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Abstract—We analyze the propagation of light in a universe with density inhomogeneities, which, as was
first demonstrated by Zel’dovich, systematically affect the angular sizes and apparent magnitudes of distant
objects. The Zel’dovich effect can be represented in terms of an effective curvature, which is proportional to
the magnitude of the inhomogeneities. We estimate the effective curvature, radius of curvature, and mean
distance between conjugate points for the cases when the density inhomogeneities are taken to be stars in
the Galaxy, galaxies, and clusters of galaxies. We discuss the possibility of detecting the Zel’dovich effect
using modern astronomical data. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Small-scale deviations of the Universe from uni-
formity and isotropy due to individual objects such
as stars, galaxies, and clusters of galaxies produce
systematic distortions in cosmological tests [1, 2].
Zel’dovich [1] suggested corresponding correction
terms, whose meaning is that a Universe whose
spatial cross section has zero average curvature
(K = 0) appears to some extent similar to an open
cosmological model (K < 0). However, Zel’dovich
represents the effect in the form of corrections to
observational tests (the angular sizes and apparent
magnitudes of distant objects), which cannot be con-
veniently transformed into geometrical parameters of
the Universe, such as the curvature of the comoving
space.

The modern physics of stochastic media can be
used to describe the Zel’dovich effect in the following
compact form [3]. The propagation of light in a Uni-
verse that is uniform only on average can be described
by the Jacobi equation

y′′ +K(x)y = 0 (1)

with the initial conditions y(0) = 0 and y′(0) = 1.
Here, y is the length of the geodetic deviation y; x is
the distance along the spacelike geodetic curve Γ;
and K = K̄ + k(x) is the curvature in the two-
dimensional direction, which is the sum of somemean
curvature K̄ and random curvature variations k(x)
associated with deviations of the Universe from
uniformity and isotropy. The behavior of the mean
Jacobi field Y = 〈y〉 is described by the equation

Y ′′ + YKeff = 0, (2)
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where

Keff = K̄ − k2δ2/3, (3)

and k =
√

〈k(x)2〉 is the rms fluctuation of the cur-
vature and δ is the correlation scale length. Thus, an
observer perceives a Universe with the critical density
(and hence zero curvature) with small-scale devia-
tions from uniformity and isotropy as a Universe with
a negative effective curvatureKeff that is proportional
to the amplitude of the inhomogeneities.

The second effect consists of the following. Let
K̄ = 0 and the density fluctuations, and, conse-
quently, the perturbations of the curvature k, be small.
According to (3), the Universe is then characterized
by a negative effective curvature. However, there is
a nonzero probability that the set of areas of positive
curvature is large enough to act as a gravitational
lens; i.e., in geometric terms, to produce conjugate
points. This effect is a result of the cumulative action
of a large number of randomly distributed perturba-
tions and supplements the microlensing effect [4–8],
which produces conjugate points as a result of the
deflection of light by an individual massive object
acting as a gravitational lens. The mean distance
between conjugate points of an object in whose
light cone the inhomogeneities are located can be
estimated as [9]

∆l ≤ 4δ/ν, (4)

where ∆l is the distance between the conjugate
points in which we are interested, δ is the mean
distance between inhomogeneities, and ν is the
deflection angle from a rectilinear trajectory of a light
beam passing near an individual inhomogeneity.

Our aim is to relate the estimates (3) and (4)
to observational data. We assume that the mean
c© 2005 Pleiades Publishing, Inc.
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curvature of space is K̄ = 0. As possible density
inhomogeneities producing curvature fluctuations,
we consider stars in ourGalaxy, galaxies, and clusters
of galaxies.

2. EFFECTIVE CURVATURE
AND CURVATURE RADIUS

2.1. Stars

Let us assume that the Galaxy is uniformly filled
with solar-mass stars (mstar ∼M�) with radii r0 ∼
7 × 1010 cm separated by an average distance of δ ∼
4.6 pc.

Using the Schwartzschild metric [10] to describe
the gravitational field of the inhomogeneities, we ob-
tain for the curvature perturbation k(r) produced by a
star at a distance r

k(r) = rg/r
3, (5)

where r is the distance from the field center to the
point where the curvature is determined and rg =
2Gm/c2 is the gravitational radius (equal to 3 km for
the Sun). Averaging (5) over a cell with radius δ yields

k =
3
δ3

δ∫
r0

rg
r
dr ∼ 10−46 cm−2

and

Keff = −1
3
k2δ2 ∼ −5 × 10−55 cm−2.

The corresponding radius of curvature is

aeff =

√
1

|Keff|
∼ 1027 cm.

This quantity exceeds the size of the Galaxy, L ∼
6 × 1022 cm, by at least four orders of magnitude and
is of the order of the “radius of the Universe,” lh ∼
1028 cm, implying that the contribution of individual
stars can be neglected.

2.2. Galaxies

Consider now a Universe filled with galaxies of
mass mgal ∼ 1011 M� (the average mass of a galaxy
without including dwarf and supergiant galaxies), ra-
dius rgal ∼ 1.5 × 1022 cm (the average radius of a
galaxy), and δgal ∼ 5 × 1024 cm. The average curva-
ture fluctuation produced by a single galaxy is then

kgal =
3
δ3gal

δgal∫
rgal

rg
r
dr ∼ 4 × 10−57 cm−2.
We now substitute this estimate into (3) for Keff to
obtain

Keff = −1
3
k2
galδ

2
gal ∼ −10−64 cm−2,

and the corresponding effective radius of curvature is

aeff ∼ 1032 cm,

which exceeds the current radius of the Universe lh by
four orders of magnitude.

2.3. Clusters of Galaxies

Consider now a Universe that is uniformly filled
with clusters of galaxies. Since the scatter of their
parameters is very large (the mean radius of a cluster
is rcl ∼ 1.5 × 1024 cm, while the masses of these ob-
jects can vary from 1013 to 1015 M�), we considered
two separate cases corresponding to different mean
parameters of the galaxy clusters.

(a) We will first suppose that the Universe is
filled with poor clusters with masses of the order of
mcl ∼ 1013 M� and with the mean intercluster dis-
tance being δcl ∼ 4 × 1025 cm. In this case, the mean
curvature fluctuation produced by one such cluster is

kcl =
3
δ3cl

δcl∫
rcl

rg
r
dr ∼ 5 × 10−58 cm−2.

The corresponding effective curvature is then

Keff = −1
3
k2
clδ

2
cl ∼ −10−64 cm−2,

and the effective radius of curvature is
aeff ∼ 1032 cm,

which exceeds the radius of the Universe by four
orders of magnitude.

(b) A similar model with a Universe populated
by rich clusters of galaxies with mcl ∼ 1015 M� with
a mean distance between clusters of δcl ∼ 1026 cm
yields the curvature fluctuation

kcl =
3
δ3cl

δcl∫
rcl

rg
r
dr ∼ 4 × 10−57 cm−2.

The corresponding effective curvature is

Keff = −1
3
k2
clδ

2
cl ∼ −4 × 10−62 cm−2,

and the effective radius of curvature is
aeff ∼ 1031 cm,

which exceeds the radius of the Universe by three
orders of magnitude.
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Fig. 1. Density of the distribution of deflection angles
Pν(x) as a function of the impact parameter p.

3. DISTANCE
BETWEEN CONJUGATE POINTS

3.1. Stars

We are interested in estimating the distance be-
tween the conjugate points for an object in whose
light cone the inhomogeneities are located. As before,
we begin by taking the inhomogeneities to be stars
in the Galaxy. We use the following formula [10] to
calculate the deflection angle ν of light passing near
an inhomogeneity, which appears in (4):

ν = 2rg/p. (6)

Here, p = rθ is the impact parameter for light pass-
ing between two inhomogeneities that are uniformly
distributed over the interval [Re, δ], and Re =

√
2rgr

is the physical Einstein cone, where r is the dis-
tance between the star and the observer. To estimate
the distance between the conjugate points, we must
know the mean deflection angle ν̄ averaged over the
impact parameters. We can find ν̄ via the following
standard calculations.

Let us assume that the impact parameter p is uni-
formly distributed over the interval [Re, δ]. The dis-
tribution of the density Pν(x) of the deflection angle
(Fig. 1) as a function of the impact parameter p then
has the form



0, x <
2rg
δ
,

Pν(x) =
2rg

x2(δ −Re)
,

2rg
δ

≤ x ≤ 2rg
Re

,

0, x >
2rg
Re

.

(7)

Since the distance r between the star and the observer
that appears in the formula for Re must be much
greater than the distance between neighboring stars
ASTRONOMYREPORTS Vol. 49 No. 10 2005
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Fig. 2. Impact parameter p for a light beam passing near
a star considered to be an inhomogeneity in the Galaxy.

(Fig. 2), given the size of the Galaxy, it makes sense
to set the minimum and maximum values of this
distance to the thickness and radius of the optical
disk of the Galaxy, respectively, i.e., 1 and 15 kpc,
so that the corresponding Re values are of the order
of 4 × 1013 and 2 × 1014 cm, respectively. We now
substitute the probability density (7) into the formula
for the mean deflection angle ν to obtain

ν̄ =

2rg
Re∫

2rg
δ

Pν(x)xdx =
2rg

δ −Re
ln
Re

δ
∼ 10−7′′. (8)

The standard deviation is equal to

∆ν =




2rg
Re∫

2rg
δ

Pν(x)(x − ν̄)2dx




1/2

(9)

=


 4r2g
δRe

+
16r2g ln2 Re

δ
(δ −Re)2




1/2

∼ 10−6′′.

We then substitute the values of rg, δ, and Re into (8)
and (9) to obtain ν̄ ∼ 10−7 arcsec and ∆ν ∼ 7 ×
10−6 arcsec for r = 1 kpc and ν̄ ∼ 10−7 arcsec and
∆ν ∼ 3 × 4 × 10−6 arcsec for r = 15 kpc.

Substituting the above ν̄ value into (4) yields

∆l ∼ 1032 cm.
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A comparison of the distance ∆l between the con-
jugate points and the radius of the Universe L
shows that

∆l/lh ∼ 103,

implying that the conjugate points are clearly not
observable at the present stage of the evolution of the
Universe.

3.2. Galaxies

We can perform similar calculations for the case
when galaxies are taken to be the density inhomo-
geneities. A light beam passing near a galaxy is de-
flected by the mean angle ν̄ equal to

ν̄ =
2rg

δgal −Re
ln
Re

δgal
∼ 0.02′′,

and the standard deviation of this angle is

D(ν) =


 4r2g
δgalRe

+
16r2g ln2 Re

δgal
(δgal −Re)2




1/2

∼ 0.08′′.

We now substitute the mean deflection angle ν̄
into (4) and find the distance between the conjugate
points for an object with galaxies in its light cone to be

∆l ∼ 1032 cm,

which, as in the case of stars, exceeds the radius of
the Universe lh by four orders of magnitude and is
therefore not currently observable.

3.3. Clusters of Galaxies

To estimate the distance between the conjugate
points for the case when the inhomogeneities are
taken to have the form of clusters of galaxies, we
must substitute the corresponding values for clusters
of galaxies into (8) and (9).

(a) If we assume that the Universe is uniformly
filled with poor clusters of galaxies with masses of
the order of mcl ∼ 1013M� separated by a mean
intercluster distance of δcl ∼ 4 × 1025 cm, the mean
deflection angle ν̄ for light passing in the vicinity of a
cluster of galaxies is of the order of

ν̄ =
2rg

δgal −Re
ln
Re

δgal
∼ 0.2′′,

with its standard deviation being

D(ν) =


 4r2g
δgalRe

+
16r2g ln2 Re

δgal
(δgal −Re)2




1/2

∼ 0.6′′.
Substituting the mean deflection angle ν̄ into (4) in-
dicates that the mean distance between the conjugate
points is

∆l ∼ 1032 cm,

which also exceeds the radius of the Universe lh by
four orders of magnitude and is therefore not observ-
able at the present epoch.

(b) In a similar way, for the case of aUniverse uni-
formly filled with rich clusters of galaxies with mcl ∼
1015 M� separated by a mean intercluster distance
of δcl ∼ 1026 cm, we find that the mean deflection
angle ν̄ for a light beam passing in the vicinity of such
a cluster of galaxies is

ν̄ =
2rg

δgal −Re
ln
Re

δgal
∼ 4′′,

with its standard deviation being

D(ν) =


 4r2g
δgalRe

+
16r2g ln2 Re

δgal
(δgal −Re)2




1/2

∼ 9′′.

Substituting the mean deflection angle ν̄ into (4), we
find that the mean distance between the conjugate
points for an object with clusters of galaxies in its light
cone is

∆l ∼ 1031 cm,

which also exceeds the radius of the Universe lh.

4. DISCUSSION

Our estimates for the effective radius of curvature
and the mean distance between the conjugate points
indicate that neither of the effects considered can
be observed at the present stage of evolution of the
Universe. However, we consider it useful to identify
the parameters of the inhomogeneities that we have
considered here for which the Zel’dovich effect would
become observable.

Let us first consider the estimates of the effective
radius of curvature. To determine the ratios of the
inhomogeneity parameters m and δ for which the
corresponding effective radius does not exceed the
critical value (equal to the size of the Galaxy for stars,
L ∼ 6 × 1022 cm, and the radius of the Universe,
lh ∼ 1028 cm, for galaxies and clusters of galaxies),
we set aeff equal to the critical value and then de-
rived functions relating m and δ; these allow us to
determine pairs of m and δ values that correspond
to the possibility of observing the Zel’dovich effect.
If the inhomogeneities are taken to be stars in the
Galaxy, setting the critical value of aeff equal to the
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Fig. 3. Form of the function m(δ) for the case when the
inhomogeneities are taken to be stars in the Galaxy.

size of the Galaxy, L ∼ 6 × 1022 cm, yields the fol-
lowing function m(δ), which includes the size of the
inhomogeneities r0 as a parameter:

m(δ) = 2 × 105 g/cm2 δ2

ln(δ/r0)
.

(Here and below, m is in grams, δ is in centimeters,
and the coefficient of δ2 is dimensioned.) As is evident
from the above, this function has a singularity at
δ = r0. We set r0 in this formula equal to the radius
of the star to derive a specific form of the function
m(δ) (Fig. 3), which can be used to identify pairs of
m and δ values that satisfy the condition aeff ≤ L. It is
obvious that this condition is satisfied by all pairs ofm
and δ that lie on or below the plot. Taking the mass of
a star to be mstar = M�, the corresponding distance
on the plot is δ ∼ 3 × 1015 cm, while the mean dis-
tance between the stars in the Galaxy is of the order
of 1019 cm, which is four orders of magnitude greater.
Thus, in order for the contribution of individual stars
to the Zel’dovich effect to be observable, the distance
between neighboring stars would have to be a factor
of about 104 smaller than the current value. Alterna-
tively, with the current distances between stars, their
masses would have to be of the order of 1010 M�.

For a Universe uniformly filled with galaxies, we
set the critical aeff equal to lh ∼ 1028 cm. Setting r0
equal to the mean size of galaxies yields the function

m(δ) = 0.2 g/cm2 δ2

ln(δ/1.5 × 1022)
,

whose form is identical to that shown in Fig. 4. In
order for the Zel’dovich effect to be observable in the
case of a Universe that is uniformly filled with galax-
ies, the mean distance between galaxies (withmgal ∼
1011 M�) would have to be about a factor of 100
ASTRONOMYREPORTS Vol. 49 No. 10 2005
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Fig. 4. Form of the function m(δ) for the case of a Uni-
verse uniformly filled with galaxies.

smaller than the current distance between neighbor-
ing galaxies; alternatively, with δgal ∼ 5 × 1024 cm,
the masses of galaxies would have to be of the order
of 1015 M�.

Analogous calculations for a Universe that is uni-
formly filled with clusters of galaxies yield the formula

m(δ) = 0.2 g/cm2 δ2

ln(δ/1.5 × 1024)
,

which determines pairs of m and δ values that cor-
respond to the possibility of observing the Zel’dovich
effect for clusters of galaxies. This is possible, in par-
ticular, with the pairsm ∼ 1013 M� and δ ∼ 1023 cm
orm ∼ 1017 M� and δ ∼ 1025 cm.

Let us now consider the estimates of the distance
between the conjugate points, ∆l. In the case of a
Galaxy that is uniformly filled with stars, setting the
critical ∆l = L yields

m(δ) = 105 g/cm2
δ2,

which determines pairs of m and δ values that cor-
respond to the possibility of observing the Zel’dovich
effect (Fig. 4). Examples of pairs of m and δ values
are m ∼M� and δ ∼ 1014 cm, or m ∼ 1010 M� and
δ ∼ 1019 cm.

For the case of a Universe uniformly filled with
galaxies or clusters of galaxies, the critical value is
equal to ∆l = lh, and the corresponding function
m(δ) has the form

m(δ) = 1 g/cm2
δ2.

The Zel’dovich effect can be observed in the case of
the pairs of m and δ values m ∼ 1011 M� and δ ∼
1022 cm, orm ∼ 1015 M� and δ ∼ 1024 cm.
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5. CONCLUSIONS

In this paper, we have analyzed two effects due
to small-scale deviations of the Universe from uni-
formity and isotropy. The first effect consists of a
decrease in the curvature of the spatial cross section
and makes a Universe with its mean density equal
to the critical density appear to an observer like a
world whose spatial cross section has negative curva-
ture. We also analyzed the cumulative effect of many
randomly located density perturbations, which results
in the appearance of conjugate points. Our compu-
tations neglected the details of the structure or any
specific features of inhomogeneities (e.g., clustering
of galaxies), since the resulting estimates show that
the magnitude of the effects considered is extremely
small, and including more detailed information about
the properties of the inhomogeneities would not ap-
preciably change the results. We estimated the effec-
tive curvature and radius of curvature, as well as the
mean distance between the conjugate points when
the density inhomogeneities are taken to be stars in
our Galaxy, galaxies, and clusters of galaxies. The
estimates obtained show that the magnitude of the
effects considered is extremely small, and that these
effects are not observable at the present stage of evo-
lution of the Universe.

Note, however, that, despite its small magnitude,
the Zel’dovich effectmaintains its importance for cos-
mology. The reason is that the difference between
spaces with positive, negative, and zero curvature is
not only quantitative but also qualitative in nature. If
the mean density ρ of the Universe indeed coincides
with the critical density ρcr, K̄ = 0, even a small
negative addition could change the properties of the
Einstein equations radically.

Zel’dovich suggested that the Einstein equations
be solved according to the following scheme. So-
lutions are first constructed for the Einstein equa-
tions for the mean curvature. These solutions are
then supplemented with the curvature perturbations
corresponding to individual objects. The results ob-
tained suggest that it should be possible to somehow
take the perturbations into account in the Einstein
equations and solve the perturbed equations. How-
ever, we cannot suggest any way to correctly include
the perturbations in the equations and subsequently
solve them. These operations are believed to have no
effect on the rate of expansion of the Universe. The
qualitative difference between flat and Lobachevski
geometries may indicate that this picture requires
some correction.
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Abstract—Results of a study of a strong flare of H2Omaser emission in the star-forming region Sgr B2(M)
in 2004 are reported. The observations were carried out on the 22-m radio telescope of the Pushchino Radio
Astronomy Observatory. The main emission, with its flux density reaching 3800 Jy, was concentrated in a
narrow radial-velocity interval (about 3 km/s) and was most likely associated with the compact group r,
while the emission at VLSR > 64 km/s came from group q. After 1994, the variations of the H2O maser
emission in Sgr B2(M) became cyclic with a mean period of 3 years. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Sagittarius B2 is one of the most complex and
active star-forming regions in our Galaxy. It includes
more than ten separate HII regions, located in three
main star-forming centers: Sgr B2(N), Sgr B2(M),
and Sgr B2(S) [1]. The structure of each is rather
complicated. The largest centers of star formation
are N andM, with region N believed to be the younger
one [2]. H2O (and other) maser emission is observed
toward both regions. Lekht et al. [3] have shown
that the total emission of each source alternatively
dominates over that of the other. The emission from
themain source (M) was dominant at the end of 2003.

The main H2Omaser emission toward Sgr B2(M)
is associated with a compact group of maser spots.
The spots are seen against an ultracompact HII F re-
gion and, according to Kobayashi et al. [4], cover an
area of 0.04 pc× 0.04 pc (for a distance to Sgr B2
of 8.5 kpc). It is most likely that the HII region F
is the activity center for the OH, H2CO, and H2O
masers. Gaume et al. [5] have shown that this region
contains of four subsources, F1–F4. The diameter of
each is about 0.01 pc, and the brightness temperature
is no lower than 23 400 K [6], whereas the normal
temperatures of HII regions in the Galaxy are 6000–
9000 K. The radial velocity derived from the H76α
radio recombination line from the entire source F is
≈60 km/s [7].

The strongest H2O emission from Sgr B2(M)
appeared at velocities of 60–70 km/s. This group
of maser spots is located between subsources
F1–F4 [8]. A molecular outflow in the Sgr B2(M)
region [8, 9] is also associated with ultracompact
1063-7729/05/4910-0777$26.00
HII regions and maser sources [3]. It cannot be
excluded that the water maser is located within
the molecular outflow, not at the edge of some of
the F regions. The most intense H2O emission of
Sgr B2(M) is most likely associated with this outflow.

2. OBSERVATIONS AND DATA ANALYSIS

Our observations of the H2Omaser source toward
Sgr B2 (α1950 = 17h44m10s, δ1950 = −28◦22′00′′)
were carried out on the 22-m radio telescope of the
Pushchino Radio Astronomy Observatory in 2004.
In the observations at low elevations, the system
noise temperature was 150–250 K. The antenna
beamwidth at 1.35 cm is 2.6′. For a pointlike un-
polarized source, an antenna temperature of 1 K
corresponds to a flux density of 25 Jy. The signal
was processed by a 128-channel filter-bank spectrum
analyzer with a resolution of 7.5 kHz (0.101 km/s at
the radial velocity of the 1.35-cm line).

Figure 1 presents the H2O spectra toward Sgr B2
(component M), corrected for the absorption in the
Earth’s atmosphere. The horizontal axis plots the
radial velocity with respect to the Local Standard
of Rest, and the vertical axis plots the flux density
in Janskys. The vertical arrow shows the scale in
Janskys, and the horizontal lines show the spectrum
baselines.

Sgr B2 hosts two main groups of maser spots,
associated with the components N and M and sep-
arated in declination by 45′′ [4]. Since the beamwidth
of the 22-m (2.6′) telescope is larger than this, we
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Spectra of the H2O maser emission of Sgr B2 obtained in 2004. The vertical arrows show the scale in Janskys.
The horizontal axis plots the radial velocity (km/s) relative to the Local Standard of Rest.
made observations at four points along the line con-
necting the sources M and N in order to determine
which emission features belonged to which source.
Figure 2 presents the results of these observations
at different stages of the flare evolution. The intervals
between the points are 45′′. The fluxes at different
radial velocities are shown as functions of the antenna
pointing declination. All the curves are numbered. In
addition, radial velocities are given for most of them.
For convenience, the fluxes of features 3 and 4 in
Fig. 1b have been reduced by a factor of three, and
those of feature 4 in Fig. 1c by a factor of two. Scans
with maxima close to source M are plotted as curves
with closed circles, and those with maxima close to
source N with open circles. At radial velocities where
the fluxes from M and N were more or less equal, the
scan maxima are at an intermediate location; these
are labeled with asterisks.

A strong flare of the emission took place in the
radial-velocity interval 57.5–62.5 km/s. This part of
the spectrum is shown in Fig. 3, which plots all the
spectra for 2004, numbered in chronological order.
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Fig. 2. The fluxes as a function of the antenna pointing declination. One horizontal scale unit corresponds to 45′′. The vertical
arrow shows the position of Sgr B2(M).
The correspondence of the spectra to the epochs of
the observations is given at the right. In this radial-
velocity interval, we have separated the emission into
individual spectral components, whose flux variations
ASTRONOMYREPORTS Vol. 49 No. 10 2005
are shown in Fig. 4. As we can see from Fig. 2,
the most intense emission features are identified with
the main source, Sgr B2(M). This suggests that the
strong flare happened precisely in this source.
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We observed fast variability in the emission fea-
ture at 58.8 km/s, whose flux increased from 800 to
2000 Jy in two days, with a mean growth rate of about
25 Jy/h. Small variations of the spectrum’s structure
occurred during the observations of April 22 aimed
at identifying the sources of the spectral features (the
four-point observations), which lasted almost 1.5 h.
Since the feature at 59.6 km/s varied insignificantly,
we adopted it as a reference. We normalized the four
consecutive spectra measured at the four points to
this reference feature. Figure 5 shows the central
parts of the normalized spectra.

The variations of the emission at 58.8 km/s are
within 4%, which corresponds to 80 Jy on an absolute
flux scale. The flux-variation rate was about 50 Jy/h.
This coincidence is rather good, in view of the possibly
unsteady rate of the flux variation. In addition, the flux
of the reference feature could have changed slightly.
Depending on the phase of these changes, the rate
of the flux variation of the feature at 58.8 km/s could
either increase or decrease.

The fast flux variability we have detected is real,
since it is based on relative measurements. We have
eliminated all errors due to calibration and variations
in the weather conditions during the observations,
which can strongly affect the absolute fluxmagnitude,
especially at low source elevations. The difference in
the curves near velocities of 57.5 and 62 km/s is due
to either noise fluctuations or the presence of emission
from the northern source, as can be seen in Fig. 2b.

We have also plotted the flux variations of other
emission features outside the central part of the H2O
spectrum (Fig. 6). This is necessary to search for
possible correlations of the flare with variations in
other spectral features and to estimate the scale of the
maser flare (local or global).

3. DISCUSSION

3.1. Cyclic Activity of the Maser

Lekht et al. [3] showed that the emission of either
the northern (N) or the main (M) source alternatively
dominates. Since the end of 2003, the source M has
become the most intense. The strong flare in 2004,
which lasted almost eight months, is associated with
precisely this source.

The alternating domination of the emission from
each of the two sources could be a consequence of
activity cycles in at least one of the two H2Omasers.
Using the results of the monitoring for 1994–2004,
we can estimate the period of such activity only for
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Fig. 4. Flux and radial-velocity variations of the emission
features at 57.5–62.5 km/s.

the main source (M), which is about 3 years. We dis-
tinguished only three activity cycles for the northern
source separated by two and three years in this same
interval.

In addition, we observed shorter lived flares of
activity lasting several months in both sources.
Such flares happened throughout our monitoring
of 1982–2004, with the mean interval between them
being less than 0.8 yr.

3.2. Identification of the Emission Features

The flare of 2004 in the source M was only slightly
weaker than the strongest flare that happened in
Sgr B2 in 1986, which was associated with the
northern source (N). There are important differences
between these flares. During the 1986 flare, the maser
emission was consecutively excited in order of in-
creasing radial velocities in the interval 47–75 km/s.
The 1986 flare was identified with an outflow of
ASTRONOMYREPORTS Vol. 49 No. 10 2005
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material from a rotating accretion disk in the source
Sgr B2(N) [10].

In the 2004 flare in the source M, the most intense
rapidly varying emission appeared in a narrow veloc-
ity interval that approximately matches the thermal
linewidth. The emissionmaxima of individual features
virtually coincided.

In 2004, the mean velocity of the strongest emis-
sion coincided with the central velocity of the H76α
radio recombination line, 60.3 km/s [7], in the vicinity
of theHII region F. The position of this group ofmaser
spots coincides with the dense part of the 60-km/s
compact molecular cloud. According to Kobayashi
et al. [4], the intense maser emission at radial ve-
locities of 55–70 km/s forms two groups of maser
spots, r and q. We can assume that the strong flare
at 58–61 km/s was associated with group r.

The different characters of the 1986 and 2004
flares may be due to differences in the structures of
the sources M and N. The common feature is that, as
in the northern source, the maser spot clusters r and q
in M are associated with a molecular outflow.

3.3. Correlation and Anticorrelation of the Emission
The 2004 flare can be represented as two sub-

flares. During the first, the flux densities from the
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two main features, at 59.5 and 60.3 km/s, exceeded
2300 and 1200 Jy, while during the second, they
exceeded 3500 and 1400 Jy (Fig. 4a). The subflares
were separated by some time interval, in which strong
emission at 58.3 km/s (3800 Jy) and weaker emis-
sion at 59.8 km/s were observed. The emission in
other features was strongly suppressed at that time.
Obviously, the fluxes of the features with close ra-
dial velocities were anticorrelated. A similar evolution
took place in three other features, at 61.1, 61.5, and
62.1 km/s. The emission in the lateral features varied
in antiphase with the central feature (Fig. 4b).

There is a good coincidence of the emission max-
ima of individual emission features. Since the flare
was fairly short-lived, the time intervals between con-
secutive observing sessions turned out to be insuffi-
cient to accurately determine the epochs of the emis-
sion maxima of individual features. The upper limit for
the time shift between the maxima does not exceed
one month. This result also suggests that the cluster
of maser spots that are responsible for the emission at
57.5–61 km/s is fairly compact.

The fluxes of the emission features outside 57.5–
61 km/s are also correlated, and their maxima nearly
coincide. The mean peak falls in March 2004, an-
ticipating the maximum of the main group of fea-
tures, which occurs in April. According to Kobayashi
et al. [4], the emission at VLSR > 64 km/smay belong
to maser spot q, which lies slightly closer to the center
of the compact HII region than the cluster r.
4. CONCLUSION

We have studied a strong flare in Sgr B2 that
occurred 18 years after a similar flare in 1986 [3]. The
flares took place in different sources (the northern and
central components of Sgr B2) and display substan-
tial differences. Let us list the main results we have
obtained.

(1) The strong flare of 2004, which took place in
the main source M of the Sgr B2 region, is most
likely associated with the compact group of maser
spots r [4].

(2) The cyclic activity of the water maser in
Sgr B2(M) has a mean period of about three years.

(3) The radial velocities of the main features of
the flare were within the thermal linewidth, possibly
testifying to the compactness of the spot cluster.

(4) The flare consisted of two subflares. This struc-
ture of the flare is due to an anticorrelation between
the fluxes of two pairs of emission features with simi-
lar radial velocities.
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Abstract—We present an algorithm for synthesizing the light curve of a close binary consisting of a normal
star (a red dwarf that fills its Roche lobe) and a spherical star (a white dwarf). The spherical component is
surrounded by an elliptical accretion disk with a complex shape: it is geometrically thin near the spherical
star and geometrically thick at the edge of the disk. An additional complication is presented by the presence
of a one- or two-armed spiral pattern at the inner surface of the disk. The maximum height of the spiral arm
above the disk surface is located at∼0.9Rd, and the height decreases exponentially as the arm approaches
the inner regions of the disk. Shielding of the inner hot parts of the disk by the crests of the spirals results in
the formation of “steps” in out-of-eclipse parts of the orbital light curves. The algorithm takes into account
the presence of a “hot line” by the lateral surface of the disk, making it possible to model binary systems
in both quiescence and outburst. In the latter case, the hot line degenerates into a small bulge at the outer
lateral surface of the disk, which can be considered an analog of a hot spot. The algorithm was applied to the
orbital light curve of the cataclysmic binary IP Peg during its October 30, 2000, outburst. To explain the
variations of the out-of-eclipse brightness of the system during the outburst, it is necessary to include the
presence of a one-armed spiral wave at the inner surface of the disk, close to the periastron of the elliptical
disk. We have obtained the parameters of IP Peg during the outburst for various models of the system.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

For the last four decades, the hot-spot model sug-
gested by Gorbatskii [1] and Smak [2] in the late
1960s has been used to interpret the light curves of
cataclysmic variables. In this model, the interaction
between a stream of matter and the accretion disk is
accompanied by the formation of a shock wave, and
a region of energy release forms where the stream
comes into contact with the disk, called a “hot spot.”
This model could explain the formation of a hump
in the light curves of cataclysmic variables close to
orbital phases φ ∼ 0.7–0.85. However, as observa-
tional data accumulated, deviations from this model
were revealed. Many observed features of the light
curves could not easily be explained, such as anoma-
lous light curves that had fluxes higher in the egress
from eclipse than in the ingress and secondary humps
in the out-of-eclipse light curve. Attempts to save
the hot-spot model by considering elliptical rather
than circular disks did not resolve these problems,
although they improved the agreement between ob-
served and synthetic light curves (an algorithm for
synthesizing light curves for the case of an elliptical
disk with a hot spot on its lateral surface is pre-
sented in [3]).

Three-dimensional gas-dynamical computations
of the mass flows in close binary systems have re-
1063-7729/05/4910-0783$26.00
vealed that, in self-consistent solutions for various
initial conditions, independent of the assumed tem-
perature of the gas in the outer parts of the disk,
there is no hot spot, i.e., no shock interaction be-
tween the stream of matter flowing from the inner
Lagrangian point and the accretion disk [4–7]. The
resulting region of enhanced energy release is located
outside the disk and is due to the interaction of the
circumdisk halo and intercomponent envelope with
the stream. It was proposed to call this region a “hot
line” [4–7]. Comparisons of synthetic light curves ob-
tained for this model and observed light curves of se-
lected cataclysmic variables and binary X-ray sources
have shown excellent agreement [8–12]. The hot-
line model was able to reproduce many details of the
out-of-eclipse parts of the light curves that remained
unexplained in the hot-spot model. However, the hot-
line model was much less successful for light curves
obtained during outburst, for which there remained
details that could not be reproduced. In particular,
among eclipsing close binaries, the light curves ob-
tained during the outbursts of cataclysmic variables
and superoutbursts of SU UMa-type systems con-
tain dips at phases ∼0.25 and ∼0.75, which may be
related to an increase in the geometrical thickness of
the disk at these phases. Similar dips at phases ∼0.2
c© 2005 Pleiades Publishing, Inc.
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and∼0.8 are also observed in the ultraviolet. The hot-
line model is not able to explain such dips.

In recent years, observational data have pro-
vided evidence for the existence in some close bi-
naries (such as IP Peg, U Gem, EX Dra, SS Cyg,
V347 Pup) of two-armed spiral shocks in the outer
parts of their accretion disks during outbursts [13].
Although Doppler tomography provides some evi-
dence for a certain amount of asymmetry in the ac-
cretion disks in quiescence, it definitely rules out the
presence of such spiral arms. Spiral pattern features
are also absent from systems with high component-
mass ratios. For example, Doppler tomography of
OY Car in outburst [14] shows the presence of an
extended spiral arm along the side of a gaseous
stream that is undergoing a shock interaction, but
does not show two spiral shocks.

High-phase-resolution spectroscopy of cataclys-
mic variables during outbursts that enables mapping
of the disks has been carried out for only a small
number of objects. However, the available data pro-
vide evidence that these phenomena have a common
physical nature: the most probable origin of such
large-scale asymmetries is tidal shocks initiated by
the presence of a fairly massive secondary component
in the system.

Analysis of the main processes heating and cool-
ing the matter in the accretion disks of close bina-
ries [15, 16] shows that the gas temperature in the
outer parts of the disk is from ∼10 000 K (“cold gas”)
to ∼1 000 000 K (“hot gas”). Three-dimensional cal-
culations with hot disk gas (see, e.g., [17]) show that a
one-armed spiral shock forms close to the apoastron
of the accretion disk; the flow structure in the vicinity
of the disk periastron, where the second arm should
be located, is determined by the stream of matter
from the inner Lagrangian point, which, apparently,
prevents the formation of the second spiral arm. Cal-
culations of cool gas flows in close binaries [18] show
that, in this case, the disk is more circular and denser,
and the height of its outer edge is lower than in the
case of a disk with hot gas; in such a disk, a second
arm of the tidal spiral forms near the disk periastron.
Both arms are located in the outer regions of the disk,
since the stream of matter does not strongly influence
the inner dense parts of the disk, and the tidal spiral
arms do not propagate into its inner regions.

Mapping of the eclipses of SUUMa stars [19] also
shows the presence of three sources of emission in
the outer regions of the disk. The locations of these
sources coincide with the two arms of a tidal spiral
shock and a shock identified with the hot line. The
linear scales of these features are relatively large. As
we noted above, observations of outbursts and su-
peroutbursts of eclipsing cataclysmic variables show
dips in the light curves at phases ∼0.2–0.25 and
∼0.75–0.8, in both the optical and ultraviolet. In the
model considered, the crests of the arms of the tidal
spiral shock eclipse the inner areas of a disk. The
heating of gas at the shock fronts should increase the
vertical thickness of the regions of the disk that are
seen at these orbital phases, providing an explanation
for the observed brightness dips.

The transport of angular momentum plays an im-
portant role in the formation of the accretion disks
of cataclysmic variables. Two mechanisms have been
suggested: the first acts in the case of a standard
Shakura–Sunyaev accretion disk [20] and involves
turbulent viscosity, while the second considers the
direct dissipation of energy by tidal spiral waves in the
disk [21], which form a global structure. Such a global
spiral structure was first discovered via Doppler map-
ping of IP Peg in outburst [22].

Tidal spiral structure can also be detected via pho-
tometric observations of the orbital light curves, if
some parts of the spirals protrude over the surface
of the disk. Such spiral protrusions were found by
Hachisu et al. [23] in the accretion disk of V1494 Aql
(Nova Aql 1999-2) in their studies of the photometric
variability of this system. Hachisu et al. [23] mod-
eled the orbital light curve using a model in which
the binary system consists of a main-sequence star
that completely fills its Roche lobe and a white dwarf
surrounded by a circular accretion disk. The system
was assumed to have a circular orbit, and mutual
heating of the components was taken into account.
All the components—the white dwarf, red star, and
accretion disk—emit as blackbodies at a local tem-
perature that depends on the position of the emitting
area. To reproduce the behavior of the brightness of
the system out of eclipse, it was assumed that a two-
armed spiral shock was located at the surface of the
disk. The accretion disk is an axisymmetric structure
with radius Rdisk = αRL1, where RL1 is the effective
radius of the white dwarf’s critical lobe and the height
of the emitting surface over the equatorial plane h =
βRdisk(ρ/Rdisk)2, where ρ is the distance to the center
of mass of the white dwarf in the equatorial plane.
To model the two-armed spiral structure in a selected
area of an unperturbed accretion disk, its heighthwas
multiplied by a factor
z1 = max

(
1,

ξ1√
(ρ/Rdisk − exp(−η(φ− δ)))2 + ε2

)
, (1)
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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z2 = max

(
1,

ξ2√
(ρ/Rdisk − exp(−η(φ− δ − π)))2 + ε2

)
,

Z = zheight = max(z1, z2).
At the disk edge, 0.9 < ρ/Rdisk < 1.0, this coefficient
in the region of spiral arms varies as

Z = zheight − 10(zheight − 0.25) (2)

× (ρ/Rdisk − 0.9).

The coefficients ξ1, ξ2 specify the amplitude of the
spirals. When ξ1 = ξ2, the spirals are symmetric and
have similar heights; η determines the inverse pitch
angle of the logarithmic spiral; φ is the azimuth of the
considered area at the disk surface in a left-handed
coordinate system (counterclockwise motion) and δ is
the position angle of the spirals, with both δ and φ
measured from the line connecting the binary compo-
nents; ε defines the width of the spirals and, together
with ξ1, ξ2, represents the height of the spirals at
the edge of the disk for ρ = Rdisk, φ = δ: zheight ∼
max(ξ1, ξ2)/ε.

Unfortunately, Hachisu et al. [23] do not provide
any additional details of their model.

The aim of the present paper is to modify the
Hachisu–Kato model [23] for cataclysmic binaries
that have an elliptical disk surrounding a white dwarf
and a hot line in the stream-disk interaction region,
in order to describe the tidal spiral waves in the outer
parts of the accretion disk.

2. MODEL OF THE SYSTEM

Modeling of the “Unperturbed” Inner Surface
of the Disk

Following the algorithm used in our previous
work, we will consider a close binary containing a
Roche lobe filling, evolved, late-type star and a white
dwarf surrounded by an elliptical accretion disk whose
surface will be superimposed by spiral structures. The
dwarf is represented by a sphere with radius Rw, and
the shape of the red dwarf’s surface is described by
a Roche potential with filling factor µ = 1.0. More
details on the calculation of the shape of the Roche
lobe are given in [24].

Our code takes into account the presence of the
hot line in the region where the disk interacts with the
stream of matter flowing from the red dwarf through
the inner Lagrangian point. A detailed description of
ORTS Vol. 49 No. 10 2005
the algorithm used to model the hot line is presented
in [25].

Three-dimensional gas-dynamical simulations of
the gas flows in close binaries [17] have shown that
the contribution of the hot line to the total radiation
flux of the system is negligible compared to the flux
from the accretion disk in the active state of a cat-
aclysmic binary. This conclusion was confirmed by
fitting light curves of the cataclysmic binary IP Peg
in outburst carried out for both hot-line and hot-
spot models [26]. This analysis showed that the hot-
line model is virtually identical to the hot-spot model
when describing the active state of a high-luminosity
accretion disk whose radius is close to the radius
of the white dwarf’s inner Roche lobe, since the hot
line degenerates into a small bulge (prominence) at
the lateral surface of the disk in this case, and the
parameters of the hot-line emission region are close
to those of the hot spot in the corresponding model.

However, spiral shocks at the surface of an accre-
tion disk are not observed only in the active states of
close binaries. The same gas-dynamical simulations
by Kuznetsov et al. [17] show that the spiral shocks
do not disappear in quiescence, when the hot-line
model ismore justified as a description of the emission
of the disk and circumdisk structures. To make our
algorithm for modeling spiral perturbations at the
surface of an accretion disk valid for both outburst and
quiescent states of a cataclysmic binary, we applied
the more complex close-binary model with a hot line,
although this increases the computation time neces-
sary for the light-curve modeling.

We described the shape of the inner surface of
an elliptical disk in the OXY Z coordinate frame, in
which the OX and OY axes are located in the orbital
plane of the system and the OZ axis is perpendicular
to this plane (Fig. 1). The white dwarf is located at a
focus of the ellipsoid; the origin of the OXY Z frame
is at this focus, the OX axis makes an angle αe with
the line connecting the system components and is
directed toward the periastron of the disk ellipse, and
the OY axis is perpendicular to the OX axis and
is directed in the clockwise direction from the latter.
The algorithm for calculating the shape of an “unper-
turbed” elliptical disk and its emission is described in
detail in [3].
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Fig. 1. Coordinate frames used to compute the spiral
structure of the disk. The dashed lines show schemat-
ically the direction of the crests of the spiral arms. The
angle between the spiral arms is 180◦; αe is the azimuth
of the disk periastron. The position of the hot line, which
is part of an ellipsoid with its center inside the disk and
with one of its lateral surfaces coincidentwith the tangent
extended to the disk from the inner Lagrangian point,
is shown schematically. During outburst, nearly the en-
tire hot-line ellipsoid is immersed in the disk. The small
fraction of this ellipsoid extending above the disk surface
(shaded) can be considered an analog of a hot spot.

The accretion disk around the white dwarf is de-
fined as a complex figure corresponding to the inter-
section of an ellipsoid with semiaxes a, b, and c (the
lateral surface of the disk) and a paraboloid (repre-
senting the inner surface of the disk). The paraboloid
is defined by the parameter Ap, whose value depends
on the rotation angle of the radius vector ψ:

Ap(ψ) =
Ab2

a2(1 + e cosψ)
=

A(1 − e2)
(1 + e cosψ)

. (3)

Here, e is the eccentricity of the elliptical disk and
A is a constant that is similar to the paraboloid con-
stant introduced in [27] to describe the shape of the
inner disk surface. In the case of a circular disk, for
e = 0, Ap = A; in the usual case, Ap = A(1 − e) at
periastron (ψ = 0.0) and Ap = A(1 + e) at apoastron
(ψ = π). Here, ψ is the angle in the orbital plane
between the positive OX axis and the projection of
the radius vector Ri extending from the vertex of the
parabola to a given point on the surface of the disk
onto the orbital plane ρi (not the point O, but a point
located below the orbital plane a distance

z0 =
R2

w

A2(1 − e)2
, (4)

where Rw is the radius of the spherical white dwarf).

The shape of the unperturbed (i.e., not deformed
by spiral-like structures) inner paraboloidal surface of
the disk is defined by the equation

ρ2 = x2 + y2 = A2
p(ψ)

(
z +

R2
w

A2(1 − e)2

)
. (5)

Consequently, the equation of the paraboloidal sur-
face is [3]

Ω = (x2 + y2)
(1 + e cosψ(x, y))2

A2(1 − e2)2
(6)

− z − R2
w

A2(1 − e)2
,

and the components of the vector normal to this sur-
face are

nx = − Ω′
x

|Ω′| , ny = −
Ω′

y

|Ω′| , nz = − Ω′
z

|Ω′| , (7)

where

Ω′
x =

2ρ(1 + e cosψ)
A2(1 − e2)2

(cosψ + e), (8)

Ω′
y =

2(1 + e cosψ)
A2(1 − e2)2

y,

Ω′
z = −1,

|Ω′| =
√

(Ω′
x)2 + (Ω′

y)2 + (Ω′
z)2.

An area element of the paraboloidal disk is defined by
the formula derived in [3]:
dSpar =
2ρ(ρ2 +A4

p(ψ))
√
ρ2(1 + e2 + 2e cosψ) +G−2

0 dηddψ

A4
p(ψ)(1 + e cosψ)

, where G0 =
2(1 + e cosψ)
A2(1 − e2)2

. (9)
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Modeling of a Spiral Shock

We will use the expression presented in [23] to
define the positions of the spirals at the inner surfaces
of the disk (the “upper” if z ≥ 0 and the “lower” if
z < 0), where it was assumed when describing the
shape of the spirals at the surface of a flat, circular disk
that the z coordinate of a point on the surface outside
the spirals is equal to the disk height h, z = h, while
the z coordinates of points inside spirals increase in
accordance with (1) and (2).

We modified this expression as follows in order
to model a spiral (or, in general, two spirals) in an
elliptical disk with the complex form described above.
We assume that, when ρ < 0.9Rd, the z coordinate of
a point at the inner surface of the disk inside a spiral
arm varies as

Z = zs = zh (10)

= z
ξ√

[ρ/Rd(ψ) − exp(η(ψ − δ −B))]2 + ε2
.

This takes into account the fact that, in our model,
the position angle ψ is measured clockwise from the
disk periastron, while the parameter B is different for
different spiral arms, as in [23]: for the arm that is
formed close to the periastron of the elliptical disk,
B = 0 if ψ < δ and B = 2π if ψ > π + δ, where δ is
the angle between the disk periastron and the ra-
dius vector at which the amplitude of the spiral has
a maximum (δ is measured from the OX axis in
the direction of the OY axis). If two spiral arms are
present in the disk, we shall assume that the second
has its maximum height in the region that is located
symmetrically with respect to the first arm relative
to the major axis of the elliptical disk, i.e., B = π,
while the second arm itself is confined to the posi-
tion angles π + δ > ψ > δ. This specifies counter-
clockwise rotation of the spirals and does not allow
them to have the same angle ψ. Finally, according
to Kuznetsov et al. [17], the amplitude of spiral-like
ASTRONOMYREPORTS Vol. 49 No. 10 2005
structures rapidly decays in the inner regions of the
disk. The amplitude of the logarithmic spiral very
rapidly decreases as it approaches the white dwarf.
Note that the radius of an elliptical diskRd varies with
the position angle of a point at the disk surface ψ as

Rd(ψ) =
a(1 − e2)
1 + e cosψ

. (11)

As in [23], we shall limit the height of the spiral
at the edge of the disk. We will assume that, at the
very edge of the disk, when 0.9 < ρ/Rd ≤ 1.0, the
coefficient Z decreases as

Z = zs − zedge (12)

= zs − 10(zs − zcrit)(ρ/Rd − 0.9).
In this case, for ρ/Rd = 1, we obtain Z = zcrit, where
zcrit is the height of the unperturbed disk above the
orbital plane [3]; for ρ/Rd = 0.9, we obtain Z = zs;
i.e., the height of an area element at the spiral is equal
to the z coordinate given by (10).

The components of the vector normal to the sur-
face of the spiral, specified by the potential

Ω = (x2 + y2)
(1 + e cosψ(x, y))2

A2(1 − e2)2
− R2

w

A2(1 − e)2
(13)

− zξ

[(
ρ

Rd
− exp(η(ψ − δ −B))

)2

+ ε2

]−0.5

,

are

nx,sp = −
Ω′

x,sp

|Ω′
sp|
,

ny,sp = −
Ω′

y,sp

|Ω′
sp|
,

nz,sp = −
Ω′

z,sp

|Ω′
sp|
,

where
Ω′
x,sp =

2ρ(1 + e cosψ)
A2(1 − e2)2

(cosψ + e) (14)

−
zξ

(
ρ

Rd
− exp(η(ψ − δ −B))

)(
e+ cosψ
a(1 − e2)

+
η

ρ
sinψ exp(η(ψ − δ −B))

)
[(

ρ

Rd
− exp(η(ψ − δ −B))

)2

+ ε2

]3/2
,
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Ω′
y,sp =

2ρ(1 + e cosψ)
A2(1 − e2)2

sinψ

−
zξ

(
ρ

Rd
− exp(η(ψ − δ −B))

)(
sinψ

a(1 − e2)
− η

ρ
cosψ exp(η(ψ − δ −B))

)
[(

ρ

Rd
− exp(η(ψ − δ −B))

)2

+ ε2

]3/2
,

Ω′
z,sp =

−ξ√(
ρ

Rd
− exp(η(ψ − δ −B))

)2

+ ε2

,

|Ω′
sp| =

√
(Ω′

x,sp)2 + (Ω′
y,sp)2 + (Ω′

z,sp)2.

At the edge of the disk, when 0.9 < ρ/Rd ≤ 1.0, the derivatives of the potential (13) are

Ω′
x,sp =

2ρ(1 + e cosψ)
A2(1 − e2)2

(cosψ + e) − 10(zs − zcrit)
e+ cosψ
a(1 − e2)

− 10
(

1 − ρ

Rd

)
(15)

×
zξ

(
ρ

Rd
− exp(η(ψ − δ −B))

)(
e+ cosψ
a(1 − e2)

+
η

ρ
sinψ exp(η(ψ − δ −B))

)
[(

ρ

Rd
− exp(η(ψ − δ −B))

)2

+ ε2

]3/2
,

Ω′
y,sp =

2ρ(1 + e cosψ)
A2(1 − e2)2

sinψ − 10(zs − zcrit)
sinψ

a(1 − e2)
− 10

(
1 − ρ

Rd

)

×
zξ

(
ρ

Rd
− exp(η(ψ − δ −B))

)(
sinψ

a(1 − e2)
− η

ρ
cosψ exp(η(ψ − δ −B))

)
[(

ρ

Rd
− exp(η(ψ − δ −B))

)2

+ ε2

]3/2
,

Ω′
z,sp =

−10ξ
(

1 − ρ

Rd

)
√(

ρ

Rd
− exp(η(ψ − δ −B))

)2

+ ε2

.

In the region of a spiral, the area of a surface-area
element increases as

dSspir ∼= dSpar/| cos γspir|, (16)

where cos γspir = nxnx,sp + nyny,sp + nznz,sp is the
cosine of the angle between the normals to the point
(nx, ny, nz) at the paraboloid and to the correspond-
ing point (nx,sp, ny,sp, nz,sp) in the spiral, and dSpar is
a unit area at the unperturbed paraboloidal surface of
the disk [see Eq. (9)]. The accuracy of this expression
increases with the number of unit areas at the disk
surface.
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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3. VERIFICATION OF CONDITIONS
FOR THE ECLIPSE AND HEATING

OF THE DISK BY EMISSION
FROM THE SYSTEM COMPONENTS

Heating of the disk surface. The method used to
calculate the temperature of an area element on the
paraboloidal part of the disk surface is described in
detail in our earlier papers [3, 25, 27]. The heating
is due primarily to the release of the gravitational
energy of the matter and its conversion into heat as
the matter approaches the surface of the white dwarf.
It is usually assumed that the variation of this “basic”
temperature follows the dependence [20]

Tg = Tw

(
Rw

ρ

)αg

, (17)

where ρ is the distance from the white dwarf’s center
to the center of the area element on the disk in the
orbital plane and αg is a parameter. In quiescence,
αg is close to 0.75; i.e., it is assumed that every
point on the disk surface radiates as a blackbody.
In outburst, when the emission flux increases by a
factor of hundreds, the value of αg can be reduced to
∼0.1, as is shown by numerous observations and their
analysis (see, e.g., [28, 29]). The heating of the disk
surface by the radiation of the white and red dwarfs
is less important. The method used to calculate the
contribution of all these factors to the temperature of
an area element is described in detail in [3]. The basic
temperatures of areas located in the regions of the
spiral arms increase by Tspir, i.e., T (i) = Td(i) + Tspir.

Below, we consider a method for testing whether
an area on the surface of a given component is
shielded from irradiation (or eclipsed) by spiral arms
that protrude above the surface of the unperturbed
disk. This procedure will be applied again (for different
radius vectors) to estimate the heating of areas on
the disk by the radiation of the white and red dwarfs
and to test whether the disk and white and red dwarfs
are eclipsed by the spiral arms. Let us describe this
procedure in its general form.

(i) Let us draw a ray r from the point (x1, y1, z1)
to the point (x2, y2, z2). The first point may repre-
sent the coordinates of the observer or the center of
an area (at the white dwarf or the pole of the red
dwarf) that undergoes either irradiation or eclipse.
The coordinates (x2, y2, z2) correspond to the area
under consideration, i.e., the area whose irradiation or
eclipse we are testing. The length of this ray is then

|r1| =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2,
(18)

and the coordinates of a unit vector along the ray are

nr =
r1
|r1|

=

{
x1 − x2

|r1|
,
y1 − y2

|r1|
,
z1 − z2

|r1|

}
. (19)
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(ii) Let us write the equation for the straight line
passing along the vector through the center of the
given area in the parametric form in the parameter τ

x = x2 + τnrx = x2 + τ
x1 − x2

|r1|
, (20)

y = y2 + τnry = y2 + τ
y1 − y2

|r1|
,

z = z2 + τnrz = z2 + τ
z1 − z2

|r1|
and test whether this line crosses the surface of the
spiral arm between the point (x1, y1, z1) and the
trial area.

(iii) For this purpose, we must solve the system of
equations for the straight line (20) and the equation
specifying the shape of the disk with spiral arms si-
multaneously for τ , taking into account any supple-
mentary conditions. The absence of solutions would
indicate that the line of sight does not cross the body
of the spiral arm; if the line of sight intersects the
spiral arm, we assume that the area is shielded from
irradiation. However, the equation for τ is rather com-
plex. Therefore, we propose the following method. We
specify for a given ray a step in τ , namely, τ = j∆τ .
The size of the step and the number of steps can be
different. Moreover, additional conditions can be used
to terminate the testing.

(iv) Applying (20), we calculate the moving coor-
dinates along the ray (xj, yj, zj) and test whether a
given point of the ray lies inside the region of the spiral
arm. To do this, we insert the coordinates (xj , yj)
into the expression for the scaling coefficient h in the
equation for paraboloidal disk with spiral arms:

h =
ξ√(

ρj

Rd(ψ)
− exp(η(ψ − δ −B))

)2

+ ε2

,

(21)

where ρj =
√
x2

j + y2
j . If h ≤ 1, the point under con-

sideration is located outside the spiral-arm region.
(v) If h > 0, we calculate the height of the disk zD

for the given ray coordinates (xj, yj) using the for-
mula zD = ρ2

j/A
2
p(j) − z0. Since Ap varies with the

rotation angle of the radius vectorψ [see (3)], we must
first find ψ. We calculate ψ0 = arcsin(yj/ρj), ψ = ψ0

if xj ≥ 0, yj ≥ 0, ψ = ψ0 + 2π if xj ≥ 0, yj < 0, and
ψ = π − ψ0 if xj < 0. The value of z0 is given by (4).
If the inequality

zDh ≤ z2 + τj
z1 − z2

|r1|
(22)
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Fig. 2. Sketch of the areas at the inner part of the disk located behind the crests of the spiral arms and shielded from heating
by the white dwarf. The sketch corresponds to the parameters q = 1.7, i = 0◦ (a) and 50◦ (b), disk eccentricity e = 0.10,
semimajor axis of the disk a = 0.378a0, semithickness of the outer edge of the disk zcrit = 0.0452a0 , Rw = 0.0277a0 , and
αe = 85.0◦. The parameters of the spiral arms are ξ = 0.2, η = 1.0, ε = 0.05, and δ = 0◦. The crosses mark the areas shielded
from heating by the crests of the spiral waves, the solid circles mark areas located in the spiral arms, and the crossed circles
mark areas in the spirals that are shielded from heating by the crest of a spiral (the areas in front of the crest are susceptible to
heating, while those behind the crest are shielded).
holds, the region of the disk with a spiral arm cor-
responding to the step j is located beneath the ray,
and the ray does not intersect the disk surface. If this
condition is not satisfied, we assume that the ray does
intersect the disk, so that the area is either unseen
(if the conditions for an eclipse are satisfied) or is
shielded from irradiation (if the conditions for heating
are satisfied).

(vi) If the moving point on the ray r1 coincides
with the edge of the disk, i.e., the relative value of
the radius vector ρj/Rd(ψ) is in the range 0.9–1.0,
inequality (22) is replaced by the inequality

zDh− 10(zDh− zcrit)(ρj/Rd(ψ) − 0.9) (23)

≤ z2 + τj
z1 − z2

|r1|
.

The test is continued until the ray touches the
point (x1, y1, z1) or until the supplementary condi-
tions noted in item (iii) are satisfied.

Thus, to test the conditions for heating of an
area on the disk surface, we replace the coordinates
(x2, y2, z2) with (xd, yd, zd) and the coordinates
(x1, y1, z1) with the coordinates of the center of the
area under study on the white dwarf (xw, yw, zw).
For the step in the parameter τ , we adopt ∆τ =
Rd(ψ)/100 (j = 1, . . . , 100); the supplementary con-
dition is the following: if inequalities (22) and (23)
are satisfied, the intersection of the ray with the area
is tested as long as expression x2(j) + y2(j)>R2

w is
satisfied.
Figure 2a shows a sketch in the plane of the sky
of the areas in the inner region of the disk that are
shielded from heating by the white dwarf’s radia-
tion because they are located behind the crests of
the spiral arms. The image is constructed for the
system parameters q = Mw/M2 = 1.7, i = 0◦, disk
eccentricity e = 0.1, semimajor axis of the disk a =
0.378a0 (where a0 is the distance between the centers
of mass of components), A = 2.8 (the corresponding
semithickness of the outer edge of the disk is zcrit =
0.0452a0), Rw = 0.0277a0, and αe = 85.0◦; the pa-
rameters of the spiral arms are ξ1 = ξ2 = 0.2, η = 1.0,
ε = 0.05, and δ = 0. The crosses show areas shielded
from irradiation by the crests of the spiral arms, solid
circles show areas located in the region of spiral arms,
and crossed circles show areas in the region of the
spiral arms that are shielded from irradiation by the
crests of the spiral (areas in front of the crests are sus-
ceptible to heating, while those behind the crests are
shielded). Figure 2b shows the same system, but for
the orbital inclination i = 50◦. The crests of the spiral
arms and shielding of the areas behind the crests from
the white-dwarf radiation are clearly visible.

Heating of the paraboloidal part of the disk by the
radiation of the polar regions of the optical star is
insignificant compared to the two previous heating
factors. Since the radiation of the red dwarf is weak
compared to that of its companion and the radiation
of regions of the red dwarf adjacent to the orbital
plane is shielded by the edge of the disk, we will
assume that an area on the disk can be heated by
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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(‡) (b)

Fig. 3. The surface of the disk heated by the radiation of the red dwarf. The system parameters are the same as those used for
Fig. 2. The orbital inclinations are i = 0◦ (a) and 50◦ (b). The solid circles show areas located in the regions of spiral arms,
and crosses show areas shielded from heating by the crests of the wave. We can clearly see that areas in front of the spiral arms
crests are susceptible to heating, while those behind the crests are shielded.
a point source with coordinates (cosαe, sinαe, zpol)
and luminosity Lpol if (a) it is located on the opposite
side of the paraboloidal disk from the red star, (b) it is
not shielded from irradiation by the edge of the disk,
(c) it is not shielded from irradiation by the white
dwarf, and (d) it is not shielded from irradiation by the
crests of each of the spiral arms. The test for the first
three conditions is described in detail in [3]. Testing
of the last condition following the procedure (i)–(vi)
described above is carried out for the coordinates of
the first and second points, (cosαe, sinαe, zpol) and
(xd, yd, zd), respectively.

Figure 3 shows the surface of the disk heated by
the red dwarf; the parameters of the system are as in
Fig. 2, and the orbital inclinations are i = 0◦ (Fig. 3a)
and 50◦ (Fig. 3b). Also shown by the solid circles
are areas that are located in the region of the spiral
arms, and by crosses areas shielded from heating by
the crests of the arms. We can clearly see that areas
in front of the crests are susceptible to heating, while
those behind the crests are shielded.

Figure 4 shows the dependence of the heights of
areas on the disk on their position angle, i.e., the
z coordinates of the areas (upper panel) and their local
temperatures, obtained by summing all the heating
factors (lower panel); the parameters of the system
are the same as those used for the sketch in Fig. 2.
The temperature of the white dwarf was assumed
to be the standard value, Tw = 20000 K, and the
additional temperature due to the heating of matter
by the spiral shock was taken to be Tspir = 500 K.
ASTRONOMYREPORTS Vol. 49 No. 10 2005
The figure clearly shows that the largest temperature
variations are displayed by area elements in the inner
part of the disk, close to the surface, and that they are
due mainly to variations of the distance between the
element and white dwarf due to the ellipticity of the
disk. The effects of shielding of area elements from
heating by the spiral-arm crests are more appreciable
in the outer regions of the disk (lower panel of Fig. 4);
Fig. 4 clearly shows the drop in the temperatures of
area elements located behind the crest of the corre-
sponding spiral arm.

Testing conditions for eclipse. The general prin-
ciple underlying the testing of the visibilities of area
elements on the surfaces of all the components is
described in detail in our earlier papers. Briefly, it is as
follows. Knowing the coordinates (xi, yi, zi) of a given
area on a selected component (which may be the red
dwarf, white dwarf, hot-line ellipsoid, the paraboloidal
or elliptical region of the disk, or the region of the spi-
ral arms on the disk) in the coordinate frame OXY Z
fixed to the red dwarf (Fig. 1) and the components of
the unit vector parallel to the line of sight,

ox = cosϕ0 sin i,

oy = sinϕ0 sin i,

oz = cos i,

(24)

where i is the orbital inclination of the system and
ϕ0 the orbital phase under consideration, we deter-
mine the angle γ between the normal vector to the



792 KHRUZINA

 

5000

200100 300 400°

 

ψ

 

10000

15000

 

T

 

, K

0.05

0.10

 
z
 
, 
 
a
 

0

Fig. 4. Dependence of the z coordinates of the disk areas (upper panel) and their local temperatures (lower panel) on the
position angle. The temperatures are obtained by summing all the heating factors. The parameters of the system are as in
Fig. 2; Tw = 20 000 K, Tspir = 500 K.
area element n in the OXY Z frame and a segment
that is directed opposite to the line of sight:

cos γ =
n · o
|n||o| . (25)

The visibility condition for the area, i.e., the condition
for the absence of self-eclipse, is cos γ > 0. If this
condition is satisfied, we check for the eclipse of the
area element by other components of the system. For
this, we construct a straight line in parametric form
through the center of the area element parallel to the
line of sight,

X = xi + tox,

Y = yi + toy,

Z = zi + toz,

(26)

and determine whether this line crosses the surfaces
of other components located between the observer
and the area element. As when testing for heating of
area elements by radiation from the system compo-
nents, in this case, we must simultaneously solve the
system of equations (26) with the equation describing
the shape of the component under consideration in
the OXY Z frame for the parameter t, taking into
account any supplementary conditions. The absence
of a solution indicates that the line of sight does
not cross the body of a particular component. If the
intersection occurs outside the region where the sup-
plementary conditions are satisfied or beyond the re-
gion between the observer and the area element, we
also assume that the area is not shielded and that
we must include its contribution to the total flux, in
accordance with its calculated temperature, size, and
viewing angle γ. However, due to the complexity of
the resulting expression for t, we will apply the shield-
ing verification algorithm (i)–(vi) described above to
test for shielding by the crests of spiral arms.

Testing for eclipse of the red dwarf by the
spiral-arm crests. To determine the step in the pa-
rameter t, let us first find the coordinates of the point
where the ray defined by t intersects the boundaries
of the paraboloidal region of the disk. This can easily
be accomplished during the testing for shielding of
an area element on the star by the paraboloidal disk
(for more details, see [3]). An area element on the
red-dwarf surface has the coordinates (x, y, z) in the
OXY Z frame, while the coordinates of the boundary
points of the paraboloidal disk are (xp1, yp1, zp1)
and (xp2, yp2, zp2), respectively. Let us determine the
length of the radius vectors drawn from the center of
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Fig. 5.Model curves representing the contribution of the accretion disk to the total emission from the system in the V filter as
a function of the increase in the temperature in the spiral arm Tspir due to heating by the spiral shock (for e = 0.1, αe = 120◦).
Curves 1, 2, 3, and 4 correspond to Tspir = 2000, 1000, 500, and 0 K, respectively. The parameters of the spiral arms are
ξ1 = ξ2 = 0.15, η = 1.0, ε = 0.05, and δ = 10◦; it is assumed that the angle between the two spiral arms is 180◦. Curve 5
(bold) shows the input of the disk without the spiral arms).
the area element under consideration on the stellar
surface to these points, applying formulas similar
to (18), and find their difference ∆r12. In this way,
we shall define the step in t to be ∆t = ∆r12/N ,
whereN is the selected number of steps. For our grid
(R, ηd, ψ) defining the paraboloidal disk, N = 100 is
sufficient.

Next, first applying formulas (26), we calculate the
moving coordinates of the point belonging to the ray
in theOXY Z frame and, then, using the formulas

x = (1 − x) cosαe + y sinαe,

y = (1 − x) sinαe − y cosαe,
(27)

determine their values in the OXY Z frame; further,
we apply steps (iv)–(vi) from the algorithm described
above.

Testing for shielding of the white dwarf, hot-
line ellipsoid, and paraboloidal disk by the crests
of the spiral arms. In this test, we use the same step
in t as in the algorithm used to test for heating of
an area element on the paraboloidal disk by radiation
from the white dwarf. As in the previous case, we
first calculate the coordinates of a point belonging to
ASTRONOMYREPORTS Vol. 49 No. 10 2005
the parametric curve in the OXY Z frame and then
use (27) to determine their values in theOXY Z frame
and apply steps (iv)–(vi) of the algorithm above.

4. MODEL COMPUTATIONS

We tested the sensitivity of the code to various
parameters, such as the temperature of the spiral
arms Tspir and longitude of the periastron of the ellip-
tical disk. Since spiral waves have thus far been ob-
served in the disks only of systems with component-
mass ratios q ∼ 1−3, we used a system with param-
eters close to those of the dwarf nova IP Peg derived
by us earlier [9] for the test runs: q = Mw/M2 = 1.7,
i = 80◦, Teff = 3400 K, Rw = 0.0061a0, and Tw =
16000 K. For the parameters of the disk, we used
values close to those obtained by us in [26] during
our study of a series of light curves of IP Peg in out-
burst. Namely, the radius of the disk at apoastron was
taken to be Rmax = 0.9ξw , where ξw is the distance
between the center of the white dwarf and the inner
Lagrangian point L1; the parameter specifying the
radial temperature distribution of the disk [Eq. (17)]
was decreased to αg = 0.575 (the radial temperature
distribution became flatter); the temperature of the
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matter in the surface layers of the disk reached Tin =
72000 K; and the height of the outer edge of the disk
above the orbital plane was zcrit = 0.048a0—i.e., the
disk was fairly thick (the corresponding value of the
paraboloid constant in Eq. (3) is A = 3).

Figure 5 shows model curves representing the
contribution of the accretion disk to the total emission
from the system in the V filter as a function of Tspir,
the additional temperature increase in the spiral arm
due to heating by the spiral shock. The disk ellipticity
is e = 0.1, and the azimuth of the disk periastron
is αe = 120◦. Curves 1, 2, 3, and 4 correspond to
Tspir = 2000, 1000, 500, and 0 K, respectively. Curve 5
(bold) shows the contribution of the disk without the
spiral arms. Curves 1–4 were calculated using the
parameters of the spiral arms ξ1 = ξ2 = 0.15, η = 1.0,
ε = 0.05, and δ = 10◦, assuming that the angle be-
tween the spiral arms is 180◦. The figure shows clearly
that, even in the absence of additional heating of the
matter in the spiral arms, curve 4 differs strongly
from the almost symmetric curve representing the
contribution of a disk unperturbed by spiral shocks
(curve 5); the reason for this is shielding of hot area
elements in the inner regions of the disk by the crests
of the spiral arms. The spiral arms contribute to the
total emission from the disk both during the eclipse
by the red dwarf and in out-of-eclipse orbital phases.
Considerable distortions of the flux are seen out of
eclipse, which become more prominent with increas-
ing Tspir and are manifested as dips at orbital phases
ϕ ∼ 0.2 and ∼0.7. The phase of the dip minima does
not depend on Tspir, due to the similar azimuths of the
spiral arms (δ = 10◦ and δ +B = 190◦) assumed in
the model.

Another parameter of the spiral shock that
strongly influences the shape of the light curve is ξ.
This parameter specifies the height of the spiral
arm above the surface of the paraboloidal disk in
its outer regions [see comments about Eq. (2)]. The
dependence of the out-of-eclipse contribution of the
disk to the total flux when ξ = ξ1 = ξ2 is shown in
Figs. 6a and 6b for cases when either two or one spiral
shock is present on the disk surface. Curves 1, 2, 3,
and 4were calculated for the same system parameters
as were used for Fig. 5 and for ξ = 0.10, 0.12, 0.14,
and 0.18, respectively. When ξ increases from∼0.1 to
∼0.2, the amplitude of the dip in the light curve of the
disk contribution at orbital phases ϕ ∼ 0.7–0.8 also
grows, in both the two-arm and one-arm cases. The
influence of ξ on the shape of the light curve at phases
ϕ ∼ 0.2–0.25 is considerably weaker: the difference
remains appreciable for the two-armed spiral, but the
flux from the disk at this phase for the one-armed
spiral is virtually independent of ξ.

Figure 7a shows the dependence of the contri-
bution of the disk emission to the total flux on the
azimuth of the disk periastron αe for a two-armed
spiral. The curves 1, 2, 3, 4, and 5 were calculated
for the same parameters as for the curves discussed
above and for αe = 60◦, 80◦, 100◦, 120◦, and 140◦, re-
spectively. The apoastron radius of the disk isRmax =
0.9ξw = 0.4989a0, the periastron radius is Rmin =
0.4082a0, and the disk eccentricity is e = 0.1; it was
assumed that Tspir = 2000 K. For small values of the
periastron azimuth (curves 1 and 2), the second dip at
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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phases ϕ > 0.7 nearly disappears, as it merges with
the decline of the disk flux in the eclipse. The dip at
orbital phases ϕ ∼ 0.2–0.25 is the only significant
feature of the disk emission curve. On the contrary,
for large values of αe (curves 4 and 5), the dip at
phases ϕ ∼ 0.7 is clearly visible, while the dip at
phases ϕ ∼ 0.2 is smeared and resembles a variation
of the slope of the emission during the egress from
the eclipse. The depth and shape of the disk eclipse
also vary with the periastron azimuth. Note that the
amplitude of the magnitude drop at phases ϕ ∼ 0.2
and ϕ ∼ 0.7 is determined, not by the influence of a
particular arm, but by the common influence of both
spiral arms at the disk surface. This follows from
Fig. 7b, which shows the disk contribution to the total
flux assuming the same parameters as for Fig. 7a,
but with a one-armed spiral located near the disk
periastron. We can clearly see that the curve for this
contribution changed only weakly, and the amplitude
of the out-of-eclipse variations diminished.

5. APPLICATION
OF THE SPIRAL-WAVE MODEL

TO DETERMINE THE PARAMETERS
OF IP Peg IN OUTBURST

We used our observations of IP Peg obtained dur-
ing a “normal” outburst of this system [26] to test
the suitability of our code for analyses of real cat-
aclysmic variables. IP Peg is a well-studied cata-
clysmic variable with a so-called “double eclipse” in
the light curve in its quiescent state. Such an eclipse
is observed for a very small number of cataclysmic
variables with large orbital inclinations, and it can
ASTRONOMYREPORTS Vol. 49 No. 10 2005
be used to follow in detail the ingress and egress of
various components of the system—the white dwarf,
disk, and region of energy release by the edge of
the disk. The parameters of IP Peg and a history of
studies of this system are described in detail in [9],
which is concerned with determining the parameters
of this system in the quiescent state in the hot-line
model. The orbital period of IP Peg is Porb = 3.8 h,
the outbursts occur at intervals of ∼100 days, and
the brightness of the system increases by ∼2.5m in
outburst, with the out-of-eclipse V brightness in-
creasing from ∼14.7m to ∼12.3m. The radius of the
disk experiences a significant growth in outburst [30]:
it is ∼0.24a0 in the quiescent state and increases to
∼(0.34–0.37)a0 in the active state, increasing further
with the system brightness, while the radial temper-
ature profile deviates significantly from the classical
“3/4” dependence. High-accuracy spectral observa-
tions of IP Peg in outburst show the presence of a
large-scale, bright azimuthal structure in the outer
regions of the disk [22, 31–35]. These structures re-
semble spiral arms inDoppler tomograms, with one of
the arms located in the disk region near the extension
of the gas-stream axis and the second arm located
symmetrically relative to the first and displaced in
azimuth by∼180◦. The contribution of the spiral arms
to the total flux is 12–15% of the disk flux, while the
intensity of the arm emission can differ by a factor of
a few units [13].

The V light curve of IP Peg (Table 1) obtained
using a CCD array at the Crimean station of the
Sternberg Astronomical Institute during an outburst
on October 30, 2000 (JD 2451848) is shown in Fig. 8
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by points with their error bars. The presence of a
“step” with a depth of up to ∼0.2m at orbital phases
0.67–0.70, which subsequently increases by ∼0.05m

at phases 0.80–0.85, is characteristic of both this
light curve and other orbital light curves obtained
during this outburst. These outburst light curves do
not have the orbital humps that are usual for the light
curves in quiescence, and the flux at ingress does not
differ much from the flux at egress.

We fit this light curve using hot-spot (the code
described in [27]) and hot-line [25] models, as well
as in models in which we applied the code described
above to allow for the presence at the surface of the
accretion disk of either a one-armed spiral shock
located near the periastron of the elliptical disk or a
two-armed spiral shock, with the second arm located
near the disk apoastron.We applied theNelder–Mead
method [36] to search for the best-fit parameters (this
algorithm is described in detail in our earlier papers;
see, e.g., [29]). The results of the fits obtained for these
four models are presented in Table 2; the light curves
synthesized with the best-fit parameters are shown by
the solid curves in Fig. 8. The mean error of the fitted
parameters is 10–12%. Some of the parameters (q, i,
Teff, Rw, η, and ε) were kept fixed, while others (Tw,
ξ,Rmax) were varied within a narrow range of allowed
values; this reduced the number of parameters to be
searched for.

All models describe the shape and depth of the
eclipse with sufficient accuracy. In all the models,
the size of the disk is close to the size of the Roche
lobe of the white dwarf, and the dependence of the
temperature on the disk radius is fairly flat and corre-
sponds to αg ∼ 0.544–0.545 [see Eq. (17)]. The main
differences between the models are manifested in the
out-of-eclipse part of the light curve.

In the commonly accepted model with a hot
spot located at the lateral surface of a circular disk
(Fig. 8a,′′ left plot), the additional temperature in-
crease in the hot-spot region is nearly equal to zero
(as indicated by the fitting solution). In other words,
there is no hot spot. This is expected, since the wings
of the eclipse light curve are symmetric due to the
absence of an orbital hump at phases ϕ ∼ 0.7–0.8.
The shape of the out-of-eclipse part of the synthe-
sized light curve is essentially symmetric, and it is not
able to describe the observed stepwise behavior of the
brightness. Accordingly, the χ2 residuals (χ2 = 622)
are larger for this than for the other models. Below,
we list the contribution of the system components
to the total flux in arbitrary units. The maximum
of the contribution (per unit wavelength) of the red
dwarf is 10.3 × 10−11a2

0 erg s−1 cm−3, of the disk is
55.3 × 10−11a2

0 erg s−1 cm−3, and of the hot-spot
region is 5.7 × 10−11a2

0 erg s−1 cm−3 (in fact, this is
ASTRONOMYREPORTS Vol. 49 No. 10 2005
Table 1. V Light curve of IP Peg during the outburst on
JD 2451848

Orbital
phase ϕ ∆V σ

0.0080 3.3043 0.0688

0.0186 2.9922 0.0676

0.0322 2.6116 0.0387

0.0481 2.4306 0.0195

0.0657 2.1038 0.0330

0.0878 1.9119 0.0241

0.1257 1.8148 0.0138

0.1748 1.7459 0.0142

0.2240 1.7230 0.0071

0.2696 1.7007 0.0150

0.3241 1.7165 0.0078

0.3729 1.6637 0.0072

0.4252 1.6757 0.0041

0.4762 1.6276 0.0027

0.5249 1.6297 0.0045

0.5741 1.6119 0.0054

0.6196 1.6719 0.0129

0.6593 1.7499 0.0100

0.7279 1.7606 0.0102

0.7770 1.7521 0.0047

0.8254 1.7445 0.0069

0.8608 1.7475 0.0109

0.8862 1.8418 0.0185

0.9063 1.9480 0.0352

0.9197 2.0580 0.0125

0.9337 2.2327 0.0238

0.9490 2.4477 0.0499

0.9724 3.0580 0.0359

0.9830 3.2430 0.0441

0.9913 3.3800 0.0046

0.9997 3.2150 0.0295
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Table 2. Parameters of IP Peg in the V filter during the October 30, 2000, outburst in various models

Parameters∗
Model

Hot spot Hot line Two-armed spiral One-armed spiral

General parameters of the system

q = Mw/M2 1.71 1.71 1.71 1.71

i, deg 80.2 80.2 80.2 80.2

Teff, K 3400 3400 3400 3380

〈R2〉/a0 0.344 0.344 0.344 0.344

Tw, K 16 895 16 691 16 700 16 600

Rw/a0 0.0061 0.0061 0.0061 0.0061

ξw/a0 0.555 0.555 0.555 0.555

Disk parameters

e 0.0 0.1251 0.1518 0.1524

Rmax/ξw 0.834 0.937 0.940 0.942

a/a0 0.4629 0.4620 0.4528 0.4537

Rmin/a0 0.4629 0.4041 0.3840 0.3846

Rmax/a0 0.4629 0.5198 0.5215 0.5229

zcrit/a0 0.0346 0.0411 0.0368 0.0428

αe, deg – 113.918 104.930 104.869

αg 0.5490 0.5451 0.5436 0.5438

Tin, K 74 585 71 190 70 850 70 115

Parameters of hot line

av/a0 – 0.1293 0.1030 0.1036

bv/a0 – 0.156 0.152 0.150

cv/a0 – 0.0656 0.0565 0.0661

Tv(2), K – 1842 1659 1961

Parameters of hot spot

rspot/a0 0.162 – – –

ϕspot 0.955 – – –

fspot 0.00009 – – –

Tspot, K 6 953 – – –

Parameters of the spiral waves on the disk

ξ – – 0.1318 0.1374

η – – 1.00 1.00

ε – – 0.05 0.05

δ, deg – – 9.36 9.27

Tspir, K – – 535.45 529.75

χ2 622 529 425 330
∗ a0 is the distance between the centers of mass of the white and red dwarfs; ξw is the distance from the center of mass of the white
dwarf and the inner Lagrangian point L1; Tv(2) is the temperature of the matter on the leeward side of the hot line (see the text); fspot is
a parameter used to estimate the temperature increase inside the hot spot relative to the temperature of the disk without the hot spot,
Tspot = Td(1 + fspot).
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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the flux from the region at the lateral surface of the
disk where the hot spot is formally located; because
the emitting part of the disk is receding from this
region, its contribution to the total flux at ingress
is smoother that at egress). The contribution of the
white-dwarf emission is constant out of eclipse and is
only 0.15 × 10−11a2

0 erg s−1 cm−3 (this curve is not
shown in the figure).

The out-of-eclipse part of the light curve is
described somewhat better in the hot-line model
(Fig. 8b). In the situation under consideration, the
hot line is manifested as a small protuberance on
the lateral side of the disk, which essentially does
not differ from a hot spot. The region of the ellipsoid
that is located on the side of the inflowing stream
is completely immersed in the body of the disk and
the pole of the ellipsoid is located near the lateral
surface of the disk, so that only a slight increase of
the emission flux from the leeward side of the hot line
is observed (a sketch of this situation can be seen
in Fig. 1, where the part of the hot line protruding
over the lateral surface of the disk is shaded). Here,
the region of energy release is quasi-ellipsoidal in
shape, with the minor axis being comparable to the
semithickness of the outer edge of the disk and the
major axis being twice this size. In this model, the
out-of-eclipse fraction of the synthesized light curve
is already asymmetric, but this asymmetry is due
primarily to the elliptical shape of the disk (Fig. 8b,
right plot). The contribution of the hot-line emission
to the total flux is negligible, as in the previous case.
The decrease in the residuals is due primarily to
the more accurate representation of the eclipse light
curve.

Both the two-armed (Fig. 8c) and one-armed
models (Fig. 8d) that take into account the presence
of spiral shocks on the disk surface reproduce the
variations of the out-of-eclipse brightness of IP Peg
in outburst somewhat better than the previous mod-
els. In the case of a one-armed spiral (Fig. 8d), a step
at phases ϕ ∼ 0.65–0.85 clearly forms on the light
curves synthesized for the best-fit parameters. The
plot to the right shows that the formation of the step
is determined purely by the emission of the disk with
the one-armed spiral structure on its surface: for a
given disk orientation, the crest of the spiral wave
shields both the hotter parts of the disk that are close
to the white dwarf and area elements that are heated
by radiation from the white and red dwarfs. The step
is less steep in the two-armed spiral model, due to
the contribution of the supplementary emission of
area elements located on the second arm and heated
by the flux from the white dwarf at these phases
(Fig. 2); moreover, deviations of the synthesized
light curve from the observed light curve at phases
ϕ ∼ 0.12–0.25 are more substantial in this case and
ASTRONOMYREPORTS Vol. 49 No. 10 2005
are due to the eclipse of the inner hot parts of the
disk by the crest of the second spiral arm. This effect
is absent in the one-armed model. The contribution
of the spiral structure to the total flux is 9–18% for
the one-armed spiral and up to 25–28% for the two-
armed spiral.

In general, for system parameters that are close to
the parameters of a real cataclysmic variable, namely,
IP Peg, the influence of the spiral arm located near
the disk apoastron on the light curve is not large and,
due to the uncertainties in the photometric observa-
tions, it is difficult to distinguish between the presence
of a one-armed or two-armed structure in the disk.
During other outbursts of IP Peg, steps in the out-
of-eclipse brightness were observed at both orbital
phases ϕ ∼ 0.15 and ∼0.7 [32, 34, 37].

6. CONCLUSION
We suggested earlier a model that includes an

extended region of energy release located along the
gas stream flowing around an elliptical disk sur-
rounding the white dwarf in a close binary system.
This model enables us to describe the observed light
curves of cataclysmic variables more fully than the
usual hot-spot model and its modifications. The hot-
line model is in good consistency with gas-dynamical
models of the mass flows in semidetached close
binary systems. These latter models should be used
as the basic models for interpreting the light curves of
cataclysmic binaries in quiescence and can provide a
suitable explanation for the anomalous light curves of
binary systems, the details of the “double eclipses”
in systems with large orbital inclinations, and the
light curves of U Gem-type systems, which have
photometric minima related not to the eclipse of the
white dwarf, but to the eclipse of the hot line in the
vicinity of the white dwarf. For the outburst state of
cataclysmic variables, gas-dynamical computations
provide evidence for the appearance of an additional
source of variability, related to the formation of a
spiral structure in the outer regions of the accretion
disk. We have presented here a light-curve synthesis
algorithm for close binaries with an evolved late spec-
tral type component and a white-dwarf component
surrounded by an accretion disk possessing a spiral
structure and with a region of energy release located
outside the accretion disk. This makes it possible to
reproduce both the light curve of the eclipse itself and
the out-of-eclipse parts of the outburst light curves
with sufficient accuracy. The set of algorithms we
have devised enables us to represent more completely
the variety of the light curves of cataclysmic variables,
both in outburst and in quiescence, when an increase
in the vertical thickness of the diskmay occur in some
close binaries, which can be considered a manifesta-
tion of a one-armed spiral structure in the disk.
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Abstract—Theoretical absorption-line profiles and radial-velocity curves for tidally deformed optical stars
in X-ray binary systems are calculated assuming LTE. The variations in the profile shapes and radial-
velocity curve of the optical star are analyzed as a function of the orbital inclination of the X-ray binary
system. The dependence of the shape of the radial-velocity curve on the orbital inclination i increases
with decreasing component-mass ratio q = mx/mv. The integrated line profiles and radial-velocity curves
of the optical star are calculated for the Cyg X-1 binary, which are then used to estimate the orbital
inclination and mass of the relativistic object: i < 43◦ andmx = 8.2−12.8M�. These estimates are in good
agreement with earlier results of fitting the radial-velocity curve of Cyg X-1 using a simpler model (i < 45◦,
mx = 9.0−13.2M�). c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION
The optical component in an X-ray binary system

is tidally deformed and has a complex temperature
distribution on its surface due to the effects of
gravitational darkening and X-ray heating. These
effects of the interaction between the components
give rise to orbital variability of the absorption-line
profiles of an optical star. The orbital variability of the
absorption profiles leads to a dependence of both the
half-amplitude and the shape of the radial-velocity
curve on the orbital inclination i and the component-
mass ratio q = mx/mv.

The dependence of the shape of the radial-velocity
curve of a tidally deformed optical star on the pa-
rameters of a close binary system was first pointed
out by Sofia and Wilson [1]. Antokhina and Chere-
pashchuk [2] and Shabaz [3] proposed a new
method for determining the component-mass ratio
q = mx/mv and orbital inclination i of an X-ray bi-
nary based on the orbital variability of the absorption-
line profiles in the spectrum of the optical star.
Abubekerov et al. [4] estimated the orbital inclination
of the X-ray binary Cyg X-1 using a high-accuracy
observational radial-velocity curve.

Here, we present the results of theoretical mod-
eling of the radial-velocity curve of the optical star
in a Roche model assuming LTE for various orbital
inclinations, for X-ray systems with low-, moderate-,
and high-mass optical stars. We analyze variations
in the radial-velocity curve with variations of i for
various values of q, together with the corresponding
variations in the Hγ absorption-line profile.
1063-7729/05/4910-0801$26.00
2. SYNTHESIS OF THE RADIAL-VELOCITY
CURVES FOR THE OPTICAL STAR

The synthesis of the theoretical absorption-line
profiles and radial-velocity curves for the optical
star in an X-ray binary system was carried out
using the algorithm described in detail by Antokhina
et al. [5, 6]. We will briefly summarize the basis of this
method here.

In the Roche model, the X-ray binary system con-
sists of an optical star and a pointlike X-ray source.
The star is tidally deformed and has a nonuniform
surface-temperature distribution due to the effects of
gravitational darkening and heating of the stellar sur-
face by the X-ray emission of the relativistic object.

The surface of the optical star was divided into
∼2600 area elements, for each of which we calculated
the emergent local radiation assuming LTE. Each
area element corresponds to a local temperature Tloc,
local gravitational acceleration gloc, and local value
of the parameter klocx , which is equal to the ratio of
the incident X-ray flux and the outgoing radiation
flux without allowance for external irradiation of the
atmosphere. Using these parameter values at a given
point of the surface, a model for the atmosphere is
calculated by solving the equation of line radiative
transfer in the presence of incident external X-ray
radiation. In this way, we can compute the intensity
of the outgoing radiation in the line and continuum
for each local area element. At different phases of the
orbital period, the contributions of the areas to the to-
tal radiation are summed taking into account Doppler
c© 2005 Pleiades Publishing, Inc.
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Table 1. Numerical values of parameters used to synthesize the radial-velocity curves of the optical component in the
Roche model

P , day 5.0 Period

mx,M� 10 Mass of the compact object

mv,M� var∗ Mass of the optical star

e 0.0 Eccentricity

i, deg 30, 60, 90 Orbital inclination

µ 1.0 Roche lobe filling coefficient for the optical star

f 1.0 Asynchronicity coefficient for the rotation of the optical star

Teff, K var∗ Effective temperature of the optical star

β 0.25∗∗ Gravitational-darkening coefficient

kx 0.1 Ratio of the X-ray luminosity of the relativistic component to the
bolometric luminosity of the optical component Lx/Lv

A 0.5 Reprocessing coefficient for the X-ray radiation

u 0.3 Limb-darkening coefficient
∗ Parameter of the X-ray binary was varied during the model computations.

∗∗ When the mass of the optical star was mv = 1M�, the gravitational-darkening coefficient was taken to be β = 0.08.
effects and the conditions for visibility of the areas by
an observer. This yields the total radiation flux from
the star in the direction toward the observer in the
continuum and a rotationally broadened spectral-line
profile that can be used to derive the radial velocity of
the star.

Since the observed radial-velocity curves for
OB stars have been derived primarily from hydrogen
Balmer absorption lines, we synthesized theoretical
radial-velocity curves for the Hγ line of the optical
star. The radial velocity at a given orbital phase was
calculated using themean wavelength at the 1/3, 1/2,
and 2/3 levels of themaximum depth of the integrated
absorption-line profile.

In addition, in order to estimate the uncertainties
in the modeling, we carried out computations for the
same situations using our previous algorithm for syn-
thesizing theoretical radial-velocity curves, used ear-
lier to analyze the radial-velocity curves of OB super-
giants in X-ray binaries with neutron stars [7] and in
the Cyg X-1 system [4]. This algorithm was proposed
by Antokhina and Cherepashchuk [8] in 1994. The
main difference from ourmore modern algorithm [5, 6]
is that the local profile of an area element is found,
not by constructing a model atmosphere and calcu-
lating the intensity of the outgoing radiation in the
line and continuum (taking into account reprocessing
of the external X-ray radiation), but instead using
computed and tabulated Kurucz Balmer absorption-
line profiles for various effective temperatures Teff and
gravitational accelerations g. In addition, the effect of
heating of the stellar atmosphere by X-ray radiation
from its companion was taken into account only in a
simple way, by adding the outgoing and incident flux
units without taking into account radiative transfer in
the stellar atmosphere.

In addition to its simplified treatment of the reflec-
tion effect, this method for calculating the hydrogen
absorption-line profiles is not entirely correct, since
the tables of Kurucz [9] present the theoretical line
profiles in relative flux units and not intensities. How-
ever, since we are using the theoretical line profiles to
derive radial velocities, and not for comparisons with
observed spectral lines, we consider this approxima-
tion to be acceptable. In addition, calculating the the-
oretical radial-velocity curves using the algorithm de-
scribed based on the tables of Kurucz requires com-
paratively little computer time. The use of the more
modern algorithm [5, 6], which calculates a model at-
mosphere for each local area element, requires appre-
ciably more computer time and became possible only
relatively recently with the appearance of computers
with processing rates of 1 GHz or higher.

One drawback of the new algorithm is the absence
of a contribution to the integrated absorption-line
profile of the optical star from the local profiles of areas
near the limb of the stellar disk (the requirement of
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Table 2.Mass and corresponding effective temperature of the optical star

mv,M� T ∗
eff, K T ∗∗

eff , K T ∗∗∗
eff , K

Range of atmospheric parameter values
on the stellar surface in the Roche model S, %

log g Teff, K

1 – 5500 5500 2.02–3.15 2800–5930 89

5 14 000 12 000 12 000 2.02–3.16 6570–12 820 93

10 17 000 15 000 16 000 2.13–3.22 9190–17 060 94

20 26 000 23 000 23 000 2.23–3.25 14 020–24 540 94

30 29 000 28 000 29 000 2.28–3.26 18 390–31 010 96

Note: T ∗
eff and T ∗∗

eff are the temperatures of the optical star according to the mass–luminosity relations of [11] and [12]; T ∗∗∗
eff is the

temperature of the optical star used to compute the radial-velocity curves in the current study; and S the fraction of the area of the
stellar surface where the temperature differs from the mean effective temperature T ∗∗∗

eff by no more than 10%.
the boundary conditions [5, 6]). At the same time,
for real optical stars, the local profiles of areas near
the disk limb are nonzero and will make a significant
contribution to an integrated absorption-line profile.
Note that the old algorithm was free of this effect of
“zeroing” the contributions of the local profiles for
areas near the disk limb.

We used both these algorithms to synthesize the
theoretical radial-velocity curves for all the model
problems considered. The results of these computa-
tions using these two methods are compared below.

Table 1 presents the parameters of the X-ray bi-
nary for which the modeling was carried out. The
numerical values of the parameters of the modeled
close binary were adopted based on the catalog [10],
as being the most characteristic values.

We synthesized radial-velocity curves for optical
stars with masses mv = 1, 5, 10, 20, 30M� (the
remaining parameters of the modeled binary system
are presented in Table 1). In order to investigate the
dependence of the shape of the radial-velocity curve
on the orbital inclination i, we synthesized radial-
velocity curves for i = 30◦, 60◦, and 90◦.

When modeling the radial-velocity curves of an
optical star with mass mv = 30M� using the tables
of Kurucz [9], the local gravitational acceleration gloc
and local temperature Tloc at the surface of the optical
star fell outside the range of tabulated values, so
that there were no tabulated profiles for some of the
local areas. The number of such areas was modest
(about 10–20% of the total) and they were all located
on the “nose” of the filled Roche lobe of the optical
component. In this case, the profiles of all the areas
were taken to be the same. We used the profile of the
Hγ line for the mean effective temperature and the
mean gravitational acceleration at the stellar surface
ASTRONOMYREPORTS Vol. 49 No. 10 2005
as the local profile. The accuracy of this approxima-
tion was tested in test computation 1 presented below.

We should also qualify the situation with regard
to the mean effective temperature of the optical star.
The mean temperature of the Roche lobe filling star is
given by the expression Teff =

∫
TlocdS

/∫
dS, where

the integration is carried out over the entire surface of
the tidally deformed star. Table 2 presents estimates
of the effective temperature based on the mass–
luminosity relations of Herrero [11] and Straizhis [12].
We can see that the effective temperatures of the star
obtained in different ways are appreciably different.
Therefore, we carried out a test computation (test
computation 2) in order to quantitatively estimate the
influence of the effective temperature of the optical
star on the theoretical radial-velocity curve. We
took the mean effective temperature of the tidally
deformed star to be the mean effective temperature
of a spherical star with the same volume. The results
of the test computations are presented below.

Table 2 also presents the range of effective temper-
atures and gravitational accelerations at the surface
of the optical star in the Roche model. Note that the
number of local area elements whose temperature Tloc
differs from the adopted effective temperature T ∗∗∗

eff by
more than 10% is very small.

Test Computation 1: Influence
of the Local-Profile Approximation

on the Theoretical Radial-Velocity Curve

As we indicated above, the test computations
check the difference in the radial velocities calculated
using the two methods and the tables of Kurucz [9].
We synthesized the radial-velocity curve for an optical
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Fig. 1. Test computation 1. (a) Model radial-velocity
curve for an optical star with mv = 10M� and Teff =
15 000 K for i = 90◦ (solid) together with the same curve
obtained assuming that the shape of the local profile is
constant (dashed). The two radial-velocity curves vir-
tually coincide on the scale shown. These curves were
calculated using the tabulated Hγ line profiles (in flux
units) of Kurucz. (b) Difference between the absolute
values of the radial velocities. See text for more detail.

star with mass mv = 10M� and mean effective
surface temperature Teff = 15000 K (the remaining
binary parameters can be found in Table 1); each
local area is specified in the LTE approximation in
accordance with its local Hγ absorption profile from
the tables of Kurucz (solid curve in Fig. 1a). We then
constructed the radial-velocity curve for the optical
star specifying the shapes of the local profiles for all
the area elements to be the same, but taking into
account normalization to the continuum over the
stellar surface when summing the area profiles. For
the constant profile shape, we used the Hγ absorption
profile for the mean effective temperature and gravi-
tational acceleration of the optical star. In the case
of a star with mv = 10M�, we used the tabulated
profile of Kurucz [9] corresponding to Tloc = 15000 K
and log gloc = 3.2. The resulting radial-velocity curve
is shown by the dotted curve in Fig. 1a. Figure 1b
shows the difference between the absolute values of
the radial velocities obtained using the “intrinsic”
local profiles and assuming identical local profiles for
each area element. We can see that the difference
between the curves does not exceed 1.7 km/s, or∼1%
of the half-amplitude of the radial-velocity curve.
An analogous computation was carried out for a
close X-ray binary with an optical star with mass
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Fig. 2. Same as Fig. 1 for the parameters of the optical
star mv = 20M� and Teff = 23 000 K.

mv = 20M�. The resulting radial-velocity curves
are shown in Fig. 2a. In this case, the discrepancy
between the radial-velocity curves does not exceed
2 km/s, or 1.6% of the radial-velocity half-amplitude
(Fig. 2b).

Test Computation 2: Influence
of the Effective Temperature of the Optical Star

on the Theoretical Radial-Velocity Curve

As we noted above, the effective temperature of the
optical star is usually not known exactly. We can see
from Table 2 that the observed effective temperatures
derived from the mass–luminosity relations of [11,
12] are somewhat different. Therefore, we carried
out a test computation to estimate the influence of
the effective temperature of the optical star on the
theoretical radial-velocity curve. We synthesized a
radial-velocity curve for a close binary with an optical
star with mass mv = 10M� and orbital inclination
i = 90◦ for Teff = 10000 K and Teff = 17000 K (hav-
ing especially chosen a wide range of variation for the
effective temperature). The resulting radial-velocity
curves are shown in Fig. 3a (see Table 1 for the
remaining binary parameters). Since the discrepancy
between the curves is insignificant, Fig. 3b presents
the difference between their absolute values, ∆ =
|Vr(Teff = 17000 K)| − |Vr(Teff = 10000 K)|, where
|Vr(Teff = 17000 K)| and |Vr(Teff = 10000 K)| are the
absolute values of the radial velocity of the optical star
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Fig. 3. Test computation 2. (a) Model radial-velocity
curves of an optical star with mv = 10M�, i = 90◦, and
Teff = 10 000 K (solid) and Teff = 17 000 K (dashed). The
curves were calculated using the tabulated Hγ profiles
(in flux units) of Kurucz. (b) Difference between the
absolute values of the radial velocities ∆ = |Vr(Teff =
17 000 K)| − |Vr(Teff = 10 000 K)|. See text for more
detail.

in the Roche model for mean effective surface tem-
peratures of Teff = 17000 K and Teff = 10000 K. We
can see from Fig. 3b that the maximum discrepancy
between these two values occurs at orbital phases
0.35–0.45, and reaches 5 km/s, or 2.6% of the radial-
velocity half-amplitude.

We can see from the test computation that the
uncertainty in the mean effective temperature of the
optical star (∆Teff � 5000−7000 K) has an apprecia-
ble effect on the shape of the radial-velocity curve.
The variations in the radial-velocity curve are different
at different orbital phases (Fig. 3b). These variations
are maximum at phases 0.35–0.45, where they reach
∼3% of the radial-velocity half-amplitude. As we
noted above, the uncertainty in the effective tempera-
ture was artificially increased in the test computation.
According to Table 2, the maximum uncertainty in
the effective temperature does not exceed 3000 K,
so that the corresponding variations in the radial-
velocity curve should not exceed ∼1%.

Our computations indicate that the mean effec-
tive temperature of the optical star, Teff, should be
known as accurately as possible when using radial-
velocity curves to determine the parameters of a bi-
nary system.
ASTRONOMYREPORTS Vol. 49 No. 10 2005
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Fig. 4. Theoretical CaI 6439 Å absorption profiles with-
out allowance for an instrumental profile (calculated
with the new algorithm [5, 6]) at orbital phase φ = 0.0
for orbital inclination i = 30◦ (solid) and at orbital
phase φ = 0.35 for i = 30◦ (dotted), 60◦ (dash-dotted),
and 90◦ (dashed). The model profiles were obtained as-
suming LTE and a mass and effective temperature for the
optical starmv = 1M� and Teff = 5500K (see Table 1 for
the remaining parameters). The CaI 6439 Å absorption
profiles for phase 0.35 have been corrected for the Doppler
shifts due to the orbital motion.

3. DEPENDENCE OF THE SHAPE
OF THE RADIAL-VELOCITY CURVE

ON THE COMPONENT-MASS RATIO q
AND ORBITAL INCLINATION i

We also calculated radial-velocity curves with and
without allowing for the influence of the instrumental
function on the theoretical integrated profile.

Calculated Radial-Velocity Curves
without Account of the Instrumental Function

on the Theoretical Absorption Profile

We synthesized radial-velocity curves in the
Roche model assuming LTE for optical stars with
masses mv = 1, 5, 10, 20, and 30M� (see Table 1 for
the remaining parameters of the X-ray binary). For
the optical star with mass mv = 1M�, the synthesis
was carried out for the CaI 6439 Å absorption line.
The radial-velocity curve syntheses for the stars with
masses mv = 5, 10, 20, and 30M� were performed
for the Hγ absorption line using the two methods
described above (calculating the intensity of the local
profile of each area element based on a constructed
model atmosphere [5, 6] and based on the tabulated
line profiles in flux units of Kurucz [8, 13]). The
theoretical integrated CaI 6439 Å and Hγ absorption
profiles are presented in Figs. 4 and 5. For each
value ofmv, we synthesized radial-velocity curves for



806 ABUBEKEROV et al.

 

0.9

4334 4336

 
I
 

λ

 

, 

 

Å

 

4340 4342 4346
0.6

1.0

 

i

 

 = 30° 

 

φ

 

 = 0

 

i

 

 = 30° 

 

φ

 

 = 0.35

 

i

 

 = 60° 

 

φ

 

 = 0.35

 

i

 

 = 90° 

 

φ

 

 = 0.35

 

4338 4344

0.8

0.7

Fig. 5. Same as Fig. 4 for the Hγ absorption line with
mv = 20M� and Teff = 23 000 K.

orbital inclinations i = 30◦, i = 60◦, and i = 90◦. The
resulting theoretical radial-velocity curves for optical
stars with masses mv = 1M�, 20M�, and 30M�
are presented in Figs. 6a, 7a, and 8a.

The half-amplitude of the radial-velocity curveKv

increases with increasing orbital inclination i
(Figs. 6a, 7a, 8a). Therefore, each theoretical radial-
velocity curve was normalized to its value of Kv,
which was taken to be the maximum radial ve-
locity in the orbital-phase interval 0.0–0.5. The
normalized radial-velocity curves for optical stars
with masses mv = 1, 20, 30M� are presented in
Figs. 6b, 7b, 8b. Since the effect of the differences
in the shapes of the curves is small (relative to the
half-amplitude Kv), we calculated the differences of
the absolute values of the normalized radial velocities
∆ = |Vnorm(i = 90◦)| − |Vnorm(i = 30◦)| and ∆ =
|Vnorm(i = 90◦)| − |Vnorm(i = 60◦)|, where |Vnorm(i =
90◦)|, |Vnorm(i = 60◦)|, and |Vnorm(i = 30◦)| are the
absolute values of the normalized radial veloci-
ties for orbital inclinations of i = 90◦, i = 60◦, and
i = 30◦. The maximum differences between the nor-
malized radial-velocity curves obtained using the two
methods for optical stars with masses mv = 1, 20,
30M� are reached at orbital phases 0.35–0.45 and
0.55–0.65 (Tables 3 and 4). We denote ∆I and ∆F to
be the maximum variations in the shape of the radial-
velocity curve for variations in the orbital inclination
obtained using the new algorithm of [5, 6] and the
theoretical line profiles of Kurucz [8, 13], respectively.

The difference in the absolute values of the nor-
malized radial velocities for optical stars with masses
mv = 1, 20, 30M� are presented in Figs. 6c, 7c, 8c.
We can see from these figures that the maximum
difference between the radial-velocity curves obtained
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Fig. 6. (a) Theoretical radial-velocity curve of an optical
star with mv = 1M�, Teff = 5500 K calculated with-
out allowance for the effect of the instrumental func-
tion on the integrated CaI 6439 Å absorption profile for
orbital inclinations i = 30◦ (dotted), 60◦ (dash-dotted),
and 90◦ (solid) (see Table 1 for remaining parameters).
The radial-velocity curves were calculated using the new
algorithm [5, 6]. (b) The same curves normalized to
their half-amplitudes for i = 30◦ (dotted), 60◦ (dash-
dotted), and 90◦ (solid). The curves nearly coincide on
this scale. (c) Difference between the absolute values of
the normalized radial velocities ∆I = |Vnorm(i = 90◦)| −
|Vnorm(i = 60◦)| (dashed) and ∆I = |Vnorm(i = 90◦)| −
|Vnorm(i = 30◦)| (solid). The quantity∆I is given in units
of the half-amplitude of the radial-velocity curve Kv (for
more detail, see text).

for different values of i occurs at orbital phases
0.35–0.45 and 0.55–0.65.

It follows from the computations that the varia-
tions in the shape of the radial-velocity curve depend
on both the orbital inclination i and the component-
mass ratio q = mx/mv. For example, the maximum
variations in this curve (in units of the radial-velocity
half-amplitude) when the inclination is changed from
i = 30◦ to i = 90◦ for optical stars with massesmv =
1, 5, 10, 20, and 30M� are ∆F = 0.9, 3.2, 4.6, 5.7,
and 8%, respectively.

Thus, the variations in the shape of the radial-
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Fig. 7. (а) Theoretical radial-velocity curve of an op-
tical star with mv = 20M�, Teff = 23 000 K calculated
without allowance for the effect of the instrumental func-
tion on the integrated Hγ absorption profile for or-
bital inclinations i = 30◦ (dotted), 60◦ (dash-dotted),
and 90◦ (solid) (see Table 1 for remaining parame-
ters). The radial-velocity curves were calculated using
the old algorithm [8, 13] (using the tabulated Hγ ab-
sorption profiles of Kurucz in flux units). (b) The same
curves normalized to their half-amplitudes for i = 30◦

(dotted), 60◦ (dash-dotted), and 90◦ (solid). (c) Differ-
ence between the absolute values of the normalized ra-
dial velocities ∆F = |Vnorm(i = 90◦)| − |Vnorm(i = 60◦)|
(dashed) and ∆F = |Vnorm(i = 90◦)| − |Vnorm(i = 30◦)|
(solid). The quantity ∆F is given in units of the half-
amplitude of the radial-velocity curve Kv (for more detail
see text).

velocity curve with changes in the orbital inclina-
tion are most clearly expressed in systems with low
component-mass ratios q = mx/mv. This is due to
the fact that, when q < 1, the center of mass of the
binary system lies inside the body of the optical star,
so that, during the orbital motion, the part of the
stellar surface lying inside the inner Lagrangian point
moves in the same direction as the relativistic ob-
ject. This leads to strong distortion of the integrated
absorption-line profile that depends on both i and q.
ASTRONOMYREPORTS Vol. 49 No. 10 2005
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mv = 30M� and Teff = 29 000 K.

Computation of Radial-Velocity Curves
Including the Effect of the Instrumental Function

on the Theoretical Absorption Profiles

As in the previous case, the radial-velocity curve
synthesis was carried out for optical stars with
masses mv = 1, 5, 10, 20, and 30M� (see Table 1
for the remaining binary parameters). We used a
Gaussian profile for the instrumental function of the
spectrograph. The CaI 6439 Å line was convolved
with an instrumental function with a full width
at half maximum intensity FWHM = 1 Å. When
synthesizing the curves for stars with masses mv =
5, 10, 20, and 30M�, the theoretical Hγ profile
was convolved with an instrumental function with
FWHM = 7 Å. The convolved theoretical CaI 6439 Å
and Hγ absorption profiles are presented in Figs. 9
and 10, respectively.

We investigated the variations of the radial-
velocity curves with variations of the orbital in-
clination analogous to those described above. As
earlier, the maximum changes in the curves occurred
at phases 0.35–0.45. The variations in the radial-
velocity curve obtained when the inclination was
changed from i = 60◦ to i = 90◦ are given in Table 5.
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Table 3. Maximum variation of the shape of the radial-
velocity curve in the Roche model for variations of the
orbital inclination from 60◦ to 90◦

mv,M� ∆I , % ∆F , %

1 0.3 –

5 0.4 1.1

10 0.6 1.5

20 1.1 2.3

30 1.9 2.9

Note: The quantities ∆I and ∆F are expressed in units of the
half-amplitude Kv . See text for more detail.

The analogous results for the case when the inclina-
tion is changed from i = 30◦ to i = 90◦ are given in
Table 6. A comparison of Tables 3, 4 and 5, 6 shows
that the results obtained with and without the effect
of the instrumental profile coincide within reasonable
errors for the computed integrated profiles.

Thus, the variations in the shape of the radial-
velocity curve with orbital inclination are not “washed
out” by the instrumental function of the spectrograph,
leaving intact the possibility of estimating the orbital
inclination of a binary system using accurate obser-
vations of the radial-velocity curve. Estimating the
orbital inclination of a system with a given mass for
its optical star reduces to a required accuracy for the
radial-velocity observations. For example, for binary
systems with optical-star masses mv = 20−30M�
(close to filling their Roche lobes), the accuracy in the
radial velocities must be better than 7–8% of the half-
amplitude of the radial-velocity curve, Kv . For sys-
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Table 4. Maximum variation of the shape of the radial-
velocity curve in the Roche model for variations of the
orbital inclination from 30◦ to 90◦

mv,M� ∆I , % ∆F , %

1 0.9 –

5 1.5 3.2

10 2.5 4.6

20 4.2 5.7

30 6.5 8.0

Note: The quantities ∆I and ∆F are expressed in units of the
half-amplitude Kv . See text for more detail.

tems with optical-star massesmv = 1−10M� (close
to filling their Roche lobes), this accuracy must be
better than 1–4% of Kv . The orbital inclination of
the Cyg X-1 system estimated using an accurate
radial-velocity curve is presented in [4]; the accuracy
in the observed radial velocities σVr was ∼3% of
the half-amplitude Kv. For an optical-star mass of
mv � 20M�, this made it possible to place a limit on
the orbital inclination of i < 45◦ based purely on the
observed radial-velocity curve.

4. FITTING THE OBSERVED
RADIAL-VELOCITY CURVE
OF THE Cyg X-1 SYSTEM

The fitting of the mean radial-velocity curve for
Cyg X-1 presented in [4] was carried out with the ear-
lier algorithm, which used the tabulated Hγ profiles
of Kurucz [9] in fluxes for the local profiles of the area
elements. However, as we can see from Tables 3–6,
the effects of varying the shapes of the radial-velocity
curves calculated using the old and new algorithms
are somewhat different. For this reason, we decided
to fit the accurate mean radial-velocity curve con-
sidered in [4] using the new algorithm, in which the
integrated Hγ absorption profiles are calculated in in-
tensity units based onmodel atmospheres for the local
area elements [5, 6]. The calculations based on the
old algorithm yielded a mass for the compact object
in the Cyg X-1 binary of mx = 9.0−13.2M� [4]. No
model for the binary system with an orbital inclination
i < 45◦ is consistent with the accurate observational
radial-velocity curve [4].

We used the Fisher statistical criterion to test the
adequacy of themodel description of the observational
data. Themethod used is described in detail in [4], and
we do not present it here. As in our earlier work [4], the
test of the model description of the observational data
was made for the α = 5% significance level.
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Table 5. Maximum variation of the shape of the radial-
velocity curve in the Roche model for variations of the
orbital inclination from 60◦ to 90◦, including the effect
of the instrumental function on the theoretical integrated
absorption profile

mv,M� ∆I , % ∆F , %

1 0.3 –

5 0.4 1.1

10 0.6 1.4

20 1.1 1.7

30 2.0 3.0

Note: The quantities ∆I and ∆F are expressed in units of the
half-amplitude Kv . See text for more detail.

Fits of the radial-velocity curve using the new
algorithm were obtained both with and without in-
cluding the effect of the instrumental function on the
model integrated Hγ absorption profile of the opti-
cal star. The width of the instrumental function was
taken to be FWHM = 7 Å. Fitting was carried out for
masses of the optical star mv = 20, 30, 40, 50, and
60M�; the remaining model parameters are given
in Table 2 in [4]. This analysis yielded dependences
between the masses of the optical star and of the
relativistic object for orbital inclinations i = 30◦, 35◦,
40◦, 45◦, 55◦, and 65◦, presented in Fig. 11.

As before, the results for orbital inclinations
i < 45◦ are rejected at the 5% significance level. The
mass estimates obtained are presented in Tables 7
and 8.

If the mass of the optical star is mv =
22M� [4, 11], the orbital inclination does not exceed
i = 43◦ (Fig. 11). Since analysis of the photomet-
ric light curve places a lower limit on the orbital
inclination of i > 31◦ [14], we can conclude that
the mass of the relativistic object in the Cyg X-1
binary (for a mass of the optical star mv = 22M�)
lies in the ranges mx = 8.4−12.8M� (Fig. 11a)
and mx = 8.2−12.6M� (Fig. 11b). Recall that our
earlier results for Cyg X-1 [4] indicated an orbital
inclination i < 45◦ and a mass of the relativistic
object mx = 9.0−13.2M� (for a mass of the optical
star mv = 22M�). Thus, the results obtained for the
new (more correct) [5, 6] and old [8, 13] algorithms
are in good agreement.

Based on the example of the Cyg X-1 system, we
can see that the accuracy of themean observed radial-
velocity curve, 3% (of a half-amplitude of∼75 km/s),
was sufficient to place constraints on the orbital incli-
nation of the binary system and estimate the mass of
the black hole based on a single radial-velocity curve.
ASTRONOMYREPORTS Vol. 49 No. 10 2005
Table 6. Maximum variation of the shape of the radial-
velocity curve in the Roche model for variations of the
orbital inclination from 30◦ to 90◦, including the effect
of the instrumental function on the theoretical integrated
absorption profile

mv,M� ∆I , % ∆F , %

1 0.9 –

5 1.6 3.3

10 2.4 4.2

20 4.2 5.5

30 6.8 8.7

Note: The quantities ∆I and ∆F are expressed in units of the
half-amplitude Kv . See text for more detail.

5. DISCUSSION

The model computations show that the variations
in the shape of the radial-velocity curve of the opti-
cal star with variations in the orbital inclination are
more clearly expressed in binaries with massive op-
tical components (or low component-mass ratios q =
mx/mv). In addition, these variations are qualitatively
similar for optical stars with low, moderate, and high
masses—the largest variations (in units of the half-
amplitudeKv) occur at orbital phases 0.35–0.45 and
0.55–0.65.

The variations in the shape of the radial-velocity
curve are related to variations in the absorption-line
profiles used to determine the radial velocities. Recall
that the radial velocities were determined for themean
wavelength found for three levels: 1/3, 1/2, and 2/3
of the maximum depth of the absorption line. The
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Fig. 11. (a) Dependence of themass of the compact object in the X-ray binary Cyg X-1 on themass of the optical star for orbital
inclinations i = 30◦, 35◦, 40◦, 45◦, 55◦, and 65◦, obtained in the Roche model fitting the mean high-accuracy radial-velocity
curve from [4]. The orbital inclination is indicated next to the corresponding curve. (b) Same as (a) but including the effect of an
instrumental profile with FWHM = 7 Å on the calculated integrated Hγ profile of the optical star. The new algorithm of [5, 6]
was used when calculating the integrated Hγ profiles and radial-velocity curves.
shape of an absorption line associated with the op-
tical star in a close binary undergoes variations due
to both its orbital motion and changes in the line
of sight from the observer toward the system. The
dependence of the shape of such an absorption profile
due to the star’s orbital motion is discussed in [1–3]
and is associated with variations in the shape of the
projection of the optical star onto the plane of the
sky. Let us now consider how variations in the binary
orbital inclination i affect the shape of the absorption-
line profiles and radial-velocity curve.

An optical star in a binary that is close to filling
its Roche lobe is tidally deformed and has complex
distributions of the velocity, temperature, and gravita-
tional acceleration over its surface. Therefore, regions
of the optical component with qualitatively different
parameters are projected onto the plane of the sky of
the observer when the orbital inclination i is varied
(Fig. 12). This leads to variations in the absorption
profiles, which, in turn, lead to variations in the radial-
velocity curve. Figures 4 and 5 present the integrated
absorption profiles for the CaI 6439 Å and Hγ lines
obtained without including the effect of the instru-
mental profile for orbital inclinations i = 30◦, 60◦,
and 90◦. It is clear that the profiles obtained for the
different orbital inclinations are different. The profiles
are appreciably asymmetric, and this asymmetry in-
creases with increasing values of i.

The dependence of the absorption profiles and
radial-velocity curve on i grows as the component-
mass ratio q decreases. Returning to the compu-
tational results, we see that, when q = 1−10, the
variations in the radial-velocity curve are ∼1−4%
(Fig. 6), while, when q = 0.3−0.5, these variations
increase to∼4−8% (Figs. 7 and 8). It is clear that the
magnitude of the dependence of the radial-velocity
curve on i grows with decreasing q = mx/mv. This
is due to the spatial disposition of the center of mass
of the binary relative to the body of the optical star.
As q decreases, the barycenter of the binary system
shifts toward the optical component, with the center
of mass lying inside the body of the optical star when
q < 1. In this case (q < 1), the nose of the optical star
moves in the same direction along the orbit as the
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Table 7. Mass of the relativistic component as a function of the mass of the optical star for the Roche model and
orbital inclinations i = 30◦, 35◦, 40◦, 45◦, 55◦, and 65◦ based on the model integrated Hγ profiles, without including
the instrumental function

mv,M�
mx,M�

i = 30◦ i = 35◦ i = 40◦ i = 45◦ i = 55◦ i = 65◦

20 12.75+0.25
−0.30 10.55+0.19

−0.17 9.03+0.02
−0.02 8.0 6.60 5.80

30 15.97+0.36
−0.32 13.35+0.20

−0.25 11.47+0.08
−0.07 10.15 8.45 7.40

40 18.85+0.40
−0.40 15.75+0.30

−0.25 13.65+0.10
−0.15 12.05 10.05 8.80

50 21.45+0.50
−0.40 18.03+0.32

−0.33 15.60+0.15
−0.15 13.85 11.50 10.10

60 23.95+0.50
−0.55 20.10+0.35

−0.35 17.43+0.22
−0.23 15.50 12.90 11.30

Note: The confidence intervals for mx for i = 45◦, 55◦, and 65◦ are not indicated, since the model of the binary system is rejected at
the α = 5% significance level in these cases.

Table 8.Mass of the relativistic component as a function of the mass of the optical star for the Roche model and orbital
inclinations i = 30◦, 35◦, 40◦, 45◦, 55◦, and 65◦ based on the model integrated Hγ profiles, including an instrumental
function with FWHM = 7 Å

mv,M�
mx,M�

i = 30◦ i = 35◦ i = 40◦ i = 45◦ i = 55◦ i = 65◦

20 12.60+0.30
−0.28 10.45+0.20

−0.20 8.95+0.10
−0.10 7.9 6.50 5.70

30 15.83+0.37
−0.38 13.18+0.27

−0.23 11.35+0.15
−0.10 10.05 8.30 7.30

40 18.70+0.40
−0.45 15.65+0.30

−0.30 13.48+0.17
−0.13 11.95 9.90 8.60

50 21.30+0.50
−0.45 17.85+0.35

−0.35 15.43+0.17
−0.18 13.65 11.30 9.90

60 23.75+0.50
−0.55 19.95+0.35

−0.40 17.25+0.23
−0.22 15.30 12.65 11.10

Note: The confidence intervals for mx for i = 45◦, 55◦, and 65◦ are not indicated, since the model of the binary system is rejected at
the α = 5% significance level in these cases.
relativistic object, leading to the maximum distortion
of the total absorption profiles of the optical star. As
a consequence, the shape of the light curve is more
sensitive to variations in the orbital inclination when
q < 1 than when q > 1.

The size of the projection of the optical star onto
the plane of the sky varies during its orbital motion.
The degree of asymmetry of the absorption profiles
depends not only on the asymmetry of the velocity
field of the area elements and the distributions of Tloc
and log gloc relative to the geometrical center of the
projection, but also on gradients of these parameters
over the surface of the optical component. The most
extreme region from the point of view of its physical
parameters and their gradients is the nose of the
ASTRONOMYREPORTS Vol. 49 No. 10 2005
optical star (which is close to filling its Roche lobe).
At orbital phases 0.35–0.45 and 0.55–0.65, a large
fraction of this nose is visible to the observer. There-
fore, the distributions of Tloc and log gloc and their
gradients are maximally asymmetric relative to the
geometrical center of the projected star. This makes
the integrated absorption profiles of the optical star
maximally asymmetric, and hence maximally sensi-
tive to variations in the orbital inclination, at orbital
phases 0.35–0.45 and 0.55–0.65 (Figs. 4 and 5).

Thus, the strongest orbital variability in the ab-
sorption profiles in the spectrum of the optical star
is observed at orbital inclinations i � 90◦ and for
component-mass ratios q < 1, since, in this case, the
nose of the optical star is eclipsed by the star’s body
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Fig. 12. Optical star in an X-ray binary in a Roche model with q = 1, a degree of filling of the Roche lobe µ = 1, and orbital
inclinations i = 30◦, 60◦, 90◦ at orbital phases 0.0, 0.35, 0.5. When i = 90◦, the projection of the star onto the plane of the sky
varies strongly (from being circular to pear-shaped). The “nose” of the star is sometimes eclipsed and sometimes not, leading
to strong distortion of the line profiles and radial-velocity curve. When i = 30◦, the shape of the projection of the star onto the
plane of the sky is nearly constant and varies only with the position angle of the figure, which does not influence the shape of
the radial-velocity curve.
during the orbital motion. The shape of the star’s pro-
jection onto the plane of the sky varies strongly when
i = 90◦, from being circular to pear-shaped, which
gives rise to the maximum asymmetry in the radial-
velocity curve. When i� 90◦, the nose of the optical
star is not eclipsed during the orbital motion. The pro-
jections onto the plane of the sky of the shape of the
star and of regions on its surface remain nearly con-
stant (only the orientation of the stellar shape varies),
making the line profiles less sensitive to the orbital
shifts of the optical star. This is illustrated in Fig. 12.

6. CONCLUSION

The main result of this study is our qualitative
estimate of the variations of the radial-velocity curve
of the optical star in a close binary system as a func-
tion of the orbital inclination i and component-mass
ratio q for stars with variousmasses and temperatures
(Tables 3–6).

Another important result is our new fitting of an
accurate radial-velocity curve for the optical star in
the Cyg X-1 binary system using a new and more
correct algorithm to synthesize the theoretical radial-
velocity curve (based on calculating model atmo-
spheres for each area element [5, 6]). The compu-
tations show that the accuracy of the radial-velocity
curve in this case (∼3% of the radial-velocity half-
amplitude Kv) is sufficient to place constraints on
the orbital inclination, using only one radial-velocity
curve: i < 43◦.
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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The results of test computations show that the
variation in the radial-velocity curve due to variations
in the orbital inclination i grows with the mass of the
optical star; this effect is greatest in binary systems
with component-mass ratios q < 1 (Tables 3–6). We
can adopt the variations in the radial-velocity curves
presented in Tables 3–6 to estimate the accuracy
of observed radial-velocity curves required to reli-
ably derive the orbital inclinations of observed bi-
nary systems. Inclination estimates are most feasi-
ble for X-ray binaries with massive optical compo-
nents (mv > 10M� for systems whose relativistic
component is a black hole with mass mx � 10M�).
The required accuracy of the observed radial-velocity
curve should be better than 4–8%. Note that all our
computations were carried out for a mass of the rel-
ativistic object of mx = 10M�. Since the variations
in the radial-velocity curve are determined primarily
by the ratio q = mx/mv, our main conclusions are
also applicable for X-ray binary systems with neutron
stars with masses mx � 1.4M�. In this case, the
magnitude of the radial-velocity variations could be
sufficient to estimate the orbital inclination if themass
of the optical star ismv � 1M�.

Recall that we have synthesized the radial-velocity
curves using the Hγ and CaI 6439 Å absorption lines
assuming LTE. It is known that the approximation
of LTE is not suitable for hot stars with Teff >
20 000−30 000 K [11]. The inferred radial-velocity
variations with variations in the orbital inclination
could change when the radial-velocity curve is syn-
thesized allowing for non-LTE corrections. However,
note that our test computations using a constant
profile shape for theHγ absorption line over the stellar
surface (Figs. 1, 2) show that the variations in the
shape of the integrated line profile are mainly sensitive
to the geometry of the shape of the star (the position
of the star’s “nose” relative to the barycenter of the
binary system). This provides hope that, although
allowance for non-LTE effects could appreciably
affect the equivalent widths of the Hγ line in the
case of high Teff, the variations of the shape of the
integrated Hγ profile with orbital phase will differ only
slightly with the use of LTE and non-LTE model at-
mospheres for the optical star. We plan to investigate
this question further by carrying out corresponding
computations in a non-LTE approximation.
ASTRONOMYREPORTS Vol. 49 No. 10 2005
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Abstract—Three-dimensional hydrodynamical modeling of the formation of the accretion disk in the
SS 433 binary system is carried out with various types of cooling and numerical grids. These computations
show that a thick accretion disk with a height of 0.25–0.30 (in units of the component separation) is formed
around the compact object, from a flow with a large radius (0.2–0.3 in the same units) that forms in the
vicinity of the inner Lagrangian point. This disk has the form of a flattened torus. The number of orbits of a
particle of gas in the disk is 100–150, testifying to a minimal influence of numerical viscosity in these com-
putations. The computations also show that the stream flowing from L1 is nearly conservative, and spirals
in the disk are not formed due to the influence of the donor gravitation. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The binary system SS 433 (V1343 Aql) is named
according to its number in the catalog of objects
with Hα emission lines compiled by Stephenson and
Sanduleak [1]. Margon et al. [2] made the sensational
report that three groups of Hα and neutral He emis-
sion lines in the spectrum of the star displayed huge
shifts of about 1000 Å relative to their normal posi-
tions. This was explained by the presence of narrow
gaseous jets moving perpendicular to the plane of an
accretion disk at velocities of 80 000 km/s [3–6]. The
jets precess with a period of about 164 days, and the
angle between the jet axis and the rotational axis of
the star is roughly 20◦. SS 433 has been actively
studied over the last 20 years; it is commonly thought
to be a close binary system containing a compact
object—a neutron star or black hole [4, 7, 8].

The optical eclipses detected for SS 433 in 1981
by Cherepashchuk [9] made it possible to determine
the basic parameters of the system. SS 433 is a
close binary with an orbital period of 13.086 days [10]
consisting of an О–В star and a compact object sur-
rounded by an optically thick accretion disk. A photo-
metric study of the light curve of the system revealed
three periods of the object’s brightness variations: the
13-day orbital period, 164-day precessional period,
and approximately 6-day nutational period [11, 12].
Observations also indicate the presence of nonperi-
odic variations of the optical continuum brightness on
timescales of hours and minutes.

Currently, two basic models of SS 433 are con-
sidered, corresponding to a high-mass and low-mass
system. In the first case, the mass function of the
compact object is either 10.1M� [13] or 7.7M� [14].
1063-7729/05/4910-0814$26.00
In the case of a low-mass system, the mass function
is equal to 2.0M� [15]. The different estimates for
the mass ratio correspond to the spectral interval for
the observations: q = Mx/Mopt = 0.15−0.25 (X-ray)
and q = 1.2 (optical [10]). It is commonly thought
that the optical star overflows its Roche lobe and loses
mass at a rate of 7.0 × 10−6−4.0 × 10−4M�/yr [16].
However, contrary to this proposed very high rate
of mass transfer through the point L1, observations
do not indicate appreciable variations of the orbital
period: the variations of ∆P/P are smaller than 10−6.

Thus, in spite of very active studies of this system,
little is known about the processes occurring in it.
There is not even general agreement regarding the
system’s parameters. Hydrodynamical calculations of
the gas motions in the vicinity of the system compo-
nents may help clarify the situation.

We present here the results of three-dimensional
hydrodynamical modeling of the formation of the ac-
cretion disk in SS 433.

Since the path of a gas particle between collisions
is much shorter than the distance between the centers
of the binary components, the hydrodynamical ap-
proach to the problem of mass transfer in close binary
can be basic. Here, for simplicity of the computations,
we will consider the solid medium to be an ideal gas
consisting purely of hydrogen, rather than a plasma
(as is the case in real binaries).

Two-dimensional hydrodynamical calculations of
the gas motions in a close binary and of the formation
of the associated accretion disk were carried out by
Sawada et al. [17] and Matsuda et al. [18], who
also first obtained a spiral shock wave in the ac-
cretion disk. Analytical two-dimensional calculations
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Density contours and the velocity field for the cross section made by the orbital plane (cooling via regularization of the
temperature field).
of spiral shocks were carried out in [19, 20]. Three-
dimensional hydrodynamical calculations of the flow
from L1 in the Roche lobe of the accreting star and the
formation of the accretion disk were presented in [21–
32], using short-period close binaries (cataclysmic
variables) as an example. Since SS 433 is substan-
tially different from cataclysmic variables due to its
long orbital period, these three-dimensional hydrody-
namical calculations cannot be applied directly to this
system. Thus, to describe the envelope components
in SS 433, computations must be carried out directly
using the actual parameters of the system.

There have been only three studies in which the
gas motions in SS 433 have been calculated di-
rectly. Chakrabarti and Matsuda [33] and Nazarenko
et al. [34] carried out two-dimensional modeling of
the system, while the structure of the flow was stud-
ied by Bisikalo et al. [35]. Spiral shocks in the ac-
cretion disk were calculated in [33], where it was
shown that these shocks could plausibly result in
variations of the system’s brightness on timescales
shorter than a day. Unfortunately, the computational
domain used in [33] did not cover the entire space
between the components, so that the resulting pat-
tern of the gas motions was incomplete. This gap
was filled by the study [34], in which the compu-
tational domain included the entire space from L2

to L3 and from L4 to L5 and both components of the
system. The following results were obtained in this
study. First, the low-mass model for SS 433 is unable
ASTRONOMYREPORTS Vol. 49 No. 10 2005
to yield a mass-transfer rate through L1 exceeding
10−6 M�/yr, making this model inappropriate as a
description of the mass transfer in the system. Sec-
ond, in order to bring the observed mass-transfer rate
through L1 into agreement with the fact that the rela-
tive variations of the period are below 10−6, the ratio of
the masses of the compact object and the optical star
must exceed 0.9. Third, the flow moving in the Roche
lobe of the compact object from L1 forms an accretion
disk and circumstellar envelope, which surrounds the
disk and the system components. Approximately 50%
of the matter in the flow ends up in the accretion disk,
while the remaining 50% forms the envelope, from
whose peripheral zone gas leaves the binary system.

One drawback of [34] is that the computations did
not include radiative cooling of themoving gas explic-
itly (instead, the ratio of specific heat capacities γ was
simply decreased to a value close to unity, as is usual
in such modeling). As a result, the mass exchange in
the system becomes nonconservative (without taking
radiative cooling into account explicitly, the heating
of the moving gas due to numerical viscosity becomes
large, resulting in an increase in the temperature and,
accordingly, in the role of the gas pressure).

Here, we present the results of three-dimensional
hydrodynamical computations of the gas motion in
SS 433 taking into account radiative cooling in vari-
ous ways.
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Fig. 2. Same as Fig. 1 for the cross section made by the z−x plane, which contains the line connecting the centers.
2. MODEL FOR THE MASS TRANSFER:
INITIAL AND BOUNDARY CONDITIONS

We use here the same approach as in our stud-
ies [34, 36, 37]. Briefly, it consists of the following:
(1) the formation of the flow from the donor atmo-
sphere through L1 is calculated to determine the ini-
tial parameters of the flow (its structure in the vicinity
of L1), and (2) the initial configuration of the donor
atmosphere in the vicinity of L1 is reconstructed using
Kurucz model atmospheres [38].

This way of determining the initial parameters of
the flow is important for close binaries in which the
region of overflow of the Roche lobe surrounding the
donor exceeds the size of its atmosphere. SS 433 is
such a system: to provide the required high mass-
transfer rate, the point L1 must be located in very deep
inner layers of the donor [34].

To solve the nonstationary hydrodynamical equa-
tions in Euler form, we applied a version of the
“method of large particles” developed by Belot-
serkovsky and Davydov [39], in which artificial vis-
cosity is specified in the first stage of calculations and
which has second order accuracy in space and time.

As one of gas cooling techniques, as well as to
make the calculations stable, we applied a special
technique, which is used in this version of the method
of “large particles,” at the second stage of each time
step, in those cells where the temperature began to
exceed some limiting value Tlim.

The essence of this technique, which we call
temperature-field regularization, is that, if the tem-
perature in a cell exceeds Tlim, it is set equal to the
value in the first stage of the calculations for the
given time step in this cell. This corresponds to a
sort of cooling, which should restrict the effects of
heating of the moving medium by numerical viscosity.
In the method of large particles, the parameters
of the flow in a given cell at each time step are
determined in two stages: in the first, the effects of gas
pressure and external fields (in our case, gravitation)
are calculated, while, in the second, the transport of
mass, momentum, and internal energy through the
cell boundaries is calculated taking into account the
velocities obtained in the first stage, and the final
values for the physical parameters at the given time
step in a given cell are determined.

Our computations were carried out in a rotating
coordinate frame with its origin at the center of the
donor and with the x, y, and z axes forming a right-
handed set. The computational domain (in units of
the distance between the components) occupies the
volume of space from L1 (x = 0.456) to x = 1.95,
from y = −1.45 to y = 1.45, and from the orbital
plane (z = 0) to z = 0.56. Thus, the libration points
L1, L3, L4, and L5 are all within the computational
domain, making it possible to trace the entire path of
the gas flowing from L1 within the accretor’s Roche
lobe. Since the computational domain contains the
entire accretion disk, a complete three-dimensional
model of the disk can be constructed.

The computations were carried out for two three-
dimensional numerical grids: a high-resolution grid
with 140 × 140 × 70 cells, and a low-resolution grid
with 90 × 90 × 50 cells. The high-resolution grid was
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Fig. 3. Same as Fig. 1 for the cross section made by the z−y plane, which contains the center of the accretor.
used to represent a model of the disk with low vis-
cosity, and the low-resolution grid a model with high
viscosity.

We used a standard model for the binary system:
the rotation of the components about their axes and
their orbital motion were assumed to be synchronous,
the gravitational fields of the close-binary compo-
nents were treated in a Roche approximation, all ef-
fects of the rotation (centrifugal and Coriolis forces)
were included, and the orbits of the components were
assumed to be circular.

In the computations, we adopted for SS 433 a
donor mass of 10M�, an accretor mass of 12M�, an
orbital period 13.086 days, and an effective tempera-
ture for the donor of 22 500 K.

3. RESULTS

3.1. Cooling via Temperature-Field Regularization

The degree of Roche lobe overflow in the computa-
tions was 0.06, which corresponds to a mass-transfer
rate through L1 of 3.0 × 10−5 M�/yr.

The computations were made over 12 orbital pe-
riods in order to reach a steady state in the computa-
tional domain over a long time.We took a steady state
to be reached when the mass-transfer rate through L1

was equal to the accretion rate onto the disk and
the mass-loss rate through the outer boundaries of
the computational domain. The steady state in the
accretion disk was reached after approximately two
or three orbital periods. In the vicinity of L1, steady
TRONOMYREPORTS Vol. 49 No. 10 2005
state was reached after approximately one-sixth of the
orbital period.

Figures 1–3 present the results of the computa-
tions in the form of contours of constant density and
the velocity field. Figure 1 presents this information in
the cross section of the computational domain made
by the orbital plane (all the density contours are given
in units of 1011 cm−3, and the velocity field is given
in arbitrary units). We can see the flow emerging from
the vicinity of L1, as well as the accretion disk that has
formed from this flow. Thewidth of the flow is 0.2−0.3,
or 50% of the donor radius. It is difficult to determine
the initial radius of the flow more accurately, since the
density in the direction perpendicular to the flow axis
does not decrease to small values, even at the bound-
ary of the computational domain, due to the presence
of the common envelope surrounding the disk and
donor. As we can see from Fig. 1, the width of the
flow remains approximately the same along its entire
length. The radius of the disk is 0.34−0.4, which is
60−70% of the accretor’s Roche lobe. The density of
the flow in the vicinity of the accretor is 1014 cm−3 and
increases to 1013−1014 cm−3 in the disk. The temper-
ature in the flow is 3.0× 104 K, and in the disk close to
its outer boundary, it is 3.5 × 104 K. The temperature
in the inner parts of the disk is unrealistically high, of
the order of 106 К (apparently because the cells are
too large in the region close to the accretor, where
the gravitational field varies dramatically, resulting in
substantial heating due to numerical viscosity). The
formation of a disk without a hot spot, i.e., in the ab-
sence of a direct interaction between the disk and flow,
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Fig. 4. Density contours and the velocity field for the cross section made by the orbital plane (with radiative cooling taken into
account implicitly, γ = 1.0001).
is due to the fact that the specific angular momentum
of the gas particles relative to the accretor decreases
along their trajectory from the flow to the disk; thus,
the specific angular momentum of the gas in the flow
exceeds that in the disk. Instead of a hot spot, the
boundary of the flow in the direction of orbital phases
0.15–0.3 displays a so-called “hot line” (the term
used by Bisikalo et al. [30]). In our version of radiative
cooling, the disk does not contain any spiral shocks or
structural peculiarities; i.e., it displays a very smooth
structure, apparently because insufficient cooling of
the gas leads to smoothing due to the resulting high
gas pressure.

Estimates of the amount of matter lost from the
system through its outer boundaries indicate that the
flow from the inner Lagrangian point is essentially
conservative, with only about 1% of the matter be-
ing lost.

The height of the flow in the z direction is
roughly 0.2, which is essentially equal to the hydro-
static height of the flow at the given point.

Figures 2 and 3 present density contours and the
velocity field in cross sections of the computational
domain made by the z−x plane, which contains the
line connecting the centers, and z−y plane, which
contains the center of the accretor. These figures
show that, in the z direction over the entire surface
of the disk, the disk height varies within 0.15–0.35
and the disk displays a flattened toroidal shape. The
only exception is in the inner part of the disk, close
to the accretor, where the disk thickness decreases to
approximately hydrostatic heights, which are equal
to 0.02–0.05. Thus, the thickness of the disk in
the system is close to the initial thickness of the
flow. The substantial overflow of the Roche lobe by
the donor results in the formation of a flow with a
large radius and ultimately of a thick, opaque disk.
With this type of radiative cooling, the temperature is
approximately the same over the entire computational
domain beyond the orbital plane and is equal to
35 000−45 000 К.

3.2. Computation of the FlowMotion and Formation
of the Accretion Disk with Implicit Radiative Cooling

We specified radiative cooling implicitly in the
computations by decreasing the ratio of the specific
heat capacities γ, using the low-resolution grid.
Figures 4–6 illustrate the mass transfer from the
inner Lagrangian point and the formation of the
accretion disk in the system for γ = 1.0001. We can
see from Fig. 4 that, with this type of cooling, the
flow formed in the vicinity of L1 also has a radius
of 0.2–0.3 (this is natural, since the degree of overflow
of the Roche lobe by the donor and the system
parameters remained unchanged). The flow in the
accretor’s Roche lobe displays a sharp boundary.
This is due to the physical conditions in the donor
atmosphere, from which the flow has been formed,
namely, the exponential decrease in the density at the
outer boundary of the atmosphere. The width of the
flow does not vary significantly and only displays a
slight decrease in the vicinity of the accretor. Figure 4
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Fig. 5. Same as Fig. 4 for the cross section made by the z−x plane, which contains the line connecting the centers.
shows that the shape of the disk formed by the flow is
almost circular in the orbital plane. The density of the
matter in the flow is roughly 1014 cm−3 in the vicinity
of the accretor and 1013−1014 cm−3 in the disk. The
disk displays an essentially smooth structure, without
any distinct features, apparently due to insufficient
cooling of the gas (the high gas pressure associated
with the numerical viscosity smooths nearly all details
of the structure). Only at the outer boundary of the
disk facing orbital phases 0.25–0.3 can we see an
indistinct spiral shock (see the density contours in
Fig. 4) formed by the interaction between the gas
from the disk and the gas from the outer envelope with
density 1011 cm−3. Such a low density in the outer
envelope is due to the conservativeness of the mass
exchange in the computations. The flow displays a
comparatively low temperature in the vicinity of L1,
75 000 K approximately. This value corresponds to
a high degree of overflow of the Roche lobe by the
donor. The temperature increases to 100 000 K with
approach toward the accretor. The temperature in the
disk varies from 50 000 К (at the outer boundary of
the disk facing orbital phase 0.25) to approximately
106 К (in the inner parts of the disk, close to the
accretor). We can see the hot line formed when gas
from the disk interacts with the outer boundary of
the flow facing orbital phases 0.15–0.3, where the
temperature reaches approximately 105 К.

Figures 5 and 6 present plots in cross sections
of the computational domain made by the z−x and
z−y planes, which contain the line connecting the
centers and the line perpendicular to this passing
ASTRONOMYREPORTS Vol. 49 No. 10 2005
through the accretor. In these planes, the disk dis-
plays an almost cylindrical shape in the vertical
direction, with a height equal to 0.24–0.34, sub-
stantially exceeding the hydrostatic height, which is
roughly 0.12–0.17. Thus, the formation of the thick,
opaque disk can be explained by the substantial initial
height of the flow emerging from L1. Only in the
vicinity of the accretor is the height of the disk close
to the hydrostatic value, roughly 0.05–0.07.

The flow also displays a sharp boundarу in the
z direction, where its height is about 0.22, almost
equal to the hydrostatic height at the given point
(roughly 0.20).

3.3. Computations of the Flow Motion
and the Formation of the Accretion Disk

with Combined Radiative Cooling
and the High-Resolution Numerical Grid

The “combined” radiative cooling simultaneously
includes implicit radiative cooling via a decrease in
the ratio of specific heat capacities, and cooling via
regularization of the temperature field. The mass-
transfer rate through L1 is 1.2 × 10−5 M�/yr, which
corresponds to a degree of overflow of the Roche lobe
by the donor of 0.05. In this case, at L1, the density is
1.3× 1014 cm−3, the temperature is 85 000 К, and the
ratio of specific heat capacities γ = 1.0001.

Figure 7 presents the structure of the disk (density
contours and stream lines) in the orbital plane at
the end of the computations. The width of the flow
in the vicinity of L1 is roughly 0.15–0.20. The flow
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Fig. 6. Same as Fig. 4 for the cross section made by the z−y plane, which contains the center of the accretor.
displays essentially the same radial size as it moves
in the Roche lobe of the accretor, about 0.20. The
size of the flow in the z direction at L1 is close to
the size in the orbital plane, 0.12–0.17. In the course
of its subsequent motion in the Roche lobe, the size
of the flow in the z direction decreases to 0.09–0.14,
providing evidence for some constriction of the flow in
this direction.

Near the accretor, the flow forms the accre-
tion disk, in which a particle makes approximately
90–150 revolutions around the accretor (this value
is somewhat different at different times, probably
reflecting variations in the viscosity in the disk after
the steady state is established). This number of
revolutions indicates that the disk is elliptical, with a
fairly low viscosity, and is realistic (i.e., the number
of revolutions corresponds to the number derived
analytically based on two parameters of the disk—
the accretion rate and the height in the z direction).
Two spiral shocks (I and II) are formed in the disk,
which unwind in the direction opposite to the binary
rotation, from regions close to the accretor to the
outer edge of the disk. We can also see a short spiral
shock III that is wound in the direction of the binary
rotation (the leading shock; see, for example, [40]). In
addition, the edge of the disk facing the flow displays
a perturbation formed during the interaction between
the flow and disk—the so-called hot line (denoted IV
in Fig. 7).

Thus, the disk displays a complex inner structure
and forms without a hot spot: thematter flows into the
disk along a tangent, without any direct impact. Ini-
tially, the matter from the flow forms a “halo” around
the disk [41], with a large fraction of the gas from
this halo subsequently falling onto the disk (around
99%), while the remaining gas leaves the system. This
distribution of matter in the computational domain
indicates that the flow is essentially conservative.
However, final conclusions regarding the conserva-
tiveness of the mass transfer in SS 433 can only be
obtained using a numerical grid that covers the entire
area surrounding the system’s components.

The fact that, in our calculations, as in those of
Bisikalo et al. [31, 41] for a cataclysmic system, no
hot spot is formed during the interaction of the flow
and disk suggests that this is typical of binaries in
general.

To investigate the origin of the spiral shock waves,
we eliminated the gravitational field of the donor from
the region of the disk at some stage of the compu-
tations (after 9 orbital periods). This made it possi-
ble to check whether the outflowing star affects the
formation of the spiral wave. Figure 8 displays the
structure of the disk in the orbital plane with the
gravitational field of the donor switched off. We can
see from Fig. 8a that, after the donor’s gravitation is
removed in the disk (this was done within a distance
that did not exceed 0.45 from the disk center; at
that time, the radius of the disk was about 0.35), the
disk is constricted in the orbital plane, and its radius
decreases from 0.30−0.35 to 0.17−0.20 (by 30%).
The spirals in the disk maintain their positions, but
their shapes become somewhat indistinct, and they
are only slightly visible in the density contours. In
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Fig. 7.Density contours and stream lines in the disk in the cross section made by the orbital plane (combined radiative cooling
and high-resolution grid).
contrast, in Fig. 8b, which presents the correspond-
ing temperature contours, the spiral shocks I, II, III
are muchmore distinctly visible than they were before
the donor’s gravitation was switched off. Thus, the
origin of the spiral shocks in the disk remains unclear.

Strange as it may seem, the hot line essentially
disappears when the donor’s gravitation is switched
off in the disk; this feature is only slightly visible in the
temperature contours. This seems to be independent
of the donor’s gravitation and its role in the formation
of the hot line, and is simply due to the fact that the
radius and shape of the disk have changed substan-
tially in this case.

One result that stands out is that, after switching
off the donor gravitation, the number of revolutions of
a particle about the accretor decreases dramatically
(to five revolutions); i.e., the disk’s viscosity has be-
come much higher.

To verify that the gravitation of the donor does
not affect the formation of the spiral structure, we
have also calculated the formation of the accretion
disk with the gravitation field of the donor switched
off within a sphere with radius 0.42 right from the
very start of the computations (note that this sphere
contains the entire disk and surrounding region). The
spirals form in the disk from the very start of the
computations; however, their shapes become very in-
distinct with time, although they are still visible in the
disk structure (see Figs. 9a and 9b, which correspond
to different times).

Since our computational domain was restricted
to the region of the accretion disk, this proves that
ASTRONOMYREPORTS Vol. 49 No. 10 2005
the spirals cannot be formed by the influence of the
circumstellar envelope on the disk [31]. They are ap-
parently formed by some other internal processes.
It may be that the spirals are formed as a result of
deformations of the elliptical disk due to its differential
rotation, in the same way as spirals in a galactic
disk [42].

Figures 10a and 10b present the structure (density
contours) of the disk in the z−x and z−y planes.
The disk shape is close to cylindrical in these planes;
its height is approximately 0.1, substantially smaller
than the height obtained for the computations with
the coarser grid.

4. CONCLUSIONS

We have modeled the three-dimensional structure
of the accretion disk in the SS 433 system assuming
Md = 10M�,Mx = 12M�, and a degree of overflow
of the donor Roche lobe of 0.06, which corresponds to
a mass-transfer rate through L1 of 3.0× 10−5M�/yr.
The computations were carried out for three types of
radiative cooling: explicit cooling with regularization
of the temperature field; standard cooling, in which
the ratio of the specific heat capacities is decreased
to near unity (γ = 1.0001); and combined cooling, in
which radiative cooling was taken into account im-
plicitly (γ = 1.0001) and temperature regularization
was applied on a high-resolution grid.

Our computations indicate that, in the first two
types of radiative cooling (with a coarse grid), the flow
from L1 forms an accretion disk with the approximate
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Fig. 8. (a) Density contours and stream lines and (b) temperature contours for the cross section made by the orbital plane
(combined radiative cooling without the donor gravitation).
radius 0.34−0.38, which is 70% of the radius of the
accretor’s Roche lobe. The height of the disk in the
z direction is about 0.24−0.34, which is twice the
hydrostatic scale height. Thus, the height of the disk
is comparable to the initial radius of the flow, and the
formation of a thick, opaque disk in SS 433 is prob-
ably due to the large initial radius of the flow, which,
in turn, results from the extended atmosphere of the
star, which appreciably overflows its Roche lobe.

The disk has a shape of a flattened torus; the
density of the matter in it is 1013−1014 cm−3 for a
mass-transfer rate through L1 of 3.0 × 10−5M�/yr.

Taking into account only the gas flowing from L1,
the mass transfer in the system is essentially conser-
vative. In total, the binary loses only about 1% of the
matter flowing from L1.

The outer boundary of the disk next to the flow
displays a hot line, while the other outer boundary of
the disk, facing orbital phases 0.25−0.35, displays an
indistinct spiral shock. This smearing of the shock is
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Fig. 9.Density contours and stream lines for the cross sectionmade by the orbital plane (combined radiative cooling). The effect
of the donor’s gravitation on the formation of the accretion disk was excluded throughout the computations. Two times are
presented: (a) 2.24 and (b) 21.24.
apparently due to insufficient cooling of the gas in the
computations (too high a temperature in the disk and,
especially, in the spirals).

According to our computations with combined
radiative cooling using a high-resolution numerical
grid, the flow forms an elliptical disk with an average
radius of about 0.3. The number of revolutions of
a particle in the disk is from 90 to 150 at different
times, which is close to the number obtained ana-
lytically (around 100) based on calculations of the
radial velocity in the disk for the given accretion rate
ASTRONOMYREPORTS Vol. 49 No. 10 2005
and height of the disk in the z direction. Thus, a
fairly realistic disk is formed in these computations,
with the number of revolutions occurring in it corre-
sponding well to the disk parameters (its height and
accretion rate). Since the number of revolutions of
a particle in the disk reflects its viscosity, this indi-
cates that the viscosity is reduced to a minimum in
the computations with the high-resolution grid. The
number of revolutions does not remain constant even
when the steady-state solution has been achieved,
providing evidence for variability of the viscosity in
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Fig. 10.Density contours for the cross sectionmade by (a) the z−x plane, which contains the line connecting the centers, and
(b) the z−y plane, which contains the accretor (combined radiative cooling).
the disk (in deformations of the elliptical disk, the
velocity field in the disk varies with time even for the
steady-state solution, which apparently affects the
disk’s viscosity).

Spiral shocks are formed in the disk, which do
not disappear even when the gravitational field of the
donor is switched off. When this field is switched off,
the spiral shocks become somewhat less distinct in
the density contours, but remain visible in the tem-
perature contours. Since the outer envelope is ex-
cluded from our computations (the computational do-
main is restricted to the region of the accretion disk),
we conclude that the spiral shocks in the disk have
some internal rather than external origin. Shocks in
the disks of close binary systems may have the same
origin as spiral waves in galactic disks. Since our
computations indicate that spirals in the disk are
independent of the influence of the donor, it may be
that a similar spiral structure forms in accretion disks
surrounding active galactic nuclei. It is particularly
interesting that, when the gravitation of the donor
is switched off, the disk decreases slightly in radius
and its shape becomes more elliptical. The number
of revolutions of a gas particle about the accretor
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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decreases dramatically; i.e., the disk becomes sub-
stantially more viscous. Thus, the donor’s gravitation
favors the formation of a disk in which gas particles
slowly fall towards the disk center (the gravitation of
the donor affects the velocity field in the disk, which in
turn can influence the viscosity).

Overall, our computations with a high-resolution
grid (and, accordingly, low viscosity in the disk) in-
dicate that, to model the formation of more realis-
tic gaseous structures in close binaries, numerical
methods with third to fourth order in accuracy and
the Navier–Stokes equation should be used together
with various physical models for the viscosity, making
it possible to eliminate the effect of numerical viscos-
ity in the computations.
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Abstract—The paper continues three-dimensional hydrodynamical computations of the formation of an
accretion disk in the SS 433 system, taking into account radiative cooling explicitly, convective thermal
conductivity, and radiation pressure. The computational results show that the powerful, broad flow forms
an optically thick accretion disk with a gas density of 1012−1014 cm−3, a temperature of 15 000–35 000 К,
a radius of about 0.3, and a height of 0.2–0.3 (in units of the component separation). Spiral shocks form
in the disk, and a narrow conelike cavity (tunnel) forms at the center. In this tunnel, gas is accelerated to
relativistic speeds, leaving the system in the form of narrow jets. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

We present here the second part of a study of
three-dimensional hydrodynamical modeling of the
formation of the accretion disk in the SS 433 binary
system. In our first paper [1], we computed the for-
mation of the accretion disk with radiative cooling
specified implicitly: (1) via regularization of the tem-
perature field, when the effects of heating in the mov-
ing medium due to numerical viscosity are restricted
starting from some limited temperature, and (2) by
reducing the ratio of the specific heat capacities to
nearly its isothermal value, i.e., to near unity.

Our modeling of the formation of the accretion
disk in SS 433 taking into account radiative cooling
in various ways [1] yielded the following results.
Taking into account radiative cooling via tempera-
ture regularization, we found that the flow from the
point L1, which has an initial radius of 0.2–0.3 (here
and below, sizes are given in units of the distance be-
tween the components), forms an accretion disk with
a radius of 0.32–0.35, which corresponds to approxi-
mately 70% of the mean radius of the accretor Roche
lobe. In the orbital plane, the disk is almost circular,
and its height in the z direction is roughly 0.24–0.35;
i.e., it is geometrically thick and opaque. The disk’s
cross section with the z plane has the shape of a flat-
tened torus. The flow forms a disk without a hot spot;
i.e., the matter flows into the disk along a tangent.
The interaction of gas from the disk with the outer
boundary of the flow facing orbital phases 0.15–0.25
results in the formation of a high-temperature “hot
line” extending from the disk to L1. In this model, the
disk does not display any definite internal structure,
except for the hot line at its outer edge (between the
disk and flow) and a spiral shock at the outer edge of
1063-7729/05/4910-0826$26.00
the disk facing orbital phases 0.25–0.35. This spiral
shock is quite indistinct, probably due to insufficient
cooling that leads to high temperatures in the disk.

Our computations including radiative cooling in
a combined approach (with both regularization of
the temperature field and setting γ = 1.0001) using
a high-resolution numerical grid yielded an accretion
disk in SS 433 with a large number of revolutions of
its gas particles. At different times, the number of rev-
olutions varied from 70 to 150, which roughly corre-
sponds to analytical estimates for the given accretion
rate and height of the disk above the orbital plane.
This model of the disk displays two lagging spiral
shocks (I and II) and one leading shock (III). The disk
shape is almost perfectly circular. In addition, a hot
line is formed at the edge of the flow facing the disk.

After the gravitational field of the donor is removed
from the area of the disk, the spiral shocks remain;
however, the disk itself becomes elliptical—its radius
below the line connecting the centers becomes half its
radius above this line. The disk contracts by 20–30%
compared to the model that includes the donor grav-
itation. The number of revolutions of particles in the
disk decreases substantially (from 70–150 to 5), so
that the disk becomes much more viscous compared
to the model that includes the donor gravitation. We,
therefore, conclude that (1) the gravitation of the
donor affects the structure of the spiral shocks in
the disk, which do not, however, disappear when this
gravitation is switched off, and (2) eliminating the
donor gravitation results in a substantial increase in
the disk viscosity.

Since the disk temperature obtained in the
study [1] is too high to be real, here we model the
formation of the accretion disk in SS 433 taking into
c© 2005 Pleiades Publishing, Inc.
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account radiative cooling explicitly, using the model
of optically thin cosmic plasma in the state of ioniza-
tion balance [2]. In order to obtain the entire cooling
pattern in the accretion disk of SS 433, we will also
take into account convective heat conduction, which
may be important in cooling of accretion disks.

2. MODEL FOR THE FORMATION
OF THE SS 433 ACCRETION DISK

WITH EXPLICIT RADIATIVE COOLING
AND CONVECTIVE HEAT CONDUCTION:
INITIAL AND BOUNDARY CONDITIONS,

BINARY MODEL

As was noted above, in order to increase the ac-
curacy with which radiative cooling is taken into ac-
count explicitly, we apply here a cooling model us-
ing the deexcitation function of [2]. This deexcitation
function was derived from a model of optically thin
cosmic plasma in a state of ionization balance.

To take into account absorption in the optically
thick disk, we multiplied the deexcitation function
by a factor of e−τ in our computations, where τ is
the optical depth in the continuum in the vicinity of
the Hα line perpendicular to the orbital plane. The
absorption coefficient was taken to be 10−17 cm2, and
the number of absorbing atoms was calculated using
the Saha and Boltzmann equations. Roughly speak-
ing, this radiative-cooling model works as follows.
At high temperatures (exceeding 10 000–15 000 K),
the number of absorbing atoms is low, while radiative
cooling is efficient only when this number is suffi-
ciently high (exceeding 108−1010 cm−3). When the
temperature goes below 10 000–15 000 K, the num-
ber of absorbing atoms rapidly increases, as does the
opacity of the disk, while the efficiency of radiative
cooling decreases very rapidly with increasing optical
depth. Thus, the corresponding balance between the
effects of numerical viscosity and radiative cooling
is reached when the temperature in the envelopes is
in an interval of several tens of or several thousand
degrees, which is close to the real temperature in the
disk and surrounding envelope.

To include cooling due to convective heat con-
duction, we introduce here a supplementary term in
the internal-energy conservation equation for the gas
(in our version of the method of large particles, the
internal energy of the gas is used in the energy-
conservation equation, while the standard method
uses the total energy):Ktemp dT

2/dz2, whereKtemp is
the coefficient of temperature conductivity and z the
coordinate perpendicular to the orbital plane. This
takes into account only the temperature conductivity
in the z direction, but this is precisely the direction in
which it is most important to estimate the tempera-
ture distribution in a geometrically thick disk. We use
ASTRONOMYREPORTS Vol. 49 No. 10 2005
the coefficient of temperature conductivity Ktemp =
vconvrconv, where vconv is an effective convеction rate
and rconv is an effective size of the convective cells.

The most difficult problem in connection with in-
cluding the effect of heat conduction in the disk of
SS 433 is to estimate the coefficient of tempera-
ture conductivity. We will assume that this cannot
exceed 10−4−10−5: the maximum convеction can-
not exceed a quantity of the order of vconv = 0.01,
and the size of the convective cells obviously cannot
exceed rconv = 0.01−0.001. Here, the velocities are
given in units of the orbital velocities in SS 433 (about
250 km/s). When the formation of the accretion disk
is computed taking into account heat conduction, the
main problem is that the time for the computations
will be very long, even for the maximum temperature
conductivity (for SS 433, the timescale for variations
in the disk parameters will be of the order of 150–
1500 orbital periods). Therefore, to enable computa-
tion of heat-conduction effects in the framework of
three-dimensional hydrodynamical modeling with the
currently available computers, we decided to increase
the coefficient of temperature conductivity by two
orders of magnitude, to the value 0.025. In this case,
the time for calculating the heat-conduction effects
will be approximately equal to 10–15 orbital periods.
This is quite acceptable from a computational point
of view; further, we will assume that all quantitative
and qualitativemanifestations of heat conduction (the
temperature decrease in the disk and smoothing of
second derivatives of the temperature with respect
to the coordinates) will be the same as for the real
temperature conductivity. In other words, we hope to
obtain a realistic model of an accretion disk using this
temperature conductivity, while reducing the neces-
sary computation time to a reasonable level.

The binary model for the computations considered
here together with its boundary and initial conditions
remain the same as in [1], as do the parameters of
the binary and the degree of overflow of the donor
Roche lobe.We used a 150× 150× 60 numerical grid.
Each model version was calculated for 15–17 or-
bital periods, in order to establish a steady state in
the computational domain, taking into account long-
timescale convective heat conduction. The computa-
tional domain is still restricted to the vicinity of the
first Lagrangian point L1 and the accretor Roche lobe.

3. COMPUTATIONS AND RESULTS

3.1. Model for the Formation of the Accretion Disk
with Explicit Radiative Cooling

As in [1], the mass-transfer rate through the vicin-
ity of L1 is 4 × 10−5M�/yr, which corresponds to an
overflow of the donor Roche lobe of 0.065.
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Fig. 1.Density contours and the velocity field for the cross
section made by the orbital plane.

The steady state in the disk is reached approxi-
mately after a single orbital period; further, the accre-
tion rate in the disk remains essentially constant, and
its fluctuations do not exceed 0.1%. We extended our
computations to more than 10 orbital periods in order
to study the steady state of the disk over a longer time.

Figure 1 presents contours of constant density and
a streamline in the disk and flow in the orbital plane.
In the vicinity of L1, the approximate radius of the
flow is 0.10–0.15, and the disk is formed from the flow
without a hot spot, but with a high-temperature “hot
line.” The disk displays an essentially circular shape
with spiral shocks at its edge and inside the disk, close
to the accretor. The size of the disk in the orbital plane
is roughly 0.4, which is only slightly larger than the
radius of the disk obtained in [1] (the disk occupies
about 70% of the accretor Roche lobe). We, thus,
conclude that the resulting disk is almost perfectly
circular when radiative cooling is taken into account
explicitly, as in the computations of Bisikalo et al. [7],
with a radius that is consistent with observations.

The amount of angular momentum lost by the
donor is such that it should lie on its side; i.e., the
rotational axis of the donor should make an angle
substantially smaller than 90◦ with the orbital plane.
This results from the fact that, along with the z com-
ponent of its angular momentum, the donor also loses
its x and y components, whose absolute values are
comparable to that of the z component. Thus, despite
the fact that the donor had only the z component of its
intrinsic angular momentum by the start of thematter
outflow from L1 (i.e., its rotational axis was perpen-
dicular to the orbital plane), in the course of the mass
transfer, the donor gains x and y intrinsic angular
momentum, so that it should start tipping on its side.
This result is very important for our understanding of
the precession of the accretion disk, since, if the donor
is on its side, it should precess on its own and drive the
accretion disk into precession (forced precession [3]).

The disk displays a sharper outer boundary than
in [1], apparently due to the stronger radiative cooling;
in addition, the cooling is selective; i.e., it is low in
denser layers of the disk close to the orbital plane and
stronger in outer regions of the disk and just outside
the disk. It is clear from Fig. 1 that the flow is very
strongly affected by the disk, which possesses a very
large specific angular moment. The reason for this
may be that we have decreased the effect of numer-
ical viscosity by including radiative cooling explicitly.
Even around L1, the disk displaces the flow below the
line connecting the centers.

The density in the flow is roughly 1015 cm−3,
while the density in the disk is 1013−1014 cm−3,
and in the outer envelope surrounding the disk it is
109−1012 cm−3 (meaning the parts of the outer enve-
lope around the disk located within the computational
domain).

In the given model for the accretion disk, the num-
ber of revolutions of a gas particle varies with time
(from 15 to 150 revolutions; see Fig. 1). This provides
evidence that the viscosity remains variable even
in the steady state of the disk (for Ṁaccr = const);
i.e., some variable processes occur in the disk, ap-
parently generated by the rotation of the disk in the
variable gravitation field of the donor. In the model,
the internal structure of the disk depends strongly
on the number of revolutions of the streamlines in
it, i.e., on the viscosity. If the number of revolutions is
small, the radial velocity is negative over the entire
disk and spiral shocks are clearly visible; this is,
accordingly, the case of a very viscous disk. If the
number of revolutions is large, the disk possesses
zones in which the radial velocity can be either
negative or positive; the radial velocity in the disk
alters its sign several times in the orbital plane, and
the number of revolutions of the streamlines is very
high precisely at these points of sign changes. The
degree of concentration of the streamlines in these
places is illustrated by the fact that the distance
between them is only 0.00001–0.000001. Generally,
in a low-viscosity state, the disk displays three zones
where the radial velocity changes sign. The first is a
zone around the accretor, where the radial velocity is
negative (there is accretion onto a compact object);
there is a zone in the middle of the disk where the
radial velocity is positive (the matter flows outwards);
and, above this zone, at the outer edge of the disk,
there is a zone where the radial velocity is again
negative. The first zone is sometimes divided into
two when the viscosity is very small; in this case,
a zone with positive radial velocity is situated near
the inner boundary of the computational domain,
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Fig. 2. Same as Fig. 1 for the cross section made by the
z−y plane, which contains the accretor.

approximately 0.01 from the accretor, while the sign
of the radial velocity changes at a distance of 0.038.
At this point, the distance between the streamlines is
minimum, equal to only 0.00000001, indicating that
the viscosity is very low here, probably possessing its
lowest value in the disk.

Figure 2 presents density contours for the cross
section of the computational domain made by the
z−y plane, which contains the accretor. We can see
that, perpendicular to the orbital plane, the shape of
the disk is toroidal, with an almost rectangular cross
section. The height of the disk in the z direction re-
mains constant and equal to roughly 0.3; only near the
accretor can we see a “pit” or craterlike tunnel where
the height decreases dramatically. Here, gas from the
thick disk is drawn into a small volume of space in the
vicinity of the accretor, forming a rarified cavity in the
center of the disk. The possibility of a tunnel at the
center of the disk in SS 433 has been considered in
numerous studies [8]; we have confirmed its existence
via direct computations of the disk structure.

Analyzing the velocity field in Fig. 2, we can see
very clearly that matter moves into the tunnel; its
velocity reaches a maximum at the edges of the tun-
nel. The disk displays a very sharp boundary in the
z direction, also due to the selective model of ra-
diative cooling used. As was noted above, the den-
sity decreases dramatically from 1013 to 108 cm−3

at the disk surface. The temperature at the outer
edge of the disk is roughly 35 000 К, close to the
observed effective temperature of the accretion disk
in SS 433 (the radiation of the disk is known to be
close to that of a star with an effective temperature
of about 32 000 K [4]). In the disk, the temperature
increases slightly to approximately 40 000–60 000 K.
The modest temperature variations indicate that the
ASTRONOMYREPORTS Vol. 49 No. 10 2005
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Fig. 3. Same as Fig. 1 for the disk model taking into
account convective heat conduction.

disk is almost isothermal in the z direction. How-
ever, this result cannot yet be considered final; in our
opinion, a fully adequate description of the accretion
disk in SS 433, and particularly calculations of the
temperature structure of the disk in the z direction,
require solution of the equations of radiation transfer
in the disk along with the appropriate hydrodynamical
equations.

3.2. Computations of the Formation
of the Accretion Disk

Including Convective Heat Conduction

The model computations of the formation of the
accretion disk taking into account heat conduction
consisted of the following stages. (1) From the
start of the computations to approximately 7 orbital
periods, the radiative cooling was included implic-
itly (γ = 1.0001) together with regularization of the
temperature field (Tlim = 50000 K). (2) Further, the
computations included convective heat conduction
over the entire computational domain during another
15 orbital periods, in order to establish the steady
state in the disk over a sufficiently long time.

As we noted above, when heat conduction was
taken into account, the formation of the disk took
10–12 orbital periods. The temperature in the disk
and the second derivatives of the temperature with
respect to coordinates continuously decreased. The
temperature fell from a maximum of 187 000 K to
12 500 K, and the second derivative of the temper-
ature with respect to z decreased in absolute value
from 190 000 K to 3.5 K. Thus, in the steady state for
the model with convective heat conduction, the tem-
perature decreased and was, on average, 12 500 K.
This is somewhat lower than the observed surface
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Fig. 4. Same as Fig. 3 for the cross section made by the
z−x plane, which contains the accretor.

temperature of the disk in SS 433; however, since our
calculations do not include heating of the disk by the
central source, this temperature should be considered
reasonably close to the observed value.

Figure 3 (orbital plane) and Figs. 4 and 5 (z−x and
z−y planes) present the final structure of the disk in
the model with heat conduction. According to Fig. 3,
the radius of the disk in the orbital plane is 0.35–0.40,
which coincides with our previous calculations. Gen-
erally, the structure of the disk in the orbital plane
is almost the same in the model without heat con-
duction. Only the average temperature has decreased,
as was noted above, from 187 000 K (without heat
conduction and explicit radiative cooling) to 12 500 K.
Even before the heat conduction was switched on, the
trailing shocks I and II and leading shock III (as de-
noted by Bisikalo et al. [5, 6]) were formed in the disk.
We can also see in Figs. 3–5 that the disk forms from
the flow without the formation of a hot spot; instead,
a hot line (IV) is formed. Initially, a “halo” is formed
from the flow around the disk; matter from this halo is
then gradually transferred into the disk. Essentially,
in our computations, the halo does not differ from the
disk material, since gas gradually moves towards the
center from both places; in addition, the halo does not
display density discontinuities (i.e., shocks), as oc-
curs in the numerical model of Bisikalo et al. [7]. Note
that the halo produced in our computations is not per-
manent; it only exists when the number of revolutions
of a gas particle in the disk is sufficiently large (more
than 15–20). Note also that, in the given model, the
outer edge of the disk displays a sharp drop in density,
which distinguishes the disk from the circumstellar
envelope. Analyzing velocity field in the orbital plane,
we can see that matter from the envelope gradually
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Fig. 5. Same as Fig. 3 for the cross section by the
z−y plane, which contains the accretor.

accretes onto the disk. However, the computational
domain must be substantially enlarged if we wish to
make final conclusions about the interaction between
the disk and circumstellar envelope. Note also that
the flow is not conservative in our model; analysis of
the velocity field and streamlines shows that matter
from the flow arrives at both the disk and the outer
envelope. The circumstellar envelope in the SS 433
system is apparently formed not only due to the stellar
wind from the donor but also due to matter flowing
from L1. Thus, the stellar wind from the orbital plane
in SS 433 [8] is probably formed as a result of the
nonconservativeness of the mass transfer from L1.

Figures 4 and 5 present the disk structure in the
z−x plane containing the line connecting the cen-
ters, and the z−y plane containing the accretor. Our
computations have led to the formation of a geo-
metrically thick disk with an average height in the
z direction of 0.25–0.35. The structure of the disk
in the z−x and z−y planes can be divided into three
parts: (a) the core of the disk, with a density of about
1014 cm−3 (marked 1 in Figs. 4 and 5); (b) the disk
itself (marked 2), with a density of 1012−1013 cm−3;
and (c) the atmosphere (marked 3), located at heights
exceeding 0.25, with a density of 1010−1011 cm−3.
This structure explains why the disk radiates almost
like a star: it has the same structure that a star should
have—inner layers and an atmosphere.

It is difficult to understand the reasons for the
formation of a geometrically thick disk in this sys-
tem. We suggest that, since the height of the flow
when it approaches the disk almost coincides with the
height of the disk, which, in both cases, substantially
(by a factor of two to three) exceeds the hydrostatic
height of both the flow and the disk, the existence
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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of a geometrically thick disk in SS 433 (similar to
that seen in the long-period system β Lyr [9]) is
most likely due to the large initial radius of the flow
from L1. This, in turn, results from the large degree of
overflow of the donor Roche lobe and the large orbital
period of the system. In our opinion, it is not correct
to explain the large height of the disk in SS 433 by
invoking a super-Eddington luminosity for the disk
(i.e., by invoking supercritical accretion), since the
disk in the β Lyr system, which has similar param-
eters and the same mass-transfer rate through L1,
is also geometrically thick and displays no super-
Eddington structure. A super-Eddington structure of
the disk should also facilitate expansion in the z di-
rection, but the contribution of this factor should not
be considered to be dominant.

We compared the structure of the geometrically
thick disk obtained in our calculations with the stan-
dard disk model developed by Shakura and Sun-
yaev [10]. As we can see from Fig. 5, the height of the
disk substantially exceeds its hydrostatic height, right
up to the surface of the accretor. This is what makes
our disk different from the standard model, which
assumes that the height of the disk is close to hydro-
static, and therefore that essentially the entire disk is
illuminated by the central source. In our model with
a geometrically thick disk, a large constant height is
maintained in the z direction out to approximately a
radius of 0.03, after which the height rapidly decreases
to values below the hydrostatic height at the given
point. Thus, a peculiar cavity with almost vertical
walls is formed around the accretor. This is clearly
visible in Fig. 5 at the center of the disk (marked 4):
it is extended in the vertical direction and its walls are
distinguished by powerful shocks separating the lobe
from the disk itself. Recalling that the disk in SS 433
is supercritical, i.e., very intensely illuminated by the
central source, we conclude that the radiation from
the disk center does not illuminate the entire disk.
This conclusion is based on the fact that, for a density
of 1012−1014 cm−3, the disk should be totally opaque
to the radiation from the central source, although this
radiation may emerge through the cavity at the disk
center, concentrated in a beam with an opening angle
equal to that of the cavity. The opening angle of the
cavity formed around the accretor in our computa-
tions is roughly 16◦, which is close to the observed
opening angle of the jets in SS 433 (about 20◦ [11]).

The coincidence between these angles favors our
idea that jets can form in a close X-ray binary under
the action of the bolometric luminosity of the disk.
The key point here is that the radiation of the central
source associated with the bolometric luminosity of
the disk accelerates the gas around the accretor to
relativistic velocities. This gas is then apparently not
collimated into a beam by any specific mechanism,
ASTRONOMYREPORTS Vol. 49 No. 10 2005
but is simply reflected from the walls of the narrow
cavity in the disk and emerges perpendicular to the
disk. Since the determination of the disk structure in
the vicinity of the accretor was not the aim of this
study, the formation of this cavity should be treated
as a preliminary result.

On the surface of the cavity and above the cavity
on the disk surface, there are sharp gradients in the
density. These likely indicate the presence of shocks
on these surfaces. We suggest that the emission lines
observed in the spectrum of the system are formed in
the vicinity of the accretor. In Figs. 4 and 5, regions
with very low gas densities (below 105 cm−3) are vis-
ible above and below the accretor. Thus, jets flowing
from the craterlike central cavity should essentially
expand into empty space and cannot interact with the
disk, only with the wind from the disk.

Our computations show that, in the model with
heat conduction, on reaching the steady state in the
disk, the number of revolutions of the streamlines
continuously varies erratically from 20 to 190, provid-
ing evidence for variations in the viscosity. This be-
havior of the disk in the steady state can explain vari-
ous types of variability of the radiation from the disks
in close binaries (primarily, X-ray and cataclysmic
binaries). It is known that various types of variabil-
ity and nonstationary behavior (outbursts, etc.) are
observed in close binaries with accretion disks and
compact objects, probably related to processes in
their accretion disks. Studies of the nature of the disk
viscosity and its variability are likely to be important
for our understanding of the nature of nonstationary
processes in accretion disks. We emphasize here only
that the viscosity is variable in our computations,
and long series of computations (on timescales of the
order of 40–50 orbital periods) with high-resolution
numerical grids are needed to follow variations of the
internal structure of the disk and the velocity field in it
in the steady-state solution in detail. We suggest that
the main origin of the variability of the disk viscosity
is the gravitation of the donor, since the disk rotates
in a variable gravitation field.

3.3. Computations of the Formation
of the Accretion Disk

without the Gravitation of the Donor

In [1], we calculated the formation of the accretion
disk in SS 433 without the effect of the gravitation
of the donor within the disk. Initially, we included the
normal gravitation of the donor and then switched it
off starting from some time. The results of this ap-
proach were recalled in the Introduction. In the cur-
rent study, the computations included radiative cool-
ing explicitly and excluded the gravitation of the donor
from the very start. All the parameters of the problem
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remained the same, with the only difference being that
we switched off the donor gravitation within a sphere
with a radius of about 0.4 centered on the accretor,
where it constitutes only a few percent of the accretor
gravitation. Thus, our computations were carried out
right from the very start without the donor gravitation.
We continued the computations over seven orbital
periods, in order to study the steady-state solution
over a long time.

Figure 6 presents the results of these computa-
tions in the form of density contours in the orbital
plane. We can see that the disk is appreciably dis-
torted compared to the results of Subsection 3.1. The
influence of the donor on the formation of the disk
around the accretor is very clearly visible here. This
is primarily due to the fact that the field becomes
noncentral in the presence of the donor gravitation.
Under the action of such a field, variations of the an-
gular moment in the flow and disk result in dramatic
differences in the disk formation compared to the case
when the donor gravitation is switched off. Note also
that the disk formed in this model turns out to be very
viscous (the number of revolutions of the streamlines
in the disk is only about two), which also illustrates
the donor’s influence. The variation of the disk viscos-
ity compared to the previous results presented above
results from the variation of the velocity field due to
the elimination of the donor gravitation. We can see
from Fig. 6 that spiral shocks still form in the disk
without the donor gravitation, although their shape
and structure undergo dramatic variations.

3.4. Formation of a Jet under the Action
of Gravitational Pressure in SS 433

In this subsection, we will obtain a simple for-
mula for determining the distance at which the jets
originate and will estimate the velocity and density
of the gas in the jets. We will suppose that the jets
form under the action of collimated radiation emerg-
ing from a cone-shaped tunnel in the vicinity of the
compact object, formed by a geometrically thick disk.
In the standard accretion-disk model, the luminosity
is given by the formula [10]

L(r) =
GMxMaccr

2r
, (1)

whereMaccr is the disk accretion rate,Mx the mass of
the compact object at the center of the disk, and r the
disk radius in cylindrical coordinates (the case of disk
accretion is considered here).

Suppose that, at the point where the jets originate,
i.e., in the vicinity of the inner radius of the accre-
tion disk, the disk accretion becomes spherical. This
means that jets form near the spherization radius [4].
Let us also assume that the luminosity in the ac-
cretion disk is given by the same expression. In the
approximation of an optically thin layer, the radiation
pressure per atom is given by

Frad =
αL(r)
4πcr2

, (2)

where α is the Thomson scattering coefficient and
r the disk radius in spherical coordinates. Equating
the radiation pressure to the gravitation (for simplic-
ity, we use here a Newtonian gravitation potential)
yields an expression for the distance at which the jets
can be formed in SS 433:

Rjets =
αMaccr

8πcmp
, (3)

wheremp is the proton mass.
To obtain the final form of this expression, wemust

introduce a correction for deviations from spherical
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Parameters of close binaries and accretion rate in their disks from [13]

System Porb, day Mx,M� Mopt,M� Maccr,M�/yr Rjets, cm Vjets, s Njets, cm−3 Jets

LMC X-4 1.408 1.4 16 1.0 × 10−8 8.5 × 106 0.156 6.4 × 106 Yes

Cen X-3 2.09 1.4 18 9.0 × 10−9 7.9 × 106 0.24 3.5 × 106 Yes

SS 433 13.086 12.0 10 1.0 × 10−7 3.1 × 107 0.24 2.0 × 1011 Yes

X1907+097 8.38 1.4 20 5.0 × 10−10 2.0 × 105 1.2 8.3 × 105 No

LMC X-3 1.7 10 6 3.0 × 10−8 8.5 × 106 0.416 4.4 × 106 Yes

SMC X-1 3.9 1.4 18 4.0 × 10−8 4.1 × 107 0.135 7.4 × 106 Yes

Cyg X-1 5.6 16 33 2.5 × 10−8 7.1 × 106 0.577 1.7 × 106 Yes

Her X-1 1.7 1.4 2.35 2.5 × 10−9 7.1 × 105 0.54 3.3 × 106 No

X2127+119 0.713 1.4 0.9 1.0 × 10−10 2.8 × 104 2.7 3.7 × 105 No

Cyg X-2 9.844 1.4 0.7 1.0 × 10−8 8.5 × 106 0.27 3.7 × 106 Yes

Gen LMXB 0.2 1.4 0.5 1.0 × 10−9 2.8 × 105 0.85 1.2 × 106 No

X1916-053 0.035 1.4 0.1 1.0 × 10−9 2.7 × 105 0.83 1.2 × 106 No

4U 1626-67 0.029 1.4 0.03 5.0 × 10−10 1.4 × 105 1.2 8.3 × 105 No
symmetry in the jets (which takes into account the
collimation of the gas and radiation in the jets):

α1 = Θ/π, (4)

where Θ is the opening angle of the jet cone (if only
a single jet is considered, this angle is divided by π).
The final formula for the distance at which the jets are
formed is

Rjets =
αMaccr

8πcmpα1
. (5)

Formula (5) is obtained from (3) by dividing it
by (4), since, according to our assumptions, the ra-
diation from the disk is collimated perpendicular to
the orbit plane, i.e., the radiation is concentrated in
a cone. The disk luminosity increases inversely pro-
portional to the radius; this means the luminosity
decreases very rapidly outwards from the point where
the jets are formed, so that the gas in the jets accel-
erates very rapidly to its maximum value (at infinity).
Thus, the gas accelerates within a very small region
within the distance Rjets. This conclusion is consis-
tent with the results of [8], where it is concluded that
the gas in the SS 433 jets is accelerated to relativistic
velocities within a small region of space. We can thus
specify the velocity in the jet as

Vjets = (2GMx/Rjets)2. (6)

A similar formula is known in the theory of jets
accelerated under the action of a magnetic field (see,
ASTRONOMYREPORTS Vol. 49 No. 10 2005
for example, [12]); there, the distance between the
central star and magnetic field is considered instead
of the distance at which the jets are formed. However,
MHD models and our computations differ in a very
important aspect: in an MHD model, this distance
is selected based on some assumption, while, in our
computations, it is calculated from two parameters—
the mass of the compact object and the disk accretion
rate. The average density in the jets can be determined
from the continuity equation, taking into account the
fact that the jets form from the matter of the disk,
which, in turn, originates from the stream of matter
flowing from the inner Lagrangian point L1. In other
words, the average density in the jets is equal to

ρjets = ρL1
VL1

/Vjets, (7)

where ρL1
and VL1

are the density and velocity at L1.
Thus, we have determined all the basic parameters
of the jets: their density, velocity, and the distance
at which they are formed. Let us use the obtained
formula to consider the possibility of jet formation in
other close binary systems. To this end, we will select
14 binary systems (including SS 433) from the study
of Wijers and Pringle [13]. The table presents the
parameters of these close binaries and the accretion
rates in their disks (all data are also taken from [13]).
The table also presents the parameters of jets that
could be formed in these binaries. A condition for
the formation of jets in a given binary is that the
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distance at which they form must exceed the inner
radius of the disk, which is approximately (3−4) ×
106 cm for neutron stars and 3Rg for black holes.
In our computations, the cone opening angle at the
center of the disk is assumed to be constant and equal
to 20◦. Using the above formula, we find that the
conditions for the formation of jets are fulfilled in six
of the close binaries (including SS 433).

It also follows from the table that the jet veloci-
ties for SS 433 and Cyg X-1 are very close to their
observed values (0.26 for SS 433 and about 0.6 for
Cyg X-1 [14] in units of the speed of light). This con-
firms that our estimates for the jet parameters made in
this subsection are self-consistent and also in agree-
ment with observations. According to our computa-
tions, close binaries in which jets should be formed
are mainly X-ray systems with periods longer than a
day and accretion rates exceeding 10−8M�/yr. For
short-period close binaries, the radius at which the
jets are formed is smaller than the inner radius of the
disk. Systems in which jets should be formed include
LMC X-4, Cen X-3, SS 433, LMC X-3, SMC X-1,
Cyg X-1, and Cyg X-2. The velocities of the gas
motion in the jets in these systems are distributed in
the interval from 0.156 to 0.577.

We can use the above formulas and the com-
monly accepted parameters of active galactic nu-
clei (AGN) to investigate the formation of jets in
AGN and derive the accretion rates for which jets
can be formed. For example, for a nuclear mass of
109 M�, jets are formed when the accretion rate ex-
ceeds 1.5M�/yr. If with this nuclear mass the accre-
tion rate is 10M�/yr, the velocity in the jets formed
will be approximately 0.2 of the speed of light. Thus,
for reasonable parameters of AGN, the parameters of
the inferred jets turn out to be close to the observed
parameters, suggesting that the formulas derived here
can also be used in studies of the formation of jets
in AGN.

4. CONCLUSIONS

We have carried out three-dimensional hydrody-
namical computations of the formation of the flow in
the vicinity of the inner Lagrangian point, its motion
in the Roche lobe of the accretor, and the formation
of the accretion disk, taking into account radiative
cooling explicitly, as well as convective heat con-
duction. We derived the three-dimensional structure
of a steady-state accretion disk with a temperature
close to the observed value. In our computations,
the flow forms a disk without a hot spot, but with
a hot line. This means that matter from the flow
enters the disk along a tangent, and the trajectories
of gas particles in the disk do not cross those in the
flow. The average temperature in the disk is 25 000–
35 000 K in the model with radiative cooling and
approximately 12 500 К in the model with convective
heat conduction.

The shape of the disk in the orbital plane is essen-
tially circular and is slightly extended perpendicular
to the line connecting the centers. The average radius
of the disk is 0.35–0.40, which is approximately 70%
of the average radius of the accretor Roche lobe. The
temperature distribution in the orbital plane indicates
that the disk displays sharp boundaries, with two
shock waves being clearly visible at its outer edge:
the spiral shock I, formed during the interaction of
matter from the disk with the edge of the flow fac-
ing orbital phases 0.20–0.30, and the spiral wave II,
which is probably formed during the interaction of
gas from the outer envelope, surrounding the disk,
with the edge at orbital phases 0.30–0.40. Thus, our
conclusions concerning the formation of spiral shocks
are consistent with those made by Bisikalo et al. [7],
who considered the formation of spiral shocks in an
accretion disk during the interaction between mate-
rial in the disk and outer envelope. The analysis of
the disk formation with the gravitation of the donor
switched off indicates that the corresponding disk
also displays a spiral structure; the shape of the disk
becomes elliptical, in contrast to the shape for the
model considered in Subsection 3.1, while its size
remains approximately the same. The disk obtained
without the donor gravitation is distinguished by its
high viscosity: the number of revolutions of stream-
lines in the disk is only two to four. Thus, the absence
of the donor’s influence on the disk results in a sharper
spiral structure and higher viscosity compared to the
disk obtained in Subsection 3.1.

The computations of the mass transfer taking into
account radiation cooling explicitly show that almost
60% of the matter flowing from L1 flows into the disk,
while roughly 40% of this matter leaves the system.
When the loss of the donor’s specific rotational an-
gular momentum is calculated, it is clear that the
star loses not only the z component but also the
x and y components of this vector. This indicates that
the donor should lie on its side, which is important
in connection with explaining the precession of the
accretion disk. Indeed, in the most popular model for
the disk precession, the disk follows the precession
of the donor. As long as the donor lies on its side, it
should itself precess, giving rise to precession of the
accretion disk. Thus, our computations suggest that
precession of the accretion disk is simply a conse-
quence of the matter flow through the vicinity of L1.

The structure of the disk in the z direction indi-
cates that the disk shape in the z−x and z−y planes
is close to a torus with a transverse cross section
with a complex shape and with a height of 0.24–0.34,
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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which exceeds the hydrostatic height by a factor of
two to three (only in the vicinity of the accretor is
a depression in the disk seen, where the height of
the disk is close to the hydrostatic value of about
0.05–0.08); i.e., our computations imply the forma-
tion of a geometrically thick disk. A rarified cone-
like cavity is formed near the polar regions, at the
center of the disk—a tunnel, which is often consid-
ered in connection with the formation of the SS 433
jets [8]. The cone opening angle in our computations
is roughly 16◦, which coincides with the opening an-
gle of the SS 433 jets (about 20◦). This indicates good
agreement between our disk model and the observa-
tions [8].

The reason for the formation of this tunnel in the
disk center is very simple: thematter from a geometri-
cally thick disk should be accreted into a small area at
the center of the disk, which results in the formation
of a cavity, along whose surface gas moves towards
the accretor.

Since the initial height of the flow is roughly
0.2–0.3, we connect the formation of a thick, opaque
disk in SS 433 with the large initial radius of the
flow, which, in turn, results from the high degree of
overflow of the donor Roche lobe and the long period
of this binary.

Our study shows that the gas near the inner edge
of the disk can be accelerated to relativistic velocities
under the action of the bolometric luminosity of the
disk (we derived a formula for determining the radius
at which relativistic jets can be formed based on the
standard Shakura–Sunyaev model for the disk lumi-
nosity). We assume that the focusing of the jets in
SS 433, as well as in other close binaries and in AGN,
where thick disks may be formed, is not driven by
any specificmechanism; gas accelerated to relativistic
velocities simply leaves the system through a narrow
cavity at the center of the disk.

The temperature and density distributions in these
planes also indicate that the disk displays a sharp
surface in the z direction (the density in the disk is
1013−1014 cm−3 at its center, 1012−1013 cm−3 in the
disk itself, and from 1012 to 109 cm−3 at its edge,
i.e., in its atmosphere). Thus, according to our mod-
els, the disk in SS 433 displays a complex structure in
the z direction, similar to that of an ordinary star (with
inner layers and an atmosphere). This is consistent
with observational data, which indicate that the disk
in the SS 433 system radiates like a star with a
surface temperature of 32 000 K. The temperature in
the disk obtained in our computations with radiative
cooling is about 25 000–38 000 K in the inner parts
of the disk and roughly 12 000–19 000 K in its outer
parts, in good agreement with the observations.

The most important conclusions from our study
are the following.
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(1) The radius of the flow formed from the at-
mosphere of the donor in the vicinity of the first
Lagrangian point L1 is 0.15–0.20 for a mass-transfer
rate through this point of the order of 3× 10−5M�/yr.
A geometrically thick disk with a height of 0.2–0.3
forms from this flow. This can explain the formation
of the thick disk in SS 433 by purely astrophysical
(the large mass of the donor and large degree of
overflow of its Roche lobe, the long orbital period of
the system) rather than physical reasons (for example,
the presence of strong viscosity).

(2) The mass transfer through L1 turns out to be
nonconservative—roughly 60% of this matter flows
into the disk, while 40% leaves the system.

(3) The flow forms an almost circular disk without
a hot spot, but with a hot line. The disk formed from
the flow has a radius of roughly 0.3 with a matter
density of about 1012−1014 cm−3 and a temperature
of 15 000–35 000 K. The disk height in the z direction
is substantially larger than the hydrostatic height and
is equal to approximately 0.3.

(4) Spiral shocks are formed in our disk model,
probably during the interaction between the disk and
flow, as well as between the disk and envelope.

(5) The gas in the inner parts of the disk can be
accelerated to relativistic velocities under the action
of the bolometric luminosity of the disk.

(6) A rarified conelike cavity (tunnel) is formed
at the center of the disk; gas from the thick disk is
accreted into a small region at the center of the disk
along the walls of this cavity.

(7) Due to the existence of this cavity, gas ac-
celerated to relativistic velocities simply leaves the
disk through the cone-shaped cavity, instead of being
focused into narrow jets by some specific mechanism.

(8) The distances at which jets can be formed
in the disks of X-ray binaries, estimated using for-
mula (5), indicate that jets can be formed in the
disks of seven close binaries, including Cyg X-1 and
SS 433, and that the gas in these jets can move
outward with velocities from 0.155 to 0.599 of the
speed of light.

(9) The computations show that a high-
temperature region (roughly 90 000–110 000 K) is
formed above the accretor. Such regions also origi-
nate in computations of mass transfer in close bina-
ries with ordinary components (the β Lyrae, RZ Sct,
V367 Cyg, U Cep systems). We relate the existence
of these regions with the formation of emission lines
in the spectrа of some close binaries, in particular,
SS 433.
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Abstract—Analysis of the relativistic proton spectra of solar flares occurring in the 23rd solar activity cycle
derived from data of a worldwide neutron monitor network and numerical modeling both provide evidence
for the acceleration of charged particles by an electric field that arises in coronal current sheets during
reconnection. The method used to obtain the spectra is based on simulating the response of a neutron
monitor to an anisotropic flux of relativistic solar protons with specified parameters and determining the
characteristics of the primary relativistic solar protons by fitting model responses to the observations.
Studies of the dynamics of the energy spectra distinguish two populations of relativistic protons in solar
cosmic-ray events: the so-called fast component, which arrives at the flux front of the solar cosmic rays,
followed by the delayed slow component. The fast component is characterized by strong anisotropy and an
exponential energy spectrum, in agreement with the spectrum yielded by mathematical modeling of particle
acceleration by an electric field directed along the X line of the magnetic field. The slow component, whose
propagation is probably diffusive, has a power-law spectrum. c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

A solar flare is made up of a collection of complex
processes arising on the Sun. It has now been firmly
established that the primary flare energy release oc-
curs in the corona, with the duration of the explosive
phase of a flare that releases up to 1032 erg being
usually of the order of 100 s. The main manifestations
of such flares are

—the appearance on the solar surface of “ribbons”
glowing at visible wavelengths in an active region,
with the distance between the ribbons of two-ribbon
flares growing with time;

—the appearance in an active region of centers of
soft and hard X-ray radiation associated with the fast
electrons precipitating onto the chromosphere;

—the ejection of coronal material into inter-
planetary space and the associated formation of a
shock wave;

—the generation of fluxes of protons that are ac-
celerated to energies exceeding 1 GeV;

—the generation of γ radiation associated with
nuclear reactions occurring during the flare.
The 2.23 MeV line due to the radiative capture of a
neutron by a proton is clearly observed in the γ-ray
spectrum.

The flux of high-energy protons arrives at the
Earth along lines of the spiral interplanetary magnetic
1063-7729/05/4910-0837$26.00
field, where they can then penetrate the magneto-
sphere of the Earth. Protons with sufficiently high
energies, exceeding the so-called geomagnetic cutoff
threshold, reach the Earth’s atmosphere, giving rise
to fluxes of neutrons formed in nuclear reactions,
which can be detected by neutron monitors at the
Earth’s surface. The network of neutron monitors
distributed around the Earth can be considered as a
single multidirectional instrument for the measure-
ment of the spectra, anisotropies, and pitch angles of
fluxes of primary relativistic solar cosmic rays arriving
from beyond the Earth’s magnetosphere [1, 2].

In the current study, we derived the spectra of
relativistic solar protons (RSPs) by applying fitting
methods to data from a worldwide network of neu-
tron monitors. The analysis of these data also in-
cluded computation of the particle trajectories based
on modern models for the Earth’s magnetosphere.

The temporal characteristics of fluxes of elec-
tromagnetic radiation and protons detected at the
Earth’s orbit differ appreciably. The duration of the
γ-ray pulse coincides with the duration of the ex-
plosive phase of the flare, while the duration of the
flux of protons is measured in hours, with the growth
front of the flux sometimes being very sharp. Some of
the protons move into interplanetary space, arriving
at the Earth in the flux front, and some give rise to
nuclear reactions on the Sun, accompanied by the
c© 2005 Pleiades Publishing, Inc.
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Fig. 1. Electrodynamical model for a solar flare. Lines
of the magnetic field (thin) and longitudinal currents are
shown, together with velocity vectors for the plasma. The
electric fieldE = −V×B/c is perpendicular to the plane
of the figure.

emission of γ rays. The origin of the delayed protons
(the so-called slow component) may not be related
directly to processes occurring during the flare. For
example, they could be accelerated in a shock wave
created by a supersonic coronal ejection. In this case,
the energy spectra of the protons arriving in the flux
front and the flux tail should be different. It is also
possible that the slow component is made up of
particles that were captured in the magnetic field of
the active region, whose spectrum is formed during
interactions with turbulence.

The appearance of a collection of flare phenom-
ena can be explained by electrodynamical models for
the flare [3–5], which assume the accumulation of
energy in the corona above an active region in the
magnetic field of a current sheet. During the evo-
lution of a current sheet in an unstable state and
its subsequent disruption, the energy of the mag-
netic field transforms into kinetic and thermal en-
ergy. This flare model is illustrated in Fig. 1. The
thin curves depict the magnetic-field lines; a current
sheet is contained between the oppositely directed
field lines. The larger arrows show the plasma velocity.
The plasma flows into the current sheet from both
sides together with the magnetic-field lines and is
accelerated along the sheet by the j × B/c force after
magnetic reconnection in the vicinity of the X line of
the field (j is the current, B the magnetic field, and
c the speed of light). The plasma accelerated upward
creates a coronal mass ejection. Together with con-
tracted lines after reconnection, the downward flow
of plasma heated during the reconnection forms hot
postflare loops. The Hall electric field directed along
the sheet, E = j × B/nec (n is the particle number
density, and e the charge per particle), gives rise
to a system of longitudinal currents (parallel to the
magnetic field lines) that close in the chromosphere.
The electrons that are accelerated in these currents
precipitate onto the solar surface, leading to the vis-
ible and X-ray emission of the flare ribbons. Protons
can be accelerated to high energies in the flare along
the X line of the magnetic field, perpendicular to the
plane of the figure. This acceleration occurs in the
E = −V×B/c electric field, which grows in the case
of rapid reconnection during the disruption of the
current sheet. Here, V is the velocity with which
plasma flows into the sheet and B is the magnetic
field of the current sheet. In general, the X line is not a
neutral line. Themagnetic field directed along this line
should play a stabilizing role during the acceleration
processes. Estimates show [4] that, in principle, this
mechanism should be able to accelerate protons to
energies substantially exceeding those typically reg-
istered during flares.

The most trustworthy data on the development of
a flare were obtained from RHESSI measurements
for the flare of July 23, 2002 [6]. The 40 keV X-ray
emission appeared nine minutes before the explo-
sive phase of the flare. The X-ray spectra indicate
that this was not thermal emission, but was due to
electrons accelerated in the corona, which partially
precipitated onto the chromosphere, as is expected in
the electrodynamical model of a flare [5]. Further, in
the explosive phase, there is a sharp growth in the
X-ray emission at energies exceeding 100 keV and
the γ-ray emission. Simultaneously, thermal X-ray
emission from a coronal source with the temperature
of ∼4 × 107 K was detected, testifying to the heating
of plasma in a current sheet during reconnection.
The motion of ribbons of hard X-ray emission was
observed at this same time, likewise providing evi-
dence for reconnection and the precipitation of elec-
trons onto the chromosphere in the feet of loops [7].
Measurements of γ-ray lines and the γ-ray conti-
nuum indicate the acceleration of ions and electrons
to energies of no lower than tens of MeV in the ex-
plosive phase. The γ-ray emission is associated with
accelerated protons arriving at the solar surface. The
acceleration of protons and emission of γ rays occurs
simultaneously in the impulsive phase of the flare. We
note in passing that the appearance of a coronal X-ray
source could precede the precipitation of electrons
onto the photosphere, as was the case for the flare
of January 24, 1992 [8]. Apparently, the energy that
is released during reconnection can be distributed
between the accelerated electrons and the hot plasma
in the coronal source in various ways, depending on
the conditions during the development of the flare.

Thus far, theoretical analyses of the acceleration of
particles during the disruption of a current sheet have
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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been carried out under very simplified conditions,
leading to sometimes contradictory results [9–12].
The acceleration has been assumed to occur in
an externally applied electric field, with the current
sheet replaced by a stationary existing magnetic-field
configuration with a neutral X line. In [6], the energy
spectrum of the protons was determined from themo-
tion of particles in the vicinity of the X line. A particle
moving precisely along the X line is accelerated by
the full applied potential difference, while a particle
that initially moves at some distance δ from the X line
is deflected by the magnetic field and gradually leaves
the region of nonadiabatic motions without acquiring
its maximum possible energy. The larger is δ, the
smaller the potential difference passed through by the
particle. This yields a spectrum of the form dN/dW ∼
exp(−W/EeL) (W is energy and L is distance).
However, according to [10], the spectrum for particles
accelerated in the region beyond the nonadiabatic
region could be a power law. A power-law spectrum
can be formed for particles with modest energies.
Numerical simulation was carried out in [11] based
on the analysis of [9], leading to the conclusion that
the spectrum should have a power-law character,
as is typical for the spectrum of cosmic rays. In
addition, the computations of [12], carried out in
a similar fashion, indicate an exponential spectrum
for the accelerated protons, in agreement with the
experimental data of [2, 13].

A possible mechanism for the generation of the
slow component is stochastic acceleration by plasma
turbulence [13]. The goal of the current study is to
determine the spectra of solar cosmic rays at various
times based on data obtained on a worldwide network
of neutron monitors and to compare these spectra
with computed spectra for protons accelerated in
the vicinity of an X-type magnetic-field line in a
current sheet, when the electric field is determined
by magnetic reconnection.

Spectra of RSPs in a series of events of the cur-
rent (23rd) solar-activity cycle are analyzed using a
method based on computing the trajectories of pro-
tons of various energies that give rise to the de-
tected neutrons [1, 2]. We simulated the response
of the worldwide network of neutron monitors to an
anisotropic flux of RSPs with specified parameters
and compared the results to observations. This pro-
cedure includes computing the trajectories of the pro-
tons in a model geomagnetic field. In each of three
events analyzed (July 14, 2000, October 28, 2003,
and November 2, 2003), the parameters of the RPSs
were determined at various times, enabling us to de-
rive data on the dynamics of the fluxes and spec-
tra of these protons beyond the magnetosphere. In
each case, two different populations of RSPs can
be distinguished—prompt and slow—with the former
ASTRONOMYREPORTS Vol. 49 No. 10 2005
being observed in the initial phase of an event. The
fast component reaches the Earth’s orbit over the
flight time of the protons traveling along the spiral
lines of the interplanetary magnetic field. This means
that the spectrum of the prompt component is not
distorted by diffusion due to collisions between the
protons and magnetic inhomogeneities and does not
contain particles captured by the strong magnetic
fields of the active region. Thus, the spectrum of
the prompt component carries information about the
particle-acceleration mechanism in the solar flare.
The prompt component is characterized by an impul-
sive temporal profile that reflects the temporal charac-
teristics of the flare, as well as pronounced anisotropy.

The delayed slow component arrives at the Earth
later, and begins to dominate in the flux of RSPs
0.5–1 h after the onset of the event. The mechanism
determining the spectrum of the slow component
may be acceleration in a shock or the escape of fast
particles from magnetic loops that are captured by
the magnetic field during the flare. We also cannot
exclude the possibility that the slow component spec-
trum is influenced to some extent by the diffusion
of particles due to collisions with magnetic inhomo-
geneities in the interplanetary medium. A firm answer
about the nature of the associated particle accelera-
tion can only be provided by comparisons of computed
spectra for various acceleration models with obser-
vational data. In the current study, we have carried
out numerical simulation of spectra obtained for the
case when particles are accelerated by an electric field
directed along a neutral line of the magnetic field
and compared the resulting spectra with neutron-
monitoring measurements. Neutron monitors cur-
rently provide possibly the only means of measuring
the spectra and other characteristics of relativistic
solar cosmic rays, which are not accessible to direct
measurements on spacecraft or balloons due to the
small effective areas of the detectors that can be used.
Our results indicate that the computed spectra are
in agreement with the spectra of the RSP prompt
component derived from neutron-monitor data.

2. METHOD FOR DETERMINING
THE SPECTRA OF THE SOLAR PROTONS

The response of a neutron monitor to an aniso-
tropic flux of RSPs beyond the Earth’s magneto-
sphere is a complex function of the characteristics of
the flux itself, the conditions for the propagation of the
particles in the Earth’s magnetosphere, and the con-
ditions for the passage of neutrons generated in the
upper layers of the atmosphere by the primary protons
through the atmosphere. We derived the energy spec-
tra of the RSPs together with other characteristics of
the flux of these particles in the interplanetary space
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Fig. 2. (а) Profiles of the growth of the neutron flux at the neutron monitoring states at Thule (Thu) in Greenland and Goose
Bay (GB) in Canada during the event of July 14, 2000. The bold arrow shows the supposed time when the protons were
generated. The times when the spectra were calculated are also indicated: (1) for the prompt component and (2) for the slow
(delayed) component. (b, c) The spectra on log–log and semilogarithmic scales. The errors in the measurements are indicated.
The direct measurements of the solar protons are shown by crosses (balloon probes) and circles (the GOES-11 spacecraft).
(their anisotropy, the pitch angle distribution in the
interplanetary magnetic field near the boundary of the
magnetosphere) by fitting computed responses for a
worldwide network of neutron monitors to the obser-
vations [2]. In this case, wemust know the asymptotic
directions (the direction of arrival at the boundary of
the magnetosphere) of protons with a specified energy
(hardness) that contribute to the signal for a given
neutron monitor. For each station, we calculated the
asymptotic reception cones formed by the asymptotic
arrival directions of protons in steps of 0.001 GV in
the hardness range from the atmospheric cutoff pc ∼
1 GV (proton energies of 430 MeV) to pc = 20 GV
(proton energies of 19 GeV), which is the limiting
hardness in the spectrum of solar cosmic rays.

The computations were carried out by integrating
the equation of motion of a particle with negative
charge and the mass of the proton with a specified
hardness emitted vertically upward from a height of
20 km above a given station. The height of 20 km
was chosen since it is the mean altitude at which the
secondary neutrons that contribute to the neutron-
monitor signal are formed. The equations of mo-
tion were integrated using a fourth- or fifth-order
Runge–Kutta method. The computations used the
Tsiganenko 2002 magnetospheric model. Using the
calculated asymptotic directions, we computed the
response of a given neutron monitor to an anisotropic
flux of RSPswith specified parameters. By comparing
the computed responses with actual measurements
via a least-squares fit, we found a set of parameters for
the flux of RSPs that yielded the best agreement with
the observations for the entire network of neutron-
monitoring stations. The number of stations used for
the analysis was from 27 to 30; this also corresponds
to the number of conditional equations used in the
fitting.

3. DYNAMICS
OF THE SPECTRA OF SOLAR FLARES
BASED ON NEUTRON-MONITOR DATA

3.1. Event of July 14, 2000
Figure 2 presents temporal profiles showing the

growth of the signals at the two terrestrial neutron-
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Fig. 3. Same as Fig. 2 for the event of October 28, 2003 and the neutron-monitoring stations at Norilsk (No) and Cape
Schmidt (CS). We can see that the Norilsk station detected predominantly the prompt component, while the Cape Schmidt
station detected primarily the slow component.
monitoring stations at Thule (Thu) in Greenland and
Goose Bay (GB) in Canada during the RSP event of
July 14, 2000 (the “Bastille Day flare”). These pro-
files show the presence of two populations of RSPs:
prompt and delayed (slow). The smooth growth in the
count rate at Goose Bay indicates that this station
detected primarily the slow component, while a sharp
initial peak corresponding to the prompt component
has been recorded at the Thule station. The arrows
labeled 1 and 2 in Fig. 2a mark the maxima in the
count rates recorded at these stations.

Figures 2b and 2c present the energy spectra of
the RSPs for these times (shown by the arrows in
Fig. 2a). The spectra were derived by fitting the data
for 27 neutron-monitoring stations [2] and are pre-
sented on log–log and semilog scales. These data
show that spectrum 1, which was obtained for the
initial phase of the event (the fast component), is
described well by a linear dependence on a semilog
scale (Fig. 2c); i.e., this relation is exponential. Spec-
trum 2, which was taken 30 min later, has a different
character and can be described by a linear dependence
on a log–log scale; i.e., it is a power-law dependence
with a high index, γ ∼ −5.
ASTRONOMYREPORTS Vol. 49 No. 10 2005
3.2. Event of October 28, 2003

The presence of two components in the RSPs is
demonstrated in the event of October 28, 2003, by
the data for the two high-latitude neutron-monitoring
stations Norilsk (No) and Cape Schmidt (CS). As we
can see from Fig. 3a, a sharp maximum in the count
rate (arrow 1) due to the arrival of the fast component
is clearly observed at the Norilsk station; at Cape
Schmidt, a modest peak due to the arrival of the fast
component is first detected (arrow 1), while a flux of
neutrons with a shallow front associated with the slow
component (arrow 2) is detected over a prolonged
time beginning after a delay of ∼30 min. The strong
difference in the time dependences is due to the high
anisotropy in the flux of relativistic solar cosmic rays.
The amount of signal growth at different stations
with the same geomagnetic threshold depends on the
orientation of their asymptotic cones relative to the
interplanetary magnetic field and the shape of the
pitch-angle distribution. This last quantity evolved
rapidly during the event of October 28, 2003: a strong
variation in the pitch-angle distribution of the par-
ticles from the initial phase of the event (the fast
component) to the time of the maximum of the slow
component.
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Fig. 4. Same as Fig. 2 for the event of November 2, 2003, and the neutron-monitoring stations at Apatity (Ap) and Terra
Adelaide (TA) in Antarctica. Only the slow component was detected at Apatity, while a superposition of the prompt and slow
components was detected at Terra Adelai.
Figures 3b and 3c show the solar-proton spectra
on log–log and semilog scales derived by fitting
the data for 30 neutron-monitoring stations at the
times 1 and 2 marked by the arrows in Fig. 3a.
The spectrum of the RSPs for the fast component
obtained at 11:20 UT (curve 1) differs strongly
from the spectrum obtained at 12:00 UT, when
the flux of solar rays has been dominated by the
slow component, giving rise to the appearance of
a delayed maximum. The linear character of the
spectrum on the semilog scale for the fast component
shows that, as in the previous case, the spectrum
is exponential, while we see a linear energy de-
pendence for the slow component on the log–log
scale; i.e., the spectrum of the delayed protons is a
power law. The power-law index (γ ∼ −4) is smaller
than that for the Bastille Day flare. The crosses and
circles represent direct measurements of moderate-
energy solar protons made on board the GOES-10
spacecraft and using balloon probes during this
event (http://goes.ngdc.noaa.gov/data/avg/2004/),
which correspond to times t > 12:00 UT. The spectra
derived from these measurements at energies of
100–300 MeV are approximated well by the spectra
derived from the neutron-monitor data. Note that the
GOES-10measurements can only be used to analyze
a narrow interval of energies, in which it is difficult to
unambiguously distinguish between a power law and
exponential spectrum.

3.3. Event of November 2, 2003

Figure 4a shows growth profiles obtained for the
Apatity (Ap) station and the Terra Adelie (TA) station
in the Antarctic. Only the slow component of the
RSPs is present in the Apatity profile. The presence of
a sharp front in the growth of the neutron flux at the
Terra Adelaide station is associated with the arrival
of the prompt component, while a slowly decreasing
flux of neutrons (the slow component) is detected
after the maximum (17:45 UT). The dynamics of the
spectra for this event (Figs. 4b, 4c) are similar to
those for the event of October 28, 2003. The spectrum
of the prompt component has a linear character on the
semilog scale (curve 1)—i.e., it is exponential—while
the spectrum for the slow component is described well
by a power law. Spectrum 1, which corresponds to the
fast component, is harder.
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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Fig. 5. Results of numerical MHD simulation of the Bastille Day solar flare: (a) magnetic-field lines and velocity vectors;
(b) distribution of current density in the current sheet at the onset of the flare.
4. NUMERICAL SIMULATION
OF THE SPECTRA OF PROTONS

ACCELERATED DURING THE FLARE

Themaximumpossible energy of solar cosmic rays
accelerated by the electric field generated during the
disruption of a current sheet is determined by the total
potential difference applied to the singular line of the
magnetic field. However, in the case of an extended
singular line, this potential difference can be passed
through by only a small number of particles, so that
the real maximum energy that is detected will be ap-
preciably smaller. We estimate the maximum possible
energy using the results of three-dimensional numer-
ical MHD simulations of the Bastille Day flare [14,
15]. Figure 5 presents the results of such simulations
of the field of this flare (July 14, 2000). The figure
shows the velocity distribution and magnetic-field
lines of the developing flare (Fig. 5a), as well as the
distribution of the current in the reconnecting current
sheet (Fig. 5b). In this calculation we assume: the
flow velocity in the sheet is ∼0.1VA ∼ 109 cm/s, the
field in the current sheet is∼300G, and themaximum
electrical field is −V × B/c ∼ 3 × 103 V/cm, and if
the length of the singular line isL ∼ 109 cm, themax-
imum possible energy is 3 × 1012 eV. Such energies
can be attained only by particles that have traversed
the full potential difference, i.e., that have not left the
acceleration region. When L is large, the number of
such particles is negligibly small. The computation of
the proton spectrum during the Bastille Day flare is
currently being prepared. As a first step in this direc-
tion, we have numerically calculated the spectra for
the case of acceleration along the singular line, with
the potential difference being applied along this line.
ASTRONOMYREPORTS Vol. 49 No. 10 2005
The computation of the proton acceleration was
carried out in the closed parallelepiped

Π = {x : |xi| ≤ L⊥, i = 1, 2, 0 ≤ x3 ≤ L||},
(1)

with constant electric and magnetic fields specified in
the form

E = E0e3 = −∇ϕ(x), ϕ(x) = −E0x3, (2)

B = (B0/L⊥) (x2e1 + x1e2),

where e1, e2, e3 are the Cartesian basis vectors in
R3 space. The magnetic field specified in this way
contains the zero line {x1 = 0, x2 = 0}. This model
field was used to simulate the particle acceleration
in [11, 12].

The following model was used for the accelerated-
particle spectrum for the numerical modeling. The
parallelepiped Π was divided along the x3 axis into
ν|| layers Π(k) with thickness Lg:

Π =
ν||⋃

k=1

Π(k), Π(k) = {x : |xi| ≤ L⊥, (3)

i = 1, 2, (k − 1)Lg ≤ x3 < kLg}.

In turn, each layer was separated into ν2
⊥ cubes with

sides of length Lg. (Thus, the lengths L⊥ and L||
should be multiples of Lg, namely, L⊥/Lg = ν⊥,
L||/Lg = ν||.) In each such cube of the first layerΠ(1),
we specified 212 = 4096 protons and numerically
generated the three-dimensional spatially uniform
Maxwellian velocity distribution

f(v) = n
(
VT

√
2π
)−3

exp
(
−v2/

(
2V 2

T

))
(4)
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Fig. 6. Computed spectrum of protons accelerated by an
electric field lying along an X-type neutral line.

for a specified thermal velocity VT . We applied the
method described in [16], which uses numbers with
inverted orders.

The proton trajectories were calculated using a
second-order implicit combined algorithm that pre-
cisely conserves the total energy (Hamiltonian) of the
particle:

H(x,v) = eϕ(x) +m0c
2γ(v), (5)

γ(v) = (1 − v2/c2)−1/2,

where e, m0, and c are the charge and rest mass
of the proton and the speed of light. The algorithm
operates in accordance with the following scheme.
If a particle is not magnetized, the Newton–Lorentz
equations of motion are numerically integrated using
the relativistic generalization of the implicit scheme of
Borodachev [17], which is accurate to second order.

If a particle is magnetized, the motion of its driv-
ing center is calculated by numerically integrating
the drift equations of motion using a second-order
implicit scheme, while the Larmor rotation about the
driving center is described by the relevant analyt-
ical formulas. If the electrical-drift velocity VE =
с[E × B]/|B|2 is small compared to the velocity of the
particle v, |VE |/|v| � 1, we use the drift equations
for a weak electric field in a form that is suitable
in both the relativistic and classical cases; if this
condition is not satisfied and the particle is classical
(|v|/c � 1), we use the drift equations for a strong
electrical field. At each step in the phase space R6

x,v

along the vector ∇x,vH(x,v), we project onto the
supersurface

H(x,v) = H(x0,v0) = const, (6)

where (x0,v0) are the initial phase variables of the
particle when it is generated, thus leading to the
exact conservation of the total energy of the particle.
The exact definition of a magnetized particle and a
detailed description of the drift algorithm used here
are presented in [18].

When determining the energy spectrum, we chose
an energy step ∆W and have found the distribution
of the energy gained by the particles up to the time
they leave the parallelepiped Π. To shorten the com-
putation time, only the trajectories of particles leaving
the layer Π(1) were calculated. The trajectories of
particles leaving the layer Π(k) were determined by
shifting the trajectories for the particles leaving Π(1)
upward a distance (k − 1)Lg along the x3 axis. The
computations were carried out as follows. We cal-
culated the trajectory for each particle beginning its
motion in the layer Π(1) as long as it was located
in the parallelepiped Π. Each time a particle crossed
the boundary of some layer Π(k), unity was added
to the spectral interval of width ∆W in which the
energy W of the particle fell; i.e., this determined the
corresponding contribution to the energy spectrum
∆Nj(W ):

Nj(W ) �−→ Nj(W ) + ∆Nj(W ). (7)

The kinetic energyW = m0c
2[γ(v) − 1] and number

of the energy interval j(W ) = W/∆W were calcu-
lated for this purpose. The contribution to the spec-
trum was calculated as follows. If a particle leaves
the side of the layer Π(k), i.e., it leaves Π altogether,
then ∆Nj(W ) = ν|| + 1 − k; if the particle leaves the
layer Π(k) in the forward direction, i.e., it enters the
layer Π(k + 1) when k = 1, . . . , ν|| − 1 or leaves Π
when k = ν||, then ∆Nj(W ) = 1. This process yields
an accumulated spectral dataset {Nj}, where Nj is
the number of particles with energy in the half-
interval j∆W ≤W < (j + 1)∆W . The periodicity in
the coordinate x3 introduced when the particles are
generated enabled us to calculate the trajectories of
only those particles leaving the layer Π(1), making it
possible to carry out the simulations on a personal
computer, but also introduced certain nonphysical
oscillations in the computed spectrum.

In the simulation, we used the values for the model
constants in (1)–(4) Lg = 80 m, L|| = 108 m, L⊥ =
5040 m (i.e., ν|| = 1250 000, ν⊥ = 63), E0 ≈ 4 ×
104 V/m, B0 ≈ (1–2) × 102 G, VT = 0.001 c, and
∆W = 0.001 ×m0c

2 ≈ 0.938 MeV. The maximum
time for the particles leaving the layer Π(1) to be
located in the parallelepipedΠwas less than 10−3 s in
all cases, which is three orders of magnitude smaller
than the characteristic time for the variation of the
fields, which is of the order of 1 s.

Figure 6 presents the energy spectrum for the case
E0 = 4 × 104 V/m, B0 = 102 G on a semilog scale.
ASTRONOMY REPORTS Vol. 49 No. 10 2005



SPECTRUM OF SOLAR COSMIC RAYS 845
Like the spectrum of the fast component, this spec-
trum displays a well-defined exponential character,
indicating the acceleration of ions by an electric field
during the flare.

5. DISCUSSION

The analysis of the neutron-monitor signals re-
vealed the presence of both the fast and delayed com-
ponents of the RSPs. The fast component has an
exponential energy spectrum. A close to exponential
spectrum was also observed in the early stages of
events for which results have been published previ-
ously, such as the event of September 29, 1989 [13,
19]. The spectrum for the event of May 7, 1978,
which was composed exclusively of the fast com-
ponent of the RSPs, was likewise exponential [1].
Various authors have pointed out that an exponential
energy spectrum is characteristic of acceleration by
the electric field that arises during the reconnection of
oppositely directed magnetic fields in a plasma.

It is concluded in [13, 20] that the spectrum of the
fast component results from acceleration by electric
fields in rapidly reconnecting coronal current sheets
during flares. The expression obtained in [21] was
used in [20] to calculate the energy spectrum of pro-
tons accelerated by this mechanism under a number
of simplifying assumptions. Such calculations carried
out for energies below 100MeV in [11] led the authors
to conclude that the spectrum of protons accelerated
by such an electric field is a power-law rather than an
exponential function. However, the small difference
between exponential and power-law spectra at such
low energies casts doubt on the correctness of this
conclusion.

We especially wish to emphasize that, in all theo-
retical studies, including [9, 10], models with a con-
stant magnetic configuration with a central X line
have been considered, rather than the magnetic field
of a current sheet in which there is rapid reconnection
during a flare. Given the contradictory results yielded
by theoretical analyses carried out by essentially the
same group [9–11], it was clearly necessary to per-
form independent calculations.

The computational power of modern computers
makes them capable of carrying out reasonably
accurate computations of the particle spectrum that
are consistent with our current understanding of the
nature of magnetic reconnection and take into ac-
count the available observational data. However, this
requires overcoming a number of technical problems.
Our computations were also carried out assuming
a stationary field, but for energies to 1000 MeV,
enabling us to compare our results with spectra
derived from neutron-monitor measurements and
thereby to obtain results that are qualitatively different
ASTRONOMYREPORTS Vol. 49 No. 10 2005
from those of [11]. These results provide evidence
for the acceleration of particles by an electric field,
as occurs in the electrodynamical model for a flare.
Further, we plan to carry out computations for a more
realistic current sheet in which the electric field is
generated during rapid magnetic reconnection. We
propose to construct the initial conditions for these
computations using the results of numerical MHD
simulations of a current sheet above a real active
region, based on the real photospheric perturbations
observed before a flare [14, 15].

The spectrum of the slow component is a power
law extending from 102 to 104 MeV, possibly tes-
tifying to the presence of a single source for the
slow component in this energy interval. The slow-
component spectrum is probably formed by turbu-
lence, as well as the diffusion of relativistic particles
captured by magnetic fields due to scattering on in-
homogeneities of the magnetic field. Particle accel-
eration in shock fronts or in magnetic traps during
variations of the fields in postflare loops is also pos-
sible [22].

6. CONCLUSIONS

(1) Analysis of solar relativistic protons for several
flares in the 23rd solar cycle demonstrates that the
spectrum of the particles arriving at the front of the
flux of flare cosmic rays (the fast component) displays
a well-defined exponential character. The spectrum of
the particles that are detected 20–30 min after the
arrival of the RSP front can be described well by a
power law.

(2) Numerical simulation shows that the spectrum
of particles accelerated by an electric field applied
along a neutral line of the magnetic field is expo-
nential.

(3) Our results support the flare electrodynamical
model, in which protons are accelerated during the
flare by the electric field generated along the neutral
X line of the magnetic field during reconnection. The
formation of the delayed component of the solar cos-
mic rays produced is associated with the generation
of turbulence or the gradual escape of accelerated
particles that are captured by magnetic fields. The
diffusion of particles due to scattering on magnetic
inhomogeneities in the interplanetary magnetic field
can also affect the shape of the delayed component’s
spectrum.
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Abstract—Perturbed, rotational–oscillational motions of the Earth induced by the gravitational torques
exerted by the Sun and Moon are studied using a linear mechanical model for a viscoelastic rigid body.
A tidal mechanism is identified for the excitation of polar oscillations, i.e., for oscillations of the angular-
velocity vector specified in a fixed coordinate frame, attributed to the rotational–progressive motion of the
barycenter of the Earth–Moon “binary planet” about the Sun. The main features of the oscillations remain
stable and do not change considerably over time intervals significantly exceeding the precessional period
of the Earth’s axis. A simple mathematical model containing two frequencies, namely, the Chandler and
annual frequencies, is constructed using the methods of celestial mechanics. This model is adequate to the
astrometric measurements performed by the International Earth Rotation Service (IERS). The parameters
of the model are identified via least-squares fitting and a spectral analysis of the IERS data. Statistically
valid interpolations of the data for time intervals covering from several months to 15–20 yr are obtained.
High-accuracy forecasting of the polar motions for 0.5–1 yr and reasonably trustworthy forecasting for
1–3 yr demonstrated by observations over the last few years are presented for the first time. The results
obtained are of theoretical interest for dynamical astronomy, geodynamics, and celestial mechanics, and
are also important for astrometrical, navigational, and geophysical applications. c© 2005 Pleiades Pub-
lishing, Inc.
1. INTRODUCTION

Let us first present some brief historical and
preliminary methodical notes. Numerous astrometric
studies have been based on the dynamical theory of
the Earth’s rotation about its center of mass [1–7].
It is well known from observations (regular mea-
surements have been performed since the end of the
19th century) that the Earth’s rotational axis changes
its orientation in time, with respect to both fixed and
inertial coordinate frames. The rather complicated
polar oscillations contain components with very
different frequencies and amplitudes. For example,
small variations of the angular-velocity vector in a
reference frame fixed to the Earth contain a main
component with an amplitude reaching 0.20′′–0.25′′
and a period of approximately 430–440 sidereal days,
which was discovered by Chandler in 1891. The
significant difference between the Chandler period
and the Euler precessional period of 305 days, spec-
ified by the classical theory of rigid-body rotation
for a nondeformable Earth, required explanation,
which was sought and partially found in studies by
numerous researchers, such as Newcomb, Poincaré,
Jeffreys, Love, Melchior, Munk, Macdonald, Slud-
skii, and Molodenskii [2–6], based on models for
1063-7729/05/4910-0847$26.00
the deformable Earth. This motion is called the free
nutation of the deformable Earth, or the Chandler
wobble.

It was found (also by Chandler) that there was
an appreciable component with an amplitude
of 0.07′′–0.08′′ and a period of one year (about
365.25 sidereal days). The observed polar oscillations
have the character of beating. The trajectory of the
pole on the Earth’s surface takes the form of a spiral
that rolls up and unrolls with a period of about
six years (see below).

The trajectory of the pole and forecasting of this
trajectory are of considerable interest both in their
own right and for various applications. Constructing
a high-accuracy theoretical model for the rotation of
the deformable Earth, identifying parameters of the
model using the data of the International Earth Ro-
tation Service (IERS), and trustworthy forecasting
of the pole motion are very important for navigation
over long time intervals [8] and for a number of as-
trometrical, geodynamical, and geophysical applica-
tions [1–7].

A simple mechanical model for a viscoelastic rigid
body [9] can be used to describe the rotation of the
c© 2005 Pleiades Publishing, Inc.
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deformable Earth and the oscillations of the pole (the
North Pole for definiteness). To take account of grav-
itational tidal effects, we will assume the Earth to
be axially symmetric and to have two layers: a com-
pletely rigid spherical core and a viscoelastic mantle.
Of course, one can consider more complex models.
However, using more complex models for the Earth’s
figure is not justified, since the relevant geometrical
and physical parameters cannot be determined with
the required accuracy and completeness via statistical
studies of the available indirect measurements. We
will adhere to the idea that the complexity of the
model should strictly correspond to the formulated
problem and to the accuracy of the observational data.
When constructing a model for the polar oscillations,
we can restrict our treatment to a limited number of
mean (integrated) characteristics of the inertia tensor.
Comparison with measurements and further analysis
demonstrate that these adopted simplifications are
justified.

For a preliminary study of the polar motions and
their evolution due to perturbing moments, we con-
sider the spatial case of the two-body problem [9, 10].
We assume that the center of mass of the deformable
planet (the Earth) and its point satellite (the Moon)
undergo some mutual translational–rotational mo-
tion about their mutual center of mass (barycenter),
which in turn moves along an elliptical orbit around
the Sun.

An asymptotic analysis of the equations of motion
in osculating action–angular variables enables us to
determine (in a quasi-static approximation) some
stable characteristics of the rotational–oscillatory
motion of the deformable Earth about the center of
mass. We first determine refined periods (frequencies)
for the axial rotation and Chandler oscillation and
compare these with the results of a spectral analy-
sis [1, 2]. We then find estimates for the amplitudes
of the free oscillations of the angular-velocity vector
in a fixed coordinate frame and compare these with
observations.

Using the kinematic Euler and dynamical
Euler–Liouville equations, we construct a first-
approximation model for the Chandler and annual
polar oscillations induced by the gravitational tidal
forces applied by the Sun and Moon. Finally, we
present numerical estimates of the parameters of the
motion derived via a least-squares fit to daily mea-
surement data and compare the trajectory and fore-
casted motion of the Earth’s pole with the astromet-
ric IERS data [1] (see also http://hpiers.obspm.fr/
eoppc/eop/eoppc04/eoppc04-xy.gif).
2. PRELIMINARY ESTIMATES
FOR FREE NUTATION
OF THE EARTH’S POLE

Let us determine the oscillations of the angular-
velocity vector of the deformable Earth in some fixed
(“frozen”) reference coordinate frame [1, 5]. To study
free nutation (the Chandler component of the polar
motion), it is convenient to turn from the Andoyer
variables to the action–angular variables Ij and wj

(j = 1, 2, 3) [9]. The action–angular variables specify
the Hamiltonian variables. The following dynamical
parameters κ and λ describe the Earth’s rotational
motions:

κ2 =
C∗(A∗ −B∗)
A∗(B∗ −C∗)

, λ2 = κ2 2EC
∗ − I22

I22 − 2EA∗ . (1)

Here, A∗, B∗, and C∗ are the effective main central
moments of inertia taking into account deformations
of the “frozen” Earth due to a compound motion that
includes the Earth’s rotation about its axis and its
motion about the Earth–Moon barycenter. The con-
stant E in (1) is the integral of the kinetic energy for
an intermediate (rotational) motion of the deformable
Earth, while I2 = |G| is the absolute value of the
Earth’s kinetic moment. The relations between the
action–angular variables Ij , wj (j = 1, 2, 3) and the
canonical Andoyer variables L, G, Gξ3, ϕj are ex-
pressed through elliptical Jacobi functions and their
integrals [9].

We can express the Routh functional for the inter-
mediate model through the action–angular variables
and construct trajectories in the phase space of Ij , wj

(j = 1, 2, 3). In particular, the Routh functional R0

averaged over the fast angular variables ϕ2 and ϑ
describing the rotation and orbital motions takes the
form [9]

R0 =
1
2
I22
A∗

(
1− µ∗ κ

2

χ2

)
, µ∗ =

C∗ −A∗

C∗ . (2)

The general preliminary solution of the averaged
problem corresponding to R0 (2) takes the form

Ii(t) = I0i = const, w3(t) = w0
3, (3)

w1,2(t) = n1,2t+ w0
1,2, w0

i = const;

n1 = −π
2
I2
A∗

µ∗κ

κ∗χK(λ)
, κ∗ =

√
1 + κ2,

K =
π

2
+
λ2

4
+O(λ4),

n2 =
I2
A∗

(
A∗

C∗ + µ
∗Π(π/2, κ

2, λ)
K(λ)

)
,

χ = κ
√
1 + ε2, Π =

π

2κ∗
+O(λ2).
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Here, I0j and w0
j are the initial conditions deter-

mined through the Andoyer variables for t = 0. The
phases w1, w2 and frequencies n1, n2 correspond to
the polar Chandler motion and diurnal rotation of the
deformable Earth, respectively.

Thus, in its “intermediate motion,” the deformable
Earth rotates uniformly in the fields of the centrifugal-
inertial and lunar-gravitational forces. In the case of
a completely rigid model planet, there is a regular
Euler–Poinsot precession. For our case of the de-
formable Earth, expressions (3) also describe a reg-
ular precession, although the angular velocities of the
precession and rotation exhibit some comparatively
small variations due to perturbing effects.

For motion perturbed by the dissipative effects
of the Earth’s viscoelastic mantle, there is a regular
precession with slowly varying parameters, i.e., an
evolution of the slow variables, which must be studied
using asymptotic methods of nonlinear mechanics.
The solution (3) is the generating equation for the
averaging method.

The estimate of [1, 5] for λ for the Earth–Moon
system indicates that λ� 1 (λ2 ∼ 10−14), i.e., µ∗ is
small. This enables us to appreciably simplify all the
formulas (3) and express them in terms of algebraic
and trigonometric functions.We find in a first approx-
imation

λ2

κ2
= ε2 =

2µ∗

κ∗
. (4)

Substituting λ2 (4) into expressions (3) for the fre-
quencies n1 and n2 of the intermediate motion yields

ẇ1 = n1 = − I2
A∗
2µ∗

κ∗

(
1− 2 + κ

2
∗

2κ∗
µ∗
)
, (5)

ẇ2 = n2 = − I2
A∗

×
(
A∗

C∗ +
µ∗

κ∗

[
1 +

µ∗

2κ∗
(2κ∗ − 2− κ2)

])
.

We can calculate the theoretical angular velocity
and period of the oscillations T ∗

1 = 2π/n1 ≈ 430 days
using formula (5) for n1. This period agrees well
with the experimental measurements, which give
T1 ≈ 420–440 sidereal days, known as the Chandler
period for the Earth’s polar oscillations [1–7].

We define the polar motion as the angular dis-
placement of the rotational axis determined in a
coordinate frame fixed to the planet’s body. The
components of the angular-velocity vector are ex-
pressed via the phase w1 in the form of expansions
in the small parameter ε ∼ 10−6. With the relative
ASTRONOMYREPORTS Vol. 49 No. 10 2005
error of O(ε2) ∼ 10−12, the angular-velocity compo-
nents are [9]

ω1 =
λ

χ

I2
A∗ cn(u, λ) = ε

I2
A∗ cosw1 +O(ε3), (6)

ω2 =
λ

χ

I2
B∗ sn(u, λ) = ε

√
1 + κ2

I2
B∗ sinw1 +O(ε3),

ω3 =
κ

χ

I2
C∗dn(u, λ) =

I2
C∗ +O(ε

2),

u =
2
π
K(λ)w1 = w1 +O(λ2)w1, ε = 1.2 × 10−6.

Taking into account the main terms of the expan-
sions (6), the angular coordinates (xc, yc) for the free
nutation (the Chandler component of the motion),
the angle α between the axis of the figure and the
rotational axis, and the linear coordinates Xc, Yc in
the plane tangent to the geoid take the form

xc =
ω1

ω
≈ C∗

A∗
λ

κ
cosw1, (7)

yc = −ω2

ω
≈ C∗

B∗
λ

κ
κ∗ sinw1,

Xc = Rxc, Yc = Ryc;

cosα =
ω3

ω
≈ 1− ε

2

×
(
C∗2

A∗2 cos
2w1 + (1 + κ2)

C∗2

B∗2 sin
2w1

)
,

max |Xc|, |Yc| ≈ 7.5m, R = 6.38× 106 m.

In a first approximation in ε, the polhode cor-
responding to the free nutation of the Chandler
period is an ellipse with a fairly small eccentricity,
e ≈ 0.005. The IERS data [1] support the theoretical
estimates (7). An analysis of the effects of the tidal
moments of dissipative forces shows that both the
period and amplitude of the oscillations vary insignifi-
cantly over periods greatly exceeding the precessional
period of the Earth’s axis.

3. FIRST-APPROXIMATION MODEL
FOR THE POLAR OSCILLATIONS

To construct a model for the rotational motion
about the center of mass, let us express the equations
in the form of the classical dynamical Euler–Liouville
equations for the varying inertia tensors J [1–6,
10, 11],

Jω̇ + ω × Jω =M, ω = (p, q, r)T , (8)

J = J∗ + δJ, J∗ = const,

J∗ = diag(A∗, B∗, C∗), δJ = δJ(t),
||δJ || � ||J∗||.
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Here, ω is the angular-velocity vector in the co-
ordinate frame [5] which is fixed to the Earth (for
epoch 1900) and approximately coincides with the
main central inertia axes for J∗ of the “frozen” Earth
taking into account the equatorial bulge [1–6, 9].
Additional perturbing terms arising during the dif-
ferentiation of the kinetic moment of the deformable
Earth [9, 10] are added to the rather complex vector
of the perturbing moment M . We expect that small
variations of the inertia tensor δJ can contain various
harmonics associated with the solar and lunar diurnal
gravitational tides, and possibly some other harmon-
ics (annual, semiannual, monthly, semidiurnal, and so
on [1–5]). Gravitational tidal effects with the annual
and near-Chandler periods are thought to be the main
external sources for the perturbing moments M in-
ducing the nutational oscillations (see below).

Adding a possible term of the type J̇ω, or rather
of Ġ− Jω̇ − ω × Jω, does not improve the first-
approximation model. Attempts to estimate these
terms accurately taking into account some geophys-
ical effects are difficult and do not give satisfactory
results. Analyses of these effects in the literature have
often not been constructive, since they do not de-
termine the moments of the forces (their amplitudes,
directions, and frequency and phase characteristics).

Let us consider first a simple mechanism for the
excitation and maintenance of nutational oscillations
with the annual period. The kinematic Euler equa-
tions determining the orientation of the fixed axes in
the orbital coordinate frame take the form [8, 9]

θ̇ = p cosϕ− q sinϕ− ω0(ν) sinψ, (9)

ν̇ = ω0(ν) = ω∗(1 + e cos ν)2,

ψ̇ =
p sinϕ+ q cosϕ

sin θ
− ω0(ν) cot θ cosψ,

e = 0.0167,

ϕ̇ = r − (p sinϕ+ q cosϕ) cot θ + ω0(ν)
cosψ
sin θ

.

Here, ν(t) is the true anomaly, e the orbital eccen-
tricity, and ω∗ a constant determined by the gravita-
tional and focal parameters. For the polar motions,
the terms proportional to ω0 in (9) are much greater
than the terms with p and q (by approximately a factor
of 300) and become dominant for θ̇ and ϕ̇. This im-
portant feature was not considered earlier, and these
terms were inappropriately neglected (the orbital and
rotational motions were separated) [1–6].
4. ANNUAL COMPONENT
OF THE EARTH’S POLAR OSCILLATIONS

The expressions for the components of the solar
gravitational moment take the form [11]

M s
q = 3ω

2[(A∗ + δA− (C∗ + δC))γrγp (10)

+ δJpqγrγq + δJpr(γ2
r − γ2

p)− δJrqγpγq],

ω = ω∗(1 + e cos ν)3/2,

γp = sin θ sinϕ, γq = sin θ cosϕ, γr = cos θ.

To calculate M s
p,q, we must cyclically rearrange the

indices p, q, and r in (10). Expressions (10) show
that the annual polar oscillation can be attributed
to a term containing the products of the directional
cosines γpγr and γpγr. To calculate these in a first
approximation (for p, q = 0), we integrate Eqs. (9):

r = r0, ϕ ≈ rt+ ϕ0, ν ≈ ω∗t+ ν0, (11)

cos θ(ν) = a(θ0, ψ0) cos ν, θ(0) = θ0 = 66◦33′,

0.4 ≤ a ≤ 1, 0 ≤ ψ0 ≤ 2π,
cos θ sin θ = b(θ0, ψ0) cos ν + d cos 3ν + . . . ,

0.4 ≤ b ≤ 4
3π
, |d| � 1.

The second and higher harmonics on ν are
neglected, since their contributions are a factor
of 102–103 smaller than that of the main harmonic.
The quantity B∗ −A∗ is also considerably smaller
than C∗ −A∗ (by approximately a factor of 160).
Estimating the terms for p and q in (8), using (11),
and averaging over the fast phase variable ϕ, we
obtain the simplified analytical model

ṗ+Npq = κqr
2 + 3bω2

∗χ
s
p cos ν, (12)

Np,q ≈ N =
2π
T1

≈ (0.84−0.85)ω∗,

q̇ −Nqp = −κpr
2 − 3bω2

∗χ
s
q cos ν,

p(0) = p0, q(0) = q0.

Here, κp and κq are the averages of δJpr/B
∗ and

δJqr/A
∗, which can be slowly varying. The quan-

tities χs
p and χs

q result from averaging the coeffi-
cients of cos ν in the components of the solar grav-
itational moment over the variable ϕ. Due to the
axial symmetry of the problem, we can assume that
χs

p,q = χ, where χ is determined from observations.
These quantities are associated with the diurnal tides.

The lunar gravitational moments with the monthly
period of 27.55 days are neglected because of their
relatively weak effect on the annual nutational oscilla-
tions (due to their considerably different frequencies).
These effects become appreciable for more detailed
investigations of the extrema of the polar deviations
ASTRONOMY REPORTS Vol. 49 No. 10 2005
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in each component. The effects of the monthly per-
turbations are especially clear during beating (the
minimum amplitudes of the oscillations, see below).

The right-hand terms of (12) contain an explicit
harmonic of the annual period, which can explain the
excitation of the nutational oscillations detected in the
IERS data. The sensitivity of the coefficients κp,q is
higher than the sensitivity of χs

p,q by five orders of
magnitude. This has led to attempts at geophysical–
seasonal treatments of the annual component. How-
ever, any explicit regular mechanism for the annual
perturbation with the required amplitudes of Mh ∼
1020 kg m2 s−2 due to internal geophysical factors
(atmospheric effects, oceanic flows, seasonal phe-
nomena on the Earth’s surface, etc.) proves to be in-
consistent from a mechanical point of view. Analyses
of the frequency distribution of the annual oscillations
(the sharpness of the peak of the spectral density of
the time series) and of the phase shifts for various
processes show that geophysical interpretations are
not sound [2].

The ocean and atmosphere are also exposed to
considerable gravitational tidal effects that lead to an-
nual oscillations of the Earth’s pole. These contribu-
tions can be estimated in the hydrodynamic models.
These contributions most likely explain the synchro-
nism in the variations of the dynamical characteristics
of the atmosphere, ocean, and mantle and of the polar
oscillations.

5. THE CHANDLER COMPONENT
OF THE POLAR OSCILLATIONS

As the central body of the solar system, the Sun
exerts the dominant effect on the orbital motion of
the planets. The perturbing influences of the planets
on each other and their satellites is rather weak. This
conclusion follows from analysis and averaging of the
osculating orbital elements. The planetary motions
are quite close to Keplerian.

The motion of the Earth–Moon system differs
significantly from the typical planetary motion. The
dynamical characteristics of the system are very spe-
cific in comparison with the other planets [2–5], and
a number of dynamical problems treat this system as
a binary planet [9, 10]. Studies of the translational–
rotational motion of the system have used various
formulations, with the following being most typical.

(1) Classical gravitational theory describes the or-
bital motion of the Earth–Moon system using point-
mass models.

(2) The translational–rotational motion of the
Earth and Moon as rigid bodies is studied using the
classical methods of dynamical theory. The equations
of motion in either Euler or Andoyer variables are
ASTRONOMYREPORTS Vol. 49 No. 10 2005
solved using perturbation methods considering small
parameters. However, this theory cannot explain
a number of phenomena, in particular, the polar
oscillations.

(3)Modern high-accuracy studies of rotations and
oscillations about the center of mass take into ac-
count elastic deformations of the complex figures of
the Earth and Moon occurring due to the gravita-
tional tides.

(4) Evolutionary theories examine elastic-
dissipative effects taking into account both gravita-
tional tides and irregular geophysical perturbations.
These studies are presently still under intense devel-
opment.

When dissipation is not included, the gravitational
tidal forces have a potential that is a sum of harmon-
ics. In our case, when the Moon can be treated as a
gravitating point or sphere, the potential UM takes the
form [2, 3]

UM = −1
4
Kg

r2

RE
(1− 3 cos2 θ)

(0)∑
i

Ci cosAi (13)

− 1
2
Kg

r2

RE
sin 2θ

(1)∑
i

Ci cos(Ai + ϕ)

− 1
2
Kg

r2

RE
sin2 θ

(2)∑
i

Ci cos(Ai + 2ϕ),

K =
3
2
mM

mE

(
RE

REM

)3

= 0.843 × 10−7,

0 ≤ r < RE.

Here, θ and ϕ are the geographical coordinates of the
point, r is its distance from the center of mass, RE is
the mean radius of the Earth (RE 	 6.38 × 106 m),
REM is the mean distance from the Earth’s center of
mass to the Moon, and g is the gravitational accel-
eration. The angular variables Ai are integer linear
combinations of the six parameters τ0, lM,S, pM,S,
and ΩM. Here, τ0 = t− lM + lS is the mean lunar
Greenwich time and t is the mean solar Greenwich
time. The parameters lM and lS are the mean lu-
nar and solar longitudes, which vary with periods of
27.55 and 365.25 sidereal days, respectively. pM is the
mean longitude of the lunar perigee, which varies with
a period of 8.85 yr, and pS is the mean longitude of the
solar perigee, which varies with a period of 25.700 yr.
The parameter ΩM determines the longitude of the
ascending lunar node and varies with a period of
18.61 yr.

The sums
∑(j)

i take account of long-period, diur-
nal, and semidiurnal gravitational tidal lunar effects.
The potential components corresponding to the diur-
nal tides are of the most interest for analysis of the
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polar oscillations. We take into account the compo-
nents with six-year modulations due to the lunar–
solar precession. For the components along the non-
rotating axes of the Earth in the rotating barycentric
coordinate frame, we obtain the expressions

M̃p,q = κMp,q cosψM, (14)

ψM = ΩM + pM = ωMτ + ψ0
M,

ΩM =
2π
18.61

τ +Ω0
M, pM =

2π
8.85

τ + p0M,

ωM 	 2π
6.00

, ψ0
M = Ω

0
M + p

0
M,

disregarding the orbital motion of the barycenter.
Here, κMp,q are the tidal coefficients, which depend
on the fast angular variable (hs − lM), and τ is the
time in years. Taking into account the motion of the
orbital barycenter about the Sun in the rotating frame
fixed to the Earth, we obtain for the components of
the gravitational tidal moment

MM
p = [M̃p cos(hs − lM) (15)

− M̃q sin(hs − lM)] cos θ sin θ,

MM
q = [M̃p sin(hs − lM)

+ M̃q cos(hs − lM)] cos θ sin θ.
Here, θ is the nutation angle determining the inclina-
tion of the axis C∗ to the orbital plane, in accordance
with (11) [see also (13)].

Substituting (14) and (11) into (15), we obtain
multifrequency functions with considerably different
periods, which are close to a day, a year, and six
years. Applying asymptotic methods for separating
the motions (averaging) to approximately calculate
the comparatively slow polar oscillations due to the
lunar–solar precession yields simplified equations of
the form (12)

ṗ+Nq + σp = f−p cosα
− + f+

p cosα
+, (16)

q̇ −Np+ σq = f−q cosα− + f+
q cosα

+,

α∓ = ls ∓ ψM.
Here, the time is measured in years, and the quasi-
constant coefficient σ describes the dissipation.
The coefficients f+

p,q ≈ const result from the
averaging of the expressions κMp,q cos(hs − lM) and
κMp,q sin(hs − lM) over the fast phase hs − lM. These
coefficients are similar to the factors χs

p,q in (12).
It follows from physical reasoning and observations
and measurements that the coefficients in (16) can
display small and comparatively slow variations. Fast
variations are averaged and virtually do not affect
the motion. Assuming the coefficients to be constant
over intervals of several years (∆τ ≤ 10 yr), we
can construct the required quasi-periodic solution
containing the phases α∓.

According to the spectral analysis and calcula-
tions, the Chandler period (for the free nutation) is
estimated to be in the range T1 = 420–440 days, and
the coefficient N (the frequency of the free nutation)
varies in the range N = 0.89–0.83. The mean period
is usually taken to be T1 = 433 ± 2 days. The fre-
quency of “natural oscillations” for the system (16)
is N and does not depend on the dissipation coeffi-
cient σ, which is fairly small. The dissipation σ is nec-
essary, since the frequency γ− (i.e., the rate of change
in the phase α−) is γ− ≈ 5/6 	 0.833 and can be
arbitrarily close to the natural frequencyN , according
to the estimate (14). In steady oscillations, the ampli-
tude for this frequency can exceed the amplitude for
the frequency γ+ ≈ 7/6 	 1.17 by two to three orders
of magnitude. It is quite natural to relate this feature
to the difference between the frequencies γ+ −N ,
which considerably exceeds σ. The magnitude of the
difference |N − γ−| can be comparable to or smaller
than σ. The frequency analysis of the time series also
indicates a small peak in the spectral density at the
frequency γ+ 	 1.2. We will neglect this component
in our analysis of oscillations of the system (16).

The quasi-stationary Chandler polar oscillations
for the frequency γ− = γ and amplitudes f−p,q = fp,q

of the external gravitational tidal perturbation are de-
scribed by the expressions

pch = D−1(Dc
p cosα+D

s
p sinα), (17)

qch = D−1(Dc
q cosα+D

s
q sinα).

The coefficients D and Dc,s
p,q in (17) have the stan-

dard form:

Dc
p,q = ±2σγ2fp,q (18)

+ (N2 − γ2 + σ2)(σfp,q ∓ δfq,p)

≈ 2N2(σfp,q ± δfq,p),

Ds
p,q = 2σγ(σfp,q ∓ δfq,p)

− γ(N2 − γ2 + σ2)fp,q ≈ 2N2(δfp,q ∓ σfq,p),

D = (N2 − γ2 + σ2) + 4σ2γ2

≈ 4N2(δ2 + σ2), δ = γ −N, |δ| ∼ σ � N.

The oscillation amplitude and its estimate ob-
tained using (18) are equal to

Ach =
√
p2ch + q

2
ch ≈ 1

2
(f2

p + f
2
q )

1/2(δ2 + σ2)−1/2.

(19)
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Fig. 1. Interpolation of polar oscillations for the eight-year interval (from 1988 to 1995, inclusive) using the six-parameter
model (the points show the IERS data).
Equations (17)–(19) show that the amplitudes
of the components and the total amplitude for the
Chandler period are very sensitive to the frequency
difference δ and dissipation coefficient σ. The pre-
sented estimates for small |δ| and σ indicate a struc-
tural property of the oscillations that is analogous to
that for the case of free oscillations of the Chandler
frequency and annual nutational oscillations [9–11]:

Dc
p = D

s
q , Ds

p = D
c
q. (20)

Analysis of the IERS data demonstrates that
ASTRONOMYREPORTS Vol. 49 No. 10 2005
Eqs. (20) are very stable and clearly confirmed by
computations [10, 11], although the amplitude of the
oscillations depends on the data used. The amplitudes
vary in the range 0.25′′–0.23′′ [1–6], so that we can
take the average amplitude to be 0.22′′–0.23′′, in
which case the measurement fluctuations are about
0.02′′, or about 10%.

6. NUMERICAL MODELING
The coefficients κp,q and χp,q remain unknown,

and we must determine them from the IERS data [1].
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Fig. 2. Annual trajectories of the polar motion over a two-year interval (2001–2002) near the gravitational anomaly of the
“parade of planets” in 1999–2000 (right-hand coordinate frame). The solid curves show the IERS data, and the dashed curves
show the forecast of the six-parameter model.
Introducing the variables x(τ) = p(t) and y(τ) =
q(t), where τ = t/Th is the time in years, we obtain
a solution of (8) in the form

x(τ) = c0x + c
1
xτ − ac

x cos 2πNτ (21)

+ as
x sin 2πNτ −Ndc

x cos 2πτ − ds
x sin 2πτ,

y(τ) = c0y + c
1
yτ + a

c
y cos 2πNτ

+ as
y sin 2πNτ −Ndc

y cos 2πτ + d
s
y sin 2πτ,

N = 0.845−0.850.

The quantity N is chosen based on a dispersion
analysis. We determine the unknown quantities ac,s

x,y,
c0,1
x,y , and d

c,s
x,y from the IERS [1] data via least-squares

fitting [13, 14]. These coefficients are uniquely deter-
mined in terms of the unknown parameters in (12)
and (16). We must take account of the relations

ac,s
x ≈ as,c

y , dc,s
x ≈ ds,c

y , (22)

which describe the structural properties of the model.
This also means that the processes x and y are re-
lated, which affects their statistical analysis. These
equations must be satisfied fairly accurately for the
independent estimates of x and y (see below).

The introduced parameters can require a correc-
tion cx,y = c0x,y + c1x,yτ + . . . for long intervals 0 ≤
τ ≤ Θ, where, for example, Θ ∼ 10–20 yr (similarly
for ac,s

x,y and dc,s
x,y). To improve the interpolation of

the oscillations, the secular terms must take into
account the slow evolution of the parameters in (8),
(10), and (12). We can, in principle, improve the
theoretical model (21) by taking into account small
stochastic geophysical factors. However, this does
not seem expedient now, due to the low accuracy and
incompleteness of the geophysical measurements.

Let us present the calculations based on the simple
least-squares technique of [12], which was applied in-
dependently to x(τ) and y(τ) using the six-parameter
approximations in accordance with the model (21):

x(τ) = (ξ, f(τ)), y(τ) = (η, f(τ)), (23)

ξ = (ξ1, . . . , ξ6)T , η = (η1, . . . , η6)T ,

f(τ)=(1, τ, cos 2πNτ, sin 2πNτ, cos 2πτ, sin 2πτ)T ,
N ≈ 0.845−0.85.

We must then determine the six-dimensional
vectors ξ and η. It is reasonable first to study the
effectiveness of the interpolation and forecasting of
the polar motions using the simple mathematical
model (23), based on the daily IERS data [1].

Figure 1 presents the theoretical curves x∗(τ)
and y∗(τ) for the interpolation of the daily measure-
ments over the eight-year time interval, 0 ≤ τ ≤ 8,
from the beginning of 1988 to the end of 1995; the
points show the measurements. The mean square
deviations σx = 0.014 and σy = 0.017 demonstrate
the satisfactory accuracy of the model (21), (22) for
the best-fit parameters ξ∗ and η∗:

ξ∗ = (−0.041,−0.0004,−0.034, (24)

0.0194,−0.023,−0.065)T ,
η∗ = (0.300, 0.005, 0.193, 0.033,−0.060, 0.020)T .

Comparing the coefficients ξ∗3 and η∗4 , ξ
∗
4 and η∗3

determining the Chandler oscillations and also
ξ∗5 and η∗6 , ξ

∗
6 and η∗5 corresponding to the annual
ASTRONOMY REPORTS Vol. 49 No. 10 2005



EARTH’S POLAR OSCILLATIONS 855

 

0.2

0

–0.2

 

′′

 

0.6 0.4 0.2

 

′′

 

Dec. 7, 2003

Jul. 10, 2003
Jan. 1, 1998

to
w

ar
d 

G
re

en
w

ic
h 

 

←
 

 

x

 

Dec. 28, 2003

Jan. 1, 1998

Jul. 31, 2003

0.6 0.4 0.2

 

y

 

′′ → 

 

toward 90° E

 

y

 

′′ → 

 

toward 90° E

to
w

ar
d 

G
re

en
w

ic
h 

 

←
 

 

x
Fig. 3. Polar trajectories and their IERS forecasts (dashed curves) for July 10 and 31, 2003 (left-hand coordinate frame).
component in (24) verifies the structural proper-
ties (22) of the model (21), (23).

We have already interpolated in 2001 the observa-
tional data for the seven-year interval 1994–2000 [7].
The calculated best-fit parameters ξ∗ and η∗ for the
model (23) and mean square deviations σx and σy are
equal to

ξ∗ = (0.039, 0.0001, 0.015, (25)

0.161,−0.046,−0.076)T ,
σx = 0.024;

η∗ = (0.334, 0.0005, 0.162,

−0.0139,−0.068, 0.043)T ,
σy = 0.025.

We proposed a two-year forecast of the polar
motion for 2001–2002 using our interpolation. The
dashed curve in Fig. 2 presents the theoretical
curve (x∗, y∗), which is shown in two portions of
one year each (for 2001 and 2002). The solid curves
present the corresponding portions of the obser-
vational curve constructed using the IERS data.
A comparison of the real polar trajectories and the
theoretical trajectories calculated using (23) and (25)
demonstrates the adequacy of the constructed model.
Note the anomaly in the polar motion associated
with the gravitational perturbations (the “parade of
planets,” see below). The fact that no geophysical
treatment of the polar oscillations can explain this
phenomenon was previously ignored.

The Washington Naval Observatory presents a
forecast of polar motions for 100–150 days
ASTRONOMYREPORTS Vol. 49 No. 10 2005
using the IERS data (IERS, EOP Product
Center, http://hpiers.obspm.fr/eoppc/eop/eoppc04/
eoppc04-xy.gif). The model itself and forecasting
technique adopted by the IERS provide fairly inac-
curate and unstable forecasts, which require correc-
tions every week. Figure 3 demonstrates the IERS
forecasts (the solid curve shows the measurements
and the dots show the forecasts). The forecasts of
July 10 and 31, 2003, are shown as examples; a
similar situation was observed for May 18 and 27,
2004. The difference in the forecasts is compared with
the maximum polar deviation. Note that the IERS
data are presented in the left-hand coordinate frame.

Figure 4 presents our interpolation of the process
(see the anomaly of 1999–2000) and forecast of the
polar oscillations for two years (up to the end of 2005)
using the eight-year daily IERS data for 1996–2003.
The best-fit parameters ξ∗, η∗ and mean square devi-
ations σx, σy are equal to

ξ∗ = (0.0314, 0.0027,−0.0494, (26)

−0.0741, 0.0596, 0.1347)T ,
σx = 0.0175;

η∗ = (0.3315, 0.001,−0.0679,
0.0426, 0.1341,−0.0613)T ,

σy = 0.0175.

A comparison of the components of the vectors ξ∗

and η∗ (26) verifies the validity of the approximation
equations describing the properties of the model.
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Fig. 4. The eight-year interpolation for 1996–2003 (the points show the IERS data) and two-year forecast for 2004–2005.
7. CONCLUSIONS

(1) We have studied the perturbed rotational–
oscillatory motions of the Earth’s pole using a model
for a nearly axisymmetric, viscoelastic, rigid body. We
have established that the Chandler and annual com-
ponents of the oscillations are celestial-mechanical
phenomena and are due to the gravitational tidal ef-
fects exerted by the Sun and Moon.

(2) We have constructed a mathematical model
containing a small number of fitted parameters; the
daily IERS measurements can be used to determine
these parameters and verify the structural properties
of the model.

(3) A statistically valid interpolation of the oscil-
lations is provided for various time intervals. We have
presented a two-year forecast that is currently being
verified by the observations.

(4) We have proposed a qualitative explanation for
the anomaly of the polar oscillations in 1999–2000,
associated with the gravitational perturbations due
to the “parade of planets.” Our modeling of the po-
lar oscillations is compared with the forecasting of
the IERS.
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