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Abstract—Based on the 1964–1996 observations in the frequency range 0.325–90 GHz, we study
peculiarities of the variability of the quasar OH 471 (z = 3.4). The double-humped spectrum had peaks at
frequencies near 1 and 20 GHz. The flux density of the low-frequency component first decreased and then
began to increase. The high-frequency component rose to 2.5 Jy in the late 1970s. The peak frequencies
were virtually constant. VLBI observations at 1.6 GHz revealed a core–jet structure with the jet extended
eastward to 5 mas. The object is a powerful quasar. c© 2002 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The radio source 0642+449 (OH 471) is a high-
redshift (z = 3.402) quasar. Carswell and Strittmat-
ter (1973) and Gearhart et al. (1974) determined its
spectrum in the frequency range from 16.7 MHz to
85.3 GHz and pointed out its possible variability at
high radio frequencies. In early 1978, the quasar had
a large high-frequency excess (Efanov et al. 1981).
The optical observations by Pica et al. (1980) re-
vealed a possible variability in this spectral range as
well.
Here, our goal is to study the structure and vari-

ability of the quasar OH 471 in the radio range.

OBSERVATIONS AND DATA REDUCTION

The observations of the quasar OH 471 were car-
ried out with the 22-m radio telescope (RT-22) at
the Crimean Astrophysical Observatory and with the
14-m radio telescope (RT-14) at the Metsähovi Sta-
tion (Helsinki University of Technology) at 22 and
37 GHz (Efanov et al. 1981; Salonen et al. 1987;
Teräsranta et al. 1992; Nesterov et al. 2000) and with
the Westerbork Synthesis Radio Telescope (WSRT)
(Nesterov et al. 2002) at 307–385 MHz and 5 GHz.
VLBI studies of the structure of the quasar

OH 471 were carried out in 1997 on the European
VLBI Network (EVN) in left-hand circular polar-
ization at a frequency of 1.6 GHz. The signal was
recorded with the Mark III system. Table 1 lists
parameters of the radio telescopes and Fig. 1 shows
the coverage of the UV plane. A correlation analysis
of the data was performed at the Max-Planck-
Institut für Radioastronomie in Bonn. The initial data
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were edited and calibrated with the NRAO AIPS
(Astronomical Image Processing System) software
package using the temperatures of the system and
the calibration sources DA 193 and 3C 286 mea-
sured during the observations. The DIFMAP, self-
calibration, and CLEAN software packages were
used for imaging.

RESULTS AND DISCUSSION
Figure 2 shows flux-density variations in the

quasar OH 471 at 325 MHz, 1.4, 2.7, 5, 11, 22,
37, and 90 GHz. The RT-22, RT-14, and WSRT
data were supplemented with the observations by
Gearhart et al. (1974) and Perley (1982) at 1.4 GHz,
Altschuler and Wardle (1976) at 2.7 GHz, Pauliny-
Toth et al. (1978) at 2.7 and 11 GHz, Gurvits
et al. (1992) at 5 GHz, Simard-Normandin and
Kronberg (1978) at 11 GHz, Schwartz and Waak
(1978) at 90 GHz, and Teräsranta et al. (1998) at
22, 37, and 90 GHz.

Table 1. Parameters of the antennas involved in the VLBI
observations of the quasar OH 471

VLBI station Antenna diameter, m SEFD, Jy

Effelsberg 100 20

Medicina 32 580

Onsala 25 390

Jodrell Bank Mk2 26 320

Toruń 32 200

Shanghai 25 2000

Note: SEFD is the system equivalent flux density.
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Coverage of the UV plane during the 1.6-GHz observations of OH 471 in 1997.
We see from Fig. 2 that there are variations in
the radio emission from the quasar OH 471 at low
(f < 5 GHz) and high (f > 5 GHz) frequencies.
Thus, the source flux density at low frequencies had
decreased since the early 1970s. Since the late 1970s,
the flux density at high frequencies had increased.
Having reached its highest value in the early 1980s,
the flux density at 22 and 37 GHz subsequently
underwent secondary variations about 2.5 Jy. Ac-
cording to the WSRT observations, since the mid-
1980s, an increase in the 325-MHz flux density of the
quasar was recorded. Unfortunately, the observations
at frequencies above 90 GHz are too few to analyze in
detail the intensity variations at these frequencies.
Figure 3 shows the spectra of OH 471 that we

constructed for several epochs from 1970 until 1996.
As follows from Fig. 3, the radio spectrum of the
quasar peaked at about 1 GHz and was, probably, flat
at frequencies above 5 GHz from 1970 until 1973. In
the ensuing years, there were processes that led to
the evolution of the radio spectrum. In the late 1970s,
an intense component appeared at high frequencies.
From the early 1980s until the mid-1990s, the spec-
trum had a peak at about 20 GHz. No significant
frequency shift of the peak with time was recorded.
Table 2 lists the spectral indices (defined as

F ∼ f−α) for the low- and high-frequency spectral
components of OH 471 for various epochs. It gives
the mean date, spectral indices of the ascending (op-
tically thick) and descending (optically thin) branches
of the spectrum, and their errors. As follows from
Table 2, the spectral indices of the ascending and
descending branches of the low-frequency spectral
component decreased with time, while the spectral
index of the ascending branch of the high-frequency
component increased.
ASTRONOMY LETTERS Vol. 28 No. 11 2002



STUDIES OF THE QUASAR OH 471 723
Table 2.Data on the low- and high-frequency spectral components

Date, year
Low-frequency component High-frequency component

αB αH αB αH

1970 −0.70 ± 0.36 0.55 ± 0.16 – –

1973 −0.85 ± 0.54 0.46 ± 0.02 – –

1978 – – −0.74± 0.14 –

1981 – 0.13 ± 0.05 −0.87± 0.09 –

1984 – – – 0.56 ± 0.11

1987 – – −0.51± 0.34 0.63 ± 0.06

1990 – – −0.45± 0.03 –

1996 – – – –
Figure 4 shows a plot of correlated flux density
against the baseline for the quasar OH 471. The
decrease in the signal amplitude with an increasing
baseline suggests that the source structure is unre-
solved. A 1.6-GHzmap of OH 471 is shown in Fig. 5.
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Fig. 2. Flux-density variations in OH 471 over the last
35 years.
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The VLBI map at 1.6 GHz has the following pa-
rameters:

Source 0642+449

Intensity levels,% of peak flux
density

−1, 1, 2, 5,
10, 25, 50, 99

Peak flux density, Jy/beam 0.328

Beam width:
major axis, mas 12.8

minor axis, mas 2.55

position angle, deg −24
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Fig. 3. The spectra of the radio sourceOH 471 from 1970
until 1996.
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Fig. 4. The correlated 1.6-GHz flux density of the quasar OH 471 in 1997.
The results of the VLBI studies of the OH 471
structure are compared in Table 3. Its columns give
the following: the epoch and frequency of observation,
the source structure, the core/jet flux density ratio,
and references to the publication. As we see from Ta-
ble 3, the VLBI observations of OH 471 were carried
out mainly in the low-frequency spectral range. Only
in 1991 and 1995 was the source observed at low
and high frequencies. In 1991, a compact structure
of the source was detected at 22 GHz and a core–jet
structure with the jet of about 3 mas in length was
detected at 1.6 GHz. In 1995, a core–jet structure
was also observed at 15 GHz at the detection limit
(Kellermann et al. 1998). At a low frequency, a core–
jet structure with the jet of about 3.5 mas in length
was confidently detected (Fey and Charlot 1997). In
1997, our 1.6-GHz VLBI observations revealed a
core–jet structure with the jet of about 5 mas in
length.
Thus, the core size is about 1 mas and its peak

brightness temperature is ∼1011 K. The jet size in-
creases with wavelength due to an increase in optical
depth.
Our data suggest that OH 471 is one of the most

intense radio sources among the known quasars in
the millimeter wavelength range.
Note that because of the Doppler effect, the

frequencies of the quasar observations in the source’s
frame of reference increase by a factor of (z + 1).
Therefore, the frequencies of the spectral peaks
(Fig. 2) correspond to 4.4 GHz and 88 GHz. Thus,
we can assume that the model of OH 471 is the
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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Table 3. VLBI observations of OH 471

Epoch f , GHz Structure Fc/Fj, Jy Reference

– 8 H <1∗ Gubbay et al. (1977)

– 1.6 K 1.2∗ Marscher and Shaffer (1980)

1987.734 5 OJ, 7.4 mas 0.9/0.23 Gurvits et al. (1992)

1991.500 22 C 1.7∗ Bloom et al. (1999)

1991.522 5 OJ, 3.03 mas 1.57/0.1 Xu et al. (1995)

1991.961 1.6 OJ, 3.16 mas 0.29/0.18 Polatidis et al. (1995)

1991.930 1.4 U 0.48∗ Xu et al. (1995)

1995.353 15 OJ, at detection limit 1.73∗ Kellermann et al. (1998)

1995.869
2.3 OJ, 3.7 mas 0.7/0.11

Fey and Charlot (1997)
8.5 OJ, 3.3 mas 1.83/0.05

Note: C—compact, U—unresolved, OJ—one-sided jet.
∗ Peak flux density.
model of a source with a spectral peak in the gigahertz
frequency range (GPS source) (O’Dea et al. 1991).
These radio sources are characterized by spectra
with narrow peaks in the gigahertz frequency range,
by a low polarization of their radio emission, by
a high radio luminosity, and by a compact radio
structure. Such sources are probably formed when
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radio-emitting relativistic plasma is compressed in
the region of narrow emission lines by a dense and
clumpy interstellar medium. The quasars that belong
to this class of sources have high redshifts and can be
located in protogalaxies with dense thermal plasma
and a dusty interstellar medium.

CONCLUSIONS

Our data suggest that OH 471 is one of the most
intense quasars among the known quasars in the
millimeter wavelength range.
Our 1.6-GHz VLBI observations revealed a com-

plex structure of the radio source OH 471: a core–jet
with the jet extended eastward to 5 mas.
Changes in the quasar radio spectrum were recor-

ded over the last 30 years spanned by observations.
The intensity of the low-frequency component de-
creased in the early 1970s. An intense component ap-
peared at high frequencies (20GHz) in the late 1970s.
From the early 1980s until the mid-1990s, the high-
frequency component dominated in the spectrum of
OH 471.
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Original Russian Text Copyright c© 2002 by Zheleznyakov, Koryagin.
Polarization Spectra of Synchrotron Radiation and the Plasma
Composition of Relativistic Jets

V. V. Zheleznyakov1, 2 and S. A. Koryagin1, 2*

1Institute of Applied Physics, Russian Academy of Sciences, ul. Ulyanova 46, Nizhni Novgorod, 603950 Russia
2Max-Planck-Institut für Astrophysik, Karl Schwarzschild Strasse 1, 85471 Garching bei München, Germany

Received May 29, 2002

Abstract—We investigate the problem of determining the plasma composition of relativistic jets in blazars
and microquasars from the polarization frequency spectra of their synchrotron radiation. The effect of
plasma composition on this radiation is attributable to a change in the structure of the ordinary and
extraordinary waves in plasma, depending on the presence of a nonrelativistic electron–proton component
in it and on the type of relativistic particles (electrons, positrons). The structure of the normal waves
determines the properties of the observed radiation and primarily the shape of the polarization frequency
spectrum. Our analytic calculations of the polarization spectra for simple models of jets with a uniform
magnetic field and with a magnetic-field shear revealed characteristic features in the polarization spectra.
These features allow us to differentiate between the synchrotron radiation from an admixture of relativistic
particles in a cold plasma and the radiation from a relativistic plasma. However, definitive conclusions
regarding the relativistic plasma composition (electrons or electron–positron pairs) can be reached only
by a detailed analysis of the polarization frequency spectra that will be obtained in future radioastronomical
studies with high angular and frequency resolutions. c© 2002 MAIK “Nauka/Interperiodica”.

Key words: jet theory, active galactic nuclei, quasars and radio galaxies.
1. INTRODUCTION
Here, we deal with the outstanding problem of

the emitting-plasma composition in relativistic jets.
These jets are observed over a wide frequency range
among extragalactic sources—in blazars (i.e., active
quasars in the radio frequency band and BL Lac
objects) and in sources that belong to our Galaxy
(in microquasars). An incoherent synchrotron mech-
anism attributable to the motion of relativistic par-
ticles in the jet magnetic field is generally believed
to be responsible for the radio and optical radiation
of the jets. Relativistic electrons in a nonrelativistic
electron–proton plasma are commonly assumed to
serve as these particles in cosmic radio sources. There
is no such confidence in the case of jets, because
the jet plasma is formed in the immediate vicinity of
black holes and, in principle, can significantly change
compared to the original plasma of accretion disks.
In this case, one might expect the acceleration of the
entire electron component to relativistic energies and
the appearance of a positron component in the jet
composition.

Attempts to detect the 0.5 MeV line in the jet
spectrum attributable to the annihilation of nonrel-
ativistic positrons and electrons have failed. At the

*E-mail: koryagin@appl.sci-nnov.ru
1063-7737/02/2811-0727$22.00 c©
same time, it is beyond reason to hope that the an-
nihilation radiation can be detected from relativistic
positrons whose frequency spectrum is blurred and
lacks narrow spectral features.

However, the problem of whether there are rela-
tivistic electron plasma and relativistic positrons in
jets can be approached from a different perspective.
The point is that a high number density of rela-
tivistic electrons and positrons can change the elec-
trodynamic properties of the plasma and affect the
polarization of the normal (ordinary and extraordi-
nary) waves in a magnetoactive plasma and, there-
by, change the pattern of the observed synchrotron
radiation (primarily modify the polarization frequency
spectrum of the jet-emitted radiation). The normal-
wave polarization depends on the ratio of the number
densities of a cold plasma, relativistic electrons, and
relativistic positrons. Therefore, we consider the fol-
lowing four jet compositions:

(I) the relativistic electron (or positron) compo-
nent in a nonrelativistic (cold) plasma;

(II) the relativistic electron–positron component
in a cold plasma;

(III) the relativistic electron plasma (with protons
to offset the electron charge);

(IV) the relativistic electron–positron plasma.
2002 MAIK “Nauka/Interperiodica”
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In the first two cases, the relativistic components
are treated as a minor admixture to the cold plasma.
In this case, the cold plasma forms the structure of
the normal waves and the relativistic components
serve as the source of synchrotron reabsorption and
radiation. In the last two cases, the relativistic plasma
performs both functions: it forms the structure of the
normal waves and serves as the source of synchrotron
radiation.

In the first three cases, the protons serve only to
offset the electron charge (or the difference between
the electron and positron charges) and they are as-
sumed to be nonrelativistic. In principle, it may well
be that the protons have relativistic energies. In that
case, the energy transferred by the jet significantly in-
creases. Electrodynamically, however, this case does
not differ from the corresponding case with cold pro-
tons, because, being massive, they have virtually no
effect on the polarization and dispersive properties of
the normal waves. At the same time, the synchrotron
radiation from the protons at those frequencies at
which the electrons effectively radiate is relatively
weak.

Below, our specific calculations are based on a
simple model of synchrotron radiation (a jet) with a
uniform spatial plasma distribution in a layer of linear
size L along the line of sight, an isotropic particle
momentum distribution (in the jet frame of reference),
and a power-law energy spectrum of the emitting rel-
ativistic particles bounded below by energy Emin �
mc2:

N(E) ∝
{
0 for E < Emin

E−γ for E ≥ Emin,
(1.1)

where the spectral index γ > 2. The electron and
positron energy spectra in cases II and IV are as-
sumed to be identical. The frequency spectrum of the
synchrotron radiation with significant reabsorption at
low frequencies is

I(ω) ∝
{
ω5/2 for ω � ωmax

ω−(γ−1)/2 for ω � ωmax,
(1.2)

where
ωmax � ωmin = (3/2)ωBΓ2

min sinϕ.

Here, ωB = eB/(mc) is the nonrelativistic electron
gyrofrequency, B is the magnetic field oriented at an-
gle ϕ to the propagation direction of the radiation, m
is the electron rest mass, e is the elementary charge,
c is the speed of light, and Γmin = Emin/(mc2) is
the Lorentz factor of the electrons with energy Emin.
At frequency ωmax, the intensity frequency spectrum
reaches a maximum. This frequency is close to ωτ = 1,
where the optical depth τ of the source related to
the reabsorption of the synchrotron radiation is equal
to unity. If τ � 1 in the entire frequency range ω �
ωmin, then the intensity frequency spectrum is de-
scribed by the second formula from (1.2) in this range
and falls off toward low frequencies as ω1/3 at ω �
ωmin. The magnetic fieldB in the jet is assumed to be
constant along the line n, except for case IV, where
we consider a magnetic-field shear—the change in
the orientation of the B projection onto the plane
orthogonal to the line-of-sight n.

2. THE METHOD FOR CALCULATING
THE POLARIZATION OF THE RADIATION

FROM A SYNCHROTRON SOURCE

In a magnetoactive plasma at high frequencies,

ω � ωmin � ωB, ω � ωL (2.1)

the permittivity tensor approaches a unit tensor and
the normal waves become transverse. The Langmuir
frequency ωL in (2.1) determines the isotropic part of
the permittivity tensor ε0 = 1− ω2

L/ω
2. In this case,

the polarization vectors ee and eo of the extraordinary
and ordinary normal waves, their absorption coef-
ficients κe and κo in amplitude, and the difference
ko − ke between the wave numbers can be determined
from the dispersion relation
ω

c

∑
β

[(εαβ − ε0δαβ)eeβ ] = 2(ke − ki + iκe)eeα,

(2.2)
ω

c

∑
β

[(εαβ − ε0δαβ)eoβ ] = 2(ko − ki + iκo)eoα

(see, e.g., Sazonov 1969). Here, ki =
√
ε0ω/c is the

wave number of the normal waves in an isotropic
(nonmagnetized) plasma; eeα and eoα are the com-
ponents of the polarization vectors ee and eo along
the x, y, z axes of a Cartesian coordinate system in
which the z axis is directed along the rayn of radiation
propagation; and the indices α and β run through the
values of x and y. The tensor εαβ − ε0δαβ � 1, where
δαβ is the Kronecker symbol, describes the deviation
of the permittivity tensor εαβ from an isotropic tensor.

To simplify the formulas, it is convenient to direct
the y axis along themagnetic-field projection onto the
xy picture plane. In this coordinate system, the tensor

ω

c
(εαβ − ε0δαβ) =


 h if

−if −h


 (2.3)

+ i


µ+ λ 0

0 µ− λ


 ,

where the first and second terms describe the Hermi-
tian and anti-Hermitian parts of the tensor ω(εαβ −
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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ε0δαβ)/c, respectively. The nondiagonal elements of
the anti-Hermitian part are ignored in formula (2.3),
because they are much smaller than µ and λ in the
diagonal elements.1 The coefficients h, f , µ, and λ for
γ > 2 appear as follows (Sazonov 1969):

h = hc + hrel, f = fc + frel, (2.4)

hc = −4πe
2

mcω

(
ωB sinϕ

ω

)2 nc

2
,

fc =
4πe2

mcω

ωB sinϕ
ω

nc cotϕ,

hrel = −4πe
2

mcω

(
ωB sinϕ

ω

)2 (γ − 1)(n− + n+)Γmin

γ − 2 ,

frel =
4πe2

mcω

ωB sinϕ
ω

(γ− 1)(n−− n+) cotϕ ln Γmin

(γ + 1)Γ2
min

,

µ =
4πe2

mcω

(
ωB sinϕ

ω

)(γ+2)/2 3γ/2

a(γ)
(γ − 1)

× (n− + n+)Γ
γ−1
min ,

λ =
4πe2

mcω

(
ωB sinϕ

ω

)(γ+2)/2 3γ + 6
3γ + 10

3γ/2

a(γ)

× (γ − 1)(n− + n+)Γ
γ−1
min ,

where hc, fc and hrel, frel describe the contributions
of the cold and relativistic plasma components to the
coefficients h and f 2; nc is the number density of the
cold electrons; n− and n+ are the number densities of
the relativistic electrons and positrons, respectively;
and the factor

a(γ) =
8

√
3Γ
(

3γ+2
12

)
Γ
(

3γ+22
12

) ∼ 3. (2.5)

It follows from expressions (2.4) that in our case of
a power-law distribution (1.1) of relativistic particles
and high frequencies (2.1), the anti-Hermitian part of
the tensor (2.3) is much smaller than its Hermitian
part for any plasma composition: µ � hrel < h, λ�
hrel < h. Taking this circumstance into account, we
obtain from the dispersion relation (2.2)

ko − ke =
√
h2 + f2, 2κe = µ[1 + ρκ cos(2σ)],

(2.6)

2κo = µ[1− ρκ cos(2σ)];

eex = cosσ, eey = i sin σ, (2.7)

1This relationship between the diagonal and nondiagonal ele-
ments is retained as long as the electron momentum distri-
bution is slightly anisotropic on the scale of the synchrotron
radiation beam for a single particle.
2If γ < 2, then hrel has a different frequency dependence (see
Sazonov 1969). This case requires a special analysis.
ASTRONOMY LETTERS Vol. 28 No. 11 2002
eox = i sinσ, eoy = cos σ;

where the angle σ determines the shape of the polar-
ization ellipses for the normal waves and is specified
by the equalities

cos(2σ) =
−h√
h2 + f2

, sin(2σ) =
f√

h2 + f2
,

(2.8)

and the parameter

ρκ ≡ λ

µ
=
3γ + 6
3γ + 10

(2.9)

characterizes the difference between the absorption
coefficients of the extraordinary and ordinary waves.
For linearly polarized normal waves, when σ = 0,
ρκ = (κe − κo)/(κe + κo). Since the polarization
vectors (2.7) in our approximation are determined
only by the Hermitian part of the tensor (2.3), they
are mutually orthogonal. The slight nonorthogonality
results from the difference between the absorption
coefficients of the ordinary and extraordinary waves
(ρκ �= 0) and is disregarded here.

The polarization of the radiation emerging from
the jet is determined by the solution to the transfer
equation (Zheleznyakov 1968, 1997)

dIαβ

dz
= Pαβ +

∑
α′,β′

[(Rαβα′β′ −Kαβα′β′)Iα′β′ ]

(2.10)

for the radiation polarization tensor Iαβ . The latter is
related to the Stokes parameters I,Q, U , and V by

I = Ixx + Iyy, Q = Ixx − Iyy, (2.11)

U = Iyx + Ixy, V = i(Iyx − Ixy).

The emissivity tensor of the medium Pαβ is related to
the total emissivity of the two normal waves

P =
e2ω

8π2c

(
ωB sinϕ

ω

)(γ+1)/2 3γ/2

γ + 1
Γ
(

3γ−1
12

)
× Γ

(
3γ+19

12

)
(γ − 1)(n− + n+)Γ

γ−1
min

by the relations

Pxx =
1 + ρS

2
P, Pyy =

1− ρS

2
P, (2.12)

Pxy = Pyx = 0,

where the degree of linear polarization of the sour-
ces is

ρS =
3γ + 3
3γ + 7

. (2.13)

The zero nondiagonal elements of the tensor Pαβ

imply that we ignore the weak circular polarization
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of the sources [it is Γ−1
min(ωmin/ω)1/2 cotϕ in order of

magnitude]. The tensors Rαβα′β′ andKαβα′β′ are

Rαβα′β′ = i(ke −ko)(eeαe
∗
oβe

∗
eα′eoβ′ −eoαe

∗
eβe

∗
oα′eeβ′),
(2.14)

Kαβα′β′=(κe+κo)(eeαe
∗
oβe

∗
eα′eoβ′+eoαe

∗
eβe

∗
oα′eeβ′)

+ 2κeeeαe
∗
eβe

∗
eα′eeβ′ + 2κoeoαe

∗
oβe

∗
oα′eoβ′ ,

where the asterisk denotes a complex conjugate.3

The solutions to Eq. (2.10) in the limiting cases
of circularly and linearly polarized normal waves were
obtained by Zheleznyakov (1968) and Pacholczyk
and Swihart (1970) (see also Zheleznyakov 1997).
The solution of Eq. (2.10) in the general case of ellip-
tically polarized normal waves is required to analyze
the polarization of the emergent radiation. For a spa-
tially homogeneous source, the tensors Pαβ , Rαβα′β′ ,
and Kαβα′β′ do not depend on the z coordinate and
the solution to Eq. (2.10) takes the form

Iαβ =
∑
α′,β′

{
eeαe

∗
eβe

∗
eα′eeβ′Pα′β′

1− exp(−2κez)
2κe

+ eoαe
∗
oβe

∗
oα′eoβ′Pα′β′

1− exp(−2κoz)
2κo

(2.15)

+ eeαe
∗
oβe

∗
eα′eoβ′Pα′β′

× 1− exp[−(κe + κo)z + i(ke − ko)z]
κe + κo − i(ke − ko)
+ eoαe

∗
eβe

∗
oα′eeβ′Pα′β′

× 1− exp[−(κe + κo)z − i(ke − ko)z]
κe + κo + i(ke − ko)

}
.

In formula (2.15), we assume that the z coordinate is
measured from the ray base in the source and that no
external radiation falls on the source.

We determine the Stokes parameters (2.11) of the
emergent radiation (at point z = L, where L is the
ray length in the source) from (2.15) and expressions
(2.7) and (2.12) for the polarization vectors and the
emissivity tensor:

I = PL

(
1 + ρS cos(2σ)

2
1− exp(−τe)

τe
(2.16)

3The transfer equation (2.10) with the tensors (2.12)
and (2.14) is valid for orthogonally polarized normal
waves. The corresponding transfer equation that includes
the nonorthogonality of the normal waves with a weak
anisotropy of the permittivity tensor was derived by Sazonov
and Tsytovich (1968). In the latter case, the solution is
more complex (see Pacholczyk and Swihart (1975); Jones
and O’Dell (1977a)) than the solution to Eq. (2.10). At the
same time, in our case of a power-law particle distribu-
tion (1.1) and high frequencies (2.1), the effects related to
the nonorthogonality of the normalwaves introduce relatively
small corrections to the solution and, hence, are marginal.
+
1− ρS cos(2σ)

2
1− exp(−τo)

τo

)
,

Q = PL

(
cos(2σ)

1 + ρS cos(2σ)
2

(2.17)

× 1− exp(−τe)
τe

− cos(2σ)1 − ρS cos(2σ)
2

× 1− exp(−τo)
τo

+ ρS sin2(2σ) exp(−τ)

× τ(exp τ − cosφ) + φ sinφ
τ2 + φ2

)
,

U =PLρS sin(2σ) exp(−τ)φ(exp τ− cosφ)− τ sinφ
τ2+φ2

,

(2.18)

V = PL

(
− sin(2σ)1 + ρS cos(2σ)

2
(2.19)

× 1− exp(−τe)
τe

+ sin(2σ)
1 − ρS cos(2σ)

2

× 1− exp(−τo)
τo

+ ρS sin(2σ) cos(2σ) exp(−τ)

× τ(exp τ − cosφ) + φ sinφ
τ2 + φ2

)
.

In (2.16)–(2.19), we use the following notation: τe =
[1 + ρκ cos(2σ)]τ and τo = [1− ρκ cos(2σ)]τ are the
optical depths of the layer for the extraordinary and
ordinary waves, τ = (κe + κo)L is the mean optical
depth for the two types of waves (τ = (τe + τo)/2),
and

φ = (ko − ke)L =
√
h2 + f2L (2.20)

is the phase difference between the ordinary and ex-
traordinary waves acquired on the layer length L
[see (2.6)]. Formulas (2.16)–(2.19) transform into the
corresponding expressions derived by Zheleznyakov
(1968) and Pacholczyk and Swihart (1970) for circu-
larly (σ = π/4) and linearly (σ = 0) polarized normal
waves.

Formulas (2.16)–(2.19) simplify in the range of
high frequencies under consideration (ω � ωmin),
because the phase difference φ significantly exceeds
the optical depth τ of the layer [this is because
the anti-Hermitian part of the tensor (2.3) is small
compared to its Hermitian part: φ =

√
h2 + f2L �

µL = τ ]. This circumstance allows the parameter τ
to be retained only in the exponents in (2.18) and in
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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Fig. 1.The polarization spectra of the synchrotron radiation from a sourcewith cold plasma andwith an admixture of relativistic
electrons and positrons: (a) case A for γ = 3, Γmin = 102, ϕ = 45◦, nc/(n− + n+) = 104, F0 = 102; (b) case B for γ = 3,
Γmin = 102, ϕ = 45◦, nc/(n− + n+) = 104, F0 = 104.
the third terms of (2.17)–(2.19):4

Q = PL

(
cos(2σ)

1 + ρS cos(2σ)
2

(2.21)

× 1− exp(−τe)
τe

− cos(2σ)1 − ρS cos(2σ)
2

× 1− exp(−τo)
τo

+ ρS sin2(2σ) exp(−τ)sinφ
φ

)
,

U = PLρS sin(2σ)
1 − exp(−τ) cosφ

φ
, (2.22)

V = PL

(
− sin(2σ)1 + ρS cos(2σ)

2
(2.23)

× 1− exp(−τe)
τe

+ sin(2σ)
1 − ρS cos(2σ)

2

× 1− exp(−τo)
τo

+ρS sin(2σ)cos(2σ)exp(−τ)sin φ
φ

)
.

Our subsequent analysis of the polarization fre-
quency spectrum is based on expressions (2.16) and
(2.21)–(2.23), which are convenient to reduce to a
dimensionless form. To this end, we normalize ω to
the frequency

ωτ = 1 = ωB sinϕ (2.24)

4Note that in expressions (2.7), we have already discarded the
terms of the order of λ/max[h, f ] ∼ τ/φ that define weak
nonorthogonality of the polarization vectors.
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×
[

4πe2L
mcωB sinϕ

3γ/2

a(γ)
(γ − 1)(n−+ n+)Γ

γ − 1
min

]2/(γ + 4)

,

at which the optical depth of the layer τ = 1. We
denote the dimensionless frequency ω/ωτ = 1 by ω̃.
With this normalization, the frequency dependence of
the optical depth assumes a simple form:

τ = ω̃−(γ + 4)/2. (2.25)

Recall that near the frequency ωτ = 1 ∼ ωmax, a max-
imum is formed in the intensity frequency spectrum of
the synchrotron radiation from the layer [see (1.2)].

To characterize the radiation polarization, it will
suffice to know the Q/I, U/I, and V/I ratios. These
quantities define the degrees of linear and circular
polarization of the radiation (Zheleznyakov 1997),

ρΛ =
√
(Q/I)2 + (U/I)2, ρκ = V/I,

and the angle χ between the major axis of the polar-
ization ellipse and the x axis:

cos(2χ) =
Q/I√

(Q/I)2 + (U/I)2
,

sin(2χ) =
U/I√

(Q/I)2 + (U/I)2
.

While analyzing formulas (2.16) and (2.21)–
(2.23) as well as expressions (2.8) and (2.20) for the
functions cos(2σ), sin(2σ), and φ, it can be noticed
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that Q/I, U/I, and V/I are determined mainly by
two functions of the frequency:

H ≡ −hL = H0

ω̃3
, F ≡ fL =

F0

ω̃2
. (2.26)

The latter, in turn, are specified by the parameters
H0 and F0, the values of H and F at the frequency
ω̃τ = 1 = 1. Indeed, the parameters cos(2σ), sin(2σ),
and φ appearing in expressions (2.16) and (2.21)–
(2.23) can be rewritten as

cos(2σ) =
H√

H2 + F 2
, (2.27)

sin(2σ) =
F√

H2 + F 2
, φ =

√
H2 + F 2.

The quantities Q/I, U/I, and V/I also depend on
the parameters ρκ(γ) and ρS(γ), but they vary only
slightly—they remain of the order of unity when γ
is varied over the range 2 < γ < ∞ [see (2.9) and
(2.13)]. The parameters H0 and F0 specify the phase
difference φ =

√
H2

0 + F 2
0 and the shape of the polar-

ization ellipses for the normal waves (via the angle σ)
at the selected frequency ωτ = 1. Below, for definite-
ness, we assume that the ray n makes an acute an-
gle ϕ with the direction of the magnetic field B. In
this case,H0, F0, and cotϕ are positive.

We analyze the polarization frequency spectra for
various plasma compositions for fixed parameters
Γmin and γ of the relativistic-particle energy distri-
bution and for a fixed direction of propagation of the
radiation relative to the magnetic field (angle ϕ). In
that case,H0 and F0 are related by
H0

F
(γ − 2)/γ
0

=
(1/3)a2/γ (γ)(cotϕ)−(γ − 2)/γ

[
nc

2Γmin
+
γ − 1
γ − 2(n− + n+)

]

[(γ − 1)(n− + n+)]
2/γ

[
ncΓmin +

γ − 1
γ + 1

(n− − n+)
ln Γmin

Γmin

](γ − 2)/γ
. (2.28)
The latter can be established if it is considered that

H0 ∝ L/ω3
τ=1 ∝ L(γ−2)/(γ+4), (2.29)

F0 ∝ L/ω2
τ=1 ∝ Lγ/(γ+4).

Thus, it follows from our discussion that the po-
larization frequency spectrum can be unambiguously
determined if we fix the plasma composition, the pa-
rameters of the relativistic particle energy distribu-
tion, and the angle ϕ and specify one of the param-
eters, F0 orH0. In this case, an increase in F0 andH0
corresponds to an increase in the layer length L for
γ > 2.

It should be emphasized that the above formulas
for calculating the polarization spectrum are valid at
ω � ωmin. The expression for ωmin in dimensionless
form is

ω̃min ≡ ωmin

ωτ=1
=
1
2

(2.30)

×


a(γ) cotϕ

[
ncΓmin+ γ−1

γ+1(n−−n+) ln Γmin
Γmin

]
(γ − 1)(n− + n+)F0




2/γ

.

The solution (2.16), (2.21)–(2.23) describes the
radiation polarization in a frame of reference where
the jet plasma is static. Since the jet matter moves
relative to the observer with (generally relativistic)
velocity vj, the spectrum (2.16), (2.21)–(2.23) should
be recalculated from the jet frame to the observer’s
frame. The radiation frequencies ω and ωobs in the
jet and observer’s frames are related by the Doppler
transformation

ω = ωobs
1− (vj/c) cos Θobs√

1− v2
j /c

2
, (2.31)

where Θobs is the angle between the propagation
direction nobs of the radiation in the observer’s frame
of reference and the velocity vj. The propagation di-
rection n of the radiation in the jet frame of reference
lies in the same plane with the vectors nobs and vj

and makes an angle Θ with the direction vj, which is
determined by the aberration law

cosΘ =
cosΘobs − vj/c

1− (vj/c) cos Θobs
. (2.32)

The degrees of linear and circular polarization (ρΛ

and ρκ) are invariant relative to the transformation
from one frame to the other (see Landau and Lif-
shitz 1988). The angle χ is also conserved if it is
measured from the axis perpendicular to the plane of
vectors n, nobs, and vj in both frames.

Since ρΛ, ρκ, and χ are invariant, it will suffice to
calculate them only in the jet frame. The polarization
frequency spectra in the two frames differ only by
the proportional extension along the frequency axis
attributable to the Doppler effect (2.31) and by the
change in the direction of propagation in accordance
with the aberration law (2.32). Therefore, if the fre-
quency in both frames is normalized, for example, to
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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the frequency of the spectral intensity maximum, then
the shape of the frequency spectra for ρΛ, ρκ, and χ
does not change when changing the frame.

3. A COLD PLASMA WITH AN ADMIXTURE
OF RELATIVISTIC ELECTRONS

AND POSITRONS

In our model with an isotropic momentum distri-
bution of relativistic particles, where the polarization
of the synchrotron sources in the jet is almost linear,
the polarization frequency spectra for cases I and II
are indistinguishable. Indeed, in this approximation,
the emissivity tensors Pαβ for relativistic electrons
and positrons are identical (for identical particle en-
ergy distributions). At the same time, a minor ad-
mixture of relativistic particles (irrespective of their
composition) in cases I and II does not affect the
normal-wave polarization, which is specified by the
cold plasma.

The latter suggestion implies that the Hermitian
part of the tensor (2.3) is attributable mainly to the
cold plasma component: hrel � hc and frel � fc.
These inequalities impose the following constraints
on the number density of the relativistic component:

2(n− + n+)Γmin � nc,
(n− − n+) ln Γmin

Γ2
min

� nc,

(3.1)

which determine the realization of cases I and II.
The normal waves in a cold electron–proton

plasma at frequencies (2.1) are known (Zheleznyakov
1997) to be circularly polarized over a wide range of
angles ϕ specified by the condition

tan2 ϕ � 4ω2

ω2
B sin

2 ϕ
.

In this case of the so-called quasi-longitudinal prop-
agation (σ ≈ π/4), H0 may be ignored compared to
F0 [see (2.26) and (2.27)].

Let us separate out the characteristic polarization
spectra of the emergent synchrotron radiation as a
function of F0.

(A) The limit F0 → 0 corresponds to an infinitely
thin layer, where the phase difference φ ≈ F0/ω̃

2 in
the layer, let alone its optical depth τ � φ, are much
smaller than unity at frequencies

ω̃ > ω̃min ≈ F
−2/γ
0

2

(
a(γ)
γ − 1

)2/γ(ncΓmin cotϕ
n− + n+

)2/γ

.

The following values correspond to this limit:

F0 � 2−2γ/(γ+4)

(
a(γ)
γ − 1

)4/(γ+4)

(3.2)
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×
(
ncΓmin cotϕ
n− + n+

)4/(γ+4)

.

Under condition (3.2), the normal-wave charac-
teristics do not affect the polarization of the radiation
emerging from the jet, which is identical to the polar-
ization of the radiation from an assembly of relativis-
tic particles (electrons, positrons) in a vacuum. The
emergent radiation is linearly polarized, with the po-
larization plane being perpendicular to the magnetic-
field projection onto the picture plane (see Fig. 1a):

ρΛ = Q–I = ρS , U–I = 0, χ = 0, (3.3)

ρκ = V –I = 0.

(B) As F0 increases to

F0 � 2−2γ/(γ+4)

(
a(γ)
γ − 1

)4/(γ+4)

(3.4)

×
(
ncΓmin cotϕ
n− + n+

)4/(γ+4)

� 1

the following frequency band appears in the range
ω̃ > ω̃min:

ω̃min < ω̃ � ω̃F=1 = F
1/2
0 , (3.5)

where F � 1. The Faraday rotation of the polariza-
tion plane of the radiation as it propagates in the jet
becomes significant here. At frequencies (3.5), the
emergent radiation remains linearly polarized, but the
degree and plane of linear polarization rapidly vary
(oscillate) with frequency:

Q

I
= ρS sinF

F
,

U

I
= ρS 1− cosF

F
, (3.6)

ρΛ= ρS

∣∣∣∣sin(F/2)F/2

∣∣∣∣, χ =
π

2

{
F

2π

}
, ρκ=

V

I
= 0.

The curly brackets in formula (3.6) denote the frac-
tional part of the number F/(2π). The angle χ, which
specifies the linear polarization plane, varies over a
limited range, from 0 to π/2.

At sufficiently low frequencies (ω̃ � ω̃F = 1), av-
eraging the Stokes parameters (3.6) over rapid oscil-
lations yields

〈Q〉
I
= 0,

〈U〉
I
=
ρS

F
∝ ω̃2,

〈V 〉
I
= 0. (3.7)

According to (3.7), the radiation at these frequen-
cies is, on average, polarized at angle χ = π/4 and the
degree of polarization is proportional to ω̃2.

At frequencies ω̃ � ω̃F = 1, the Faraday rotation
becomes negligible (F � 1), the polarization ceases
to oscillate, and its degree approaches ρS . In this
frequency range, formulas (3.3) for an infinitely thin
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layer again become valid. The polarization frequency
spectrum for this case is shown in Fig. 1b.

(C) If F0 increases to even larger values,

F0 � 2−2γ/(γ+4)

(
a(γ)
γ − 1

)4/(γ+4)( Γmin

cotϕ

)γ/(γ+4)

(3.8)

×
(
ncΓmin cotϕ
n− + n+

)4/(γ+4)

,

then the mean degree of linear polarization

〈U〉
I

∣∣∣∣
ω̃min

=
ρS

4F (γ+4)/γ
0

(
a(γ)
γ−1

)4/γ(ncΓmin cotϕ
n− + n+

)4/γ

at ω̃min (where it is at a minimum) will drop below
the degree of circular polarization of the sources in the
jet. The latter implies that under the condition (3.8),
our approximation of purely linear polarization of the
sources breaks down at frequencies

ω̃min < ω̃� ω̃cr =
F

2(γ−1)/(5γ)
0

21/5

(
Γmin

cotϕ

)−2/5

(3.9)

×
(
a(γ)
γ − 1

)2/(5γ)(ncΓmin cotϕ
n− + n+

)2/(5γ)

.

Here, the calculated degree of linear polarization of
the emergent radiation ρΛ= ρSω̃2/F0 drops below the
characteristic degree of circular polarization of the
sources ρS

κ , which is estimated to be low,5 of the
order of Γ−1

min(ω̃min/ω̃)1/2 cotϕ. However, the polar-
ization of the radiation emerging from the layer is
described by formulas (3.6) and (3.7) at higher fre-
quencies ω̃cr � ω̃ < ω̃F=1 (where our approximation
of ρS

κ = 0 for the polarization of the sources is valid)
and by formulas (3.3) at even higher frequencies (ω̃ �
ω̃F = 1).

Note that if we used the approximation of purely
linear polarization of the sources, then a further in-
crease in F0 in the range (3.8) would be accompa-
nied by new qualitative changes in the polarization
spectrum of the emergent synchrotron radiation at
frequencies (3.9). However, the degree of polarization
of the emergent radiation at frequencies (3.9) calcu-
lated in this way is lower than the degree of circular
polarization of the sources ρS

κ over a wide range of

angles π/2− ϕ � Γ−1/2
min .

5We ignore this polarization in our calculations. A weak cir-
cular polarization of the sources takes place if the relativistic
component consists of electrons alone. If, however, the rela-
tivistic component is represented only by electron–positron
pairs, then ρS

κ is exactly equal to zero and formulas (3.3),
(3.6), and (3.7) also remain valid in most of the range (3.9),
where the small deviation of the normal-wave polarization
from circular polarization is insignificant (H � 1).
In particular, the frequency of the spectral intensity
maximum for the radiation ω̃max ∼ ω̃τ=1 lies within
the range (3.9). At these frequencies, one might ex-
pect an extremely low degree of polarization (less than
Γ−1

min cotϕ), which is determined by a nonzero circular
polarization of the synchrotron radiation sources.

Thus, in the case of a cold electron–proton
plasma with an admixture of relativistic electrons
and positrons, the following two characteristic po-
larization frequency spectra take place: the radiation
spectrum of an infinitely thin layer under the condi-
tion (3.2) and the spectrum with strong depolariza-
tion and Faraday rotation of the polarization plane at
frequencies ω̃ � ω̃F = 1 under the condition (3.4). In
this case, the frequency ω̃F = 1 lies above the char-
acteristic frequency ω̃τ = 1 of the spectral intensity
maximum for the layer radiation.

4. A RELATIVISTIC ELECTRON PLASMA

In the case of a relativistic electron plasma (case
III), both the synchrotron radiation and the dispersion
parameters of the normal waves are determined by
the relativistic particles, while the effect of the cold
plasma is negligible: hrel � hc, frel � fc. This re-
quires that the relativistic-electron number density
satisfies the condition

n− ln Γmin

Γ2
min

� nc. (4.1)

In this section, we discuss a relativistic plasma com-
posed only of particles of the same type (electrons);
a plasma composed of relativistic electron–positron
pairs is considered in the next section.

Despite the simpler plasma composition, the
emerging frequency dependence of the normal-wave
polarization in case III makes it considerably more
difficult to analyze the polarization frequency spec-
trum of the source. In this case, the normal waves
at ω̃ > ω̃min can be polarized linearly, elliptically, and
circularly over a wide range of n directions. The wave
polarization is almost linear at low frequencies ω̃ �
ω̃H = F , where H � F ; it becomes elliptical near the
frequency

ω̃H=F = ω̃min
2(γ + 1)
3(γ − 2)g(Γmin, ϕ), (4.2)

g(Γmin, ϕ) =
Γmin

cotϕ ln Γmin
,

and transforms into circular at ω̃ � ω̃H=F , where
F � H . In this case, the frequency range of linear
polarization (ω̃ � ω̃H=F ) falls within the frequency
range under consideration, ω̃ > ω̃min, if the n di-
rection satisfies the condition tanϕ� Γ−1

min ln Γmin.
This requirement excludes from our analysis a narrow
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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interval of angles ϕ in which the synchrotron radia-
tion is also modified into relativistic dipole radiation
(Zheleznyakov 1997).

Let us follow the change in the polarization spec-
trum of the synchrotron radiation emerging from the
jet as the parameter F0 is varied.

(A) At sufficiently low

F0 � a(γ)
2γ/2(γ + 1)g(Γmin, ϕ)

� 1 (4.3)

the polarization spectrum (3.3) of the synchrotron ra-
diation from an infinitely thin layer is realized, because
the optical depth τ is much smaller than unity at
ω̃ > ω̃min:

ω̃τ=1 � ω̃min =
F

−2/γ
0

2

(
a(γ)

(γ + 1)g(Γmin, ϕ)

)2/γ

.

At the same time, the parameters F and H are small:

F <
F0

ω̃2
min

� 1; H <
H0

ω̃3
min

=
8F (γ+4)/γ

0

3

× γ + 1
γ − 2

(
a(γ)
γ + 1

)−4/γ

g(γ+4)/γ � 1.

The latter implies that the phase difference φ � 1 and
the polarization characteristics of the normal waves
do not affect the radiation emerging from the jet.

(B) As F0 increases to

a(γ)
2γ/2(γ + 1)g(Γmin, ϕ)

� F0 �
(

γ + 1
3(γ − 2)

)2γ/(γ+4)

(4.4)

×
(
a(γ)
γ + 1

)4/(γ+4)

g2(γ−2)/(γ+4)

at frequencies ω̃ > ω̃min, an interval of strong reab-
sorption appears,

ω̃min < ω̃ � ω̃τ=1, (4.5)

where the layer optical depth τ � 1. In this case, the
normal waves in the range (4.5) are linearly polarized
(H � F ). Here, the effect of the difference between
the absorption coefficients of the normal waves on
the polarization spectrum of the emergent radiation
becomes noticeable. This spectrum can be obtained
from formulas (2.16) and (2.21)–(2.23) by passing to
the limit τ → ∞ for cos(2σ) = 1:

ρΛ =
|Q|
I
=

|ρS − ρκ|
1− ρκρS

=
3

6γ + 13
, (4.6)

U/I = 0, χ = π/2, ρκ = V/I = 0.

The reabsorption coefficient of the extraordinary wave
is large [ρκ > ρS ; see (2.9) and (2.13)], so the ordi-
nary wave dominates in the emergent radiation. The
ASTRONOMY LETTERS Vol. 28 No. 11 2002
latter is polarized along the magnetic-field projection
onto the picture plane, i.e., perpendicular to the po-
larization plane of the emergent radiation at higher
frequencies ω̃ � ω̃τ=1, where an extraordinary com-
ponent dominates in the radiation.

It should be noted that the phase difference be-
tween the normal waves φ ≈ H is larger than unity
in a wider range,

ω̃min < ω̃ < ω̃H=1, (4.7)

than (4.5). Its upper limit

ω̃H=1 ≡ H
1/3
0 = F

(γ−2)/(3γ)
0

(
γ + 1
3(γ − 2)

)1/3

(4.8)

×
(
a(γ)
γ + 1

)2/(3γ)

g(γ−2)/(3γ)

is given by the equalityH(ω̃H=1) = 1. The range (4.7)
covers part of the range ω̃ � ω̃min where the re-
absorption is weak. This relationship between the
frequencies (ω̃τ=1 < ω̃H=1) stems from the fact that
H > τ in a relativistic electron plasma at ω̃ � ω̃min.

At ω̃ � ω̃τ=1, the absorption is negligible and the
normal-wave polarization does not affect the spec-
trum of the emergent radiation as before. This is
because at ω̃ � ω̃H=1, F � H and the waves are
linearly polarized, with the extraordinary wave being
polarized in the same fashion as the radiation from
the synchrotron sources in the jet. At higher fre-
quencies, ω̃ � ω̃H=F � ω̃H=1, the normal-wave po-
larization becomes circular, but the phase difference
decreases to φ � 1 and the change in the polarization
pattern of the normal waves does not affect the po-
larization spectrum of the emergent radiation. Thus,
under the condition (4.4), the polarization spectrum
of the emergent radiation at frequencies above the
spectral intensity maximum (ω̃ � ω̃τ=1) corresponds
to an infinitely thin layer and it is described by formu-
las (3.3) (see Fig. 2a).

(C) As F0 increases further to(
γ + 1
3(γ − 2)

)2γ/(γ+4)( a(γ)
γ + 1

)4/(γ+4)

(4.9)

× g2(γ−2)/(γ+4) �F0 �
(

γ + 1
3(γ−2)

)γ/2 a(γ)
γ+1

g(γ−2)/2,

the frequency band

ω̃H=F � ω̃ � ω̃F=1, (4.10)

appears in the range of weak reabsorption (ω̃ �
ω̃τ=1) around the frequency ω̃H=1. The lower limit

ω̃H=F ≡ H0

F0
= F

−2/γ
0

γ + 1
3(γ − 2)

(
a(γ)
γ + 1

)2/γ

g(γ−2)/γ
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Fig. 2. The polarization spectra of the synchrotron radiation from a source with a relativistic electron plasma: (a) case B (γ = 3,
Γmin = 102, ϕ = 45◦, F0 = 1); (b) case C (γ = 3, Γmin = 102, ϕ = 45◦, F0 = 5); (c) case D (γ = 3, Γmin = 102, ϕ = 45◦,
F0 = 103).
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of the frequency band (4.10) can be determined from
the condition H = F (cf. (4.2)). In the band (4.10),
the normal waves are circularly polarized (F � H)
and the phase difference φ� 1. In this case, since the
radiation sources and the normal waves have different
polarizations, the polarization of the emergent radi-
ation significantly decreases. In the high-frequency
part of the band (4.10), where ω̃ � ω̃H=1, the radi-
ation is depolarized by Faraday rotation, as in a cold
plasma. The polarization spectrum here is described
by formulas (3.6) and (3.7). In the low-frequency
part ω̃ � ω̃H=1 of the band (4.10), the polarization
frequency spectrum of the emergent radiation is de-
scribed by the formulas

Q/I = 0, U/I = 0, ρΛ = 0; (4.11)

ρκ =
V

I
= −ρSH

F
∝ −ω̃−1.

Here, the weak circular polarization of the emergent
radiation (of the order of H/F ) can be explained by
the fact that the normal-wave polarization slightly
differs from circular polarization and the electrons
emit more energy into the extraordinary wave than
into the ordinary wave [This effect is also known as
the repolarization of radiation (Pacholczyk 1973).] As
a result, the polarization of the emergent radiation is
identical to the extraordinary-wave polarization.

Under the condition (4.9), the normal-wave polar-
ization approaches a linear polarization at frequen-
cies ω̃ � ω̃H=F [i.e., below the band (4.10)]. Here,
the polarization is described by expressions (4.6) at
the frequencies ω̃ � ω̃τ=1 of strong reabsorption and
by formula (3.3) at frequencies ω̃τ=1 � ω̃ � ω̃H=F .
Above the frequency band (4.10), the polarization
spectrum of the synchrotron radiation corresponds
to the spectrum (3.3) of an infinitely thin layer. The
polarization frequency spectrum for the case under
consideration (C) is shown in Fig. 2b.

(D) For even larger

F0 �
(

γ + 1
3(γ − 2)

)γ/2 a(γ)
γ + 1

g(γ−2)/2, (4.12)

the lower limit ω̃H=F of the depolarization band (4.10)
is shifted to the range of strong reabsorption, ω̃ �
ω̃τ=1. In this case, the frequency band ω̃H=F � ω̃ �
ω̃τ=1 is formed below the frequency of the spectral
intensity maximum, where the normal-wave polar-
ization is nearly circular and the emissivities and ab-
sorption coefficients of the two types of normal waves
become almost equal. The degree of polarization of
the emergent radiation greatly decreases compared
to the linear wave polarization (4.6). Its level is de-
termined by the small difference between the transfer
(absorption and emission) coefficients of the different
ASTRONOMY LETTERS Vol. 28 No. 11 2002
normal waves due to a partial linear polarization of the
latter (cos(2σ) �= 0):

Q

I
= 0,

U

I
= 0, ρΛ = 0, χ =

π

2
, (4.13)

ρκ =
V

I
= (ρκ − ρs)

H

F
∝ −ω̃−1.

It should be noted that the circular polarization
of the emergent radiation ρκ changes sign at some
frequency ω̃ ∼ ω̃τ=1, where ρκ becomes zero. The
point is that because of the strong reabsorption of
the extraordinary wave (ρκ > ρS) at ω̃ � ω̃τ=1, the
polarization of the emergent radiation is identical to
the ordinary-wave polarization. Above this frequency
(at ω̃τ=1 � ω̃ � ω̃H=1), the reabsorption is negli-
gible and the polarization of the emergent radiation
approaches the extraordinary-wave polarization.

Outside the range ω̃H=F � ω̃ � ω̃τ=1, the polar-
ization frequency spectrum of the emergent radiation
is described by the same formulas as in the case (4.9),
by (4.6) at ω̃ � ω̃H=F , by (4.11) at ω̃τ=1 � ω̃ �
ω̃H=1, by (3.6) and (3.7) at ω̃H=1 � ω̃ � ω̃F=1, and
by (3.3) at ω̃ � ω̃F=1 (see Fig. 2c).

Note that in the approximation of the purely linear
polarization of the sources, a further increase in F0

causes no new qualitative changes in the polarization
spectrum: the characteristic frequencies follow in the
established order

ω̃min < ω̃H=F < ω̃τ=1 < ω̃H=1 < ω̃F=1.

However, our assumption of the purely linear po-
larization of the sources breaks down for

F0 �
(

γ + 1
3(γ − 2)

)5γ/(γ+4)( a(γ)
γ + 1

)4/(γ+4)

× (
√
2 ln Γmin)6γ/(γ+4)g(11γ−4)/(γ+4) .

In this case, the degree of polarization of the radiation
at ω̃H=1 (where it is at a minimum) drops below the
level ρS

κ ∼ Γ−1
min(ω̃min/ω̃H=1)1/2 cotϕ of weak circu-

lar polarization of the synchrotron sources.
Thus, for a relativistic electron plasma, the po-

larization spectrum of the emergent synchrotron ra-
diation has three characteristic shapes. For low F0

given by inequality (4.3), the polarization frequency
spectrum corresponds to the spectrum (3.3) of an
infinitely thin layer. In case (4.4), the polarization of
the radiation remains linear at all frequencies; near
the frequency of the spectral intensity maximum, the
linear polarization plane rotates through π/2. In the
case (4.12) corresponding to large F0, the polar-
ization frequency spectrum contains the frequency
band (4.10), where the radiation is significantly depo-
larized; the degree of polarization reaches a minimum
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at frequency (4.8). Above this frequency, the radia-
tion is linearly polarized and undergoes the Faraday
rotation of the polarization plane as the frequency
changes. Below the frequency (4.8), the radiation is
circularly polarized. In this case, above the frequency
of the spectral intensity maximum, the absolute value
of the circular polarization depends on frequency as
ω̃−1. Near ω̃τ=1, the circular polarization changes
sign. At lower frequencies, its absolute value again
follows the low ω̃−1.

The intermediate case (4.9) clearly stands out only
at sufficiently large Lorentz factors Γmin � 106. At
smaller Γmin, inequality (4.9) holds only in a narrow
range of F0. For example, at Γmin = 102, γ = 3, and
ϕ = π/4, the boundaries of inequality (4.9) have sim-
ilar (in order of magnitude) values, 2.7 and 5.6.

5. A RELATIVISTIC ELECTRON–POSITRON
PLASMA

A plasma composed of relativistic electron–posi-
tron pairs is distinguished by the absence of gyrotropy
(F = 0). The permittivity tensor for this plasma cor-
responds to a uniaxial crystal. The normal waves,
along with the radiation sources in the jet, are linearly
polarized over the entire frequency range. In this case,
the polarization plane of the radiation sources coin-
cides with the polarization plane of the extraordinary
wave.

If there is an admixture of cold electrons in the
jet, or if the positron number density is not equal to
the relativistic-electron density, then, strictly speak-
ing, the approximation of the linear normal-wave po-
larization holds only in a limited frequency range,
ω̃ � ω̃H=F ≡ H0/F0. Nevertheless, the polarization
spectrum of the synchrotron radiation from the jet is
identical to the polarization spectrum of a jet con-
taining only relativistic electron–positron pairs at all
frequencies if the frequency ω̃H=F lies in the range
where the phase difference φ� 1. The latter imposes
the following constraints on the number densities of
the components:

nc �
n− + n+

Γmin cotϕ
, n− − n+ � (n− + n+)Γmin

cotϕ ln Γmin
,

(5.1)

and on the range of admissible variations inH0:

H
(γ+4)/3(γ−2)
0 � 3−γ/(γ−2) γ − 1

γ − 2

(
a(γ)
γ − 2

)2/(γ−2)

(5.2)

× (n− + n+) cot−1 ϕ

ncΓmin +
γ − 1
γ + 1

(n− − n+)
ln Γmin

Γmin

.

The polarization of the radiation emerging from an
electron–positron plasma depends on the pattern of
variation in the magnetic field B(z) along the line of
sight in the jet, more specifically, on the presence or
absence of a magnetic-field shear.

Let us first consider a uniform magnetic field,
B(z) = const. Since, as was noted above, the polar-
ization planes of the sources and the normal waves
coincide, the shape of the polarization frequency
spectrum for the emergent radiation is related only
to different normal-wave reabsorption. If

H0 � 2−(γ−2)/2a(γ)
3(γ − 2) ∼ 1, (5.3)

then τ � 1 over the entire range ω̃ > ω̃min and the
polarization spectrum is described by formulas (3.3)
for an infinitely thin layer. In the case opposite to (5.3),
ω̃τ=1 � ω̃min and the role of normal-wave reabsorp-
tion becomes significant. The polarization frequency
spectrum has the same shape as that for a relativistic
electron plasma under condition (4.4). The radiation
is linearly polarized at all frequencies. At low frequen-
cies (ω̃ � ω̃τ=1), the polarization direction coincides
with the direction of the magnetic-field projection
onto the picture plane. At high frequencies (ω̃ �
ω̃τ=1), the radiation is polarized in a perpendicular
direction. In this case, the degree of polarization ρΛ =
(3γ + 3)/(3γ + 7) at high frequencies is higher than
the degree of polarization ρΛ = 3/(6γ + 13) at low
frequencies (see Fig. 3a).

Under certain conditions, a smooth variation in
magnetic field B (with a scale length much larger
than the wavelength) leads to the so-called linear
wave interaction (Zheleznyakov 1997). The latter
manifests itself in the following: if, for example,
only the extraordinary wave falls on a region with
a nonuniform magnetic field, then two coherent
extraordinary and ordinary waves emerge from this
region. As a result, the linear interaction provides
an additional mechanism of the change in the po-
larization of the emergent radiation. In our case, it is
important that this effect gives rise to a strong circular
polarization of the radiation from a jet filled with an
electron–positron plasma.

The effect of a magnetic-field shear on the wave
propagation in a cold plasma was considered by
Kocharovskiı̆ and Kocharovskiı̆ (1980). They ob-
tained basic criteria for the linear interaction and
solved the standard problem for a monotonic shear
in a plasma sheet. These results can be directly
extended to the case of a relativistic electron–positron
plasma concerned. At the same time, because of
the absence of gyrotropy, the necessary formulas
for an electron–positron plasma are identical (to
within the notation) to the corresponding expressions
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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Fig. 3. The polarization spectra of the synchrotron radiation from a source with a relativistic electron–positron plasma: (a)
without a magnetic-field shear (γ = 3, Γmin = 102, ϕ = 45◦,H0 = 102); (b) with a magnetic-field shear (γ = 3, Γmin = 102,
ϕ = 45◦,H0 = 102,∆χB = 45◦, l2 = 0.5).
derived by Kocharovskiı̆ and Kocharovskiı̆ (1982)
for cholesteric liquid crystals [see also Zheleznyakov
et al. (1983) for a review]. Electrodynamically, these
crystals, as well as an electron–positron plasma with
a shear, are equivalent to uniaxial crystals with a
turning symmetry axis. According to Zheleznyakov
et al. (1983), the degree of linear polarization in this
case is specified by the parameter

G =

∣∣∣∣∣4
√
2dϑ/dz
dq̃/dz

∣∣∣∣∣, (5.4)

where ϑ is the angle between the magnetic-field pro-
jection B(z) onto the picture plane and some fixed
x0 axis in this plane and q̃ = −(2Lφdϑ/dz)−1. The
quantity (5.4) is taken at q̃2 = 1, i.e., at point z where
the scale length |dϑ/dz|−1 of the magnetic-field ro-
tation is equal to the distance 2Lφ ≡ 2|h−1

rel | at which
the normal waves acquire a phase difference of the
order of unity. The quantity hrel is given by formu-
las (2.4). A numerical expression for the length 2Lφ

at γ = 3 convenient for practical estimates can be
ASTRONOMY LETTERS Vol. 28 No. 11 2002
represented as

2Lφ = 2.45 × 102
(
B sinϕ
10−2 G

)−2(n− + n+

1 cm−3

)−1

×
(
Γmin

102

)−1( ω/(2π)
10 GHz

)3

pc.

If the phase difference acquired in the region with
a shear is much larger than unity, then q̃2 � 1 for all z
and the geometrical-optics approximation holds. In
this case, there is no linear interaction between the
normal waves: both normal waves propagate inde-
pendently, with the acquired phase difference between
them being approximately the same as during the
passage through a region with a uniform magnetic
field. In this case, a magnetic-field shear does not
affect the polarization spectrum of the emergent ra-
diation. The spectrum remains the same as that for a
source with a uniform magnetic field whose direction
coincides with the magnetic-field direction at the exit
from the source.

A strong linear interaction (G� 1) appears in a
tenuous plasma with a weak magnetic field at suffi-
ciently high frequencies when the normal waves ac-
quire a phase difference much smaller than unity in a
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region with a shear. The linear interaction is mainly
localized in regions where |dϑ/dz|−1 ∼ 2Lφ.

Let us consider a simple model of a jet with a
nonuniform magnetic field that has a shear, i.e., a
change in the direction of the B(z) projection onto
the picture plane along the propagation path of the
radiation in the jet. The magnitude of B(z) and the
angle ϕ are assumed to be constant, and only the
angle ϑ is varied.

Let ray path in the jet passes through two layers,
1 and 2, of length L1 and L2, respectively, in which
the magnetic field is uniform and the orientation of
its projectionsB⊥1 andB⊥2 onto the picture plane is
characterized by the angles ϑ1 and ϑ2 in these layers.
Layers 1 and 2 are separated by a narrow transition
region of length ∆L � {L1, L2}, in which the angle
ϑ smoothly and monotonically changes by ∆χB =
ϑ2 − ϑ1. Since the extent of the transition region is
small, we may ignore its intrinsic radiation compared
to the radiation from layers 1 and 2.

The standard problem for this model of a shear in
the transition region was solved by Kocharovskiı̆ and
Kocharovskiı̆ (1980). If the angle ϑ changes from ϑ1

to ϑ2 near the point z = L1 as

ϑ = ϑ1 + 2(∆χB/π) arctan[exp((z − L1)/(2∆L))],

i.e., in a layer ∼ ∆L in thickness, then when an ex-
traordinary wave of unit amplitude falls on the layer,
coherent extraordinary and ordinary waves with am-
plitudes

√
1−Qs and

√
Qs, respectively, will emerge

from the layer. Here, the transformation coefficient

Qs =
sin2(∆χB)

cosh2(π∆L/Lφ)
. (5.5)

For slow magnetic-field rotation (∆L � Lφ), when
q̃2 � 1 for all z and there is a weak linear interaction,
the amplitude of the emerging ordinary wave is expo-
nentially small [see formula (5.5)]. For fast magnetic-
field rotation (∆L � Lφ), the points q̃2 = 1 appear, at
which

G =
4
√
2∆L
Lφ

� 1,

and a strong linear interaction takes place. In this
case, the transformation coefficient Qs = sin2(∆χB)
corresponds to the propagation of radiation in a vac-
uum, i.e., without any change in the polarization of
the radiation in the transition region.

In the latter case, which we only consider here,
the Stokes parameters are constant in a coordinate
system whose axes are fixed in space (not tied to the
magnetic-field direction). The Stokes parameters at
the exit from layer 1 (and, accordingly, at the entrance
into layer 2) are

I1 = PL1

(
1 + ρS

2
1− exp(−2κeL1)

2κeL1
(5.6)

+
1− ρS

2
1− exp(−2κoL1)

2κoL1

)
,

Q1 = PL1

(
1 + ρS

2
1− exp(−2κeL1)

2κeL1

− 1− ρS

2
1− exp(−2κoL1)

2κoL1

)
,

U1 = V1 = 0,

where the factors 2κeL1 and 2κoL1 constitute the
optical depths of layer 1 for the extraordinary and ordi-
nary waves, respectively. Formulas (5.6) were derived
from formulas (2.16) and (2.21)–(2.23) by taking into
account the linear normal-wave polarization (σ = 0).

TheStokes parameters (5.6) describe the radiation
incident on layer 2 in a x1y1 coordinate system with
the y1 axis directed along the projection B⊥1 of the
magnetic field in layer 1 onto the picture plane. To
calculate the radiation emerging from layer 2, the pa-
rameters (5.6) should be written in a x2y2 coordinate
system, in which the y2 axis is directed along the
projection B⊥2 of the magnetic field in layer 2 onto
the picture plane:

Iinc = I1, Qinc = Q1 cos(2∆χB), (5.7)

Uinc = −Q1 sin(2∆χB), Vinc = 0.

As a result, the radiation of the entire source emerging
from layer 2 is the sum of the intrinsic radiation from
layer 2 and the radiation from layer 1modified when it
passes through layer 2 by absorption and the Cotton–
Mouton effect (the transverse Faraday effect), which
appears in layer 2 because of the shear in the transi-
tion region between layers 1 and 2:

I =PL2

(
1+ρS

2
1− exp(−2κeL2)

2κeL2
+
1−ρS

2
(5.8)

× 1− exp(−2κoL2)
2κoL2

)
+
Iinc+Qinc

2
exp(−2κeL2)

+
Iinc −Qinc

2
exp(−2κoL2),

Q = PL2

(
1 + ρS

2
1− exp(−2κeL2)

2κeL2
− 1− ρS

2

× 1− exp(−2κoL2)
2κoL2

)
+
Iinc+Qinc

2
exp(−2κeL2)

− Iinc −Qinc

2
exp(−2κoL2),
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U = Uinc cos(|hrel|L2) exp(−(κe + κo)L2),
V = −Uinc sin(|hrel|L2) exp(−(κe + κo)L2),

where the factors 2κeL2 and 2κoL2 are the optical
depths of layer 2 for the extraordinary and ordinary
waves and |hrel|L2 is the phase difference between the
normal waves in layer 2.

According to (5.8), the Cotton–Mouton effect
produces a partial circular polarization of the emer-
gent radiation. The degree of circular polarization ρκ

of the emergent radiation is at a maximum for the
magnetic-field rotation angle ∆χB = π/4 (when the
linearly polarized radiation of layer 1, as it passes
through the transition layer with a magnetic-field
shear, transforms into coherent ordinary and extraor-
dinary waves of layers 2 with equal amplitudes).

It follows from formulas (5.7) and (5.8) that the
polarization spectrum of the radiation from a source
with a shear is specified by two parameters: H0 =
|hrel(ωτ=1)|L, the phase difference between the nor-
mal waves at frequency ω̃τ=1 [given by (2.24)] on
the length L of the entire source, and l2 = L2/L,
the relative length of layer 2. The optical depths of
layers 1 and 2 and the phase difference in layer 2
|hrel|L2, which appear in formulas (5.6) and (5.8), can
be expressed in terms ofH0 and l2 as

2κeL1 = (1 + ρκ)l1τ, 2κoL1 = (1− ρκ)l1τ, (5.9)
2κeL2 = (1 + ρκ)l2τ, 2κoL2 = (1− ρκ)l2τ,

|hrel|L2 = l2H, l1 = 1− l2, τ = ω̃−(γ+4)/2,

H = H0/ω̃
3,

where l1 is the relative length of layer 1, τ is the optical
(2.25) depth of the entire source,H is the phase differ-
ence between the normal waves at frequency ω̃ on the
length of the entire source [cf. (2.26)], the dimensional
frequency ω̃ ≡ ω/ωτ=1.

(А) As in the case of a jet with a uniform mag-
netic field, here, we can separate out two character-
istic ranges of H0 given by (5.3) and the inequality
opposite to it. Under the condition (5.3), the phase
difference φ = H and the optical depth τ of the entire
layer (let alone separately for layers 1 and 2) is much
smaller than unity. The emergent radiation is mainly
linearly polarized and its polarization is described by
the formulas

Q

I
= ρS [1− (1− l2)(1− cos(2∆χB))] , (5.10)

U

I
= −ρS(1− l2) sin(2∆χB),

ρΛ = ρS
√
1− 4l2(1− l2) sin2(∆χB),

ρκ =
V

I
= ρSHl2(1− l2) sin(2∆χB)� 1.
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A magnetic-field shear qualitatively does not change
the polarization spectrum of the emergent radiation
compared to the case of an infinitely thin source with
uniform magnetic field. Only the degree of linear po-
larization of the radiation decreases at all frequencies
and a weak circular polarization appears. For l1 � l2
or l2 � l1, the polarization of the emergent radiation
is identical to the polarization of the intrinsic radiation
from the first or second layer.

(B) In the limiting case of large H0 opposite
to (5.3), we can separate out several ranges of l2
in which the polarization spectrum of the emergent
radiation assumes different shapes. The case of a thin
layer 2

l2 � H
−(γ+4)/(γ−2)
0

2(γ+4)/2

(
a(γ)

3(γ − 2)

)(γ+4)/(γ−2)

(5.11)

with a small optical depth l2τ and phase difference
l2H � 1 at ω̃ > ωmin reduces to the case of a uniform
source with the parameters of layer 1.

(C) The presence of layer 2 manifests itself when
the inequality opposite to (5.11) is satisfied in the
frequency range ω̃ � ω̃H2=1 = (l2H0)1/3, where the
phase difference l2H � 1. Under the condition

H
−(γ+4)/(γ−2)
0

2(γ+4)/2

(
a(γ)

3(γ − 2)

)(γ+4)/(γ−2)

� l2 � H−1
0 � 1 (5.12)

the upper limit ω̃H2=1 of the range of appreciable
effect of layer 2 is below the frequency of the spectral
intensity maximum of the entire source.

In this case, the polarization spectrum of the
emergent radiation at ω̃ � ω̃H2=1 is identical to
the polarization spectrum of layer 1 with a uniform
magnetic field. The radiation is linearly polarized at all
frequencies. Above ω̃τ=1, the degree of linear polar-
ization fΛ = (3j + 3)/(3j + 7); at ω̃H2 = 1� ω̃ �
ω̃τ=1, fΛ = 3/(6j + 13). Near the spectral intensity
maximum near ω̃τ=1, the polarization plane rotates
through π/2.

At lower frequencies ω̃τ2=1 � ω̃ � ω̃H2=1, where

the frequency ω̃τ2=1 = l
2/(γ+4)
2 is determined by the

condition l2τ(ω̃τ2=1) = 1, the phase difference l2H �
1 and the Cotton–Mouton effect in layer 2 becomes
significant. At the same time, the reabsorption in
layer 2 is still weak (l2τ � 1) and the radiation from
layer 1 dominates in the emergent radiation energing
from the jet. The presence of layer 2 gives rise to a
partial circular polarization of the radiation emerg-
ing from the jet. In this case, the degree of linear
polarization changes in such a way that the total
degree of polarization of the emergent radiation ρ =
(ρ2

Λ + ρ2
κ)1/2 remains constant and is equal to the
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degree of polarization ρ = |ρS − ρκ|/(1− ρκρS) of
the radiation from layer 1 with a uniform magnetic
field in the range of strong reabsorption [see (4.6)]:

Q

I
=

ρS − ρκ

1− ρκρS
cos(2∆χB), (5.13)

U

I
= − ρS − ρκ

1− ρκρS
sin(2∆χB) cos(l2H),

V

I
=

ρS − ρκ

1− ρκρS
sin(2∆χB) sin(l2H).

At very low frequencies ω̃ � ω̃τ2=1, the radiation
from layer 1 is absorbed by layer 2 and the polarization
of the emergent radiation is identical to the polariza-
tion of the radiation from layer 2. As previously, the
polarization spectrum of the radiation is described by
formulas (4.6) for a layer with a uniformmagnetic field
in the range of strong reabsorption.

(D) As the relative length l2 of layer 2 increases to

H−1
0 � l2 � 1, (5.14)

the frequency range of large circular- and linear-
polarization oscillations extends to frequencies above
the spectral intensity maximum of the jet radiation.
The polarization oscillations in this frequency range
(ω̃τ=1 � ω̃ � ω̃H2=1) do not differ qualitatively from
the oscillations below the spectral intensity maximum
(ω̃τ2=1 � ω̃ � ω̃τ=1). Only the oscillation amplitude
increases—it becomes equal to ρS sin(2∆χB):

Q

I
= ρS cos(2∆χB), (5.15)

U

I
= −ρS sin(2∆χB) cos(l2H),

V

I
= ρS sin(2∆χB) sin(l2H).

(E) For 1− l2 � 1, layer 2 mainly contributes
to the Stokes parameters. In this case, the polar-
ization spectrum at all frequencies is again almost
identical to the polarization spectrum of a source
with a uniform magnetic field. Only small circular-
and linear-polarization oscillations above the spectral
intensity maximum (in the frequency range ω̃τ=1 �
ω̃ � ω̃H=1) are superimposed on this spectrum. The
oscillation amplitude is of the order of 1− l2 � 1
for circular polarization and (1− l2)2 � 1 for linear
polarization (Fig. 3b).

Thus, the radiation spectrum of an electron–
positron plasma with a magnetic-field shear is dis-
tinguished by a significant degree of circular polar-
ization of the radiation comparable to the degree of
linear polarization. The degree of circular polarization
oscillates with decreasing frequency, changing sign.
If the shear is localized close to the location where
the ray emerges from the jet [see inequalities (5.11)
and (5.12)], then either there is no noticeable circular
polarization of the radiation or it occurs at very low
frequencies (below the spectral intensity maximum).
In the remaining cases, the frequency range of sig-
nificant circular polarization includes the frequency of
the spectral intensity maximum and extends above it.
However, the degree of circular polarization decreases
over the entire frequency range if the extent of layer 1
becomes relatively small (1− l2 � 1).

6. CONCLUSIONS

Our analysis of the polarization frequency spectra
for synchrotron radiation without invoking any ad-
ditional considerations based on the jet energetics,
etc., leads us to the following conclusions regarding
the possible plasma composition in jets. The standard
polarization spectra for discrete cosmic synchrotron
radio sources composed of cold plasma with an ad-
mixture of relativistic electrons (supernova remnants,
radio galaxies, etc.) are shown in Figs. 1a and 1b. The
spectral shape is determined by the fixed structure of
the normal waves in cold plasma and by the polar-
ization of the synchrotron radiation from relativistic
particles. Since this polarization does not depend on
the sign of the charge of these particles, the observed
polarization spectrum does not depend on the compo-
sition of the relativistic component in a cold plasma:
the spectra are virtually identical for the electron and
positron components and for the mixed electron–
positron component.

This implies that the specific composition of the
admixture of relativistic particles in a cold jet plasma
cannot be determined from the polarization spectrum
of the synchrotron radiation. Nor can it be determined
for any composition of a tenuous plasma in jets with
a weak magnetic field under the conditions when the
phase difference φ between the ordinary and extraor-
dinary waves acquired on the jet sizes and the optical
depth τ attributable to synchrotron reabsorption are
small compared to unity. In this case, the polarization
frequency spectra are identical and match the polar-
ization spectrum of the electron (or positron) radia-
tion in a vacuum: the radiation is linearly polarized
and there is no circular polarization (see Figs. 1–3 for
ω̃ � ω̃τ=1, ω̃ � ω̃F=1).

Comparison of the spectra in Fig. 1 and Figs. 2
and 3 (see also the table) indicates that the qualitative
difference between a purely relativistic (electron or
electron–positron) plasma and a cold plasma with
an admixture of relativistic particles is a high (∼
10%; see Figs. 2, 3) linear polarization at frequencies
ω̃ < ω̃τ=1 (i.e., in the range of strong reabsorption,
at the low-frequency slope of the intensity spectrum
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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Characteristic features of the polarization spectra

Jet plasma composition

Characteristic features of polarization
linear polarization in
the range of strong

reabsorption

oscillations of ρΛ

and χ in the range of
weak reabsorption

strong circular
polarization ρκ

oscillations of ρκ

Cold plasma with an
admixture of relativistic
particles

− + − −

Relativistic electron plasma + + + ∓

Relativistic electron–positron
pairs

+ ∓ ∓ ∓

Note: The + signs mark the features in the polarization spectrum that distinguish a given plasma composition. The − signs indicate
the absence of the corresponding feature. The∓ signs mean that there is no such spectral feature for a uniformmagnetic field in
the jet but a magnetic-field shear produces it.
for the synchrotron radiation) and the possible ap-
pearance of strong circular polarization under certain
conditions. The emergence of a circularly polarized
component (with ρκ � 10%) in the radiation from a
relativistic electron plasma is attributable to the el-
liptical polarization of the normal waves near ω̃H=F

[see Eq. (4.2)]. This component is absent in a rela-
tivistic electron–positron plasma if the magnetic field
in the jet is uniform (Fig. 3a). However, in the pres-
ence of a magnetic-field shear, the situation changes
sharply: a linear wave interaction attributable to the
field B(z) rotation arises here under favorable con-
ditions. This effect gives rise to a strong circular
polarization, which can reach several tens of percent
(Fig. 3b) at frequencies ∼ω̃H=1 or lower.

The possibility of determining the specific relati-
vistic-plasma composition only from the shape of the
polarization spectra (i.e., without an allowance for
the real possibilities of pair production near black
holes and without making any judgments on the effi-
ciency of the various relativistic-particle acceleration
mechanisms) appears questionable. If we compare
Figs. 2b, 2c, and 3b, then we will see that there
are deep linear-polarization oscillations in the case
of relativistic electron plasma in a jet with a uniform
magnetic field; at the same time, circular-polarization
oscillations emerge in jets with amagnetic-field shear
composed of electron–positron plasma. This differ-
ence can disappear if we take into account the shear
effect in a jet with relativistic electron plasma, which
produces ρκ oscillations in this case as well. At the
same time, it is clear that this kind of polarization
oscillations is actually difficult to detect because of
the high probability of these oscillations being blurred
when the polarization is averaged over the receiving-
antenna beam.
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In conclusion, note that the available radio-
astronomical data on the polarization of jet radiation
are very scarce. The measurements made by Wardle
et al. (1998) at 15 GHz revealed a circular polariza-
tion of about 1% in the jets of the quasar 3C 279.
This value is too low to reach a definitive conclusion
regarding the plasma composition, especially if it is
considered that it is at the level of the corrections in-
troduced by a number of effects (a weak circularly po-
larized component of the synchrotron radiation from
individual particles, a slightly elliptical polarization of
the normal waves, etc.). These effects are difficult to
take into account and to separate; and the correct
conclusion regarding the plasma composition is
difficult to reach on their basis. Gabuzda et al. (2000)
reported large variations of the linear polarization and
angle χ in the radio emission from the BL Lac object
0716+714 at 5 GHz on a time scale of several hours.
The degree of linear polarization varied over the range
from 2 to 13% and the polarization plane rotated
through ∼45◦. Finally, Ros et al. (2000) presented
radio observations of the jet in the quasar 3C 345 at
wavelengths of 1.3, 2.0, 3.6, and 6 cm. In the latter
case, the linear polarization reached 15%, with the
orientation of the polarization plane changing slowly
within the jet. This circumstance suggests that the
magnetic field in the jets studied is not random in
nature: the field nonuniformity scale is comparable to
or only several times smaller than the jet linear size.
The latter justifies the choice of the simple jet models
with a uniform magnetic field and with a magnetic-
field shear discussed here.

Several papers devoted to this problem were
previously published by Jones and O’Dell (1977b),
Jones (1988), and Fraix-Burnet (2002). Fraix-Bur-
net (2002) considers the linear-polarization oscil-
lations, which lead to Faraday depolarization when
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averaging over the source sizes, to be a distinguishing
feature of a jet containing a cold plasma (see Fig. 1b).
At the same time, this effect is absent in a plasma of
relativistic electron–positron pairs (Fig. 3a). How-
ever, as we see from Fig. 3b, ρΛ oscillations of this
kind appear in the presence of a magnetic-field shear.
Moreover, for certain combinations of parameters
in a relativistic electron plasma, the polarization
frequency spectrum does not differ qualitatively from
the case of relativistic electrons in a cold plasma and
contains the same ρΛ oscillations in the range of weak
reabsorption (τ � 1), as in a jet with a cold plasma.

Based on the absence (in their opinion) of Faraday
depolarization in the observed objects, Jones and
O’Dell (1977b) concluded that relativistic plasma
could exist in polarized compact radio galaxies.

Based on a complex jet model with random mag-
netic fields, Jones (1988) performed extensive numer-
ical calculations of the polarization of synchrotron
radiation. The emphasis was on the low degrees of
observed polarization of the radio emission at fixed
frequencies. On the other hand, averaging the polar-
ization over the source in the adopted model leads to
additional difficulties in attempting to determine the
plasma composition in the jet. Actually, as we made
sure, a more thorough analysis of the polarization fre-
quency spectra for synchrotron radiation is required
to solve the problem of the corpuscular composition
in jets.

It follows from our study that only extensive radio-
astronomical observations of plasma over a wide fre-
quency range (not only at one or two frequencies, as
has been and is being done to the present day) can
provide conclusive evidence for the compositions of
relativistic jets and primarily for the absence or pres-
ence of cold plasma in these objects. Only polariza-
tion measurements with high angular and frequency
resolutions will make it possible to differentiate be-
tween a relativistic electron plasma and a plasma
composed of relativistic electron–positron pairs.
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Abstract—We constructed a grid of relativistic models for standard high-relative-luminosity accretion α-
disks around supermassive Kerr black holes (BHs) and computed X-ray spectra for their hot, effectively
optically thin inner parts by taking into account general-relativity effects. They are known to be heated
to high (∼106–109 K) temperatures and to cool down through the Comptonization of intrinsic thermal
radiation. Their spectra are power laws with an exponential cutoff at high energies; i.e., they have the same
shape as those observed in active galactic nuclei (AGNs). Fitting the observed X-ray spectra of AGNs with
computed spectra allowed us to estimate the fundamental parameters of BHs (their mass and Kerr param-
eter) and accretion disks (luminosity and inclination to the line of sight) in 28 AGNs. We show that the Kerr
parameter for BHs in AGNs is close to unity and that the disk inclination correlates with the Seyfert type
of AGN, in accordance with the unification model of activity. The estimated BH massesMx are compared
with the masses Mrev determined by the reverberation mapping technique. For AGNs with luminosities
close to the Eddington limit, these masses agree and the model under consideration may be valid for them.
For low-relative-luminosity AGNs, the differences in masses increase with decreasing relative luminosity
and their X-ray emission cannot be explained by this model. c© 2002 MAIK “Nauka/Interperiodica”.

Key words: active galactic nuclei, quasars, radio galaxies, X-ray emission, disk accretion.
INTRODUCTION

A high proportion of active galactic nuclei (AGNs)
possess a noticeable X-ray emission whose spectrum
is a power law in the energy range 2–10 keV, Fν ∼
ν−αx (see Mushotsky et al. 1993), with the index αx

varying over a wide range, from 0.3 to 1.2. Recent
BeppoSAX observations have revealed an exponen-
tial cutoff at energies above 50 keV (Matt 2001). A
noticeable reflected component in the energy range
10–30 keV and an iron line at energies 6–7 keV
are also observed. These additional components are
assumed to arise when the emission from a primary
source with a power-law spectrum is reflected from an
accretion disk (AD) and/or from a system of clouds
above the disk plane. Here, we investigate the nature
of the primary X-ray source and discuss the possibil-
ity of explaining the reflected component in terms of
the model under consideration.

The power-law spectral shape with a high-energy
cutoff can be easily explained by an unsaturated
Comptonization model (Sunyaev and Titarchuk
1980). Therefore, most of the models proposed to
explain the X-ray emission from AGNs contain a
cloud or a layer of hot electrons with Te ∼ 108–109 К

*E-mail: vals@ksu.ru
1063-7737/02/2811-0745$22.00 c©
and τe ∼ 1 in which the soft external photons emitted
by the AD are Comptonized as the main element.
Geometrically, this can be either a hot corona above
a relatively cold disk (Bisnovatyi-Kogan and Blin-
nikov 1977; Haardt and Marashi 1993; Rozanska
et al. 1999) or a hot cloud inside a cold AD with
a corona (Meyer et al. 2000; Rozanska and Cz-
erny 2000).

Here, we explore the possibility of explaining the
X-ray emission from AGNs by the emission from the
inner, effectively optically thin regions of a standard
accretion disk with a luminosity close to the Ed-
dington limit that cool down via the Comptoniza-
tion of intrinsic thermal radiation. The existence of
such regions was first shown but Shakura and Sun-
yaev (1973) and such models were later developed by
Wandel and Liang (1991) and Beloborodov (1998).
Clearly, this model cannot be universal, because not
all AGNswith X-ray emission have luminosities close
to the Eddington limit.

We computed X-ray spectra for these hot inner
regions by taking into account relativistic effects and
estimated the fundamental parameters of black holes
(BHs) and ADs in 28 AGNs by fitting the observed
X-ray spectra with computed theoretical spectra.
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. The distributions of (a) temperature, (b) rela-
tive half-thickness, and (c) optical depth for electron
scattering along the disk radius for models with various
partameters. The temperature distributions for the basic
model are indicated by solid lines. The remaining models
here and in Figs. 3 and 4 have the same principal param-
eters of disk accretion as the basic model except for the
indicated value of one of the parameters shown for the
corresponding line.

THEORETICAL SPECTRA

To compute theoretical X-ray spectra for ADs
around supermassive BHs, the following fundamental
parameters must be specified: the BH mass Mx, the
relative BH angular momentum a (Kerr parameter),
the relative AD luminosity L/LEdd (or the corre-
sponding relative accretion rate ṁ = Ṁ/ṀEdd), the
viscosity parameter α, and the cosine of the angle of
disk inclination to the line of sight µ = cos i.

First, we computed a relativistic model for a stan-
dard AD (Shakura and Sunyaev 1973) by using the
relativistic corrections from Riffert and Herold (1995).
This model includes the distributions of effective tem-
perature Teff(R), surface density u0(R), and disk half-
thickness z0(R) along the disk radius R. To this end,
we solved the following equations:

the angular-momentum equation

2πWrϕ = Ṁw
D

A
; (1)

the energy-balance equation

σT 4
eff =

3
8π
w2Ṁ

D

B
; (2)

the viscosity equation

Wrϕ = 2αPz0
A√
BC

; (3)

and the equation of hydrostatic equilibrium along
the z axis

P =
w2u0z0

4
C

B
. (4)

Here, w =
√
GMx/R3 is the Keplerian angular ve-

locity at radius R, T is the parameter that charac-
terizes the total radiation flux at a given disk radius,
and P is the total pressure in the disk. Since we
considered only those inner disk regions with the
dominance of radiation pressure (the contribution of
the gas pressure does not exceed 1%), we took the
radiation pressure as the total pressure,

P ≈ Prad =
σT 4

effσeu0

4c
, (5)

where σe ≈ 0.34 cm2 g−1 is the electron scattering
coefficient in a hot plasma (with completely ionized
hydrogen) of solar chemical composition. The contri-
bution of the remaining opacity sources is negligible.

The relativistic corrections are defined in terms
of the dimensionless geometric variables r and x
expressed in units of the gravitational radius Rg =
GMx/c

2 and the Kerr parameter:

A = 1 − 2
r

+
a2

r2
,

B = 1 − 3
r

+
2a
r3/2

,

C = 3A− 2B,

D =
1

2
√
r

∫ r

r0

x2 − 6x+ 8a
√
x− 3a2

√
x(x2 − 3x+ 2a

√
x)

dx.

The dimensionless radius of the marginally stable
orbit r0 is defined by the following formulas (Page and
Thorne 1974):

r0 = 3 + Z2 − [(3 − Z1)(3 + Z2 + Z1)]1/2,

Z1 = 1 + (1 − a2)1/3[(1 + a)1/3 + (1 − a)1/3],
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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Z2 = (3a2 + Z2
1 )1/2.

Next, based on the energy-balance equation, we
calculated the temperature Te(R) at each radius of the
inner hot region:

σT 4
eff = Lffz0(1 +A′), (6)

where Lff is the rate of energy losses through free–
free emission:

Lff = 5.35 × 10−24

(
u0

2z0mp

)2

× (kTe(keV))1/2 erg
s cm

.

The disk at a given radius was assumed to be
homogeneous and isothermal along the z axis. In
the accretion-disk region with a dominant radiation
pressure, the disk is homogeneous in z coordinate
(Shakura and Sunyaev 1973). When it cools down
through the Comptonization of its intrinsic radiation,
the temperature does not change greatly with depth,
increasing to the surface (Sunyaev and Tilarchuk
1985), so the assumption that the disk is homoge-
neous and isothermal in z coordinate should not sig-
nificantly affect the results. We use the amplification
factor of the energy losses through Comptonization,
A′, in the form proposed by Svensson (1984):

A′ = f(y1)
3
4

ln2 2.35
x0

, (7)

where

y1 = ζ
τ2
e ln(1 + 4θ + 16θ2)

ln(θ/x0)
,

f(y1) = 2
(
y2
1 − (y1 + y2

1) exp(−1/y1)
)
.

Here, θ = kTe/mec
2 is the dimensionless electron

temperature and ζ is the geometric factor close to
unity for a disk. The dimensionless frequency x0 =
hν0/kTe corresponds to the frequency ν0 at which the
probabilities for photons to be absorbed via free–free
processes and to undergo Compton scattering be-
come equal (Kompaneets 1956; Illarionov and Sun-
yaev 1972), and τe = τeu0(R)/2 is the disk optical
depth for electron scattering.

Examples of computed temperature distributions
for ADs with various parameters are shown in Fig. 1a.
We restricted our analysis to regions with Te > 106 K
and did not use any interpolation formulas to describe
the transition from effectively optically thin disk re-
gions to effectively optically thick regions (see, e.g.,
Beloborodov 1998). The temperature distributions for
effectively optically thick outer disk regions presented
in the same figure are shown only for illustration.
Figures 1b and 1c show the distributions of the rela-
tive half-thickness z0(R)/R and the optical depth for
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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Fig. 2. The spectrum of the basic model and the local
spectra of three rings in the hot region: with minimum
(1.3 × 106 K), intermediate (3.3 × 108 K), and maximum
(6.2 × 109 К) temperatures.

electron scattering τe = σeu0(R)/2 along the radius
of the same disk models as those in Fig. 1a.

For each radius, the local spectrum Fν(R) was
computed from the known Te and τe as the spectrum
of a flat, homogeneous, isothermal layer, as prescribed
by Sunyaev and Titarchuk (1980):

Fν = W

(
hν

kTe

)−αST

e−
hν
kTe (8)

×
∫ ∞

0
tαST−1e−t

(
t+

hν

kTe

)αST+3

dt,

where

αST =

√
9
4

+ γ − 3
2
, γ =

π2

12
1

θ(τe + 2/3)
.

The dilution factor W can be determined from the
condition for the emergent flux at a given radius being
equal to the theoretical flux:

σT 4
eff = π

∫ ∞

ν0

Fνdν. (9)

In this case, the Comptonization is saturated (y =
τ2
e kTe/(mec

2) > 1) and the local spectra are Wien
ones with the emission peak corresponding to the
temperature at a given radius.

The resultant spectrum at infinity is the sum of the
local spectra for rings with allowance made for their
area and the relativistic radiative transfer function
T (µ,R, ν0/ν) that includes the relativistic Doppler
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Fig. 3. Comparison of the model spectra for various rela-
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effect, the gravitational redshift, and the bending of
light rays in the gravitational field (Laor et al. 1990):

L(µ, ν0) =
∫
Fν(R)T

(
µ,R,

ν0

ν

)
RdRd

(ν0

ν

)
. (10)

The relativistic transfer function also includes limb
darkening according to the law of an electron scat-
tering atmosphere.

Although the local spectra of the disk are Wien
ones, its integrated spectrum proves to be a power law
with an exponential cutoff at an energy corresponding
to the maximum temperature in the disk in a wide
energy range. An example of the integrated spectrum
and the contribution of the local spectra for three disk
rings to it are shown in Fig. 2.

The maximum temperature in the disk depends on
its relative luminosity, the Kerr parameter, and the
disk viscosity (α) (see Fig. 1a). Therefore, the high-
energy spectral cutoff is at different energies for differ-
ent values of these parameters. In particular, the cut-
off energy must vary with disk luminosity (see. Fig. 3).

The gradient of the temperature distribution in
hot disk regions depends weakly on the BH and AD
parameters (see Fig. 1a) and the integrated spectral
index αx must be approximately the same (∼0.75) for
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Fig. 4. Comparison of the model spectra with various
values of the Kerr parameter for three different AD incli-
nations to the line of sight.

the spectra of all disks, irrespective of their parame-
ters. However, because of the gravitational redshift,
the relativistic Doppler effect, and the bending of light
rays in the BH gravitational field, the spectral slope for
a remote observer differs for different disk inclinations
to the line of sight (see. Fig. 4).

FITTING TECHNIQUES AND RESULTS

The observed X-ray spectra of AGNs can be
described by three parameters (without considering
the excess of soft X-ray emission, the reflected
component, and the lines): the spectral index αx,
the 2–10-keV luminosity L2−10 (we used H0 =
50 km s−1 Mpc−1), and the exponential-cutoff energy
Ec. Analysis of theoretical spectra indicates that
the luminosity L2−10 depends mainly on the BH
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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massMx, because high-temperature states can exist
only in a narrow range of the dimensionless param-
eters ṁ, α, and a (from ∼0.5 to 1). The energy Ec

depends on these parameters. The spectral indexαx is
determined mainly by the disk inclination to the line of
sight and, to a lesser extent, by the Kerr parameter a
(see Fig. 4).

We used the following fitting technique. The model
spectra (∼600 spectra) computed over a wide range
ofMx, a, ṁ, α, and µ were fitted by a power law with
an exponential cutoff in the observed X-ray energy
range 2–250 keV. In this way, we determined the
theoretical values of αx, L2−10, and Ec; i.e., each set
of five values of Mx, a, ṁ, α, and µ was associated
with a triplet of αx, L2−10, and Ec values. Next, for
the observed αx, L2−10, and Ec, we determined all
the triplets of theoretical values of the same quantities
that matched the observed ones, to within their errors,
and, hence, all the admissible values of the BH and
AD fundamental parameters.

We chose 28 AGNs for our analysis. For these
AGNs, either all three parameters of the X-ray spec-
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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trum or the masses of their central BHs Mrev de-
termined from the lag between broad-emission-line
variability and continuum variability are known. The
observed parameters of the AGN spectra and the
fitting results are presented in Tables 1 and 2. If only
Ec estimates are known from observations, the corre-
sponding values in Table 1 are given in parentheses.
If Ec is not known from observations, it was assumed
to be 200 keV. In both cases, the uncertainty in the
cutoff energy was assumed to be 100 keV. Note that
not all sources have the spectral index determined by
taking into account the reflected component, which
introduces an additional uncertainty into the derived
AGN parameters. Examples of theoretical fits to the
observed spectra are shown in Fig. 5. The spectra of
the models with the parameters in Table 2 for these
AGNs were used as the theoreticl spectra. In power-
law spectra with an exponential cutoff with index αx

and cutoff energy Ec from Table 1 for these AGNs are
shown as the observed spectra.

DISCUSSION

It follows from the fitting results (see Table 2) that,
according to our model, BHs in AGNs are close to ex-
treme rotation (a ∼ 1). According to Thorne (1974),
BHs cannot be spun up to a > 0.998 via accretion.
However, since this theoretical result needs to be
verified by observations, we also used models with
large a. With a few exceptions, the spectra of almost
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Table 1.Observed parameters of the spectra for the AGNs studied

Name Type1 lgL2−10 αx Ec, keV lgL15
bol lg νLν , 60 µm15

PG 0804+761 Sy 1.0 44.612 0.43+0.77 2
−0.72 (200) 46.20 44.65

PG 0844+349 Sy 1.0 43.642 1.02+0.07 2
−0.06 (200) 45.4814 44.114

PG 0953+414 Sy 1.0 ? 44.852 0.98+0.17 2
−0.15 (200) – –

PG 1211+143 Sy 1.0 43.962 1.16+0.04 2
−0.08 (200) 46.07 44.69

PG 1411+442 Sy 1.0 ? 43.882 1.26+0.78 2
−0.74 (200) – –

NGC 3227 Sy 1.5 42.013 0.52 ± 0.043 (200) 44.47 43.66

NGC 3516 Sy 1.5 43.433 1.07+0.20 9
−0.08 (350)9 44.66 43.55

NGC 3783 Sy 1.0 43.253 0.70 ± 0.089 160+90 9
−60 44.73 43.88

3C 120 Sy 1.0 44.464 0.90 ± 0.034 (400)4 45.58 44.50

3C 273 Sy 1.0 45.905 0.60 ± 0.065 (500)5 47.45 46.04

3C 390.3 Sy 1.0 44.287 0.80+0.05 6
−0.04 380+∞ 6

−260 45.58 44.5516

NGC 4051 Sy 1.5 41.563 0.92 ± 0.063 (200) 42.62 43.08

NGC 4151 Sy 1.5 42.973 0.35 ± 0.209 70 ± 209 44.22 43.20

NGC 4593 Sy 1.0 43.063 0.87 ± 0.059 (250)9 – –

NGC 4945 Sy 2.0+SB 43.488 0.6 ± 0.38 140+170
−40

8 – 44.5216

NGC 5548 Sy 1.5 43.763 0.63+0.04 9
−0.03 160+50

−70
9 45.04 43.77

NGC 7469 Sy 1.2 43.603 1.04 ± 0.059 (330)9 45.36 45.21

Fairall 9 Sy 1.0 44.263 1.05+0.11 9
−0.09 (320)9 45.8514 44.4414

IC 4329A Sy 1.2 44.2010 0.86 ± 0.039 270+170 9
−80 45.09 43.99

MCG-5-23-16 Sy 2.0 43.4511 0.81 ± 0.0511 130± 7011 – –

MCG-6-30-15 Sy 1.2 43.073 1.06 ± 0.039 160+130
−60

9 – –

MCG+8-11-11 Sy 1.5 44.0212 0.8 ± 0.112,13 170+300
−80

9 45.29 44.49

Mkn 841 Sy 1.5 43.823 0.75 ± 0.29,3 (250)9 45.41 44.16

Mkn 110 Sy 1.0 44.152 0.73 ± 0.082 (200) – –

Mkn 335 Sy 1.0 43.412 0.84+0.15 2
−0.16 (200) 45.39 43.58

Mkn 509 Sy 1.2 44.4712 0.58 ± 0.112 80+20
−30

9 45.76 44.61

Mkn 279 Sy 1.0 44.0417 1.09 ± 0.0517 (200) 45.32 44.34

Akn 120 Sy 1.0 44.1517 1.08 ± 0.0517 (200) 45.80 44.19

Notes: 1—NED (http://nedwww.ipac.caltech.edu), 2—George et al. (2000), 3—Nandra et al. (1997), 4—Eracleous et al. (2000),
5—Mineo et al. (2000), 6—Grandi et al. (1999), 7—Sambruna et al. (1999), 8—Guainazzi et al. (2000), 9—Matt (2001),
10—Perola et al. (1999), 11—Weaver et al. (1998), 12—Perola et al. (2000), 13—Grandi et al. (1998), 14—Elvis et al.
(1994), 15—Mas-Hesse et al. (1995), 16—de Grijp et al. (1987), and 17—the ASCA database.
all AGNs proved to be consistent with the condi-
tion à ≤ 0.998. The spectral indices of AGNs with
a > 0.998 were determined without considering the
reflected component and their luminosities are much
lower than the Eddington limit. Therefore, we can-
not assert that a > 0.998 for BHs in these AGNs.
The small error in Kerr parameter is determined by a
strong dependence of this model on a near unity.

Analysis of the dependence of the derived AD in-
clinations in AGNs on their Seyfert type indicates
that Sy 1–1.2 AGNs have, on average, larger inclina-
tions to the line of sight (seen face-on) than Sy 1.5–
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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Table 2.Derived parameters of BHs and ADs in the AGNs studied

Name Mx, 107M� M1
rev, 107M� log

Lbol

LEdd
a Ṁ/ṀEdd µx

PG 0804+761 8.8 ± 4.8 16.3+1.6
−1.5 −0.11 0.965 ± 0.035 0.75 ± 0.25 0.45 ± 0.25

PG 0844+349 0.72 ± 0.12 2.7+1.1
−1.0 −0.05 0.9998 0.75 ± 0.15 0.8 ± 0.1

PG 0953+414 10.8 ± 2.8 16.4+2.5
−3.0 – 0.995 ± 0.005 0.75 ± 0.1 0.75 ± 0.15

PG 1211+143 1.56 ± 0.2 3.2 ± 0.8 0.60 0.9998 0.86 ± 0.06 0.95 ± 0.05

PG 1411+442 1.8 ± 0.68 8.8+3.3
−3.2 – 0.975 ± 0.025 0.72 ± 0.22 0.6 ± 0.4

NGC 3227 0.02 ± 0.01 4.9+2.6
−4.9 −1.32 0.965 ± 0.035 0.78 ± 0.22 0.35 ± 0.15

NGC 3516 0.4 ± 0.2 2.3+1.3
−1.0 −0.80 0.9998 0.84 ± 0.09 0.8 ± 0.05

NGC 3783 0.32 ± 0.16 1.10+1.07
−0.98 −0.41 0.975 ± 0.025 0.75 ± 0.25 0.6 ± 0.3

3C 120 4.56 ± 0.16 3.0+1.9
−1.4 0.006 0.9994 ± 0.0004 0.9 ± 0.1 0.6 ± 0.05

3C 273 144.0 ± 32.0 40 ± 20 0.76 0.975 ± 0.025 0.87 ± 0.12 0.4 ± 0.1

3C 390.3 2.92 ± 1.28 37+12
−14 −1.09 0.985 ± 0.015 0.82 ± 0.18 0.65 ± 0.25

NGC 4051 0.006 ± 0.02 0.14+0.15
−0.09 −1.63 0.9994 ± 0.0004 0.72 ± 0.12 0.75 ± 0.15

NGC 4151 0.292 ± 0.2 1.2+0.83
−0.7 −0.96 0.95 ± 0.05 0.75 ± 0.25 0.3 ± 0.2

NGC 4593 0.18 ± 0.06 – – 0.985 ± 0.015 0.8 ± 0.2 0.75 ± 0.25

NGC 4945 0.92 ± 0.12 0.16+0.04
−0.04

2 – 0.965 ± 0.035 0.75 ± 0.25 0.25 ± 0.05

NGC 5548 0.88 ± 0.4 11 ± 3 −1.03 0.965 ± 0.035 0.78 ± 0.22 0.55 ± 0.15

NGC 7469 0.6 ± 0.12 0.75+0.74
−0.75 0.39 0.9994 ± 0.0004 0.87 ± 0.13 0.85 ± 0.1

Fairall 9 2.72 ± 0.16 8.3+2.5
−4.3 −0.17 0.9994 ± 0.0004 0.84 ± 0.09 0.8 ± 0.05

IC 4329A 2.40 ± 0.48 0.7+1.8
−0.7 0.15 0.995 ± 0.005 0.75 ± 0.1 0.7 ± 0.15

MCG-5-23-16 0.60 ± 0.08 – – 0.9994 ± 0.0004 0.57 ± 0.08 0.5 ± 0.15

MCG-6-30-15 0.18 ± 0.02 – – 0.9994 ± 0.0004 0.8 ± 0.1 0.85 ± 0.1

MCG+8-11-11 1.56 ± 0.64 – – 0.975 ± 0.025 0.8 ± 0.2 0.7 ± 0.3

Mkn 841 1.04 ± 0.44 – – 0.975 ± 0.025 0.8 ± 0.2 0.6 ± 0.2

Mkn 110 2.24 ± 0.92 0.77+0.28
−0.29 – 0.975 ± 0.025 0.8 ± 0.2 0.65 ± 0.25

Mkn 335 0.40 ± 0.16 0.38+0.14
−0.10 0.71 0.975 ± 0.025 0.8 ± 0.2 0.65 ± 0.25

Mkn 509 4.4 ± 2.16 7.5 ± 2.5 −0.22 0.965 ± 0.035 0.77 ± 0.23 0.65 ± 0.25

Mkn 279 1.72 ± 0.2 4.2 ± 1.0 3 −0.4 0.9994 ± 0.0004 0.84 ± 0.09 0.95 ± 0.05

Akn 120 2.12 ± 0.36 18.7+4.0
−4.4 −0.57 0.9994 ± 0.0004 0.8 ± 0.1 0.9 ± 0.1

Notes: 1—Kaspi et al. (2000), 2—Greenhill et al. (1997), and 3—Ho (1999).
and Sy 2 AGNs, in accordance with the unification
scheme of activity. The distribution of AGNs in in-
clination (a histogram) for various Seyfert types is
shown in Fig. 6. As was mentioned above, our model
can only account for the X-ray emission from a high-
luminosity (of the order of the Eddington limit) AGN.
Therefore, the derived histogram, which also includes
objects with luminosities below the Eddington limit,
ASTRONOMY LETTERS Vol. 28 No. 11 2002
probably reflects the fact that the observed spectral
slope of the X-ray source (irrespective of its nature)
can be partly attributed to relativistic effects of the
propagation of radiation from inner disk region to a
distant observer.

The mass estimates for BHs in AGNs are of the
greatest interest. Our masses Mx are compared with
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the previously determined Mrev (Wandel et al. 1999;
Kaspi et al. 2000) in Fig. 7.

Clearly, some of the AGNs have massesMx com-
parable to Mrev. However, most of our values are
an order of magnitude lower; the lower is the rela-
tive AGN luminosity L/LEdd(Mrev), the larger the
Mrev/Mx ratio (see Fig. 8). The relation shown in
Fig. 8 results from the fact that the luminosity in our
model is assumed to be close to the Eddington limit
and if the actual AGN luminosity were much lower
than the Eddington limit, then our AGN mass Mx

would be underestimated. This implies that, as we
assumed from the outset, our model can be applied
only to high-relative-luminosity AGNs and that the
hot AD regions under consideration can contribute
significantly to the X-ray emission from AGNs with
luminosities close to the Eddington limit. The X-
ray source of low-relative-luminosity AGNs must be
different in nature.

In addition, the X-ray source under consideration
may not be the only source even in high-relative-
luminosity AGNs. Thus, our masses of two radio-
bright AGNs, 3C 273 and IC 4329A, proved to be
higher than theirMrev. Since the masses in our model
are determined mainly by the X-ray luminosity, this
fact implies that another X-ray source, probably a jet,
contributes to the X-ray flux from these two objects.
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The inner radiation-dominated AD zones are
known (Shakura and Sunyaev 1976) to be unstable.
This raises the question of whether our model can be
physically realized. However, more recent numerical
calculations by Honma et al. (1991) showed that
advection stabilizes the inner parts of the disk at high
but still subcritical accretion rates (ṁ ≥ 0.5). Since
precisely such (or even higher) relative accretion rates
are required for our model to be realized, we assume
that our model can be realized for high-relative-
luminosity AGNs. In subsequent papers, we plan to
include advection in our model.

Let us consider the possibility of explaining other
observed properties of the X-ray emission from AGNs
in terms of our model. First, variations in the X-
ray spectral slope and a change in the energy of the
high-energy cutoff are observed in several AGNs.
Whereas the change in cutoff energy can be explained
by the relatively small change in accretion rate, the
dependence of the the spectral slope on accretion
rate is weak (see Fig. 3). However, the variations in
spectral slope in a narrow energy range (2–20 keV)
may be due to the variability of the reflected Compton
component. Precisely this factor is responsible for the
variability of the X-ray spectral slope in NGC 5548
(Nandra et al. 1991). In addition, the variations in
spectral slope can be produced by the precession of
the disk as a whole or of its inner parts.
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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The spectra of several galaxies exhibit a broad iron
line with a mean half-width that corresponds to a
velocity of 47 000 km s−1 (Nandra et al. 1997). For
some galaxies, the line half-width reaches
100 000 km s−1. Such velocities can be explained by
the Keplerian rotation velocities of an AD in which
the line originates at distances 10–40 Rg from the
BH. In our model, the hot, completely ionized matter
that produces power-law X-ray emission is located
at distances of less than 10–15 Rg (see Fig 1a).
At large radii, the disk is ionized incompletely (T ∼
105–106 К) and can emit an X-ray iron line with the
observed half-width. The possibility that there is a
system of relatively cold clouds above the disk plane
up to its inner parts, which is an extension of the
system of clouds responsible for the broad emission
lines, cannot be ruled out either. In this case, the
X-ray iron line and the reflected component can be
emitted by this system of clouds. In addition, both
the reflected component and the iron line can also be
reemitted far from the central source. The BeppoSAX
observations of the galaxy NGC 4051 in May 1998
(Guainazzi et al. 1998) revealed both the reflected
component and the iron line, while the source of
power-law emission was absent. This suggests that
the sources of the reflected components in this galaxy
lie far from the central source.

Since our model of the central X-ray source is
not universal, its inconsistency with the observed
properties of some AGNs cannot serve as evidence
that it is invalid for all AGNs. But can we specify a
property of this model that would serve as evidence
that it it applicable to a specific active AGN? In our
view, the detection of a correlation between the e-
folding energy of the high-energy cutoff and the AGN
luminosity at different observing epochs because of its
variability (the higher is the luminosity, the higher the
cutoff energy) for an AGN with a luminosity close to
the Eddington limit could be such evidence.

CONCLUSIONS

We have attempted to compute the theoretical X-
ray spectra for the inner, effectively optically thin parts
of high-relative-luminosity ADs around supermas-
sive BHs and to use them to describe the observed X-
ray spectra of AGNs. We determined the fundamental
parameters of BHs and ADs in 28 AGNs by fitting
their X-ray spectra with the computed theoretical
spectra.

We showed that, according to our model, the an-
gular momenta of BHs in AGNs with a luminosity
close to the Eddington limit are close to their extreme
value and that the AD inclinations to the line of sight
are in agreement with the unification scheme of activ-
ity.
ASTRONOMY LETTERS Vol. 28 No. 11 2002
Our BH masses Mx proved to be, on average,
lower than those determined from the lag between
line variability and continuum variability Mrev; the
lower the relative AGN luminosityL/LEdd(Mrev), the
larger the Mrev/Mx ratio. However, for AGNs with
luminosities close to the Eddington limit, these differ-
ences are at a minimum and our model is applicable
to them. The X-ray emission from a low-relative-
luminosity AGN must be explained by other factors.

We discussed the fundamental possibility of ex-
plaining the reflected component and the iron line
observed in the X-ray spectra of several AGNs in
terms of our model.
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Abstract—We describe the results of our spectroscopy for a sample of barred galaxies whose inner regions
exhibit an isophotal twist commonly interpreted as a secondary bar. The line-of-sight velocity fields of the
ionized gas and stars and the light-of-sight velocity dispersion fields of the stars were constructed from
two-dimensional spectroscopy with the 6-m Special Astrophysical Observatory telescope. We detected
various types of noncircular motions of ionized gas: radial flows within large-scale bars, counterrotation of
the gas and stars at the center of NGC 3945, a polar gaseous disk in NGC 5850, etc. Our analysis of the
optical and near-infrared galaxy images (both ground-based and those from the Hubble Space Telescope)
revealed circumnuclear minispirals in five objects. The presence of an inner (secondary) bar in the galaxy
images is shown to have no effect on the circumnuclear kinematics of the gas and stars. Thus, contrary
to popular belief, the secondary bar is not a dynamically decoupled galactic structure. We conclude that
the so-called double-barred galaxies are not a separate type of galaxy but are a combination of objects with
distinctly different morphologies of their circumnuclear regions. c© 2002MAIK “Nauka/Interperiodica”.

Key words: galaxies, dynamics of galaxies, interstellar gas.
1. INTRODUCTION

According to observational estimates, galaxies
with central bars account for a major fraction (50–
70%) of the total number of nearby disk galaxies
(Selwood andWilkinson 1993; Knapen et al. 2000b).
Themotion of stars and gaseous clouds within the bar
differs markedly from unperturbed circular rotation;
the radial flows of gas toward the center prove to
be significant, as confirmed by direct observations
(Afanasiev and Shapovalova 1981; Duval and Mon-
net 1985; Knappen et al. 2000a) and by numerous
model calculations [see Lindblad (1999) for a review].
The central regions of such galaxies are decoupled
in their dynamical parameters, star-formation rates,
and densities of the gas and dust. For example, the
molecular-gas density within the central kiloparsec in
barred galaxies is an order of magnitude higher than
that in unbarred galaxies (Sakamoto et al. 1999).

The dynamical effect of the bar is considered to be
a major mechanism of the transportation of interstel-
lar gas from the disk into the circumnuclear region,
where it becomes fuel for a circumnuclear starburst
or an active nucleus (Combes 2000). In the latter
case, however, the relationship between the bar and
the active (for a disk galaxy, Seyfert) nucleus is far
from being unequivocal. Thus, the relative fraction
of bars in Seyfert galaxies only slightly exceeds this

*E-mail: moisav@sao.ru
1063-7737/02/2811-0755$22.00 c©
fraction in galaxies without active nuclei (Knapen
et al. 2000b). The main problem is that the gas in
the bar is concentrated not in the nucleus itself, but
in a ring of several hundred parsecs in radius, in the
region of the inner Lindblad resonance. Therefore,
an additional mechanism is required to take angu-
lar momentum away from the gas at a distance of
100–1000 pc from the centre and to transport the
gas into the region where the gravitational forces
of a central supermassive black hole are in action
(Combes 2000). An elegant solution to the problem of
mass transport to an active nucleus is the assumption
made by Shlosman et al. (1989) that another bar can
be formed in the gaseous disk (ring) within a large-
scale bar that again produces flows of gas toward
the nucleus. The system of two bars is capable of
sweeping away the interstellar medium on scales of
several kpc and of concentrating it at distances of 1–
10 pc from the centre. Recently, this process was nu-
merically simulated by Heller et al. (2001), although,
in essence, the authors considered the evolution of the
inner elliptical ring rather than the stellar–gaseous
bar.

Increased interest in double bars stems from the
fact that something like it is occasionally seen in
the images of barred galaxies. Vaucouleurs (1975)
detected a bar-like structure within the large-scale
bar in NGC 1291. The first systematic observational
study of a double-barred galaxy was undertaken by
Buta and Crocker (1993). They published a list of
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. A schematic view of a double-barred galaxy in
projection onto the plane of the sky. The ring that cor-
responds to the region of the inner Lindblad resonance
in the outer bar is highlighted. The principal isophotal
orientations (see Subsect. 3.1) are indicated by dashed
lines.

13 galaxies with an arbitrary orientation of the inner
(secondary) bar relative to the outer (primary) bar.
Analysis of the isophote shapes revealed secondary
bars in the optical (Wozniak et al. 1995; Erwin and
Sparke 1999) and infrared images of galaxies (Friedli
et al. 1996; Jungwiert et al. 1997; Laine et al. 2002).
An extensive bibliography and a list of 71 candidates
for double bars compiled from literature are given in
Moiseev (2001b).

Although there are now many papers on this sub-
ject, the dynamical behavior of such stellar configura-
tions is still unclear. Maciejewski and Sparke (2000)
showed that closed orbital loops maintaining the
shapes of both bars that rotate with different angular
velocities could exist. Similar independently rotating
structures also occasionally appear in experiments
on simulating stellar–gaseous disks (Pfenninger
and Norman 1990; Friedli and Martinet 1993). The
behavior of the gas in double bars was numerically
analyzed by Maciejewski et al. (2002) and Shlosman
and Heller (2002). Figure 1 shows the scheme of a
galaxy with two independently rotating bars, which
actually may be considered to be universally accepted.

It should be noted that, despite several interest-
ing results obtained in numerical experiments, they
are strongly model-dependent. Khoperskov et al.
(2002b) showed that a secondary bar could periodi-
cally arise only at certain stages of the galaxy dynam-
ical evolution; a long-lived secondary bar cannot yet
be simulated (Friedli and Martinet 1993; Erwin and
Sparke 2002). New observational data are required to
verify contradictory theoretical predictions.

Numerous observational studies indicate that in
the case of double bars, we probably come across a
new structural feature of barred galaxies. However,
the vast majority of these studies are based only on
photometric data, when an extended structure is seen
in the image of the galaxy within its primary bar
(Fig. 2). Formal application of an isophotal analysis
(Wozniak et al. 1995) even allowed several authors to
distinguish triple bars (Jungwiert et al. 1997; Friedli
et al. 1996; Erwin and Sparke 1999) without any
reasoning on the dynamical stability of such config-
urations. However, the observed photometric struc-
tural features of such galaxies can also be explained
in less exotic ways, without invoking secondary or
third bars. An oblate bulge, an intricate distribution
of star-forming regions and dust in the circumnuclear
region, and an elliptical ring in the resonance region
of the major bar can all create the illusion of a sec-
ondary bar in the galaxy images (Friedli et al. 1996;
Moiseev 2001b). Kinematic data, i.e., measurements
of the line-of-sight velocities and velocity dispersions
of the gas and stars, are required to solve the problem.
Since the observed objects are definitely not axisym-
metric, two-dimensional spectroscopy can be of great
help. It allows the two-dimensional distributions of
line-of-sight velocities and their dispersions in the
plane of the sky to be constructed.

In this paper, we discuss the results of the first
systematic study of such galaxies by using the two-
dimensional spectroscopy carried out in 2000–2002
with the goal to answer the following question: Are
the secondary bars dynamically decoupled systems?
Since the observational data themselves were de-
scribed in detail by Moiseev et al. (2002), we discuss
here only the most important features of the objects
under study. The observing techniques are described
in Section 2. In Section 3, we analyze the velocity
and velocity dispersion distributions in the galaxies
and describe the minispiral structures detected in the
central regions of several galaxies. Our results are
discussed in Section 4 and our main conclusion is
formulated in Section 5.

2. OBSERVATIONS AND DATA REDUCTION

We drew our sample from the list of candidates
for double bars (Moiseev 2001b) based on the con-
venience of their observation with the 6-m telescope:
δ > 0◦; the diameter of the secondary bar fits into the
MPFS field of view. Observational data were obtained
for 13 galaxies, which account for about half of the
total number of such objects in the northern sky. The
table gives the name of the galaxy, its morphological
type from the NED database, and the sizes of the
apparent semimajor axes of the outer (a1) and inner
(a2) bars in arcseconds with a reference to the corre-
sponding papers.

All spectroscopic and some photometric obser-
vations were carried out with the 6-m Special As-
trophysical Observatory telescope at 1–2′′

.5 seeing.
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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Parameters of the observed galaxies

Name Type a1 a2 References to photometry

NGC 470 SAb 32′′ 8′′ Wozniak et al. (1995); Friedli et al. (1996)

NGC 2273 SBa 24 8 Mulchaey et al. (1997)

NGC 2681 SAB0/a 29 5 Wozniak et al. (1995); Erwin and Sparke (1999)

NGC 2950 SB0 38 6 Wozniak et al. (1995); Friedli et al. (1996)

NGC 3368 SABab 24 4 Jungwiert et al. (1997)

NGC 3786 SABa 25 7 Afanasiev et al. (1998)

NGC 3945 SB0 42 20 Wozniak et al. (1995); Erwin and Sparke (1999)

NGC 4736 SAab 26 10 Shaw et al. (1993)

NGC 5566 SBab 24 6 Jungwiert et al. (1997)

NGC 5850 SBb 84 9 Buta and Crocker (1993); Wozniak et al. (1995)

NGC 5905 SBb 37 6 Wozniak et al. (1995); Friedli et al. (1996)

NGC 6951 SABbc 44 5 Wozniak et al. (1995)

NGC 7743 SB0 57 10 Wozniak et al. (1995)
The detector was a TK1024 CCD array. A log of
observations and a detailed description of individual
galaxies and the data reduction procedure were given
by Moiseev et al. (2002).

The circumnuclear regions of all galaxies were
observed with the Multipupil Field Spectrograph
(MPFS) (Afanasiev et al. 2001). It simultaneously
takes spectra from 240 spatial elements in the shape
of square lenses that comprise a 16 × 15 matrix in the
plane of the sky. The angular size of a single matrix el-
ement is 1′′. The MPFS spectrograph is described on
the Internet at http://www.sao.ru/∼gafan/devices/
mpfs/mpfs_main.htm. The observations were car-
ried out in the spectral range λ4800–6100 Å and,
for several galaxies, in the range λ5800–7100 Å;
the dispersion was 1.35 Å per pixel. The covered
spectral range included absorption features typical
of the old (G–K-type) galactic stellar population.
The line-of-sight velocity and velocity dispersion
fields of the stars were constructed by using a cross-
correlation technique modified for work with MPFS
data (Moiseev 2001a). The line-of-sight velocities
and velocity dispersions were determined with an
accuracy of ∼10 km s−1, on the average. Based on
the MPFS observations, we also mapped the two-
dimensional intensity distribution and the velocity
field of the ionized gas in the Hβ, [O III] λ4959,
5007 Å and [N II] λ6548, 6583 Å emission lines.
The line-of-sight velocities were measured with an
ASTRONOMY LETTERS Vol. 28 No. 11 2002
accuracy of ∼10 km s−1. No emission features were
detected in NGC 2950 and NGC 5566. Six galaxies
with intense emission features were observed with a
scanning Fabry–Perot interferometer (FPI) in the
235th order of interference in a spectral region near
the wavelength of the Hα line. The instrumental
profile width was 2.5 Å (∼110 km s−1); the field
of view was about 5′ with a scale of 0.56′′–0.68′′
per pixel. The instrument and reduction techniques
were described previously (Moiseev 2002). We con-
structed the velocity fields of the ionized gas in Hα or
[N II] λ6548, 6583 Å with an accuracy of∼5 km s−1.

The optical V - and R-band images of seven
galaxies were obtained at the prime focus of the
6-m telescope using the SCORPIO focal reducer
(its description can be found on the Internet at
http://www.sao.ru/∼moisav/scorpio/scorpio.html).
The reducer field of view is 4′

.8 with a scale of 0′′
.28

per pixel. In addition, we used the JHK-band images
obtained with the 2.1-m OAN telescope in Mexico
[for more detail, see Moiseev et al. (2002)]. We
also used the galaxy images from the Hubble Space
Telescope (HST) archive obtained with the Wide-
Field and Planetary Camera (WFPC2) and with the
Near-IR Camera (NICMOS).

As an example of the observational data used,
Fig. 2 shows the images of NGC2273 andNGC2950,
and Fig. 3 shows the velocity fields of the gas and
stars and the velocity dispersion fields of the stars in
NGC 2273, NGC 2950, and NGC 3945.
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Fig. 2. The R-band images of (a) NGC 2273 and (b) NGC 2950 obtained with the 6-m telescope; (c) and (d) the enlarged
central regions highlighted by the square in panels (a) and (b), respectively. The inner isophotal twist relative to the outer bars
is clearly seen. The heavy lines indicate the orientation of the line of nodes of the disk.
3. ANALYSIS OF THE SPECTROSCOPIC
AND PHOTOMETRIC OBSERVATIONS

3.1. Velocity Dispersion

The velocity dispersion distribution of the stellar
disk is one of its important parameters. It allows
unambiguous multicomponent models of the mass
distribution in galaxies to be constructed (Khoper-
skov et al. 2002a). Numerical calculations show that
because of the bar formation, the velocity dispersion
distribution in the galactic disk differs greatly from
the unperturbed (without a bar and spiral structure)
axisymmetric case (Miller and Smith 1979; Vau-
terin and Dejonghe 1997). The bar is a much hotter
dynamical subsystem; the velocity dispersion in it
increases sharply. In addition, the velocity ellipsoid
is found to be highly anisotropic. This anisotropy
manifests itself in different distributions of the radial,
azimuthal, and vertical velocity dispersions in the disk
plane.

The model maps of the line-of-sight stellar veloc-
ity dispersion constructed for various disk and bar ori-
entations (Miller and Smith 1979; Vauterin and De-
jonghe 1997; Khoperskov et al. 2002b) indicate that
the line-of-sight velocity dispersion (σ∗) distribution
within the bar is symmetric about the bar major axis
rather than about the disk major axis (line of nodes),
as would be the case in the absence of a bar.

Unfortunately, the observational manifestations of
the velocity-dispersion anisotropy in the σ∗ distribu-
tion are fe in number. The series of papers by Kor-
mendy (1982, 1983) are an example of the most con-
sistent approach tomeasuring the velocity-dispersion
anisotropy in barred galaxies. However, most authors
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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Fig. 3. Results of the observations of three galaxies. The gray scale is velocity in km s−1 and the heavy line indicates the
orientationof the line of nodes everywhere.NGC2273: (a) the gas velocity field constructed fromFabry–Perot observations; (b)
and (c) the stellar velocity and velocity dispersion fields. NGC 2950: (d) the velocity dispersion field; (e) the radial dependence
of the position angle of the maximum of the second harmonic in the Fourier spectrum σ∗; (f) the mean harmonic amplitude in
the Fourier spectrum σ∗. NGC 3945: (g) the continuumMPFS image of the center; (h) the stellar velocity field; (i) the velocity
field of the gas with counterrotation in the central region.
restrict themselves to measuring σ∗ along one or two
spectrograph slit directions. The two-dimensional σ∗
maps used here are much more informative. Fig-
ures 3c and 3d show the isolines of the σ∗ distribution
that form ellipsoidal, elongated structures asymmet-
ASTRONOMY LETTERS Vol. 28 No. 11 2002
ric about the disk line of nodes in the central regions
of NGC 2273 and NGC 2950.

To quantitatively describe the deviation of the σ∗
distribution from the axisymmetric case, we used the
Fourier expansion of the observed velocity dispersion
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field in terms of position angle PA:

σ∗(r, PA)=A0(r)+
N∑

m=1

Am(r) cos(mPA+φm(r)),

(1)

where r is the distance from the center in the plane
of the sky; Am and φm are the amplitude and phase
of the harmonic with number m, respectively; and
N = 6–8 is the maximum number of harmonics. Our
technique is similar to that used by Lyakhovich et al.
(1997) to analyze the velocity fields but differs from it
in that the Fourier expansion is made in terms of PA
rather than in terms of the azimuthal angle in the
galactic plane. In addition, it was shown in the above
paper and in subsequent papers (see, e.g., Fridman
et al. 2001) that for the velocity field of the gaseous
disk in a spiral galaxy, the principal expansion har-
monics are related to the spatial velocity vector com-
ponents. For analysis of the σ∗ fields, we cannot yet
offer such a clear physical interpretation of the Fourier
spectrum, if only because the combined contribution
of the bulge and the disk with the bar is observed in
the central regions under study. However, since our
simulations indicate that the σ∗ isolines in the bar
form an ellipsoidal structure, this must correspond to
a situation where the m = 2 harmonic and, possibly,
the succeeding even harmonics have amaximum am-
plitude in (1). The direction of the major axis of this
structure corresponds to the line of maximum of the
second harmonic: PA2 = −φ2/2 ± 180◦.

We broke down the velocity dispersion fields into
rings with the center coincident with the photometric
center of the continuum image. To provide a sufficient
number of points in relation (1), each image element
was broken down into four 0.5′′ × 0.5′′ elements. Ex-
periments with analysis of various images show that
this procedure introduces no significant distortions
into the spectrum of the first harmonics, at least for
m < 4–5. The position angle of the symmetry axis in
the velocity dispersion distribution is defined as the
mean value of the r dependence of PA2, provided
that there is a segment with an approximately con-
stant PA2 and that the second harmonic dominates
in the Fourier spectrum at given r. For NGC 2950,
this range of radii is r = 1′′–5′′ (Figs. 3e, 3f). The
succeeding change in PA2 at large distances stems
from the fact that the galaxy does not lie exactly at the
center of the MPFS field of view (Fig. 3d). Therefore,
there are few pairs of diametrically opposite points in
the velocity dispersion field for r > 5′′, causing the
spectrum of the even harmonics to be distorted.

The following three principal isophotal orienta-
tions can be distinguished in the image of a double-
barred galaxy: the position angle of the disk,
PA (disk), and the position angles of the bars,
PA (Bar 1) and PA (Bar 2), shown in Fig. 1.
According to the above considerations, if there are
two dynamically independent bars, then each of these
directions must be the symmetry axis in the apparent
σ∗ distribution on the corresponding distance scale.
What actually determines the velocity dispersion
distribution in the central region? To answer this
question, we considered the relations between the
position angle PA2 of the symmetry axis of the
velocity dispersion field and these three directions
shown in Fig. 4. This figure shows data only for those
seven objects from our sample in which the second
harmonic dominates in the Fourier spectrum of the
azimuthal σ∗ distribution at r = 1′′–6′′. We see that
in the galaxies under study, the direction PA2 in the
circumnuclear region (r < 5′′–6′′) coincides (within
the error limits) only with the orientation of the outer
bar and correlates neither with the major axis of the
inner bar (Fig. 4c) nor with the line of nodes of the
disk (Fig. 4a).

Since the central regions in galaxies of mostly
early morphological types were observed (see the ta-
ble), bulge stars must contribute significantly to the
velocity dispersion. However, if the bulge is spherical,
then it will affect only the amplitude of the zeroth
harmonic, because expansion (1) is made in terms of
the angle in the plane of the sky. If the bulge is oblate
but axisymmetric (spheroidal), then this will cause
an increase in the amplitude of the second harmonic.
The line of its maximum must coincide with the line
of nodes of the disk, because the symmetry of the
observed σ∗ distribution is similar to the case of a
disk with a different apparent axial ratio. However,
Fig. 4a shows no correlation between PA2 and the
line of nodes. If, alternatively, the bulge is triaxial, then
it will produce an isophotal twist in the central re-
gion in projection onto the plane of the sky (Wozniak
et al. 1995) and will be barely distinguishable from
the inner bar. However, Fig. 4c shows no correlation
between the symmetry direction of the velocity dis-
persion and the inner isophotal orientation.

Thus, the location of the line of maximum of the
second harmonic in the Fourier expansion of the ve-
locity dispersion field correlates only with the outer
bar. This large-scale bar determines the dynamics of
the stellar component even in those regions where
the isophotal twist attributed to the secondary bar is
observed.

3.2. Velocity Fields

We determined the radial dependences of the po-
sition angle of the dynamical major axis (the line of
maximum line-of-sight velocity gradient) from the
velocity field by the method of inclined rings (Bege-
man 1989). The velocity fields were broken down
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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Fig. 4.Relation between the position angle of the second harmonic in the velocity dispersion distribution and the position angle
of the disk (a) and the two bars (b) and (c). The dotted line represents a linear relation.
into elliptical rings about 1′′ in width aligned with
the outer galactic disk. In each ring, we determined
the optimum dynamical position angle PAdyn in the
approximation of circular rotation (for more details,
see Begeman 1989; Moiseev and Mustsevoi 2000).

The gaseous clouds move within the bar in such
a way that the observed PAdyn ceases to be aligned
with the line of nodes of the disk (Chevalier and
Furenlid 1978); the dynamical axis turns in a sense
opposite to the line of nodes compared with the posi-
tion angle of the inner isophotes (Moiseev and Must-
sevoı̆ 2000). In other words, the lines of equal line-of-
sight velocities are elongated along the bar. A similar
effect must also be observed in the stellar velocity
field, as shown both by numerical simulations (Vau-
terin and Dejonghe 1997) and analytic calculations of
the stellar dynamics in a triaxial gravitational poten-
tial (Monnet et al. 1992).

Figure 5 shows the radial dependences of the po-
sition angles of the dynamical axis and the major
axis of the inner isophotes in several objects. We
determined the isophotal orientation in NGC 2950
and NGC 3786 using the HST images obtained with
the WFPC 2 camera through a F814W filter and
with the NICMOS 1 camera through a F160W filter,
respectively. The R-band image of NGC 5850 was
taken from the digital atlas by Frei et al. (1996).
In NGC 2950, the isophotal orientation changes by
more than 50◦ (Fig. 5a), but PAdyn for the stellar
component is virtually aligned with the line of nodes.
Neither the outer bar nor the inner bar have an ap-
preciable effect on the stellar velocity field. This is
probably because here, both stellarmotions within the
bar and the rotation of the bulge, whose contribu-
tion in this lenticular galaxy must be significant, are
observed along the line of sight. Since the spectral
resolution was too low to separate the two dynamical
components in the line-of-sight velocity distribution
(LOSVD), the mean velocity field corresponds to
ASTRONOMY LETTERS Vol. 28 No. 11 2002
circular rotation. As was noted in Subsect. 3.1, the
stellar component associated with the outer bar in
NGC 2950 shows up in the distribution of the velocity
dispersion, whose increase points to a broadening of
the LOSVD in the bar region.

A similar pattern of stellar motion is observed in
NGC 2273, NGC 3945, NGC 5566, NGC 5850, and
NGC 5905. In four galaxies (NGC 470, NGC 2681,
NGC 4736, and NGC 6951), there are significant
(7◦–20◦) deviations of PAdyn for stars from the line
of nodes of the outer disk; these deviations of the
dynamical axis are not related to the orientation of
the inner bar but are in exactly the opposite direction
compared with the isophotes of the outer bar. Here,
as with the velocity dispersion, the stellar motions are
affected by the outer bar rather than the inner bar,
as should be the case for the model of independently
rotating bars described in Sect. 1.

In NGC 3786, on the scale of the inner bar
(r < 6′′), PAdyn deviates from the line of nodes
by more than 10◦; the deviations are in the oppo-
site direction compared with the central isophotes
(Fig. 5b). Here, we actually observe a dynamically
decoupled central minibar about ∼2 kpc in diameter.
Its existence was first suspected by Afanasiev and
Shapovalova (1981) when studying the gas kinemat-
ics in NGC 3786. In this galaxy, however, we cannot
speak about a dynamically decoupled secondary bar,
because a Fourier analysis of the surface-brightness
distribution (Subsect. 3.3) indicates that the two-
arm spiral mistaken by Afanasiev et al. (1998) for
the outer bar is located in NGC 3786 at r = 7′′–20′′.

The situation in NGC 3368 is similar. A dynam-
ically decoupled inner bar is observed in this galaxy,
but the outer bar described by Jungwiert et al. (1997)
is actually part of the spiral structure. The paper
that describes in detail the structure and dynamics of
NGC 3368 is being prepared for publication.
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Fig. 5. The radial behavior of the position angle of the
inner isophotes (1) and of the dynamical axis determined
from stars (2) and from gas in the Hβ (3), [O III] (4), and
[N II] (5) lines for (a) NGC 2950, (b) NGC 3786, and
(c) NGC 5850); (6) the line of nodes of the outer disk.

The apparent kinematic behaviors of the ionized
gas and stars in the objects under study are often
different. Moreover, the ionized-gas velocities mea-
sured from permitted (Hα, Hβ) and forbidden ([O III],
[N II]) lines can differ markedly. In NGC 3786, the dy-
namical axes in the stellar and gas velocity fields inHβ

are aligned, while the position angles measured from
the velocities in the [O III] line systematically deviate
from them (Fig. 5b). A similar effect is also observed
inNGC 470, NGC 2273, NGC 5905, and NGC 6951.
These deviations may be due to the presence at the
bar edges of shock fronts produced when the disk gas
interacts with the bar potential. The post-shock gas
decelerates and emits in forbidden lines (Afanasiev
and Shapovalova 1981). The following alternative ex-
planation is also possible: neglected stellar absorption
features distort the Hβ emission profile, which, in
turn, introduces systematic errors into the gas line-
of-sight velocity measurement. However, in galaxies
with relatively intense emission features against the
background of low-contrast absorption features, the
velocity difference in forbidden and permitted lines in
the bar region can be real.

In all the sample galaxies in which intense emis-
sion features were observed, the position anglePAdyn

measured from the gas is misaligned with the line
of nodes of the outer disk, suggesting noncircular
motions within the central kiloparsec. In five galaxies,
the turn of the dynamical axis is not related to the
isophotal twist in the inner bar. At the same time, it
is in the opposite direction relative to the isophotes of
the outer bar. This implies that the outer bar deter-
mines the dynamics of the gas component, while the
inner bar is not dynamically decoupled.

The noncircular gas motions in the remaining six
galaxies are different in nature. Thus, in NGC 3368
and NGC 3786, they are associated with the cen-
tral minibar and there is no outer bar here, as was
mentioned above. In NGC 6951, the noncircular gas
motions are associated with the central minispiral,
which is discussed in the next section.

In NGC 470, the dynamical center, defined as the
symmetry point of the velocity field, is displaced by
4′′–5′′ (0.6–0.8 kpc) from the photometric nucleus of
the galaxy, which may be due to the peculiar devel-
opment of the azimuthal m = 1 harmonic in the gas
velocity field (Emsellem 2002). This asymmetric har-
monic can be generated by the tidal interaction with
the nearby companion NGC 474, studied by Turnbull
et al. (1999). The observed displacement of the center
can also be explained as resulting from the devel-
opment of an asymmetric harmonic in the surface-
brightness distribution. As was pointed out by Zasov
and Khoperskov (2002), this effect can be observed at
certain evolutionary stages of barred galaxies.

The most peculiar galaxies (in terms of the gas
kinematics) are NGC 3945 and NGC 5850. In the
former, the gas line-of-sight velocities within 6′′
(0.5 kpc) are close in maximum amplitude to the
stellar velocities (80 and 120 km s−1, respectively)
but are opposite in sign! At large distances, the
sense of rotation of the gas changes sharply and
virtually coincides with that of the stars (Figs. 3h,
3i). The latter fact is also confirmed by the line-
of-sight velocity measurements of the ionized gas
with the FPI in several star-forming regions in the
outer ring structure at distances 120′′–140′′ (10–
11 kpc) from the center. It should be noted that such
counterrotation of the gas and stars is occasionally
observed in an early types galaxies; it is commonly
attributed to the absorption of an outer gas cloud
(Bertola et al. 1992; Kuijken et al. 1996).
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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The dynamical axis of the stars in the circum-
nuclear region of NGC 5850 is close to the line of
nodes, while in the ionized gas, this axis deviates
from it by more than 50◦–60◦ (Fig. 5c) and is al-
most aligned with the position angle of the central
isophotes. This behavior is typical of a disk inclined to
the galactic plane (Moiseev and Mustsevoı̆ 2000). In
addition, if we, nevertheless, assume the gas motions
to take place in the galactic plane, then it will turn
out that they correspond to a radial outflow from the
nucleus1 with velocities 50–70 km s−1. Such features
are characteristic of Seyfert galaxies, but the optical
spectrum of the galaxy contains no emission lines
indicative of an active nucleus, nor are starbursts ob-
served here (Higdon et al. 1998). A more reasonable
assumption is that the gas moves at r < 6′′–7′′ in
a plane polar to the galactic disk. In this case, the
polar gaseous disk lies almost exactly along the small
cross section of the outer bar. In recent years, such
polar minidisks associated with a large-scale bar or
a triaxial bulge have been detected in the circum-
nuclear regions of several galaxies, for example, in
NGC 2841 (Sil’chenko et al. 1997; Afanasiev and
Sil’chenko 1999) or NGC 4548 (Sil’chenko 2002).
The hypothesis of a polar disk is also supported by
the fact that, according to Higdon et al. (1998),
NGC 5850 has undergone a recent collision with the
nearby galaxy NGC 5846. Through their interaction,
part of the gas could be transported to polar orbits.

3.3. Inner Minispirals

We used the HST archival images of the galaxies
to study the detailed morphology of their circumnu-
clear regions. The models of mean elliptical isophotes
were constructed by the standard technique and were
subsequently subtracted from the original images.
In five galaxies, the residual brightness distributions
obtained in this way within their large-scale bars are
in the shape of small spirals 5′′–15′′ in size. A Fourier
analysis of the azimuthal brightness distribution was
used to quantitatively describe the detected spirals.
The original images at each radius were expanded
into the Fourier series (1), with the radius and the az-
imuthal angle in the galactic disk plane being substi-
tuted for r and PA, respectively. The derived Fourier
spectrum allows us to determine both the number of
arms of the principal spiral harmonic and the loca-
tion of the line of its maximum amplitude. Examples
of spirals, their residual brightnesses, and the mean
harmonic amplitudes in three galaxies are shown in
Fig. 6.

1Here, we use the suggestion made by Higdon et al. (1998)
that the disk orientation of the galaxy for which its western
half is closest to the observer is most probable.
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Three of the minispirals studied have already
been described in the literature: the pseudoring in
NGC 2273 (Ferruit et al. 2000) and the flucculent
spirals in NGC 4736 (Elmegreen et al. 2002) and
NGC 6951 (Pérez et al. 2000). Two new circumnu-
clear spirals were also found: the two-arm spiral in
NGC 5566 and the three-arm spiral in NGC 7743.
Based on an isophotal analysis of images, several
authors (see references in the table) pointed out
the existence of a secondary inner bar in these
galaxies. Within the bar, the line of the maximum
of the principal m = 2 azimuthal harmonic must be
elongated along the corresponding constant azimuth.
In NGC 5566, however, this line is wound into a
spiral that runs from almost the very center and
coincides with the residual-brightness peak (Fig. 6b);
i.e., a minispiral rather than a bar is located here,
with its shape resembling the outlines of the spirals
within the bars obtained in the model calculations
by Englmaier and Shlosman (2000). The minispiral
shown in Fig. 6b lies within a large scale bar with a
semimajor axis of about 30′′ (∼3 kpc).

In NGC 3786, the line of maximum of the m =
2 harmonic at r < 5′′–6′′ has a constant azimuthal
angle, which is a further confirmation of the exis-
tence of a minibar whose dynamical manifestations
are described in Subsect. 3.2. Far from the center,
this line is wound into a regular spiral that coincides
with the global two-arm pattern in the galactic disk at
r = 20′′–30′′. The Fourier spectrum is dominated by
the second harmonic; the m = 1 harmonic is similar
in amplitude to it (Fig. 6a). Clearly, the large relative
amplitude of the first harmonic can be explained in
terms of asymmetry in the apparent distribution of
the dust lanes, most of which lie on the near side of
the NGC 3786 disk. A similar effect was described
by Fridman and Khoruzhii (2000) when performing
a Fourier analysis of the images for NGC 157. The
spirals, defined as the maximum of the m = 2 har-
monic near the bar ends, change their winding di-
rection (Fig. 6a). According to Fridman and Kho-
ruzhii (2000), this behavior must suggest that the
bar is slow (in terms of the angular velocity of rigid
rotation). For the nature of the minibar in NGC 3786
to be eventually elucidated, we must have a more
detailed gas velocity field than that used here.

Wozniak et al. (1995) detected an isophotal twist
at r < 5′′–6′′ in the ground-based optical images of
NGC 6951 within its outer bar r ≈ 60′′ in size, which
they interpreted as an inner bar. However, based
on near-infrared photometry, Friedli et al. (1996)
questioned this interpretation by assuming that the
isophotal twist could result from a complex distri-
bution of dust and star-forming regions within the
central kiloparsec. Indeed, the HST images exhibit
a ring of star-forming regions that is elliptical in the
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plane of the sky but is almost circular in the galactic
plane (the inclination of the galactic plane to the
line of sight was assumed to be 42◦, in agreement
with the data of Pérez et al. (2000). These high-
resolution images confirm the absence of a bar as an
elongated, ellipsoidal structure. Them = 2 harmonic
dominates in the Fourier spectrum within the ring
of star formation, but, in contrast to NGC 3786
and NGC 5566, the line of its maximum consists of
separate fragments of the spirals. This is also true for
higher harmonics, which, however, have a sufficiently
high amplitude (Fig. 6c). If we draw an analogy
with the universally accepted classification of large-
scale spiral arms, then a grand design is observed in
NGC 3786 and NGC 5566 and flocculent spirals are
observed in NGC 6951 and NGC 4736. However, the
minispiral in NGC 6951 differs from the large-scale
spirals in disk galaxies in that the multi-arm spiral
seen in the residual-intensity distribution (Fig. 6c)
is probably associated only with the distribution of
gas and dust rather than with the stellar component.
As was shown by Pérez et al. (2000), this inner
spiral structure clearly seen in the V band completely
disappears in the H band, where the effect of dust
absorption is much weaker.

Interestingly, the position angle of the dynamical
axis constructed from the ionized-gas velocity field
in the Hα and [N II] lines at r = 0′′–8′′ deviates by
10◦–15◦ from the line of nodes of the outer disk,
suggesting a significant role of noncircular motions.
Since there is no inner bar here, we can offer the
following interpretation of the observed pattern. There
is a gas-and-dust disk 6′′–8′′ (400–600 pc) in ra-
dius within the large-scale bar in which a multi-
arm spiral structure perturbing the circumnuclear gas
rotation develops. The dynamical decoupling of this
disk is also confirmed by a high molecular-gas den-
sity (Kohno et al. 1999) and by the location of two
inner Lindblad resonances of the large-scale bar here2

(Pérez et al. 2000).
Presently, minispirals have been detected in the

circumnuclear regions of many galaxies (Carollo
et al. 1998), but as yet no unequivocal interpretation
of the nature of their formation has been offered [see
Elmegreen et al. (2002) for more details]. One of
the reasons why the theoretical interpretations have
failed seems to be the scarcity of reliable data on the
observed kinematics of such spirals. The papers on
this subject are still few in number (Laine et al. 2001;
Schinnerer et al. 2002) and from this point of view,
measurements of the gas velocities at the center of
NGC 6951 can be of interest in their own right.

2When the paper was submitted for publication, the paper by
Rozas et al. (2002) appeared. Based on their ownFPI obser-
vations, these authors reached a similar conclusion regarding
the nature of the inner disk in NGC 6951.
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4. DISCUSSION

The main motive for this study is the search for
any common features in the kinematic manifestations
of bar-within-bar structures in an attempt to prove
that the secondary bar is dynamically decoupled. A
similar attempt has recently been also made by Em-
sellem et al. (2001), who presented the results of
their study of stellar motions in four southern-sky
galaxies. Using the method of classical spectroscopy,
Emsellem et al. (2001) concluded that the inner bars
were decoupled in three objects based only on the
existence of a circumnuclear line-of-sight velocity
peak in long-slit cuts. However, such features can
also be explained in terms of more natural factors,
such as a peculiar mass distribution in the disk and
the bulge or noncircular motions in the outer bar,
without invoking the hypothesis of a secondary bar.
Observations of two-dimensional kinematics, which
allow the pattern of noncircular gas and stellar mo-
tions to be determined, could give a more definitive
answer. The results obtained in this way appear all the
more unexpected.

First, the shape of the line-of-sight stellar velocity
dispersion distribution (Subsect. 3.1) is determined
only by the outer bar and does not depend on the rel-
ative position of the inner bar-like structure. Second,
either noncircular motions typical of the outer bar or
good agreement with circular rotation are observed in
the stellar velocity fields; the latter is, probably, ex-
plained by the fact that here, the line-of-sight stellar
motions in the bar and the bulge are added together
(Subsect. 3.2). Finally, the ionized-gas velocity fields
everywhere point to the presence of noticeable non-
circular motions. However, they either correspond to
the outer bar (as suggested by from analysis of the
radial behavior of PAdyn) or are associated with the
inner spiral structure (NGC 6951) or with another
individual peculiar features of the galaxy (NGC 470,
NGC 3945, and NGC 5850). Thus, it turns out that
the secondary inner bar seen in the galaxy images
does not affect the observed kinematics of the gas and
stellar components in all the sample objects.

This conclusion is in conflict with the popular
opinion of a dynamically independent secondary bar,
which is based on analysis of isophotal shapes and
on model calculations (Sect. 1). Maybe the methods
used here and the limited spatial resolution do not
allow the kinematic features of the small-scale inner
bar to be evaluated. However, this is not the case,
because the minibars in NGC 3368 and NGC 3786
do not differ in their apparent sizes from the secondary
bars in the remaining galaxies (see the table), but the
features of noncircular gas and stellar motions asso-
ciated with them are clearly detected. In this case, our
photometric analysis suggests that there is no outer
bar in these two galaxies (Subsects. 3.2 and 3.3).
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The three galaxies with the most peculiar features
in the observed gas motions should be considered
separately. Although the asymmetric m = 1 mode
developed within the bar of NGC 470 and the po-
lar gaseous disk in NGC 5850 are rare structures,
they, nevertheless, were observed by several authors
in other objects as well (see Subsect. 3.2). It was also
noted in this subsection that the two galaxies have
close massive companions. Therefore, the assump-
tion that the features of their gas kinematics result
from the interaction with the companions appears
reasonable enough.

According to Kuijken et al. (1996), the gaseous
disks in lentucular (S0) galaxies exhibit counter-
rotation relative to the stars in 24 ± 8% of the cases3;
i.e., this is a common phenomenon that is, probably,
attributable to absorption of the fallen gaseous cloud
with the corresponding direction of angular momen-
tum (Bertola et al. 1992). Against this background,
the gas counterrotation at the center of NGC 3945,
one of the four S0 galaxies in our sample (table) with
gaseous disks observed in three of them (NGC 2681,
NGC 3945, and NGC 7743), comes as no surprise.

The presence of minispirals in some galaxies is
not surprising either. Thus, Erwin and Sparke (2002)
found that their sample of early-type (S0–Sa) barred
galaxies contained 24± 7% of objects with circumnu-
clear minispirals, which is slightly less than the 39 ±
14% (5 of 13) in the sample under study. Although
the difference between the frequencies of occurrence
of minispirals is within the error limits, it can be
easily explained in terms of the selection effect in the
sample of galaxies with inner isophotal twists. The
inner spirals distort the central isophotes, which may
lead to the wrong conclusion that there is a secondary
bar.

Having studied the detailed kinematics of the gas
and stars in the galaxies from our sample, we may
conclude that the so-called double-barred galaxies
are not a separate type of galaxy but are a combination
of objects with distinctly different structures of their
circumnuclear regions. The formal use of isophotal
analysis of images to study galaxies without invoking
kinematic data can lead to erroneous conclusions.
We think that the double-barred galaxies described
in the literature can be arbitrarily divided into two
basic classes. The first class includes early-type (S0–
Sa) galaxies. Here, the illusion of a secondary bar
results from the triaxial bulge shape. In contrast to
the bar, the triaxial bulge has virtually no effect on the
disk dynamics in the circumnuclear region; a char-
acteristic example is NGC 2950. The second class

3In what follows, the errors are given at a 1σ level of the
binomial distribution.
includes galaxies of later types. Here, decoupled gas-
and-dust disks with a minispiral structure distorting
the isophotal shape can be observed within large-
scale bars; a characteristic example is NGC 6951.
There is also a third possibility: the so-called x2 family
of stable orbits oriented perpendicular to the barmajor
axis can exist within a large-scale bar (Contopouls
and Grosbol 1989). A bar-like structure that is ex-
actly perpendicular to the primary bar and that cor-
respondingly distorts the observed isophotes can be
formed on the basis of these orbits. Such a model was
proposed for NGC 2273 (Petitpas and Wilson 2002).
In this case, however, there is no decoupled secondary
bar, but there is a feature in the inner structure of the
major bar that rotates with it as a whole.

5. CONCLUSIONS

A number of contradictions between existing
models of nested bars and observations can be re-
solved by abandoning the popular view of dynamically
independent double bars, which we propose here.
Many models suggest that the secondary bar is a
short-lived structure, which, in turn, is in conflict with
common observations of inner isophotal twists [see
Erwin and Sparke (2002) for more details]. However,
everything falls into place if these twists are not
associated with the secondary bars, at least in most
of these galaxies. On the other hand, the fact that,
according to statistical data, the photometric sec-
ondary bar is in no way associated with the presence
of an active nucleus in the galaxy can be explained
(Laine et al. 2002; Erwin and Sparke 2002), although
it is clear from theoretical considerations that the
correlation here must be much closer than that for
single bars. The reason is that the secondary bar
traceable by isophotal twists is not a dynamically
decoupled structure in the galaxy at all.
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Abstract—The magnetic-field distribution outside a flat, infinitely conductive unbounded disk in the field
of a point magnetic dipole is determined. A relationship is established between the problem of magnetic-
field determination and the problem of the flow of an ideal incompressible fluid around an infinitely thin disk.
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INTRODUCTION

Here, we determine the magnetic-field distribu-
tion outside a flat, infinitely conductive disk in the
field of a point magnetic dipole. This problem is of
astrophysical interest (Lipunov 1987). Previously, it
was solved in the two-dimensional case by Lipunov
and Shakura (1980). Aly (1980) obtained a solution
in the more complex three-dimensional case. Kundt
and Robnik (1980) considered both these solutions
and illustrated magnetic field lines in various cases for
various parameters. We propose a new method of so-
lution that can be generalized to compact magneto-
spheres and that yields the result previously obtained
by Aly (1980) in the special case of flat, infinitely thin
disks. We establish a relationship between the prob-
lem of magnetic-field determination and the problem
of the flow of an ideal incompressible fluid around an
infinitely thin disk.

THE HYDRODYNAMIC PROBLEM
OF THE FLOW AROUND A CIRCULAR DISK

The problem of a magnetic dipole surrounded by a
perfectly conducting accretion disk can be solved by
using the classical problem of the flow of an ideal fluid
around an infinitely thin circular disk.
Recall the solution of the problem of the flow

around a disk (Lamb 1932). The disk is assumed to
be infinitely thin. Hence, it has virtually no effect on
the motion of an ideal fluid in the case of horizontal
flow. Therefore, it will suffice to consider only the flow
of fluid perpendicular to the plane of the circular disk:

ϕ1 ≈ Ur cos γ, r → ∞. (1)

Let a circular disk lie in the z = 0 plane and be
defined by the equation x2 + y2 = R2. We solve this

*E-mail: sibgat@mech.math.msu.su
1063-7737/02/2811-0769$22.00 c© 2
problem by switching to the limit from the problem of
the flow around an ellipsoid with the equation

x2

a2
+
y2

b2
+
z2

c2
= 1. (2)

Without loss of generality, we assume that c >
b > a.

Let us introduce an ellipsoidal coordinate system
in which the coordinates are the roots of the (Jacoby)
equation

x2

a2 + θ
+

y2

b2 + θ
+

z2

c2 + θ
= 1. (3)

They are denoted by λ, µ, and ν, where λ > µ > ν.

The λ = const, µ = const, and ν = const families
are the families of confocal ellipsoids, one-sheet hy-
perboloids, and two-sheet hyperboloids, respectively.

From the definition (3) of the curvilinear system of
λ, µ, ν coordinates, we can obtain

2
∂x

∂λ
=

x

a2 + λ
, 2

∂y

∂λ
=

y

b2 + λ
, (4)

2
∂z

∂λ
=

z

c2 + λ
, . . . .

The expressions for the metric components in the
λ, µ, ν coordinate system follow from relations (4):

gλλ =
(λ− µ)(λ− ν)

4D(λ)
; gµµ =

(λ− µ)(µ− ν)
4D(µ)

;

(5)

gνν =
(µ− ν)(λ− ν)

4D(ν)
; gij = 0, i �= j,

whereD(θ) ≡ (a2 + θ)(b2 + θ)(c2 + θ).
002 MAIK “Nauka/Interperiodica”
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Let us write the Laplace equation ∆ϕ = 0 in the
curvilinear system of λ, µ, ν coordinates:

∆ϕ =
1
√
g

∂

∂yi

(
√
ggij ∂ϕ

∂yj

)
= 0; (6)

y1 = λ, y2 = µ, y3 = ν.

We seek the required solution to the Laplace equa-
tion in the form (Lamb 1932)

ϕ1 = zχ(λ). (7)

Thus,

∆(zχ) = z∆χ+ 2
∂χ

∂z
= z∆χ(λ) + 2

∂χ

∂λ

∂λ

∂z
= 0.

(6′)

Using expressions (4) and (5), we can derive

∂λ

∂z
=
∂z

∂λ
gλλ =

z

2(c2 + λ)
4D(λ)

(λ− µ)(λ− ν)
. (8)

Equation (6′) can then be reduced to

1
c2 + λ

+
1√

D(λ)
dχ

dλ

d

dλ

(√
D(λ)

dχ

dλ

)
= 0. (9)

Multiplying (9) by dλ and integrating it over λ (in
the sense of indefinite integrals) yields

dχ

dλ
=

c0

(c2 + λ)
√
D(λ)

. (10)

Let us integrate Eq. (10) by setting χ|∞ = 0:

χ = −c0
∞∫

λ

dλ

(c2 + λ)
√
D(λ)

. (11)

It remains to determine the constant c0.
The normal to the ellipsoid (2) has the components

n =
1

√
gλλ

(
∂x

∂λ
,
∂y

∂λ
,
∂z

∂λ

)∣∣∣∣
λ=0

. (12)

For the fluid potential ϕ0 in the frame of refer-
ence associated with the moving ellipsoid, we have
the boundary condition ∂ϕ0/∂n = 0 at λ = 0. Let
the flow velocity at infinity in this frame of reference
be U . The fluid potential ϕ1 in the frame of reference
where the fluid at infinity is at rest is related to the
potential ϕ0 by ϕ1 = z cos γU + ϕ0. Therefore,

∂ϕ1

∂n
= U cos γ

∂z

∂n
=
U cos γ
√
gλλ

∂z

∂λ
. (13)

On the other hand, it follows from Eq. (7) that

∂ϕ1

∂n
=

∂

∂n
(zχ) =

1
√
gλλ

∂

∂λ
(zχ). (14)
Thus,

zχ

2c2
+ z

dχ

dλ

∣∣∣∣
λ=0

=
U cos γz

2c2
. (15)

Hence, using Eqs. (10) and (11), we obtain

c0 =
U cos γ

2
abc

−
∞∫
0

dλ

(c2 + λ)
√
D(λ)

. (16)

For a circular disk, a = b = R, we must switch to
the limit c→ 0 to obtain

c0 =
UR3 cos γ

π
. (17)

Thus, we finally obtain

χ(λ) = −UR
3 cos γ
π

∞∫
λ

dλ

λ
√
λ(R2 + λ)

(18)

= U

(
1 − 2R

π
√
λ
− 2
π

arctan

√
λ

R

)
.

Let us make the substitution (Thomson)

r′ =
R2

r
. (19)

A circular disk of radius R then transforms into a
plane with a circumference of radius R cut out at the
coordinate origin.
Let us verify that if ϕ1 is a solution to the Laplace

equation, then the function ϕ′
1 defined by the equality

ϕ′
1 =

ϕ1

r′
, (20)

is also a solution to the Laplace equation.
Let us write the Laplace equation in spherical

coordinates r, α, β:

∆ϕ =
1
r2

∂

∂r

(
r2∂ϕ

∂r

)
(21)

+
1
r2

(
1

sinα
∂

∂α

(
sinα

∂ϕ

∂α

)
+

1
sin2 α

∂2ϕ

∂β2

)
= 0.

Denote ∆̃ ≡ 1
sinα

∂

∂α

(
sinα

∂ϕ

∂α

)
+

1
sin2 α

∂2ϕ

∂β2
.

After the substitutions (19) and (20), the Laplace
equation takes the form

∂2ϕ

∂r′2
+

1
r′2

∆̃ϕ = 0. (22)

Hence, substituting ϕ = r′ϕ′ yields

r′
∂2ϕ′

∂r′2
+ 2

∂ϕ′

∂r′
+

1
r′2
r′∆̃ϕ′ = 0. (23)
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Thus, ϕ′ is also a solution to the Laplace equation:

1
r′2

∂

∂r′

(
r′2

∂

∂r′
ϕ′
)

+
1
r′2

∆̃ϕ′ = 0. (22′)

Using Eqs. (7), (18), and (20), we therefore obtain

ϕ′
1 =

UR2 cos γ cosα
r′2

(
1 − 2R√

λπ
− 2
π

arctan

√
λ

R

)
.

(24)

Consider the λ-dependent family of spheroids in a
Cartesian coordinate system:

x2 + y2

R2 + λ
+
z2

λ
= 1. (25)

Solving Eq. (25) for λ in spherical coordinates

x = r cos β sinα, y = r sin β sinα, z = r cosα,

yields

λ1,2 =
R4

2r′2


1− r′2

R2
±

√(
1− r′2

R2

)2

+ 4
r′2

R2
cos2 α


.
(26)

Let us introduce the dimensionless variable r̃ =
r′

R
. For the asymptotic approach to the disk, | cosα| �

1; therefore, for r′ > R (if the “+” sign is taken in front
of the radical),

λ ≈ R2 cos2 α
r̃2 − 1

. (26′)

Substituting expression (26′) derived for λ into
Eq. (24) then yields near the disk

ϕ′
1 ≈ U cos γ cosα

r̃2

×
[
1 − 2

π

√
r̃2 − 1

| cosα| − 2
π

arctan
(

| cosα|√
r̃2 − 1

)]
.

When an ideal fluid flows around an infinitely thin
disk parallel to its plane along the X axis, the poten-
tial is

ϕ2 = U sin γx = U sin γ sinα cos βr. (27)

After the substitutions of (19) and (20), we then
obtain

ϕ′
2 =

UR2 sin γ sinα cosβ
r′

,

ϕ′
2 =

UR2 sin γ sinα cos β
r′2

=
U sin γ sinα cosβ

r̃2
.

The potential of the flow around a circular disk
inclined to the disk plane is given by ϕ1 + ϕ2.
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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Applying the inversion transformation (19) and
(20) to the potential ϕ1 + ϕ2 yields

ϕ′ =
U cos γ cosα

r̃2

[
1 − 2

π

√
r̃2 − 1

| cosα| (28)

− 2
π

arctan
(

| cosα|√
r̃2 − 1

)]
+
U sin γ sinα cos β

r̃2
.

Equation (28) gives the sought-for expression for
the potential of themagnetic field produced by a dipole
at the center of a circular hole in an infinitely conduc-
tive accretion disk.

THE PULSAR MAGNETIC-FIELD
PRESSURE

It can be easily verified that

ϕ′
1+ = −ϕ′

1−,

ϕ′
2+ = ϕ′

2−.

The following total magnetic-field pressure acts
on the accretion-disk surface from above and from
below (Aly 1980):

P =
1
2π

[
∂

∂r̃
(ϕ′

1+)
∂

∂r̃
(ϕ′

2+) (29)

+
1
r̃2

∂

∂α
(ϕ′

1+)
∂

∂α
(ϕ′

2+)
]∣∣∣∣

α→π
2

.

After some transformations, we derive the follow-
ing expression for the normal component of the force
density:

P = 2
U2 cos β sin 2γ

π

8 − 4r̃2

r̃6
√
r̃2 − 1

. (29′)

The magnetic-field pressure tends to infinity near
the inner edge of the disk. If the pulsar spin axis is
perpendicular to the disk plane, then the magnetic-
field direction precesses with the pulsar angular ve-
locity. When substituted in the equations of motion
for the accreted matter with an allowance made for
accretion-disk elasticity, the forces calculated here
will generate transverse waves in the disk.
Let us assume that the magnetic dipole rotates

about an axis perpendicular to the plane of the un-
perturbed disk with angular velocity ω . The disk is
deformed in the field of forces (29). If a Keplerian
orbit is taken out of the unperturbed plane, then
decomposing the gravitational force per unit mass
(from the central body) into the normal and tangential
components yields

Fgr = −GM
r3

w,
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where w is the vertical displacement of the deformed
disk andM is the mass of the central body. Therefore,
the Newton equation for the normal component of the
equations of motion can be written as

σ
∂2w

∂t2
= −σGM

r3
w + P, (30)

where σ is the disk surface density. We use expres-
sion (29) for P , where ϕ− ωt should be substituted
for ϕ because of dipole rotation.
We seek a solution to Eq. (30) for w in the form

w = W (r) cos(ϕ− ωt).

We then derive from Eq. (30)

w =
P (r)

σ(Ω2
kep − ω2)

; Ω2
kep ≡ GM

r3
. (31)

Therefore, the closer is the disk edge r = R, the
larger is the disk deformation. This, probably, leads to
the growth of instabilities near the disk edge.
Equation (30) disregards viscous forces and non-

linear deviations from the unperturbed plane. There-
fore, the solution for w at Ωkep = ω is actually
bounded. According to Eq. (31), the vertical devia-
tions and velocities are largest when Ωkep = ω at the
disk edge. In this case, a vertical jet that precesses
with the angular velocity of the magnetic dipole can
be formed.

CONCLUSIONS

We have shown that the problem of magnetic-field
determination outside an infinitely conductive plane
with a circular hole which has a point magnetic dipole
located at its center is equivalent to the problem of
the flow of an ideal incompressible fluid around an
infinitely thin disk. This analogy also applies to the
case where infinitely conductive portions alternate
with nonconductive portions.
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Abstract—We determined the spectroscopic–interferometric orbit of the binary red dwarf Gliese 150.2
with a period of 13.84 yr and a semimajor axis of 0.257 arcsec. Based on the orbital elements and on
accurate measurements of the magnitude difference at several wavelengths, we estimated the spectral types
andmasses of the components (K0V andM0V, 0.79 and 0.55M�) and the dynamical parallax of the binary
(40.4 mas). c© 2002 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Determining the accurate masses and luminosi-
ties of low-mass main-sequence stars is still of
current interest. The mass–luminosity relation has
a significant scatter in the range of low masses,
which may be related to such parameters as the age,
chemical composition, and chromospheric activity.
For observations to be compared with current the-
ories, the masses must be measured with an accuracy
of the order of 1%. This accuracy can be achieved
when determining the masses from the combined
spectroscopic–interferometric orbits derived from
high-quality observations (see, e.g., Forveille et
al. 1999).

The nearby red dwarf Gliese 150.2 (2000:
3h44m49s + 46◦02′09′′) is also designated as
HD 23140 and HIP 17941. Its parallax, measured
by Hipparcos (ESA 1997) is 37.6 mas; i.e., its
distance from the Sun slightly exceeds the 25-pc limit
adopted in the Catalogue of Nearby Stars (Gliese
and Jahreiss 1991). Below, we show that Gl 150.2 is
actually 24.5 pc away and it may be rightly considered
to be a close neighbor of the Sun. According to the
SIMBAD database, the spectral type of Gl 150.2 is
K2 V, V = 7m. 71, and B–V = 0m. 86.

Since 1986, the object has been observed with a
correlation radial-velocity meter (RVM) (Tokovinin
1987) as part of the survey of low-mass dwarfs in the
solar neighborhood. From the results of the first five

*E-mail: balega@sao.ru
1063-7737/02/2811-0773$22.00 c©
years of observations (Tokovinin 1992a), the star was
not classified as a spectroscopic binary, because the
first measurement was deemed to be, probably, erro-
neous. Subsequent measurements clearly showed the
star to be a spectroscopic binary. Its radial velocities
were measured using different telescopes with aper-
tures from 0.6 to 1.25 m located in Crimea, Moscow,
Abastumani, and at Mt. Maidanak. Spectroscopic
binarity was also independently discovered by as-
tronomers at the Geneva Observatory (Mayor 1991).

In 1993, Balega et al. (1997) performed the first
speckle-interferometric measurement of Gl 150.2
with the 6-m (BTA) telescope. Seven interferometric
observations have been obtained to date. Apart from
the radial velocities covering the complete orbital
period, these data allow the combined spectroscopic–
interferometric orbit to be computed. This is the goal
of this study.

THE ORBIT
The input data needed to compute the orbit are

given in Tables 1 and 2. Table 1 contains heliocentric
Julian dates JD, radial velocities, their formal errors
determined by fitting the correlation profile with a
Gaussian, and residuals to the orbit (O–C). The for-
mal errors do not include the additional instrumen-
tal error of the RVM, which is about 0.3 km s−1

(Tokovinin 1992a).
Our interferometric observations were obtained

with the 6-m Special Astrophysical Observatory
(BTA) telescope using the instrumentation and tech-
niques described by Balega et al. (2002). In 1996,
2002 MAIK “Nauka/Interperiodica”
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Table 1. Radial velocities and residuals to the orbit

JD 2 400 000+ V , km s−1 σV , km s−1 O–C, km s−1

46726.595 22.59 0.23 –0.70

47560.193 27.08 0.31 0.22

47755.579 27.48 0.14 –0.01

47791.493 28.26 0.20 0.68

47882.392 28.21 0.22 0.45

48166.511 29.36 0.24 1.70 :

48841.550 21.78 0.20 0.36

49017.172 19.85 0.13 0.37

49223.561 17.83 0.14 –0.03

49238.578 17.90 0.11 0.12

49389.276 16.80 0.19 –0.31

49649.441 15.90 0.16 –0.77 :

49705.278 16.84 0.29 0.18

49975.547 17.02 0.15 0.09

50324.575 18.45 0.14 0.69 :

50482.205 18.38 0.38 0.15

50758.391 19.60 0.25 0.44

50803.351 19.45 0.19 0.13

51057.561 20.06 0.21 –0.21

51428.581 21.35 0.08 –0.41

51445.556 21.99 0.10 0.16

51876.441 23.39 0.18 –0.28

51929.231 23.69 0.23 –0.21

51929.225 23.43 0.23 –0.47

52163.569 24.34 0.11 –0.60

52184.530 25.03 0.16 0.00

52197.566 25.26 0.18 0.17

Gl 150.2 was measured in the infrared with the
speckle camera of the Institut für Radioastronomie in
Bonn (Balega et al. 2001). Table 2 contains epochs of
observations, position angles with their errors, sepa-
rations between the components with their errors, and
residuals to the orbit in angle and distance. The next
columns give the mean wavelengths and FWHMs of
the spectral bands, measured magnitude differences
with their errors, and, finally, bibliographic references.
The 2000–2001 measurements are published for the
first time.

We computed preliminary orbital elements in 1999
and gradually improved them as new observations
became available. The final values the nine elements
for the combined orbit (Table 3) were obtained by
least-squares fitting with weights inversely propor-
tional to the squares of the observational errors
(Tokovinin 1992b). We give the position angle of the
ascending node, Ω (equinox 2000), and the periastron
longitude, ω, for the primary component A rather than
for the secondary, as is commonly done for visual
orbits. The resulting weighted mean residuals corre-
spond to the errors in of the input data: 0.34 km s−1,
0◦.32, and 1 mas in radial velocity, position angle,
and separation, respectively. Three of the 27 radial-
velocity measurements (marked by a colon in Table 1
and by circles in Fig. 1) were rejected, because their
residuals are appreciably larger than their formal
errors. Figure 1 presents the radial-velocity curve;
Fig. 2 shows the visual orbit and interferometric data.

PARAMETERS OF THE COMPONENTS

The elements of the combined spectroscopic–
interferometric orbit allow the component masses and
the parallax to be determined without any additional
assumptions. However, this requires knowledge of
the radial-velocity half-amplitudes for both compo-
nents. No secondary lines were observed in Gl 150.2,
because they are weak and cannot be separated from
primary lines (the FWHM of the RVM instrumental
profile is 14 km s−1).

Given the orbital elements and the trigonomet-
ric parallax (37.6 mas), the sum of the component
masses can be easily calculated: 1.7M�. This value is
in poor agreement with the spectral type K2 V. Judg-
ing by the orbit (Fig. 2), there was nonlinear orbital
motion during the Hipparcos measurements (1989–
1992) that was disregarded in the data reduction and
could affect themeasured parallax. Similar cases were
pointed out by Shatskiı̆ and Tokovinin (1998). The
Hipparcos measured proper motion in right ascen-
sion, 287 mas per year, significantly differs from the
AGK3 parallax, 322± 8mas per year, because in 1991
the system’s photocenter was displaced westward due
to its orbital motion. Thus, the Hipparcos data for
Gl 150.2 are not accurate enough for an absolute de-
termination of the sum of masses. A new astrometric
solution that explicitly takes into account the orbital
elements (Söderhjelm 1999) will bridge this gap. For
the time being, however, we rely on the standard
relations for dwarf stars and choose the component
parameters that are in best agreement with all of the
data.

As the first approximation, we take the component
masses to be 0.7 M� and 0.5 M� and calculate the
dynamical parallax, 42 mas. This gives an estimate
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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Table 2. Speckle data

Epoch θ, deg ρ, mas ∆θ, deg ∆ρ, mas λ/∆λ, nm ∆m References

1993.8418 106◦.9 ± 1.0 186 ± 4 −1◦.0 –4 667/20 2.2 1

1994.7130 102.2 1.0 249 1 0.1 0 656/30 2.49 1

1996.7500 92.2 1.0 244 1 –0.1 1 1238/276 1.67 ± 0.12 2

1998.7746 71.6 1.5 125 4 0.2 1 545/30 2.69 0.11 3

1999.8212 25.7 1.4 67 2 –0.3 1 545/30 2.64 0.08 3

2000.8649 320.2 1.1 96 2 0.3 0 610/20 2.55 0.08 4

2001.7582 299.9 0.8 157 2 –0.3 2 545/30 2.70 0.06 4

300.0 0.6 156 2 – – 600/30 2.67 0.04 –

300.2 0.4 155 1 – – 750/35 2.08 0.04 –

300.4 0.4 155 1 – – 850/75 1.86 0.04 –

References: 1, Balega et al. (1997); 2, Balega et al. (2001); 3, Balega et al. (2002); 4, this paper.
of the absolute magnitude for the primary compo-
nent that better corresponds to a K0 V dwarf with
a mass of 0.79 M�. Given the spectroscopic orbital
parameters and inclination, the corresponding mass
of the secondary component is found to be 0.55M�.
Thus, the spectral type of the secondary is close to
M0 V. With the improved sum of the masses, the
dynamical parallax is found to be 40.4 ± 0.7 mas (the
error is almost exclusively determined by the accuracy
of measuring the semimajor axis).

The model of the binary Gl 150.2 is based on the
normal luminosities and colors of a pair of K0 V

Table 3. Orbital elements

Element Value Error

P , yr 13.877 0.016

T 1992.092 0.016

e 0.2764 0.0034

a′′ 0.2574 0.0046

Ω, deg (A) 281.1 1.0

ω, deg (A) 74.85 0.25

i, deg 101.37 0.12

K1 , km s−1 5.60 0.12

V0 , km s−1 21.86 0.07

σθ, deg 0.32 –

σ′′
ρ 0.001 –

σV , km s−1 0.34 –
ASTRONOMY LETTERS Vol. 28 No. 11 2002
and M0 V dwarfs, according to the tables from
Lang (1992) and Straizys (1977). The photometric
parameters of this model are compared with obser-
vations in Table 4. There is reasonable agreement
between the measured and model magnitude differ-
ences, which independently confirms the model.

Let us estimate the effect of the secondary com-
ponent on the measured radial velocities. The RVM
correlation profile is a blend of the component pro-
files displaced in opposite directions. The maximum
radial-velocity difference (i.e., the sum of the half-
amplitudes) can be reliably estimated from the for-
mula

K1 +K2 = 29.8 sin i(1 − e2)−1/2(M/P )1/3

= 14.0 km s−1,

whereM is the sum of the component masses inM�
and P is the period in years. Therefore, the profiles are

Table 4. A model of the binary Gl 150.2 (the parallax is
40.4 mas)

Parameter
Component A+B

Model
(observations)

B−A
Model

(observations)A B

Spectral type K0 V M0 V – (K2 V) –

Mass,M� 0.79 0.55 1.33 –

V 7.87 10.77 7.80 (7.71) 2.90 (2.65)

B–V 0.82 1.44 0.85 (0.86) –

R 7.23 9.62 7.12 2.39 (2.29)

J 6.49 8.06 6.26 1.57 (1.67)
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actually unresolvable with the RVM. In this case, the
effect of the secondary reduces to a decrease in the
radial-velocity amplitude by a factor of (1 − α)/(1 +
α), where α = E2/E1 is the ratio of the equivalent
widths for the component correlation profiles.

Using the relation between the equivalent width
of the RVM correlation profile and the B–V color
(Tokovinin 1990) as well as the model parameters of
the components, we estimated the initial (as for single
stars) equivalent widths of the components: E01 =
3.36 km s−1 and E02 = 2.70 km s−1. Given the mag-
nitude difference ∆V = 2.65, the equivalent widths
in the combined spectrum are E1 = 3.09 km s−1

and E2 = 0.21 km s−1. Their sum is in satisfactory
agreement with the measured equivalent width of
3.21 ± 0.03 km s−1. Thus, the model corresponds to
α = 0.07, and the true radial-velocity half-amplitude
of the primary component must have been K1 =
6.43 km s−1. In this case, however, the amplitude of
the secondary, K2 = 14 − 6.43 = 7.57 km s−1, leads
to an implausibly high mass ratio, q = K1/K2 =
0.85, while our model corresponds to q = 0.70.

Our analysis shows that the measured radial-
velocity half-amplitude is, probably, unaffected by
secondary lines. This can be the case, for exam-
ple, when the secondary has rapid axial rotation
(>20 km s−1) and its weak lines have absolutely no
effect on the combined correlation profile. The width
of the primary profile corresponds to axial rotation
with v sin i = 3.6 ± 0.3 km s−1.

CONCLUSIONS

We computed a combined spectroscopic–interfe-
rometric orbit for a nearby pair of red dwarfs G1.
Although the binary itself was discovered recently
and its orbit was determined for the first time, the
accuracy of the orbital elements is comparatively
high. This was achieved through the high accuracy
of speckle interferometry and by combining it with
radial velocities.

The available observations are still too few in num-
ber to accurately measure the component masses.
The most direct method of mass determination con-
sists in high-precision radial-velocity measurements
for both components. This requires a spectral reso-
lution of at least 50 000 and a high signal-to-noise
ratio. This would allow the lines of the secondary
component to be identified unless the rapid rotation of
the latter hinders this identification. It is best to carry
out observations in the infrared, where the magnitude
difference between the components is smaller than
that in the optical range. The new orbit will help in
planning such observations. The second, less reliable
method of mass determination is to reprocess the
Hipparcos data and to improve the parallax using the
new orbit.
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Haro’s Star (PG 1444+236): A Hot Subdwarf of the Galactic Halo?
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Received June 10, 2002

Abstract—We present our photometric and spectroscopic observations of the hot emission-line high-
latitude (b = +64◦) star discovered by Haro. The star exhibited no light variability during 1993–2001.
Based on our observations and on the detailed study of the star by Herbig (1992), we improved its
parameters, T = 22 000 K and log g = 4.2, and inferred its evolutionary status. We show that Haro’s
star does not belong to the class of protoplanetary objects but is most likely a hot subdwarf of the
Galactic halo with an emission-line spectrum formed in the outer layers of the star or in its stellar wind.
c© 2002 MAIK “Nauka/Interperiodica”.

Key words: stars, subdwarfs, evolution.
INTRODUCTION

The emission-line star with the coordinates α =
14h47m08s.2 and δ = +23◦21′38′′ (2000) that was dis-
covered by Haro during an Hα sky survey belongs to
a group of poorly studied hot stars. Its magnitude is
V = 13m. 1 and it is located at the latitude b = +64◦.
Herbig (1992) carried out the only detailed study
of this star. UBV photometry and spectroscopy led
him to conclude that the star most likely belongs
to the group of objects in the transition stage from
the asymptotic giant branch (AGB) to the central
stars of planetary nebulae. However, the star was not
detected as an IR source in the IRAS sky survey.
Herbig (1992) also discussed another possible inter-
pretation of the status of Haro’s star: its belonging to
the group of horizontal-branch subdwarfs, i.e., to the
stars of the Galactic halo.

Apart from the Hα survey, the star was detected
during a survey of faint blue stars at high Galactic
latitudes (Green et al. 1986) and was designated
PG 1444+236; the authors of the PG catalog clas-
sified it as “sd.”

Wesemael et al. (1992) performed photometry of
the star in Strömgren’s system and gave the follow-
ing estimates: y = 13m. 136, b–y = −0.043, u–b =
−0.207, and m1 = +0.056.

In 1993, we included Haro’s star in our program of
photometric and spectroscopic monitoring of candi-
dates for protoplanetary objects. The objective of our
study is to search for nonstationary and evolutionary
effects in the program objects. Our program covers
mostly supergiant stars with large IR excesses (IRAS

*E-mail: vera@sai.msu.ru
1063-7737/02/2811-0778$22.00 c©
sources) but also includes a few emission-line stars at
high Galactic latitudes. Haro’s star is from precisely
this group.
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UBV PHOTOMETRY

We carried out our photoelectric observations of
Haro’s star with the aim of searching for its possible
variability from 1993 until 2001 at the Crimean Sta-
tion of the Sternberg Astronomical Institute (SAI)
using a 60-cm reflector equipped with a UBV pho-
tometer. The comparison star was HD 130384; we
determined its magnitudes (V = 8m. 56, B = 8m. 79,
U = 8m. 97) by tying it into the photometric stan-
dard BD+26◦2606 from the catalog by Blanco et
al. (1968). A total of 30 magnitude estimates were
obtained for Haro’s star, with the mean magnitudes
being 〈V 〉 = 13m. 12 ± 0m. 04, 〈B〉 = 12m. 97 ± 0m. 04,
and 〈U〉 = 11m. 96 ± 0m. 05. The error in the UBV
magnitudes is estimated to be ±0m. 03. Taking into
account this error, we may assume the scatter of
magnitudes within each season and between observ-
ing seasons to be random and the star’s brightness
to be constant. The photometric observations of the
star during six nights in April–June 1962 performed
by Smak (Herbig 1992) revealed no light variations
on a short time scale; his UBV magnitudes (V =
13m. 11 ± 0m. 03, B–V = −0.15 ± 0.03, and U–B =
−1.05 ± 0.01) match our mean magnitudes, with the
ASTRONOMY LETTERS Vol. 28 No. 11 2002
limits of the observational errors. Therefore, the star’s
mean brightness has not changed in ∼40 years.

The interstellar extinction toward Haro’s star is
low. According to Herbig (1992), it does not ex-
ceed 0.03 in the color excess E(B–V ).

The position of Haro’s star in the two-color U–B,
B–V diagram is shown in Fig. 1. Also shown in the
same figure are several sdB PG subdwarfs with UBV
photometry from the PG survey (Green et al. 1986).
They have color excesses similar to that of Haro’s
star. Figure 1 also shows the main sequence (dashed
line) and the sequence of color indices (solid line)
for a blackbody with temperatures of 20 000, 25 000,
and 30 000 K. Note that the color indices of Haro’s
star disagree with those of main-sequence stars but
are closest to the colors of a blackbody with a tem-
perature between 20 000 and 22 000 K. In the two-
color diagram, the sdB subdwarfs also lie closer to the
blackbody line than to the main sequence.

SPECTROSCOPIC OBSERVATIONS

During 2000–2001, we obtained four low-reso-
lution spectrograms for Haro’s star in the range
λ4000–9000 Å. Our observations were carried out



780 ARKHIPOVA et al.

 

6
5

 

6

2500040000 10000

4

2
lo

g
 

g
 

0.6 

 

M

 

ZAMS

ZAHB

 

T

 

Haro’s star

0.546 

 

M

1
2 8

7
4
3

Fig. 3. A (T , log g) diagram: the tracks of post-AGB
stars with M = 0.546 M� (1) and M = 0.6 M� (2);
(3) the zero-age main sequence (ZAMS); (4) the zero-
age horizontal branch (ZAHB); (5) Haro’s star with our
parameters and with the parameters from Herbig (1992);
(6) emission-line stars from the PG catalog (Green et
al. 1986); (7) blue subdwarfs — low-mass evolved stars
from the sample by Hambly et al. (1997); (8) the mean
parameters and their dispersions for 28 classical sdB
subdwarfs from the sample by Saffer et al. (1994).

with the 125-cm reflector at the Crimean Station
of the SAI using a fast spectrograph. The detector
was an SBIG ST-6I 274 × 375-pixel CCD array,
which gives a resolution of ∼5.5 Å mm−1 with
a 600 lines mm−1 grating. The comparison star
was 50 Boo (B9 V); its absolute spectral energy
distribution was taken from Voloshina et al. (1982).
The spectral classification of the star cannot be made
using the absorption lines because of the low spectral
resolution. The Hα line is strongest in the λ4000–
9000 Å emission-line spectrum. The Hβ and Hγ
emission lines are observed against the background of
broad absorption features of the star, which prevents
a reliable measurement of the Balmer decrement. The
emission-line spectrum also exhibits numerous Fe II
lines that belong to the 21, 22, 37, 38, 39, 40, 42, 49,
73, and 74 multiplets, as well as strong O I λ7772
and λ8446 Å lines. Equivalent widths of the strongest
lines are given in Table 1.

Figure 2 shows the spectral energy distribution
of the star corrected for interstellar extinction with
E(B–V ) = 0.03. Also shown in the figure are the
UBV fluxes reduced to an absolute scale; data from
Straizys (1977) were used for their calibration.

As was mentioned above, the magnitude of Haro’s
star was measured in the four Strömgren bands (We-
semael et al. 1992). Using the absolute calibration of
the Strömgren system (Heber et al. 1984), we trans-
formed the narrow-band magnitudes into absolute
fluxes and corrected them for interstellar extinction.
They are also shown in Fig. 2. We see that the agree-
ment with ourUBV data and with spectrophotometry
is good. Figure 2 shows the energy distribution for
a blackbody with a temperature of 22 000 K; it is in
agreement with the photometric and spectroscopic
data in the range λ3500–9000 Å.

Thus, we take the temperature of Haro’s star to be
∼22 000 K. This is in contrast to Herbig (1992), who
assigned it a temperature of 28 200 K, in accordance
with its spectral type (B0–B1).

THE EVOLUTIONARY STATUS OF HARO’S
STAR

Can Haro’s star belong to protoplanetary objects
with a minimum mass at the post-AGB evolutionary
stage, which evolve very slowly along the horizon-
tal track and which approach the ionization stage
of a planetary nebula? Its low-excitation emission-
line spectrum allows us to consider this possibility.
However, it should be borne in mind that there is no
IR excess characteristic of the protoplanetary stage
in Haro’s star. Nevertheless, we could assume that,
through the very slow evolution typical of postAGB
stars with masses ∼0.55 M�, its dust envelope could
have dispersed by the time the star became hot and
began to ionize the remnants of its gaseous envelope.
According to the calculations by Bloecker (1995) and
Schoenberner and Weidemann (1983) and from com-
parison of the theory with observations, the minimum
observed mass of the planetary-nebula nucleus is
currently estimated to be 0.55 M�. The relationship
between the luminosity and mass of a protoplane-
tary object in the horizontal part of its evolutionary
track that we derived by fitting the numerical data
from Bloecker (1995) within the mass range 0.94 to
0.546 M� is L/L� = 42838 ln(1.9M/M�). On the
other hand, L = 4πR2σT 4, g = GM/R2, and, elim-
inating R from the equations yields the following
relation between g, T , and M :

g/g� = M/M�(T�/T )4/42838 ln(1.9M/M�). (1)

Herbig (1992) estimated the star’s spectral type
from spectroscopic data to be B0–B1 and assigned
it the effective temperature T = 28200 K. Based on
this value, he obtained log g = 4.7 from the full width
of the Hβ absorption line. With these parameters, the
star’s mass is outside the theoretical mass range for
the nuclei of planetary nebulae.

However, in our view, the parameters from Her-
big (1992) should be revised. According to our
results, the temperature of Haro’s star is definitely
lower, being about 22 000 K. Using the technique
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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Table 1. The equivalent widths of emission lines in the
spectrum of Haro’s star

λ, Å Species 〈Wλ〉, Å σ, Å N

6562.8 H I 95.1 2.3 4

5018.4 Fe II 1.5 0.4 3

5169.0 Fe II 1.8 0.2 4

5197.6 Fe II 1.3 0.4 4

5234.6 Fe II 1.3 0.7 4

5276.0 Fe II 2.5 0.4 4

5316.6 Fe II 2.6 0.7 4

7711.7 Fe II 3.8 0.1 4

7772.0 }
7774.2 O I 7.6 0.8 2

7775.4

8446.4 O I 22.4 3.5 2

from Herbig (1992), we then obtain log g = 4.2.1

Such gravity is also inconsistent with the assumption
that Haro’s star belongs to protoplanetary objects,
because the maximum possible value of log g for a
protoplanetary object with a mass of 0.55M� and
a temperature of 22 000 K calculated using Eq. (1)
is 3.59.

The parameters of Haro’s star are compared with
the atmospheric parameters of hot subdwarfs and
some other stars at high Galactic latitudes in Fig. 3,
which shows a (T , log g) diagram. The postAGB evo-
lutionary tracks of stars with masses of 0.546M� and
0.6 M�, as inferred by Bloecker (1995), the zero-age
main sequence (Allen 1973), and the zero-age hori-
zontal branch from Saffer et al. (1997) are plotted in
this diagram. The figure shows Herbig’s parameters
of Haro’s star (T = 28200 K, log g = 4.7) and our
parameters (T = 22000 K, log g = 4.2). For compar-
ison with Haro’s star, the diagram also displays two
emission-line objects from the PG catalog and blue
subdwarfs, low-mass evolved stars from the sample
by Hambly et al. (1997) with atmospheric parameters
similar to those of Haro’s star. Table 2 gives data
for these objects. The diagram also shows the mean
parameters and their dispersions for 28 classical sdB
subdwarfs from the sample by Saffer et al. (1994).

1The determination of log g is based on comparison of the
observed and theoretical full-widths of the Hβ line profile as a
function of the temperature and log g in the model of a purely
hydrogen atmosphere by Wesemael et al. (1980). According
to Herbig (1992), the observed full width of the Hβ line at 0.9
of the continuum level is 19 Å.
ASTRONOMY LETTERS Vol. 28 No. 11 2002
Table 2. Parameters of Haro’s star (PG 1444+236) and
several stars from the PG catalog

PG T , K log g sp b, deg PG class

0914+001 14 297 3.72 Be +32 sdB

1002+506 14 900 4.2 B5Ve +51 CV

1213+456 22 000 4.5 – +70 HBB

1243+275 24 000 3.9 – +89 HBB

0833+699 20 200 3.9 – +34.5 sdOA

0832+676 23 000 3.7 – +35 sdOA

1444+236 22 000 4.2 B0–B1e +64 sd

As we see from Fig. 3, Haro’s star lies in the
(T , log g) diagram much lower than the track for
postAGB objects with a minimum mass of 0.546M�.
Therefore, it does not belong to postAGB stars.

One might think that the object is a main-
sequence Be star. Haro’s star is one of the three
B stars from the PG catalog (Green et al. 1986)
with emission lines in their spectra. According to
Ringwald et al. (1997), the object PG 1002+506 is
definitely a young, massive (M = 4.2M�), rapidly ro-
tating (v sin i = 340± 50 km s−1) star at the distance
z = +10.8 kpc from the Galactic plane. Another star,
PG 0914+001 (Saffer et al. 1997), with its param-
eters T and log g can also be on the main sequence.
As for Haro’s star, it is much hotter than the above
two stars and if its spectral type, as estimated by
Herbig (1992), is B0–B1, then it must be a massive
(M > 10 M�) star at z = 19.7 kpc. According to
our temperature estimates, its spectral type is most
likely B2, and then z = 7.2 kpc, but this is unlikely for
a B2 Ve star of mass M ∼ 7M�. Its UBV data are
also atypical of a main-sequence B star. Thus, we, like
Herbig (1992), rule out the possibility that Haro’s star
belongs to the class of ordinary Be stars, although,
for greater confidence, high-resolution spectroscopic
observations are needed to study the line profiles.

With its parameters T and log g, Haro’s star can
be a representative of the hot horizontal-branch stars
or can belong to the Galactic thick-disk population.
However, as was pointed out by Herbig (1992), typ-
ical horizontal-branch stars show no emission fea-
tures in their spectra. Therefore, the low-excitation
emission-line spectrum of Haro’s star is unusual for
this type of star. It would be reasonable to assume
that the emission-line spectrum could belong to the
remnant of the star’s gaseous envelope ejected during
a preceding evolutionary stage. However, the absence
of the low-excitation forbidden lines (N II, O II, S II)
characteristic of a low-density gas most likely makes
this explanation implausible. The intensity ratio of
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the Hα and Hβ emission lines is significantly dis-
torted by their superposition on the star’s hydrogen
absorption-line spectrum, which prevents the Balmer
decrement from being used as a criterion for the
nebular origin of the emission-line spectrum. The
absence of the forbidden Fe II lines can also point to a
nonradiative excitation of the permitted Fe II lines. In
addition, the measured width of the emission features
in the hydrogen lines [about 15 Å, as obtained by
Herbig (1992)] is too large for these lines to originate
in the remnant of the nebular envelope.

The emission-line spectrum of Haro’s star is most
likely related to the star itself and originates in its
outer layers with a high gas density dissimilar to the
typical density of nebular shells. It is also possible that
the star possesses a noticeable stellar wind and the
emission-line spectrum is formed in it. The expansion
of the emission-line formation region is suggested by
the two-component structure of the Fe II lines found
by Herbig (1992).

CONCLUSIONS

We have carried out a photometric and spectro-
scopic analysis of Haro’s poorly studied emission-line
star located at a high Galactic latitude. We detected
no light variability of the star with an amplitude larger
than 0m. 05 over the observing period from 1993 until
2001. The star’s brightness was, probably, constant
in the last several decades. We determined the at-
mospheric parameters of the star: T = 22000 K and
log g = 4.2.

The question as to the nature of Haro’s star is yet
to be clarified. In our view, the star is most likely an
evolved object whose mass is near the lower mass
limit for post-AGB stars. The star may possess a
noticeable stellar wind.

By the suggestion of the referee, we compared
the parameters of Haro’s star with the evolutionary
tracks of helium stars from Dorman et al. (1993).
The comparison indicates that Haro’s star could be
an evolved helium star at the relatively short stage of
transition from the horizontal branch to white dwarfs.
In any case, the parameters of Haro’s star are not
typical of young subdwarfs.
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Abstract—We consider the damping mechanisms for the radial oscillations of solar coronal loops in the
approximation of a thin magnetic flux tube. We show that the free tube oscillations can have a high Q if the
plasma density inside the magnetic flux tube is much higher than the density outside. We analyze the effect
of radial coronal-loop magnetic-field oscillations on the modulation of the microwave radiation from solar
flares. In the case of a nonthermal gyrosynchrotron mechanism, the fluxes from optically thin and optically
thick sources are modulated in antiphase. Based on our model, we diagnose the flare plasma. For the event
of May 23, 1990, we estimate the spectral index for accelerated electrons, α ≈ 4.4, and the magnetic-field
strength in the region of energy release,B ≈ 190 G. c© 2002 MAIK “Nauka/Interperiodica”.

Key words: Sun, coronal loops, radial oscillations, damping, gyrosynchrotron radiation.
INTRODUCTION

It follows from solar-flare observations that the
radiation is often modulated quasi-periodically with
a characteristic period Tp ∼ 1–10 s (Aschwan-
den 1987; Aschwanden et al. 1999). The modulation
can be observed at various flare phases and, in
general, its depth does not exceed 10–30%. In some
cases, the flux time profiles in the hard X-ray range
(Kane et al. 1983; Kaufmann et al. 2000) or in the
Hα line (Wulser and Kampfer 1987) correlate with
microwave radiation, suggesting a common nature of
the phenomenon under consideration.

The observed second radiation pulsations are
attributed to the following mechanisms: (1) mag-
netohydrodynamic (MHD) coronal-loop oscillations
(Rosenberg 1970; Meerson et al. 1978; Zaı̆tsev and
Stepanov 1982a, 1989; Edwin and Roberts 1983;
Roberts et al. 1984; Qin et al. 1996); (2) quasi-
periodic magnetic reconnection (Zarro et al. 1987;
Kliem et al. 2000); (3) electric-current modulation
in flare loops (Stepanov and Tsap 1993; Zaitsev
et al. 1998); and (4) periodicity in nonlinear wave–
wave or wave–particle interactions [see Aschwanden
(1987) for a review]. The available observational
data are too scarce to favor a particular mechanism.
Nevertheless, ample evidence has recently emerged
for the possible generation of radial fast magnetosonic
(FMS) oscillations (the sausage mode) of coronal

*E-mail: yulia@saoran.spb.su
1063-7737/02/2811-0783$22.00 c©
loops in active regions; these oscillations are ca-
pable of effectively modulating the magnetic field,
density, and temperature of the plasma (Aschwanden
et al. 1999). Among recent results, we note the
coronal-loop oscillations in white light and in the
Fe XIV (5303 Å) line with the characteristic period of
∼6 s and the modulation depth of ∼1% detected by
Williams et al. (2001).

Although a large number of studies deal with
radial oscillations (Aschwanden 1987; Zaı̆tsev and
Stepanov 1982a, 1989; Edwin and Roberts 1983;
Roberts et al. 1984; Zaı̆tsev et al. 1994), many
questions have yet to be solved. In particular, the
FMS modes in the solar corona are strongly damped
(Zaı̆tsev et al. 1994) because of electron heat con-
duction (Zaı̆tsev and Stepanov 1982a) and ion vis-
cosity (Tsap 2000) as well as the radiation of MHD
waves into the surrounding medium (Zaı̆tsev and
Stepanov 1975; Spruit 1982). Themaintenance of the
oscillations by perturbations from the photosphere
appears somewhat questionable. Thus, for example,
even torsional modes that are not accompanied by a
change in plasma gas pressure with periods shorter
than several tens of seconds are almost completely
absorbed by the chromosphere while propagating
from the photosphere into the corona (De Pontieu
et al. 2001), whereas the generation of oscillations
at Cherenkov (Zaı̆tsev and Stepanov 1982b) or
bounce resonance (Meerson et al. 1978) requires
special conditions. Meanwhile, the number of radi-
2002 MAIK “Nauka/Interperiodica”



784 KOPYLOVA et al.
ation oscillations occasionally reach several hundred
(Zodi et al. 1984). Consequently, the radial coronal-
loop oscillations must have a high Q (≥102), at least
in some cases. This raises the following question:
What mechanisms determine the oscillation dura-
tion?

The damping of the radial oscillations of thin mag-
netic flux tubes due to the radiation of MHD waves
into the surrounding medium (acoustic mechanism)
was first considered by Zaı̆tsev and Stepanov (1975).
The damping decrement for the radial oscillations
of coronal loops was determined from the dispersion
relation for the eigenmodes of the magnetic flux tube.
However, the solutions obtained cannot be consid-
ered to be reliable enough, because the dispersion
relation contains ambiguous Bessel functions of a
complex variable. In our view, the energy method
appears more attractive (Tsap and Kopylova 2001).
First, it allows the above difficulty to be circumvented
and, second, it makes it possible to generalize the
previous results. As for the ion viscosity, electron
heat conduction, and radiative losses, these important
dissipation mechanisms for the radial modes have not
yet been studied in detail.

Important information on the physical conditions
in the region of flare energy release can be obtained
by analyzing coronal-loop oscillations (Zaı̆tsev and
Stepanov 1982a, 1989; Qin et al. 1996; Nakariakov
and Ofman 2001). This promising field of research
called coronal seismology is being intensively devel-
oped in connection with the problem of solar coronal
heating. It is also of interest to determine the mag-
netic fields in active regions of the lower solar corona,
because direct Zeeman measurements are difficult to
make due to the high plasma temperature and be-
cause the results of indirect methods strongly depend
on the adoptedmodel restrictions. As a result, the field
estimates vary over a wide range, from several tens
to a thousand gauss (Nakariakov and Ofman 2001).
Thus, new methods for diagnosing the solar coronal
magnetic fields must be invoked.

In the first section, we analyze the damping mech-
anisms for radial coronal-loop oscillations in the ap-
proximation of a thin magnetic flux tube. The em-
phasis is on the acoustic mechanism. In the second
section, we consider the effect of radial magnetic-
field oscillations on the modulation of the nonthermal
gyrosynchrotron radiation from trapped electrons in
terms of the magnetic-bottle model. A new method
for diagnosing the parameters of the energetic parti-
cles and magnetic field in the flare region is proposed.
In the conclusion, we present and discuss our main
results.
THE DAMPING OF RADIAL OSCILLATIONS

The Acoustic Mechanism

The acoustic mechanism can play a significant
role in the damping of the MHD oscillations of mag-
netic flux tubes. The essence of this mechanism is
that an oscillating tube is capable of losing its energy
through wave radiation into the surrounding medium.
Below, we use the technique outlined by Tsap and
Kopylova (2001) to calculate the damping of radial
oscillations.

Let us consider an oscillating, axisymmetric mag-
netic flux tube with a magnetic field B0 =
(0, 0, Bz(r)), a plasma density ρ0(r), and a gas pres-
sure p0(r). In the case of sausage-mode generation,
the perturbations of equilibrium quantities can be
represented as δξ(r) exp (−iωt+ ikz). After lineariz-
ing the system of ideal MHD equations, we derive two
equations that describe the perturbation amplitudes
of the total pressure δP = δp + δBzBz/4π and radial
velocity δvr (Edwin and Roberts 1983; Ryutova 1988;
Roberts 1991; Tsap and Kopylova 2001):

iρ0(ω2 − k2v2A)
r

∂

∂r

(
∂(rδvr)
∂r

)
= ωµ2δP, (1)

ω
∂δP

∂r
= iρ0(ω2 − k2v2A)δvr, (2)

where

µ2 =
(k2c2s − ω2)(ω2 − k2v2A)
(v2A + c2s)(k2c2T − ω2)

, c2T =
v2Ac

2
s

v2A + c2s
,

(3)

vA = Bz/
√

4πρ0 is the Alfvèn velocity, cs =√
γp0/ρ0 is the speed of sound, and γ = 5/3 is the

adiabatic index.
In the approximation of a thin magnetic flux tube

(Priest 1982), Eqs. (1) and (2) reduce to the Bessel
equation

1
r

(
r
∂δP

∂r

)
+ µ2δP = 0. (4)

Its solutions for the internal (i) and external (e) parts
of the tube are (Tsap and Kopylova 2001)

δPi = A1J0(µir), δPe = A2H
(1)
0 (µer), (5)

where A1 and A2 are arbitrary constants; J0(µir)
and H(1)

0 (µer) are the Bessel and Hankel functions,
respectively.

Assuming that Reµ� Imµ and ω = ω0 − iνa
(νa � ω0), we can easily derive an expression for the
acoustic damping decrement for the oscillations of a
magnetic flux tube with fixed ends of length L and
ASTRONOMY LETTERS Vol. 28 No. 11 2002



RADIAL OSCILLATIONS OF CORONAL LOOPS 785
radius a from the conservation of energy (Tsap and
Kopylova 2001)

νa =
Fr

2W
. (6)

Here, the radial wave energy flux into the surrounding
medium, Fr , and the total oscillation energy, W , are
expressed as

Fr = 4πrL|δPeδvre |, (7)

W = 2πL
∫ a

0
ρi|δvri

|2
(

1 +
v2Ai

v2p

)
rdr,

where the modulus sign denotes the product of com-
plex conjugate quantities and vp = ω/k.

Taking into account the asymptotic behavior of the
Hankel functions (Watson 1945)

H(1)
n (ηr) ≈

√
2
πηr
ei(ηr−nπ/2−π/4), η = const,

(8)

and the well-known identity∫
J2

n(ηr)rdr =
r2

2
(
J2

n(ηr) − Jn−1(ηr)Jn+1(ηr)
)
,

(9)

and denoting Reµ = µ0, we find from (7)–(9) that

Fr ≈ 8L
|A2|2ω0

ρe(ω2
0 − k2v2Ae

)
, (10)

W ≈ πL |A1|2ω2
0(µ0i

a)2

ρi(ω2
0 − k2v2Ai

)2

(
1 +
v2Ai

v2p

)
(11)

×
(
J2

1 (µ0i
a) − J0(µ0i

a)J2(µ0i
a)
)
.

Substituting (10) and (11) in (6) then yields

νa ≈ 4
π

|A2|2
|A1|2

ρi
ρe

1
ω0

1
(µ0i
a)2

(ω2
0 − k2v2Ai

)2

ω2
0 − k2v2Ae

(12)

×
v2p

v2Ai
+ v2p

1
J2

1 (µ0i
a) − J0(µ0i

a)J2(µ0i
a)
.

The continuity condition for the total-pressure and
radial-velocity perturbations at the tube boundary
r = a suggests that

δPi(a) = δPe(a), δvri
(a) = δvre(a). (13)

According to (1), (2), (5), and (13), we then have

|A2|2
|A1|2

=
|J0(µia)|2

|H(1)
0 (µea)|2

(14)

=
(
ρe
ρi

)2 |µi|2
|µe|2

|ω2 − k2v2Ae
|2

|ω2 − k2v2Ai
|2

|J1(µia)|2

|H(1)
1 (µea)|2

.
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Plots of Qa = ω0/νa versus ξ0ea = ω0a/vAe described
by Eqs. (15) and (16). The plots correspond to the cases
where the oscillation node of the perturbations in total
pressure (dashed line: j0 = ξ0ia, where j0 = 2.4 and 5.5
are zeros of the function J0) or in radial velocity (solid
line: j1 = ξ0ia = j1, where j1 = 3.8 and 7.0 are zeros of
the function J1) coincides with the magnetic flux tube
boundary.

Combining Eqs. (12) and (14), we may conclude
that the minimum values of the acoustic damping
decrement νa correspond to the minimum values
of |J0(µia)|2 or |J1(µia)|2. In the solar corona, the
plasma β = 8πp/B2 ≈ c2s/v2A � 1 and Eq. (3) for
the radial modes whose frequency squared satisfies
the inequality ω2

0 � k2v2A simplifies appreciably: µ ≈
ω/vA = ξ. At the same time, if νaa/vA � 1, then
we can expand the Bessel functions into a series,
retaining only the term of the first order of smallness,
i.e.,

J0(ξia) ≈ J0(ξ0i
a) +

iνaa

vA
J1(ξ0i

a),

J1(ξia) ≈ J1(ξ0i
a) +

iνaa

vA

(
J0(ξ0i

a) − J1(ξ0i
a)

ξ0i
a

)
,

where Re ξ = ξ0. The above expressions and numeri-
cal estimates show that the functions |J0(ξia)|2 and
|J1(ξia)|2 take on minimum values at zeros of the
functions J0(ξ0i

a) and J1(ξ0i
a), respectively.

For the above cases, we find from Eq. (12) us-
ing (14) that

νa
ω0

≈ 4
π

1
(ξ0i
a)2

1

|H(1)
1 (ξ0ea)|2

, J0(ξ0i
a) = 0; (15)

νa
ω0

≈
(
π

4
ρe
ρi

|H(1)
0 (ξ0ea)|2
(ξ0i
a)2

)1/3

, J1(ξ0i
a) = 0.

(16)
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In the figure,Qa = ω0/νa is plotted against argument
ξ0ea of the Hankel functions for various values of
the parameter jn = ω0a/vAi

, where jn are zeros of
the Bessel functions Jn, n = 0, 1. As we see, Qa can
reach several hundred if ξ0ea� 1 (Tp � 2πa/vAe );
i.e., the plasma density inside the magnetic flux tube
is much higher than the density outside (ξ0i

/ξ0e ≈√
ρi/ρe > 10). According to the latter inequality, at

Tp = 1–10 s and a ∼ 108 cm−3, the Alfvèn veloc-
ity vAe � 2πa/Tp = 107–108 cm s−1, which corre-
sponds to the estimates of vA in the lower solar
corona (Aschwanden et al. 1999; Nakariakov and
Ofman 2001). The increase in Qa with jn also en-
gages our attention.

Our results suggest that highQ (Qa > 102) radial
coronal-loop oscillations can exist. Physically, this is
explained by the fact that for the modes with ω0 =
jnvAi

/a, the oscillation nodes of the perturbations in
total pressure, δPi, or in radial velocity, δvri

, coin-
cide with the magnetic flux tube boundary, causing
the generation of low-amplitude FMS waves in the
external medium. Therefore, the minimum values of
the acoustic damping decrement correspond to the
frequencies for which J0(ξ0i

a) = 0 or J1(ξ0i
a) = 0.

In addition, for ξ0ea� 1, the perturbations near the
outer boundary of the magnetic flux tube are oscil-
latory in nature and only at large distances (r � a)
do they transform into cylindrical waves capable of
effectively transferring energy into the surrounding
medium.

For ξ0ea� 1, the Hankel function takes the form

H
(1)
1 (ξ0ea) ≈ −2ξ0e/π and formula (15) reduces to

the relation

νa/ω0 ≈ πρe/ρi.

To within a coefficient, this relation matches the ex-
pression for the acoustic damping decrement derived
from the dispersion relation (Zaı̆tsev and Stepanov
1975).

The following important point should be empha-
sized. When examining the sausage modes, Roberts
et al. (1984) assumed that µ2

e < 0, thereby consid-
ering the arguments of the cylinder functions to be
imaginary. In this case, the solution to the Bessel
equation (4) for the external region can be expressed
in terms of the Macdonald functionK0(µea). In con-

trast to the Hankel function H(1)
0 (µea), the behavior

of this function is monotonic and, hence, magnetic
flux tube oscillations will not lead to wave radiation
into the surrounding medium. At the same time, if
β � 1, then the quantity µe is imaginary only on con-
dition that ka > j0(v2Ae

− v2Ai
)/v2Ae

(Roberts et al.
1984). Hence, assuming that k = Nπ/L, whereN is
a natural number, we obtain

N >
j0L

πa

v2Ae
− v2Ai

v2Ae

. (17)

For coronal arches,L� a and vAe > vAi
, and in view

of (17), we find that the number of nodes isNt = N −
1 ∼ L/a� 1. Therefore, the running FMS waves
forming a standing wave whose wavelength λ =
2L/N becomes comparable to the scale height of the
lower solar atmosphere will be able to easily penetrate
into the photosphere (Tsap and Kopylova 2001).
This will cause an energy outflow and, accordingly,
a significant decrease in the Q value of the loop
oscillations. In addition, during observations with
low-spatial-resolution instruments (they constitute a
majority), the radiation oscillations produced by loop
oscillations withNt � 1 must be blurred out.

Ion Viscosity, Electron Heat Conduction, and
Radiative Losses

Apart from the acoustic mechanism considered
above, the damping of the radial oscillations of coro-
nal loops can be appreciably affected by ion viscos-
ity, electron heat conduction, and radiative losses
(Tsap 2000). Before making any estimates, let us as-
certain the conditions under which the approximation
of frequent collisions may be used to investigate the
dissipative processes that accompany wave phenom-
ena.

The approximation of frequent collisions assumes
that the following inequalities hold (Braginskiı̆ 1963):

λ > l, Tp > τi, (18)

where l = vTi
τi ≈ vTeτe is the charged particle’s

mean free path, vTi
=
√

2kBT/M and vTe =√
2kBT/m are the thermal velocities of the ions and

electrons, andM andm are their masses. The ion and
electron collision time scales, τi and τe, are related by
(Braginskiı̆ 1963)

τi =

√
2M
m
τe ≈ 17

T 3/2

nΛ
[s], (19)

where n is the plasma density in cm−3 and Λ =
25.3 − 1.15 log n+ 2.3 log T is the Coulomb loga-
rithm, in which the temperature is in electronvolts.

Using (19), inequalities (18) can be reduced, re-
spectively, to the relations

n > 2.2 × 105 T
2

λΛ
[cm−3], n > 17

T 3/2

TpΛ
[cm−3].

(20)
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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For T = 3 × 106 K, λ = 108 cm, Λ = 19, and Tp =
1–10 s, we find from (20) that n > 109 cm−3. Thus,
in the case of the sufficiently dense coronal loops con-
cerned, using the approximation of frequent collisions
may be justified.

After averaging over the oscillation period, the
thermal energies released through ion viscosity Ev,
electron heat conduction Ec, and radiative losses Er
can be represented as follows (Braginskiı̆ 1963; Gor-
don and Hollweg 1983; Priest 1982):

Ev =
η0
6

(∇δv)2, η0 = 0.96nkBTτi; (21)

Ec =
κ‖
2

(
k

ω0

)2

T (γ − 1)2(∇δv)2, (22)

κ‖ = 3.16
nkBTτe
m

;

Er =
(3 − γ)(5 − γ)

16
n2R(T )
ω2

0

(∇δv)2, (23)

R(T ) =
5 × 10−20

√
T

.

Note that the dependence of the radiative loss func-
tion R(T ) on temperature T adopted in (23) cor-
responds to the temperature range T = 106–107.6 K
(Priest 1982).

Assuming that k = π/L (N = 1) and ω0 =
jnvA/a, we find from (19) and (21)–(23) that

Ec

Ev
≈ 15.5
j2n

√
M

m
β
( a
L

)2
, (24)

Ec

Er
≈ 4.0 × 1013

(
T 2

Ln

)2

.

Since a/L� 1 and β � 1 for coronal loops, it fol-
lows from (24) that Ev � Ec. In turn, for T = 3 ×
106 K and L = 109 cm, the radiative losses Er > Ev

if n > 3 × 1011 cm−3. Here, however, we restrict our
analysis to the effect of radial loop oscillations on
the microwave radiation from flares produced by the
nonthermal gyrosynchrotron mechanism, which will
be quenched through the Rasin effect at frequencies
f < fR = 14n/B (Dulk 1985). Hence, for example, at
n = 3 × 1011 cm−3 and B = 200–300 G, we obtain
fR = 14–21 GHz, which is in conflict with observa-
tions (Bastian 1998). Therefore, below, we restrict our
analysis to loops with n < 1011 cm−3. This implies
that in the case concerned, the oscillation damping
due to ion viscosity exceeds the damping due to heat
conduction and radiative losses.

Taking into account (2), (5), (9), and (11) and
assuming that ∇v ≈ (1/r)∂(rδvr)/∂r, because the
ASTRONOMY LETTERS Vol. 28 No. 11 2002
oscillations are transverse relative to the magnetic
field, we find for the viscous dissipation decrement νv
using (21) that

νv ≈ 〈Ev〉
2W

≈ η0
12
ξ20i

ρi
b, (25)

where the angular brackets denote integration over
the volume of the magnetic flux tube and the coeffi-
cient b is

b =
J2

0 (ξ0i
a) + J2

1 (ξ0i
a)

J2
1 (ξ0i

a) − J0(ξ0i
a)J2(ξ0i

a)
.

When the radial modes with frequency ω0 =
jnvAi

/a are generated, b = 1; therefore, given (25),
the oscillationQ is

Qv =
ω0

νv
≈ 12
π

Tp

βτi
. (26)

Note that relation (26) matches the expression that
follows from the formulas derived by Braginskiı̆
(1963) for the damping decrement νv of plane waves
in a homogeneous plasma. For Tp/τi = 10–30 and
β = 0.03–0.1, we obtain Qv = 4 × (102–103) from
(26). Thus, if the plasma β is moderately large
(<0.1), then the Q value of the radial oscillations is
more likely determined by the acoustic mechanism
than by the ion viscosity, let alone the electron heat
conduction and radiative losses. Taking into account
the damping attributable to strong plasma inhomo-
geneity at the tube boundary (resonance absorption
and phase mixing) will have no significant effect on
the results obtained (Roberts 2000). Besides, the
nature of the resonance wave absorption is yet to
be elucidated. Thus, according to Bellan (1994), the
electrostatic properties of the generated waves near
the resonance layer must be taken into account.
Therefore, the conclusions that follow from the MHD
approximation cannot be considered convincing.

MODULATION OF GYROSYNCHROTRON
RADIATION AND DIAGNOSING THE FLARE

PLASMA

The generation of radial loop oscillations causes
changes in the magnetic-field strength, in the scale
sizes of the emitting region, and in the plasma tem-
perature and density. This implies that second oscil-
lations can be observed in various wavelength ranges.
Let us consider the effect of radial coronal-loop oscil-
lations on themicrowave radiation from solar flares for
which the nonthermal gyrosynchrotron mechanism is
generally responsible (Bastian 1998).

The spectral fluxes for optically thin and optically
thick sources are, respectively,

Ff1 = ηf1dΩ, (27)



788 KOPYLOVA et al.
Ff2 =
ηf2

kf2

Ω, (28)

where Ω is the solid angle of the source and d is
its characteristic thickness. We express the emission
(ηf ) and absorption (kf ) coefficient in terms of the
formulas for nonthermal gyrosynchrotron radiation
proposed by Dulk (1985):
ηf
Bna

= 3.3×10−2410−0.52α(sin θ)−0.43+0.65α (29)

×
(
f

fB

)1.22−0.90α

,

kfB

na
= 1.4×10−910−0.22α(sin θ)−0.09+0.72α (30)

×
(
f

fB

)−1.30−0.98α

,

where na is the accelerated-electron density, θ > 20◦
is the angle between the magnetic-field direction and
the line of sight, the spectral index for the accelerated
electrons lies within the range 2 < α < 7, and fB =
eB/(2πmc) is the electron gyrofrequency.

Let us assume that the coronal loop can be repre-
sented as a magnetic trap with sharp magnetic walls
and that the trapped electrons are responsible for the
observed microwave radiation. The behavior of these
electrons is described by the continuity equation

∂N(E, t)
∂t

+
N(E, t)
TL(E, t)

= S(E, t), (31)

where N(E, t) = dN(t)/dE is the number of elec-
trons per unit energy interval, TL(E, t) is the electron
lifetime, and S(E, t) is the spectral power of the par-
ticle source.

In the case of fairly intense microwave bursts,
one might expect the so-called moderate diffusion to
take place in the coronal magnetic bottle (Stepanov
and Tsap 1999). Therefore, TL = σT0, where σ =
Bmax/B is the mirror ratio, T0 = L/va is the charac-
teristic time of electron escape from the magnetic trap
through the loss cone, and va is the electron velocity.
Electrons with E = E0 > 300 keV give a major con-
tribution to the microwave radiation from solar flares
(White and Kundu 1992). Therefore, we may take the
velocity to be va ≈ c by assuming that the lifetime of
the trapped electrons is TL(E, t) ≈ TL(t) = L/c.

Since the magnetic field due to the generation of
radial oscillations isB = B0 + δB sinω0t, because of
the modulation of the mirror ratio σ, the lifetime is
TL(t) = TL0/(1 + ζ sinω0t), where ζ = δB/B. Inte-
grating Eq. (31) over energy E yields

dN(t)
dt

+
N(t)
TL0

(1 + ζ sinω0t) = S(t), (32)
where

N(t) =
∫ ∞

E0

N(E, t) dE, S(t) =
∫ ∞

E0

S(E, t) dE.

Let the power of the source of accelerated particles
be S(t) = S0 = const and N0/TL0 = S0 at the initial
time. Assuming that

N(t) = N0 +N ′(t), |N ′(t)/N0| � 1, (33)

and substituting (33) into (32), we obtain a differen-
tial equation with separable variables forN ′(t):

dN ′(t)
dt

+
N ′(t)
TL0

+
N0ζ

TL0

sinω0t = 0.

Given (33), its solution can be represented as

N ′(t) = C1(cosω0t− exp(−t/TL0)) − C2 sinω0t,
(34)

where the coefficients

C1 =
N0ζ

χ2(1 + χ−2)
, C2 =

N0ζ

χ(1 + χ−2)
,

χ = ω0TL0 .

In Eq. (34), the exponential term describes the tran-
sient process attributable to the fact that the trapped
electrons tend to an equilibrium, which may be disre-
garded for t� TL0 , and

N ′(t) = C1 cosω0t− C2 sinω0t. (35)

Since the longitudinal magnetic flux is conserved,
the volume of the oscillating loop is V = V0/(1 +
ζ sinω0t); hence, according to (33) and (34),

na = na0(1 + ζ sinω0t) −
na0ζ

χ2

1
1 + χ−2

(36)

× (χ cosω0t− sinω0t),

where na0 = N0/V0. Eq. (36) suggests that in the
limiting cases,

na =

{
na0(1 + ζ sinω0t), χ� 1
na0 , χ� 1.

(37)

For flare loops with length L = 109 cm and a mirror
ratio σ = 3–10 oscillating with period Tp = 3 s,
χ = 0.02–0.6 < 1. Consequently, when moderate
diffusion takes place, we may take the accelerated-
electron density to be na = const.

Again, taking into account the law of conserva-
tion of longitudinal magnetic flux (d ∝ B−1/2, Ω ∝
B−1/2), we have from (27)–(30)

Ff1 ∝ B0.90α−1.22, Ff2 ∝ B−1.02−0.08α. (38)

We see from (38) that, as the magnetic field B in-
creases in strength, the radiation flux rises for an opti-
cally thin source and falls for an optically thick source;
ASTRONOMY LETTERS Vol. 28 No. 11 2002
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i.e., the corresponding oscillations are in antiphase.
Note that Gotwols (1973) and Gaizauskas and Tap-
ping (1980) investigated the effect of magnetic-field
modulation only on the intensity of the synchrotron
radiation.

Defining the modulation depth as M = (Fmax −
Fmin)/Fmax, where Fmax and Fmin are the maximum
and minimum spectral flux densities, respectively, we
find from (38) that for optically thin (M1) and optically
thick (M2) sources

M1 = 2(0.90α − 1.22)
δB

B
, (39)

M2 = 2(0.08α + 1.02)
δB

B
.

Having compared the last two expressions, we con-
clude that M1 > M2 for α > 2.7 and, in addition,
magnetic-field perturbations are capable of gener-
ating gyrosynchrotron-radiation oscillations with a
maximum modulation depth of ∼30%.

If the same population of accelerated electrons is
responsible for the radiation, then we can determine
the particle spectral index from (39):

α =
1.22 + 1.02M1/M2

0.90 − 0.08M1/M2
. (40)
ASTRONOMY LETTERS Vol. 28 No. 11 2002
Using (27)–(29), let us express the optical depth in
terms of the radiation fluxes Ff1 and Ff2 and the
spectral index α:

τf2 = kf2d =
Ff1

Ff2

(
f1
f2

)0.90α−1.22

. (41)

Based on (30) and (41), we estimate τf at any fre-
quency and determine the frequency fp at which the
flux of gyrosynchrotron radiation is at a maximum
(τfp ≈ 1):

τf = τf2

(
f2
f

)1.30+0.98α

, (42)

fp = f2(τf2)1/(1.30+0.98α).

Finally, eliminating the accelerated-electron density
na from the relation (Dulk 1985)

fp =2.72 × 103100.27α(sin θ)0.41+0.03α

× (nad)0.32−0.03αB0.68+0.03α,

using (30) yields
B =
(

fp

D(sin θ)0.439−0.203α+0.022α2

)1/(0.584−0.275α+0.030α2)

, (43)
where

D = 103.585−1.695α+0.182α2
f0.416+0.275α−0.030α2

× τ0.320−0.030α
f .

Let us now analyze a specific event—the solar
flare of May 23, 1990 (Qin et al. 1996). The most
interesting feature in the fine temporal structure
of the microwave radiation at the impulsive flare
phase (Fmax ∼ 103 s.f.u.) was that the high Q (Q >
200) quasi-periodic (Tp ∼ 1.5 s) pulsations at f1 =
15 GHz and f2 = 9.375 GHz were in antiphase; the
modulation depth was M1 ≈ 5% and M2 ≈ 2.5%,
respectively.

The observed features of the microwave radiation
may be assumed to have resulted from radial flare-
loop oscillations. In this case, the gyrosynchrotron
radiation of the trapped electrons was optically thin at
f1 = 15 GHz and optically thick at f2 = 9.375 GHz.
As follows from (38), the radiation oscillations must
then be in antiphase. Meanwhile, Qin et al. (1996)
also proceeded from the idea of radial modes for the
event under consideration. However, in contrast to
our approach, the radiation sources at the two fre-
quencies were assumed to be optically thin and the
oscillations in different parts of the loop top were
assumed to be shifted in phase. Still, the generation
mechanism of such oscillations remains unclear.

Let us make some estimates using the derived
relations. Taking into account the ratio of the modu-
lation depths in our case,M1/M2 ≈ 2, we determine
the spectral index of the emitting electrons from for-
mula (40), α ≈ 4.4. For the event in question, the flux
ratio is Ff1/Ff2 ≈ 0.5; hence, using (41) and (42), we
obtain τf1 ≈ 0.1 and τf2 ≈ 2, which is in satisfactory
agreement with our model. Based on expression (35),
we can also easily determine the frequency that corre-
sponds to the maximum of gyrosynchrotron radiation:
fp ≈ 10.6 GHz. If we set θ = π/4, f = 9.375 GHz,
and τf = 2 in (43), then we obtain the magnetic-field
strength for the specified parameters, B ≈ 190 G.
Note that the inferred magnetic-field strength slightly
exceeds the estimate (≈130 G) by Qin et al. (1996).

DISCUSSIONS AND CONCLUSIONS
Here, we have analyzed the damping mechanisms

for the radial oscillations of magnetic flux tubes. We
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showed that these oscillations could have a high Q in
the solar corona.

We used the energy approach (Tsap and Kopylo-
va 2001) to estimate the acoustic damping decrement
for the radial oscillations. It follows from our analysis
that if the oscillation node of the total pressure or
radial velocity coincides with the magnetic flux tube
boundary, then the damping decrement takes on the
lowest value. Our result can be explained in terms of a
weak plasma perturbation at the outer tube boundary.
The oscillations will have a highQ if the plasma den-
sity inside the magnetic flux tube is much higher than
the plasma density outside (ρi/ρe > 102), which is
quite acceptable both for flare loops (Doschek 1994)
and for loops in active regions (Aschwanden 2001).

By comparing various dissipative processes, we
concluded that for coronal loops with n ∼ 109–
1011 cm−3, the damping of the radial oscillations due
to ion viscosity exceeds the damping due to heat
conduction and radiative energy losses. Nevertheless,
the oscillationQ is most likely determined by acoustic
damping.

In our calculations, we assumed that the magnetic
flux tubes were not twisted (Bϕ = 0). This approxi-
mation may be considered to be justified for coronal
loops with B2

z � B2
ϕ, because in this case, the effect

of theBϕ magnetic-field component on the linearized
equations of ideal magnetohydrodynamics that de-
scribe the radial wave modes of magnetic flux tubes
may be ignored (Goossens 1991). Besides, the latter
inequality suggests that the coronal loops are stable
against helical perturbations (Priest 1982).

We considered the effect of radial coronal-loop
oscillations on the microwave radiation from trapped
electrons in terms of the model of a coronal magnetic
bottle for the nonthermal gyrosynchrotron mecha-
nism. The oscillations for optically thin and opti-
cally thick sources were found to be in antiphase.
The relations given here allow the spectral index for
the accelerated electrons, the optical depths of the
radiation sources, and the magnetic-field strength
to be estimated from the modulation depth of the
nonthermal gyrosynchrotron radiation. Based on the
derived relations, we determined the nonthermal elec-
tron spectrum at the impulsive solar flare phase, α ≈
4.4, and the magnetic field in the region of energy
release, B ≈ 190 G, for the event of May 23, 1990. In
our estimates, we proceeded from the idea of moderate
diffusion by assuming the oscillation frequency ω0 to
be much shorter than the characteristic lifetime of the
trapped electrons TL0 .

Here, we did not touch on the origin of the radial
oscillations. Meanwhile, these wave modes can be
generated, for example, by a shock wave (McLean
et al. 1971), an increase in gas pressure (Zaı̆tsev and
Stepanov 1982a; Qin et al. 1996), or the injection
of energetic protons (>1 MeV) into the loop, which
cause instability of the FMS waves at the Cherenkov
(Zaı̆tsev and Stepanov 1982b) or bounce resonance
(Meerson et al. 1978). In addition, the observed high-
velocity plasma flows propagating along the loop are
also capable of generating radial oscillations (Ryuto-
va 1988).

In conclusion, note that high-spatial-resolution
observations in various wavelength ranges are re-
quired for the nature of the solar-flare oscillations
to be firmly established. In particular, X-ray data
that are expected to be obtained from the R HESSI
(High-Energy Spectroscopic Imager) Orbiting Sta-
tion could be of great help.
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ERRATA
Erratum: “Orbital Evolution of Saturn’s New Outer Satellites
and Their Classification”

[Astronomy Letters 27, 455 (2001)]

M. A. Vashkov’yak

The third panel of Fig. 10 erroneously shows a plot of the longitude of the ascending node against
time. Actually, this panel must show a plot of the pericenter argument against time. The correct
Fig. 10 is given below.
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Fig. 10. Orbital evolution of S/2000 S1.
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