testify to the presence of strong anomalies in the
distributionHu(B) and, therefore, to instability of the
magnetic structure of the AR.

The interpretation of MRns, DRns, SRns,
KRns, MOv, DOv, SOv, and KOv is also fairly
obvious, and we will not dwell on this here. Our
experience in handling data on the radial field has
demonstrated that the first and second moments are
especially significant. The third and fourth moments
are less informative in our problem, although they
also can provide useful information about the state
of the AR magnetic field in some cases. We restrict
our discussion here to these remarks and will now
proceed to presenting the results.
4. SOME RESULTS
In this section, we describe some of themost inter-

esting and typical results obtained in our analysis of
the field-strength distributions of all four parameters
considered above and their first four moments, for all
ten ARs. We first examine the distributions and their
moments for eight ARs with low flare productivity
during their quiet evolutionary phases.We present the
typical form of these distributions and typical values
for their moments for quiet ARs. These results are
needed for comparison with their counterparts for
flare-productive ARs. The field-strength distributions
of the parameters of two flare-productive ARs are
presented for relatively quiet and active evolutionary
phases; we also show the variations in the parameters
during a flare.

4.1. Quiet ARs
We will use the field-strength distributions of

the above parameters and the typical values of their
moments for non-flare-productive ARs as a basis
for comparison studies of various states and various
ARs with both high and moderate flare productiv-
ity. Table 1 presents the data for eight quiet ARs;
the columns contain (1) the international number
of the AR (according to NOAA, Boulder); (2) the
number adopted for this AR at the Huairou Solar
Observing Station (Beijing), where the observations
were carried out; (3) and (4) the date and time of
observation; (5) and (6) the coordinates of the AR
relative to the center of the solar disk; (7) the net
magnetic flux Fa in units of 1014 Wb; and (8) the
magnetic class of the AR at the observation time,
according to the Solar Geophysical Data [31].

Table 2 gives the mean values and standard de-
viations of the four parameters for all eight ARs.
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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The columns contain the number of the AR, and the
mean values of the parameters for these ARs together
with their standard deviations. The next-to-last row
of the table contains the parameters averaged over
all eight ARs and the last row, the corresponding
standard deviations. The quantity MFi is an excep-
tion, since such values have no meaning in view of
the specificity of the angular measurements; however,
the second and higher moments have their usual
meaning.

We can see from Table 2 that the field-strength-
weighted mean distances between the polarities in
non-flare-productive ARs are, on average, about
60 Mm and range between approximately 40 and
80 Mm.

The mean value of the dimensionless complex-
ity parameter, MHu, is 0.24 ± 0.08. Thus, mag-
netic class B (see Table 1) corresponds to MHu
values from approximately 0.15 to 0.35. Values
NOMY REPORTS Vol. 49 No. 9 2005
MHu < 0.15 represent magnetic class A, although
the correspondence between the range of variation
in MHu and a magnetic class is not unambiguous,
in view of the qualitative and purely subjective nature
of the magnetic classification [31]. These ranges will
likely overlap, and the correspondence is meaning-
ful only in the context of certain statistical-mean
values. The fifth column in Table 2 shows that all
eight ARs are well balanced in magnetic flux, with the
mean imbalance being as small as −0.004. However,
deviations from flux balance are significant in some
individual regions.

Table 3 has the same structure as Table 2 and
presents data on the asymmetries and excesses of
the four parameters for the same eight ARs. The first
column is analogous to the first columns of Tables 1
and 2, columns 2–5 contain the asymmetries, and
columns 6–9 contain the excesses. The last two rows
of Table 3 present the mean values and standard
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Table 4.Mean values and standard deviations for AR 6659 (June 8, 1991)

Time (UT) MRns MFi MHu MOv DRns DFi DHu DOv

3:44 27.3 307.0 0.804 −0.451 10.28 74.15 0.696 0.426

4:11 28.7 310.5 0.761 −0.458 10.66 62.11 0.694 0.418

4:40 27.9 312.7 0.753 −0.455 10.65 61.49 0.618 0.417

5:06 26.7 287.1 0.848 −0.436 10.63 64.92 0.721 0.424

5:42 27.0 293.2 0.753 −0.452 9.68 70.95 0.581 0.413

6:14 25.5 286.9 0.946 −0.432 11.12 68.57 0.825 0.417

8:08 32.4 296.7 0.683 −0.583 12.18 67.56 0.858 0.406

Mean 28 299.2 0.792 −0.467 10.7 67.1 0.713 0.417

St. dev. 2.2 10.9 0.085 0.052 0.8 4.6 0.101 0.007

Table 5.Mean values and standard deviations for AR 6891 (October 25, 1991)

Time (UT) MRns MFi MHu MOv DRns DFi DHu DOv

1:23 69.1 152.8 0.505 0.297 52.9 30.28 0.572 0.563

2:17 71.4 150.7 0.545 0.224 59.3 31.63 0.497 0.574

3:06 48.1 235.5 0.831 0.009 35.0 50.15 0.773 0.408

5:18 42.4 222.9 0.809 0.021 25.2 47.93 0.653 0.431

5:35 47.8 203.7 0.675 0.185 28.6 49.54 0.626 0.556

6:10 36.8 213.4 0.776 0.089 21.4 46.08 0.574 0.497

7:12 36.2 214.9 0.843 −0.003 13.5 45.40 0.583 0.494

8:08 40.9 221.3 0.816 0.079 24.1 47.09 0.63 0.507

Mean 49.1 202 0.725 0.113 32.5 43.5 0.614 0.504

St. dev. 13.8 32.2 0.134 0.111 15.9 7.9 0.08 0.061
deviations of these moments for all eight ARs. Al-
though eight ARs certainly cannot constitute a fully
representative sample, they nevertheless can give us
an idea of the mean variability of these parameters in
quiet ARs.

Figure 1 shows the field-strength distribution
of Hu for four of the eight ARs. Since the distri-
butions for the other four ARs are similar and lie
between the upper and lower curves, they are not
plotted here to avoid cluttering the figure. We can see
that Hu decreases rapidly and fairly smoothly with
the field strength. For weak fields, high values of Hu
are frequently observed. This is due to the fact that
the areas of the two polarities are well mixed in the
case of weak fields and, as a rule, are balanced on
the scales of ARs (Ov is nearly zero). At the same
time, since the magnetic-field energy is proportional
to the square of the field strength, such fields do not
contribute significantly to the flare process. Therefore,
it would be desirable to cut off such weak fields in
order to make the parameters more sensitive to the
variations in strong fields. However, the question is
the cutoff level, which could be chosen based on either
theoretical considerations or via fitting for flare-active
ARs. These two approaches are not contradictory,
and the choice of a specific value ultimately depends
on the formulation of the problem. It is only important
that this level be explicitly indicated in a particular
study and remain unchanged during the course of the
analysis. Here, we adopted a cutoff level of 100 G and
calculated all parameters using this value.

4.2. Flare-Productive ARs

In this study, we analyzed two flare-productive
ARs observed at the Beijing Astronomical Obser-
vatory (Huairou) in 1991: AR 6659, observed from
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Table 6. First two moments during the flare period of AR 6659 (June 9, 1991)

Time (UT) MRns MFi MHu MOv DRns DFi DHu DOv

1:06 18.96 252.10 2.285 −0.467 21.30 115.19 2.265 0.424

3:52 31.77 302.97 1.091 −0.459 13.71 73.40 1.035 0.407

4:25 32.19 305.64 0.869 −0.435 14.15 68.69 0.854 0.385

5:14 31.92 310.37 0.814 −0.461 13.53 62.23 0.832 0.402

5:29 33.72 307.66 0.658 −0.442 12.36 57.61 0.671 0.36

6:13 32.59 300.82 0.991 −0.446 12.88 71.12 1.042 0.377

6:51 34.71 305.49 0.801 −0.522 13.86 61.64 1.145 0.396

7:27 32.55 289.76 0.857 −0.493 12.92 88.42 1.093 0.388

8:01 32.64 307.61 0.744 −0.505 12.94 66.92 0.775 0.395

Mean 31.23 298.05 1.012 −0.47 14.19 73.91 1.081 0.393

St. dev. 4.69 18.24 0.494 0.03 2.73 17.92 0.470 0.018
June 3 to 9 and from June 12 to 16, and AR 6891,
observed from October 22 to November 4.

According to the NOAA data, six flares of X-ray
class X (five with classes X > 12.5), 31 flares of
class M, and about 70 flares of class C were recorded
in AR 6659 from June 1–15. Based on these data, we
estimate the X-ray Flare Index (XRI) of this AR to
be >81.1, making it the most flare-productive active
region of the past two solar cycles, even exceeding
the productivity of AR 5395 in March 1989, whose
flare activity is well known for its geophysical reper-
cussions (XRI = 57.0, according to the same data).
Although AR 6891 did not display the absolute high-
est flare productivity, five class-X flares (1.9–6.1),
about 30 class-M flares, and about 80 class-C flares
were observed in this active region, according to the
NOAA data.

We analyzed 113 magnetograms for AR 6659 and
156 for AR 6891. Unfortunately, the distribution of
these data in observation time prevented us from
tracing all the variations in the parameters studied in
the preflare and flare periods in detail. Nevertheless,
we obtained some results that we believe to be
interesting.

4.2.1. Quiet Phase

It is known that periods of relatively low activity in
flare-productive ARs alternate with powerful series of
flares. The periods of reduced activity are of particular
interest, since the energy accumulation and prepara-
tion for the next active phase seem to occur during
these periods. In the ARs we consider, such periods
occurred on June 8 for AR 6659 and on October 25
for AR 6891. To analyze this evolutionary phase of
ASTRONOMY REPORTS Vol. 49 No. 9 2005
the AR, we selected magnetograms obtained at times
of lowerest activity during these periods. The results
are gathered in Tables 4 and 5 and in Fig. 2.

As in Fig. 1, the field strength (in Gauss) in Fig. 2
is plotted along the horizontal axis and the dimen-
sionless parameterHu along the vertical axis. To save
room, we do not present the distributions of other pa-
rameters. Only four distributions are shown in Fig. 2
for the same reasons as in Fig. 1. A comparison of
Figs. 1 and 2 shows substantial differences in the
distribution of this parameter. The most important of
these are the presence of local extrema at different
field strengths and a generally higher level of Hu at
all field strengths.

Tables 4 and 5, which present the first two mo-
ments of the parameters considered for the quiet
phases of AR 6659 and AR 6891, demonstrate these
differences quantitatively and in more definite form.
The third and fourth moments are somewhat less
informative, and are not given here in view of space
limitations.

Comparing Tables 2, 4, and 5, we find that the
higher the flare productivity, the lower the mean value
MRns; in principle, this seems reasonable, but is not
obvious a priori. The mean values of the complexity
parameter,MHu, are higher, the higher the flare pro-
ductivity of the AR. Themean values of the imbalance
parameter, MOv, do not exhibit any correlation with
the flare activity. The standard mean deviations of the
angle DF demonstrate a clear relationship with the
capacity of the AR for flare activity and display good
internal accuracy (see the last rows of these tables).
The standard mean deviations of the complexity pa-
rameter, DHu, along with its mean values, MHu,
correlate well with the potential flare productivity of
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Fig. 3. Sequence of changes in the distribution Hu(B) during the flare in AR 6891 on October 30, 1991.
the AR, with the spread in individual values being
small (see the same tables). The parameter DOv—
the standard mean deviation of the flux imbalance
between the polarities—does not exhibit any relation-
ship to the capacity of the AR for flare activity and
displays a small spread in the individual values.

4.2.2. Active Phase
A clear growth in the amplitudes of the local ex-

trema in the parameter distributions signals the ter-
mination of the quiet phase. If these extrema are
observed at large field strengths and Hu is generally
high, this heralds the onset of especially powerful
flare events. A series of such complex distributions
accompanies the entire flare-active phase.

As an example, Table 6 presents the first two mo-
ments for our four parameters in the flare-productive
phase in AR 6659 (July 9, 1991). During the observa-
tions (first column of Table 6), this AR gave rise to one
flare of class Х10 (В3), one flare of class М19 (N1),
and several minor flares of class С (SF). The XRI
was 10.25 for this period. For comparison, this index
was only 0.1 during an observational period of similar
length on July 8 (Tables 4, 5), during a quiet phase.

A comparison of Tables 4 and 6 demonstrates
that (1) the mean valuesMRns somewhat increased
during the flare-productive phase (compared to the
quiet phase), remaining, however, within the stan-
dard deviation; (2) the mean values MFi and MOv
remained virtually unchanged; (3) the mean values
MHu clearly increased during the flare-productive
phase and ranged approximately from 0.6 to 1.6. We
can also conclude that the standard deviationsDRns,
DFi, and DHu were obviously higher and DOv
lower during the flare-productive phase than during
the quiet phase.

Figure 3 presents part of the sequence of distri-
butions Hu(B) during the relatively powerful flare of
class Х2.5 (3В) in AR 6891 onOctober 30, 1991. The
onset of the flare (according to the NOAA data) was
recorded at 6h11m, its maximum at 6h21m, and its
end at 9h03m. This sequence of diagrams describing
the development of the event is, to all appearances,
quite typical and demonstrates all the main phases of
changes inHu(B) during major flares.

We can see from Fig. 3 that, at 5h43m, approxi-
mately half an hour before the onset of the flare, an
appreciable local peak of height Hu = 2.84 appeared
in theHu(B) distribution in the range 1300–1600 G.
By two minutes before the onset of the flare, this
maximum had shifted toB = 1475 G andHu = 10.9.
Later, 11 min after the flare maximum (at 6h32m), this
peak was characterized by values of B = 1525 G and
Hu = 3.02, and then by values of B = 1975 G and
Hu = 1.38 at 7h53m (the last available observation).

The time variations in MHu are illustrated by
Table 7 (they do not appear as impressive when rep-
resented in terms of mean values). We can see that
DHu displays a more pronounced response to the
flare. Note that local features in the time variations of
the other parameters presented in Table 7 also emerge
almost synchronously (DOv seems to be the only
exception). This confirms the conclusion [32] that the
flux imbalance between the polarities is not linked to
flare activity.

The third and fourthmoments (asymmetry and ex-
cess), which are not presented in Table 7, also display
strong variations. In particular, the excess KHu was
an order of magnitude higher at 6h09m than at other
times. Therefore, variations in the higher moments of
the parameter distributions can also characterize the
development of particular flare situations, although
they are less informative in terms of their statistical
mean values.
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Table 7. The first two moments of the parameter distributions during the class-Х2.5 flare in AR 6891 (November 30,
1991)

Time (UT) MRns MFi MHu MOv DRns DFi DHu DOv

5:42 39.47 141.52 0.811 0.404 25.04 98.33 0.633 0.429

6:09 51.28 141.75 0.826 0.427 33.22 84.13 1.587 0.454

6:32 48.83 104.23 0.774 0.554 21.14 94.38 0.573 0.471

7:18 40.89 166.94 0.717 0.271 18.51 80.59 0.384 0.453

7:53 41.02 159.34 0.686 0.309 16.55 79.21 0.408 0.458

Mean 44.31 142.81 0.763 0.393 22.92 87.31 0.717 0.453

St. dev. 5.36 24.20 0.061 0.111 6.59 8.55 0.501 0.015
5. CONCLUSIONS

To conclude, let us summarize the principal results
of our study.

(1) Quiet ARs differ from flare-productive ones in
the form and first moments of the distributions of their
field-strength parameter.

(2) The distributions of the net flux, Fa(B), and
of the flux imbalance between the polarities, Ov(B),
do not exhibit any pronounced and unambiguous re-
lationship with the flare process, nor do their first
moments.

(3) The distributions of the magnetic-axis incli-
nation, An(B), and of the structural complexity pa-
rameter, Hu(B), clearly discriminate between quiet
and flare-productive ARs. Substantial changes in the
form of these distributions and in their first moments
begin several hours before the flare and reach their
maxima during the flare.

While carrying out this study, we analyzed numer-
ous field-strength distributions for the four considered
parameters for several dozen ARs. Space limitations
have forced us to omit numerous interesting features
that appear in these distributions during the preflare
phase and the flare itself, some of which we describe
in [28]. The observational data that were available
to us did not enable us to follow the time variations
of the parameters in detail during all development
phases of the flare process in solar ARs. For this rea-
son, the results presented here should be considered
preliminary. Further investigations based on higher-
resolution observational data are needed.

However, the results obtained indicate that our
approach is fairly promising as a means of finding
links between particular configuration features of the
photospheric magnetic field and major releases of
thermal and kinetic energy in the chromosphere and
corona. We believe that some details of these links
could be clarified using the results obtained based on
our approach. We also hope that such results will be
ASTRONOMY REPORTS Vol. 49 No. 9 2005
useful in practical contexts, for example, in the devel-
opment of short-term forecasts for certain geoefficient
factors of solar activity.
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Abstract—Three-dimensional images of solar coronal loops are constructed based on Hα observations
obtained on June 15, 1982, and EUV data obtained by TRACE on November 6, 1999. Our analysis
of these structures shows that coronal-plasma motion in crossed fields can form loops, in accordance
with the theoretical model proposed by Kazarov and Molodenskiı̆. In general, the singular points in
the magnetic fields of the active regions considered and the footpoints of the loops agree in location.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Plasma motion in coronal loops can be explained
by either plasma drifting in crossed fields [1] or
interactions between the currents in filaments and
the magnetic fields of active regions [2]. According
to [3, 4], the onset of rapid motions is associated with
the passage of a current through a potential barrier,
which results in a “fold”-type catastrophe. Depend-
ing on the conditions under which this transition
takes place, either finite or infinite motions of material
are possible in the filaments [5].

We chose Hα loops as targets for our study of
these drift motions. In their analysis of such loops
located near the limb, Starkova and Shilova [6] found
that the plasmamoves along a loop from one footpoint
to the other; i.e., between two regions of opposite
magnetic polarity.

2. MODEL OF THE MAGNETIC FIELD

Post-flare loop systems are associated with ac-
tive regions. The configuration of the magnetic field
in such regions is determined by subphotospheric
sources and coronal currents.

A subphotospheric source can be modeled as a
two-dimensional dipole whose magnetic moment is
directed normal to the boundary of the photosphere.
The coronal current is localized near the polarity-
inversion line, and the equilibrium of the current is
due to the balance between the repulsive force pro-
duced by the reflected current and the Lorentz force
1
c
[I × B], where I is the current andB is the magnetic

field of the active region [3].
1063-7729/05/4909-0767$26.00
The vector potential of the current (including the
reflected current) in the active region studied has a
z component only:

A = Az =
I

c
ln
(

r1

r2

)2

, (1)

where r1 and r2 are the distances from the given point
to the currents 1 and 2, respectively.

3. THE DRIFT MOTION

Changes in the magnitude or location of the cur-
rent make the vector potential (1) time-dependent. If
the magnetic field is frozen in, a change in the vector
potential δA results in a displacement of the plasma
normal to the magnetic field B [3]:

ξ⊥ =
[B × δA]

B2
. (2)

We constructed the velocity field ξ⊥ corresponding
to the vector potential A for a given system of field
lines (Fig. 1). The field configuration contains five
singular points—two saddle points and three nodes.
Formally, upon the substitution B → ξ, centers are
replaced with nodes, all saddle points are rotated by
π/4, and the dipoleM is rotated by π/2. It is curious
that precisely saddle points—regions where |ξ⊥| is
maximum—rather than nodes or centers turn out to
be the “sources” of this vector field.

Note that ξ⊥ grows as saddle point 1 is ap-
proached (Fig. 1). The motions in the neighborhood
of the saddle point were calculated in [7, 8], where it
was shown that the drift motions are localized within
an area of≈1.5′′ × 1.5′′.

If the current varies (decreases) with time, both
saddles rise; at some value of the coronal current I1,
saddle 2 intersects the photosphere (shown by the
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Drift-velocity (displacement) field ξ⊥ in the
z plane, which is perpendicular to the coronal current I1

and the reflected current I2 and runs through a sub-
photospheric two-dimensional dipole M located at the
coordinate origin. The saddle points are labeled by the
numbers 1 and 2. The heavy solid line a distance h from
the dipole marks the photospheric boundary. The dashed
line corresponds to the chromospheric level.

heavy line in Fig. 1). As can be seen from (2), the
regions of the most rapid motions in the chromo-
sphere can exchange their roles in this case: ejections
of matter may first emerge from the neighborhood of
saddle 1, after which this saddle rises into the corona,
where there is no dense matter or observable motion;
further, saddle 2 may undergo a similar evolution.
Therefore, a motion that originates in a region of some
polarity at the footpoint of a loop may repeat itself
some time later in the region of the opposite polarity
at the footpoint of another loop system.

An analysis of motions in the model considered
indicates that two situations can be realized if the
current does not exceed the critical value, i.e., if it does
not pass through the potential barrier. The first situ-
ation takes place if the coronal, and reflected currents
have similar values: I2 ≈ −I1. In this case, saddle
point 2 (Fig. 1) remains below the photosphere and
there is only one source for the motion of the chro-
mospheric material. As a result, a loop with unidirec-
tional motion forms.

Another scenario is realized if the current mag-
nitudes are substantially different. In this case, both
saddle 1 and 2 (Fig. 1) will simultaneously end up
above the photosphere. In our model, this is the
case when I2 ≈ −2I1. The emergence of two sources
should give rise to flows from both footpoints of the
loop simultaneously. However, this scenario requires
that the motions be so rapid that the reflected current
has no time to react to the coronal current.

As an example, we consider the postflare loop sys-
tem in Active Region 203 (according to the number-
ing adopted in the Solnechnye dannye bulletin [9])
of June 15, 1982. Figure 2 presents a filtergram ob-
tained at 13:30 UT using the Opton interference–
polarization filter on the Tower Solar Telescope of the
Institute of Terrestrial Magnetism, Ionosphere, and
Radiowave Propagation (IZMIRAN). The filter has
a 0.25-Å pass band and is shifted δλ = ±1 Å from
the center of the Hα line. The Hα + 1 Å filtergram
recorded simultaneous motions of matter from two
chromospheric regions (from both loop footpoints at
once). The Hα + 0.25 Å filtergram displayed the en-
tire loop system. This filtergram was used to obtain
the geometric parameters of the loops.

Figure 3 shows the five main loops. To reconstruct
the three-dimensional structure, we determined the
heliographic coordinates of some points of the loops
(Fig. 3). The shape of a loop was reconstructed using
the technique described in [10], assuming that each
loop lies in a plane and that its apex is located along
the perpendicular line running from the midpoint of
the segment connecting the footpoints of the loop.

A three-dimensional representation of the loop
system is given in Fig. 4. The stereoscopic image was
obtained by applying a 5◦ latitude shift. Analysis of
the three-dimensional image enabled us to trace the
trajectories of the matter flows in the loops over the
time interval studied. In this way, we found that the
velocity vector is directed away from the footpoints of
the three long loops. The planes in which the loops lie
form a fan (Fig. 4) and are inclined to the surface by
angles of 23◦−45◦.

The short and long loops are bent in different di-
rections (Fig. 3), so that the line-of-sight projections
of the velocities directed from the footpoints are dif-
ferent. The right-hand parts of the short loops can be
seen in the Hα − 1 Å filtergram (Fig. 2). Therefore,
the motions in the short loops are simultaneous and
are directed from the footpoints upward.

In some cases, other techniques can be used to
obtain a stereoscopic image of a loop system. For
example, the methods developed by Vedenov (see,
e.g., [11]) are applicable. In particular, the appearance
of the well-known system of coronal loops observed
by TRACE (http://vestige.Imsal.com/TRACE/
POD/TRACEpodarchive.html) on November 6,
1999 is very complex. If, however, we assume that
most of the loops lie on a cylindrical surface, we can
obtain a stereoscopic image of this system (Fig. 5).

In general, additional information about the object
studied is needed to reconstruct its three-dimensional
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 2. Filtergrams of Active Region 203 obtained on June 15, 1982 in the blue (Hα − 1 Å) and red (Hα − 1 Å, Hα + 0.25 Å)
wings of the Hα line.
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Fig. 3. Schematic representation of the five main Hα loops in Active Region 203 after the flare of June 15, 1982, and their
reconstructed configurations. The axes are scaled in solar radii.
structure from a two-dimensional image. Our above
assumption about the shape of each individual
loop [10] served as such supplementary information.

This assumption is not necessary, however. The
data for themodel described in [1] can also be used. As
is noted above, Fig. 1 shows integrated curves of the
vector displacement field ξ⊥; these curves represent
the trajectories of the chromospheric material if its
velocity v = v⊥ +v‖ is such that v‖ � v⊥. This con-
dition is satisfied if the initial velocity is zero, gravity
and inertia can be neglected, and only the plasma drift
in the crossed fields need be taken into account [12].

In addition, Kazarov and Molodenskiı̆ [1] consider
the case when a current is present in the field of a
two-dimensional dipole modeling the magnetic field
near the polarity-inversion line (which corresponds to
a filament), the entire structure exhibits translational
ASTRONOMY REPORTS Vol. 49 No. 9 2005
symmetry
(

∂

∂z
≡ 0
)
, and an x and a y dependence

are present. The surface (formed by the drift trajec-
tories of the plasma in this case), whose equation
f(x, y) = const does not contain z, is a cylindrical
surface (not necessarily with a circular generatrix).
However, loops appear as circular arches in some
particular cases (e.g., in TRACE observations). This
fact was utilized when constructing the stereoscopic
pair shown in Fig. 5.

The stereoscopic images are constructed as
follows. In the plane of the image, (x, y), we construct
the projection of the cylindrical surface
x2 + (y − c)2 = const to which the brightness from
the plane of the sky is mapped. This specifies the third
(spatial) coordinate of each point. To construct the
stereoscopic image, we shift the resulting structure
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Fig. 4. Three-dimensional representation of the loops of
June 15, 1982. The planes of the loops are inclined to
the photospheric surface at angles of 44◦, 35◦, 44◦, 45◦,
and 23◦, in order of their numbering.

Fig. 5. Stereoscopic image of the coronal loops of Octo-
ber 6, 1999 (according to TRACE data).

by a distance corresponding to the base. Thus, a
stereoscopic pair is formed.

The use of this technique for constructing stereo-
scopic images requires some spatial margin for shift-
ing the observation point by the base length. To this
end, we moved the observed object closer to the plane
of the sky.

4. CONCLUSIONS

Our analysis of the loop system shown in Fig. 2 re-
veals two regions of acceleration. Despite the appar-
ent complexity of Active Region 203 [9], its dynamics
can be satisfactorily described using a relatively sim-
ple model (Fig. 1).

However, a different situation is also possible. In
particular, Moore et al. [13] studied a region in which
a major flare occurred on June 25–26, 1992. The
magnetic-field configuration after the flare was highly
complex. The postflare loops formed two different sys-
tems, one with a vertical orientation and a strong in-
clination to the surface (30◦). This situation requires
a more complex field configuration and sources of
motion than the situation considered in Section 2.

The types, number, and disposition of the singu-
lar points can be determined from the observed loop
structures based on the model considered [1]. This,
in turn, makes it possible to reconstruct the topology
of the magnetic and the induction electric field of the
active region [14].
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