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Abstract—Spectroscopic observations of twelve M51-type binary galaxies with the 6-m Special Astro-
physical Observatory telescope are presented. We constructed the rotation curves for the primary galaxies
of each binary system and determined the line-of-sight velocities of their companions from the Hα and
[N II] 6583 Å emission lines. c© 2002 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Binary systems similar to the M51 galaxy consti-
tute rather rare and very interesting types of objects.
Vorontsov-Vel’yaminov (1957) and Arp (1966) were
the first to point out M51 type systems as a special
class of binary galaxies. These systems consist of a
spiral primary and a relatively small companion that
is seen projected onto the tip of one of the spiral arms
of the primary.

Klimanov and Reshetnikov (2001) presented a
new sample of M51-type galaxies. Objects of this
type are very poorly studied and for many of them
neither kinematic data for the primary galaxy nor even
the line-of-sight velocities of their companions are
available. The principal aim of this work was to obtain
observational data about M51-type galaxies. We will
use these data to study the origin and evolution of
binary galaxies with very different componentmasses.

OBSERVATIONS

Our program list included 12 binary systems
drawn from the sample described by Klimanov and
Reshetnikov (2001) (see the table for the list of
objects).

Observations were made in February, March, and
November 2000 with a high focal ratio spectrograph
operating in the primary focus of the 6-m telescope
of the Special Astrophysical Observatory of the
Russian Academy of Sciences (Afanas’ev et al.
1995). The observations used a 1024 × 1024 Pho-
tometrics CCD with a pixel size of 24 µm attached

*E-mail: serg@gong.astro.spbu.ru
1063-7737/02/2809-0579$22.00 c©
to the Schmidt–Cassegrain camera of the spectro-
graph (F = 150 mm). The spectra were obtained
using a spectrograph with a 2′′ × 120′′ slit and a
1302 lines/mm grating operating in the wavelength
interval 6000–7200 Å. The scale along the slit was
0′′
.40 per pixel and the reciprocal dispersion was equal
to 1.21 Å pixel. The seeing during observations varied
from 1′′ to 2′′. For each object we obtained several
spectra with a characteristic exposure time of 10–
20 min. ArNeHe comparison spectra were recorded
between the spectra of program objects. The position
angle of the spectrograph slit is given in the second
column of the table.
We reduced the spectra using an ESO-MIDAS

software package (LONG context). We constructed
the rotation curves of galaxies from Hα (6562.8 Å)
and [NII] (6583.4 Å) emission lines whose contours
we fitted to Gaussian profiles. We did not measure the
positions of other lines, because of their weakness.
We estimated the accuracy of our reduction from
the measurements of night-sky lines. The standard
deviation of the wavelengths of the latter from the
mean position never exceeded 0.33 Å which corre-
sponds to σ ≤ 15 km s−1 at the Hα wavelength. We
estimated the internal errors of measurements from
the dispersion of line-of-sight velocities measured at
the center of the galaxy and in the neighboring pixels.
Such a procedure is justified by the small separation
between neighboring pixels (0′′

.40), which is much
smaller than the seeing. One must bear in mind,
however, that the gradient of the rotation curve may
increase the internal error estimate thus obtained and,
consequently, our estimates characterize only the up-
per boundary of the real error. Internal errors given
2002 MAIK “Nauka/Interperiodica”
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Parameters of galaxies

Name P.A Vdin, km s−1 Vphot, km s−1 ∆V , km s−1 RV /R25

MCG -01-01-70 a 175◦ 5991 ± 11 5971 ± 13 −76 ± 16 0.62

MCG -01-01-70 b 175 6067 ± 11 6071 ± 3 − 0.3

NGC 151 a 68 3732 ± 21 3745 ± 28 −277 ± 21 0.64

NGC 151 b 68 4009 ± 4 4008 ± 4 − 0.8

NGC 797 a 66 5664 ± 18 5662 ± 18 92 ± 39 0.71

NGC 797 b 66 – 5572 ± 35 − 0.4

NGC 2535 59 4079 ± 7 4082 ± 5 1 ± 21 0.47

NGC 2536 59 4078 ± 20 4071 ± 20 − 0.6

NGC 2535 163 4090 ± 8 4084 ± 10 15 ± 22 0.32

NGC 2536 163 4075 ± 20 4077 ± 20 − 0.4

UGC 6865 a 37 5930 ± 29 5882 ± 27 162 ± 29 0.94

UGC 6865 b 37 5768 ± 3 5768 ± 2 − 0.6

NGC 4088 a 55 775 ± 12 769 ± 9 159 ± 12 0.56

NGC 4088 b 55 616 ± 3 621 ± 3 − 0.9

NGC 4137 a 90 11171 ± 3 11172± 4 99 ± 8 1.06

NGC 4137 b 90 – 11072± 7 − 1.0

NGC 5278 68 7629 ± 17 7527 ± 12 58 ± 17 0.55

NGC 5279 68 7571 ± 4 7552 ± 4 − 0.6

UGC 10396 a 19 8680 ± 16 8652 ± 15 −154 ± 21 0.68

UGC 10396 b 19 8834 ± 14 8866 ± 3 − 0.7

UGC 11680 a 71 7806 ± 4 7807 ± 4 −89 ± 7 0.75

UGC 11680 b 71 7895 ± 6 7899 ± 5 − 0.5

NGC 7753 44 5142 ± 30 5112 ± 32 202 ± 34 0.52

NGC 7752 113 4940 ± 16 4940 ± 16 − 0.6

NGC 7757 a 110 2944 ± 12 2974 ± 5 −109 ± 30 0.76

NGC 7757 b 110 − 3053 ± 27 − 0.9
in the table do not exceed 35 km s−1 (their mean is
13 ± 9 km s−1).

We used the rotation curves obtained as described
above from Hα and [NII] lines to determine the
positions of the centers of both components and
their radial velocities. We computed the positions
and velocities as the weighted means of the corre-
sponding values inferred from Hα and [NII] lines with
weights equal to the line intensities. To reveal an
eventual relation between the dynamical and pho-
tometric parameters of the systems, we determined
two centers—dynamical and photometric—for each
galaxy. We found the position and velocity of the
former from the condition of maximum symmetry of
the rotation curve. The photometric center coincided
with the maximum of the continuum spectrum. Note
that the dynamical centers were determined only
formally for a number of companion galaxies due to
their small angular sizes and, consequently, small
extent of their rotation curves.

RESULTS AND DISCUSSION

The figure shows the images of 12 М51-type sys-
tems taken from the DSS1 with slit positions super-
imposed, and the rotation curves of these galaxies.
North is at the top and West, on the right. The dis-
tances and velocities are given relative to the dynam-
ical center of the primary galaxy.

1The Digitized Sky Surveys were produced at the Space
Telescope Science Institute under U.S. Government grant
NAGW-2166.
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The main results are summarized in the columns
of the table:
(1) Number of the galaxy according to NGC,

UGC, or MCG catalogs. In the cases where the
companion has no designation in the above catalogs
the components of the system are indicated by letters
a and b corresponding to the primary and its compan-
ion, respectively;
(2) Position angle of the slit during observations;
(3) Line-of-sight velocity of the dynamical center

of the galaxy corrected for the Earth’s orbital motion;
(4) Line-of-sight velocity of the photometric cen-

ter of the galaxy corrected for the Earth’s orbital mo-
tion;
(5) Difference of the radial velocities of the dynam-

ical centers of the primary and its companion. In the
cases where the small size of the companion made
the determination of its dynamical center uncertain
we used the velocity of its photometric center;
(6) Extent of the measured portion of the rotation

curve expressed as a fraction of the radius of the
galaxy (R25) either reduced to the standard isophote
of 25m/sq. qrcsec (according to the RC3 catalog)
or inferred from our measurements of DSS galaxy
images.
The mean extent of our rotation curves is equal

to (0.66 ± 0.20)R25 and (0.64 ± 0.22)R25 for the
primary galaxies and their companions, respectively.
Thus our rotation curves reach the region of max-
imum rotation velocity for the exponential disk of
a typical bright spiral galaxy (∼2h, where h is the
exponential disk scale length, or ∼2/3R25), and
they can therefore be used for analyzing the global
kinematics of these objects.
In this paper we briefly describe the main specific

features of the spectra of the observed galaxies and
their rotation curves, and compare our results with
those published earlier. We adopted most of our com-
parison data from the NED database2 where one can
find the bibliographic references. Below we give refer-
ences only to recent publications and to the detailed
studies of objects. Hereafter all radial velocities are
heliocentric line-of-sight velocities.
MCG-01-01-70. During observations the spec-

trograph slit passed almost along the minor axis of
the galaxy. The Northern and Southern branches of
the rotation curve exhibit local maxima at a galacto-
centric distance of 5′′ where radial velocity of rotation
reaches 50–60 km s−1. So far, no rotation curves of
this galaxy has been published. The radial velocity of

2The NASA/IPAC Extragalactic Database (NED) is oper-
ated by the Jet Propulsion Laboratory, California Institute
of Technology, under contract with the National Aeronautics
and Space Administration.
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the center of the primary—5985 ± 38 km s−1—found
by Huchra et al. (1993) agrees well with our result
(see the table).
NGC 151. The slit passed through the major axis

of the primary. The rotation curve is characterized by
a nonmonotonic variation of velocity, which is most
conspicuous on the companion side. The Hα line is
almost invisible in the spectrum of the companion—
its central intensity is lower than that of the [NII]
line by a factor of 30. The Hα rotation curve of the
primary was obtained byMathewson and Ford (1996)
(at a slit position angle of 75◦). It reaches a plateau
and exhibits smaller variations of rotation velocity.
The velocity of the center of the primary computed
byMathewson and Ford—3738± 10 km s−1—agrees
well with our result.
NGC 2535–2536. We observed this system at

two slit position angles and obtained separate spec-
tra of the primary and companion (see the figure).
When aligned along the position angle P.A. = 59◦,
the slit crosses the arms of the primary galaxy and
the spectrum exhibits a characteristic clumpy pattern
with several condensations in Hα and [NII] lines,
which are likely to be associated with ∼100 km s−1-
amplitude waves on the rotation curve. The rotation
curve of the companion also exhibits nonmonotonic
variations of Vr with a slightly smaller amplitude.
The spectrum taken at the slit position P.A. = 163◦
shows much fewer bright condesations. The velocity
variations in this case have much smaller amplitude.
At the same time, this rotation curve is not quite sym-
metric: its southeastern part at a distance of 8′′–10′′
from the center of the primary reaches a plateau (the
maximum velocity Vr reaches∼100 km s−1), whereas
the northwestern part at about the same distance
exhibits a sharp maximum beyond which the velocity
also reaches a plateau. In addition, this part cannot
be traced as far as the southeastern part (out to the
galactocentric distances of 20′′ and 30′′, respectively).
The rotation curve of the satellite is more symmetric
than that of the main galaxy.
Amram et al. (1989) report a rotation curve for

this system based on an analysis of a detailed velocity
field of ionized gas obtained with a Fabry-Perot inter-
ferometer. The above authors also point out that the
rotation curve of the primary reaches a plateau at a
velocity of about 110 km s−1, which remains approx-
imately constant out to a galactocentric distance of
30′′ and 20′′ for the southeastern and northwestern
sides of the central disk, respectively. Beyond this
distance the rotation curve of Amram et al., which
is traced to greater galactocentric distances than our
totation curve, exhibits a fast decrease of rotation ve-
locity. The direction of rotation of NGC 2535 as deter-
mined from our data (southeastern part of the galaxy
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Figure. Images and rotation curves of M51-type galaxies. The lines indicate the positions of the slit during observations.
Designations on the rotation curves: (1) velocity of rotation determined from Hα line; (2) velocity of rotation determined from
[NII] line; (3) dynamical center of the primary galaxy; (4) photometric center of the primary galaxy; (5) dynamical center of
the companion; and (6) photometric center of the companion. The distances and velocities are with respect to the dynamical
center of the galaxy.
recedes and the northwestern part approaches) co-
incides with that indicated by Amram et al. (1989)
(see Fig. 3 in the above paper). (Note, however, that
Amram et al. give different rotation directions in their
Figs. 3 and 4.)
As for the rotation curve of the satellite reported by
Amram et al., it exhibits the same main features as
can be seen on our rotation curve: velocity decreases
beyond 5′′ from the center, and the curve flattens out.
The radial velocities of the centers of the primary and
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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Figure. (Contd.)
the satellite determined by Amram et al. agree well
with our results: 4095 ± 10 and 4085 ± 10 km s−1,
respectively.

NGC 797. The spectrum of this system exhibits
a powerful continuum in the nuclear regions of both
components. A strong absorption feature develops
OMY LETTERS Vol. 28 No. 9 2002
closer to the center, which virtually engulfs the Hα
and [NII] lines, thereby hindering significantly the
measurements. The emission spectrum shows a dis-
continuous pattern outside the nuclei and line inten-
sities are extremely low in these regions. Both rota-
tion curves exhibit strong local variations of rotation
velocity. Van Moorsel (1983) obtained a 21-cm HI
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Figure. (Contd.)
line rotation curve for NGC 797, which extends out
to a distance of 1′ from the center of the primary. The
maximum rotation velocity corrected for the tilt of the
galaxy inferred from the same rotation curve is equal
to 270 km s−1 (at a distance of 40′′ from the nucleus).
The Updated Zwicky Catalog (UZC) (Falco et al.
2000) reports for the optical center of the primary a
radial velocity of 5654 ± 4 km s−1, which is close to
our result.
UGC 6865. This system is strongly tilted with

respect to the line of sight. The rotation curve flattens
out beyond 8′′–10′′ from the center of the primary
galaxy. However, the northern branch exhibits a local
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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Figure. (Contd.)
velocity decrease with an amplitude of 80 km s−1.
This may be due to inhomogeneous internal absorp-
tion. Because of the latter the rotation curve appears
asymmetric and our systemic radial velocities deter-
mined for the photometric and dynamic centers of the
OMY LETTERS Vol. 28 No. 9 2002
main galaxy differ by 50 km s−1. The central radial ve-
locities reported by different authors scatter substan-
tially. For example, the LEDA database gives for the
primary galaxy a radial velocity of 5845 ± 83 km s−1,
whereas Bushouse (1986) reports velocities of 5900
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and 5650 km s−1 for the primary and the satellite,
respectively. No rotation-curve data could be found in
the literature.
NGC 4088. We observed this galaxy with a slit

passing through the major axis. Both emission lines
broaden strongly in the nucleus of the galaxy. The
large angular size of the galaxy prevented us from
tracing the rotation curve for the southwestern part
at more than 50′′ from the center. The northeastern
part of the curve flattens out beyond 40′′ at a level of
∼150 km s−1. Carozzi-Meysonnier (1978) obtained
several spectra of this system at different position an-
gles including P.A. = 58◦. The northeastern branch
of his rotation curve flattens out at ≈100 km s−1 at
a galactocentric distance of ∼10′′, as determined by
the author, whereas the velocity of the southwest-
ern part continues to increase monotonically. The
position of the center of the galaxy determined by
Carozzi-Meysonnier appears to be shifted relative to
our position by∼25′′. The radial velocity of this center
determined by the above author for the position an-
gle considered is equal to 706 km s−1. In addition,
Carozzi-Meysonnier also points out the asymmetry
of his rotation curve: the rotation velocity of the north-
eastern part of the curve is, on the whole, smaller
by 100 km s−1 than that of the southwestern part.
Our rotation curve appears much more symmetric.
Carozzi-Meysonnier explains this asymmetry either
by ejections from the active nucleus or by the in-
fluence of the neighboring galaxy NGC 4085. The
velocities of the center of the primary galaxy reported
by other authors scatter substantially. The UZG cat-
alog (Falco et al. 2000) gives an optical velocity of
759 ± 4 km s−1, which is close to our result.
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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NGC 4137. The satellite in this system has a
very peculiar spectrum. It consists of two components
separated by a small gap. The difference of the radial
velocities of these components reaches 200 km s−1.
The rotation curve of the satellite consists of two
branches, which correspond to these components.
The rotation curve has a very large central gradient
dVr/dr. The rotation curve of the primary galaxy has
velocity maxima of about Vr = 70 km s−1 and, on the
whole, a symmetric shape. The UGC (Falco et al.
2000) gives a velocity of 11 218 ± 58 km s−1 for the
center of the primary galaxy, which is close enough
to our result. No published rotation curves could be
found in the literature.

NGC 5278–5279. This Markarian system
(Mrk 271) exhibits a spectrum with very bright and
broad emission lines in the nucleus. The spectral
lines of both components are inclined in opposite
directions, indicating that they rotate in opposite
directions. The rotation curve of the primary galaxy
flattens out, albeit with certain velocity variations.
The main specific feature of this system are strongly
noncoincident positions and radial velocities of the
dynamic and photoimetric centers of both compo-
nents (3′′ and 100 km s−1 for NGC 5278 and 6′′ and
20 km s−1 for NGC 5279, respectively). A detailed
photometric analysis of the system performed by
Mazzarella and Boroson (1993) revealed a number
of regions or spots of enhanced brightness and the
brightest of them is located in the satellite. The strong
difference between the dynamic and photometric cen-
ters mentioned above may be explained by a similar
inhomogeneity of the photometric properties of the
two components. The latter may be due, in turn, to
the interaction between the galaxies. Numerous de-
terminarions of the radial velocities of the component
centers yielded results that show a rather substantial
scatter. The LEDA database gives the velocities of
7558 ± 79 and 7580 ± 46 km s−1 for the primary
galaxy and the satellite, respectively. No published
rotation curve could be found in the literature.

UGC 10396. The rotation curve of the primary
galaxy flattens out beyond 5′′ from the center, reach-
ing a velocity of ∼80 km s−1. The system’s com-
ponents rotate in opposite directions. The dynamical
and photometric centers of both components some-
what differ in position and radial velocity. The only
determination of the central radial velocity found in
the literature appears to come from Arkhipova and
Esipov (1979). It is listed, e.g., in the UZC catalog
(Falco et al. 2000) and is equal to 6185± 150 km s−1.
The causes of such a strong discrepancy between
this value and our determination (∼2500 km s−1) are
unclear.
ASTRONOMY LETTERS Vol. 28 No. 9 2002
UGC 11680. The satellite in this system is the
Markarian galaxy Mrk 897. The spectra of both
components in the vicinity of the nuclei exhibit
strongly inclined broad emission lines superimposed
on a strong continuum. The rotation curve of the
primary galaxy can be confidently traced only at a
small distance from the center—in fact only within
the rigid-rotation portion in the broad emission-line
region. The maximum observed velocity is equal to
Vr = 300 km s−1. The rotation curve of the system
obtained by Keel (1996a) appears to show the same
features as our rotation curve. The component radial
velocities determined by Keel agree well with our
results: 7791 ± 11 and 7894 ± 5 km s−1 for the
primary and the satellite, respectively.

NGC 7757. The primary galaxy in this system has
an asymmetric rotation curve: the observed rotation
velocity of the eastern branch reaches a maximum of
Vr = 100 km s−1 at a galactocentric distance of about
8′′, and that of the western branch, at a distance of
18′′. The rotation curve shows a specific behavior at
its center: here velocity does not increase monotoni-
cally but the gradient dV/dr decreases locally to zero.
No published rotation curves could be found for this
galaxy. The UZC catalog (Falco et al. 2000) gives
an optical radial velocity of 2960 ± 21 km s−1, which
agrees well with our results.

NGC 7753–7752. The primary galaxy and the
satellite were observed separately and with different
positions of the slit, which passed through the major
axes of the components. The spectrum in the spiral-
arm region appears discontinuous and clumpy and
consists of several condensations. The rotation curve
of the primary substantial velocity variations with an
amplitude of ∼100 km s−1, which can be explained
by inhomogeneous internal absorption when the slit
crosses the spiral arms, or by the tidal interaction of
the components. The same interaction can explain
the different velocities of the photometric and dynamic
centers (Marcelin et al. 1987). An analysis of the
detailed velocity field allowedMarcelin et al. to obtain
the rotation curves of both components. The rotation
curve of the primary extends out to a distance of 100′′
from the center (compared to 50′′ for our rotation
curve). The rotation velocity decreases beyond 50′′. At
smaller galactocentric distances the rotation curve of
Marcelin et al. is, on the whole, similar to our rotation
curve, and exhibits the same specific features. Thus
Marcelin et al. point out velocity maxima exceeding
200 km s−1 at a galactocentric distance of 40′′, and
this feature agrees well with our results. In addition,
Marcelin et al. traced their rotation curve somewhat
farther from the center than we did in the case of
our satellite’s rotation curve, and it exhibits the same
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characteristic features. The component radial veloc-
ities obtained by the above authors agree rather well
with our data: 5160 ± 10 and 4940 ± 10 km s−1 for
the primary and the satellite, respectively. Note that
other radial-velocity determinations in this system
are characterized by a large scatter of the results
obtained.
To reveal the possible systematic errors in the

velocities of galaxies, we compared our results with
the those published in the NED database. The mean
difference in the sense of the radial velocity of the
dynamic center minus the NED velocity is–5 km s−1

with a dispersion of 55 km s−1 (averaged over 15
objects including some satellites). The same com-
parison for the photometric centers yielded −18 ±
44 km s−1 (15 objects). These results imply that our
data are free of important systematic errors.
The mean difference of our velocities of dynamic

and photometric centers averaged over 23 objects
(including satellites) is equal to 16 km s−1 with a
dispersion of 23 km s−1. The corresponding difference
for 36 binary galaxies from the catalog of Karachen-
tsev (1972) with radial-velocity estimates given by
Keel (1996b) is equal to 9 ± 37 km s−1.
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Abstract—Based on our radial-velocity measurements and on published photometric observations, we
calculated the radii of 64 classical Cepheids that were previously assumed to be fundamental-mode
pulsators. Our detailed analysis of the period–radius diagram shows that the sample of Cepheids with
pulsation periods shorter than 9 days probably contains a significant fraction (up to 30%) of stars pulsating
in the first overtone. This fact leads to incorrect luminosity estimates for Cepheids and may be partly
responsible for the discrepancy between the short and long distance scales. c© 2002 MAIK “Nau-
ka/Interperiodica”.
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INTRODUCTION

An investigation of Cepheids, radially pulsating
variable stars, remains one of the most important
problems in astrophysics and galactic astronomy.
These stars, along with open clusters, are known
to be the most important distance indicators in the
Universe. The distance scale for classical Cepheids is
based on the existence of a clear relation between the
pulsation period and themean absolutemagnitude (or
the luminosity averaged over the pulsation period) for
these variable stars. The period–luminosity relation
is calibrated by using Cepheids that are members
of open clusters, whose distances are determined
from photometric data. Thus, the Cepheid distance
scale is eventually based on the distances to young
open clusters. Berdnikov et al. (1996) estimated the
distance modulus to the Large Magellanic Cloud on
this scale to be (m−M)0 = 18m. 25 ± 0m. 12. This
estimate matches the so-called short distance scale.
A major result of the HIPPARCOS project was

the catalog of distances to 118 000 stars. Having
analyzed the HIPPARCOS trigonometric parallaxes
for classical Cepheids (the samples include from 20 to
200 stars with different errors in the parallaxes), Feast
and Catchpole (1998) concluded that the Cepheid
distance scale should be lengthened. The distance
modulus to the Large Magellanic Cloud in this paper
is 18.70 ± 0m. 10. However, the distance scale is still
a problem: the Cepheid parallaxes are so small that
the result depends on subtleties of the statistical ap-
proach to the initial data.

*E-mail: msachkov@inasan.rssi.ru
1063-7737/02/2809-0589$22.00 c©
The method of statistical parallaxes gives another
chance of solving the problem of the distance scale
for classical Cepheids without invoking data on their
trigonometric parallaxes. Its basic idea is to match
the tangential and radial velocities for a sample of
objects. Rastorguev et al. (1999) applied this method
to two samples of Cepheids, with pulsation periods
of more than 9 days and of less than 9 days, and
obtained different estimates for the distance scale.
The first sample of Cepheids agrees well with the
short distance scale, while the distance scale for the
Cepheids with pulsation periods less than 9 days
must be lengthened. The authors explained this dif-
ference by the probable error in identifying the pulsa-
tion mode: some Cepheids pulsating in the first over-
tone were, probably, mistaken for Cepheids pulsating
in the fundamental mode. Recall that the observed
period of brightness (or radial-velocity) variations for
a Cepheid may refer both to the fundamental mode
and to one of the overtones and it cannot be identi-
fied without an additional investigation. An error in
identifying the pulsation mode leads to an incorrect
estimate of the Cepheid luminosity and, hence, to
errors in the distance scale.

The radial pulsation mode characterizes the num-
ber of nodal concentric surfaces inside the star that
are not involved in pulsations and that are located at
the boundary between two regions moving in opposite
radial directions. The stars pulsating in the funda-
mental mode have no such surfaces; the first-overtone
pulsators have one such surface. Thus, being among
the fundamental physical parameters, the pulsation
mode and radius of the star are important not only for
2002 MAIK “Nauka/Interperiodica”
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stellar-pulsation studies; they are also related to the
problem of distance scale.

TWO PERIOD–LUMINOSITY RELATIONS
FOR CLASSICAL CEPHEIDS

By analogy with RR Lyrae stars, the existence of
two period–luminosity relations for classical Cepheids
(for two groups of stars pulsating in the funda-
mental mode and in the first overtone) was as-
sumed by Christy (1966) and Stobie (1969). Böhm-
Vitense (1994) even concluded that most of the
variables among the Cepheids with pulsation periods
less than 8 days were first-overtone pulsators.
The separation of Cepheids into two groups by

their pulsation modes is most pronounced in the
period–extinction-independent magnitude diagram
(1333 objects) for stars in the Large Magellanic
Cloud (Udalski et al. 1999). An additional advantage
for studying Cepheids in this galaxy is that they are
all located virtually at the same distance from us,
which significantly simplifies the analysis of their
peculiarities. The difference between the two period–
magnitude relations corresponds to the ratio of the
pulsation periods of the first overtone, P1, and the
fundamental mode, P0: P1/P0 ≈ 0.71 (Alcock et al.
1995).
The dependences of Fourier parameters (e.g., R21

and ϕ21) for the light and radial-velocity curves on
the logarithm of period (Alcock et al. 1999; Ogloza
and Moskalik 2000) are used to separate the ob-
jects into fundamental-mode and first-overtone pul-
sators (which is particularly important for Galactic
Cepheids located at different distances). Here, we
also turned to this method. However, such studies
are difficult to carry out for some ranges of periods
(0.6 < logP < 0.8, 0.2 < logP < 0.4). In our view,
analysis of the period–radius relation to determine
the pulsation mode seems promising in this region; it
was successfully applied to a sample of low-amplitude
Cepheids (Sachkov 1997). The radii are in absolute
units, solar radii, and do not depend on information
about the Cepheid distances and interstellar extinc-
tion. Note also that this method is the only way of de-
termining the pulsation mode for Galactic Cepheids
that does not depend on the analysis of the Fourier
coefficients for the light curves.

THE METHOD FOR CALCULATING THE
RADII

The radii of radially pulsating stars can be esti-
mated by the Baade–Wesselink method from pho-
tometric and spectroscopic observations. Among the
numerous modifications of this method, the modifi-
cation of Balona (1977) is particularly remarkable,
because it uses direct observational data (bright-
ness, color, and radial-velocity measurements) and
assumes only the existence of a linear (in a more
accurate approximation, quadratic) relation between
the logarithm of effective temperature and the nor-
mal color and the bolometric correction in a limited
temperature range. In addition, Balona’s modification
does not require any knowledge of a priori infor-
mation on the interstellar extinction. Our improved
implementation of Balona’s method using the non-
linear maximum-likelihood method and analysis of
the errors in the method were described previously
(Sachkov et al. 1998). For the binary Cepheids in
our sample (RX Cam, DL Cas, SU Gyg, VZ Cyg,
MW Cyg, S Sge, V350 Sgr), we separated their
radial-velocity variations into pulsational and orbital
ones (Gorynya et al. 1996) and used the pulsational
velocities for our calculations.

OBSERVATIONAL DATA

To derive the system of radii for classical Cepheids,
and to eliminate the effects of systematic observa-
tional errors, and, in particular, to analyze the period–
radius relation, it is important that the observational
data used be homogeneous. In addition, it is impor-
tant that the light, color, and radial-velocity curves
contain a sufficient number of measurements to reveal
all features (e.g., humps). In particular, to achieve the
highest accuracy in calculating the radii, the light and
color curves should contain at least 50 measurements
(with an accuracy of no less than 0m. 02) and the
radial-velocity curve should contain at least 20 mea-
surements (with an accuracy of ∼0.5 km s−1). We
used the spectroscopic observations obtained dur-
ing 1987–2001 with a correlation spectrometer by a
group of observers at the Institute of Astronomy of the
Russian Academy of Sciences (Moscow) and at the
Sternberg Astronomical Institute (SAI, Moscow).
Most of the observations were published in Gorynya
et al. (1998). The photoelectric BV measurements
were taken from the SAI database (Berdnikov 1995).
The bulk of the observational data meets the above
requirements.

RESULTS AND DISCUSSION

To plot the period–radius diagram (see the fig-
ure), we selected 64 classical Cepheid with the
largest amount of available observational data. In the
GCVS (Kholopov 1985), these are all designated as
fundamental-mode pulsators (DCEP).
Based on the period–radius diagram, we sepa-

rated all stars into two groups with different period–
radius relations. The significance of this separation
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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Table 1. Cepheids pulsating in the first overtone

Star logP1 R/R� σR ∆φ1 σ(∆φ1) Amplitude, V M–m

IR Cep 0.3251 31 4 –0.25 0.05 0m. 37 0P.42

SU Cyg 0.5850 40 3 –0.40 0.10 0.76 0.28

V379 Cas 0.6340 50 8 –0.51 0.10 0.33 0.46

VZ Cyg 0.6870 53 3 –0.56 0.19 0.67 0.28

CF Cas 0.6879 51 4 –0.53 0.18 0.56 0.28

V Lac 0.6975 52 5 –0.59 0.10 0.92 0.24

V386 Cyg 0.7207 50 4 –0.61 0.17 0.69 0.29

CR Ser 0.7243 51 4 –0.60 0.15 0.76 0.27

SW Cas 0.7357 55 2 –0.62 0.18 0.67 0.28

RZ Gem 0.7426 55 4 –0.46 0.35 0.94 0.20

V733 Aql 0.7908 59 6 –0.68 0.08 0.46 0.37

RS Cas 0.7990 65 6 –0.43 0.35 0.78 0.27

BK Aur 0.9032 72 7 –0.47 0.35 0.66 0.32
is confirmed by the χ2 test with a probability higher
than 96%.
This separation can be easily explained by as-

suming that the stars pulsate in different modes:
group 1 in the fundamental mode and group 2 in
the first overtone. Taking into account the ratio of
the first-overtone period P1 to the fundamental-mode
period P0 [which is close toP1/P0 ≈ 0.71 for Galactic
Cepheids (Alcock et al. 1995)], we can write the
following relations:

logR = 1.09 + 0.73 log P0 for group 1,

±.01 ± .02
the lower dotted line in the figure;

logR = 1.20 + 0.74 log P1 for group 2,
±.06 ± .06

the upper dotted line in the figure;
or

logR = 1.09 + 0.74 log P0 for group 2.

±.06 ± .06

Since the first and third formulas matched when
the periods recalculated to the fundamental pulsation
mode were used for the group-2 objects, our assump-
tion that the group-2 objects are first-overtone pul-
ASTRONOMY LETTERS Vol. 28 No. 9 2002
sators receives confirmation. Our results are in good
agreement with the period–radius relation derived by
Laney and Stobie (1995): logR = 1.07 + 0.75 log P0.

Table 1 gives data on the Cepheids that, according
to our data, pulsate in the first overtone; Table 2 gives
data on the Cepheids pulsating in the fundamental
mode. The radii are in solar radii and the periods
are in days. The tables also give parameters of the
light curves we used: the amplitudes in V and the
durations of the brightness rise from minimum to
maximum, M–m (in fractions of the period). Based
on these parameters, we separated out the subclass
of the so-called low-amplitudeCepheids (DCEPS) in
the GCVS with amplitudes less than 0m. 5V and with
almost symmetric light curves (M–m ≈ 0.4–0.5).
It was previously suggested that these stars could
be first-overtone pulsators (Kholopov 1985). How-
ever, variables pulsating in the fundamental mode are
also encountered among them (Sachkov 1997). Most
of the Cepheids in Table 1 cannot be classified as
DCEPS.

As was mentioned above, we analyzed the Fourier
parameters to check our results. More specifically,
we fitted the observed light and radial-velocity curves
by Fourier series and then determined the first-order
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Table 2. Cepheids pulsating in the fundamental mode

Star logP0 R/R� σR ∆φ1 σ(∆φ1) Amplitude, V M–m
RT Aur 0.5714 34 3 –0.25 0.07 0m. 78 0P.27
ST Tau 0.6058 36 3 –0.26 0.08 0.77 0.26
SY Cas 0.6097 35 2 –0.26 0.05 0.79 0.27
Y Lac 0.6358 33 2 –0.18 0.06 0.70 0.28
V402 Cyg 0.6399 36 2 –0.29 0.06 0.57 0.30
RY CMa 0.6700 38 3 -0.40 0.11 0.73 0.25
V1154 Cyg 0.6924 39 2 –0.23 0.06 0.38 0.36
V350 Sgr 0.7122 40 4 –0.22 0.08 0.71 0.28
FM Cas 0.7641 42 5 –0.22 0.09 0.58 0.30
MWCyg 0.7748 46 4 –0.31 0.09 0.71 0.28
KL Aql 0.7859 47 7 –0.30 0.06 0.74 0.29
FM Aql 0.7863 47 2 –0.31 0.04 0.73 0.28
V538 Cyg 0.7866 45 5 –0.23 0.07 0.56 0.33
X Vul 0.8006 45 3 –0.24 0.05 0.77 0.27
RR Lac 0.8072 49 5 –0.28 0.05 0.78 0.30
AW Per 0.8104 46 5 –0.23 0.06 0.28 0.27
BB Sgr 0.8219 43 6 –0.28 0.04 0.61 0.31
V495 Cyg 0.8276 47 5 -0.29 0.15 0.45 0.31
U Sgr 0.8289 52 6 –0.22 0.05 0.74 0.30
V496 Aql 0.8330 50 6 –0.25 0.09 0.37 0.46
V600 Aql 0.8596 55 2 –0.21 0.06 0.65 0.30
V459 Cyg 0.8604 50 5 –0.30 0.15 0.69 0.30
V336 Aql 0.8636 53 4 –0.27 0.05 0.72 0.30
V1344 Aql 0.8737 59 2 –0.29 0.04 0.27 0.40
BB Her 0.8755 53 6 –0.31 0.05 0.65 0.33
RS Ori 0.8789 55 6 –0.33 0.08 0.81 0.29
WGem 0.8983 60 5 –0.23 0.05 0.80 0.29
RX Cam 0.8983 58 5 –0.27 0.04 0.73 0.30
U Vul 0.9025 60 4 –0.32 0.05 0.71 0.32
DL Cas 0.9031 62 4 –0.32 0.04 0.57 0.33
S Sge 0.9234 61 3 –0.31 0.06 0.71 0.31
DD Cas 0.9918 65 7 –0.34 0.08 0.61 0.45
BZ Cyg 1.0061 60 10 –0.25 0.07 0.50 0.50
ζ Gem 1.0064 60 7 –0.29 0.14 0.49 0.50
AN Aur 1.0124 57 6 –0.33 0.09 0.69 0.50
Z Lac 1.0368 64 6 –0.24 0.07 0.96 0.42
RX Aur 1.0653 67 10 –0.26 0.08 0.67 0.44
RY Cas 1.0841 85 8 –0.40 0.10 0.96 0.40
V916 Aql 1.1284 87 4 –0.29 0.11 0.90 0.42
TT Aql 1.1384 87 2 –0.26 0.04 1.10 0.35
RWCas 1.1701 85 4 –0.33 0.09 1.15 0.34
X Cyg 1.2144 91 5 –0.22 0.05 1.00 0.34
CD Cyg 1.2323 95 7 –0.30 0.14 1.18 0.30
CP Cep 1.2518 105 10 –0.25 0.12 0.78 0.37
RU Sct 1.2944 120 10 –0.42 0.11 1.08 0.33
VX Cyg 1.3039 101 10 –0.24 0.07 0.95 0.34
WZ Sgr 1.3394 125 5 –0.26 0.15 1.09 0.33
T Mon 1.4317 140 10 –0.24 0.13 0.99 0.30
SV Vul 1.6534 200 30 –0.36 0.06 1.03 0.23
GY Sge 1.7126 210 20 –0.25 0.05 0.65 0.28
S Vul 1.8325 260 40 –0.20 0.10 0.56 0.35
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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The period–radius diagram: (1) probable first-overtone
pulsators (shown with their individual errors); (2)
fundamental-mode Cepheids (their individual errors do
not exceed the errors for the probable first-overtone pul-
sators). The radii are in solar units; the periods are in
days.

phase shift ∆φ1 = φV r
1 − φmag

1 (Ogloza and Moska-
lik 2000). This parameter does not depend on the
pulsation period for Cepheids pulsating in the fun-
damental mode, being ∼0.28 (Sachkov 2000). For
Cepheids pulsating in the first overtone, the first-
order phase shift varies with period from −0.24 to
−0.71. The computed first-order phase shifts con-
firm our assumption that the Cepheids from Table 1
probably pulsate in the first overtone. For three stars,
RZ Gem, RS Cas, and BK Aur, ∆φ1 was computed
with large errors, because the observational data were
insufficient. The parameter ∆φ1 and its error σ(∆φ1)
are also presented in Tables 1 and 2.

CONCLUSIONS
Thus, based on our analysis of the period–radius

diagram, we can classify 13 of the 64 stars studied
as first-overtone pulsators. The pulsation periods for
these Cepheids are shorter than 9 days, in agreement
with the pulsation theory that prohibits the exis-
tence of overtone pulsators with periods longer than
10 days. The fraction of the probable first-overtone
pulsators among the Cepheids with pulsation periods
shorter than 9 days in our sample is ≈0.3, in good
agreement with the assumptions of Rastorguev et al.
(1999). It should be noted, however, that the fraction
of the first-overtone pulsators among all Galactic
Cepheids may be different (our sample is incomplete).
Nevertheless, the existence of Cepheids pulsating in
the first overtone that were previously mistaken for
fundamental-mode pulsators may be considered to
be proven. A wrong identification of the pulsation
mode can significantly contribute to the overestima-
tion of the Cepheid luminosities, which accounts for
ASTRONOMY LETTERS Vol. 28 No. 9 2002
the conclusion of Feast and Catchpole (1998) that
the distance modulus to the Large Magellanic Cloud
must be increased to 18m. 70.
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The Generation of Ionization-Shock Front Oscillations by a Variable
Radiation Flux
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Abstract—The effect of a time-varying radiation flux incident on an ionization front on the generation of
ionization-shock front oscillations in the interstellar medium is analyzed analytically and numerically. We
take into account both variations in the flux of ionizing radiation directly from the source that produces
the ionization front and the absorption of energetic photons by the post-front plasma. Based on our
calculations, we show that the time dependence of the radiation flux can be an additional factor (apart
from small inhomogeneities in the interstellar medium) that contributes to the amplification of oscillations
and to the kinetic energy input to the observed turbulent motions in H II regions. c© 2002 MAIK “Nau-
ka/Interperiodica”.

Key words: interstellar medium, gaseous nebulae, shock waves, ionization fronts, instabilities, H II
regions
INTRODUCTION

The studies of the stability of radiative shock
waves in the interstellar medium performed to date
show that the perturbation amplitude and spectrum
significantly depend on the properties of the medium
through which the shock front (S-front) propagates
and on the formation conditions for the S-front itself.
In particular, the following factors are of importance:
variations of the gas cooling rate with temperature
(Strickland and Blondin 1995), the existence of a
magnetic field (Kimoto and Chernoff 1997) var-
ious types of discontinuities (Krasnobaev 2001a,
2001b) in the interstellar medium, and the fact
that the flow is not one-dimensional (Walder and
Follini 2000).

As applied to the dynamics of an ionization–shock
front (IS-front), we have found previously (Kras-
nobaev 2001b) that even small density variations
in the preshock gas can produce perturbations in
the parameters of the medium comparable to those
observed in H II regions. In this case, however, we
assumed that the plasma behind the ionization front
(I-front) was transparent to radiation and that the
flux density of the energetic photons incident on the
I-front, Φ, was constant. However, this condition can
be violated if the intensity of the radiation from the
source that produces the I-front varies with time or
if the optical depth of the region occupied by plasma
is large enough for Lyman continuum photons. For
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example, it is clear that Φ can depend on time near
young hot stars where the IS-front is formed at the
hydrodynamic expansion stage of an H II region
(Spitzer 1978).

To determine how large the variations in Φ must
be for the IS-front oscillations emerging under their
effect to be able to contribute appreciably to the ob-
served irregular structure of H II regions, we ana-
lytically and numerically analyze the propagation of
the IS-front when Φ is a periodic function of time. In
this case, much attention is given to the generation
conditions for the fundamental oscillation mode, be-
cause, as numerous calculations show (see the above
papers on the stability of radiative shock waves), the
oscillations in gas parameters are largest when this
type of oscillation develops.

SMALL IONIZATION–SHOCK FRONT
OSCILLATIONS GENERATED

BY A VARIABLE RADIATION FLUX

The IS-front is a complex of discontinuities that
consists of an I-front preceded by a shock wave.
This system of fronts is characteristic, in particular,
of H II regions at the hydrodynamic expansion stage
(Spitzer 1978). In this case, the adiabatic discontinu-
ity is immediately followed by a zone of radiative gas
cooling with a characteristic scale Lc, in which the
temperature T and velocity u of the particles decrease
and the density of the medium ρ increases.

The I-front propagates relative to the shock-
compressed gas at velocity U , which is related to
2002 MAIK “Nauka/Interperiodica”
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ρ and Φ by the standard relation ρU = mHΦ (mH

is the mass of the hydrogen atom). In general, Φ
differs from the flux density Φ∞ of the photons
emitted by the source, because the emission is ab-
sorbed by plasma. Since the absorption is difficult
to accurately take into account, the studies of the
general properties of motions in H II regions are
commonly restricted to two limiting cases: opti-
cally transparent and optically thick H II regions.
In the former case, we may clearly set Φ = Φ∞.
In the latter case, taking into account the condi-
tion of ionization balance, we obtain for the one-
dimensional plane flow geometry considered below
(Spitzer 1978)

Φ = Φ∞ −
l∫

xI

α(T )(ρ/mH)2dx, (1)

where x is the variable of integration over space; xI

and l are the coordinates of the I-front and the source,
respectively, with xI ≤ l; and α(T ) is the coefficient
of photorecombination to all of the hydrogen atomic
levels except the ground level.

Physically, Eq. (1) is based on the fact that
for the diffuse (i.e., produced by the gas itself in
an H II region) radiation in an optically opaque
medium, the photorecombinations to the ground
level are balanced by the photoionizations from this
level. In that case, however, the number of pho-
torecombinations to all hydrogen levels except the
ground level under ionization-balance conditions
must be equal to the number of photoionizations
under external radiation. As a result, the high-energy
photons from the external source and the lower-
energy photons that freely escape from the H II
region will be absorbed. Numerical calculations with
allowance for the angular and spectral composition
of the radiation (Rubin 1968; Krasnobaev 1970)
show that formula (1) slightly overestimates the
contribution of the diffuse radiation in the inner
(optically thin) parts of theH II region, being accurate
enough at the boundary of the expanding ionized
gas.

Let us use Eq. (1) to determine the conditions
under which the variations ofΦ∞ with time t have the
largest effect on the motion of the S- and I-fronts. To
this end, we turn to a two-front model that allows a
number of qualitative features in the behavior of the
IS-front to be investigated (Krasnobaev 2001b). Ac-
cording to this model, the IS-front is replaced with a
system of discontinuities: one is an isothermal shock
wave (i.e., the thickness Lc of the relaxation zone is
disregarded compared to the distance L between the
adiabatic discontinuity and the I-front) and the other
is a weakD-type I-front.
ASTRONOMY LETTERS Vol. 28 No. 9 2002
Below, we choose the following motion as the
main one. Assume, for simplicity, that the medium
ahead of the IS-front is homogeneous and that
the velocities of the S- and I-fronts are equal and
time-independent. In that case, the gas density,
velocity, and the isothermal speed of sound c in a
coordinate system where the fronts are at rest are
constant and equal to ρn, un, and cn (n = 0, 1,
2); the values of n refer to the gas parameters in
the H I region, in the layer between the I- and
S-fronts, and in the H II region, respectively. We
choose the x axis to be perpendicular to the shock
plane and parallel to the inflow velocity. Denote the
coordinates of the S- and I-fronts by xS = 0 and
xI = L. For the main flow, it follows from the bound-
ary conditions at the I-front and from equality (1)
that Φ = Φ0 = ρ0u0/mH, Φ∞ = const. In addition,
since the shock wave is assumed to be isothermal,
c1 = c0.

Now, let the photon flux densityΦ∞ undergo small
periodic (in time) perturbations, so thatΦ∞ = Φ∞0 +
AΦ0 exp(iωt), where A is a constant and ω is the
frequency. Linearizing the gas-dynamical equations
for an isothermal flow and the conditions at discon-
tinuities relative to the chosen main flow, we derive a
relationship between A and the perturbation ampli-
tudes of the S- and I-front coordinates.

However, an important feature that arises when
Eq. (1) is linearized should be noted. The point is
that under our assumption of a uniform flow behind
the I-front, it would be natural to assume that (l −
xI) → ∞. At the same time, for large (l − xI), there
is generally no limit of the integral that emerges when
Eq. (1) is linearized.

Indeed, denote the small deviations of Φ, ρ, and xI

from their values in the main flow by Φ′, ρ′, and x′I,
respectively. We then have from Eq. (1)

Φ′ = AΦ0 exp(iωt) − 2αρ2

m2
H

l∫
xI

ρ′dx + α(ρ2/mH)2x′I,

(2)

ρ′ ∝ exp[i(ωt − k2x)], k2 = ω/c2.

Formula (2) takes into account the fact that the lin-
earized gas-dynamical equations have solutions of
the running-wave type with frequency ω.

We see from relation (2) that for real ω and for
(l − xI)k2 � 1, the integral on the right-hand side
of (2) is a rapidly varying function and its limit for l →
∞ does not exist. Nevertheless, even an arbitrarily
small damping of ρ′ for x → ∞ allows the asymptotic
value of the integral to be calculated [see, e.g., the
monograph of Nayfeh (1981)]. Physically, however,
the dissipation of wave motions in H II regions may
result from radiative cooling (Krasnobaev 2000), so
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using the asymptotic expression for the integral in
formula (2) seems to be justified.

Denoting the displacement amplitudes of the S-
and I-fronts, respectively, by L0D and L0F (here,
the choice of the spatial scale L0 is arbitrary) and
substituting (2) in the boundary conditions at the I-
and S-fronts, we obtain the sought-for relationship
between A,D, and F in the form

D = − ic0γS

ωL0
A; F = − ic0γI

ωL0
A;

γS=
2M2

0

M2
0 −1

q0 exp(iq(M0−1)/(2M0))
1− exp(iq)

(a+ bγI); (3)
γI =
M2 − (1 + M2 − 2iM2β)a

(1 + M2 − 2iM2β)b− (c0/c2)[1 − iβM2/(1 + M2)]
; (4)

q0 =
M2

0 + 1
M2

0 − 1
(1 + M2)2

1 + M2
2

; q =
2ωL

c0(1 −M2
1 )

; Mn =
un

cn
;

a =
1 − exp(iq)

[(M0 − 1) + (M0 + 1) exp(iq)]q0 − 2iβ[1 − exp(iq)]
; b =

(
M0 −

iβ

1 + M2

c0
c2

)
a;

β =
1 + M2

2πM2

τ

τr
; τ =

2π
ω

; τr =
mH

αρ2
.

Clearly, the variations in the flux of ionizing ra-
diation are largest at L at which the amplification
coefficients |γS| and |γI| are largest. To determine
these values, we note that according to formulas (3)
and (4) for perturbations of fixed frequency ω, |γS|
and |γI| are periodic functions of q. Therefore, it will
suffice to consider the behavior of the amplification
coefficients in the segment [−π, π].

When β = 0, expressions (3) and (4) can be ana-
lyzed analytically. As a result, the maxima and min-
ima of |γS| and |γI| are reached, respectively, at q =
2mπ and q = (2m + 1)π, where m = 0, ±1, . . . . The
quantities |γS| and |γI| corresponding to these values
of q can then be easily determined from (3) and (4).

If, alternatively, β 
= 0, then it becomes apprecia-
bly more difficult to analyze the q dependence of γS

and γI. Let us first estimate the values of β, which is
proportional to the ratio of the perturbation period τ
to the photorecombination time τr, that are of consid-
erable interest.

It would be natural to choose an upper limit for τ
to be close to the period of the fundamental oscilla-
tion mode of the IS-front. In that case, for typical
conditions in the interstellar medium (assuming, for
example, that u0 = 17 km s−1, λ = ρr/ρ2 = 80, and
the adiabatic Mach number M∞ = 10), according
to our previous calculations (Krasnobaev 2001a), we
may set τ ∼ 1.5 × 1013mH/ρ0, where τ is in seconds.

We take α = 5 × 1013 cm3 s−1 as the character-
istic photorecombination coefficient. This value of α
corresponds to a temperature of about 4.5 × 103 K in
the H II region. At higher temperatures, α decreases,
causing β to decrease.

The derived estimates for τ and α allow us to
restrict our analysis to the range 0 ≤ β ≤ 5.
Figure 1 shows the numerically calculated de-
pendence of |γS| and |γI| on q (the numbers near
the curves correspond to different β). Naturally, the
amplification coefficients are largest for β = 0. In this
case, the maxima of |γS| and |γI| decrease by no more
than 20% compared to those obtained by analyzing
the interaction of the IS-front with isothermal waves
in an H I region (Krasnobaev 2001b).

The maxima of |γS| and |γI| decrease with in-
creasing β. Nevertheless, even at β = 5, the rela-
tive perturbations of the front positions (or veloci-
ties) are more than twice the relative variations in
the flux density of the external radiation. Therefore,
just as is the case for the interaction of the IS-front
with an inhomogeneous interstellar medium (Kras-
nobaev 2001b), one might expect a time-varying flux
of energetic photons to stimulate (at least for mod-
erately large β) nonlinear oscillations of the IS-front.
To quantitatively analyze the effect of Φ variability on
the amplification of oscillations, we turn to numerical
simulations.

NONLINEAR OSCILLATIONS
OF THE IONIZATION–SHOCK FRONT
IN A VARIABLE RADIATION FIELD

To take into account the variability of the ionizing
radiation flux incident on the I-front, let us consider
a plane one-dimensional unsteady flow of gas with
volume heat losses through radiative cooling. The
cooling rate Λ(ρ, T ) and the unperturbed motion of
the S- and I-fronts are assumed to be the same
as those in our previous calculations of the interac-
tion of the IS-front with interstellar inhomogeneities
(Krasnobaev 2001b). In general, the IS-front is as-
sumed to be nonstationary, so the photon flux den-
sity referred to ρ0u0/mH is Φ∗

0 = Φ0mH/ρ0u0 = 1 −
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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Fig. 1. Amplification coefficients versus q for various β.

 

0

1000

2

200

 

x

 

I

 

x

 

S

 

t

 

(‡)

1000 200

 

x

 

I

 

x

 

S

 

(b)

Fig. 2. Trajectories of the shock and the I-front in a variable external radiation field without (a) and with (b) photorecombina-
tions.
vIM
2
0 /u0, where vI is the velocity difference between

the S- and I-fronts.

However, the xI and ρ perturbations now cause
variations in Φ and the integral relation (1) must be
used in the boundary conditions at the I-front. In our
calculations, the distance l at which, according to (1),
Φ∞ should be specified, was a parameter and its value
in each calculation was fixed for the unperturbed I-
front. Since the effect of the photorecombination-
produced absorption of Φ is clearly at a maximum
for values of l close to half the wavelength of the
perturbations generated in the H II region, we present
ASTRONOMY LETTERS Vol. 28 No. 9 2002
below the results of our calculations precisely for
these values of l.

We emphasize that our calculations were per-
formed using nonlinear gas-dynamical equations by
taking into account the actual dependence of the
cooling rate on the flow temperature and nonunifor-
mity in the region between the fronts.

Figure 2 gives an idea of the effect of photore-
combination on the dynamics of the IS-front. In this
figure and below, the coordinates of the S-front, xS(t),
and I-front, xI(t), are referred to Lc and the time t is
measured in units of Lc/u0. The following quantity
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Fig. 3. Influence of the ratio of the neutral-gas and plasma densities, λ, on the I- and S-front oscillations: (a) λ = M2
0 and

(b) λ = 80.
was chosen as Lc:

Lc =
kBTS

mH

ρSuS

Λ(ρS, TS)
,

where kB is the Boltzmann constant; and ρS, uS, and
TS are the gas parameters immediately behind the
adiabatic discontinuity.

Figure 2a shows the front coordinates when the
photon absorption is ignored (i.e., Φ = Φ∞) and
the variability period of the radiation flux from the
external source is τw = 18Lc/u0 and A = 0.1 (λ =
M2

0 = γM2
∞; below, for definiteness, we take γ = 5/3,

M∞ = 10, Φ∗
0 = 1/2, and u0 = 17 km s−1).

 

0

100 200

2
 

x

 

I

 

x

 

S

 

t

 

0

Fig. 4. Front oscillations in an inhomogeneous medium
with an opaque plasma behind the I-front.
We can see that qualitatively and quantitatively,
the Φ variability affects the development of nonlinear
oscillations, much as is the case in an inhomogeneous
medium (Krasnobaev 2001b). However, since the
I-front is now the source of perturbations in the gas,
its generated pressure waves accelerate rather than
decelerate the shock.

Allowance for the absorption, naturally, results in
a decrease of the oscillation amplitude, as evidenced
by the xS(t) and xI(t) plots in Fig. 2b for the same
values of τw,A, and λ as above (β = 1.15 corresponds
to them).

The oscillation amplitude is significantly affected
by λ. It decreases with decreasing λ (i.e., with in-
creasing charged-particle density behind the I-front).
This is illustrated in Fig. 3, where A = 0.2 and τu is
the same as that in Fig. 2. Comparison of the curves
in Figs. 2 and 3 with the same λ shows that an
increase in A contributes to the growth of the front
oscillation amplitude. However, for λ = 80 (ρ2 ≈ 2ρ0,
β = 5.18), the xS(t) and xI(t) perturbations are small.
Thus, photorecombinations can play an important
role in attenuating the oscillations if ρ2 > ρ0. Note
only that the opposite inequality, ρ2 ≤ ρ0, generally
holds for expanding H II regions. Therefore, the con-
dition ρ2 > ρ0 can be satisfied only for flows where
there is a mechanism that maintains a relatively high
ionized-gas pressure (e.g., when an H II region is
formed in an envelope with a density gradient).

It is also of interest to investigate the stabilizing
effect of photorecombinations on the interaction of
the IS-front with small interstellar inhomogeneities.
It is qualitatively clear that reducing the I-front dis-
placement, photorecominations thereby increase the
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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Fig. 5. Spectra of the shock oscillations generated by an external radiation source.
amplitude of the pressure waves reflected from the I-
front.

This assumption is completely confirmed by cal-
culations. In particular, Fig. 4 shows xS(t) and xI(t)
for A = 0 (there are no variations of Φ∞ with time),
λ = 80, and τe = 17Lc/u0 (here, τe is the period of
the isothermal waves propagating in an unperturbed
interstellar medium; the amplitude of the relative den-
sity variations in the wave is taken to be 10−1). Now,
the characteristic features are the decrease in the
mean velocity of the I-front (compared to its value for
Φ = const) and the development of shock-front oscil-
lations with an amplitude that even slightly exceeds
the value reached in an optically transparent medium
(Krasnobaev 2001b).

In conclusion, let us consider the τw dependence
of the shock oscillation spectrum. As our calculations
show, the principal features of the xS(t) spectrum do
not depend too strongly on the specific oscillation
TRONOMY LETTERS Vol. 28 No. 9 2002
generation mechanism. Therefore, we take into ac-
count only the variations in external radiation flux for
Φ = Φ∞ and restrict our analysis to the parameters
λ = γM2

∞ and A = 0.1 (see Fig. 2).
The xS(t) spectra are shown in Fig. 5 for vari-

ous τw (xω and ω are, respectively, the Fourier com-
ponent and the frequency referred to Lc and u0/Lc).
They reflect the emergence of a mean displacement in
the S-front noted above; the frequencies in the vicin-
ity of ωd ≈ 0.35u0/Lc close to the fundamental oscil-
lation frequency of an isolated shock remain dominant
as τw varies over the range (12–21)Lc/u0. As τw

increases (in the above range), the amplitudes of the
harmonics with frequencies ωd gradually increase and
then rapidly decrease. Another characteristic feature
is the Doppler splitting of the Fourier components,
which is absent for a stationary IS-front.

Our calculations lead us to the following conclu-
sions.
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In the approximation of an optically transparent
plasma layer behind the I-front, nonlinear oscillations
of the IS-front are generated by a time-varying radia-
tion flux almost as effectively as in an inhomogeneous
interstellar medium.

The photon absorption through photorecombina-
tions in an H II region significantly attenuates the
oscillations only if the particle density in the ionized
gas exceeds the particle density in the unperturbed
medium.

When the IS-front interacts with low-amplitude
waves propagating in the interstellar medium, pho-
torecombinations have no stabilizing effect on the
development of shock oscillations. On the contrary,
the oscillation amplitude even (although slightly) in-
creases.

In general, our calculations show that variability
of the ionizing radiation flux incident on the I-front
can be an additional factor (apart from small inhomo-
geneities in the interstellar medium) that contributes
to the penetration of finite-amplitude pressure waves
into an H II region. The corresponding neutral- and
ionized-gas velocity perturbations are in agreement
with the velocities of randommotions observed in H II
regions.

Thus, instability of the IS-front can serve as a
mechanism of energy input to turbulent motions.
It follows from our calculations that the neutral-
and ionized-gas velocity perturbations can reach 1–
3 km s−1 if the shock velocity is 10–17 km s−1 (the
gas temperature behind the adiabatic discontinuity
and the temperature in the H II region vary over the
ranges (2.33–6.74)× 103 K and (0.44–1.31)× 104 K,
respectively). Note that a velocity dispersion of this
order of magnitude was obtained from observations
by O’Dell and Wen Zheng (1992) near the ionization
front in the Orion Nebula.

Nevertheless, the question as to the origin of
the observed velocity irregularities is still an open
question. The reason is that, apart from knowing
the structure function of the velocities, we need
information on the shock parameters and on the
gas cooling ahead of the I-front. It is also diffi-
cult to compare the role of the above enhancement
of inhomogeneities with the other types of insta-
bility investigated previously (thermal instability,
Rayleigh–Taylor and Kelvin–Helmholz instabilities,
Richtmeier–Meshkov instability). This is because
the analysis was restricted either to the results of
a linear theory or to qualitative conclusions [see,
e.g., O’Dell and Wen Zheng (1992) and Keto and
Ho (1989)], while we obtained the characteristics of
the fluctuations in parameters of the medium for a
nonlinear saturation of small initial perturbations.
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Abstract—We consider a model of a young binary with a low-mass secondary component. Mass accretion
from the remnants of the protostellar cloud onto the binary components is assumed to take place in
accordance with current models; i.e., it proceeds mainly onto the low-mass component. The accretion is
accompanied by mass outflow (disk wind), whose low-velocity component can be partially captured by the
primary component. As a result, an asymmetric common envelope is formed. Its densest part is involved in
the orbital motion of the secondary and can periodically shield the primary component of the binary from
the observer. Assuming a standard dust-to-gas ratio for the disk wind (1 : 100), we calculated the possible
photometric effects from such eclipses and showed that they could be observed even at moderate accretion
rates onto the low-mass binary component, ∼10−8–10−9M� per year. In this case, the parameters of the
minima depend on the model of the disk wind, on the ratio of its characteristic velocity to the orbital velocity
of the secondary, and on its orbital inclination to the line of sight. These results can form the basis for
interpreting a wide range of phenomena observed in young stars, such as the activity cycles in UX Ori
stars, the unusually broad minima in some young eclipsing systems, etc., and for searching for substellar
objects and massive protoplanets. In addition, the peripheral parts of the gas and dust disk around a young
binary can fall within the shadow zone produced by the opaque part of the common envelope. In such cases,
a shadow from the common envelope must be observed on the disk; this shadow must move over the disk
following the orbital motion of the low-mass component. Detection and investigation of such structures
in the images of protoplanetary disks may become a method of searching for protoplanets and studying
binaries at early stages of their evolution. c© 2002 MAIK “Nauka/Interperiodica”.

Key words: young binary stars, accretion, disk wind, cyclic phenomena.
INTRODUCTION

Recent studies show that binarity of young stars
is a common phenomenon. It has a significant effect
on the evolution of their surrounding matter, with this
effect depending on the separation between the binary
components [see Beckwith et al. (1990); Mathieu
et al. (2000); and references therein]. The physical
basis for the interaction of a binary with the remnants
of the protostellar cloud seems clear enough: the
periodic gravitational perturbations generated by the
revolution of the binary components around a com-
mon center of mass. Such binaries have long been
studied theoretically and these studies originate from
an investigation of the protoplanetary disks perturbed
by giant planets (Goldreich and Tremain 1982; Lin
and Papaloizou 1993; Artimowicz and Lubow 1994,
1996; Bate and Bonnell 1997; Kley 1999; see also
Lubow and Artimowicz 2000). Calculations show

*E-mail: VG1723@spb.edu
1063-7737/02/2809-0601$22.00 c©
that a matter-free cavity is produced by tidal per-
turbations in the inner region of the gas and dust
disk around a young binary [below called a CB (cir-
cumbinary) disk]. The characteristic size of the cavity
depends on the component mass ratio q = m2/m1

and orbital eccentricity; it is equal to triple the binary
semimajor axis in order of magnitude. Mass flows
from the CB disk periodically penetrate into this cav-
ity under the effect of viscosity and gravitational per-
turbations; they maintain the accretion activity of the
primary component (Artimowicz and Lubow 1996).

An accretion disk is also formed around the sec-
ondary component. In this case, as was shown by
Bate and Bonnell (1997), the ratio of the accretion
rates onto the secondary and primary components,
Q = ṁ2/ṁ1, depends on the component mass ratio
q and on the specific angular momentum jd of the
accreted matter: the larger jd is, the larger Q is. If jd
is larger than the orbital specific angular momentum
and if q � 1, then Q can be much larger than unity.
2002 MAIK “Nauka/Interperiodica”
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Since a young binary primarily accretes matter with a
low specific angular momentum during its evolution,
the parameter jd must increase with time.

A situation that is unusual at first glance arises:
the low-mass component of the binary can become
a major “consumer” of matter from the remnants of
the protostellar cloud as it evolves. As was shown by
one of us (Grinin 2000a; paper I), this may lead to a
large-scale redistribution of the matter surrounding
the binary. The point is that by accreting matter from
the СВ disk, the low-mass component loses part of
it in the form of a disk wind to become a source of
matter that can rise high above the binary plane. As a
result, an extended asymmetric gas–dust envelope is
formed in the binary. Calculations show (Grinin 2002;
paper II) that the dust contained in the envelope can
absorb an appreciable fraction of the radiation from
the primary component and can be a dominant source
of near-infrared (1–10 µm) binary radiation. In this
paper, we consider the photometric effects that can
be observed at optical wavelengths due to the orbital
motion of the common envelope.

DISK WIND AS A SOURCE OF MATTER
IN YOUNG BINARIES

Because of the conservation of angular momen-
tum, disk accretion is always accompanied by mass
outflow from the accretion disk, with which an ex-
cess angular momentum of the accreted matter is
carried away (Shakura and Sunyaev 1973; Lynden-
Bell and Pringle 1974). The mass outflow originates
from the disk surface and produces the so-called disk
wind (Blandford and Payne 1982). This phenomenon
was studied most extensively in T Tauri stars from
forbidden-line profiles (Kwan and Tademaru 1988).
According to Hirth et al. (1997), the gas velocity in
the wind periphery (r > 1AU) in stars of this type can
be only a few tens of kilometers per second. Therefore,
if such a star is a member of a binary with a more
massive primary component, then the matter of its
wind disk can be partially or completely captured by
the primary even if the separation between the binary
components is of the order of several AU. As a result,
an asymmetric common envelope emerges.

Note that apart from the low-velocity wind com-
ponent discussed above, high-velocity mass flows
(bipolar outflows and jets) are observed in young
stars. These are formed in the parts of the accretion
disk closest to the star [see Eislöffel et al. (2000)
and references therein] and are also seen in the
profiles of forbidden lines (Hartigan et al. 1995; Hirth
et al. 1997). However, calculations indicate (Good-
son et al. 1999) that the contribution of this wind
component to the total mass loss is relatively small,
∼20%. Therefore, the high-velocity component is
disregarded in the simplified model of a disk wind
considered below.

The formation of a common envelope in the
way described above depends on the accretion rate
onto the low-mass component (Ṁa = ṁ2) and on
disk-wind parameters. One of these parameters,
f = Ṁw/Ṁa, is the ratio of the mass-loss rate in
the disk wind, Ṁw, to the accretion rate onto the
low-mass component. It specifies the fraction of the
matter accreted from the СВ-disk onto the secondary
component that is returned to the binary in the form
of a disk wind. Below, as in paper II, we take f = 0.2,
typical of magnetocentrifugal models of accretion
disks (Shu et al. 1993).

The second parameter Vw/Vk is the ratio of the
terminal wind velocity Vw to the orbital velocity of
the secondary component Vk. It specifies the fraction
of the disk-wind matter p captured by the primary
component of the binary.

THE MODEL

Given the aforesaid, let us consider the following
model.

(1) A young binary is surrounded by a СВ-disk
whose matter is accreted onto its components. Since,
according to current estimates (see, e.g., Natta et al.
2000), the circumstellar-disk masses generally do not
exceed 0.1M�, the self-gravitation of such disks may
be ignored.

(2) The component mass ratio is q � 1. Note that,
according to Duquennoy and Mayor (1991), the dis-
tribution function of binary component mass ratios
has a maximum at q ≈ 0.2; it is reached mostly due
to long-period systems with periods P > 1000 days
(Mazeh et al. 1992). Therefore, the above constraint
on q does not narrow the validity range of our model
too much for long-period binaries.

(3) Mass accretion from the remnants of the pro-
tostellar cloud is assumed to proceed mainly onto the
low-mass component. Its orbit is assumed to be cir-
cular. In this case, the accretion rate Ṁa, a parameter
of the problem, does not depend on the orbital phase.
For the same reason, the rate of outflow from the
accretion disk of the low-mass component is also the
same at all orbital phases.

(4) The disk wind is assumed to be azimuthally
homogeneous in the coordinate system of the sec-
ondary component. Thus, we ignore the effect of the
tidal force from the primary component. Note that,
as our estimates show (see paper II), this effect is
actually small in sufficiently wide pairs. Although a
wind velocity close to the terminal velocity is reached
at large distances from the secondary (comparable to
the Hill radius in order of magnitude), to simplify our
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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calculations, we assume themass outflow to originate
from a point source that coincides in position with the
secondary.

When we pass to the coordinate system of the
primary, the wind particle velocity vectorVw is added
to the orbital velocity vector of the secondary Vk. As
a result, the distribution of initial particle velocities

V0 = Vw + Vk (1)

becomes anisotropic.
We consider two wind models. One model as-

sumes that mass outflow from the accretion disk
takes place at a fixed angle α to the disk symmetry ax-
is (this angle is called below the wind opening angle).
The other model assumes that the matter density in
the wind and its velocity Vw do not depend on latitude
within the wind opening angle (from αmin to αmax).
The condition for wind mirror symmetry about the
accretion-disk plane is also assumed to be satisfied.
The wind velocity Vw, in units of the orbital velocity
of the secondary, is a parameter of the problem. We
take αmin to be 45◦. Note that such an opening angle
of the circumstellar disk has recently been obtained
by Men’shchikov et al. (1999) for HL Tau, one of the
best-studied T Tauri stars. In the wind model with a
fixed outflow angle, we consider two cases: α = 60◦
and 45◦. The latter value is close to the angle that
corresponds to the peak in the latitude distribution of
the mass outflow rate in the magnetocentrifugal wind
models of Goodson et al. (1999).

Thus, our model is the limiting case of a young bi-
nary in which a common envelope is produced mainly
by the secondary component.

The Method of Calculation

In this case, the problem reduces to calculating
the trajectories of the particles ejected by the disk
wind from the low-mass component during its orbital
motion in the gravitational field of the primary compo-
nent. As in paper II, for its solution, we use the ballis-
tic approximation in which the motion of each particle
is assumed to be independent of other particles. The
application of this method in our case is justified by
the fact that the mechanism of mass outflow from an
accretion disk involving MHD turbulence facilitates
the formation of a clumpy wind structure composed
of weakly interacting fragments of various scales. The
capture of the disk wind by the primary leads to the
fact that some of the wind fragments move along the
trajectories that initially rise above the binary equato-
rial plane and subsequently sink and cross it. Because
of the assumed wind mirror symmetry relative to the
equatorial plane, the same fragments cross it from
below. During collisions with one another, the vertical
fragment velocities cancel each other out. As a result,
ASTRONOMY LETTERS Vol. 28 No. 9 2002
a geometrically thin gas and dust disk is formed in the
central part of the binary,1 whose matter is accreted
onto the binary components. Modeling this disk is a
complex gas-dynamical problem and is beyond the
scope of this paper.

To calculate the particle number density in the
common envelope, we broke down the orbit of the
secondary component into discrete segments at 5◦
steps. The orbital displacement of the component by
one step was accompanied by an isotropic ejection of
test particles either at a fixed angle to the accretion-
disk plane or within the assumed opening angle of
the disk wind: αmax > α > αmin. Depending on the
wind model, the number of particles ejected at each
step varied between 72 and 144. The initial particle
velocity vector at each orbital step was determined
from relation (1). The motion of each particle was cal-
culated until it escaped from the binary (the limiting
distance from the primary is taken to be 20 orbital
radii of the secondary) or crossed the binary equatorial
plane. Our calculations show that to obtain a steady-
state mass distribution in the common envelope, it
will suffice to follow the motion of the ejected particles
during several orbital periods of the binary.

THE SPATIAL STRUCTURE OF THE
COMMON ENVELOPE

Figure 1 shows the models of common envelopes
calculated by the method described above. The di-
mensionless wind velocity Vw was assumed to be
0.25, 0.5, 1, and 1.5. The orbital radius of the sec-
ondary was taken to be unity. We consider three
cases: in one case, the mass outflow from the sec-
ondary is isotropic within the range of angles 75◦ >
α > 45◦; in the other two cases, the outflow takes
place at a fixed angle, α = 45◦ and 60◦, to the disk
symmetry axis. Since the disk wind is assumed to
be mirror-symmetric about the accretion-disk plane,
Fig. 1a shows only the upper half of the common
envelope. In order not to complicate the figures, we
do not show the disk wind produced by the accretion
disk of the primary. Because of the assumed large dis-
parity between the accretion rates onto the secondary
and primary components, its effect on the common-
envelope structure and brightness modulation of the
binary cannot be large.2

1Actually, because of the velocity and density fluctuations in
the wind, the vertical velocities completely cancel out only on
the average. As a result, the diskmust have a finite thickness.
2Because of the larger mass of the primary, its contribution
may be more significant in the formation of high-velocity
outflows. During collisions with them, part of the common
envelopemust be swept up from the binary in polar directions
and this factor must be taken into account in a more careful
modeling.
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Fig. 1. The particle distributions in the models of common envelopes around young binaries in projection onto the XZ plane
(a) and onto the binary equatorial XY plane (b). The coordinates of the primary and secondary components in the XY plane
are (0,0) and (1,0), respectively. The thin and thick dotted lines indicate, respectively, the orbit of the secondary and a schematic
inner boundary of the СВ disk (its section is schematically shown in Fig. 1a). The model parameters, from left to right,
are as follows: upper panel: Vw = 0.25, 0.5, 1, α = 45◦; lower panel: Vw = 1, α = 60◦; Vw = 0.5, α = 45◦–75◦; Vw = 1.5,
α = 45◦–75◦.
We see from Fig. 1 that the orbital motion of
the secondary component in the binary produces an
asymmetric common envelope whose densest part
has a shape resembling the tail of a comet as it passes
near the Sun. At lowwind velocities, this envelope fills
a small volume near the low-mass component. At ve-
locities comparable to the orbital velocity, it becomes
more extended, the wind particles rise high above the
binary plane and form a decaying spiral pattern on
its periphery typical of some models for close binaries
(Mastrodemos andMorris 1999). At velocities higher
than the escape velocity, the disk-wind matter leaves
the binary. No common envelope is formed in this
case.

The Inner Region
As was pointed out in the Introduction, under tidal

perturbations, the central region of a young binary is
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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rapidly freed from matter and the accretion activity
of the components is maintained by two mass flows
that periodically penetrate into this region from the
CB-disk (Artimowicz and Lubow 1996). As was esti-
mated by these authors, the central cavity is filled with
matter about 10% full through this replenishment;
i.e., it remains almost empty as before. In our model,
the capture of the disk wind from the secondary by the
primary produces an additional mass inflow into this
region. Because of the mirror symmetry of the disk
wind about the binary equatorial plane, the captured
wind fragments fall to this plane from above and from
below and the vertical velocities cancel each other
out during their collisions. At the same time, the
azimuthal velocity is preserved. As a result, a layer of
matter is formed in the equatorial plane; subsequently,
it is accreted onto the binary components. Analysis
of the particle distribution in this region indicates
that it depends on the disk wind velocity Vw and the
angle α at which the particles are ejected from the
accretion disk of the secondary. At high velocities,
almost all particles leave the binary and the filling
of the central cavity with matter is negligible in this
case. A similar result, but for a different reason, is ob-
tained at low wind velocities: in this case, the matter
captured by the primary is concentrated mainly near
the orbit of the secondary (Fig. 1). Thus, the filling of
the neighborhood of the primary with matter is at a
maximum in the models with intermediate velocities:
Vw ≈ 0.5–1.5. The situations where some of the wind
fragments have both positive and negative angular
momenta are theoretically possible. In that case, a
subsystem of gas with a low angular momentum can
emerge in the immediate vicinity of the primary.

As an illustration of this peculiarity, Fig. 2 shows
the azimuthal velocity of the particles at the times
of their fall to the equatorial plane as a function of
the distance from the point of fall to the primary. The
calculations were performed for three cases:

Vw = 1, α = 45◦; Vw = 1.5, α = 45◦;
Vw = 1.5, α = 60◦.

In the first and second cases, all and almost all
particles have direct rotation, respectively; in the third
case, an appreciable fraction of the particles falling to
the equatorial plane at distances r = 0.4–0.5 from the
center have reverse rotation. Our calculations indi-
cate that approximately the same number of particles
fall within this region with the same, in absolute value,
but positive azimuthal velocity. They add up to form
a ring around the primary composed of matter with
a nearly zero angular momentum. Matter from this
region will be accreted onto the primary in a regime
close to free fall, moving in highly eccentric orbits. As
we will see below, this peculiarity is of great interest
in the case of UX Ori stars.
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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Fig. 2. Azimuthal velocity of the wind particles captured
by the primary at the time of their fall to the binary equato-
rial plane versus distance to the primary in the models: (1)
Vw = 1, α = 45◦; (2) Vw = 1.5, α = 45◦; (3) Vw = 1.5,
α = 60◦; (4) circular Keplerian velocity.

We also see fromFig. 2 that in all three models, the
azimuthal velocity of the matter at the time of its fall
to the equatorial plane is lower than the circular Ke-
plerian velocity at the same distance from the center.
This implies that the capture of the wind-disk matter
by the primary must cause the accretion rate onto the
primary to increase.

OPTICAL PROPERTIES OF COMMON
ENVELOPES

As a result of the orbital motion of the secondary
component and its associated densest part of the
common envelope, a modulation of the particle col-
umn density between the observer and the primary
component of the binary must be observed. Let us
estimate the possible optical effects produced by dust
grains in the common envelope. Denote the column
density of test particles in the common envelope in
the direction that makes the angle θ with the binary
equatorial plane by N(θ, φ). Its behavior with orbital
phase φ determines the structure of the photometric
minima that must be observed when there is a suffi-
cient amount of dust on the line of sight.

The Phase Dependence N(θ, φ)

In Fig. 3, the column density N of test particles is
plotted against azimuth φ for three orbital inclinations
to the line of sight: θ = 5◦, 10◦, and 15◦. The column
section is a square whose side is taken to be 0.2 of
the orbital radius of the secondary. We consider nine
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models that differ by the dimensionless wind velocity
Vw and opening angle. The behavior of N with φ
depends mainly on θ and the wind velocity Vw. At
low Vw, the common envelope is compact, partic-
ularly in the vertical direction (Fig. 1a). Therefore,
an appreciable particle column density is observed
only at small angles θ and at orbital phases close to
φ = 1, 2, 3, . . . ,K . . ., when the secondary passes at
a minimum distance from the line of sight. In this
case, the dependence of N on φ is highly asymmetric
and exhibits a steep rise and a slower fall.

As the wind velocity Vw increases, the envelope
becomes more extended both in the XY plane and
in the vertical direction. As a result, an appreciable
column density can also be observed at an appreciable
inclination of the binary plane to the line of sight.
The pattern of asymmetry in N(θ, φ) also changes:
the increase in N during ingress occurs more slowly
than its decrease during egress. In addition, in the
models with Vw =1 and 1.5 at small θ, the dependence
of N on φ has two maxima. They are not related to
the splitting of N(θ, φ) near the phase φ = K (K =
1, 2, 3, . . . ) caused by the passage of the cone of the
disk wind from the secondary along the line of sight
but are attributable to a peculiar mass distribution in
the inner region of the common envelope.
Y LETTERS Vol. 28 No. 9 2002
To elucidate this peculiarity, Fig. 4 shows the
particle distribution in the model with Vw = 1 and
α = 45◦ near the equatorial plane (|z| < 0.3) at the
time t = K when the secondary component, having
made K turns, is at the point with the coordinates
x = 1 and y = 0. The system of almost concentric
circumferences around the secondary is formed by
the disk-wind particles that were ejected within
several steps before the time t = K and that have
not risen above the equatorial plane higher than
|z| = 0.3. These particles give the primary, slightly
split minimum (Fig. 5). Some of them are captured by
the primary and they must fall to the binary equatorial
plane during their motion. We see from Fig. 4 that
these particles form a complex configuration of points
with a crowding in the upper part of the figure. This
crowding of particles gives aminimum leading in time
(in Fig. 5, it is observed near phase φ ≈ K − 0.25,
where K is an integer). Analysis indicates that these
particles were ejected by the disk wind in the direction
opposite to the orbital motion of the secondary. That
the particles moving in their orbits at a velocity lower
than the orbital velocity give a minimum leading in
time can be explained by the fact that they were
ejected during the preceding orbital passage of the
secondary.
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Our calculations show that the presence of a dou-
ble maximum in the phase dependence of the particle
column density and, accordingly, a double photomet-
ric minimum (Figs. 5a, 5b) depends on the wind
model, including the particle distribution in ejection
angle α. For example, in the model with Vw = 1 and
α = 45◦–75◦, this feature is smoothed out (Fig. 3c)
and a gradual increase in N(θ, φ) that ends with a
steeper decrease is observed instead of the double
maximum.

Thus, we see that the shapes of the minima pro-
duced by eclipses of the primary component by an
asymmetric common envelope can vary widely. They
depend both on the model of the disk wind from the
secondary (thewind opening angle and dimensionless
velocity) and on the inclination of the binary plane to
the line of sight.

The Amplitudes of Photometric Minima
To estimate the amplitude of optical variability in

a binary, we assume that the matter of its CB-disk
is a mixture of gas and dust with the standard dust-
to-gas ratio for the interstellar medium (1 : 100). It
would also be natural to take the same dust-to-gas
ratio for the accretion disk of the secondary compo-
nent (except for its inner hot region). Safier (1993)
showed that as a result of collisions with gas atoms,
the dust grains in the disk must be entrained by the
atoms and they must be present approximately in the
same proportion in the disk wind. Hence, for our esti-
mates, we take the same dust-to-gas ratio (1 : 100) in
the wind and in the common envelope produced by it.

Taking this into account, we calculated the dust
distribution in a binary for the following parameters.

(1) The accretion rate onto the low-mass compo-
nent is Ṁa = 10−8, 3 × 10−9, and 10−9M� per year.
According to Calvet et al. (2000), Ṁa ∼ 10−8M�
per year correspond to the mean accretion rate
onto a classical T Tauri star. The values of Ṁa ∼
10−8–10−9M� per year are obtained in current
models for the formation of giant planets in the phase
of intense accretion (Kley 1999).

(2) We assumed the standard ratio of graphite
and silicate particles for the interstellar medium:
Nsil/Ngra = 1.12 (Draine and Lee 1984) and consider
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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Fig. 5. Theoretical light curves for the models of common envelopes. The opening angle of the disk wind in all cases is
α = 45◦, the accretion rate onto the low-mass component is Ṁa = 10−9M�/yr (1), 3 × 10−9M�/yr (2), and 10−8M�/yr
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spherical grains of radius a = 0.1 µm and density
3 g cm−1. Such particles were chosen, because, as
estimated by various authors (Voshchinnikov and
Grinin 1991; Rostopchina et al. 1997; Natta and
Whitney 2000), the reddening of young stars due to
variable circumstellar extinction and the wavelength
dependence of their intrinsic polarization due to light
scattering by circumstellar dust are produced by
grains of approximately the same composition as in
the interstellar medium that differ only by slightly
larger sizes.

We passed from the column density of test par-
ticles N(θ, φ) calculated in the preceding section to
the column density of actual grains Nd(θ, φ) with the
ASTRONOMY LETTERS Vol. 28 No. 9 2002
above parameters by rescaling. In this procedure, we
took into account the ratio of the total number of
actual particles ejected by the wind during one orbital
period to the corresponding number of test particles.
We also took into account the difference in the column
sections: the column density of test particles was
calculated for a square section, 0.2× 0.2 of the orbital
radius in size, while the grain column density in the
formula for the optical depth of a common envelope

τ(θ, φ) = Nd(θ, φ)πa2Qext (2)

was calculated for a section with an area of 1 cm2.
In this case, the orbital radius of the secondary was
taken to be 10 AU. The calculations were performed
for a wavelength of 0.55 µm, which corresponds to the
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maximum transmission of the V photometric band.
The quantity Qext was calculated by using the Mie
theory. The required optical parameters of graphite
and silicate (we used the so-called astrosilicate) were
taken from Draine (1985).

Figures 5 and 6 show the models of photometric
minima calculated using the formula

I(θ, φ) = I∗e
−τ(θ,φ) + Isc. (3)

Here, I∗ is the intensity of the stellar radiation (we
took I∗ = 1) and Isc is the intensity of the radiation
scattered by circumstellar dust.

It should be noted that the latter quantity includes
the scattered radiation from the asymmetric common
envelope and, therefore, depends on θ and orbital
phase φ. However, since the intensity of the scattered
radiation from young stars is generally low compared
to the intensity of their direct radiation, we disre-
gard the dependence of Isc on phase φ and assume
that Isc = const = 0.1I∗. Note that in eclipsing bi-
naries with unseen secondary components, scattered
light limits the amplitude of the minima during total
eclipses, just as is the case for UX Ori stars. The
occasional minima in the latter are attributable to the
screening of the stars by circumstellar dust clouds
(Grinin 1988). In this case, Isc in Eq. (3) is equal in
order of magnitude to the intensity of the scattered
radiation from the protoplanetary disks of UX Ori
stars.

We see from Figs. 5 and 6 that the photometric
effect produced by the orbital motion of the densest
part of the common envelope can be significant even
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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at moderate accretion rates for young stars, Ṁa =
10−8M� per year. In this case, the parameters of the
minima (their shape, depth, and duration) depend on
the dimensionless wind velocity, accretion rate onto
the secondary, and inclination θ of the binary equa-
torial plane to the line of sight. The larger Ṁa is, the
larger is the angle θ at which a noticeable photometric
effect is possible. The lower the wind velocity Vw,
the smaller the inclination angle θ at which eclipses
can be observed. The longest duration of the minima
comparable to the orbital period is obtained in the
models with Vw ≈ 1.

At an initial particle velocity higher than the es-
cape velocity at the distance of the orbit of the sec-
ondary, all of the disk-wind matter leaves the binary.
In such binaries, no common envelope is formed and
fadings of the primary can be observed only when
the cone of the disk wind from the secondary crosses
the line of sight. The minima are almost symmetric
(Figs. 6c, 6d) and their depth decreases with increas-
ing wind velocity. It is easy to show that the eclipse
duration, in fractions of the orbital period, in such
models is

∆t =
1
π

tan θ tanα, (4)

where θ is the angle between the line of sight and the
binary equatorial plane and α is the opening angle of
the disk-wind cone. Hence,∆t ≈ 5× 10−3θ · tanα at
small θ (θ is in degrees).

DUSCUSSION

Thus, our calculations show that the brightness of
the primary component in a binary can be subjected
to a periodic modulation due to extinction variations
in the common envelope produced by the disk wind
from the secondary. Hence, several important results
follow. First, the detection probability of eclipsing bi-
naries among young stars can be nonzero even when
the binary plane is appreciably inclined to the line of
sight and no eclipsing effect in its classical form is
possible. This circumstance is particularly important
when a young binary is surrounded by an extended
СВ-disk, because the components of such binaries
are unseen during equator-on observations due to the
strong absorption of radiation in the disk.

Another important result is that the eclipse dura-
tion for young binaries can be much longer than that
for ordinary eclipsing binaries.

Examples of Binaries
with Long-Duration Eclipses

GW Ori. The classical T Tauri star GW Ori is an
example of such a young pair. Mathieu et al. (1991)
ASTRONOMY LETTERS Vol. 28 No. 9 2002
discovered the secondary component in this star by
variations in the radial velocity Vr with a 242-day
period and semiaplitude of ≈5 km s−1. The pattern
of Vr variations with phase shows that the orbital
eccentricity is nearly zero.

The spectroscopic period was confirmed by the
photometric observations of Shevchenko et al.
(1998) GW Ori was found to be an eclipsing binary
with long-duration (about 0.1 of the period) eclipses.
In attempting to explain this observational fact, these
authors assumed that the eclipses were produced
by the dust that filled the Roche lobe around the
secondary component. However, this assumption led
to an overly large (for T Tauri stars) mass of the
primary component (3.3M�). As a result, the authors
came to serious conflicts with the current theory for
the formation and evolution of young stars.

If the eclipses in GW Ori are assumed to be
produced by the disk wind from the secondary and
by the common envelope formed by it, then the above
contradiction is removed. Comparison of the observed
light curve for the star (Fig. 1 in Shevchenko et al.
1998) with the theoretical light curves shown in
Figs. 5c and 6d indicates that the duration and shape
of the minima are in satisfactory agreement with
the disk-wind model with Vw = 2 or Vw = 0.25. The
latter value is appropriate only at small inclinations of
the binary plane to the line of sight, which appears to
be inacceptable for GWOri.

Clearly, investigation of such binaries is of great
interest not only in determining the parameters of the
stars that are binary members but also in studying
the structure of the disk winds from young stars.
Thus, for example, if formula (4) is used, then at
an eclipse duration for GW Ori of 0.1 of the orbital
period and at the opening angle of the wind from the
secondary α = 45◦, it follows from this formula that
the angle between the binary plane and the line of
sight is θ = 17◦. This value is almost equal to one of
the two inclination angles of the GWOri binary plane
discussed by Mathieu et al. (1991) (15◦)3 and only
10◦ smaller than the second value (27◦) that Mathieu
et al. (1991) believe to be more likely. If the latter is
true, then in this case, according to (4), the opening
angle for the cone of the wind from the secondary
component of GWOri must be α ≈ 30◦.

For GW Ori, the change in the amplitude of the
photometric minima from eclipse to eclipse pointed
out by Shevchenko et al. (1998) is of great interest.
The calculations show that in our model, apart from
the main cycle attributable to the orbital motion of the

3This value is equal to the inclination i of the GW Ori rota-
tion axis obtained by Bouvier and Bertout (1989) from the
observed brightness modulation in the star due to its surface
irregularity.
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secondary and its associated densest part of the com-
mon envelope, there are longer cycles attributable to
tangential motions of the peripheral parts of the com-
mon envelope. However, the extinction variations on
the line of sight produced by them are small compared
to the amplitude of themain cycle. Therefore, different
factors, for example, a change in the accretion rate
onto the secondary component, are most likely re-
sponsible for the observed change in the amplitude of
the minima for GW Ori. The latter may be due to the
presence of a third body suspected by Mathieu et al.
(1991) from radial-velocity variations in the binary
center of mass.

The Eclipsing Binary KH 15D. Another exam-
ple of a young binary with long-duration eclipses is
the WTTS (weak T Tauri star) star KH 15D. The
eclipses of this star occur with a 48-day period and
have a large amplitude (≈3m in the I band) and a
two-component structure (Kearns and Herbst 1998).
The total duration of the minima is about a third of
the orbital period. This makes it difficult to explain
such eclipses by a circumstellar dust disk or ring
around the secondary, because the radius of this ring
or disk must be comparable to the orbital radius of
the secondary. Structures of such sizes are unstable
against tidal perturbations and must rapidly break up.

As in the case of GW Ori, this problem does
not arise if the eclipses in KH 15D are assumed to
be attributable to the disk wind from the secondary.
In this case, the neutral pattern of fadings in this
star suggests that the dust structure that periodically
appears on the line of sight consists of large parti-
cles (Hamilton et al. 2001). Such particles have a
highly forward-elongated scattering diagram (van de
Hulst 1957) and this may be the cause of the bright-
enings in KH 15D above the normal level observed
by Kearns and Herbst (1998) in the breaks between
successive fadings of the object.

If we again use formula (4), then for an eclipse
duration of KH 15D equal to about a third of the
orbital period and for α = 45◦, we find that the plane
of this binary has a large (about 40◦) inclination to the
line of sight.

UX Ori Stars

UX Ori stars are among the photometrically most
active young stars. Their brightness varies irregularly
with an amplitude ∆V ≈ 2–3. Several independent
proofs that (apart from their youth) the optimal ori-
entation of the circumstellar disks around these stars
at a small angle to the line of sight is mainly re-
sponsible for their high photometric activity and that
variable circumstellar extinction is mainly responsi-
ble for their light variations have been obtained to
date [see the review article by Grinin (2000b) and
references therein). Therefore, by studying the pho-
tometric and polarimetric activity of these stars, we
can obtain information on the fine structure of their
surrounding protoplanetary disks that is difficult or
impossible to obtain by other methods. In particular,
analysis of such observations indicates that the cir-
cumstellar gas–dust clouds that occasionally shield
the stars from the observer move in highly eccentric
orbits and can appear in the immediate vicinity of
the stars, at distances of the order of or smaller than
1 AU (Grinin 1994). However, it was unclear how and
where the clouds with such orbits are formed.

In the preceding section, we showed that the cap-
ture of the disk wind from the low-mass component
could give rise to a ring of matter with a low spe-
cific angular momentum near the primary compo-
nent. From here, the matter will fall to the primary
component of the binary while moving in highly ec-
centric, almost radial orbits. Thus, in our model, there
is the possibility for the formation of circumstellar
clouds with a low specific angular momentum, which
deserves further study.

Another important conclusion drawn from long-
term series of photometric and polarimetric obser-
vations of UX Ori stars is that the mass distribu-
tion in their circumstellar disks significantly deviates
from axial symmetry (Grinin et al. 1998; Rostopchina
et al. 1999, 2000; Shakhovskoi et al. 2002). As a
result, apart from irregular variability, large-scale cy-
cles with time scales from one to ten or more years
are seen in the light and linear polarization curves.
The above authors suggested that these cycles re-
sult from the modulation of optical properties of the
circumstellar disks produced by the orbital motion
of the low-mass components. A similar view on the
nature of cyclic activity in stars of this type has also
been recently put forward by Bertout (2000).4 Our
calculations show that this assumption is quite fea-
sible and points out the specific mechanism capable
of producing a large-scale brightness modulation in a
young star.

As an illustration, Fig. 7 shows the light curve of
BF Ori, a typical star of this subclass. Comparison
with theoretical curves (Fig. 5b) indicates that the
model of a binary with a low-mass secondary com-
ponent and Vw ≈ 0.5 gives approximately the same
(in shape) minima characterized by a fast decline in
brightness and a slower rise. Their total duration is
comparable to the orbital period.

4Note an alternative approach to interpreting the cyclic
activity of UX Ori stars based on the hypothesis that
the stars are eclipsed by protocomets [see Herbst and
Shevchenko (1999), Shevchenko and Ezhkova (2001) and
references therein].
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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Fig. 7. Cyclic activity of UX Ori stars [the light curve of BF Ori is from Grinin et al. (2000)].
The typical duration of the photometric cycles for
UX Ori stars is several years, which corresponds to
the orbital radii of the low-mass components in the
range ∼3–5 AU for stellar masses of about 2–3M�.
The longest cycle is observed in CQTau, 22–25 years
(Shakhovskoi et al. 2002) and corresponds to an
orbital radius of about 10 AU. The orbits of binaries
with such parameters generally have an appreciable
eccentricity (Mayor et al. 2001). Therefore, for the
activity cycles of UX Ori stars to be analyzed in
more detail, the models considered above must be
generalized to elliptical orbits. Apart from the orbital
eccentricity, yet another parameter appears in these
models, the angle between the line of sight and the or-
bital semimajor axis, which introduces an additional
variety in the theoretical light curves.

Concluding the discussion of the role of bina-
rity in organizing the activity cycles of young stars,
it should be noted that the mechanism of photo-
metric variability considered here (attributable to a
periodic extinction modulation on the line of sight)
is not the only possible one. In the model of Arti-
mowicz and Lubow (1996), the accretion rate onto
the binary components can also be subjected to a
periodic modulation. In our model, such a modula-
tion can also take place in binaries with elliptical
orbits because of periodic variations in the prob-
ability p of the disk wind from the secondary be-
ing captured by the primary component of the bi-
nary (paper I). Therefore, cyclic photometric vari-
ability attributable to a modulation of the accretion
rate can be observed in young cool stars whose op-
tical emission, along with their photospheric emis-
sion, also includes the emission from hot accreted gas
(classical late-type T Tauri stars). Examples of such
binaries were considered by Mathieu et al. (2000)
ASTRONOMY LETTERS Vol. 28 No. 9 2002
and Lamzin et al. (2001). Thus, in pure form, the
model of cyclic variability considered here is appli-
cable to binaries with hotter stars as the primary
components (e.g., Herbig Ae/Be stars), whose op-
tical variability is attributable to circumstellar ex-
tinction variations and the role of other mechanisms
is minor. Most of the UX Ori stars belong to such
stars.

Giant Protoplanets
at the Stage of Intense Accretion

Giant protoplanets at the stage of intense accre-
tion can also have gas and dust disks, as suggested
by the developed system of satellites around Jupiter
and Saturn’s rings. Current calculations show (Kley
1999) that the accretion rate onto a Jupiter-like pro-
toplanet can reach values, ∼Ṁa ≈ 10−8–10−9M�
per year, comparable to the accretion rate onto some
T Tauri (Calvet et al. 2000) and Herbig Ае/Be (Tam-
bovtseva et al. 2001) stars. As a result, an accre-
tion disk is formed around the protoplanet; this disk
can also be a source of the disk wind (Quillen and
Trilling 1998). If the parameter f , the ratio of the
outflow and accretion rates, is assumed to be in this
case of the same order of magnitude as that in our
model, then the results of our numerical simulations
can be applied to such objects.5 It follows from these

5It should be noted that because of the great disparity be-
tween the masses of the protoplanet and the central star, the
accretion rate onto the star can be much higher than the
accretion rate onto the protoplanet. Therefore, the effect of
stellar wind on the dynamics of circumstellar matter must be
more significant in this case.
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Fig. 8. An illustration to the effect of a moving shadow
on the periphery of the СВ-disk formed by the common
envelope in the model with α = 45◦ and Vw = 0.25.

results that a protoplanet at the stage of intense ac-
cretion can be detected optically through observa-
tions of periodic eclipses of the central star by the
disk wind from the protoplanet. In this case, because
of the optimal orientation of their circumstellar disks
relative to the line of sight, UX Ori stars are the most
suitable objects for such searches. It may well be that
the cycles of photometric variability in these stars
discussed in the preceding section are attributable
to mass accretion by giant protoplanets or brown
dwarfs, because no spectroscopic evidence of ordinary
binarity has yet been found in most of these stars.

Shadow Effects

The described periodic extinction variations on the
line of sight caused by the orbital motion of the com-
mon envelope produce shadow zonesmoving in space
in which, in addition to the observer, other objects
can be located. One such object can be the СВ-disk
itself or, to be more precise, its peripheral zone. Far
from the secondary, the structure of the СВ-diskmust
generally be the same as that around a single young
star. According to Kenyon and Hartmann (1987), the
ratio of the geometric disk thickness h to the current
radius r is a slowly increasing function of r. When
such a disk is observed pole-on, a shadow from the
disk wind of the secondary and the opaque part of the
common envelope can be seen in its image (Fig. 8);
this shadow must move over the СВ-disk following
the orbital motion of the secondary. This prediction
can be verified in the immediate future, because such
powerful interferometer telescopes as VLTI designed
for observations with high spatial resolutions are in
the stage of completion. Detection of moving shad-
ows on СВ-disks and their monitoring may become
a method of studying binaries at the earliest stages
of their evolution. It may well be that the asymmetric
images of the СВ-disks around some pole-on young
binaries (see, e.g., McCabe and Ghez 2001) are at-
tributable to this effect. Therefore, it is of interest to
obtain new images of such objects in an effort to
detect possible changes in the pattern of disk asym-
metry with time.

CONCLUSIONS

We obtained our results using a simple model of
a young binary in which the formation of a common
envelope was considered in the ballistic approxima-
tion, with the disk wind from the primary component
being disregarded. For this reason, our calculations
are approximate. It follows from the calculations that
the optical emission from the primary component of
the binary could be subjected to a periodicmodulation
attributable to the absorption of emission in the dens-
est part of the gas–dust envelope associated with the
low-mass component. The source of matter in this
envelope is the low-velocity component of the disk
wind formed via mass accretion from the remnants
of the protostellar cloud. This conclusion comple-
ments the results of paper II, in which we showed
that the thermal radiation from such envelopes could
play an important role in producing infrared excesses
of young stars. It thus follows that a photometric
monitoring can be used to search for and study the
low-mass components of young binaries, including
substellar objects and giant protoplanets. The latter
are difficult to detect in the vicinity of young stars by
other methods. The most suitable objects for such
searches are photometrically active, young UX Ori
stars whose circumstellar disks are inclined at a small
angle to the line of sight. It may well be that the
activity cycles of these stars discussed above owe
their origin precisely to such objects.

In addition, eclipses of the primary component in a
young binary by the opaque part of its common enve-
lope makes the detection of young eclipsing systems
possible in those cases where the orbital plane of the
secondary makes a large angle with the line of sight
and the eclipsing effect in its classical form (when
one star shields the other) cannot be observed. We
assume that the young binary GW Ori and, possibly,
KH 15D, whose common feature is a long duration of
their eclipses, belong to such systems.
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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Apart from the photometric cycles, the orbital
motion of the densest part of the common envelope
may be responsible for the appearance of a moving
shadow in the peripheral parts of the CB-disks.
Young, photometrically quiet stars with large infrared
excesses are best suited to searches for such struc-
tures, because the circumstellar disks of such objects
are highly inclined to the line of sight (Grinin and
Rostopchina 1996) and, therefore, are convenient for
studying their surface brightness. Moving shadows
can also be observed in the images of reflection
nebulae, which are commonly associated with young
objects. Therefore, interestingly, the variability of
such nebulae has already been pointed out in the
past [see Section 3.2 in the book by Vorontsov-
Vel’yaminov (1948) and references therein]. We even
know cases where the bright reflection nebula of
R Mon disappeared in the photographs almost com-
pletely. It may well be that the fadings of such a
large object as the reflection nebula resulted from
the shielding of the star illuminating this nebula by
the opaque part of its common envelope. Therefore, a
photometric monitoring of the images of such nebulae
in an effort to detect periodic variations in their surface
brightness is of great interest.

Apart from the above, purely photometric effects,
the dust component of the common envelope can
also contribute significantly to the scattered light and
intrinsic polarization of young stars at optical wave-
lengths (which is currently attributed to the scat-
tered radiation from circumstellar disks or disk-like
dust envelopes). Studying the polarization properties
of asymmetric common envelopes is of considerable
interest in detecting a high linear polarization at the
deep minima of some UX Ori stars (Rostopchina
et al. 2001), which cannot be explained in terms of
axisymmetric models for circumstellar envelopes. We
plan to analyze this and several other problems in
following papers.
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Abstract—We computed a model for the dust envelope of the protoplanetary nebula V1853 Cyg by using
data on its fluxes from the ultraviolet to the far infrared. The spherically symmetric envelope was assumed
to be composed of silicate grains with the standard MRN size distribution; their number per unit volume is
inversely proportional to the distance squared. The optical depth of the envelope, whose inner boundary lies
at a distance of 7.6× 1016 cm from the central star, is 0.18 at a wavelength of 0.55 µm. The grain tempera-
ture at the inner boundary of the envelope is 110 K. The distance to V1853 Cyg is estimated to be 4.1 kpc.
The current mass-loss rate of the object was found by solving a self-consistent problem of radiative transfer
and dust motion in the envelope to be 2.2 × 10−5 M� yr−1. c© 2002 MAIK “Nauka/Interperiodica”.

Key words: stars—structure and evolution; protoplanetary nebulae, dust envelopes, mass loss
INTRODUCTION

The interesting object V1853 Cyg
(= LSII+34◦26 = IRAS 20462+3416) belongs to
the stars at the evolutionary stage that follows
the asymptotic giant branch (post-AGB) and pre-
cedes the formation of a planetary nebula. Such
objects were called protoplanetary nebulae (Volk and
Kwok 1989). The duration of this stage is so short that
any evolutionary change in the effective temperature
of the star can become noticeable in the lifetime of one
generation of observers. Investigation of such objects
will make it possible to elucidate the mechanism for
the formation of a strong stellar wind, which causes
the stellar envelope to be ejected. This is of great
importance in studying the final evolutionary stages
of moderate-mass stars and the formation of the
interstellar medium.

Parthasarathy (1993) was the first to justify the
fact that V1853 Cyg belongs to protoplanetary nebu-
lae. Using IRAS observations, he concluded that this
is a post-AGB B supergiant surrounded by a cold
dust envelope. Based on UBV photometry and on
analysis of the spectra taken with the 1.25-m and
6-m telescopes, Arkhipova et al. (2001) studied the
photometric and spectroscopic features of the object
in detail. Also given in their paper are references to
previous studies.

Here, our goal is to compute a model for the dust
envelope of V1853 Cyg and to estimate its mass-loss
rate.

*E-mail: BogdanovMB@info.sgu.ru
1063-7737/02/2809-0617$22.00 c©
OBSERVATIONAL DATA

For comparison with the model, we used the mean
UBV magnitudes of the star obtained by Arkhipova
et al. (2001) in 1999–2000. These are in good agree-
ment with the mean magnitudes observed in 1973
(Drilling 1975), suggesting that the object evolves
slowly. The amplitude of the rapid chaotic brightness
variability, which is probably caused by stellar-wind
fluctuations, is modest, ranging from 0m. 3 to 0m. 4 in
different bands. In addition, we used JHK photome-
try for the star (Garcia-Lario et al. 1997) and IRAS
data on its fluxes in the 12, 25, 60, and 100 µm bands.

The region around V1853 Cyg exhibits significant
interstellar extinction. To make a correction for its
effect, we used the color excess E(B–V ) = 0m. 24 de-
rived by Parthasarathy (1993) from the intensity of the
λ 2200 Å band. To estimate the total extinction in V ,
AV = RE(B–V ), we took R = 3.3 (Allen 1973).
After the correction for interstellar extinction, we
determined the fluxes F (λ) (in erg s−1 cm−2 cm−1)
from the magnitudes by using extraatmospheric
fluxes from Straizys (1977). The observed fluxes are
represented by circles in the figure.

For objects like V1853 Cyg, the radiation during
free–free transitions in the ionized matter of the
forming nebula can also contribute to the far-IR
flux. However, our estimate (Bogdanov 2000) for
V886 Her, a similar protoplanetary nebula, shows
that this contribution is minor. Since the degree of
excitation and the electron density for V1853 Cyg
are much lower than those for V886 Her (Arkhipova
et al. 2001), the effect of this radiation may be
ignored.
2002 MAIK “Nauka/Interperiodica”
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(1) Observed fluxes from the protoplanetary nebula
V1853 Cyg versus wavelength; (2) the spectral energy
distribution for the computed model star with a dust
envelope.

According to Arkhipova et al. (2001), the effective
temperature of the central star is Teff = 20000 K and
the slow evolution suggests that its mass is com-
paratively low, M ≈ 0.6 M�. Using the evolution-
ary tracks for planetary-nebula nuclei computed by
Blocker (1995), we may take the stellar luminosity in
this case to be L = 6300 L�.

COMPUTING A MODEL FOR THE DUST
ENVELOPE

The standard assumptions were used to compute
envelope models for V1853 Cyg. It was assumed that
the spherically symmetric dust envelope had a sharp
inner boundary at distance r1 from the center and
that the grain number density decreased in inverse
proportion to the distance squared up to the envelope
outer boundary at r2 = 1000r1. The optical constants
of the grain material were chosen to be identical
to those for warm silicates (Ossenkopf et al. 1992)
and the grain size distribution n(a) was described by
the MRN model (Mathis et al. 1977): n(a) ∝ a−q

for spherical-grain radii amin ≤ a ≤ amax with the
parameters q = 3.5, amin = 0.005 µm, and amax =
0.25 µm. The spectral energy distribution for the cen-
tral source was assumed to be the Planck one with the
temperature equal to the effective temperature of the
star, Teff = 20000 K; its luminosity is L = 6300 L�.

We solved the problem of radiative transfer in the
dust envelope by using theDUSTY code (version 2.0)
for grids of 30 points in radius and 99 wavelengths
within the range 0.01 µm to 3.6 cm. The algorithm
that forms the basis for this code was described by
Ivezic and Elitzur (1997, 1999). The input model
parameters were the dust temperature at the inner
boundary, T1, and the envelope optical depth at a
wavelength of 0.55 µm, τV . Having computed the
spectral energy distribution for the model, we chose
the distance d at which the sum of the squares of the
deviations of the observed and model fluxes was at
a minimum. The following optimal model parameters
were obtained: T1 = 110 K, r1 = 7.6× 1016 cm, τV =
0.18, and d = 4.1 kpc. The derived temperature and
distance are in good agreement with the estimates
of Parthasarathy (1993): Td ≈ 100 K and d = 3.0–
4.6 kpc.

As we see from the figure, the model satisfacto-
rily describes the observations, with the deviations of
the observed fluxes being significantly smaller than
those for our previously computed model of the dust
envelope around the protoplanetary nebula V886 Her
(Bogdanov 2000). This is apparently because the
model assumptions and primarily spherical symmetry
of the envelope are more appropriate for the object in
question.

The derived r1 and d give an angular radius of
the envelope inner boundary equal to 1′′

.2. This value
agrees with theHubble Space Telescope observations
by Ueta et al. (2000), who found a reflecting nebula
about 3′′ in size around V1853 Cyg. Clearly, intrinsic
radiation from the dust in this nebula is observed in
the mid- and far infrared.

To estimate the parameters of the stellar wind from
V1853 Cyg produced by radiation pressure on the
dust and the subsequent momentum transfer to the
gaseous medium, we used the gas-dynamical mode
of the DUSTY code with the derived envelope optical
depth τV = 0.18. In this case, a self-consistent pro-
cedure of solving the problem of radiative transfer and
dust motion in the stellar envelope is implemented
(Ivezic and Elitzur 1995). The grain density ρd and
the gas-to-dust mass ratio rgd in the envelope were
assumed to be 3 g cm−3 and 200, respectively. Based
on these data, we computed the total mass-loss rate,
Ṁ = 2.2 × 10−5 M� yr−1, with the DUSTY code. If
necessary, Ṁ can be easily recalculated for different
values of ρd and rgd, because Ṁ ∝ (ρdrgd)1/2 (Ivezic
and Elitzur 1995). Note that this result was obtained
for current parameters of the star and the dust enve-
lope. In addition, we disregarded the radiation pres-
sure on the neutral and ionized components of the
nebula. Therefore, the derived Ṁ is a lower limit for
the mass-loss rate.

CONCLUSIONS
Despite the comparatively small amount of ob-

servational data, close agreement between the ob-
served fluxes and the model spectral energy distri-
bution gives hope that the derived parameters of the
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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dust envelope around V1853 Cyg are fairly realis-
tic. This envelope appears to have been ejected by
the star when it was leaving the asymptotic giant
branch. If the stellar mass is assumed to be M ≈
0.6M�, then, according to the evolutionary calcu-
lations of Blocker (1995), ∆t ∼ 1300 yr must have
elapsed since that time. The velocity V = r1/∆t was
roughly estimated to be 19 km s−1, a value that is
fairly close to the observed expansion velocities of
planetary nebulae.

It is of interest to compare the envelope parameters
for V1853 Cyg with the values for V886 Her, a similar
object. In this case, T1 = 410 K, r1 = 4.3 × 1015 cm,
and τV = 0.48 (Bogdanov 2000). The dust envelope is
much closer to the star and is denser and hotter, sug-
gesting that the envelope was ejected recently. The
mass of the central star of V886 Her isM ≈ 0.7 M�;
it is characterized by a rapid evolutionary change in its
effective temperature (Arkhipova et al. 1999). Using
data from Blocker (1995), we can find that the time is
∆t ≈ 100 yr and that the envelope expansion velocity
is V = 12 km s−1. The mass-loss rate for V886 Her
is lower than that for V1853 Cyg, being Ṁ = 4.5 ×
10−6 M� yr−1 (Bogdanov 2000).
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A Minimum in the Light Curve
of the Classical Symbiotic Star YY Her in 2001
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Abstract—We present new photometric UBV RI observations of the classical symbiotic star YY Her
in 2001. A deep secondary minimum with an amplitude of 0m. 5 in V was found in its light curve during
this period. The color characteristics of the primary and secondary minima are compared. We show that
the star reddens during its primary minimum and blues during its secondary minimum in the U–B and
B–V color indices. In the red spectral band, the color of YY Her does not change as it passes through its
secondary minimum. We estimate photometric parameters of the radiation sources that disappear from the
field of view when the star is at minimum light. Based on observational data, we investigate various models
for the formation of the secondary minimum. c© 2002 MAIK “Nauka/Interperiodica”.

Key words: stars—variable and peculiar; symbiotic stars.
INTRODUCTION

YY Her belongs to the classical symbiotic stars
whose prototype is Z And. This subclass of symbiotic
stars is characterized by a distinctive type of novalike
outbursts (Kenyon 1986). The last bright outburst of
YY Her occurred in 1993, while in the late 1990s the
star returned to quiescence [see Tatarnikova et al.
(2001) and references therein].

Analysis of the visual light curves revealed a pe-
riodicity with P = 590 days and amplitude ≤ 0m. 3
(Munari et al. 1997a). An example of classical sym-
biotic stars for which the radial-velocity curves along
with the light curves were constructed shows that
their periodic light variations result from the orbital
motion of these binary systems; the brightness is at
a minimum when the red giant is at inferior con-
junction, i.e., in front of the hot component. This led
Munari et al. (1997a) to conclude that the orbital
period of YY Her is Porb ≈ 590 days.

Our photometric UBV observations started in
1995 (Tatarnikova et al. 2001) show that the am-
plitude of this minimum, which is called below
the primary minimum, increases with decreasing
wavelength. Its origin is attributed to an eclipse of
the hot component and its circumstellar envelope
by the red giant, although the heating of the red-
giant hemisphere facing the hot component by the
latter can apparently also contribute to the fading in
quiescence (Tatarnikova et al. 2001).

*E-mail: aat@sai.msu.ru
1063-7737/02/2809-0620$22.00 c©
The outburst activity of classical symbiotic stars
suggests that their cool components fill their Roche
lobes (Yudin 1987). A convincing confirmation of this
suggestion could be the detection of a periodicity with
P = Porb/2 attributable to an ellipsoidal shape of the
lobe-filling red giant in the light curve of the star.

Such analysis of the visual light curve for YY Her
(see Munari et al. 1997a) revealed a harmonic
with a period of ∼283 days and amplitude of ∼0m. 1
(Tatarnikova et al. 2000).

In 1998, a shallow (∆V ≈ 0m. 2) secondary min-
imum was found in the light curves of YY Her in
several optical spectral bands; it was located be-
tween two adjacent primary minima (Hric et al. 2001;
Tatarnikova et al. 2001). Its origin is attributed either
to an eclipse of part of the red-giant surface by the
circumstellar envelope of the hot component (Hric
et al. 2001) or to an ellipsoidal shape of the cool
component (Tatarnikova et al. 2001).

Here, we present the photometric observations of
YY Her in 2001, when according to the ephemerides
of this binary system, another secondary minimum
must have been observed. It was actually recorded,
with its amplitude being unprecedentedly large. We
analyze the photometric parameters of the secondary
minima and compare them with similar parameters
of the primary minima. We also analyze various hy-
potheses of the nature of the secondary minimum.

OBSERVATIONS
The photoelectric UBV R′I ′ observations are car-

ried out with two photometers attached to the 0.6-m
2002 MAIK “Nauka/Interperiodica”
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and 1.25-m telescopes at the Crimean Station of the
Sternberg Astronomical Institute. The detectors are a
photomultiplier (UBV ) and a CCD array (BV R′I ′).
The UBV bands correspond to the broadband photo-
metric system of Johnson (1966). At the same time,
the R′I ′ bands do not correspond to any standard
photometric system. The central wavelengths and
widths are, respectively, ∼0.76 and ∼0.24 µm for R′

and ∼0.9 and ∼0.3 µm for I ′. In R′ and I ′, the
instrumental system was tied in to Johnson’s system
(R, I) using the observations of photometric stan-
dards in M 67. However, for stars with an emission
spectrum, this procedure is partly conditional; i.e., it
would be incorrect to identify our spectral bands with
Johnson’s bands.

The standard stars were HD 168957 (U = 6m. 35,
B = 6m. 91, V = 7m. 01) and the star denoted on the
finding chart in Munari et al. (1997a) by the let-
ter G (V = 13m. 08, R′ = 12m. 44, I ′ = 11m. 94). The
measurement errors do not exceed 0m. 03. The latest
observations are given in Tables 1 and 2.

Figure 1 shows the UBVR′I ′ light curves of
YY Her constructed by using previously published
data (Tatarnikova et al. 2001). Also shown in this
figure are the data from Hric et al. (2001), where
the observations are given in an updated Johnson–
Kron–Cousins system (BcVcRcIc). In order to make
their light curves coincident with our light curves
in Fig. 1, we increased the tabulated Bc and Vc

magnitudes by 0m. 3 and 0m. 2 and decreased the Rc

and Ic magnitudes by 0m. 2 and 0m. 52, respectively. In
other words, our photometric systems are related as
follows: B = Bc + 0.3, V = Vc + 0.2, R′ = Rc − 0.2,
and I ′ = Ic − 0.52.

To perform a comparative analysis of the pho-
tometric parameters for the secondary and primary
minima, we begin the next section with analysis of our
photometric observations of the primary minimum
in 2000.

ANALYSIS OF THE OBSERVATIONS

The Primary Minimum

We see from Fig. 1 that the amplitude of bright-
ness decline at the primary minimum decreases
with increasing wavelength and, accordingly, the
star becomes redder. For the minimum of 2000, the
amplitude ratio is ∆U/∆V ≈ 1.8, ∆B/∆V ≈ 1.2,
∆R′/∆V ≈ 0.6, and ∆I ′/∆V ≈ 0.2.

Figure 2 shows the color–magnitude diagrams
[(U–B, V ), (B–V , V ), (V –R′, V ), (V –I ′, V ),
(R′–I ′,V )] constructed separately for the primary
and secondary minima of the star. YY Her reddens
in all color indices as it passes through its primary
minimum.
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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Fig. 1. The UBV R′I ′ light curves of YY Her: (1) the
data from Hric et al. (2001) reduced to our photometric
system; (2) our data, including those published previously
[see Tatarnikova et al. (2001) and references therein].
The vertical bars in the V light curve indicate the middle
points of the secondary minima in 1998 and 2001.

The decline in brightness at minimum can be
described as the appearance of a deficit in its radiation
(by analogy with an infrared excess). We denote this
deficit by PD and SD for the primary and secondary
minima, respectively. During the minimum light of
YYHer at its primary minimum in 2000, when the PD
brightness was at a maximum, its magnitudes were
Upd ≈ 13m. 80, Bpd ≈ 14m. 60, Vpd ≈ 13m. 62, R′

pd ≈
12m. 49, and I ′pd ≈ 11m. 94. The PD color indices
corrected for interstellar reddening with the color
excess E(B–V ) = 0.2 (Munari et al. 1997b) are
(U–B)0,pd ≈ −0.93 and (B–V )0,pd ≈ 0.78.

Figure 3 shows the color variations of the PD with
its visual brightness as the star passes through the
last three primary minima (Fig. 1). We see that as the
PD brightness rises, i.e., as the brightness of the star
approaches its minimum, the PD becomes redder.
This fact may serve as a confirmation of the following
assumption made by Tatarnikova et al. (2001): at its
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Table 1. Photoelectric UBV observations of YY Her

JD +2440000 U B V

12047 13m. 73 14m. 24 12m. 95

12048 13.66 14.21 12.97

12055 – 14.26 13.10

12106 13.66 14.30 13.16

12115 13.70 14.32 13.22

12135 13.38 14.28 13.32

12138 13.62 14.42 13.39

12168 13.38 14.27 13.18

12172 13.46 14.20 13.14

12191 13.43 14.17 13.06

12195 13.50 14.13 13.04

12202 13.38 14.13 13.01

12212 13.33 14.07 12.96

12223 13.35 14.03 12.86

primary minimum, the brightness of YY Her declines
not only because the circumstellar envelope of the
hot component is shielded by the red giant but also
because the side of the red giant facing the hot com-
ponent has a higher temperature and, accordingly, is
optically brighter than its opposite side.

The Secondary Minimum

Let us first consider the parameters of the sec-
ondary minimum in UBV . We see from Fig. 1 that
the secondary minimum is most pronounced in V ,
which is also reflected in the color–magnitude dia-
gram (Fig. 2). YY Her in this spectral band becomes
bluer as it passes through its secondary minimum and
reddens as it passes through its primary minimum.

In V , the secondary minimum of 2001 appears
symmetric about the vertical straight line that passes
through the date of minimum light (Fig. 1). In other
words, its descending and ascending branches are
similar. This minimum is similar in shape to the two
preceding minima and to the plot of the function
y = const × | sinx|. Its depth is ∆V ≈ 0.5 and the
maximum SD brightness, which corresponds to the
minimum light of YY Her, is Vsd ≈ 14m. 0, while at the
secondary minimum of 1998, ∆V ≈ 0.25 and Vsd ≈
14m. 6.

In B, the light curve for the minimum of 2001
becomes asymmetric. After egress from its minimum,
the star is brighter than during ingress. When cal-
culating the maximum SD brightness, we assume
Table 2. PhotoelectricBV R′I ′ observations of YY Her

JD +2440000 B V R′ I ′

11865 – 13m. 59 11m. 76 10m. 06

11866 – 13.59 11.74 10.05

11867 – 13.64 11.76 10.09

11868 – 13.64 11.73 10.08

11887 14m. 87 13.40 11.58 10.00

11888 14.86 13.40 11.59 10.02

11952 – 13.14 11.54 10.10

12029 – 12.91 11.35 9.91

12033 – 12.94 11.33 9.90

12090 – 12.99 11.33 9.93

12162 14.27 13.14 11.51 10.08

12173 14.26 13.17 11.46 10.05

12176 – 13.08 11.43 10.03

12178 – 13.08 11.42 10.01

12188 – 13.02 11.39 9.99

12191 14.21 13.02 11.36 9.97

12247 14.04 12.95 11.33 9.93

that the star would have a magnitude intermediate
between its magnitudes before and after the eclipse
if it were outside the eclipse at this time. In this case,
the SD magnitude is Bsd ≈ 15m. 7 and, accordingly,
its color is (B–V )0,sd ≈ 1.5. If the primary minimum
is assumed to be a superposition of the secondary
minimum and some addition, then the colors of the
latter are (U–B)0 ≈ −1.2 and (B–V )0 ≈ 0. These
are close to the corresponding colors of the dense
gaseous envelope without any intense forbidden lines
in its spectrum. An appreciable part of the envelope
is eclipsed by the red giant at primary minimum, as
suggested by its significant amplitude in U .

The (B–V )0,sd color index for the secondary mini-
mum of 1998 is∼2.0, as estimated from our data, and
∼1.9, as estimated from the data of Hric et al. (2001).
If we reduce the latter estimate to our photometric
system, as was described above, then it will match our
estimate. Of course, this match should not be over-
stated. If an optically thick (in this wavelength range)
radiation source disappears from the observer’s field
of view during the secondary minimum, then accord-
ing to the (B–V )0,sd color, it must be cool enough.
Its color temperature is ∼3300 K for the minimum
of 2001.

Figure 3 shows the color variations of the SD with
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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Fig. 2. U–B, B–V , V –R′, and R′–I ′ colors versus
V magnitude: (1) and (2) the data for the primary and
secondary minima of the star, respectively; (3) the cor-
responding linear fits, which clearly show the color varia-
tions.

its visual brightness as the star passes through the
minimum of 2001. We see from this figure that as the
SD brightness rises, i.e., as the brightness of the star
approaches its minimum, the SD becomes redder as
does the PD.

The U light variations in YY Her during its sec-
ondary minimum are difficult to interpret in terms of
this phenomenon. If we had at our disposal only ob-
servations in this spectral band, in which the gaseous
envelope mainly radiates, then we would most likely
conclude that the observed light variations in the star
resulted from variations (for some reasons) in the
envelope brightness.

The Secondary Minimum in VcRcIc and V R′I ′

The depth of the secondary minimum in 1998 is
∆Vc ≈ 0.26, ∆Rc ≈ 0.16, and ∆Ic ≈ 0.16. Unfortu-
nately, we have noR′I ′ observations of YYHer during
the maximum decline in its brightness in 2001. These
were started during egress of the star from its mini-
mum, when the fading was ∆V ≈ 0.21, ∆R′ ≈ 0.16,
∆I ′ ≈ 0.16 and, accordingly, when the SD magni-
tudes were Vsd ≈ 14m. 7, R′

sd ≈ 13m. 4, I ′sd ≈ 12m. 0.
Thus, as the star passes through its secondary

minimum, its Vc–Rc and V –R′ color indices in-
crease; i.e., the star reddens. At the same time, its
color does not change in the red spectral band, as
suggested by the constant Rc–Ic and R′–I ′ color
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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indices (Fig. 2). The latter implies that the SD color
in the red spectral band is the same as the color of
the red giant, which almost completely determines
the stellar flux in this spectral band when YY Her is
in quiescence. The conclusion that the SD energy
distribution is at a maximum in I ′ can be directly
reached by calculating the corresponding fluxes from
its magnitudes given above and by constructing the
energy distribution in (λ, F (λ)) coordinates.

As was pointed out above, the R′ and I ′ observa-
tions of YY Her in 2001 were started during egress of
the star from its minimum and the fading was ∆V ≈
0.2, while ∆V ≈ 0.5 at the minimum. Assuming that
the ∆I ′/∆V ratio in this segment of the light curve
was the same as it was at the time when ∆V ≈ 0.21
(∆I ′/∆V ≈ 0.75), we find that the magnitude of the
SD it had at the minimum visual light of YY Her
was I ′ ≈ 11m. 4. Since its energy distribution is similar
to the energy distribution of the red giant, the de-
crease in bolometric flux during the secondary eclipse
in 2001 may be said to have accounted for ∼20% of
the bolometric flux from the cool component.

The Nature of the Secondary Minimum

Hric et al. (2001) assumed that the secondary
minimum was produced by an eclipse of part of the
red-giant surface by the circumstellar envelope of the
hot component. However, this envelope is optically
thin in continuum, as follows, in particular, from the
presence of a Balmer jump in its emission. Besides,
∼20% of the red-giant surface should be screened.
Such a large and hot screen would completely domi-
nate in the optical emission from YY Her.

However, the screen can be cool and optically
thick if it is associated with an accretion disk that
has been exhausted during the accretion outburst
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of the star caused by its instability and that again
began to build up when the star passed to quiescence
(Duschl 1986a, 1986b). Note that the binary system
YY Her is seen at a large angle (Tatarnikova et al.
2001), so the disk is seen almost edge-on (but the hot
component is open for the observer). Accordingly, for
this reason, it will appear as a cool radiation source.

Until the disk, while building up, reaches the crit-
ical surface density at which it eruptively passes to
an active state, the accretion rate is low (the disk
is passive) and the accretion luminosity of the hot
component can be appreciably lower than its intrinsic
luminosity if it is structurally the hot nucleus of a
young planetary nebula. In this case, the minimum
(quiescent) brightness of the hot component is deter-
mined by its intrinsic luminosity. Accordingly, after its
outburst, the star will each time return to the same
fixed appearance (Tatarnikova et al. 2000) typical of
the symbiotic stars that are not undergoing novalike
outbursts.

The star V443 Her may serve as an analog of
YY Her in quiescence. These stars have the same
orbital period, the same spectral type of cool compo-
nent, and the same ratio of bolometric luminosities of
the hot component (for YY Her in quiescence) and
the red giant. The only difference is that V443 Her
exhibits no novalike activity.

Tatarnikova et al. (2001) assumed that the sec-
ondary minimum resulted from an ellipsoidal shape
of the cool component of YY Her. In that case, the
deepening of the secondary minimumwith the bright-
ness of the star outside its minima preserved should
be attributed to variations in the shape of the cool
component and in the temperature of individual parts
of its surface. Recall that the secondary minimum
deepened by a factor of ∼2 over two orbital periods.
This implies that the restructuring, say, on the ther-
mal scale of the red giant must be eruptive in nature
and may serve as a precursor of a new outburst of
YY Her. In this hypothesis, the similarity between
the shapes of the primary and secondary eclipses is
something of a mystery.

Of particular interest is the fact that the amplitude
of the secondary minimum in V is appreciably larger
than in R and I. In I, as was mentioned above, the
cool component gives an overwhelming contribution
to the total flux. In V , apart from the contribution of
the red giant, there is an addition due to the radiation
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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from the gaseous nebula. In that case, the amplitude
of the secondary minimum in V must be smaller than
in I (if the temperature distribution over the cool-
component disk is disregarded). The cool screen may
eclipse the hotter part of the red giant (the reflection
effect); hence the large amplitude in the visual band.
In this case, however, the SD must become bluer as
the center of the secondary minimum is approached.

Munari et al. (1997b) introduced the concept of
a warm component, as applied not only to the active
state of YY Her but also to its quiescence. Thus,
the IUE spectrum taken on May 25, 1980, at phase
ϕ ≈ 0.27 (see Fig. 4) cannot be represented by the
standard three-component model (the hot compo-
nent, the gaseous nebula, and the cool component).
An additional radiation source whose continuum en-
ergy distribution is modeled by a Planck function with
temperature 10000–13000 K is required to be intro-
duced. For a temperature of 13000 K, the dereddened
magnitudes of the warm component are Uwarm =
13m. 78, Bwarm = 14m. 72, Vwarm = 14m. 73. However,
three months later, this radiation source ceased to
show up in the UV continuum energy distribution.
The spectrum taken on August 12, 1980, (ϕ ≈ 0.41)
exhibits no deviations from the standard model (see
Munari et al. 1997b).

Subtracting the radiation source with the above
magnitudes from the UBV estimates for the max-
imum of 2001 yields a secondary minimum with a
depth ∆U ≈ 0m. 25, ∆B ≈ 0m. 25, ∆V ≈ 0m. 11. How-
ever, the U light curve can often reflect the light
variations in the gaseous envelope attributable to in-
trinsic variability of the hot subdwarf. Munari et al.
(1997b) showed that such variations take place for
the quiescent state of YY Her. In addition, the above
amplitudes of the minimum strongly depend on the
assumed temperature of the warm component. The
latter can be determined more or less accurately only
when simultaneous UV and optical spectroscopic
observations are available. Unless the presence or
absence of a near-UV excess is attributed to the
appearance or disappearance of the warm component,
it should be assumed that the variability of this excess
results from different areas of the warm-component
projection onto the plane of the sky. Note that in this
case, the warm component cannot be an accretion
ASTRONOMY LETTERS Vol. 28 No. 9 2002
disk. This radiation source must be a nonspherical
component located between the hot and cool com-
ponents [of the hot-line type introduced by Bisikalo
et al. (1998) for cataclysmic variables].

Optical spectrophotometry reveals a modest con-
tribution from the warm component at the maxima
of 1995 and 1996. In both cases, the excess pro-
duced by the warm component appeared after egress
from the primary minimum (ϕ ≈ 0.25) and disap-
peared near the secondary minimum (ϕ ≈ 0.5). There
is no doubt that the presence or absence of such a
warm component will in no way affect themagnitudes
in R and I, where the photometric variability is at-
tributable to the ellipsoidal shape of the red giant. In
the visual band, however, both these effects can play
a role.
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Abstract—We propose a solution to one of the oldest problems in the solar-dynamo theory: explaining
the equatorward drift of magnetic activity in the solar cycle. The well-known suggestion that the dynamo
waves propagate along the surfaces of constant angular velocity is shown to be restricted to an isotropic
medium. Allowance for the rotation-induced anisotropy in turbulent diffusion leads to an equatorward
deviation of the wave phase velocity from the isorotational surface. Estimates for the dynamo waves are
illustrated with two-dimensional numerical models in a spherical geometry. The model with anisotropic
diffusion also shows an equatorward drift of the toroidal magnetic field when the rotation is radially uniform.
c© 2002 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

One of the difficulties of the solar-dynamo theory
has long been a mismatch between the propagation
direction of dynamo waves expected from the internal
rotation of the Sun and the observed equatorward drift
of activity (Parker 1987). The dynamo waves migrate
along the so-called isorotational surfaces (the sur-
faces of constant angular velocity; Yoshimura 1975).
Therefore, before the emergence of helioseismology,
the fact that the angular velocity in the solar inte-
rior increases with depth was considered to be al-
most obvious. Only in this case was it possible to
achieve agreement with observations. However, he-
lioseismology shows that the angular velocity de-
pends on the depth only slightly (Schou et al. 1998).

A thin layer at the base of the convection zone
where the radial rotation nonuniformity is signifi-
cant constitutes an exception. However, the assump-
tion of the dynamo action in this layer leads to even
greater difficulties. First, the toroidal field at the base
of the convection zone must reach∼105 G to account
for the active regions observed on the solar surface
(Schüssler et al. 1994). For the differential rotation to
generate such a strong toroidal field during the solar
cycle, the poloidal field must have a strength of more
than 100 G, i.e., two orders of magnitude larger than
the observed strength. Second, as can be easily esti-
mated, the Lorentz force from such strong fields will
destroy the differential rotation in less than one year.
Third, the angular velocity at the base of the convec-
tion zone at low latitudes decreases with depth. In this

*E-mail: kit@iszf.irk.ru
1063-7737/02/2809-0626$22.00 c©
case, the dynamo waves drift equatorward only when
the helicity of convective motions is positive (a nega-
tive alpha-effect). The dynamo equations then give a
phase relation between the poloidal and toroidal field
opposite to the observed one (Stix 1976). An alterna-
tive to the dynamo action throughout the convection
zone can hardly be found. Note that large-scale fields
in a turbulent medium are subjected to magnetic
buoyancy only slightly (Kichatinov and Pipin 1993a,
1993b). However, the problem of the latitudinal drift
of magnetic activity mentioned above remains.

Here, our goal is to draw attention to the fact
that the validity of the generally accepted sugges-
tion that the dynamo waves propagate along isoro-
tational surfaces is restricted to the simplest case of
an isotropic medium. The solar rotation breaks the
isotropy. Under the effect of Coriolis forces, the char-
acteristic scales of the convective motions along and
across the rotation axis differ significantly (Gillman
and Miller 1986). As a result, a difference in the ef-
fective magnetic diffusion coefficients arises for these
two directions (Kitchatinov et al. 1994). Note that the
anisotropy emerges for the same reason (rotation) as
the dynamo effect. This naturally leads to the problem
of dynamo waves in an anisotropic medium.

As we show in the next section, the anisotropy
in turbulent diffusion affects the threshold dynamo
number and, more importantly, gives rise to a phase
velocity component normal to the isorotational sur-
face. For the solar conditions, this gives an additional
equatorward drift of the dynamo waves.

Below, we illustrate these results by numerical so-
lutions of the two-dimensional dynamo problem. Our
2002 MAIK “Nauka/Interperiodica”
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calculations including anisotropy show an equator-
ward drift of the toroidal field even when the angular
velocity depends only on latitude but not on radius.

DYNAMO WAVES IN AN ANISOTROPIC
MEDIUM

Dynamo waves, probably, give the simplest exam-
ple of a hydromagnetic dynamo. The validity of the
wave approximation is restricted by the condition of
the field spatial scale being small compared to the
system size. This scale ratio is not typical of ac-
tual objects. Nevertheless, the results of global (that
do not assume the field scale to be small but that
take into account the object geometry and boundary
conditions), generally numerical models are excel-
lently explained in terms of dynamo waves. In the
wave approximation, great progress can be made by
using analytic methods and the physics of the cor-
responding dynamo mechanisms can be elucidated
(Kuzanyan and Sokoloff 1995, 1997; Galitskiı̆ and
Sokoloff 1998). Therefore, we also begin our dis-
cussion of the role of anisotropy with an analysis of
dynamo waves.

We proceed from the induction equation for the
mean field (see, e.g., Krause and Rädler 1980),

∂B/∂t = curl(V × B + αB − ηcurlB (1)

− η‖e × ((e · ∇)B)).

In this equation, η means the isotropic turbulent-
diffusion component of the magnetic field, η‖ includes
anisotropy and means the additional diffusion along
a unit vector e; i.e., the diffusion coefficient is η + η‖
for the direction of e and η for all of the directions
normal to e. All coefficients in Eq. (1) are assumed to
be constant, irrespective of the coordinates, except for
the velocityV, which represents a flow with a uniform
shear:

V = j(G · r), (2)
ASTRONOMY LETTERS Vol. 28 No. 9 2002
where j is a unit vector along the flow, G is the
coordinate-independent shear vector normal to j, and
r is the radius vector. The alpha effect of cyclonic
convection (Krause and Rädler 1980) is represented
in Eq. (1) by the tensor α, which can also con-
tain anisotropy. However, below, we restrict our
analysis to the so-called αΩ-dynamo (Krause and
Rädler 1980). Since only one of the components of
the tensor α is significant for it, the anisotropy of the
alpha effect is of no importance.

Since the direction of j corresponds to the longi-
tude on the Sun and since the preferential direction
of anisotropy e coincides with the rotation axis, we
assume e to be normal to j. The magnetic field is
assumed to be uniform along j and to be a superposi-
tion of the toroidal (B) and poloidal components. The
latter is determined by the toroidal potential A:

B = jB + curl(jA). (3)

The linear dynamo problem reduces to the eigen-
value problem for plane waves:

B,A ∼ exp(σt + ik · r), k · j = 0. (4)

Substituting (2)–(4) in Eq. (1) yields

σB = −i((k ×G) · j)A− (ηk2 + η‖(k · e)2)B (5)

σA = αB − (ηk2 + η‖(k · e)2)A.

Here, α is the azimuthal component of the tensor
α: α = αmnjmjn. Recall that we consider the αΩ-
dynamo; i.e., the toroidal field is generated solely by
a shear flow, not by the alpha effect.

From the condition of consistency of Eqs. (5),
we determine the eigenvalues that can correspond to
undamped, Re(σ) ≥ 0, waves,
σ = −ηk2 − η‖(k · e)2 +




(1 + i)
√

1
2α((G × k) · j) for α((G × k) · j) > 0

(1 − i)
√

−1
2α((G × k) · j) for α((G × k) · j) < 0.

(6)
Separating out the real and imaginary parts in the
eigenvalue, σ = γ − iω, we find the wave frequency,

ω = ∓
√

1
2
|α((G × k) · j)|, (7)

where the upper and lower signs correspond to the
upper and lower rows in formula (6). The relation for
the dimensionless increment γ̂ = γ/(ηk2) is

γ̂ = −1 − a cos2(θ − φ) +
√

|D sinφ|. (8)

Here, a = η‖/η is the anisotropy parameter; θ and φ

are the angles formed by the rotation axis (e) and the
wave vector k, respectively, with the shear vector G;
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Fig. 1. (a) Critical dynamo number (9) versus angle θ between the anisotropy direction and the shear vector G; (b) the same
diagram for the angleφ between the dynamo-wave velocity (10) and the vectorG. The dotted lines correspond to the secondary
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and

D =
αG

η2k3
(9)

is the dynamo number.
The observed latitudinal migration of solar activity

is attributed to the propagation of dynamo waves.
In this case, we must decide precisely which wave
velocity, the phase or group velocity, is meant. The
group velocity at which the wave energy is transferred
is believed to have a deeper meaning. Indeed, for wave
perturbations in the absence of dissipation, energy
is conserved and the direction of the energy flux is
of great importance. The situation with the dynamo
wave is completely different. Such waves continu-
ously exchange energy with the turbulent medium.
The dynamo-wave energy is not conserved. By the
latitudinal migration of solar activity, we mean time
variations of the latitude with the highest formation
rate of active regions. In other words, the motion of
the dynamo-wave crest is observed. This is, of course,
the phase velocity

vp = kω/k2. (10)

In the absence of anisotropy (a = 0), the field
strengthens when the dynamo number exceeds the
critical value Dcr = 1. In this case, the phase velocity
for neutrally stable perturbations is directed along the
normal to the shear vector G, which corresponds to
the well-known wave propagation along isorotational
surfaces (Yoshimura 1975). The choice between the
two possible propagation directions on this surface is
determined by the sign of the dynamo number.
Let us now consider the effect of anisotropy. For
large-scale solar convection, the Coriolis number is
Ω∗ = 2τΩ � 6 (Durney and Latour 1978); τ is the
rotation time of a convective cell. For such Ω∗, rota-
tion significantly perturbs the convection and a quasi-
linear theory (Kitchatinov et al. 1994) yields sim-
ilar (in magnitude) coefficients η and η‖ ; i.e., the
anisotropy parameter is a = η‖/η ∼ 1. Without loss
of generality, we may assume the dynamo number to
be positive and the angles θ and φ to be within the
range 0 to π. In Fig. 1, the critical dynamo number
and the angle φ between the wave phase velocity (10)
and shear vector G are plotted against the angle θ
between the vector G and the anisotropy direction
(rotation axis). As can be seen, anisotropy increases
Dcr, which is attributable to the additional diffusion
η‖ . The velocity vp acquires a component normal to
the surfaces of constant flow velocity.

This change in the direction of wave propaga-
tion can be explained by the fact that it reduces the
diffusion losses. For a fixed magnitude of the wave
vector, the effect of the additional diffusion along
e will decrease as the angle between this direction
and the velocity vp approaches π/2. Only for paral-
lel (or antiparallel) orientation of the anisotropy and
shear vectors do the waves propagate as usual along
the surfaces of constant flow velocity. For the other
anisotropy orientations, the waves propagate at an
angle to the isorotational surfaces while tending to
minimize the diffusion losses (θ − φ→ π/2). As we
see from Fig. 1, this angle is not small. The discon-
tinuity in the θ dependence of φ near θ = π/2 stems
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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Fig. 2. Maunder diagrams for the model with isotropic diffusion (a = 0). Isolines of the radial (a) and azimuthal (b) field
components on the surface are shown. The solid and dotted lines indicate the positive and negative levels, respectively. There
is virtually no latitudinal migration of the toroidal field.
from the fact that there are two maxima here in the
φ dependence of increment γ (8); the position of each
of them continuously changes with θ but the larger
maximum, which determines Dcr, passes from one
branch to the other as θ passes through π/2. The
value of φ corresponding to the smaller (secondary)
maximum of increment (8) is indicated in Fig. 1 by
the dotted line.

If the rotation rate in the solar convective envelope
is assumed to depend on the latitude alone, then the
vectorG is directed toward the equator. The dynamo-
wave velocity also deviates equatorward from the ra-
dial direction, which is required to reconcile theory
with observations.

GLOBAL MODELS

Let us illustrate the results of the previous section
with numerical solutions of the dynamo equations in
a spherical geometry.
ASTRONOMY LETTERS Vol. 28 No. 9 2002
We take the convection zone, i.e., a spherical layer
with the upper boundary re = R� = 6.96 × 1010 cm
and the base ri = 0.7R� to be the region of dynamo
action. The mean diffusion coefficient η0 between the
directions along and across the rotation axis is as-
sumed to be constant, irrespective of the coordinates,

η0 = η + η‖/2 = 1012 cm2 s−1. (11)

The coefficient α = αφφ of the alpha effect is as-
sumed to depend on colatitude θ (below, θ is the
colatitude) as cos θ and to be independent of depth:

α =
α0 cos θ

1 + (B/Beq)2
. (12)

Here, we took into account the simplest nonlinearity
in the form of suppression of the alpha effect by the
magnetic field; the magnitude of the equipartition field
Beq is taken to be 3000 G.

Let us consider axisymmetric (longitude-indepen-
dent) solutions of the induction equation (1) with
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Fig. 3. Same as Fig. 2 for anisotropic diffusion (a = 1). Anisotropy results in an equatorward drift of the toroidal field.
boundary conditions. For the base of the convection
zone, we use the condition for the interface with a
superconducting medium:

ε × n = 0 for r = ri, (13)

where n is the normal vector to the surface and ε
is the so-called mean EMF (see, e.g., Krause and
Rädler 1980); i.e., the vector under the curl sign on
the right-hand side of the induction equation (1).
On the outer surface, we use the nonlinear condition
(Kitchatinov et al. 2000) for the toroidal field that
corresponds to the field escape through this surface
because of instability against the formation of mag-
netic loops:

εθ +
η0

R�

B

B0
= 0 for r = R�. (14)

The threshold value B0 = 200 G was chosen to
agree with the observed strengths (200–600 G) of
the fields that escape through the solar surface when
active regions are formed (Zwaan 1992; Lites et al.
1998).
In the absence of a proper boundary condition
for the poloidal field, we use the standard (quasi-
vacuum) condition that requires the vertical orienta-
tion of the field lines on the surface,

∂rA/∂r = 0 for r = R�. (15)

To consider the role of anisotropy in a pure form,
we eliminate the effect of radial rotation nonuniformity
on the latitudinal drift of the field by assuming the
angular velocity to be uniform in depth and latitude-
dependent, in agreement with the Doppler measure-
ments of Howard and Harvey (1970):

Ω = 2.78(1− 0.13 cos2 θ− 0.16 cos4 θ)µ rad s−1.
(16)

Recall that the field generation takes place when
the dynamo number exceeds some critical value. This
critical value depends on the anisotropy parameter
a = η‖/η. Below, we compare the results for the
isotropic (a = 0) and anisotropic (a = 1) cases. The
critical values of Cα = α0R�/η0 for these cases
are 2.69 and 2.51, respectively. The solar dynamo
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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is assumed to be slightly supercritical. The results
presented below correspond to dynamo numbers
exceeding the threshold values by 10%, i.e., Cα =
2.96 and Cα = 2.76 for the isotropic and anisotropic
case, respectively.

Figure 2 shows the computed field isolines in
latitude–time coordinates (Maunder diagram) in the
absence of anisotropy (a = 0). In essence, these cal-
culations reproduce the result of Köhler (1973) that
there is no latitudinal drift of the field in an isotropic
medium when the rotation is radially uniform. There
is only a latitudinal diffusion “spread” of the field.

Note that the cycle period in the model under
discussion is approximately a factor of 3 shorter than
the observed period. The computed period can be
increased (or decreased) by decreasing (increasing)
the diffusion coefficient η0 . Such model adjustment
is unlikely to be meaningful. The assumed η0 =
1012 cm2 s−1 was already slightly underestimated.
The computed cycle appears to be too short, because
there is no proper boundary condition for the poloidal
field (Kitchatinov et al. 2000).

Figure 3 shows the results of our calculations
including anisotropy. As expected from our estimates
for the dynamo waves, an equatorward drift of the field
emerges. Note once again that it was obtained when
the angular velocity was radially uniform. In all like-
lihood, allowance for the rotation-induced anisotropy
in turbulent diffusion of the magnetic field solves one
of the oldest problems in dynamo theory concerning
the origin of the equatorward drift of magnetic activity
in the solar cycle.
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Abstract—We investigate the role of nonlinear Alfvén-wave interaction in the diffusive shock acceleration
of solar-wind ions at the Earth’s bow shock. Allowance for the nonlinear wave interaction through
induced scattering and two-quanta absorption at plasma parameters β � 0.1 is shown to limit the Alfvén-
wave amplitude δB to δB � B, whereas the quasi-linear approach predicts the generation of waves with
amplitudes much larger than the diffusive shock magnetic field strengthB. The nonlinear interaction results
in spectral wave energy transfer to lower frequencies, which yields a significant increase in the particle
acceleration rate. c© 2002 MAIK “Nauka/Interperiodica”.

Key words: solar wind, Alfvén waves, Earth’s bow shock, diffusive acceleration.
INTRODUCTION

The development of a theory for diffusive shock
acceleration [see, e.g., the review article by Berezhko
and Krymsky (1988) and the monograph by Berezhko
et al. (1988)], as applied to interplanetary phenom-
ena, is needed to gain a complete understanding of
how the energetic-ion spectra are formed at shock
fronts. The numerous measurements performed at
the Earth’s bow-shock front suggest an intensive
generation of energetic ions (the so-called diffusive
component), which is almost always accompanied by
a significant increase in Alfvén turbulence (see, e.g.,
Childers and Russell 1972; Trattner et al. 1994). Pre-
viously (Berezhko and Taneev 1991, 1992; Berezhko
et al. 1997), we studied the acceleration of ions at
the Earth’s bow shock in the quasi-linear approxi-
mation. Our calculations showed that for some sets
of solar wind parameters, the amplitude of the waves
generated by accelerated particles, δB, can reach or
even exceed the interplanetary magnetic field (IMF)
strength B. In this case, the quasi-linear approach
becomes inapplicable and the nonlinear wave inter-
action must be taken into account.

Under typical conditions of a quasi-parallel shock
(we restrict our analysis to this simple case), the ac-
celerated particles (ions) excite mostly Alfvén waves
propagating along the diffusive shock magnetic field.
For these conditions, the principal mechanisms of
nonlinear Alfvén-wave interaction are induced scat-
tering and two-quanta absorption (Fedorenko et al.
1990, 1995; Zirakashvili 2000).

*E-mail: taneev@ikfia.ysn.ru
1063-7737/02/2809-0632$22.00 c©
Here, we study the diffusive shock acceleration of
ions at the Earth’s bow-shock front by taking into
account the nonlinear Alfvén-wave interaction.

THE MODEL

The problem under consideration was formu-
lated in the quasi-linear approximation previously
(Berezhko and Taneev 1991, 1992; Berezhko et al.
1997; see also Lee 1982). Therefore, we present here
only its main content with the inclusion of elements
that take into account the nonlinear Alfvén-wave
interaction.

Since the diffusive component is observed under
typical conditions of a quasi-parallel shock (the an-
gle ψ between B and u is less than 45◦), we assume
that the IMF B is directed radially, just as the solar-
wind velocity u, along the x axis of the reference
frame whose origin is associated with the shock front
(to be more precise, with the forward part of the
shock, which in our model is assumed to be plane
and perpendicular to the solar-wind velocity). Given
that the ions are highly magnetized (κ‖ � κ⊥), the
equation for their distribution function f(x, v, t) in the
upstream region (x < 0) can be represented as

∂f

∂t
=

∂

∂x

(
κ‖

∂f

∂x

)
− u

∂f

∂x
− f

τ⊥
, (1)

where κ‖ and κ⊥ are the parallel and perpendicular
(with respect to IMF) diffusion coefficients of the
ions, respectively; and v is their velocity. Below, we
disregard the Alfvén velocity ca compared to u; this is
2002 MAIK “Nauka/Interperiodica”
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justified for the solar-wind conditions (ca � u). The
last term in Eq. (1) describes the particle escape from
the acceleration region through diffusion across IMF
field lines with the time scale

τ⊥ = a2/κ⊥,

where a is the effective transverse size of the shock,
i.e., of the acceleration region y2 + z2 ≤ a2. As pre-
viously (Berezhko and Taneev 1991, 1992; Berezhko
et al. 1997), the size of the acceleration region is
taken to be a = 4.2RE , where RE is the Earth’s ra-
dius.

At the shock front (x = 0), at which the solar-
wind velocity decreases by a factor of σ (σ is the
compression ratio at the shock front), Eq. (1) is sup-
plemented with the boundary condition

u

q
v
∂f

∂v
+ κ‖

∂f

∂x
= Q0, (2)

where

Q0 = u
Ninj

4πv2
inj

δ(v − vinj)H(t) (3)

is the source concentrated at the shock front that
injects into the acceleration uNinj particles with ve-
locity vinj per unit front surface area per unit time,
q = 3σ/(σ − 1). The Heaviside step function H(t) in
this expression indicates that the source switched on
at time t = 0.

Presently, there is no comprehensive theory of the
shock transition in a strong quasi-parallel collision-
less shock wave that could predict the number of
injected particles. Therefore, we assume that some
fraction η � 1 of solar-wind particles are drawn into
diffusive shock acceleration: Ninj = ηN , where N is
the number density of the solar-wind ions.

The diffusion of particles is attributable to their
resonant interaction with MHD waves, in our case,
with Alfvén waves:

κ‖ =
v2B2

32π2ωBEw

(
k = ρ−1

B

) , (4)

κ‖κ⊥ = ρ2
Bv

2/3.

Here, ρB = v/ωB is the gyroradius,ωB is the gyrofre-
quency, and Ew(k) = d(δB2/8π)/d ln k is the energy
density of the Alfvén waves. The particles interact
only with waves whose wave number k is equal to the
reciprocal of the particle gyroradius.

The spectrum of the Alfvén waves in the undis-
turbed solar wind,

Ew0 = Ew(x = −∞, k, t = 0) (5)

is a mixture of the E+
w (E−

w ) waves propagating away
from (toward) the Sun relative to the coordinate sys-
tem associated with the solar wind, Ew = E+

w + E−
w .
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Note that specifying the boundary conditions corre-
sponding to the unperturbed solar wind at x = −∞
should not lead to misunderstanding. An infinitely
large distance from the shock front actually implies a
distance |x| � 100RE ∼ 1011 cm to which no accel-
erated particles penetrate and, accordingly, no Alfvén
waves are excited. At the same time, this distance
is much smaller than the Earth’s orbital radius,
∼1013 cm, which justifies the plane-wave geometry
used here.

Induced scattering and two-quanta absorption are
taken into account by adding the last two terms to
the transfer equation for Alfvén turbulence, which
describes the modification of the background Alfvén-
wave spectrum by accelerated particles:

∂E±
w

∂t
+ u

∂E±
w

∂x
= ∓ΓE±

w + Γ±
NLE

±
w + Q±. (6)

Here,

Γ =
12π3ca
kc2

∑
s

(Ze)2

Am
(7)

×
∞∫

vmin

dv′v′
(

1 − ω2
B

k2v′2

)
κ‖

∂f

∂x

is the increment of wave excitation by the accelerated
particles; vmin = max (vinj, ωB/k); c is the speed of
light; Z and A are the charge and mass numbers of
the ion of sort s, respectively (to save space, the index
of the ion sort in the corresponding quantities was
omitted); e and m are the proton charge and mass;
ca is the Alfvén velocity;

Γ±
NL = −kc2a

EB

∞∫
0

S(k, k′)E∓
w (k′)dk′ (8)

is the nonlinear increment whose kernel for a plasma
parameter β � 1 is (Fedorenko et al. 1995)

S(k, k′) = a0

{
k − k′

k + k′
exp

[
− 1

2β

(
k − k′

k + k′

)2
]

(9)

+

∣∣∣∣∣
k + k′

k − k′

∣∣∣∣∣ exp

[
− 1

2β

(
k + k′

k − k′

)2
]}

,

where a0 = π3/2/(32β
√

2β); EB = B2/8π is the
IMF energy density; β = (vT/ca)2 is the plasma
parameter, vT is the thermal ion velocity in the
undisturbed solar wind.

Allowance for the nonlinear interaction between
Alfvén waves inevitably transforms their spectrum
even in the absence of accelerated particles. As a
result, for Γ = 0, the boundary spectrum Ew0(k)
specified at x = −∞ and the spectrum at the shock
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front Ew(x = 0, k) turn out to be different. This is
inadmissible, because, as was noted above, although
the entire upstream region x < 0 under consider-
ation is formally infinitely large, it corresponds to
a relatively small solar-wind region. To avoid this
discrepancy, we introduced the following source into
the transfer equation for waves;

Q± = kc2a
E±

w

EB

∞∫
0

S(k, k′)E∓
w0(k

′)dk′. (10)

This source, on the one hand, ensures the required
equality Ew(x = 0, k) = Ew0(k) for Γ = 0 and, on
the other hand, has no significant effect on the wave
evolution near the shock front, because Ew0(k) is
relatively small.

The formulated problem (1)–(10) can be solved
numerically.

RESULTS OF THE CALCULATIONS

The calculations whose results are shown in
Figs. 1–3 were performed for the typical solar-
wind velocity u = 400 km s−1, Alfvén velocity ca =
60 km s−1, proton number density N = 4 cm−3,
IMF strength B = 6 × 10−5 G, and shock com-
pression ratio σ = 3.5. In the frequency range ν =
10−3–10−1 Hz under consideration (here, ν = ku/2π
is the frequency perceived by a stationary observer),
the observed Alfvén-wave spectrum near the Earth’s
orbit is [see Russell (1972) and the review article by
Tu and Marsh (1995)]Ew(ν) = Ew(k = 2πν/u)/ν ∝
ν−3/2. Therefore, given the observed amplitudes, the
background Alfvén-wave spectrum was taken in the
form

E±
w0(k) = E±

0 (k/k0)−1/2, (11)

E0 = E+
0 + E−

0 = 6.87 × 10−14 erg cm−3,

where k0 = ωB/vinj is the wave number correspond-
ing to the waves that resonantly interact with protons
with velocity vinj; ωB is the proton gyrofrequency. The
calculation is consistent with the assumption that in
the background spectrum, there are a factor of 2 more
waves propagating away from the Sun than those
with the opposite direction (E+

0 = 2E−
0 ). Analysis

of experimental data indicates that this proportion
is typical of the slow equatorial solar wind near the
Earth’s orbit (Horbury 1999). The fraction (injection
rate) of the particles injected into the acceleration is
taken to be η = 7.6 × 10−3; according to measure-
ments (Trattner et al. 1994), this is a typical value. In
our calculations, apart from protons, we also take into
account the acceleration of α-particles whose num-
ber density is assumed to be 0.05N = 0.2 cm−3. The
solar-wind protons and α-particles have the same
velocity distribution. Therefore, the energy of the in-
jected protons and α-particles was taken to be εinj =
5 and 20 keV, respectively.

Since the nonlinear Alfvén-wave interaction sig-
nificantly depends on the plasma parameter β, the
calculations given below were performed for β =
0.01, 0.1, 1, which may occur in the solar wind.
Different solar-wind temperatures correspond to
different β.

Figures 1a and 1b show the calculated differential
(with respect to the kinetic energy) intensity of the
accelerated protons,

J(ε) = v2f(v, t)/m

and Figs. 1c and 1 d show the Alfvén-wave spectrum,

Ew(ν) = Ew (k = 2πν/u)/ ν

at the shock front for six times: t/t0 = 5 × 10−3, 0.9,
2.8, 4.8, 8.0, 36.7, where ν = ku/2π is the wave fre-
quency perceived by a stationary observer. The char-
acteristic acceleration time scale t0 = κ‖0(vinj)/u2 =
0.48 h is determined by the proton diffusion coefficient

κ‖0(v) =
v2B2

32π2ωBEw0

(
k = ρ−1

B

) ,
that corresponds to the background turbulence. At
t = 36.7t0, the solution differs from the steady-state
solution by no more than one percent.

Figures 1e and 1f show the energy density of the
Alfvén waves excited by the accelerated particles,

W =
1
EB

∞∫
0

[Ew(ν, t) − Ew0(ν)]dν,

Ew(ν, t) = E+
w (ν, t) + E−

w (ν, t)

and the pressure of the accelerated particles,

Ps =
4πms

3ρu2

∞∫
vinj

dvv4fs(v, t)

at the shock front referred to the dynamic pressure
ρu2 as a function of time, where ρ is the solar-wind
density and s is the sort of ions.

Figures 1a, 1c, 1e and 1b, 1d, 1f show the results
of our calculations performed in the quasi-linear
approximation and with allowance for the nonlinear
Alfvén-wave interaction for β = 0.1, respectively.
Comparison of the two calculations indicates that
the nonlinear interaction significantly changes the
temporal behavior of the proton acceleration. As we
see from comparison of Figs. 1c, 1e and Figs. 1d,
1f, allowance for the nonlinear interaction leads to a
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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Fig. 1. (a, b) The differential intensity of the accelerated protons, (c, d) the Alfvén-wave spectrum and the wave energy
density W , and (e, f) the pressures of the accelerated protons, Pp, and α-particles, Pα, at the Earth’s bow-shock front
for three calculations: quasi-linear (a, c, e), nonlinear (b, d, f) at β = 0.1, and linear (e, f) (dashes) for six times: t/t0 =

5× 10−3, 0.9, 2.8, 4.8, 8.0, 36.7. The calculations were performed with the following set of parameters: the solar-wind velocity
u = 400 km s−1, solar-wind proton density N = 4 cm−3, IMF strength B = 6 × 10−5 G, compression ratio at the shock
front σ = 3.5, size of the acceleration region a = 4.2 RE, particle injection rate η = 7.6 × 10−3, amplitude of the background
Alfvén-turbulence spectrum E0 = 6.87 · 10−14 erg cm−3, E+

w0 = 2E−
w0, and time scale t0 = 0.48 h.
significant restriction of the Alfvén turbulence level
at intermediate times: in comparison with the quasi-
linear calculation (Fig. 1c), during the period 2.8 �
t/t0 � 8, the wave energy density Ew(ν) near the
ASTRONOMY LETTERS Vol. 28 No. 9 2002
spectral peak (ν � 2 × 10−2 Hz) and the total energy
content W of the waves excited by the accelerated

particles decrease by almost a factor of 104. In this
case, the energy content W does not exceed 10, which
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corresponds to a maximum wave amplitude δB �
3B. During the initial stage of the acceleration pro-
cess (t/t0 < 0.3) and as a steady state is approached
(t/t0 > 20), the effect of nonlinear interaction is neg-
ligible, because the Alfvén-wave amplitude calculated
in the quasi-linear approximation is low, W < 1. The
latter, in turn, is attributable to the low energy content
of the accelerated particles (see Fig. 1e). Recall that
the extremely high generation rate of Alfvén waves
at intermediate time (in our case, for 1 � t/t0 �
10) is a direct result of overacceleration, which is
purely a nonstationary phenomenon (Berezhko and
Taneev 1991, 1992; Berezhko et al. 1997).

The pattern of the steady-state Alfvén-wave spec-
trum can be easily understood by analyzing Eqs. (6)
and (7) for the E−

w waves excited by the acceler-
ated particles. First, let us turn to the spectral range
ν < νinj. Given the relation ν = ku/2π and the reso-
nance condition k = ωB/v, the wave spectrum Ew(k)
may be considered to be a function of the velocity,
Ew(v = ωB/k). In the steady-state case, ignoring the
nonlinear interaction, Eq. (6) can be approximately
integrated if we substitute Ew(x, v) for the energy
density Ew(x, v′) under the integral in expression (7).
In this case, assuming, for simplicity, that Ew � E−

w
and taking into account only the proton contribution,
the solution to (6) at the shock front (x = 0) is

Ew(v) = Ew0(v) +
8πcamv

u
(12)

×
∞∫

v

dv′v′3
(

1 − v2

v′2

)
f0(v′),

where f0(v) = f(x = 0, v) is the proton distribution
function at the shock front. Thus, we see that when
the number of accelerated particles with velocity v
is large enough so that mv5fca/u � Ew, the self-
consistent Alfvén turbulence Ew � Ew0 dominates
in the corresponding ranges of wave numbers k =
ωB/v and frequencies ν = ku/2π.

In the energy range εinj = 5 keV to ε = εmax �
40 keV, the steady-state proton spectrum is close
to a power law (Figs. 1a, 1b), J ∝ ε1−q/2, where
the index q = 3σ/(σ − 1) � 4.2 specifies the velocity
dependence of the distribution function, f ∝ v−q. In
our case, q = 4.2. According to (12), the wave spec-
trum Ew ∝ ν6−q = ν−1.8 corresponds to this spec-
trum in the corresponding frequency band ν = νmax −
νinj = (1.3–4) × 10−2 Hz. Comparison of this spec-
trum with the calculated spectrum reveals their dif-
ference: our calculation shows an excess near the fre-
quency νmax = 1.3× 10−2 Hz and a reduction relative
to the purely power law at slightly higher frequencies,
ν � 2.5× 10−2 Hz. Quantitatively, these features can
be understood if it is considered that expression (7)
for the increment can be written by discarding the
constant factors as

Γ(x, v) ∝ Ew(x, v)
Ew(x, v∗)

(13)

×
∞∫

v

dv′v′3
(

1 − v2

v′2

)
∂f

∂x
,

where v∗ > v. In deriving expression (12), we as-
sumed that v∗ = v. The presence of an additional
factor, δ = Ew(x, v)/Ew(x, v∗), must cause Ew(v) to
increase in the velocity range where expression (12)
gives a maximum of Ew(v), because δ > 1 in this
case. By contrast, δ < 1 in the intermediate range
vinj < v < vmax, because Ew(v) < Ew(v∗) and the
factor δ leads to a reduction of the spectrum.

The proton energies ε > εmax at which the proton
spectrum exponentially falls off correspond to fre-
quencies below νmax = 1.3 × 10−2 Hz. Therefore, as
ν decreases in the range ν < νmax, the self-consistent
wave spectrum Ew(ν) rapidly approaches the back-
ground spectrum Ew0(ν) (Figs. 1c and 1d).

Note that relations (12) and (13) can also be
used to qualitatively interpret the behavior of the
wave spectra at intermediate times. In this case, one
should take into account the fact that, because of
the overacceleration effect, the high-energy tail of the
accelerated-proton spectrum at intermediate stages
falls off much more steeply than that of the steady-
state spectrum (see Fig. 1a). As a result, the factor
δ = Ew(v)/Ew(v∗) in expression (13) becomes large
as v approaches the end of the steady-state part of the
spectrum. The latter produces a significant excess in
the amplitude of the Alfvén waves in the region of
their spectral peak at intermediate stages above the
steady-state spectrum (see Fig.1c).

The behavior of the self-consistent spectrum
Ew(ν) at frequencies ν > νinj can be understood
similarly.

The accelerated-particle pressure (Figs. 1e and 1f)
monotonically increases with time without exceeding
0.1ρu2, which justifies the neglect of shock modifica-
tion due to the particle pressure backreaction.

Apart from the calculations under consideration,
Figs. 1e and 1f show a linear calculation performed
by assuming that no Alfvén waves are generated by
the accelerated particles, i.e., for Γ = 0. In this case,
as we see from Fig. 1f, an equilibrium spectrum of
α-particles is established with a delay from that of
protons. This is because the number of accelerated
α-particles is too small to excite the Alfvén waves
resonantly interacting with them to a nonlinear level.
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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Fig. 2. Same as Figs. 1b, 1d, 1f for β = 1 (a, c, e) and β = 0.01 (b, d, f).
Therefore, the dynamics of the α-particles is deter-
mined by their interaction with the proton-excited
waves; α-particles with the same velocity as protons
have a factor of 2 larger gyroradius and interact with
waves with a factor of 2 lower frequency. As we see
from Figs. 1c and 1d, the excited Alfvén waves have
such a dynamics that their frequency range continu-
ously extends to lower frequencies. Since the steady-
state spectrum of the accelerated particles in our
MY LETTERS Vol. 28 No. 9 2002
case is a function of the kinetic energy per charge,
mv2/(2Z) (Lee 1982), the α-particle spectrum is
formed via a nonlinear factor more slowly than the
proton spectrum.

The nonlinear interaction changes not only the
amplitude of the waves but also their spectral distri-
bution. During intensive wave excitation through the
nonlinear interaction, an additional peak located at
lower frequencies relative to the main peak is formed
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w , and (4) the total wave spectrum Ew = E+
w + E−

w .
in the wave spectrum (see Fig. 1d). The spectral wave
energy transfer toward lower frequencies causes the
particle acceleration rate to increase significantly: as
we see from Figs. 1a and 1b, the accelerated-proton
spectrum in the nonlinear case is formed several times
faster than that in the quasi-linear case.

The spectral wave energy transfer is the most
significant effect of nonlinear wave interaction rele-
vant for the particle acceleration development. As was
shown previously for interplanetary shocks (Berezhko
et al. 1998), the high generation rate of Alfvén tur-
bulence alone is not enough for a significant increase
of the maximum energies in the accelerated-particle
spectra compared to what is provided by background
turbulence in the linear approximation. An increase
in the particle acceleration rate is possible at a con-
siderable generation rate of low-frequency waves that
resonantly interact with particles of extremely high
energies. This, in turn, is achieved in the presence
of spectral transfer, because Alfvén waves are effec-
tively generated by lower-energy particles at higher
frequencies.

Comparing the two presented calculations (quasi-
linear and nonlinear), it may be noted that at inter-
mediate times, 1 � t/t0 � 10, the amplitude and total
energy content of the Alfvén waves in the nonlinear
case (Figs. 1d and 1f) are much lower than those in
the quasi-linear case (Figs. 1c and 1e). The higher
particle acceleration rate in the nonlinear case is at-
tributable solely to spectral transfer.

It is important to note that the possibility of
achieving a higher acceleration rate is of particular
importance in elucidating the origin of the Galactic
cosmic rays. The point is that the main source of
cosmic rays with energy ε � 1015 eV in the Galaxy
is justifiably assumed to be diffusive shock accel-
eration at shock fronts from supernova explosions
(e.g., Berezhko and Krymsky 1988; Berezhko et al.
1988). Cosmic rays of the above energies can be
effectively accelerated only when Alfvén waves are
intensively generated over a wide frequency range. As
we showed here, this is possible only in the presence
of effective spectral wave energy transfer toward lower
frequencies.

The quasi-linear approach predicts a weak depen-
dence of the acceleration on the relationship between
ASTRONOMY LETTERS Vol. 28 No. 9 2002



EFFECTS OF NONLINEAR ALFVÉN WAVE INTERACTION 639
the Alfvén waves oppositely propagating along the
diffusive shock magnetic field (Berezhko and Taneev
1992; Berezhko et al. 1992, 1997). However, when
the excited waves reach large amplitudes, this rela-
tionship becomes important, because the oppositely
propagating waves are involved in induced scatter-
ing, the principal mechanism of nonlinear interac-
tion for β � 1 (Fedorenko et al. 1990, 1995). The
waves produced by the nonlinear interaction prop-
agating toward the shock front form an additional
low-frequency peak in Fig. 1d. The waves excited
by the accelerated particles and propagating away
from the shock front form the main spectral peak in
the quasi-linear and nonlinear cases. In contrast, the
oppositely propagating waves in this frequency range
are absorbed by the accelerated particles.

The dependence of nonlinear interaction on the
system parameters is illustrated by the calculations
performed for different values of the plasma parame-
ters β. Figure 2 shows the results of our calculations
for β = 1 (Figs. 2a, 2c, 2e) and β = 0.01 (Figs. 2b,
2d, 2f) for the same set of the remaining solar-wind
parameters that was used in the calculations shown
in Fig. 1. We see that the degree of restriction of the
amplitude of the waves excited through the nonlinear
interaction decreases with increasing β. Thus, for β =
1, the energy content of the Alfvén waves reaches
W = 300 (Fig. 2e), which is a factor of 30 larger than
that for β = 0.1 considered above. In this case, the
factor β−3/2 in the expression for the kernel S(k, k′)
plays a major role. At the same time, spectral transfer
provides almost the same high acceleration rate as
that for β = 0.1 (see Figs. 1b and 2a).

In contrast, for β � 0.1, the energy content of
the waves excited by particles is limited to W = 3
(Fig. 2f), which is almost independent of β. This
fact can be easily explained: for β � 1, the nonlinear
increment Γ±

NL reduces to a differential form, which
does not depend on β (Fedorenko et al. 1995).

The effect of spectral transfer is significant over the
entire range β � 1 and causes a considerable increase
in the particle acceleration rate almost equally for
all β. Some differences show up in the form of the
secondary peak in the wave spectrum Ew(ν) result-
ing from the nonlinear interaction: for β � 0.1, it is
narrower and sharper than for β � 0.1 (see Figs. 1d
and 2d).

The range of plasma parameters β in which inten-
sive spectral wave energy transfer is expected appears
to depend on the energy content that the particles can
achieve during their acceleration. One might expect
that in comparison with the case considered, spectral
transfer takes place in a much wider range of β for
more extended and stronger shock waves, where the
ASTRONOMY LETTERS Vol. 28 No. 9 2002
achievable energy content of the accelerated particles
is much higher.

Figure 3 shows the Alfvén-wave spectra chosen
for the time t/t0 = 4.8 when their generation rate is
at a maximum for the quasi-linear calculation (see
Fig. 1c). Figure 3a corresponds to the quasi-linear
calculations, while Figs. 3b, 3c, and 3d correspond
to the nonlinear calculations with β = 0.1, 1, 0.01,
respectively.

Figure 3а shows an almost symmetric, relative to
the background turbulence Ew0 (dashed lines), be-
havior of the spectra for the Alfvén waves propagating
toward the shock E+

w (dash–dotted lines) and away
from the shockE−

w (solid lines). For the nonlinear cal-
culations with β � 0.1 (Figs. 3b and 3c), we clearly
see local maxima in the low-frequency range of the
E+

w wave spectra, which are produced by the wave
energy transfer to this part of the spectrum through
their nonlinear interaction with E−

w waves.
The E+

w and E−
w wave spectra shown in Fig. 3d for

the calculation with β = 0.01 exhibit a more complex
behavior in the region of the left local maximum of
total turbulence Ew (the lines of heavy dots). Both
the E+

w and E−
w spectra have local maxima in this

frequency range that differ in amplitude and are al-
most coincident in frequency. This suggests energy
transfer from one spectrum to the other in the narrow
frequency range of their nonlinear interaction.

Note a peculiar feature in the temporal behavior of
the Alfvén-wave energy density W : the presence of
two local maxima for all calculations (see Figs. 1e, 1f,
2e, 2f). For example, in Fig. 1e for the quasi-linear
calculation, these are the maxima with amplitudes
∼30 and 3 × 103 for times t1 ∼ 0.6t0 and t2 ∼ 4t0,
respectively.

During the initial period t ≤ t1, when the number
of accelerated protons is still not large enough, they
excite mostly waves with frequencies ν > νinj, where
νinj ≈ 3.7 × 10−2 Hz is the frequency of the waves
that resonantly interact with protons with injection
energy εinj. The time t = t1 corresponds to the time
when the leftward-displacing frequency of the max-
imum in the Alfvén-wave spectrum, νmax, reaches
νinj. Subsequently, the increase in wave energy con-
tent is mainly produced with a short delay by the
overacceleration effect (Berezhko and Taneev 1991):
at intermediate times, the number of accelerated par-
ticles in some energy range exceeds the then estab-
lished steady-state level (see Figs. 1a, 1b and 2a, 2b).
Although this excess is relatively small, it produces a
considerable increase in the generation rate of Alfvén
waves: at intermediate times, t1 < t < t2, the wave
amplitude in the quasi-linear approximation is several
orders of magnitude higher than their steady-state
value (Fig. 1c).
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The wave energy content reaches a maximum at
t = t2, when the formation of a power-law part of the
proton spectrum ends (see Fig. 1a) and the subse-
quent development of the acceleration process forms
an exponential part of the spectrum (ε > 40 keV in
Fig. 1a), because the particle escape from the accel-
eration region described by the last term in Eq. (1)
increases in importance with their energy.

Note also that numerical simulations of colli-
sionless quasi-parallel shock waves clearly confirm
the existence of overacceleration (see Fig. 4 in
Scholer et al. 1999).

CONCLUSIONS

Our studies of the self-consistent diffusive shock
acceleration of ions, as applied to typical conditions
at the Earth’s bow shock, have shown that allowance
for the nonlinear A’fvén-wave interaction through
induced scattering and two-quanta absorption at
a solar-wind plasma parameter β � 1 significantly
affects the acceleration dynamics.

The nonlinear interaction significantly restricts the
amplitude of the waves excited by accelerated par-
ticles at δB � B for β � 0.1. The restriction effect
decreases with increasing β for β > 0.1, where the
Alfvén-wave amplitude reaches δB ∼ Bβ3/2.

The nonlinear interaction produces spectral wave
energy transfer toward lower frequencies.

Since the generation of low-frequency Alfvén
waves causes an increase in the scattering efficiency
of increasingly high-energy particles, the spectral
transfer is accompanied by an increase in the particle
acceleration rate.
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Abstract—The absence of Uranus’s equatorial satellites in the region of approximately equal influence of
its oblateness and solar perturbations is explained in terms of an improved physical model. This model is
more complete than the previously studied case of an integrable averaged problem. The model improvement
stems from the fact that the inclination of Uranus’s equator to the ecliptic differs by 90◦ and that the orbital
evolution of Uranus due to secular planetary perturbations is taken into account. The lifetime of Uranus’s
hypothetical satellites in orbits with semimajor axes 1.3–7 million km can be estimated by numerically
integrating the evolution equations to be∼104 yr. This is the time scale on which the evolution of the orbits
leads to their intersection with the orbits of inner satellites. c© 2002 MAIK “Nauka/Interperiodica”.

Key words:Uranus’s satellites, orbital evolution
INTRODUCTION. STATEMENT OF THE
PROBLEM

A distinctive feature of the satellite systems of the
giant planets is the distribution of their satellites in
orbital semimajor axis a, in particular, their break-
down into two sets, inner and outer satellites. Fig-
ure 1 shows this distribution for the satellite systems
of Jupiter (NSJ—Number of Satellites of Jupiter),
Saturn (NSS—Number of Satellites of Saturn), and
Uranus (NSU—Number of Satellites of Uranus). In
Jupiter’s system, the outer satellites are clearly sepa-
rated into two groups of satellites with prograde (in-
clinations i < π/2) and retrograde (i > π/2; Fig. 1a)
orbits; in Saturn’s system, there is a range of semima-
jor axes in which both prograde and retrograde satel-
lite orbits exist (Fig. 1b); and in Uranus’s system,
all of the outer satellites discovered to date possess
retrograde motions (Fig. 1c). In addition, in all three
systems, there are ranges of semimajor axes free from
satellite orbits. It seems of interest to establish the
possible mechanism of avoidance of these circum-
planetary regions by satellites.
Here, we consider only the satellite system of

Uranus. It, along with the systems of the other
giant planets, consists of a thin ring of inner regular
satellites (their nearly circular orbits lie almost in the
equatorial plane) and outer satellites that move in el-
liptical orbits of appreciable eccentricity with large in-
clinations to the equatorial plane. No celestial objects
have yet been found in the intermediate region, 0.6 ≤
a ≤ 7 million km. One of us (Vashkov’yak 2001)

*E-mail: vashkov@spp.keldysh.ru
1063-7737/02/2809-0641$22.00 c©
offered a celestial-mechanical explanation for the
absence of Uranus’s regular satellites in this region.
Here, we analyze the evolution of satellite orbits under
the combined effect of solar attraction and Uranus’s
oblateness in the following model statement: the
equatorial plane of Uranus in which the satellites
move makes the angle I = 90◦ (which is close to
the actual value of about 98◦) with the plane of its
heliocentric orbit; the circular orbit of Uranus lies in
the plane of the ecliptic. Using one of the integrable
cases of the well-known Hill averaged problem with
oblateness of the central planet (Lidov 1963a, 1963b;
Lidov and Yarskaya 1974), we were able to explain the
absence of equatorial satellites for a ≥ 1.3million km.

Here, we analyze the problem for the actual equa-
torial inclination of Uranus by assuming that its he-
liocentric orbit (or the Uranocentric orbit of the Sun)
evolves due to secular planetary perturbations. To
determine the location of Uranus’s equator, we use
the right ascension α0 and declination δ0 of its north
pole. These spherical coordinates are referred to the
mean geoequator and to the equinox of the initial date.
Thus, the rotation parameters of the planet are speci-
fied independently of its orbital parameters. Using the
procedure of double averaging over the motion of the
satellite and the perturbing body (Sun), we can show
that the secular part of the perturbing function in the
Hill approximation is

W =
µ

a
[β(W0 +W1 sin 2i1 (1)

+ W2 sin2 i1 + e1W3) + αW4],
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. The distribution of the satellites of three gi-
ant planets in orbital semimajor axis: (a) the system of
39 Jupiter’s satellites, (b) the system of 30 Saturn’s satel-
lites, and (c) the system of 21 Uranus’s satellites.

where

α = −3c20a2
0

8a2
, β =

3µ1a
3

16µa3
1(1 − e2

1)3/2
(2)

are dimensionless parameters;

W0 = 2e2 + sin2 i(5e2 cos 2ω − 2 − 3e2); (3)

W1 = −[5e2 sin 2ω sin(Ω1 − Ω) (4)

+ (5e2 cos 2ω − 2 − 3e2) cos(Ω1 − Ω) cos i] sin i;

W2 = −3e2 − 0.5 sin2 i(5e2 cos 2ω − 2 − 3e2)[3 (5)

+ cos(2Ω1 − 2Ω)] + 5e2[cos 2ω cos(2Ω1 − 2Ω)
+ sin 2ω sin(2Ω1 − 2Ω) cos i];

W3 =
5ae

16a1(1 − e2
1)
{(4 + 3e2)[(5 sin2 i− 4) cos ω

(6)

× cos(Ω − g1) + (4 − 15 sin2 i) sinω cos i

× sin(Ω − g1)] + 35e2 sin2 i[− cos 3ω cos(Ω − g1)
+ sin 3ω cos i sin(Ω − g1)]},

g1 = Ω1 + ω1;

W4 = (1 − e2)−3/2{−2/3 + ζ2(1 + cos 2i) (7)
+ sin2 i[(ξ2 + η2) + (η2 − ξ2) cos 2Ω]
− 2ηζ sin 2i cos Ω − 4ξ sin i sin Ω[cos ε(η sin i cos Ω

− ζ cos i) + sin ε(ζ sin i cos Ω + η cos i)]

− sin 2ε[2ηζ(sin2 i sin2 Ω + cos 2i)

+ (ζ2 − η2) sin 2i cos Ω] − 2 sin2 ε[(ζ2 − η2)

× (sin2 i sin2 Ω + cos 2i) − 2ηζ sin 2i cos Ω]};
ξ = cos δ0 cosα0, η = cos δ0 sinα0, and ζ = sin δ0 are
the direction cosines of Uranus’s rotation axis; µ and
µ1 are the products of the gravitational constant by
the masses of Uranus and the Sun, respectively; c20
is the coefficient of the second zonal harmonic of
Uranus’s gravitational field; a0 is its mean equatorial
radius; ε is the inclination of the Earth’s equator to the
plane of the ecliptic; a, e, i, ω, Ω, a1, e1, i1, ω1, and
Ω1 are the Keplerian Uranocentric orbital elements
for the satellite and the Sun, respectively. All angular
elements are referred to the plane of the ecliptic and to
the direction of the point of vernal equinox.We derived
expression (1) under the assumptions of a/a1 	 1
and e1 	 1 and the functionW3 for sin i1 	 1.
The quantity g1 in the function W3, which is

the pericenter longitude for the planetocentric orbit
of the Sun, differs from the heliocentric perihelion
longitude for the planet by 180◦. The latter, together
with the elements e1, i1, and Ω1, is specified by
the Lagrange–Brauer–Wurkom theory (Sharaf and
Budnikova 1967).
For the evolution system with the perturbing func-

tion (1) to be properly used, we must estimate the
possible variations in α0 and δ0 with time due to the
evolution of the planet’s axial rotation. The principal
effects are the effect of the moment of gravitational
forces and the tidal effect from celestial bodies. The
former causes the planet’s rotation axis to precess
with a constant inclination, while the latter causes
secular changes in the angular velocity of axial rota-
tion and in the inclination of this axis.
To estimate the precession period for the rotation

axis of the planet as a rigid body, we use the following
relation from Beletskii (1975):

T ∗ =
2π
ω0

(
3
2
|A− C|

C

ω0

ω∗ cos ∆
)−1

, (8)

where ω0 is the angular velocity of the planet’s orbital
motion; ω∗ is the angular velocity of its rotation; ∆
is the angle between the rotation axis and the normal
to the plane of the ecliptic; A and C are the principal
central moments of inertia for the planet. If the mass
distribution within the planet is assumed to be uni-
form, then

|A− C|
C

=
5
2
|c20| .
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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Substituting the current parameters of Uranus in
Eq. (8) yields T ∗ ∼ 3 × 109 yr.
The evolution of the proper rotation of planets

under the effect of a tidal torque was analyzed in
detail by Beletskiı̆ (1978). The evolution time scale
is estimated by τ∗, which is measured in years of the
planet under consideration:

τ∗ =
4

45π
µ

µ1

(
a1

a0

)3 ω∗

ω0
Q, (9)

where Q is the dimensionless effective dissipative
function (according to present views, Q ∼ 10–102

for the terrestrial planets and Q ∼ 105–106 for the
giant planets). Substituting the current parameters of
Uranus in Eq. (9) yields τ∗ ∼ 1021 yr (terrestrial).
In our problem, the evolution of Uranus’s satel-

lite orbits is considered on intervals no longer than
106 yr. As our series of calculations show, the lifetimes
of hypothetical satellites are even shorter. Since the
time scales T ∗ and τ∗ are longer by many orders
of magnitude, we assume α0 and δ0 to be constant
and their numerical values to be known: α0 = 76◦.051,
δ0 = 14◦.855 (Abalakin et al. 1976).
When the orbital evolution of a satellite and its

lifetime are analyzed, the principal parameter is the
pericenter distance, q = a(1 − e). In the course of
evolution, e can reach values close to unity and, ac-
cordingly, q (at constant a in the averaged problem)
can become smaller than Uranus’s radius a0 or the
orbital radii of its most massive inner satellites a(j)

(j = 1, 2, . . . , 5). When these orbits are approximated
by Gaussian mass rings, the effective cross section
of Uranus increases significantly. In our evolution
problem, by the lifetime of a satellite we mean the
time scale on which q decreases from a to the orbital
radius of at least the outermost inner satellite, Oberon
(a(5) ≈ 0.6 million km). Under the orbit intersec-
tion conditions arising in this case, the probability of
close encounters and collisions of hypothetical satel-
lites with inner satellites increases significantly. As
a result, the hypothetical satellites must either have
moved to farther orbits or fallen to the inner satellites,
significantly augmenting their masses.
Here, our goal is to confirm (by numerically an-

alyzing the evolution of satellite orbits in a more
complete physical model) the “death” mechanism for
Uranus’s hypothetical satellites previously described
in the model problem in the intermediate range of
semimajor axes, 1.3≤ a ≤ 7million km.

RESULTS OF ANALYTICAL
AND NUMERICAL STUDIES

A Brief Description of the Model Problem
Before describing our numerical calculations, we

recall the principal results of analysis of the integrable
ASTRONOMY LETTERS Vol. 28 No. 9 2002
model problem (I = i = 90◦, sin Ω = 0, e1 = i1 =
0) (Lidov 1963a, 1963b; Lidov and Yarskaya 1974;
Vashkov’yak 2001). The families of trajectories in the
(ω, e) plane in this integrable case are symmetric
about the ω = 0◦, 90◦, 180◦, and 270◦ straight lines
and have different structures, depending on the semi-
major axis a of the satellite orbit (or on the ratio of the
parameters α and β).
If α < 3β (or a < 1.1 million km for the Sun–

Uranus system), then ω changes monotonically,
e varies within a narrow range, and q(t) > a(5) >

a(4) . . . > a(1) > a0 for any t > 0 at e0 close to zero.
If α > 3β (or a > 1.1 million km), then there are

two singular points in the (ω, e) phase plane:

(1) ω = ωs = arcsin

√
2
5

(
1 +

α

2β

)
, e = 0 saddle-

type point;

(2) ω = ±90◦, e = e∗ =

√
1 −

(
α

3β

)2/5

center-

type point.
In this case, the (ω, e) plane breaks down into

two regions with circulation and libration variations
of ω separated by the limiting solution, the separatrix.
This special curve passes through the points with
the (ωs, 0) and (±90◦, es) coordinates. The value of
es > e∗, along with qs = a(1 − es), is determined by
the α/β ratio alone. Since α/β ∼ a−5, e∗ → 1 as a
increases and even at a ≈ 1.3million km for any initial
e0 and ω0, q decreases to a(5) in a finite time; i.e., the
evolution leads to an intersection of the hypothetical
satellite orbit with the orbit of Oberon. For a from
the range 1.3–7 million km, there are also intersec-
tions with the orbits of the remaining inner satellites;
the minimum of q(t) ≤ q∗ = a(1 − e∗) is reached at
ω(t) = ±90◦ and qmin < a(1). The time scale of or-
bital evolution from an initially nearly circular orbit to
a highly elliptical orbit intersecting the orbits of inner
satellites is∼ 104 yr.

The Evolution of Satellite Orbits on Time Scales
of∼104 yr

Based on the above results, one might expect that
at I close to 90◦ and for time-varying orbital elements
of Uranus, the qualitative behavior of the phase tra-
jectories in projection onto the (ω, e) plane will be
preserved (at least for the trajectories that do not pass
near the separatrix) and the maximum values of e
(the minimum values of q) will be reached at ω close
to±90◦.
Under this assumption, we performed the first se-

ries of calculations. For semimajor axes in the chosen
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Fig. 2. Evolution parameters for satellite orbits on time scales of ∼ 104 yr: (a) pericenter distance qm for ω = 90◦ versus
semimajor axis a for (1) ω0 = 0, (2) for ω0 = 90◦, (3) q∗(a), (4) qs(a); (b) projections of the family of phase trajectories onto
the (ω, e) plane for a = 1.5 million km (solid lines ω0 = 0◦; dashed lines ω0 = 90◦); (c) projections of the phase trajectories
close to the separatrix onto the (ω, e) plane for a = 1.3million km (solid lines ω0 = 0◦; dashed lines ω0 = 90◦).
range 1.3 < a < 7 million km, the evolution system
in elements with the perturbing function W (1)–(7)
was numerically integrated until τ at which ω(τ) =
90◦. The initial ω0 was taken to be zero and 90◦ in
the ω circulation and libration regions, respectively;
the initial value of e0 = 0.03. The angular ecliptic
elements i0 and Ω0 were chosen from the condition
for coincidence of the initial satellite orbital plane with
Uranus’s equatorial plane. This condition is given by

cos i0 = cos ε sin δ0 − sin ε cos δ0 sinα0, (10)

sin i0 =
√

1 − cos2 i0,

sin Ω0 = cos δ0 cosα0/ sin i0,

cos Ω0 = (cos ε cos i0 − sin δ0)/ sin i0/ sin ε.
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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Fig. 3. The dependences qmin(a) on the time interval T = 400 thousand years for ω0 = 0◦: (a) e0 = 0.03, (b) e0 = 0.001;
(c) e0 = 0.0001.
With the assumed values of α0 and δ0, we obtain
i0 ≈ 97◦.9, Ω0 ≈ 166◦.4.
Under the chosen initial conditions, em = e(τ)

is a function of the semimajor axis a alone. Fig-
ure 2a shows almost identical dependences qm(a) =
a(1 − em(a)) for ω0 = 0 (solid curve) and for ω0 =
90◦ (filled circles). The markers on the vertical ax-
is indicate the values of a(j) (j = 1, 2, . . . , 5). The
dependences for the integrable problem are shown
for comparison: qs(a) (open circles) and q∗(a) (as-
terisks). In contrast to the model dependences that
asymptotically approach zero, the two dependences
qm(a) have a flat minimum at a ≈ 3 million km and
a sloping asymptote. The slope of this asymptote or
the derivative dqm(a)/da can be estimated by con-
sidering the limiting case of the problem α = 0, i.e.,
the Hill double-averaged problem integrable for any
initial inclination i0 (Lidov 1961). At low values of the
constant of one of the integrals in this problem,

c1 = (1 − e2) cos2 i, (11)

dqm(a)/da ≈ 5c1/6. For e0 ≈ 0, i0 ≈ 98◦, it is
∼0.016. The parameters em and es differ by a value
ASTRONOMY LETTERS Vol. 28 No. 9 2002
of the same order of magnitude. The difference from
the model problem also shows up in the behavior of
the phase trajectories in projection onto the (ω, e)
plane. By way of illustration, Fig. 2b shows a family
of these trajectories for a = 1.5 million km. The solid
and dashed lines correspond to ω0 = 0◦ and 90◦,
respectively. The apparent mutual intersections of the
phase trajectories stem from the fact that the problem
is nonintegrable. In addition, the trajectories are
slightly asymmetric about the ω = 0◦, 90◦, 180◦, and
270◦ straight lines in the integrable model problem.
Calculations show that for a given a, the nearly circu-
lar equatorial orbit of Uranus’s hypothetical satellite
rapidly evolves from e0 = 0.001 to a highly eccentric
elliptical orbit with an inclination to the ecliptic of
about 155◦; q reaches a maximum qm ≈ 0.463 mil-
lion km at τ ≈ 33.8 thousand years for ω0 = 0 and
qm ≈ 0.468 million km at τ ≈ 34.0 thousand years
for ω0 = 90◦. In this case, the time it takes for q to
reach a minimum for e0 = 0.01–0.8 is even shorter.
Although the structure of the phase trajectories

shown in Fig. 2b admits self-intersections, it never-
theless possesses a certain regularity in that the max-
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Fig. 4. Extreme i versus a on the time interval T = 400 thousand years for e0 = 0.03, ω0 = 0◦, i0 ≈ 98◦.
ima of e for e0 from the range 0.001–0.8 are reached
at ω0 ≈ 90◦. However, in the region of approximately
equal influence of the perturbing factors under con-
sideration (α ≈ β, a ≈ 1.3 million km), the phase
trajectories close to the separatrix (e0 < 0.03) acquire
chaotic properties. In this case, the first (in time)
maximum of e can also be reached at ω �= 90◦. Our
calculations for a = 1.3 million km and e0 = 0.001
(Fig. 2c) show that the minima of q, nevertheless, do
not exceed the values obtained for e0 = 0.03.

The Evolution of Satellite Orbits on Time Scales
of the Order of Uranus’s Orbital Evolution Period

Since the characteristic period of the secular
planetary perturbations in Uranus’s orbit is T ≈
400 thousand years, the difference between the results
of the first series of calculations described above
and the results of the model problem was mainly
affected by the nonorthogonality of Uranus’s orbit
to the ecliptic (I �= 90◦). The effect of variations in
the elements e1, i1, ω1, and Ω1 on the evolution of
satellite orbits can be appreciable only on time scales
of the order of T .
The second series of calculations with the same

set of initial data as in the preceding subsection was
performed precisely on this time interval, 0 ≤ t ≤ T .
Instead of em and qm, we determined emax(a) =
max

0≤t≤T
e(a, t), qmin(a) = a[1− emax(a)], imin(a), imax(a)

for each a. The values of qmin(a) [million km] for
ω0 = 0◦ are shown in Fig. 3: (a) e0 = 0.03, (b)
e0 = 0.001, and (c) e0 = 0.0001. To avoid unjustified
complications, the points were plotted separately at
constant steps in a without connecting them by a
smooth curve. For the other initial values ω0 = 90◦,
180◦, and 270◦, the form of the dependences qmin(a)
is virtually the same.
In all portions of Fig. 3, we clearly see transitions

from a random variation in qmin to amore or less regu-
ASTRONOMY LETTERS Vol. 28 No. 9 2002
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lar variation. This is because our evolution problem is
nonintegrable for α/β ∼ 1 (1.3 ≤ a ≤ 3 million km).
For a > 3 million km, when the effect of Uranus’s
oblateness is marginal (α/β < 10−3), the problem is
similar to the integrable double-averaged Hill prob-
lem and the dependences qmin(a) are nearly regular.
Nevertheless, even for α → 0, the problem is non-
integrable, because the orbital elements of Uranus
are slowly varying functions of time. Note that the
boundary values of a that separate the regions of
random and regular variations in qmin increase with
ASTRONOMY LETTERS Vol. 28 No. 9 2002
decreasing e0, i.e., as the phase trajectory approaches
the separatrix.

In contrast to the model problem where the incli-
nation is constant, i0 = 90◦, the evolution of initially
equatorial orbits in our more complete physical model
causes the inclination to vary. The ranges of such
variations can be estimated from Fig. 4, which shows
the dependences imin(a) and imax(a) for e0 = 0.03,
ω0 = 0◦. Similarly to Fig. 3, the random variation
in extreme inclination with increasing a changes to
its regular variation; for the assumed e0 = 0.03, this
change occurs at the same a ≈ 2.2 million km as
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in Fig. 3a. For α → 0, the extreme inclination and
eccentricity are roughly related by Eq. (11).
Thus, our analysis of the two series of calculations

performed in terms of a realistic model with I ≈ 98◦
and with an evolving orbit of Uranus leads us to the
following conclusion.
The orbital evolution of Uranus’s hypothetical

equatorial satellites with semimajor axes in the range
1.3 ≤ a ≤ 7 million km causes their pericenter dis-
tances to decrease to the orbital radii of one or more
inner satellites in a time of∼104 yr (Fig. 2). On a time
scale of the order of Uranus’s orbital evolution period
for the range 1.7 ≤ a ≤ 3 million km, the satellite
orbits can also intersect with the planetary surface
(qmin ≤ a0, Fig. 3).

The Evolution of Nonequatorial Satellite Orbits

To get an idea of the evolution of Uranus’s
nonequatorial satellites, we calculated the depen-
dences qmin(a) for some initial inclinations i0 of
the satellite orbit different from I (at the same Ω0).
Figure 5a shows qmin(a) [million km]: (a) for i0 = 80◦,
(b) for i0 = 108◦, and (c) for i0 = 70◦. The latter value
of i0 was chosen in such a way that for the orbit
with this initial inclination and with a major axis of
7 million km (the orbit of the innermost outer satellite,
Caliban), qmin was ≈ 0.6 million km (the orbit of
the outermost inner satellite, Oberon). For i0 �= 90◦,
qmin(a ≥ 3 million km) increases proportionally to
a. The proportionality coefficient k increases with i0
differing from 90◦. In the limit for α → 0, it is given

by the approximate formula k ≈ 1 −
(

1 − 5
3
c1

)1/2

,

where c1 = (1 − e2
0) cos2 i0 . It follows from Fig. 5

that for i0 that do not differ greatly from 90◦, the
conclusion formulated in the preceding subsection
remains valid.
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Intersections of Hypothetical and Inner Satellite
Orbits

In the model problem where i(t) = i0 = 90◦, the
intersection of the equatorial orbit of a hypothetical
satellite with the orbit of the jth inner satellite directly
followed from the condition q < a(j). In our more
rigorous evolution problem where the inclination i
can differ greatly from its initial value, the following
equalities serve as the condition for the intersection of
these orbits:

(1 − e2)a/a(j) − e cosω′ − 1 = 0, (12)

(1 − e2)a/a(j) + e cosω′ − 1 = 0, (13)

where

cosω′ = {cosω[sin i cos i0 − cos i sin i0 (14)

× cos(Ω − Ω0)] + sinω sin i0 sin(Ω − Ω0)}/ sin i′,

cos i′ = cos i cos i0 + sin i sin i0 cos(Ω − Ω0),

sin i′ =
√

1 − cos2 i′,

the angle i′ is measured from Uranus’s equatorial
plane, and ω′ is measured from the line of nodes of
the satellite orbit in the same plane.
At fixed a, conditions (12) and (13) give two values

of t(j) for each j = 1, 2, . . . , 5 at which orbit inter-
sections take place at one or another nodal point. In
Fig. 6, theminimum values of this quantity are plotted
against a. The initial elements e0, i0, ω0, and Ω0 are
the same as those in the case shown in Fig. 3a.
Note that for any a and for conditions (12) and

(13), t(j) satisfy the inequalities t(1) > t(2) > . . . >

t(5); i.e., the hypothetical satellite orbits first intersect
the orbit of Oberon, then the orbit of Titania, and so
on. In the regions of random variations in qmin, imin,
and imax, t(j) reach 50 thousand years or more (these
are not shown in the figure in order not to stretch it
vertically too much). As a increases, all five curves
virtually merge into a single curve, with the minimum
t(j) corresponding to condition (12). At sufficiently
large a, i.e., at very small α, the Sun perturbs the
satellite orbits so strongly that they intersect the or-
bits of inner satellites, one by one, in very short time
intervals. The intersection times themselves at a ≈
5–7 million km are no further than 3000 years from
the initial time.

CONCLUSIONS

The absence of Uranus’s equatorial satellites at
distances larger than some critical value acr has
qualitatively been explained previously. Thus, in the
paper by Goldreich (1966), which was included in
the well-known collection of papers (Goldreich 1975;
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paper II), an approximate formula was derived for acr,
in planetary radii a0, from the condition for equality
between the average moments of forces exerted on the
satellite orbit by the Sun and by an oblate planet. In
our notation, it is

acr
a0

≈
(
−2c20

µ

µ1

)1/5 (
a1

a0

)3/5

. (15)

By comparing this formula with Eqs. (2), we can
easily verify that it also expresses the equality be-
tween the characteristic parameters of perturbations
from the Sun and oblateness of the planet; i.e., it is
equivalent to the condition

α ≈ β,

which yields acr ≈ 1.36 million km for the Sun–
Uranus system. However, it follows from condi-
tion (15) that the moment of solar attractive forces for
a > acr only takes the satellite orbits away from the
equatorial plane without forbidding their existence.
Our numerical integration of a fairly complete evo-

lution system in addition to a qualitative analysis of
the model problem revealed a specific mechanism that
limits the lifetime of Uranus’s hypothetical satellites
in the intermediate circumplanetary region, where
no natural satellites have presently been found, to
∼104 yr.
The existence of “empty” ranges of semimajor

axes in the satellite systems of Jupiter and Saturn
seems much more difficult to explain. In particular,
this is true for the separation of outer satellites into
two sets of satellites with prograde and retrograde
orbits for Jupiter and for the intersection of these sets
for Saturn.
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