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Abstract—The recently proposed concept of the transport barrier formation in a tokamak plasma as a bifurca-
tion of the equilibrium state with a change in the toroidal magnetic field over the entire plasma column, includ-
ing the plasma edge, is analyzed. The analysis is performed in the cylindrical approximation. It is shown that,
in the framework of the discussed concept, all of the equilibrium solutions are continuous functions of the
parameters involved, bifurcations are absent, and the result is determined by the model assumptions that are
necessary in order to make the task self-contained. Removing even part of these restrictive assumptions can sub-
stantially change the result. Under typical conditions, the effect of the plasma rotation on the plasma equilib-
rium is negligibly small. Besides, from the viewpoint of the formal analysis of the force balance, the rotation
does not facilitate but, in contrast, hampers the formation of a positive pressure jump. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The problem of plasma thermal insulation continues
to be among the highest priority problems of fusion
research because the critical size of the fusion reactor is
determined by the level of the energy loss from the
plasma [1–3]. The entire history of tokamaks has been
a struggle with losses, which have always been above
the level acceptable from the engineering standpoint.
The discovery of regimes with improved confinement
has become an event essentially strengthening the con-
fidence in the final success of the tokamak program
already in the foreseeable future [3]. A distinctive fea-
ture of such regimes is the formation of so-called inter-
nal transport barriers (ITBs) in the plasma [3–15].

The formation of ITBs is one of the most challeng-
ing and interesting problems of tokamak physics. As is
the case with many other problems requiring an accu-
rate description of the plasma dynamics on small scales
with an account of several competing processes, the
problem of ITB formation is very difficult, and com-
plete clarity in this issue has not yet been achieved.
However, the present-day theory already allows a quite
satisfactory and rather detailed description of ITB for-
mation and the accompanying phenomena (see, e.g.,
[16–23] and references therein).

The existing theory of ITB formation is a result of
serious efforts and an object of close attention and
extensive discussions in the fusion community. Very
strong arguments would be needed to deny it com-
pletely. An example of such denial is the recent paper
[24]. It is sufficient to remember only one of its basic
conclusions: “The nature of the physical processes that
may affect the transport properties of a plasma with an
ITB is unimportant.” Further, the logical approaches of
[25–27] are announced in [24] not quite adequate for
explaining the ITB phenomenon. Finally, the authors of
1063-780X/03/2905- $24.00 © 0355
[24] offer a completely new model (called in [24] a
“concept”) of ITB formation that differs from the exist-
ing models in every respect. Its main feature is that it is
based on using only the plasma equilibrium equations;
i.e., it takes into account the force balance and nothing
more.

In [24], ITB formation in a tokamak plasma is
treated as a bifurcation of the equilibrium state. It is
stated that “a necessary condition for the buildup of the
barrier is the change in the toroidal magnetic field over
the entire plasma column (including the plasma edge)”
and that “this change may be detected by magnetic
measurements.” In the Conclusion of [24], these asser-
tions are ranked as important statements of the paper.

To promptly explain what change is discussed here,
let us consider the figure illustrating the cited state-
ment. The figure demonstrates the main properties of
solution (28) in [24]. The toroidal field Bz is schemati-
cally shown before (dotted line) and after (solid line) a
transition into a state with an ITB. According to [24],
the ITB formation is accompanied by a reduction in the
toroidal field inside the plasma region enclosed by the
barrier and an increase in the field outside it. The
increase in Bz outside the plasma column is the property
of the solution offered in [24] rather than a defect of the
figure.

Such behavior of Bz looks rather strange even if we
pay no attention to the increase in Bz outside the
plasma. A question naturally arises as to whether this
solution reflects the real physics of ITB formation or if
it is, e.g., only a property of the model used in [24]. The
transition from one Bz profile to another is attributed in
[24] to some bifurcation. This also creates questions
because no mathematical proofs of such a bifurcation
are given. It is stated in [24] that, for a transition to a
new equilibrium state to occur, the plasma should begin
2003 MAIK “Nauka/Interperiodica”
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rotating; this also requires explanations because plasma
rotation has never been an essential factor in the MHD
theory of plasma equilibrium in toroidal systems.

A paper that pretends to the solution of the problem
of ITB formation cannot remain unnoticed. This espe-
cially concerns a paper with such striking and unex-
pected conclusions, which at once attract attention and
create a lot of questions. Our purpose here is to analyze
the proofs given in [24] in support of the above state-
ments and results. Finally, we have to answer whether
or not they are correct.

The main results of [24] (in particular, that shown in
the figure) are not related to toroidicity; therefore, for
simplicity, we will treat the plasma column as a straight
cylinder. This is the only difference of our model from
that used in [24]. However, this will allow us to essen-
tially simplify all calculations without detriment to the
analysis of [24]. Section 2 is devoted to the description
of the model. In Section 3, one of the restrictions of the
model of [24], namely, the conservation of the magnetic
flux, is discussed in more detail. In Section 4, we dis-
cuss all of the other restrictions that are necessary to
produce the “bifurcation” shown in the figure. In Sec-
tion 5, we analyze the derivation of the main result of
[24] that relates the pressure jump during ITB forma-
tion to the velocity of poloidal rotation in ITB zone. In
the Conclusion, we summarize the discussion.

Bz After

Before

0 b

Toroidal magnetic field before and after the formation of an
ITB in the concept of [24].
2. DESCRIPTION OF THE MODEL
The plasma equilibrium with a stationary flow in a

magnetic field is described by the equation [28–32]

(1)

Here, ρ is the plasma mass density, v is the plasma rota-
tion velocity (usually referred to as the plasma flow
velocity), p is the plasma pressure, B is the magnetic
field, and j = — × B is the current density. It is assumed
that the plasma flow is stationary; therefore, the term
ρ∂v/∂t is absent on the left hand side of Eq. (1).

We consider a cylindrical configuration with all the
quantities depending only on the radius r and use cylin-
drical coordinates r, θ, and z related to the symmetry
axis. Following [24], where an equilibrium configura-
tion with purely poloidal rotation was considered, we
assume

(2)

In this case, we have

(3)

and Eq. (1) in the cylindrical approximation turns into

(4)

where er and eθ are the unit vectors directed along —r
and —θ, respectively.

Our purpose is to compare two equilibrium states: a
state with a barrier, which we will call the final state,
and the initial state without a barrier (in the figure, these
states are referred to as “after” and “before,” respec-
tively). We assume that, in the initial state, p = pi(r), and
in the final state,

(5)

where ∆p > 0 is a certain constant, which can be called
the pressure jump across the barrier. The zone aB – ∆B/2 <
r < aB + ∆B/2 will be called the barrier, and the quantity
∆B will be called the barrier width. The barrier is
assumed to be narrow, ∆B/b ! 1, where b is the minor
radius of the plasma column (in other words, r = b is the
plasma boundary). In cases where the barrier width is
insignificant, the surface r = aB will be called the bar-
rier. In what follows, the regions r < aB – ∆B/2 and r >
aB + ∆B/2 will be referred to as the “inside” and “out-
side” regions with respect to the barrier, respectively.

We assume that the plasma pressure in the final state
is described by formula (5) because it is this p profile
that was considered in [24]. The choice of profile (5)
with ∆p = const is just a model assumption, which
allows one to describe the difference between two p(r)
profiles by a single parameter ∆p. There is no other rea-
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son to restrict ourselves by profile (5) in considering
this problem. Knowledge of p(r) in the barrier zone is
not needed here, because we will operate with integral
relations.

It was assumed in [24] that the toroidal field Bt in the
final state is also described by a relation similar to for-
mula (5), namely, by

(6)

where bt is the toroidal field in the initial state and cin
and cout are positive constants. Here, we say “it was
assumed,” although in [24] the latter relations appeared
as a consequence of some other assumptions. These
assumptions were formulated not clearly enough in
[24]; therefore, we will discuss them later. However,
formula (6) is a key relation in [24] on which all calcu-
lations are focused. Finally, it is formula (6) that is one
of the main results of [24] after the constants cin and cout
are expressed through ∆p, and it is precisely this result
that was discussed in the Introduction and is schemati-
cally shown in the figure.

We will not restrict ourselves to profile (6) only. On
the contrary, our purpose here is to demonstrate the fact
that the transition from the initial state to the final equi-
librium state, described by Eq. (5), is also possible with
bt and Bt linked by other relations than formula (6). For-
mula (6) will be used only when we will need (for com-
parison with a specific result of [24]) to extract a partic-
ular consequence from general relationships.

In addition to relationships (5) and (6), which estab-
lish a rather strict link between the initial and final
states, it was assumed in [24] that, during a transition
from one state to another (called in [24] a bifurcation),
the toroidal magnetic flux Φpl through the plasma cross
section S⊥  remains unchanged. This condition can be
written as

(7)

In contrast to the previous restrictions, this condition is
not just a simple assumption. Let us discuss it in more
detail.

3. CONSERVATION OF THE MAGNETIC FLUX
The conservation of the toroidal magnetic flux dur-

ing bifurcation is one of the most important elements of
the concept of [24], because condition (7) is used in
[24] to determine the relation between the quantities cin
and cout in formula (6). The result is shown in the figure.

In [24], the use of Eq. (7) is reduced to the integra-
tion of the difference Bt – bt over the plasma cross sec-
tion. This would be fair if the plasma cross section
remain unchanged (e.g., if the plasma were bounded by

Bt
2 bt

2
r( ) cin inside,–
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a rigid wall). Actually, the plasma boundary is always
free and can be deformed; this fact must always be
taken into account in Eq. (7).

Condition (7) means that

(8)

where the bar stands for the averaging over the entire
cross section of the plasma column:

(9)

If the transverse area of the plasma column remains
unchanged (δS⊥  = 0), the frozenness of the toroidal flux

in the plasma would mean  = 0. It is precisely this
way in which the relation between cin and cout was
established in [24]. For the transition prescribed by Eq.
(6), the condition  = 0 can be satisfied only if cin and
cout are of the same sign. In [24], both cin and cout are
positive.

Under typical conditions, we certainly have δS⊥  ! S⊥ .
However, the small quantity δS⊥  is multiplied in Eq. (8)

by the large quantity ; therefore, the term with δS⊥
can never be neglected. The reduction of Eq. (8) to

 = 0 is a serious mistake. This fact is apparently lit-
tle known, although it was reported, e.g., in [33, 34]. In
particular, it was explained there that condition (8) for
the toroidal flux to be frozen in is the equation for δS⊥

rather than for . The value of  is determined by

the equilibrium conditions; in the general case,  ≠ 0.

Indeed, multiplying Eq. (4) by r2/b2 and integrating
over the radius up to the plasma boundary r = b, we
obtain [35]

(10)

If p = 0 at the plasma boundary, this equality takes the
form

(11)

Here, Be is the toroidal field at the plasma boundary and
BJ = Bθ(b). It is natural to assume that there are no sur-
face currents on the plasma boundary; in this case, Be is
the external vacuum toroidal field. In systems with a
strong toroidal field, the difference between Bz and Be is
small, and exact equality (11) gives approximately

(12)
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where

(13)

Expression (12) is valid for any equilibrium state,
and it is this expression that determines the possible

changes in .

All of the quantities in Eqs. (1), (4), and (10)–(12)
characterize a certain equilibrium state at a given
instant of time. However, the variations in Eqs. (7) and
(8) are calculated as the difference of the values for two
states at different times. Therefore, to find the value of

(14)

in Eq. (8), one must use formula (11) or (12) twice,
applying it to the initial and final states. In these formu-
las, the external field Be can differ at different times.
This field is determined by the currents in the external
conductors. The question as to whether or not Be will
change just as is shown in the figure cannot be
answered using only equilibrium equations, even when
they are complemented with Eq. (7). Condition (7)
applies only to the plasma, and it provides no informa-
tion about the external circuits determining the vacuum
toroidal field Be .

It follows from Eq. (12) that

(15)

This equality must be complemented with a separate
“electrotechnical” equation for the field Be . It is possi-
ble to manage without a description of the magnetic
system only in one case, namely, when the plasma is
surrounded by a perfectly conducting casing, which
prevents the leakage or penetration of the magnetic
flux. In this case, the total magnetic flux

(16)

through the casing cross section Sc is conserved. Here,
Φpl is the magnetic flux through the plasma cross sec-
tion S⊥  and Φext is the flux of the field Be through the rib-
bon zone Sc – S⊥ , external to the plasma.

When the flux is frozen in the plasma (δΦpl = 0), the
conservation of Φc means

(17)

and, consequently, we have

(18)

In Eq. (18), we have expressed δS⊥  using Eq. (8) and
have taken into account the fact that the difference
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between  and Be is small [see (12)]. Combining
Eqs. (18) and (15), we obtain

(19)

(20)

Let us recall that these expressions have been
derived under two assumptions: the magnetic flux is
frozen in the plasma (δΦpl = 0) and Φc is conserved.
Up to this point, no assumptions have been made on
the profiles of the quantities entering equilibrium
equation (4).

4. CONCERNING THE SOLUTION OF [24] 
FOR THE TOROIDAL FIELD

Let us now discuss in more detail the solution of
[24], schematically shown in the figure, and the restric-
tions needed to obtain it.

The jump of Bz in the plasma was determined in [24]

from the condition  = 0, which appeared in [24] as
a result of the incorrect treatment of condition (7) as
equality (8) with δS⊥  = 0. In the general case,  ≠ 0
during the evolution of equilibrium [see (15), (19)]. At
the same time, Eq. (15) also permits a particular solu-
tion  = 0. To validate this solution (which was used
in [24]), we must consider an inverse problem with an
initial assumption that  = 0.

General solution (15) shows that the latter condi-
tion can only be satisfied at a certain change of Be,
namely, at

(21)

In a real experiment, such a change of the external tor-
oidal field during the evolution (in terms of [24], bifur-
cation) of the plasma equilibrium can only be specially
created. It can arise spontaneously only when Φc is con-
served and, in addition, S⊥  = Sc. Under these two condi-
tions, expressions (20) and (21) coincide and the equal-
ity  = 0 is compatible with Eq. (19).

Thus, to reduce the general result to that obtained in
[24], at least two conditions are required: the conserva-
tion of Φc and the equality S⊥  = Sc. The latter means that
the plasma must be bounded by a perfectly conducting
wall. This leads us into unacceptable idealizations.
However, the restrictions of the model of [24] are not
yet exhausted by these assumptions.

Bz

δBz
Sc S⊥–

Sc

----------------
Be

2
----- δβ*

δBJ
2

Be
2

---------–
 
 
 

,–=

δBe

S⊥

Sc

-----
Be

2
----- δβ*

δBJ
2

Be
2

---------–
 
 
 

.=

δBz

δBz

δBz

δBz

δBe Be
δβ*

2
---------

δBJ
2

2Be

---------.–=

δBz
PLASMA PHYSICS REPORTS      Vol. 29      No. 5      2003



PLASMA EQUILIBRIUM WITH BARRIERS 359
Following [24], in addition to  = 0, we must put
δBJ = 0 in Eq. (21); then, taking into account formulas
(5) and (6) and neglecting the effects of rotation and the
barrier width, we obtain from Eq. (21)

(22)

Under this condition, the equality  = 0 is satisfied,
provided that

(23)

The relation between cin and cout is determined by

directly calculating  with an account of Eq. (6).

Under the same conditions as those used in [24], we
have obtained a different result: formula (32) in [24]
gives cout and cin larger by a factor of 3. This quantita-
tive discrepancy is a consequence of the incorrect use of
the virial theorem in [24]. We attract the reader’s atten-
tion to this mistake because it is of a fundamental
importance for all of the subsequent calculations in
[24], the results and the main conclusions of which will
be discussed briefly in the next section. Let us remem-
ber that the application of the virial theorem to the
plasma equilibrium in a tokamak is described in detail
in the famous review [36]; hence, the mistake of [24]
can be revealed also in the frame of the formalism of
[36], where all of the features of the toroidal equilib-
rium are taken into account. However, for this purpose,
it is sufficient to use a simpler cylindrical model.

Thus, a solution in the form of (6) with cin and cout
related to ∆p by formulas (22) and (23) (i.e., with cin
and cout three times smaller than those in [24]) exists
only under rather specific conditions. First, these are
the assumptions of [24] that, during the transition into
a state with a barrier, the pressure profile changes
according to Eq. (6), the poloidal field Bθ(r) and the tor-
oidal flux in the plasma remain unchanged (and,
accordingly, δBJ = 0), and the role of plasma rotation in
the integral force balance is negligible. Second, the
plasma must be surrounded with a perfectly conducting
casing, and there should be no gap between the plasma
and casing.

If the last requirement was even implied in [24], this
was done implicitly, without the slightest mentioning of
it. We have come to it because this was the only way to
make the task self-contained without invoking equa-
tions for the external circuit and to justify the use of the
rather severe constraint  = 0 in [24]. Certainly, the
assumption that the plasma boundary is a perfectly con-
ducting casing is very strong idealization. This condi-
tion is inapplicable to real experiments.
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Integral relations (19) and (20), which are applica-
ble to describing the evolution of an arbitrary equilib-
rium state under the flux conservation constraint, allow
us to correct the solution for the case  ≠ 0 with an
account of a vacuum gap between the plasma and the
perfectly conducting wall. It follows from equilibrium
equation (4) that, in the most general case, we have

(24)

Applying this formula to the initial and final states, we
obtain

(25)

Here, Bt(r) and Bp(r) are the toroidal (Bz) and poloidal
(Bθ) fields in the final state, respectively; bt and bp are
the same fields in the initial state; and Be and be are the
values of Bt and bt at the plasma boundary. If we now
return to the above-discussed restrictions of the model
of [24] but without  = 0, we again obtain Eq. (6) for
the field Bz in the final state but with another constants
(the contribution of the barrier zone is neglected):

(26)

(27)

As can be seen from Eq. (20), the larger the plasma–
wall gap, the smaller δBe . For S⊥ /Sc  0, we have
δBe = 0. In this case, cout = 0 and we can speak not only
about an essential quantitative difference but also about
a qualitative difference of the solution obtained from
the result of [24], namely, that in the plasma outside the
barrier (r > aB), the toroidal field does not change. The
smallness of S⊥ /Sc is required here only because we
have assumed the wall to be perfectly conducting. In a
real experiment, δBe = 0 if the currents in the toroidal
field coils do not vary and the induced poloidal currents
in the vacuum vessel are small.

Formulas (26) and (27), together with Eqs. (19) and
(20), cover much wider area than Eqs. (22) and (23).
However, even when the mistakes of [24] are corrected
and the restriction  = 0 is removed, the result
obtained remains a purely model one. The reason is that
the two equilibrium states are compared in [24] under
the restriction δBJ = 0. However, the ITB formation
means the appearance of large temperature and density
gradients in the ITB zone. This should inevitably
change the bootstrap current [5–7, 17, 18, 20, 37].
Besides, the conditions of the plasma column equilib-
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rium along the major radius must also change. Under
fixed external conditions, the increase in β is accompa-
nied by the outward shift of the plasma column. To keep
it in the same position, as is usually needed in toka-
maks, it is necessary to increase the external vertical
field [36]. Then, an additional e.m.f. appears and the
longitudinal current changes.

The restriction δBJ = 0 contradicts not only logic,
but also experimental practice, because an ITB is usu-
ally formed in the current ramp-up stage and special
measures are taken to control the current [3–15]. How-
ever, the restriction δBJ = 0 is not yet the chief draw-
back of the model. The model of [24] is based on a
much stronger assumption that the poloidal field Bθ(r)
in the initial and final states is identical, so that the first
integral on the right hand side of Eq. (25) disappears.
This condition can be violated, for instance, due to the
change in the bootstrap current during the ITB forma-
tion. However, if the profile Bθ(r) is changed, then, as

can be seen from Eq. (25), the behavior of (r)
becomes different from that prescribed by formula (6).

Thus, formula (6) is only a particular solution
obtained under the very strong restriction δBθ = 0 for
the p profile given by formula (5). In addition, cin and
cout were calculated in [24] under the additional restric-

tions  = 0 and δBe = Beδβ*/2 and, moreover, a mis-
take was made in those calculations. As has been shown
above, the result can change essentially if the problem
is considered under more realistic assumptions.

In particular, if even one restriction  = 0 is lifted,
a solution is possible with cout = 0, which refutes the
conclusion of [24] about the obligatory change in Bz at
the plasma periphery. Formula (25) also allows other
versions of Bz behavior, which differ from those offered
in [24].

5. CONCERNING THE MAIN RESULT OF [24]

The main result of [24] is the formula relating the
pressure jump ∆p in formula (5) to the poloidal rotation
velocity in the ITB zone. This formula is obtained by
integrating the equilibrium equation over the volume in
the barrier zone using the constants cin and cout, which
are found by a similar integration of the same equation,
but over the entire plasma volume.

The calculations of [24] are very bulky and include
the use of a rather complicated technique developed for
the description of the toroidal equilibrium [38]. How-
ever, the main result, expressed by Eqs. (33) and (36) in
[24], is not related to toroidicity. Therefore, one can try
to correct these formulas again using a simpler cylindri-
cal approximation.

A correction is necessary at least because the deriva-
tion of these formulas in [24] is based on incorrectly
calculated values of cin and cout. However, a strict anal-
ysis leads to the conclusion that these formulas cannot

Bt
2

δBz

δBz
be corrected at all, because the equality that should
serve as a required equation for ∆p degenerates into an
identity.

Indeed, in the frame of the problem under study,
there is only one equilibrium equation (4) at our dis-
posal. Its integral consequence (24) gives an explicit
relation of p with the magnetic field and rotation veloc-
ity. We consider two states, namely, the initial and final
ones. Nothing is known about the initial state (except
for, probably, vθ = 0), and the final state is given as “the
initial state + the difference.” In such a problem formu-
lation, from the two equations (24) (for the final and ini-
tial states), we obtain a single equation for the quanti-
ties that are of interest to us, namely, the difference
between the quantities in the final and initial states.
This is Eq. (25), in which all the differences appear
explicitly.

Equation (25) contains five quantities:  – ,

 – , p – pi ,  – , and . To obtain a relation
between two quantities, three others must be prescribed
somehow. In the problem under consideration, it is sup-

posed that  –  = 0 and  –  is found from the

additional constraint  = 0 discussed above. Besides,
it is assumed that vθ = 0 everywhere outside the barrier
zone. If p and pi are related by formula (5), then, with
these three assumptions, we obtain from Eq. (25)

(28)

(29)

where, according to formula (6), –cin and cout are the

result of the subtraction  – .

These are equations for two unknowns, cin and cout.
They are an exact consequence of the equilibrium equa-
tion under the above model assumptions. There are no
additional equations in the problem under consider-
ation (the requirement  = 0 allows us to consider
the right hand side of Eq. (28) known). In [24], the vir-
ial theorem is considered as an additional equation,
which is obtained by integrating the equilibrium equa-
tion over the plasma volume [36]. It is clear that the
integral consequence of the equation cannot contain
any new information compared with that contained in
the initial equation. In our case, this statement means
that, from the virial theorem, we can only obtain
Eq. (29). More precisely, if, following [24], we neglect
the rotation effects, then, from the virial theorem, we
find again that cin + cout = 2∆p. However, in [24], 6∆p
was obtained instead of 2∆p in the latter equality. The
replacement of the left hand side of Eq. (29) by 6∆p
exactly reproduces the incorrect formula (36) of [24], if
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toroidicity is neglected there. The correct substitution
of 2∆p turns Eq. (29) into a trivial identity.

Thus, the main result of [24] is a consequence of a
mistake in calculating cin + cout. Accordingly, all the
main conclusions of [24] and, on the whole, the offered
concept of ITB formation as a bifurcation of an equilib-
rium are incorrect.

6. CONCLUSION

The change in the toroidal field, whatever its value,
cannot be considered as a distinctive feature of ITB for-
mation because it is a natural and inevitable result of
any equilibrium evolution. This effect has been known
since the very beginning of fusion research and was
used to determine β from diamagnetic measurements
[39, 40] long before the discovery of regimes with ITB.

According to Eq. (4) or (25), the radial behavior of
Bz is determined by three (without rotation, two) func-
tions. One can speak about a specific solution for Bz

only when all of these functions are given. The solution
shown in the figure is a particular case for two states
related by very strong unrealistic restrictions  = 0
and δBθ = 0. If we weaken these restrictions, other solu-
tions are also possible [see Eq. (25)], including those
without a change in Bz on the plasma periphery.

In the problem considered in [24] and, in a more
general formulation, in the present work, all of the solu-
tions are continuous functions of the parameters
involved. There are no selection rules that could force
an equilibrium configuration to make a transition of
type (5) or any other. The term “bifurcation” is used in
[24] incorrectly. Formula (36) in [24], relating the pres-
sure jump ∆p to the poloidal rotation velocity and
offered as a criterion for the transition into a new state,
is incorrect. It is impossible to correct this formula,
which is the main result of [24], and thus to save the
concept of [24]. This formula is actually obtained by a
subtraction like x – x, and the correct manipulation with
the equations must always give, irrespective of the
assumptions, the trivial identity 0 = 0 instead of this for-
mula.

If we neglect all the terms in Eq. (25) except for the
terms with pressure and velocity, then we obtain ∆p/p ∝
( )(∆B/aB), where vT =  is the ion thermal
speed. This estimate shows that the pressure jump pro-
duced by the poloidal rotation of the plasma is small. A
more careful analysis of Eq. (25) shows that, in addi-
tion, this jump is negative. This is natural because the
poloidal rotation produces a centrifugal force directed
outward. In the concept of [24], plasma rotation is
declared a trigger launching the transition from the ini-
tial state to the state with an ITB. Actually, the onset of
rotation should result in the opposite effect, namely, a
reduction in the plasma pressure. We remind that all the
above estimates and conclusions are based on the anal-
ysis of the plasma equilibrium conditions only.

δBz

v θ
2
/v T

2
Ti/mi
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The equilibrium theory operates with the force bal-
ance only [see Eq. (1)] and, at best, allows one to estab-
lish a relation of the pressure jump only with the work
done by these forces. Heat sources and losses, as well
as thermal balance, do not appear in the problem; there-
fore it is impossible in principle to describe the ITB for-
mation based exclusively on Eq. (1) and Maxwell’s
equations.

It is known that the cylindrical model gives a quite
reliable result for the diamagnetic signal in tokamaks
and stellarators [33, 34, 39, 40]. The integral relations
given in the present work can be useful for the interpre-
tation of diamagnetic measurements in the presence of
poloidal plasma rotation with allowance for the flux
conservation.
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Abstract—Microwave scattering diagnostics are described that allow direct measurements of the turbulent pro-
cesses in the high-temperature plasma of magnetic confinement systems. The first physical results are presented
from fluctuation measurements carried out in 2000–2001 in three stellarators: L-2M (Institute of General Phys-
ics, Moscow), LHD (National Institute of Fusion Science, Toki), and TJ-II (CIEMAT, Madrid). Plasma density
fluctuations in the axial (heating) regions of the L-2M and LHD stellarators were measured from microwave
scattering at the fundamental harmonic of the heating gyrotron radiation. In the TJ-II stellarator, a separate
2-mm microwave source was used to produce a probing beam; the measurements were performed at the middle
of the plasma radius. Characteristic features of fluctuations, common for all three devices, are revealed by the
methods of statistical and spectral analysis. These features are the wide frequency Fourier and wavelet spectra,
autocorrelation functions with slowly decreasing tails, and non-Gaussian probability distributions of the mag-
nitudes and the increments in the magnitude of fluctuations. Observations showed the high level of coherence
between turbulent fluctuations in the central region and at the edge of the L-2M plasma. The drift-dissipative
instability and the instability driven by trapped electrons are examined as possible sources of turbulence in a
high-temperature plasma. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Fluctuations arising due to nonlinear processes in
plasma have attracted the attention of physicists for a
long time. Interest in these fluctuations has consider-
ably increased in recent years, when it became clear
that many global plasma processes (particle diffusion,
heat conduction, etc.) in toroidal confinement systems
depend on the fluctuations of the plasma density, elec-
tric field, and particle temperature [1–4]. In this con-
text, information about the spectral and probabilistic
characteristics of the plasma density and temperature
fluctuations existing throughout the entire plasma vol-
ume (both in the center and at the edge) is very impor-
tant for solving fundamental and applied problems
related to the confinement of high-temperature plasma
in toroidal fusion devices.

To date, the spectral and probabilistic characteristics
of the fluctuations of the density, floating potential, and
particle fluxes in the low-temperature plasma regions in
toroidal devices (the edge of the plasma column) have
been studied in considerable detail. Methods for study-
ing these fluctuations are well developed and are used
in all toroidal devices, both tokamaks and stellarators.
Density fluctuations in a low-temperature plasma are
described by the strong structural turbulence model [5].
Strong structural turbulence means that, against the
1063-780X/03/2905- $24.00 © 20363
background of strong turbulence arising due to plasma
instabilities, there exists an ensemble of the interacting
stochastic plasma structures. Such spatiotemporal
structures comprise a substantial fraction of turbulent
fluctuations; for this reason, random events in this kind
of turbulence can significantly contribute to the varia-
tions of the macroscopic plasma parameters. Turbu-
lence in which random events are significant is also
called rigid turbulence [6]. Various types of stochastic
structures, such as nonlinear solitons, vortices, and
MHD structures, have been observed experimentally in
low-temperature plasma [5, 7, 8]. It was found that
strong structural turbulence in the edge plasma pos-
sesses some general properties irrespective of the tur-
bulence source and the type of stochastic plasma struc-
tures. Such turbulence in a low-temperature plasma is
characterized by slowly decreasing autocorrelation
functions (ACFs) with oscillating tails and wide fre-
quency spectra. Its temporal structure is described by
an ensemble of damping wavelets [5, 8], and the prob-
ability density function (PDF) of the fluctuation magni-
tudes differs from a Gaussian distribution [9, 10].

The average electron temperature and plasma den-
sity in the central region of the plasma column in toroi-
dal devices are two orders of magnitude higher than
those at the edge. The study of the fluctuation processes
003 MAIK “Nauka/Interperiodica”
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Table

L-2M LHD TJ-II

Major radius R, cm 100 800 150

Average minor radius 〈r〉 , cm 11.5 80 10–22

Magnetic field B, T 1.3–1.4 ≤3 ≤1.2

Input microwave power P0, kW 150–200 600 200–400

Average density 〈n〉 , 1013 cm–3 1.0–1.3 ~1.0 <1.0

Central electron temperature Te(0), eV 400–800 ~1000 500–800

Relative amplitude of fluctuations in the edge plasma (δn/n)edge 0.2–0.25 0.2–0.25

Pulse duration, ms 10–12 >1000 200–300
in a high-temperature plasma is an even more important
and challenging problem than the study of fluctuations
in the edge plasma. However, these studies are substan-
tially limited by the complexity of the diagnostic tech-
niques. Here, we can note advances in heavy-beam
diagnostics [11], reflectometry [12, 13], and enhanced-
scattering diagnostics [14], which allow the measure-
ments of density fluctuations in a high-temperature
plasma. However, most of the questions that arise in
studying fluctuations in the central region of the stellar-
ator plasma, namely, those about the amplitude of the
fluctuations, their frequency and wavelet spectra, corre-
lation and probabilistic parameters, etc., are still unan-
swered. There are also other unresolved problems
concerning the high-temperature plasma region: the
determination of the types of instabilities giving rise to
fluctuations, the degree to which the plasma is nonequi-
librium, and the possibility of the formation of stochas-
tic plasma structures.

During the last few years, we have attempted to
bridge this gap. Our experiments are based on the
method of microwave scattering by density fluctuations
in a high-temperature plasma. The parameters of the
plasma density fluctuations were studied by the con-
ventional technique of measuring the scattered 2-mm
radiation of a separate low-power microwave source
[15, 16] and also by measuring the scattered radiation
of the heating gyrotron [17, 18]. In 2000–2001, the first
experiments on studying the scattered gyrotron radia-
tion were performed in the L-2M (Institute of General
Physics, Moscow) and LHD (NIFS, Toki) devices, and
the scattering of 2-mm microwaves was studied in the
TJ-II device (CIEMAT, Madrid).

In this paper, the microwave-scattering techniques
used in the L-2M, LHD, and TJ-II devices are briefly
outlined; the first measurements of the plasma density
fluctuations in the high-temperature plasmas of these
devices are reported; and the first results of the spectral,
correlation, and probabilistic analyses of the time sam-
ples of the fluctuation magnitudes are demonstrated.
2. DESCRIPTION OF THE DEVICES 
AND MICROWAVE-SCATTERING TECHNIQUES

2.1. Experimental Devices

Experiments on studying the characteristics of fluc-
tuations in a high-temperature plasma by microwave-
scattering techniques were carried out in three toroidal
plasma devices: L-2M, LHD, and TJ-II.

The L-2M stellarator has a two-pole winding; a
detailed description of it is given in [19]. The main
parameters of the device are presented in the first col-
umn of the table. In the edge plasma (at a radius of
r/a = 0.9, where a is the separatrix radius), the density
n ~ 1–2 × 1012 cm–3 and the electron temperature Te ~
30–40 eV. The plasma is produced and heated under
ECR conditions at the second harmonic of the electron
gyrofrequency with the help of a 75-GHz gyrotron.

The LHD device is the largest modern supercon-
ducting heliac with a divertor [20]. The LHD plasma
parameters are listed in the second column of the table.
In this experiment, the plasma was created and heated
under ECR conditions at the fundamental and second
harmonics of the electron gyrofrequency by several
168-GHz and 84-GHz gyrotrons.

The TJ-II device is a stellarator with four-pole wind-
ing [21]. The main parameters are listed in the third col-
umn of the table. The plasma has a variable section
along the torus; the mean plasma radius varies from 0.1
to 0.22 m. In this experiment, the plasma was produced
and heated by a 53.2-GHz gyrotron at the second har-
monic of the electron gyrofrequency.

2.2. Use of the Gyrotron Scattering Technique 
in the L-2M Stellarator

Microwave radiation from the heating gyrotron was
launched into the vacuum chamber of the L-2M stellar-
ator as a linearly polarized Gaussian beam. At the
plasma boundary, the incident linearly polarized wave
splits into an extraordinary and ordinary wave. At den-
sities typical of the existing toroidal devices, the plasma
is transparent to ordinary waves, and it is optically thick
for extraordinary waves. The fact that the incident radi-
ation excites two waves in the plasma is unfavorable for
PLASMA PHYSICS REPORTS      Vol. 29      No. 5      2003
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ECR plasma heating because the single-pass absorption
of the heating wave in the plasma decreases [22]. On
the other hand, the ordinary wave can be used as a prob-
ing wave in scattering diagnostics. Figure 1 schemati-
cally shows the geometry of the gyrotron scattering
diagnostics in the poloidal section of the stellarator
chamber. A horn antenna placed in the upper port
receives gyrotron radiation with a given polarization
(E0 || B), scattered at an angle of π/2 by plasma density
fluctuations in the central region of the plasma column.
The scattered signal is measured in the direct-detection
regime. The observation region is marked in the figure
by a black quadrangle; this region is located at the inter-
section of two microwave beams, namely, the incident
beam launched by the gyrotron and the beam received
by the horn. The size of the observation region is nearly
5 cm. Estimates show that, in the plasma of the L-2M
stellarator, up to 10–20% of the gyrotron energy prop-
agates in the form of an ordinary wave, which com-
prises several tens of kilowatts. For this reason, the
receiving line contains diaphragms and a collimator
attenuating the scattered signal before it reaches the
detector. According to the Bragg condition,1 the
gyrotron radiation (k0 = 15 cm–1) is scattered by an
angle of π/2 by plasma density fluctuations with a char-
acteristic scale length λsc ≈ 3–4 mm (k ~ 20 cm–1). Fig-
ure 1 also shows the relative positions of movable
Langmuir probes measuring density fluctuations in the
edge plasma in the regime of the ion saturation current;
the probes were placed in several poloidal sections.

2.3. Use of the Gyrotron Scattering Technique 
in the LHD Device

The gyrotron scattering diagnostics were elaborated
and mounted in the LHD device to measure fluctuations
in the central region of the plasma column. These diag-
nostics do not differ fundamentally from the scattering
diagnostics employed in the L-2M stellarator. In this
case, however, the measurement scheme is based on the
available system of quasioptical transmission lines of
the LHD gyrotron complex. A system for the transmis-
sion of microwave radiation from several gyrotrons into
the heliac chamber consists of several quasi-optical
transmission lines [23]. These lines are designed so that
the input power profile in the heating region is suffi-
ciently narrow for the position of this region to be
known with certainty when studying local effects
related to plasma heating. These transmission lines
turned out to be convenient to use in the gyrotron scat-
tering diagnostics. Figure 2a shows the system of quasi-
optical lines for transmitting radiation from two
gyrotrons with frequencies of 168 and 84 GHz. The
detector receiving the scattered radiation from the sec-
ond gyrotron was placed in the transmission line of the

1 The relation between the incident and scattered radiation compo-
nents is given by the Bragg condition: k = 2k0sin(ϕ/2), where ϕ is
the scattering angle [15].
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first gyrotron. As in L-2M, the radiation from the sec-
ond gyrotron (84 GHz) was partially converted into the
ordinary wave. The power of the ordinary wave was
high enough for the scattered signals to be easily
detected even through such a long transmission line.
Plasma density fluctuations in the central region of the
plasma column were measured in the direct-detection
regime. The scattered signals were received from a spa-
tial region located at the intersection of the microwave
beams launched from two transmission lines. The
geometry of the incident and scattered beams is shown
in Fig. 2b. In contrast to the L-2M experiment, this
geometry of gyrotron scattering is closer to the back-
ward Bragg scattering. In the LHD experiment, the
microwave radiation was scattered by plasma density
fluctuations with a wavelength of λsc ~ 1.8 mm (k ~ 25–
34 cm–1). In this experiment, the heating region could
be shifted in the poloidal and toroidal direction, which
allowed us to determine the dimensions of the scatter-
ing region.

2.4. Use of the 2-mm Scattering Technique 
in the TJ-II Device

For the TJ-II device, a 2-mm scattering technique
was elaborated for studying fluctuations in the high-
temperature core plasma. Figure 3 shows the diagnostic
arrangement. Microwave radiation from a GDI genera-
tor (T1) was launched into the plasma, and we received
the radiation scattered by angles of 6° and 12° (R2, R3)
and also the radiation passed through the plasma (R1)
(because of the fairly complicated plasma cross section

Antenna receiving
scattered radiation

Separatrix

E0

Gyrotron
radiation

Probes

E0
sc

Fig. 1. Gyrotron scattering diagnostics in L-2M.
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Fig. 2. (a) Gyrotron scattering diagnostics and (b) quasi-optical system for the input of gyrotron radiation in LHD.
in this device, a reference detector was needed to deter-
mine the position of the scattering point). Plasma den-
sity fluctuations were measured from signals scattered
from the inner plasma region lying at the middle of the
plasma radius (r/a ~ 0.5); the poloidal and radial
dimensions of this region were about 4 cm. We mea-
sured plasma density fluctuations with wavenumbers 3
and 6 cm–1. The homodyne detection of the scattered
signals was employed. We note that, in this experiment,
the 2-mm scattering diagnostic system was located far
from the heating-gyrotron port. Previously, several ver-
sions of the 2-mm scattering diagnostic systems were
created in the Plasma Physics Department of the Insti-
tute of General Physics and installed in the L-2 [24] and
ATF [25] stellarators and the TJ-IU torsatron [26]. All
of these diagnostic systems used GDI microwave oscil-
lators but differed in the reception scheme of the scat-
tered signal; the common disadvantage of these diag-
nostic systems was the low signal-to-noise ratio. The
new 2-mm scattering diagnostics in TJ-II differs from
early diagnostics not only in the reception scheme of
the scattered signal but also in that some of the receiv-
ing transmission lines are made of overmoded
waveguides with quasioptical elements [16]. As a
result, the loss of the scattered signals in these lines was
significantly reduced, which allowed us to substantially
enhance the sensitivity of the diagnostics.
2.5. Processing of the Measurement Results

The measurement results in all of the devices were
the files of the digitized magnitudes of signals scattered
by plasma density fluctuations. The characteristics of
the fluctuations were determined by numerically ana-
lyzing these time arrays, the number of points in which
reached 105–106. In all three experiments, we used the
same program package for numerically processing the
time arrays. To study the characteristics of the scattered
signals, we used programs for analyzing random time
samples; these programs were previously used to study
strong structural turbulence in low-temperature plasma
[8, 9, 27–31]. The program package includes the spec-
tral Fourier analysis, the correlation analysis, the spec-
tral and coherence wavelet analysis, the construction of
sample histograms, the computation of the moment of
random quantities, the computation of the Herst param-
eter, and the analysis of phase trajectories.

3. RESULTS OF FLUCTUATION STUDIES

3.1. Experiments on Gyrotron Scattering
in L-2M

Figure 4a shows a typical time realization of the
scattered signal from the central region of the L-2M
plasma (curve 1). The signal is proportional to the
squared magnitude of the plasma density fluctuations.
For comparison, the figure also shows the time realiza-
tion of the probe signal (curve 2) measured simulta-
PLASMA PHYSICS REPORTS      Vol. 29      No. 5      2003
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neously with the scattered signal, namely, the satura-
tion-current fluctuations, which are proportional to
plasma density fluctuations. Both signals are stochastic
in character. In the L-2M stellarator, all of the experi-
ments on studying the fluctuation characteristics of the
high-temperature central plasma were accompanied by
simultaneous measurements of the fluctuation charac-
teristics of the low-temperature edge plasma. The sub-
sequent figures illustrating the results obtained in L-2M
show the parameters of the fluctuations for both of
these regions of the plasma column. We note that the
gyrotron scattering signals represent only a narrow
region of the k spectrum of fluctuations, whereas the
probes measure the entire k spectrum of fluctuations.

The measurements of cross-coherence between the
fluctuation spectra in the central region and at the edge
of the plasma column allow us to find out whether or
not the fluctuations in these regions are correlated. Such
an analysis was performed in [18]; however, it seemed
to be expedient to repeat a similar study under L-2M
conditions somewhat different from those in [18] (the
data presented in Fig. 4 were obtained in an experiment
with the boronization of the chamber wall). Since both
signals are bursty, it is reasonable to analyze this cross-
coherence with the help of wavelet spectra. The time
behavior of the cross-coherence between the wavelet
spectra of the fluctuation signals in the center of the
plasma column and in the edge plasma are presented in
Figs. 4b and 4c for two stellarator shots. For compari-
son, Figure 4d also shows the noise wavelet spectrum,
demonstrating the low level of the noise wavelet coher-
ence.2 The value of the cross-coherence coefficient of
the wavelet components is shown in shades of gray; the
observation time is plotted on the abscissa, and the
wavelet frequency is plotted on the ordinate. The time
cross-coherence spectrum was compiled by interpolat-
ing individual spectra calculated for time intervals of
500 µs. In the low-frequency region3 (below 100–
200 kHz), the cross-coherence coefficient attains 50%.

Figure 5a shows the Fourier spectra of microwave
signals scattered by density fluctuations in the high-
temperature and low-temperature plasma of the L-2M
stellarator. Throughout the entire plasma volume, we
observed low-frequency fluctuations with a wide con-
tinuous spectrum (up to 300 kHz). Figure 5b shows the
phase portraits (delayed magnitude vs. magnitude) of
the same signals. The time window in these measure-
ments was 2 ms and included 2000 points. The phase
portrait of fluctuations in the edge plasma is more dif-
fuse than in the central region. This difference may be
explained by the fact that, for the central region, not all
of the k components of fluctuations are present in the
spectrum. The comparison of the spectra and the phase

2 The noise wavelet spectrum is calculated from two signals mea-
sured in different stellarator shots.

3 We recall that the wavelet frequency ω is related to the wavelet
duration ∆ as ω = 2π/∆.
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portraits clearly illustrates the fact that stochastic pro-
cesses in the central region and at the edge are similar.

Now, let us turn to the probabilistic characteristics
of the fluctuations. Figures 6a and 6b show the PDFs of
the magnitudes of the plasma density fluctuations in the
central region and in the edge plasma, respectively. The
magnitude of the plasma density fluctuations is plotted
on the abscissa, and the number of counts is plotted on
the ordinate; the total number of counts in both cases is
equal to 2000. The shape of the time-sample histogram
of the magnitude of density fluctuations in the edge
plasma, as well as the values of the third and fourth
moments (M3 = 0.2, M4 = 3.2), allows us to describe
the PDF of the fluctuations by a Gaussian probability
distribution.4 The shape of the time-sample histogram
of the magnitude of the plasma density fluctuations in
the central region differs substantially from the Gauss-
ian, the third and fourth moments being equal to –1.3
and 4.2, respectively. The turbulent plasma state in the
central region differs from equilibrium more strongly

4 For such short stationary time samples of the magnitudes of
plasma density fluctuations, the self-similar power-law tails of
the PDF are usually under the noise level.

T1

R1 R2 R3

r/a = 1.0

r/a = 0.5

Fig. 3. 2-mm scattering diagnostics in TJ-II.
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Fig. 4. (a) Density fluctuations (1) in the edge plasma and (2) in the central region of L-2M; (b, c) cross-coherence wavelet spectra
between a signal scattered from the central region of the plasma and fluctuations in the edge plasma; and (d) the noise cross-coher-
ence wavelet spectrum.
than does the edge plasma. The probability of the
events with large amplitudes for this turbulence is con-
siderably higher than the probability of similar events
for fluctuations obeying a Gaussian distribution. The
PDFs of the plasma density fluctuations in the central
region turned out to be closer to the PDFs of particle
fluxes [10], rather than to the PDFs of density fluctua-
tions in the edge plasma. We note that the high-temper-
ature central plasma is directly affected by the heating
gyrotron radiation. It is reasonable to assume that the
difference of the PDF of fluctuations from a normal
(Gaussian) distribution is due to turbulent processes
caused by microwave plasma heating in the central
region.

The ACFs of the magnitude of the density fluctua-
tions in the central region and in the edge plasma are
shown in Figs. 7a and 7b, respectively. In the ACF of
the fluctuation magnitudes in the high-temperature
plasma, we can see a broad first maximum and a slowly
decreasing tail. The presence of a slowly decreasing tail
in the ACF indicates that the time sample of the sto-
chastic process is not homogeneous and independent
and that the process is affected by some “influence
function.” The correlation time of turbulent fluctuations
is longer than the characteristic period of low-fre-
quency oscillations. The autocorrelation function of
this kind corresponds to strong structural turbulence in
which the influence function is associated with ensem-
bles of interacting stochastic plasma structures [5, 9].
Note that the correlation time of the increments in the
magnitude of density fluctuations5 in the high-temper-

5 The increment in the magnitude of density fluctuations in the
time sample is defined as ∆Xj = Xj(tj) – Xj – 1(tj – 1) [32]. The
increments in the random quantity ∆Xj depend on all the linear
and nonlinear growth and damping processes giving rise to
plasma density fluctuations under given experimental conditions.
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no. 50847).
ature plasma is about 1–2 µs, which is comparable with
the characteristic time of the increments in the magni-
tudes of turbulent fluxes in the edge plasma of the L-2M
stellarator [32].

3.2. Experiments on Gyrotron Scattering
in LHD

Figures 8a and 8b show how the intensity (mean
square deviation) of scattered radiation in LHD varies
as the reference microwave beam is displaced in two
directions. The scattered signals were received from the
central region of length ~10 cm in the poloidal direction
and several centimeters in the toroidal direction. For
these measurements, it was important to determine the
excess of valid signals over the background noise. In
the absence of a plasma, the signal fell by a factor of 8–
10, and it is this level that was hereinafter taken as the
background noise.

Figure 9 shows the following characteristics of the
scattered signals measured in the region where the
PLASMA PHYSICS REPORTS      Vol. 29      No. 5      2003
intensity of the signals is maximum: the PDF of the sig-
nal magnitude and the ACF and Fourier spectrum of the
signal. Figure 9c shows a continuous Fourier spectrum
in the frequency range up to 50 kHz (the higher fre-
quencies could not be resolved in this LHD experi-
ment). To construct the PDF and ACF, we only used a
valid signal in the frequency band from 1 to 50 kHz
(with a signal-to-noise ratio of 8–10). The PDF of the
scattered signal (Fig. 9a) differs substantially from a
Gaussian distribution: the third and fourth moments are
equal to M3 = –0.15 and M4 = 6.29, respectively. The
probability of the observation of large-amplitude scat-
tered signals (rare events that fall beyond the limits of
three standard deviations) for this distribution is much
higher than for a Gaussian distribution. Figure 9d
shows a part of the PDF for large fluctuation magni-
tudes and the tail of a Gaussian distribution. The ACF
in Fig. 9b is similar to the ACF of structural-turbulence
fluctuations [5, 6]. The autocorrelation coefficient
decreases slowly as the delay time increases, and the
oscillating tail of the ACF comprises up to 15% of the
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energy of the scattered signal.6 It follows from this that
the time sample of the magnitudes of plasma fluctua-
tions in the central region of LHD is not homogeneous
and independent, as is the case of the L-2M time sam-
ples (see Section 3.1). In this case too, we may assume
the presence of some influence function in the turbu-
lence of the high-temperature LHD plasma. We note
that quasi-harmonics were also observed in a wide
wavelet spectrum of the same time samples of scat-
tered-signal magnitudes [23].

It is expedient to determine the characteristics of the
increments in the magnitudes of the scattered signals.
These characteristics depend on all of the growth and
damping rates of the processes resulting in density fluc-
tuations [10]. Figure 10 illustrates the PDF, ACF, and
Fourier spectrum of the increments in the magnitudes
of the scattered signals. The PDF of the increments
(Fig. 10a) is more symmetric (M3 = 0.07) than the PDF
of the fluctuation magnitudes (Fig. 9a), but, as before,
it differs from a Gaussian distribution and has heavy
tails (M4 = 7.1). The PDF asymmetry points to the
absence of equilibrium between the growth and damp-
ing of fluctuations. It is seen from the shape of the ACF
(Fig. 10b) that the time sample of the increments in the
scattered-signal magnitudes is more homogeneous and
independent than in the previous case. The Fourier
spectrum of the increments (Fig. 10c) is closer to a uni-
form noise spectrum. Possibly, numerical simulations
of homogeneous and independent samples of the incre-
ments in the scattered-signal magnitudes (by analogy to
the simulations of the samples of the increments in a

6 The ACF of the background noise is usually a δ function and does
not contribute to the tails the ACF of the valid signal.
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Fig. 6. PDFs of density fluctuations (a) in the central region
and (b) in the edge plasma of L-2M.
fluctuating flux [32]) could provide additional informa-
tion on the type of a random process in the central
region of LHD.

3.3. Experiments on 2-mm Scattering in TJ-II

As in the studies of fluctuations in the two above
devices, here, we measured the frequency spectra, the
PDFs of the magnitudes, and the ACFs of the density
fluctuations. The measurements were carried out under
different experimental conditions: under standard oper-
ating conditions of the device, during the propagation
of a cold-nitrogen pulse, and in the different configura-
tions of the magnetic field. In this paper, the results of
the measurements in the first two regimes only are pre-
sented.

Figure 11 shows the frequency Fourier spectra of
plasma density fluctuations with wavenumbers of 3 and
6 cm–1. The wide frequency spectra extend to 130 kHz
(for 3 cm–1) and 240 kHz (for 6 cm–1), and the widths of
the spectra are close to those of the fluctuation spectra
in the central region of L-2M. The fluctuation spectrum
with the greater wavenumber is broader than that with
the smaller wavenumber; probably, this is related to the
dispersion of plasma oscillations.7 The presence of
quasi-harmonics in the wavelet spectra for these
regimes complicates the determination of the disper-
sion and indicates the possible existence of stochastic
structures in the plasma. The signal-to-noise ratio for
these measurements was lower than for L-2M and LHD
and did not exceed 4–5.

In the context of this paper, it seems interesting to
describe the results obtained in three experiments in
which abrupt changes in the spectral characteristics of
plasma fluctuations were observed. Such changes
occurred during plasma cooling. The plasma cooling
was observed in three cases: in a decaying plasma after
the gyrotron was switched off, after a minor disruption
occurring during the normal operation of the gyrotron,
and after puffing nitrogen at the plasma edge (the cold-
pulse propagation experiment [33]). The response of
the fluctuations to the local cooling was always the
same. Figures 12 and 13 demonstrate the changes in the
fluctuation amplitudes when the electron temperature
locally decreased in an experiment on the propagation
of a cold-nitrogen pulse and after a minor disruption,
respectively. For the discharge with a minor disruption,
the signals of plasma density, gyrotron radiation, and
electron cyclotron emission at the radius r/a ~ 0.5 are
also shown. When the minor disruption occurred during
gyrotron operation, the temperature decreased and the
plasma density insignificantly increased in the region
where fluctuations were measured. In both cases, as the

7 Unfortunately, we failed to determine with certainty to what
extent the widths of the spectra depend on the plasma dispersion
and to what extent they are affected by the different sensitivities
of the measurement channels of the 2-mm scattered diagnostics
for fluctuations with wavenumbers of 3 and 6 cm–1.
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Fig. 7. ACFs of the magnitudes of the plasma density fluctuations in the (a) central region and (b) edge plasma of L-2M.
temperature decreased, the amplitude of the fluctua-
tions increased by a factor of 2–4. At the same time, the
frequency spectrum narrowed and the mean frequency
decreased. In Figs. 12 and 13, the time intervals on
which the Fourier spectra were determined are marked
by shaded rectangles (a) and (b). After the plasma cool-
ing, the half-width of the spectrum in Fig. 12 decreases
by a factor of 4 (from 120 to 30 kHz) and in Fig. 13, it
decreases by a factor of 5 (from 150 to 30 kHz). Hence,
a decrease in the local temperature results in the appear-
ance of intense low-frequency harmonics in the fre-
quency spectrum of plasma fluctuations. For the same
regimes, we constructed the PDFs of the fluctuation
magnitudes for normal discharge conditions and after
cooling. Unlike non-Gaussian distributions of the fluc-
tuation magnitudes in the central regions of L-2M and
LHD, the distributions observed at the edge of the hot
plasma region in TJ-II appeared to be close to Gauss-
ians. For the same experiments, we calculated the ACFs
of the fluctuations, which appeared to be close to δ dis-
tributions; no tails were detected in the ACFs. The tails
in the ACF and PDF were probably not resolved
because of the low signal-to-noise ratio. We note that,
in the previous experiments in the L-2 stellarator [2, 5],
nonzero tails were observed in the ACFs of the fluctua-
tions, which were also measured by the 2-mm scatter-
ing diagnostics at the middle of the plasma radius. For
this reason, in order to reveal the difference from a
Gaussian distribution, we applied a more sensitive
method of numerical R/S analysis.
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The duration of a steady-state discharge in TJ-II
attains several hundred milliseconds. Hence, under cer-
tain conditions, we could obtain stationary time sam-
ples of the fluctuation magnitudes with the total number
of points larger than 105. Such long samples allowed us
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to apply R/S analysis,8 which more definitely shows the
presence of a long-living component in the signal than
the ACF or the histogram tails. With this method, we
estimated the Herst parameter H [31], which character-
izes the dependence between distant events. Different
processes are characterized by different values of the
Herst parameter: H = 1 for a regular process, H = 0.5 for
a Gaussian process, H > 0.5 for a self-similar process
with a positive correlation, and H < 0.5 for a self-simi-
lar process with a negative correlation. Previously, we
succeeded in distinguishing self-similar (hyperbolic)
tails in the PDF of the fluctuation magnitudes for the
structural ion-acoustic turbulence [9]. Figure 14 shows
the logarithm of the increments in the fluctuation mag-
nitudes versus the logarithm of the delay time (for com-
parison, the same line is drawn for a Gaussian process).
The Herst parameter is equal to H = 0.76, which unam-
biguously indicates that the time samples of the magni-
tudes of plasma density fluctuations are described by a
self-similar process with a positive correlation. Hence,
the plasma density fluctuations in TJ-II are described
by a non-Gaussian process, as is the case of density
fluctuations in the central regions of L-2M and LHD.
Consequently, the tails of the PDF and ACF of the fluc-
tuation magnitudes in TJ-II exist but are not resolved in
the experiment.

4. DISCUSSION OF RESULTS

When studying the fluctuations in plasma experi-
ments, a question usually arises as to the source of these
fluctuations, i.e., the nature of plasma instability. If the
initial instability totally determines the fluctuations,
then the knowledge of its parameters allows one to ade-
quately describe the plasma process. A different situa-
tion occurs when studying the structural strong turbu-
lence in a plasma. In the formation of a steady-state
structural strong turbulence, not only one or several ini-
tial instabilities but also many additional nonlinear pro-
cesses are involved. These nonlinear processes form
stochastic plasma structures, govern the nonlinear
interaction between structures of the same type and the
mutual action of structures of different types, govern
the processes of the nonlinear decay and aperiodic sup-
pression of fluctuations, etc. Knowledge of the linear

8 For a time sample of a random signal of length n, X ≡ {Xi: t = 1, 2,

…, n} with the average (n) and the mean square value S2(n), the
ratio R/S is defined as 

 = , 

where Wk = X1 + X2 + … + Xk – (n). The ratio R/S is the range
of accumulation divided by the standard deviation of the incre-
ments for a certain time interval (s', s' + t), where s' is an arbitrary
initial instant. To a first approximation, the points in a plot of the
logarithm of R/S versus the logarithm of time for various time
intervals are concentrated about a straight line with the slope H
[31].
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mechanisms for the development of plasma oscillations
is not enough to adequately describe the final turbulent
steady state. The above studies of fluctuations in the
central plasma regions in three stellarators by micro-
wave scattering techniques showed that, in these exper-
iments, we observed steady-state low-frequency
plasma turbulence. The experiments on studying this
steady-state turbulence are still far from being com-
pleted. Therefore, only some preliminary conclusions
can be made about the linear and nonlinear plasma
mechanisms forming turbulence in high-temperature
plasma.

When discussing the results of the above experi-
ments, we should first to show that the measured states
of the fluctuations in a high-temperature plasma of the
three devices are steady states with strong structural
turbulence. Second, we should discuss linear plasma
instabilities that can initiate fluctuations in the given
frequency and wavenumber ranges. Finally, we should
propose the possible structural or other nonlinear
plasma processes that can be responsible for the forma-
tion of a stable steady state.
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increments in signals scattered by fluctuations in the high-
temperature LHD plasma.
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Let us list the factors indicating that, in the plasmas
of all three devices, we observed the low-frequency
steady-state plasma turbulence. In all of the experi-
ments, we measured low-frequency fluctuations with
nearly fixed wavenumbers: k ~ 20 cm–1 in L-2M, k ~
30 cm–1 in LHD, and k = 3 and 6 cm–1 in TJ-II. In all
these cases, the fluctuations had wide frequency Fou-
rier spectra and wide wavelet spectra containing quasi-
harmonics. Such Fourier and wavelet spectra are typi-
cal of a turbulent state. The characteristics of the time
samples of scattered signals, namely, the ACFs with a
narrow first peaks and nonzero tails, non-Gaussian
PDFs, and quasi-harmonics in wavelet spectra, indi-
cated the strong structural turbulence. The steady-state
character of this turbulence was confirmed by the fact
that the first four statistic moments (the average, disper-
sion, skewness, and kurtosis) of the fluctuation magni-
tudes were constant in time. Hence, in the high-temper-
ature plasma of all three devices, we observed the steady-
state strong structural plasma turbulence. Figure 15
shows the time dependences of the plasma density and
the four first moments of the time sample of a signal
scattered by density fluctuations with k = 6 cm–1 in the
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2-mm scattering diagnostics in TJ-II. The time intervals on which Fourier spectra (a) and (b) were determined are marked by shaded
rectangles.
TJ-II device. It can be seen that the first four statistic
moments come to a steady state as the plasma density
and temperature reach their steady levels. In all of the
other measurements, we also observed steady-state tur-
bulence when the average plasma density and electron
temperature reached their steady levels.

Let us now consider the initial plasma instabilities
that can give rise to the oscillations in the wavenumber
and frequency ranges observed in the experiments in
L-2M, LHD, and TJ-II. The generation of low-fre-
quency oscillations with frequencies up to 50 kHz
(LHD), 150 kHz (L-2M), and 200 kHz (TJ-II) can be
attributed to the onset of drift-dissipative instability
[34] and instabilities driven by trapped particles [35].
Here, we do not consider the MHD instabilities that
were observed in tokamaks [36], because in our scatter-
ing experiments, we did not perform simultaneous
measurements of the MHD activity in the L-2M and
LHD devices. However, such measurements were per-
formed in the TJ-II device. In TJ-II, the sharp change in
the spectra of the scattered signals and their correlation
with magnetic-probe signals were only observed at cer-
tain specific magnetic field configurations with the 3/2
and 5/4 resonances (narrow spectra of magnetic-probe
signals in these magnetic field configurations were also
observed in the previous TJ-II experiments [37]). Since
we still cannot offer an adequate explanation for these
results, we do not present them in this paper. In usual
configurations, the wide fluctuation spectra described
above were not accompanied by MHD activity and no
correlation with magnetic probe signals was observed.

The onset of drift-dissipative instability gives rise to
oscillations that are characterized by different disper-
sion in different frequency ranges [34]:

(i) For frequencies in the interval k||vTi < ω < k||vTe,

the dispersion relation is ω1 = k⊥ /(1 + )Ωern,

where v s = (Te/M)1/2, ρs = v s/Ωe, and  = |dlnn/dr |.
(ii) For frequencies in the interval k||v s < ω < k||vTe,

the dispersion relation is ω2 = Ωern/k⊥ .

The first interval corresponds to frequencies that are
much higher (because of the high temperature in the
central region) than the fluctuation frequencies
observed in the experiments. For the second frequency
interval, the instability condition reads as dlnTe/dlnn > 2.
Figure 16 shows the plasma density and electron tem-
perature profiles in L-2M, LHD, and TJ-II for shots in
which the scattering experiments were conducted. For
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the time sample is ~100000.
all of these shots, the temperature profile is narrower
than the density profile and the shapes of the profiles at
different devices are similar to each other, which is typ-
ical of devices of this kind. Figure 17 illustrates the
model profiles of the plasma density and electron tem-
perature and the condition for the onset of drift-dissipa-
tive instability. In calculations, the temperature profile
was approximated by a second-order parabola and the
density profile was approximated by a sixth-order
parabola. For the second frequency interval, the condi-
tion for the onset of instability is easily satisfied in the
plasma core up to r/a ≤ 0.7. Thus, the drift-dissipative
instability can result in low-frequency plasma oscilla-
tions in the observation regions in all three of the
devices; however, the characteristic frequencies, which
are determined by the plasma parameters of each
device, will be different.

In the plasma region that was studied using the
2-mm scattering technique in TJ-II (r/a ≈ 0.4–0.6), one
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for a time sample of the magnitudes of density fluctuations with k = 6 cm–1 in TJ-II.
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could expect the excitation of oscillations in the fre-
quency range 10–100 kHz.9 The drift-dissipative insta-
bility, which is caused by the difference between the
density and temperature gradients in the plasma, can
give rise to oscillations in TJ-II. In this case, the char-
acteristic oscillation frequency should decrease after
plasma cooling, as was actually observed in the experi-
ment. On the other hand, the typical inversely propor-
tional dependence of the frequency on the wavenumber
did not take place in the TJ-II experiment.

In the gyrotron-scattering region in the L-2M stel-
larator (r/a ≈ 0.3), oscillations may be excited in the
frequency range 10–30 kHz. Hence, only very low-fre-
quency oscillations in L-2M can be associated with
drift-dissipative instability.

The onset of drift-dissipative instability in the cen-
tral region of the LHD device (r/a ≈ 0.2) gives rise to
oscillations with frequencies of about 1 kHz. It should
be recalled that above we considered the excitation of
oscillations immediately in the observation region.
However, we may suggest that higher frequency oscil-
lations excited far from the center (for example, in

9 The characteristic frequencies were estimated assuming k|| ≈ 5 ×
10–2 cm–1 for the L-2M and TJ-II devices and k|| ≈ 10–2 cm–1 for
LHD.
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LHD, 10-kHz oscillations caused by this instability
arise at r/a ≈ 0.4) can propagate into the central region.

The instability driven by trapped electrons [35] can

appear only in the region where   > 0. The con-

ditions for the onset of this instability are illustrated in
Fig. 17. It can be seen that, for a flat plasma density pro-
file and parabolic temperature profile, plasma oscilla-
tions can arise at a distance r/a ≥ 0.25 from the center.
If the plasma density profile has a minimum in the cen-
ter (Fig. 16), the instability driven by trapped electrons
cannot develop. Previously, it was shown that this insta-
bility could give rise to oscillations in the L-2M [24]
and ATF [25] plasmas. The oscillations are excited in
the frequency range ω2 < νe/εh, where νe is the elec-
tron–ion collision frequency and εh is a small parameter
defined as a function of the helical components of the
magnetic field (for tokamaks, this parameter is equal to
εh ≈ 0.2, and for stellarators, it depends on the minor
radius and varies in the range εh ≈ 0.1–0.3). For all three
devices, these frequencies do not exceed 30 kHz. In TJ-
II, the instability driven by trapped electrons can give
rise to fluctuations at middle radii. In L-2M and LHD,
this instability also leads to the excitation of oscilla-
tions at middle radii; however, for these oscillations to
penetrate into the measurement region (the central
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plasma region), there should exist a certain mechanism
for their propagation.

Thus, the experimental results, namely, ACFs with
nonzero tails, wavelet spectra with quasi-harmonics,
and non-Gaussian PDFs of the fluctuation magnitudes,
indicate the possibility of the existence of stochastic
plasma structures in a high-temperature plasma. The
subject of our further studies will be to find out what
these structures are; what their nature is; and how close
they are to drift vortices, solitons (plasma density cavi-
ties with trapped high-frequency oscillations), or other
nonlinear structures.

5. CONCLUSIONS

The results of the first scattering experiments in the
L-2M, LHD, and TJ-II stellarators can be formulated as
follows:

(i) Steady-state strong structural plasma turbulence
was observed in the high-temperature plasma of all
three devices.

(ii) At least two plasma instabilities—the drift-dissi-
pative instability and the instability driven by trapped
electrons—can give rise to fluctuations.

(iii) Stochastic plasma structures can exist in the
high-temperature plasma of these devices.

As one of the possible scenarios of the development
of plasma turbulence, we can propose a scenario similar
to the formation of the steady-state low-frequency
structural turbulence [5, 8]. Plasma oscillations are
excited due to linear instabilities; after these oscilla-
tions reach a certain threshold amplitude, the processes
pass into the nonlinear stage and nonlinear stochastic
structures form. Then, nonlinear interaction arises
among the structures of the same type (coalescence and
decay) or among the structures of different types. The
characteristic times of these processes are longer than
the inverse linear growth rates. When describing this
interaction, it is necessary to take into account all of the
accompanying processes: the drift of the structures
from the region where they were formed, linear decay,
the suppression of instability because of the change in
the local parameters (e.g., local heating), etc. With a
continuous inflow of energy into an open system,10 a
universal state with strong structural turbulence is
established in it, irrespective of the type of linear insta-
bility. It was demonstrated more than once that, in a
low-temperature plasma, the characteristics of the
strong low-frequency structural turbulence are inde-
pendent of the type of initial instability and even are
independent of the type of plasma device. For these
steady states to occur, it is necessary and sufficient that
the oscillation amplitudes be sufficiently large, nonlin-
ear processes come into play, and stochastic plasma
structures arise. In this case, random plasma processes

10Here, the term “open system” is used in a thermodynamical
sense.
are, as a rule, no longer described by a Gaussian distri-
bution. The probabilities of both rare events with large
amplitudes (in comparison with the mean fluctuation
amplitude) and rare events with superfast growth or
damping (in comparison with the linear growth or
damping rates) increase.
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Abstract—A study is presented of the distribution functions of the fluctuations of the ion saturation current and
floating potential measured by Langmuir probes in the edge plasma of the U-3M torsatron. It is shown that these
distribution functions may be classified as stable Lévy distributions. Using the percentile method, stable-distri-
bution parameters, namely, the Lévy index and the scale factor for different probe positions, are estimated.
These parameters are quantitative characteristics of the intensity and intermittency of turbulence in the edge
plasma of the torsatron. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that edge-plasma turbulence, which
is characterized by an anomalously high level of fluctu-
ations of the charged particle density and electrical
field, plays a decisive role in the generation of anoma-
lous particle and heat fluxes from the plasma confine-
ment region in various types of closed magnetic con-
finement systems (see, e.g., [1, 2] and the references
cited therein). This was confirmed by experiments car-
ried out in the Uragan-3M (U-3M) stellarator–torsatron
[3, 4]. In experimental investigations, much attention is
paid to the analysis of the statistical properties of fluc-
tuations. These investigations are important for con-
structing adequate theoretical models of turbulence and
anomalous transport. Thus, in the closing procedures
used in the plasma turbulence theory, it is usually
assumed that the statistical properties of the fluctuation
processes are close to the features of a Gaussian ran-
dom process. When deriving the turbulence equations,
this assumption permits one to express the odd fluctua-
tion moments through the higher order even moments,
which then split into binary moments according to the
splitting rule for Gaussian random processes (see, e.g.,
review [5]). In particular, this assumption implies that
the probability density functions (PDFs) of the fluctua-
tion magnitudes have asymptotics that decrease rapidly
with increasing fluctuation magnitude. Qualitatively,
this means that large fluctuation magnitudes (e.g., as
large as several standard deviations) are very rare.
However, in experiments carried out in different
devices, density and potential fluctuations with an
“explosive” (i.e., containing sharp spikes) temporal
structure were observed in the edge plasma [6–9]. Such
a behavior of random signals is a consequence of the
plasma turbulence intermittency. Because of the pres-
ence of spikes, the PDF of the fluctuations may differ
1063-780X/03/2905- $24.00 © 20380
greatly from a Gaussian process. This feature is clearly
shown in the realizations of the local radial particle flux
[2, 9].

To characterize non-Gaussian properties of the PDF,
one traditionally uses the third and fourth moments of
the PDF, i.e., the skewness and kurtosis [10]. The kur-
tosis is often regarded as a measure of the intermittency
[5]. More detailed information about the PDF is also of
particular interest because it allows the distribution to
be assigned to a particular class of the probability laws
widely used in various applications. A detailed statisti-
cal analysis of the characteristics of turbulent particle
fluxes was performed in [2] based on the fluctuation
measurements in the plasma of the L-2M stellarator and
the TAU-1 model device. The authors of [2] arrived at
the conclusion that the PDF of the local flux increments
can be described by the scale mixtures of Gaussian
laws. In particular, in the case of drift turbulence, the
PDF of the increments is described by a Laplacian dis-
tribution.

In this paper, we study the PDFs of the fluctuations
of the ion saturation current (ISC) and floating potential
(FP) measured by Langmuir probes in the edge plasma
of the U-3M torsatron. As in studying electrostatic tur-
bulence in the edge plasmas of many other closed mag-
netic confinement systems (see, e.g., [11]), it was
assumed that the contribution of the electron tempera-
ture fluctuations to the ISC and FP fluctuations is neg-
ligible and these fluctuations were considered to be pro-
portional to the plasma density and potential fluctua-
tions, respectively. In the context of the present paper,
this assumption is not of fundamental importance. The
analysis performed shows that the recorded fluctuations
are distributed according to stable Lévy laws. An
important characteristic feature of these distributions is
the existence of nonexponential, slowly decreasing
003 MAIK “Nauka/Interperiodica”
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power-law asymptotics. In our opinion, these observa-
tions are of interest for both experimentally studying
the fluctuation processes in other devices and construct-
ing new theoretical models of plasma turbulence and
anomalous transport.

2. STABLE DISTRIBUTIONS AND RANDOM 
LÉVY MOTION. CONCISE INFORMATION

Stable probability distributions, the theory of which
was founded by the French mathematician P. Lévy [12],
are a remarkable class of the probability laws. The
importance of these distributions stems from the limit-
ing theorems formulated and proved in the 1930s in the
works by Lévy, A.Ya. Khinchin, B.V. Gnedenko, and
W. Doeblin (see, e.g., [13]). According to these theo-
rems, stable distributions (and only they) are limiting
for the distributions of the sums of independent, uni-
formly distributed random variables. This means that
these distributions (like Gaussian distributions) take
place when the evolution of a physical system and/or
the result of a random experiment are determined by the
sum of a large number of random factors. That is why
stable Lévy distributions serve as mathematical models
for a wide class of measured random processes that do
not obey Gaussian statistics. An important feature of
stable distributions is the existence of power-law
asymptotics that decrease as |x |–1 – α at x  ∞, where
α is the Lévy index (0 < α < 2). It follows from this that
the higher order moments with the order q ≥ α (in par-
ticular, dispersion) diverge.1 For this reason, the results
from processing experimental data may be sensitive to
the sample size. This circumstance means that care
should be taken in processing experimental data [15–
17]. One of the methods allowing one to estimate the
parameters of stable distributions when working with
small samples is described in Section 4.

A classical example of a stable distribution, which
was known in physics before the works by Lévy, is the
Holtzmark distribution [18, 19]. A number of allied
examples were given in the monograph [20], which was
for a long time the only monograph in the world litera-
ture devoted to stable laws. Various examples from
physics, financial mathematics, biology, and geology
were collected together in the recent monograph [21].

The limiting theorems of the probability theory and
the remarkable properties of stable probability distribu-
tions form a mathematical basis of the Lévy motion—a
type of random walk, which is the natural generaliza-
tion of the Brownian motion. In physics, interest in the
Lévy motion is caused by the problems of anomalous
diffusion, in which the mean square displacement
increases not as a linear function of time t (as is the case

1 Note that, even long before Lévy [starting with works by
V. Pareto (1897)], distributions with power-law asymptotics
(Pareto distributions) had been widely used in the problems of
economical statistics (see [14]). In contrast to stable distributions,
these distributions are not limiting in terms of the limiting theo-
rems of the probability theory.
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of the usual Brownian motion), but either more slowly
(subdiffusion) or more rapidly (superdiffusion) than t.
The term “Lévy motion in space” or “Lévy flights in
space” is applied to superdiffusion phenomena, and the
term “Lévy flights in time” is applied to subdiffusion
phenomena. In fact, this terminology is appropriate as
a very simple qualitative picture of anomalous diffusion
(see [22]). At present, it is clear that anomalous random
processes and anomalous diffusion phenomena are
often met in nature (see the many examples in [22–26]).
The law of subdiffusion particle walk in a random mag-
netic field was deduced in [27]. Numerical simulations
of the anomalous transport of magnetic field lines in a
turbulent magnetic field demonstrate sub- or superdif-
fusion at low levels of the field fluctuations and Gauss-
ian diffusion at high fluctuation levels [28, 29]. Numer-
ical simulations of the diffusion of test charge particles
moving in turbulent electrostatic fields that are solu-
tions to the Hasegava–Mima equation demonstrate the
anomalous time-dependence of the displacement
squared [30]. These problems require constructing
models of Lévy motion and developing various effi-
cient methods for estimating the statistical characteris-
tics from the experimental data. Two important types of
Lévy motion (usual motion and fractional motion) were
studied in detail in [31]. On the other hand, the kinetic
description of the Lévy motion requires the application
of fractional derivatives, which have now become
actively studied (see [26, 32, 33] and the references
cited therein). A fractional Fokker–Planck equation
containing fractional time and space derivatives was
proposed in [34] as a phenomenological equation for
the PDF of density fluctuations in the DIII-D tokamak.
A fractional Fokker–Planck kinetic equation contain-
ing the fractional velocity derivative was proposed in
[35] for describing the relaxation, non-Maxwellian
steady states, and superdiffusion of plasma in a mag-
netic field.

3. EXPERIMENTAL CONDITIONS 
AND PRELIMINARY DATA ANALYSIS

The U-3M device is a three-pole (l = 3) torsatron
with nine periods (m = 9) of the helical magnetic field.
The major radius of the torus is R0 = 1 m, the mean
plasma radius is  ≈ 0.12 m, and the internal radius of
the casings of the helical magnetic field coils is ac =
0.19 m. The entire magnetic system, including the heli-
cal coils and the vertical magnetic field coils, is placed
into a vacuum chamber 5 m in diameter. Fluctuation
studies were performed at a toroidal magnetic field of
Bφ = 7.2 kOe. The rotational transform on the boundary
of the plasma column was ι( )/2π ≈ 0.4. A hydrogen
plasma was produced and heated by an RF field in the
regime of the multimode Alfvén resonance [36]. The
duration of the heating RF pulse at a frequency of
8.8 MHz was 25 ms. With continuous hydrogen injec-
tion into the vacuum chamber, the quasi-steady plasma
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density in the confinement volume and near its bound-
aries was determined by the balance between the ion-
ization of the gas entering this relatively small volume
from a much larger surrounding volume and the plasma
loss from the confinement volume. In these studies, the
initial hydrogen pressure (several units of 10–5 torr) and
the RF power (~200 kW) were chosen such that the
electron density averaged along the central chord was
about  . 2 × 1018 m–3 almost throughout the entire
RF pulse. The central electron temperature, which was
measured by the emission intensity at the second har-
monic of the electron gyrofrequency, amounted to
Te(0) ≈ 0.3 keV. The ion temperature was measured by
a mass–energy analyzer of charge-exchange neutrals;
the line of sight was tangent to the minor axis of the
torus. The measurements showed that the temperature
of the bulk (94%) ions was Ti ≈ 0.1 keV.

Electrostatic fluctuations in the edge plasma were
detected with four movable single Langmuir probes.
The collecting part of each probe was a molybdenum
wire 0.5 mm in diameter and 3 mm in length. The
probes were located in the vertices of a 3 × 3 mm
square. One pair of the probes with the bias voltage –
120 V was oriented in the poloidal direction and mea-
sured the ISC and another pair measured the FP fluctu-
ations. Figure 1a shows the top view of helical mag-
netic field coils I, II, and III and the positions of the RF
antenna and the poloidal section of the torus in which
the probes were located. This section with coils I, II,
and III; the movable Langmuir probes (LP); and the
calculated boundary structure of the magnetic field in
the form of a Poincaré map of the magnetic field lines
are shown in Fig. 1b. The probes could be displaced as
a whole along the major radius R of the torus at a dis-
tance of 1 cm above the equatorial plane. In this exper-
iment, fluctuations were measured at radii of 110.75 ≤
R ≤ 113 cm in four shots for each probe location.

To measure ISC and FP fluctuations, we used ten-bit
analog-to-digital converters (ADC) with a sampling
rate of 5 µs per a channel. The ADCs allowed us to
record up to 4000 points in one channel. Special mea-
surements showed that, at a fixed probe position near
the plasma boundary, the mean values of the ISC and
FP fluctuations in the quasi-steady stage of the dis-
charge remained constant within ±2% during the
recording of the fluctuation components. The spread in
the mean values of the ISC and FP fluctuations from
shot to shot did not exceed 10%. The steady-state char-
acter of the measured fluctuation signals was verified
by the standard criteria of series and inversions [37]. A
series is a sequence of points with the same sign of the
deviation from the mean value. For the given confi-
dence coefficient equal to 0.05, the confidence range of
the number of series for the stationary fluctuations can
be found from the tables in [37]. For the inversion cri-
terion, the confidence coefficient was also chosen to be
0.05. The inversion criterion is more appropriate for
revealing a monotonic trend than the series criterion,

ne
but it is not so efficient in finding oscillation-type
trends.

Typical signals of ISC fluctuations at different probe
positions R = (a) 111, (b) 112, (c) 112.5, and (d) 113 cm
are shown in Fig. 2. On the top, these signals are shown
on the same scale. It is seen that the fluctuation intensity
decreases with increasing radius R. On the bottom, the
same signals are shown on enlarged scales to highlight
an essential feature in the fluctuation behavior. It can be
seen that the relative magnitude of the fluctuation
spikes increase as the probe is displaced outward from
the plasma. In other words, the degree of the intermit-
tency of the turbulent plasma increases.

Figure 3 presents the results of estimating the devi-
ation of the measured PDF from a Gaussian distribu-
tion. Figures 3a and 3b show the kurtosis

(1)

as a function of the probe position for (a) ISC and
(b) FP fluctuations. Here, the angular brackets stand for
the average over the sample, namely, the dispersion and
the fourth-order moment. The positive values of K cor-
respond to PDFs that have flatter asymptotics than a
Gaussian distribution. The dependences presented
show that the PDF of the ISC fluctuations is close to
Gaussian at distances R < 112 cm. It is seen that, at
large radii, it deviates from Gaussian, and the deviation
increases with R. The PDF of the FP fluctuations devi-
ates from Gaussian in the entire measurement region,
except for maybe one point. The normal distribution
criterion provides one more quantitative piece of evi-
dence of the non-Gaussian character of fluctuations
[37]. In this method, a discrete distribution f(xj) (where
xj = –N∆x/2 + j∆x; j = 1, 2, …, N; and ∆x is the cell size)
of the experimental data is constructed and the devia-
tion of the distribution from the normal distribution is
evaluated using the sampling statistics,

(2)

where g(xj) is the discrete normal (Gaussian) distribu-
tion. The region where the hypothesis about a normal
(Gaussian) distribution of the experimental data is valid

is determined by the fitting criterion χ2 ≤ , where

the theoretical value of  for the given significance
level equal to 0.05 is taken from tables (see Table A3
and the details of the applied method in [37]). The
results of applying the normal distribution criterion are
shown in Figs. 3c and 3d. The symbols show the value
of χ2 as a function of the probe position for (c) ISC and
(d) FP fluctuations. It can be seen that the PDF of the
ISC fluctuations is close to normal at R < 112 cm and
deviates from normal as R increases. A characteristic
feature of the FP fluctuations is the deviation from a
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Fig. 1. (a) Top view of helical magnetic field coils I, II, and III of the U-3M torsatron and the positions of (1) the RF antenna and
(2) the poloidal section of the torus in which the probes were located; (b) the calculated Poincaré map of the boundary magnetic
field lines and the position of Langmuir probes (LP) in the poloidal cross section in which probe measurements were carried out.
The vertical Z-axis is directed parallel to the major axis of the torus, and the horizontal axis is directed along the major radius R.
normal distribution at all values of R. It can easily be
seen that the dependences shown in Figs. 3a and 3b are
in qualitative agreement with those in Figs. 3c and 3d.

Hence, the estimations of the PDF deviation from a
Gaussian distribution show that the measured fluctua-
PLASMA PHYSICS REPORTS      Vol. 29      No. 5      2003
tions do not obey Gaussian statistics in almost the entire
measurement region. Now, we pass over to a more
detailed analysis of the properties of the PDFs of ISC
and FP fluctuations. For this purpose, we first consider
a method for determining the parameters of stable dis-
tributions from the experimental data.
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4. METHOD FOR ESTIMATING THE STABLE-
DISTRIBUTION PARAMETERS

Let us briefly outline the method used below to esti-
mate the stable-distribution parameters. We restrict our-
selves to the case of symmetric stable distributions,
because the processes considered in this paper are quite
adequately described by these distributions. The char-
acteristic function of the symmetrical stable distribu-
tion pX(x; α, σ) of the random variable X has the form
[13, 38]

(3)

where 0 < α ≤ 2 and σ > 0 is the scale factor. The Lévy
index α = 2 corresponds to a Gaussian distribution that
can be derived from Eq. (2) using the inverse Fourier

p̂X k; α σ,( ) x ikx( )pX x; α σ,( )expd

∞–

∞

∫=

=  σα
k

α
–( ),exp
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transform: pX(x; 2, σ) = (4πσ2)–1exp(–x2/4σ2). At α < 2,
it follows from Eq. (2) that the asymptotics are described
by a power-law function: pX(x; α, σ) ∝ σ α |x|–1 – α as
x  ±∞. The physical sense of the parameters α and
σ is different. The Lévy index characterizes the rate at
which the PDF decreases at large values of the argu-
ment; in other words, α characterizes the magnitude of
the spikes observed in the realizations. The presence of
these spikes is related to the slowly decreasing power-
law asymptotics of the stable distribution. The smaller
the α value, the greater the amplitudes of the spikes
observed in the realizations against the background
noise. As for the scale factor σ, this quantity character-
izes the half-width of the distribution, rather than the
spike magnitude; therefore, it is a quantitative charac-
teristic of the background against which large spikes
occur. In other words, σ is a measure of the background
intensity.
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function rc(α) = |x |c/ |x |44 (c = 88, 92, 96) used to determine the index α when analyzing the experimental data.
Let us make two notes concerning stable distribu-
tions.

(i) The class of stable distributions also includes
asymmetric stable distributions characterized, in addi-
tion to the parameters α and σ, by the asymmetry
parameter β, which takes values from –1 to 1 [20, 21,
38]. For symmetric stable distributions, we have β = 0.
For our experimental data, this parameter is close to
zero and the limited sample sizes do not allow us to
estimate it with a reasonable accuracy. However,
numerical simulations with the help of a generator of
random-number sequences that obey asymmetrical sta-
ble distributions with β in the range from –0.5 to +0.5
(see the generator description in [38, p. 46]) show that
this method for determining the Lévy index α is robust
even at a small distribution asymmetry.

(ii) Stable distributions that are met in practice have
one more parameter, namely, the cutoff parameter xmax,
above which the power-law character of the asymptot-
ics of a stable distribution gets broken (“truncated” sta-
ble distributions by the terminology of [39]). The
parameter xmax is determined by the physical nature of
the phenomenon under consideration. Its reliable deter-
mination from the experimental data requires very large
time samples.

The method proposed by us for estimating the
parameters α and σ refers to methods based on the tab-
ulated percentiles of stable distributions [15, 40–42].
The cth percentile of a stable distribution with the
density pX(x; α, σ), where c = 1, 2, 3, …, 100, is the
quantity xc satisfying the relationship [10]

(4)

For symmetrical distributions, it is convenient to oper-
ate with the distributions of the absolute values of a ran-
dom variable. In this case, the cth percentile of the dis-
tribution of the absolute values of a random variable |x |c
is the (c +100)/2th percentile of the symmetrical distri-
bution of the random variable itself. We suggest using a
remarkable empirical property of the 44th percentile of
the distribution p|X |(x; α, σ) of the absolute value of the
random variable X obeying a symmetric stable distribu-
tion: the value of |x |44 with a rather high accuracy is
independent of α in the range 0 < α < 2. Variations of
this percentile around a value of 0.828 (for a standard
stable distribution with σ = 1) do not exceed 0.15%
(Fig. 4a). This allows us to use this percentile for the
normalization of data with an unknown index α and,
thus, to independently estimate the parameters α and σ.
This is important for small samples because it allows us
to improve the estimation accuracy. Thus, the estima-
tion method consists in the following:

(i) We determine the percentile |x |c of the distribu-
tion p|X |(x; α, σ) for a given sample consisting of N ran-
dom numbers Xi , where i = 1, 2, …, N.

Pr X xc≤{ } u pX u α σ, ,( )d

∞–

xc

∫ c
100
---------.= =
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(ii) We estimate the scale factor

(5)

(iii) To estimate the Lévy index α, we calculate the
function

(6)

where c = 90–95. The rc(α) values for each value of c
are compared with the tabulated dependences for p|X |(x;
α, 1). Examples of such dependences for the 88th,
92nd, and 96th percentiles are shown in Fig. 4b. From
the comparison, we find α for each value of c. The final
value of the Lévy index is calculated by averaging the
values determined from the 89th to the 95th percentiles.
This percentile range is the most informative from the
standpoint of the evaluation of the α parameter. At
smaller percentiles, we switch from the asymptotics of
stable distributions to the range of the moderate argu-

σ
x 44

0.828
-------------.=

rc α( )
x c

x 44
---------,=
PLASMA PHYSICS REPORTS      Vol. 29      No. 5      2003
ment values for which the distributions with different α
differ not so strongly. On the other hand, at larger per-
centile values, the accuracy worsens because of the
small number of the sample points corresponding to a
far asymptotic of a stable distribution.

5. PARAMETERS OF THE STABLE 
DISTRIBUTIONS OF TURBULENT 

FLUCTUATIONS

The percentile method described in Section 4 was
tested by us with artificial data generated by a generator
of independent random numbers that have a stable dis-
tribution with given parameters α and σ. The genera-
tion method is described in detail in [31]. We used the
percentile method to estimate the PDF parameters of
the ISC and FP fluctuations. Figures 5a and 5c illustrate
the method for determining the parameter α for a sam-
ple consisting of 1000 points generated by a random-
number generator with α = 1.7. The symbols in Fig. 5a
show the PDF on a half-logarithmic scale for a distribu-
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tion obtained in the numerical experiment. The solid
line corresponds to a stable distribution with the Lévy
index determined using the percentile method (α =
1.73). The dashed lines show a Gaussian distribution
(α = 2, the rapidly decaying curve) and a Cauchy distri-
bution (α = 1, the slowly decaying curve). The α values
determined by the percentile method at c = 89, 90, …, 95
are shown by symbols in Fig. 5c. The value α = 1.73
obtained by averaging over all of the percentile values
used is shown by the horizontal dotted line. Similar
dependences for the ISC fluctuations measured at the
point R = 113 cm are shown in Figs. 5b and 5d. The
symbols in Fig. 5b show the distribution characteristics
obtained from the experimental data. The solid line cor-
responds to a stable distribution with the Lévy index
equal to 1.67. The α values determined by the percen-
tile method are shown by symbols in Fig. 5d. The value
α = 1.67 ± 0.07 obtained by averaging over all the per-
centile values used is shown by the horizontal dotted
line. It follows from Fig. 5 that the percentile method in
combination with numerical simulations allows us to
determine the Lévy index even for relatively small sam-
ples.

Figure 6 shows (a, b) the Lévy indices and (c, d) the
scale factors as functions of the plasma radius for the (a,
c) ISC and (b, d) FP fluctuations. It can be seen in
Fig. 6a that, as the distance from the plasma boundary
increases, the Lévy index for the ISC fluctuations
decreases, the distribution asymptotics become flatter,
and the spikes in the experimental samples become
more distinct. We note that the behavior of the kurtosis
with increasing R (Fig. 3a) agrees qualitatively with the
behavior of the Lévy index α (Fig. 6a): the flatter
power-law asymptotics of stable distributions corre-
spond to the larger positive values of the kurtosis. At
R = 111, 111.25, and 111.5 cm, where the index α (with
allowance for the error bars) is close or equal to 2 (a
Gaussian distribution), the kurtosis takes small negative
PLASMA PHYSICS REPORTS      Vol. 29      No. 5      2003
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values, which also testifies that the dependences shown
in Figs. 3a and 6a are in qualitative agreement.

It can be seen that Figs. 3b and 6b, corresponding to
the FP fluctuations, are also in qualitative agreement:
the smaller α values correspond to the larger kurtosis.
We note that the kurtosis in Fig. 3b is positive over the
entire range of R. This is consistent with the fact that the
index α shown in Fig. 6b is smaller than 2 over the
entire range of R.

Now, let us consider Figs. 6c and 6d. It is seen that
the scale factor σ decreases toward the plasma periph-
ery. This means that the intensity of fluctuations
decreases. Since in this case, the Lévy index changes
only slightly (for the FP fluctuations) or decreases (for
the ISC fluctuations), the decrease in the intensity of
fluctuations means that the relative contribution of the
fluctuation spikes increases. This conclusion agrees
with the behavior of the typical signals shown in Fig. 2.
Hence, the degree of the intermittency of the turbulence
increases toward the plasma periphery, and the quanti-
tative characteristics allowing one to describe this phe-
nomenon are the scale factor σ and the Lévy index α.

6. CONCLUSION

Stable Lévy distributions, which possess unique
properties from a probabilistic standpoint, are often met
in various applications. In this paper, we have shown
that the PDFs of ISC and FP fluctuations measured in
the edge plasma of the U-3M torsatron can be classified
as stable distributions. The parameters of the stable dis-
tributions have been determined by the percentile
method. These parameters serve as quantitative charac-
teristics of the intensity and intermittency of the turbu-
lence in the edge plasma.

The experimental investigations of fluctuations in
U-3M allow us to have fairly long samples and, hence,
increase the accuracy of the estimates. On the other
hand, theoretical models of the fluctuation processes in
the edge plasma are of great interest because they
enable one to demonstrate the appearance of stable dis-
tributions analytically or numerically.
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Abstract—The spectrum of Alfvén eigenmodes in a transversely inhomogeneous plasma with Ohmic dissipa-
tion is studied in the one-fluid MHD approximation. It is established that, along with a discrete spectrum of the
modes confined to the plasma boundaries or the extremes of the Alfvén velocity, there always exists a continu-
ous spectrum of aperiodically damped modes, including those with arbitrarily slow damping rates. It is shown
that the set of eigenmodes is complete. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the ideal MHD approximation, Alfvén waves are
nondivergent plasma motions (i.e., those retaining the
density ρ of each fluid element unchanged) that propa-
gate along the magnetic field B with the Alfvén velocity
cA = B/(4πρ)1/2 and are accompanied by oscillations of
the magnetic field lines analogous to the vibrations of
strings [1].1 In a homogeneous plasma, Alfvén waves,
together with fast and slow magnetosonic waves, con-
stitute a complete set of MHD eigenmodes.

The simplest model for describing a nonuniform
plasma assumes that the plasma is in a straight mag-
netic field B0 and the equilibrium values of ρ0 and B0
depend only on x. The z-axis of the Cartesian coordi-
nate system is chosen to point in the magnetic field
direction. The dispersion relation for Alfvén waves, ω =
cA · k, is such that they cannot be the eigenmodes of the
medium [2, 3], because magnetic field lines that belong
to different x values oscillate at different frequencies
(for a given k ≡ kz) or the oscillations have different
wavelengths (for a given frequency ω). Formally, this
indicates that an elementary perturbation should have
the form

(1)

where δ(z) is the Dirac delta function; i.e., it should be
localized about the surface at which the Alfvén velocity
is equal to ω/k. Consequently, Alfvén waves have prop-
erties similar to those of Van Kampen–Case waves and
it seems natural to consider them as pseudowaves
(according to the classification proposed by Timofeev
[4, 5]). Among the other phenomena compatible with
this line of reasoning are the phenomenon of Alfvén
resonance [4, 6] between perturbations propagating in
the plasma and modes (1) and also the phase-mixing
effect [7]—a shortening of the transverse scale lengths

1 In what follows, Alfvén perturbations will be treated as belonging
to this class of plasma motions.

B e
iωt– ikz+ δ ω ω x( )–[ ] , ω x( )∼ cA x( )k,=
1063-780X/03/2905- $24.00 © 20391
of the initial Alfvén perturbations due to the dephasing
of the oscillations of the neighboring magnetic field
lines.

Going beyond the limits of ideal MHD theory by
taking into account such conservative factors as the
electron (ion) inertia and finite ion Larmor radius
changes the transverse dispersion of Alfvén waves in
such a way that they can again be regarded (at least par-
tially) as the eigenmodes of an inhomogeneous plasma:
there arises a discrete spectrum of eigenmodes local-
ized across the magnetic field and propagating along
the field lines at which the Alfvén velocity is extreme
[8–10]. However, there also remains a continuous spec-
trum of pseudowaves, which is closely related to the
singularity of the equation for eigenmodes at the Alfvén
resonance [11].

Incorporating weak dissipation (e.g., Ohmic dissi-
pation) into the ideal MHD equations makes it possible,
first of all, to describe the conversion of perturbation
energy into heat, in which case the heating is contrib-
uted by both of the above effects: Alfvén resonance (in
a narrow resonance region) and a reduction in the trans-
verse scale of the initial Alfvén perturbation (over the
entire region where the perturbation is localized). For
instance, it is because of the latter effect that the wave
energy E is dissipated according to the law characteris-
tic of pseudowaves [4, 5, 7],

where t is time. As for Alfvén eigenmodes, it was
proven in [2, 4] that they are absent in a plasma with a
monotonic profile cA(x). Later, it was found [4, 12] that
there is an exception: if the plasma has a boundary at
x = x0, then, because of dissipation, there arises a dis-
crete spectrum of damped Alfvén eigenmodes, whose
eigenfunctions are essentially nonzero only in the
vicinity of x0 (see Section 2.2 for details). Timofeev [4]
also supposed that a similar spectrum can arise for a
plasma with a nonmonotonic profile cA(x).

E α t
3

–( ),exp∼
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The objective of this paper is to further investigate
the role of dissipation in the formation of the Alfvén
wave spectrum in a plasma with monotonic and non-
monotonic profiles of the Alfvén velocity. It is shown
that, along with a discrete spectrum, there always exists
a continuous spectrum of aperiodically damped Alfvén
eigenmodes. Moreover, under certain conditions, the
modes of both the discrete spectrum and the continuum
constitute a complete set of eigenmodes.

2. ALFVÉN WAVE SPECTRUM
2.1. Basic Equations and Formulation of the Problem

We consider Alfvén perturbations in which the
plasma moves strictly along the surfaces cA = const. In
this case, the Alfvén waves are decoupled from the
magnetosonic waves, and Alfvén resonance does not
occur. In the model described above, these are perturba-
tions that are independent of y. In such perturbations,
the plasma density remains undisturbed and, in the lin-
ear approximation, the perturbed velocity and per-
turbed magnetic field have only y components and are
described by the equations

which take into account the magnetic field diffusion
(η = const) due to finite conductivity [13]. Evaluating
v y from the first equation and substituting it into the
second equation, we arrive at the following evolution-
ary equation for the structure of Alfvén perturbations in
a transversely inhomogeneous plasma:

(2)

In what follows, we assume that, first, cA(x) is bounded
below, A = mincA(x) > 0; second, k > 0; and third, the
dissipation is weak, η ! aA, where a is the characteris-
tic scale on which the plasma density varies.

The Alfvén waves will be analyzed by using two
models of the plasma: the one in which the profile of the
Alfvén velocity is parabolic (quadratic),

, (3)

and the one in which the profile is linear,

(4)
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For brevity, the models will be referred to as model (3)
and model (4) or simply “the parabolic (quadratic)
model” and “the linear model.”

These fairly simple and convenient models, which
are frequently used in the literature, make it possible to
carry out an analysis for both monotonic and nonmono-
tonic profiles of the Alfvén velocity.

For an elementary perturbation described by one
harmonic in the Fourier expansion of the magnetic field
in z (By = b(x)exp(pt + ikz)), Eq. (2) yields

(5)

The solutions to this equation that are finite over the
entire range of variation of x determine the spectrum of
the Alfvén eigenmodes and their structure. In model
(4), the solutions should satisfy a certain boundary con-
dition at x = 0. We choose this condition to be

(6)

which indicates that the tangential component of the
electric field vanishes at the conducting boundary. We
also switch to the dimensionless variables

.

Below, the tilde will be omitted.

2.2. Discrete Spectrum

We begin with the model in which the Alfvén veloc-
ity is described by parabolic profile (3) and thus has a

maximum at the origin of the coordinates,  = 1 + x2.
In this model, Eq. (5) is the Weber equation

(7)

whose general solution is the superposition of the para-
bolic-cylinder functions U(d, ±λx) [14] with

(8)

For |argp | < π, the functions U(d, ±λx) approach zero
at one of the ends of the x-axis (as x  ±∞, respec-
tively); at the opposite end, they, as a rule, increase
exponentially. By analogy with the problem of the
energy levels of a quantum oscillator [15], the solutions
to Eq. (7) that are finite everywhere are those with half-

d
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integer values of d, d = –(n + 1/2); they are expressed in
terms of the Hermite polynomials Hn(z) [14]:

(9)

The eigenvalue equation

, (10)

where r = p/k, is solvable by radicals as the fourth-order
algebraic equation with respect to r1/2.2 However, the
solutions to this equations in limiting cases,

(11)

and also the graphical representation of the solution in
Fig. 1 are far more illustrative. At this point, the
description of the discrete spectrum of parabolic model
(3) is completed.

Now, we turn to model (4), in which  = 1 + x. The
substitution

(12)

reduces Eq. (5) to the Airy equation [14]

For |argp | < π, the solutions that are finite at x  +∞
have the form

where Ai(z) is the Airy function [14]. Boundary condi-
tion (6) dictates the rule of quantization (cf. formula
(18) in [12])

2 The only physically meaningful solutions to this equation are a

pair of complex conjugate solutions , because the arguments

of the remaining two solutions are |argr | > π.
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where z = –  (n = 1, 2, …) are the zeros of the deriv-
ative of the Airy function, Ai'(z). This rule yields the
eigenvalue equation [cf. Eq. (10)]

(13)

whose physically meaningful solutions are shown in
Fig. 2. The solutions in the above two limiting cases are
as follows:

(14)

In linear model (4), the eigenfunctions of the discrete
spectrum have the form

(15)

Note that the modes of the discrete spectrum in this
model correspond to even modes (n = 0, 2, 4, …) in par-
abolic model (3); i.e., their number is two times smaller.
If we discard boundary condition (6) and continue lin-
ear profile (4) into the region x < 0 in a symmetrical

manner (  = 1 + |x|), then we will obtain a discrete
spectrum consisting not only of the spectrum just deter-
mined but also of the spectrum of odd modes, such that
their eigenfunctions vanish at x = 0 but their derivatives
are nonzero; the corresponding eigenvalues are to be
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Fig. 1. Eigenvalues rn in model (3) for k = 1 and η = 0.01.
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found by replacing  in Eq. (13) with an , where z =
−an are the zeros of the Airy function Ai(z).3 

Let us now analyze the properties of the modes of a
discrete spectrum. We begin by noting that the modes
are small-scale because of their dissipative nature. The
fundamental mode varies on the spatial scale

(16)

(where dimensional units are used and the prime
denotes the derivative with respect to x) in models (3)
and (4), respectively [see relationships (8), (12)]. The
mode itself is localized (on the same spatial scales) near
the point x = 0, at which the Alfvén frequency ω(x) =
cA(x)k is extreme; i.e., in model (3), it is minimum and,
in model (4), it takes on its boundary value. The
remaining modes of the discrete spectrum are also
localized around the point x = 0; moreover, the larger

3 All numbers an and  are positive; the table of their values for
n ≤ 10 and the asymptotic formulas for them at n @ 1 can be
found in [14].
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Fig. 2. Eigenvalues rn in model (4) for k = 1 and η = 0.1.
the mode number n, the larger the scale on which the
mode is localized,

and the smaller the scale on which the mode varies, lns ≈
Lns/n (s = q, l).

The modes of the discrete spectrum are damped
oscillations whose frequency and damping rate
increase with n. The frequency of the fundamental
mode is approximately equal to ω(0); in other words, as
is expected [4, 12], the discrete spectrum is confined to
the plasma boundary (in the linear model) or to the
extreme of ω(x) (in the parabolic model). The damping
rates of all the modes are equal to the viscous damping
coefficients corresponding to the scales on which the

modes vary, δns ≈ η/ . This explains why the damping
rate increases with n and why the modes with moderate
numbers n (such that η1/2n ! 1) in model (3) are
damped slower than those in model (4), whereas the
modes with large n are damped faster [cf. solutions (11)
versus solutions (14) and Fig. 1 versus Fig. 2].

To conclude this section, we compare the discrete
spectrum determined by Eq. (13) with the spectrum
obtained in [12] for the boundary condition b(0) = 0
instead of boundary condition (6) or, equivalently, for
odd rather than even modes. It turns out that, despite
somewhat different formulation of the problem, the
portions of the spectra with moderate values of n not
merely agree qualitatively (as is the case with the para-
bolic and linear models) but are essentially identical, to
within an error resulting from the replacement of  by
an (cf. the first of solutions (14) versus formula (10) in
[12]). Such a close coincidence between the results is
explained as being due to the same dissipative nature of
the discrete spectra in the problems. Another reason is
that the modes are small-scale; this makes them sensi-
tive to the conditions in the medium near the boundary
(which are the same in both problems) and insensitive
to large-scale effects (which are different in the prob-
lems). It should be mentioned parenthetically that, for
other conditions at the boundary, the structures of the
discrete spectrum in model (4) and in [12] remain the
same, except that the old eigenvalues (an) are
replaced by the new eigenvalues bn, corresponding to
the new boundary condition.

2.3. The Continuum

Now, we are left with the problem of analyzing the
case of aperiodically damped solutions, |argp | = π. Set-
ting p = –q in Eq. (5), we obtain

(17)
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We can readily see that, in model (3), as well as in
model (4), Eq. (17) with q > 0 has only finite oscillating
solutions. Hence, in our problem, we deal not only with
the discrete spectrum of Alfvén eigenmodes but also
with their continuous spectrum.

In model (3), the only requirement imposed by the
boundary conditions is that the solutions should be
finite. Consequently, any solution to Eq. (17) with q > 0
describes an Alfvén eigenmode; i.e., each value q > 0
corresponds to two eigenmodes of the continuum. In
accordance with the features of the problem at hand,
these two eigenmodes can be described by any pair of
linearly independent solutions to Eq. (17), e.g., by the
real functions (see [14], p. 503)

(18)

In model (4), the restrictions imposed by the bound-
ary conditions are more stringent; as a result, each value
q > 0 corresponds to only one eigenmode of the contin-
uum,

(19)

i.e., the number of modes is again one-half that in
model (3). In formula (19), the term c.c. is the complex
conjugate of the expression indicated and the rest of the
notation is as follows:

The modes of the continuum are not localized and
their scales, which are smaller than the scales of the
modes of the discrete spectrum, can be estimated from
above as [cf. Eq. (16)]

(20)

These are the scales of the modes with q ~ ω; the scales
of the modes that are damped at slower and faster rates
are smaller. We note that the relationship between the
damping rate of the modes of the continuum and their
scales differ radically from that for the modes of the
discrete spectrum. Thus, the characteristic scale of the
most interesting weakly damped (q ! k) modes
decreases with decreasing damping rate, lc(q) ≈
(ηq)1/2/ω.

The properties of Eq. (17), which is typical of the
problems of scattering in quantum mechanics and the
problems of wave propagation in inhomogeneous con-
servative media, have been studied quite well [15, 16].
This allows us to take a broader look at the problem and
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state that aperiodically damped Alfvén eigenmodes
exist in a plasma with an arbitrary profile of the Alfvén
velocity. In fact, everywhere along the x-axis, the
medium is transparent (Q > 0) to perturbations whose
wavelengths are not too small, k < k0 = 2/η,4 and it is
everywhere transparent to perturbations with k > k0 that
are damped at sufficiently slow (0 < q < q–) or suffi-
ciently high (q > q+) rates, where

For a transparent medium, all of the solutions to
Eq. (17) are finite, which proves the existence of the
continuum in the cases at hand.

The existence of Alfvén eigenmodes in the ranges
k > k0 and q– < q < q+ depends on the shape of the profile
cA(x). If the profile is such that the medium is transpar-
ent at infinity, as is the case in models (3) and (4), then
the modes of the continuum do exist. If, in a certain
range of q values, the medium is opaque at infinity
(Q < 0) and is transparent in some regions along the
x-axis, then there exist modes of the discrete spectrum.
Finally, if for a given damping rate q, the medium is
opaque everywhere, then there can be no Alfvén eigen-
modes damped at this rate. Thus, if the Alfvén velocity
cA(x) is bounded both below and above (i.e., cA(x) ≤ A+),

then, for k >  = 2A+/η, Alfvén eigenmodes with the

damping rates in the range  < q < , where

do not exist because, in this range, the medium is
opaque everywhere along the x-axis.

3. EVOLUTION OF THE INITIAL 
PERTURBATION

Here, we consider the evolution of the initial (spec-
ified at t = 0) Alfvén perturbation. We investigate the
evolution of one harmonic in the Fourier expansion of
the magnetic field in z: By(x, z, t) = by(x, t)eikz. The func-
tion by(x, t) is the solution to the initial-value problem

(21)

and satisfies the same boundary conditions at the x-axis
as Alfvén eigenmodes, i.e., the finiteness condition and
also, in model (4), condition (6). The arbitrary func-
tions b0(x) and bt(x) are assumed to be real and finite.

4 Here, in dimensional variables, k0 = 2A/η.
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3.1. Solution by the Laplace-Transform Method

Setting

we arrive at the equation [cf. Eq. (5)]

We construct the solution using Green’s function
G(x, x '; p):

Then, we take the inverse Laplace transform to obtain
the sought-for solutions to initial-value problem (21):

(22)

In parabolic model (3), we have [see relationships (8)]5 

(23)

The integration over x ' is carried out from –∞ to +∞. In
linear model (4), we have

(24)

where ξ' = µx ' + ξ0 [see also relationships (12)], and the
integration is carried out from 0 to +∞. Green’s func-
tions (23) and (24) are written in terms of the Euler
gamma function Γ(z), the pair of linearly independent
solutions Ai(z) and Bi(z) to the Airy equation [14], and
their derivatives Ai'(z) and Bi'(z) with respect to z.

From formulas (23) and (24) we can see that, in the
complex plane p cut along the half-line |argp | = π,
Green’s function is single-valued and has simple poles

at the points p =  of the discrete spectrum. Trans-
forming the path for integrating over p in Eq. (22) into

5 It is well known that Green’s function is constructed from the
solutions to Eq. (5) that satisfy only one of the boundary condi-
tions, at the right or left boundary of the range of variation of x;
these are solutions b+(x) and b–(x), respectively.
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the contour C shown in Fig. 1, we arrive at the follow-
ing representation of the solution in the form of a super-
position of Alfvén eigenmodes of the discrete spectrum
and of the continuum:

(25)

where the eigenfunctions fn(x) of the problem are deter-
mined by expressions (9) and (15); the eigenvalues pn =

 are determined by Eqs. (10) and (13); and

(here, the upper formula refers to model (3), and the
lower formula, to model (4)).

The integral along contour C is the sum of the inte-
grals along the contours along both sides of the cut
|argp | = π and the integral along a small circle around
the point p = 0. Using the familiar asymptotic expan-
sions of Green’s function G(x, x '; p), we can readily
show that the integral over the circle is negligibly small.
Setting p = –q and performing simple but rather labori-
ous manipulations, we expand the part b(x, t) of solu-
tion (25) in modes (18) of the continuum in parabolic
model (3),

(26)

and in modes (19) of the continuum in linear model (4),

(27)

Hence, we have shown that an arbitrary initial perturba-
tion evolves as a superposition of Alfvén eigenmodes;
consequently, Alfvén eigenmodes of both the discrete
spectrum and the continuum constitute a complete set
of eigenmodes.

by x t,( ) cn f n x( )e
pnt

c.c.+[ ]
n

∑ b x t,( ),+=

b x t,( ) 1
2πi
-------- pe

pt
x'G x x'; p,( )R x' p,( ),d∫d

C

∫=

krn
+

cn
1

Dn

------ x' f n x'( )R x'; pn( ),d∫–=

Dn

2πλn
∂d
∂p
------ 

 
p pn=

µnan'
∂ξ0

∂p
-------- 

 
p pn=








=

b x t,( ) qe
qt–

d

λ̃ 1 e
2πd̃

+( )
1/2

--------------------------------

0

∞

∫=

× x' f
+

x; q( ) f
+

x'; q( ) f
–

x; q( ) f
–

x'; q( )+[ ] R x'; –q( ),d

∞–

∞

∫

b x t,( ) qe
qt–

d
µ̃

-------------- f x; q( ) x' f x'; q( )R x'; –q( ).d

0

∞

∫
0

∞

∫=
PLASMA PHYSICS REPORTS      Vol. 29      No. 5      2003



ALFVÉN WAVE SPECTRUM IN A TRANSVERSELY INHOMOGENEOUS PLASMA 397
3.2. Qualitative Scenario of Evolution

First, we consider the evolution of perturbations in
model (4), in which the profile cA(x) is linear. For
ηt 3 ! 1, we easily obtain from solution (22) the
approximate expression

(28)

which describes the initial evolutionary stage of the
perturbation. Here, the factor in front of the exponential
function is the exact solution to initial-value problem
(21) with η = 0. In turn, the exact solution6 implies that
different plasma layers oscillate at different frequencies
ω(x) = cA(x)k in such a way that the phase difference of
oscillations of the neighboring (separated by a distance
∆x) magnetic field lines increases with time, ∆ϕ =
ω'∆xt, thereby giving rise to a modulation of the pertur-
bation on a progressively smaller local scale l ~ |ω't |–1.
It is generally agreed [7] that, over time scales t on the
order of that of the dissipation, t ~ τD = l2/η or, equiva-
lently, t ~ η–1/3, the evolving perturbation becomes sub-
ject to the viscous damping described by the exponen-
tial function in expression (28).

However, the above results imply a somewhat dif-
ferent scenario of evolution. This is because, on time
scales t ~ η–1/3, the modulation period l becomes on the
order of the scale L0l of the fundamental mode of the
discrete spectrum [see formulas (16)]; as a result
Alfvén eigenmodes become decoupled and, then, are
damped independently of each other. Since, in the dis-
crete spectrum, modes with larger numbers n are
damped faster, the only observable modes will be
modes with moderate numbers n, which are damped at
a rate of about δnl ~ η1/3 [see expression (15)], and
weakly damped modes of the continuum.

In parabolic model (3), the local scale on which the
perturbation is modulated around the point at which the
Alfvén velocity cA(x) is minimum decreases according
to a different law, l ~ |ω''t|–1/2. Hence, Alfvén eigen-
modes become decoupled on a spatial scale of l ~ L0q,
or, equivalently, on a time scale of t ~ η–1/2 [see formulas
(16)]. In other respects, the scenario of evolution is the
same as that in model (4).

4. CONCLUSION

The above analysis has shown that, in a transversely
inhomogeneous plasma with dissipation, Alfvén eigen-
modes always exist; generally, these are the modes of
the discrete spectrum and continuum. Because of their
dissipative nature, such modes are small-scale in the
direction in which the plasma is inhomogeneous; there-
fore, their properties are relatively insensitive to the

6 It is a superposition of pseudowaves (1).

by x t,( )

≈ b0 x( ) ωtcos
bt x( )

ω
------------ ωtsin+

1
6
---ηω'

2
t

3
– 

  ,exp
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plasma conditions. These properties have been investi-
gated with two models: the model of a semi-infinite
plasma with a monotonic profile of cA(x) and the model
of an unbounded plasma in which the Alfvén velocity
cA(x) has an extreme value (a minimum).

The modes of the discrete spectrum are damped at
relatively slow rates. The ratio of the frequency of the
modes to their damping rate is always larger than unity,
and for modes with moderate numbers (n ! η–1/2), it is
much larger than unity. The modes are confined to the
plasma boundary or to the extreme of the Alfvén fre-
quency ω(x) = cA(x)k in the following sense: first, the
frequency of the fundamental mode is approximately
equal to the boundary value of ω(x) or, correspond-
ingly, to its extreme value; second, the frequencies of
the remaining modes are so weakly dependent on their
numbers n that they begin differ appreciably from the
boundary frequency only for n ~ η–1/2; and third, the
eigenfunctions are essentially nonzero near the plasma
boundary or, correspondingly, near the extreme point.
The damping rate δn of all of the modes of the discrete
spectrum is related to their scale ln in the direction in
which the plasma is inhomogeneous by the dissipation

relationship δn ≈ η/ ; however, the order of magnitude
of the scale ln and its dependence on n are different for
modes confined to the plasma boundary and those con-
fined to the extreme of the Alfvén frequency.

The above analysis has also revealed the existence
of an Alfvén continuum under any plasma conditions,
in particular, in a plasma with an arbitrary profile cA(x).
The continuum consists of the modes that are aperiodi-
cally damped at rate q and are not associated with
Alfvén resonance. The problem of determining the con-
tinuum is analogous to the quantum-mechanical prob-
lem of scattering in a one-dimensional potential field. A
plasma with an arbitrary profile cA(x) is shown to be
transparent at infinity to the modes that are damped at
sufficiently fast or (even more interestingly) suffi-
ciently slow rates q. In other words, the continuum
should include the ranges 0 < q ≤ q1 and q2 ≤ q < ∞ (in
the above two models, q1 = q2).

Finally, by solving the problem of the evolution of
the initial perturbation, it has been shown that the
modes of both the discrete spectrum and the continuum
constitute a complete set of eigenmodes.
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Abstract—In a uniform axial magnetic field, the structure of local Alfvén resonance and the resonant absorp-
tion of RF power are governed by collisions, finite ion Larmor radius effects, and electron inertia. It is shown
that, in a cylindrical plasma in a constant, periodically rippled, axial magnetic field, the structure of Alfvén res-
onance and the absorption of RF power can strongly depend on the ripple amplitude. The conditions under
which the effect in question is dominant are intrinsic, e.g., to the modular Wendelstein stellarators. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Beginning with the paper by Dolgopolov and
Stepanov [1], the narrow layer approximation has been
widely used to study the conversion and absorption of
Alfvén waves (AWs) in the local Alfvén resonance
(AR) region in plasmas in a uniform magnetic field. In
the AR region, even such weak effects as collisions
between plasma particles, the finite ion Larmor radius,
electron inertia, and striction nonlinearity become
important.

The confining magnetic field B0 = B0rer + B0ϑeϑ +
B0zez is often weakly rippled; in this case, its compo-
nents in cylindrical coordinates can be written as

(1)

where |ε| ! 1, ε' ≡ dε/dr, kb = 2π/L, and L is the ripple
period. Such a structure of the field B0 is characteristic
of adiabatic devices with a rippled magnetic field, toka-
maks (due to the discreteness of the toroidal magnetic
field coils), and toroidal devices with a rippled mag-
netic field (such as the ELMO bumpy torus) [2–5]. Rip-
ple in the confining axial magnetic field is intrinsic to
modular stellarators [6]. The poloidal component B0ϑ of
the confining magnetic field describes the rotational
transform produced by the axial current in a tokamak
plasma or by the stellarator windings.

In rippled magnetic field (1), an electromagnetic
perturbation propagates as a wave envelope composed
of the fundamental harmonic and an infinite number of
satellite harmonics. The possibility of additional
plasma heating in the satellite AR region in a rippled
magnetic field was demonstrated in [7]. In the present
paper, we investigate the effect of weak ripples in a con-
fining magnetic field on the conversion and absorption

B0r B0 ε'/kb( ) kbz( ), B0ϑ r( ) ! B0,sin=

B0z B0 1 ε r( ) kbz( )cos+[ ] ,=
1063-780X/03/2905- $24.00 © 0399
of the fundamental mode of AWs in a local AR region.
We show that the effect of the magnetic field ripple on
the AR structure can be of the same order of magnitude
as the effects of collisions between plasma particles, the
finite ion Larmor radius, and electron inertia.

2. FORMULATION OF THE PROBLEM

We consider the conversion and absorption of MHD
waves with frequencies ω ! |ωce |, ωpe (where ωcα and
ωpα are the cyclotron and plasma frequencies of the par-
ticles of species α with α = i for ions and α = e for elec-
trons) in a plasma column placed in constant rippled
magnetic field (1). The plasma pressure is assumed to
be low in comparison with the magnetic field pressure.
In investigating Alfvén and fast magnetosonic (FMS)
branches of MHD waves in such a plasma, electron
inertia can be neglected everywhere except for a narrow
local AR region. The equilibrium density n(r, z) of such
a plasma is a function of the magnetic surface, n(r, z) =
n(r0), where

(2)

We introduce the orthonormal coordinate vectors
(e1, e2, e3) associated with the lines of the magnetic field
B0: e1 = —r0/ |—r0 |, e2 = e3 × e1, and e3 = B0/ |B0 |. In these
coordinates, the electric induction vector D and the
components of the electric field E of the wave are
related by

(3)

r0 r
kbz( )cos

r
--------------------- rε rd

0

r

∫ O ε2( ).+ +=

D ε1 E1e1 E2e2+( ) ε3E3e3 iε2e3–+ E.×=
2003 MAIK “Nauka/Interperiodica”
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The components of the permittivity tensor of a cold,
weakly collisional plasma have the form

(4)

and the integral operator ε3 in Eq. (3) determines the
absolute value of the longitudinal current density (the
longitudinal component of the vector D).

Solving Maxwell’s equations in the weak ripple
approximation and in the limit of small electron inertia
(|ε3|  ∞), we find that the longitudinal component of
the wave electric field vanishes over the entire plasma
column, E3 = (B0rEr + B0ϑEϑ + B0zEz)/ |B0 |  0. With
this relationship between the components of the wave
electric field, we can neglect the effects of collisions,
electron inertia, and the finite ion Larmor radius in
order to obtain the following simplified set of Max-
well’s equations in cylindrical coordinates:

(5)

where Nϑ = cm/ωr is the poloidal refractive index.
In order to solve Eqs. (5), we need to know the

explicit expressions for ε1 and ε2 to first order in ε:

(6)

where  ~ , 

(7)

(8)
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(10)

In expressions (7)–(10), the cyclotron frequency is

defined in terms of the unrippled magnetic field,  =
eB0/(mic).

The spatial dependence of permittivity tensor com-
ponents (6) allows us to seek a solution to Eqs. (5) for
the radial electric field of an MHD wave in the form

(11)

where m is the azimuthal mode number and kz is the
axial wavenumber of the fundamental mode of the
wave. In representation (11), we take into account the
fundamental harmonic, which is proportional to
∝ exp(ikzz), and the two nearest satellite harmonics,
which are proportional to ∝ exp[i (kz ± kb)z)]. The
expressions for the remaining components of the mag-
netic and electric fields of an MHD wave are analogous
to representation (11).

3. DERIVATION OF THE BASIC EQUATION

Using expressions (6)–(10) for the permittivity ten-
sor components and the condition that the longitudinal
component E3 of the electric field of an MHD wave is
zero, we reduce Maxwell’s equations to the following
set of equations for the amplitudes of the fundamental

( ) and satellite ( ) harmonics of the radial elec-
tric field of the wave:

(12)
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(13)

Here, Nz = ckz/ω is the axial refractive index and the
parameter δ = ε'/kb accounts for the small radial compo-
nent of the confining magnetic field [see definition (1)].
Let us discuss the dependence of the small parameter δ
on the ripple period L. At first glance, this dependence
seems to be linear, because δ contains the factor 1/kb ~ L.
However, the parameter δ is proportional to the radial
derivative dε/dr of the ripple amplitude of the axial
component of the constant magnetic field and the ripple
amplitude ε is, in turn, proportional to the zero-order
Bessel function. Consequently, as a function of the rip-
ple amplitude, the small parameter is proportional to
the first-order modified Bessel function I1(kbrA).

Equations (12) and (13) were derived in the narrow
layer approximation [1], which indicates that, in the AR
region, the wave fields vary gradually in the axial and
poloidal directions:

(14)

The approximation also assumes a gradual variation of
the plasma density in the radial direction.

Recall that, in the vicinity of AR, the radial variation
in the poloidal component of the wave magnetic field is
as sharp as that in Er [see the fourth of Eqs. (5)]. The
radial dependence of the remaining components of the
wave electromagnetic field near AR is weaker,

(15)

Note that, although the components  and  have
logarithmic singularities at the point rA in the cold

plasma approximation, the expression A = (  –

 in the square brackets in Eq. (12) varies
gradually in the vicinity of AR [1, 8, 9].

3.1. Propagation of MHD Waves outside the Local 
Alfvén Resonance Region

Outside the region of AR, at which

(16)
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Maxwell’s equations can be solved using the perturba-
tion theory [10, 11]. In an unrippled (ε = 0) confining
magnetic field, the modes of an MHD wave with differ-
ent axial numbers and different azimuthal numbers
propagate independently of each other; consequently,
we can assume that, in the zeroth approximation, it is

only the amplitude  of the fundamental mode of an
MHD wave that is nonzero. Since the distribution of the
fields for this case has been investigated in detail (see,
e.g., [12] and the references therein), the distributions
of the RF fields outside the AR region can be assumed
to be known. The poloidal component of the constant
magnetic field changes the amplitude of the fundamen-
tal harmonic by a small amount proportional to B0ϑ /B0
[10]. The contribution of the ripples in a confining mag-
netic field to the amplitude of the fundamental har-
monic is second-order in the ripple parameter ε. In this
case, the amplitudes of the satellite harmonics are much
smaller than the amplitude of the fundamental har-
monic [11],

(17)

3.2. Conversion and Absorption of MHD Waves 
near a Local Resonance

Since the amplitude of the fundamental harmonic
and, consequently, the amplitudes of the satellite har-
monics grow resonantly in the vicinity of AR, we can-
not use condition (17) to analyze Eqs. (12) and (13)
near a local AR, at which condition (16) is satisfied.
Further analysis shows that condition (17) actually fails
to hold in the AR region.

The set of three second-order differential equations
(12) and (13) reduces to the following sixth-order equa-

tion for the amplitude  of the fundamental har-
monic:

(18)
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Here, we have assigned a pair of subscripts to the last
four terms. Their meaning may be illustrated by taking,
e.g., the last of these terms: the pair (2, 1) indicates that
the coefficient by the first derivative is second-order in
the small parameter. Analyzing the relationships
between the orders of magnitude of the derivatives and
of their coefficients, we can further simplify Eq. (18) to

(19)

Now, we will solve Eq. (19) and, then, examine to what
extent this equation is less accurate than Eq. (18).

The solution to Eq. (19) can be found by the
Laplace-transform method:

(20)

where

(21)

and a* = |dln | |/dr |–1  is the characteristic scale on
which the plasma density varies. This solution satisfies
the following boundary conditions: (i) it is finite both at
and away from the resonant point, (ii) it describes the
conversion of an electromagnetic wave into a small-
scale wave that carries energy away from the resonance
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point, and (iii) it describes a damped field when weak
dissipation is taken into account in the expression for

.

The figure shows the plot of the function u0(ξ),
whose real and imaginary parts are represented by the
solid and dashed curves, respectively. The absolute
value |u0(ξ)| is maximum (max{|u0(ξ)|} = 1.459) at ξ =
–1.325 rather than at zero. This position of the maxi-
mum of |u0(ξ)| is analogous to that in the case in which
the AR structure is governed by the effect of a finite ion
Larmor radius or finite electron inertia [13].

In the resonant case in which the coefficient of the
second term in Eq. (19) vanishes, the solution describ-
ing waves with an axial wavelength equal to half the
ripple period, kz = 2kb, becomes meaningless. For this
resonant case, the effect of ripples in a constant mag-
netic field on the AR structure was investigated in [14].

The width of the AR region ∆r = |k1|–1 is equal in
order of magnitude to that in the resonant case and is
δ−2/15 times smaller than the width of the region of the
satellite AR, which was studied in [15] under the
assumption that its structure is governed by the ripples
in a constant magnetic field. Accordingly, Eqs. (20) and
(21) yield the following order-of-magnitude estimate of

the amplitude  of the fundamental harmonic of the
radial electric field of the wave at a local AR:

(22)

For the wave field amplitude (rA) to be comparable
to the ambipolar electric field, which is on the order of
~T/ea, the amplitude of the pump wave field should be
equal in order of magnitude to

(23)

in which case nonlinear effects occurring in the AR
region can be neglected.

In analyzing Eqs. (12) and (13) in the vicinity of AR,
we did not use condition (17). To within terms on the
order of δ2/5, Eq. (13) yields the following simplified
expression for the amplitudes of the satellite harmon-
ics:

(24)
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We see that, in order of magnitude, the amplitude of the
nth satellite harmonic is δ–n/5 times smaller than that of
the fundamental harmonic,

(25)

In the vicinity of AR, the amplitudes of the satellite har-
monics grow more sharply than the amplitude of the
fundamental harmonic but remain smaller than the lat-
ter. However, in the vicinity of AR, this difference is not
so pronounced as it is far from it.

Now, we can estimate the degree to which simplified
equation (19) is less accurate than Eq. (18). The largest
of the terms that we have neglected,

is as small as ~δ2/5 in comparison with the retained third
term in Eq. (18). The first term in Eq. (18) is as small as
δ4/5. As compared to the retained term with the sub-
script (4, 4), the omitted terms with subscripts (i, j) are
estimated to be as small as δ(i – 4 – 0.8( j – 4) ).

Among the amplitudes of the fundamental harmon-
ics, it is the amplitude of the axial component of the
wave electric field that grows near the AR to the largest
amount relative to its values far from the AR region:

(26)

Nevertheless, the amplitude of this component remains

much smaller than the amplitude  of the radial com-
ponent; hence, to first order in the wave amplitude, the
effect of Ez on the detrapping of ripple-trapped plasma
particles can be neglected.

3.3. Conditions under which the AR Structure
is Governed by Ripple Effects

Here, we determine what the conditions are under
which the AR structure is governed by the ripples in a
constant magnetic field rather than by the effects of
electron inertia, the finite ion Larmor radius ρLi = vTi /ωci

(where vTα =  is the thermal velocity of the
particles of species α and Tα is their temperature), and
collisions between plasma particles. In Eq. (19), all of
these weak effects can be taken into account by the
replacement

; (27)

i.e., in much the same way as in the case of a uniform
axial magnetic field (see, e.g., [1, 8, 9]). Under the
assumption that the plasma parameters in the AR region
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vary insignificantly, we can use the values of εT , ε3,

, , and  at the point r = rA .

In formula (27), the term  accounts for collisions
between plasma particles [16]:

(28)

Here, ea is the charge of the particles of species a; νa, b
is the frequency of collisions between the particles of
species a and those of species b,

(29)

and LC is the Coulomb logarithm. The term εT in for-
mula (27) accounts for the finite ion Larmor radius
[17]:

(30)

Electron inertia is taken into account by the permittivity
tensor component ε3. In the weak ripple approximation,
we can describe ε3 by the expression derived in the
zeroth approximation:

(31)

where the function W(ze) has the form

(32)

In the case of weak Landau damping (ze @ 1), expres-
sion (31) for ε3 simplifies to

(33)

In this case, it is necessary to take into account elec-
tron–ion collisions; as a result, we obtain
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The conditions under which the effect of a weak
periodic ripple in the axial field B0 predominates over
the remaining three weak effects can readily be deter-
mined by analyzing formula (27). In particular, the

ε1
c( ) ε1 2,

0 1,( ) ε1
2( )

ε1
c( )

ε1
c( ) ωpa

2 νab

ω ω2 ωca
0( )2

–( )
--------------------------------

a b,
∑=

×
ω2 ωca

0( )2

+

ω2 ωca
0( )2

–
-----------------------

ebma

eamb

-----------
ω2 ωca

0( )ωcb
0( )

+

ω2 ωcb
0( )2

–
--------------------------------–

 
 
 

.

νab 4/3( ) 2πea
2
eb

2
nbLC maT

3
1 ma/mb+( )[ ]

1/2–
;=

εT

3ωpi
2

r( )ω2
v Ti

2
r( )

ω2 ωci
0( )2

–( ) ω2
4ωci

0( )2

–( )c
2

-----------------------------------------------------------------.
i

∑=

ε3

ωpe
2

kz
2
v Te

2
-------------- 1 i πzeW ze( )+[ ] , ze

ω
2 kz v Te

-----------------------,≡=

W ξ( ) ξ2
–( ) 1

2i

π
------- t

2( ) tdexp

0

ξ

∫+ .exp=

ε3

ωpe
2

ω2
-------- 1 2i πze

3
e

ze
2

–
–( ).–=

ε3

ωpe
2

–
ω ω iνei+( )
----------------------------.=



404 BELYAEV et al.
effect of the ripples in B0 is stronger than the finite ion
Larmor radius effect under the condition

δ12/5 @ (ρLi /a)2(kzkba2)6/5, (35)

which can easily be satisfied in the edge regions, where
the constant magnetic field is rippled most strongly and
the plasma is colder than in the core region. Also, con-
dition (35) can be satisfied at lower temperatures than
an analogous condition in the case of a satellite AR
[15]. Inequality (35) can be interpreted as follows: the
radial deviation r – rA of cylindrical magnetic surface
(2) from a cylinder with the mean radius rA is larger

than the characteristic AR width ( )1/3 in an axial
magnetic field (this width is known in the literature,
see, e.g., [1]). Under condition (35), the width ∆r of the
resonance region is larger than that in an axial magnetic

field: ∆r ~  @ ( )1/3.

Let us estimate the value of the small ripple param-
eter at which the ripple effects should be taken into
account when investigating the conversion of AWs in a
local AR region in devices with the parameters of the
Helias [6]. According to condition (35), the ripple
effect becomes comparable with the finite ion Larmor
radius effect for sufficiently small (and, at the same
time, quite realistic) values of the axial wavenumber

 ! 10–2 (where kz is expressed in inverse centime-
ters).

4. RF POWER ABSORPTION AT AR
Here, we calculate the electromagnetic energy

absorbed per unit length of the plasma column in the
vicinity of AR. The RF power absorbed in the plasma is
determined by the work done by the wave electric field

on the radial RF currents, Pr = 0.5Re ,

and the axial RF currents, Pz = 0.5Re .

As a result, we have

(36)

(37)

Expression (36), in which the function u0 is replaced
with the Airy function, coincides with the expression
for the power absorbed in the region of AR, whose
structure is governed by the finite Larmor radius or by
the finite electron inertia (see, e.g., [1, 9]). The integral
of the imaginary part of u0 in expression (36) is equal to
π, as is the case with the integral of the imaginary part
of the Airy function. Consequently, the RF power
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absorbed in the vicinity of AR at the expense of the
work done on the radial currents is independent of the
type of small-scale wave (a kinetic wave or a wave
associated with the ripples) into which a large-scale
electromagnetic wave is converted near the resonance.

In [7], it was mentioned that, for Im(ε3) ≥ Re(ε3), the
absorbed RF power Pz can be large in comparison with
Pr. Expression (37), in which the function u0 is replaced
by the Airy function with the argument [kT(r – rA)],
coincides to within the small factor (k1/kT)3 with an
analogous expression in the case where the AR struc-
ture is governed by the finite Larmor radius or by the
finite electron inertia. Here,

(38)

The asymptotic behavior of the function u0, | (ξ)|2 ∝
(–ξ)1/4 as Re(ξ)  –∞, is such that the integral

 in expression (37) diverges. However,

this divergence can be avoided by introducing dissipa-
tive effects—collisions between plasma particles or
Landau damping, which is accounted for by the imag-
inary part Im(ε3). For Im(ε3) ~ Re(ε3), the correspond-
ing integral of the squared derivative of the Airy func-
tion is estimated to be on the order of unity. In this
case, the damping rate of a small-scale wave can
readily be estimated from Eq. (19) with allowance for
replacement (27):

(39)

As a result, the integrand in expression (37)
decreases in proportion to exp[2Im(k1)(r – rA)] along the
negative axis of the integration interval; hence, in order

of magnitude, the integral is estimated as . There-
fore, our order-of-magnitude estimates show that the
RF power absorbed in the vicinity of AR at the expense
of the work done on the axial currents is also indepen-
dent of the type of small-scale wave into which a large-
scale electromagnetic wave is converted near the reso-
nance.

5. DISCUSSION OF THE RESULTS OBTAINED

The main results of our investigations can be sum-
marized as follows.

(i) We have found that the effect of a ripple in a con-
fining magnetic field on the AR structure is the dis-
placement of the AR point a small distance δr (rA 
rA + δr) from the axis:

(40)
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where

(41)

From the form of expression (41) for , we cannot
draw a definite conclusion about the sign of δr. How-
ever, in a particular case in which the AR region lies
deep in a plasma cylinder (rA ~ 0.5ap, where ap is the
plasma radius) with a parabolic density profile, n(r) =

n(0)(1 – r2/ ), and the ripple amplitude changes insig-
nificantly over the plasma volume, |rε' | ! |ε|, the AR
region is displaced (under the action of the ripple in B0)
a distance δr ~ ε2ap from the plasma axis.

(ii) We have determined the conditions [see, e.g.,
estimate (39)] under which the effect of a ripple in a
magnetic field on the AR structure is stronger than the
other weak effects (such as those of dissipation, the
finite ion Larmor radius, and electron inertia). These
conditions can be satisfied in the edge regions, where
the ripple is especially large and the plasma is colder
than in the core region.

(iii) The distribution of the RF wave fields has been
determined by solving reduced equation (19), which is
valid to within small terms on the order of ε2/5.

(iv) Equation (24) implies that, in the vicinity of AR,
the amplitudes of the satellite harmonics grow more
sharply than the amplitude of the fundamental har-
monic, the growth rates of both satellites being essen-

tially the same,  ≈  and  ≈ . Never-
theless, near the resonance, they remain as small as
about ε1/5 in comparison with the fundamental har-
monic amplitude. Their reverse effect on the behavior

of the fundamental harmonic amplitude (r) is to
smooth out the discontinuity that arises in a straight
confining magnetic field within the AR region in the
cold plasma approximation. This is the principal differ-
ence between the effect of a periodically inhomoge-
neous plasma and, e.g., the effect of a toroidally non-
uniform confining magnetic field, which only slightly
deforms the surface where the wave fields are discon-
tinuous [18, 19].
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The results just discussed contradict the conclusions
reached in [20] when studying a similar problem of the
propagation of Alfvén waves in the field of a single adi-
abatic trap. According to the analytical estimates and
numerical results obtained in that paper, the two-
dimensional nonuniformity of the system does not
eliminate AR. We think that this contradiction stems
from the fact that the dispersion relation used in [20]
was obtained in the geometrical-optics approximation,
which fails to hold for the AR region.

(v) We have calculated the RF power absorbed in the
vicinity of AR due to the conversion of an electromag-
netic wave into a small-scale wave associated with the
ripples, which is then damped by collisions or via the
Landau mechanism. This power is found to coincide
with that absorbed in the vicinity of AR both in the case
where the absorption occurs through collisions and in
the case where it occurs through the conversion of an
electromagnetic wave into a small-scale kinetic Alfvén
wave.

Note that local resonance condition (16) can exist

for AWs and FMS waves with ω < ωci (when  >
ω2/c2) and also for FMS waves with ω > ωci in a low-

density plasma (when  < ω2/c2). The conversion and

absorption of FMS waves with ω > ωci and  < ω2/c2

under local resonance condition (16) at the edge of a
plasma cylinder in a purely axial magnetic field were
investigated in [9].
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Abstract—A study is made of the interaction (“collision”) between two identical laser pulses with lengths
much shorter than the diffraction length, propagating in a plasma toward one another. It is shown that the plasma
response to the pulses depends essentially on the value of the parameter ωpτ, where ωp is the plasma frequency

and τ is the pulse duration. Short laser pulses (such that ωpτ ≤ ) efficiently generate plasma waves on two
characteristic scale lengths. Large-scale wake waves with a wavelength of about c/ωp are generated over the
entire path of the pulses and form a two-dimensional standing plasma wave in the region between the pulses
after their interaction. In the interaction region, the pulses excite small-scale plasma oscillations with a wave-
length equal to half the laser wavelength, which remain in the plasma after the interaction. Long laser pulses

(such that ωpτ > ) also generate quasistatic plasma perturbations on two scale lengths. Perturbations gener-
ated on large scales of about the pulse length accompany the propagating pulses and are somewhat amplified in
the interaction between them. Small-scale plasma fields are generated only during the interaction between the
pulses, and they disappear after the interaction. The influence of the generation of plasma fields on the energy
of the laser pulses and on their shape, as well as the possible applications of the effects under consideration, is
discussed. © 2003 MAIK “Nauka/Interperiodica”.

2

2

INTRODUCTION

Significant recent progress in the generation of short
(subpicosecond) high-power (terawatt) laser pulses [1]
has made it possible to substantially extend the area of
research on the laser acceleration of particles [2], laser
inertial confinement fusion [3], and the development of
X-ray lasers [4]. Increased attention is being focused on
the nonlinear effects that occur in the interaction of
ultrashort laser pulses. The effect that has received the
most complete theoretical and experimental investiga-
tion is the channeling of a high-power laser pulse in a
plasma channel created by another pulse with a lower
power (see, e.g., [5–7]). The possibility of electron
acceleration in electric fields generated in a plasma in
the interaction of laser pulses was discussed by Shvets
et al. [8]. For the purposes of injecting ultrashort elec-
tron bunches into a laser accelerator, Schroeder et al.
[9] developed a method for producing them in the inter-
action between two oppositely propagating laser
pulses. Much attention has recently been paid to the
idea of amplifying a short laser pulse in its interaction
with an oppositely propagating long pulse of lower
intensity (see, e.g., [10, 11]). The problem of the ampli-
fication of wake fields in the interaction between two
laser pulses was investigated numerically and analyti-
cally in [12, 13] in the context of the laser wakefield
1063-780X/03/2905- $24.00 © 0407
acceleration of charged particles. The possibility of cre-
ating short-lived Bragg mirrors in the interaction (colli-
sion) between two identical laser pulses in a plasma
was considered in our paper [14]. Another possible
application of the effects accompanying a collision of
two laser pulses in a plasma is related to the possibility
of obtaining information about the structure of the
pulses from an analysis of the plasma perturbations
generated in such a collision [15].

In the present work, which is a continuation of [14],
we develop a theory of the effects that are produced in
an underdense plasma by two oppositely propagating
identical laser pulses. In contrast to [14], we investigate
not only small-scale plasma perturbations generated in
the interaction region but also large-scale perturbations
excited over the entire path of the pulses.

In Section 1, we formulate two relatively simple sets
of equations, mutually coupled to one another. One set
of equations describes high-frequency laser fields, and
the other describes slow plasma perturbations. The
coefficients in the linear equations for rapidly varying
quantities contain slowly varying quantities, and the
linear equations for slowly varying quantities includes
the ponderomotive force produced by high-frequency
fields. Each of the high- and low-frequency physical
subsystems described by these sets of equations is not
2003 MAIK “Nauka/Interperiodica”
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closed, and they may exchange energy. We also derive
and discuss equations describing changes in the energy
densities of the high- and low-frequency subsystems. In
Section 2, we apply the general relationships obtained
to describe a system of two identical laser pulses prop-
agating toward one another. Large-scale plasma pertur-
bations are considered in Section 3. For Gaussian
pulses, the plasma field and the energy density of the
plasma perturbations are expressed in a general way in
terms of functions that are widely utilized in plasma
theory. Using the familiar asymptotic expressions for
these functions, we analyze the limiting cases of short

(ωpτ ≤ ) and long (ωpτ > ) pulses. Short laser
pulses efficiently generate wake waves [16]; in the
region between the pulses after their interaction, these
waves form a two-dimensional standing plasma wave
whose electric field has a complicated, radially depen-
dent structure. Long laser pulses practically do not gen-
erate wake fields but produce internal plasma fields,
which accompany them and are amplified in the inter-
action region at the expense of the energy of the pulses.
After the interaction, the energy of the pulses is
restored to the energy that they had before the interac-
tion. In Section 4, we examine small-scale plasma per-
turbations with a period equal to half the laser wave-
length. Such perturbations are generated only in the
interaction region, and their behavior is also deter-
mined by the pulse length. Small-scale perturbations
excited in the interaction between two short laser pulses
oscillate at the plasma frequency, and they remain in the
plasma after the interaction. In the case of long laser
pulses, small-scale perturbations are quasistatic, exist
only during the interaction, and disappear after the
interaction. In the Conclusion, we present some esti-
mates for the effects considered and discuss their pos-
sible practical applications. In the Appendix, the influ-
ence of plasma perturbations on the shape of the laser
pulses and their energy is investigated. The analysis is
based on perturbation theory, in which this influence is
assumed to be small. However, the use of more intense
lasers may increase this influence to a measurable level,
thereby providing an additional method for diagnosing
the effects that occur in a plasma.

1. GENERAL RELATIONSHIPS

In order to describe the propagation of laser pulses
in an underdense plasma, we use Maxwell’s equations
for electromagnetic fields and the hydrodynamic equa-
tions for a cold electron fluid. We separately consider
the quantities that vary rapidly on a time scale on the
order of the laser field period and the quantities that
vary slowly on time scales of about the laser pulse dura-
tion or plasma oscillation period. As a result, the gen-
eral set of equations splits into two subsets. The subset
describing high-frequency processes is linear in the
high-frequency electric (EL) and magnetic (BL) laser

2 2
fields, and its coefficients depend on the parameters
characterizing slow plasma processes:

(1.1)

(1.2)

(1.3)

Here, N0e is the constant electron density in the absence
of a laser pulse, VL is the high-frequency electron
velocity, δNe and Ve are the low-frequency electron
density perturbations and the electron velocity in them,
e and m are the charge and mass of an electron, and c is
the speed of light.

The slowly varying quantities are described by the
other subset of equations, which is also linear and
includes the ponderomotive force as an external source:

(1.4)

(1.5)

(1.6)

Here, E is the low-frequency charge-separation poten-

tial electric field and φ =  is the high-fre-

quency potential, averaged over the period of high-fre-
quency processes.

The set of quasilinear equations (1.1)–(1.6) assumes
that the electron density perturbations are small
(|δNe | ! N0e) and that the velocities satisfy the inequal-
ities |Ve | ! |VL | ! c. In the linear approximation, low-
frequency magnetic fields are not excited because of the
potential nature of the ponderomotive force [17].

Equations (1.1)–(1.6) take into account only qua-
dratic nonlinearities. With allowance for a significant
difference in the frequencies of the interacting fields,
the nonlinear current density given by these equations
agrees completely with that following from the general
expression for the nonlinear (quadratic) dielectric func-
tion of a cold dissipationless electron plasma [18].

Although all of the electromagnetic fields in the
plasma are produced by a laser pulse, the fact that the
general set of equations is split into two subsets allows
us to talk about the interaction between the high-fre-
quency fields of the pulse and the low-frequency
plasma fields. In particular, we can speak of the energy
exchange between the laser pulse and the low-fre-
quency plasma perturbations. In fact, Eqs. (1.4)–(1.6)

∂VL

∂t
----------

e
m
----EL — VL Ve⋅( ),–=

∇ EL× 1
c
---

∂BL

∂t
---------,–=

∇ BL× 1
c
---

∂EL

∂t
--------- 4πe

c
--------- N0e δNe+( )VL.+=

m
∂Ve

∂t
--------- eE —φ,–=

∂
∂t
-----

δNe

N0e

--------- 
  ∇ Ve⋅+ 0,=

∂E
∂t
------- 4πeN0eVe+ 0.=

1
2
---m VL

2〈 〉
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yield the following equation for the energy of these per-
turbations:

(1.7)

where their energy density wp has the form

(1.8)

From Eqs. (1.1)–(1.3), we obtain the equation for the
energy of the high-frequency laser field:

(1.9)

where the energy density wL and the energy flux density
SL of the laser pulse are equal, respectively, to

(1.10)

(1.11)

Note that definition (1.10) of the energy density of the
high-frequency laser field differs from that used in [14]
in having the last term φδNe , which coincides with the
interaction energy density introduced in [14]. It is con-
venient to define the pulse energy density in form (1.10)
because, in this case, the expressions on the right-hand
sides of Eqs. (1.7) and (1.9), which describe the energy
exchange between subsystems, are the same but have
opposite signs; hence, in the sum of the equations, they
cancel one another. This result is a consequence of the
conservation of the total energy of the laser pulse and
of the low-frequency plasma perturbations.

In investigating laser pulses, we specify the high-
frequency electric field as the field of a wave with a
slowly varying amplitude:

(1.12)

where ω0 is the frequency, k0 is the longitudinal wave-
number, and the complex amplitude (envelope) E0 is

varyies slowly on the time and spatial scales  and

. The equation for the field envelope follows from
Eqs. (1.1)–(1.3) and, for waves satisfying the disper-

sion relation  =  + , has the form

(1.13)

∂wp

∂t
--------- ∇ N0eVeφ( )⋅+ φ
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2
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2 BL

2
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where ∆⊥  is the transverse Laplace operator and ωp =

 is the plasma frequency. In Eq. (1.13),
we retain small terms containing the second derivatives
of the slowly varying field amplitude and a small term
with the time derivative on the right-hand side because,
as was shown in [19], it is precisely these terms that
describe how the pulse energy changes.

To first order, the energy density (1.10) of the high-
frequency laser field (1.12) has the form

In the last term, which is proportional to the small per-
turbation of the electron density, it is sufficient to use
the lowest order expression for the high-frequency

potential, φ = . This circumstance and Eq. (1.13)

allow us to see that the first-order terms in the expres-
sion for wL exactly cancel each other out; as a result, we

obtain wL = |E0 |2. We emphasize that this simple

expression for the energy density is valid in the first-
order approximation.

According to formula (1.11), the energy density SL

of the laser pulse is the sum of two terms. The first term
is a conventional Poynting vector, and the second term
describes the transport of the energy of high-frequency
oscillations due to the slow plasma motion. To first
order in the derivatives of the slowly varying quantities,
the mean energy flux density SL of the high-frequency
laser field (1.12) reduces to

(1.14)

From Eqs. (1.4)–(1.6) for the low-frequency plasma
perturbations, we can readily obtain an equation for
each of the perturbed quantities:

(1.15)

4πe
2
N0e/m

wL
1

8π
------ E0 2 i

2ω0
--------- E0 ∂E0*

∂t
------------⋅ E0* ∂E0

∂t
---------⋅– 

 +




=

+
ik0c

2

2ω0
2

------------ E0 ∂E0*

∂z
------------⋅ E0* ∂E0

∂z
---------⋅– 

 




δNeφ.+

e
2 E0 2

4mω0
2

----------------

1
8π
------

SL

c
2
k0

8πω0
------------- eZ E0 2 i

2ω0
--------- E0 ∂E0*

∂t
------------⋅ c.c.– 

 +




=

+
i

2k0
-------- ∇ E0 E

0*×[ ]× Ek
0—Ek

0* c.c.–( )+( )




.

∂2

∂t
2

------- ωp
2

+ 
  E

ωp
2

e
------—φ,=

∂2

∂t
2

------- ωp
2

+ 
  δNe

N0e

m
--------∆φ,=



410 GORBUNOV, FROLOV
–6 –4 –2 0 2 4 6
z/πL

(‡)

(b)

(c)

(d)

Fig. 1. Scheme illustrating the processes of the interaction between two short laser pulses and the generation of plasma perturbations
at different instants of time. The envelopes of the laser pulses and the high-frequency oscillations of the laser field (normalized to
the pulse amplitude) are represented by light solid curves and dotted curves, respectively. The heavy solid curves show the potential

of the plasma perturbations,  for pulses with the duration

τ =  and a carrier frequency such that ωp /ω0 = 0.2. Plots (a), (b), (c), and (d) refer to the times t /πτ = –2, 0, 3, and 3.5. In plot

(c), referring to the time t/πτ = 3, the potential ψ vanishes in the region between the pulses after their interaction.
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Note that, using Eq. (1.6), expression (1.8) can be rep-
resented the form

(1.16)

which will be used below. As a result, to the lowest
order in the derivatives of the slowly varying quantities,
Eq. (1.7) describing the evolution of the energy density
wp of the low-frequency plasma perturbations takes the
form

∂2

∂t
2
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+ 
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,=
(1.17)

2. COLLISION BETWEEN TWO LASER
PULSES

Below, we will be interested in the interaction
between two identical laser pulses propagating toward
one another along the z-axis (Fig. 1). We assume that
the plasma is tenuous and only slightly affects the prop-

∂wp
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ωp
2

16πω0
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agation of laser pulses. Consequently, when consider-
ing perturbations produced in a plasma by laser pulses,
we can assume in the zeroth approximation that the
fields of the pulses are given function of coordinates
and time. We specify these fields in the form

(2.1)

where k0 = . The amplitudes E± of the elec-

tric fields of laser pulses propagating from left to right
(the plus sign) and from right to left (the minus sign)

vary slowly on the time and spatial scales  and .
The averaged potential φ of the high-frequency field is
determined by the high-frequency electron velocity VL,
which can be expressed in terms of electric fields (2.1)
with the help of Eq. (1.1). To first order in the deriva-
tives of the slowly varying amplitudes, we obtain

(2.2)

This formula implies that each of the two pulses pro-
duces ponderomotive forces along its path and, in the
interaction region, they also generate small-scale high-
frequency ponderomotive forces. Accordingly, all of
the quantities that vary slowly with time (δNe , Ve , E)
contain terms varying slowly in space and those vary-
ing rapidly on a spatial scale of (2k0)–1 and thus can be
represented as

(2.3)

(2.4)

(2.5)

where the subscript 0 refers to the large-scale compo-
nents and the subscript 2 denotes the amplitudes of the
small-scale quantities. By means of Eqs. (1.15), it is
possible to express all of the slowly varying quantities
in terms of high-frequency potential (2.2).

Using formula (2.5), we average expression (1.16)
for the energy density of the plasma perturbations over
rapid variations in space. As a result, we see that the
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averaged energy density  is the sum of two terms,

 = wp0 + wp2, where

(2.6)

(2.7)

The equations describing the temporal evolution of
the energy densities of the large- and small-scale
plasma perturbations can be obtained from Eq. (1.7).
Using Eqs. (2.2), (2.4), and (2.5), to the lowest order in
the derivatives of the slowly varying quantities, we
obtain

(2.8)

(2.9)

where

(2.10)

(2.11)

The right-hand sides of Eqs. (2.8) and (2.9) describe
the energy fractions that the laser pulses lose by gener-
ating large- and small-scale plasma perturbations,
respectively.

According to the above definition, the energy den-
sity of each of the pulses is equal to

(2.12)

The equations describing how the energy density of
each pulse evolves in time follow from Eq. (1.9) and
expressions (2.1), (2.2), and (2.4):

(2.13)

wp

wp

wp0
1

8π
------ E0

2 1

ωp
2

------
∂E0

∂t
--------- 

 
2

+
 
 
 

,=

wp2
1

4π
------ E2

2 1

ωp
2

------
∂E2

∂t
--------- 

 
2

+
 
 
 

.=

∂wp0

∂t
----------- ∇ q0⋅+

ωp
2

16πω0
2

---------------- E+
2 E–

2
+( ) ∂

∂t
-----

n0

N0e

-------- 
  ,–=

∂wp2

∂t
----------- ∇ q0⋅+

ωp
2

16πω0
2

---------------- E+ E–
* ∂

∂t
-----

n2
*

N0e

--------
 
 
 

⋅ c.c.+ ,–=

q0

ωp
2

16πω0
2

----------------V0 E+
2 E–

2
+( ),=

q2

ωp
2

16πω0
2

---------------- V2
* E+ E–

*⋅( ) c.c.+[ ] .=

w±
E±

2

8π
-----------.=

∂w±

∂t
--------- ∇ S±⋅+  = 

ωp
2

32πω0i
------------------

n2

N0e

-------- E+
* 1

i
ω0
------ ∂

∂t
-----– 

  E–⋅




±

+ E– 1
i

ω0
------ ∂

∂t
-----+ 

  E+
*

⋅ c.c.–




+
ωp

2

16πω0
2

---------------- E±
2 ∂
∂t
-----

n0

N0e

-------- 
  1

2
--- E+ E–

* ∂
∂t
-----

n2
*

N0e

-------- 
  c.c.+⋅+

 
 
 

,



412 GORBUNOV, FROLOV
where

(2.14)

with eZ the unit vector directed along the z-axis.
The first terms on the right-hand side of Eqs. (2.13)

describe the interaction between the pulses. In the equa-
tion for the total energy of the pulses, wL = w+ + w–,
which is obtained by summing Eqs. (2.13) for w+ and
w–, these first terms cancel one another. Therefore, the
right-hand side of the equation for the total energy of
the pulses coincides in absolute value with the right-
hand side of the sum of Eqs. (2.8) and (2.9) but has the
opposite sign. As a result, the conservation laws for the
total energy of the laser pulses and the plasma perturba-
tions generated by them reduces to the form

(2.15)

It is obvious that, if there is no energy flux through
the boundaries of the volume under consideration, then
the volume-averaged total energy of the pulses and the
plasma perturbations is time-independent and is equal
to the initial energy of the pulses injected into the
plasma.

3. LARGE-SCALE PLASMA PERTURBATIONS

To the lowest order in the derivatives of the slowly
varying amplitudes, the equation that describes the time
evolution of the envelope E0 can be obtained by substi-
tuting into the first of Eqs. (1.15) the part of high-fre-
quency potential (2.2) that is associated with large-
scale plasma perturbations:

(3.1)

In the vicinity of the interaction region, the longitudinal
profiles of the pulses are assumed to be Gaussian:

(3.2)

where ξ = z – Vgt, η = z + Vgt, Vg = c2k0/ω0 is the group
velocity of the pulses, L is their length, and the vector
E⊥ (ρ) determines their polarization and their radial (ρ =

) shape. We assume that the polarization of
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laser pulses is linear (the polarization vector being eL)
and that the spatial distribution of their energy density
is axisymmetric. The coordinate system and the initial
instant of time are chosen in such a way that, at t = 0,
the pulses exactly overlap one another and the functions
E+ and E– are maximum at the point z = 0 (Fig. 1b).

It follows from Eq. (3.1) that, in the given approxi-
mation, large-scale plasma fields are generated by the
pulses independently of one another and the total field
is their superposition:

(3.3)

where τ = (L/Vg) is the pulse duration and

(3.4)

In what follows, we assume that the radial profiles
of the pulses are also Gaussian:

(3.5)

where E0L is the maximum electric field amplitude and
R is the characteristic transverse size (radius) of the
pulse.

In this case, expression (3.3) becomes

(3.6)

where VE = eE0L/mω0 is the maximum electron oscilla-
tory velocity in the laser field, kp = ωp/Vg, eZ and eρ are
the unit vectors in the axial and radial directions, and

(3.7)

The functions Φ(x, a) and F(x, a) describe, respectively,
the dependence of the axial and radial components of
the plasma electric field on the longitudinal coordinates
both inside and outside the pulses.
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Total large-scale plasma field (3.6) is a superposi-
tion of the fields generated by each of the pulses and
thus does not provide information about the interaction
between them. In the general case, however, the princi-
ple of superposition does not apply to energy density
(2.6), which is quadratic in the fields. Substituting
expression (3.6) into formula (2.6), we obtain

(3.8)

The squared expressions in the square brackets in for-
mula (3.8) contain the terms involving the products of
the functions that refer to both of the pulses and charac-
terize their interaction.

In order to analyze formulas (3.6) and (3.8), we
rewrite the function Φ(x, a) in terms of the function
J+(β) [20], which is widely used in plasma theory:

(3.9)

where β =  – ,

(3.10)

a = ωpτ, and x = η/L or –ξ/L. The real part of β is equal
to the ratio of the pulse duration to the period of plasma
oscillations, and the imaginary part of β determines the
coordinate normalized to the pulse length in the frames
of reference of the propagating pulses. Figure 2 shows
how function (3.9) depends on the variable x for differ-
ent values of the parameter a, characterizing the pulse
length. It can be seen that the shape of the function is
very sensitive to a. For a values smaller than 3, the
function oscillates behind the pulses, whereas, for a = 5
(curve 4), it is essentially nonzero only within the
pulses.
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For short (a < 1) and long (a > 1) laser pulses,
expression (3.9) and, accordingly, formulas (3.8) and
(3.6) can be substantially simplified.

For short pulses, we can utilize the following
asymptotic expansion of the function Φ(x, a) at suffi-
ciently long distances from the centers of the pulses
(|x | > 1, a):

(3.11)

Using expansion (3.11), we can see from expression
(3.6) that, behind the pulse propagating from left to
right, the electric field of the wake wave has the form

(3.12)

The wake electric field of the pulse traveling in the
opposite direction is represented in an analogous man-
ner.

According to formula (3.12), the electric field at
each point in space (except at the axis ρ = 0) has both
axial and radial components. The phases of these com-
ponents are shifted by π/2 with respect to each other.
This indicates that the field vector rotates in the (z, ρ)
plane in such a way that its end describes an ellipse,
whose eccentricity depends on the radial coordinate.
For ρ < kpR2/2, the ellipse is elongated in the z direc-
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Fig. 2. Function Φ(x, a) vs. variable x for different values of

the parameter a: a = (1) 0.5, (2) , (3) 3, and (4) 5.2



414 GORBUNOV, FROLOV
tion. For ρ = kpR2/2, the end of the electric vector
describes a circle, and, for ρ > kpR2/2, the ellipse is
elongated in the radial direction.

The electric field of the standing wake wave that
arises between the short pulses after their interaction
(t > 0) has the form

(3.13)

Now, we turn to an analysis of the energy density.

According to formula (3.8), the energy density  of
the wake plasma waves behind each of the short laser

pulses (ωpτ < ) before their interaction is equal to

(3.14)

We integrate expression (3.14) over the radius to obtain

the energy  of the wake waves that is contained in
a narrow layer of thickness dz and characterizes the
energy lost by a pulse per unit length during its propa-
gation:

(3.15)

where WL is the total energy of the pulse,

(3.16)

Recall that, in the region between short laser pulses
after their interaction, their wake waves form a two-
dimensional standing wake wave. According to for-
mula (3.8), the energy density in this standing wave is

(3.17)

The nodes of the standing wave (the zeros of its
electric field) lie only on the axis (ρ = 0) at the points
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kpz0 = πn (n = 0, ±1, ±2, …). In the axial region (ρ <
kpR2/2), the energy density is maximum at kpzmax =
(1 + 2n)(π/2) and is minimum at kpzmin = πn (n = 0, ±1,
±2, …). At the distance ρ = kpR2/2 from the axis, the
energy density is independent of the longitudinal coor-
dinate, and, at larger distances (ρ > kpR2/2), the maxima
become the minima and vice versa.

Integrating function (3.17) over the period of its
variations along the z-axis yields an energy density two
times that in expression (3.14). This means that, in the
wake field region, where the laser pulses are already
absent, the energy of the plasma waves is conserved
and the energy density in the standing wave is distrib-
uted in a specific manner.

The structure of the standing wake wave depends
essentially on the pulse radius. Figure 3 shows the dis-
tribution of the energy density in a two-dimensional
standing wake plasma wave for two pulses with differ-
ent radii.

The total energy of the plasma waves generated by
short laser pulses can be estimated by integrating
expression (3.17) over a volume limited in the longitu-
dinal direction by a distance equal to two Rayleigh
lengths, 2ZR = k0R2, along which the pulse shapes
change relatively insignificantly:

(3.18)

Under the restrictions stated above, this energy is much
lower than the energy of the laser pulse.

In the opposite limit of long laser pulses (a > 1), the
function Φ(x, a) at a > x, 1 can be described by the
asymptotic formula

(3.19)

According to formula (3.6), the wake fields behind the
pulses are exponentially small, but, inside each of the
pulses, there is a large-scale electric field

(3.20)

The field of the counterpropagating pulse is described
by an analogous formula.
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Fig. 3. Distributions of the dimensionless energy density of the standing wake wave in the plane of the variables ρ/R and ξ/L for

laser pulses with the radii R = (a)  and (b) .2kp
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The energy density of the large-scale plasma pertur-
bations generated in the interaction between long

pulses (ωpτ > ) can be determined from formula
(3.8) by using asymptotic expression (3.19):

(3.21)
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The first two terms on the right-hand side of this for-
mula describe the energy density of the plasma pertur-
bations within each of the pulses far from the interac-
tion region. The last (third) term refers only to the col-
lision between the pulses and describes additional
energy that is transferred from the pulses to the plasma
perturbations in the interaction process.

The energy density of the plasma perturbations
inside a long pulse depends on the shape of the pulse.
Figure 4 shows the distributions of the energy density
within one of the pulses outside the interaction region
[the first term in the square brackets in formula (3.21)],
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Fig. 4. Distributions of the dimensionless energy density of the plasma perturbations inside long laser pulses with radius-to-length
ratios R/L = (a) 2 and (b) 1/2 in the plane of the variables ρ/R and ξ/L.
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obtained for two different values of the length-to-radius
ratio of the pulse.

We integrate expression (3.21) over the coordinates
to obtain the time-dependent total energy of the plasma
perturbations:

(3.22)

Before (t < –τ) and after (t > τ) the collision, energy
(3.22) is the sum of the energies of the large-scale
plasma perturbations accompanying each of the laser
pulses. At the beginning of the interaction process
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, the energy of the plasma fields is

partially converted into the energy of the pulses. During

the time interval –  <  < 0, the energy of

the plasma perturbations increases and at t = 0 reaches its
maximum value, which is twice that before the interac-

tion. Then, the energy decreases and, at  > ,

becomes equal to the energy before the interaction.

Note that the time evolution of the space-averaged
total energy of large-scale plasma perturbations can be
obtained from Eq. (2.8) for pulses of arbitrary duration.
We determine n0 from Eqs. (1.15) and formula (2.2) and
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carry out the necessary manipulations to arrive at the
equation

(3.23)

The first term on the right-hand side describes the
energy of the wake waves, which increases linearly
with time and is not small only in the case of suffi-
ciently short pulses. The second term becomes nonzero
only after the interaction (t > 0).

For sufficiently long distances between the pulses
after their interaction (on time scales t @ τ, ωpτ2),
Eq. (3.23) transforms into the equation

(3.24)

The term oscillating at a frequency twice the plasma
frequency is related to the interaction of each of the
pulses with the wake field produced by the other pulse.
This term is also not exponentially small only for short

laser pulses (ωpτ < ).

Note that each of the pulses interacts with the wake
field of the other pulse only in the region in which the
structure of the wake wave remains unchanged. The
length of this region can be estimated as the Rayleigh
length ZR only under the condition ZR < c/ωpi, where

ωpi = ωp  is the plasma frequency of the ions
with charge Z and mass mi . For larger values of ZR, the
effects associated with the perturbations of the ion
plasma density can influence the shape of the wake
waves.

4. SMALL-SCALE PLASMA PERTURBATIONS

In the interaction region, laser pulses not only per-
turb the plasma on large scales but also generate small-
scale perturbations with a period equal to half the laser
wavelength. Such small-scale perturbations were inves-
tigated in our recent paper [14], so we present below
only the most important of the results obtained there.

Since the period of small-scale perturbations is
small in comparison with the pulse radius, they can be
treated as quasi-planar. The longitudinal component E2z

of the electric field of the perturbations is much stron-
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ger than their radial component and is related to the
electron density perturbations n2 in a simple way:

(4.1)

In turn, the electron density perturbations are described
by the equation that follows from Eqs. (1.15), (2.2), and
(2.4):

(4.2)

On the right-hand side of Eq. (4.2), we retain small
terms proportional to the derivatives of the slowly vary-
ing amplitudes because these terms play an important
role in calculating the time evolution of the energy of
the laser pulses.

The solution to Eq. (4.2) that satisfies the condition
that there be no small-scale electron density perturba-
tions before the interaction has the form

(4.3)

The time dependence enters solution (4.3) through
function (3.9).

According to formula (2.7), the energy density of
the small-scale plasma perturbations is also expressed
in terms of the function Φ:

(4.4)

For laser pulses with a Gaussian radial profile [see
formula (3.5)], we integrate the total energy of the
small-scale plasma perturbations over the interaction
region to obtain, using formula (4.4),

(4.5)

where the total energy of the pulse, WL, is given by
expression (3.16). In order of magnitude, the energy of
the plasma perturbations is lower than the pulse energy
by a factor of (VE /c)2.
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The time evolution of the small-scale perturbations
can be examined by using the familiar asymptotic
expressions of the function Φ(x, a). For sufficiently
long distances between the pulses after their collision
(on time scales such that t > 0, t @ τ, t @ ωpτ2/2),
asymptotic expansion (3.11) puts density perturbations
(4.3) in the form

(4.6)

From this formula, we can see that the density pertur-
bations are plasma oscillations localized in space.
Under otherwise equal conditions, such oscillations are
most efficiently generated by laser pulses with the dura-

tion τ = /ωp. The amplitude of the plasma oscilla-
tions excited by long pulses (ωpτ @ 1) is exponentially
small.

In accordance with formula (4.5), the total energy of
the small-scale plasma oscillations is equal to

(4.7)

The generation of plasma waves and the time evolu-
tion of their energy during a collision between the
pulses can be investigated separately for long and short
laser pulses.
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During the collision (ωpτ < ) between short (t < τ)
pulses, the function can be described by the asymptotic
expression

and, in accordance with solution (4.3), the amplitude of
the small-scale electron density perturbations has the
form

(4.8)

The energy of the plasma oscillations increases accord-
ing to the law

(4.9)

For long (ωpτ > ) laser pulses, the time evolution
of the plasma perturbations on time scales t < ωpτ2/2
during (t < τ) and after (t > τ) the collision is described
by the formula

(4.10)

The first term in parentheses in formula (4.10)
describes the quasistatic plasma density perturbations,
which are generated only during the interaction
between the pulses; on time scales t > τ, these perturba-
tions are exponentially small. The second term
describes the generation of plasma oscillations, which
are exponentially small in the case of a long pulses.
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pulses (ωpτ > ) increases to its maximum during the
collision and then decreases. This effect stems from the
fact that, at the beginning of the interaction, the pulses
lose part of their energy by generating quasistatic elec-
tron density perturbations. Then, the phase difference
between the driving force and the perturbations
changes, and almost the same amount of energy is
transferred back to the pulses. In contrast to the case of
long pulses, part of the energy of short pulses [see for-
mula (4.7)] is irreversibly converted in the interaction
region into the energy of small-scale plasma oscilla-
tions, which remain in the plasma after the interaction.

Note that, for short-wavelength plasma oscillations,
the cold plasma approximation is valid only under the

condition δ =  ! 1, where VT is the electron

thermal velocity. In this case, the duration of the pulses
and the time scales on which the effects of the electron
thermal motion are unimportant are restricted by the

inequalities ωpτ, ωpt < , exp .

CONCLUSION

The question about the effects that occur in a plasma
in the interaction between two laser pulses differing in
carrier frequency or duration was discussed in [5–13].
Unlike in those papers, we have discussed the interac-
tion between two identical pulses—the case that seems
to be the simplest to realize experimentally. We have
shown that the effects produced in such an interaction
are sensitive to the ratio of the pulse duration to the
period of the plasma waves. This ratio can be changed
by changing the pulse duration and/or the plasma den-

sity. Short laser pulses (ωpτ ≤ ) excite plasma oscil-
lations on two spatial scales. Wake plasma waves with
the wavelength λp = 2π/kp are generated over the entire
path of the pulses and form a standing wake wave in the
region between the pulses after their interaction. In the
interaction region, the pulses produce small-scale
plasma oscillations with a wavelength equal to half the
laser wavelength λ0 = 2π/k0, which remain in the
plasma after the interaction. In the case of long laser

pulses (ωpτ > ), the plasma perturbations are quasi-
static and are also generated on two essentially different
spatial scales. Plasma fields generated within the pulses
on scales of about the pulse length grow in the interac-
tion process. The fields that are generated only in the
interaction region are small-scale and disappear after
the interaction.

As an example, we consider the interaction between
two identical 1-J short laser pulses with duration τ =
400 fs (L = 120 µm), frequency ω0 = 2.4 × 1015 s–1 (λ0 =
0.8 µm), and radius R = 100 µm in a fully ionized
helium plasma with the electron density N0e = 1.3 ×

2

2 3
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1019 cm–3. For these parameter values, the radiation
intensity is equal to 4.5 × 1015 W/cm2 and the amplitude
of the small-scale electron density perturbations is
about n2/N0e ≈ 0.3. We also have ωpτ ≈ 80 @ 1, which
corresponds to the generation of quasistatic electron
density perturbations in the interaction region in such a
plasma. The cold plasma approximation is valid for
electron temperatures below 300 eV.

In [14], it was shown that such a stratified plasma
can be used as a short-lived Bragg mirror, which may
reflect about 25% of the energy of a probing wave.

Another example is provided by small-scale plasma
oscillations. For laser pulses with the wavelength λ0 =
0.8 µm and the duration τ = 30 fs (L = 9 µm), the con-

dition ωpτ =  is satisfied for the electron density
N0e = 7 × 1017 cm–3. Plasma oscillations in which the
amplitude of the electron density perturbations
amounts to about n2/N0e ≈ 0.3 are generated in a colli-
sion between two moderate-power laser pulses with an
intensity of 2 × 1014 W/cm2, which, for a pulse with the
radius R = 9 µm, corresponds to an energy of 1.6 ×
10−5 J. For the above plasma parameters, the plasma
ions on the Rayleigh length can be treated as immobile
and the cold plasma approximation is satisfied for elec-
tron temperatures below 20 eV. Such localized coherent
plasma oscillations may serve as a convenient object to
study the destruction of coherence and the development
of Langmuir turbulence under the conditions of laser
experiments.

In our analysis, it was assumed that the density per-
turbations are small and can be described in the linear
approximation. This condition restricts the radiation
intensity to a level of 1015–1017 W/cm2 at a laser wave-
length of about λ0 ≈ 1 µm. In present-day devices, the
radiation intensity can be substantially higher when the
density perturbations are nonlinear. By investigating
the parameters of the plasma perturbations as functions
of the radiation intensity, it is possible to study how the
linear perturbations become nonlinear and trace their
further evolution.

When propagating through a plasma toward one
another and interacting with one another, short laser

pulses (ωpτ < ) lose their energy by exciting large-
scale plasma waves and small-scale plasma perturba-
tions. The ratio of the fractions of energy lost by these
two mechanisms can be estimated using formulas
(A.19) and (A.13) (see the Appendix):

This estimate shows that, under the condition ω0τ >
(kpR)2, which is easy to satisfy, the additional energy
loss resulting from the interaction between two short
pulses exceeds the loss by the generation of wake
waves. It should be stressed, however, that laser pulses

2
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2 kp
2
R

2
+

4 2πω0τ
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also lose their energy in other processes (Coulomb col-
lisions, stimulated scattering, etc.). That is why energy
loss caused by the excitation of plasma oscillations
should be considered merely as an additional effect.
Nevertheless, it seems quite possible to measure the
fraction of energy additionally lost by short laser pulses
in their interaction.

The nonlinear interaction between two wake waves
propagating toward one another can be accompanied by
the emission of radiation from the plasma at a fre-
quency twice the plasma frequency (see, e.g., [21]).
Such radiation may be used as a new diagnostic tool
providing data on the interaction of high-power laser
pulses with plasmas. The results of the investigation of
this radiation will be published in a separate paper.

APPENDIX

Effect of the Interaction Process on Laser Pulses

Here, we consider how the energy and shape of the
laser pulses change in their interaction. In the approach
developed here, these changes are assumed to be small.
Nevertheless, an analysis of the effect is helpful in
revealing the tendencies that may become important
under the conditions in which these changes will turn
out to be measurable and thus will serve as a basis for
additional diagnostics of the plasma processes accom-
panying the interaction.

In discussing the question about the pulse shape, we
represent the energy density of the pulse in the form

w± =  + δw±, where  is the energy density before
the interaction and δw± is the small correction caused
by the interaction. As in the preceding discussion, we
describe the pulses before the interaction by the Gaus-

sian profiles  = ( /8π)exp[−(ρ/R)2 – (ξ/L)2] and

 = ( /8π)exp[–(ρ/R)2 – (η/L)2], which satisfy
Eqs. (2.13) in the zeroth approximation and depend
only on the absolute value of complex amplitude (2.12).
However, the first-order terms in Eqs. (2.13) contain the
complex amplitude of the field envelope. That is why,
in order to determine δw±, it is necessary to know not
only the amplitude of the envelope but also its phase,
which is determined by field equation (1.13). Hence,
the correction δw± can be found by substituting fields
(2.1) into Eq. (1.13) and by using the following expres-
sions for the amplitude of the field envelope:

(A.1)

where |E±| is the absolute value of the complex ampli-
tude and ϕ± is its phase.

In what follows, we restrict ourselves to considering
only the pulse that propagates from left to right,
because the results are also valid for the pulse propagat-

w0
±

w0
±

w0
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E0L
2
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E± eLE± eL E± iϕ±( ),exp= =
ing in the opposite direction. Substituting expression
(A.1) into Eq. (1.13) and separating the real and imag-
inary parts, we obtain

(A.2)

(A.3)

Note that the correction δw+ to the pulse energy den-
sity depends on the coordinate ρ; time t; and variable ξ,
which characterizes the position of a point inside the
moving pulse with respect to its center. Along with the
correction δw+, it is conventional to introduce the quan-

tity δI+ = 2π , which determines the pulse

shape in the longitudinal direction. The time evolution
of the total pulse energy will be characterized by the

expression δW+ = .

We solve Eqs. (A.2) and (A.3) by means of the per-
turbation theory. In this way, Eq. (A.2) takes the form

(A.4)

In the expression for the phase ϕ+, we take into account
only the effects that are associated with the plasma den-
sity perturbations. We also neglect linear dispersion,
linear diffraction, and nonlinear effects that are propor-
tional to the second derivatives of the slowly varying
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quantities. As a result, we arrive at the following solu-
tion to Eq. (A.3):

(A.5)

where the first term in parentheses, which will be
denoted by ϕ+2, accounts for the effect of the small-
scale plasma perturbations on the phase of the envelope
and the second term, which will be denoted by ϕ+0,
describes the effect of the large-scale perturbations.
According to Eq. (A.4) and solution (A.5), the large-
and small-scale perturbations of the electron plasma
density contribute additively to the correction to the
pulse energy density: δw+ = δw+0 + δw+2. The equations
for each of the contributions follow from Eq. (A.4):

(A.6)

(A.7)

First, we consider the change in the energy density
of a laser pulse under the action of small-scale plasma
perturbations. With allowance for expression (4.3) for
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the electron density perturbations n2 and the expression
for the phase ϕ+2, Eq. (A.7) becomes

(A.8)

After the interaction (t > τ), but at times that are
much shorter than the Rayleigh time (t ! tR = k0R2/2c),
Eq. (A.8) has the solution

(A.9)

which yields the following expression for the pulse
shape:

(A.10)

Figure 6 shows function (A.10) calculated for differ-
ent values of the parameter ωpτ, which characterizes the
pulse duration in units of the plasma period. We can see

that short laser pulses (ωpτ ≤ ) lose their energy by
generating short-wavelength plasma oscillations
(which remain in the plasma after the interaction) over
the entire interaction region. It can also be seen that the
generation is more efficient in the second half of this

region (curves 1, 2). For longer pulses (ωpτ > ) or a
denser plasma, quasistatic density perturbations are
excited only during the first half-period of the interac-
tion process. During the second half-period, the energy
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of the plasma perturbations is transferred back to the
pulses (curves 3, 4). As a result, the energy of the pulses
is restored to the energy that they had before the inter-
action, but their shape becomes distorted. In this
approximation, formula (A.10) reduces to

(A.11)

The change in the total energy of the pulse in its col-
lision with an identical pulse propagating in the oppo-
site direction can be found by integrating Eq. (A.8) over
the spatial variables:

To evaluate the integral in this expression, we use the
following equation for the function Φ:
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Fig. 6. Change in the dimensionless energy density FL =

 vs. dimensionless variable ξ/L in the frame

of reference of the propagating pulse after the interaction.
The pulse propagates from left to right. Curves 1–4 refer to
the same values of the parameter ωpτ as in Figs. 2 and 5.
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As a result, we obtain

(A.12)

Comparing expression (A.12) with formula (4.5), we
see that half of the energy of the generated small-scale
plasma oscillations is transferred from one laser pulse,
and the remaining half is that lost by the other pulse.

For times t > τ after the interaction, the total energy
lost by the pulse can be determined using asymptotic
expansion (3.11):

(A.13)

A comparison with formula (4.7) shows that the energy
δW+2 is equal to half the energy Wp2, which is in com-
plete agreement with the energy conservation law.

The change in the energy of a laser pulse (and,
accordingly, in its shape) under the action of large-scale
electron density perturbations, δw+0, can be represented
as the sum of two parts: δw++, which is associated with
the perturbations excited by the pulse itself, and δw+–,
associated with the perturbations generated in the inter-
action with an identical pulse propagating in the oppo-
site direction. Using the expression for n0 that follows
from Eqs. (1.15) and formula (2.2), taking into account
formula (A.5) for the phase, and performing routine
calculations, we find

(A.14)
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(A.15)

where t ' = t + t0 is the time measured from the instant t0
of the pulse injection and erf(x) is the probability inte-
gral. These expressions are valid under the conditions
|t0 | > τ and |t | < tR = k0R2/2c.

Integrating expressions (A.14) and (A.15) over the
radial variable ρ and the longitudinal variable ξ, we
obtain the change in the energy of the pulse due to the
generation of wake plasma waves,

(A.16)

and the change associated with its interaction with the
wake waves of the other pulse,

(A.17)

From formula (A.17) we can, in particular, see that, on
time scales t > τ, ωpτ2 after the collision between short

pulses (ωpτ ≤ ), their energy includes a correction
oscillating at a frequency twice the plasma frequency:

(A.18)

Comparing formula (A.18) with Eq. (3.24), we can
readily see that the energy conservation law is satisfied.

During the time required for a laser pulse to propa-
gate over two Rayleigh lengths, 2tR, the total energy
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losses (A.16) due to the generation of wake plasma
waves are 

(A.19)

This expression and formula (3.18), which determines
the total energy of the wake waves generated by two
pulses, differ by the coefficient 1/2 and in that they have
opposite signs.

The amplitude of the wake waves excited by long
laser pulses is exponentially small. However, as was
shown above, the energy of such pulses should decrease
during their interaction because of the increase in the
energy of the plasma perturbations. In this case, for-
mula (A.17) becomes

(A.20)

Comparing formula (A.20) with formula (3.22), we can
conclude that, in the interaction process, a fraction of
energy of the long laser pulses is converted into the
energy of the plasma perturbations generated on a spa-
tial scale on the order of the pulse length and, then, this
fraction of energy is transferred from the perturbations
back to the pulses.
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Abstract—A novel method is proposed for calculating nonequilibrium fluctuations of the mean occupation
numbers of the electron shells in the radiative–collisional average-ion models of multicharged plasma kinetics.
For the class of Slater ionic models, equations are derived for the mean occupation numbers of the electron
shells and their fluctuations in the Fokker–Planck approximation. To calculate the fluctuations, the Fokker–
Planck equation is linearized in the vicinity of the steady-state nonequilibrium solution to the kinetic equations
(linear noise approximation). The method proposed allows one to take into account both the nonequilibrium
correlations of the occupation-number fluctuations and the thermodynamically equilibrium statistical correla-
tions related to the Coulomb interaction among bound electrons. The relation among the coefficients in the Fok-
ker–Planck equation for the occupation-number fluctuations of the electron shells is discussed based on the
fluctuation–dissipative theorem. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A wide range of plasma physics problems related to
the studies of targets for inertial controlled fusion,
X-ray lasers, liner implosion in high-current genera-
tors, the interaction of ultrashort laser pulses with sol-
ids, etc., are dealt with by numerically solving the equa-
tions of the nonequilibrium radiative gas-dynamics of
multicharged plasma [1–3]. From the computational
standpoint, all of these problems are very difficult to
solve because of the variety of the physical processes in
nonequilibrium plasma and, accordingly, the complex-
ity of the equations. Hence, one needs both a simplified
plasma description and simplified kinetic models that
do not require too much computational resources and,
at the same time, are sufficiently exact for applications.

The kinetics of both equilibrium plasma [i.e., a
plasma that is in local thermodynamic equilibrium
(LTE)] and nonequilibrium (non-LTE) hot plasma is
based on the two main approaches:

(i) the chemical approach [4], in which the kinetics
of the ion populations is considered using the theory of
ion collisions with photons and free plasma electrons,
and

(ii) the solid-state approach, in which the plasma is
described in the cell model of an inhomogeneous elec-
tron gas. Under LTE conditions, the latter approach is
based on the Thomas–Fermi theory [5], and under non-
LTE conditions, it is based on the kinetic model of non-
interacting electrons in quasineutral plasma cells [6].

The radiative–collisional (RC) models of ion kinet-
ics in a hot plasma take into account one-electron and
1063-780X/03/2905- $24.00 © 20425
one-photon reactions (both forward and reverse ones)
of the ion excitation and ionization in collisions with
electrons and photons and two-electron Auger pro-
cesses (autoionization and dielectronic recombination).
The reaction cross sections are calculated by the theory
of collisions for isolated ions (see, e.g., [7, 8]).

Gas-dynamic equations based on chemical RC
kinetic models are usually derived from the generalized
Boltzmann equations (sometimes called the Wang
Chang–Uhlenbeck equations) for the electron and ion
plasma components under the assumption of plasma
quasineutrality. It is common to describe the electron
and ion plasma components in the two-temperature
approximation and neglect ion diffusion. In the local
RC kinetic model, the spectral transfer of radiation is
described by a collision integral in the approximation
of the total frequency redistribution of incoherent pho-
ton scattering in lines and continua [1–3, 9]. In this
approximation, the set of gas-dynamic equations and
equations of radiation transfer and population kinetics
should be supplemented by the spectral dependences of
the phototransition cross sections calculated with
allowance for both the broadening of the discrete levels
and the rates of the impact processes. Alternatively,
when the approximation of the total redistribution over
frequencies is inapplicable, the kinetics of the ion level
populations in plasma should be described in terms of
the spectral densities for the excited states [10–12].
When describing the dynamics of a weakly nonideal
emitting plasma by using the local RC model of the
population kinetics and the kinetic model of the spec-
tral transfer of radiation in the approximation of the
003 MAIK “Nauka/Interperiodica”
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total frequency redistribution of incoherent photon
scattering in lines and continua, we will use the term
“nonequilibrium radiation gas-dynamics” (NRGD) for
the two-temperature gas-dynamic approximation. In
this approximation, the velocity distribution functions
of the ions and free electrons are assumed to be Max-
wellian.

The NRGD problems are very difficult to solve by
using chemical RC kinetic models because of the huge
number of ion states. For example, the total number of
ion configurations with N = 13 bound electrons, which
can occupy the ion subshells from the 1s to the 5g
states, is NC ~ 1.12 × 107 (for N = 7, we have NC ~
1.01 × 105). The number of the allowed radiative tran-
sitions between the energy levels of these configura-
tions (the number of emission lines) is 10 to 30 times
higher. Obviously, a detailed description of all of these
states and radiative transitions in the RC kinetic model
when numerically solving NRGD problems is very
time-consuming. Moreover, such detailed information
provided by these calculations is often unnecessary
because the main physical parameters of the systems
under consideration are determined by a moderate
number of average characteristics. For this reason,
when solving the problems of the NRGD of a hot
plasma, simplified methods for describing the RC
kinetics are widely used.

In the chemical approach, the methods for simplify-
ing the RC kinetic model are based on statistical
hypotheses about the populations of the excited ion
states, combining the ion states with close energies into
one common state, and describing the variety of radia-
tive transitions between the common levels as a single
radiative transition with an effective line profile. This
approach is justified when the profiles of the close lines
and the line emission spectra overlap.

In a fairly detailed ion-shell approach, the ion states
in the RC kinetic model are described by the complete
set of SLJ (or SL) terms; in this case, only the states with
{CγJ} electron configurations that are degenerated in
the projections of the moments are assumed to have
equal populations. In a less detailed approach, the split-
ting of the ∆{CγJ} terms is ignored and all the energy
states of a given configuration are assumed to have
equal populations. In complex multicharged ions, the
total energies of a large number of configurations are
often close to each other. In this case, the so-called
superconfigurations that combine a variety of different
configurations with close energies are usually used as
common states. Finally, in the least detailed RC kinetic
approach, the difference in the energies of configura-
tions with different moments of the electrons belonging
to the same nl shell is completely ignored. This rough-
est description is used in the hydrogen-like RC kinetic
models without allowance for L splitting; in this case,
the ion states are determined by a set of the integer
occupation numbers of the electron shells over the prin-
cipal quantum numbers. The above approaches to
describing both a variety of discrete–discrete (dd) tran-
sitions between the common levels and the effective
line shapes are called the detailed term accounting
(DTA), unresolved transition array (UTA), and super-
transition array (STA) approximations, respectively
(see, e.g., [3, 13–16]). In the UTA and STA approxima-
tions, the effective cross sections for dd transitions (the
envelopes of an array of lines) are described by Gauss-
ian profiles. The parameters of these profiles (namely,
the widths and the center positions) are calculated by
averaging the positions of the individual lines with sta-
tistical weights equal to the spontaneous decay rates; to
determine these positions, special time-saving methods
based on recursion formulas and sum theorems [15, 17]
were developed. For many NRGD problems, the
observed complicated emission spectra of hot multi-
charged plasmas are satisfactorily described by simpli-
fied chemical RC kinetic models. However, despite a
significant reduction in the computation time, the above
approaches remain very time-consuming when applied
to the multidimensional problems of radiation gas-
dynamics.

An alternative simplified description of RC plasma
kinetics is based on the use of the non-LTE solid-state
approach. The corresponding RC kinetic models are
called the average ion models (AIMs). In these models,
the statistical independence of the populations of dis-
crete ion levels is assumed, which is valid in the strict
sense for an ideal gas of noninteracting electrons. In
contrast to the chemical RC kinetic models, the plasma
kinetics in the AIM approximation is described by the
electron shell occupation numbers averaged over the
ion configuration ensemble [6, 18] rather than by the
exact populations of the electron configurations. The
kinetics of the average occupation numbers is deter-
mined by the rates of the RC processes averaged over
the nonequilibrium ensembles of the ions and radiation;
for the photon transfer equation, it is determined by
average sources and sinks of radiation in radiative pro-
cesses.

Under LTE conditions, the AIM approximation can
be most easily formulated in terms of the density func-
tional theory by using the extreme properties of an
equilibrium ensemble (see, e.g., [16, 19]). Various
forms of the density functional and various physical
approximations (such as taking into account the
quasineutrality condition and exchange–correlation
terms, the implementation of the cell approximation,
and the use of the quasiclassical approximation) allow
one to apply the well-known quantum–statistical mod-
els of substance, such as the Thomas–Fermi and Har-
tree–Fock–Slater models [16, 19–21]. In the density
functional theory, the single-particle approach with a
self-consistent cell potential can be implemented most
efficiently to take into account the interelectron interac-
tion, which is required to describe one of the most
important phenomena in a nonideal plasma—pressure
ionization [22]. The theory enables one to determine
the photoabsorption cross sections in an LTE multi-
PLASMA PHYSICS REPORTS      Vol. 29      No. 5      2003
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charged plasma by calculating the delayed polarizabil-
ity. In particular, assuming that the fluctuations of the
occupation numbers of the average ion levels are con-
tinuous, it is relatively simple to take into account the
effect of electron interaction on the correlations of the
equilibrium fluctuations of the electron shell occupa-
tion numbers, which determine the statistical line
shapes from dd transitions in the AIM [13, 23]. Unfor-
tunately, the density functional theory does not allow
one to apply the AIM approximation to nonequilibrium
plasmas.

An alternative approach to deriving the AIM
approximation under LTE conditions was proposed in
[24, 25]. It is based on explicitly calculating the large
thermodynamic potential and average occupation num-
bers in the plasma chemical model by the saddle-point
method. In this approach, the hydrogen-like Slater
approximation, which was theoretically justified in
[26–28], is used in the initial plasma chemical model to
describe the structure of isolated ions. In the Slater
models, the energy structure of ions is described by the
universal matrices of screening constants, which are
weakly dependent on the atomic number Z. For the
Slater ion models without and with allowance for L
splitting, the matrices of screening constants, optimized
using the updated atomic databases, are presented in
[28] and [29], respectively. The fluctuations of the
occupation numbers and the photoabsorption cross sec-
tions are calculated using the quasi-thermodynamic
fluctuation theory.

In the Slater ion models, analytic expressions for the
energy structure and screened charges of the electron
shells allow one to use semiempirical (based on the
Coulomb–Born and quasiclassical approximations)
formulas for the collision rates and photoabsorption
cross sections. These expressions are convenient for
both developing time-saving (from the calculation
standpoint) automated database generators for the
chemical RC kinetic models and calculating the RC
kinetics based on the nonequilibrium Slater AIMs.
Explicit calculations of the large thermodynamic
potential for the LTE Slater AIMs allows one to take
into account both the correlations of the occupation-
number fluctuations caused by the Coulomb interaction
among bound electrons and the influence of correla-
tions on the effective photoabsorption cross sections for
dd transitions in the AIM approximation [25] (the occu-
pation-number fluctuations in the AIM approximation
without allowance for correlations were calculated in
[30]).

This study is devoted to deriving the equations for
the non-LTE Slater AIMs. The equations are obtained
by averaging the equations of the chemical RC plasma
kinetics over a nonequilibrium ensemble of ions. To
enable explicit averaging, the set of equations of the
chemical RC kinetics is approximated by the Fokker–
Planck equation for the continuous probability density
of the occupation numbers of the ion’s electron shells
PLASMA PHYSICS REPORTS      Vol. 29      No. 5      2003
with the help of the diffusion approximation for multi-
dimensional probability processes on meshes [31]. In
this approach, macroscopic equations for the average
occupation numbers are obtained under the assumption
of small fluctuations. The method enables one to calcu-
late the nonequilibrium fluctuations of the average
occupation numbers in the linear noise approximation.
These occupation numbers are needed to simulate the
statistical shapes of the lines and photoabsorption cross
sections under non-LTE conditions. In the case of LTE,
the accuracy of the results obtained by this method (see
[25]) is determined by the choice of the ensemble in
which fluctuations are calculated (in [25], it was the
grand canonical ensemble).

In Sections 2 and 3, the equations of the chemical
RC kinetics for the Slater ion models are presented. In
Section 4, the AIM equations for the average occupa-
tion numbers of electron shells are derived by the
moment method [32, 33] and in the Fokker–Planck
approximation.

In Section 5, the equations for the nonequilibrium
fluctuations of the occupation numbers are derived and
the sources in the radiative transfer equations are aver-
aged in the linear noise approximation. The possibility
of generalizing the nonequilibrium Slater AIMs and
taking into account plasma nonideality (in particular,
when calculating the fluctuations of the average occu-
pation numbers in the cell approximation) is discussed.

The results of calculations of the occupation-num-
ber fluctuations in a nonequilibrium multicharged hot
plasma under the coronal equilibrium conditions are
presented in Section 6.

2. ELECTRON GAS IN THE COULOMB FIELD 
OF A NUCLEUS

Let us consider a system of bound electrons in the
field of a nucleus with a charge Z. We introduce the con-

figuration space {C} = { , , …, , …, , …},
where {ni} are the quantum numbers of the ith shell and
qi is the number of electrons in the ith shell. In the ion
models without allowance for the L splitting of the lev-
els, ni is the principal quantum number of the ith shell,
and in those with allowance for L splitting, ni is a pair
of numbers (nl)i , where n and l are the principal and
orbital quantum numbers of the ith shell, respectively
(1 ≤ i ≤ K, where K is the maximum number of the
shell). The ion state is determined by a sequence of the
integer occupation numbers {q1, q2, …} of the shells
from the {C} configuration, where qi is the number of
electrons in the ith shell, 0 ≤ qi ≤ gi, and gi is the statis-
tical weight (for the ion model without allowance for L

splitting, we have gi = ). Each {q1, q2, …} sequence
can be related to a point in a bounded K-dimensional
integer-number mesh in configuration space. The func-
tions determining the chemical RC kinetics (the ion

n1

q1 n2

q2 ni

qi n j

q j

2ni
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energy states, screened shell charges, types of transi-
tions from a given configuration, oscillator strengths,
etc.) are defined in configuration space {C}. We will
consider the Slater models of isolated ions in which the
total energy of the electron configuration is represented
analytically by a cubic polynomial in the occupation
numbers [28, 29]

(1)

where σkn is the invariable matrix of the screening con-
stants and Qk is the shielded charge of the kth shell (δnk

is the Kronecker delta function). For σkn = 0, we have
Qk = Z and expression (1) describes the simplest ion
model, namely, the model of an ideal electron gas in the
nucleus Coulomb field, in which case the total energy
of the {C} configuration is equal to the sum of the ener-
gies of the single-electron bound states of hydrogen-

like levels: UC = –Z2  = –Z2  (here
and below, we use the atomic system of units). The sys-
tem of the energy levels of a hydrogen-like ion ([H]-
ion) is shown in Fig. 1.

The arrows in Fig. 1 show the single-electron transi-
tions between the states of the discrete and continuous
spectra. The energy levels of a [H]-ion are degenerated.
According to the Pauli principle, the number of elec-
trons in any shell of a multielectron ion cannot be

higher than the degeneracy order ( ). The configura-
tion space {C} for the two-shell ions (a two-dimen-
sional mesh) is shown in Fig. 2. It consists of (gi + 1) ×
(gj + 1) points.

The arrows in Fig. 2 show the possible types of the
processes: ionization (I), photoexcitation (A), elec-
tronic excitation (B), autoionization (W), etc., which are
also represented in another form in Fig. 1. The ground
states of the ions are located at the mesh border,
whereas the excited states are inside the mesh. The
excited states of ions with a fixed number of bound
electrons are located only on the diagonals. Below, the
RC kinetic models with allowance for only single-elec-
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Fig. 1. Energy levels of an [H]-ion.
tron and two-electron transitions (for the Auger process
only) are considered. The reactions of ionization and
ion recombination are shown by the vertical and hori-
zontal transitions between adjacent points in the config-
uration space. The reactions of the excitation and
quenching of the ion levels correspond to the strictly
diagonal transitions, which conserve the number of
electrons in the configuration. The reactions of autoion-
ization and dielectronic recombination correspond to
the diagonal transitions in which the number of elec-
trons in the configuration changes by unity. The param-
eters of the chemical RC kinetic model without allow-
ance for electron–electron interaction are completely
determined by the reaction rates for the [H]- and [He]-
ions with one and two electrons, respectively, and by
the Pauli principle (in the approximation in which the
states of each configuration are described by a single
Slater determinant).

3. EQUATIONS OF THE CHEMICAL RC 
KINETIC MODEL

In the chemical approach, the equations of the RC
kinetics are the local equations for the concentrations
N{C} of the ion components or the normalized probabil-
ities of the configurations P{C} ≡ N{C}/N (N =

). The kinetic equations for ions (the Pauli

equations) describe the change in P{C} caused by the
radiative and collisional processes. We will describe the
reaction rates in the first order of the perturbation the-
ory using the Fermi golden rule. The validity of this
approach stems from the Markov approximation [31].
The equations of the RC kinetics for the plasma ion
components (electron configurations) are not closed. To
close them, the kinetic equations for free electrons and
radiation are needed. In the NRGD, the radiation is
described by the transfer equation and the subsystem of
free electrons is assumed to be in local equilibrium. The
electron density is determined from the quasineutrality
condition. We assume that the plasma is ideal and one-
component and the subsystem of free electrons is an
ideal gas with a temperature T and chemical potential µ.

N C{ }C{ }∑

I1 R1

n1

n2

R2

I2 A12

B12

W12

Fig. 2. Configuration space {C} of two-shell ions.
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These approximations are valid for a not too dense or
not too rarefied hot plasma.

To make the RC kinetic equations more compact, it
is suitable to use the step (argument shift) operator En,
which acts on the integer-number argument of the func-
tion f(n) determined by the relations [31]

(2)

With the help of the En operator, the energy νij (i < j) of
the i  j transition from the configuration {C} = {…,

, …, , …} to the configuration {C}' = Ej[C] =

{…, , …, , …} ≡ {C} – i + j is determined
by the difference between the total configuration ener-
gies and has the form

(3)

For an ideal plasma in a state of ionization equilibrium,
the Saha equation for P*{C} has the form (here and
below, the symbol * stands for the equilibrium proba-
bilities P*{C})

(4)

where η = µ/T is the chemical potential of free electrons
µ normalized to the temperature T and G{C} =

 ≡  is the total statistical

weight of the {C} configuration. The general equations
of the chemical RC kinetics for the P{C} probabilities
have the form

(5)
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In Eqs. (5), the summation is performed over the dis-
crete–continuum (dc), discrete–discrete (dd), and
Auger (ddc) transitions. In the single-configuration
approximation, the rates of the forward (reverse) pro-
cesses are proportional to the occupation (vacancy)
numbers of the electron shells. The rates of collisional
ionization and excitation are proportional to the density
of free electrons, and the rates of photoionization and
photoexcitation are proportional to the radiation inten-
sity. The rates of the Auger transitions [the terms with
the wjk, i multiplier in Eqs. (5)] do not depend on the
electron density and radiation intensity. The rates of the
reverse processes are determined from the rates of the
forward processes using the principle of detailed bal-
ance. With allowance for the Coulomb interaction
among the ion’s bound electrons, the kinetic coeffi-
cients Ii , Ri , aij , and wi, jk in Eqs. (5) depend on the occu-
pation numbers of the electron shells. Without this
allowance (the ideal gas approximation), the kinetic
coefficients are independent of the occupation num-
bers. To clarify the notation in Eqs. (5), we note that the
contribution from a single-electron radiative i  j dd
transition from the {C} configuration to the {C}' =
{C} – i + j configuration [this transition enters into the
third and fourth terms of the sum in Eqs. (5)] has the
form

(6)

In Eq. (6), the rates of the forward and reverse radiative
dd transitions (Aij and Aji, respectively) depend on the
radiation intensity Iν, which is determined from the
equation for the radiation transfer

(7)

In this equation, the radiation sources ην and sinks χνIν
include bremsstrahlung, dd and dc phototransitions,
and Compton scattering. For dd transitions, these
sources can be written in the form [3]

(8)

×
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2
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(9)

(10)

where N is the total ion density,  is the total coeffi-
cient of photoabsorption due to dd transitions, and σij is
the absorption cross section for the dd transition of an
electron from the ith shell to the jth shell. For the sake
of simplicity, Eq. (10) is written in the Wien approxi-
mation, in which the equilibrium radiation intensity is
Bν ∝  ν3exp(–ν/T). The cross section for the radiative
i  j dd transition can be expressed via the absorption
oscillator strength fij and the normalized line profile
ϕ(x):

(11)

Then, the rates of the forward and reverse radiative dd
processes in Eq. (6), Aij and Aji, are determined by the
collision integrals that are dependent on the radiation
intensity. For narrow lines, they are

(12)

Without allowance for the interaction among bound
electrons, the kinetic coefficients in Eqs. (5) do not
depend on the configuration occupation numbers and
can thus be factored out from the step operators.

For dc transitions, the radiation sources ην and sinks
χνIν in Eq. (7) and the rates of photoionization and pho-
torecombination in Eqs. (5) can be written in a similar
way. The additional terms in transfer equation (7) are
related to the equilibrium bremsstrahlung processes
and Compton scattering by free electrons and do not
contribute to kinetic equations (5). On abandoning the
Wien approximation, the equations of radiation transfer
and RC kinetics will allow for the processes of stimu-
lated emission; in this case, the formulas for the rates of
radiation processes change somewhat [3].
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4. DERIVATION OF THE NONEQUILIBRIUM AIM 
EQUATIONS FROM THE CHEMICAL RC 

KINETIC MODEL

Let us consider the RC ion kinetics in the two-shell
model at σkn = 0 (ideal gas) for a small ion admixture to
the background plasma assuming that the density of
free electrons and the plasma density and temperature
are constant. In a steady state, Eqs. (5) can be written in
the form

(13)

where 0 ≤ q1 ≤ g1 and 0 ≤ q2 ≤ g2. In the case at hand,
Eqs. (13) are linear with respect to the vector  of

dimension (g1 + 1) × (g2 + 1) and the probabilities 

satisfy the conservation law  = 1. For large

statistical weights gi, the dimension of set (13) is K @ 1
and its solution is too cumbersome. Under LTE condi-
tions, due to the detailed balance between the forward
and reverse transitions, the stationary (equilibrium)
solution to Eqs. (13) can be found explicitly and has the
form of a factorized binomial distribution:

(14)

where fi are the occupation-number probabilities. Here,
due to the statistical independence of the electron dis-
tribution over the ion shells, the vector  is entirely
determined by the first moments of the solution to the
kinetic equations, namely, the average electron shell
occupation numbers 〈qi 〉 . The same effect (the statisti-
cal independence of the steady-state electron distribu-
tion over the ion shells) occurs when the equations of
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the RC model are solved neglecting the diagonal tran-
sitions in Eqs. (13) (Fig. 2).

Let us consider the moment representation of the
complete set of Eqs. (13) under non-LTE conditions
[32]. We determine the moments of the electron distri-
bution over the shells using the probabilities :

(15)

The equations for the first moments, 〈q1〉 , 〈q2〉 , and
〈q1q2〉 , which follow from the set of linear equations
(13) of the chemical RC kinetics, are

(16)

(16‡)

The set of all the moment equations (16) is certainly
equivalent to Eqs. (13). In the moment representation
for the equations of RC kinetics, all the moments are
coupled. Equations (16) can be simplified under the
assumption of the statistical independence of the elec-
tron distribution over the shells with a factorized prob-
ability distribution  =  (14), in which

case moments (15) are factorized,  = .
In this case, the equations for the first moments are
closed but nonlinear and the equations for the highest
order moments include only the solutions to the equa-
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tions for the lowest order moments. If we assume that,
in the general case, the solutions to kinetic equations
(13) for the vector  are also close to the factorized
one, then the equations for the first moments can be
expressed in the form

(17)

These are the AIM equations for the model of noninter-
acting electrons. Here, the set of nonlinear low-dimen-
sional equations (17) for the shell occupation probabil-
ities fi replaces the high-dimensional set of linear equa-
tions (13). Under LTE conditions, this approximation is
exact. Conditions under which the AIM RC kinetic
equations (13) satisfactorily describe a non-LTE
plasma were studied in [32]; the common condition is
the smallness of the dynamic correlations of the occu-
pation numbers of different shells [these correlations
are caused by nondiagonal transitions in kinetic equa-
tions (16)] and/or small deviations from LTE condi-
tions.

When deriving the AIM equations from the set of
RC equations (16) with allowance for the interaction
among bound electrons (e.g., for the Slater ion models),
the problem arises of calculating the averaged kinetic
coefficients and the averaged spectral sources in trans-
fer equations (7)–(10) because, in this case, the equilib-
rium solution cannot be reduced to a simple factorized
form even under LTE conditions. There are correlations
among the average occupation numbers of the shells.
Under LTE conditions, the problem of calculating the
equilibrium (static) occupation-number correlations,
which are related to the influence of the electron Cou-
lomb interaction on the energy structure of an ion, can
be solved using the quasi-thermodynamic theory of
continuous fluctuations [25]. Under non-LTE condi-
tions, it is necessary to take into account both the static
and the dynamic correlations of the occupation num-
bers.

The separation of the occupation-number correla-
tions into static and dynamic ones is rather arbitrary and
is related to the use of the AIM approximation in ana-
lyzing the chemical RC kinetic models. Indeed, the

Pq1q2

d q1〈 〉
dt

-------------- g1

d f 1

dt
--------≡ I1g1 f 1– R1g1 1 f 1–( )+=

+ a21g2 f 2 1 f 1–( ) a12g1 f 1 1 f 1–( )–

+ 0.5W22 1, g1g2 g2 1–( ) f 2
2

1 f 1–( )

– 0.5W1 22, g1g2 g2 1–( ) f 1 1 f 2–( )2
,

d q2〈 〉
dt

-------------- g2

d f 2

dt
--------≡ I2g2 f 2– R2g2 1 f 2–( )+=

– a21g2 f 2 1 f 1–( ) a12g1 f 1 1 f 1–( )+

– W22 1, g1g2 g2 1–( ) f 2
2

1 f 1–( )

+ W1 22, g1g2 g2 1–( ) f 1 1 f 2–( )2
.



432 GASPARYAN, GORSHIKHIN
dynamic characteristics (reaction rates) and static char-
acteristics (ion energy levels) enter into the matrix ele-
ments of the common Coulomb interaction operator.
The quantitative difference between them is that the
matrix elements are taken between different states of
the continuous or line spectra, which makes the kinetic
coefficients dependent on the density. The possibility of
describing plasma kinetics in the chemical RC model is
related to both this density dependence (i.e., the
decrease in the dynamic correlations) and the applica-
bility of the Markov approximation when deriving the
equations of the chemical RC kinetics (the Pauli equa-
tions). For a strongly nonideal plasma, the quantitative
difference between the static and dynamic characteris-
tics is smaller, and the description of plasma kinetics by
using chemical RC models becomes impossible
because the kinetics of highly excited ion states with an
electron orbit size on the order of the average distance
between the ions cannot be described by the Pauli equa-
tions for the states of isolated ions. In this case, the
plasma kinetics is to be described using other quasi-
particles.

AIM equations (17) for the average occupation
numbers can be derived from the kinetic equations of
the chemical RC plasma model with the help of an
alternative method by using the Fokker–Planck diffu-
sion approximation for the one-step probability pro-
cesses [31]. We substitute the continuous coordinates of
the configuration space {C} for the integer-number
ones and rewrite Eqs. (13) in the form

(18)

where q1 = x, and q2 = y. In Eq. (18), the factors qi ,
(gi – qi), and others, which are proportional to the occu-
pation and vacancy numbers, are incorporated into the
kinetic coefficients. Expanding the step operators E in
a Tailor series

(19)

and omitting all the derivatives of orders higher than
two, we obtain the following Fokker–Planck equation
for the probability density of the electron configura-
tions P(x, y, t):
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In (20), the kinetic coefficients are functions of x and y.
In the general case, in which K electron shells are taken
into account, Fokker–Planck equation (5) has the form

(21)

In this equation, the dependence of the transfer coeffi-
cients Ai and diffusion tensor Bij on the coordinates yi,
which are the occupation numbers, is determined by the
form of kinetic coefficients in Eqs. (5). From Eq. (21),
one can readily obtain the macroscopic equations for
the average 〈yi 〉  values

(22)

The approximate equality in (22) holds only when the
fluctuations of the occupation numbers with respect to
their average values are small (the probability density
distribution P(yi, t) is peaked). It is easy to verify that
Eqs. (22) for the macrovariables 〈yi〉 ≡ gi fi are com-
pletely equivalent to Eqs. (17), which were obtained in
the approximation of the uncoupled moments on the
integer-number mesh in configuration space.

5. LINEAR NOISE APPROXIMATION 
FOR CALCULATING THE OCCUPATION 
NUMBER FLUCTUATIONS IN THE AIM 

UNDER NON-LTE CONDITIONS

The validity of the small-fluctuation approximation,
under which Eqs. (22) were obtained, can be estimated
in the linear noise approximation for the multidimen-
sional Fokker–Planck equation [31]. We assume that

the stationary solution to Eqs. (22) is 〈yi 〉 ≡ . Expand-
ing the coefficients Ai and Bij in a Tailor series in the
vicinity of the stationary solution and keeping only the
linear terms of the series, we obtain from Eqs. (22) the
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Fokker–Planck equation with linear coefficients for the
probability density P(∆yi, t)

(23)

where new independent variables, namely, the devia-

tions from the stationary solution, ∆yi ≡ yi – , are
introduced. In Eq. (23), the constant matrix Bij is sym-
metric, whereas the Aij matrix is generally asymmetric.
The solution to linear equation (23) has the form of a
Gaussian distribution and is given by the formula

(24)

where the equations for the average values 〈∆yi〉 ≡
(yj, t)  and the correlation matrices Ξ have

the form (the steady-state 〈∆yi 〉  values are zero)
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Under LTE conditions, there is a relation between
the diffusion matrix Bs and the transfer matrix As. This
relation stems from the principle of detailed balance.
First, we consider the diffusion limit for Saha formula
(4), which we rewrite in the form
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where qi ≡ gi fi . Using expansion (19) of the step opera-
tor and integrating Eq. (26) over the continuous config-
uration space of the occupation numbers, we obtain the
equilibrium solution for the occupation-number proba-
bilities  of the ion’s electron shells:
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Let us now consider an Auger reaction on the right-
hand side of RC kinetic equations (5) (the electron tran-
sition from the jth and kth shells to the ith shell:
( jk)  (i)):

(28)

The principle of detailed balance for this reaction
reads as

(29)

As is the case with the Saha formula, using expansion
(19) and the principle of detailed balance, we obtain
from Eq. (29) the relation between the rates of the for-
ward and reverse Auger processes,

(30)

It follows from Eq. (30) that, under LTE conditions, the
coefficients wij, k and dij, k [see (5)] are related as

(31)

Here, we took into account that the diffusion approxi-
mation is valid at qi @ 1. Substituting the equilibrium

occupation numbers  into Eq. (31), we rewrite the
relation between the probabilities of the forward and
reverse Auger processes in the form

(32)
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For calculation purposes, we introduce the averaged
large thermodynamic potential Ω for ions:

(33)

The extremum of the potential Ω is achieved for the
equilibrium shell occupation numbers described by
Eq. (27). We also introduce the matrix of equilibrium
correlations, which determines the occupation-number
fluctuations under LTE conditions:

(34)

Now, we calculate the Bij and Aij matrices under LTE
conditions. For the Auger transition (kk)  (i) with
k > i, calculation gives

(35)

It can easily be verified that, in the case at hand, the
matrix

(36)

is a solution to Eq. (25):

(37)

Similar calculations for other reactions show that,
under LTE conditions, the stationary solution to

Eqs. (22) coincides with the equilibrium solution,  =

; in this case, the matrix B* of the diffusion coeffi-
cients and the matrix A* of the transfer coefficients are
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related by expression (37), which is a direct representa-
tion of the fluctuation–dissipative theorem for the diffu-
sion approximation to the equations of RC plasma
kinetics in the AIM approximation. When the matrices
As and Bs are commutating, Eq. (35) for the matrix Ξ
has a simple stationary solution Ξ = –0.5(As)–1Bs. This
case corresponds to the absence of correlations among
the occupation numbers of different electron shells.

Let us determine the macroscopic coefficients of the
spectral transfer equation of radiation in the AIM
approximation. We consider radiative transfer equation
(7) and restrict ourselves to analyzing the contribution
from dd transitions (8)–(10).

The sources and sinks in Eq. (7) depend on the elec-
tron configuration {C} (because the energy of dd tran-
sitions and the oscillator strengths depend on {C}) and
the linewidths of individual transitions ∆νij, which are
determined by the collision rates, Stark microfields, the
spread in the ion velocities, etc. The above derivation of
Eq. (22) for the average occupation numbers in the Fok-
ker–Planck approximation is based on both the contin-
uous approximation of the dependence of the kinetic
coefficients on the electron configuration occupation
numbers and the assumption of small correlations
among the populations of different ions’ shells. An
analysis of RC kinetic equations (5) and the appearance
of coefficient (12) for the rates of the radiative dd tran-
sitions show that these assumptions are acceptable
when the radiation intensity Iν changes slightly over the
linewidth of dd transitions. This is the case of a plasma
with the optical thickness higher than the mean radia-
tion path lengths in the lines. In fact, this is an addi-
tional condition for the applicability of the AIM
approximation under non-LTE conditions. On the other
hand, in an optically thin plasma, the intensity of line
emission is low and the influence of the intrinsic plasma
emission (reabsorption) on the kinetic processes is
insignificant. Hence, it is reasonable to expect that, in
the AIM approximation, the inaccuracy of the RC
kinetic equations is maximum in a nonequilibrium
plasma with an optical thickness on the order of unity
for the most essential dd lines.

If we could accurately determine probabilities P{C}
from the known average populations of the electron
shells, then it would be possible to solve transfer equa-
tion (7) together with Eqs. (5). However, this approach
is inefficient in developing time-saving approximations
because it is the solution of the transfer equation that is
the most laborious in solving the NRGD equations. An
approach based on solving the averaged radiative trans-
fer equation, in which the sources and sinks are deter-
mined by a moderate number of the radiation parame-
ters of the electron configuration ensemble, is more
efficient.

This approach has long been used in the case of
LTE. Under LTE conditions, the main kinetic parameter
is the cross section for photon absorption; hence, the
PLASMA PHYSICS REPORTS      Vol. 29      No. 5      2003
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problem is to determine the cross sections statistically
averaged over the equilibrium electron configuration
ensemble, first of all, for dd transitions because the cal-
culation of these transitions in a hot multicharged
plasma is the most time-consuming. In the AIM
approximation and under LTE conditions, the follow-
ing assumptions are used [13, 16, 25, 30]:

(i) the smallness of the fluctuations of the electron
shell occupation numbers,

(ii) the smallness of the correlations among the aver-
age electron shell occupation numbers, and

(iii) the assumption of strong overlapping of the line
profiles corresponding to single-electron dd transitions
between the identical electron shells of different ions.

The last assumption is well satisfied for dc transi-
tions because the profiles of the photoionization cross
sections are very wide. For dd transitions, strong over-
lapping of the line profiles of close lines corresponding
to dd transitions can be observed in the plasma of high-
Z elements, in which case the main resonant lines of dd
transitions are surrounded by a huge number of satel-
lites [16]. We will also use this approximation under
non-LTE conditions.

In the Fokker–Planck linear noise approximation for
the occupation number density, the sources and sinks in
radiation transfer equation (23) can be averaged in a
straightforward way. Indeed, substituting integration
for the discrete sum over configurations in Eqs. (9) and
(10), expanding the smooth functions of continuous

occupation numbers qi in  in Tailor series in the
vicinity of the average steady-state populations, and
then integrating over qi , we arrive at an integral repre-
sentation of the sources and sinks. When the satellite
shift caused by the dispersion of the occupation number
distribution is much larger than the linewidths of the
individual dd transitions between electron configura-
tions, the individual line profiles ϕ(x) can be substituted
by δ functions. On this substitution, all of the integrals
with the Gaussian distribution of the occupation-num-
ber fluctuations (24) can be calculated analytically. In
the first nonzero approximation, the integral statistical
line profile is a Gaussian with the width determined by
the matrix of fluctuation correlations Ξ and a depen-
dence of the energy of dd transitions on the electron
configurations.

Let us thoroughly calculate the averaged absorption

coefficient  in the transfer equation and the sta-
tistical line profile of a dd transition for the i  j tran-
sition between the shells of the average ion. Expanding

 in Eq. (9) in Tailor series of smooth functions
(oscillator strengths and shell populations) in the vicin-

χν ij,
dd

χν ij,
dd〈 〉

χν ij,
bb
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ity of the average steady-state populations qi =  +

∆qi ≡ gi(  + ∆fi), we obtain

(38)

Here, the distribution P(C) is determined by Eq. (24).
The energy shift of dd transitions can be determined by
expanding the energy of dd transitions [see Eqs. (3),
(27)] in terms of the occupation-number fluctuations

(39)

Let us consider the main term in Eq. (38). Let (u) be
the Fourier transform of the line profile of the i  j

transition, (u) = (x)e–iux. Then, taking into

account Eq. (24), we have

(40)

For a Gaussian profile ϕ(ν) with width Σij, 0 (a particu-
lar case is the δ function), statistical profile (40)
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becomes a Gaussian with the total width equal to the
sum of widths:

(41)

The influence of the correction to profile (40) due to an
additional term in square brackets in Eq. (38) results in
the profile asymmetry.

The average rates Aij of the radiative dd transitions
are expressed via the averaged sources in the transfer
equation. In the AIM approximation, for the i  j
transition in Eq. (9), instead of expression (12), we have

(42)

The total absorption coefficient in the transfer equation
due to dd transitions and the total rates of the dd transi-
tions are the corresponding sums over the transitions
between the shells of the average ion. The statistical

profile of photoabsorption  in the dc transitions
(with allowance for the fluctuations of the photoioniza-

tion thresholds), the averaged radiation sources 

and  in the AIM transfer equation, and the
remaining reaction rates are calculated in a similar way.

Under LTE conditions, the above derivation of the
transfer equation in the Slater AIM approximation
gives the statistical AIM photoabsorption coefficients
calculated by the quasi-thermodynamic fluctuation the-
ory [25]. Under non-LTE conditions, it generalizes the
equilibrium theory and allows one to take into account
the influence of both the static and the dynamic corre-
lations of the occupation-number fluctuations on the
complete equations of RC kinetics (for populations and
radiation) in the linear noise approximation. The
explicit form of the nonequilibrium probability density
P(∆yi , t) allows one to calculate not only the influence
of nonequilibrium kinetics on the effective linewidths,
but also some other parameters, in particular, the dis-
persion of the ion mean charge. Indeed, the normalized
fraction of the ions with an integer-number charge Z ' =
Z – Zb can be found by integrating over distribution
(24):
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(43)

It is seen from Eq. (43) that the dispersion of the ion
mean charge is determined by the sum of the population
correlations of the matrix Ξ.

Radiation transfer in plane geometry was computed
by the detailed RC models of a multicharged plasma
and by the AIM within a wide range of the plasma
thicknesses, densities, and temperatures. The compari-
son of the results obtained shows that the AIM approx-
imation satisfactorily describes the mean characteris-
tics of a hot multicharged plasma and the large-scale
features of the plasma emission spectrum [32, 34],
regardless of almost completely ignoring the detailed
description of the line emission reabsorption. To a great
extent, the successful use of the AIM can be explained
by the fact that, in a hot plasma of high-Z elements, the
main mechanism for the thermalization of the sources
of nonequilibrium dd and dc radiation is the interaction
with the bremsstrahlung continuum (whose sources are
equilibrium), rather than the collisional thermalization
of the sources. Moreover, a favorable factor improving
the accuracy of the AIM approximation is the high radi-
ation capacity of a multicharged plasma in continua (dc
transitions), whose contours are highly overlapped.

The derivation of the Slater AIM equations and the
averaged radiative transfer equation from the equations
of chemical RC kinetics can easily be generalized, in
particular, for

(i) multicomponent plasmas,
(ii) models allowing for the degeneracy of the elec-

tron component,
(iii) models allowing for the stimulated radiation

processes,
(iv) nonequilibrium distribution functions of free

electrons (high-energy electrons in laser plasma), and
(v) combined RC kinetic models (the so-called “ion

method” [16]) with incomplete averaging over the con-
figuration ensemble and a description of only a fraction
of the configuration occupation numbers by the aver-
aged values.

However, the complicated theoretical problem of
correctly describing a strongly nonideal plasma (i.e.,
the effect of the ambient plasma on the structure of indi-
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vidual ions and the RC kinetics) is still unresolved. The
effect of the ambient plasma manifests itself it two
ways. First, the excited ion states with electron orbit
radii on the order of the average distance between ions
are destroyed and reassigned to the continuum. Second,
ion collisions also can affect the states with small elec-
tron orbit radii, changing the corresponding photoab-
sorption cross sections (line profiles). The simplest way
to take into account plasma nonideality is to use the
model of neutral spherical cells that do not interact via
the Coulomb field. In this model, the residual interac-
tion with the ambient plasma is described by the bound-
ary conditions on or near the cell surface. In the neutral
cell model, the effect of the ambient plasma consists in
a decrease in the single-particle density of the electron
states near the boundary of the continuum as compared
to the density of the isolated ion states. The simplest
regular method of taking into account this effect in the
chemical RC models and AIMs with the use of the
Slater models of an isolated ion is to change the statis-
tical weight of the excited shells [35]. In [35], it was
proposed to describe the decrease in the statistical
weight of the electron shells by the following function
of the ratio of the orbit radius of an isolated ion rn to the
cell radius R0:

(44)

where a and b are the fitting parameters. Besides, the
model of a homogeneous ion sphere (with a constant
density of free electrons in the cell) [35] is used to take
into account the decrease in the ionization potential due
to the external shielding of the bound states by the free
electrons of the cell. The fitting parameters a and b in
Eq. (44) are chosen so as to match the pressure in the
Slater AIMs to that in the Thomas–Fermi model. The
“chemical bond” effects, which are important for a cold
substance, are not taken into account in this model. As
in the Thomas–Fermi model, these effects can be taken
into account via an additional term in the free energy or
the nonequilibrium free energy [36]. The above simpli-
fied method for considering the plasma nonideality is
presently employed instead of a still absent exact the-
ory of a strongly nonideal plasma. From the standpoint
of the problems of radiative gas-dynamics, the favor-
able circumstance is the relatively weak influence of the
highly-excited states and the transitions between them
on the radiative transfer. As a result, the average char-
acteristics of radiation are slightly sensitive to the
method of truncating the number of the ion levels.

We note another problem related to the calculation
of the occupation-number fluctuations in the AIM and
their influence on the statistical profiles of the lines cor-
responding to dd transitions. In deriving Eqs. (22) and
(25), the density of free electrons was assumed to be
constant. Under LTE conditions, this corresponds to the
use of the grand canonical ensemble; in this case, the
chemical potential of free electrons is one of the inde-
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pendent variables. On the other hand, the plasma cell
models that employ the approximation of strictly neu-
tral cells correspond to a canonical ensemble in which
the number of the bound and free electrons in a cell is
determined by the nucleus charge. In calculating the
average plasma characteristics, the models using differ-
ent ensembles are equivalent. However, the calculated
fluctuations depend on the ensemble type because it
determines the characteristics of free electrons. The
choice of the ensemble in the nonideal plasma cell
model is an independent procedure, in which the sepa-
ration of electrons into the bound and free ones is not
strictly determined.

Let us illustrate this situation by using the kinetic
equations. We consider the kinetics of collisional ion-
ization of single-shell ions. In Eqs. (5), the ionization
and recombination rates can be written in two versions:

(45)

In version (a), the number of free electrons in a cell is
determined by the condition of average quasineutrality,
and version (b) corresponds to the strictly neutral cell
with a constant total number of electrons. These ver-
sions are related to the equations of chemical RC kinet-
ics,

(46)

and to the corresponding Fokker–Planck equations
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(47)

Both versions lead to similar equations for the aver-
ages, but different equations for the fluctuations. The
choice between these approximations should be done
based on a more rigorous approach to considering the
nonideal plasma kinetics. At present, the grand canoni-
cal ensemble [version (a)] is usually used to calculate
the radiation path lengths. It is reasonable to expect that
this approximation more adequately describes real
plasmas with high degrees of ionization, although this
issue is not quite clear in the case of weakly bound,
highly excited states (this problem is important when
the fluctuations of these states significantly contribute
to the statistical broadening of the lines).

6. COMPUTATION 
OF THE OCCUPATION-NUMBER 

FLUCTUATIONS UNDER CONDITIONS 
OF CORONAL EQUILIBRIUM

The local nonequilibrium Slater AIMs with and
without allowance for the L splitting of the levels (see
Sections 4, 5) was realized in the AVI-L numerical
code. An implicit first-order difference scheme and the
Newton method, which provided rapid convergence of
the iterations, were used to solve Eqs. (22) of the non-
steady kinetics of the occupation numbers.

The AVI-L code uses the dependence of the rates of
collision processes on the mean occupation numbers
and the shielded charges of the electron shells accord-
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Fig. 3. Mean charge 〈Z 〉  in a Ge plasma vs. electron temper-
ature in the AIM and NAIM.
ing to the interpolations of calculations by the Cou-
lomb–Born model (the Lotz and Van Regemorter for-
mulas [1, 8, 33]). Either quasiclassical Kramers inter-
polations [3, 7, 8, 33] or simple quadrature formulas
from [16] are used to calculate the photoabsorption
cross sections and the oscillator strengths. For the prob-
abilities of the Auger processes, the calculated table
data from [37] or their analytical interpolations cor-
rected by introducing the branching factor with the aim
of taking into account cascade processes [34, 38] are
used.

In the AIM without allowance for the L splitting of
the levels, the matrix of the screening constants is taken
from [28], whereas the “new” AIM (NAIM), which
takes into account L splitting, uses the matrix of the
screening constants from [29], extended to take into
account the ion’s electron shells with the principal
quantum numbers n ≤ 10. In kinetic equations (22), an
allowance is made for the stimulated radiative pro-
cesses and the degeneracy of the plasma electron com-
ponent in the ideal gas model. The possibility is also
realized of phenomenologically taking into account
strong plasma nonideality with different dependences
of the effective statistical weights of the shells on the
density [see (44)] and with allowance for a decrease in
the ionization potential in the model of homogeneous
ion spheres.

The computations of the equilibrium characteristics
of a hot multicharged plasma in a wide range of plasma
densities, temperatures, compositions, and degrees of
ionization and for various spectral and mean Planck
and Rosseland radiation path lengths by the AVI-L code
show that these characteristics are in fair agreement
with the results of calculations by the more complete
quantum–statistical models. Thus, at temperatures
higher than 0.3 keV, the mean radiation path lengths
calculated by the NAIM differ from the data from [16]
by no more than ~20–30%. Note that the calculations
by the simpler Slater AIM (without allowance for L
splitting) are in noticeably worse agreement with these
data: the difference in the mean Rosseland path lengths
attained a factor of 2 and higher [32].
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Fig. 4. Radiation capacity J of a Ge plasma vs. electron tem-
perature in the AIM and NAIM.
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Let us consider the results of calculations of the
nonequilibrium characteristics of a hot plasma by the
AVI-L code.

6.1. Calculations without Allowance
for the Auger Processes

Figures 3–8 show the results of the AIM and NAIM
calculations of the ion mean charge 〈Z 〉 , the dispersion
of the mean charge D [see Eq. (43)], and the plasma
volume radiation capacity J versus the electron temper-
ature T for Ge and In plasmas at density ρ =
0.002 g/cm3. The plasma was assumed to be ideal, and
the ion’s electron shells with the principal quantum
numbers n ≤ 6 were taken into account.

The calculations (without allowance for the Auger
processes) for Ge (Z = 32 and A = 72.5) and In (Z = 49
and A = 115) plasmas show the following:

(i) Within a wide range of Z, the average ion charge
〈Z 〉  and its dispersion D are approximately the same in
the AIM and NAIM models.

(ii) The dependence of the integral plasma radiation
capacity J on the model type is more pronounced. The
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Fig. 5. Dispersion D of the mean charge 〈Z 〉  in a Ge plasma
vs. electron temperature in the AIM and NAIM.
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Fig. 7. Radiation capacity J of an In plasma vs. electron
temperature in the AIM and NAIM.
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difference in J increases with Z; at low electron temper-
atures, this difference attains a factor of 2 for In plas-
mas (Fig. 7).

(iii) The radiation capacity J of a hot plasma corre-
lates with the dispersion D of the ion mean charge. The
maximum of the radiation capacity J is attained when
the ion’s shells are half-filled, and the minimum is
attained when the ion’s shells are filled almost com-
pletely. The minimum of the radiation capacity J in the
temperature range under consideration is attained when
the stripping of the Kth ion shells begins.

(iv) The absolute maximum of the radiation capacity
(at a fixed density) increases with Z. The dependence of
J on the density is approximately proportional to ~ρ2.

(v) The effect of the shells on the radiation capacity
J is most pronounced for low-lying shells, which is nat-
urally explained by the corresponding behavior of the
ionization potentials, I ~ 1/n2.

In the AVI-L code, the nonequilibrium correlations
of the occupation-number fluctuations were calculated
for the first time. In the linear noise approximation,
these fluctuations determine the effective statistical lin-
ewidths and the dispersion of the ion distribution. The
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Fig. 6. Mean charge 〈Z 〉  in an In plasma vs. electron temper-
ature in the AIM and NAIM.
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Fig. 8. Dispersion D of the mean charge 〈Z 〉  in an In plasma
vs. electron temperature in the AIM and NAIM.
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calculations showed that, under non-LTE conditions,
these quantities are sensitive to the kinetic constants. In
the NAIM, artificially excluding transitions between
the subshells with the same principal quantum numbers
significantly changes the correlation matrix. Hence, the
mixing of the electron subshells with different orbital
moments should be taken into account.

In the coronal equilibrium, the effect of dynamic
correlations (i.e., nonequilibrium kinetics) on the fluc-
tuations of the mean occupation numbers is also signif-
icant. This effect can be illustrated by the example of
the ion charge dispersion D. Figures 9 and 10 show the
ion charge dispersion computed without allowance for
dynamic correlations [in this case, only the diagonal part
of equilibrium correlation matrix (34) is used, which,
under LTE conditions, corresponds to statistically inde-
pendent fluctuations] and in the complete formulation
of the problem [in this case, the correlation matrix Ξ is
determined by solving the equation AΞ + ΞA+ + B = 0;
see Eq. (25)]. It is seen that, under non-LTE conditions,
the dynamic correlations significantly increase the ion
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Fig. 9. Dispersion D of the mean charge 〈Z 〉  in an In plasma
(ρ = 0.002 g/cm3) vs. electron temperature in the AIM
(1) with and (2) without allowance for the dynamic correla-
tions.
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Fig. 11. Mean charge 〈Z 〉  in an Al plasma vs. electron tem-
perature in the AIM (1) with and (2) without allowance for
the Auger processes.
distribution width and the statistical linewidths. These
results demonstrate the importance of taking into
account all of the effects that influence the fluctuation
correlations. Indeed, in the average ion approximation,
it is these effects that determine both the linewidths and
the influence of the line emission reabsorption on the
formation of spectra in the nonlocal NRGD problems.

6.2. Calculations with Allowance
for the Auger Processes

The first results of the AIM calculations of the ion
mean charge 〈Z 〉 , the dispersion of the mean charge D,
and the plasma volume radiation capacity J versus the
electron temperature T by the AVI-L code for the den-
sity ρ = 0.002 g/cm3 are shown in Figs. 11–13. The cal-
culations were performed without allowance for the
correlation multiplier (the branching factor) in the
effective rate of the Auger process.

It can be seen from Figs. 11–13 that taking into
account the Auger processes significantly affects all the
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Fig. 10. Dispersion D of the mean charge 〈Z 〉  in an In
plasma (ρ = 0.002 g/cm3) vs. electron temperature in the
NAIM (1) with and (2) without allowance for the dynamic
correlations.
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Fig. 12. Radiation capacity J of an Al plasma vs. electron
temperature in the AIM (1) with and (2) without allowance
for the Auger processes.
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parameters of a nonequilibrium plasma. The inclusion
of the Auger processes (dielectronic recombination)
impedes the increase in the degree of ionization with
temperature due to the recombination to the lower ion’s
shells and significantly enlarges the population of the
excited ion states, which, in the coronal approximation,
results in a sharp increase in the plasma radiation
capacity. As in the case without allowance for the Auger
processes, the dispersion D of the ion mean charge cor-
relates with the radiation capacity J.

7. CONCLUSION
The theory of fluctuations of the occupation num-

bers of the electron shells of ions in a nonequilibrium
plasma is developed in the AIM approximation. The
AIM equations for both the mean occupation numbers
of the ion shells and their correlations are deduced in
the Fokker–Planck approximation by averaging the
equations of the chemical RC kinetics for the hydro-
gen-like Slater ion models. In the linear noise approxi-
mation (as in the quasi-thermodynamic theory of fluc-
tuations in an LTE plasma), the nonequilibrium fluctu-
ations of the occupation numbers are described by a
Gaussian distribution function. In a steady state, the
correlators of the occupation numbers are explicitly
described by analytical formulas via the solution to the
AIM equations for the mean occupation numbers of the
electron shells.

In the AIM, the occupation-number fluctuations
determine the statistical shapes of the photoabsorption
cross sections, which enter into the averaged spectral
equation of radiative transfer. The calculations of the
nonequilibrium fluctuations of the occupation numbers
in the AIM approximation allow one to refine some
characteristics of a nonequilibrium plasma (such as the
radiation capacity and the non-LTE ion composition).
The assumptions used in deriving the AIM equations
for the nonequilibrium kinetics of a multicharged
plasma are best justified for a weakly nonideal plasma
and small deviations from the LTE conditions. To quan-
titatively determine the applicability range and accu-
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Fig. 13. Dispersion D of the mean charge 〈Z 〉  in an Al
plasma vs. electron temperature in the AIM (1) with and
(2) without allowance for the Auger processes.
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racy of the nonequilibrium Slater AIMs, it is necessary
to develop a theory of a nonequilibrium nonideal
plasma and thoroughly compare the nonequilibrium
plasma characteristics with the results of calculations
by more exact models.

Currently, the Slater AIMs seem to be the best
approximation for simulating the kinetics of a nonequi-
librium multicharged plasma. They combine such
advantages as simplicity (a significant reduction in the
details of plasma description), universality, and accept-
able accuracy. These advantages determine a wide use
of these models in the in-line calculations of the multi-
dimensional problems of the nonequilibrium radiative
plasma gas-dynamics in the physics of high energy
densities.
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Abstract—Results are presented from the first measurements of the profiles of the HeI 447.1-nm and HeI
492.2-nm neutral helium spectral lines emitted by the plasma of a current sheet formed in the CS-3D experi-
mental device. A theoretical analysis of these profiles is performed with the model microfield method. A com-
parison of the theoretical and experimental profiles shows that the electron density in the peripheral regions of
the current sheets amounts to (1.0–2.0) × 1015 cm–3. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The objective of this study is to diagnose the plasma
of a current sheet by analyzing the profiles of the HeI
447.1-nm (23P–43D transition) and HeI 492.2-nm
(21P–41D transition) spectral lines of neutral helium.
The Current Sheet 3D (CS-3D) device is intended for
studying the evolution of current sheets in various two-
and three-dimensional magnetic configurations. The
longstanding interest in current sheets [1, 2] is moti-
vated by the fact that they are very suitable objects for
studying magnetic reconnection, which is one of the
fundamental problems of modern plasma physics. As
was demonstrated in our previous studies, spectro-
scopic methods are very efficient in determining
plasma parameters, such as the electron temperature
[3–7], ion temperature [3, 5], nonequilibrium electric
fields [8, 9], and plasma densities in different spatial
regions of the sheet [10–13]. The electron and ion tem-
peratures and the plasma density usually reach their
maximum values in the midplane of the sheet and
decrease rapidly along the normal to the sheet surface
[6, 7, 10–15]. For current sheets produced in high-pres-
sure helium [10–15], the spectral lines of helium ions
are emitted predominantly from regions lying near the
midplane of the sheet. Thus, analyzing the profiles of
the HeII 468.6-nm and HeII 656.0-nm spectral lines,
we could determine the maximum values of the elec-
tron density [10–13]. In the present paper, we report the
first measurements of the profiles of the HeI 447.1-nm
and HeI 492.2-nm spectral lines of atomic helium.
Analysis of these profiles has allowed us to determine
the electron density in the peripheral region of the cur-
rent sheet.
1063-780X/03/2905- $24.00 © 20443
2. EXPERIMENTAL DEVICE 
AND THE PROCEDURE 

OF THE SPECTROSCOPIC MEASUREMENTS

Experimental studies were carried out in the CS-3D
device [11, 12, 14]. When electric current is excited
along the null line of a two-dimensional (2D) magnetic
configuration, a plane current sheet is formed in a
plasma [12, 15]. In the experiments described in this
paper, the null line of the magnetic field coincided with
the axis of the cylindrical vacuum chamber and the
radial gradient of the magnetic field was h = 600 G/cm.
The vacuum chamber was filled with helium at the
pressure p0 = 300 mtorr. The initial plasma was pro-
duced with the help of an auxiliary theta discharge with
intense preionization. Then, the current was excited in
the plasma along the null line of the magnetic field.
This current initiated 2D plasma flows, which, in turn,
resulted in the formation of a current sheet. In these
experiments, the current half-period was T/2 ≅  5 µs and
the current amplitude was Imax ≅  50 kA.

The optical scheme of the spectral measurements
was similar to that used in [10, 11]. Plasma emission
from the central region of the chamber was collected
with the help of an achromatic lens. This region was
1.2 cm in diameter and 60 cm long. Then, the radiation
was transmitted through quartz fibers to the entrance
slit of an MDR-3 monochromator and was recorded
with the help of an MORS-3 multichannel optical
recording system. This system consisted of an image
converter with a microchannel-plate intensifier and a
receiving CCD array connected through an adapter to a
computer (see [10] for details).

In [5, 10–12], it was shown that, within a layer 1.2–
1.5 cm thick, the plasma was strongly nonuniform: the
electron temperature and density, which were maxi-
mum in the midplane of the sheet, decreased several-
003 MAIK “Nauka/Interperiodica”
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fold toward the periphery. As a result, the spectral lines
of atomic helium were emitted from the peripheral
regions of the current sheet and also from the plasma
surrounding the sheet. For plasma sheets formed at high
initial pressures (p0 = 300 mtorr), this conclusion was
also confirmed by the results of an analysis of 2D dis-
tributions of plasma emission in various spectral lines
[11, 12, 14]. These distributions were obtained with the
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Fig. 1. Experimental and theoretical profiles of the HeI
447.1-nm spectral line. The experimental profile of the HeI
447.1-nm spectral line (squares) corresponds to emission
from the peripheral region of the current sheet. The theoret-
ical profiles are calculated with the MMM for different val-
ues of the plasma density: Ne = (1) 6.0 × 1014, (2) 1.6 ×
1015, and (3) 2.8 × 1015 cm–3. The vertical arrow shows the
position of the dipole-forbidden spectral line corresponding
to the 23P–43F transition.
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Fig. 2. Experimental and theoretical profiles of the HeI
492.2-nm spectral line. The experimental profile of the HeI
492.2-nm spectral line (squares) corresponds to emission
from the peripheral region of the current sheet. The theoret-
ical profile is calculated with the MMM for the plasma den-
sity Ne = 1.02 × 1015 cm–3. The vertical arrow shows the
position of the dipole-forbidden spectral line corresponding
to the 21P–41F transition.
help of an image converter in combination with narrow-
band interference filters (∆λ1/2 = 1.1 nm), which gave a
general qualitative picture of the structure of the cur-
rent-sheet plasma.

Typical experimental profiles of the HeI 447.1-nm
and HeI 492.2-nm spectral lines are shown by symbols
in Figs. 1 and 2; these profiles contain dipole-forbidden
components, which are indicated by vertical arrows.
These dipole-forbidden components correspond to the
43F  23P (for the HeI 447.1-nm line) and 41F 
21P (for the HeI 492.2-nm line) transitions. The appear-
ance of dipole-forbidden components is explained by
the fact that, under the action of plasma microfields, the
Stark mixing of the states of a pair of closely spaced
upper levels 42S + 1D and 42S + 1F of atomic helium
occurs, which enables the radiative transition
42S + 1F  22S + 1P (S = 0; 1).

3. ANALYSIS OF HELIUM SPECTRAL LINES 
AND DISCUSSION

To analyze the experimental profiles of the HeI
447.1-nm and HeI 492.2-nm spectral lines, we numeri-
cally calculated the profiles of these lines for different
values of the plasma density. It was taken into account
that the plasma density was related to the strength of
electric microfields produced by charged plasma parti-
cles. Under the action of electric microfields, the pro-
files of the HeI 447.1-nm and HeI 492.2-nm lines are
modified (due to the Stark effect), which can be used
for diagnostic purposes.

The basic formula for calculating the spectral profile
I(ω) of atomic line radiation emitted in the transition
a  b has the form [16, 17]

(1)

where the correlation function C(t) in the case of an
electric dipole transition is written as

(2)

In formula (2), d is the dipole moment of an atom,
T(t) is the operator of the atom evolution, T+(t) is the
operator that is Hermitian conjugate to T(t), {…}av

stands for the averaging over all of the possible types of
motions of the perturbing particles, and the symbol Tr
denotes the sum of the diagonal matrix elements. For-
mula (2) assumes that all the Zeeman states of the upper
energy level a have equal populations and there are no
nonzero nondiagonal matrix elements of the atomic
density matrix between the Zeeman states of the upper
level a. We use the term “Zeeman state” to indicate a
state characterized by a definite value of the magnetic

I ω( ) 1
2π
------ iωt( )C t( ) t,dexp

∞–

+∞

∫=

C t( ) Tr d T
+

t( )d T t( )⋅ ⋅{ } av .=
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quantum number m. The atom evolution operator T(t) is
a solution to the Schrödinger equation

(3)

where H0 is the Hamiltonian of an unperturbed atom,
F(t) is the electric microfield produced by the plasma
electrons and ions, and I is the unity matrix.

We studied the profiles of helium spectral lines in
the vicinity of the allowed HeI 447.1-nm and HeI
492.2-nm spectral lines. The profiles are formed due to
the Stark interaction of the closely spaced upper levels
42S + 1P, 42S + 1D, and 42S + 1F (S = 0; 1). Taking into
account that the electric microfields negligibly affect
the state of the lower 22S + 1P level, formula (2) for the
correlation function is significantly simplified:

(4)

where Ib is the unity operator acting on the Zeeman
states of the lower level 22S + 1P and Ta(t) is the evolu-
tion operator determining the time evolution of the Zee-
man states of the upper levels 42S + 1P, 42S + 1D, and
42S + 1F. In formula (4), the energies of the levels are
counted from the energy of the level 22S + 1P. It follows
from formulas (1) and (4) that, in the problem under
consideration, the calculation of the profile of the spec-
tral line reduces to the calculation of the operator
{τa(ω)}av , which is the Fourier transform of the evolu-
tion operator for the upper states {Ta(t)}av , averaged
over all of the perturbing particles.

The operator {τa(ω)}av was calculated by the model
microfield method (MMM) proposed in [18]. We note
that main ideas of the MMM are given in the review
[19]. This method implies that the actual electric
microfield produced by charged plasma particles is sub-
stituted by a simpler stochastic process for which an
exact analytic expression can be derived for the opera-
tor {τa(ω)}av . In this case, the MMM suggests that the
electric microfield F(t) changes by jumps at random
instants of time tj distributed by Poisson’s law with the
jump probability density depending on the field
strength, ν = ν(F). In the time interval tj < t < tj + 1, the
electric field vector F is constant. The random process
F(t) defined in this fashion is called the “kangaroo”
process.

In the MMM, the Fourier transform of the atom-
evolution operator averaged over the realizations of the
electric microfield is defined by the following expres-
sion:

(5)

Here, τS(ω1) denotes the Laplace transform (at the fre-
quency ω1 = ω + iν(F) of the time-evolution operator

i"
dT t( )

dt
------------- H0 d– F t( )⋅[ ] T t( ), T 0( ) I ,= =

C t( ) Tr d Ibd Ta t( ){ } av⋅ ⋅[ ] ,=

τMMM ω( ) τS ω1( ){ } P=

+ ντ S ω1( ){ } P νI ν2τS ω1( )–{ } P
1–

ντ S ω1( ){ } P.
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TS(t) calculated for a static (time-independent) electric
field F,

(6)

and {A}P stands for the averaging of the operator A over
the distribution function P(F) of the electric field F in
the plasma,

Relationship (5) corresponds to the situation in which
the electric field F is produced by one charged particle
species (electrons or ions). With the MMM, we can also

determine τ(ω)  in the general case where the
electric field F in plasma is a superposition of the elec-
tron (Fe) and ion (Fi) microfields: F = Fe + Fi . The

method for determining τ(ω)  in this case is
based on the fact that the correlation time for the elec-
tron microfield is much shorter than the correlation
time for the ion microfield. With this fact taken into
account, the model microfield F for the general case is
determined as follows. First, we construct a kangaroo
process Fi(t) with the jump probability density νi(Fi)
for the ion microfield. Then, in each of the time inter-
vals in which the ion microfield remains constant, we
construct a kangaroo process Fe(t) with the jump prob-
ability density νe(Fe) for the electron microfield. It is
this approach that was used in our study, which allowed
us to take into account both the ion and the electron
microfields in the frame of the MMM.

When calculating the profiles of the helium spectral
lines, we assumed that Te = Ti = Ta = 2 eV, where Te is
the electron temperature, Ti is the ion temperature (in
our case, the temperature of HeII ions), and Ta is the
temperature of the helium atoms. This temperature
value was taken from the results of our previous studies
[10, 14].

Figure 1 shows three calculated profiles of the HeI
447.1-nm spectral line for three values of the plasma
density: Ne = 6.0 × 1014, 1.6 × 1015, and 2.8 × 1015 cm–3.
It can be seen from the figure that the profile of the HeI
447.1-nm line changes markedly as Ne changes from
6.0 × 1014 to 2.8 × 1015 cm–3. In this case, both the width
of the main line (corresponding to the 23P–43D transi-
tion) and the intensity of the dipole-forbidden line (cor-
responding to the 23P–43F transition) increase with
increasing Ne. It also follows from Fig. 1 that the best
fit to the experimental profile of the HeI 447.1-nm line
is provided by the theoretical profile calculated for Ne =
1.6 × 1015 cm–3. For the HeI 492.2-nm line in Fig. 2, the
theoretical profile that gives the best fit to the experi-
mental profile is shown by the solid line. This theoreti-
cal profile was calculated for a plasma density of Ne =
1.02 × 1015 cm–3. We note that, in calculations, the
resulting profile of each of the helium spectral lines was

τS ω1( ) ν F( ) iω–{ } I i" H0 d– F⋅{ }+( ) 1–
,=

A F( ){ } P d
3FA F( )P F( ).∫=

}av
MMM( )

}av
MMM( )
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obtained by convoluting the Stark profile of this line
(determined with the MMM) and the Gaussian profile
accounting for the Doppler effect and the instrumental
width.

Thus, the electron density determined in this study
from an analysis of the profiles of the HeI 447.1-nm and
HeI 492.2-nm spectral lines of neutral helium amounts
to (1–2) × 1015 cm–3. This density corresponds to the
peripheral region of the current sheet, whereas the elec-
tron density in the midplane of the sheet is usually
higher than 1016 cm–3 [15]. We note that, at the periph-
ery of the current sheet, the plasma is spatially nonuni-
form. Therefore, the measured density Ne = (1–2) ×
1015 cm–3 is actually the density averaged over the
entire peripheral region of the current sheet. Although
theoretical calculations of the profiles of helium spec-
tral lines were performed for a uniform equilibrium
plasma, the results obtained for the averaged electron
density appear to be realistic. This is confirmed by the
fact that, when comparing the experimental profiles of
the helium spectral lines with the theoretical ones, these
profiles agree well in the main spectroscopic parame-
ters, including the shapes of the profiles of the allowed
and forbidden components and the intensity ratio
between these components.

ACKNOWLEDGMENTS

V.P. Gavrilenko thanks Prof. V.N. Kolokol’tsov
(Nottingham Trent University, Nottingham, UK) for
fruitful discussions. This work was supported in part by
the Russian Foundation for Basic Research (project no.
01- 02-17810) and the Russian Federal Program “Gov-
ernment Support of the Leading Scientific Schools”
(project no. 00-15-96676).

REFERENCES

1. S. I. Syrovatskii, Annu. Rev. Astron. Astrophys. 19, 163
(1981).

2. A. G. Frank, Plasma Phys. Controlled Fusion, Suppl. 3A
41, 687 (1999).
3. N. P. Kyrie, V. S. Markov, and A. G. Frank, Pis’ma Zh.
Éksp. Teor. Fiz. 48, 419 (1988) [JETP Lett. 48, 459
(1988)].

4. I. L. Beœgman, V. P. Gavrilenko, N. P. Kyrie, and
A. G. Frank, Zh. Prikl. Spektrosk. 54, 1021 (1991).

5. N. P. Kyrie, V. S. Markov, and A. G. Frank, Pis’ma Zh.
Éksp. Teor. Fiz. 56, 82 (1992) [JETP Lett. 56, 82
(1992)].

6. S. Yu. Bogdanov, V. B. Burilina, N. P. Kyrie, et al., Fiz.
Plazmy 24, 467 (1998) [Plasma Phys. Rep. 24, 427
(1998)].

7. G. S. Voronov, N. P. Kyrie, and A. G. Frank, Fiz. Plazmy
28, 1004 (2002) [Plasma Phys. Rep. 28, 925 (2002)].

8. A. G. Frank, V. P. Gavrilenko, Ya. O. Ispolatov, et al.,
Contrib. Plasma Phys. 36, 667 (1996).

9. V. P. Gavrilenko, N. P. Kyrie, and A. G. Frank, Opt. Spe-
ktrosk. 87, 916 (1999) [Opt. Spectrosc. 87, 834 (1999)].

10. S. Büscher, N. P. Kyrie, H.-J. Kunze, and A. G. Frank,
Fiz. Plazmy 25, 185 (1999) [Plasma Phys. Rep. 25, 164
(1999)].

11. A. G. Frank, S. Yu. Bogdanov, V. B. Burilina, et al., Con-
trib. Plasma Phys. 40, 106 (2000).

12. S. Yu. Bogdanov, N. P. Kyrie, V. S. Markov, and
A. G. Frank, Pis’ma Zh. Éksp. Teor. Fiz. 71, 78 (2000)
[JETP Lett. 71, 53 (2000)].

13. A. G. Frank, V. P. Gavrilenko, N. P. Kyrie, and
V. S. Markov, Contrib. Plasma Phys. 41, 85 (2001).

14. S. Yu. Bogdanov, V. B. Burilina, and A. G. Frank,
Zh. Éksp. Teor. Fiz. 114, 1202 (1998) [JETP 87, 655
(1998)].

15. S. Yu. Bogdanov, V. S. Markov, A. G. Frank, et al., Fiz.
Plazmy 28, 594 (2002) [Plasma Phys. Rep. 28, 549
(2002)].

16. M. Baranger, in Atomic and Molecular Processes, Ed. by
D. R. Bates (Academic, New York, 1962; Mir, Moscow,
1964), Chap. 13.

17. H. Griem, Spectral Line Broadening by Plasmas (Aca-
demic, New York, 1974; Mir, Moscow, 1978).

18. A. Brissaud and U. Frisch, J. Quant. Spectrosc. Radiat.
Transf. 11, 1767 (1971).

19. L. A. Bureeva, V. P. Gavrilenko, and V. S. Lisitsa, in
Encyclopaedia of Low-Temperature Plasma, Ed. by
V. E. Fortov (Nauka, Moscow, 2000), Vol. 1, p. 351.

Translated by N.F. Larionova
PLASMA PHYSICS REPORTS      Vol. 29      No. 5      2003



  

Plasma Physics Reports, Vol. 29, No. 5, 2003, p. 447. 

               

ERRATA
Erratum: Laser Probing of the Plasma in the S-300 Facility 
(Plasma Phys. Rep. 28, 790 (2002))

Yu. G. Kalinin, V. A. Korel’skiœ, E. V. Kravchenko, and A. Yu. Shashkov
The Editorial board of Plasma Physics Reports apol-
ogizes for the misprints in the paper by Yu. G. Kalinin
et al. Laser Probing of the Plasma in the S-300 Facility,
Plasma Phys. Rep. 28 (9), 790 (2002).

On page 790, in the list of authors, V. A. Korel’skiœ
should instead read A. V. Korel’skiœ.
1063-780X/03/2905- $24.00 © 20447
On page 795, in the 26th line in the left column, the
words “no larger than 3…” should instead read “no less
than 3….”

On page 795, in the ninth line in the right column,
the exponent 8 should be replaced by 7.
003 MAIK “Nauka/Interperiodica”
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