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Abstract—A study is made of the relaxation of plasma rotation in nonaxisymmetric toroidal magnetic confine-
ment systems, such as stellarators and rippled tokamaks. In this way, a solution to the drift kinetic equation is
obtained that explicitly takes into account the time dependence of the distribution function, and expressions for
the diffusive particle fluxes and longitudinal viscosity are derived that make it possible to write a closed set of
equations describing the time evolution of the ambipolar electric field E and the longitudinal (with respect to
the magnetic field) plasma velocity U0. Solutions found to the set of evolutionary equations imply that the relax-
ation of these two parameters to their steady-state values occurs in the form of damped oscillations whose fre-
quency is about 2vT/R (where vT is the ion thermal velocity and R is the major plasma radius) and whose damp-
ing rate depends on the ion–ion collision frequency and on the magnetic field parameters. In particular, it is
shown that, for tokamaks with a slightly rippled longitudinal magnetic field, the frequency of oscillations in the
range q > 2 (where q is the safety factor) is, as a rule, much higher than the damping rate. For stellarators, this
turns out to be true only of the central plasma region, where the helical ripple amplitude ε of the magnetic field
is much smaller than the toroidal ripple amplitude δ = r/R. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of how the rotation of a plasma in tor-
oidal magnetic confinement systems influences its con-
finement properties has been widely discussed in the
literature and is still attracting attention of both experi-
menters and theoreticians. It is well known that
poloidal and toroidal plasma rotation is associated with
the ambipolar electric field E and the magnetic
field−aligned motion of a plasma as a whole with the
velocity U. Together with the density and temperature
gradients and the magnetic field strength, the ambipolar
field and the velocity of this motion determine the par-
ticle and heat fluxes across the magnetic field. Also, the
electric field may have a stabilizing effect on plasma
fluctuations, thereby reducing the losses associated
with them.

A self-consistent set of equations describing the
time evolution of the plasma parameters and their
steady-state (or, in the absence of external sources,
quasi-steady-state) values, including the ambipolar
electric field and longitudinal plasma velocity, were
derived in my paper [1], in which it was shown, in par-
ticular, that the longitudinal viscosity is expressed
through the partial diffusive fluxes associated with the
magnetic field nonuniformity by two independent
angular variables (e.g., by the toroidal and poloidal azi-
muthal angles). In my subsequent paper [2], these
fluxes were evaluated explicitly for a rippled tokamak
and a toroidal stellarator (with one helical field har-
1063-780X/03/2904- $24.00 © 20279
monic) and an attempt was made to follow the time evo-
lution of the ambipolar electric field and longitudinal
plasma velocity and to determine their quasi-steady-
state values. It was found that, if the characteristic
relaxation time of the longitudinal velocity is suffi-

ciently long and exceeds the ion mean free time τi = 
(where νi is the effective ion–ion collision frequency),
then the characteristic time scale on which the electric
field changes is much shorter than the inverse ion–ion
collision frequency. However, in [2], the diffusive flux
and longitudinal viscosity were calculated in the usual
way, by solving the kinetic equation that was obtained
for a steady-state case, i.e., by neglecting the time
derivative of the distribution function. This approach is
clearly justified when all of the quantities in the equa-
tion (in particular, the field E and velocity U) change
only slightly during time τi . Consequently, although the
equations derived in [2] provide correct values of the
quasi-steady-state electric field and correct time evolu-
tion of the longitudinal velocity on long time scales
(t @ τi), they fail to describe the evolution of these
parameters during the initial stage t < τi . In order to
obtain equations capable of correctly describing the ini-
tial evolutionary stage in which the electric field and
longitudinal velocity change rapidly with time (in com-
parison with the ion–ion collision frequency), it is nec-
essary to use the expressions derived for the diffusive
flux and longitudinal viscosity by solving a time-depen-
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dent kinetic equation, i.e., the equation that contains the
time derivative of the distribution function.1 

The objectives of the present paper are to solve the
time-dependent kinetic equation; to use the solution
obtained to deduce the diffusive fluxes and longitudinal
viscosity; and, finally, to solve the set of equations that
was derived in [1] for the ambipolar electric field and
longitudinal plasma velocity.

It is found that in rippled tokamaks, as well as in
stellarators, the electric field relaxes by damped oscilla-
tions. Moreover, for a rippled tokamak, the damping
rate is, as a rule, much lower than the oscillation fre-
quency. As regards stellarators, this is true only for the
central region of the plasma column, whereas, at the
plasma edge, where the helical ripple amplitude ε of the
magnetic field is larger than or comparable to the toroi-
dal ripple amplitude δ = r/R, the oscillation frequency
is on the order of the damping rate or lower; i.e., the
relaxation process is nearly aperiodic.

The paper is organized as follows. In Section 2, the
basic equations are written out and the formulation of
the problem is discussed. In Section 3, the time-depen-
dent kinetic equation is solved and the partial diffusive
fluxes are calculated. In Section 4, the resulting set of
equations for the electric field and longitudinal velocity
is presented and investigated analytically (by deriving
and examining a dispersion relation). Finally, Section 5
describes the results of solving these equations numer-
ically.

2. BASIC EQUATIONS AND THE FORMULATION 
OF THE PROBLEM

As was already mentioned, a self-consistent set of
equations describing the time evolution of the ambipo-
lar electric field and longitudinal plasma velocity was
derived in [1]. We consider an arbitrary curvilinear
coordinate system (x1, x2, x3), where x1 is a magnetic
surface label (e.g., a toroidal or poloidal flux) such that
the equation x1(r) = const defines a magnetic surface
and the independent angular variables x2 and x3 are
arbitrary combinations of the toroidal (ϕ) and poloidal
(ϑ) azimuthal angles such that the magnetic field is
periodic in x2 and x3. In this coordinate system, the self-
consistent set of equations has the form [1, 2]

(1)

Here, ε⊥  = 1 + 4πmc2NB–2 . 4πmc2NB–2 is the trans-
verse dielectric constant, which will be assumed to be
much larger than unity; m is the mass of an ion; c is the

1 Note that the general equations obtained in [1] are valid for arbi-
trary time scales because they were derived without making any
assumptions about the form of the distribution function.
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speed of light; N is the particle density; e is the charge
of an electron or an ion; B(x1, x2, x3) is the magnetic field
strength; g = ||gik|| is the determinant of the metric tensor

(  = (—x1 · [—x2 × —x3])–1); B(k) and B(k) (k = 1, 2, 3) are
the contravariant and covariant components of the vec-
tor B; the overbar denotes averaging over the angular
variables x2 and x3; and the symbol Σ stands for the
summation over electrons and ions. However, to sim-
plify further calculations, we restrict ourselves to con-
sidering the case in which the main contribution to the
diffusive fluxes (and, accordingly, to the longitudinal
viscosity) comes from the ion component and, hence,
the summation sign can be omitted. The neoclassical
diffusive flux Snc is equal to the sum of the averaged
partial fluxes,

(2)

each of which is associated with the magnetic field non-
uniformity in one of the angular variables:

(3)

Here, we use conventional notation: u = σ(2% –
2eΦ/m – 2µB)1/2, σ = sgn(B · v)/B, % and µ are the
energy and magnetic moment of a particle per unit
mass, ωB = eB/mc, the ambipolar potential Φ(x1, t ) is
assumed to be constant at a magnetic surface and to
depend explicitly on time, dv is the volume element in
velocity space, and F(x1, x2, x3, %, µ, t ) is the distribu-
tion function.

Our purpose is to evaluate the fluxes S2 and S3 and to
solve Eqs. (1) in the case when the characteristic time
scale on which the ambipolar potential varies is shorter

than the ion mean free time τi = . To do this, we as
usual neglect the weak time dependence of the density
and temperature. In this way, we need to solve the
kinetic equation, which has the following form in terms
of the variables t, xk , %, and µ:

(4)

Here, the distribution function F0(x1, %, t) in the zeroth
approximation is assumed to be Maxwellian,

(5)

vT = (T/m)1/2 is the ion thermal velocity; and St is the
ion–ion collision integral.
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In what follows, we will be interested primarily in
the initial evolutionary stage during which the char-
acteristic frequency (the damping rate) of the ambi-
polar field and, accordingly, of the distribution func-
tion is much higher than the ion–ion collision fre-
quency, i.e., when ∂F/∂t @ St. For time scales on
which this inequality is satisfied, collisions can be
neglected. For time scales long enough for the elec-
tric field to relax to nearly the quasi-steady-state
value and depend on time only through the longitudi-
nal velocity (this indicates that the opposite inequal-
ity ∂F/∂t ! St is satisfied), the expressions for the
fluxes S2 and S3 and the equations for E and U can be
derived by solving the time-independent kinetic
equation, as was done in [2].

In the intermediate case in which the time derivative
is on the order of the collision integral, the kinetic equa-
tion with the collision integral written in differential
form cannot be solved analytically. However, an ana-
lytic solution can be obtained by using the following
simplest model expression for the collision integral:

(6)

Here, U = U0B/B0 is the velocity of the plasma moving

as a single entity along the magnetic field, B0 = , and
U0(x1) is independent of the angular variables x2 and x3

(i.e., — · (UB/B) = 0).

Taking into account the aforesaid and without pre-
tending to give a rigorous quantitative description of
the electric field evolution on time scales on which
∂F/∂t ≈ St, we will describe collisions by collision inte-
gral (6). It should be noted, however, that, for the range
of collision frequencies corresponding to the plateau
regime, model representation (6) provides correct
expressions for the particle flux and longitudinal vis-
cosity and, consequently, makes it possible to correctly
describe the evolution of E(t) and U0(t) on arbitrary
time scales t (see also Section 4).

We restrict our further discussion to two simplest
cases: a rippled tokamak in which the cross sections of
the magnetic surfaces are concentric circles and a toroi-
dal current-free stellarator with one helical field har-
monic and a large aspect ratio. Such tokamak and stel-
larator configurations can be described in conventional
quasitoroidal coordinates (r, ϑ, ϕ), where r is the run-
ning minor radius and ϑ and ϕ are the poloidal and tor-
oidal azimuthal angles. Neglecting small corrections on
the order of the product of δ and ε, we can represent the
magnetic field in the form

St ν i F FM–
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B = BT BSt, BT+  = 
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where R0 is the major radius of the torus, In(ρ) is the
nth-order modified Bessel function, and n and M are
integers (M @ n).

Following [2], we choose the variables xj to be

(8)

We can easily see that, within the adopted accuracy
(to first order in ε and δ), the scalar product B · —x1
equals zero; i.e., the magnetic surfaces are described by
the equation x1 = const. In these coordinates, the contra-
variant and covariant components of the magnetic field
are

(9)

For a rippled tokamak, we must set n = 0, and for a
current-free stellarator, we must set ΘJ = 0. In the latter
case, it is necessary to keep in mind the relationships

(10)

where t = (qs)–1 = δ–1Θs is the average rotational trans-
form in a stellarator and qs is the safety factor.
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With allowance for relationships (9) and (10),
Eqs. (1) can be rewritten as

(11)

Here, VE = –cE/B is the drift velocity in an electric field;
E = –|—x1|∂Φ/∂x1 . –∂Φ/∂r is the ambipolar electric
field component normal to the magnetic surface; and
q = δ/Θ, with Θ = ΘJ for a tokamak and Θ = Θs = δt for
a stellarator.2 

Before proceeding with a solution to the kinetic
equation, we should say a few words about the formu-
lation of the problem.

Let the plasma be in a steady state up to the time
t = 0, which is assumed to be the initial time in our
problem. In the steady state, the ambipolar electric field
and longitudinal velocity are equal to their steady-state
values, which are determined, in accordance with

Eqs. (11), from the condition  =  = 0. Let the field
and the velocity experience a sudden change in their
values at t = 0 for some reason. We will be interested in
the law according to which the field and the velocity,
E(t) and U(t), relax to their steady-state values. That is
why, in what follows, by VE and U, we mean their devi-
ations from the steady-state values, rather then their
absolute values. Accordingly, in the expression for
∂F0/∂x1 in kinetic equation (4), we must retain only the
term proportional to E and discard the terms propor-
tional to the derivatives of the density and temperature.

3. SOLUTION OF THE KINETIC EQUATION
AND CALCULATION OF THE PARTIAL FLUXES

Keeping in mind the remarks made at the end of the
previous section, we proceed to a solution of kinetic
equation (4). Recall that the derivative ∂F/∂t is assumed
to be sufficiently large for locally and toroidally trapped
particles with low longitudinal velocities to give an
insignificant contribution to the diffusive fluxes, as is
the case in a steady state in the plateau regime. We

2 In [2], formula (95) is misprinted: the term Θ0NdVE/dt should be
replaced with the term ΘNdVE/dt, where Θ = ΘJ for a tokamak
and Θ = Θs for a stellarator.
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expand the function U(x2, x3) in a power series in the
small parameters b2 = δcosx2 and b3 = εcosx3,

(12)

and switch from the variables % and µ to the conven-
tional dimensionless variables z = u0/vT and w =

µB/ . We also set

, (13)

where  is the part of the distribution function that is
independent of the angular variables x2 and x3 and is
odd in z (this part is unimportant for our purposes
because it does not contribute to the fluxes S2 and S3).
As a result, we arrive at the following equation for the

varying (in x2 and x3) part (x2, x3) of the distribution
function:

(14)

Since the right-hand side of inhomogeneous equa-
tion (14) is a sum of two terms, one of which depends
only on x2, and the other, only on x3, it is natural to seek
a solution in the form of the sum

(15)

where the functions Ψ2 and Ψ3 are independent of x3
and x2, respectively. We substitute representation (15)
into Eq. (14) and introduce the dimensionless time
τ = tΘvT/r (where Θ = ΘJ for a tokamak and Θ = Θs =
δt for a stellarator) to obtain the following equations for
the functions Ψ2 and Ψ3:
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Here, the dimensionless collision frequency is defined as

(17)

Note that, in the case of a current-free stellarator, the
equation for Ψ2 was derived by averaging over the vari-
able x3 and by taking into account relationships (10)
and the relationship

which follows from formulas (9). Using the relation-
ships

(18)

we can easily solve Eq. (16). Thus, for example, we
obtain

(19)

The sought-for solution Ψ3 has an analogous form and
can be found from solution (19) by replacing the quan-
tity q with –(n + δMΘJ)εΘ–1, δ with ε, and z in the expo-
nential function with qMz. Substituting the solutions Ψ2
and Ψ3 into formulas (3) for the fluxes, averaging over
the angular variables x2 and x3, and integrating over the
velocities w and z yields

(20)
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When integrating over the velocities, we used the rela-
tionships

(22)

.

As was mentioned earlier, we are primarily inter-
ested in the temporal behavior of the functions VE(τ)

and U(τ) on relatively short time scales t <  (τ <

). However, the equations obtained, being slightly
modified, make it possible to describe the evolution of
the ambipolar field and longitudinal velocity even on
long time scales such that tνi @ 1 (τν t @ 1). This mod-
ification consists in taking account (although not quite
accurate) of the influence of the locally and toroidally
trapped particles, which was neglected in deriving

expressions (20) for the fluxes  and . In fact,
expansion (12), which was used in the derivation of
these expressions, is valid only for sufficiently large
values of the velocity z, much larger than the character-

istic velocity z0, which is on the order of  for toroi-

dally trapped particles and  for locally trapped par-
ticles. Consequently, when the time variations of the
distribution function are slow enough for the collisions
to play a dominant role and the time dependence of the
distribution function can be neglected, Eqs. (16) for Ψ2
and Ψ3 and, accordingly, solutions (19) and (20) fail to
hold under the following conditions:

(23)

It is well known (see, e.g., [3–5]) that correct solu-
tions satisfying these conditions can only be obtained
by taking into account the effect of the toroidally and
locally trapped particles. However, although it is
impossible to find a rigorous solution to the time-
dependent kinetic equation under conditions (23), an
approximate solution that qualitatively accounts for the
trapped particles is easy to construct. To do this, it is
sufficient to calculate fluxes (20) by integrating over the
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entire range of velocities z except for the low-velocity

range –  < z <  such that |z | < δ3/2 for  and |z | <

ε3/2 for .3 Hence, we take into account trapped parti-
cles and, instead of formulas (20), arrive at the follow-

ing expressions for the fluxes  and :

(24)

where

(25)

(26)

It is easy to see that, for s ~ 1, formulas (26) coincide
with formulas (21) to within small quantities on the
order of δ3/2 and ε3/2, and it is only for large values of
s > δ–3/2 and ε–3/2 that they differ greatly from formulas
(21). In other words, trapped particles make a signifi-
cant contribution to fluxes (24) only under conditions
(23) and only on sufficiently long time scales τ > δ–3/2,
(qMε3/2)–1. In the initial stage, τ < δ–3/2, (qMε3/2)–1,
trapped particles do not contribute to the fluxes and
have no effect on the relaxation processes regardless of
the values of the collision frequency νt.

3 Note that the expressions obtained for the steady-state (at ∂F/∂t = 0)
fluxes by using this procedure coincide with the corresponding
exact expressions to within coefficients on the order of unity.
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4. SET OF EQUATIONS FOR VE(τ) 
AND U(τ) AND ITS SOLUTION

Substituting expressions (24) for the fluxes  and

 into Eqs. (11) yields the following integrodifferen-
tial equations for VE(τ) and U(τ), or, equivalently, the
evolutionary equations for the ambipolar electric field
and longitudinal plasma velocity:

(27)

To avoid misunderstanding, we again emphasize
that the drift velocity in an electric field VE(τ) and the
longitudinal plasma velocity U(τ) do not mean their
absolute values but rather their deviations from the
steady-state values and the fluxes  and  are correc-
tions to the steady-state fluxes caused by these devia-
tions.

Although it is impossible to solve Eqs. (27) analyti-
cally, they can readily be solved numerically. Before
proceeding to a description of the numerical results, we
try to find an asymptotic solution to Eqs. (27) by ana-
lyzing the dispersion relation. To do this, we set

(28)

insert these representations into Eqs. (27), and take
the limit of large τ values. Then, we perform simple
manipulations to obtain the following dispersion rela-
tion for Γ:

(29)
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where

(30)

Substituting expressions (25) and (26) for Jt, s(s) and
It, s(s) into formulas (30), we find

(31)

where

(32)

We solve Eq. (29) in two limiting cases, Γ ! 1 and
Γ @ 1; moreover, in the second case, we set Γ ! qM,
which is valid for M @ n, as will be clear later. In this
way, we need to know how the functions Gt, s(z) and
Qt, s(z) behave at small and large values of z. The corre-
sponding expressions can readily be derived from for-
mulas (31) and (32).

For z ! 1, we have
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The inequality qM @ n and the relationship
Qs(Γ1/qM) = Gs(Γ1/qM)qM/Γ1, which holds for Γ1 !
qM, allow dispersion relation (29) to be somewhat sim-
plified:

(35)

For |Γ1| @ 1, we can further simplify Eq. (35) by
using the inequality q2Gt(Γ1) @ δ2νtQt(Γ1), which is
valid by virtue of relationship (34), and also the ine-

quality  ! (n + δMΘJ)2(δM)–2:

(36)

We set Γ = iΩ + γ, where Ω @ 1 and γ ! Ω–1, and
take into account the following consequences of rela-
tionships (33) and (34):

(37)

where the prime denotes the derivative with respect to
the argument. As a result, we arrive at the following
expressions for the dimensionless frequency Ω and the
dimensionless damping rate γ:

(38)

This solution describes high-frequency weakly
damped oscillations whose (dimensionless) frequency
is proportional to the safety factor q and whose damp-
ing rate is the sum of three terms, of which the first
accounts for collisional damping, the second is associ-
ated with the longitudinal viscosity and is much larger
for a stellarator (ΘJ = 0, n ≠ 0) than for a rippled toka-
mak (n = 0, ΘJ ≠ 0), and the third is in a sense an ana-
logue of the Landau damping rate of a “wave” with the

dimensional frequency ω = ΩΘvT/r = /R and
the wavenumber k = Θr–1.

Now, we consider the low-frequency branches of
slow relaxation processes with Γ ! 1, described by dis-
persion relation (35). Estimates show that, in this case,
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the right-hand side of this equation can be neglected. As
a result, the equation itself splits into two equations,

(39)

The solution to the first equation is

(40)

and the second equation has the solution

(41)

Hence, for τ @ 1, the general solution to Eqs. (27)
can be represented as

(42)

Here, Ω and γ1 are given by formulas (38); γ2 and γ3 are
determined by formulas (40) and (41), respectively; and
the coefficients V1, 2, 3 and U1, 2, 3 are specified by the
initial conditions.

In principle, it is possible to find the coefficients
V1, 2, 3 and U1, 2, 3 by imposing the initial conditions on
the highest derivatives in Eqs. (27). However, we do not
do so for the following two reasons. First, this way is
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Fig. 1. Functions Vn and Un (solid curves) and functions Vtn
and Utn (dotted curves) calculated for δ = 0.1, ε = 0.03, n = 0,
M = 14, q = 3, V0 = 1, U0 = 1, T = 10, N = 800, Ω = 5.613,
γ1 = 0.05, and γ3 = 0.013.
not quite correct because formula (42) represents an
asymptotic solution rather than an exact one. And sec-
ond, Eqs. (27) are easy to solve numerically on modern
personal computers. The results of the corresponding
computations are presented in the next section.

5. RESULTS OF A NUMERICAL SOLUTION
OF THE EQUATIONS FOR VE(τ) AND U(τ)

Here, results are presented from a numerical solu-
tion of Eqs. (27) for some specific parameter values of
a tokamak with a rippled toroidal magnetic field and an
n = 2 toroidal stellarator. We begin by explaining what
is shown in the figures given below. The solid curves
show Vn and Un as functions of τn. The notation Vn and
Un is used to denote the functions VE(τn) and U(τn)
obtained by numerically integrating Eqs. (27) with
τn = Tn/N (n = 0, 1, 2, …, N), where T is the time scale
over which the equations were integrated and T/N is the
time integration step. The dotted curves represent the
functions

where Ω and γ1 are given by formulas (38) and γ3 is
determined by formula (41). By comparing Vn and Un

with Vtn and Utn, we can judge to what degree the
asymptotic solution coincides with the exact one. Since
Eqs. (27) are linear, the functions VE(0) and U(0)
behave independently of their absolute initial values
VE(τ) and U(τ); the only important factor is the ratio of
VE(0) to U(0). Consequently, one of these initial values
can always be set equal to unity. The parameter values
used in computations are given in the figure captions.
The first five figures refer to a tokamak, and the last two
figures were obtained for a stellarator. All computations
were carried out for νt = 0.1.

From Fig. 1, we can see that, for sufficiently large
values of the safety factor (q = 3), the function VE(τ)
performs weakly damped oscillations around its
steady-state value (which is equal to zero in the case in
question), the damping rate being determined primarily
by collisions. The frequency of the oscillations and
their damping rate are seen to be close to those obtained
from the dispersion relation. The longitudinal plasma
velocity U(τ) is a superposition of an exponential func-
tion decreasing at a rate close to γ3 and oscillations with
a comparatively small (about 3%) amplitude.

For smaller values of the safety factor (q = 1.5,
Fig. 2), the damping rate of oscillations of the electric
field is considerably faster, which agrees with formula
(38). A more substantial deviation of Vn from Vtn is
associated with the fact that the theoretical value of the
damping rate γ1 was obtained under the conditions Ω @ 1
and γ ! Ω–1, which fail to hold for q = 1.5. However, as
in the previous case, the mean velocity behaves in
accordance with dispersion relation (39). For even

Vtn VE 0( )e
γ1τn–

Ωτn, Utncos U 0( )e
γ3τn–

,= =
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Fig. 2. Same as in Fig. 1, but for δ = 0.1, ε = 0.03, n = 0,
M = 14, q = 1.5, V0 = 1, U0 = 1, T = 10, N = 400, Ω = 2.807,
γ1 = 0.902, and γ3 = 0.011.
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Fig. 4. Same as in Fig. 1, but for δ = 0.1, ε = 0.03, n = 0,
M = 14, q = 3, V0 = 0, U0 = 1, T = 60, N = 800, Ω = 5.613,
γ1 = 0.05, and γ3 = 0.013.
PLASMA PHYSICS REPORTS      Vol. 29      No. 4      2003
20 4 6 8 10

0.90

0.95

1.00

0

0.5

1.0

–0.5

0.85

Vn, Vtn

Un, Utn

τn
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smaller values of the safety factor (q = 1, Fig. 3), the
function VE(τ) relaxes in a nearly aperiodic fashion.

When the initial value of the ambipolar field is equal
to its equilibrium value (i.e., VE(0) = 0), there are essen-
tially no oscillations (Fig. 4); in this case, the function
VE(τ), first, becomes negative and then, after a time of

about , starts to damp at the same rate γ3 as the func-
tion U(τ):

where γ3 ~ νt is given by formula (40).

For U(0) = 0, the relaxation of the functions VE(τ)
and U(τ) is of an oscillatory nature, although the ampli-
tude of oscillations of the longitudinal velocity (about
3%) is much smaller than the amplitude of oscillations
of VE (Fig. 5).

The relaxation of the ambipolar electric field in a
stellarator has much in common with the relaxation in
a rippled tokamak. The most significant difference is
that, in accordance with formula (38), the effect of the
longitudinal viscosity on the damping of the relaxation
oscillations in a stellarator is much stronger than that in
a rippled tokamak. Thus, in a tokamak, the damping
rate of oscillations of VE(τ) is essentially insensitive to
the longitudinal viscosity. In contrast, even in a stellar-
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Fig. 6. Same as in Fig. 1, but for δ = 0.01, ε = 1.161 × 10–3,
n = 2, M = 14, q = 5.01, V0 = 1, U0 = 1, T = 10, N = 600,

Ω = 9.373, γ1 = 0.062, and γ3 = 1.163 × 10–4.
ator with q @ 1 and νt ! 1, weakly damped oscillations
are possible only under the condition

i.e., only in the central part of the plasma column
(because ε ~ r2). This is illustrated in Figs. 6 and 7,
which show the functions VE(τ) and U(τ) calculated for
two different radii corresponding to two different ratios
of δ to ε.

We will conclude with two general remarks.

In [1], it was mentioned that, for toroidal magnetic
confinement systems possessing a symmetry in one of
the angular variables, i.e., when δ ≠ 0 and ε = 0 or when
δ = 0 and ε ≠ 0, the right-hand sides of Eqs. (1) differ
only by a constant factor. Consequently, for symmetric
systems, the functions VE(τ) and U(τ) cannot be
uniquely determined from Eqs. (27); in order to do this,
it is necessary to take into account the transverse vis-
cosity [6].

According to Eqs. (11), time variations of the ambi-
polar electric field give rise to additional diffusive (and
heat) fluxes, which, in turn, produce small variations in
the density and temperature. However, as far as the
author is aware, no experimental data are available on
the existence of relaxation oscillations of the ambipolar
electric field in the toroidal magnetic confinement sys-
tems under discussion.
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Fig. 7. Same as in Fig. 1, but for δ = 0.05, ε = 0.03, n = 2,
M = 14, q = 3.428, V0 = 1, U0 = 1, T = 10, N = 600, Ω =
6.414, γ1 = 0.274, and γ3 = 0.013.
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Abstract—Results are presented from experimental studies of the time resolved, spatially resolved, and spec-
trally resolved soft X rays emitted along the axis of a fast capillary discharge. © 2003 MAIK “Nauka/Interpe-
riodica”.
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1. INTRODUCTION

One of the most challenging features of high-current
pulsed capillary discharges is possibility of their oper-
ating as a soft X-ray (SXR) laser. This is because of the
stability (due to the small compression ratio) of the
pinching discharge column. In practice, there are two
main ways of creating the population inversion in cap-
illary discharges: the electron-collisional recombina-
tion pumping scheme and the electron-collisional exci-
tation pumping scheme. The recombination pumping
scheme usually uses hydrogen-like ions, the upper laser
level of which is populated via three-body recombina-
tion, while the lower laser level is efficiently depopu-
lated. This is accomplished in evacuated small-diame-
ter (<1 mm) capillaries, in which plasma is created by
ablating the wall material and remains in close contact
with the wall, which ensures rapid conductive cooling.
The gain and the anomalous line intensity ratios,
although weakly dependent on the discharge length,
were reported, e.g., in [1, 2]. On the other hand, excita-
tion pumping schemes usually use neon or nickel-like
ions, whose upper level is populated via electron colli-
sions. This may be achieved in gas-filled capillaries of
1063-780X/03/2904- $24.00 © 0290
large diameter (3–6 mm) by a fast current rise (at the
rate as high as ~(1–4) × 1012 A/s) in a preionized gas,
which ensures the rapid detachment from the capillary
wall (by the Z-pinch effect). In this way, the amount of
material ablated from the wall is small, and the influ-
ence of the wall material on the discharge characteristic
in the first half-period of the discharge current is
expected to be negligible. The strong amplification of
the neonlike Ar IX 46.9-nm line, the demonstration of
lasing, and the achievement of the saturation limit and
a high average power were reported in [3–5].

In the present paper, we report on the SXR measure-
ments performed with a pulsed capillary discharge at
the Institute of Plasma Physics of the Academy of Sci-
ences of the Czech Republic (Prague). The time-inte-
grated and time-resolved spatial and spectral character-
istics of SXR emission in the direction of the capillary
axis in various discharge regimes are measured.

2. APPARATUS

The apparatus (see Fig. 1) consists of a Marx gener-
ator, a coupling section (spacer), a fast capacitor (pulse
1

2 3
4

5

6

7

8

9
10

11

12

13

14

15

Fig. 1. Schematic of the device: (1) oil-filled Marx generator, (2) coupling section filled with SF6, (3) fast water capacitor, (4) main
spark gap, (5) insulator, (6) capillary, (7) Rogowski coil, (8) needle valve, (9) bellows, (10, 13) vacuum pump, (11) diaphragm,
(12) diagnostic window, (14) filter, and (15) output to a detector.
2003 MAIK “Nauka/Interperiodica”
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forming line) with a closely coupled main spark gap,
and a capillary. The gas filling and pumping assembly
is attached to the outer end of the capillary. The design
of the apparatus is described in more detail in [6].

The fully screened oil-insulated Marx generator is
used as a power source. It has eight stages, each of them
containing two couples (positively and negatively
charged) of two 400-nF/100-kV condensers connected
in series. The generator (with an erected capacitance of
12.5 nF) is charged by the ±28-kV charging voltage to
produce an erected voltage of 448 kV. The short-circuit
inductance of the generator is 14.2 µH, and the serial
resistance is 5.7 Ω .

The coupling section (spacer) is a SF6 gas–filled
short coaxial cylindrical line with dimensions of
∅ 426 × ∅ 88 × 287 mm (Ls = 95 nH, Cs = 10 pF, and
Rs = 95 Ω), which serves as an interface between the
oil-insulated Marx generator and the water-filled pulse
forming line.

As a fast capacitor, we use a ∅ 262 × ∅ 158 × 675-mm
coaxial cylindrical line filled with dielectric (deionized
water). Its capacitance Cl = 6.01 nF, inductance Ll =
68.28 nH, and impedance Zl = (Ll/Cl)1/2 = 3.37 Ω . The
main spark gap with an attached capillary assembly is
placed at the end of the line. The inner part of the spark
gap is filled (through the Marx generator, the coupling
section, and the fast capacitor) by SF6 gas, while the
outer part of the electrode gap is filled by water. In this
way, the spark gap capacitance, which is one of the fac-
tors determining the prebreakdown current, is signifi-
cantly increased. This current preionizes the gas in the
capillary, thus ensuring the sufficiently fast rise of the
main current, as was mentioned in the introduction. As
a result, the plasma in the capillary is very rapidly
decoupled from the capillary wall (by the Z-pinch
effect) and the amount of the ablated wall material
remains small.
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Fig. 2. Signal from a PIN diode filtered with a 0.75-µm Al
filter.
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The 20-cm-long, 4-mm-diameter polyamide capil-
lary is directly attached to the main spark gap. The cap-
illary is placed in a shielding and circuit-closing metal-
lic cylinder with a diameter of 60 mm. The working gas
is injected through an annular slit around the outer sur-
face of the grounded electrode, whereas an axial orifice
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Fig. 3. Spectral sensitivity of a PIN diode covered by a
0.75-µm Al filter.

Fig. 4. SXR intensity as a function of time and pressure (on
the top) and the waveform of the capillary discharge current
(at the bottom).
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Fig. 5. Time-integrated (on the left) and time-resolved (with an 11-ns exposition that started 15 ns before the current maximum) (on
the right) SXR intensities far from capillary mouth (the photos are presented on different intensity scales).
in this electrode is used to pump out the gas and output
the generated radiation (see [7] for details).

3. SXR EMISSION ALONG THE CAPILLARY 
AXIS

3.1. Time-Resolved Spectrally Integrated SXR Signal

Earlier [7], we found the geometry and parameters
of the discharge at which the SXR emission along the
capillary axis had the time behavior shown in Fig. 2.
The SXR emission was detected by a PIN diode cov-
ered with a 0.75-µm Al filter (the spectral sensitivity of
the detector is given in Fig. 3). These results are very
similar to those published three years before us by
Rocca et al. [4], who reported on the achievement of
the saturation limit for the spontaneous emission ampli-
fication. Hence, there were reasons to suppose that
under our conditions, i.e., in the regime characterized
by a short (nanosecond) SXR spike, an amplified spon-
taneous emission is also present.

One of the important parameters influencing the
duration of the SXR signal is the working gas (argon)
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Fig. 6. Capillary discharge spectrum taken by a transmis-
sion grating spectrograph 32.1 ns after the current maxi-
mum with an exposure time of 11 ns.
pressure. The time–pressure diagram of the SXR signal
(here, darker shading corresponds to a greater intensity)
and a typical time dependence of the discharge current
are shown in Fig. 4. The SXR intensity in the direction
of the capillary axis was monitored by a PIN diode cov-
ered with a 0.75-µm Al filter, and the time derivative of
the capillary current was taken by a Rogowski coil and
then numerically integrated. An HP 54542C oscillo-
scope with a 500-MHz bandwidth, 700-ps rise-time,
and 2-GHz sample rate in each of four channels was
used to record the emission pulses. The high contrast of
the SXR peak in comparison with the remaining part of
the SXR signal is worthy of mention. However, the fact
that this peak appears before the current maximum
attests to the possibility of further optimizing the facil-
ity regimes and parameters.

3.2. Spatially Resolved Spectrally Integrated
SXR Signal

The exit radiation cone coming out of the capillary
mouth and collimated with a 0.8-mm orifice (placed at
a distance of 372 mm from the capillary mouth) was
photographed through the fully opened entrance slit of

1 3

4

2

Fig. 7. Grazing-incidence spectrograph LSP-VUV1-3S-M:
(1) entrance slit, (2) Rowland circle, (3) diffraction grating,
and (4) X-ray film.
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3

4

the spectrometer (at a distance of 1725 mm from the
mouth) in the zeroth order of the toroidal (imaging) dif-
fraction grating. As in the previous case, visible light
was cut off by a 0.75-µm Al filter. It turned out (see
Fig. 5) that a 2-mm-diameter beam with a flat-top time-
integrated profile was well collimated (down to a diam-
eter of 400 µm) in the case of an 11-ns exposition that
started 15 ns before near the instant of the current max-
imum.

3.3. Spectrally Resolved SXR Signal

The first SXR spectral measurements were per-
formed with a simple transmission grating spec-
trograph (behind a 0.75-µm Al filter). The grating with
a step of d = 1 µm consisted of N = 100 free-standing
gold bars of length 1.8 mm with a necessary supporting
structure. The grating served as an entrance slit (with a
width of w = 100 µm) and as a dispersing element with
the linear dispersion Dlin = d/b, where b = 346.5 mm is
the distance between the detector and the grating. The
diffraction-limited resolution of the grating was Rd =
λ/∆λd = N and the geometrically limited resolution was
Rg = λ/∆λg = λ/d[(w/b) + (s + w)/a], where a =
753.5 mm is the distance between the source and the
grating and s is the transverse dimension of the source.
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At a supposed source dimension of s = 1 mm and for the
λ = 46.9 nm neonlike argon line, which is here most
interesting to us, these resolutions are Rd = 100 (∆λd =
0.47 nm) and Rg = 26.8 (∆λg = 1.75 nm).

The spectra were recorded by two tandem micro-
channel plates (MCPs) backed with a phosphor screen.
The image produced was photographed with a TV cam-
era and digitized with a personal computer.

The time-integrated spectra were smeared, because
SXR emission is relatively long and the spectra of var-
ious elements (present at the later stages of the dis-
charge) add up with spectra of various ionization states
of Ar (present during the first half-period of the dis-
charge current). It should be noted, however, that even
the time-resolved spectra (see Fig. 6) had insufficient
spectral resolution because of the necessary compro-
mise between the spectral resolution and the exposition
time required to obtain a sufficiently intense signal.
Besides the zeroth-order signal, there are pronounced
spikes corresponding to the cutoff of the Al filter at
17.1 nm in the first, second, and third spectral orders of
the transmitting diffraction grating. Since the spectral
intensity near the cutoff is relatively high, the profiles of
the above spikes can be interpreted as a superposition of
the spectral lines of argon and oxygen in various ioniza-
tion states. It is seen in Fig. 6 that, in the 47 ± 2-nm
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Fig. 9. Seya–Namioka spectrograph with a detection sys-
tem: (1) entrance slit, (2) Rowland circle, (3, 6) vacuum
valves, (4) diffraction grating, (5) vacuum pump, (7) MCP
detector, and (8) CCD camera.
spectral range, which is of most interest to us, the inten-
sity is nonzero; however, the insufficiently high spectral
resolution of these preliminary measurements does not
allow us to separate individual spectral lines in this
spectral region.

About fourfold better resolution was expected from
the time-integrated spectra taken with an LSP-VUV1-
3S-M compact grazing-incidence spectrograph (see
Fig. 7) with a fixed 30-µm entrance slit, 4° grazing
angle, 300-groove/mm Au-coated grating, 1000-mm
radius, 28 × 30-mm ruled area, 30- to 100-nm spectral
range, and spectral resolution of λ/∆λ > 100. Despite
the fact that the drum with an X-ray film was approxi-
mately perpendicular to the falling rays and, hence,
only a part of the spectrum around the film intersection
with the Rowland circle was in focus, only a faintly vis-
ible unsharpness could be observed in the off-focus
region because of the very small width (2 mm) of the
diffracted beam.

Due to time integration, spectral lines of lower ion-
ization states prevail in the spectrum (see Fig. 8). Spec-
tra taken in various positions corresponding to the par-
allel shift of the spectrometer with respect to the capil-
lary axis confirm the result of Section 3.2 that the
diameter of the time-integrated beam is 2 mm.
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Fig. 10. Time-resolved spectra taken by a Seya–Namioka spectrograph for different shifts ∆t of the exposition beginning with
respect to the current maximum: (1) –22.5, (2) –13, and (3) 22 ns.
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An XUV–visible Seya–Namioka spectrometer (see
Fig. 9) with a 1200-groove/mm tungsten-plated toroi-
dal grating (with the tangential and sagittal radii of Rt =
500 mm and Rs = 333 mm, respectively) had approxi-
mately the same spectral resolution. Two tandem MCPs
were placed tangentially to the Rowland circle. An
image produced on a phosphor screen was photo-
graphed with a TV camera and digitized with a personal
computer.

The spectral lines in the time-integrated spectra
were so broadened that they were hardly distinguish-
able. In the time-resolved spectra (Fig. 10), the Ar VIII
lines were identified, whose intensity was maximum in
the first half-period of the discharge current. The most
intense lines were the Ar V lines corresponding to an
ionization potential of 75.02 eV. The only line whose
intensity increased by the end of the first half-period of
the discharge current was the N IV line.

4. CONCLUSION
Despite the fact that we have observed the same

time behavior of the axial SXR emission as Rocca et al.
[4] (who reported on the achievement of the SXR lasing
saturation in a discharge) and despite the fact that we
recorded a well-collimated beam at the instant of its
maximum compression, our spectroscopic measure-
ments did not indicate lasing at the 46.88-nm line. It is,
however, unclear whether (in the time-integrated case)
a laser line lasting a nanosecond can be observed
against the background of the time-integrated spectra,
whether (in the time resolved case) the gating of the
detector (MCPs) corresponds exactly to the instant of
the maximum compression (simultaneous spectro-
scopic and PIN-diode measurements were impossible),
whether the alignment of the system is good enough,
etc. However, our recent numerical simulations [10]
confirm that no lasing is required to explain all of the
results described above and that they all can be
explained in terms of the so-called efficient plasma col-
lapse, driven by a radial shock wave. Therefore, the
achievement of lasing inevitably requires the develop-
ment of reliable methods for monitoring plasma
PLASMA PHYSICS REPORTS      Vol. 29      No. 4      2003
dynamics and determining plasma parameters as func-
tions of the initial (the gas-filling pressure, prepulse
current, strength of the external axial magnetic field,
etc.) and boundary (the capillary radius and length and
the capillary wall material) discharge conditions. A
more detailed study is in progress.
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Abstract—The effect of a conducting electrode on the interaction of dust grains in an ion flow is discussed. It
is shown that two grains levitating above the electrode at the same height may attract one another. This results
in the instability of a dust layer. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A good deal of experiments in dusty plasma physics
are performed with aerosol grains suspended in a
plasma sheath. A negatively charged dust grain in the
sheath levitates above a horizontal electrode due to the
balance of two forces: the gravity force, directed down-
ward, and the sheath electric field, which pushes the
grain upward. The near-sonic or supersonic ion flow in
the sheath creates a wake field downstream of the grain.
Since the latter is confined by a certain Mach cone, it is
commonly accepted that the wake field affects the
motion of grains that are situated downstream only. The
usual assumption is that the intergrain potential is
smooth in the horizontal direction; i.e., two grains levi-
tating at the same height repel one another via the
screened Coulomb potential. The structure of the wake
field and the grain interaction in an ion flow were stud-
ied in detail in [1–6]. The asymmetric interaction of
vertically aligned grains was also observed experimen-
tally [7].

In the analytical theory and computer simulations
cited above, it was assumed that the plasma density is
constant and the influence of the conducting electrode
is negligible. Although both assumptions evidently fail
under conditions of a real plasma sheath, taking into
account the plasma nonuniformity seems to be a very
difficult problem. In order to estimate the influence of
the electrode on the grain interaction, here we use the
zeroth approximation, which seems to be the only one
treatable analytically.

In this paper, the following simple model is
accepted. Let there be a monoenergetic ion stream
entering a conducting electrode (or a grid) located at the
horizontal plane (z = 0). The stream velocity u exceeds
the ion thermal velocity, but it is much less than the
electron thermal velocity. The electrons are assumed to
obey a Boltzmann distribution. Two problems are
addressed: first, how the electrode modifies the interac-
tion between two grains levitating at the same height
and, second, how this affects the spectrum of dust
acoustic waves propagating along a single dust layer.
1063-780X/03/2904- $24.00 © 20296
2. INTERGRAIN INTERACTION

The electrostatic potential produced by a point
charge Q located at r = r0 is given by the solution to
Poisson’s equation

(1)

where  is the operator of the static dielectric permit-
tivity of an ambient plasma. In the accepted model, the
spatial Fourier transform of  is given by

(2)

where u is the velocity of the ion flow, ωi is the ion
plasma frequency, and kD is the inverse electron Debye
length. The ion flow is parallel to the z-axis and directed
downward (u < 0).

In an unbounded plasma, the natural boundary con-
dition for Eq. (1) is ϕ|r → ∞  0. It is convenient to
express the solution to Eq. (1) in terms of its Green’s
function: ϕ(r) = QG0(r – r0), where the Fourier trans-
form of G0(r) with respect to the transverse coordinate
r⊥  = (x, y) is

(3)

Here, k⊥  = (kx , ky) stands for the transverse components
of a wave vector. With the dielectric function given by
Eq. (2), the zeros of the denominator in Eq. (3) are

(4)
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(6)

q⊥  = k⊥ /kD is the normalized transverse wavenumber,
and µ = ωi /kDu is the inverse Mach number.

The integral in Eq. (3) is easily evaluated, resulting in

(7)

The spatial structure of the potential is recovered by
the Fourier transform of Green’s function (7) with
respect to k⊥ . The first term in parentheses in expression
(7) gives rise to the Debye–Hückel potential distorted
by the ion flow, while the second term represents the
wake field situated downstream of the charge [1–3].
Both the opening of the Mach cone confining the wake
and the field structure inside of it depend on the stream
velocity.

Now we turn to the evaluation of the electric poten-
tial of a charge located near a conducting wall. Let the
wall be situated on the z = 0 plane, while the charge is
placed above it, z0 > 0. The potential is then given by the
solution to Eq.(1) supplemented with the boundary
condition ϕ|z = 0 = 0. As it is well known from electro-
statics, we can make allowance for this boundary con-

dition by introducing the surface charge density 
induced at the conducting surface. Then, the potential
of a unit charge is written as

(8)

Taking into account the boundary condition (0,

z0) = 0, we find the surface charge density  and,
finally, arrive at

(9)

One may doubt whether the description of a
bounded dispersive medium in terms of the response
function of an unbounded medium is justifiable. How-
ever, more accurate and lengthy calculations give the
same result. The physical reason is that there are no
ions reflected by the conducting wall within the present
model. The mathematical reason is that Eq. (1) actually
masks a set of partial differential equations with two
real characteristics directed downward.

Of particular interest for the following is the interac-
tion potential of two charges placed at the same height
z0. Since
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(10)

where a = kDz0, the normalized potential is

(11)

where G(r⊥ , z0, z0) = kdw(ρ) and ρ = kdr. The asymptotic
behavior of w(ρ) is determined by Eq. (10) at q⊥   0.
The latter essentially depends on whether the ion flow
is supersonic or subsonic. In the case of a supersonic
flow (µ < 1), roots (5) and (6) at q⊥   0 are approxi-
mated as

(12)

and the leading term of the asymptotic expansion of
w(ρ) (11) is

(13)

This expression may be interpreted as a mirror
reflection of the wake field produced by the grain at 0 <
z < z0. A more detailed numerical investigation of
potential (13) shows that w(ρ) is always positive for µ
< 1.

Quite another behavior is observed for the case of a
subsonic flow (µ > 1). Roots (5) and (6) at q⊥   0 are
now

(14)

while the potential at infinity behaves like

(15)

The most important distinction between expressions
(13) and (15) is that in the subsonic regime the potential
is attractive if

(16)

The numerically evaluated example of potential (15)
demonstrating the attraction is depicted in Fig. 1. It
should be pointed out that inequality (16) guarantees
the long-range attraction between grains. With the
opposite inequality imposed on a and µ, the potential is
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repulsive at large distance but the attractive branch may
appear at smaller scales, as is shown in Fig. 2.

Evidently, the existence of an attractive branch of
the interparticle interaction may result in the formation
of various patterns and clusters even in the absence of
an external potential well confining grains in the hori-
zontal direction. Also, the even distribution of grains in
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Fig. 1. Distribution of the potential in the transverse direc-
tion for µ = 2 and a = 2.7.
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Fig. 2. Distribution of the potential in the transverse direc-
tion for µ = 2 and a = 4.
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Fig. 3. Instability regions in the (q⊥ , a) plane for µ = 2.
a dust layer may become unstable. The latter possibility
is discussed in the next section.

3. DUST LAYER

Now we consider a two-dimensional gas consisting
of dust grains hovering over a conducting electrode.
Ignoring intergrain correlations, the linearized equa-
tions of motion are written as

(17)

(18)

where σ0 is the unperturbed value of the surface density
and σ is the density perturbation. Here, we consider
horizontal motions only; i.e., v z = 0. The term –νv in
Eq. (18) corresponds to the grain friction on an ambient
neutral gas. The intergrain interaction is described by
the potential given by Eq. (11). Although the grain
charge Q generally depends on the ambient plasma
parameters, for simplicity we ignore its variability.

Assuming that all of the quantities are proportional
to exp(–iωt + ik⊥ r⊥ ), we easily get the dispersion rela-
tion for the gas oscillations

(19)

where gd = 2πQ2σ0/M.

This expression describes dust sound waves in the
continuous medium approximation. In the long-wave-
length limit, q⊥   0, the dispersion relation takes the
form

(20)

Evidently, the layer is unstable; i.e., Imω > 0 if (z0,
z0) < 0. In the long-wavelength limit, this is possible
only in a subsonic flow and the corresponding con-
straint coincides with Eq. (16). A more detailed investi-
gation shows that the potential G⊥ (z0, z0) is always pos-
itive if µ < 1. However, in the subsonic regime (µ > 1),
there are regions of instability; i.e., (z0, z0) < 0 if
0 < q⊥  < qmax(a, µ). The latter are shown as shaded areas
in Fig. 3. With increasing distance (a  ∞) to the wall
or decreasing stream velocity (µ  ∞), the instability
regions shrink to zero, qmax(a, µ) ~ a−1/2, µ–1/2.
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4. CONCLUSION

To summarize, we have shown that the presence of
a conducting wall may drastically change the electro-
static interaction of dust grains in an ion flow. In partic-
ular, the electrostatic image of the grain wake field may
result in attraction between grains levitating at the same
height, which, in turn, yields a Jeans-type instability of
the dust layer.

It would be unduly naive to draw quantitative con-
clusions from the present calculations. However, it
seems reasonable that even in a real plasma sheath,
which is essentially nonuniform, the electrostatic
image of the grain wake field may also affect the
motion of another grains outside the Mach cone.
Although the screened Coulomb interaction is observed
in most experiments, there are indications that the inter-
grain potential may be more complicated. It was
recently reported that, under certain conditions, a void
(i.e., a dust-free region) appears in the central part of a
single dust layer [8]. The appearance of a two-dimen-
sional void in a layer consisting of some hundreds of
grains can hardly be explained in the same manner as a
three-dimensional void; the latter requires a strong
influence of the dust component on the discharge struc-
ture [9]. Although currently one cannot exclude that
some additional external forces appeared in the experi-
ment of [8], we can conjecture that the two-dimensional
void formation is provided by the complicated inter-
grain interaction, e.g., the one described in this paper.
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Abstract—The quasilinear relaxation of a low-density electron beam under the action of plasma turbulence,
which is generated during the development of a beam instability, when the beam is formed due to rapid local
electron heating (acceleration) is analyzed in the one-dimensional approximation. It is shown that quasilinear
diffusion results in the formation of a local plateau at the top of the electron distribution function without caus-
ing any significant spread in velocities of the beam electrons and that the relaxation process proceeds primarily
through the spatial expansion of electrons with different velocities. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The propagation of electron beams in a plasma dur-
ing the development of a beam instability has been
studied fairly well (see, e.g., [1]). The main effect
accompanying the propagation of electron beams is
thought to be the quasilinear relaxation of the electron
distribution function under the action of plasma waves
generated by the beam instability [2]. The quasilinear
relaxation leads to the formation of a so-called “pla-
teau” in the electron distribution function; as a result,
the beam instability is suppressed. The quasilinear
relaxation process was investigated both experimen-
tally [3] and numerically [4]. A model based on this
relaxation effect is used, in particular, to interpret
type-III bursts of radio emission from the Sun [5, 6].
However, in order for the plateau to form, the electron
beam should be sufficiently dense and the electron dis-
tribution function should be uniform over a sufficiently
long distance for a sufficiently long time, because each
of the excited plasma waves interacts with electrons
having a definite velocity. When the electron distribu-
tion function changes in time and space, the excited
waves sooner or later depart from resonance with the
electrons because the wave group velocity is low. The
resonance is destroyed at the fastest rate when an elec-
tron beam is formed as a result of rapid energy deposi-
tion in a small local region. The electrons escaping
from the deposition region quickly fly apart in space; as
a result, at each spatial point and at any given time,
there are electrons with a certain velocity (in the case of
free expansion, these are electrons with the velocity
v  = x/t, where x is the distance from the energy deposi-
tion region and t is the time from the instant of deposi-
tion). The shorter the heating (acceleration) time of the
electrons and the smaller the energy deposition region,
the smaller the velocity spread at each spatial point.
Consequently, an important role in the relaxation of an
electron beam is played by the kinematic effect of the
1063-780X/03/2904- $24.00 © 20300
spatial expansion of electrons with different velocities.
This situation can occur, e.g., in type-III solar radio
bursts, which are generated by low-density electron
beams [7].

2. ANALYSIS BY THE PERTURBATION 
METHOD

It is natural to assume that, at the very beginning of
the generation of radiation, the distribution function of
high-energy electrons has the form corresponding to
the case of free expansion: f(v , x, t) = F(x – v t), where
F is an arbitrary function. The distribution function f

can be specified as f(v , x, t) = Aexp[–(x – v t)2/(∆v )2 ],
where ∆v  is the electron velocity spread, t0 is the heat-
ing time, and A is the normalizing coefficient. At each
point in the spatial region x @ ∆v t0, a narrow spectrum
of plasma waves with phase velocities v f ≈ x/t is
excited. Because of the low group velocity, these waves
depart from resonance with the electrons on a time
scale of about ∆t ~ ∆v t0/(v  – ∆v t0/t); i.e., for t @ t0, we
have ∆t ~ ∆v t0/v. In order for the instability to occur, it
is necessary that its growth rate exceed its damping
rate, which is determined by the larger of two quanti-
ties: the Coulomb collision frequency or the reciprocal
of the time in which the resonance is destroyed, (∆t)–1.
If the damping rate of the plasma waves is determined
by the latter parameter, then we can set the growth rate
to be γ ≈ (nb/n0)(v /v tb)2ωpe [8] (where nb is the beam
density, n0 is the density of the background plasma, ωpe

is the electron plasma frequency, and v tb is the velocity
spread of the beam) and compare the reciprocal of the
growth rate with the time scale on which the resonance
is destroyed in order to obtain the following estimate of
the beam density for v  ~ v tb ~ ∆v t0/t at the stability
boundary: nb/n0 ~ v /(∆v ωpet0). According to this esti-
mate, the higher the beam velocity and the shorter the

t0
2
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heating time, the higher the beam density required for
the onset of the instability. This is because the time dur-
ing which the plasma waves depart from resonance
with the electrons decreases with increasing beam
velocity and decreasing heating time. Thus, for the
parameter values characteristic of type-III solar bursts,
i.e., for heating to a temperature of about T ~ 107 K
(∆v  ~ 109 cm/s) and for t0 ~ 0.1 s, v  ~ 1010 cm/s, and
ωpe ~ 109 s–1, we obtain nb/n0 ~ 10–7, i.e., nb ~ 40 cm–3.
This estimate approximately corresponds to the beam
densities at which the growth rate becomes higher than
the Coulomb collision frequency in the solar corona.
After the onset of instability, the evolution of the elec-
tron beam is governed by the combined action of the
kinematic effect of the spatial expansion of the beam
electrons and the quasilinear effect of the excited
plasma waves on the electron distribution function.

Let us consider the initial stage of the evolution of
the electron distribution function under the action of
plasma waves generated by the beam instability. In the
one-dimensional approximation, the interaction of
electrons with plasma waves is described by the kinetic
equation [1, 2]

(1)

where D = (8π2e2/m2)W/v , e and m are the charge and
mass of an electron, and W is the spectral energy den-
sity of the waves.

We assume that, in a certain local region, rapid elec-
tron heating results in the formation of a broad electron
energy spectrum. Recall that, in the case of the free
expansion of hot electrons from the heating region,
their distribution function can be represented in the

form f0(v , x, t) = Aexp[–(x – v t)2/(∆v )2 ], which satis-
fies Eq. (1) with zero on the right-hand side. For a suf-
ficiently low spectral energy density W (e.g., at the
onset of beam instability), the electron distribution
function can naturally be represented as F = f0 + f1 with
f1 ! f0, where f1 is the perturbation of the distribution
function under the action of plasma waves. The pertur-
bation can be determined by solving Eq. (1) with the
right-hand side written in terms of f0(v , x, t). Under the
assumptions W = const and t @ t0, the solution has the
form

(2)

where B = 8π2e2/m2.
Figure 1 shows the electron distribution functions

calculated by formula (2) at different distances from the
heating region at a fixed time for two cases: (i) free
expansion and (ii) developed plasma turbulence. We
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can see that the main effect of the interaction of plasma
waves with electrons is an increase in the electron
velocity spread. This effect stems from the fact that the
electrons are subject to diffusion in velocity space at
both (positive and negative) slopes of the distribution
function. At the positive slope, diffusion occurs due to
the energy transfer to the excited plasma waves,
whereas, at the negative slope, diffusion results from
the absorption of the waves generated by faster elec-
trons. The faster the electrons, the more efficiently they
will interact with plasma turbulence, because, as can be
seen from Eq. (1), at a constant spectral energy density
of the turbulence, the diffusion coefficient in energy
space is proportional to the electron velocity.

If the electrons in the energy deposition region are
accelerated, then the spatial distribution of their density
peaks at a certain directed electron velocity. In this
case, the distribution function of the freely moving
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Fig. 1. Electron velocity distribution functions calculated at
the time t = 50t0 for BWt0/(∆v )3 ~ 10–10 and for different
distances from the heating region (from 50∆v t0 to
175∆v t0) in the cases of free expansion (solid curves) and
developed plasma turbulence (dashed curves).
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Fig. 2. Distribution functions of the preaccelerated elec-
trons, calculated at the time t = 50t0 for v0 ≈ 2∆v  and

BWt0/∆v 3 ~ 10–12 and for different distances from the heat-
ing region (from 50∆v t0 to 175 ∆v t0) in the cases of free
expansion (solid curves) and developed plasma turbulence
(dashed curves).
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Fig. 3. (a) Contours of the initial distribution functions of the beam electrons and the electrons of the background plasma and
(b) their cross section along the line passing through the peak in the distribution function of the beam electrons.
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electrons can be represented as

where v 0 is the electron velocity at which the electron
density is maximum. In turn, under the same assump-
tions, the perturbed electron distribution function has
the form

(3)

Figure 2 shows the electron distribution functions cal-
culated by formula (3) at different distances from the
heating region at a fixed time for two cases: (i) free
expansion and (ii) developed plasma turbulence. It can
be seen that the shape of the distribution function of fast
electrons again changes to a larger extent.

Of course, the above solutions do not cover the over-
all relaxation process; this can only be done by taking
into account the effect of the evolution of the electron
distribution function on the spectrum of the plasma
waves, i.e., by solving a self-consistent problem (see
below). Nevertheless, the above approximate analysis
leads to the conclusion that the quasilinear relaxation of
an electron beam formed as a result of rapid local
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energy deposition differs considerably from the relax-
ation of a spatially uniform electron beam [1, 2].

3. NUMERICAL SIMULATIONS

The conclusion derived from an approximate analy-
sis is confirmed by numerical simulations. We numeri-
cally solved the following one-dimensional set of equa-
tions describing the interaction of a spatially localized
electron beam with the plasma waves that it itself gen-
erates [2]:

where W is the spectral energy density of the plasma
waves, D is the electron diffusion coefficient in velocity
space, γ is the growth rate of the waves, n0 is the plasma
density, and ωpe is the electron plasma frequency.

The simulations were carried out using the method
of separating the physical processes [9]. We rewrite the
basic set of equations in dimensionless variables in the
form

(4)

where f = π(∆v )f0/nb,  = πWωpe/nbm(∆v )3,  =
ωpe(nb/n0)t,  = v /∆v , f0 is the sum of the distribution
functions of the beam electrons and the electrons of the
background plasma, nb is the beam density, and ∆v  is
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Fig. 4. (a) Contours of the distribution functions of the beam electrons and the electrons of the background plasma at the time t =
12.65/fpe and their cross sections along the lines passing through the peaks in the distribution function of the beam electrons (c) in
velocity space and (e) in coordinate space; (b) contours of the spectral energy density of the plasma turbulence and its cross sections
along the lines (d) x = 80rD and (f) v  = 2.5∆v .
the initial thermal spread of the beam. The initial distri-
bution functions of the beam electrons and the electrons
of the background plasma in coordinate and velocity
spaces are assumed to be Maxwellian. The first of
Eqs. (4) describes the kinematics of the electrons flying
apart in space, and the second one describes electron
diffusion in velocity space under the action of plasma
waves. The first of Eqs. (4) was solved in the first half
of each time step, and the second equation was solved
in the remaining half. At each time step, the solution to
PLASMA PHYSICS REPORTS      Vol. 29      No. 4      2003
the first equation gives the change in the distribution
function of the electrons due to their spatial expansion,
and the solution to the second equation gives the
change in the distribution function due to diffusion in
velocity space.

The transport equation, i.e., the first of Eqs. (4), was
solved by means of a one-dimensional monotonic
scheme with a SUPERBEE limiting procedure [10].
The diffusion equation was solved by the sweep
method [11]. The spatial step was 1.6rD, where rD is the
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Fig. 5. Same as in Fig. 4, but for t = 25.3/fpe and x = 110rD.
Debye radius. The ratio of the electron temperature in
the background plasma to the beam temperature was
1 : 10, and the related density ratio was 10 : 1. The nor-
malized initial energy spectrum of the plasma turbu-
lence was assumed to be uniform, with the spectral den-
sity  = 10–3. The results of simulations are illustrated
in Figs. 3–6. We can see that the relaxation of an elec-
tron beam is governed primarily by the kinematic effect
of the spatial expansion of electrons. This effect mani-
fests itself as a decrease in the beam density with time.
On the other hand, the velocity spread of the beam

ω

changes to a smaller extent. The distribution function of
the beam electrons changes to a much larger extent—its
top becomes flatter, acquiring the shape of a local pla-
teau. The formation of the plateau at the top of the dis-
tribution function is attributed to the fact that the spec-
tral energy density of the plasma waves is maximum
around the top; as a result, the electron diffusion in
velocity space is most intense at the top. This indicates
that plasma waves excited at the given spatial point
grow until the slow electrons that come to this point
cause them to be displaced into the local plateau region,
where the growth rate nearly vanishes and the plasma
PLASMA PHYSICS REPORTS      Vol. 29      No. 4      2003
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Fig. 6. Same as in Fig. 4, but for t = 38/fpe and x = 160rD.
turbulence is maintained at a certain quasi-steady level.
Then the waves occur at the negative slope of the distri-
bution function, where they dampen. Consequently,
this relaxation stage is governed by the balance
between the width and the steepness of the portion of
the distribution function over which the waves grow
and by the spectral energy density of the plasma turbu-
lence. In turn, the width and the steepness of this por-
tion are determined by the effects of electron diffusion
in velocity space and the expansion of the electrons in
configuration space. Numerical simulations show that
ASMA PHYSICS REPORTS      Vol. 29      No. 4      2003
this relaxation stage occurs over a wide range of elec-
tron beam densities. As time elapses, the beam density
decreases and the spectral energy density of the turbu-
lence also becomes lower. As may be seen in Figs. 3a,
4a, 5a, 6a, most of the beam electrons are displaced
toward the trailing edge of the beam because they
expend their energy to generate plasma turbulence. One
can also see a slight increase in the electron velocity
spread at the trailing edge of the beam, while the spread
at the beam’s leading edge is seen to decrease. The
beam electrons at the peak in their spatial density dis-
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tribution propagate with a constant velocity. The peak
in the spectral energy density of the turbulence is also
displaced at a nearly constant speed. We can thus con-
clude that the results of our numerical simulations
agree with the data from observations of type-III solar
radio bursts, whose driving source moves with a con-
stant velocity. The simulations also show that there is
another peak in the spectral energy density of the
plasma turbulence. This peak, which was not displaced
in the course of a run, is associated with weakly
damped oscillations generated at the very beginning of
the relaxation process.

4. CONCLUSION
The initial stage of the one-dimensional relaxation

of an electron beam under the action of plasma turbu-
lence with a broad spectrum has been analyzed by per-
turbatively solving the kinetic equation. The beam is
formed due to rapid local heating, and the initial condi-
tion correspond to free spatial expansion of the beam
electrons. The analysis shows that the combined action
of the kinematic effect of the spatial expansion of elec-
trons with different velocities and the effect of electron
diffusion in velocity space under the action of plasma
turbulence leads to an increase in the velocity spread of
the local electron beams that are formed at each point
in space.

The further relaxation process has been simulated
numerically by solving a self-consistent set of the qua-
silinear equations describing electron diffusion in
velocity space under the action of plasma waves and the
excitation of plasma waves by the electrons whose dis-
tribution function changes in both space and time. The
results of simulations show that diffusion results in the
formation of a plateau at the top of a local distribution
function. At the same time, the velocity spread of each
local beam changes insignificantly. As for the relax-
ation process, it proceeds primarily through the spatial
expansion of electrons with different velocities.
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Abstract—The amplitude of the wave generated in a plasma during the development of beam–plasma instabil-
ity is nonuniform in the longitudinal direction. The ponderomotive force associated with this nonuniformity
leads to a redistribution of the plasma density; as a result, the wave amplitude and its spatial distribution change.
As the beam current grows, the ponderomotive force plays an increasingly important role and radically changes
the mechanism by which the beam–plasma instability saturates. Ion acoustic waves generated by the pondero-
motive force propagate in the direction opposite to the propagation direction of the beam, thereby ensuring dis-
tributed feedback and giving rise to a strong low-frequency self-modulation of the wave amplitude and phase.
Results are presented from experimental investigations of the self-modulation regime of the beam–plasma
instability in a magnetized plasma waveguide. Theoretical estimates of the parameters of the low-frequency
self-modulation agree well with the experimental data. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the areas of study in plasma electronics is the
generation and amplification of high-power microwave
radiation in plasma-filled electrodynamic structures.
Considerable progress in this direction made it possible
to create high-power microwave sources operating in
both pulsed (sources based on relativistic electron
beams) [1–3] and continuous (sources based on nonrel-
ativistic electron beams) modes [4, 5].

Numerous experimental and theoretical results
obtained for more than 50 years of active research in
plasma electronics have provided a fairly clear insight
into the physics of the processes occurring in the inter-
action of charged-particle beams with plasmas. How-
ever, in our opinion, there remains an important aspect
of this interaction that has been studied insufficiently as
yet, specifically, the interrelation between the condi-
tions for the generation of microwave fields by the
beams in a plasma and the plasma parameters.

Each of these two effects—(i) the influence of the
plasma parameters (such as density, temperature, and
spatial inhomogeneity) on the conditions for the gener-
ation of microwave fields by charged-particle beams
and (ii) changes in the parameters of the plasma under
the action of microwave radiation propagating in it—is
well known and, on the whole, has been investigated in
great detail. However, to the best of our knowledge,
their combined action on the development of the beam–
plasma instability (BPI) and, especially, on the evolu-
tion of a beam–plasma discharge (BPD), has not been
1063-780X/03/2904- $24.00 © 20307
studied systematically, although the role of this inter-
relation may be very important.

As an example of the combined action of these two
effects, we consider a possible scenario of the develop-
ment of the instability of a beam injected into an ini-
tially homogeneous plasma. After the transient pro-
cesses in the plasma have come to an end, the amplitude
of the excited wave relaxes to a steady-state longitudi-
nally nonuniform distribution. Because of the nonuni-
formity of the microwave field amplitude, the plasma
density also becomes nonuniform. This nonuniformity
may be produced either by the microwave ponderomo-
tive force that expels the plasma from the region of
strong microwave field or by the microwave discharge
that is initiated in the region where the amplitudes of
the microwave oscillations are sufficiently large. The
low-frequency (ion acoustic or magnetosonic) waves of
the density of the plasma expelled by the microwave
ponderomotive force or the plasma additionally pro-
duced by a microwave discharge propagate away from
the source of perturbation. The BPI, which originally
gave rise to nonuniformity, now develops in an inhomo-
geneous plasma and acts to change the amplitude of the
wave generated by the beam and redistribute the wave
amplitude in space. Accordingly, the plasma density
continues to be nonuniform, but for another reason: the
plasma and the fields generated by the beam are set into
self-consistent motion. As a result, a inhomogeneous
plasma evolves into a new steady state or into a self-
modulation interaction regime. In both cases, the
003 MAIK “Nauka/Interperiodica”



 

308

        

BLIOKH 

 

et al

 

.

                               
amplitudes of the beam-generated waves and their
spectrum can differ strongly from those in a homoge-
neous plasma.

The changes in the parameters of a medium under
the action of radiation propagating in it constitute the
material of nonlinear optics. In the above example, the
medium (plasma) also changes its properties (density)
under the action of microwave radiation. However, the
radical difference between the problem at hand and the
problems that are the subject of nonlinear optics is in
the change of the properties of the medium that affect
the generation of radiation. Because of the resonant
nature of the wave generation, the characteristic that is
most sensitive to variations in the parameters of the
medium in the beam–plasma interaction is the effi-
ciency with which the wave is generated.

The above example of the plasma nonlinearity illus-
trates a new effect peculiar to the BPI—distributed
delayed feedback, which transforms the system under
consideration into an oscillator. In fact, the plasma den-
sity perturbations excited in the region of maximum
microwave field move in the propagation direction of
the beam and in the opposite direction and affect the
conditions for the generation of microwaves, thereby
changing the microwave field amplitude in the region
where the perturbations are excited. The system
“remembers” these plasma density perturbations until
they escape from the interaction region.

Our paper is organized as follows. In Sections 2–4,
a mathematical model of a magnetized plasma-filled
traveling-wave tube (TWT) amplifier is constructed
with allowance for the plasma nonlinearity produced by
the microwave ponderomotive force and is then used to
study the effect of this force on the amplitude of the
microwave generated by an electron beam in a steady-
state operating mode of the amplifier. In Section 5,
results are presented of theoretical and experimental
investigations of the dynamic regimes of the BPI (the
thresholds for the onset of low-frequency self-modula-
tion, as well as the spectral and power parameters) that
arise as a result of the generation of ion acoustic waves
by the microwave ponderomotive force in a magnetized
plasma waveguide.

We restrict ourselves to considering only nonrelativ-
istic devices based on the Cherenkov interaction
between waves and charged particles. However, since
the effects to be examined are associated with the influ-
ence of the plasma nonlinearity on the resonant proper-
ties of the wave–particle interaction, the study can be
extended to include systems with relativistic electron
beams and systems based on some other elementary
resonance effects (such as normal and anomalous Dop-
pler effects).
2. EVALUATION OF THE EFFECT
OF THE MICROWAVE PONDEROMOTIVE FORCE 

ON THE DEVELOPMENT OF THE BPI

The experimental data reported in [6–8] and the
analyses carried out therein show that, as the beam cur-
rent or the plasma density grows, the plasma nonlinear-
ity plays an increasingly important role in the dynamics
of the BPI and that the nonlinearity originally arises in
response to microwave ponderomotive forces. That is
why we restrict ourselves to considering the effect of
the microwave ponderomotive force as a mechanism
ensuring the interrelation between the parameters of the
plasma and of the microwaves generated in it. In addi-
tion, we are interested exclusively in one-dimensional
(longitudinal) plasma motions, assuming that the guid-
ing external magnetic field is strong enough for the
transverse motions to be neglected.

In this section, we present preliminary estimates that
make it possible to determine the ranges of the plasma
and electron-beam parameters in which the plasma
density perturbations produced by the microwave pon-
deromotive force have an important effect on the condi-
tions for microwave generation.

A charged-particle beam can excite the eigenmodes
of an electrodynamic system if the velocity v b of the
beam particles is close to the phase velocity v ph of the
eigenmodes:

(1)

where δk is the instability growth rate and k is the wave
vector of a synchronous wave.

The wave generated during the BPI grows in the
direction of the beam propagation. The microwave pon-
deromotive force associated with the longitudinal non-
uniformity of the wave field deforms the plasma density
profile. This force is exerted on a slowly moving
charged particle by a spatially nonuniform microwave
field [9]. The motion of a particle in such a field is the
superposition of its fast oscillations and slow regular
drift. In turn, the particle drifts as if it were affected by
the force

where E0 is the electric field amplitude, ω is the oscilla-
tion frequency, and e and m are the charge and mass of
an electron.

Since the microwave ponderomotive force F is
inversely proportional to the mass of a particle, it acts
primarily on the lightest plasma particles—electrons.
The electrons moving relative to the ions give rise to the
charge separation (polarization) electric field, which
makes the independent motion of the electrons and ions
impossible. Consequently, the microwave ponderomo-
tive force F sets each of the charged plasma compo-
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nents into common motion, thereby expelling the
plasma from the region of stronger microwave electric
field.

The density np of the plasma is one of the most
important parameters determining the properties of the
waves propagating in it. In particular, the phase velocity
vph of a wave with a fixed frequency ω is a function of
the plasma density, vph = vph(np). In a plasma with a
nonuniform density np(x), the wave phase velocity is
coordinate dependent, v ph = v ph(x). As a result, syn-
chronization condition (1) fails to hold over the entire
length of the beam–wave interaction region and is only
satisfied along the parts over which v ph . v b. Since the

width  of a resonance in the phase velocity is, as

a rule, small in comparison with v b, the BPI is very sen-
sitive to the degree of plasma inhomogeneity. The
plasma density perturbation δnp caused by the nonuni-
formity of the amplitude of the excited wave is deter-
mined by the condition that the microwave ponderomo-
tive force is equal to the force of the excess pressure:

(2)

which yields

(3)

where Te is the plasma electron temperature.

The change in the wave phase velocity, δv ph =

δnp , that results from this perturbation can signif-

icantly influence the development of the instability
when

(4)

Conditions (3) and (4) imply that the deformation of the
plasma density profile under the action of the micro-
wave ponderomotive force of the excited wave can have
a strong impact on the development of the BPI if the
wave amplitude E0 is sufficiently large:

(5)

where ωp =  is the electron plasma frequency.
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The maximum amplitude Em of the wave generated
during the BPI is determined by the condition

(6)

where nb is the beam density, v g is the wave group
velocity, and D(ω, k, ωp) is a function whose zeros
determine the dispersion of the eigenmodes of the sys-
tem. The left-hand side of condition (6) is the density of
the energy flux through the waveguide cross section in
terms of the amplitude of the longitudinal component
of the electric field in the region occupied by the
plasma.

According to conditions (5) and (6), the microwave
ponderomotive force can significantly change the
parameters of the BPI if the parameter

is sufficiently large,

(7)

Since the quantities ∂v ph/∂np and ∂D/∂ω are functions
of the parameters of the waveguide structure (plasma
density, plasma temperature, external magnetic field,
geometric dimensions, etc.), specific conditions on the
beam current and energy under which the microwave
ponderomotive force play an important role can be
obtained only for particular waveguides. As an exam-
ple, we turn to the experimental investigations carried
out in [6–8] and consider a plasma waveguide in a
strong longitudinal magnetic field and a hybrid slow-
wave structure partially filled with plasma.

2.1. Magnetized Plasma Waveguide

In this case, the function D coincides with the
dielectric function for slow potential waves and has the
form

where k⊥  ~ 1/R is the transverse vector of the wave in a
waveguide of radius R.

Using the dispersion relation D(ω, k, ωp) = 0, we
calculate the group velocity of the wave and its phase
velocity as functions of the plasma density in order to
write condition (7) in the form

(8)

In deriving this condition, we assumed that the trans-
verse and longitudinal components of the wave vector
are of the same order of magnitude. Such a relation is
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optimum for microwave generation because, at k ! k⊥ ,
the growth rate of the BPI is slow and, at k @ k⊥ , the
excited wave is weakly coupled to the external
waveguide.

The parameters of the device with which the exper-
iments described in Section 5 were carried out (Ub ~
1 kV, Te ~ 3 eV, and np ~ 109 cm–3, the cross-sectional
area of the beam being 3 cm2) can be substituted into
condition (8) to yield the following condition on the
beam current at which the microwave ponderomotive
forces are anticipated to have a significant effect: Ib >
20 mA. In those experiments, the beam current was as
high as several tens of milliamperes. Hence, even the
above formulas, serving merely as estimates, imply that
the results of measurements should be interpreted with
allowance for the changes in the plasma density under
the action of microwave radiation.

2.2. Hybrid Slow-Wave Structure

Such low beam currents at which the plasma density
profile in a magnetized plasma waveguide is signifi-
cantly deformed can be explained by the high sensitiv-
ity of the wave phase velocity to variations in the
plasma density. In the hybrid slow-wave structure with
which the experiments described in [6–8] were carried
out, the plasma occupied no more than 10% of the
entire volume and had a lesser impact on the dispersion
properties of the eigenmodes in comparison with a
magnetized plasma waveguide. In addition, for such a
structure, the parameter ω∂D/∂ω in condition (7) is
large, because nearly all of the power flows through the
coupling slits of the cavities and the longitudinal field
in the plasma is much weaker than the field in the cav-
ities. For an arbitrary waveguide structure in which the
volume occupied by the plasma is relatively small, the
quantity ω∂D/∂ω was rigorously calculated in [10, 11].
Here, we present only the final result of calculations for
the hybrid structure described in [6, 7]: for an optimum
plasma density such that ωp ~ ω, the microwave ponder-
omotive force effects should be significant at a beam
current of about 3 A, which corresponds to a generated
microwave power of about 20 kW.

At this point, it is pertinent to recall that all of the
above conditions are merely estimates and should not
be thought of a strict sense.

3. BASIC EQUATIONS

We begin with a number of simplifying assump-
tions, with which the mathematical model becomes
more illustrative and the problem of the self-consistent
dynamics of the plasma and microwave can be investi-
gated in its pure form, i.e., without reference to the
effects that are unimportant for our purposes.

We consider the hierarchy of the time scales charac-
teristic of the problem. The shortest time scale is the
period T1 of microwave oscillations generated by the
beam. If the growth rate of the BPI is small, i.e., ine-
quality δk ! k is satisfied, then the behavior of the gen-
erated wave can be described by the reduced equations
for the complex wave amplitude and the processes
occurring on this time scale can be excluded from con-
sideration.

The longer time scales T2 =  and T3 =

L/v g are associated with the finite length of the system
(see, e.g., [12]). The first of these two scales is the
shortest time scale on which the wave amplitude varies
at the exit from the system (an oscillator or an ampli-
fier). The second is the time during which the steady
operating mode of an amplifier—a system without
high-frequency feedback—is achieved. In the presence
of external or internal high-frequency feedback, it is
necessary to take into account the fourth characteristic
time scale, namely, the time T4 required for a micro-
wave signal to pass through the feedback circuit.

The times T1, T2, T3, and T4 satisfy the following ine-
qualities, which may turn out to be strong:

The time scales just introduced are characteristic of
vacuum microwave devices based on the Cherenkov
interaction between a charged-particle beam and slow
waves. In a plasma waveguide or in a plasma-filled
slow-wave structure, there is an additional characteris-
tic time scale—the propagation time T5 of the plasma
density perturbations, i.e., the time required for a low-
frequency (ion acoustic, magnetosonic, etc.) plasma
wave to pass through the volume occupied by the
plasma. This may be the time of the propagation of per-
turbations in either the longitudinal or transverse direc-
tion, depending on the strength of the guiding magnetic
field and the ratio between the longitudinal and trans-
verse gradients of the amplitude of the microwaves.
Because of the large difference in the longitudinal and
transverse dimensions of the plasma (in experimental
devices, the plasma length is, as a rule, several tens of
centimeters, and the transverse dimensions are no
larger than several centimeters) and in the propagation
velocities of the perturbations (from about 106 cm/s for
ion acoustic waves to about 108 cm/s for magnetosonic
waves), the relationships among the time scales T2, T3,
T4, and T5 may be very different. The simplest two are
the limiting cases T5 ! T2 and T5 @ T4. The first case
was considered in [13, 14] in studying the effect of
transverse magnetosonic plasma oscillations generated
by the microwave ponderomotive forces of the excited
wave on the operation of a TWT oscillator with delayed
feedback. The inequality T5 ! T2 makes it possible to
analytically relate the instantaneous amplitude of the
microwave to that of the plasma density perturbation
and thereby eliminate the perturbation from consider-
ation.

L
v b v ph–
v bv ph

-----------------------

T4 T3 T2 @ T1.> >
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The second case requires further simplification
because the inequality T5 @ T4 does not allow us to
determine which of the possible two factors—high-fre-
quency feedback or plasma motion—will lead to the
onset of unsteady regimes. That is why, in order to sin-
gle out the effects associated exclusively with the
plasma motion, we restrict our analysis to an ampli-
fier—a system without high-frequency feedback. In
this case, the time scale T4 drops out of the equations of
the problem and the inequality T5 @ T3 makes it possi-
ble to neglect transient processes occurring on the time
scales T3 and T2 and describe the instantaneous longitu-
dinal profile of the amplitude of the microwave by the
steady-state distribution corresponding to a given lon-
gitudinal profile of the plasma density.

We assume that the guiding magnetic field is strong
enough for the radial motions of the beam and plasma
particles to be neglected. Under this assumption, the
time scale T5 is the time required for an ion acoustic
wave to pass along the system, and the condition T5 @ T3
is equivalent to the inequality

(9)

where cs =  is the ion acoustic velocity and M is
the mass of the a plasma ion. Under the conditions of
the most practical interest for microwave electronics,
we have vb . v ph ~ v g ~ 109–1010 cm/s @ cs ~ 106–107

cm/s; i.e., inequality (9) is satisfied by a large margin.
Recall that, because of its resonant nature, the BPI

is very sensitive to the degree of plasma inhomogeneity.
Consequently, we can work under the condition

(10)

and describe plasma motions in the linear approxima-
tion.

Because of the transverse nonuniformity of the field
of the excited wave, the longitudinal motions of the
beam particles at different radii are different [15]. In
order for this effect to also be excluded from consider-
ation, we assume that the cross-sectional area Sb of the
beam is much smaller than the cross-sectional area Sp of
the plasma. Under this assumption, the radial nonuni-
formity of the amplitude of the microwave oscillations
in the axial region can be neglected.

Now, we turn to the construction of a mathematical
model. Using inequality δk ! k, which indicates that
the growth rate of the BPI is small, we can represent the
longitudinal component of the electric field of the
excited wave as

(11)

where E0(z, t) is the slowly varying complex amplitude,
the function G(r) describes the dependence of the field
of the eigenmode of the structure on the radial coordi-
nate r, and the frequency of the wave and its vector are
related by the resonance condition ω0 = k0v b.

v g @ cs,

Te/M

δnp/np ! 1

E r z t, ,( ) E0 z t,( )G r( ) ik0 iω0t–( )exp c.Ò.;+=
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The longitudinal profile of the amplitude of the
wave generated by the beam is determined by solving
the time-independent equations for the BPI,

(12)

where ζ = δk0z is the dimensionless longitudinal coor-

dinate, ε =  is the dimensionless wave

amplitude, ϕ = ω(z/v b – t) is the phase of the beam par-
ticles in the wave, ϕ0 is the initial phase in the plane of
beam injection z = 0, and 

is the spatial growth rate of the BPI in a homogeneous
plasma. The integral of the function G2 is taken over the
cross-sectional area Sw of the waveguide structure. By
virtue of the above assumption that the beam radius is
small, the integral over the cross-sectional area of the
beam in the definition of the growth rate is replaced
with the quantity G2(0)Sb. The local value of the wave
vector k(ζ, τ) of the eigenmode of the slow-wave struc-
ture is the solution to the dispersion relation D[ω, k(ζ, τ),
ωp(ζ, τ)] = 0. Since high-frequency feedback is absent
and inequality (9) is satisfied, we can describe the BPI
by the above time-independent equations, in which
case the unsteady nature of the plasma in the structure
can be accounted for through the parametric depen-
dence of the wave vector k(ζ, τ) of the excited wave on
the dimensionless time τ = δk0cst. This choice of the
dimensionless time is convenient for our purposes: we

thus take into account both the spatial scale ,
which characteristic of the BPI, and the rate cs of vari-
ation in the plasma parameters.

In what follows, we assume that the electron beam
amplifies the natural noise fluctuations rather than the
external signal fed through the entrance plane of the
system. If the interaction region is sufficiently long, the
BPI, being resonant in nature, acts as a natural narrow-
band filter; moreover, the longer the system, the nar-
rower the bandwidth of the filter [16]. Consequently,
we can assume that, to zeroth order in the width of the
amplification band, there is only a single wave in the
system, specifically, the one that has the maximum
gain. This assumption enables us to determine the fre-
quency ω0 = k0vb and the wave vector k0 from the
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known instantaneous plasma density profile. In fact, the
local instability growth rate Re(δk) near its maximum is
a quadratic function of the instantaneous detuning

ν(ζ) = :

The total amplification coefficient q is determined by
the expression

where the integration interval is chosen so that, along
its length ζν, the detuning ν(ζ) is small and the amplifi-
cation coefficient q is large. Such a region always exist
in the initial portion of a sufficiently long system, in
which the microwave ponderomotive force is so weak
that the plasma is practically homogeneous (however,
as will be shown below, the plasma density in this por-
tion differs from that in the absence of the microwave
ponderomotive force).

We choose the value k0 so that the amplification
coefficient is maximum for a given dependence k(ζ). It
is easy to see that the maximum is reached at

The calculations presented below were carried out pre-
cisely for this choice of the k0 value.

Equations (12) should be supplemented with bound-
ary conditions. We assume that the beam velocity and
beam density at the entrance to the system (ζ = 0) are
constant and specify the initial field amplitude and
phase as

(13)

These conditions are sufficient to determine the field ε
at any point of the system, provided that the longitudi-
nal plasma density profile and, accordingly, the depen-
dence k(ζ) are known.

In order for the set of Eqs. (12) and (13) to be closed,
it is necessary to (i) determine the dependence of the
wave vector k of the excited wave on the local plasma
density np and (ii) derive dynamic equations describing
how the plasma density changes under the action of the
microwave ponderomotive force of the wave field. The
dependence k(np) is determined by solving the disper-
sion relation D(ω, k, ωp) = 0 in which the field frequency
ω is constant and the electron plasma frequency ωp

depends on the plasma density np integrated over the
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plasma cross section. In order to determine this depen-
dence, we rewrite the dispersion relation in a form anal-
ogous to that used in [17]:

where the angular brackets indicate integration over the

cross section of the structure. In the case at hand,  is
a linear operator with which Maxwell’s equations for
longitudinal electric field (11) of constant amplitude

are written as  = 0. In the operator  so defined,
the plasma density contributes additively to the dielec-

tric function, ε(ω) = 1 – /ω2; therefore, the plasma
density enters the function D through the quantity
〈G(r), np(r), G(r)〉  and the dispersion relation can be
rewritten in the form

(14)

where the upper bar stands for the normalized averag-
ing over the plasma cross section, 

We represent the wave vector and plasma density as
k(ζ) = k(0) + ∆k(ζ) and np = n0(r) + δnp(r, ζ, τ), where k(0)

is the solution to Eq. (14) with  = n0. Using the
smallness of the plasma density perturbations, we
expand the left-hand side of the dispersion relation in
powers of the small parameter δnp/np ! 1. Taking into
account the relationship 

we arrive at the following final relationship between the
perturbations of the wave vector and plasma density:

With the representation k0 =  chosen

above, the term [k0 – k(ζ)]  takes the form
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where we have introduced the function

Now, we can write Eqs. (12) in the final form:

(15)

Further, we average the electron and ion continuity
equations and the equation of motion of the electron
and ion plasma components over the fast oscillations to
obtain the following equation describing the slow
motion of the plasma as a single entity:

(16)

Here, by virtue of inequality (10), we retain only the
terms that are linear in δn. We also neglect the disper-
sion of ion acoustic waves because the characteristic
wavelengths in our problem are either comparable with
the system length L or several times shorter. In other
words, these characteristic spatial scales are too short
for the dispersion of ion acoustic waves to have any sig-
nificant effect. In an amplifier, the time variations in the
amplitude of the electric field of a microwave are asso-
ciated exclusively with plasma motions; consequently,
the second term on the right-hand side is as small as
cs/v ph ! 1 in comparison with the first term and thus
can be omitted. As a result, Eq. (16) reduces to

(17)

where F = – G2(r) |E0(z, t)|2 is the microwave

ponderomotive force.
The steady solutions to Eq. (17) describe the plasma

density redistribution, and the unsteady ones describe
the generation of ion acoustic waves by an external dis-
tributed force (the right-hand side of the equation) and
their propagation under the action of this force. How-
ever, we are interested only in the effect of the plasma
density value on the dispersion properties of an electro-
dynamic structure. But the dispersion properties are
described by the function η, which depends on the
plasma density integrated over the plasma cross sec-
tion. Multiplying Eq. (17) by the function G2 and inte-
grating over the cross section of the waveguide struc-
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ture, we obtain a second-order differential equation
describing the dependence of the function η on the
microwave ponderomotive force. This second-order
equation can be reduced to the following two first-order
equations:

(18)

where u is the dimensionless plasma velocity averaged
over the plasma cross section, 

with v  the dimensional plasma velocity. The dimen-
sionless microwave ponderomotive force Φ is defined

by the expression Φ = . The parameter

(19)

is the main parameter of the problem. With the help of
the above expression for the growth rate δk0 of the BPI,
we can readily see that the parameter Λ0, which satisfies
condition (7) and serves merely to obtain estimates, dif-
fers from the main parameter Λ only in having the
factor that bears witness to the radial plasma density
profile.

Equations (18) should be supplemented with bound-
ary conditions at the entrance (left) boundary of the sys-
tem, ζ = 0, and at its exit (right) boundary, ζ = l = δk0L,
where L is the dimensional length of the system. In
what follows, we use the most general linear boundary
conditions with which Eqs. (18) can be solved on the
closed unit interval 0 ≤ ζ ≤ l in a mathematically correct
way:

(20)

Here, the reflection coefficients of the entrance and exit
ends of the system for an ion acoustic wave are assumed
to be the same and are denoted by γ (–1 < γ < 1). The
signs in boundary conditions (20) are chosen so that the
anti-Hermitian part of the operator in differential equa-
tion (18) with these boundary conditions is negative.
Otherwise, the operator would describe an unstable
system, in which perturbations grow even in the
absence of external forces.

The closed set of Eqs. (15) and (18) with boundary
conditions (13) and (20) constitutes a self-consistent
mathematical model of the spatiotemporal dynamics of
the magnetized plasma and the microwave field gener-
ated in it by an electron beam.
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4. STEADY SOLUTIONS 
AND THEIR STABILITY

We begin with a qualitative analysis of the steady
solutions to Eqs. (15) and (18). For Λ = 0, the plasma
density is unperturbed (η = 0) and Eq. (15) describes
the development of the BPI in a homogeneous plasma.
In this case, the growth of the wave amplitude is limited
by the nonlinearity of the motion of beam electrons
[18], and we have max{|ε|} ≡ |εmax |Λ = 0 . 1.47. It is
clear that, for Λ ! 1, the maximum amplitude |εmax(Λ)|
is determined by the same mechanism for the saturation
of the instability.

When the parameter Λ @ 1 is large, the wave ampli-
tude is always small, |ε| ! 1. In fact, the instability
stops growing if the detuning is on the order of unity,
η ~ 1. From Eqs. (18), the steady-state value of η can
be estimated as η ~ Λ|ε|2. Consequently, the maximum
amplitude of the excited wave is small, |εmax| ~ Λ–1/2 ! 1.
These qualitative estimates indicate that, as the param-
eter Λ increases, the physical mechanism for the satu-
ration of the BPI changes: for Λ ! 1, the instability sat-
urates because of the nonlinear nature of the motion of
beam electrons in the wave field and, for Λ @ 1, the sat-
uration mechanism is the nonlinear dispersion of the
eigenmode of a plasma-filled waveguide structure.

Let us consider the steady solutions to Eqs. (15) and
(18) in more detail. The longitudinal plasma density
profile satisfying boundary conditions (20) has the
form

(21)

where |ε0, l| are, respectively, the amplitudes of the
microwave at the left and right boundaries of the sys-
tem.

η ζ( ) Λ ε ζ( ) 2
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2
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Fig. 1. Steady-state longitudinal profiles of the wave ampli-
tude |ε(ζ)| (solid curves) and the plasma density perturba-
tion η(ζ) (dashed curve) calculated for small values of the
parameter Λ.
Using the inequality Λ|ε(ζ)|2 ! 1, which holds over
the entire length ζν of the integration interval, and also
the inequality |εl| @ |ε0 |, we obtain from Eq. (15) and
expression (21) the equations

(22)

Since Eqs. (22) cannot be solved analytically, we
first present the results from solving them numerically
and then, based on the interpretation of the numerical
results, propose approximate formulas describing the
behavior of the solutions at different values of the
parameter Λ.

Figure 1 shows the profiles η(ζ) and |ε(ζ)| calculated
for a comparatively small value Λ ≤ 1 and, for compar-
ison, for Λ = 0 (which corresponds to a homogeneous
plasma). We can see that the effect of the microwave
ponderomotive forces is to increase the maximum wave
amplitude. This effect, which was investigated in [19],
is associated with a prolonged synchronization between
the decelerated beam and the beam-driven wave, whose
phase velocity decreases as its amplitude grows. A
decrease in plasma density, which lowers the wave
phase velocity (at Λ > 0), correlates with the growth of
the wave amplitude and, consequently, with the reduc-
tion in the velocity of the beam electrons. This correla-
tion is ensured by the microwave ponderomotive force,
which expels the plasma from the region of the stronger
microwave field. The value of the parameter Λ deter-
mines the extent to which the changes in the wave
velocity and the velocity of the beam electrons are cor-
related: for Λ ! 1, the deceleration of the beam elec-
trons is faster, whereas, for Λ @ 1, the wave velocity
decreases at a faster rate. Obviously, the synchronism
between the wave and the beam is best maintained at a
certain value Λ = Λopt ~ 1, at which the BPI has the
maximum efficiency.

For Λ @ 1, a rapid decrease in the wave phase veloc-
ity breaks the synchronism and the instability saturates
even when the wave amplitude is small, |ε| ! 1, i.e.,
before the motion of the beam electrons becomes non-
linear. Representative profiles η(ζ) and |ε(ζ)| calculated
numerically for Λ @ 1 are displayed in Fig. 2. In this
case, the wave amplitude |εmax| at which the instability
saturates can be estimated from the condition that the
instability growth rate vanishes when the detuning is
approximately equal to η ≈ –Λ|ε|2 = –1.5:

(23)

The smallness of the wave amplitude at large Λ val-
ues allows us to simplify Eqs. (22). To do this, we lin-
earize the second of Eqs. (12) in small perturbations
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δϕ ~ ε ! 1 of the phases ϕ = ϕ0 + δϕ of the beam elec-
trons and integrate over the initial phases in the first of
these equations. As a result, we obtain

(24)

Equation (24) can be analyzed by using the results
obtained in [20]. In this way, we consider the equation

(25)

If the characteristic scale lf on which the function
f(ζ) varies is large, lf @ 1, then the solution to Eq. (25)
in the adiabatic approximation can be represented as

(26)

where δk is the solution to the characteristic equation

(27)

To within an unessential factor in front of the exponen-
tial function, the adiabatic approximation well
describes the solution to Eq. (25) even for lf ≥ 1, pro-
vided that the real part of the argument of the exponen-
tial function in solution (26) is large and that the func-
tion f(ζ) does not decrease to the value f = –1.5. In the
vicinity of the point at which the function f(ζ) has this
value and, accordingly, at which the two roots of
Eq. (27) merge into one, the adiabatic approximation
fails to hold. For smaller values of f, after the point of
merging of the roots (the turning point) is passed from
f > –1.5 to f < –1.5, the solution is represented as the
sum of two stable (Re(δk) = 0) solutions describing two
stable waves of equal amplitude.

Locally, in a small neighborhood of the turning
point, Eq. (25) can be reduced to the Airy equation
describing the reflection of an electromagnetic wave
from a smoothly inhomogeneous medium (see, e.g.,
[21]). The problem of passage through the turning point
in an optically active medium (in particular, in the
beam–plasma system under consideration) and the
problem of the reflection of a wave in an optically inac-
tive medium are mutually inverse. In the problem of
reflection, the wave incident from the region where f <
–1.5 is exponentially damped in the opaque region, i.e.,
when it penetrates deeper into the medium after passing
through the turning point, and produces a reflected
wave of the same amplitude. In the problem of passage
through the turning point in an optically active medium,
the wave incident from the region where f > –1.5 grows
exponentially when approaching the turning point and,
behind the turning point, it decays into two waves of
equal amplitudes.

If we choose the function f(ζ) to be f(ζ) = Λ(|ε0 |2 –
 |ε(ζ)|2), where ε(ζ) is a solution to Eq. (24), then we can
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see that Eqs. (24) and (25) have the same solution.
Hence, the technique of the above analysis can be
applied to explain the behavior of the solutions to
Eq. (24) that are shown in Fig. 2. In the initial stage
(until f > –1.5), the real part of one of the roots δk of the
characteristic equation is positive and the wave ampli-
tude grows, in which case the function f decreases up to
the value f = –1.5, which corresponds to the turning
point. Behind this point, there is no instability and the
field has the form of the beatings of two stable waves.
Behind the maximum of the total field, the wave ampli-
tude decreases and the system again passes into the
instability region (f > –1.5). However, the initial condi-
tions in the instability region are now different from
those at the beginning of the process. The beam elec-
trons are already bunched; therefore, in this stage, the
wave interacts with a modulated beam. In this case, the
dependence |ε(ζ)| is described by a linear function. That
the field amplitude at the beginning of this stage
decreases stems from the following circumstance:
when a bunch of the beam electrons enters the instabil-
ity region, it occurs in the accelerating phase of the field
and acquires energy from the wave. After passing
through the point at which |ε| = 0, the field phase
changes by π and the modulated beam again excites the
wave. This interpretation of the behavior of the solu-
tions to Eq. (24) is confirmed by the results from parti-
cle-in-cell simulations of the motion of the beam elec-
trons using the general nonlinear equations.

Now, we present estimates that make it possible to
determine the dependence |εmax(Λ)|. For Λ @ 1, we can
use formula (23). For Λ ! 1, the mechanism for the
instability saturation is associated with the trapping of
the beam electrons by the field of the beam-generated
wave. Consequently, near the maximum in the depen-
dence |ε(ζ)|, the beam electrons are so well bunched
with respect to the wave phase that we can considerably

–1

20 4 6 8 10 12 14 16
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1

ζ

|ε|, η

–2

–3

Fig. 2. Steady-state longitudinal profiles of the wave ampli-
tude |ε(ζ)| (solid curve) and the plasma density perturbation
η(ζ) (dashed curve) calculated for Λ = 10.
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simplify the problem by treating the bunch as being
pointlike. In this approximation, Eqs. (22) take the form

(28)

where we have neglected the initial wave amplitude |ε0 |.
Equations (28) have the integral of motion

(29)

which is the energy conservation law. Substituting the
wave amplitude in the form ε = ρeiθ into Eqs. (28) and
(29) yields the equations

(30)

where ψ = ϕ + θ. Equation (30) can also be written as

Choosing the quantity τ = sinψ as an independent vari-
able, we obtain

(31)

The dependence on the parameter Λ can be eliminated
from Eq. (31) by making the replacement ρ =
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Fig. 3. Profiles of the instability saturation amplitude
|εmax(Λ)| calculated for Λ ! 1 by formula (32) (curve 1) and
for Λ @ 1 by formula (23) without (curve 2a) and with
(curve 2b) allowance for an increase in the wave amplitude
behind the turning point. Profile (3) was obtained by solving
Eqs. (22) numerically.
y/  and τ = x/ . This indicates that the
dependence of the maximum wave amplitude on the
parameter Λ is determined by the formula

(32)

Figure 3 depicts the functions |εmax(Λ)| calculated by
solving Eqs. (22) numerically and obtained from
approximate formulas (23) and (32). Formula (23)
somewhat underestimates the value of |εmax(Λ)| because
it does not account for the aforementioned increase in
the wave amplitude behind the turning point. The
dependence |εmax(Λ)| obtained with allowance for this
effect is shown by curve 2b in Fig. 3. Formula (32)
overestimates the maximum wave amplitude because it
was derived under the assumption that the bunch of
beam electrons is pointlike.

Let us summarize the results obtained from studying
the question as to how the steady-state regimes of the
BPI in a plasma-filled slow-wave structure change with
increasing plasma density and/or beam current (param-
eter Λ). For small values of this parameter (Λ ! 1), the
ponderomotive effects can be neglected. For somewhat
larger values (Λ < 1), the wave amplitude at which the
instability saturates is governed by the simultaneous
effect of two nonlinear mechanisms: (i) the trapping of
the beam electrons by the field of the excited wave and
(ii) the nonlinearity of the plasma. The effect of the
plasma nonlinearity produced by the microwave pon-
deromotive force is a reduction in the plasma density
and, as a consequence, a decrease in the wave phase
velocity. Because of the synchronous decrease in the
electron beam velocity and in the phase velocity of a
microwave, the bounce period of the trapped beam
electrons is longer than that in a homogeneous plasma
and the microwave field is stronger. Starting from Λ ≈ 1,
the phase velocity of a microwave differs substantially
from the beam velocity even in the bunching stage. The
positive effect of the decrease in the phase velocity of a
microwave on the trapped beam electrons is partially
reduced by a decrease in the efficiency with which the
wave traps the beam electrons and an increase in the
energy spread of the electrons in the bunch. As a result,
at a certain Λ value, the saturation amplitude reaches its
maximum and then decreases. For Λ @ 1, the plasma
density is essentially nonuniform even in the linear
stage of the amplification process; in this case, the max-
imum amplitude of the microwave is determined exclu-
sively by the plasma nonlinearity (the departure of the
wave from resonance with the beam) and is so small
that the wave ceases to trap the beam electrons.

The problem of the stability of steady solutions was
investigated in [22]. Here, we briefly outline the results
obtained in that paper. The onset of a regime in which
the output signal from the system under consideration
(an amplifier with a plasma-filled waveguide structure)
is self-modulated is due to the generation of an ion
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acoustic wave by the microwave ponderomotive force.
The ion acoustic wave propagates in the direction oppo-
site to the propagation direction of the beam, thereby
giving rise to distributed feedback and changing the
system into a generator of low-frequency waves. The
frequency Ω at which self-oscillations are generated
satisfies the equation

(33)

provided that the parameter Λ is larger than its critical
value

(34)

where α =  is the dimensionless growth rate of
the BPI in a homogeneous plasma.

According to formula (34), which is valid for
|ε0 |exp(αl) ≤ 1 and αl @ 1, the critical value of the
parameter Λ decreases with increasing system length l
and (as expected) should become minimum in the range
|ε0|exp(αl) ≥ 1, in which this formula fails to hold. The
exact minimum critical value Λc was obtained by inves-
tigating the stability of the steady solutions to Eqs. (15)
and (18) with boundary conditions (13) and (20) by
numerical methods. The parameters of the problem—
the length of the interaction region, the initial wave
amplitude, and the reflection coefficient of an ion
acoustic wave from the ends of the system—were cho-
sen to be close to those in the experiments described in
Section 5. The solutions obtained numerically showed
that the minimum critical value of the parameter Λ only
slightly depends on the reflection coefficient γ and is
equal to Λc = 0.6. Accordingly, the steady solutions that
have been examined above in the case Λ @ 1 are unsta-
ble and, therefore, cannot be observed experimentally.
However, some of the properties of these solutions,
e.g., the saturation amplitude given by approximate for-
mula (23), determine the parameters of the unsteady
interaction regimes.

5. THEORETICAL AND EXPERIMENTAL STUDY 
OF THE SELF-MODULATION REGIME

OF THE BPI

The self-consistent dynamics of the plasma and of
the microwave fields generated in it by an electron
beam was investigated in experiments with a magne-
tized plasma waveguide. The experimental device in
the form of a 12-cm-diameter glass tube with length
L = 76 cm was placed in a uniform guiding magnetic
field with a strength of 1.5 kG. The tube was filled with
a gas (Ar, He) at a controlled pressure. The parameters
of an electron beam injected into a neutral gas were as
follows: the beam current was 50 mA, the energy of the
beam electrons was 1 keV, and the beam radius was
1 cm. The plasma in the system was produced by
impact ionization of a neutral gas by beam electrons
and, in a sufficiently strong microwave field, by con-
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ventional ionization processes occurring in a BPD. The
plasma density and the amplitude of the microwave
field generated by the beam were measured by Lang-
muir probes and receiving antennas, installed 15 cm
from the tube ends. The signals from the probes were
digitized (with a time resolution of 0.1 µs) and stored in
a computer for further processing. The only parameter
that was varied in the experiments described below was
the neutral gas pressure (and, accordingly, the density
of the produced plasma), while the beam parameters
were not changed.

Before proceeding to a description of the experi-
mental data and comparing them with the theoretical
results, let us make the following remarks. A descrip-
tion of the behavior of the solutions to Eqs. (15) and
(18) with boundary conditions (13) and (20) in different
ranges of the parameters Λ, l, ε0, and γ is a laborious
and complicated task. That is why we present only the
results that were obtained for the parameter values cor-
responding to the experimental conditions under dis-
cussion. Theoretical investigation of the BPI in
unsteady regimes (Λ > Λc) was carried out mainly by
numerical methods, and, when possible, analytic esti-
mates were obtained for certain parameter ranges. The
guiding magnetic field in the experiments was strong
enough for the motion of plasma electrons to be treated
as one-dimensional over the entire range of gas pres-
sures. Since the main processes in experiments with
each of the two gas species were observed to be quali-
tatively the same, we will describe only the results of
experiments with argon.

Numerical calculations of the dispersion properties
of the experimental plasma waveguide made it possible
to determine the resonant frequency f, the dimension-
less length δkL, and the parameter δk/k0 as functions of
the plasma density. The calculated results are illustrated
in Figs. 4a–4c.

Using the plots shown in Figs. 4a–4c, the results of
theoretical investigations carried out for steady-state
regimes, and the results from numerical simulations of
unsteady regimes, we determined how the mean oscil-

lation energy (0) of the plasma electrons at the axis
of the system; the parameter Λ defined by formula (19);
and its critical value Λc , at which the steady-state
regime becomes unstable, depend on the plasma den-
sity. The corresponding plots are presented in Fig. 4d,
in which the dashed line indicates the mean oscillation
energy of the plasma electrons above which they are
capable of ionizing argon. In calculations, we varied the
plasma electron temperature from 3 eV (which corre-
sponds to the absence of a BPD) to 10 eV (which cor-
responds to the most highly developed stage of the dis-
charge).

It follows from Fig. 4a that the threshold plasma
density for the onset of the BPI is 0.8 × 109 cm–3. How-
ever, the amplification coefficient is larger than unity
only when the dimensionless length of the system δkL

W̃e
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capable of ionizing argon.
W̃e
is sufficiently large, δkL ≥ 3. According to Fig. 4b, this
condition is satisfied for np ≥ 1.1 × 109 cm–3. At such a
plasma density, the calculated frequency of the excited
synchronous wave is 60 MHz. In experiments, micro-
wave signals above the fluctuation level were observed
to arise at a frequency of 56 MHz in the pressure range
p ≥ 1.1 × 10–5 torr. The pressure of a plasma with the
density np = 1.1 × 109 cm–3 can be estimated from the
condition that the number of ions produced by the beam
in the entire chamber volume is equal to the number of
ions escaping from the chamber through its ends:

(35)

where N0 is the neutral gas density and σb is the rate of
ionization of the molecules of a neutral gas by the beam
electrons. The rate of escape of the ions in the longitu-
dinal direction is equal to the ion acoustic speed cs .
According to formula (35), the pressure is estimated to
be 2.0 × 10–5 torr; this value may be considered to agree
fairly well with the experimentally measured pressure,
especially if we take into account the fact that formula
(35) is only approximate.

Before proceeding to an analysis of how the nature
of the BPI changes as the neutral gas pressure is

IbN0σb/eSb npcs/L,=
increased, we determine the range of plasma densities
at which the instability can occur.

The maximum oscillation energy  of the
plasma electrons in the wave field at the axis of the
structure is described by the expression

(36)

The BPI may develop in the system when this energy is
higher than the ionization energy of argon, Wi ≈ 16 eV.

The corresponding value of the mean energy, (0) =
8 eV, is shown by the dashed line in Fig. 4d.

At plasma densities close to 1.1 × 109 cm–3, the
device operates in the linear amplification regime in
which the microwave amplitude near the exit end is
small. At such plasma densities, the critical value Λc

given by formula (34) is large and the condition Λ > Λc

for the onset of the low-frequency instability fails to
hold. The energy of oscillations of the plasma electrons
in the wave field is insufficient for the onset of the BPI.

As the pressure increases, the quantity Λ changes
insignificantly. The logarithm of the gain increases in
proportion to ~δkL (Fig. 4b), which leads to an abrupt

W̃max

W̃max 2W̃e 2eU
δk
k0
------ 

  4

ε 2
.= =

W̃e
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reduction in the threshold value Λc and an increase in

. At a plasma density of 1.67 × 109 cm–3 (corre-
sponding to a pressure of 3.0 × 10–5 torr), the steady
operating mode becomes unstable (Λ = Λc). At a

slightly higher pressure (3.2 × 10–5 torr), (0)
becomes equal to the threshold value. This scenario
was observed experimentally; the corresponding pres-
sures were found to be 1.65 × 10–5 and 1.7 × 10–5 torr,
respectively.

As the steady operating mode of the device becomes
unstable, microwave ponderomotive forces give rise to
a low-frequency instability; as a result, the amplitude of
the wave amplified by the beam becomes deeply (up to
100%) modulated at the exit from the system. That is
why the mean and pulsed powers of a microwave signal
may differ substantially from one another. Let us
employ the theory developed in Sections 2–4 to esti-
mate the mean square amplitude of the signal.

The onset and growth of the plasma density pertur-
bations are described by Eqs. (18), an equivalent form
of which is

(37)

Let the initial profile |ε(ζ)| of the amplitude of the wave
generated by the beam in an originally homogeneous
plasma be steady state. The maximum amplitude |ε|max
occurs in the region ∆ζ ~ 1. For Λ @ 1, the microwave
ponderomotive force expels the plasma from this region
so rapidly that the plasma density perturbation can be
regarded as being immobile on the time scale on which
it grows. In this case, the second term on the left-hand
side of Eq. (37) is much smaller than the first term,

(38)

With allowance for the fact that the instability saturates
when |η| ~ 1, Eq. (37) and inequality (38) yield the fol-
lowing estimate for the characteristic time scale ∆τg on
which the plasma density perturbation grows:

(39)

Hence, the BPI stops growing time ∆τg after its onset;
in other words, ∆τg is the duration of the generated
microwave pulse. The interval ∆τp between the gener-
ated pulses is determined by the time during which the
plasma density perturbation escape from the interaction
region:

(40)

where l0 is the dimensionless distance from the
entrance end of the structure to the point at which the
wave amplitude is maximum; in order of magnitude, it
is equal to the dimensionless length l of the system. For
the experimental conditions in question, we have l ≈ 10.

W̃e

W̃e
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The process described above is characterized by the
dimensionless square pulse (maximum) amplitude

 and the mean square amplitude

(41)

The higher the pressure, the more complicated the
character of the processes that occur throughout the
BPD. In fact, as the mean amplitude of the microwave
field continues to grow, the parameter Λc decreases and
the power of the plasma source (the BPD) increases,
raising the density, temperature, and radius of the
plasma. As a consequence of the increase in the plasma
temperature and radius, the parameter Λ decreases.
Numerical simulations show that, because of the syn-
chronous decrease in the parameter Λ and its critical
value Λc (Λ – Λc ≈ 4, as seen in Fig. 4d), the extent to
which the regime of the amplification of a microwave is
nonsteady should be relatively low, in which case the

mean square amplitude  at the exit from the sys-
tem is only slightly smaller than that in the steady-state
amplification regime.

An increase in the amplification coefficient leads to
a saturation of the BPI within the system; at a density
of 2.4 × 109 cm–3 (corresponding to a pressure of 4.3 ×
10–5 torr), the mean square amplitude of the microwave

field reaches its maximum value  ≈ 4.5, which
indicates that the maximum power of the BPD (i.e. of
the source of the plasma) is also achieved. Note that the
numerically calculated mean square amplitude of the
microwave field is larger than that obtained for a homo-

geneous plasma (  ≈ 2.3) but is smaller than that

obtained in Section 4 for a steady-state regime (  ≈
6) with allowance for the effect of prolonged synchro-
nization due to the microwave ponderomotive force.

Note that the exact dependences of the temperature
and radius of the plasma produced during the BPD on
its density can only be determined by solving a compli-
cated, two-dimensional, time-dependent, self-consis-
tent problem. In order to derive qualitative depen-
dences, we used the experimental data and the esti-
mates obtained from analytical and numerical
calculations. These dependences show that the effective
radius of the plasma and its temperature at the very
beginning of the BPD are about 1 cm and 3 eV, respec-
tively, and, as the instability evolves into its most highly
developed stage, they increase to 2 cm and 10 eV.

Numerical simulations show that, after the micro-
wave field amplitude has reached its maximum value,
the parameter Λc changes only slightly as the plasma
density increases. In this stage, an important role is
played by the behavior of the parameter δk/k (Fig. 4c).
Expression (36) implies that, as this parameter
decreases monotonically with increasing pressure
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2 ε max
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Fig. 5. Spectral amplitude S( f ) of plasma density oscillations at a pressure of 1.65 × 10–5 torr before the onset of a BPD.
(even at a constant mean square amplitude ), the
mean energy of the electron oscillations becomes
lower; as a result, both the temperature and the radius
of the plasma produced decrease.

In turn, this effect acts to increase the parameter Λ
and, by virtue of formula (41), to reduce the mean

square amplitude . As a result, the mean energy

 decreases even more rapidly. At a plasma density of
about npc ≈ 5.8 × 109 cm–3 (at a pressure of 10.5 ×
10−5 torr), the energy (0) decreases to the threshold
value, at which the BPD comes to a halt and the plasma
density falls to a level determined by the impact ioniza-
tion of a neutral gas by beam electrons. As the pressure
is further raised, the parameter Λ gradually increases,
enhancing the effects of unsteady processes, and the

energy (0) decreases. Hence, at low and high pres-
sures, a BPD does not occur in the system, but the BPI
in these two cases is radically different in nature: at a
low pressure, the instability appears as the generation
of a monochromatic signal, whereas, at a high pressure,
the effect is the generation of a signal with broad spec-
trum due to the strong low-frequency self-modulation
of the excited microwave.

Note that the device can operate in the relaxation
mode, whose physical essence can be outlined as fol-

ε mean
2

ε mean
2

W̃e

W̃e

W̃e
lows. Let a plasma with a density lower than npc be cre-
ated by the impact ionization of a gas at a certain pres-
sure by beam electrons. If the plasma density during the
BPD increases to np > npc, then, in accordance with the
above analysis, the discharge comes to an end and the
plasma returns to its former density np < npc. Then the
process repeats itself. Presumably, it is this effect that
explains the experimentally observed regular variations
in the brightness of the plasma column at a pressure
close to the maximum pressure at which the BPD still
exists. However, such a suggestion requires more
detailed theoretical and experimental justification.

The above-described way in which the BPI changes
its nature as the pressure of the neutral gas increases
was inferred from numerical and analytical calculations
based on the mathematical model developed here. The
experimental results that will be described below cor-
roborate the correctness of the model both qualitatively
and quantitatively.

At a low pressure of the neutral gas, the density of
the plasma produced is low and the BPD cannot occur.
The plasma density perturbations are small; at pres-
sures close to the threshold for the onset of a BPD, they
are characterized by a wide noise spectrum, an example
of which is presented in Fig. 5.

A BPD develops at pressures higher than the critical
pressure (1.7 × 10–5 torr). The onset of the discharge is
PLASMA PHYSICS REPORTS      Vol. 29      No. 4      2003
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Fig. 6. Plasma density variations δn(t) during the BPD.
identified by an abrupt increase in the intensities of sig-
nals from the probes; visually, the plasma column
becomes far more brighter and wider. In this stage, the
dynamics of the plasma density is characterized by two
very different time scales (Fig. 6). The period Tlow of the
low-frequency self-modulation of the density at a char-
acteristic frequency of about 6 kHz is well described by
the theoretical estimate Tlow ~ L/cs.

Against the background of slow variations with the
characteristic period Tlow, short (on a characteristic time
scale of several microseconds) sharp peaks in the
plasma density are observed, each of which is accom-
panied by a peak in the amplitude of the generated
wave. The upper plot in Fig. 7 presents the time evolu-
tions of the plasma density and wave amplitude in indi-
vidual peaks (on an enlarged scale). The lower plot
demonstrates the cross-correlation function of the vari-
ations in the plasma density and wave amplitude in the
peaks. The plots shown in Fig. 7 were obtained by
numerically filtering out the low-frequency compo-
nents of the signals.

The time evolutions given in Fig. 7 are typical of a
BPD: the plasma density increases under the action of
the wave field and decreases after the field vanishes.
The maximum of the cross-correlation function is pos-
itive and is displaced to the right, indicating that the
LASMA PHYSICS REPORTS      Vol. 29      No. 4      2003
maximum in the density is reached later than that in the
wave amplitude.

Although fast synchronous variations (peaks) in the
plasma density and wave amplitude cannot be
described by the theory developed here, the above-
mentioned experimental data provide evidence that, in
the pressure range under consideration, the main
plasma source is precisely the BPD. This conclusion is
also supported by the calculated results shown in
Fig. 4d.

Over the entire pressure range in which a BPD can
exist, slow variations in the plasma density are charac-
terized by a line spectrum (representative examples of
which are shown in Fig. 8). Note the strong qualitative
difference between the spectra of the plasma density
oscillations before (Fig. 5) and during (Fig. 8) the BPD.

In the experiments under discussion, all attempts to
detect the presence of ion acoustic waves propagating
in the direction opposite to the beam propagation direc-
tion by measuring the time delay between the signals
from spatially separated probes failed regardless of the
gas pressure in the discharge. A possible reason for this
is that the coefficient of reflection of the ion acoustic
waves from the ends of the plasma column may be
fairly large. In fact, numerical modeling showed that,
even when the reflection coefficient is about 0.4–0.5,
the standing waves that exhibit no time delay are
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excited in the system. This result is confirmed by the
experimentally measured phase shifts between the
dominant spectral components of the signals from the
first and second probes (Fig. 8). The even harmonics of
the fundamental frequency are seen to have the same
phases, whereas the odd harmonics are shifted by 180°.
This dependence of the phase difference on the har-
monic number is typical of the eigenmodes of a cavity
with a symmetric fundamental eigenmode.

The above estimates show that, at pressures above a
certain critical pressure, the discharge breaks and the
plasma is produced exclusively by the impact ioniza-
tion of the gas by beam electrons. The disruption of the
discharge was experimentally observed to occur at a
pressure of 6.0 × 10–5 torr. Representative signals from
the probes and a representative spectrum of the plasma
density oscillations at pressures higher than 6.0 ×
10−5 torr are given in Figs. 9 and 10. Note that, in the
absence of a BPD, the spectrum of the plasma density
oscillations at a low pressure of the neutral gas (Fig. 5)
are similar to that at a high pressure (Fig. 10).

0

1520 1530 1540

0.5

δn, δE

‡

b

t, µs

0

–4 4 8

0.5

〈δn(t + tc)δE(t)〉

tc, µs
0–8

1.0

Fig. 7. Waveforms of (a) the plasma density variations δn
and (b) the wave amplitude δE in individual peaks (on the
top) and the cross-correlation function 〈δn(t + tc)δE(t)〉  of
the plasma density variations and wave amplitude in the
peaks (on the bottom).
In the absence of a BPD, the amplitude of the low-
frequency plasma density oscillations is larger than that
during the discharge and the short peaks in the density
are lower (cf. Fig. 6 and Fig. 9). One can also see a pro-
nounced time delay (shift) between signals from the
probes; the sign of the shift corresponds to a density
wave propagating in the direction opposite to that of the
beam. Note that the weaker the magnetic field, the more
pronounced the time delay (see the lower frame of
Fig. 9). The structure of the peaks also changes: an
abrupt increase in the wave amplitude is now accompa-
nied by a decrease in the plasma density (Fig. 11). This
effect, which is characteristic of the microwave ponder-
omotive force, becomes more pronounced as the gas
pressure increases. From Fig. 11, which presents the
waveforms obtained experimentally at a pressure of
9.5 × 10−5 torr, we can see that each peak in the field
amplitude is accompanied by a dip in the plasma den-
sity. The cross-correlation function obtained by filter-
ing out the low-frequency component of the oscilla-
tions of the plasma density and field amplitude (see
Fig. 12) differs substantially from that in Fig. 7. In the
absence of a BPD, the oscillations of the plasma density
and field amplitude are in antiphase and the cross-cor-
relation function has a negative extremum at zero time.

Numerical simulations carried out on the basis of
the above model demonstrate that the noise component
in the spectrum of the density oscillations becomes
more intense as the difference Λ – Λc increases. How-
ever, in contrast to the spectra characteristic of regimes
without a BPD, the noise component in regimes with a
developed discharge is suppressed, although the differ-
ence Λ – Λc is fairly large and increases with pressure.
Presumably, this circumstance stems from the fact that,
within the same spatial region, the discharge acts to
increase the plasma density while the microwave pon-
deromotive force acts to decrease it. Because of the
combined action of the discharge and the microwave
ponderomotive force, the latter becomes less efficient,
or, in other words, the effective value of the parameter
Λ decreases. This explanation is indirectly confirmed
by the fact that, in experiments with helium (whose
threshold ionization energy is one and one-half times
that of argon), the spectra measured in all regimes,
including regimes with a developed BPD, are analo-
gous to those shown in Figs. 5 and 10.

The dispersion parameters and field structures in a
magnetized plasma waveguide and the values of the
mean square amplitude of the wave calculated for dif-
ferent values of the parameter Λ made it possible to
obtain the theoretical dependence of the mean power
Pmean of the wave generated by the beam on the neutral
gas pressure. Figure 13 illustrates the calculated depen-
dence of the power on the neutral gas pressure and the
dependences measured in experiments with helium and
argon. We offer the following comments regarding the
curves shown in this figure. For both gases, the experi-
mental dependence of the power on pressure has a pro-
PLASMA PHYSICS REPORTS      Vol. 29      No. 4      2003
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Fig. 8. Low-frequency component of the spectra of the density oscillations. The upper and lower plots present the spectrum of the
signal from the first and second probes, respectively.
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Fig. 10. Spectrum of the plasma density oscillations at a pressure of 6.0 × 10–5 torr.
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in the absence of a BPD.

nounced second maximum. Based on the above spec-
tral and correlation analyses of the variations in the
plasma density and microwave field amplitude, we can
PLASMA PHYSICS REPORTS      Vol. 29      No. 4      2003
conclude that this second maximum is reached at the
time at which the discharge terminates. For argon, the
density and power values at the second maximum cor-
respond to the second point of intersection of the curve

(0) with the dashed line indicating the threshold
power above which the BPD can occur (Fig. 4d). In
Fig. 13, the theoretical and experimental values
obtained for argon are normalized so that this intersec-
tion point has the coordinates (1.0, 1.0). The experi-
mental values obtained for helium are normalized so
that the second maximum coincides with the point of
intersection of the theoretical curve with the corre-
sponding threshold power level. Hence, the horizontal
and vertical axes in Fig. 13 are, respectively, the nor-
malized pressure P∗  and normalized density W∗ . Each
of the two experimental curves is matched to the theo-
retical curve only at one point denoted by large circles
a and b. Since the theoretical curve was calculated for a
regime without a BPD, it should be compared with the
experimental curves only in the regions that lie below
the corresponding threshold power.

According to Fig. 13, the theoretically predicted
decrease in the mean output power of a microwave due
to the dynamic nature of the amplification regime [see
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Fig. 13. Pressure dependence of the power of the beam-generated microwaves, calculated theoretically (curve 1) and measured in
experiments with He (curve 2) and Ar (curve 3). The dashed lines indicate the threshold powers above which the BPD can occur in
the gases indicated. The large circles a and b denote the points at which the experimental curves are matched to the theoretical curve.
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formula (41)] is confirmed by experiment. Note also
that the mean output power decreases sharply as the
plasma density increases; this is attributed to the fact
that the BPI in a magnetized plasma waveguide is
highly sensitive to the microwave ponderomotive
forces (in Fig. 4d, the parameter Λ is large). Figure 13
demonstrates that, in view of the simplifying assump-
tions that were made in constructing the theory and also
of the minimum number of adjustable parameters used
to fit the experimental data, the agreement of the calcu-
lated curve with the measured ones may be regarded as
satisfactory.

6. CONCLUSION

The above theoretical estimates show that the effect
of the plasma nonlinearity is significant even when the
beam current is low and, accordingly, the amplitude of
the oscillations generated by the beam is small. This is
attributed the resonant nature of the interaction between
the beam and the wave. In a number of problems con-
cerning the propagation of a wave in a nonlinear
medium, the nonlinearity parameter is the ratio of the
wave-induced variations in the parameters of the
medium to their unperturbed values. In contrast, in the
theory developed here, the nonlinearity parameter is the
ratio of the variations in the parameters of the medium
to the permissible variations that do not violate the syn-
chronization between the wave and the beam electrons.
The parameter Λ is just such a nonlinearity parameter.
Of course, the specific form of the nonlinearity param-
eter depends on the dominant mechanism for nonlin-
earity (microwave pressure, microwave breakdown,
etc.), but its physical meaning is always the same.

Here, we have investigated only one mechanism for
nonlinearity, specifically, that associated with the
microwave ponderomotive force. This mechanism has
been chosen because it can be analyzed in a relatively
simple way, by making the number of parameters of the
problem as small as possible. In the problem in which
the main mechanism responsible for nonlinearity is,
e.g., microwave breakdown of a neutral gas, the number
of parameters is larger because it is necessary to take
into account such factors as the threshold ionization
energy, the energy dependence of the ionization cross
section, and the complicated interrelationship between
the transverse distributions of the plasma density and
plasma-producing microwave fields (see the above
brief discussion). These factors substantially compli-
cate the task of providing a self-consistent description
of the BPI under BPD conditions. It is, however, very
important to have such a description, because the
design of plasma-filled microwave devices in which the
plasma is produced exclusively by the beam turns out to
be considerably simpler. This problem will be dis-
cussed in a future paper.

In the experiments under discussion, a beam was
injected into a neutral gas whose pressure was varied
over a wide range. It was only over small portions at the
ends of this range that the BPD did not occur. Conse-
quently, these are the only portions over which the
microwave ponderomotive force can be regarded as a
single mechanism for the plasma nonlinearity. Over a
wide pressure range, both of the mechanisms—the
microwave ponderomotive force and microwave dis-
charge—operate simultaneously. Nevertheless, the
effects predicted theoretically, namely, a strong low-
frequency self-modulation of the plasma density and
wave amplitude, the generation of large-amplitude ion
acoustic waves, and a decrease in the power of the
excited wave with increasing gas density, were
observed experimentally over the entire pressure range.
This allows us to suggest that the microwave pondero-
motive force is the dominant mechanism for the onset
of low-frequency plasma density oscillations even
under the BPD conditions.

As for the much faster variations in the plasma den-
sity and the amplitude of the excited waves (the peaks),
their nature is governed by processes other than those
described above. A description of these processes is
beyond the scope of the theory proposed here. One pos-
sible mechanism for the onset of the peaks is associated
with the radial plasma motion accompanied by the per-
turbations of the guiding longitudinal magnetic field.
The perturbations may be driven by the microwave
ponderomotive force or the rapid increase in the plasma
density during the onset of a microwave discharge. The
characteristic time scale on which the magnetic field
perturbations are generated is determined by the mag-
netosonic speed, which is significantly higher than the
speed of the ion acoustic waves considered in our study.
Thus, in a system with the above parameters, the time
the magnetosonic wave takes to cross the plasma is sev-
eral tenths of a microsecond, while the characteristic
time scale on which the peaks develop is about a micro-
second. However, this coincidence between the charac-
teristic time scales is still insufficient to precisely
attribute the onset of the peaks to the transverse plasma
motion.

Finally, we have determined and investigated the
mechanism for the onset of a low-frequency self-mod-
ulation of the plasma density and the amplitude of a
beam-generated wave. The results of our study will
help to develop methods for suppressing the associated
beam–plasma instability. This problem is extremely
important for advancing plasma microwave electronics.
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Abstract—The stability of periodic flows and helicon waves against large-scale perturbations is investigated
analytically in resistive electron magnetohydrodynamics by the method of two-scale expansions. It is shown
that long-wavelength perturbations of a Kolmogorov-type flow are destabilized by the effect of negative resis-
tivity. The destabilization of long-wavelength perturbations of a Beltrami-type helical flow and helicon waves
is related to the microhelicity of the primary flow (wave). The instability of long-wavelength perturbations of
an anisotropic helical flow is found to result from both the effect of negative resistivity and the effect associated
with the microhelical nature of the flow. The criteria for the onset of the corresponding instabilities are derived.
Numerical simulations are carried out based on nonlinear electron magnetohydrodynamic equations with initial
conditions corresponding to the analytic formulation of the problem. The results of simulations on the whole
confirm analytical results in the parameter range in which the latter are applicable and, in addition, extend
the stability analysis to the parameter ranges that are beyond the scope of analytic approximations. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that periodic flows in a viscous fluid
can be unstable against long-wavelength perturbations.
The simplest example is a two-dimensional Kolmog-
orov flow in a viscous incompressible fluid [1–5]. It
was shown that, at a certain critical velocity, the Kol-
mogorov flow becomes unstable against long-wave-
length perturbations. The instability mechanism is the
effect of the negative viscosity on long-wavelength per-
turbations due to a small-scale periodic flow. A similar
instability occurs for Rossby waves (a sort of wave
motion widely encountered in the atmosphere and the
oceans) and for drift waves in a magnetized plasma [6].
The resemblance is so close that even the instability cri-
teria for a sinusoidal drift wave (a Rossby wave) and for
a sinusoidal Kolmogorov flow, both of which are sus-
tained by a steady external source, are the same: the

instability occurs under the condition Re > , where
Re is the Reynolds number of a periodic flow (wave).

Another example of an unstable hydrodynamic flow
is a three-dimensional Beltrami helical flow [4, 7, 8]. It
was shown that the dispersion relation for long-wave-
length perturbations of a Beltrami flow is similar to that
for the perturbations of a Kolmogorov flow. Being
unstable, the periodic flows and waves mentioned
above can give rise to large-scale coherent structures,
which attract interest because of their possible roles in
various physical phenomena, such as enhanced trans-
port (in comparison with the molecular transport) in
fluids, anomalous transport of particles and energy in a
plasma, and self-organization processes. A weakly non-

2
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linear stage of the evolution of the instability-driven
large-scale perturbations of a Kolmogorov flow was
studied both analytically and by numerical modeling in
[9, 10]. The same investigations for drift waves were
carried out in [6]. In particular, these three papers dem-
onstrated that dissipative solitons and zonal dissipative
structures can in fact form.

In the present paper, the stability of periodic flows
and helicon waves (helicons) against long-wavelength
perturbations is studied within the framework of dissi-
pative electron magnetohydrodynamics (EMHD). The
EMHD equations describe small-scale (l < c/ωpi) phe-
nomena on time scales 1/ωBe < t < 1/ωBi , where ωpi is
the ion Langmuir frequency and ωBe and ωBi are the
electron and ion gyrofrequencies, respectively. Such
phenomena play important roles in systems with
intense drift electron motion across the magnetic field,
e.g., in Z-pinches, erosive plasma switches, laser-pro-
duced coronas [11], and possibly in tokamaks during
strong electron cyclotron resonance heating [12]. The
EMHD equations are also used to describe an electron–
hole plasma in an uncompensated semiconductor in a
magnetic field [13].

Assuming that a continuously operating external
source (or certain primary instabilities) gives rise to a
periodic flow (a helicon) whose amplitude is main-
tained constant by the source, we investigate the stabil-
ity of the flow (helicon) against large-scale perturba-
tions (secondary instabilities). Following the cited
papers, we analyze the stability of periodic solutions to
the EMHD equations by the method of two-scale
expansions, which is justified provided that the charac-
2003 MAIK “Nauka/Interperiodica”
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teristic spatial scales of the main periodic flow (heli-
con) are small in comparison with the wavelength of
the perturbations.

Also, we present the results of solving the nonlinear
EMHD equations numerically with the initial parame-
ter values corresponding to the instability region
obtained analytically. The numerical solutions, on the
one hand, may serve to justify analytical results and, on
the other, make it possible to draw conclusions about
the stability of the modes in the parameter ranges that
are beyond the scope of analytic approximations.

Our paper is organized as follows. In Section 2, we
introduce the EMHD equations, briefly discuss the
range of their applicability, and describe the method for
solving them numerically. In Section 3, we analyze the
stability of steady-state periodic EMHD flows. We sep-
arately consider three types of flows: a Kolmogorov-
like flow, a Beltrami-type helical flow, and a flow that
will be referred to as an anisotropic helical flow. Also,
for each of the flows, we present the results of numeri-
cal simulations of the corresponding instabilities. In
Section 4, we give a detailed analysis of the stability of
a helicon against large-scale perturbations. Finally, in
Section 5, we summarize the results obtained and make
final remarks.

2. BASIC EMHD EQUATIONS 
AND THE METHOD FOR SOLVING

THEM NUMERICALLY

On the spatial and time scales mentioned in the
introduction, the electrons can be described in the
hydrodynamic approximation, while the ions can be
treated as an immobile background. It is well known
that, when the background plasma is homogeneous
(n0 = const), the plasma perturbations are quasineutral
(i.e., the electron density remains unperturbed), and the
finite electron Larmor radius effects are negligible, the
EMHD equations have the form (see, e.g., [14, 15])

(1)

where A is the vector potential, ∇ ×  A = B, and σ =
e2n0τe/me is the plasma conductivity. In the limiting
case of a plasma with infinite conductivity, Eq. (1)
implies that the curl of the generalized momentum is
frozen in the electron fluid. Taking into account the fact
that, in our problem, the electric current is carried by
the electrons and neglecting the displacement current
(i.e., setting ∇ ×  B = (4π/c)j in Maxwell’s equation),
we obtain

(2)

∂
∂t
----- ∇ meve

e
c
--A– 

 ×

=  ∇ ve ∇ meve
e
c
--A– 

 × 
 ×× e

σ
--- ∇ j× ,+

ve j/en0– c∇ B/4πen0× .–= =
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As a result, in the simplest case described above, the
EMHD equations reduce to the following evolutionary
equation for the magnetic field:

(3)

To simplify further calculations, we rewrite Eq. (3) in
dimensionless form and supplement its right-hand side
with an external source term:

(4)

Here, the spatial variables are normalized to the quan-
tity l = λ/2π ≡ 1/k0, where λ is the wavelength of the pri-
mary periodic flow (helicon); the time is normalized to

the so-called helicon time t0 = (lωpe/c)2, which can
be interpreted as the characteristic inverse helicon fre-
quency; the magnetic field is normalized to the charac-
teristic flow field in the case of a periodic flow or to the
external magnetic field in the case of helicons; de =
c/ωpel is the normalized electron collisionless skin
depth; and ν = 1/ωBeτe . It is worth noting that, in the
case of a periodic flow, the quantity 1/ν ≡ Rem is the
characteristic magnetic Reynolds number, which serves
as a measure of the ratio of the nonlinear term to the
resistive term in Eq. (3). As we have already stated, in
further analysis, the role of the external source term f in
Eq. (4) is to keep the amplitude of the primary periodic
flow (helicon) constant; the explicit form of the source
term in different cases will be discussed below.

For a plasma with infinite conductivity (σ  ∞) in
a constant external magnetic field B0 = B0ez, Eq. (3)
admits solutions describing nontrivial linear waves
called helicons (also known as whistlers). The well-
known dispersion relation for helicons has the form

(5)

where k is the wave vector of the helicon and ω is its
frequency. In Section 4, we discuss helicons in more
detail.

In the next sections, Eq. (4) is used as a basic equa-
tion for analytic investigations of the stability of peri-
odic EMHD flows (helicons) against long-wavelength
perturbations by the method of multiscale expansions.
In order to illustrate the correctness of the analytic
approximations chosen for our analysis and to general-
ize the results obtained theoretically to the parameter
ranges that are beyond the scope of the approximations,
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we also present the results of solving Eq. (4) numeri-
cally. In numerical simulations, Eq. (4), which is
regarded as an evolutionary equation for the function

, (6)

was integrated layer by layer in time with a time step ∆t

by the fourth-order Runge–Kutta method. The right-
hand side of Eq. (4) was approximated using centered
finite-difference operators of second-order accuracy in
space on shifted numerical grids. The magnetic field B,
which is implicitly contained in Eq. (6), was calculated
from the Fourier transform of this equation.

Our simulations were aimed at investigating the sta-
bility of the chosen mode (with the wave vector q) of
long-wavelength perturbations in the presence of a
short-wavelength periodic flow (with the wave vector
k) sustained by an external source. That is why the
boundary conditions were chosen to be periodic in each
of the three coordinate directions in the three-dimen-
sional spatial region Lx × Ly × Lz under consideration.
The sizes Lx, Ly, and Lz were chosen to be equal to an
integral number of wavelengths (usually, one wave-
length) of the mode in question. The grid was uniform
in each of the coordinates, the number of mesh points
being 32 or 64 per wavelength. The total number of the
mesh points of the grid was from thirty-two thousand to
one million, and the total number of time steps was
from one to ten thousand.

The initial conditions for the magnetic field B and
the source term f were chosen to be consistent with the
steady-state flow under study. In addition, the total
magnetic field at the initial time was assumed to be a
superposition of the field B0 of a steady-state flow and
a small long-wavelength solenoidal (i.e., satisfying the
condition — · b = 0 (q · b = 0)) perturbation b with the
amplitude b ≤ 10–4B0.

F B de
2—2B–=

0.1

0.01

0.001

0.0001

0 5000 10000 15000 t/ωB

b/B0

Fig. 1. Time evolution of the amplitudes of the chosen
modes: k (heavy line), q (light line), k + q (dashed line).
The exponential growth of the mode with the amplitude q is
shown by the dotted line.
In each run, the amplitudes of the chosen modes,
namely, k, q, and k ± q, were calculated at each time
step and were stored for further analysis. The represen-
tative time evolutions of the amplitudes are shown in
Fig. 1. When the mode amplitude q was found to
increase exponentially with time, we calculated the
instability growth rate γ from the linear (on a logarith-
mic scale) portion of the corresponding curve. After
performing a series of simulations for different param-
eter values, we could determine how the growth rate so
obtained depends on the parameters of interest to us.

It should be noted that the remaining harmonics of
the magnetic field B that conform to the above periodic
boundary conditions (i.e., the field harmonics such that
the period of the system is exactly equal to an integer
number of their wavelengths) evolve self-consistently
in accordance with nonlinear equation (4). However,
the initial amplitudes of these harmonics are about the
round-off errors in computations (b/B0 ~ 10–16) and usu-
ally increase insignificantly in the course of a run. On
the other hand, in some cases (see Section 3.2), the
growth rate of the chosen mode (that with the wave vec-
tor q) may be lower than the growth rates of the multi-
ple modes. In this case, it becomes more difficult to
progress into the parameter range in which the analytic
approximations are certainly applicable. In these cases,
we restrict ourselves to considering the boundary range
of the parameters.

In other respects, the formulation of the numerical
problem corresponds as closely as possible to that of
the analytical problem, thereby making it possible to
compare numerical and analytical results. Moreover,
since the procedure for integrating Eq. (4) numerically
was developed without making any additional simplify-
ing assumptions, the scope of an analysis of the param-
eter ranges in which long-wavelength modes are unsta-
ble can be extended to the parameter ranges in which
the analytic approximations fail.

3. STABILITY OF STEADY-STATE PERIODIC 
FLOWS

In this Section, we analyze the stability of the three
different types of steady-state electron flows mentioned
in the introduction, namely, a Kolmogorov-type flow, a
Beltrami-type helical flow, and an anisotropic helical
flow. In this section, the magnetic field is assumed to be
normalized to the magnetic field of the flow.

3.1. Kolmogorov-type Flow

The flow, which is similar to the Kolmogorov flow
(see, e.g., [4]),

, (7)B0
xez, vecos ∇ B0×∝ xeysin= =
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is an exact stationary solution to Eq. (4) if the external
source exactly counterbalances the resistive dissipation
of the flow and is described by the term

(8)

As is the case with a Kolmogorov flow in incompress-
ible hydrodynamics, the electron flow under discussion
is two-dimensional: its velocity is directed along the
y-axis and its amplitude depends solely on the x coordi-
nate. In order to consider infinitesimal perturbations of
solution (7), we set

(9)

Then, we linearize Eq. (4) with respect to b and obtain

(10)

We seek solutions to Eq. (10) in two cases: when ν is on
the order of unity (a small magnetic Reynolds number,
Rem . 1) and for ν ! 1 (a large but finite magnetic Rey-
nolds number, Rem @ 1).

3.1.1. The case of a small magnetic reynolds num-
ber. We assume that the perturbations occur on a spatial
scale O(e–1) and a time scale O(e–2), where e ! 1 is a
small parameter. Under this assumption, which is justi-
fied by the results obtained below, Eq. (10) can be
solved by applying the formalism of multiscale expan-
sions; in the case at hand, this is a two-scale expansion
in the fast variable x and the slow variables

(11)

We are interested in the solution that is a periodic func-
tion of x and depends on the slow variables:

(12)

In the new variables, the components of Eq. (10)
have the form

(13)
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(14)

(15)

where  ≡ ∂2/∂Y2 + ∂2/∂Z2. For further analysis, it is
expedient to average Eqs. (13)–(15) over the period of
the fast variable x. Introducing the definition

(16)

we arrive at the equations
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To within terms of the corresponding order in an expan-
sion in the small parameter e, these equations ensure
that Eqs. (13)–(15) have solutions in the class of func-
tions periodic in x. Equation (18) can be further simpli-
fied by using the equalities

(20)

(21)

which are obtained by multiplying the equation — · b = 0
by sinx and cosx, respectively, and by integrating the
resulting equations over the period of the fast variable
x. Substituting Eq. (20) into Eq. (18) reduces the latter
to a form similar to that of Eq. (19):

(22)

A direct averaging of the equation — · b = 0 yields the
following useful equation:

(23)

which will be often employed in further analysis and, in
this section, will allow us to check the consistency of
final averaged equations (19) and (22) with the condi-
tion that the averaged magnetic field of the perturba-
tions is incompressible.

We look for a solution to Eqs. (13)–(15) in the form
of an asymptotic expansion in powers of the small
parameter e:

(24)

We assume that the parameter ν is finite (ν . 1). Also,
in this and subsequent sections, we restrict our analysis
to perturbations occurring on a characteristic spatial
scale larger than the electron collisionless skin depth,

 . 1. Then, to zeroth order in the parameter e, we
obtain

(25)

Solving Eq. (25) yields

(26)

bx xcos〈 〉 e
∂

∂Y
------ by xsin〈 〉– e

∂
∂Z
------ bz xsin〈 〉– 0,=

bx xsin〈 〉 e
∂

∂Y
------ by xcos〈 〉 e

∂
∂Z
------ bz xcos〈 〉+ + 0,=

e
2 ∂
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------ by〈 〉 e

2
de

2—s
2

by〈 〉–( ) e
2ν—s

2
by〈 〉=

+ e
3
de

2 ∂
∂Z
------—s

2
bz xsin〈 〉  – e

2
1 de

2
+( ) ∂2

∂Z
2

--------- bx xcos〈 〉 .

e
∂ by〈 〉

∂Y
------------- e

∂ bz〈 〉
∂Z

-------------+ 0,=

b b 0( )
eb 1( )

e
2b 2( ) ….+ + +=
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2 —s

2

ν
∂2

bx
0( )

∂x
2

-------------- ν
∂2

bz
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∂x
2

-------------- 0,= =
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-------------- x bx
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--------------–
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cos– 0.=
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0( )

, by
0( )

bsy
0( ) 1

ν
---bsx

0( )
x,cos–= =

bz
0( )

bsz
0( )

,=
where  is an arbitrary function of the slow vari-

ables,  = (Y, Z, T). From Eqs. (17), (19), and
(22), it is seen that, among the terms on their right-hand
sides that describe the interaction of a long-wavelength
perturbation with the initial periodic flow, only the
terms in Eq. (17) make a nonzero contribution on the
order of e2. Substituting solution (26) into Eqs. (17),
(19), and (22) yields the equations

(27)

which are seen to justify assumption (11). Also,
Eqs. (20) and (26) imply that nonzero contributions of
the interaction of the perturbation with a periodic flow
to the evolutionary equation for the averaged compo-
nents 〈by〉  and 〈bz〉  of the long-wavelength magnetic
field are on the order of O(e4) and that the correspond-
ing terms reflect the effect of viscosity on these compo-
nents. Equations (27) show that, under certain condi-
tions, the x component of the long-wavelength field
becomes unstable because of the interaction with the

primary flow. Specifically, setting  ~ exp(γt + i(qyY
+ qzZ)) provides the dispersion relation

(28)

where q = . This asymptotic dispersion rela-
tion is qualitatively analogous to the dispersion relation
of the long-wavelength perturbations of a Kolmogorov
flow with a finite Reynolds number [1–3]. According to
Eq. (28), the most unstable perturbations are those with
qy = 0, i.e., perturbations whose wave vector is perpen-
dicular to the propagation direction of the primary flow
(q ⊥  ve) and parallel to the magnetic field produced by
the flow (q || B0 || ez). Such perturbations become unsta-
ble when the magnetic Reynolds number Rem becomes
larger than a certain critical value:

(29)

The instability at hand belongs to a class of instabilities
associated with the effect of negative dissipation. The
instability mechanism is the effect of the negative resis-
tivity due to the interaction of the perturbation with the
primary flow and is described by the second term on the

right-hand side of Eq. (27) for . The physical expla-
nation of the phenomenon is that, as a result of the
interaction, the flow energy cascades toward large
scales (an inverse cascade). The remaining y and z com-

bs
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+
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ponents of the magnetic field of the perturbation are
damped by the plasma resistivity. An analogous effect
was recently revealed in [16], where the spontaneous
amplification of long-wavelength perturbations by
small-scale turbulence was investigated in a 2.5-dimen-
sional collisionless EMHD model. In that paper, it was
shown that the effect of negative resistivity takes place
when the equipartition of energy among the magnetic
field components is absent and the effect is thus gov-
erned by the anisotropy of the small-scale EMHD tur-
bulence.

3.1.2. The case of a large magnetic reynolds num-
ber. Here, we consider small (but finite) values of ν,
ν ! 1. We introduce a new ordering among the slow
variables,

(30)

and solve Eq. (10) by applying the above procedure. As
a result, we arrive at the solution

(31)

where , , and  are functions of the slow
variables only. Averaging Eq. (10) over the period of
the primary flow yields the following evolutionary
equations for these functions:

(32)

Equations (32) imply that, in contrast to the case of a
small magnetic Reynolds number, the x component of
the long-wavelength magnetic field enters only in the
first order in the expansion parameter. The equations

also show that, on the one hand, the functions  and

 remain constant on the time scale 1/ν3 (actually,
they are weakly damped on the time scale 1/ν5 because
of the plasma resistivity) and, on the other hand, the

evolution of the function  is analogous to that of

 in the case of a small magnetic Reynolds number,
with the only difference being that, for large magnetic
Reynolds numbers, the effect of collisional plasma
resistivity is negligible (as small as ν2 in comparison
with the effect due to the interaction of long-wave-
length perturbations with the flow). Consequently, the
stability analysis carried out in the previous section
remains, on the whole, valid. This analysis shows that
perturbations with qz > qy are unstable and that the
instability growth rate is proportional to the magnetic
Reynolds number; i.e., it exceeds the growth rate
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Z ,= = =
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bsy
0( )
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obtained for small magnetic Reynolds numbers in the
previous section:

(33)

In deriving Eqs. (32), we used the relationship of the
slow variables to the initial variables [see Eq. (30)].

The results of numerical modeling of the stability of
a Kolmogorov-type periodic EMHD flow for large
magnetic Reynolds numbers are illustrated in Figs. 2–4.

3.2. Beltrami-type Helical Flow

The EMHD equations have another stationary solu-
tion that is analogous to a three-dimensional Beltrami
flow in incompressible hydrodynamics (see, e.g., [4]):

(34)

In order for the amplitude of such a flow to be kept con-
stant, the resistive dissipation in Eq. (4) should be bal-
anced by an external source, which, in the case at hand,
is described by the equation

(35)

A flow corresponding to solution (34) is, in essence, a
limiting case of helicons with zero frequency and with
kz = 0 (see Section 4). The magnetic field of the flow is
similar in structure to the helicon magnetic field. Such
a flow belongs to the class of force-free equilibrium
flows, because it obeys the equation ∇  × B0 = B0, and is
a helical one, because it has a nonzero microhelicity,
B0 · (∇  × B0) = 1.

γ 1
2ν
------ 1 de

2
+( ) qz

2
qy

2
–( ).=

B0 ey xsin ez x.cos+=

f ν—2B0
– ν ey xsin ez xcos+( ).= =

0.01

0.001

0.10.001

0.0001

0.01

0.1

qz/k0

γ/k0
2

Fig. 2. Growth rate vs. qz for de = π, ν = 0.1, and qy/qz = 0.01
in the case of a Kolmogorov-type flow. In this and the next
two figures, the crosses present numerical results and the
dashed line refer to asymptotic formula (28). In the param-
eter range of validity of the analytic approximation (qz/k0 <

ν2), the numerical and analytical results coincide. At qz ≈
0.4k0, the growth rate is seen to be maximum, and at qz ≈ k0,
the flow becomes stable.
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As in the previous section, we consider infinitesimal
perturbations of a helical flow and use representation
(9) for the total magnetic field. Taking into account
solution (34), we can write the linearized evolutionary
equation for b in the form

(36)

We assume that the magnetic Reynolds number Rem is
large (i.e., ν is a small parameter) and adopt the parame-
ter ordering such that (|∂/∂y|, |∂/∂z|) . ν2 and |∂/∂t| . ν5.

∂
∂t
----- b de

2—2b–( )

=  ∇ B0
1 de

2
+( )∇ b× b– de

2—2b+{ }×[ ]× ν—2b.+

qy/k0

γ/k0
2

0.0001 0.001

0.001

0

–0.001

–0.002

–0.003

Fig. 3. Growth rate vs. qy for de = π, ν = 0.1, and qz = 0.05.
In accordance with formula (28), referring to the dashed
curve, the fastest growing mode is that whose wave vector
is parallel to the magnetic field of the flow (qy = 0). As the
angle between the wave vector and the magnetic field
increases, the mode becomes stable.

ν

γ/k0
2

0.001 0.01

0.001

0.002

0.1 1
0

0.003

Fig. 4. Growth rate vs. the viscosity ν for de = π, qz/k0 =
0.05, and qy/k0 = 0.0005. The flow becomes stable when cri-
terion (29) fails to hold.
We introduce slow variables similar to variables (11)
and (30),

, (37)

and seek a solution to Eq. (36) in the form of an asymp-
totic expansion that is analogous to expansion (24) and
in which the role of the small parameter is played by ν
(i.e., e = ν). The perturbations of interest are assumed
to be periodic in the variable x and to satisfy condition
(12).

Under these assumptions, the components of Eq. (36)
in Cartesian coordinates have the form

(38)

(39)

(40)

where the operators  and  are defined as

(41)

The only modification to be made in Eqs. (20), (21),
and (23) is the replacement e  ν2. In further cal-
culations, instead of Eq. (38), it is convenient to use
the incompressibility condition for the magnetic
field, — · b = 0, which can be rewritten as

(42)
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We average Eqs. (38)–(40) over the period of the fast
variable x to obtain the following equations, which will
serve as the basis to investigate the stability of the long-
wavelength perturbations of a helical flow:

(43)

(44)

(45)

To zeroth order in the parameter ν, Eqs. (39), (40), and
(42) yield

(46)

As a result, we get  = 0. To first order in ν, we find
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(47)

The solution to Eqs. (47) has the form

(48)

In solution (48), the functions  and  should be
supplemented with arbitrary x-independent functions.
However, we choose the arbitrary functions to be zero,
because additional analysis shows that, for the ordering
assumed in this section, the long-wavelength fields in
question are damped on a time scale of 1/ν3 by the
plasma resistivity ν.

In Eqs. (39), (40), and (42), the terms on the order of
ν2 satisfy the set of equations

(49)

Substituting first-order solution (48) into these equa-
tions, we derive their second-order solution in the form
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(51)

The solution to Eqs. (51) can be found by using solu-
tion (50):

(52)

In addition, to third order in ν, Eq. (23) with the
replacement of e by ν2 gives

(53)

Substituting solution (48), (50), and (52) into
Eqs. (43)–(45) averaged over the period of the fast vari-
able x, in the sixth order in ν we obtain the equations

(54)

First, we should note that the effects produced by the
interaction of a long-wavelength perturbation with the
primary flow are proportional to the microhelicity of
the flow, B0 · (∇  × B0), a fact that is not obvious from
Eqs. (54) because, under the above normalization con-
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ditions, the microhelicity is equal to unity. The results
obtained in the next section provide clear evidence in
support of this conclusion. In the limit de  0, which
corresponds to the wavelengths of a helical flow for
which the effects of electron inertia are negligible, the
effect of a helical flow on the long-wavelength pertur-

bation is proportional to  (we assume
here that the long-wavelength perturbation is indepen-
dent of x). In this case, averaged equations (54) are sim-
ilar in form to the equations for the averaged magnetic
field that were derived in [17] in studying the effect of
small-scale helical EMHD turbulence on long-wave-
length perturbations. This effect may be called an
α-like effect, in analogy to the effect of a random veloc-
ity field with a nonzero average helicity—one that is
well known in turbulent MHD dynamo theory [18].
From Eqs. (54), we can see that, in the case of a
smaller-scale flow, the effects of electron inertia modify
the final results in such a way that the primary flow has

different effects on the component , which is paral-
lel to the wave vector of the flow, and on the compo-
nents perpendicular to the wave vector. Hence, in the
case at hand, we may speak of an anisotropic α-like
effect. In investigating the influence of collisionless
EMHD turbulence on long-wavelength perturbations in
a recent paper [19], it was found that, when the effects
of electron inertia are taken into account, the results
obtained in [17] are modified in an analogous way.

Using Eq. (53) and introducing the flux function φs

through the relationships

(55)

allow us to reduce the set of three equations (54) to the
following two equations:

(56)

Looking for a solution to Eqs. (56) in the form ( , φs) ~
exp(γT + i(qyY + qzZ)), we arrive at the asymptotic dis-
persion relation

(57)

Recalling definitions (37) of the slow variables Y, Z,
and T, we see that, in order to go back to the initial vari-
ables and perturbations, which are proportional to
exp(γt + i(qyy + qzz)), it is necessary to make the
replacements γ  γ/ν5 and q  q/ν2. As a result, we
obtain
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(58)

For de < 1, the roots of Eq. (58) are real,

(59)

and perturbations with q > 2ν2/  are aperiodi-
cally unstable. On the other hand, for de > 1, the right-
hand side of Eq. (58) is negative; hence, because of the
interaction with the flow, the frequency of a long-wave-
length perturbation acquires a nonzero real part, Imγ ≠ 0
(i.e., Reω ≠ 0). However, such a perturbation is damped
by the plasma resistivity. Hence, we can conclude that
a helical flow occurring on a spatial scale smaller than
the electron collisionless skin depth, l < c/ωpe, is stable
against long-wavelength perturbations.

Numerical results on the stability of a Beltrami-type
helical flow are illustrated in Figs. 5–7.

3.3. Anisotropic Helical Flow

In addition to the solution describing a helical flow,
which was considered in the previous section, Eq. (4)
has the solution that describes a so-called anisotropic
helical flow:

(60)

Here, the magnetic field is normalized to B0 =

, where  and  are the magnetic
field amplitudes along the y- and z-axes; i.e., sinα =

/B0 and cosα = /B0. Solution (60) is a stationary
solution to Eq. (4) if the external source term has the
form

(61)

On the one hand, the flow in question has a nonzero
microhelicity, B0 · (∇ × B0) = (1/2)sin2α. On the other
hand, it is anisotropic in the yz plane in the sense that

( )2 – ( )2 ∝ cos2α ≠ 0. That is why we call this flow
an anisotropic helical flow. In contrast to the helical
flow analyzed in the previous section, solution (60)
does not belong to a class of solutions corresponding to
force-free equilibrium flows and satisfies the equation

(62)

We consider the stability of an anisotropic helical flow
against small long-wavelength perturbations in two
cases: |cos2α| . ν2 ! 1 (small anisotropy) and
|cos2α| . 1 (large anisotropy).
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Fig. 5. Growth rate vs. the absolute value of the wave vector
q for de = 0.1 and ν = 0.1 in the case of a Beltrami flow. In
this figure and the next two figures, the crosses present
numerical results and the dashed line refer to asymptotic
formula (59). The flow is seen to become stable both at
small (q/k0 < 0.01) and large (q/k0 > 0.8) absolute values of
the wave vector.
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3.3.1. The case of a small anisotropy. Here, we
adopt the same parameter ordering as in the previous
section, namely, ordering (37). Applying the above
asymptotic procedure, we take into account the anisot-
ropy effect to obtain the following modification of
Eqs. (54) in sixth order in the parameter ν:

(63)

where the components  and  satisfy Eq. (53).
Hence, the primary anisotropic helical flow results in
two effects in the equations for long-wavelength pertur-
bations. On the one hand, the flow produces an α-like
effect, which is proportional to the flow microhelicity
(1/2)sin2α (cf. the result obtained in the previous sec-
tion), as is the case with a Beltrami isotropic helical
flow, and, on the other, it contributes a resistive term to

the evolutionary equation for the field component .
By analogy with the previous section, we introduce the
flux function φs to reduce the set of equations (63) to
two equations:

∂bsx
1( )

∂T
----------- —s

2
bsx

1( ) 2αcos

2ν2
---------------- 1 de

2
+( ) ∂2

∂Y
2

--------- ∂2

∂Z
2

---------– 
  bsx

1( )
+=

+
2αsin

4
--------------- 1 de

2
+( )—s

2 ∂bsy
1( )

∂Z
-----------

∂bsz
1( )

∂Y
-----------– 

  ,

∂bsy
1( )

∂T
----------- —s

2
bsy

1( ) 2αsin
4

--------------- 1 de
2

–( )—s
2∂bsx

1( )

∂Z
-----------,–=

∂bsz
1( )

∂T
----------- —s

2
bsz

1( ) 2αsin
4

--------------- 1 de
2

–( )—s
2∂bsx

1( )

∂Y
-----------,+=

bsy
1( )

bsz
1( )

bsx
1( )

∂bsx
1( )

∂T
----------- —s

2
bsx

1( ) 2αcos

2ν2
---------------- 1 de

2
+( ) ∂2

∂Y
2

--------- ∂2

∂Z
2

---------– 
  bsx

1( )
+=

–0.002

0

0.45π0.4π0.35π0.3π0.25π

0.002

0.004

α

γ/k0
2

Fig. 8. Growth rate vs. the degree of anisotropy α of an
anisotropic helical flow for ν = 0.1, de = 0.1, and qy/k0 =
qz/k0 = 0.1. The crosses present numerical results, and the
dashed curve refers to asymptotic formula (65). In the limit
of small anisotropy (α  π/4), the flow becomes a Bel-
trami-type flow.
(64)

Equations (64) yield the asymptotic dispersion relation

(65)

For cos2α > 0 (i.e., when the field amplitude in the y
direction is larger than that in the z direction), the per-
turbation with qz = 0 and qy = q is most unstable. For
cos2α < 0, the most unstable perturbation is that with
qy = 0 and qz = q. In both cases, the frequency of the per-
turbation acquires a nonzero real part (i.e., Imγ ≠ 0) due
to the microhelical nature of the flow, provided that the
inequalities de > 1 and

(66)

are satisfied. The instability criterion derived from dis-
persion relation (65) can be written as

(67)

Numerical results reflecting the dependence of the
growth rate of the perturbation of a weakly anisotropic
helical flow on the degree to which it is anisotropic are
presented in Fig. 8.

3.3.2. The case of a large anisotropy. In the case of
a strongly anisotropic flow, |cos2α| . 1, the most desta-
bilizing factor is anisotropy, while the effect of the
microhelicity of the flow is negligible; in this case, the
stability analysis is analogous to that carried out in Sec-
tion 3.1.

For ν . 1 (the case of small values of the magnetic
Reynolds number), we use ordering (11). Applying the
above method of two-scale expansions, we obtain the
following evolutionary equation for the x component of
the magnetic field of long-wavelength perturbations:

(68)

According to Eqs. (27), the y and z components of the
magnetic field of the perturbations are damped by the
plasma resistivity. The x component of the magnetic
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field of long-wavelength perturbations is unstable
under the condition

(69)

In the case cos2α > 0, the most unstable perturbations
are those with qy = 0 and qz = q; in the opposite case,
these are the perturbations with qz = 0 and qy = q. Con-
sequently, we can say that the wave vector of the most
unstable perturbation is directed along the axis along
which the amplitude of the magnetic field of the pri-
mary flow is the largest. In both cases, the growth rate
of the most unstable perturbation is

(70)

For ν ! 1, we adopt ordering (30). Accordingly, we
arrive at the same results as that obtained in Section 3.1,
namely, that the x component of the long-wavelength
magnetic field enters only at the first order in ν and its
evolution is described by the equation

(71)

Consequently, the above stability analysis remains
valid and we again see that the instability growth rate is
proportional to the magnetic Reynolds number Rem =
1/ν. As in the previous case, the x and y components of
the long-wavelength magnetic field are damped by the
plasma resistivity.

Hence, the stability of a strongly anisotropic flow is
determined by the anisotropy of the flow. In this case,
one can use the stability criteria obtained in Section 3.1
for a Kolmogorov-type flow, with the corresponding
replacements 1  cos2α.

Numerical results on a strongly anisotropic helical
flow are shown in Fig. 9.

4. STABILITY OF A HELICON

As was noted in Section 2, the EMHD equations for
a plasma in an external magnetic field have solutions
describing linear waves with a nonzero frequency,
which are called helicons. We assume that the external
magnetic field B0 is constant and uniform and is
directed along the z-axis. We also normalize the mag-
netic field and the spatial variables to B0 and l = 1/k
(where k is wavenumber of a helicon). In this case,
EMHD equations (4) have the solution

(72)
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where

(73)

The first term in the expression for  accounts for the
external magnetic field, and the second term describes
the magnetic field of a helicon. The solution described
by formulas (72) and (73) is a stationary one (i.e., the
wave amplitude C0 is time independent) provided that
the source term on the right-hand side of Eq. (4) has the
form f = νB0, in which case the source exactly counter-
balances the resistive dissipation of a helicon. The solu-
tion corresponds to a helicon whose frequency is
described by dispersion relation (5) with the plus sign.
Since the helicon described by solution (72) satisfies
the relationship ∇  × B0 = B0, it belongs to the class of
force-free equilibrium solutions and, consequently,
being a solution to the linearized EMHD equations, it
also satisfies nonlinear equation (4)—a fact that is well
known in the theory (see, e.g., [15]). As has been men-
tioned in Section 3, the helicon frequency in the limit
kz = 0 is equal to zero; as a result, the helicon converts
into the steady-state helical flow described by solu-
tion (34). The helicons have a nonzero microhelicity,

B0 · (∇  × B0) = (B0)2 = , as is the case with a helical
flow.

Let us consider the stability of a helicon described
by solution (72) against long-wavelength perturbations.
The corresponding linearized equation for the perturba-
tions of the helicon is a slight modification of Eq. (36):

(74)
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Fig. 9. Growth rate vs. α for ν = 0.1, de = 0.1, qy = 0.01qz ,
and qz/k0 = 0.3. The crosses present numerical results and
the dashed curve refers to asymptotic formula (70). In the
limit of large anisotropy (α  π/2), the flow becomes a
Kolmogorov-type flow.
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To simplify further calculations, it is convenient to
introduce the new variables h and :

(75)

We assume that the magnetic Reynolds number is large
(i.e., ν is a small parameter) and adopt a parameter
ordering such that |∂/ | . 1 and (|∂/ |, |∂/ |) . ν2.
We also set kx . kz . 1 and de . 1. The problem at hand
has three time scales: (i) the time that is inversely
proportional to the frequency of the primary helicon,
ω(k)–1 . 1; (ii) the time scale of the secondary long-
wavelength helicon, T; and (iii) the dissipative time of
the secondary helicon, τ, which is determined by the
effect of the plasma resistivity ν and that of the primary
helicon on the secondary helicon. This is confirmed by
the results that will be discussed below. By analogy
with variables (11), we introduce the slow variables

. (76)

We look for a solution to Eq. (36) in the form of an
asymptotic expansion in powers of the small parame-
ter ν:

(77)

We assume that the perturbations depend on ψ =  –
ω(k)t, Y, Z, T, and τ and are periodic in ψ; i.e., h(ψ +
2π) = h(ψ). In the new variables, the components of
Eq. (74) in Cartesian coordinates are similar in form to
Eqs. (38)–(40):
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where the operators  and  are given by formulas
(41) with the replacement of x by ψ. In the new vari-
ables, the equation — · b = 0 becomes

(81)

Averaging Eqs. (78)–(80) over the period of ψ, we
obtain the following equations for the components of
the magnetic field of long-wavelength perturbations:

(82)
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(83)

(84)

where the averaging operation 〈…〉  is given by formula
(16) with the replacement of x by ψ.

We also average Eq. (81) with weighting functions
of 1, sinψ, and cosψ. As a result, we obtain the equa-
tions
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We seek a solution to Eqs. (79)–(81) in the form of
expansion (77) and require that the equations be satis-
fied through all orders in ν. Then, to zeroth order in ν,
we get
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(88)

The last of these equations gives  = (Y, Z, T, τ).
To solve the remaining two equations, we multiply
them by cosψ and sinψ, respectively, and average over
the period of ψ. This yields

(89)

Adding together these two equations results in  = 0,
in which case the equations give

(90)

Further, multiplying the first and second of Eqs. (88) by
sinψ and cosψ, respectively, and averaging over the
period of ψ, we arrive at the equation

(91)

Equations (90) and (91) hold if we set

(92)

where the functions  and  depend only on the
slow variables and are to be determined from the equa-
tions of the next order in ν.

In the first order in ν, the equations have the form

(93)

The last of these equations gives

(94)
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Solving the remaining two equations in accordance
with the procedure for finding a solution to the zero-
order equations results in

(95)

Then, we have

(96)

The functions  and  satisfy Eqs. (90) and (91)
with the replacement of the superscript 0 by the super-
script 1. Consequently, the first-order equations have
the solution

(97)

where the functions , , , and  depend
only on the slow variables and are determined from the
equations of higher orders in ν.

To second order in ν, Eqs. (79)–(81) yield

(98)

Integrating the last of these equations, we find

(99)

where  = (Y, Z, T, τ). Solving the remaining two
equations by the above procedure, we obtain

(100)

As
0( )

0, Bs
0( )

C0hsx
1( )

.= =

hy
0( )

C0hsx
1( ) ψ, hz

0( )
cos– C0hsx

1( ) ψ.sin= =

hy
1( )

hz
1( )

hy
1( )

hsy
1( )

As
1( ) ψsin Bs

1( ) ψ,cos–+=

hz
1( )

hsz
1( )

As
1( ) ψcos Bs

1( ) ψsin ,+ +=

hsy
1( )

hsz
1( )

As
1( )

Bs
1( )

kz

1 de
2

+
-------------- ∂

∂ψ
-------M̂hy

2( )
kz

∂2
hz

2( )

∂ψ2
--------------+ kx

∂2
hz

0( )

∂ψ∂Z
--------------–

∂2
hy

1( )

∂ψ2
--------------–=

+ C0 ψ M̂hx
2( )

1 de
2

+( )
∂hz

0( )

∂Y
-----------

∂hy
0( )

∂Z
-----------– 

 –cos

– C0 L̂ M̂hy
0( )

1 de
2

+( )
∂hz

0( )

∂ψ
-----------+ ,

kz

1 de
2

+
--------------–

∂
∂ψ
-------M̂hz

2( )
kz

∂2
hy

2( )

∂ψ2
-------------+  = –kx

∂2
hy

0( )

∂ψ∂Z
--------------

∂2
hz

1( )

∂ψ2
-------------–

+ C0 ψsin M̂hx
2( )

1 de
2

+( )
∂hz

0( )

∂Y
-----------

∂hy
0( )

∂Z
-----------– 

 –

+ C0 L̂ M̂hz
0( )

 – 1 de
2

+( )
∂hy

0( )

∂ψ
----------- ,

∂hx
2( )

∂ψ
----------- C0

∂hsx
1( )

∂Y
----------- ψcos– C0

∂hsx
1( )

∂Z
----------- ψsin+ 0.=

hx
2( )

hsx
2( )

C0

∂hsx
1( )

∂Y
----------- ψsin

∂hsx
1( )

∂Z
----------- ψcos+ 

  ,+=

hsx
2( )

hsx
2( )

As
1( )

0, Bs
1( )

C0 hsx
2( )

kx

∂hsx
1( )

∂Z
-----------– 

  ,= =
which yields

(101)

Applying the same solution procedure as that used in
the three lowest orders, we arrive at

(102)

where the functions , , , and  depend

only on the slow variables.

In order to capture any significant effect of the pri-
mary helicon in Eqs. (82)–(84) for long-wavelength

perturbations, we need to determine the functions 

and . This can be done by solving the equations in

the third order in ν:

(103)
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The solution to the last equation has the form

(104)

where  = (Y, Z, T, τ). Substituting solutions
(101), (102), and (104) into the first two of Eqs. (103)
and using the above standard procedure yields

(105)

In deriving expressions (105), we took into account the
equations

(106)

which follow from Eq. (85).
We substitute Eqs. (94), (99), (101), (102), and

(105) into Eqs. (82)–(84) and average the correspond-
ing terms on the right-hand sides of the resulting equa-
tions. Then, to fifth order in ν, we obtain

(107)

As will be shown below, these equations describe a
long-wavelength helicon. In the next (sixth) order in ν,
the averaged equations describe the evolution of the

long-wavelength field  on the dissipative time scale
and have the form
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The main difference between these averaged equations
and the equations for the helical flow considered in the
previous section is that the nonlinear effect of the pri-
mary helicon on the x component of the long-wave-

length field  (i.e., on the component of the magnetic

field  of the long-wavelength perturbation that is
parallel to the wave vector of the primary helicon) does
not appear in the averaged equations. Hence, we can
conclude that the components of the long-wavelength
field are coupled to each other only because of the pres-
ence of an external magnetic field.

Further analysis of the equations obtained can be
simplified by taking into account Eq. (106) and intro-

ducing the flux functions  (j = 1, 2) such that  =

/∂Z and  = – /∂Y. In this way, Eqs. (107)
and (108) reduce to

(109)

(110)

We look for a solution to Eqs. (109) and (110) in the
form of

(111)

Then, from Eq. (109), we obtain

(112)

Recalling definitions (75) and (76), we find that, in the
coordinate system ( ), the vector q has, by virtue of
representations (111), only two components, qy and qz ,
while, in the initial coordinate system (xyz), it has all
three components, q = (–kzqz, qy, kxqz). Note that we
assumed that k · q = 0, i.e., that the wave vector of the
long-wavelength perturbation is perpendicular to the
wave vector of the primary helicon. By what has been
said above, we have q · ez = kxqz; hence, dispersion rela-
tion (112) describes a long-wavelength helicon [cf. dis-
persion relation (112) versus dispersion relations (5)
and (73), in view of qde ! 1]. The plus and minus signs
in dispersion relation (112) correspond to helicons
propagating in opposite directions.

Combining Eqs. (110) and substituting Eqs. (112)
yield the following expression for the growth (damp-
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ing) rate of the long-wavelength helicons described by
dispersion relation (112):

(113)

where the sign should be taken to be the same as that in
dispersion relation (112). Expression (113) implies
that, regardless of the value of de (de > 1 or de < 1), one
of the two long-wavelength helicons corresponding to
the plus or minus sign in dispersion relation (112) is
unstable under the condition

(114)

If we go back to the initial variables (prior to introduc-
ing the ordering) and consider perturbations of the form
~exp(–iωt +  + ), then, recalling the ordering
used above, we can combine dispersion relation (112)
and expression (113) into the following asymptotic dis-
persion relation:

(115)

in which it is assumed that q . ν2 and ω . ν4. Accord-
ingly, the instability criterion for the helicon takes the
form

(116)

This criterion shows that the instability has a threshold
in q.

5. DISCUSSION OF THE RESULTS 
AND CONCLUSIONS

The stability of several types of steady-state peri-
odic flows against long-wavelength perturbations has
been investigated by solving the resistive EMHD equa-
tions under the assumption that the resistive damping of
the primary flow is balanced by an energy supply from
a special constant external source. In particular, it is
shown that long-wavelength perturbations of the Kol-
mogorov-type flow are unstable when the magnetic
Reynolds number of the flow exceeds a critical value,

Rem >  = . This criterion is qualita-
tively identical to the instability criteria for a Kolmog-
orov flow in incompressible hydrodynamics and for
drift waves (Rossby waves) [1, 4, 6]. The most unstable
perturbations are those with qy = 0, i.e., with a wave
vector perpendicular to the velocity vector ve of the pri-
mary flow, in which case the only growing component
of the long-wavelength magnetic field is the component
directed along the wave vector of the primary flow. In
the equation for this magnetic field component, the
instability mechanism is the effect of negative resistiv-
ity due to the primary periodic flow. The results
obtained numerically agree well with analytical results
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in the parameter range in which the latter are applica-
ble. Beyond the scope of analytic approximations, the
perturbations become stable when the perturbation
wavenumbers are comparable with the wavenumber of
the flow, q . k0.

In the case of a helical flow (similar to a Beltrami
flow), it has been found that, for de < 1, the primary flow
has a destabilizing effect on the long-wavelength per-
turbations. This effect is proportional to the microhelic-
ity of the flow, B0 · (∇ ×  B0). However, the asymptotic
dispersion relation obtained above differs significantly
from that for the Beltrami flow in hydrodynamics. The
effect produced by microhelicity is proportional to q3,
and the instability criterion not only includes the ampli-
tude of the primary flow but also sets an instability
threshold from below on the perturbation wavenumber;

specifically, perturbations with 1 @ q > 2ν2/  are
growing. In the opposite case de > 1, a helical flow is
stable against long-wavelength perturbations. Numeri-
cal analysis of the problem shows that, along with the
instability threshold from below on q (which agrees
with the predictions of analytic theory), there is the
instability threshold from above, q ≤ k0 (for perturba-
tion wavenumbers comparable with the wavenumber of
the flow). In addition, numerical simulations provide
clear evidence that, for long-wavelength perturbations,
there exists a stability boundary in terms of the quantity
de; specifically, for de ≥ 1, the perturbations of a helical
flow become stable, which agrees with the theory
developed here.

It is shown that, in the case of an anisotropic helical
flow, the primary flow leads to the effect of negative
resistivity (because of the anisotropy of the magnetic
field) and to the effect associated with the microhelicity
of the flow in the equations for long-wavelength pertur-
bations. When the magnetic Reynolds number is large

and the anisotropy is small, |  – | .  ! 1,
these effects are of comparable importance. When the

anisotropy |  – | is large, it plays a dominant
role and the stability criterion for an anisotropic helical
flow is analogous to that for a Kolmogorov-type flow.
Numerical calculations of the growth rate of the pertur-
bation as a function of the degree of anisotropy of the
flow are in good agreement with the expressions
obtained analytically.

The EMHD equations for a plasma in an external
magnetic field have solutions describing running waves
with a nonzero frequency and nonzero microhelicity,
which are called helicons. Assuming that the amplitude
of the helicon is kept constant by an external source, we
have shown that the effect of a primary small-scale hel-
icon on a secondary long-wavelength helicon is analo-
gous to the effect of a helical flow on long-wavelength
perturbations and is proportional to the microhelicity of
the primary helicon. It has been found that, in contrast
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to the case of a steady-state helical flow, the only mag-
netic field components of a long-wavelength helicon
that are affected by the microhelical nature of the heli-
con are those perpendicular to the wave vector of the
primary helicon. Because of this effect, which is desta-
bilizing regardless of the value of de, the primary heli-
con is unstable against long-wavelength helicons with

1 > q ≥ 4ν2/ |1 – | = 4/ |1 – |.
Hence, we can conclude that periodic flows

described by the corresponding solutions to the EMHD
equations tend to become unstable against long-wave-
length perturbations, which indicates cascading of the
energy toward large scales (an inverse cascade). This
conclusion agrees with the results of [16, 17, 19], where
it was shown that, in electron magnetohydrodynamics,
large-scale perturbations can be generated by small-
scale turbulence, as well as with the numerical results
of [20] and analytic estimates of [21], which show the
possible existence of inverse cascades in two-dimen-
sional electron magnetohydrodynamics. Accordingly,
we can suggest that small-scale electron motions initi-
ated, e.g., by electron cyclotron resonance heating or
the effect of laser radiation may influence long-scale
phenomena in a plasma. However, this suggestion
requires more detailed analysis, which should involve
not only electron but also ion dynamics.

All of the results obtained here are valid for a
plasma with a finite (although high) conductivity and,
unlike in incompressible hydrodynamics, it seems to be
impossible (at least at present) to generalize them to the
case of infinite plasma conductivity in ideal electron
magnetohydrodynamics.
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Abstract—The amplification of acoustic waves due to the transfer of thermal energy from electrons to the neu-
tral component of a glow discharge plasma is studied theoretically. It is shown that, in order for acoustic insta-
bility (sound amplification) to occur, the amount of energy transferred should exceed the threshold energy,
which depends on the plasma parameters and the acoustic wave frequency. The energy balance equation for an
electron gas in the positive column of a glow discharge is analyzed for conditions typical of experiments in
which acoustic wave amplification has been observed. Based on this analysis, one can affirm that, first, the
energy transferred to neutral gas in elastic electron–atom collisions is substantially lower than the threshold
energy for acoustic wave amplification and, second, that the energy transferred from electrons to neutral gas in
inelastic collisions is much higher than that transferred in elastic collisions and thus may exceed the threshold
energy. It is also shown that, for amplification to occur, there should exist some heat dissipation mechanism
more efficient than gas heat conduction. It is suggested that this may be convective radial mixing within a pos-
itive column due to acoustic streaming in the field of an acoustic wave. The features of the phase velocity of
sound waves in the presence of acoustic instability are investigated. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that acoustic waves in a weakly ion-
ized plasma may become unstable under conditions in
which the electron temperature is higher than that of the
neutral particles (Te @ T) [1–5]. On the other hand, the
experimental values of the amplification factor for
acoustic waves in an atomic gas-discharge plasma are
known to differ greatly from those predicted theoreti-
cally on the basis of the dispersion relations derived in
[1–5]; specifically, they are much larger than the theo-
retical ones (see [6–12]). Moreover, in our earlier paper
[11], it was shown that, when all the possible mecha-
nisms for the dissipation of the acoustic wave energy
are taken into account, the theories constructed in [1–5]
fail to explain the experimentally observed amplifica-
tion of acoustic waves in the positive column of a glow
discharge [6–12] because the damping of waves always
prevails over their growth, which makes the wave
amplification impossible. That is why, in [11], an
attempt was made to clarify the reasons for such a large
discrepancy between the theoretical and experiments
results. First, it was shown that the energy transferred to
a neutral gas from the hotter electrons in elastic elec-
tron–atom collisions (in [1–5], this energy transfer was
regarded to be an energy source for acoustic instability,
i.e., sound amplification) was not enough to ensure that
the value of the theoretical amplification factor coin-
cide in order of magnitude with the measured values.
Second, it was found that the thermal energy transfer to
neutral gas in inelastic collisions of the second kind
(superelastic collisions) between excited atoms and
1063-780X/03/2904- $24.00 © 20346
atoms in the ground state could far exceed the energy
transfer in elastic electron–atom collisions. However, in
[11], it was also shown that the high specific power of
heat release in a neutral gas was still not enough to pro-
vide acoustic wave amplification because, in this case,
the amplification was prevented by strong gas heating.
In view of this fact, in [11], we suggested the existence
of a heat dissipation mechanism that is more efficient
than atomic heat conduction and impedes strong gas
heating, thus providing the possibility of acoustic wave
amplification in plasma. In our opinion, the convective
mixing of a plasma in the radial direction due to acous-
tic streaming arising under the action of an acoustic
wave [13] may serve as such an additional strong mech-
anism. In the present paper, a simplifying assumption is
made that the radial heat flux to the tube wall due to this
heat dissipation mechanism (“acoustic” heat conduc-
tion) is proportional to the difference between the mean
gas temperature and the temperature of the wall. It is
shown that the allowance for both heat dissipation
mechanisms (the conventional one and acoustic heat
conduction) may provide thermal conditions in the pos-
itive column of a glow discharge under which the theo-
retical values of the amplification factor coincide with
the experimental ones. In this case, the acoustic thermal
conductivity should be higher than the conventional
one by one order of magnitude. Based on the results
obtained, a conclusion is drawn that, in a weakly ion-
ized plasma with Te @ T, an acoustic wave can be
amplified when two conditions are simultaneously sat-
isfied: the heat release in the neutral plasma component
003 MAIK “Nauka/Interperiodica”
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is sufficiently large and an efficient heat dissipation
mechanism preventing strong gas heating is present.

Here, we also study the behavior of the phase veloc-
ity of acoustic waves under the conditions of acoustic
instability in a weakly ionized plasma. The analysis is
carried out based on the dispersion relation derived in
[11]. However, in contrast to [11], the equilibrium gas
temperature is described by the equation for heat bal-
ance in a cylindrical discharge tube with allowance for
heat dissipation due to both the conventional and acous-
tic heat conduction. It is shown that, under acoustic
instability, the phase velocity of acoustic waves
increases with increasing specific power of heat release
(discharge current density) in the neutral plasma com-
ponent because of the following two effects: (i) the
equilibrium gas temperature increases and (ii) an
acoustic wave perturbs both the density of the neutral
gas and the electron density, thereby modulating the
heat exchange between the electrons and neutral gas in
such a way that both the intensity of the wave and its
phase velocity increase. Note that Ishida and Idehara
[14] attempted to experimentally reveal how the elec-
tron energy transfer to neutral gas affects the phase
velocity of sound waves. The results obtained in our
study may help to explain why their attempt was unsuc-
cessful. This effect manifests itself only under the con-
ditions of acoustic instability for low-frequency sound
waves (see below). When the conditions in a gas-dis-
charge plasma permit sound amplification, the phase
velocity of the waves can become higher than the adia-
batic sound velocity (see below), which is determined
by the equilibrium gas temperature. The experiments
reported in [14] were carried out at a very high fre-
quency (17 kHz), at which sound waves cannot be
amplified and the effect in question does not come into
play. It is precisely for this reason that the experiments
of [14] failed to reveal the influence of the electron
energy transfer on the sound velocity in a weakly ion-
ized plasma.

2. DISPERSION RELATION

We start with the following dispersion relation for a
plane acoustic wave propagating along the axis of a dis-
charge tube [11]:

K4 + (A + iB)K2 + A1 + iB1 = 0, (1)

where K is the wavenumber and the coefficients A, B,
A1, and B1 are related to the plasma parameters by [11]

(2)

(3)
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(4)

(5)

Here, the equilibrium (in the absence of acoustic per-
turbations) temperature T of the neutral gas depends
only on the distance r from the symmetry axis of the
tube by virtue of the cylindrical symmetry of the tube
and because the length of the positive column is
assumed to be much larger than its radius. The equation
for determining the temperature T will be given below.

The averaged values  and  are defined as

(6)

(7)

where R0 is the tube radius and —2 is the Laplace oper-
ator. Also, in formulas (2)–(5), Q is the specific power
of heat release in a neutral gas, the quantity a is related
to the thermal conductivity χ(T) by χ(T) = aT, b =
(4/3)η + ξ, η and ξ are the first and second viscosity
coefficients, mn is the mass of a gas atom, kB is Boltz-
mann’s constant, ω is the frequency of acoustic waves,
and Nn is the density of neutral atoms.

We assume that the frequency ω in dispersion rela-
tion (1) is real and investigate the imaginary and real
parts of the wavenumber K, which determine the atten-
uation (or amplification) factors of the wave and its
phase velocity. In this case, in the positive column of a
gas-discharge plasma, there may exist two different
waves that propagate in each direction along the tube
axis and correspond to two solutions K2 of biquadratic
equation (1). The acoustic wave is described by the
solution [11]

(8)

3. EQUILIBRIUM TEMPERATURE 
OF THE NEUTRAL GAS

The equilibrium gas temperature T(r) is determined
from the following time-independent heat balance
equation for the gas component of the positive column
in a cylindrical discharge tube:

(9)
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where L is the heat dissipation power per unit plasma
volume due to the radial gas mixing by an acoustic
streaming induced by a sound wave. The radial heat
transfer by such mixing in the discharge tube can be
defined as the product

(10)

Here, q is the density of the heat flux to the tube wall; α
is the so-called acoustic heat transfer coefficient; and
Tw is the wall temperature, which is assumed to be
equal to the temperature of the surrounding medium.
Using definition (10), we can calculate the rate of
energy loss through the tube wall due to acoustic heat
transfer. Dividing the rate so obtained by the tube vol-
ume, we arrive at the expression for L:

(11)

Note that dispersion relation (1), coefficients (2)–
(5), and Eq. (9) were derived under the assumption that
the wavelength of the sound wave was larger than the
discharge tube radius and smaller than the tube length;
hence, in the expressions for coefficients (2)–(5) in dis-
persion relation (1), we can average the temperature
over the tube cross section. Moreover, since, in this
case, the acoustic perturbation of  is equal to zero, the
perturbation of L is also equal to zero. Consequently,
the allowance for the acoustic heat removal does not
change the form of dispersion relation (1) and coeffi-
cients (2)–(5). However, this heat dissipation will affect
the propagation of acoustic waves in the discharge tube,
because L enters Eq. (9) for the equilibrium tempera-
ture T, through which, according to formulas (6) and

(7), the quantities  and  are determined. Note
that Eq. (9) can also be obtained as a zero-order approx-
imation in the linearization of the general nonlinear
heat balance equation for a neutral gas in acoustic per-
turbations.

Assuming that the intensity of the internal heat
sources (current density) is distributed uniformly over
the cross section of the tube (i.e., that Q is independent
of r) and taking into account the above expressions for
χ(T) and L, we readily find the solution to Eq. (9) that
is finite at r = 0 and satisfies the condition T = T0 at
r = R0:

(12)

Note that this radial temperature profile depends on
the mean value , which, in turn, is determined in terms
of the temperature T(r) by means of relationship (6). In
order to determine , we multiply solution (12) by r
and integrate it over dr from 0 to R0. Taking into
account relationship (6) and performing simple manip-
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ulations, we arrive at the following algebraic equation
for :

(13)
where

(14)

(15)

The quantity  in coefficients (2)–(5) can easily
be calculated using formulas (7) and (12). Performing
the corresponding manipulations yields

(16)

Having solved Eq. (13) numerically with respect to

 and having found  from expression (16), we can
use coefficients (2)–(5) to investigate the imaginary and
real parts of the wavenumber K from formula (8) in
terms of the plasma parameters. To do this, we intro-
duce the notation Vf = ω/ReK and β = –ImK, where Vf

is the wave phase velocity and β is the amplification or
attenuation factor (plus or minus, respectively). If an
acoustic wave propagating in the positive direction of
the Z-axis (the symmetry axis of the tube); i.e., its spa-
tial dependence is described by the function exp(ikz),
then the positive values β > 0 correspond to amplifica-
tion and the negative values β < 0 correspond to atten-
uation.

Then, we denote by CS the adiabatic acoustic veloc-

ity,  = (∂p/∂ρ)S = γ(∂p/∂ρ)T , where γ is the ratio of
the specific heat capacities, γ = CP/CV. For an ideal gas,

we have  = γkBT/mn. Numerical calculations for
argon give the following expression for CS:

CS = 18.63  m/s, (17)

where  is in kelvin.
It should be noted that, in dispersion relation (1)

with coefficients (2)–(5), all of the mechanisms for the
dissipation of the energy of acoustic waves are take into
account, except for the collisional mechanism and wave
absorption at the tube wall. For the above values of the
plasma parameters, the collisional damping of acoustic
waves is far weaker than that due to the presence of the
tube wall [2]. Hence, collisional attenuation can be
neglected and, accordance to [1], the coefficient β1 of
acoustic wave absorption at the wall (R0 = 2 cm) in the
case of argon can be written as

(18)
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where ω is in rad/s and  is in kelvin. When the absorp-
tion of acoustic waves at the wall of the gas-discharge
tube is taken into account, the amplification of the wave
corresponds to the condition β – β1 > 0. Finally, we note
that, in our numerical calculations, we set T0 = Tw.

4. RESULTS AND DISCUSSION

4.1. Amplification Factor for Acoustic Waves

Figures 1–3 show the amplification factor β – β1 cal-
culated using formulas (8) and (18) as a function of the
specific power Q of heat release in a neutral gas, the
acoustic heat transfer coefficient α, and the frequency
ω of acoustic waves for an argon gas-discharge plasma.
It is seen that there are thresholds in terms of Q (Fig. 1)
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Fig. 1. Amplification factor β – β1 vs. Q for α = (1) 40,

(2) 60, and (3) 100 W/(m2 K). The remaining parameters
are ω/2π = 500 Hz, Ne = 1010 cm–3, Nn = 1017 cm–3, R0 =
2 cm, Te = 2 eV, and Tw = 300 K.
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Fig. 3. Amplification factor β – β1 vs. frequency for Q =

(1) 5.5 × 105, (2) 106, and (3, 4) 1.5 × 106 W/m3. The other
parameters are α = 100 W/(m2 K) and Tw = (1, 2, 3) 300 and
(4) 77 K. The remaining parameters are the same as in Fig. 1.
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and α (Fig. 2) for an acoustic wave to be amplified (i.e.,
for the quantity β – β1 to be positive). The thresholds
should in principle depend on the plasma parameters.
According to Fig. 1, the threshold value of Q is weakly
dependent on α, whereas the threshold value of α is
almost independent of Q (see Fig. 2, curves 2, 3).
Curves 4 in Figs. 2 and 3 refer to the case in which the
wall of the discharge tube is at the temperature of liquid
nitrogen. In this case, the amplification factor β – β1 is
seen to be substantially larger, which agrees with the
data obtained by Hasegawa [7] in his experiments on
the amplification of acoustic waves in a discharge tube
immersed in liquid nitrogen. A comparison of Fig. 4,

which illustrates how the temperature  depends on α
for different powers Q deposited in the discharge, with
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Fig. 2. Amplification factor β – β1 vs. α for Q = (1) 2 × 105,

(2) 5.5 × 105, and (3, 4) 1.5 × 106 W/m3. The remaining
parameters are the same as in Fig. 1, except for the Tw value
for curve 4 (Tw = 77 K).
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Fig. 4. Mean temperature of the neutral gas vs. α for Q =
(1) 2 × 105, (2) 5.5 × 105, and (3) 1.5 × 106 W/m3. The
remaining parameters are the same as in Fig. 1.
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Figs. 1 and 2 shows that the thermal regime of the pos-
itive discharge column plays an important role in the
acoustic wave amplification. In fact, according to
Fig. 2, sound waves cannot be amplified at small α val-
ues even when the Q values are fairly large. This is
related to the fact that strong heating of the gas at small
α values (Fig. 4) prevents the wave amplification. Con-
sequently, we can conclude that acoustic instability
(sound amplification) cannot occur in a gas-discharge
plasma without efficient heat exchange with the sur-
rounding medium, because the heat dissipation due to
conventional heat conduction is not enough to provide
cooling of the gas needed for the onset of instability. It
should be stressed that an increase in β – β1 with α
(Fig. 2) is caused by cooling the gas (Fig. 4). Therefore,
for a given Q value, the larger the value of α (the
smaller the value of ), the larger the amplification fac-
tor β – β1 (Fig. 1). This allows us to conclude that cool-
ing the gas promotes the onset of acoustic instability in
a weakly ionized plasma. This conclusion is also sup-
ported by Figs. 2 and 3, in which curves 4 show that, in
a tube immersed in liquid nitrogen, the amplification
factor β – β1 is considerably larger. Note that the quan-
tity χacoust = α(R/2) can be regarded as the acoustic
thermal conductivity of a gas in a discharge tube. Then,
using the threshold α value for acoustic wave amplifi-
cation (≈20 W/(m2 K), see Fig. 2), we find that the
threshold acoustic thermal conductivity at R0 = 2 cm is
approximately equal to χacoust ≈ 0.2 W/(m K). This
value exceeds the conventional thermal conductivity of
argon at the above temperatures by a factor of about 5–7.
Hence, it is evident that acoustic heat conduction plays
a greater role in the cooling of the positive column of
a glow discharge than does conventional heat con-
duction.
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Fig. 5. Phase velocity Vf (solid curves) and adiabatic veloc-
ity Cs (dashed curves) of sound waves as functions of α for

Q = (1) 5.5 × 105 and (2) 1.5 × 106 W/m3. The remaining
parameters are the same as in Fig. 1.
4.2. Sound Velocity

Figures 5–7 show the phase and adiabatic velocities
of sound waves, calculated as functions of α, Q, and ω
by using formulas (8) and (17) in the case of a weakly
ionized argon plasma. It is noteworthy that the phase
velocity of sound waves is higher than the adiabatic
velocity. According to Fig. 7, this is true only for low-
frequency (up to 1–1.5 kHz) sound waves. Also, the
higher the energy deposition in the neutral gas and the
lower the mean gas temperature, the larger the differ-
ence between the phase and adiabatic velocities
(Figs. 5, 6). Actually, this indicates that the difference

100

0.2

Sound velocity, m/s

Q, 106 W/m3

300

500

700

0.4 0.6 0.8 1.0 1.2 1.4

2

1

Fig. 6. Phase velocity Vf (solid curves) and adiabatic veloc-
ity CS (dashed curves) of sound waves as functions of Q for
different temperatures of the discharge tube wall, Tw =
(1) 77 and (2) 300 K. The other parameters are ω/2π =
200 Hz and α = 100 W/(m2 K). The remaining parameters
are the same as in Fig. 1.
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ity CS (dashed curves) of sound waves as functions of fre-

quency for Q = (1) 5.5 × 105 and (2) 1.5 × 106 W/m3. The
other parameters are α = 100 W/(m2 K) and Tw = 300 K.
The remaining parameters are the same as in Fig. 1.
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between the phase and adiabatic velocities of sound
waves in the positive column of a discharge increases
with the amplification factor β – β1. Hence, we can con-
clude that this difference is due to the fact that the
acoustic wave modulates the energy exchange between
the hot electrons and the cold neutral gas in the dis-
charge; this leads to acoustic instability (sound amplifi-
cation) and an increase in the wave phase velocity. As a
result, in a weakly ionized plasma at a proper modula-
tion of the energy transfer from electrons to neutral par-
ticles by the acoustic wave, the intensity and phase
velocity of sound waves increase. We note, however,
that the phase velocity of the acoustic wave can also be
weakly perturbed by electrons at small α values
(Fig. 5), i.e., in the absence of acoustic wave amplifica-
tion (Fig. 2). To summarize, we can state that the
change in the phase velocity of acoustic waves with
changing α and Q (see Figs. 5, 6) stems from two
causes: first, the perturbation of acoustic waves by elec-
trons, and, second, the change in the equilibrium tem-
perature of the neutral gas with changing α and Q. The
frequency dispersion of the phase velocity of acoustic
waves (Fig. 7) is attributed exclusively to the effect of
the electrons.

4.3. Energy Source for Acoustic Instability

In the theory of acoustic wave amplification [1–4],
the energy source that drives the acoustic instability in
a weakly ionized atomic plasma is the energy trans-
ferred from electrons to neutral atoms in elastic elec-
tron–atom collisions. However, it is easy to see that this
energy is much lower than the threshold energy (Fig. 1)
for acoustic wave amplification in a plasma. In fact, the
rate of the thermal energy transfer from electrons to
neutral atoms in elastic electron–atom collisions in a
unit of plasma volume is described by the equation [15]

(19)

Here, me is the mass of an electron, Ne and Te are the
electron density and electron temperature, and the elec-
tron–atom collision frequency νen is expressed in terms

of the momentum transfer cross section  as

(20)

Estimating the rate Qe from values of the plasma
parameters typical of the positive column of an argon
glow discharge in the Hasegawa experiments [7],
namely, Ne = 109–1010 cm–3, Nn ≈ 1017 cm–3, Te = 2–
3 eV, and T ≈ 0.035 eV, we obtain Qe ≈ 1.7 × 102–2.5 ×
103 W/m3. According to Fig. 1, the threshold value is
nearly Q ≈ 3 × 105 W/m3; i.e., Qe is two to three orders
of magnitude lower than the threshold energy for the
amplification of acoustic waves in a weakly ionized
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plasma. Therefore, the thermal energy transfer from
electrons to neutral atoms in elastic collisions cannot
serve as an energy source for acoustic instability in
such a plasma and it is necessary to look for some other,
more efficient mechanism for energy transfer from
electrons to neutral atoms. We suggest that this mecha-
nism may be attributed to inelastic collisions in which
the electron energy is transferred to the translational
degrees of freedom of neutral atoms. In a weakly ion-
ized atomic gas-discharge plasma, there are three types
of inelastic collisions in which a part of the thermal
energy spent by the electron gas on the excitation and
ionization of atoms is converted into the kinetic energy
of atoms. The first energy-transfer mechanism is
related to superelastic collisions between excited atoms
or between excited atoms and atoms in the ground state.
This mechanism is a two-step process involving succes-
sive electron–atom and atom–atom inelastic collisions:

Ap + e  Am + e, m = k, k1, …, (21‡)

Ak +   Ak ' + , (21b)

where the subscripts p, m, k, … denote excited elec-
tronic states with energies Ep, Em, Ek, … relative to the
ground electronic state of a neutral atom. In this case,
the energies of the electronic states should be such that
Ep < Em and Ek +  > Ek ' + . Note that the state p,

either one of the two states k and k1, and the states k' and

 can be the ground states.

The second energy-transfer mechanism is a two-
step process related to three-body recombination reac-
tions involving neutral atoms:

Ap + e  A+ + e + e, (22‡)

A+ + e + A  Am + A, (22b)

where the states p and m can also be the ground atomic
states.

Finally, the third energy-transfer mechanism is a
three-step process related to dissociative recombination
reactions:

Ap + e  A+ + e + e, (23‡)

A+ + 2A   + A, (23b)

 + e  Am + A. (23c)

When the gas density is sufficiently high, mecha-
nism (23) can make an appreciable contribution to the
heat transfer from electrons to neutral atoms, because,
in this case, the conversion of atomic ions into molecu-
lar ions in reaction (23b) is fairly efficient. In the case
under study, namely, the acoustic wave amplification in
the positive column of a conventional glow discharge,
the gas density is low and, hence, mechanism (23) can
be neglected. The calculation of the thermal energy
transferred to neutral atoms by mechanisms (21) and
(22) runs into serious difficulties because the effective
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cross sections for numerous elementary events in colli-
sional processes (21) and (22) are not known with cer-
tainty. Therefore, in order to estimate the amount of
thermal energy transferred to neutral gas in inelastic
processes (21b) and (22b), we will briefly analyze the
electron energy balance in a weakly ionized atomic
gas-discharge plasma.

The electron energy balance in a unit volume of a
gas-discharge plasma with the current density J is
described by the equation

(24)

Here,  is the total electron energy loss in elastic

and inelastic collisions; J2/σ is the rate of Joule heating
of the electrons; and σ is the electrical conductivity of
a weakly ionized plasma,

(25)

Taking into account the main electron energy loss in
a steady state, we obtain from Eq. (24) the equation

(26)

Here, Qe is given by Eqs. (19) and (20); Qn is the ther-
mal energy transferred to neutral gas in processes (21)
and (22); the term QR describes the plasma energy
losses due to emission in a set of atomic spectral lines
and recombination continua, as well as bremsstrahlung
caused by electron–ion collisions (in a weakly ionized
plasma, the energy loss by bremsstrahlung is very small
and does not play a role); and Qd is the electron energy
loss related to the ambipolar diffusion of charged parti-
cles toward the plasma boundary. Note that, since the
gas temperature T is low and Te @ T, the atoms are
excited and ionized primarily in collisions with elec-
trons. In this case, the energy lost by the electrons is
partially regained by them in the deexcitation processes
and three-body recombination reactions, is partially
converted into the energy of the neutral gas (Qn), and is
partially lost in the above radiative processes (QR).
Consequently, we may assume that a low-temperature
plasma emits energy at the expense of the electrons.
That is why we have introduced the term QR into
Eq. (26).

The rate of electron energy loss in a unit volume of
plasma due to ambipolar diffusion and the subsequent
recombination of electrons and ions on the tube wall
was calculated by Gordiets et al. [16] under the
assumption that each species of charged particles obey
a Maxwellian velocity distribution. Using the results
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obtained in that paper and taking into account the con-
dition Te @ Ti, we can represent Qd as

(27)

where mi is the mass of an ion (mi = mn), Ti is the ion
temperature, and νin is the ion–atom collision fre-
quency. Further, we will assume that the temperatures
of the heavy particles of different species are the same
(Ti = T). The collision frequency νin can be estimated
from a formula analogous to formula (20):

(28)

where min is the reduced mass and  is the momen-
tum transfer cross section for elastic collisions of ions
with neutral particles. Using Eq. (19) and representa-
tions (25) and (27), we can write

(29)

(30)

Let us now estimate the quantities ∆e and ∆d for the
above parameters of the positive plasma column of a
glow discharge in argon. We set R0 = 2 cm and assume
that the electrons and ions collide with neutral atoms as

if they were all solid spheres. In this case,  and

 coincide with the total collision cross sections

and are equal to , where d12 = (d1 + d2)/2, with d1

and d2 being the diameters of the colliding particles

[17]. We thus can assume that  ≈ 10–15 cm2 and

 ≈ 4 × 10–15 cm2. Then, we set the discharge cur-

rent equal to I = 0.1 Ä (J = I/ ) and evaluate νen and
νin from formulas (20) and (28), respectively. As a
result, we obtain from Eqs. (29) and (30) ∆e ≈ 6 × 10−5–
9 × 10–3 and ∆d ≈ 3 × 10–6–6 × 10–4. Hence, we have
∆e ! 1 and ∆d ! 1, which enables us to neglect the first
and last terms on the right-hand side of Eq. (26). As for
the radiative loss term QR, its calculation is a fairly dif-
ficult task. However, the results of the experimental
studies of the dependence of the phase velocity of
acoustic waves on the discharge current for the above
plasma parameters [7] show that almost all of the power
transferred from the electric field J2/σ to electrons goes
into the heating of the neutral gas. Therefore, the radia-
tive loss term QR should also be small in comparison
with J 2/σ. Accordingly, omitting the term QR in

Qd

9 kBTe( )2
Ne

miν inR0
2

---------------------------- 1
1
3
---

Temi

Time

-----------ln+ 
  ,≈

ν in
4
3
---Nn

8kBTi

πmin

-------------- 
 

1/2

σin
d〈 〉 ,=

σin
d〈 〉

∆e Qe/
J

2

σ
----- 

  3Ne
2
e

2
kB Te T–( )

mnJ
2

-----------------------------------------,≈≡

∆d Qd/
J

2

σ
----- 

  9 kBTe( )2
Ne

2
e

2

memiνenν inR0
2
J

2
--------------------------------------- 1

1
3
---

Temi

Time

-----------ln+ 
  .≈≡

σen
d〈 〉

σin
d〈 〉

πd12
2

σen
d〈 〉

σin
d〈 〉

πR0
2

PLASMA PHYSICS REPORTS      Vol. 29      No. 4      2003



THEORY OF THE ACOUSTIC INSTABILITY 353
Eq. (26) or setting QR ~ Qn, we obtain Qn ~ J2/σ, which
yields the following estimate for Qn/Qe:

Hence, we have Qn/Qe @ 1, which indicates that the
thermal energy transfer from electrons to neutral gas in
inelastic collisional processes (21) and (22) prevails
over the energy transfer to neutral gas in elastic elec-
tron–atom collisions. We thus can conclude that the
role of the energy source for acoustic instability is
played by inelastic processes (21) and (22) rather than
by elastic electron–atom collisions, as was previously
thought. This conclusion is not surprising, because,
according to [18], inelastic processes in, e.g., an argon
plasma begin to compete with radiative and elastic pro-
cesses at electron temperatures of Te > 1 eV, which
agrees well with the data obtained by Hasegawa [7],
who observed that sound waves in a gas-discharge
plasma were amplified at an electron temperature of
about Te = 2–3 eV.

It is noteworthy that the effect of the transfer of elec-
tron energy to neutral atoms on the acoustic wave prop-
agation depends not only on the amount of the energy
transferred but also on the time scale on which the
transfer process occurs. In particular, for two-step pro-
cess (21), the characteristic times of inelastic collisions
(21a) and (21b) should be much shorter than the acous-
tic wave period. For this to hold, it is sufficient that the
following condition be satisfied: ω/2π ! τ–1, where τ is
the characteristic time of inelastic processes (21b). The
reason is that these processes certainly occur on much
longer time scales than inelastic collisions (21a)
because the latter have large cross sections and because
the mean electron thermal velocity is much higher than
the velocities of the atoms.

Let us estimate the characteristic time scale of
inelastic processes (21b). For simplicity, we only con-
sider the deexcitation of the kth state of an excited atom
in collisions with atoms in the ground state (transition
k  k' such that Ek ' < Ek). In order of magnitude, we
have τ–1 ~ , where σkk' is the cross section for

transition k  k',  is the mean thermal velocity of
an excited atom with respect to an atom in the ground
state, and N0 is the density of unexcited atoms. Assum-
ing that the particles obey a Maxwellian distribution
over v  with the temperature T = 0.035 eV and that the
reduced mass of the particles is mn/2 (where mn is the
mass of an atom), we find that  ≈ 7 × 104 cm/s for
argon. Then, assuming that the characteristic cross sec-
tion for the transition in question is σkk' ~ 10–16 cm2 [19]
and setting N0 ≈ Nn ≈ 1017 cm–3, we obtain the following
estimate for τ–1: τ–1 ~ 7 × 105 s–1. We thus arrive at the
condition ω/2π ! 7 × 105 Hz, which holds for conven-
tional sound waves regardless of their frequency.
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5. CONCLUSION

The main result of out theoretical study (within its
range of applicability) is that the energy source for
acoustic instability (sound amplification) in the positive
plasma column of a glow discharge is the energy trans-
fer from electrons to neutral gas in two-step (electron–
atom and atom–atom) inelastic collisional processes
(21) and (22). This result eliminates the difficulties
associated with the fact that the energy transferred to
the neutral gas in elastic electron–atom collisions is too
low to provide acoustic wave amplification in a weakly
ionized plasma. We have found that, even when the
energy transferred to the neutral gas exceeds the thresh-
old energy for acoustic wave amplification, the waves
will not necessarily be amplified. The reason is a strong
heating of the neutral gas, because conventional heat
conduction cannot provide cooling of the gas required
for the onset of instability. For this reason, we have sug-
gested that steady-state acoustic streaming induced in
the field of a sound wave gives rise to gas mixing in the
radial direction, thereby cooling the gas. We have
shown that this cooling mechanism should be five to
seven times more efficient than cooling of the gas by
conventional heat conduction. We have also shown that
the propagation of low-frequency (up to 1.0–1.5 kHz)
sound waves through a weakly ionized plasma should
be dispersive. This phenomenon, as well as acoustic
wave amplification, results from the effect of the elec-
tron gas on the wave propagation in a weakly ionized
plasma.

In conclusion, we emphasize that heat conduction
equation (9) was solved under the assumption that the
temperature of the tube wall is equal to the temperature
of the surrounding medium. However, experimental
investigations are usually carried out under conditions
of free heat exchange between the tube and the sur-
rounding medium. Consequently, a more rigorous anal-
ysis requires the use of free boundary conditions to
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Fig. 8. Amplification factor β – β1 vs. temperature Tw of the
discharge tube wall for ω/2π = 500 Hz and α = (1) 50,
(2) 100, and (3) 150 W/(m2 K). The remaining parameters
are the same as in Fig. 1.
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solve the heat conduction equation and thereby deter-
mine the wall temperature. Our preliminary calcula-
tions show that the wall temperature can be higher than
the temperature of the surrounding medium by no more
than 50°. However, it is seen from Fig. 8 that, with such
a change in the wall temperature, the amplification fac-
tor changes only slightly; hence, the results obtained
will remain qualitatively the same.

Based on the results of [20], we have also estimated
the radial acoustic streaming velocity for the above
conditions in the positive plasma column of a glow dis-
charge in argon. Because of the low frequencies of
acoustic waves, a comparatively large kinematic vis-
cosity of the gas, and the small radius of the discharge
tube, this velocity turned out to be high enough for the
acoustic thermal conductivity (which is proportional to
the acoustic streaming velocity) to be about one order
of magnitude higher than the conventional thermal con-
ductivity of the gas. A more detailed analysis of the
propagation of acoustic waves in a weakly ionized gas-
discharge plasma on the basis of the heat conduction
equation with allowance for free boundary conditions
and with the explicit introduction of the radial acoustic
streaming velocity will be given in a separate paper.
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