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Abstract—The equilibrium of a tokamak plasma with a toroidal flow is discussed. It is shown that the centrif-
ugal force of this rotation always reduces the equilibrium beta limit. An opposite view is analyzed, and the argu-
ments supporting this view are considered. It is shown that, although the equilibrium conditions may be locally
improved through a special choice of the profile of the plasma rotation velocity, toroidal rotation, on the whole,
has a negative effect on the plasma equilibrium. However, under typical tokamak conditions, a decrease in the
equilibrium β limit due to plasma rotation is insignificant and, consequently, the effect of the rotation of a hot
plasma on its equilibrium can be neglected. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The development of the theory of plasma equilib-
rium in tokamaks was motivated by the necessity of
solving the practical problem of the radial displacement
of the plasma column in the first tokamak experiments
[1, 2]. During an uncontrolled outward motion along
the major radius, the plasma came into contact with the
limiter; as a result, the plasma column was partially cut
off, contaminated with impurities, and cooled and the
discharge current decreased [1]. The theory developed
in [2–4] gave answers to practical questions, and, by
exactly following its recommendations, it was possible
to achieve the recognized progress in tokamak research
in the 1960s [5–7]. To be specific, it is sufficient to men-
tion the formula derived by V.D. Shafranov for the
transverse field required to keep the plasma column at
a given position [2, 3].

By the 1970s, the main problems related to equilib-
rium of a circular plasma in tokamaks had already been
solved; therefore, the development of the theory of
equilibrium of an axisymmetric plasma became, to a
considerable extent, academic and, sometimes, not
directly related to experiment. By that time, it had also
become clear that, in order to progress toward thermo-
nuclear temperatures, it was necessary to employ the
injection of fast neutral beams as a means of additional
plasma heating, which, however, could set a plasma
into rotation. This stimulated the first papers analyzing
the possible effect of rotation on the plasma equilib-
rium in tokamaks [8, 9].

These studies were ahead of their time, because
there were no experimental results that would require
the account of plasma rotation in the theory of plasma
equilibrium. Afterward, no experimental results (simi-
lar to those described in [1]) that would require a sub-
stantial revision of the “canonical” equilibrium theory
have appeared. However, with the development of
injection techniques in the early 1980s, the plasma rota-
tion velocities during the unbalanced injection in toka-
1063-780X/03/2902- $24.00 © 20105
maks achieved a level of 100–150 km/s [10–12]; hence,
it was natural for theoreticians to turn again to the prob-
lem of the equilibrium of a rotating plasma.

In the 1980s, this problem was investigated both
analytically and numerically [13–28]. The results of
these studies were briefly summarized in the well-
known review [29]. It was found that, under typical
tokamak conditions, the rotation of the plasma does not
lead to any significant macroscopic effect. That is why
the equilibrium theory of a toroidal plasma continued to
be developed as a theory of static equilibrium [29–34].

In a recent paper by Ilgisonis and Pozdnyakov [35],
however, it was stated that the toroidal rotation of a
tokamak plasma may produce a strong, “pronounced
enough” effect; e.g., it may increase the equilibrium β
limit (the ratio of the plasma pressure to the magnetic
field pressure) by a factor of 1.6 to 2.5 in comparison
with that in static equilibrium. Nothing of this kind was
reported in [8–29]. Note that Ilgisonis and Pozdnyakov
[35] considered the same plasma equilibrium and ana-
lyzed it by the well-known theoretical model described
in [8, 9]. It was stated in the main conclusions of [35]
that a substantial effect can be achieved “by an appro-
priate choice of the toroidal velocity profile, no matter
how high the absolute value of the rotation velocity.”

The conclusions of [35], confirmed in a more recent
paper by Ilgisonis [36], must certainly attract the atten-
tion of experts in this field, because, being unusual and
unexpected, they touch on a very important problem
and predict a significant positive effect. The objective
of the present paper is to analyze the results and conclu-
sions obtained in [35, 36]. A stationary plasma rotation
will only be discussed below.

2. GLOBAL FORCE BALANCE 
AND PLASMA ROTATION

The general equations for the equilibrium of a mag-
netically confined toroidal plasma with a steady flow
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are described in details in many papers [8, 13, 14, 16–
20, 23, 25, 26, 37, 38], including the well-known
reviews [29, 33]. Here, we write out only those that will
be needed for our analysis.

We start with the force balance equation

(1)

where ρ is the plasma density, v is the plasma velocity
(usually called the plasma flow velocity), p is the
plasma pressure, B is the magnetic field, and j = — × B
is the current density. It is assumed that the plasma flow
is stationary; consequently, the term ρ∂v/∂t on the left-
hand side of Eq. (1) is omitted.

Ilgisonis and Pozdnyakov [35] considered an axi-
symmetric plasma with purely toroidal rotation:

(2)

In this case, we have

(3)

and thus, Eq. (1) becomes

(4)

Here and below, (r, ζ, z) are conventional cylindrical
coordinates with their origin at the symmetry axis, ζ is
the toroidal angle, and the unit vectors er and eζ point in
the directions of —r and —ζ.

Multiplying Eq. (4) by er and integrating over the
entire plasma volume (under the assumption that p = 0
at the plasma boundary), we obtain the following inte-
gral condition for the plasma equilibrium along the
major radius:

(5)

Here, the first term describes the force that expands the
plasma column in the radial direction. The higher the
plasma pressure, the stronger this ballooning force. The
plasma pressure can be increased until the electromag-
netic forces j × B fail to counterbalance this force and
prevent the plasma from leaving a given volume. The
maximum possible plasma pressure at which equilib-
rium condition (5) can still be satisfied is called the
equilibrium pressure limit. Condition (5) shows that,
generally speaking, the toroidal plasma rotation should
lower this limit.

This conclusion inevitably follows from simple
physical considerations. Let an originally nonrotating
plasma be at a given equilibrium position. Let the
plasma be set into rotation, the other conditions remain-
ing unchanged. The toroidal rotation gives rise to the
centrifugal force, which is described by the first term in
Eq. (4). This force will push the plasma column out-
ward. In order to return the plasma column to its initial
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position, it is necessary to decrease the plasma pres-
sure.

These considerations contradict the conclusion of
[35, 36] that the equilibrium beta limit can be increased
by means of the toroidal plasma rotation. In what fol-
lows, this contradiction will be analyzed in more detail.
However, before proceeding further, we complete the
qualitative analysis by obtaining the estimates that dem-
onstrate the role of plasma rotation in Eqs. (4) and (5).

By definition, we have p = niTi + neTe  and ρ = mi ni,
which gives

(6)

where ni and Ti are the ion density and ion temperature,
ne and Te are the electron density and electron tempera-
ture, mi is the mass of an ion, and

(7)

is the ion thermal velocity. Consequently, we obtain

(8)

For a hydrogen plasma, we have

 km/s, (9)

where T0 = 10 keV. This velocity is fairly high. It is
clear that, even for a toroidal rotation velocity of about
300 km/s, quantity (8) is small and, thus, the effect of
the rotation on the equilibrium of a hot (Ti > 10 keV)
plasma in a tokamak can be neglected. This can be
explained by the fact that the plasma mass in the device
is extremely small and, therefore, the centrifugal force
is weak. For example, for a hydrogen plasma, we have
ρ = 1.5 × 10–10 g/cm3 at n = 9 × 1013 cm–3. By the way,
it is for this reason that the gravity force never appears
in the theory of plasma equilibrium in magnetic con-
finement systems.

3. TWO-DIMENSIONAL EQUILIBRIUM 
EQUATION

As is known, the equilibrium of an axisymmetric
plasma rotating in the toroidal direction is described by
the equation

(10)

Here, the poloidal flux ψ and the poloidal current F are
related to the magnetic field by the equation

(11)
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and the pressure p is a function of ψ and r such that

(12)

where the derivative with respect to r is taken at con-
stant ψ and Ω = v t/r is the angular rotation frequency.
For v t = 0, Eq. (10) becomes the Grad–Shafranov equa-
tion with p = p(ψ). Note that, for axisymmetric config-
urations with stationary plasma rotation, we have Ω =
Ω(ψ) [13, 15–17, 19–23, 25–29].

The Grad–Shafranov equation was generalized to
the case v ≠ 0 for the first time by Zehrfeld and Green
[8], who took into account not only toroidal rotation but
also stationary poloidal rotation. The exact analytic
solutions to Eq. (10) were discussed by Maschke and
Perrin [13]. In the 1980s, Eq. (10) became widely
known due to a series of papers on the equilibrium of
plasmas with stationary flows [13, 15, 17, 19–22, 25,
27]. At that time, computer codes for solving Eq. (10)
numerically were developed [17, 19–21, 24, 25, 28].
The codes allowed a detailed investigation of the fea-
tures of the equilibrium of a toroidally rotating plasma
by modeling the actual experimental conditions. Equa-
tion (10), numerical codes for its solution, and the
results obtained are described in a special section in
review [29].

No significant effect of the plasma rotation on the
plasma equilibrium was revealed in theory or in exper-
iment (the physical reasons for this were outlined in the
previous section). Interest in the problem waned and
was maintained only due to sparse theoretical papers
(see [37–40]). As a result, the studies on this subject
that were published in the 1980s were virtually forgot-
ten, which is evidenced by the “rediscovery” of Eq. (10)
by Ilgisonis and Pozdnyakov [35].

In [35, 36], Eq. (10) served as a starting point for an
analysis of the effects of plasma rotation. A strong
effect of the toroidal rotation of a plasma on its equilib-
rium was attributed to the dependence of p on r at fixed
ψ. Essentially, the authors of [35, 36] stated that this
dependence allows one to make a configuration weakly
sensitive (or even insensitive) to the plasma pressure.
To prove this conclusion, they used a consequence of
Eq. (10), namely, the equation for the shift of the mag-
netic surfaces, which is analogous to the equation
derived in [8] and thoroughly discussed in [9]. In [35],
the dependence of the shift on the plasma pressure was
analyzed. In contrast to [35], we proceed further in a
more straightforward way by using Eq. (10) itself,
rather than its particular consequences obtained under
simplifying assumptions.

We are interested in the dependence of the solutions
to Eq. (10) on the plasma pressure. Let us transform the
right-hand side of Eq. (10) in order to make this depen-
dence more explicit.
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It follows from Eqs. (10) and (11) that

(13)

Integrating this equality yields

(14)

Here,

(15)

is the longitudinal current flowing within the magnetic
surface; V is the volume enclosed by this surface; and
the angular brackets stand for the canonical averaging
over the layer between two nearby magnetic surfaces,

(16)

Using Eq. (14), we reduce Eq. (10) to the form

(17)

Some conclusions about the effect of the toroidal rota-
tion on the plasma equilibrium can be drawn even with-
out solving Eq. (17). For a given profile of the toroidal
current, the implicit dependence on the plasma rotation
is accounted for by the two terms with the plasma pres-
sure on the right-hand side of Eq. (17). Let us discuss
whether such a dependence can be used to diminish the
contribution of these terms.

4. CONFIGURATIONS INSENSITIVE
TO THE PLASMA PRESSURE

If we were able to diminish the contribution of the
pressure terms to Eq. (17) by manipulating the quantity
v t , it would be possible to speak of the positive effect
of the plasma rotation on the plasma equilibrium. The
right-hand side of Eq. (17) could become independent
of pressure if

(18)

This condition is not satisfied in a conventional case of
a nonrotating plasma, when p = p(ψ). The conse-
quences of this fact are the Shafranov shift and the
Pfirsch–Schlüter current, which increase with pressure.
Here, we are speaking about the toroidal systems, and
it is the toroidicity that does not allow the terms with
pressure in Eq. (17) to cancel completely. The degener-
ate case p = const is not considered here because we are
interested in the pressure profiles that decrease toward
the plasma boundary.
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In order to analyze condition (18), we use the fol-
lowing expression for p, which explicitly takes into
account the stationary toroidal plasma rotation [13, 16,
17, 19, 27–29]:

(19)

This expression is valid for axisymmetric systems, pro-
vided that the plasma temperature is constant on a mag-
netic surface, T = T(ψ). Here,

(20)

rax is the position of the magnetic axis, and the quantity
M = M(ψ) ≡ Ωrax/vTi can be called the Mach number.

For p ≠ const, condition (18), which can be rewrit-
ten as

(21)

can only be satisfied at the magnetic axis x = 0. The
larger the distance x from the magnetic axis, the larger
the degree to which this condition is violated. The
expansion of the left-hand side of condition (21) in
powers of x starts from the terms

(22)

which implies that condition (21) is satisfied to first
order in x if

(23)

where  and M0 are the values of  and M at the mag-
netic axis.

Up to this point, we had only two free functions, 
and M, that could be used to satisfy condition (18).
Now, these functions are related by equality (23), which
is the final answer: to first order in x, the terms with
pressure on the right-hand side of Eq. (17) are cancelled
for this (ψ) profile.

In expression (19), (ψ) is by definition the plasma
pressure at the line r = rax . To yield a pressure profile p
decreasing toward the plasma edge, the function M(ψ)
in Eq. (23) should increase away from the magnetic
axis. Even in the extreme case of M0 = 0, the value of p
at M = 1 is smaller than  by a factor of only 1/3. It is
clear that condition (23) does not enable the pressure

(ψ) to vanish at the plasma boundary. Consequently,
solution (23) is physically unrealistic. It may be stated
that none of the choices of M(ψ) can satisfy condition
(18) and eliminate the dependence of the right-hand
side of Eq. (17) on the pressure under the natural
assumption that the plasma pressure p should decrease
to zero at the plasma boundary.
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Solution (23) is, in fact, a fairly slight modification
of the trivial solution p = const at M = 0, which is very
far from the actual profiles of p. Expression (23) shows
that the plasma rotation might have a strong impact on
the plasma equilibrium only for very large and, there-
fore, physically unacceptable values of M. Profile (23)
with a small gradient and a nonzero value at the plasma
boundary is far from realistic profiles of the pressure p.
That is why it seems hardly conceivable that condition
(18) could be satisfied (at least approximately) for typ-
ical experimental p profiles. In addition, the toroidal
plasma rotation velocity in tokamak experiments is
usually maximum at the center of the plasma column
[41, 42], whereas condition (23) requires the opposite.
This further confirms and strengthens the above quali-
tative arguments that the toroidal plasma rotation can-
not have a strong positive effect on the plasma equilib-
rium.

5. PLASMA ROTATION AND PLASMA SHIFT

The main effects of the finite plasma pressure in
tokamaks is the outward shift of the magnetic surfaces
[3, 31]. The effect of the plasma rotation on the shift ∆
was first studied by Zehrfeld and Green [8, 9]. In [9],
they obtained the formula

(24)

Here,  is the velocity-independent component of ∆';
the prime denotes the derivative with respect to the
minor radius a of the magnetic surfaces; R is the major
radius of the torus; Bθ(a) = J/(2πa) is the magnetic field
of the longitudinal current J flowing inside a magnetic
surface; and the overhead bar stands for averaging over
the transverse cross section,

(25)

where ρ is the running minor radius of the magnetic
surfaces. Recall that force balance equation (1) is writ-
ten in a system of units in which the magnetic field
pressure is B2/2. This corresponds to B2/(8π) in [3, 31]
and to µ0B2/2 in [8, 9].

The quantity  was calculated by Shafranov [3,
31]:

(26)

where li ≡  is the internal inductance per unit
length of the plasma column.
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For pressure profiles decreasing toward the plasma
edge, the quantity  is obviously negative. As can be
seen from Eq. (24), the toroidal rotation with a decreas-

ing profile of  leads to an increase in the quantity
|∆' | and, accordingly, to a larger shift of the magnetic
surfaces. However, the quantity |∆' | can be decreased by

making  the increasing function of a to obtain

 < . Both of these conclusions were precisely
formulated in [9]. In [35], the latter conclusion about
the “positive” effect of the toroidal plasma rotation was
presented as an original one, without reference to [9],
although the analysis carried out in [35] nearly coin-
cides with that of [9], including the use of an expression
equivalent to Eq. (24). A really new assertion of [35] is
that the absolute value of the plasma rotation velocity is
unimportant for a substantial reduction of |∆' |. How-
ever, according to Eq. (24), this assertion is wrong. This
can be seen even without recourse to Eq. (24): the basic
equation (4) clearly shows that the effect of the toroidal
rotation of a plasma on its equilibrium is determined by

the absolute value of the quantity .

Expression (24) is the result of solving Eq. (10) in
the large aspect ratio approximation under the condi-
tion that the cross sections of the magnetic surfaces are
shifted nested circles. In the previous section, expres-
sion (23) was derived for the pressure profile for which,
to first order in x, it might be possible to obtain a favor-
able result: the independence of the solution to equilib-
rium equation (10) on plasma pressure. Solution (23) is
valid for all configurations, regardless of the aspect
ratio and the shape of the magnetic surfaces. According
to this solution, Zehrfeld and Green’s conclusion [9]

that  should increase with distance from the mag-
netic axis in order to reduce the plasma pressure effect
on the solution to the equilibrium equation inside the
plasma column remains valid even in the most general
case.

At this point, it should be emphasized that the afore-
said is true only for a certain part of the plasma column.
A decrease in |∆' | in a central plasma region does not
yet guarantee an increase in the maximum possible
plasma pressure, as was erroneously thought in [35]. A
complete solution of the equilibrium problem should
include the integration of ∆' over the entire cross sec-
tion of the plasma column, which was not done in [35].

The increase in  away from the magnetic axis
changes somewhere to a decrease, resulting in a nega-
tive effect, as can easily be seen from Eq. (24). How-
ever, even without recourse to formula (24), it is clear

that, in any case, regardless of the  profile, the cen-
trifugal force of the toroidal plasma rotation is directed
outward; therefore, the total effect must be negative. In
particular, this is seen from integral force balance con-
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dition (5). In order to see this negative integral effect in
terms of the conventional description based on expres-
sions (24) and (26), let us apply expression (24) to the
boundary magnetic surface a = b:

(27)

Here, all of the quantities are taken at the plasma
boundary; hence, li is the total internal inductance,

βJ =  is the total poloidal beta, and BJ is the mean
poloidal field at the boundary. It is also assumed that the

conditions p = 0 and  = 0 are satisfied at the plasma
boundary.

Expression (27) differs from the well-known for-
mula for the static case [31] only in that it contains the
term with the toroidal velocity v t . As was expected, the
contribution of this term is negative, which indicates an
increase in |∆' |. A similar effect was revealed in the
problem of the static equilibrium of a plasma with an
anisotropic pressure, e.g., because of the presence of
particles with high toroidal velocities [4, 31].

An increase in |∆' | at the plasma edge should inevi-
tably reduce the equilibrium beta limit. To demonstrate
this once again, let us turn to the formula [43, 34]

(28)

which gives the strength of the external transverse field
B⊥  required to keep the plasma column in a tokamak at
a given equilibrium position. Substituting expression
(27) into (28) yields

(29)

For v t = 0, this formula reproduces the classical
result obtained by Shafranov [2, 3, 31]. It is this result
that formed a basis for the development of equilibrium
control systems in tokamaks, and it is this field that was
mentioned in the first paragraph of the Introduction.

It can be seen from formula (29) that the transverse
magnetic field must be stronger for a rotating plasma.
As was explained in [31], the equilibrium limit for a
plasma column with a circular cross section is achieved
when the inner X-point of the magnetic separatrix
approaches the plasma boundary. This means that there
is an upper limit to the quantity |B⊥ |. Let us assume that
this limit has been reached and |B⊥ | cannot be increased
further. It is clear that, for a given value of |B⊥ |, the
higher values of βJ will be obtained for a nonrotating
plasma.

Hence, we again arrive at the conclusion that the tor-
oidal rotation can only reduce the equilibrium β limit.
The opposite, very optimistic conclusion of [35] is
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wrong because, in that paper, only the possibility of
reducing the quantity |∆' | at the center of the plasma
column was considered, the equation for the shift was
not completely integrated, and the boundary conditions
were not discussed at all.

6. CONCLUSION

The possibility of the local improvement of the
equilibrium conditions (or the possibility of decreasing
|∆' |) for a tokamak plasma rotating in such a way that

 increases away from the magnetic axis was pre-
dicted as far back as 1973 by Zehrfeld and Green [9].
For about the next 30 years, no facts or predictions
appeared (the only exception being papers [35, 36])
indicating that this effect should be taken into account
in analyzing the integral equilibrium conditions. The
reason is that the effect in question is fairly weak,
which can be seen from the final formulas derived in [9]
for the shift ∆, although this point was not directly men-
tioned in that paper. In addition, based exclusively on
the fact that the equilibrium conditions can locally be
improved in the plasma core, it cannot, however, be
concluded that the rotation of a plasma has a favorable
effect on its equilibrium.

The above analysis clearly shows that, in contrast to
the conclusions reached in [35, 36], the effect in ques-
tion is actually weak and the global effect is negative.
This has been shown by all possible analytical means:
by obtaining simple estimates (6)–(9) for the role of the
plasma rotation in the global force balance, by solving
the general problem of how to choose the velocity and
pressure profiles in order to make the right-hand side of
basic equilibrium equation (10) independent of the
plasma pressure, and by examining the solution to
Eq. (10) in the traditional model of circular shifted
magnetic surfaces.

The effect of the plasma rotation on equilibrium is
determined primarily by the absolute value of the rota-

tion velocity, or, more precisely, by the quantity 
[see formulas (4), (5), (12), (23), (24), (27), (29)]. The
assertions of Ilgisonis and Pozdnyakov [35, 36] that
this effect is governed by the profile of the rotation
velocity, rather than by its absolute value, are false. The
conclusion about the strong positive effect of the toroi-
dal plasma rotation [35, 36], in particular, about the
possibility of substantially increasing (by a factor of 1.6
to 2.5) the equilibrium β limit [35], is also wrong. In
fact, the equilibrium beta limit for a rotating plasma
should be lower than that for a nonrotating plasma. This
can be seen in basic equation (4); in its integral conse-
quence (5); and, even better, in final expressions (27)
and (29). For a hot plasma, the rotation-related decrease
in the equilibrium β limit is insignificant, provided that
the rotation velocity is lower than the plasma thermal
velocity. That the effect is weak is a natural conse-
quence of the smallness of parameter (8) for typical

ρv t
2

ρv t
2

tokamak conditions. In any case, regardless of the value
of the rotation velocity, this effect is negative, in con-
trast to the very optimistic predictions of [35, 36].

The above discussion was concentrated on the
plasma equilibrium only; hence, the conclusion about
the negative (although fairly weak) effect of the toroidal
plasma rotation also applies only to plasma equilib-
rium, when the global force balance is important. On
the other hand, plasma rotation may play a significant
role in the processes that are governed by the local
(rather than global) parameters. Thus, the rotation of a
plasma can substantially affect its stability [44, 45]. In
particular, it is well known that sufficiently rapid
plasma rotation stabilizes the so-called resistive wall
modes [41, 46, 47]. The solution of the problem of the
stability of these modes with allowance for plasma rota-
tion requires an adequate description of the dissipative
processes occurring in a thin layer around a resonant
magnetic surface. The stability problem requires quite
different approaches and separate consideration.
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Abstract—A theoretical study is made of the surface electromagnetic eigenmodes that are excited by an annu-
lar charged-particle beam due to dissipative instability and propagate across the external axial magnetic field in
a cylindrical metal waveguide partially filled with plasma. A self-consistent set of differential equations for a
cold low-density charged-particle beam moving above the plasma surface is constructed in the single-mode
approximation and is solved numerically. It is shown that the larger the dissipation, the slower the instability
growth rate and the larger the wave amplitude in the saturation stage of the instability. An increase in the trans-
verse dimensions of a charged-particle beam results in a slower growth of the dissipative instability, in which
case, however, the beam transfers a larger fraction of its kinetic energy to the wave. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The investigation of the interaction of charged-par-
ticle beams with hybrid waveguide structures is impor-
tant for radio engineering and plasma electronics
because of the possibility of developing small-scale
radio engineering devices capable of generating elec-
tromagnetic waves over a broad frequency band. Dif-
ferent aspects of the problem of the interaction of
charged particle beams with the eigenmodes of plasma-
filled waveguides were studied in [1–4]. The results of
theoretical research on the beam–plasma interaction
find applications in fusion experiments with beam-
heated plasmas [5] and in physical experiments in
space [6, 7]. In this paper, we develop a nonlinear the-
ory of the interaction of charged-particle beams with
the eigenmodes of a short scale-length plasma electron-
ics device capable of generating continuously tunable
radiation.

Among the issues that have been studied by now in
considerable detail are the conditions for the onset of
beam instabilities and the nonlinear interaction of
charged-particle beams with plasmas in an infinitely
strong external magnetic field and in a magnetic field of
finite strength. The effect of the spectra of the generated
waves on the characteristic features of the beam–
plasma interaction has also been analyzed, but without
allowance for the effect of plasma boundaries. The
finite plasma dimensions not only change the excitation
dynamics of bulk waves, but also provide conditions
favorable for the onset of surface waves (SWs) [8–11].

It is the distinctive features of the interaction of
charged-particle beams with plasma waveguide struc-
tures of finite dimensions that motivated the choice of
the subject for our study. Specifically, we investigated
1063-780X/03/2902- $24.00 © 0112
the excitation of an extraordinarily polarized surface
mode, which is the eigenmode of a cylindrical metal
waveguide partially filled with a cold magnetized
plasma, due to dissipative instability. This mode, which
propagates in the azimuthal direction strictly transverse
to a constant external axial magnetic field, is called an
azimuthal surface wave (ASW) [12]. In the plasma
region, the ASW field is described in terms of a super-
position of the modified Bessel functions and their
derivatives. In the vacuum region, where a low-density
electron beam propagates, it is expressed in terms of the
first- and second-order Bessel functions [13]. The
numerical results obtained on the basis of the nonlinear
theory of the excitation of an ASW by a charged-parti-
cle beam during the resonant beam-driven instability
were reported in [14]. In that paper, it was shown that
the growth rate of the resonant beam-driven instability
of an ASW increases with the azimuthal mode number
m and there exists an optimum value of m/R1 (where R1

is the radius of the plasma column) at which the insta-
bility growth rate is maximum. The excitation of SWs
by an annular beam in the interaction with a plasma cyl-
inder was also investigated in [15, 16].

The dissipative instability of ASWs was studied in
[17] in the linear approximation. The growth rate of this
instability was found to be slower than that of the reso-
nant beam-driven instability of an ASW; moreover, it
was found to decrease with increasing azimuthal mode
number m. The nonlinear excitation of other types of
SWs during the dissipative instability was studied in,
e.g., [8, 18]. Our objective here was to investigate the
nonlinear interaction of an ASW with an electron beam
during this instability.
2003 MAIK “Nauka/Interperiodica”
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2. FORMULATION OF THE PROBLEM

It is proposed to excite ASWs in a cylindrical metal
waveguide of radius R2 with a coaxial plasma column
of smaller radius R1. An annular electron beam moves
in the gap between the plasma and the metal waveguide
wall. The beam density nb is assumed to be much lower
than the plasma density np, and the gap width is
assumed to be sufficiently small (R2 – R1 ! R2). The
constant external magnetic field H0 is oriented along
the z-axis, which is the symmetry axis of the cylinder.

The electrical conductivity of the metal waveguide
wall is assumed to be high enough for the tangential
component of the electric field of an ASW to satisfy the
boundary condition Eτ(R2) at the metal surface. In the z
direction, the system is assumed to be uniform; hence,
the electromagnetic perturbations under consideration
are independent of the z coordinate.

The desired set of the differential equations describ-
ing the nonlinear stage of the dissipative instability of
an ASW can be obtained from the hydrodynamic equa-
tions for the plasma, Maxwell’s equations, and the
equation of motion for the beam electrons in the region
R2 > r > R1. Since the beam density is much lower than
the plasma density (nb ! np), we can neglect both the
effect of the beam on the dispersion properties of an
ASW and the effect of the self-field of the beam on the
electromagnetic field in which the beam propagates.
The dissipative processes in the plasma are described
by introducing the effective collision frequency into the
dispersion relation for an ASW.

3. BASIC EQUATIONS

In the cold plasma approximation, Maxwell’s equa-
tions can be split into two independent subsets of equa-
tions by representing the dependence of the wave elec-
tromagnetic field on the time t and the azimuthal angle
ϕ in the form

(1)

One of the subsets describes the ASW field with
extraordinary polarization, the electric field of the ASW
being perpendicular to the external magnetic field H0.
For the magnetic component Hz of the ASW field, it is
possible to obtain a second-order differential equation
whose solution is expressed in terms of the modified
Bessel functions [13],

(2)

in which case the components of the wave electric field
in a plasma cylinder r < R1 are related to the above mag-
netic component by

(3)

E H, f r( ) imϕ iωt–( ).exp=

∂2
Hz

∂ξ2
-----------

1
ξ
---

∂Hz

∂ξ
--------- 1 m

2

ξ2
------+ 

  Hz–+ 0,=

Er

ε2

kε1ψ
2

--------------
∂Hz

∂r
---------

mHz

krψ2
------------,+=
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(4)

where ξ = krψ, k = ωc–1, c is the speed of light, ψ2 =

(  – ) , and ε1 and ε2 are the elements of the
dielectric tensor of a cold magnetized plasma (see, e.g.,
[19]).

In the plasma region, the solution to Eqs. (2)–(4)
that describes the Hz component of the ASW field is
expressed through the modified Bessel functions Im(ξ)
and the solutions describing the Er and Eϕ components
are represented as linear combinations of the functions
Im(ξ) and their derivatives (ξ) with respect to the
argument. This is valid under the assumption that the
ASW field at the waveguide axis r = 0 is finite.

In the beam region, the electromagnetic field of an
ASW is described by the following set of differential
equations, which differ from Eqs. (2)–(4):

(5)

(6)

(7)

where

jϕ = –|e | (r – ri) , 

and δ(x – x0) is the delta function.
Equations (5)–(7) were solved by the method of

variation of a constant. The components of the ASW
field in the region R1 < r < R2 are expressed in terms of
the Bessel functions of the first kind Jm(ξ), the Bessel
functions of the second kind Nm(ξ), their derivatives
with respect to the argument [13], and the components
jr and jϕ of the beam current density.

In order to derive the equations for the envelope and
phase of the wave, we turn to the following boundary
conditions:

(i) the tangential electric field of an ASW vanishes
at the metal surface of the waveguide wall, Eϕ(R2) = 0;

(ii) the tangential field component Eϕ is continuous
at the plasma boundary r = R1, {Eϕ(R1)} = 0; and

Eϕ
imε2Hz

krε1ψ
2

------------------
i

kψ2
---------

∂Hz

∂r
---------,+=

ε2
2 ε1

2 ε1
1–

Im'

∂2
Hz

∂ζ 2
-----------

1
ζ
---

∂Hz

∂ζ
--------- 1 m

2

ζ 2
------– 

  Hz–+ Fb,=

Er
4π
iω
------ jr

mHz

ζ
-----------,–=

Eϕ
4π
iω
------ jϕ i

∂Hz

∂ζ
---------,–=

Fb
4π
ωζ
------- ∂

∂ζ
------ jϕζ( ) im jr– , ζ– kr,= =

jr e δ r ri–( )δ ϕ ϕ i–( )∂r
∂t
-----,

i 1=

N

∑–=

rδ
i 1=

N

∑ δ ϕ ϕ i–( )∂ϕ
∂τ
------
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(iii) there are no currents at the metal surface of the
waveguide wall and at the plasma–vacuum interface,
jϕ(R1) = jϕ(R2) = 0.

Taking into account the dissipative processes in the
plasma and using the standard procedures for averaging
and singling out the slow time (see, e.g., [2, 8]), we can
obtain equations for the envelope and phase of the
eigenmodes excited in the waveguide. This can be done
by introducing the effective collision frequency into the
elements of the plasma dielectric tensor:

(8)

(9)

where A = Ey  is the dimensionless wave amplitude,

Θ is the wave phase, α = nb , β = |ωe | , w =

, Ri = riΩec–1, ζi = kRi , ωe is the electron cyclo-
tron frequency, Ωe is the electron Langmuir frequency,

ImD(ω) ≈ , 

and ν is the effective collision frequency of the plasma
particles.

The equation of motion for the beam electrons can
be conveniently written in terms of the electron

∂A
∂t
------

Aβ
P

-------Im D ω( )–=

–
α Dp

NβPL
--------------- m

w
----

∂Ri

∂t
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i 1=

N
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+ Ri
2∂ϕ i

∂t
--------L2 ζ i( ) mϕ i Θ ωt–+( )cos ,

∂Θ
∂t
-------

=  
α Dp

NβPLA
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2∂ϕ i
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mε2

ε1ψ
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d

dw
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L2 ζ1( )
L

---------------+ ,= =

ν
2ω
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Im 1+ ξ1( )
ψIm ξ1( )
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Ωe
2ς1

-----------------+
momentum p = γmev (where γ is the relativistic factor):

(10)

Substituting the ASW field components calculated in
the region R1 < r < R2 yields the following set of equa-
tions for the ith electron:

(11)

(12)

(13)

(14)

where Rα =  – 1, V = , u = ,
and Vi and ui are the dimensionless radial and azimuthal
momenta of the ith electron, respectively.

Equations (13) and (14) were derived under the
basic assumption that the region where the beam prop-
agates is relatively narrow, R2 – R1 ! R1. This assump-
tion made it possible to significantly simplify these
equations by using the asymptotic expansions of the
cylindrical Bessel functions and their Wronskians (see,
e.g., [13]) and, thus, to substantially reduce the compu-
tation time required for the direct calculation of all
cylindrical functions in Eqs. (8) and (9). The nonlinear
interaction of an ASW with an annular electron beam
was investigated by solving Eqs. (8), (9), and (11)–(14)
numerically.

4. RESULTS OF NUMERICAL INVESTIGATIONS 
OF THE DISSIPATIVE INSTABILITY OF AN ASW

The model set of equations was solved by using the
fourth-order Runge–Kutta method, which is one of the
best standard methods for the numerical integration of
differential equations and which makes it possible, on
the one hand, to reduce the number of computational
operations required to calculate their right-hand sides
and, on the other, to ensure a high computational accu-
racy. The time integration step was varied depending on

dp
dt
------ eE

e
c
-- v H H0+( )×[ ] .+=

dRi

dt
-------- ωe

Vi

βγi

-------,=

dϕ i

dt
-------- ωe
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βγiRi

------------- ωe
ε
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--------,+=

dVi

dt
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 –=

+ AR1
m
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----- w
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----– 
  1
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  mϕ i Θ ωt–+( ),sin

dui

dt
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 =

+
AwR1
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Rα
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2
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+
AwR1Vi
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c
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pϕme
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c

1–
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the rate at which the functions changed during the pro-
cess of numerical integration.

The number of particles used to model an electron
beam was N = 500, because, with larger numbers of
particles, the final results were found to remain essen-
tially the same. The interaction of the beam electrons
with the plasma boundary and metal waveguide wall
was simulated using the mirror reflection model,
which implies that the electrons do not disappear in
such interactions, but rather their radial momenta are
reversed by mirror reflection and they are reflected
back into the region R1 < r < R2. This model is fre-
quently used and is best suited for describing a beam–
solid body boundary [8].

The results of numerical simulations of the develop-
ment of the resonant beam-driven instability of an ASW
are illustrated in Figs. 1–4. The initial wave amplitude,
wave phase, and the radial momentum of all beam elec-
trons were assumed to be A = 10–3, Θ = 0, and Vi = 0,
respectively. The simulations were carried out for three

1.10

0 0.040

A

τ

m = 2

m = 3

m = 4

0.0320.0240.0160.008

0.88

0.66

0.44

0.22

Fig. 1. Time dependences of the amplitudes of ASWs with
different azimuthal mode numbers for ν = 0.

0 0.040

A

τ

ν = 0.3

0.0320.0240.0160.008

0.35 ν = 0

ν = 0.1

0.28

0.21

0.14

0.07

Fig. 3. Time dependences of the amplitude of an ASW with
m = 2 for different collision frequencies of the plasma par-
ticles.
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different gap widths: R2 – R1 = 0.08R1, R2 – R1 = 0.1R1,
and R2 – R1 = 0.12R1. The initial distribution of the
beam electrons over the azimuthal angle in the range
0 ≤ ϕ ≤ 2π was chosen to be approximately uniform
with a small random deviation (∆ϕ = ±1%). Over the
radius, the beam electrons were initially distributed in a

random manner in the spatial region R1 + (R2 – R1) <

r < R1 + (R2 – R1). In most of the simulations, the ini-

tial angular momentum ui of the beam electrons was set
equal to βRi with a small random spread of ±1%.

As was shown in [14], there is an effective wave-

number keff = , in the immediate vicinity of
which the growth rate of the beam-driven instability of
an ASW is maximum. In the case at hand, the effective
wavenumber is approximately equal to  ≈ 0.4. That
is why, for simulations, we chose the corresponding

1
3
---

2
3
---

mcR1
1– Ωe

keff*

0.740

0 0.045

A

τ

m = 2

m = 3
m = 4

0.0360.0270.0180.009

0.592

0.444

0.296

0.148

Fig. 2. Development of the dissipative instability of ASWs
with different azimuthal mode numbers m for ν = 0.1.
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Fig. 4. Time dependences of the amplitude of an ASW with
m = 2 for ν = 0.1 and for different transverse dimensions of
the beam (R0 = R2/R1 – 1).
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values of R1 for different azimuthal mode numbers. Our
analysis of how the choice of the value of keff affects the
development of the dissipative instability confirmed the
results obtained in [14]. In fact, we found that, if the keff

value was chosen to differ from , then the ASW
amplitude increased at a slower rate. Our numerical
analysis also confirmed the suggestion that the only
waves that are excited resonantly are ASWs with posi-
tive values of the azimuthal mode number m; these
waves propagate in the direction in which the beam
electrons gyrate in an external axial magnetic field. The
waves with m < 0 are not excited. It was established that
the excitation of an ASW is highly sensitive to the beam
electron density. The lower the beam density, the
smaller the wave amplitude in the saturation stage of
the instability and the longer the time scale on which

the instability saturates. A decrease in the ratio 
also reduces the time scale on which the ASW ampli-
tude increases from its initial value to the maximum.
Note that all of the curves in the figures presented here
were computed for |ωe| = 0.01Ωe and nb = 0.05np.

Figure 1 illustrates how ASWs with different azi-
muthal mode numbers m are excited during the beam-
driven instability (ν = 0). We can see that, with increas-
ing azimuthal mode number m, the ASW amplitude
increases significantly in the saturation stage of the
beam instability and the instability itself grows faster.

The results of investigations of the amplitudes of
ASWs with different azimuthal mode numbers m dur-
ing the dissipative instability (ν ≠ 0) are illustrated in
Fig. 2. It can be seen from this figure that the larger the
azimuthal mode number m, the larger the ASW ampli-
tude in the saturation stage of the dissipative instability
and the slower the instability growth rate.

In Fig. 3, we illustrate the results of investigations of
the effect of the dissipation rate ν on the growth of the
ASW amplitude during the development of the dissipa-
tive instability. It can be seen that the higher the dissi-
pation rate ν, the smaller the ASW amplitude in the sat-
uration stage of the instability and the slower the insta-
bility growth rate.

Figure 4 illustrates the results of a numerical analy-
sis of the effect of the transverse dimensions of a beam
on the amplitude of the wave envelope in the saturation
stage of the dissipative instability and on the instability
growth rate. We can see that the larger the transverse
beam dimensions, the larger the fraction of the beam
kinetic energy that is transferred to the wave and the
longer the time required for the dissipative instability to
saturate. This result stems from the distinctive features
of the spatial distribution of the ASW field and from the
fact that the larger the gap width R2 – R1, the larger the
distance between the beam and the plasma surface, at
which the SW amplitude is known to be maximum (see,
e.g., [19]).

keff*

ωe Ωe
1–
5. CONCLUSION

We have studied the excitation of ASWs with fre-

quencies in the range |ωe | < ω <  – |ωe |/2
by an annular electron beam rotating around the plasma
column that partially fills a cylindrical metal waveguide
immersed in an external axial magnetic field. The reso-
nant dissipative instability of an ASW has been investi-
gated in the single-mode approximation.

We have derived a two-dimensional set of model
equations describing the evolution of the envelope of
the wave field, the phases of ASWs, and the coordinates
and momenta of the electrons of a low-density beam.
We have numerically analyzed the effect of the
waveguide and beam parameters on the development of
the resonant beam instability. We have shown that
changing the sign of the azimuthal mode number (or,
equivalently, reversing the propagation direction of the
ASW) leads to the suppression of instability. ASWs
with larger azimuthal mode numbers m are excited at
slower rates, but their amplitudes in the saturation stage
of the instability are larger. This is explained by the fact
that the larger the azimuthal mode number m, the
higher the phase velocity of the ASW [17] and, accord-
ingly, the larger difference between the wave phase
velocity and the beam velocity (note that it is this dif-
ference that determines how much of the beam energy
is transferred to the wave [8]). The growth rates Imγ of
the resonant dissipative instability of ASWs are slower
than those of the resonant beam-driven instability;
moreover, an increase in the effective collision fre-
quency results in an additional slowing of the growth
rates Imγ. By increasing the transverse dimensions of
the beam, it is possible to increase the difference
between the beam velocity and the wave phase velocity
and, consequently, to achieve larger amplitudes of the
wave envelope in the saturation stage of the dissipative
instability.

Finally, we point out the following two advantages
of the proposed model of a hybrid waveguide structure
excited by an annular charged-particle beam: first, the
eigenfrequency of the structure can be continuously
tuned by varying the plasma density and, second, the
axial dimensions of the structure are small because the
beam interacts with a wave propagating in the azi-
muthal direction.
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Abstract—For a plasma produced by the photoionization of hydrogen-like atoms with electrons in the np
states, a theory is developed that describes the nonlinear plasma polarizability due to electron–ion collisions,
which governs the bremsstrahlung-induced coherent harmonic generation. The effective partial collision fre-
quencies are obtained as functions of the pump field intensity for the first four p states of hydrogen-like atoms
and for the third, fifth, seventh, ninth, and eleventh harmonics. These analytic results make it possible to estab-
lish the scalings of the collision frequencies with pump field intensity, the principal quantum number, and the
number of the generated harmonic. In the case of pump fields of comparatively low intensities, some qualitative
differences are revealed between these scalings and the corresponding scalings obtained for the Bethe regime
of suppression of the photoionization barrier in a gas of hydrogen-like atoms with electrons in the ns states.
© 2003 MAIK “Nauka/Interperiodica”.
1. In this paper, we present the results of a theory of
the generation of the third, fifth, seventh, ninth, and
eleventh harmonics in a plasma photoionized in the
Bethe regime of suppression of the ionization barrier
[1, 2]. We consider the plasma state within a relatively
short period of time after the gas ionization, when the
number of collisions between the electrons is still too
small for them to forget information about their preion-
ization states in the atoms. An important point is that, in
this paper, we will assume that the electrons are initially
in the np states (a similar analysis for ns states is per-
formed in [3]).

In Section 2, we present the basic (common for our
analysis) relationships that describe the effective non-
linear partial collision frequencies, which characterize
the nonlinear conductivities of the plasma for different
harmonics of the pump field. In Section 3, we describe
the nonlinear collision frequencies that govern the gen-
eration of the third, fifth, and seventh harmonics. In
Section 4, we consider the generation of the ninth har-
monic, and Section 5 is devoted to the generation of the
eleventh harmonic. Section 6 is a limiting asymptotic
description of nonlinear collision frequencies for the
pump fields of both high and low intensities (in the lat-
ter case, the nonlinear collision frequencies have power
series expansions). Finally, in Section 7, we discuss the
results of our theoretical analysis.

2. According to Bethe [1] (see also [2, 3]), the
regime of suppression of the ionization barrier occurs
1063-780X/03/2902- $24.00 © 20118
when the electric field strength E satisfies the condition

(2.1)

where Z is the nuclear charge, IZ is the ionization poten-
tial, e is the charge of an electron, and m is its mass. For
a hydrogen-like atom, we have

where n is the principal quantum number. In the Bethe
regime, an electron is almost freely removed from an
atom. Consequently, the velocity spread of an electron
with respect to its directed motion in an electric field is
given by the distribution function of its state in an atom
before ionization. The distribution function of the np
states of unpolarized electrons is written as [4]

(2.2)

where Ne is the electron density, VZ = Ze2/" is the Cou-
lomb velocity unit [5], and the coefficients cn are given
in Appendix 1.

We represent the electric field of the pump wave in
the form

(2.3)
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and denote the electron oscillatory velocity in the pump
field by

. (2.4)

In the dipole approximation [6–9], the coherent oscilla-
tions of electrons in their collisions with plasma ions
give a nonlinear collisional contribution to the electric
current density δj, which is represented as the expan-
sion

(2.5)

in odd harmonics 2N + 1 of the pump field [4]. Calcu-
lations yield the following expressions for the effective
nonlinear partial collision frequencies ν(2N + 1)(np, E):

(2.6)

where we have introduced the notation

(2.7)

(2.8)

(2.9)

(2.10)

The differential operators Dnp are given in Appendix 2.
The consequences of formulas (2.6)–(2.9) are the sub-
ject of further analysis.

In what follows, it is convenient to use the represen-
tation

(2.11)

The algebraic functions a[2N + 1, np, x] for different
harmonics and different np states will be determined
below.

3. In this section, we consider the nonlinear partial
collision frequencies corresponding to the generation
of the third, fifth, and seventh harmonics. We analyze
these harmonics simultaneously because, as will be
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seen below, they are described by the analogous ana-
lytic consequences of general relationships (2.6)–(2.9).
We start with the following consequence of formula
(2.10) for the third harmonic (cf. [6]):

(3.1)α 3 b x, ,[ ] x
b
--- 

 arcsinh 8b
3x
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8b
2

7x
2
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3x b
2

x
2
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---------------------------.–+=
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Fig. 1. Functions H[3, np, VE/VZ] for different values of the
principal quantum number.
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Fig. 2. Functions Ω[3, np, n2VE/3VZ]. The solid curve is for the 5p state, the dotted curve is for the 4p state, the short dashes are for
the 3p state, and the long dashes are for the 2p state.
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This formula, along with formula (2.9) and the differ-
ential operators presented in Appendix 2, allows us to
find the function a[3, np, x] for the third harmonic:

(3.2)

where P4n[2N + 1, np, x] are 4nth-degree polynomials
comprising even powers of x. In the case of formula
(3.1), relationship (3.2) should be used with 2N + 1 = 3.
However, relationship (3.2) is also valid for the fifth and
seventh harmonics. That is why these two harmonics
are considered together with the third harmonic. Let us
now return to the third harmonic, in which case the
polynomials P4n[2N + 1, np, x] for the first four np
states have the form

(3.3)
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The plots of the four functions H[3, np, VE/VZ] for
n = 2, 3, 4, and 5 are shown in Fig. 1. For comparatively
small values of the argument, these polynomials,
which, according to formula (2.6), directly characterize
the effective nonlinear collision frequencies, are very
different for different values of the principal quantum
number. A unified scaling for such different frequencies
can be constructed using the functions

(3.4)

In accordance with formulas (2.6) and (2.8), we have

(3.5)

Figure 2 shows the plots of the four functions Ω[3,
np, n2VE/3VZ]. The larger the principal quantum num-
ber, the more closely spaced the functions in the regions
of their extremes. This yields an approximate scaling
for the values of the function Ω[3, np, n2VE/3VZ] and
the approximate scaling
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For the fifth harmonic, relationship (2.10) gives (cf.
[7])

(3.7)

In accordance with expression (2.9), this formula leads
to a relationship of form (2.2), in which case the poly-
nomials P4n[5, np, x] are as follows:

(3.8)

The plots of the functions H[5, np, VE/VZ] calculated
from formulas (2.8), (2.11), (3.1), and (3.8) are dis-
played in Fig. 3, showing a strong dependence on the
principal quantum number. The plots of the four func-
tions Ω[5, np, n2VE /5VZ ] in Fig. 4 allow us to arrive at
an approximate scaling analogous to the scaling that
can be inferred from Fig. 2.

Finally, for the seventh harmonic, formula (2.10)
becomes
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In accordance with relationship (2.9), this formula
reduces to a relationship of form (3.2), the polynomials
P4n[7, np, x] being
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Fig. 3. Functions H[5, np, VE/VZ] for different values of the
principal quantum number.
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Fig. 4. Functions Ω[5, np, n2VE/5VZ]. The solid curve is for the 5p state, the dotted curve is for the 4p state, the short dashes are for
the 3p state, and the long dashes are for the 2p state.
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(3.10)

The functions H[7, np, VE/VZ] corresponding to these
expressions are shown in Fig. 5. In Fig. 6, we plot the
functions Ω[7, np, n2VE/7VZ] for the first four np states.
Analyzing Fig. 6, we again arrive at an approximate
scaling analogous to the scalings that were inferred
from Figs. 2 and 4 for the third and fifth harmonics,
respectively.

4. In this section, we consider the ninth harmonic,
for which we have
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Using relationships (2.9) and (2.11) and taking into
account expression (4.1) and the expressions for the
differential operators from Appendix 2, we can write
the relationship

(4.2)

where

(4.3)
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(4.4)

Although formulas (4.2) and (3.2) are significantly dif-
ferent, the plots of the functions H[9, np, VE/VZ] shown
in Fig. 7 have much in common with those in Figs. 1, 3,
and 5. Moreover, the approximate scaling that can be
inferred from the functions Ω[9, np, n2VE/9VZ] shown
in Fig. 8 is similar to the scaling that follows from
Figs. 2, 4, and 6 for the third, fifth, and seventh harmonics.

5. Finally, we analyze the case of the eleventh har-
monic, when relationship (2.10) becomes

(5.1)
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sions given in Appendix 2, we obtain
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--------------------------------------------------,–=

Q2 11 4 p x, ,[ ] 262 144 728 135x
2

+( )
693

-----------------------------------------------------,–=

Q2 11 5 p x, ,[ ] 655 360 1064 135x
2

+( )
693

--------------------------------------------------------–=

n = 5

n = 4

n = 3

n = 2

0.04

0.02

–0.02

–0.04

2 4 6 8

–0.4

–0.6

–0.2

0.2

0.4

2 31

–3

–2

–1

1

2

1.00.5 1.5 2.0

–10.0

–7.5

–5.0

–2.5

2.5

5.0

7.5

0.2 0.4 0.6 0.8 1.0 1.2
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Fig. 6. Functions Ω[7, np, n2VE/7VZ]. The solid curve is for the 5p state, the dotted curve is for the 4p state, the short dashes are for
the 3p state, and the long dashes are for the 2p state.

Ω[7, np, n2VE/7VZ]

n2VE/ 7VZ
and, accordingly, the polynomials R4n + 10[11, np, x] are
written as

R18[11, 2p, x] = (18350080 + 91422720x2 

+ 184320000x4 + 190095360x6 + 103219200x8 

+ 26285175x10 + 1785945x12 – 125748x14 

– 5526x16 – 8543x18),

R22[11, 3p, x] = (183500800 + 1245839360x2 

+ 3625123840x4 + 5868994560x6 + 5728419840x8 

+ 3397951095x10 + 1160817735x12 + 194055477x14 

+ 8633163x16 – 364133x18 – 16177x20 – 7553x22),

R26[11, 4p, x] = (954204160 + 8287682560x2 

+ 31919308800x4 + 71539916800x6 

(5.4)

+ 6335935452x16 + 767413570x18 + 23714530x20 

– 625800x22 – 27356x24 – 7091x26),

1
3465
------------

1
3465
------------

1
3465
------------

+ 102832537600x8 + 98353977975x10 

+ 62694099765x12 + 25811279802x14 
R30[11, 5p, x] = (3486515200 

+ 37050777600x2 + 178534809600x4 

+ 514751283200x6 + 986302464000x8 

+ 1318137673335x10 + 1253223426595x12 

+ 847364751387x14 + 399405057381x16 

+ 125286814576x18 + 23811668412x20 

+ 2221803150x22 + 50046899x24 

– 910623x26 – 38703x28 – 6821x30).

The plots of the functions H[11, np, VE/VZ] are depicted
in Fig. 9. The approximate scaling that can be inferred
from the essential quantitative difference between these
functions for the first four np states reduces to the scal-
ing that describes the dependence on the principal
quantum number and corresponds to the plots of the
functions Ω[11, np, n2VE/11VZ] shown in Fig. 10.

In order to show how accurate the scaling demon-
strated by Fig. 10 is, note that, for 2N + 1 = 11, all of
the four curves in this figure cross the horizontal axis in
the interval 0.52–0.54 of the values of the argument

. (5.5)

1
3465
------------

n
2
VE/ 2N 1+( )VZ
Table

2N + 1 a[2N + 1, 2p, ∞] a[2N + 1, 3p, ∞] a[2N + 1, 4p, ∞] a[2N + 1, 5p, ∞]

3 –1.13 –0.85 –0.71 –0.64

5 –1.67 –1.38 –1.25 –1.17

7 –2.01 –1.72 –1.59 –1.51

9 –2.26 –1.98 –1.84 –1.77

11 –2.46 –2.18 –2.05 –1.97
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6. Here, we consider how the effective nonlinear
collision frequencies depend on the pump fields of low
and high intensities. We start by discussing the limit of
strong pump fields such that

(6.1)

In accordance with representation (2.11), we can write
the following asymptotic formula:

(6.2)

In particular, according to formulas (3.3), (3.8), (4.4),
and (5.4), the numbers a[2N + 1, ns(p), ∞] are on the
order of unity, as can be seen from the table. Using for-
mulas (2.6) and (2.8), we obtain the following asymp-
totic dependence of the effective partial collision fre-
quencies on the pump field of high intensity:

(6.3)

We can see that, in the limit of strong pump fields, the
effective collision frequencies are approximately inde-
pendent of both the harmonic number and the value of
the principal quantum number. The latter is valid at
least for the comparatively small values of the principal
quantum number that have been considered above.

Now, we will analyze the opposite limit of weak
pump fields such that

(6.4)

In this limit, we can use the relationship

(6.5)

to reduce formula (2.9) to

(6.6)

where

(6.7)
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For the first four np states, expressions (6.7) take the
form

U[2N + 1, 2p] = – N(24 + 26N + 9N2 + N 3),

U[2N + 1, 3p] = – N(264 + 478N + 355N 2 

+ 135N 3 + 26N 4 + 2N 5),

16
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------

32
315
---------
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Fig. 7. Functions H[9, np, VE/VZ] for different values of the
principal quantum number.
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Fig. 8. Functions Ω[9, np, n2VE/9VZ]. The solid curve is for the 5p state, the dotted curve is for the 4p state, the short dashes are for
the 3p state, and the long dashes are for the 2p state.

Ω[9, np, n2VE/9VZ]

n2VE/9VZ
U[2N + 1, 4p] = – N(3960 + 9282N + 9677N2 

+ 5821N3 + 2180N4 + 508N5 + 68N6 + 4N7), (6.8)

U[2N + 1, 5p] = – N(1297080 + 3583026N 

+ 4563717N2 + 3515233N3 + 1804422N4 

+ 641406N5 + 158448N6 + 26352N7 

+ 2688N8 + 128N9).

For the 2p state, a comparison between the results for
the generation of the third and eleventh harmonics
yields U[3, 2p] = –64/3 and U[11, 2p] = –896, which cor-
responds to the approximate dependence ~(2N + 1)2.8.
For the 5p state, we have U[3, 5p] = –3200/3 and
U[11, 5p] = –9788672/3, which corresponds to the
dependence ~(2N + 1)6.2. Hence, from formulas (6.6)
and (6.8), we can see that, in the limit of weak pump
fields, the effective partial collision frequencies depend
very strongly on both the harmonic number and the
value of the principal quantum number of p states.

7. In this last section, we discuss the results
obtained. We begin with a comparative analysis of the
differences between the regular features revealed above
for a plasma produced by the photoionization of atoms
with electrons in the np states and the corresponding
theoretical results for the nonlinear partial conductivi-
ties of a plasma photoionized from atoms with elec-
trons in the ns states. According to [3, 6, 7], for the first
five ns states, the effective nonlinear collision frequen-
cies and, consequently, the partial conductivities have a
constant sign. In contrast, for the np states considered
above, the effective partial collision frequencies are
found to change sign because of their nonlinear depen-
dence on the pump field. On the one hand, in the limit
of weak pump fields such that condition (6.4) holds, the

64
4725
------------

32
467775
------------------
effective collision frequencies are negative, in accor-
dance with formula (6.8). On the other hand, in the limit
of strong pump fields satisfying condition (6.1), the
effective collision frequencies are positive, in accor-
dance with formula (6.3). Figures 2, 4, 6, 8, and 10
show that the values of argument (5.5) at which the
effective collision frequencies change sign are close to
each other. The plots of the functions Ω[2N + 1, 5p,
25VE/(2N + 1)VZ] for the third, fifth, seventh, ninth, and
eleventh harmonics are displayed in Fig. 11. We can see
that, in the regions of the positive extremes of these
functions, formula (3.5) provides an approximate scal-
ing of the effective partial collision frequencies with
principal quantum number, harmonic number, and
argument (5.5). This scaling is similar to that estab-
lished for the ns states [3]. The difference is that for-
mula (3.5) contains the factor n11/2, in contrast to the
factor n5 obtained earlier for the ns states. In addition,
the dependence on scale argument (5.5) is radically dif-
ferent. In the range of their negative values, the func-
tions Ω[2N + 1, 5p, 25VE/(2N + 1)VZ] provide an insuf-
ficiently accurate scaling with harmonic number. That
is why, in Fig. 12, we show the plots of the functions

(7.1)

for the 5p states and for the five pump field harmonics
under consideration. Using functions (7.1), we can rep-
resent the effective nonlinear collision frequencies as

(7.2)

Ξ 2N 1 np
n

2
VE

2N 1+( )VZ

----------------------------, ,+

=  
2N 1+( )5/2

n
5/2

---------------------------A 2N 1 np
nVE

VZ

---------, ,+

ν 2N 1+( )
np E,( )

=  νZ
n

11/2

2N 1+( )5/2
---------------------------Ξ 2N 1 np

n
2
VE

2N 1+( )VZ

----------------------------, ,+ .
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In the regions of their negative extremes, functions
(7.1) provide a better approximation to the scaling of
the effective collision frequencies with a harmonic
number.

Using the above scalings of the effective collision
frequencies, we can obtain an expression for the har-
monic generation efficiency. For a plane pump wave
and a spatially unbounded homogeneous plasma, we,
as usual, (see [6]) define the harmonic generation effi-
ciency as the ratio of the energy flux densities of the
generated harmonic and the pump wave. In accordance
with this definition, we have

(7.3)

In the limit of strong pump fields such that condition
(6.1) holds, we can use this condition to reduce rela-
tionship (7.3) to the form

(7.4)

For pump field intensities corresponding to the vicinity
of the positive extreme of function (3.4), formula (3.5)
permits us to represent relationship (7.3) as

(7.5)

For pump field intensities corresponding to the vicinity
of the negative extreme of function (3.4), we arrive at
the formula

(7.6)

To give better insight into the order of magnitude of
the harmonic generation efficiency, we turn to the plots
of the scale functions shown in Figs. 11 and 12 and to
the approximate scaling laws provided by formulas
(7.4)–(7.6) for the collision frequencies as functions of
harmonic number and the principal quantum number
and also present the following expression:

(7.7)
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where IH is the ionization potential of a hydrogen atom
and Zi is the ion charge number. Finally, we write out
the expression for the energy flux density of the pump
field:

(7.8)

Energy flux density (7.8) is determined by the ratio of
the electron oscillatory velocity to the Coulomb veloc-

q 9 10
13
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Fig. 9. Functions H[11, np, VE/VZ] for different values of
the principal quantum number.

H[11, np, VE/VZ]

VE/VZ

VE/VZ

VE/VZ

VE/VZ



128 V. P. SILIN, P. V. SILIN
0.4

0.2

–0.2

–0.4

–0.6

1 2 3

Fig. 10. Functions Ω[11, np, n2VE/11VZ]. The solid curve is for the 5p state, the dotted curve is for the 4pstate, the short dashes are
for the 3p state, and the long dashes are for the 2p state.
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Fig. 11. Functions Ω[2N + 1, 5p, 25VE/(2N + 1)VZ]. The long dashes are for the third harmonic, the intermediate-length dashes are
for the fifth harmonic, the short dashes are for the seventh harmonic, the dotted curve is for the ninth harmonic, and the solid curve
is for the eleventh harmonic.
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Fig. 12. Functions Ξ[2N + 1, 5p, 25VE/(2N + 1)VZ]. The long dashes are for the third harmonic, the intermediate-length dashes are
for the fifth harmonic, the short dashes are for the seventh harmonic, the dotted curve is for the ninth harmonic, and the solid curve
is for the eleventh harmonic.
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ity unit. In turn, this ratio enters into the arguments of
the functions that were used above to construct scalings
for the effective nonlinear collision frequencies.

In summary, using the general approach developed
in [8] (see also [9]) as a constituent of the theory of
bremsstrahlung-induced coherent harmonic generation
in a plasma photoionized from atoms with electrons in
the first four np states in the Bethe regime of suppres-
sion of the ionization barrier, we have established scal-
ing laws for the first five effective nonlinear collision
frequencies, which determine the generation efficien-
cies of the third, fifth, seventh, ninth, and eleventh har-
monics as functions of the pump field intensity. The
approximate scalings for these effective nonlinear col-
lision frequencies have been derived for the vicinities
of their extremes and in the limits of weak and strong
pump fields. The regular features revealed above may
help to understand the mechanism for harmonic gener-
ation in a plasma produced by the photoionization of a
gas with neutrals in excited states (cf. [10]). On the
other hand, our analysis makes it possible to discern
what would be the desired results of future experiments
with which to complete the theory developed here.
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APPENDIX 1

Here, we present expressions for the coefficients
cn(p), which characterize the values of distribution
function (2.2) for the first four np states:
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APPENDIX 2

Here, we present expressions for the differential
operators Dnp for the first four np states:

Using these expressions, we can calculate functions
(2.9).
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Abstract—Results are presented from experimental investigations of mechanisms for the dissipation of the
energy of light ions in metal plasmas by using the method of secondary electron emission. It is shown that the
coefficient of anisotropy of energy transfer from fast light ions is about 1.7. It is also shown that plasma oscil-
lations excited by an ion significantly influence the production and emission of low-energy electrons, especially
in the case of projectile molecular ions. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Because of the wide use of high-energy sources in
science and engineering, more attention is being paid to
the processes of interaction of charged particle flows
with matter, in particular, to mechanisms for the trans-
fer of energy from the particles to the medium. These
mechanisms can be investigated by measuring the sec-
ondary effects that occur during the passage of a
charged particle through a solid. A fast nonrelativistic
particle moving in a solid-state plasma excites weakly
damped collective oscillations of the electron density
(electron wake waves), or so-called plasmons [1]. A
particle moving with a velocity such that v  @ v 0 (where
v 0 is the Bohr orbital velocity of an electron in a hydro-
gen atom in the ground state) transfers the main portion
of its energy to the electron subsystem [2, 3]. The trans-
fer occurs in two different ways: a fraction of the parti-
cle energy goes into the excitation of plasmons, and the
remaining fraction is converted into the energy of indi-
vidual electrons in collisions (in particular, in ionizing
collisions with atoms). The ionization process that may
also come into play when the energy transferred to an
atomic electron is sufficiently large is avalanche ioniza-
tion (by collision cascades) [2]. In turn, plasmons prop-
agating in the medium can give rise to the ionization of
atoms in the fields of plasma oscillations, thereby pro-
ducing new free electrons. The mean energy of the elec-
trons produced by this mechanism is higher than the
electron thermal energy (some of the electrons may be
even far more energetic). These nonequilibrium elec-
trons are capable of overcoming the potential barrier
and thus escaping from the medium. The electrons
emitted from the matter carry information about the
processes that have occurred in the ionization track of
an ion. Hence, by studying electron effects during the
passage of a charged particle in a solid, it may be pos-
1063-780X/03/2902- $24.00 © 20130
sible to estimate the role of different mechanisms in
energy dissipation.

The main features of the mechanism for electron
production through ionization by plasma oscillations
are associated with a relatively long lifetime of the
wake waves and with the continuous excitation of these
waves along the entire ionization track. Because of the
large lifetime of the wake wave, the secondary ioniza-
tion inside the track proceeds over a long period of time
after the passage of a charged particle. The amount of
slow electrons produced in cascade ionization is large
when the cascade is initiated by a fast electron. A con-
sequence of the long mean free path of a fast electron in
the medium is that, in the cascade ionization, most of
the slow electrons are produced over a distance on the
order of its mean free path. Consequently, the distribu-
tion function of the ionization-produced electrons near
the axis of the particle track is dominated by ionization
by the wake field, while the distribution at distances
from the track axis that are on the order of the mean free
path of a fast electron is dominated by cascade ioniza-
tion [2]. Since the impact ionization is induced only
during the propagation of a particle through the
medium and since the wake waves play the role of a lin-
ear source of secondary electrons, which operates for a
long period of time after the passage of a charged par-
ticle, the temporal behavior of the ionization processes
is completely governed by the wake waves.

Theoretically, it is estimated that a fast particle mov-
ing with velocity v  expends a comparatively large frac-
tion of its energy on the excitation of collective oscilla-
tions [2]:

(1)

where ∆Ek is the fraction of energy that has gone into
the excitation of collective oscillations, ∆E is the total
energy loss of a fast charged particle in a solid-state

∆Ek/∆E v /10v 0( )/2 v /v 0( ),lnln=
003 MAIK “Nauka/Interperiodica”
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plasma, and v 0 is the Bohr orbital velocity of an elec-
tron in a hydrogen atom in the ground state. Since the
energy of the wake waves is comparable in order of
magnitude to the total energy that the particle transfers
to the matter, the energy loss to wake waves can be
regarded as an important aspect of the process of dissi-
pation of the energy of a fast particle.

A particle propagating through a medium produces
free electrons, some of which, with the proper values
and directions of momentum, can escape from the
medium. This process is called secondary electron
emission (SEE). At present, it is proven theoretically
and experimentally that the SEE coefficient in the case
of light ions is directly proportional to the mean specific
ionization loss dE/dx of an ion in a medium [4, 5]. Con-
sequently, the investigation of SEE makes it possible to
derive information about the energy lost by an ion as it
moves through a solid-state plasma and about how this
energy is distributed between different electron groups.
The mean specific ionization loss dE/dx of an ion at
each point in a medium can be represented as a sum of
the losses associated with the energy transfer to the
electrons that move in the same direction as the primary
ion, (dE/dx)F and with the energy transfer to the elec-
trons that move in the opposite direction, (dE/dx)B:
dE/dx = (dE/dx)F + (dE/dx)B. In our opinion, it is quite
natural that the quantities (dE/dx)F and (dE/dx)B are
proportional to the coefficients of SEE in the propaga-
tion direction of a fast light ion (in the forward direc-
tion), γF, and in the opposite (backward) direction, γB,
respectively. Hence, by investigating the kinetic ion–
electron emission from a thin film in the forward and
backward directions, it is possible to study the anisot-
ropy of energy transfer from a primary ionizing charged
particle.

A high-energy ion propagating through a medium
produces a large amount of nonequilibrium electrons
(see above), whose energy distribution can be approxi-
mated by a power law [6]. Both of the above mecha-
nisms for the energy transfer from the primary particle
to the electrons in the medium (the collisional and plas-
mon mechanisms) contribute to the electron energy dis-
tribution. A study of the energy spectra of the electrons
that are produced from the SEE induced by fast ions
will make it possible to obtain new data on the energy
contribution of the wake field to the formation of the
nonequilibrium electron distribution function.

The excitation of plasma oscillations is more intense
in the case of projectile molecular ions [7–9]. This indi-
cates that an investigation of the kinetic electron emis-
sion induced by atomic and molecular ions also pro-
vides a promising way of studying the effect of plasma
oscillations in a medium on the electron distribution
function.

In this paper, we present the results of measure-
ments of the SEE coefficients and electron energy dis-
tributions in the forward and backward directions. Gen-
eralizing the results obtained in three different experi-
PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003
ments makes it possible to determine the mechanisms
for energy losses of a fast ion propagating in a solid-
state plasma.

2. ANISOTROPY OF THE ENERGY TRANSFER 
FROM AN ION

In direct (head-on) collisions, a fast primary particle
produces the so-called δ electrons. The velocity of the
δ electrons that corresponds to the maximum possible
momentum transfer can be defined as vδ = 2vPcosθ,
where vP is the velocity of a bombarding ion and the
angle θ is measured from its propagation direction [10].
In further collisions, these fast electrons produce slow
electrons as a result of a cascade process [4]. In the
medium, the motion of slow electrons produced in the
avalanche and in the ionization by a wake field is iso-
tropic, while fast δ electrons move predominantly in the
propagation direction of the primary ion. Also, a mov-
ing ion entrains some of the free and ionization-pro-
duced electrons within the substance. The velocity of
these entrained electrons, which are called “accompa-
nying” or “convoy” electrons [11], coincides in magni-
tude with the velocity of the ion, v e = vP, and has the
same direction [12]. Consequently, in the energy spec-
trum of the electrons produced from the SEE, we can
distinguish between three electron groups: (i) slow
electrons with energies E < Ep (where Ep is the energy
of the plasma oscillations), which are produced from
the ionization by plasma oscillations and from direct
collisions with large impact parameters, which are
accompanied by small momentum transfers; (ii) mod-
erate-energy electrons, which are produced exclusively
in direct collisions accompanied by small momentum
transfers; and (iii) fast electrons, which move preferen-
tially in the propagation direction of the ion and can be
regarded as being represented by convoy electrons and
by δ electrons produced from direct collisions with
small impact parameters, which are accompanied by
large momentum transfers.

Since a fast primary ion transfers a substantial frac-
tion of its energy to the electrons that move in its prop-
agation direction (convoy electrons and δ electrons),
we can speak of the anisotropic energy transfer from
an ion.

Experiments aimed at investigating the anisotropy
of the energy transfer from a fast ion were carried out
on a device whose schematic diagram is shown in
Fig. 1. Vacuum chamber 1 was equipped with primary
particle source 2, target 3, and collector 5. The pressure
of the residual gases in the chamber was no higher than
10–6 torr. A 5.15-MeV α-particle flow with the intensity
Iα0 = 4.64 × 106 particles per second was emitted into a
half-space by an MIR3-A Pu239 radioisotope source. An
α-particle flow penetrated target 3 and reached massive
collector 5, which was made of the same material as the
target. The experiments were carried out with alumi-
num, copper, and nickel collector–target pairs. The tar-
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gets were in the form of foils 5.6 µm (Al), 2.01 µm
(Cu), and 0.27 µm (Ni) thick. The target thicknesses
was chosen to be less than the mean free path of α par-
ticles with the above energy in a given substance. After
passage through the target, α particles had energies no
larger than Emax (the energy corresponding to the pene-
tration in a direction perpendicular to the target plane).
The radioisotope source was connected electrically to
the target. A voltage of 300 V of either polarity was
applied between the collector and the target by means
of B5-50 dc source 6. In the case of a voltage of positive
polarity, the SEE coefficient γB was measured from the
collector (backward emission), and, in the case of a
voltage of negative polarity, the SEE coefficient γF was
measured from the outer target surface (forward emis-
sion). The SEE current Ic was measured in the collector
circuit by VK2-16 electrometric voltmeter 7. The mea-
surement system was adjusted by using movable dia-
phragm 4, which was placed between the collector and
the target and cut off the particle flow.

The coefficient γ was determined from the formula

   (2)

where Iα0 is the current of α particles from a radioiso-
tope source and kF is the fraction of α particles that have
passed through the target. The ratio R of the forward
SEE coefficient γF to the backward one γB,

R = γF/γB, (3)

was measured to be 1.57 for aluminum, 1.69 for copper,
and 1.82 for nickel. According to these data, the ratios
R for different substances differ insignificantly, by no
more than 10% of the mean value.

Rothard and his colleagues [13] carried out a series
of measurements of the coefficient γ of SEE induced in

γF 2
kFIα0 Ic+

kFIα0
-----------------------,= γB 2

Ic – kFIα0

kFIα0
-----------------------,=

1

7

5

4

32

6

B5-50 VK2-16

Fig. 1. Schematic of the experimental device: (1) vacuum
chamber, (2) Pu239 radioisotope source of α particles,
(3) target, (4) movable diaphragm, (5) collector, (6) B5-50
dc source, and (7) electrometric voltmeter.
a thin carbon film by the ions with different charge
numbers. Measurements on both sides of the film
showed a considerable difference between the coeffi-
cients of SEE from the front surface irradiated by the
ions (backward emission) and from the rear surface
(forward emission) [13].

An analysis of the above results of our measure-
ments and of the data from experiments [13], carried
out with a carbon target and with Li2+ ions, which are
close in mass, energy (0.86 ≤ E ≤ 1.15 MeV/amu), and
charge state to the α particles used in our experiments,
allows us to suggest that the ratios of the fractions of
energy that are transferred from a light ion to the elec-
trons moving in the propagation direction of the ion and
in the opposite direction are fairly close to each other
for different target substances. In the case in question,
the energy loss of a light ion (He2+, Li2+) to the electrons
moving in its propagation direction is larger than the
loss to the electrons moving in the opposite direction by
a factor of approximately 1.7.

Presumably, the above difference in the forward and
backward SEE coefficients with the same energy of the
bombarding ions stems from the presence of convoy
and δ electrons, which are emitted predominantly in the
propagation direction of the ions. For the targets inves-
tigated in our experiments, the energy Emax of α parti-
cles varied from 0.8 to 1 MeV/amu; consequently, the
maximum energies of the emitted convoy electrons and
δ electrons are about 0.5 and 2 keV, respectively. The
relative amount γδ of these electrons can be determined
from the difference between the forward and backward
SEE coefficients, γδ = γF – γB. Recall that, for light ions,
the SEE coefficient is proportional to the mean specific
ionization loss dE/dx of an ion in a medium. Therefore,
the ratio Rδ of the energy going into the production of
convoy and δ electrons to the total energy losses of an
ion in a medium can be defined as Rδ = γδ/γ, where γ =
γF + γB is the total coefficient of the forward and back-
ward SEE. In the case under consideration, with allow-
ance for the experimentally measured values of R, the
ratio Rδ is from 0.22 to 0.29. Hence, the δ and convoy
electrons can carry away approximately 22–29% of the
energy that the ion transfers to the electrons in different
substances.

3. ENERGY DISTRIBUTION AMONG DIFFERENT 
ELECTRON GROUPS

In a number of papers, it was shown theoretically
and experimentally that, when ion-induced SEE takes
place in a medium, the presence of a flux generated in
momentum space by a source (ionization) and a sink
(electron emission) results in the formation of a steady-
state nonequilibrium power-law electron distribution
function in a solid-state plasma:

N(E) = AE–s, (4)
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where s is the power index and A is a constant [6, 14].
Also, in formula (4), E is the total electron energy in a
solid body, E = ϕ + EF + eU, where ϕ is the work func-
tion, EF is the Fermi energy, and the energy eU is mea-
sured from the vacuum energy. The experimentally
measured energy distribution functions of the electrons
produced from the ion-induced SEE are piecewise
power functions with different power indices s for dif-
ferent energy intervals [6, 15].

An important role in the production of free electrons
(and, accordingly, in the emission process) is played by
the wake-field oscillations. The energy loss to these
oscillations can be estimated from formula (1). The
energy Ep = "ωp of the plasma oscillations, which is
usually lower than 25 eV, is nonetheless sufficiently
high in comparison with the energy required to excite
an electron from its valence band to the conduction
band where they are freely mobile. The energy of the
electrons produced by ionization by the wake-field
oscillations cannot exceed Ep. Consequently, slow elec-
trons produced in this ionization process are distributed
in the emission spectrum over its low-energy part,
which is bounded from above by the plasmon energy.

Under conditions close to those mentioned above,
we experimentally measured the energy spectra of the
electrons produced from the backward SEE induced in
a beryllium foil by 4.9-MeV α particles [15]. The mea-
surements were carried out in the energy range from 0
to E* = 100 eV. The experimentally obtained power-
law energy spectrum may be divided into two parts, the
boundary between which is determined by the energy
Ep = 18.9 eV of a plasmon within the beryllium target.
One part of the spectrum is represented by the slow
electrons of the first group (see Section 2), and the
other, by the moderate-energy electrons of the second
group. Since the number of emitted electrons is propor-
tional to the specific energy loss of the primary ion, we
can estimate the fractions of the energy lost by the ion
to the slow electrons from the first group and to the
electrons from the second group. We separately inte-
grate these two parts of the experimental emission
spectrum N(E) over energy and determine the number
N1 of electrons from the first group and the number N2
of electrons from the second group for beryllium:

(5)

The fractions of the energy lost by the ion to the
electrons from the first and the second group can be
estimated as the ratios of N1 and N2 to the total number
N0 = N1 + N2 of emitted electrons:

(6)

N1 N E( ) E E,d

ϕ EF eU+ +

Ep

∫=

N2 N E( ) E E.d

Ep

ϕ EF E*+ +

∫=

K1 N1/N0 0.63 and K2 N2/N0 0.37.= = = =
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In other words, the energy transferred from the ion to
the slow electrons from the first group is about twice as
large as the fraction of the ion energy that is lost to the
electrons from the second group.

According to the above results on the anisotropy of
the energy transfer, approximately one-quarter of the
energy lost by a charged particle is converted into the
energy of the electrons in direct collisions accompanied
by large momentum transfers (δ electrons) and also into
the energy of the convoy electrons. The remaining frac-
tion of the energy of a charged particle moving in a
solid-state plasma is lost through the following two dis-
sipation mechanisms: first, in direct collisions accom-
panied by small momentum transfers and, second, by
the excitation of plasmons. The fraction of energy that
goes into the production of slow electrons (E < "ωp)
can be defined as ∆Eslow/∆E = K1(1 – Rδ). In the case at
hand, this fraction, which is transferred to electrons by
the above two mechanisms, is from 45 to 49% of the
total energy lost by an ion in the substance. In our opin-
ion, theoretical formula (1) somewhat overestimates
the fraction of the energy ∆Ek/∆E lost to the wake
waves: ∆Ek/∆E ≈ 40%.

Earlier, it was established that the experimentally
measured energy distribution functions of the electrons
produced from the ion-induced SEE are piecewise
power functions with different power indices s for dif-
ferent energy intervals [6, 15]. Such distribution func-
tions of the electrons that were produced in silver, cop-
per, and nickel thin films from both forward and back-
ward SEE induced by He+ ions with energies from 1 to
3 MeV were measured in our experiments. Analyzing
the experimental SEE spectra, we determined how the
power index s1 for the first energy interval (correspond-
ing to slow electrons with energies E < 35 eV) depends
on the specific ionization losses of an ion in the
medium. Our experimental data show that, over this
energy interval, the power index decreases with
increasing energy losses of a fast ion [16].

According to the Bethe–Bloch formula [3]

(7)

(where m is the mass of an electron, Z1 is the charge of
the incident particle, Z2 is the charge of the atoms of the
decelerated medium, and I is their mean excitation
potential), the energy lost by a fast ion decreases with
increasing its velocity. Consequently, the higher the
velocity (energy) of a fast ion, the larger the relative
amount of fast electrons with energies above EP. This
tendency was also pointed out by Hasselcamp et al.
[17]. In other words, as the velocity of a fast ion
increases, the plasmon mechanism for slow electron
production becomes less efficient. This result, however,
does not follow from formula (1), which implies that
the energy ∆Ek/∆E lost by an ion to wake waves only
weakly depends on its velocity.

dE/dx– 4πZ1
2
e

4
/mv

2( )Z2N 2mv
2
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4. MOLECULAR IONS

A great deal of information on wake-field oscilla-
tions in a medium penetrated by a fast ion can be
obtained by studying the kinetic SEE from metal sur-
faces bombarded by molecular ions. Such experiments
were carried out in a number of papers [7–9]. Hassel-
camp and Scharmann [7] studied the energy spectra of
the secondary electrons knocked out of a massive cop-
per target by , , and  ions with an energy of
200 keV/amu. According to the results reported in that
paper, measurements in the energy interval E ≤ 35 eV
gave power-law spectra of the secondary electrons pro-
duced by both atomic and molecular ions. The yields γ
of secondary electrons produced from the emission
induced by , , and  bombarding ions are in the
ratio 1 : 2 : 3. This ratio fails to hold for the differential
electron yield γ(E), where E is the energy of the second-
ary electrons. As was shown by Hasselcamp and Hip-
pler [8], the coefficient Rγ(E), defined as

(8)

changes substantially within the energy range 0–
200 eV of the secondary electrons. The data published
in [8] show that, for a golden target bombarded by pri-
mary ions with energies from 75 to 300 keV/amu, the
curve Rγ(E) has two maxima. For low-energy secondary
electrons, the coefficient is Rγ(E) < 1. It should be noted
that, with increasing the energy of the primary ions, the
first maximum and the intersection point with the
straight line Rγ = 1 both shift toward lower energies,
while the second maximum shifts toward higher ener-
gies. Hasselcamp and Hippler [8] pointed out that the
electron velocity corresponding to the second maxi-
mum is equal to the velocity of the bombarding ions.

As a molecular ion enters the medium, it breaks into
fragments, each of which excites plasma oscillations. In
studying kinetic electron emission induced by CO+, C+,
and O+ ions, Frischkorn et al. [9] showed that the inter-
ference between the plasma oscillations excited by dif-
ferent fragments of a molecular ion influence the total
electron yield.

When a medium is penetrated by a diatomic mole-
cule (rather than by an atom or ion), the processes of the
trapping and loss of electrons by the molecule become
important at velocities close to those of the bound elec-
trons of the atoms in the medium, as is the case with a
bombarding atom. Because of ionization, the ions com-
posing the molecule experience Coulomb repulsion.
This repulsion becomes strong so rapidly that it is pos-
sible to speak of a Coulomb explosion. As a result, a
diatomic molecule moving in the medium breaks into
two ions [18]. As a fast hydrogen molecular ion moves
through the target substance, it is completely ionized
and breaks into fragments—atomic ions—which prop-
agate over distances that only slightly exceed the radius
r of their Coulomb screening. For metals, we have r ~
10–8 cm. The diameter of the ionization track is deter-

H
+

H2
+

H3
+

H
+

H2
+

H3
+

Rγ E( ) γH2
E( )/2γH1

E( ),=
mined by the length of a collision cascade and is
approximately equal to 10–6 cm; this indicates that both
fragments of a molecular ion move in the same track.

A molecule with an energy of E ≥ 100 keV per
nucleon starts to be stripped of electrons as it propa-
gates through just the first several outer monolayers of
the target; i.e., the constituent ions of the molecule
begin to experience Coulomb repulsive forces immedi-
ately after the molecule enters the target and, as a result,
the distance between the ions begins to increase with
time. An experimental analysis showed that the ions fly
away from their mutual center of mass in an asymmet-
ric fashion [19]. The observed asymmetry can be
explained as being due to the effect of plasma oscilla-
tions excited by the ion fragments and indicates that, as
the fragments fly apart, they undergo an additional
interaction with matter.

The interaction of atomic and molecular ions with
target substances was investigated in the experimental
device described in detail in [16]. We studied secondary
electron emissions from silver, copper, and nickel thin
foils in the forward direction, i.e., in the propagation
direction of the primary ion. As in the experiments
reported above, the thicknesses of the targets were less
than the mean free paths of ions with given energies in
the corresponding substances and were chosen to be
2.0 µm for silver, 2.1 µm for copper, and 1.1 µm for
nickel. The targets were produced by chemical means.
In most experiments, the beam current density at the
target was no greater than 0.1 µA/cm2. A small-aperture
retarding-potential spectrometer was oriented at an
angle of 40° to the ion beam. Earlier, it was shown that
the functional dependence of the emission spectra is
insensitive to the measurement direction. As a record-
ing and storage terminal system, we used an AI-1024-
95 pulse analyzer connected to a computer. The energy
width of each of the analyzer channels was 0.044 eV,
the total number of channels was 1024. The measured
data were processed by a computer.

Figure 2 shows representative energy spectra of the
SEE induced in a silver target by 1-MeV  ions and

by 2-MeV  ions. According to our experimental
results, the distribution functions of the nonequilibrium
electrons emitted from all kinds of targets are power-
law functions with power indices close to those given in
[6]. In order to reveal the differences between the
energy spectra from SEE induced by molecular and
atomic hydrogen ions, we calculated the differential
coefficient Rγ(E), which was defined in formula (8).
Figure 3 illustrates the coefficient Rγ(E) as a function of
the energy of the secondary electrons for the three kinds
of targets used in our experiments. We can see that the
plots obtained for different targets have the same shape
and differ exclusively in amplitude. It is worth noting
that the positions at which the coefficient Rγ(E) is max-
imum are different for different targets. The larger the
specific energy loss dE/dx of an ion, the lower the

H
+

H2
+
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energy of the secondary electrons at the maximum in
the curve Rγ(E) and the larger the amplitude of the
curves. The curves Rγ(E) obtained in [8] for a massive
gold target are similar to those shown in Fig. 3. Analo-
gous curves were also derived from experiments with
primary ions of lower energies.

In analyzing the experimental curves presented in
Fig. 3, it is important to take into account that each of
them has a maximum and that, for secondary-electron
energies lower than 10 eV, the differential coefficient is
smaller than unity, Rγ(E) < 1. Presumably, the presence
of the maxima can be explained as follows. When prop-
agating through the medium, a diatomic molecule loses
a larger fraction of energy than do two atomic ions [2];
moreover, the fraction of the energy that goes into the
excitation of the wake waves is substantially larger. The
energy of the plasma oscillations is fixed for a given
substance [1]; consequently, the energy loss to plasma
oscillations is associated with a certain part of the elec-
tron energy spectrum, specifically, with electrons
whose energy is no greater than the plasmon energy.
These considerations indicate that the maxima in the
curves Rγ(E) may be of plasmon origin.

The fact that, in the SEE spectra, there are energy
intervals over which molecular ions (diatomic mole-
cules) produce low-energy electrons less efficiently
than do their constituents can possibly be explained as
follows. In the low-energy range over which Rγ(E) < 1,
the electrons are produced not only by the plasmon
mechanism but also in direct collisions of a moving ion
with the atoms of the target substance. In this case, the
fore ion of a diatomic molecule prevents its rear ion
from colliding with the atoms. The rear ion can thus be
shadowed by the fore ion; as a result, the yield of the
low-energy electrons (in the range Rγ(E) < 1) in the case

of an  ion is smaller than that in the case of two H+H2
+
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Fig. 2. Energy spectra of the secondary electrons produced
from a silver target by (1)  ions with an energy of 2 MeV

and (2)  ions with an energy of 1 MeV.
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ions. Moreover, in a hydrogen molecule moving
through a medium, the rear ion is in the wake of the fore
ion; hence, the rear ion may be additionally screened by
the electrons of the medium. Since slow electrons are
produced in distant collisions, their number can be
much smaller than that in the case of two individual
protons. Consequently, the presence of the spectral
interval over which Rγ(E) < 1 in the spectra of the sec-
ondary electrons can also be explained as being due to
the additional screening of the rear ion in a diatomic
molecule by the electrons of the medium.

The above two possible causes of the smaller effi-
ciency of the production of low-energy electrons by
molecular ions imply that the collisional mechanism
for producing slow secondary electrons is hindered by
the correlated motion of the molecule fragments in the
medium.

Our experiments show that, when a fast charged par-
ticle passes through a substance, the mechanism for
producing free electrons in the ionization by plasma
oscillations appears to be more efficient in the case of
projectile molecular (rather than atomic) ions.

5. CONCLUSION

According to the above analysis of the results
obtained, the observed anisotropy of the ion-induced
SEE is presumably associated with the fraction of
energy that is carried away from the medium by both
convoy and δ electrons. An increase in the energy
(velocity) of the bombarding ions leads to an increase
in the relative number of electrons with energies higher
than the energy of the plasmons in the substance. In
addition, it has been noted that plasma oscillations
excited by an ion have a substantial impact on the pro-
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Fig. 3. Experimental dependences of the coefficient Rγ(E)
on the energy of the secondary electrons for (1) Cu, (2) Ni,
and (3) Ag.
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duction and emission of electrons, especially in the
case of projectile molecular ions.
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Abstract—The possibility of generating zonal perturbations by drift-Alfvén turbulence in a plasma with a finite
pressure (1 > β > me/mi) is investigated. A set of coupled equations is derived that includes the equation for the
spectral function of the turbulence and the averaged equations for zonal perturbations. It is shown that, in par-
ticular cases, the equation for the spectral function possesses action invariants; i.e., it takes the form of a con-
servation law for some quantities that are proportional to the spectral function of turbulence. Two types of insta-
bility of the zonal perturbations are revealed. The first type of instability generates only a zonal flow. Two
regimes of this instability—resonant and hydrodynamic regimes—are examined, and the corresponding insta-
bility growth rates are determined. The second type of instability takes place when the resonant interaction of
drift-Alfvén waves with electrons is taken into account. Because of this instability, the generation of a zonal
magnetic field is inevitably accompanied by the generation of a zonal flow. It is found that the growth rate of
the second type of instability is slower than that of the first type. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

During the last decade, much attention has been
directed to the problem of the generation of sheared
zonal flows in a magnetized plasma, i.e., poloidally and
toroidally symmetric plasma perturbations with a finite
radial wavenumber. This interest stems primarily from
the recognition that such flows play a fundamental role
in the processes regulating anomalous transport and
transitions to improved confinement regimes (L–H
transitions) in tokamaks [1–6]. According to present
opinion, sheared zonal flows are responsible for the
suppression of plasma turbulence and the reduction of
the anomalous transport of heat and particles across the
tokamak magnetic surfaces (see, e.g., [1, 7]). Hence, in
order to gain insight into the scenarios of L–H transi-
tions, it seems worthwhile to investigate the mecha-
nisms for generating sheared zonal flows. The prevail-
ing view is that the spontaneous generation of zonal
flows is a consequence of the secondary instability of
plasma oscillations. The physical cause for the onset of
the secondary instability lies in the nonlinear interac-
tion between the primary oscillations (as a rule, a kind
of drift waves excited by some known linear mecha-
nism) that gives rise to a zonal flow. Positive feedback
is provided by the modulation of the amplitude of the
primary plasma oscillations by the secondary sheared
zonal flow; therefore, the instability can be regarded as
belonging to the class of parametric (or modulational)
instabilities.

Papers in which the generation of zonal flows is
attributed to the above nonlinear mechanism may be
divided into two groups. The papers of the first (histor-
ically earlier) group are based on the ideas and methods
1063-780X/03/2902- $24.00 © 0137
of the classical theory of coherent parametric instabili-
ties (see, e.g., [8]). Accordingly, these papers study the
models of the interaction of a finite number of waves: a
pump wave, whose role is assumed to be played by one
of the low-frequency plasma modes, usually of drift
origin (such as a drift mode, an ion temperature gradi-
ent mode, an electron temperature gradient mode, and
a drift-dissipative ballooning mode); a sheared flow
(which can be treated as a wave with zero frequency);
one or two satellites of the pump wave; and sometimes
the second harmonic of the sheared flow [6, 9–13]. The
papers of the second (alternative) group [14–19] are
similar in concept to the turbulent dynamo theory [20]
and to the theory of the generation of large-scale coher-
ent structures by small-scale turbulence [21] and follow
the approach that was developed in [22] based on the
method of separation of the spatial scales of the turbu-
lence (a small-scale process) and zonal flow (a large-
scale process). In this approach, in which it is possible
to use the method of multiscale expansions (in the case
at hand, a two-scale expansion), small-scale turbulence
is described by the wave kinetic equation accounting
for the effect of the zonal flow; simultaneously, in the
hydrodynamic equations describing the flow, it is nec-
essary to take into consideration the turbulence-related
nonlinear effects averaged over small scales. A similar
approach to the problem of the generation of large-
scale structures (including zonal flows) was used in
[23–25], in which, however, the wave kinetic equation
was not formally written out; instead, the equations for
the small-scale turbulent field were solved by means of
a two-scale expansion, and then the quantities averaged
over small scales in the equations for the large-scale
2003 MAIK “Nauka/Interperiodica”
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field were calculated. In [26], it was shown that the
above approaches with the same basic assumptions
yield identical results.

The present paper attempts to generalize the theory
of the generation of zonal flows that was constructed in
[16, 17] in the electrostatic approximation to a plasma
with a finite pressure such that 1 > β > me/mi. In this
range of β values, which is characteristic of magnetic
systems for plasma confinement, an important role is
played by electromagnetic effects, specifically, by drift-
Alfvén waves, which can develop in the plasma. The
approach used in this paper is based on the method of
separation of the spatial scales of the drift-Alfvén tur-
bulence and zonal flow and on the equation that is to be
derived for the spectral function of the turbulence and
is a generalization of the wave kinetic equation
obtained in [16, 17]. Earlier, the problem of the gener-
ation of a zonal flow by Alfvén turbulence (without
allowance for a large-scale zonal magnetic field) and
the problem of a fast dynamo, i.e., of the generation of
a large-scale zonal magnetic field (without allowance
for a zonal flow), were studied separately by Smolya-
kov et al. [27], who used a hydrodynamic model and
neglected drift effects. As will be shown below, the
neglect of the effect of the zonal flow in studying the
fast dynamo problem is, generally speaking, incorrect.
The problem of the generation of a large-scale zonal
magnetic field by Alfvén turbulence was also investi-
gated by Gruzinov et al. [28]. In contrast to [27], they
described the electrons by the drift kinetic equation. An
alternative approach employed by Guzdar et al. [29] to
investigate the problem of the generation of zonal flows
by drift-Alfvén waves is based on the theory of coher-
ent parametric instabilities. For a plasma, they utilized
a hydrodynamic description, which will also be used as
a basis for the present study.

The paper is organized as follows. In Section 2, the
basic nonlinear equations, which describe, on the one
hand, small-scale drift-Alfvén waves and, on the other,
large-scale zonal flows and large-scale magnetic fields,
are presented. In Section 3, two different spatial scales
are introduced and the equations for the large-scale
zonal flows and large-scale magnetic fields are derived
by averaging the basic equations over small scales. In
Section 4, the equation for the spectral function of drift-
Alfvén waves is derived and then analyzed for different
limiting cases; in particular, it is discussed whether the
equation yields results consistent with those obtained in
the electrostatic approximation. The instability that
results in the spontaneous generation of a zonal flow is
examined in Section 5. Different instability regimes are
considered in the same way as in [17, 18, 26]. In addi-
tion, in this section, the possibility of generating a
large-scale zonal magnetic field is considered. Section
6 summarizes the main results of the present work.
2. BASIC EQUATIONS FOR DRIFT-ALFVÉN 
TURBULENCE

The basic hydrodynamic equations used here were
obtained in [30, 31] (an identical set of equations was
used in [29]):

(1)

(2)

(3)

where N = ln( /n0) is the normalized density, φ = eϕ/Te

is the normalized electrostatic potential, A = ecA!/cTe is
the normalized parallel component of the vector poten-
tial, cA is the Alfvén velocity, v ∗ e = –(cTe/eB0Ln)(ωBi /ρs)
is the normalized electron drift velocity, and Ln =
n0(∂n0/∂x)–1 is the characteristic scale on which the
equilibrium plasma density varies. In these equations,
the time is in units of the reciprocal of the ion cyclotron
frequency 1/ωBi, the transverse spatial coordinates r⊥  =

(x, y, 0) are in units of ρs = , and the longitu-
dinal coordinate z is in units of cA/ωBi . The Poisson
bracket [f, g] is defined as [f, g] = ez · [—f  × —g]. For
simplicity, we assume that the constant external mag-
netic field is uniform and is directed along the z-axis
and that the plasma temperature is also uniform, —Te =
—Ti = 0. In addition, assuming that Ti ! Te, we neglect
the finite-ion-Larmor-radius effects. Equation (1) is the
electron continuity equation in which the longitudinal

current j|| = –  is associated with the electron
motion. Equation (2) is the generalized Ohm’s law
derived from the equation for the longitudinal electron
motion in which electron inertia is ignored but electron
pressure is taken into account. Finally, Eq. (3) is
derived from the quasineutrality condition for plasma
perturbations.

In the linear approximation, Eqs. (1)–(3) describe
the coupling between the electron-drift and Alfvén
waves due to electromagnetic effects:

(4)

where k|| and k⊥  are the projections of the wave vector
of the perturbations onto the directions along and
across the magnetic field, respectively, and ω∗ e = kyv ∗ e

is the electron drift frequency. The right-hand side of
dispersion relation (4) is due to the effect of the finite
electron pressure in longitudinal Ohm’s law (2); as a
result of this effect, the longitudinal electric field of the
perturbation is nonzero, E|| ≠ 0 (the so-called effects of
the finite ion Larmor radius in terms of the electron
temperature). In the electrostatic approximation
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(k||  ∞; i.e., cA  ∞), dispersion relation (4)
describes electron drift waves with the frequency ω =

ω∗ e/(1 + ), and, in the approximation in which the

drift effects are neglected (ω @ ω∗ e), it describes

Alfvén waves with frequencies such that ω2 = (1 +

). In the limit ky = k|| = 0, dispersion relation (4) yields
ω = 0, which corresponds to a zonal flow or a zonal
magnetic field. Dissipative effects, such as resistivity
and viscosity, cause these modes with zero frequency to
be damped. In what follows, it will be shown that zonal
flows may become unstable due to small-scale turbu-
lence.

3. AVERAGED EQUATIONS FOR LARGE-SCALE 
ZONAL FLOWS AND MAGNETIC FIELDS

We assume that the spatial scales of the drift-Alfvén
turbulence differ considerably from those of the zonal
perturbation and use the method of two-scale expansion
(see the Introduction). In Eqs. (1)–(3), we set

(5)

where the slow variables X and T correspond to the
characteristic (long) spatial and temporal scales of the
zonal perturbations and the fast variables x and t corre-
spond to the characteristic (short) spatial and temporal
scales of the drift-Alfvén turbulence. The quantity

(X, T), averaged over small scales, describes the

zonal flow, and the fluctuating quantity (x, t, X, T)
accounts for turbulent perturbations. In what follows,
we will assume that the spatial scale of the zonal pertur-
bations is short in comparison with the characteristic
scale on which the equilibrium plasma density varies,
Ln∂/∂X @ 1. Because of the interaction of small-scale
turbulence with large-scale flows and magnetic fields,
the turbulence-related quantities depend not only on the
fast but also on the slow variables. The longitudinal
vector potential A and plasma density N can also be
expressed in a form similar to representation (5). As a
result, we average Eqs. (1)–(3) over the fast variables to
arrive at the following coupled averaged equations for
the zonal flow and magnetic field:

(6)

(7)

(8)
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The Poisson brackets corresponding to the nonlinear
interaction among turbulent perturbations can be writ-
ten as

(9)

(10)

Then, we perform averaging over the fast variables and
retain only the terms of the leading order in the small
parameter of the problem (the ratio of the spatial scales
of the turbulence to those of the zonal flows). As a
result, we obtain

(11)

(12)

where the derivatives in the averaged quantities are
assumed to be taken only with respect to the fast vari-
ables.

Using relationships (11) and (12), we reduce the
evolutionary equations for large-scale zonal perturba-
tions to the form

(13)

(14)

(15)

In order to simplify further calculations, it is worth-
while to expand the turbulence-related quantities in
Fourier integrals over the fast spatial variables:

(16)

where the Fourier coefficients  depend on the fast
time and on the slow variables. Then, we substitute
expansion (16) into Eqs. (13)–(15) and perform averag-
ing over the fast variables to obtain the following equa-
tions:

(17)
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(18)

(19)

Equation (18) implies that, in order for the nonlinear
contribution to the equation describing (in essence) the
evolution of a large-scale zonal magnetic field to be

nonzero, the phase shift between  and  (or )
should be finite. This indicates that drift-Alfvén waves
should be damped. According to [26, 28], the wave
damping can result from the resonant interaction of the
waves with electrons (Landau resonance). Under the
assumption that Landau damping is insignificant, the
contribution of the drift-Alfvén turbulence to averaged
Ohm’s law (18) is small in comparison with its contri-
bution to averaged quasineutrality condition (19). This
circumstance simplifies the further analysis of the aver-
aged equations.

4. EQUATION FOR THE SPECTRAL
FUNCTION OF DRIFT-ALFVÉN WAVES 

AND THE INVARIANTS OF THE EQUATION

Following [22, 16], we assume that the nonlinear
interaction among small-scale drift-Alfvén waves is
insignificant as compared to their interaction with
large-scale fields. This assumption is equivalent to the
quasilinear approximation and is justified provided that
the nonlinear interaction among small-scale waves
plays an insignificant role in comparison to the role
played by the dispersion effects. Thus, the evolution of
small-scale fields in their interaction with large-scale
perturbations can be described by the equations

(20)

(21)

(22)

In order to simplify the derivation of the equation for
the spectral function of small-scale drift-Alfvén waves,
we expand the large- and small-scale fields in Fourier
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------- kky Im Ãk φ̃ k– Ñ k––( )d∫– 0,=

∂
∂T
------ ∂2φ

∂X
2

--------- ∂2

∂X
2

--------- kkxky φ̃kφ̃ k– Ãk Ã k––( )d∫– 0.=
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∂φ̃
∂y
------+ + +

+
∂
∂z
----- ∇ ⊥

2
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integrals over the spatial variables and convert
Eqs. (20)–(22) to the form

(23)

(24)

(25)

where ω∗ e, k = kyv ∗ e . In deriving Eqs. (23)–(25), we
took into account the fact that, in the case of the zonal
perturbations that we are only considering here, the
wave vector of the long-wavelength perturbations has
the only nonzero component, p = (p, 0, 0).

In the model at hand, drift-Alfvén turbulence is

described by the three fields , , and . By anal-
ogy with [18], we introduce the following combination

of these fields: ψk =  + αk  + βk . Then, multiply-
ing Eqs. (23) and (24) by βk and αk, respectively, and
adding the resulting equations to Eq. (25), we arrive at
the equation

(26)

The coefficients αk and βk can be found by converting
the left-hand side of Eq. (26) for ψk into the canonical
form:
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where the eigenfrequency ωk of the drift-Alfvén mode
satisfies dispersion relation (4). As a result, we obtain

(28)

The above assumption of a weak interaction among
small-scale modes implies that, on the right-hand side
of Eq. (26), it is sufficient to describe the coupling

between the fields , , and  in accordance with the
linearized equations for drift-Alfvén modes, provided

that the fields are represented as ( , , ) ∝
exp(−iωkt). As a result, Eqs. (23) and (25) give

(29)

Using the definition of ψk, we finally arrive at the fol-

lowing formula, which relates  to ψk and makes it
possible to express all the terms on the right-hand side
of Eq. (26) through ψk:

(30)

We will describe the small-scale turbulence by the
spectral function (the Wigner function) Ik(x, t), which is
defined as

(31)

The weak spatiotemporal dependence of Ik(x, t) (it is
assumed that q ! k) corresponds to the modulation of
small-scale waves by large-scale zonal perturbations.
In Eq. (31), the overhead bar denotes ensemble averag-
ing, which, by virtue of the ergodic hypothesis, is
equivalent to time averaging (or, as is more often said,
averaging over small scales). The evolutionary equation
for Ik(x, t) is derived in the following way. First, we mul-
tiply Eq. (26) by ψ–k + q. Second, we multiply the analo-
gous evolutionary equation for ψ–k + q, which is derived
by making the replacement k  –k + q in Eq. (26),
by ψk. Third, we sum the two equations and perform
averaging over small scales. Finally, applying the oper-

ator exp(iqx) to the resulting equation, we obtain
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ω*e k,

ωk

------------- k ⊥
2

– 
  φ̃k.= =

φ̃k

φ̃k Λkψk,=

1
Λk

------ 1
ωk

k ||
------α k

ω*e k,

ωk

------------- k ⊥
2

– 
  βk+ +=

=  
2ωk

3 ω*e k, ωk
2

k ||
2

+( )–

k ||
2 ωk ω*e k,–( )

----------------------------------------------------.

qψkψ k– q+ iqx( )expd∫ Ik x t,( ).=

qd∫
∂Ik

∂t
------- i q ωq k– ωk+( )ψkψq k– iqx( )expd∫+

=  S1 S2,+
PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003
where

(33)

(34)

We assume that the eigenfrequency ωk of drift-Alfvén
waves is real. In the model developed here, the effects
associated with Landau damping and dissipative pro-
cesses are both neglected; thus, this assumption is
always valid, and we have ω–k = –ωk. Taking into
account that the ratio q/k is small, we expand the fre-
quency ω–k + q in the second term on the left-hand side
of Eq. (32) in powers of this small parameter to obtain
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---+ βq k– Ñq k p–– ψk
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In order to average expressions (33) and (34) over the
ensemble, we turn to relationships (29) and (30) and
invert relationship (31):

(36)

We also use the relationships

(37)

which are valid because ωk = –ωk. As a result, we arrive
at the expressions
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We expand the integrands in expressions (38) and (39)
in powers of the parameters (p/k, q/k) ! 1, which are
small under the assumption of the separation of the spa-
tial scales of the zonal perturbations and drift-Alfvén
turbulence, and keep only terms of the first and second
orders. This yields

(40)

where, with allowance for expression (30), we have
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(43)
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(44)

Expressions (40) imply that, to the lowest order (i.e.,
to within terms proportional to p), the quantities S1 and
S2 cancel one another; hence, the nonzero contribution
to Eq. (32) comes from the next-order terms, i.e., from

the terms , , and . Transforming the term

 with the help of the equality

(45)

we get

(46)

To transform the terms  and  is a much more
difficult problem, which, however, can be simplified by
using, first, dispersion relation (4); second, the relation-
ship

(47)

which is derived by differentiating the dispersion rela-
tion with respect to kx; and third, the relationship

(48)
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which is a consequence of the dispersion relation and
relationship (47). In this way, we arrive at the expression

(49)

where

(50)

Collecting together the above components (35), (46),
and (49) and taking into account the fact that the spatial
and temporal modulation of the spectral function is
governed by the interaction of turbulent fluctuations
with a zonal flow and thus depends only on the slow
variables, we can write Eq. (32) for Ik(X, T) in the form

(51)

where

(52)
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The quantities , , and  are the perturba-
tions of the eigenfrequency of the drift-Alfvén mode by
the large-scale zonal perturbations of the transverse
electric field, transverse magnetic field, and plasma
density, respectively. This may be readily seen if we
take into account large-scale zonal perturbations in dis-
persion relation (4) by making the corresponding
replacements

(53)

As a result, the frequency perturbation that follows
from dispersion relation (4) with replacements (53) can
be written as

(54)

The structure of Eq. (51) is such that, in the general
case (when the large-scale mode perturbs the transverse
electric field, transverse magnetic field, and plasma
density), the equation cannot be represented in a diver-
gence form (i.e., in the form of a conservation law) for
a certain invariant of the basic equations that is associ-
ated exclusively with small-scale oscillations and is an
analogue of the number of quanta in the theory of weak
turbulence [32]. Hence, the question about the exist-
ence of an adiabatic invariant of a “small-scale oscilla-
tions + large-scale zonal perturbations” system in this
general case remains open. On the other hand, the struc-
ture of Eq. (51) is such that, in particular cases, the
equation can be reduced to a conservation law for a cer-
tain quantity, which can be called, by analogy with
[16], the action invariant. First, we should mention the
electrostatic case, i.e., the limit k||  ∞, in which the
drift-Alfvén mode turns into a drift electron mode (ωk =

ω∗ e, k/(1 + ), with   0), and we have

(55)

By analogy with [16], we also examine the follow-
ing two cases in which Eq. (51) is represented as a local
conservation law. The first of these corresponds to a
refined Hasegawa–Mima model in which, because of
the two-dimensional character of a large-scale mode,
the long-wavelength perturbations of the electron den-
sity do not obey a Boltzmann distribution and thus can
be neglected,  = 0. In this case, Eq. (51) takes the

δωk
φ δωk

A δωk
N

ω ω ky
∂φ
∂X
-------, k || k ||– ky

∂A
∂X
-------,–

ω*e ω*e ky
∂N
∂X
-------.–

δωk δωk
φ δωk

A δωk
N

.+ +=

k ⊥
2 δωk

A

Λk

k ⊥
2

1 k ⊥
2

+
---------------, f k

φ
k ⊥

4
, f k

N k ⊥
4

1 k ⊥
2

+
---------------,= = =

δωk
N

ky
∂N
∂X
------- 1

1 k ⊥
2

+
---------------.–=

N

form of a conservation law for the invariant Nk = :

(56)

Recalling relationship (30) between  and ψk and tak-
ing into account relationships (55), one can actually see
that Eq. (56) coincides exactly with the corresponding
equation derived in [16].

Another case arises under the formal assumption
that the long-wavelength density perturbation obeys a
Boltzmann distribution,  =  (this implies that the
large-scale perturbation satisfies the conditions ω <
q||vTe  and q|| ! qx). In this case, which corresponds to
the Hasegawa–Mima model, Eq. (51) can also be
reduced to a conservation law but for a different invari-

ant, Nk = Ik/(1 + ):

(57)

With allowance for expression (30), this result repro-
duces the corresponding equation derived in [16].

In the situation where electromagnetic effects are
important (which is the main subject of our analysis),
Eq. (51) can also take the form of a conservation law. If
we neglect the effects of the resonant interaction of
small-scale waves with electrons and the effects of
other dissipative processes, then, from Eq. (18), we
have  = 0; on the other hand, from Eqs. (17) and (19)
and with allowance for relationships (29) and dispersion
relation (4), we obtain the estimate  . (q/k⊥ )2  ! .

This enables us to set  =  = 0 in Eq. (51), which thus
reduces to the conservation law

(58)

where Nk = ( Λk/ωk)Ik. This equation generalizes
Eq. (56) to the case of a plasma with a finite pressure
(β > me/mi), in which Alfvén perturbations are important.

Finally, in the case in which the small-scale perturba-

tions are purely Alfvénic and  ! 1, we have  ≈ 
and Eq. (51) also converts into a conservation law. On
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the one hand, since the effects associated with the Rey-

nolds stress tensor (the term ) and the Max-

well stress tensor (the term ) mutually cancel

out in Eq. (8), the quantity  can be neglected, as is evi-
dent from Eq. (61). On the other hand, in this limiting

case, we have  ≈ 0. As a result, Eq. (51) can be
written as

(59)

where

(60)

In the general case in which the effects of the reso-
nant interaction between drift-Alfvén waves and elec-
trons (or the effects of collisional dissipation) are
present, the large-scale mode perturbs the transverse
electric field, transverse magnetic field, and plasma
density. Although in this case Eq. (51) ceases to be a
conservation law, it seems to be suitable for calculating
the spectral function of the small-scale turbulence and,
consequently, can be used to close the set of the aver-
aged equations.

5. INSTABILITY OF LARGE-SCALE ZONAL 
PERTURBATIONS

Recall that, in the absence of the effects of resonant
interaction and dissipative effects, the large-scale mag-
netic field is not excited and the density perturbation is
negligible in comparison with the perturbation of the
electrostatic potential. Consequently, in this case, a
zonal plasma flow can be spontaneously generated
without perturbing the plasma density. A system con-
sisting of small-scale drift-Alfvén waves and a zonal
flow is described by averaged equation (19) for the curl
of the zonal flow velocity and kinetic equation (58) for
drift-Alfvén waves, modified by the effects of the flow.
These two equations will be used as a basis for the anal-
ysis of the possibility of generating a zonal flow.

With allowance for relationships (29) and (30) and
the definition of Nk, which is given after Eq. (58), evo-
lutionary equation (19) for the curl of the flow velocity
takes the form

(61)

We represent the adiabatic invariant Nk as a sum of the
equilibrium and modulation-related components, Nk =

φ̃ ∇ ⊥
2 φ̃,[ ]
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 + , and consider perturbations of the form

( , ) ~ exp(–iΩT + iqX). Linearizing Eq. (58) in
long-wavelength perturbations yields

(62)

where Vg = ∂ωk/∂kx is the x component of the group
velocity of the drift-Alfvén waves. On the other hand,
taking into account the above dependence of the pertur-
bations on the spatial coordinates and time, Eq. (61) can
be rewritten as

(63)

From Eqs. (62) and (63), we obtain the following dis-
persion relation:

(64)

In the electrostatic limit (k||  ∞), Eq. (64) coincides
with the dispersion relation derived in [16, 17, 33] and,
thus, is a generalization of the result obtained earlier to
include electromagnetic effects.

Following [17], we consider two types of the insta-
bility described by Eq. (64). When the width ∆ωk of the
spectrum of the small-scale turbulence exceeds the
nonlinear growth (damping) rate, this equation
describes a resonant instability, for which the phase
velocity of the zonal flow is close to the group velocity
Vg of a drift-Alfvén wave packet; hence, we have

(65)

From Eq. (64) with relationship (65), we obtain the
instability growth rate

(66)

where Ωq is the real part of the frequency. Note that, dif-
ferentiating dispersion relation (4) for the drift-Alfvén
waves and taking into account expression (30), we can
prove the identity
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As a result, as follows from Eq. (66), the condition for
the onset of the instability has the form

(68)

This instability can be interpreted as being caused by
the resonant interaction of a small-scale wave packet
with the slow modulations of the zonal flow.

Dispersion relation (64) also describes hydrody-
namic instability, which occurs when the instability
growth rate exceeds the spectrum width of the small-
scale turbulence. Let us consider this instability in the

limiting case of a monochromatic wave packet,  =
N0δ(k – k0). Using identity (67) and integrating
Eq. (64) by parts, we arrive at the following equation,
which is identical in form to the corresponding equa-
tion derived in [17]:

(69)

For a monochromatic wave packet, we obtain

(70)

where all of the quantities dependent on k are assumed
to be taken at k = k0. The instability takes place under
the condition

(71)

in which case the growth rate of the instability of the
zonal flow is written as

(72)

The growth rate γ ~  of the hydrodynamic instability
exceeds the growth rate γ ~ Ik of the resonant instability.
A parametric hydrodynamic instability was investi-
gated by Guzdar et al. [29], who used an approach
based on the theory of coherent parametric instabilities.
The condition for the onset of the instability that was
obtained in [29] coincides qualitatively with condition
(71).

A more detailed analysis of the dispersion relation
of the form of relation (69) has been presented in a
recent paper by Malkov et al. [34]. Because of the fairly
nontrivial structure of dispersion relation (69), which
stems primarily from the lengthy expression for the
group velocity of the drift-Alfvén waves, it might be
supposed that this relation can hardly be analyzed ana-
lytically and, in particular practical applications, it
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should be examined numerically. That is why we
restrict our discussion to the above analysis.

Dispersion relation (4) can be modified to include
the effects of the resonant interaction of drift-Alfvén
waves with electrons; the result is (see, e.g., [35])

(73)

Under the assumption ω ~ k|| ~ ω∗ e, k, Eq. (73) yields the
approximate relation ω = ωk + iγk, where the real part
ωk of the frequency is determined from Eq. (4) and the
imaginary part γk ! ωk of the frequency, which is gov-
erned by the Landau resonance, has the form

(74)

Since relationships (29) were derived from equations
that do not incorporate longitudinal electron motion,
they also remain valid when the resonant interaction is
taken into account. We thus arrive at the following set
of averaged equations:

(75)
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(77)

Together with Eq. (51), these equations constitute a
closed set of equations describing the interaction of the
small-scale drift-Alfvén turbulence with long-wave-
length zonal perturbations.

When the weak resonant interaction of the small-
scale turbulence with electrons is taken into account

(under the assumption that |γk/ωk | ! (kx/q) ), we can
see from Eqs. (75)–(77) that, as before, there exists a
mode that causes negligibly small perturbations of the
plasma density and magnetic field and corresponds to
the zonal flow. The above instability analysis for this
mode remains valid. Along with the zonal flow, there
can exist a slower mode satisfying the condition (see
the Appendix for details)
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nal assumption q ! k⊥ , this condition does not contra-
dict the above restriction on the maximum possible val-
ues of the quantity γk) and assume that |ω∗ e, k/ωk | ! 1

and that the small-scale oscillations are Alfvénic,  =

(1 + ). In this formulation, the problem was inves-
tigated by Smolyakov et al. [27]. Equation (75) implies
that, in the case in question, long-wavelength density
perturbations can be neglected,  = 0. We represent Ik

as a sum of the equilibrium component and a perturba-
tion caused by the long-wavelength modulation, Ik =

 + . Then, we linearize Eq. (51) in the perturba-

tions of the form ( , ) ~ exp(–iΩt + iqx) to obtain

(79)

Substituting relationship (79) into Eq. (78) yields
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where
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In this case, expression (74) for the damping rate of
Alfvén waves also reduces to a far simpler form:
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Finally, substituting relationships (79), (80), and (83)
into Eq. (76), we arrive at the dispersion relation
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Qualitatively, dispersion relation (85) is similar in
structure to the relation derived in [27]; however, quan-
titatively, they are significantly different. This stems
primarily from the fact that Smolyakov et al. [27]
neglected long-wavelength perturbations of the trans-
verse electric field,  = 0 (i.e., they set λ = 0), which
does not seem to be justified, except for the particular

case  ! 1 and  ≈  mentioned above. In addi-
tion, the second term in the integrand in dispersion rela-
tion (85) is opposite in sign to that in the corresponding
relation obtained in [27]. The reason for this is the fol-
lowing. Equation (76) was derived using only linear

relationships between , , and ; these relation-
ships follow from the equations that do not incorporate
the longitudinal electron motion and remain valid when
the resonant interaction of drift-Alfvén waves with
electrons is taken into account. On the other hand, in
deriving the averaged equation describing the evolution
of the large-scale magnetic field, Smolyakov et al. [27]

expressed the quantity  –  in terms of  using the
equation for the longitudinal electron motion (Ohm’s
law) but neglecting the Landau resonance, which was
taken into account only in the expression for the wave
frequency. One can readily see that incorporating these
effects into the longitudinal Ohm’s law changes the
sign of the averaged term, i.e., leads to the same sign of
the averaged term as that in dispersion relation (85).
Note also that the dispersion relation is misprinted in
[27]: its correct form should include the factor |k|||–1.

From dispersion relation (85), we obtain the follow-
ing instability criterion:

(86)

Even in the simplest case considered above, the expres-
sion for the growth (damping) rate of the instability of
a large-scale zonal magnetic field is very nontrivial;
therefore, it is not sufficient to know (as in the case of
the generation of a zonal flow) only the sign of the
product of the spectral function of the small-scale tur-
bulence and a certain factor [see Eqs. (66), (71)].
Indeed, it is necessary to know the explicit dependence
of the spectral function on the wavenumber. In a more
general case such that qk . |γk /ωk | and |ω∗ e, k /ωk | . 1,
it is also necessary to take into account the long-wave-
length perturbation of the plasma density. As a result,
the dispersion relation becomes too lengthy, and we
will not analyze it here. It seems that, for practical pur-
poses, the dispersion relation should be analyzed
numerically with allowance for the observed spectra of
the small-scale oscillations.
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Recall that, in the particular case  ≈ , only a
large-scale zonal magnetic field may be perturbed. Pre-
sumably, it is this case to which the analysis carried out
in [27] is applicable. In the situation at hand, the disper-
sion relation of the mode can formally be derived from

Eq. (84) with λ = 0 and  ! 1. Under the assumption
that qVg > Ω , we obtain

(87)

Here, the sign of Ω is opposite to that in the correspond-
ing expression of [27]. The reasons for this and other
discrepancies have been explained above. Dispersion
relation (87) implies that the instability occurring under
the condition

(88)

leads to the generation of a zonal magnetic field.

6. MAIN RESULTS AND CONCLUSIONS

In the present work, the possibility of generating
large-scale zonal structures by drift-Alfvén turbulence
in a plasma with a finite pressure (β > me/mi) has been
investigated. The interaction between drift-Alfvén tur-
bulence and large-scale zonal perturbations is
described by a set of coupled equations (17)–(19) and
(51), which were derived in the quasilinear approxima-
tion. Equation (51) for the spectral function was
obtained with allowance not only for the perturbation of
the transverse electric field that is responsible for gen-
erating a zonal flow but also for the perturbations of the
zonal magnetic field and plasma density. Generally, this
equation ceases to be a conservation law for a certain
invariant that is determined exclusively by small-scale
oscillations and may be considered an analogue of the
number of quanta. On the other hand, in the electro-
static limit cA  ∞ (or k||  ∞, in terms of the nor-
malized quantities used above), Eq. (51), in the cases of
two-dimensional large-scale perturbations and quasi-
two-dimensional perturbations (the Hasegawa–Mima
model), reproduces the results obtained earlier in [16]
and has the form of a conservation law applying to
small-scale oscillations. In the case of Alfvén turbu-

lence such that  ≈ , this equation can also be
reduced to a conservation law.

It has been shown that, when the zonal flow alone is
taken into account while the perturbations of the
plasma density and zonal magnetic field are neglected,
Eq. (51) represents a conservation law for the action
invariant, even with allowance for the electromagnetic
effects. This approximation is justified when the effects
of the resonant interaction of drift-Alfvén waves with
electrons are ignored, in which case the eigenfrequency
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of the waves is real. The stability of the drift-Alfvén tur-
bulence against a large-scale zonal flow has been inves-
tigated. By analogy with [17], two instability regimes
have been analyzed and the corresponding two criteria
(66) and (71) for the onset of the instability have been
derived for different ratios of the width ∆ωk of the spec-
trum of the drift-Alfvén turbulence to the instability
growth rate.

The possibility of the spontaneous zonal magnetic
field generation by the instability of the turbulence
spectrum has been investigated neglecting the drift
effects but taking into account the weak resonant damp-
ing of Alfvén waves. The growth rate of this instability
is slower than that of the instability generating a zonal
flow. It has been shown that the spontaneous generation
of the zonal magnetic field is accompanied by the gen-
eration of a zonal flow and that the instability criterion
depends essentially on the effects associated with this
flow. The instability criterion for the zonal flow is deter-
mined primarily by the sign of the derivative of the
action invariant with respect to the wavenumber. In
contrast, the instability at hand is highly sensitive to the
turbulence spectrum; hence, answering the question
about the possibility of the spontaneous zonal magnetic
field generation requires knowledge of the explicit
dependence of the spectral function of turbulence on
the wavenumber. In the case of Alfvén turbulence such

that  ≈ , the spontaneous generation of the zonal
magnetic field is not accompanied by the generation of
a zonal flow. The criterion for the onset of this instabil-
ity is determined only by the sign of the derivative of
the action invariant with respect to the wavenumber.

The above analysis has been carried out based on the
simplest model of the interactions in a “drift-Alfvén
waves + large-scale zonal flows” system. Such a model
may thus be regarded as the first step toward the con-
struction of the theory of the generation of zonal flows
and magnetic fields in a plasma with a finite pressure
(i.e., with allowance for electromagnetic effects).
Ongoing studies will be aimed at generalizing the the-
ory to include finite-ion-Larmor-radius effects by using
as a starting point model hydrodynamic equations that
are similar to those derived in [36, 37] and are based on
the Padé approximation of the exact kinetic expressions
for the ion response.

The above analysis has been concerned exclusively
with the linear stage of the instability of zonal flows.
That is why another possible way of generalizing the
theory is to include the effects associated with the finite
amplitude of the zonal flows (e.g., in the spirit of [38]).
Thus, it may be hypothesized that a “drift-Alfvén
waves + zonal perturbations” system is self-organized
in the sense that, during the secondary instability of
drift-Alfvén waves, a fraction of their energy is trans-
ferred to the zonal perturbations; as a result, the wave
amplitudes should decrease and, accordingly, at certain
amplitudes of the drift-Alfvén turbulence and zonal

ωk
2

k ||
2
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perturbations, the system may reach equilibrium. How-
ever, confirming this hypothesis requires a detailed ana-
lytic examination and, possibly, numerical analysis of
the equations derived in the present paper.
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APPENDIX

Derivation of the Dispersion Relation 
with Allowance for the Resonant Interaction 

of Alfvén Oscillations with Electrons

Under the conditions qkx ! γk/k|| ! (kx/q)  and
ω∗ e, k/ωk  0, large-scale zonal perturbations of the

plasma density can be neglected,  = 0. Using relation-
ship (79), we can represent Eqs. (76) and (77) in the
form

(A.1)

(A.2)

where the coefficients a, b, α1, α2, β1, and β2 depend on
the spectrum of Alfvén oscillations and on the wave
vector of the long-wavelength perturbations; moreover,
(αi , βi) . 1; i = (1, 2); and, under the above assump-
tions, b @ a. Then, from Eqs. (A.1) and (A.2), we
obtain the following expression for the growth rate of
the instability of large-scale zonal perturbations:

(A.3)

This expression implies that, in the case under consid-
eration, there exist two modes. The upper sign in for-
mula (A.3) corresponds to the mode with the higher fre-
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quency, which is the electrostatic mode (the zonal
flow):

(A.4)

The slower electromagnetic mode is described by the
lower sign and satisfies the equation

(A.5)

Relationships (A.4) and (A.5) can be derived directly
from Eqs. (A.1) and (A.2). Thus, relationship (A.4) fol-
lows from Eq. (A.2) under the assumption that  = 0.
Using an equation analogous to Eq. (78), i.e., setting
the right-hand side of Eq. (A.2) equal to zero, we get

(A.6)

Substituting formula (A.6) into Eq. (A.1), we arrive at
relationship (A.5).
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Abstract—A study is made of the propagation of steady-state large-amplitude longitudinal plasma waves in a
cold collisionless plasma with allowance for both electron and ion motion. Conditions for the existence of peri-
odic potential waves are determined. The electric field, potential, frequency, and wavelength are obtained as
functions of the wave phase velocity and ion-to-electron mass ratio. Taking into account the ion motion results
in the nonmonotonic dependence of the frequency of the waves with the maximum possible amplitudes on the
wave phase velocity. Specifically, at low phase velocities, the frequency is equal to the electron plasma fre-
quency for linear waves. As the phase velocity increases, the frequency first decreases insignificantly, reaches
its minimum value, and then increases. As the phase velocity increases further, the frequency continues to
increase and, at relativistic phase velocities, again becomes equal to the plasma frequency. Finally, as the phase
velocity approaches the speed of light, the frequency increases without bound. © 2003 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

A fairly detailed review of the results of theoretical
investigations on steady-state plasma waves in a colli-
sional plasma was given in a fundamental paper by
Akhiezer and Polovin [1] (see also monograph [2]). In
[1], an analysis was made of plane waves in an
unbounded plasma consisting of electrons (which were
assumed to be cold) and heavy ions (which were
assumed to be immobile). However, it is questionable
whether the assumption that the ions are immobile can
be used to describe large-amplitude nonlinear waves. In
fact, recent papers on relativistic waves in plasmas [3–
7] and works on laser–plasma interactions [8–10]
clearly showed that, at sufficiently large wave ampli-
tudes, it is necessary to take into account the ion
motion. The effect of ion dynamics on the wave struc-
ture was considered by Khachatryan [7], who investi-
gated the dependence of the maximum possible (limit-
ing) electric field in a longitudinal plasma wave and the
wavelength of this wave on the parameter µ for differ-
ent values of the relativistic factor γ = (1 – u2/c2)–1/2

(here, µ is the ion-to-electron mass ratio, u is the wave
phase velocity, and c is the speed of light in vacuum).
In studying the interaction of laser pulses with plasma,
Bulanov et al. [8] estimated the laser field strengths at
which it is necessary to take into account the plasma ion
motion. Also, incorporating the ion mass, they deter-
mined the wavelength, electric potential, and electric
field of the wake waves as functions of the laser field
amplitude.

Here, in contrast to [1], the problem of the propaga-
tion of longitudinal plasma waves is solved with allow-
ance for ion motion, and the solution is sought in the
wave frame of reference, in which the physical pro-
1063-780X/03/2902- $24.00 © 20151
cesses occurring in the wave are easier to understand. In
other respects, the problem is treated in the same for-
mulation and under the same assumptions as those
in [1].

The investigations carried out in this paper show
that, for the values of the relativistic factor ranging
from 1 to µ/2, the results obtained coincide with the
results of [1] (here and below, it is assumed that µ @ 1).
For γ > µ/2, only the maximum possible electric field
amplitude depends on γ in essentially the same manner
as in [1], while the dependence of the remaining param-
eters on γ differs from that obtained in the theory in
which the ion motion is neglected. In the most interest-
ing and important case of relativistic waves (γ @ 1), the
characteristics of longitudinal plasma waves such as
(i) the positive and negative amplitudes of oscillations
of the potential, (ii) the limiting electric field of the
wave, (iii) the wave frequency, and (iv) the wavelength
are obtained analytically as functions of the parameters
γ and µ.

The paper is organized as follows. In Section 2, the
problem is formulated. In Section 3, the procedure for
determining the profiles of the potential and of the elec-
tric field in the wave is described. In Section 4, the fre-
quency and wavelength of the waves with the maxi-
mum possible amplitudes are determined as functions
of the phase velocity. In Section 5, the main results
obtained in this study are discussed.

2. FORMULATION OF THE PROBLEM

We are interested in the wave motions in an
unbounded cold plasma consisting of the ions with the
rest mass M and the electrons with the rest mass m. We
003 MAIK “Nauka/Interperiodica”
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assume that the ions are protons, so that the charge qi of
an ion is equal to the charge of an electron: qi = e, where
e is the absolute value of the electron charge. In contrast
to [1, 2], in which the ions in a nonlinear plasma wave
were treated as immobile, we take into account the ion
motion in all of the cases to be investigated (including
the relativistic case). We also assume that there is no
external magnetic field and restrict ourselves to consid-
ering steady-state longitudinal plane waves propagat-
ing along the x-axis.

In studying a steady-state wave, it is convenient to
switch to the wave frame of reference, in which the
problem under consideration is time-independent and
all of the sought-for variables depend only on the x
coordinate. The set of equations needed to solve the
problem consists of Maxwell’s equations, the relativis-
tic equations of motion, and the continuity equations
for the electrons and ions.

We seek a solution to these equations in the form of
an alternating-sign periodic potential wave. In this case,
over a spatial interval equal to the wavelength λ, the
electric field reaches its extreme values at points lying
between the points where the potential is maximum and
minimum. Maxwell’s equation for the electric field
E(x),

(1)

implies that, at the points of extreme electric-field val-
ues, the ion density ni(x) is equal to the electron density
ne(x). Let the coordinate of one of the extreme point be
x = 0. At this point, we have ni (0) = ne(0) = n and
E(0) = E0, where E0 is the corresponding extreme value
of the electric field. Without any loss of generality, the
wave potential ϕ(x) can be set at zero at the extreme
points; hence, we have ϕ(0) = 0 at x = 0.

The electron and ion continuity equations

yield ni(x)v i(x) = C1 and ne(x)v e(x) = C2, where v e(x)
and v i(x) are the electron and ion velocities and the
constants C1 and C2 are independent of x. We determine
these constants by setting x = 0. Since ni (0) = ne(0) = n,
we obtain C1 = nv i(0) and C2 = nv e(0), where v e(0) and
v i(0) are constant velocities.

Unequal values of the constants v e(0) and v i(0) indi-
cate that a constant current flows in the plasma along
the x-axis. This current will give rise to a time-indepen-
dent magnetic field transverse to the wave propagation
direction. Since solving the problem with allowance for
both the magnetic field and the electron and ion motion
seems to be a fairly difficulty task, we make an assump-
tion with which the problem is much simpler to solve.
Namely, we assume that ve(0) = v i(0) = u, where u is a
constant velocity. Then, the net current vanishes every-
where, e[ni(x)v i(x) – ne(x)v e(x)] = 0, which indicates

dE x( )
dx

--------------- 4πe ni x( ) ne x( )–[ ]=

d
dx
------ ne x( )v e x( )[ ] 0,

d
dx
------ ni x( )v i x( )[ ] 0= =
that, in the wave under consideration, the magnetic field
is absent.

For a cold plasma with no magnetic field present,
the dynamics of electrons and ions in the wave electric
field can be described in the single-particle approxima-
tion by the following relativistic equations of motion,
which are written in the wave rest frame:

(2)

(3)

where γe(x) = (1 – v e(x)/c2)–1/2 and γi(x) = (1 –

/c2)–1/2. The variables pe(x) = mv e(x)γe(x) and
pi(x) = Mv i(x)γi(x) are the momenta of electrons and
ions, respectively.

Substituting the relationship E(x) = −dϕ(x)/dx
between the electric field and the potential into Eqs. (2)
and (3), we obtain the energy conservation laws for
electrons and ions:

(4)

(5)

The constants in these laws have been found by deter-
mining the energy and the potential at the point x = 0,
at which we have set ϕ(0) = 0 and v e(0) = v i(0) = u.
Here, we have also introduced the notation γ =

1/  with β = u/c. With the parameter γ so
defined, the problem to be solved is physically mean-
ingful only for velocities u below the speed of light.

We add conservation laws (4) and (5) termwise to
obtain the conservation low for the total electron and
ion energy in the wave:

(6)

Using Eq. (1), we express the ion and electron den-
sities in terms of the velocity, ne(x) = nu/ve(x) and ni(x) =
nu/v i(x). Then, we multiply both sides of Eq. (1) by E(x)
and, using Eqs. (2) and (3), express the resulting terms
eE(x)/v e(x) and eE(x)/v i (x) through the electron and
ion momenta, respectively. As a result, we arrive at the
equation

which yields one more conservation law:

(7)

v e x( )
d pe x( )

dx
---------------- mc

2dγe x( )
dx

---------------- eE x( ),–= =

v i x( )
d pi x( )

dx
---------------- Mc

2dγi x( )
dx

--------------- eE x( );= =

v i
2 x( )

Mc
2γi x( ) eϕ x( )+ Mc

2γ,=

mc
2γe x( ) eϕ x( )– mc

2γ.=

1 β2
–

Mc
2γi x( ) mc

2γe x( )+ M m+( )c
2γ.=

d
dx
------ E

2
x( )

8π
-------------- nu pe x( ) pi x( )+[ ]–

 
 
 

0,=

E
2

x( )/ 8π( ) nu pe x( ) pi x( )+[ ]–

=  E0
2
/ 8π( ) nγ M m+( )u

2
,–
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where E0 = E(0) and the constant were determined at
x = 0.

Generally, conservation laws (6) and (7) can be
deduced from the energy and momentum conservation
laws stated in terms of the four-dimensional energy–
momentum tensor Tik of the electromagnetic field, rep-

resented as a sum of the tensors for the field, , and

for the particles, : Tik =  +  [11].

In the case under consideration, these conservation
laws in the wave frame have the form dT4x/dx = 0 and
dTxx/dx = 0. Since the magnetic field is absent and, con-
sequently, the Poynting vector equals zero, we have

 = 0. The remaining nonzero tensor components
have the form

With allowance for these tensor components and the
above relationship neve = niv i = nu, the condition
dT4x/dx = 0 yields conservation law (6) and the condi-
tion dTxx/dx = 0 gives conservation law (7).

Having introduced the velocity u, we can use a
frame of reference moving at this velocity with respect
to the wave frame. We will call this frame the laboratory
frame of reference (or, simply, the lab frame) and will
mark the quantities in this reference frame by the super-
script L. In the lab frame, the wave propagates at the
velocity u in the negative direction along the x-axis, has
the wavelength λL, and is characterized by the period of
oscillations T = u/λL of the potential and the electric
field.

Let us transform the above conservation laws to the
lab frame. To do this, we can determine all the required
quantities using the Lorentz transformation formulas
for inertial frames of reference. First, we write the
transformation formulas for the wave vector k = 2π/λ
and wave frequency: k = kL/γ and 0 = γ(ω + ukL), where
ω = 2π/T is the wave frequency in the lab frame and the
wave frequency in the wave frame is naturally set equal
to zero. We can see that the velocity u = –ω/kL is the
wave phase velocity in the lab frame.

In the lab frame, conservation law (6) has the form

(8)

where x = xL + ut L (t L being the time in the lab frame),

(x) = mc2[ (x) – 1] is the electron kinetic energy,

and (x) = Mc2[ (x) – 1] is the ion kinetic energy.

Using conservation law (6), we can write conserva-
tion law (7) in the lab frame as

(9)

Tik
f( )

Tik
p( )

Tik
f( )

Tik
p( )

T4x
f( )

T4x
p( )

mcnev eγe Mcniv iγi,+=

T xx
f( )

E
2
/ 8π( ), T xx

p( )
– mnev e

2γe Mniv i
2γi.+= =

Ke
L

x( ) Ki
L

x( ) u pe
L

x( ) pi
L

x( )+[ ]+ + 0,=

Ke
L γe

L

Ki
L γi

L

E
2

x( )/8π n0 Ke
L

x( ) Ki
L

x( )+[ ]+ E0
2
/8π=
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or, taking into account conservation law (8), as

(10)

where n0 = n/γ is the plasma density in the lab frame. A
comparison between conservation laws (7) and (10)
leads to an interesting conclusion: in both frames con-
sidered, the quantity E2(x)/(8π) – nu[pe(x) + pi(x)] is a
constant.

If we assume that the ions in the lab frame are

immobile, then we have  = 0; in this case, we can see
that conservation law (9) coincides with the equation
that relates the wave energy to the electron energy and
that was obtained in [1, 2] for nonlinear plasma waves
in the absence of a magnetic field.

In the lab frame, the characteristic point at the wave
profile whose coordinate in the wave frame is x = 0
moves with the velocity –u. At this point, the plasma in
the wave frame is quasineutral. Clearly, the plasma at
this point is quasineutral in all inertial reference frames,
including the lab frame. However, the most noteworthy
result is that, in the lab frame, the ions and electrons at
this point are immobile. This immediately yields that,
in the absence of a wave and the field perturbations
driven by it, all plasma electrons and ions in the lab
frame will be at rest and the plasma will be quasineu-
tral, the particle density being n0.

The above considerations imply that, in the lab
frame, the density of an immobile plasma that is not
perturbed by the wave is n0, the frequency of the wave
is ω, and its wavenumber is kL, the wave phase velocity
in the lab frame being u = –ω/kL. Notably, taking into

account these results and the fact that, at  = 0, con-
servation law (9) coincides with the equation that
relates the wave energy to the electron energy and was
derived in [1, 2], we can conclude that the lab frame
introduced by us is precisely the frame of reference in
which the problem of waves in a plasma is treated
in [1, 2].

The above set of equations (1)–(7) is sufficient to
solve the problem as formulated. The parameters of the
problem are n0, µ, and γ.

3. DETERMINATION 
OF THE WAVE PROFILE

One of the main objectives of our study is to deter-
mine the profiles of the potential and electric field of the
wave. This can be done by using conservation law (7).
We introduce the dimensional coordinate and potential,

ξ = xωp /c and ψ(ξ) = ϕ(x)/(mc2), where ωp =

 is the electron plasma frequency. Using
energy conservation laws (4) and (5), we express the
electron and ion momenta in terms of the potential.

E
2

x( )/8π n0u pe
L

x( ) pi
L

x( )+[ ]– E0
2
/8π,=

Ki
L

Ki
L

β

4πe
2
n/m
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Then, in dimensionless variables, conservation law (7)
can be written as

(11)

Here, the variable ψ is a function of ξ; the constant
parameters µ, β, and γ were defined above; and the con-

stant parameter % = (1/2)(dψ/dξ  is the dimensionless
density of the electric field energy at the point ξ = 0, at
which ψ = 0 and the electric field is maximum.

From conservation law (11), we can determine the
sought-for dependences of the potential and electric
field on the coordinate. In the case at hand, the function
V(ψ), which has the meaning of the dimensionless den-
sity of the electric field energy, obviously satisfies the
equation d2ψ/dξ2 = –dV/dψ, whose form implies that
V(ψ) plays the role of the potential energy in the prob-
lem of the motion of a particle of unit mass, where the
variables ψ and ξ present the coordinate and time,
respectively. The parameter % plays the role of the total
energy of a particle moving in the potential well in
question. In order to understand the general structure of
the sought-for solution, it is convenient to turn to the
formalism that was developed to analyze particle
motion in a potential well in classical mechanics [12].
It is well known that, by analyzing the spatial profile of
the potential energy, it is possible to describe the parti-
cle motion qualitatively. In the case at hand, this indi-
cates that, from the shape of the profile V(ψ), it is pos-
sible to find the dependence ψ = ψ(ξ). This way of qual-
itative analysis will be used below.

Now, we consider the properties of the function
V(ψ). In examining analytic expression (11) for V(ψ),
one can readily see that the function is defined in a finite
range of the variable ψ, namely, in the closed interval
−(γ – 1) ≤ ψ ≤ µ(γ – 1). We denote the boundaries of this
interval of the variable ψ by  = –(γ – 1) and  =
µ(γ – 1). That this interval of the potential is actually
finite can be justified on the basis of physical consider-
ations. In doing so, we begin by noting that, if the
potential humps in the wave are lower than  and

, then the ions and electrons at different points on
the wave potential profile move with different veloci-
ties but in the same direction. Consequently, in this
case, the particle flow and the direction of the flow
velocity vector are both constant and are the same at all
points on the potential profile.

Further, in the wave frame, an electron moving in
the positive direction along the x-axis is decelerated
when it climbs up the potential hump of the negative
polarity and is accelerated when it falls in the potential
well of the positive polarity. An electron located at the
point ξ = 0 on the wave profile (at this point, we have

V ψ( ) % dψ ξ( )/dξ[ ] 2
/2–=

=  µβγ µ2β2γ2 ψ 2µγ ψ–( )–– βγ+

– β2γ2 ψ 2γ ψ+( )+ .

)0
2

ψ–* ψ+*

ψ–*

ψ+*
ψ = 0) moves with the velocity u, which is still suffi-
cient for it to climb up the potential hump of height

. For larger potential amplitudes, the electrons will
be reflected from the humps of the wave potential. The
appearance of reflected electrons gives rise to a multi-
stream motion, thereby breaking up the laminar (single-
stream) motion, which is necessary for the existence of
the steady-state wave under consideration. Analo-
gously, the reflected ions that appear in the wave at
amplitudes of the positive potential larger than  will
also break up the laminar character of the flow, as is the
case with electrons.

These considerations imply that, in our problem of
a potential wave in a plasma, the values  and 
are, respectively, the negative and positive maximum
amplitudes of the dimensionless potential at which the
motions of the electron and ion fluids in the wave are
laminar, i.e., single-stream. Consequently, for potential
amplitudes larger than  and , the function V(ψ)
is undefined, as is clear from the analysis of its domain
of existence, and, in addition, nonlinear laminar plasma
waves cannot propagate, which follows from the above
physical considerations.

Analyzing the function V(ψ), we can easily see that
its value at the boundary point ψ =  is always larger

than that at the other boundary point ψ = . As a
result, the maximum depth of the potential well is
determined by the value , which is, in turn, the max-
imum value of the negative amplitude of oscillations of
the potential. It is clear that, at a given value of the
parameter %, the peak-to-peak oscillation amplitude is
determined by expression (11) at V(ψ) = %. Conse-
quently, setting V(ψ) = % at ψ = , we can use
expression (11) to find the limiting value of the param-
eter % and, accordingly, the maximum possible ampli-
tude of the electric field in the wave:

(12)

From relationship (12), we can determine the ampli-
tude %m for nonrelativistic waves (β ! 1, γ ≈ 1 + β2/2):

%m ≈ β/2, or, in dimensional form, /(8π) ≈ n0mu2/2.
For relativistic waves (β ≈ 1, γ > 1), we have

(13)

From this, we obtain the following expression for the
limiting value of the dimensional electric field in the
wave in the lab frame:

(14)

where ωp0 =  is the electron frequency of
the linear plasma oscillations in the lab frame. The lim-

ψ–*

ψ+*

ψ–* ψ+*

ψ–* ψ+*

ψ+*

ψ–*

ψ–*

ψ–*

%m = µβγ βγ µ2β2γ2 γ 1–( ) 2µγ γ 1–+( )+ .–+

E0
2

%m γ 1–( )/ βγ( ).≈

E0( )m mc/e( )ωp0 2 γ 1–( ),≈

4πn0e
2
/m
PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003



THEORY OF LONGITUDINAL PLASMA WAVES 155
iting field (E0)m corresponding to large γ values was
obtained for the first time by Akhiezer and Polovin [1],
so that, in the literature, it is referred to as the Akhiezer–
Polovin field.

It is of interest to analyze the limiting field as a func-
tion of the parameter µ. For γ > 1, relationship (12)
yields the dependence

which differs from dependence (14) in the factor contain-
ing the parameters µ and γ. We can see that, for γ @ 1, the
limiting field is essentially independent of µ. A similar
dependence on µ was obtained by Khachatryan [7].

The dependence of the function V(ψ) on the variable
ψ is illustrated graphically in Fig. 1 for several values
of the parameter γ (in this and other figures, µ = 1836).
It can be seen from Fig. 1 that, as γ increases, the poten-
tial well, on the one hand, becomes increasingly asym-
metric with respect to the vertical axis, and, on the other
hand, acquires a pronounced rectangular shape. The
degree to which the potential well is asymmetric
depends on the value of µ, and the asymmetry itself
causes the oscillations of the electric potential to
become asymmetric. As a result, as the phase velocity
increases, the negative amplitude of the oscillations
becomes small in comparison with their positive ampli-
tude. In addition, we can see that, as the phase velocity
approaches the speed of light, the spatial scale on which
the potential amplitude is negative also becomes much
smaller than the scale on which the potential amplitude
is positive.

Figure 1 shows that, at γ > 105, the potential well is
almost rectangular in shape. This indicates that the
potential profile should be sawtooth-shaped and,
accordingly, that the electric field in the wave should be
alternating in polarity: intervals of a nearly constant
field of positive polarity alternate with intervals of a
nearly constant field of the same amplitude but of neg-
ative polarity.

As may be seen from the plot of the function V(ψ),
the potential oscillates about the equilibrium point ψ = 0.
At low wave velocities (β ! 1, γ ≈ 1 + β2/2), and,
accordingly, at low values of the parameter %, the oscil-
lation amplitude is small. Let us determine the shape of
the potential well in the case of small oscillations. To do
this, we expand the right-hand side of conservation law
(11) in a series around the point ψ = 0 and obtain

(15)

This indicates that small oscillations occur in a para-
bolic potential well, the amplitude of small harmonic
oscillations being ψ+ ≈ ψ– ≈ β2.

Recall that a periodic relativistic wave (γ @ 1) with
a nearly maximum amplitude (% ≈ %m) is strongly non-
linear. In the lab frame, this is a periodic wave that

E0( )m 1 1/ 4µ γ 1+( )[ ]+{ } mc/e( )ωp0 2 γ 1–( ),≈

V ψ( ) β
2
--- 1 ψ2

β4
------– 

      1 1 µ ---+  
  . ≈                                    
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propagates at the velocity –u and in which the intervals
where the potential is positive are much longer than the
intervals where it is negative and the amplitude of the
positive potential is much larger than that of the nega-
tive potential.

As was noted above, at given values of the parame-
ters γ and %, the peak-to-peak amplitude of oscillations
of the potential can be determined from the relationship

Assuming that µ @ 1 and setting % = %m, we can use
this relationship to derive formulas for the limiting
amplitudes of the wave potential for γ @ 1. It is known
that, at a given γ value, the maximum negative ampli-
tude of oscillations of the potential is equal to the

boundary value,  = . The maximum positive
amplitude can be found from the relationship %m ≈ 1,
which holds for γ @

 

 1

 

. As a result, we obtain
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Fig. 1. Plots of the function V(ψ)–%m, showing the shape of
the potential well for different values of the parameter γ.
Numerals near the curves show the γ values. The potential

ψ is normalized to the positive potential amplitude .ψ+
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µ is equal to 2γ, while, for γ > µ, this ratio is a constant
equal to µ.

At this point, we would like to depart from our dis-
cussion and compare the above relationships with those
obtained in the wave frame by solving the problem with
immobile ions (in [1, 2], this problem was treated in the
lab frame).

In the case of immobile ions, the potential well is
described by the expression

which can be readily obtained by multiplying both
sides of Eq. (1) by dψ/dx and by integrating the result-
ing equation under the assumption ni = n = const. Note
that, in the case at hand, the function V(ψ) is defined in
the half-interval ∞ < ψ < –(γ – 1); hence, the value

 = –(γ – 1) is one of the boundary values of the vari-
able ψ.

Setting V(ψ) = %, we arrive at the following formu-
las, determining the peak-to-peak amplitude of oscilla-
tions of the potential:

The exact limiting amplitude of the electric field is

determined from the relationship %m = V( ):

(17)

which coincides with approximate limiting amplitude
(13), deduced above for β ≈ 1 and γ > 1.

Setting % = %m = (γ – 1)/(βγ) and fixing γ, we obtain
exact values of the maximum possible amplitude of
oscillations of the potential:

(18)

Comparing these formulas with formulas (16), we can
see that, in the case of immobile ions, the limiting neg-
ative amplitude of oscillations of the potential is the
same as that in the problem in which the ion motion is
taken into account. The limiting positive amplitude of
oscillations of the potential coincides with that
obtained above in the range 1 ! γ < µ and increases in
proportion to γ2 as γ  ∞. For γ @ 1, the ratio of the

amplitudes in the case of immobile ions is /  ≈ 2γ
and, accordingly, it approaches infinity as γ  ∞, in
contrast to the case at hand, in which it approaches the
finite value µ in the limit γ  ∞.

An analysis of the motion of an electron in the wave
potential field in the wave frame against the back-
ground of immobile ions shows that the electron
energy γe , which can be determined from the conserva-
tion law γe = ψ + γ [see formula (5)], is equal to γe= 1

V ψ( ) βγ β2γ2 ψ 2γ ψ+( )+[ ]
1/2
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ψ–*

ψ– βγ2%2 β2γ4% 2β3γ3% β2γ2%
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ψ–*

%m γ 1–( )/ βγ( ),=

ψ–
m ψ–* γ 1–( ), ψ+

m
– 2γ2 γ– 1.–= = =

ψ+* ψ–*
at ψ =  = –(γ – 1); consequently, the dimensionless
electron velocity is minimum and is equal to βe = 0. At
the point on the wave profile at which ψ =  = 2γ2 –
γ – 1, the electron energy is γe = 2γ2 – 1 and the electron
velocity is maximum, βe = 2β/(1 + β2).

It is easy to show that, in the lab frame, the mini-
mum and maximum electron velocities are –u and u,
respectively. This indicates that the quantity umax,
which is the maximum electron velocity in the laminar
wave under analysis (in [1, 2], this quantity was treated
as an arbitrary constant), is equal to the phase velocity:
umax = u. Taking into account this relationship, one can
readily see that, for γ @ 1, formula (14) for the limiting
electric field coincides with the corresponding formula
obtained in [1, 2].

Having found the positive and negative potential
amplitudes and the maximum electric field in the wave,
we can determine the spatial wave profile. In order to
evaluate the dependence of the potential ψ on the coor-
dinate ξ, we use the differential equation dψ(ξ)/dξ =
{2[% – V(ψ)]}1/2, which is derived from conservation
law (11) and in which the function V(ψ) is given by the
same conservation law and the variable ψ is a function
of ξ. This differential equation was solved numerically
by the Runge–Kutta method. For a known dependence
ψ = ψ(ξ), it is a fairly simple matter to determine from
the equation the dependence of the electric field
dψ(ξ)/dξ on ξ.

The results of calculating the profiles of the poten-
tial and the electric field are demonstrated in Fig. 2.
Before proceeding to the discussion of these calcula-
tions, we should emphasize that this figure is, in a
sense, illustrative because the scales on the four semi-
axes are different. Merely the shapes of the profiles of
the potential and electric field are shown in Fig. 2. The
profiles of the potential of negative and positive polari-
ties are shown, respectively, in the left and right half-
planes (with respect to the vertical axis) on different
scales; to save space, the half-planes in the figure are
simply joined together.

The values of the potential of positive polarity are
normalized to the positive potential amplitude, and the
values of the potential of negative polarity are normal-
ized to the negative potential amplitude; note that, for
relativistic waves, the positive amplitude may be three
orders of magnitude larger than the negative amplitude

(as was mentioned earlier, /  ≈ µ at γ > µ). The
spatial scales on the positive and negative semiaxes are
also different.

An actual potential profile calculated for γ = 5 is dis-
played in Fig. 3, which shows that, even at relatively
small γ values, the peak-to-peak oscillation amplitude
is determined primarily by the positive potential ampli-
tude and the length of the interval where the potential is
positive is, in fact, equal to the wavelength. This shape
of the potential profile has been predicted above from a

ψ–*

ψ+*

ψ+
m ψ–

m
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qualitative analysis of the particle motion in a potential
well.

Now, we again turn to Fig. 2, in which the potential
of negative polarity is seen to become essentially trian-
gular in shape at γ > 10 (see also Fig. 3), while the
potential of positive polarity acquires a triangular shape
at γ > 104. For a triangular profile, the electric field is
rectangular in shape. It is of interest to note that, for the
shape of the potential of positive polarity in the range
2 < γ < 103 (in the right half-plane in Fig. 2), the electric
field also has a nearly triangular shape.

Hence, we have obtained the sought-for solutions in
the form of periodic waves of the potential and have
determined the range of the parameters of the problem
in which the solutions exist. A comparison of formulas
(16) and (18) shows that, in studying relativistic waves
(or, more precisely, waves for which γ > µ), it is of fun-
damental importance to take into account the ion
motion in a finite-amplitude longitudinal plasma wave.
In fact, for γ values in the range 1 < γ < µ, the depen-
dence of the peak-to-peak amplitude of oscillations of
the potential on γ in the problem in which ion motion is
taken into account coincides with that in the problem in
which the ions are assumed to be immobile, whereas,
for γ values significantly above µ, these dependences
are very different.

On the other hand, the maximum amplitude E0 of
the electric field in the wave [see formulas (12), (13)]
agrees with a high accuracy with that given by formula
(17) for the electric field in the case of immobile ions;
this indicates that the maximum amplitude E0 is inde-
pendent of whether the ions are mobile or not.

4. DETERMINATION OF THE WAVE 
FREQUENCY

The wave frequency in the lab frame can be found
from the formula ω = 2πuγ/λ, where the spatial period
λ of oscillations of the potential in the wave frame has
the form

with V(ψ) given by expression (11). This yields the fol-
lowing relationship for the frequency ω:

(19)

The exact value of the frequency can only be deter-
mined by calculating the integral in formula (19)
numerically. However, approximate estimates of ω can
be obtained in the two limits: (i) γ ≈ 1 and (ii) γ @ 1. In
this section, all calculations and estimates are made for

λ 2
β
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waves that have the maximum possible amplitude, % =
%m. In the case of low phase velocities (γ ≈ 1, β ! 1),
when %m ≈ β/2 and ψ+ ≈ ψ– ≈ β2, the function V(ψ) is
given by formula (15) and the integral in relationship
(19) is calculable. As a result, we find that the fre-
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Fig. 2. Profiles of the potential ψ(ξ) (dotted curves) and the
electric field dψ/dξ (solid curves) in the wave. The potential
of positive polarity and positive values of the coordinate are
normalized to the potential amplitude ψ+, and the potential
of negative polarity and negative values of the coordinate
are normalized to the potential amplitude ψ–. Numerals
near the curves show the γ values.
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Fig. 3. Profiles of the potential ψ(ξ) and the electric field
dψ/dξ in a plasma wave for γ = 5 and % = 0.8%m.
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quency of small-amplitude oscillations is equal to the
plasma frequency with allowance for ion motion [2]:

ω = ωp0  ≈ ωp0. For a relativistic plasma wave
(β ≈ 1, γ @ 1), the integral can be estimated by noting
that, at large values of the parameter γ, the quantity
%m – V(ψ) is almost constant at all ψ values and by
using the relationship %m – V(ψ) ≈ 1, which holds for
the limiting amplitudes of the electric field (% ≈ %m)
[see formula (11) and Fig. 1]. As a result, relationship

(19) yields the estimate ω ≈ ωp0π γ3/2/(  – ).

Setting β ≈ 1 and %m ≈ 1, we insert the values  and

 from formulas (16) into this estimate to obtain

(20)

Formula (20) shows that, first, in the range 1 ! γ ! µ,
the wave frequency decreases in proportion to γ–1/2 and,
second, in the range γ > µ, it increases with γ in propor-
tion to γ1/2. This dependence of ω on γ indicates that, at
a certain γ value, the frequency reaches its minimum
value, which can be found from the condition dω/dγ = 0.
Equating the derivative of the frequency, dω/dγ, calcu-
lated from formula (20), to zero, we find that the fre-

quency is minimum (ωmin = 2πωp0/ ) at γmin = µ/2.

It is obvious that, at a certain value γ = γ0 @ 1, the
frequency of the relativistic waves is again equal to the
plasma frequency, as in the case of linear oscillations
(γ ≈ 1). The γ0 value at which ω = ωp0 can be found by
using formula (20): γ0 ≈ µ2/(2π2).

To illustrate, we consider a plasma consisting of
electrons and protons. In this case, the minimum fre-
quency is equal to ωmin ≈ ωp0/7 at γmin ≈ 103; for relativ-
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Fig. 4. Frequency of longitudinal plasma waves with the
maximum possible amplitudes of the potential as a function
of the parameter γ.
istic waves, the frequency of waves with the maximum
possible amplitudes becomes equal to the plasma fre-
quency at γ0 ≈ 2 × 105.

The above approximate dependence of ω on γ and
the above estimates of γ0, γmin, and ωmin are confirmed
by the results of exact computations in which the inte-
gral in formula (19) was evaluated numerically. The
results obtained for an electron–proton plasma and for
nonlinear waves with a maximum peak-to-peak ampli-
tude of the potential (% = %m) at a given value of γ are
illustrated in Fig. 4, which shows the dependence ω =
ω(γ) for γ values in the range 1 ≤ γ ≤ γ0. For γ > γ0, the
frequency is described with high accuracy by the

dependence ω ≈ ωp0π /µ.

Now, we consider another wave parameter related to
the wave frequency, namely, the wavelength. By defini-
tion, in the lab frame, we have λL = 2πu/ω. For nonrel-
ativistic waves, we have λL = 2πu/ωp0. For relativistic
waves, we set β ≈ 1 and %m ≈ 1 and use formula (20) to

obtain λL ≈ (c/ωp0)2 µ2/(µ2 + 2µγ). This shows that
the wavelength of the slow waves is equal to λL =
2πu/ωp0. With increasing wave phase velocity, the
wavelength increases and reaches its maximum value

 = (c/ωp0) at γ = γmin ≈ µ/2. As γ increases fur-
ther, the wavelength begins to decrease and becomes
equal to λL = c/ωp0 at γ ≈ 2µ2. For even larger γ values,
the law according to which the wavenumber decreases

can be written as λL ≈ (c/ωp0)µ .

5. THE MAIN RESULTS AND DISCUSSION

Generally, the problem of the propagation of nonlin-
ear waves in a collisionless plasma is fairly difficult to
solve. However, the problem can be substantially sim-
plified by assuming that the plasma is cold and by turn-
ing to a hydrodynamic description of the plasma pro-
cesses. In the hydrodynamic approximation, which was
used here, the electron and ion components are
regarded as two fluids moving in self-consistent fields.
The problem can be further simplified by assuming that
the ions are immobile and by considering only the elec-
tron motion (as was done in [1, 2]). In this approxima-
tion, the equations were found to have analytic solu-
tions expressed in terms of elliptic functions [1, 2].

Let us analyze the consequences of applying the the-
ory constructed in [1, 2] under the assumption of immo-
bile ions to nonlinear waves propagating in a plasma
with a finite ion-to-electron mass ratio µ. Formula (18)
implies that, in the model with immobile ions, the max-

imum possible positive amplitude  of the wave
potential at γ @ 1 is equal to 2γ2. For ions of a finite
mass, it can be shown that, as the parameter γ increases,
a laminar wave whose amplitude depends on γ in this
manner should inevitably break at a certain γ value. In

2γ

2γ

λmax
L µ

2/γ

ψ+
m
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fact, recall that, for a laminar wave to exist, there should
be no particles reflected from the potential humps, as
follows from physical considerations. Assuming that
the mass of the ions is finite and using the dimension-
less condition µ(γ –1) ≥ 2γ2, which implies that there
are no ions reflected from the potential humps in a wave
with γ @ 1, we can see that the solution describing a
laminar wave is possible only for γ ≤ µ/2.

These considerations indicate that the solutions
obtained in [1, 2] for an actual plasma, for which the
parameter µ is finite, are valid in the finite applicability
range 1 ≤ γ ≤ µ/2, in which their use is physically justi-
fied. Note that the value γ = µ/2 coincides with the esti-
mate obtained above for the value γmin, at which the
wave frequency is minimum. For ultrarelativistic waves
(γ > µ) with the maximum possible amplitude, the
assumption of mobile ions is of fundamental impor-
tance, because it yields results that differ considerably
from those of [1, 2].

When ion motion is taken into account, the depen-
dence of the wave frequency on the phase velocity is
more complicated than the dependence obtained in [1,
2]. As was shown above, the frequency of a wave prop-
agating at a very low velocity is equal to the electron
plasma frequency, in accordance with the linear theory.
With increasing phase velocity, the wave frequency
decreases (as is the case in [1, 2]), but only to a certain
minimum value. As the phase velocity increases fur-
ther, the frequency starts to increase and again becomes
equal to the electron plasma frequency at a certain
phase velocity. In a cold plasma, the frequency of
ultrarelativistic waves with the maximum possible
amplitudes increases without bound as the phase veloc-
ity approaches the speed of light. This indicates that, in
the case of immobile ions, the wave frequency ω
decreases monotonically with increasing γ; however,
when the ion dynamics is incorporated, the frequency
inevitably ceases to decrease monotonically and, as the
ion motion in the wave becomes more active, the fre-
quency begins to increase with increasing γ. Similar
effects were pointed out by Khachatryan [7].

Having analyzed the above dependence of the fre-
quency of the wave on its phase velocity, we can antic-
ipate that the ion dynamics begins to influence the wave
when its parameters become such that its frequency is
minimum (i.e., at γ ≈ µ/2). In other words, the ion activ-
ity in a plasma starts at electric field amplitudes of
about (E0)m ≈ (mc/e)ωp0γ1/2 ≈ (mc/e)ωp0µ1/2. If, as
assumed in [8], the amplitude (E0)m is comparable in
order of magnitude to the maximum amplitude of the
electric field in a laser pulse, (EL)m ~ (E0)m, then the
value obtained above for (E0)m agrees with the estimate
for the maximum electric field (EL)m that was obtained
by Bulanov et al. [8] and above which, in their opinion,
the motion of the ion plasma component should be
taken into account.

We should make one remark about the electron–pro-
ton plasma considered above. According to formula
PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003
(20) and Fig. 4, the wave frequency ω differs from the
electron plasma frequency by less than one order of
magnitude (at most, by a factor of seven) in a fairly
wide range of γ values (1 ≤ γ < 105).

The shapes of the potential and the electric field in
longitudinal plasma waves possess interesting features.
For a chosen point on the wave profile at which the
potential is set at zero and, accordingly, with respect to
which the potential is measured, we have found that the
peak-to-peak amplitude of oscillations of the potential
of relativistic waves is determined primarily by the pos-
itive potential amplitude.

It has been found that, in a certain range of wave
velocities, the electric field in a relativistic wave is of a
nearly sawtooth shape. For γ > 10, the negative compo-
nent of the potential also acquires a sawtooth shape. As
the phase velocity of ultrarelativistic waves increases,
the entire profile of the potential in the wave becomes
sawtooth-shaped, and the electric field profile becomes
rectangular in shape.

Finally, let us make the following remarks. In our
analysis, it was assumed that the role of the positively
charged plasma component is played by protons. It is
easy to see that the results obtained can be generalized
to arbitrary ions whose mass and charge differ from
those of protons. In this case, the behavior of the waves
in a plasma consisting of electrons and one ion species
with the atomic number A and charge eZ is described by
Eqs. (1)–(3) with conservation laws (4)–(7), in which
the mass M* = AM/Z should be used in place of the
mass M of a hydrogen atom and the parameter µ should
be replaced by the quantity µ* = Aµ/Z. Another inter-
esting result is the following: for µ = 1 (i.e., for an elec-
tron–positron plasma), the frequency of finite-ampli-
tude longitudinal plasma waves with γ > 1 is always
higher than the frequency of the linear plasma oscilla-
tions. This circumstance was pointed out in [7].

In summary, the main results obtained in the present
study are as follows.

(i) The boundaries of the parameter range in which
the periodic potential waves with phase velocities lower
than the speed of light exist have been determined. In
order for the waves to remain laminar, the peak-to-peak
amplitude of oscillations of the potential in the wave
should be finite: the positive amplitude is restricted by
the value  = µ(γ – 1), and the negative amplitude is

restricted by  = –(γ – 1).

(ii) The profiles and amplitudes of the potential and
the electric field have been calculated for plasma waves
with velocities ranging from zero to the speed of light.
It has been found that the absolute value of the maxi-
mum possible negative amplitude of oscillations of the
potential is equal to γ – 1 and that the maximum pos-
sible positive amplitude in the range 1 < γ < µ is approx-
imately equal to 2γ2 and approaches the value µ(γ – 1)
as the phase velocity approaches the speed of light.

ψ+*

ψ–*
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(iii) The frequency of the wave and its wavelength
have been obtained as functions of the wave phase
velocity. It has been shown that, in a fairly wide range
of phase velocities (the minimum velocity being zero),
the frequency of the wave whose amplitude is close to
the limiting amplitude in the electron–proton plasma
under consideration changes only slightly, remaining of
the same order of magnitude as the electron plasma fre-
quency. The frequency of ultrarelativistic waves with
the maximum possible amplitudes in a cold plasma
becomes higher than the electron plasma frequency and
increases without bound as the phase velocity
approaches the speed of light.
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Abstract—The critical electric field at which the ionization rate is equal to the rate of electron attachment to
neutral particles in heated sulfur hexafluoride (SF6) is calculated by numerically solving the Boltzmann equa-
tion for electrons. It is shown that the main causes of a decrease in the critical field with increasing gas temper-
ature are the change in the electron energy distribution due to gas dissociation and the reduction in the rate of
electron attachment to neutral particles. The calculated results are in qualitative agreement with the available
experimental data. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Gaseous sulfur hexafluoride (SF6) is widely used as
an insulator in high-voltage engineering. It is for this
reason that the processes underlying the development
of electrical breakdowns in SF6 attract interest. The
high insulating properties of SF6, which is an electrone-
gative gas, are largely explained by the high rate of
electron attachment to SF6 molecules, which results in
the production of negative fluorine-containing ions
with large binding energies.

One of the most important parameters of an electric
breakdown in an electronegative gas is the critical elec-
tric field at which the electron production rate by
impact ionization of neutral particles is equal to the rate
of electron attachment to them. It is well known that,
under normal conditions, the critical field in SF6 is
about E ≈ 89 kV/cm, which corresponds to a reduced
critical electric field of E/N ≈ 3.6 × 10–15 V cm2, where
N is the neutral density [1]. The temperature depen-
dence of the critical field has been studied (both theo-
retically and experimentally) very little, although this
point is very important for describing different kinds of
breakdown. For instance, it is thought that the electric
field in a leader channel heated to several thousand
degrees is established at a critical level [2–4]. Previ-
ously obtained estimates for the critical electric field [2,
3] were based on a rough empirical approach [5] in
which this field was assumed to be determined exclu-
sively by the ionization potential and the polarizability
of neutral particles. For estimates, it was also assumed
that all SF6 molecules dissociate into atoms with the S
atoms being neglected. Kinetic calculations of the crit-
ical electric field for plasma conditions in a leader chan-
nel have not yet been carried out.

The question of the critical electric field in heated
SF6 is also important for current switches, as well as in
situations with spark rebreakdown of a gas gap. In the
latter case, one of the main processes is the recovery of
1063-780X/03/2902- $24.00 © 20161
the electric strength of a heated gas channel that
remains after an electric arc has come to an end. The
first attempts to develop a systematic kinetic descrip-
tion of this process in SF6-based current switches were
made comparatively recently. Thus, the decay of an arc
plasma was investigated theoretically by Cliteur et al.
[6] with allowance for an external electric circuit, and
the critical field in a channel after its cooling to 3000 K
was determined by Yan et al. [7] by using a simplified
approach.

In this paper, the critical electric field in SF6 is deter-
mined as a function of gas temperature and gas pressure
by applying a systematic kinetic approach. We calcu-
late the mean production and loss rates of electrons by
numerically solving the Boltzmann equation for them
under the assumption that the neutral components of
the gas are in thermodynamic equilibrium.

2. DESCRIPTION OF THE APPROACH

Based on a numerical solution of the Boltzmann
equation, we determined the electron energy distribu-
tion in a gas at different temperatures and different
pressures. Calculations were carried out in the two-
term approximation: in the expansion of the electron
distribution function in spherical harmonics [8], we
retained the first two terms, which correspond to a
slight anisotropy of the distribution function. The
effects of the unsteady nature of the plasma and of its
inhomogeneity (due to the processes of electron pro-
duction and electron losses) on the electron distribution
were neglected, which is valid for a near-critical elec-
tric field, when these effects cancel one another. Using
the distributions obtained, we calculated the rate con-
stants for the ionization and the electron attachment to
neutral particles by averaging the rates of the corre-
sponding processes over all neutral components. The
critical electric field was determined by equating the
mean rate constants for ionization and electron attach-
003 MAIK “Nauka/Interperiodica”
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ment. Note that, at sufficiently high gas temperatures,
electrons are detached from the negative ions (thermal
electron detachment); this indicates that, in determin-
ing the critical electric field, it is also necessary to take
into account the electron detachment from negative
ions in their collisions with neutral particles. However,
the estimates that were made with allowance for ion
heating in an electric field showed that, at T < 4000 K,
the effect of electron detachment from F– ions can be
ignored.

In modeling electron scattering by SF6 molecules,
we took into account elastic collisions, the excitation of
vibrational and electronic levels, ionization, and elec-
tron attachment. The scattering cross sections for the
corresponding processes were taken from [9]. The con-
sistency of the scattering cross sections was checked by
test computations of the electron transport and rate
parameters in a cold SF6 gas. The calculated results
were found to agree well with the available experimen-
tal data [1] on the electron drift velocity, the character-
istic electron energy (the ratio of the transverse electron
diffusion coefficient to the electron mobility), and the
ionization and attachment rates. During the gas heating,
an SF6 molecule dissociates into radicals, which ulti-
mately decompose into F and S atoms. The cross sec-
tions for elastic electron scattering, the excitation of
electronic levels, and the ionization of F and S atoms
were taken from [6]. The electron attachment to atoms
was neglected. In fact, there is no dissociative attach-
ment to atoms, whereas under the conditions adopted
here, the rates of the three-body and radiative attach-
ment processes are several orders of magnitude lower
than the rate of dissociative attachment to radicals. For
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Fig. 1. Composition of an SF6 gas vs. temperature at atmo-
spheric pressure.
the ionization cross sections for radicals, we used the
experimental data obtained on SF5 and SF3 by Tar-
novsky et al. [10] and the results calculated by Ali et al.
[1] for SF4, SF2, and SF (note that these calculated
results agree with the experimental data [10] on the ion-
ization cross sections for SF5 and SF3). Since we failed
to find other data on the cross sections for electron scat-
tering by the radicals of an SF6 molecule in the litera-
ture, we set them equal to the cross sections for electron
scattering by this molecule.

The gas components were assumed to be in thermo-
dynamic equilibrium, and the gas composition was
determined with the numerical code described in [11].
The computations were carried out for the temperature
range T = 300–5000 K and the pressure range p = 0.5–
5 atm.

3. DISCUSSION OF THE RESULTS

Figure 1 illustrates how the composition of an SF6
gas depends on its temperature at atmospheric pressure.
The results shown in this figure agree with the results
from thermodynamic calculations [12] to within 10–
15%. In a gas heated above 1600 K, the SF6 molecules
are subject to thermal dissociation. At T > 1750 K, the
main particles in the gas mixture are F atoms, although
the amount of different radicals remains sufficiently
large to determine electron losses over the entire tem-
perature range in question. As T increases, complex
radicals decompose into atoms and simpler radicals.

Figure 2 shows how the mole fractions of the neutral
components predominating in the gas (SF6 molecules
and F atoms) depend on temperature at two different

100

10–1

10–2

1000 2000 3000

SF6 F

T, ä

Mole fraction

Fig. 2. Mole fractions of SF6 and F vs. temperature at a gas
pressure of 1 atm (solid curves) and 5 atm (dashed curves).
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pressures. An increase (or a decrease) in pressure is
seen to somewhat slow (or hasten) dissociation pro-
cesses, without changing them qualitatively.

The heating of SF6 molecules should not only
induce them to dissociate, but should also exert consid-
erable influence on the production and loss rates of the
electrons and, consequently, on the critical electric
field. In this case, we can distinguish between three dif-
ferent effects. First, even when the electron energy dis-
tribution remains unchanged, the efficiency of electron
attachment to neutral particles changes as the gas com-
position changes with increasing T. Second, the same is
true of the efficiency of electron-impact ionization of
neutral particles (the ionization efficiencies of different
particle species are characterized by the corresponding
ionization potentials, which are given in the table).
Finally, a change in the gas composition affects the
mean energy of the electrons and their energy distribu-
tion, thereby affecting the rates of electron attachment
and ionization.

Figure 3 shows how the mean ionization and attach-
ment rate constants depend on the reduced electric field
in SF6. The calculations were carried out for T = 1000 K
(when there is no dissociation) and for T = 2000 K
(when the degree of dissociation is high). We can see
that decomposition of molecules has a substantial influ-
ence on the rates of both ionization and electron attach-
ment, in which case the total attachment rate decreases
while the ionization rate increases. These two effects

10–8
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10–11

2 3 4 5
E/N, 10–15 V cm2

k, cm3 s–1

katt

kion

Fig. 3. Ionization and attachment rate constants vs. reduced
electric field in an SF6 gas at atmospheric pressure and at
T = 1000 K (solid curves) and 2000 K (dashed curves). The
rate constants were obtained by averaging the rates of the
corresponding processes over all neutral components.
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reduce the critical electric field at which the ionization
and attachment rates are equal.

The influence of different effects on the evolution of
the critical electric field in an SF6 gas whose tempera-
ture T increases with time was clarified by successively
including them in simulations. Figure 4 illustrates the
results of these simulations in the form of the depen-
dence of the critical reduced electric field on T. The
upper curve was obtained from simulations in which
the electron attachment rate changed with temperature
(the electron attachment to atoms being neglected) and
the ionization rate and electron energy distribution are
taken to be the same as those in a cold gas. The middle
curve refers to simulations in which we took into
account the changes in the rates of both electron attach-
ment and ionization in a gas whose composition
changes with increasing temperature, but used the same
electron energy distribution as in the previous series of
simulations. Finally, the lower curve demonstrates the
results of simulations in which we took into account not
only the change in the attachment and ionization effi-
ciencies but also the change in the electron energy dis-
tribution, which forms as a result of elastic and inelastic
collisions of electrons with neutral particles.

Ionization potentials (in eV) of neutral particles [1, 13]

SF6 SF4 SF3 SF2 SF S2 F S

15.7 12.0 11.0 10.1 10.1 9.4 17.4 10.4

40

35

30

25

20

15

10

0

5

1000 2000 3000 4000
T, ä

E/N, 10–16 V cm2

1

2

3

Fig. 4. Critical reduced electric field vs. temperature in an
SF6 gas at atmospheric pressure: (1) calculation with allow-
ance for only the change in the electron attachment effi-
ciency, (2) calculation with allowance for the changes in the
attachment and ionization efficiencies, and (3) calculation
with allowance for the changes in the attachment and ion-
ization efficiencies and in the electron energy distribution.
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From Fig. 4, we can see that, because of the absence
of electron attachment to atoms, the critical electric
field becomes substantially weaker: at T = 2000 K, the
field decreases by 25% and, at a temperature of 4000 K,
it decreases by a factor of more than two. The effect
associated with the change in the efficiency of ioniza-
tion of neutral particles in a heated gas is far less
because of the production of particles not only with
lower ionization energies (radicals and S atoms) but
also with higher ionization energies (F atoms). In this
case, the amount of easily ionized particles is substan-
tially less than that of F atoms; consequently, the total
effect of a change in the ionization efficiency is rela-
tively weak. The last effect, which is associated with
the evolution of the electron energy distribution, is the
greatest: as the gas is heated up to 2000 K, the critical
electric field decreases by a factor of nearly three. Such
a decrease might be explained as being due to the
absence of the vibrational and rotational degrees of
freedom of F atoms, which are the dominant particles
in a heated gas; as a result, the mean electron energy
increases. However, under the conditions described,
i.e., when the electric field is sufficiently strong, a frac-
tion of the electron energy transferred to these degrees
of freedom is small [6] and the electrons lose their
energy almost exclusively by the excitation of elec-
tronic levels and by ionization. A comparison between
the cross sections for exciting the electronic levels of an
F atom and an SF6 molecule shows that the excitation
efficiencies for F are approximately one order of mag-
nitude smaller than those for other neutral particles.
Consequently, in a gas heated in a given electric field,
this property should make (due to dissociation) electron
heating more efficient and, accordingly, should
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Fig. 5. Critical reduced electric field vs. temperature in an
SF6 gas at pressures of 1 and 5 atm. The closed circles show
the experimental data measured at a pressure of 2 atm in
[14, 15].
decrease the critical electric field (calculations show
that, as the gas is heated from 300 to 4000 K at a given
reduced electric field E/N, the mean electron energy
increases by 30–35%).

In studying the electrical breakdown of gaps filled
with an SF6 gas, it is of interest to investigate the break-
down discharge parameters in the pressure range from
0.5 to 5 atm. That is why we carried out simulations not
only for the atmospheric pressure but also for pressures
between 0.5 and 5 atm. A change in the pressure p
affects the gas composition: as p increases, the dissoci-
ation processes in the gas begin to occur at higher tem-
peratures. Figure 5 illustrates the dependence of the
critical electric field on the gas temperature at pressures
of 5 and (for comparison) 1 atm. The critical electric
field calculated for 0.5 atm is not shown, because it
nearly coincides with the field calculated for 1 atm. We
can see that, at the higher pressure, the plot of the criti-
cal electric field versus gas temperature is shifted
toward somewhat higher temperatures.

Figure 5 also presents the measurement data
obtained in [14, 15] (see also [4]), namely, the reduced
electric field in a heated SF6 gas at a pressure of p =
2 atm. The results of our calculations are seen to agree
qualitatively with experiment. The observed differ-
ences can be attributed to uncertainties in the data on
the cross sections for inelastic electron scattering by F
atoms and for electron attachment to radicals. Increas-
ing either the excitation cross sections for F atoms or
the cross sections for electron attachment to radicals by
a factor of 1.5 to 2 is quite sufficient to achieve agree-
ment with the experimental data (to within measure-
ment errors).

It is believed [2–4] that the electric field in a leader
channel in SF6 is equal to the critical field. Let us show
that the results of our study do not contradict the data
obtained from measurements in a leader channel prop-
agating in an SF6 gas. In [16] (see also [3]), the mean
electric field in a leader channel was estimated by
dividing the difference between the threshold voltage
for the appearance of a leader and the breakdown volt-
age by the length of the projection of the leader channel
onto the axis between the electrodes. The mean electric
field in the channel at a pressure of 1 atm was estimated
to be EL ≈ 2 kV cm–1. The gas temperature in the leader
channel was not measured; however, strong spectro-
scopic lines in the emission spectra of F atoms provide
evidence for the intense dissociation of SF6 molecules
[3]. For this reason, it is usually assumed [2–4] that the
gas temperature in a leader channel in SF6 may reach
several thousand degrees. Setting T = 3000 K, and using
the data presented in Figs. 4 and 5, we obtain the fol-
lowing estimate for the critical reduced electric field at
atmospheric pressure: E/N ≈ 8 × 10–16 V cm2. There-
fore, the critical electric field is approximately equal to
2 kV cm–1, which agrees with the above experimental
estimate for the critical field in a leader channel.
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The results obtained differ substantially from the
estimates that were used earlier for the critical electric
field in a heated SF6 gas [2, 3]. The experimentally
observed decrease in the critical field in SF6 with
increasing T is also interpreted in different ways. Thus,
according to [2–4], the main cause of this decrease is
that the rate at which electrons are attached to an SF6
molecule is higher than the electron attachment rate to
its decomposition products. However, our calculations
show that a far greater role is played by the change in
the electron energy distribution and more efficient elec-
tron heating by the electric field in a heated SF6 due to
the small cross sections for the excitation of the elec-
tronic levels of F atoms.

4. CONCLUSION

The kinetic calculations presented here allowed us
to determine the temperature dependence of the critical
electric field in an SF6 gas at different pressures. We
have also analyzed the main causes of a decrease in the
critical field during the dissociation of gas molecules.
We have found that, contrary to the accepted opinion,
the weak critical electric field in a heated gas is associ-
ated not only with the low cross section for electron
attachment but also with the change in the electron
energy distribution and with a more efficient electron
heating in the field because of the anomalously small
cross sections for the excitation of the electronic levels
of F atoms.

ACKNOWLEDGMENTS

We are grateful to V.K. Gryaznov and I.L. Iosi-
levskiœ for providing us with the computational data on
the thermodynamic composition of a heated SF6 gas.
This work was supported by the Russian Foundation
for Basic Research, project no. 00-02-17399.
PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003
REFERENCES
1. L. G. Christophorou and J. K. Olthoff, J. Phys. Chem.

Ref. Data 29, 267 (2000).
2. L. Niemeyer and F. Pinnekamp, J. Phys. D 16, 1031

(1983).
3. N. Wiegart, L. Niemeyer, F. Pinnekamp, et al., IEEE

Trans. Power Deliv. 3, 939 (1988).
4. L. Niemeyer, L. Ullrich, and N. Wiegart, IEEE Trans.

Electr. Insul. 24, 309 (1989).
5. K. P. Brand, IEEE Trans. Electr. Insul. 17, 451 (1982).
6. G. J. Cliteur, K. Suzuki, K. C. Paul, and T. Sakuta,

J. Phys. D 32, 494 (1999).
7. J. D. Yan, M. T. C. Fang, and Q. S. Liu, IEEE Trans.

Dielectr. Electr. Insul. 4, 114 (1997).
8. V. E. Golant, A. P. Zhilinskii, and S. A. Sakharov, Fun-

damentals of Plasma Physics (Atomizdat, Moscow,
1977; Wiley, New York, 1980).

9. J. P. Novak and M. F. Frechette, J. Appl. Phys. 55, 107
(1984).

10. V. Tarnovsky, H. Deutsch, K. E. Martus, and K. Becker,
J. Chem. Phys. 109, 6596 (1998).

11. V. K. Gryaznov, I. L. Iosilevskiœ, Yu. G. Krasnikov,
N. I. Kuznetsova, V. I. Kucherenko, G. B. Lappo,
B. N. Lomakin, G. A. Pavlov, É. E. Son, and V. E. Fortov,
The Thermal Properties of Working Fluids of a Gas-
Phase Nuclear Reactor (Atomizdat, Moscow, 1980).

12. B. Chervy and A. Gleizes, J. Phys. D 31, 2557 (1998).
13. A. A. Radtsig and B. M. Smirnov, Reference Data on

Atoms, Molecules, and Ions (Atomizdat, Moscow, 1980;
Springer-Verlag, Berlin, 1985).

14. B. Eliasson and E. Schade, in Proceedings of the XIII
International Conference on Phenomena in Ionized
Gases, Leipzig, 1977, p. 409.

15. E. Schade, in Invited Lectures of the XVII International
Conference on Phenomena in Ionized Gases, Budapesht,
1985, p. 277.

16. N. Wiegart, in Proceedings of the 8th International Con-
ference on Gas Discharges, Oxford, 1985, p. 227.

Translated by G.V. Shepekina



  

Plasma Physics Reports, Vol. 29, No. 2, 2003, pp. 166–175. Translated from Fizika Plazmy, Vol. 29, No. 2, 2003, pp. 187–197.
Original Russian Text Copyright © 2003 by Shelobolin.

   

LOW-TEMPERATURE
PLASMA

         
Plasma-Waveguide Model of Electric Breakdown in Gas
A. V. Shelobolin

Lebedev Institute of Physics, Russian Academy of Sciences, Leninskiœ pr. 53, Moscow, 119991 Russia
Received April 25, 2002; in final form, July 31, 2002

Abstract—Drawbacks of the conventional model of electric breakdown in high-pressure gases are discussed.
A new model that associates the propagation of a breakdown wave with the propagation of a traveling electro-
magnetic wave in a plasma waveguide is proposed. Based on the new model, the main physical parameters of
a medium are estimated. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The physics of electric gas breakdown (EGB) seems
to have the widest range of applications than any other
division of physical science. However, the elementary
processes in EGB are still far from being completely
understood. The overwhelming majority of applied
problems are dealt with at the empirical level, whereas
the data from fundamental investigations are used only
to achieve qualitative agreement between the experi-
mental and theoretical results. The EGB theory itself,
which is based on an incomplete set of experimental
data, is still of fragmentary nature.

The commonly accepted EGB model, which was
developed in the beginning of the 20th century, has not
yet undergone any qualitative revision and still bears its
main disadvantage: being capable of describing some
experimental data, it cannot predict new effects or pro-
pose methods for their experimental verification. The
disadvantages of both the theory and the experiment are
associated with the following two circumstances. First,
from an experiment standpoint, the object is extremely
complicated and difficult to deal with. The require-
ments on the parameters of the measurement technique
are hardly satisfied even with modern devices. The
main equations describing EGB processes are rather
complicated and, generally, cannot be simplified. Sec-
ond, the EGB studies were stimulated by practical
needs when the device base was poorly developed and
plasma physics had just originated.

That is why the theory was constructed based on
contradictory experimental results, without considering
alternative plasma models. The only model that could
be developed in this situation was that in which the dis-
persion characteristics of a medium were assumed to be
similar to those of a vacuum. Consequently, taking into
account the phase relations in a medium when describ-
ing EGB was unlikely to be helpful. For this reason, a
model is now commonly accepted in which an electron
bunch moving through a viscous medium undergoes
multiplication and converts into a secondary ionization
wave. Because of its limited opportunities, this model
is incapable of adequately describing a variety of phe-
1063-780X/03/2902- $24.00 © 20166
nomena, the most important of which is the spatiotem-
poral EGB behavior.

In this paper, the drawbacks of the conventional
EGB model are analyzed and an alternative plasma-
waveguide model is proposed that is to a large extent
free of these drawbacks (although it is still far from
being completed). An analysis is carried out by succes-
sive steps. We start from qualitative considerations of
the experimental data when choosing the model foun-
dations and conclude with order-of-magnitude esti-
mates of the main physical characteristics of the
medium. Comparing the results of future experiments
with these estimates will allow one to finally decide
among the models.

2. INCONSISTENCY OF THE CONVENTIONAL 
AVALANCHE–STREAMER EGB MODEL

The conventional model of EGB at pressures of
about atmospheric pressure is based on a rather wide
range of experimental techniques; however, the ideol-
ogy of the model mainly relies on the two-dimensional
photos of breakdown waves that were first obtained by
Raether in 1935 with the use of a cloud chamber [1].
Two such photos (taken from [2]) are shown in Fig. 1.
Generally, the model, which is based on an analysis of
photos, can be briefly described as follows.

An electron or a group of electrons starts from the
cathode after applying a pulsed voltage to the discharge
gap and multiplies itself in an avalanche due to impact
ionization at the wave front, where energy dissipation is
of a collisional nature. In the transverse (with respect to
the external electric field) direction, the head of the
breakdown wave (avalanche) spreads out because of
diffusion. The longitudinal avalanche velocity is deter-
mined by the model of electron motion in a viscous
medium under the action of a constant electrostatic
force. The spatial electron density distribution can be
written as [3]

(1)n 4πDt( )–3/2 x2 y2 z ut–( )+ +
2

4Dt
------------------------------------------– αut+ 

  ,exp=
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where D is the diffusion coefficient; α is the first
Townsend coefficient; u is the electron drift velocity; t
is time; and x, y, and z are Cartesian coordinates.

Starting from a certain instant determined by the
empirical criteria of Raether, Meek, and Toll, another
gas ionization mechanism becomes operational at the
avalanche front and the avalanche transforms into a
streamer in a stepwise manner. The avalanche diameter
reduces by several times, which is seen on the photos of
the avalanche-to-streamer transition [4], and the ava-
lanche velocity increases by an order of magnitude.
Qualitatively, the drawbacks and inconsistencies of the
model are as follows:

(i) By virtue of the law of charge conservation and
because the ions shift only slightly during the develop-
ment of an avalanche, the avalanche can be regarded as
a progressively stretching dipole (rather than a growing
charge). Hence, the avalanche drift velocity continu-
ously decreases and becomes zero at the instant when
the internal electric field in the avalanche becomes
comparable with the external one. The conventional
model empirically relates this instant via Meek’s crite-
rion to the avalanche-to-streamer transition [5]. How-
ever, no decrease in the avalanche velocity just before
its transformation into a streamer was observed even in
the most correct experiments performed with the help
of an image-converter tube [6] because of the insuffi-
cient sensitivity of the method and the speckle structure
of the avalanche image. The authors of the studies [2, 5,
6], in which other techniques for avalanche recording
were used, assume that, throughout the entire range of
the experimental conditions, the drift velocity u
depends linearly on the external electric field E:

(2)

where N is the initial gas atom density and β is a dimen-
sional coefficient independent of E.

(ii) Expression (2) implies that, at E  0, the
velocity u tends to u0. The physical meaning of u0 is the
initial electron velocity at the cathode in the absence of
an external electric field. The positive values of u0 can
be treated as a result of photoeffect at the cathode,
because, to ensure a single-avalanche process, the cath-
ode is usually illuminated with an external source.
However, in methane, u0 is negative [2], which cannot
be qualitatively explained in terms of the conventional
model.

(iii) The avalanche shape shown in Fig. 1b is not the
only possible one. Figure 2, which is taken from [7],
presents a photo of an avalanche whose glow has a
waist. In [7], this constriction was assumed to be related
to the waveform of the voltage pulse applied to the elec-
trodes. However, this is not so, because, according to
[8], the voltage waveform used in [7] did not show such
a behavior. Consequently, the longitudinal profile of the
avalanche glow obtained in [7] (Fig. 2) should be
related to certain fundamental processes in the ava-

u u0 βE/N ,+=
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lanche that are not taken into account by the conven-
tional model.

(iv) Using the data from [7], one can extrapolate the
position of the avalanche head to t = 0, i.e., determine
its initial spatial coordinate z0, which turns out to be z0 =
1.6 ± 0.8 mm. Thus, the avalanche starts from a point
located at the distance z0 from the cathode (rather than
from the cathode itself). This fact also cannot be
explained in terms of the conventional model.

(v) According to the conventional model, the ava-
lanche-to-streamer transition is related to the switch-
ing-on of a certain additional ionization mechanism. At
present, there is no consensus regarding the nature of
this mechanism. Raether [2] and Lozanskiœ and Firsov
[3] believe that this is photoionization, whereas other
authors [5, 9] assume that this is the increasing electro-
static ionization at the avalanche front. Each of these
mechanisms implies the increase in the velocity of the
breakdown wave; however, none of them explains the
decrease in its transverse size. Moreover, in the dipole
approximation, both mechanisms assume that the
directivity diagram of the ionization factor is maximum
in the direction perpendicular to the external electric
field.

(vi) In addition to unsatisfactory description of the
avalanche-to-streamer transition, the conventional
model is incapable of describing the inertial streamer
propagation after switching off the discharge voltage.
In [10], it was experimentally shown that the inertial
path can be longer than 1 cm, which is certainly longer
than all the relaxation lengths of the gas particles at
pressures close to atmospheric. In principle, the con-
ventional model can only describe energy relaxation,
rather than momentum relaxation, which was actually

(a) (b)

Fig. 1. Avalanche photos in (a) N2 at a pressure of 280 torr
and (b) CO2 at a pressure of 150 torr [2].
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Fig. 2. Avalanche photos in air for different durations of the voltage pulse at a cloud chamber: (a) 0.05, (b) 0.08, and (c) 0.11 µs,
and the blackening density for photo (b) [7].
observed in [10]. An attempt [11] to formulate a plasma
model capable of describing this phenomenon will be
discussed below.

Before proceeding to estimates, the following points
should be discussed and following questions should be
answered:

(i) What is the medium in which the breakdown
wave propagates? Is it a gas or plasma? In the former
case, the development of an avalanche can be described
based on the assumptions of the conventional model. In
the latter case, the breakdown wave can be treated as a
traveling electromagnetic wave in the spatially
bounded plasma—plasma waveguide. A quantity that
allows one to distinguish between the gas and plasma is
the Debye screening radius [12]

(3)rD 500 T
n
--- cm( ),=
where í [eV] is the temperature of the colder plasma
components (ions or electrons) and n [cm–3] is the
charge carrier density.

Assuming that the background plasma density is n =
102–104 cm–3 [13] and the ion temperature is equal to
room temperature (i.e., T = T0 = 0.025 eV), we obtain
from formula (3) that 0.8 < rD < 8 cm. Thus, such an
atmospheric electricity phenomenon as a stepped
leader stroke is certainly an electric breakdown of
plasma because the leader diameter ranges from 1 to
10 m [14]. Under laboratory conditions, before apply-
ing a pulsed voltage to the discharge gap, the medium
is close to the plasma state. Up to now, reliable space
and time resolved experimental data on T and n after
applying the external field are still lacking.

In this context, the assumption about the plasma
nature of a medium in which EGB develops still
PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003
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requires experimental verification. Nevertheless, most
investigators assume (directly or indirectly) that the
streamer phase of breakdown occurs in a plasma; how-
ever, they do not employ this idea when analyzing the
spatiotemporal characteristics of breakdown. In the
conventional model, the avalanche is assumed to
develop in a gas, although some investigators [15–20]
suppose that, in the final stage, it occurs in a plasma.

(ii) In the conventional model, the temperature of
the excessive avalanche electrons is estimated by the
angle of the avalanche tail. The actual Te value is 1–
10 eV [2, 7]. However, it should be noted that, in the
avalanche tail, diffusion can be accompanied by relax-
ation processes, in which case such estimates become
senseless.

(iii) An important point of the conventional model is
the estimations of the excessive charge density in the
avalanche head and the electric field near its surface. It
is most suitable to estimate these quantities at an instant
preceding the avalanche-to-streamer transition. Three
criteria for this transition can be used: Raether’s crite-
rion, Meek’s criterion, and Toll’s criterion. These crite-
ria are ideologically interrelated; however, the main
experimental parameters are used in different ways
when estimating the medium and field parameters.
Hence, these criteria should be considered indepen-
dently.

According to Raether’s criterion [2], the avalanche-
to-streamer transition occurs when the avalanche length
reaches the critical value Zcr. In this case, the excessive
electron density can be estimated as

(4)

whereas the electric field near the avalanche surface is

(5)

where R is the radius of the avalanche head and q is the
elementary charge. 

For nitrogen and air at pressures of 400 torr, we have
11.7 < αZcr < 36 [7] and 10–2 < R < 10–1 cm [2, 5, 7];
from here, we obtain 3 × 107 < nRae < 1021 cm–3. A sim-
ilar estimate for Ö gives 2 < ERae < 6 × 1012 V/cm.

According to Meek’s criterion [5], an avalanche
transforms into a streamer when the electric field of the
excessive charge near the avalanche head amounts to
10–100% of the external electric field E. In this case,
the excessive charge density can be estimated as

(6)

Consequently, for E = 20 kV/cm, we have 3 × 1010 <
nM < 3 × 1012 cm–3.

According to Toll’s criterion [4], an avalanche con-
verts to a streamer at an excessive charge in its head of

nRae

3 αZcr( )exp

4πR3
-----------------------------,=

ERae

q αZcr( )exp

R2
-----------------------------,=

nM
3 0.1–1( )E

4πqR
--------------------------.=
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about qexp(20) ≈ 108 q. Then, for the density and the
electric field, we have 2 × 1010 < nT < 2 × 1013 cm–3 and
103 < ET < 105 V/cm, respectively.

It follows from the above estimates that Raether’s
criterion is inapplicable to quantitatively developing
the theory because the range of the main physical
parameters is too wide, so that the limiting ERae and nRae

values exceed the intraatomic electric field and the elec-
tron density for single ionization of gas atoms, respec-
tively. These drawbacks of Raether’s criterion are
related to the facts that, on one hand, in Eq. (4) n ~ R–3,
which enlarges the range of estimates, and, on the other
hand, the Zcr values taken from [7] were determined by
analyzing the specific features of the longitudinal
streamer profile. In this respect, Meek’s and Toll’s cri-
teria seem to be more preferable; however, it should be
noted that, since these criteria are empirical, the above
estimates are no more reliable than the basic empirical
assumptions, each of which is self-contradictory. More-
over, in [20], avalanche head radii of R = 10–3 cm were
observed; therefore, the range of above estimates can
be wider.

(iv) Another inconsistency of and Meek’s and Toll’s
criteria is related to the fact that, in the observations of
multiavalanche processes, the avalanche axes are
equally spaced in the transverse direction by a distance
of 4R (or multiple of 4R) (Fig. 1a). In this case, the elec-
trostatic interaction between the neighboring ava-
lanches is only one order of magnitude weaker than
between an individual avalanche and the external field.
In view of this, it could be expected that the spatial
structure of a multiavalanche breakdown will be diver-
gent, which, however, is not the case.

(v) The above result that the avalanches in a multia-
valanche breakdown are equally spaced can be a conse-
quence of either the formation of an interference pat-
tern in the direction perpendicular to the external elec-
tric field or the incorrect interpretation of experimental
observations in those papers.

In the latter case, the probability that K avalanches
will be equally spaced in the transverse direction can be
estimated assuming the equal probability for them to
start from any point of the electrode surface in a uni-
form electric field. A quantity reciprocal to this proba-
bility will show the necessary number of experiments
that should be performed in order to observe the corre-
sponding equidistant avalanche distribution. A scheme
for recording electric breakdown waves in a cloud
chamber is shown in Fig. 3.

The total number of cells on the electrode surface
from which avalanches can start can be estimated as
m = (Re/R)2, where Re is the electrode radius. In Fig. 3,
the cells that give rise to equidistant avalanches are
shaded. The presence of two or more rows of such cells
is related to the depth resolution x at the object, which,
in turn, is related to the depth resolution x1 at the film.
If the lens produces a one-to-one image of the object on
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the film, then x = x1 = 4ηF/d, where η is the film grain
size and F/d is the quantity reciprocal to the lens aper-
ture ratio. Then, assuming that K avalanches start from
any of m cells on the electrode surface with equal prob-
abilities and considering the start from any of the l
shaded cells to be a favorable event, the probability of
observing the equidistant distribution is

(7)

Let η = 50 µm, F/d = 11, and K = 20 [8]. According
to [2], for electrodes with a Rogowsky profile, an ele-
vated uniformity of the electric field is achieved at the
radius equal to the interelectrode distance. Conse-
quently, we can set Re = 2 cm. Substituting these values
into formula (7), we have p = 10–31, which almost com-
pletely excludes the possibility of the formation of an
equidistant distribution of avalanches under the
assumption of the equal probability for them to start
from any cell on the electrode surface. This result
unambiguously decides a case in favor of the formation
of an interference pattern. This conclusion follows from
formula (7) even for x = 2Re , which corresponds to
technical limitations on the depth resolution. Then, for
the four avalanches shown in Fig. 1a, we have 1/p = 16;
however, under conditions of [8], 1/p = 220 ≈ 106 and the
equal probability approach is inapplicable.

3. PLASMA MODELS OF EGB

A detailed analysis of the plasma models of EGB, as
well as the models of electric breakdown in plasma, is
given in [21]. Generally, breakdown waves can be
described by using the electron distribution function,
which is calculated in one or another approximation,
depending on a particular problem. However, an analy-
sis of the basic assumptions underlying these models
allows one to distinguish between two main

p
l l 1–( ) l 2–( )… l K 1+–( )

m m 1–( ) m 2–( )… m K 1+–( )
----------------------------------------------------------------------------=

<
l
m
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  K
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Fig. 3. Scheme for recording electric breakdown waves in
a cloud chamber: (1) photographic film, (2) lens, and
(3) cathode.
approaches: an approach incorporating the effects of
superthermal electrons and that neglecting these
effects.

The former approach was used in [10, 11, 22]. The
inertial streamer propagation observed in [10] was
explained in [11] based on the assumption that, in a
streamer, there were superthermal electrons with ener-
gies several times higher than the gas ionization energy.
Moreover, the avalanche-to-streamer transition was
related to the threshold for the onset of these electrons.
The experimental results of [10] should be considered
as fundamental. At first glance, they seem to contradict
the principles of thermodynamics, according to which
a closed nonequilibrium system must monotonically
relax to an equilibrium state. However, the experiment
showed that, after the discharge voltage was switched
off, the streamer not only continued to propagate in the
same direction, but also flashed before terminating.

The authors of [11] treated the volume of the
streamer channel as a closed system; therefore, based
on qualitative energy considerations, they arrived at the
hypothesis of the presence of superthermal electrons.
At the same time, plasma theory [23] predicts the exist-
ence of two characteristic time scales, namely, the
relaxation times of the symmetric and asymmetric parts
of the distribution function. The latter time is on the
order of the reciprocal electron–neutral collision fre-
quency and, for the streamer plasma at pressures of
about atmospheric pressure, amounts to 0.1–1 ps,
whereas the duration of the inertial streamer propaga-
tion is about 10 ns. This means that the plasma can
“remember” the direction of the external electric field
for a time significantly shorter than the streamer propa-
gation time after the discharge voltage is switched off.
It follows from this that, even if there were a superther-
mal peak in the distribution function, the streamer
should come to a stop and emit all of the energy stored
in it in a time equal to the relaxation time of the sym-
metric part of the distribution function.

The other plasma model of EGB does not use the
hypothesis of superthermal electrons and suggests
that the avalanche goes over to a plasma state even
before the streamer arises [15, 16]. According to [15],
the plasma density attains ~1016 cm–3, the excess elec-
trons are expelled by the avalanche electric field
toward the avalanche boundary, and the further diffu-
sion expansion of the avalanche slows down because
of the transition to the ambipolar diffusion regime
[16]. A subsequent avalanche-to-streamer transition is
related to gas photoionization ahead of the breakdown
wave front [17], whereas the avalanche itself develops
due to thermal fluctuations of the background electron
density [18].

The main problems related to photoionization are
associated with the resonant absorption of the emission
from the EGB wave front by gas [3] and absolute
energy calibration. The first problem is related to the
fact that the mean free path of resonant photons ioniz-
PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003
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ing the gas must be significantly shorter than the ~1-cm
mean free path, experimentally found by Raether [2].
An attempt to resolve this contradiction by taking into
account the limited width of the absorption and emis-
sion lines [3] cannot be considered satisfactory
because, according the quantitative estimates of [3], the
plasma density at a distance of 1 cm from the EGB
wave front should be lower than the background level.
The second problem is that, under the assumption of
isotropic emission from the EBG wave front, the energy
density of the ionized particles in the radiation source
must be at least six orders of magnitude higher than that
in the surrounding gas.

The problem of energy calibration was overcome in
[19] by invoking the hypothesis of the laser mechanism
for the amplification of ionizing radiation in the EGB
wave and the corresponding decrease in the divergence
angle of this radiation. The problem of transportation of
ionizing radiation was resolved in [17, 18] by invoking
the hypothesis of atomic ionization via intermediate
excited states.

This model quite satisfactorily agrees with the
hypothesis of the photoionization mechanism for the
EGB wave propagation and the slowing-down of the
avalanche expansion at the final stage of the avalanche
development; however, it fails to eliminate other quali-
tative inconsistencies of the conventional model.

4. FOUNDATIONS 
OF THE PLASMA-WAVEGUIDE MODEL

The above list of the disadvantages of the conven-
tional model is far from complete. However, in order to
stimulate the development of a radically new model,
experiments are required that would clearly demon-
strate these disadvantages. Such an experiment is an
electric air breakdown induced by a long laser spark
[24]. The main qualitative characteristics of breakdown
waves recorded in this experiment disagree with the
conventional model. The main characteristics of this
type of breakdown are as follows:

(i) The primary breakdown wave is a doubled piston
with a characteristic size on the order of 1 cm.

(ii) The wave propagation direction is determined
by the shape (rather than polarity) of the electrodes. In
this case, the model of a “growing-through” electrode is
not applicable because the wave always propagates
from the tube to the needle, i.e., from the region with a
lower electrostatic field to the region with a higher field.

(iii) The wave propagation velocity is on the order of
the thermal velocity of air ions.

(iv) The primary wave starts after the electrode
sheath has formed, and the starting point lies apart from
the electrode at the distance on the order of the sheath
thickness and the length of the EGB wave itself.

(v) The measured frequency spectrum of the electro-
magnetic oscillations of the channel along which the
breakdown wave propagates consists of two lines in the
PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003
megahertz frequency range with a frequency ratio of
3 : 1; in this case, the frequency of the excitation circuit
is always three times higher than the frequency of the
excited oscillations.

(vi) As the breakdown wave propagates, its leading
part is damped and new waves are generated between
its trailing part and the electrode.

(vii) The breakdown wave transforms into a second-
ary wave with a diameter one order of magnitude
smaller than the diameter of the primary wave and a
propagation velocity higher than that of the primary
wave by one to two orders of magnitude.

(viii) Before the appearance of the secondary wave
between the primary wave and the electrode toward
which it propagates, a continuous glow channel with a
diameter much less than the primary wave diameter is
observed for a time significantly longer than the devel-
opment time of the secondary wave.

These and some other less important characteristics
can be understood and described only after incorporat-
ing into the model the concept of a “mode structure,”
which, in turn, is a consequence of the hypothesis that
the breakdown wave has a phase. The conventional
model does not permit such an incorporation. The rea-
sons are that, first, it does not imply the existence of a
wave phase in EGB and, second, even after being incor-
porated, this concept can hardly makes the model more
efficient because all the electromagnetic waves in a gas
have phase velocities of about c = 3 × 1010 cm/s
(accordingly, the interaction of these waves with a
medium is insignificant). In contrast, in plasma, there
are certain types of waves whose phase velocities are on
the order of the thermal velocities of the plasma com-
ponents and that can efficiently interact with the
medium.

In the absence of an external magnetic field, the lon-
gitudinal ion-acoustic and electron plasma waves are of
the highest importance for the EGB problem. Both of
these waves are described by similar equations and
have similar dispersion characteristics ω(k) (where ω is
the frequency and k is the wavenumber), shown in
Fig. 4 [25, 26]. For the ion-acoustic wave, Ω is the ion
Langmuir frequency and the derivative of ω(k) at the
coordinate origin is equal to the ion acoustic velocity.
For the electron wave, Ω is the electron Langmuir fre-
quency and the derivative at the coordinate origin is
equal to the speed of light. The dashed lines in Fig. 4
show the wave phase velocity and illustrate the graphi-
cal method for resolving the problem of determining
the plasma-waveguide characteristics. This problem
will be considered below. Figure 4 also graphically rep-
resent the avalanche-to-streamer transition.

When considering both of these types of waves, one
should take into account not only qualitative but also
quantitative similarity between them. Note that, from
the experimental standpoint, it is much simpler to
observe ion-acoustic waves than electron waves. Thus,
preliminary computer simulations can significantly
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reduce the cost of experiments. The presence of two
types of waves also makes it necessary to formulate the
principles of the plasma-waveguide model in a general
form.

5. PLASMA-WAVEGUIDE MODEL

(i) After applying voltage to the discharge gap, the
medium filling the gap becomes a plasma, in which
cylindrical regions with a high plasma density (plasma
waveguides) arise either under the action of an external
ionization source or due to the formation of an interfer-
ence pattern transverse to the external electric field.

(ii) Then, spatially inhomogeneous electrode
sheaths arise, in which broadband electromagnetic
oscillations are generated. For certain frequencies of
the generated oscillations, the charge carrier density in
the electrode sheaths increases to overcritical values,
and the plasma waveguide becomes a plasma cavity.

(iii) Two characteristic frequencies can be distin-
guished in the oscillation spectrum: the pumping fre-
quency and the carrier frequency. The pumping bal-
ances the dissipation loss in the plasma cavity and
ensures the supply of energy to the oscillations at the
carrier frequency, which are an energy source for the
traveling ionizing wave. The pumping frequency is
three times higher than the carrier frequency.

(iv) The traveling ionizing wave obeys the phase
matching condition; i.e., its phase velocity is close to
the thermal velocity of the charged plasma particles
(the velocity corresponding to the maximum of the par-
ticle velocity distribution function).

(v) In the course of the plasma cavity evolution
between the electrodes, the charge carrier temperature
and density in the axial region increase. As a result, the
oscillations at the pumping frequency undergo screen-
ing at the front of the ionizing wave and the pumping

Ωs 2⁄

Ωa 2⁄

ω

Avalanche-to-streamer
transition

k

Fig. 4. Dispersion characteristics of an avalanche and a
streamer and the avalanche-to-streamer transition (Ωs is the
streamer plasma frequency, and Ωa is the avalanche plasma
frequency).
frequency becomes the highest carrier frequency. In
this case, the third harmonic of this new carrier fre-
quency becomes the pumping frequency. This corre-
sponds to the avalanche-to-streamer transition.

6. EXPERIMENTAL FOUNDATIONS
OF THE PLASMA-WAVEGUIDE MODEL

The simplest way to verify the plasma-waveguide
model is to apply the longitudinal-wave concept [25,
26] to the experiment of [7], as was done in [27]. The
solution to the corresponding set of equations is shown
graphically in Fig. 4.

From Fig. 2, it can be seen that the distance from the
minimum in the longitudinal profile of the avalanche
glow to the avalanche front is 0.7 mm. Assuming that
this distance is equal to a quarter of the longitudinal
wavelength λ and the avalanche radius is R = 0.2 mm,
we can estimate the plasma-waveguide carrier fre-
quency ω, the plasma frequency Ω in the cylindrical
part of the waveguide, and the corresponding charge
carrier density n. Equating the avalanche propagation
velocity (which, according to [7], can be set at u =
107 cm/s) to the wave phase velocity in the plasma
waveguide and using the relations λ = u/ f and ω = 2πf,
we obtain f = 3.6 × 107 Hz and ω = 2.2 × 108 s–1. From
the dispersion relation for the longitudinal wave [25],
we find the plasma frequency Ω:

(8)

Under conditions u ! c and ω ! Ω , formula (8) is
simplified. The first of these inequalities is certainly
satisfied for an avalanche; the second inequality is also
satisfied, but with a smaller margin. Using the first ine-
quality, for the above values of u, R, and λ, taken from
[7], we obtain that in the avalanche Ωa = 8.2 × 108 s–1

(the subscript a stands for avalanche). The correspond-
ing charge carrier density is n = 2.3 × 108 cm–3.

This n value agrees qualitatively with an analysis of
the relaxation processes in plasma [28], which shows
that n ≈ 108 cm–3 is the threshold value above which
relaxation processes that are faster than diffusion come
into play. Estimates show that the avalanche mecha-
nism for the EGB development begins to operate near
this threshold, and the estimate for rD at room tempera-
ture gives R/rD ≈ 3.

Going over to the estimates of the streamer parame-
ters (marked with the subscript “s”), it is reasonable to
assume that the mode structure and the ratio between
the eigenfrequencies of the avalanche and streamer
modes remains the same as in a cylindrical plasma
waveguide [24], namely, Ωs/Ωa ≈ ωs/ωa = 3. Then, we
have ns = 9, na = 2 × 109 cm–3. More exact calculations
by formula (8) give ns = 1010 cm–3. The relation ωs/ωa = 3

Ω 2πu
λ
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4π2 R
λ
--- 

 
2

2πR
λ
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is confirmed by frame-to-frame streamer photos [22],
which show that waists in the streamer profile occur
every four nanoseconds. Without going into the waist
nature, but only separating the effects linear and qua-
dratic in the electric field, we can estimate the streamer
eigenfrequency. In the former case, it is equal to 2.5 ×
108 Hz, and in the latter case, to 1.25 × 108 Hz. Taking
into account that the tripled avalanche frequency deter-
mined above is 1.1 × 108 Hz, we can see that it fairly
well agrees with the data from [22].

Another estimate based on this relation allows us to
determine the streamer longitudinal wavelength.
Assuming that us/ua = 10 and λs = λa(us/ua)(ωa/ωs), we
have λs = 8 mm. Streamer photos [2, 7] show that the
streamer glow is nonuniform in the longitudinal direc-
tion, the distance between the nonuniformity and the
electrode being on the order of the above value. In the
literature, this nonuniformity on the streamer profile is
usually associated with the space coordinate where the
avalanche transforms into a streamer. However, esti-
mates of the of the medium and electric-field parame-
ters obtained by Raether’s criterion turn out to be unac-
ceptable under this assumption. Moreover, this assump-
tion disagrees with the results of [22], where a streamer
breakdown from the middle of the gap was observed.

To conclude the discussion of the characteristic fre-
quencies and times, we estimate the ion Langmuir fre-

quency Ωi = Ωe  (where m is the electron mass)
and the frequencies of the elastic electron–neutral and
ion–neutral collisions (νe and νi, respectively) for an
avalanche and a streamer. Based on the experimental
data from [7], we have for an avalanche ω = 2.2 ×
108 s−1, Ωe = 8.2 × 108 s–1, Ωi = 3.6 × 106 s–1, and νi =
7 × 109 s–1. For a streamer, the corresponding parame-
ters are ω = 6.6 × 108 s–1, Ωe = 5.6 × 109 s–1, νe = 1012–
1013 s–1, and νi = 7 × 109 s–1. When estimating νi, the
resonant transfer cross section (estimated at 10–14 cm2

[12]) was taken as a cross section for elastic collisions.
The electron temperature Te and the avalanche and

streamer electric fields can be estimated from the phase
matching condition, assuming that the EGB wave prop-
agation velocity is equal to the electron thermal veloc-
ity, which corresponds to the maximum of the electron
velocity distribution function. Experiments confirm
that this principle is also applicable to an ion plasma
waveguide. In [24], three EGB waves were recorded
that propagated with the velocities u1 = 3.2 × 104 cm/s,
u2 = 3.7 × 104 cm/s, and u3 = 2.4 × 105 cm/s. The first
and second waves resulted in breakdown, whereas the
third wave decayed and did not lead to breakdown. At
Ti = T0 = 0.025 eV, the thermal velocity corresponding
to the maximum of the Maxwellian distribution func-
tion of the heaviest molecular ions in air,

, (9)

m/M

V
2Ti

M
--------=
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amounts to V(O2) = 3.9 × 104 cm/s and V(N2) = 4.2 ×
104 cm/s for oxygen and nitrogen, respectively. Thus,
for the first and second waves, the phase-matching con-
dition was satisfied accurate to 20%, whereas the veloc-
ity of the third wave was six times higher than the ion
thermal velocity, which resulted in its damping. An
increase in the discharge voltage should lead to an
increase in the density of atomic ions in air and, conse-
quently, to a discrete distribution of breakdown delays
with respect to the long laser spark initiating the dis-
charge [24]. This phenomenon was earlier observed
experimentally in [29].

Using Eq. (9) and assuming that, for a streamer, u =
V = 108 cm/s, we have Te = 2.8 eV. For an avalanche, a
similar estimate for the electron temperature is Te ≈
2T0 = 0.05 eV. However, for an avalanche, the above
problem of the initial velocity u0 arises. In the conven-
tional model, it should be u0 = 0, whereas in the plasma-

waveguide model, we have u0 = V0 =  = 9.6 ×
106 cm/s. Since the inequality u0 < V0 holds in all the
experiments, we have to assume that there is a certain
threshold value of the external electric field for the ava-
lanche development; i.e., the dependence of the ava-
lanche drift velocity on the external field can be approx-
imated by u = u0 + β(E – E0)/N, where E0 is the thresh-
old external electric field. Proceeding to the estimates
of the electric fields in an avalanche and a streamer, we
should take into account that, according to the plasma-
waveguide model, there are two modes in each of these
breakdown waves, and, consequently, two types of
electric fields: the traveling wave field and the pumping
wave field. The electric field of the streamer traveling
wave is the upper limit for the avalanche pumping field.

According to [12], the increase in the electron tem-
perature in an avalanche traveling wave can be
expressed in terms of the electric field E:

(10)

Then, we have for E

(11)

where δ = 2m/M is the coefficient of energy transfer
from an electron to a gas molecule or atom with a mass
M, νe = Nσv  is the electron–atom collision frequency,
σ is the cross section for these collisions, and v  is the
electron thermal velocity.

Orienting to the experiment [7], carried out with
nitrogen at a pressure of 400 torr, and assuming that,

according to [30], σ = 8π  = 7 × 10–16 cm2 (where
a0 = 0.53 × 10–8 cm is the Bohr radius), we have from
formula (11) that, at u = 1.4 × 107 cm/s, the electric field
of the avalanche traveling wave is Ea = 4 V/cm. Taking
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into account that, for a streamer, the electron–neutral
collision rate is higher by one order of magnitude and
the electron temperature is higher by two orders of
magnitude than those for an avalanche, we obtain from
formula (11) that Es = 400 V/cm.

A qualitative comparison of the streamer electric
field with the external electric field shows that they dif-
fer by two orders of magnitude. This can be related to
the fact that taking into account inelastic collisions
increases the effective parameter δ in formula (11) by
more than two orders of magnitude [31]. On the other
hand, for most gases, the parameter σ and, accordingly,
νe are lower than in nitrogen. With allowance for these
circumstances, the obtained Ea and Es values seem to be
underestimated by one order of magnitude. The indirect
confirmation of this conclusion is that, in the plasma
frequency multipliers [32], the energy conversion effi-
ciency is typically on the order of 1%. Another confir-
mation is that the threshold fields for microwave break-
down under the nearly the same conditions with respect
to the characteristic frequencies and gas pressures lie in
the range 1–10 kV/cm [33].

Finally, we estimate the duration of the avalanche-
to-streamer transition. The conventional model does
not take into account the time behavior of the extra ion-
ization factor and, hence, is incapable of estimating this
duration. The plasma-waveguide model relates this
transition to the rearrangement of the plasma cavity
between the electrodes after introducing an intermedi-
ate plasma mirror in it. Accordingly, the duration of the
avalanche-to-streamer transition should be either
shorter or on the order of the streamer mode period (i.e.,
it should be in the range 1–10 ns). Of course, when ana-
lyzing the avalanche-to-streamer transition, it should be
taken into account that, in the course of the avalanche
development, the interelectrode cavity changes and,
just before the transition, avalanches [4] or “tail waves”
[24] are generated. The estimate of the characteristic
transition time depends on whether or not these effects
are incorporated in the model of avalanche-to-streamer
transition [20].

7. CONCLUSION

The proposed plasma-waveguide model of EGB
requires further development. First of all, a detailed
account for the damping of breakdown waves should be
made. However, since the model assumes that the trav-
eling wave is pumped by a source, a qualitative solution
to the damping problem can be found in the same way
as is done for laser systems. However, the experimental
data that are necessary to resolve this problem quantita-
tively are still lacking.

The final arguments in favor of or against the
plasma-waveguide model can be obtained only experi-
mentally. However, direct measurements of T, n, and E
in avalanche and streamer experiments are still difficult
to perform from the technical standpoint. Thus, the
required spatial and temporal resolutions can be pro-
vided only by laser diagnostics; however, for charge
carrier densities discussed above, the phase increment
of the diagnostic wave can be too small to obtain the
necessary data [34]. On the other hand, when measur-
ing the avalanche temperature by the relative broaden-
ing of luminescence lines [20, 31], the scanning of the
avalanche over a radius with a step on the order of
10−3 cm is required because of the presence of two spa-
tial modes in the cavity. This also imposes rigid require-
ments on the spatial resolution and stability of the ava-
lanche position in the transverse direction. Therefore,
further improvement of the EGB diagnostic techniques
is required.

Moreover, no demarcation line has yet been drawn
between the spark discharge, which incorporates an
avalanche and a streamer, and the arc, into which the
spark discharge transforms. This can cause a discrep-
ancy when treating the experimental data (see [31, 35]).
Finally, it is very important to obtain high-quality con-
verter-tube images that will allow one to eliminate the
above discrepancy concerning the change in the veloc-
ity of an avalanche before its transition to a streamer
and also to determine the characteristic time of the ava-
lanche-to-streamer transition.

ACKNOWLEDGMENTS

I am grateful to A.A. Rukhadze for uncompromising
and, thus, very helpful discussions.

REFERENCES
1. E. Flegler and H. Raether, Z. Tech. Phys., No. 16, 435

(1935).
2. G. Raether, Electron Avalanches and Breakdown in

Gases (Butterworths, London, 1964; Mir, Moscow,
1968).

3. É. D. Lozanskiœ and O. B. Firsov, Theory of Spark
(Atomizdat, Moscow, 1975).

4. H. Toll, Z. Naturforsch. 19, 346 (1964).
5. J. M. Meek and J. D. Craggs, Electrical Breakdown of

Gases (Clarendon, Oxford, 1953; Inostrannaya Liter-
atura, Moscow, 1960).

6. K. H. Wagner, Z. Phys. 180, 516 (1964).
7. K. R. Allen and K. Phillips, Proc. R. Soc. London, Ser. A

274, 19 (1963).
8. K. R. Allen and K. Phillips, Rev. Sci. Instrum. 30, 230

(1959).
9. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge

(Mosk. Fiz.-Tekh. Inst., Moscow, 1997).
10. N. S. Rudenko and V. I. Smetanin, Zh. Tekh. Fiz. 44,

2602 (1974).
11. N. S. Rudenko and V. I. Smetanin, Izv. Vyssh. Uchebn.

Zaved., Fiz. 7, 34 (1977).
12. V. E. Golant, A. P. Zhilinskiœ, and S. A. Sakharov, Prin-

ciples of Plasma Physics (Atomizdat, Moscow, 1977).
13. I. M. Imyanitov, Insruments and Methods for Studying

Atmospheric Electricity (GITTL, Moscow, 1957).
PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003



PLASMA-WAVEGUIDE MODEL OF ELECTRIC BREAKDOWN IN GAS 175
14. M. A. Uman, Lightning (McGraw-Hill, New York, 1969;
Mir, Moscow, 1972).

15. O. A. Omarov, M. B. Khachalov, and A. Z. Éfendiev, Fiz.
Plazmy 4, 338 (1978) [Sov. J. Plasma Phys. 4, 189
(1978)].

16. O. A. Omarov, A. A. Rukhadze, and G. A. Shneerson,
Zh. Tekh. Fiz. 49, 1997 (1979) [Sov. Phys. Tech. Phys.
24, 1125 (1979)].

17. A. P. Broœtman, O. A. Omarov, S. A. Reshetnyak, and
A. A. Rukhadze, Kratk. Soobshch. Fiz., No. 9, 27
(1984); Kratk. Soobshch. Fiz., No. 9, 41 (1984).

18. A. P. Broœtman, O. A. Omarov, S. A. Reshetnyak, and
A. A. Rukhadze, Kratk. Soobshch. Fiz., No. 6, 50
(1984).

19. A. P. Broœtman and O. A. Omarov, Pis’ma Zh. Tekh. Fiz.
7, 389 (1989).

20. O. A. Omarov and A. A. Rukhadze, Zh. Tekh. Fiz. 50,
536 (1980) [Sov. Phys. Tech. Phys. 25, 323 (1980)].

21. A. N. Lagar’kov and I. M. Rutkevich, Waves of Electric
Breakdown in Bounded Plasmas (Nauka, Moscow,
1989).

22. N. S. Rudenko and V. I. Smetanin, Zh. Éksp. Teor. Fiz.
61, 146 (1971) [Sov. Phys. JETP 34, 76 (1971)].

23. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov,
Kinetics of Nonequilibrium Low-Temperature Plasma
(Nauka, Moscow, 1982).

24. A. V. Shelobolin, Fiz. Plazmy 26, 346 (2000) [Plasma
Phys. Rep. 26, 320 (2000)].
PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003
25. A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Ru-
khadze, Principles of Plasma Electrodynamics
(Vysshaya Shkola, Moscow, 1978).

26. A. F. Aleksandrov and A. A. Rukhadze, Lectures on the
Electrodynamics of Plasmalike Media (Mosk. Gos.
Univ., Moscow, 1999).

27. A. V. Shelobolin, Kratk. Soobshch. Fiz., No. 8, 22
(2000).

28. D. W. Koopman and K. A. Saum, J. Appl. Phys. 44, 5328
(1973).

29. V. D. Zvorykin, F. A. Nikolaev, I. V. Kholin, et al., Fiz.
Plazmy 5, 1140 (1979) [Sov. J. Plasma Phys. 5, 638
(1979)].

30. H. S. W. Massey and E. H. S. Burhop, Electronic and
Ionic Impact Phenomena (Clarendon, Oxford, 1952;
Inostrannaya Literatura, Moscow, 1958).

31. S. I. Andreev and G. M. Novikova, Zh. Tekh. Fiz. 45,
1692 (1975) [Sov. Phys. Tech. Phys. 20, 1078 (1975)].

32. A. A. Brandt and Yu. V. Tikhomirov, Plasma Multipliers
of Frequency (Nauka, Moscow, 1974).

33. A. D. MacDonald, Microwave Breakdown in Gases
(Wiley, New York, 1966; Mir, Moscow, 1969).

34. N. G. Basov, Yu. A. Zakharenkov, A. A. Rupasov, et al.,
Diagnostics of Dense Plasmas (Nauka, Moscow, 1989).

35. L. A. Vaœnshtein, A. M. Leontovich, A. P. Malyakin, and
S. A. Mandel’shtamm, Zh. Éksp. Teor. Fiz. 24, 326
(1953).

Translated by N.N. Ustinovskiœ



  

Plasma Physics Reports, Vol. 29, No. 2, 2003, pp. 176–186. Translated from Fizika Plazmy, Vol. 29, No. 2, 2003, pp. 198–208.
Original Russian Text Copyright © 2003 by Akishev, Grushin, Karal’nik, Kochetov, Monich, Napartovich, Trushkin.

                                                  

LOW-TEMPERATURE
PLASMA

       
Evolution of the Radial Structure of a Negative Corona
during Its Transformation into a Glow Discharge

and a Spark
Yu. S. Akishev, M. E. Grushin, V. B. Karal’nik, I. V. Kochetov, A. E. Monich, 

A. P. Napartovicgh, and N. I. Trushkin
Troitsk Institute of Innovation and Fusion Research, State Scientific Center of the Russian Federation, 

Troitsk, Moscow oblast, 142190 Russia
Received June 18, 2002; in final form, September 25, 2002

Abstract—With the proper stabilization of a negative corona, it is possible to increase the threshold current at
which the corona discharge in the point–plane gap in air transforms into a spark. Then, in the current range cor-
responding to the transition region between the corona discharge and the spark, a new type of discharge arises—
an atmospheric-pressure diffuse glow discharge. The transformation of the negative corona into a glow dis-
charge and then into a spark is accompanied by the rearrangement of the discharge structure. The experiments
show that, as the corona current increases, the radial current profile at the anode shrinks and the glow diameter
near the anode increases. The radial profiles of the current and the corona glow during the transition to a glow
discharge are measured. The longitudinal structure of the corona is computed using a 1.5-dimensional model
that, unlike the other available models, includes gas ionization in the drift region of the corona. The experimen-
tal data are used to determine the effective cross section of the current channel at the anode. The radial glow
profile near the anode is calculated using the measured current profile and assuming that the field profile is par-
abolic. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Coronas at the points of conducting objects that are
at a high electric potential are observed both in nature
and in laboratory conditions. A diffuse corona can eas-
ily be produced experimentally between a needle and a
grounded plate. Coronas in the point–plane geometry
have been studied over more than hundred years [1].

A negative diffuse corona between a needle and a
plane in air is usually axisymmetric. Hence, we can
speak about its radial (transverse) and longitudinal
structure. In this case, the current channel of the corona
(i.e., the region with a negative charge) rapidly broad-
ens with distance away from the point; as a result, the
characteristic diameter of the corona turns out to be
close to its longitudinal size, which is equal to the inter-
electrode distance d.

Obviously, the transverse and longitudinal struc-
tures of the corona, which is a self-organizing structure,
evolve and influence each other as the current varies.
The influence of the transverse structure on the longitu-
dinal one can be illustrated by the following observa-
tions. For example, if the corona diameter is limited by
the wall of a dielectric tube of radius r ≤ d [2] or if the
corona is surrounded by other neighboring coronas
(located at distances of r ≤ d) [3], then the voltage
across the point–plane gap increases.

At the same time, in a free corona, significant
changes in its longitudinal structure, which occur
because the space charge in the gap increases with cur-
1063-780X/03/2902- $24.00 © 20176
rent, affect its radial structure only slightly. This unex-
pected property of the negative corona, i.e., the fact that
its transverse structure near the anode depends slightly
on the current, was discovered as early as at the end of
the 19th century. Thus in 1899, it was found by War-
burg [4] that, for a negative corona in air, the current
density at the anode falls monotonically from the center
and the experimental results are well approximated by
the expression

(1)

Here, j0 is the current density at the center of the anode
(this density increases in proportion to the corona cur-
rent I) and ϑ  is the angle that is counted from the sym-
metry axis of the corona and whose vertex resides on
the needle’s point:  = r/d, where r is the running
radius at the anode and d is the gap length.

In other words, the radial current-density profile far
from the needle (at the anode) depends neither on the
electric-field structure near the corona point nor on the
corona current and is only a function of the running
radius at the anode. The exponent n in Eq. (1) can be
different in different experiments, but it is usually
within the range n . 5 ± 0.5. Probably, the variations in
n are due to the fact that the function j(ϑ) depends
weakly on the shape of the needle’s point, which gener-
ates the electron flow.

j ϑ( ) . j0 ϑcos
n

j0 1 ϑtan
2

+( )
n/2–

.≡

ϑtan
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The radial current distributions at the anode, which
were obtained in many two-dimensional and simplified
analytical calculations (see [5–7] and the literature
cited therein) performed without an allowance for the
generation of electrons by ionization and detachment in
the drift region, are very similar to the Warburg profile.
Thus, the authors of [7] obtained the expression

(2)

whereas in [5], the following analytical formula is
given:

(3)

which generalizes the experimental data obtained by
the authors and is valid for small radii of the corona
point (rc < 1 mm).

With an accuracy acceptable for practical purposes,
all three of the above expressions give the same effec-
tive cross section of the current channel of a point
corona:

(4)

It is expected that the corona diameter will be inde-
pendent of the longitudinal structure only for discharge
currents below a certain level. Indeed, both the space
charge of the negative ions in the interelectrode gap and

the reduced electric field in the gap, E/N ~ 
(where N is the gas density), increase as the current I
increases. The reduced electric field, which governs the
processes of ionization and detachment, increases not
only with increasing current, but also with decreasing
gas density due to heating. As a result, the electrons
generated in these processes will make a progressively
larger (and, finally, a decisive) contribution to the total
current.

Since the current density in the corona decreases
away from the axis, the gas is heated most intensively
near the discharge axis; consequently, the value of E/N
is maximum there. For this reason, it is in the center of
the anode region where the conditions are first pro-
duced such that E/N reaches its critical value, starting
from which electrons are intensively generated in the
gap. As a result, the current density at the discharge axis
sharply increases.

This effect was first observed in 1992 by Goldman
et al. [8] in experiments with a negative corona in qui-
escent air. In that paper, it was shown that the current
density at the anode center begins to increase more rap-
idly than by a liner law, j0 ~ exp(I/I* – 1), if the corona
current I exceeds a certain critical value I* (in the
experiments of [8], the critical current was rather low:
I* . 130 µÄ). The authors of [8] explained the nonlin-
ear growth in j0 by a local increase in E/N due to gas
heating in the axial region near the anode.
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2

+( )
3/2–
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2
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It is reasonable to assume that the nonlinear growth
of the current density at the corona axis, observed in
[8], is due to the change of the transverse structure of
the discharge, which results in a decrease in the effec-
tive cross section of the corona channel at high currents.
However, the question as to the possible modification
of the radial profile j(ϑ) at currents I > I* was not dis-
cussed in [8]. We only may guess as to why this ques-
tion has practically not been raised in the literature till
now.

In a classical low-current corona, the gas ionization
in the drift region is of minor importance for the main-
tenance of the current. This circumstance is even con-
sidered to be one of the characteristic attributes of
corona. For this reason, there has long been settled an
opinion in the literature [9, 10] that an increase in the
local field near the anode to a level sufficient for per-
ceptible ionization should inevitably lead to the trans-
formation of the corona into a spark. In other words, the
limiting current at which a spark is formed only slightly
exceeds the critical current I*. Most likely, the fact that
the current range in which the spatial structure of the
corona is modified is rather narrow, on the one hand,
complicated the study of this phenomenon and, on the
other hand, was a reason why this problem did not
attracted practical interest.

At the same time, our experience [3] shows that,
with a proper discharge stabilization, the ionization in
the discharge gap does not guarantee a transition of the
corona to a spark. Among the stabilization methods, we
mention the use of ballast resistors with R > 1 MΩ ,
resistive electrodes, and air circulation through the dis-
charge. For example, the gas flow eliminates the above-
mentioned influence of the heating on the local increase
in the reduced electric field. As a result, it becomes pos-
sible to significantly improve the corona stability
against the onset of ionization instabilities and, thereby,
to increase the current at which a spark is formed in a
point–plane gap. It also becomes possible to sustain a
diffuse discharge at high electric fields in which gas
ionization in the drift region already plays a significant
role. This diffuse discharge is an atmospheric-pressure
glow discharge.

The transformation of a multipoint corona into a
glow discharge and the change in its longitudinal struc-
ture during this transformation were studied in detail in
[3]. The present paper reports on the first experimental
studies on the evolution of the transverse structure of a
corona on a single needle in air over a wide current
range, including the transformation of the corona into a
glow discharge and then into a spark. The evolution of
the radial current-density profile at the anode is investi-
gated. It is examined how the glow diameter near the
anode varies as the current increases. The measured
radial current profile is used to calculate the radial
structure of the corona glow during the transition to a
glow discharge. The electric field at the axis is calcu-
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Fig. 1. (a) Photograph of the working surface of an anode consisting of nine sections (the diameter of the outer section is 65 mm)
and (b) the electric circuit for measuring the current distribution over the anode sections in a steady-state corona.
lated in a 1.5-dimensional model with allowance for
gas ionization in the corona drift region.

Note that, in this paper, we studied the evolution of
the transverse structure of a negative corona only at a
large distance from the needle (i.e., directly at the
anode and near it). It is well known [1] that, in the near
region of a negative corona in air, the glow structure is
significantly modified at currents of .120 µA, corre-
sponding to the disappearance of regular current pulses
(Trichel pulses). At the same time, according to the lit-
erature data and our experimental results, the change in
the glow shape around the needle is not accompanied
by a significant change in the radial current profile at
the anode. That is why the most attention in our work is
concentrated on the studies of the spatial structure of
the corona far from the needle cathode.

2. MEASUREMENT OF THE RADIAL CURRENT 
PROFILE AT THE ANODE

In most of the available experimental papers, the
radial current distribution is measured with a movable
plane anode with a small hole, through which a wire
probe ~1 mm in diameter, insulated from the anode by
a thin-wall dielectric tube, is inserted. The end of the
wire probe is flush with the anode surface. The anode
with the probe is shifted in the transverse direction, and
the probe current is measured at each successive posi-
tion. In these experiments, the ratio between the areas
of the current-collecting probe surface and the effective
current-collecting anode surface is usually much less
than 100. In this case, the measured probe currents are
extremely low (especially at large distances from the
discharge axis), which presents certain experimental
difficulties and can cause significant measurement
errors.

We used this method only to measure the current
density j0 at the anode center. In these experiments, we
used a fixed plane anode 150 mm in diameter with a
small hole at the center. A wire ~2.5 mm in diameter
was inserted through a thin-wall dielectric tube. The
effective area of the current-collecting probe surface
was nearly 6.3 mm2. The end of the wire probe was
flush with the anode surface.

The radial current distribution j(r) was measured
with a plane sectioned large-diameter anode, which
was assembled from narrow metal rings. The concen-
tric rings were separated by even narrower gaps filled
with a dielectric (Fig. 1). In the experiments, we mea-
sured the current trough each ring, as well as the total
discharge current. The results of the measurements in
each experiment were checked for the coincidence of
the total discharge current with the sum of the currents
through the rings.

The j(r) profiles were measured in the steady-state
and dynamic regimes. In the former regime, the cur-
rents from the anode sections were measured by a
microammeter. In this regime, the radial current pro-
PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003
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files were measured for two types of a steady-state dis-
charge—the corona and the glow discharge. The
dynamic regime was primarily used to study the fast
process of the spark formation. In this regime, a voltage
step was applied to the corona and several oscilloscopes
simultaneously recorded the time behavior of the cur-
rent through the rings until the discharge transformed
into a spark. Thus, with a sectioned anode, all the infor-
mation necessary for reconstructing the j(r, t) distribu-
tion is gathered by applying a single voltage step. With
the commonly used method of a movable anode
described above, the j(r, t) distribution would be recon-
structed from the data obtained at different probe posi-
tions and, accordingly, by applying a large number of
voltage steps. In this case, an inevitable scatter in the
experimental data (which is caused, for instance, by the
backlash errors of the mechanism moving the anode, by
the scatter in the voltage step amplitudes, or by the drift
of the initial state of the corona) would present severe
problems for reconstructing the j(r, t) distribution and
would require fairly large time consumption.

3. MEASUREMENT OF THE RADIAL PROFILE 
OF THE CORONA GLOW

The current in the drift region of the corona can be
carried by both negative ions and electrons; however,
the emitting nitrogen and oxygen states are only excited
by electron impact. For this reason, the transverse struc-
ture of the glow provides information about the radial
distributions of the electron current and electric field in
the corona. At the same time, because of the small elec-
tron component of the current in the far region of the
corona, the glow intensity in the interelectrode gap (in
particular, near the anode) is weak. In this situation,
special measures should be undertaken in order to
diminish the intensity of the background light. The
radial glow profiles at different currents were measured
only in a steady-state corona.

To measure the radial glow profile in the far region,
we used an optical scheme with an FEU-144 photomul-
tiplier (Fig. 2). The corona was imaged on a 1 : 1 scale
onto the multiplier photocathode. In front of the cath-
ode, a slit with a width of 0.1 mm and height of 1 mm
was installed. The slit was oriented so that its long side
was parallel to the discharge axis. The slit could be dis-
placed in the radial direction with the help of a high-
precision mechanism.

At each successive slit position, two photomultiplier
signals were recorded—the dark-current signal (when a
large opaque screen was placed between the photomul-
tiplier and the corona) and the signal in the absence of
a screen. The valid signal was the difference between
these signals. The load (anode) resistance in the photo-
multiplier circuit was chosen such that its value guaran-
teed the liner photomultiplier regime at any amplitudes
of the recorded signals. The measured radial glow pro-
file was treated using the abelianization procedure.
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4. DESCRIPTION OF THE 1.5-DIMENSIONAL 
MODEL

The commonly used two-dimensional (2D) models
of the drift region of a corona [5] are fairly simplified
and do not include the charge kinetics with the partici-
pation of electrons. The applicability domain of these
models is limited to small currents at which the fields in
the drift region are low and, thus, ionization and elec-
tron detachment only slightly affect the corona charac-
teristics. Obviously, these simplified 2D models cannot
be used to calculate the evolution of the corona during
its transition to a glow discharge, in which ionization
plays a decisive role.

In view of what was mentioned above, we devel-
oped a 1.5-dimensional (1.5D) model [11], in which all
the corona parameters (the current density, space-
charge density, electric field, etc.) are constant in all of
the equipotential cross sections of the current channel
and only depend on the x coordinate, directed along the
symmetry axis of the discharge. In this case, the convex
equipotential surfaces inside the current channel are
substituted with planes that are perpendicular to the
x-axis and whose effective area S(x) is equal to the area
of the corresponding convex surface. The 2D structure
of the corona is taken into account by specifying the
function S(x) as an external parameter. The key problem
is how to chose the shape of the current channel; this
problem was discussed in detail in [3, 11].

In our case, the shape of the current channel is
assumed to be a combination of two cones. At a dis-
tance Xm from the needle’s point, the radius of the first
channel increases from the cathode radius RC to Rm. The
radius of the second cone smoothly increases from Rm

to RA at the anode. Such a shape of the current channel

+

–

D
ia

ph
ra

gm

Fig. 2. Optical scheme for measuring the radial distribution
of the corona glow and a photograph of a glow discharge in
a point–plane gap.

Photomultiplier



180 AKISHEV et al.
conforms with the discharge glow observed visually
during the transition of the corona to a glow discharge.
We note that, with this shape of the current channel, the
calculated charged-particle densities and their spatial
distributions near the cathode are closer to the results
obtained by means of the three-dimensional (3D)
model [12]. To model a corona with an interelectrode
distance of d = 10.5 mm, we chose the following
parameters of the corona channel: RC = 0.06 mm, RA =
11.6 mm, Xm = 0.1 mm, and Rm = 5.25 mm. With these
parameters, the calculated current–voltage characteris-
tic is closest to the measured one.

As was mentioned above, the particular details of
the spatial structure near the corona point only slightly
affect the structure of the negative corona in the far
region. This means that possible inaccuracy in specify-
ing S(x) in the near region should not significantly influ-
ence the calculated average parameters of the corona in
the far region.

The numerical model of a discharge in humid air is
based on the well-known continuity equations for elec-
trons and positive and negative ions; Poisson’s equa-
tion; and the equation for the simplest electric circuit
with parameters corresponding to the experiment:

(5)

(6)

(7)

(8)

where subscripts e, p, and n stand for electrons and pos-
itive and negative ions, respectively; ne , np, and nn are
the densities of electrons and positive and negative
ions; we , wp, and wn are their drift velocities; e is the
electron charge; ε0 is the permittivity of a vacuum; νi ,
νa, and νd are the ionization, attachment, and detach-
ment frequencies; βi is the ion–ion recombination coef-
ficient; and S(x) is the area of the discharge cross sec-
tion, which is assumed to be a known function of the
coordinate x. The presence of water vapor in air is taken
into account by introducing an additional attachment
frequency for three-body attachment to oxygen, where
a water molecule is the third body (more detailed infor-
mation on the kinetics of a cold plasma in atmospheric-
pressure air can be found in [11]).

The current I in the external circuit was calculated
from the equation
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where V is the voltage across the discharge gap, U0 is
the source voltage, and R is the ballast resistance
(16.5 MΩ).

The boundary conditions for the positive and nega-
tive ions are evident: their densities are zero on the
anode and cathode surfaces, respectively. For electrons,
the model includes only secondary ion emission. The
boundary conditions for electrons at the cathode (x = 0)
are formulated using the coefficient of the ion-induced
secondary electron emission γ:

(10)

where je = newe and jp = npwp.
The set of Eqs. (1)–(4) was solved by an implicit dif-

ference scheme with a nonuniform spatial step (the spa-
tial step was reduced approaching the cathode). A
detailed description of this scheme is presented in [13].
Calculations were performed for the following condi-
tions: P = 740 torr, T = 292 K, and a humidity of 30%.

5. RESULTS

5.1. Steady-State Regime

The results presented below were obtained in exper-
iments with a steady-state discharge stabilized by air
flow. In these experiments, we studied the evolution of
the radial structure during the transition from the
corona to a glow discharge as the current increased. The
experimental parameters were chosen so as to avoid the
spark regime.

Before presenting the results, we make an important
comment. As was mentioned above, the gas flow allows
us to substantially increase the current at which the
corona discharge transforms into a spark. At the same
time, the question arises as to how the gas flow affects
the radial structure of the discharge. Our experiments
show that, at flow velocities of up to several tens of
meters per second, the gas flow directed along the dis-
charge axis toward the anode surface stabilizes the
corona against the transition to a spark, but it does not
change its transverse structure. At higher velocities,
close to 100 m/s, the transverse structure of the dis-
charge is deformed by the flow. All of the results pre-
sented below were obtained at gas flow velocities no
higher than 35 m/s.

A general idea of how the corona diameter varies
with increasing current can be gained from data on the
dependence of the current density at the anode center
on the total current. According to expression (4), the
ratio I/j0 characterizes the effective cross section of the
corona discharge at the anode. Figure 3 shows the
dependence of the effective cross section of the current
channel at the anode on the total current for different
radii of the needle’s point and different interelectrode
distances.

The current range in which j0 is proportional to I and
the effective cross section of the discharge is indepen-

je 0 t,( ) γ j p 0 t,( ),=
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dent of the current corresponds to the true corona,
which obeys the Warburg law. The nonlinear increase in
j0 with increasing I means that the current channel
becomes narrower and the corona transforms into a
glow discharge. It is seen that the current range corre-
sponding to the corona discharge extends as the inter-
electrode distance increases or the radius of the nee-
dle’s point decreases. For rather sharp points (rc <
0.5 mm), the area of the current channel is close to that
predicted by the Warburg law: Seff . (2 ± 0.2)d2. For
larger point radii, the current-channel area is somewhat
smaller than 2d2; however, as d increases, the effective
area of the current channel becomes closer to the War-
burg area. In the experiments with large interelectrode
distances d = 40 and 50 mm, the regime in which j0

increases nonlinearly with I has not been achieved
because of the limited voltage of the source used (U ≤
60 kV).

The experiments with a sectioned anode allowed us
to reveal some nontrivial features of the transition from
the corona to a glow discharge. The behavior of the
average current density in different sections as the total
current is varied is of interest. Figure 4 shows how the
currents in the central and peripheral (sixth) sections
(i.e., the currents I1 and I6, which are proportional to the
average current densities j1 and j6) depend on the total
current I. In the true corona regime, the current densi-
ties in all of the anode sections increase linearly with
current. It is clearly seen that the transition to a glow
discharge first takes place in the central region of the
anode, where the departure from the linear dependence
occurs at a lower current as compared to the periphery.
It is also seen that the transition is accompanied by the
change in the current growth rates at the center and at
the periphery of the corona. The current density at the
center increases with current more rapidly than by a lin-
ear law (approximately, by an exponential law j0 ~
exp(I/I* – 1), as in [8] at currents I ≥ I*). In contrast, at
the periphery of the anode, the current density j grows
more slowly than by a linear law. This difference shows
that the transition to a glow discharge is accompanied
by a redistribution of the current over the anode in favor
of its central part.

A complete picture of the j(r) distribution was
obtained by processing the current histograms over all
the anode sections. First, we present the results for the
steady-state corona regime. An example of the current
histograms obtained for two discharge currents is
shown in Fig. 5. The histograms show the average cur-
rent densities in each anode section. From the measured
histograms, we reconstructed the radial current profile
j(r) at the anode. The reconstruction procedure was as
follows. For a known current at each ring, we con-

structed the dependence of IΣk on Rk, where IΣk = ,Ik1
k∑
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Ik is the current through the kth ring, and Rk is the outer
radius of the kth ring. On the other hand, we have

(11)

Hence, by specifying the class of function approximat-
ing j(r) or j(ϑ), we can reconstruct the current profiles
j(r) or j(ϑ). In our case, we approximated j(ϑ) by a sum
of two cosines in different powers and with different
specific amplitudes:

(12)
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Fig. 5. Distributions of the average current density over the anode sections in the (a) corona (I = 50 µA) and (b) glow-discharge (I =
690 µA) regimes for d = 20 mm. The histograms are normalized to the average current density at the central section.

r/d

j/j1
in which case n2 @ n1 and the proportion between A1
and A2 changes in favor of A2 as the current increases.
At low currents, the first term corresponds to the War-
burg distribution; the second term describes the peak-
ing of j(r) at the center at high currents. The parameters
entering into Eq. (12) were fitted using the condition
that the following sum calculated for all of the anode
sections be minimum:

(13)
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Fig. 6. Radial profiles of the normalized current density at
the anode at an air pressure of P = 745 torr, d = 20 mm, and
different total currents: I = (1) 50, (2) 150, (3) 300, (4) 450,
(5) 500, (6) 590, and (7) 690 µA.
rk is the inner ring radius, and jkExp is the measured aver-
age current density at the kth ring.

The results from the histogram processing are pre-
sented in Fig. 6, which shows how the radial profile of
the current density at the anode (normalized to the cur-
rent density at the discharge axis) varies with increasing
total current. It can be seen that, at low corona currents,
the radial profile is close to the Warburg distribution.
However, starting from a certain current I*, corre-
sponding to the transition of the corona to a glow dis-
charge, the current density falls more rapidly with dis-
tance away from the discharge axis. In other words, the
current channel shrinks; the greater the excess of the
discharge current over I*, the narrower the channel.

The evolution of the radial glow structure with
increasing current turned out to be rather surprising.
The measured radial profiles of the corona glow (this is
predominantly the emission of the second positive sys-
tem of nitrogen) at different currents are shown in
Fig. 7. When comparing the glow profiles with the cur-
rent ones, we can see that the effective glow diameter is
always smaller than the corona current diameter. In
addition, these diameters vary differently with current:
as the current increases at I > I*, the effective diameter
of the current channel decreases, whereas the glow
diameter increases; as a result, the glow diameter in the
glow-discharge regime becomes close to the current
diameter.

The radial glow profile near the anode was calcu-
lated numerically. The glow intensity was assumed to
be proportional to the product of the electron current
density by the electron-impact excitation coefficient for
the second positive system. The excitation coefficient
depends exponentially on the reduced electric field. In
this case, the radial glow profile is weakly sensitive to
the radial electric-current distribution and is primarily
determined by the radial electric-field profile. From this
reason, we assumed that the radial profile of the elec-
tron current density coincided with the measured radial
PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003
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Fig. 7. (a) Unsmoothed and (b) smoothed measured radial glow profiles for d = 10 mm and different discharge currents: I = (1) 100,
(2) 150, (3) 290, and (4) 320 µA.
profile of the total current density. The radial profile of
the electric field was varied. The best fit to the experi-
ment was obtained with the use of a parabolic (or
cosine) approximation (see [5–7]):

E(r) = E(0)[1 – 0.5(r/d)2] or E(ϑ) . E(0)cosϑ . (14)

The axial field E(0) near the anode was calculated
by the 1.5D model. An analysis of the results of the
1.5D calculations show that the axial field near the
anode is described (with an accuracy no worse than
10%) by the simple expression E(0) . U/d. Figure 8
compares the calculated radial glow profile with the
measured one. A fair agreement between the calculated
and measured profiles (which is primarily due to the
correct calculation of the field on the axis) shows that
the 1.5D model adequately describes the transition
from the corona to a glow discharge in the point–plane
geometry.

5.2. Dynamic Regime

The evolution of the transverse structure of the dis-
charge until it transformed into a spark was studied in
the dynamic regime of the current measurements at the
anode sections. These experiments were performed
without a gas flow stabilizing the corona. In this case,
depending on the initial discharge voltage and the
amplitude of the applied voltage step, we observed one
of the two transitions: corona  corona or corona 
glow discharge  spark. The transition to a steady-
state glow discharge (i.e., the corona  glow dis-
charge transition) was difficult to achieve, because a
glow discharge in the absence of a gas flow was unsta-
ble and rapidly transformed into a spark.

Figure 9 shows a representative set of the current
oscillograms from different anode sections. The oscil-
lograms demonstrate the current behavior in different
regions of the anode during the transitions corona 
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corona and corona  glow discharge  spark.
A great number of such oscillograms obtained under
different conditions were used to construct the current
histograms over the anode sections and then to recon-
struct the time evolution of the radial profile, j(r, t), dur-
ing the transition corona  glow discharge  spark.

At a small amplitude ∆U of the applied voltage step,
the corona arrives at a new steady state that also corre-
sponds to a corona discharge. Indeed, for the true
corona, the current I (or the current density j at every
point at the anode) is a parabolic function of the voltage
U [1]: I (or j) ~ U(U – U0), where U0 is the corona igni-
tion voltage (under the conditions of Fig. 9, we have
U0 . 4.7 kV). In this case, we can estimate the relative
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Fig. 8. Radial profiles of (1) the corona current and the
(2) calculated and (3) measured corona glow in the far
region at an air pressure of P = 745 torr, I = 320 µA, and
d = 10 mm.
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increase in the initial corona current ∆I/I (or ∆j/j) after
applying the voltage step ∆U:

(15)

The processing of the oscillograms corresponding a
steady-state discharge after applying a small-amplitude
voltage step showed that the measured ratio ∆I/I for
each section satisfied relationship (15). At the same
time, at ∆U values at which a spark is produced, the
measured ratio ∆I/I exceeds ratio (15); the higher the
amplitude of the voltage step, the greater the measured
ratio. This fact indicates that, at large ∆U values, the
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Fig. 9. Oscillograms demonstrating the time evolution of
the current at the (a) central, (b) fourth, and (c) eighth
anode sections during the transition corona  glow dis-
charge  spark at an air pressure of P = 745 torr, d =
15 mm, I = 200 µA, and U = 23.6 kV for different values of
the inducing voltage step: ∆U = (1) 4.3, (2) 6.8, and
(3) 8.3 kV. The time scale is 100 µs/division for all the
oscillograms; the current scale is (a) 11.2, (b) 22.4, and
(c) 5.6 µA/division. The current spikes occurring immedi-
ately after applying the voltage step ∆U are associated with
the transient processes in the measuring circuits and have no
physical meaning.
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corona transforms into an unstable glow discharge,
which then transforms into a spark.

We note (see Fig. 9) that this induced transition of
the corona to a new steady (or quasi-steady) state
occurs at different times in the axial and peripheral
regions. Thus, under the conditions of Fig. 9, the new
state in the axial region is reached in nearly 20 µs,
which is close to the ion drift time through the inter-
electrode gap. At the periphery, the relaxation to a new
state lasts no less than 200 µs. Therefore, the radial
structure of the corona reaches its steady state in a
period of time that is at least one order of magnitude
longer than the ion drift time through the interelectrode
gap.

In different anode regions, the time evolution of the
unstable quasi-steady state corresponding to a glow dis-
charge is also characterized by different times and has
different consequences. The instability of an atmo-
spheric-pressure glow discharge is explained by the fact
that, under typical conditions required to maintain this
discharge, the quasi-steady current–voltage character-
istic of the anode sheath turns out to be falling; i.e., the
anode sheath has a negative differential resistance and,
consequently, is unstable against shrinking into a cur-
rent spot with a high current density [3, 14]. Instability
develops more slowly at the periphery. Up to the time
when a current spike arises at the central section
because of the spark generation on the discharge axis,
the current at the periphery changes only slightly. The
nearer the section to the discharge axis, the more pro-
nounced the current growth. However, after the spark is
formed at the central section, the current at the other
sections falls off to zero, no matter how much ampli-
tude it gained by this time. Hence, the spark terminates
the discharge at all of the sections by intercepting the
current from the entire anode surface, which indicates
the shorting of the spark current through a small anode
spot.

We can distinguish two stages in the transition of the
glow discharge to a spark: the slow development of the
glow-discharge instability, lasting several hundreds of
microseconds, and the fast spark formation, lasting sev-
eral tens of microseconds. These times are characteris-
tic of corona gaps several centimeters in length. These
times can decrease with increasing ∆U, but always
remain close in order of magnitude to the above men-
tioned values. Note that the centimeter transverse size
of a corona in combination with the characteristic
growth time of the glow-discharge instability (approxi-
mately several hundreds of microseconds) gives a
velocity on the order of several tens of meters per sec-
ond. It is precisely these values of the flow velocity that
ensure the stabilization of a glow discharge [3, 14].

In the dynamic regime, we observed a stronger
shrinking of the current channel in comparison with a
steady-state corona. In this case, the current flowing
through the central section can exceed the total current
flowing through all the other sections. For this reason,
PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003
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Fig. 10. Radial profiles of the normalized current density at the anode during the induced transition corona  glow discharge 
spark at an air pressure of P = 745 torr for (a) d = 10 mm, U = 16 kV, I = 225 µA, and ∆U = 6 kV (1) in the initial state and (2) 50,
(3) 150, (4) 180, and (5) 190 µs after the voltage step is applied and for (b) d = 15 mm, U = 27 kV, I = 250 µA, and ∆U = 7 kV (1)
in the initial state and (2) 40, (3) 120, (4) 150, and (5) 160 µs after the voltage step is applied.
the current histograms of the dynamic regime were pro-
cessed by a procedure different than that used for the
steady-state regime. The current-density distribution at
the central section was approximated separately from
the other sections by the formula: j(ϑ)/j0 = cosnϑ . For

the other sections, we assumed that j(ϑ)/j0 = ,
where n1 and a were chosen such that the current-den-
sity distribution was joined to the distribution in the
central section. The fitted normalized radial current
profiles are presented in Fig. 10. The point of inflection,
where the distribution in the central section is jointed to
that in the other sections, is only a mathematical (rather
than physical) effect. It is clearly seen that, when a volt-
age step is applied, the current channel shrinks, which
corresponds to the transition corona  glow dis-
charge  spark. Since the diameter of the spark chan-
nel is smaller than that of the central section, it is hardly
possible to extract information about the radial current
profile in the spark from these experiments.

6. CONCLUSIONS

(i) In point–plane geometry, the radial current pro-
file at the anode is observed to be independent of the
total current (the Warburg profile) only in the true
corona regime. As the current increases, the corona
transforms into a glow discharge. During this transi-
tion, the diameter of the current channel decreases.

(ii) The transition from the corona to a glow dis-
charge is accompanied by an increase in the glow
intensity in the discharge gap, first of all, in the far
region (i.e., near the anode). At all currents, the radial
glow profile is narrower than the current profile; how-
ever, as the current increases, the glow profile broadens
and its diameter becomes closer to the current-channel
diameter.

(iii) In the absence of gas circulation, the glow dis-
charge is unstable and transforms into a spark. The

a ϑcos
n1
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characteristic times of the processes occurring in the
unstable anode region of a glow discharge are different
at different distances from the discharge axis. Instabil-
ity develops most rapidly at the center of the anode,
where a spark is then formed.

(iv) When the voltage across the gap is rapidly
changed, the relaxation times of the corona to a new
state are different in the center and at the periphery. The
radial profile of the corona relaxes to a steady state over
a period of time significantly exceeding the ion drift
time across the discharge gap.

(v) The observed sequential transition of the corona
to a spark through a glow discharge is rather universal
and takes place also under ordinary experimental con-
ditions when the applied voltage increases slowly.
Therefore, the elaboration of practical recommenda-
tions concerning the corona stabilization against its
transformation into a spark is impossible without con-
sidering the intermediate stage, i.e., the glow discharge.
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Abstract—In the most advanced tokamak experiments, the H-mode discharges are characterized by an energy
confinement time that is higher than in the L-mode by a factor of 1.5–2. For this reason, the H-mode is usually
chosen as one of the basic regimes of a tokamak reactor and the presence of internal transport barriers is some-
times assumed as an additional condition. Most present-day tokamaks, which provide the main experimental
information, have aspect ratios of 2.6–3.5. In this paper, attention is given to the fact that the enhancement factor
(the ratio between the energy confinement times in the H- and L-modes) decreases as the tokamak aspect ratio
increases. At aspect ratios ≥5, the confinement times in the L- and H-modes become equal. This result follows
from a comparison of the H- and L-mode confinement scalings and is confirmed by experiments in the T-10
tokamak, which has an aspect ratio of 5, and by the results from the international confinement databases. The
dependence of the enhancement factor on the aspect ratio can be important for designing steady-state fusion
reactors, which are usually characterized by a rather high aspect ratio of 4–8. The possibility of using L-mode
discharges with the same confinement time as in the H-mode, but with a lower peripheral temperature and in
the absence of edge localized modes (ELMs), can substantially facilitate the operation of the divertor—one of
the most stressed construction element of the tokamak reactor. In addition, the L-mode regime does not require
overcoming the power threshold for the L–H transition; this circumstance is favorable for extending the range
of the working parameters and heating scenarios. The absence of the accumulation of impurities and helium in
L-mode discharges may also be important. All of these factors allow one to consider the L-mode as a possible
operating regime for high-aspect-ratio tokamak reactors. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Most projects of the steady-state fusion reactors
with superconducting toroidal magnetic coils are based
on devices with aspect ratios as high as A = R/a ~ 4–5
[1–5] (in some projects, the aspect ratio is assumed to
be even higher [6, 7]). This is dictated by the necessity
of mounting a rather thick neutron protection and blan-
ket components inside the toroidal coils and also by the
desire to increase the bootstrap current, whose fraction
at a fixed value of βT (close to the limiting value)
increases with aspect ratio. 

Regimes with improved (as compared to the
L-mode) plasma confinement, similar to that obtained
in the largest present-day devices [8]) are usually con-
sidered to be basic for tokamak reactors. Most of the
large tokamaks (such as JET, DIII-D, JT-60U, ASDEX-U,
and TORE-SUPRA), which provide the main experi-
mental information, have aspect ratios of 2.6–3.5.
Hence, in order to well justify the concepts of steady-
state tokamak reactors, it is necessary to obtain an addi-
tional experimental confirmation of the possibility of
achieving improved confinement regimes at a high
aspect ratio and to carry out a more detailed study of
their properties.

There are few experiments in tokamaks with an
increased aspect ratio. Among those are experiments
carried out with a reduced minor radius of the plasma
1063-780X/03/2902- $24.00 © 20097
column. One of the devices with the constructive high
aspect ratio is the T-10 tokamak (the major radius is
R = 1.5 m, and the minor radius is a ≈ 0.3 m). For this
reason, the T-10 experiments are important for studying
different operating conditions in high-aspect-ratio toka-
maks.

The aim of this paper is to compare plasma confine-
ment in the L- and H-modes and to discuss the pros-
pects for using these operating regimes at aspect ratios
higher than 4. In the second section, we analyze the
results obtained in T-10 and compare them with the
results obtained in other tokamaks with moderate
aspect ratios (A ~ 3). In the third section, the predictions
of confinement scalings for the L- and H-modes in
high-aspect-ratio tokamaks are compared. In the fourth
section, the energy confinement in the L- and H-modes
at different aspect ratios is compared using the interna-
tional tokamak databases. The main findings of the
paper are presented in the conclusion.

2. ENERGY CONFINEMENT
IN THE L- AND H-MODES IN THE T-10 

TOKAMAK

Several years ago, improved confinement regimes
with the characteristic features of the H-mode were
obtained during ECR plasma heating in the T-10 toka-
mak [9, 10]. In these regimes, after switching on the
003 MAIK “Nauka/Interperiodica”
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auxiliary heating, a sudden decrease in the intensity of
the hydrogen Dα spectral line was observed. This
decrease was accompanied by an increase in the plasma
density and energy. However, a similar increase in the
plasma energy with increasing plasma density was also
observed previously in L-mode discharges, in which
the plasma density was increased by additional gas
puffing. The energy confinement times in the L- and
H-modes turned out to be close to each other at the
same plasma densities [9]. Hence, there was no reason
to tell about the improvement of the confinement in the
H-mode in comparison with the L-mode at the same
plasma density. The H-mode was really compared with
the initial low-density L-mode stage, and it is this low-
density stage with respect to which the improvement of
confinement was found [9].

The characteristic features of the plasma confine-
ment in the L- and H-modes in the T-10 tokamak are
shown in Figs. 1 and 2. Figure 1 compares the experi-
mental energy confinement time for both the L- and
H-modes of the T-10 tokamak with the predictions of
the L-mode scaling [11]. A comparison with the com-
monly used ITER-89P [12] and ITERL-96P [13] scal-
ings gives similar results. For an analysis, we used 25
L-mode discharges of T-10 from the international
L-mode database [13], four discharges from the inter-
national H-mode database [14], and H-mode discharges
occurring after the injection of a deuterium pellet [15].
In Figs. 1–4 closed squares correspond to T-10 L-mode

0 0.02 0.04 0.06 0.08

0.02

0.04

0.06

0.08
HL = 1.3 HL = 1.0

Fig. 1. Comparison of the experimental energy confinement
time for different T-10 discharges with L-mode scaling (2)
[11]: closed squares correspond to L-mode discharges from
the L-mode database, triangles correspond to H-mode dis-
charges from the H-mode database, and open circles corre-
spond to H-mode discharges after the deuterium pellet
injection.

τE
exp

, s

τE
L-2001

, s
discharges, triangles correspond to T-10 H-mode dis-
charges from the international H-mode database, and
open circles correspond to T-10 H-mode discharges
with the injection of a deuterium pellet.

It can be seen in the figure that, in spite of scatter in
the data, both the L- and H-mode points lie about the
same straight line, which corresponds to the L-mode
scaling. This figure demonstrates that there is no
improvement of the confinement in T-10 H-mode dis-
charges with respect to L-mode discharges.

Fig. 2 (which, at first glance, is very similar to
Fig. 1) presents an even more surprising result. In
Fig. 2, the same T-10 experimental points are compared
with the H-mode scaling [16]. It is interesting that all of
the points that satisfactorily agree with the L-mode
scaling agree with the H-mode scaling as well. It turns
out that, for T-10, not only the H-mode points agree
with the improved-confinement scaling, but also the
L-mode points are described well by this scaling. There
are individual L-mode points for which the experimen-
tal energy confinement time exceeds the prediction of
the H-mode scaling, although the excess is within
experimental scatter. This is rather unexpected, because
it is implied that the H-mode scaling for most of the
tokamaks should give a confinement time that is higher
than that predicted by the L-mode scaling by a factor of
1.5–2.

There is a question as to whether this result is a spe-
cific feature of the T-10 tokamak only or if it is also typ-

0 0.02 0.04 0.06 0.08

0.02

0.04

0.06

0.08
HH = 1.3

HH = 1.0

Fig. 2. Comparison of the experimental energy confinement
time for different T-10 discharges with H-mode scaling (1)
[16]: closed squares correspond to L-mode discharges from
the L-mode database, triangles correspond to H-mode dis-
charges from the H-mode database, and open circles corre-
spond to H-mode discharges after the deuterium pellet
injection.
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ical of other tokamaks. Indeed, it was stated in [17, 18]
that the dependences of certain discharge parameters in
T-10 differ from the dependences obtained in other
tokamaks. In particular, the dependence of the energy
confinement time τE on the average plasma density is
stronger than for most of other devices and is close to
linear, and the dependence of τE on the discharge cur-
rent is very weak, whereas this dependence is almost
linear for other tokamaks.

However, the fact that all of the points under exam-
ination for different T-10 regimes agree well with the
scaling predictions shows that, possibly, the difference
between these dependences in T-10 and the depen-
dences given by the scalings is not as significant as has
been stated in previous T-10 papers. An analysis of the
parametric dependences for the set of discharges under
consideration shows that, in this case, the T-10 results
do not contradict the results from other tokamaks.

Figures 3 and 4 show the dependences of the exper-
imental energy confinement time on the plasma density
and discharge current for the set of T-10 discharges
under consideration. To separate out the dependences
on the individual parameters, the energy confinement
time was normalized to the dependences on the other
parameters adopted in scalings. To present both the L-
and H-mode data on the same plot, they were normal-
ized using the average exponents for the L- and
H-mode scalings, taking into account that the corre-
sponding exponents differ only slightly in these scal-
ings.

20 4 6 8 10

1

2

3

4
τe/(I0.9B0.16P–0.72R1.97ε0.4), arb. units

ne, 1019 m–3

~n0.4
e

Fig. 3. Normalized experimental energy confinement time
in T-10 L- and H-mode discharges as a function of the line-
averaged plasma density.
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It can be seen in Fig. 3 that the dependence on the
plasma density, separated out from other dependences
by the normalization, does not contradict the scaling
τE ~ n0.4 within experimental scatter. Apparently, the
previous conclusion about a stronger dependence can
be related to both the narrow density range ((1.5–3.5) ×
1019 m–3) in the early T-10 experiments [17] and the
influence of variations in the other parameters (current,
toroidal field, etc.) [18]. The dependence on the current
might be confused with the dependence on the density
because high densities are usually achieved at high cur-
rents. We note that, in some of the previous T-10 papers,
the deviation from the linear dependence of the con-
finement time on the density was reported [17].

The dependence of the normalized confinement
time on the discharge current (see Fig. 4) for the set of
T-10 discharges under consideration also does not con-
tradict the scalings and is close to linear. Hence, we can
see that the set of T-10 experimental data under consid-
eration does not contradict the scalings and, conse-
quently, agrees with the results obtained in other toka-
maks.

Therefore, two questions still remain unanswered.
First, what are the specific features of the T-10 experi-
ments that ensure the coincidence of the experimental
confinement times in the L- and H-modes? And second,
why the plasma confinement in T-10 is equally well
described by both the L- and H-mode scalings (or, in
other words, why these scalings do not show any differ-
ence in confinement under the T-10 conditions)?

0.8

0.2 0.4 0.60

0.2

0.4

0.6

τe/(ne
0.42B0.16P–0.72R1.97ε0.4), arb. units

Ip, MA

~I0.9
p

Fig. 4. Normalized experimental energy confinement time
in T-10 L- and H-mode discharges as a function of the dis-
charge current.
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An analysis presented in the subsequent sections
shows that a characteristic T-10 feature responsible for
the above coincidence is the high aspect ratio, R/a = 5.
We note that the results achieved at high aspect ratios in
other tokamaks agree well with the T-10 results.

3. ASPECT-RATIO DEPENDENCE
IN THE ENERGY CONFINEMENT SCALINGS

Extensive experimental databases from various
tokamaks have been assembled for the ITER project.
The empirical similarity laws (scalings) were devel-
oped based on thoroughly selected results from these
databases. These scalings provide a brief description of
the accumulated data and predict the plasma parame-
ters in future devices. Let us analyze the difference in
the aspect-ratio dependences of the confinement time in
the H- and L-modes by comparing the corresponding
scalings.

The energy confinement time in H-mode discharges
is usually described by the ITERH-98P(y, 2) scaling
[16], which is accepted as a reference scaling for the
ITER design [14]:

(1)

To describe the L-mode confinement, we will use a
scaling proposed in [11]:

(2)

In scalings (1) and (2), the following notation is used:
τE [s] is the thermal energy confinement time, I [MA] is

τE
H 98 y 2,( )

=  0.0562I
0.93
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n
0.41
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1.97ε0.58

k
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0.19

.

τE
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Fig. 5. Cross section of the plasma column in a tokamak.
the plasma current, BT [T] is the toroidal magnetic field,
n [1019 m–3] is the line-averaged electron density,
P [MW] is the heating power, R [m] is the major radius
of the torus, ε = a/R is the inverse aspect ratio, k =
V/(2π2Ra2) is the elongation of the plasma column
(defined through the plasma volume V), and M [amu] is
the effective ion mass.

For comparison with H-mode scaling (1), L-mode
scaling (2) seems to be more convenient than the com-
monly used scalings of [12, 13], because a different
definition of the elongation, k = b/a, is used in the latter
scalings than in H-mode scaling (1). Note that the
aspect ratio dependence in the scaling of [13] is the
same as for scaling (2) (i.e., the energy confinement
time is proportional to ~ε0.3), whereas in the scaling of
[12], this dependence is given as ~ε–0.06, which differs
even more strongly from the corresponding depen-
dence in H-mode scaling (1). Consequently, a compar-
ison of H-mode scaling (1) with the L-mode scalings of
[12, 13] would give a similar result as the comparison
with scaling (2) presented below.

Most of the exponents in scalings (1) and (2) differ
slightly from each other, whereas there is a marked dif-
ference in the exponent of the inverse aspect ratio ε,
which is clearly seen in the ratio between scalings (1)
and (2):

(3)

This ratio shows the dependence of the enhancement
factor of the H-mode over the L-mode on the discharge
parameters. It can be seen from this expression that the
exponents of most of the parameters are low, except for
the exponent of the inverse aspect ratio ε. Taking into
account a possible uncertainty in the exponent values
(≤ ±0.1 [13, 19]), we see that only the exponent of ε
exceeds this uncertainty range and the exponent of the
plasma current lies near the boundary of this range. The
elongation k with its exponent of –0.08 contributes
insignificantly to expression (3) because k differs only
slightly from unity. Hence, the energy confinement
time in the H-mode can be expressed through the con-
finement time in the L-mode by the simplified formula

(4)

This relatively simple formula shows that the differ-
ence in the confinement times in the H- and L-modes is
primarily determined by the dependence on the aspect
ratio and, to a lesser extent, by the dependence on the
plasma current.

For T-10 with ε = 0.2 and a current of Ip ≈ 0.2 MA,
we obtain

(5)

Thus, the fact that the confinement times in the L- and
H-modes in the T-10 experiments are close to each

τE
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PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003



DEPENDENCE OF THE ENERGY CONFINEMENT 101
1

0.2
0

2

3

0.3 0.40.1

(b)

(‡)

ε = a/R

1

0

2

3

ASDEX
AUG
CMOD 
DIII-D
JET
JFT-2M
JT-60U
PBX-M
PDX
T-10

431
102
37

270
246
59
9

59
97
4

Fig. 6. Enhancement factors of the experimental energy confinement time over the predictions of the (a) H- and (b) L-mode scalings
as functions of the inverse aspect ratio (results from the international H-mode database). Numbers in the right column show the
number of discharges from each tokamak in the set of data under consideration.
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other (Figs. 1, 2) is consistent with scalings deduced by
analyzing data from various tokamaks. The above coin-
cidence of the confinement times in T-10 can be
explained by the specific parameters of this device (in
particular, by the high aspect ratio and the low current)
and does not contradict the results from other devices.

We note that the formal application of expression
(4) at high aspect ratios (>5) even shows an excess in
the confinement time for the L-mode over the H-mode.
This may be explained by the extrapolation beyond the
range of the experimental conditions that were used
when developing the above scalings. This points to the
necessity of refining the scalings at high aspect ratios.
To do this, additional experiments should be carried
out.
PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003
Let us consider the local value of ε = r/R instead of
the ε value characterizing the plasma column as a
whole. In this case, for an individual tokamak with a
constant R, the increase in the enhancement factor due
to the increase in ε is a consequence of the fact that the
energy confinement time in the H-mode increases more
rapidly toward the plasma edge as compared to the
L-mode. This circumstance can be illustrated by the
following considerations. If one calculates the energy
confinement time for the core plasma with ε < 0.2 (the
shaded region in Fig. 5) by using the L- and H-mode
scalings, these times will be close to each other. As the
calculation region is extended toward the plasma
boundary, the H-mode confinement time will exceed
the L-mode confinement time, because both ε and the
current increase when the outer regions are added. This
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excess will be maximum at the plasma boundary, where
ε is maximum.

Hence, the scaling analysis indicates that the
H-mode in most of the tokamak experiments is prima-
rily formed due to the improvement of confinement at
the plasma periphery, rather than in the plasma column
as a whole, as is sometimes stated.

On the other hand, from the standpoint of the con-
struction of larger devices and tokamak reactors, it is
important that the effects discussed above are associ-
ated with the more rapid improvement of the confine-
ment in the L-mode than in the H-mode when the major
radius is increased at a fixed minor radius. Ultimately,
this leads to a situation in which the confinement in the
L-mode becomes as good as in the H-mode. For this
reason, the possibility of using L-mode discharges with
the same confinement time as in the H-mode, but with
a lower temperature at the plasma periphery, with a
smaller accumulation of impurities and helium, without
a need to overcome the power threshold for the L–H
transition, and in the absence of ELMs seems to be very
attractive when designing future tokamak reactors.

The conclusion that the L-mode confinement
approaches the H-mode confinement as the aspect ratio
increases has been made by comparing the scalings that
generalize and average the experimental data from
many tokamaks. However, it is also interesting to
examine the whole set of experimental points in order
to determine what amount of the points support this
PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003
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dependence and to find out whether these results can be
reliably distinguished against experimental scatter.

4. ASPECT-RATIO DEPENDENCE
OF THE CONFINEMENT TIME

FROM INTERNATIONAL DATABASES

In this section, we consider the dependence of the
ratio between the experimental and scaling energy con-
finement times on the inverse aspect ratio using the
results from the international L- and H-mode databases.

Figure 6 shows the ratio of the experimental
H-mode confinement time to the scaling confinement
time as a function of the inverse aspect ratio. Here, we
used a set of discharges from the international H-mode
database [20] that were analyzed when developing the
ITERH-98P(y, 2) scaling (1) [16] and also T-10
H-mode discharges from the extended database [14].
Figure 6a shows the ratio HH of the experimental con-
finement time to the time predicted by H-mode scaling
(1). All the points are concentrated with some scatter
about the horizontal line HH = 1.0. This is not surpris-
ing, because scaling (1) was constructed by analyzing
these data.

The ratio HL of the experimental confinement time
to the time predicted by L-mode scaling (2) is shown in
Fig. 6b for the same set of discharges as in Fig. 6a. In
Fig. 6b, we can see a tendency for the points to concen-
trate about an inclined line. For ε ~ 0.35–0.4, the exper-
imental confinement time is nearly two times higher
than the time predicted by the L-mode scaling. As ε
decreases, this difference decreases and, at ε ~ 0.2
(which corresponds to A = 5 and the operating condi-
tions of the T-10), the experimental H-mode confine-
ment time becomes close to the time calculated by the
L-mode scaling. The number of discharges with a low
ε in this data set is small; however, a tendency of the HL

factor to decrease at lower ε is observed for the entire
data set under examination. This tendency shows that,
as ε decreases, the confinement time in H-mode dis-
charges approaches the time calculated by the L-mode
scaling.

A similar comparison is shown in Fig. 7 for dis-
charges from the international L-mode database [13].
This figure presents the results selected according to the
rules used in [11] when deducing scaling (2) and also
the result obtained in one of the early T-10 experiments
[21] with the aspect ratio R/a ≈ 9 (the large triangle in
Fig. 7). The ratio HL of the experimental L-mode con-
finement time to the time predicted by L-mode scaling
(2) is plotted as a function of the inverse aspect ratio ε
in Fig. 7a. The points are concentrated about the hori-
zontal line HL = 1 because these data were used when
developing scaling (2).

In Fig. 7b, the experimental confinement times in
L-mode discharges are compared with the times pre-
dicted by H-mode scaling (1). At high ε (low aspect
ratios), the experimental confinement times appear to
PLASMA PHYSICS REPORTS      Vol. 29      No. 2      2003
be a factor of 1.5–2 lower than the times predicted by
the H-mode scaling. At the same time, at high aspect
ratios (ε ≤ 0.2), the confinement time in L-mode dis-
charges is close to the time calculated by the H-mode
scaling. The number of experimental points at ε ~ 0.2 is
small. However, it can be seen that all of the points in
Fig. 7b are concentrated around an inclined line, which
attests that the confinement time in L-mode discharges
tends toward the time predicted by the H-mode scaling
at ε ≤ 0.2.

Thus, we can conclude that all the available data in
the international databases testify to a tendency of the
difference in the plasma confinement times in the L-
and H-modes to decrease with increasing aspect ratio.
To draw a more reliable conclusion on the relative
behavior of confinement in these modes at aspect ratios
higher than 5, additional experimental information is
required.

5. CONCLUSION

A comparison of the confinement scalings for the L-
and H-modes shows that the dependences of the energy
confinement time on most of the parameters differ
slightly in these modes, the only exception being the
dependence on the aspect ratio. At low aspect ratios
(A ~ 2.5–3.5), the energy confinement time in the H-
mode is nearly twice as high as that in the L-mode. As
the aspect ratio increases, this difference gradually
decreases and, at aspect ratios of 5 and higher, dis-
appears completely. This tendency, which is observed
in almost all the available results from the international
databases, is associated with a more rapid improvement
of confinement in the L-mode as compared to the
H-mode as the aspect ratio increases at a fixed minor
radius.

This result is confirmed by the T-10 experiments,
which demonstrated that, at the same basic discharge
parameters under ECR plasma heating, the energy con-
finement times in the L- and H-modes turn out to be
close to each other. This fact is attributed to the high
aspect ratio of T-10 (A = 5) and can be explained with-
out invoking the specific features of the procedure of
preparing discharges in this device. It is important that
L-mode confinement in T-10 coincides well with the
prediction of scaling (1) for the H-mode. This result is
also supported by the data from other tokamaks with a
high aspect ratio.

The fact that the difference between confinement
times in the L- and H-modes is mainly determined by
the aspect ratio provides important information about
the characteristic features of the physical processes
leading to the onset of the H-mode. For a core plasma
with a high aspect ratio, the confinement times in the L-
and H-modes are the same. Inclusion of an outer region
with a lower aspect ratio makes confinement different
in these regimes. In tokamaks that have no outer
regions with a low aspect ratio (devices in which the
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high ratio R/a is a constructive feature), the confine-
ment times in the L- and H-modes differ only slightly.
This points to an important role of the edge plasma in
the onset of the H-mode, which contradicts the hypoth-
esis of the global improvement of the confinement in
the entire plasma column during the L–H transition.
These considerations can help to identify the physical
mechanisms that can provide a different confinement at
high values of ε.

The fact that, at high aspect ratios, the energy con-
finement times in the L- and H-modes become close to
each other is important for designing steady-state
fusion tokamak reactors and opens up prospects of
using the L-mode as a basic operating regime. The pos-
sibility of using L-mode discharges with the same con-
finement time as in the H-mode, but with a lower tem-
perature at the plasma periphery, with a smaller accu-
mulation of impurities and helium, without need to
overcome the power threshold for the L–H transition,
and in the absence of ELMs seems to be very attractive
when designing future tokamak reactors.

At present, experimental data obtained in high-
aspect-ratio tokamaks are still insufficient, and addi-
tional information is needed to clarify the characteristic
features and parametric dependences of plasma con-
finement in the L- and H-modes at high aspect ratios.
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