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By applying Hamiltonian averaging and a quasi-identity-like transfor-
mation it is demonstrated that the averaged dynamics of high-frequency
nonlinear waves in systems with periodically varying dispersion can be
described in a particular limit by the integrable nonlinear Schro¨dinger
equation. ©1999 American Institute of Physics.
@S0021-3640~99!00107-3#

PACS numbers: 05.45.Yv, 42.65. Tg, 42.81.Dp

Propagation of high-frequency large-amplitude waves in media with varying dis
sion is a rather general nonlinear problem with a wide area of physical applications
as, for instance, optical pulse transmission in dispersion-managed fiber lines,1 stretched
pulse generation in mode-locking fiber laser systems,2 propagation of high-intensity
beams in second-order nonlinear media with periodic poling, soliton evolution in a
odically modulated nonlinear waveguide, and other applications. Optical pulse tran
sion in fibers is one of the brightest demonstrations of practical application of the
damental soliton theory. The traditional path-averaged optical soliton preserves its
type shape during propagation by compensating on average the fiber dispersion th
nonlinearity. This is possible because the pulse power oscillations~due to periodic am-
plification of the pulse to compensate for the fiber loss! are very fast. Rapid oscillation
of the power can be averaged out, and, as a result, the slow pulse dynamics
traditional soliton-based transmission lines is governed by the integrable3 nonlinear
Schrödinger equation~NLSE!. Interability of the NLSE makes it possible to apply th
well-developed and powerful mathematical method of the inverse-scattering trans3

to a variety of practical problems~see, e.g., Refs. 4–7 and references therein!. Experi-
mental~and even the first commercial8! implementations of multichannel soliton tran
mission have stimulated further research in soliton theory. In this paper we apply H
tonian averaging and quasi-identity transformation to demonstrate that the ave
dynamics of high-frequency nonlinear waves in systems with periodically varying
persion can be described in some particular limits by the integrable NLSE. As a sp
physical and practical application, in the present paper we focus on dispersion-ma
soliton transmission. The dispersion-managed~DM! periodic, breathing, soliton-like
pulse that stably propagates in a fiber system with large variations of the dispe
4990021-3640/99/69(7)/6/$15.00 © 1999 American Institute of Physics
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differs substantially from the fundamental~NLSE! soliton.9–29There are two scales in th
DM pulse propagation: the first~fast dynamics! corresponds to rapid oscillations of th
pulse width and power due to periodic variations of the dispersion and periodic am
cation; and the second~slow dynamics! occurs due to the combined effects of nonline
ity, residual dispersion, and averaged effects. The traditional soliton solution of the N
with uniform dispersion and without loss realizes a continuous balance between n
earity and dispersion. Losses and variations of dispersion make it impossible i
general case to support such a balance continuously. Nevertheless, a balance b
nonlinear effects and dispersion can be achievedon averageover the compensation
period. As a result, the slow dynamics of the DM soliton can be described by
propagation equation averaged over fast oscillations.1,12 The DM pulse dynamics typi-
cally depends on many system parameters and is rather complicated. Different theo
approaches have been developed to describe the properties of the DM soliton: the
tional approach12–20or the more advanced root-mean-square momentum method,1,21 mul-
tiscale analysis22–24 methods using averaging,12,26,1,29,25including averaging in the spec
tral domain,12,13 and expansion of the DM soliton in a basis of chirped Gauss–Her
functions.27,28,1

Because of the practical importance of this problem, it is of obvious interes
develop different theoretical methods to describe the main properties of the basic
in different limits. A variety of complementary mathematical methods can be adva
geously used to find an optimal and economical description of any specific pra
application. In this paper, using Hamiltonian averaging and quasi-identity
transform,30 we demonstrate that in some specific limits~including , in particular, a weak
dispersion map26! the DM soliton is described by the integrable NLSE.

The evolution~in z! of a high-frequency wave in medium with periodically varyin
dispersion and nonlinearity is governed by the NLSE with periodic coefficientsd(z) and
c(z) ~we assume here that both have the same period!, which can be written in the
Hamiltonian form

i
]A

]z
5$A,H%5

dH

dA*
52d~z!Att2e c~z!uAu2A, ~1!

with the Hamiltonian

H5E H d~z!UAtU22«
c~z!

2 UAU4J dt ~2!

and the Poisson brackets defined as

$F,G%5E S dF

dA~ t,z!

dG

dA* ~ t,z!
2

dF

dA* ~ t,z!

dG

dA~ t,z!D dt. ~3!

In Eq. ~1! the distancez is normalized by the compensation periodL, d(z)5d̃1^d&
(^d̃&50) describes the varying dispersion, andc(z) corresponds to power oscillation
~due to loss and amplification!. For notation we refer to our previous papers.1,27,13 The
small parametere5L/ZNL , whereL is a compensation period andZNL ~see, e.g., Refs
13,1! is a characteristic nonlinear scale. The true DM soliton is a solution of Eq.~1! of the
form A(z,t)5exp(ikz) M(z,t) with a periodic functionM (z1L,t)5M (z,t). The DM
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soliton can be viewed as a kind of nonlinear Bloch wave in the language of solid-
physics. The goal of the theoretical analysis is to present a systematic way to de
family of solutionsM with different k. The basic idea suggested in Refs. 1 and 12 is
use a small parametere to derive a path-averaged model that gives a systematic, lead
order description of the DM soliton. Averaging cannot be performed directly in Eq~1!

because of the large variations ofd̃@^d&. However, path-averaged propagation equat
can be obtained in the frequency domain.12,13 The approach developed in Ref. 12 can
considered as a decomposition of DM pulse dynamics in the fast evolution of the p
and a slow evolution of the amplitude. The shape of the DM soliton then is give
nonlocal nonlinear equation, steady state solutions of which give the leading-orde
proximation of DM solitons. In this paper we show that in some limits an avera
equation can be transformed to theintegrableNLSE. First, following Refs. 12 and 13, w
do the Fourier transform

A~ t,z!5E Av exp @2 ivt# dv ~here Av5A~v,z!!

and rewrite the basic equation in the frequency domain.

Equation~1! then takes the form

i
]Av

]z
2d~z! v2 Av1eE Fv123~z! d~v1v12v22v3! A1* A2 A3dv1dv2dv350, ~4!

whereFv1235c(z). To eliminate the periodic dependence of the linear part we~follow-
ing Refs. 12,13! apply the so-called Floquet–Lyapunov transformation30

Av5fv exp $2 i v2R0~z!2 i u~v!%, dR0 /dz5d~z!2^d&. ~5!

We have included here the phase factoru(v), which does not change thez dependence
of the coefficients. The aim of this transformation is to eliminate the large coefficied̃
from ~1!. In the new variables the equation has the form

i
]fv

]z
2^d& v2 fv1eE Gv123~z! d~v1v12v22v3! f1* f2 f3 dv1dv2dv350; ~6!

here Gv123(z)5c(z) exp$iDVR0(z)1iDu% and DV5v21v1
22v2

22v3
2 , Du5uv1u1

2u22u3. Note thatGv123 depends only on the specific combination of the frequenc
given by the resonance surfaceDV. Both the Fourier and the Floquet–Lyapunov tran
form ~5! are canonical, and the transformed HamiltonianH is

H5^d&E v2ufvu2dv2«E Gv123

2
d~v1v12v22v3!fv* f1* f2f3dvdv1dv2dv3 .

~7!

Now we apply Hamiltonian averaging. Let us make the following change of
variables

fv5wv1e E Vv123d~v1v12v22v3! w1* w2 w3 dv1dv2dv3 ,

Vv123~z!5 i E
0

z

@Gv123~t!2Tv123#dt,
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with

Tv1235^Gv123&5E
0

1

Gv123~z!dz5E
0

1

c~z! exp $ iDVR0~z!1 iDu%dz. ~8!

The path-averaged equation has the form

i
]wv

]z
2^d& v2 wv1eE Tv123d~v1v12v22v3! w1* w2 w3 dv1dv2dv350. ~9!

Here w~v! is assumed to decay sufficiently fast to ensure convergence of the inte
This equation was first derived in Refs. 12, 13 using simple physical considera
Since thefv vary slowly, in the leading approximation, on the scale of one period,
can neglect their evolution and integrate Eq.~6! over the period, placingfv outside of
the integrals overz. The Hamiltonian averaging introduced here presents a regular w
calculate next-order corrections to the averaged model. From the Hamiltonian struct
the starting equation it is clear that the matrix elementTv123 has the following symme-
tries ~compare with Ref. 31!

Tv1235T1v235Tv1325T23v1* . ~10!

In the case of the lossless model (c(z)5c05const; for details see Ref. 1! and a two-step
dispersion map built from a piece of a fiber with dispersiond11^d& and lengthl 1

followed by a piece of fiber with dispersiond21^d& and lengthl 2512 l 1 (d1l 11d2(1
2 l 1)50), the matrix elementTv123 takes the especially simple form

Tv1235c0

sin @mDV/2#

mDV/2
. ~11!

The parameterm5d1l 1 introduced here is a characteristic of the map strength. Str
dispersion management corresponds to largem@^d& and the so-called weak map corr
sponds tom!^d&. We demonstrate below that, in particular, in the limit of smallm the
averaged equation~9! can be transformed to the NLSE. Note that Eq.~9! possesses a
remarkable property: The matrix elementTv1235F(DV)exp$iDu% is a function ofDV,
and

F~0!5E
0

1

c~z!dz5^c&, F8~0!5 i ^c R0&5 i E
0

1

c~z! R0~z!dz ~12!

on the resonant surface

v1v12v22v350, DV5v21v1
22v2

22v3
250. ~13!

This observation allows us to make the following quasi-identity-like transformat
which eliminates the variable part of the matrix elementTv123

wv5av1
e

^d& E Tv1232T0

DV
a1* a2 a3 d~v1v12v22v3! dv1dv2dv3 , ~14!

whereT05F(0)exp$iDu%. This transformation has no singularities. If the integral par
this transform is small compared withav , then in the leading order we get forav
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i
]av

]z
2^d& v2 av1eE T0 d~v1v12v22v3! a1* a2 a3 dv1dv2dv350. ~15!

This is nothing more than the integrable nonlinear Schro¨dinger equation written in the
frequency domain~here we chooseu50!.

Obviously, this is a quasi-identity transformation only if the integral in Eq.~14! is
small compared withav . This is not so in the general case, and that is why the typ
DM soliton has a form different from the cosh-like shape usual for the NLSE sol
However, if the kernel function in Eq.~14! is small,

uS~DV!u5 UT02Tv123~DV!

DV U !1, ~16!

then the averaged model can be reduced to the NLSE. In other terms, this is a con
on the functionsc(z) andd(z) under which a quasi-identity transformation is possib
For instance, one can check that for the two-step map described above, in the limitm→0
this transformation is, indeed, a quasi-identity transformation and the path-ave
model is the NLSE. Thus, we can express~in this limit! solutions of equation~9!, and,
consequently, of the original equation~1! via solutions of the NLSE in the explicit form

A~ t,z!5E av e$2 ivt2 iv2 R02 iu%dv1e E Wv123a1* a2 a3 d~v1v12v22v3!

3dv1dv2dv3dv,

where

Wv123~z!5S Vv1231
Tv1232T0

^d& DV D exp $2 ivt2 iv2 R0~z!2 iu~v!% ~17!

andav is a solution of the NLSE~15!.

The averaging transformation can also be presented as

fv5wv1«
dK

dwv
5wv2«$K,wv%. ~18!

Therefore, this transform can be viewed as the leading-order term in the expansio
canonical exponential~Lie! transformation

fv5exp@$«K, . . . %#wv , ~19!

with the functional

K5E Vv123

2
d~v1v12v22v3!wv* w1* w2w3dvdv1dv2dv3 .

After averaging the HamiltonianH takes the form

^H&5^d&E v2uwvu2dv2«E Tv123

2
d~v1v12v22v3!

3wv* w1* w2w3dvdv1dv2dv3 . ~20!
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The quasi-identity transform of the Hamiltonian^H& (Tv123→T0) is given by
Eq. ~19! with a corresponding functionalK1:

K15E Tv1232T0

2^d&DV
d~v1v12v22v3!av* a1* a2a3dvdv1dv2dv3 .

In conclusion, using Hamiltonian averaging and quasi-identity-like transforma
we have shown that in some specific limits nonlinear wave propagation in a system
periodically varying dispersion and nonlinearity can be described by the integ
NLSE.
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The nonperturbative contribution to the one-gluon exchange produces a
universal linear term in the static potential at small distancesDV
56Ncassr /2p. Its role in the resolution of long-standing discrepan-
cies in the fine splitting of heavy quarkonia and improving agreement
with lattice data for static potentials is examined, and implications for
operator product expansion~OPE! violating terms in other processes
are discussed. ©1999 American Institute of Physics.
@S0021-3640~99!00207-8#

PACS numbers: 12.38.Bx, 12.38.Gc, 14.70.Dj

1. Possible nonperturbative contributions from small distances have drawn a
attention recently.1,2 In terms of the interquark potential the appearance of linear term
the static potentialV(r )5constr , wherer is the distance between charges, implies v
lation of OPE, since const; (mass)2, and this dimension is not available in terms
field operators. There is however some analytical1,2 and numerical3 evidence for the
possible existence of such termsO(m2/Q2) in the asymptotic expansion at largeQ.

On a more phenomenological side the presence of a linear term at small dist
r ,Tg , whereTg is the gluonic correlation length,4,5 is required by at least two sets o
data.

First, the detailed lattice data6 do not support the much weaker quadratic behavio
V(r );const•r 2 that follows from the OPE and the field correlator method4,5 but instead
favor the same linear formV(r )5sr at all distances~in addition to the perturbative
2C2as /r term!. Second, a small-distance linear term is necessary for the descripti
the fine splitting in heavy quarkonia, since the spin–orbit Thomas termVt

52(1/2m2r )(dV/dr) is sensitive to the small-r region, and an additional linear contr
bution atr ,Tg is needed to fit the experimental splitting.7 Moreover, lattice calculations8

exhibit 1/r behavior ofVt in all of the measured region up tor 50.1 fm.

Of crucial importance is the sign of theO(m2/Q2) term, since the usual screenin
correction~real m) leads to a negative sign of the linear potential, and one needs s
distance nonperturbative~NP! dynamics, which produces a negative~tachyonic! sign of
m2 ~Refs. 1,2!. Phenomenological implications of such contributions have been studi
detail in Ref. 1. In what follows we show that the interaction of the gluon spin with
NP background indeed yields a tachyonic gluon mass at small distances.
5050021-3640/99/69(7)/4/$15.00 © 1999 American Institute of Physics



rtur-
full

, we
r

the

x-

r with

506 JETP Lett., Vol. 69, No. 7, 10 April 1999 Yu. A. Simonov
2. In this letter we report the first application of the systematic background pe
bation theory9,10 to the problem in question. One starts with the decomposition of the
gluon vector potentialAm into the NP backgroundBm and perturbative fieldam ,

Am5Bm1am , ~1!

and make use of the ’tHooft identity for the partition function

Z5E DAme2S(A)5
1

NE DBmh~B!E Dame2S(B1a), ~2!

whereh(B) is the weight for NP fields, defining the vacuum averages, e.g.,

g2^Fmn
B ~x!FB~x,y!Fls

B ~y!&B5
1̂

Nc
~dmldns2dmsdnl!D~x2y!1D1, ~3!

whereFmn
B andFB are the field strength and parallel transporter made ofBm only; D1 is

the full derivative term4 not contributing to the string tensions, which is

s5
1

2Nc
E d2xD~x!1O~^FFFF&!. ~4!

The background perturbation theory is an expansion of the last integral in~2! in
powers ofgam and an averaging overBm with the weighth(Bm), as shown in~3!.
Referring the reader to Refs. 9 and 10 for explicit formalism and renormalization
concentrate below on the static interquark interaction at smallr. To this end we conside
the Wilson loop of sizer 3T, whereT is large,T→`, and define

^W&B,a5K P expF igE
C
~Bm1am!dzmG L

B,a

[exp$2V~r !T%. ~5!

Expanding~5! in powers ofgam , we obtain

^W&5W01W21 . . . ; V5V0~r !1V2~r !1V4~r !1 . . . , ~6!

whereVn(r ) corresponds to (gam)n and can be expressed in terms ofD, D1 , and higher
correlators.5,9

Coming now toV2(r ), describing one exchange of a perturbative gluon in
background, we find from the term quadratic inam in S(B1a) in the background
Feynman gauge the gluon Green’s function

Gmn52~Dl
2dmn12igFmn

B !21, Dl
ca5]ldca1g fcbaBl

b . ~7!

Expanding in powers ofgFmn
B , we can writeGmn as

G52D221D222igFBD222D222igFBD222igFBD221 . . . , ~8!

and the first term on the right-hand side of~8! corresponds to the spinless gluon e
change, propagating in the confining film covering the Wilson loop.9,10 As was shown
recently,11 the termD22 produces only weak correctionsO(r 3) to the usual perturbative
potential at small distances, while it corresponds to the massive spinless propagato
massm0 at large distances.

In what follows we concentrate on the third term in~8!, which yield
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W2
(3)5TE as~k2!

p2

d3keikrm2~k2!

~k21m0
2!2

52DV2~r !T, ~9!

where we have defined, having in mind Eq.~4!,

m2~k2!56E D~z!e2 ikzd4z

4p2z2
; m2~0!5

6sNc

2p
. ~10!

From Eq.~10! we obtain the following positive contribution to the potentialV2(r ) at
small r ~we neglect a constant termO(1/m0):

DV2~r !5m2~keff!as~keff!r 1O~r 2!, r &Tg . ~11!

Analysis of the integral~9! shows thatkeff;1/r , and thereforeDV2(r ) is determined
mostly by the short-distance dynamics.

3. The analysis done heretofore concerns the static interquark potential and re
that even at small distances the NP background provides some contribution wh
incorporated in the negative mass-squared term2m2.

Applying the same NP background formalism to other processes of interest
would get similar corrections of the order ofm2/p2, as was investigated in Ref. 1.

To check the self-consistency of our results, one can find the contribution ofm2(k)
to the correlatorD,

D~q!;as~q!E d4pm2~p!

~p21m0
2~p!!2~q2p!2

;
1

q2
, q2→`, ~12!

which is positive and consistent with recent lattice data.3 Insertion of~12! into ~10! yields
constantm2(p) at largep ~modulo logarithms!, which implies self-consistent NP dynam
ics at small distances~largep). It is worthwhile to note also that the negative sign of t
m2 contribution is directly connected to the asymptotic freedom, where the same
magnetic term in the effective actionSeff ~Ref. 12! enters with the negative sign, and on
can take into account that2m2(x,y);d2Seff /dam(x)dam(y).

The author is grateful for discussions, correspondence and very useful rema
V. I. Zakharov and helpful discussions to V. A. Novikov and V. I. Shevchenko.

The financial support of RFFI through Grants 97-02-16404 and 97-0217491 is g
fully acknowledged.

1K. G. Chetyrkin, S. Narison, and V. I. Zakharov, http://xxx.lanl.gov/abs/hep-ph/9811275.
2R. Akhoury and V. I. Zakharov, Phys. Lett. B438, 165 ~1998!; F. J. Yndurain, http://xxx.lanl.gov/abs
hep-ph/9708448, Nucl. Phys. B~Proc. Suppl.! 64, 433 ~1998!.

3G. Burgio, F. Di Renzo, G. Marchesini, and E. Onofri, Phys. Lett. B422, 219 ~1998!.
4H. G. Dosch and Yu. A. Simonov, Phys. Lett. B205, 339 ~1988!; for a review see Yu. A. Simonov, Phys
Usp.39, 313 ~1996!; hep-ph/9709344.

5Yu. A. Simonov, Nucl. Phys. B324, 67 ~1989!.
6S. P. Booth, D. S. Henry, A. Hulseboset al., Phys. Lett. B234, 385 ~1992!; G. Bali, K. Schilling, and
A. Wachter, http://xxx.lanl.gov/abs/hep-lat/9506017.

7A. M. Badalian and V. P. Yurov, Yad. Fiz.56, 239 ~1993!; A. M. Badalian and Yu. A. Simonov, Yad. Fiz
59, 2247~1996!.

8K. D. Born, E. Laermann, R. Sommeret al., Phys. Lett. B329, 332 ~1994!; G. S. Bali, K. Schilling, and
A. Wachter, Phys. Rev. D56, 2566~1997!.



508 JETP Lett., Vol. 69, No. 7, 10 April 1999 Yu. A. Simonov
9Yu. A. Simonov, JETP Lett.57, 525 ~1993!; Yad. Fiz.58, 113 ~1995!.
10Yu. A. Simonov, inLecture Notes in Physics, Vol. 479, Springer-Verlag, Berlin, 1996.
11Yu. A. Simonov, http://xxx.lanl.gov/abs/hep-ph/9902233.
12A. M. Polyakov,Gauge Fields and Strings, Harwood Acad. Publ., Chur, Switzerland, 1987, Ch. 2.

Published in English in the original Russian journal. Edited by Steve Torstveit.



ms is
to an
rld
of the
ple, in
about
pical

at the
erned,
ature

the
tures
in de-
finite

ption
te the

tum
y in

ED,

JETP LETTERS VOLUME 69, NUMBER 7 10 APRIL 1999
Universality in effective strings

S. Jaimungal, G. W. Semenoff, and K. Zarembo
Department of Physics and Astronomy, University of British Columbia,
6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada

~Submitted 9 March 1999!
Pis’ma Zh. Éksp. Teor. Fiz.69, No. 7, 474–480~10 April 1999!

It is demonstrated that, due to the finite thickness of domain walls and
the consequent ambiguity in defining their locations, the effective string
description obtained by integrating out bulk degrees of freedom con-
tains ambiguities in the coefficients of the various geometric terms. The
only term with unambiguous coefficient is the zeroth-order Nambu–
Goto term. We argue that fermionic ghost fields which implement
gauge-fixing act to balance these ambiguities. The renormalized string
tension, obtained after integrating out both bulk and world sheet de-
grees of freedom, can be defined in a scheme-independent manner;
explicit finite expressions are computed, to one-loop, for the case of
compact quantum electrodynamics andw4 theory. © 1999 American
Institute of Physics.@S0021-3640~99!00307-2#

PACS numbers: 11.25.Db, 12.20.Ds

A long-standing problem in the physics of interfaces in three-dimensional syste
to describe the interface dynamics as a theory of fluctuating surfaces analogous
effective Euclidean string theory.1–3 The interface surface can be interpreted as the wo
sheet of an effective string in three dimensions, while the two phases on either side
interface represent the vacuum expectation values of a fundamental field. For exam
the Ising model the field is the spin operator, and the interface is the set of links
which the spin changes sign. An effective string action of this surface has a ty
geometric expansion which begins with the Nambu–Goto term~the area!, next the ex-
trinsic curvature, and then higher-order curvature corrections. It is usually argued th
higher-order corrections are irrelevant as far as the low energy dynamics is conc
and perturbation theory consisting in keeping only the area term and extrinsic curv
is valid. However, we will demonstrate that such an ansatz is in fact ambiguous from
outset. In particular, we will demonstrate that coefficients of the higher-order curva
are completely arbitrary, and depend upon the precise prescription implemented
fining the position of the interface. Such an ambiguity is a direct consequence of the
thickness of the interface region. In spite of this ambiguity an effective string descri
is possible if one includes in the action fermionic degrees of freedom which reinsta
scheme-independent nature of the fundamental action.

In this work we concentrate on interfaces which occur in 3D compact quan
electrodynamics~QED!.4 The analysis can be easily applied to any other field theor
3D which has a soliton solution to the classical equations of motion. In compact Q
5090021-3640/99/69(7)/7/$15.00 © 1999 American Institute of Physics
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monopole instantons cause the electric fields between two charged particles to form
tube, the potential between electric charges grows linearly with the distance be
them, and the charges are confined.4 This picture of confinement is, however, a pure
classical one. In the full quantum theory the string of electric flux, along with the m
netic fields in the bulk, are not rigid but rather fluctuate.

Compact QED can be regarded as the low-energy effective theory for the Ge
Glashow model, where theSU(2) symmetry is spontaneously broken toU(1). The
monopoles appearing in the broken gauge theory are the classical solutions of the o
Higgs model which have finite Euclidean action.5 The collection of monopoles behave a
a gas of charged particles interacting through a Coulomb force. Since the charges
orderA4p/g, whereg is the gauge coupling, the monopole configurations can be tre
using a semiclassical approximation in the limit of weak gauge coupling. The system
reduces to the classical thermodynamics of a Coulomb gas and the partition functio
sine-Gordon~SG! theory:4

Z5E @dw# expH 2
g2

32p2 E d3x @~]w!222m2:cosw:#J . ~1!

The monopole density is the coefficient of the cosine interaction,z5g2m2/32p2. The
grand canonical partition function for the monopoles is recovered by expanding in
ers ofz and performing the functional integral overw. In the presence of the monopo
solution the photon becomes massive and Wilson loop correlators obey an area law4 The
relevant order parameter in the original gauge theory~compact QED! is the vacuum
expectation value of the Wilson loop. There is a natural mapping between this corr
and the following correlation function in the SG model:4,6

W~C![K expS i

2 R
C
dAD L

QED

5K expS g2

16p E
S
!dw D L

SG

. ~2!

HereS is an arbitrary surface bounded by the contourC. The result can be shown to b
independent of the choice of this surface. We are interested in the behavior of~2! for
large loops. The contourC will be assumed to lie at infinity in thex350 plane. In this
case, it is possible to reformulate the problem. The operator on the right hand side~2!
introduces a source for the SG field or, equivalently, one may assume thatw experiences
a jump of magnitude 2p across the surfaceS. Since the potential is periodic inw, this
jump can be eliminated by shiftingw on one side of the surface by 2p. This shift renders
the field continuous; however, it changes the boundary conditions asx3→1`. Conse-
quently, performing such a shift onw reduces~2! to an evaluation of the path integral~1!
with the boundary conditionsw→0 asx3→2` andw→2p asx3→1`. These bound-
ary conditions are precisely what is required for field configurations in the presence
domain wall. The domain wall in this case describes a world sheet of a string of ele
flux created by charges at infinity.

The first step in obtaining an effective string action is to obtain the classical solu
satisfying the appropriate boundary conditions. The solution is the SG soliton:

wcl~x!54 arctanemx3, ~3!
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which corresponds to a domain wall in thex350 plane. The position of this domain wa
is in fact ambiguous. Conventionally, its position is given by the surface on whicw
5p.6,7 However, other definitions are also possible, for example, the surface on w
the energy density is maximal.8,9 These definitions, although agreeing at the class
level, do not agree once quantum corrections are included. Nevertheless, they wil
the same result within an order ofm21. This uncertainty is due to the finite thickness
the domain wall and we will argue that this ambiguity translates into the nonunivers
of the world-sheet action.

Upon inserting~3! as a classical background field in the functional integral overw in
~1!, the collective coordinate method can be used to separate the integral over fluctu
into an integral over the domain wall position, which we describe by a height func
f (x1 ,x2), and over the field fluctuations in the bulk:

Z5E @dw#@d f#DFP@w#d@K@ f ,f## e2SSG[w] , ~4!

where K@ f ,f#5*dx3K(x,x32 f )w(x)2p and DFP@w#5dK@ f ,f#/d f is the Faddeev–
Popov determinant,x is (x1 ,x2), andSSG is the same as in~1!. A particular definition of
the domain wall position corresponds to choosing a kernelK. There is no unique choice
of this function. The definition of Refs. 6 and 7 corresponds toK5d(x32 f ), while the
standard collective coordinate method,8,9 in which the fluctuations of the domain wall ar
associated with quasi-zero modes in the background of the classical solution~3!, corre-
sponds toK5wcl8 (x32 f ).

Integrating overw in ~4! yields an effective action for the coordinatef (x) of the
domain wall. In the semiclassical approximationw is replaced by its classical solution
The effective action is then given by

Seff5s0E S 11
1

2
~“ f !2D1O~~“ f !2!, ~5!

where the string tension is determined by the mass of the SG soliton:4,10

s05
g2

32p2 E ~~]3wcl!
212m2cos~wcl!!dx35

g2m

2p2
.

In Seff all higher-order corrections, coming from tree-level diagrams, were ignored. H
ever, if terms which would contribute to higher curvature corrections are ignored,
possible to re-sum an infinite subset of the terms which were previously ignored. Th
be achieved by considering a domain wall solution which is curved; unfortunately,
configurations are not solutions of the SG equations of motion. They can, on the
hand, be considered as a constraint solution11 — the solution of the equations of motio
with a source term proportional to the argument of the delta function in~4!. This can be
included in the action by introducing a Lagrange multiplier field. For slowly varyinf
this equation can be solved by perturbation theory in the derivatives off. If only the first
derivatives off are taken into account~i.e., ignoring higher curvature corrections!, the
solution can be constructed by the following simple arguments.2 When one neglects
higher derivatives this implies thatf is a linear function of its arguments, which corr
sponds to the plane domain wall rotated through an angleu with tanu5AG, where
G[11(“ f )2. The classical solution in this case is obtained from~3! by rotation:
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w(x)5wcl((x32 f )/AG). This solution is exact in the approximation of constant“ f ,
since no source term is required to produce it. Consequently, the Lagrange mul
appears only in the next order of the derivative expansion and is proportional to“

2f . The
effective action with the above solution is equal to the area of the domain wall.
rotated wall area element contains the factor 1/cosu5AG, and the re-summed effectiv
action is therefore

Seff5s0E d2x AG~x!. ~6!

Since G is the determinant of the induced metric on the string world sheet, we
obtained the Nambu–Goto action.

The next term in the derivative expansion will be of order of the Lagrange multip
squared, that is (“2f )2, and will depend on the choice of the constraint. This arbitrarin
leads to an ambiguity in the coefficient of this term, which in the covariant descrip
corresponds to the extrinsic curvature squared. It appears that the area term~6! is the only
universal part of the effective action. This is not surprising, since the parameter o
derivative expansion isk/m, wherek is a momentum of the excitation on the string wor
sheet. Higher derivative terms become important whenk;m, i.e., when the wavelength
of the excitation is of the same order of the thickness of the domain wall. Such ex
tions are of course indistinguishable from the fluctuations of the SG field in the bulk
such, including such fluctuations in the effective string action leads to ambiguities
course, the computation of any physical quantity must be invariant under any cho
the constraint. It is the Faddeev–Popov determinant which cancels the ambiguitie
ing in the bosonic sector of the theory — the full effective action contains the fermi
ghosts coming from the determinant.

The universality of the Nambu–Goto term stems from the rotational invarianc
the original model. This holds even when quantum corrections are included as long
constraint respects rotational symmetry. Constraints which do not respect this sym
would produce actions that are not reparametrization invariant. We have exp
checked that when the kernel in~4! is chosen to beK(x,x32 f )5wcl8 (x32 f ), which is not
rotationally invariant, the one-loop correction to the constant and to the (“ f )2 terms in
~6! disagree.

Let us now consider the quantum corrections. The string tension gains qua
corrections from fluctuations of the domain wall and of the fieldw in the bulk. To study
how these two corrections are correlated we calculate the one-loop corrections
string tension. The parameter of the loop expansion,m/g2, is small sincem2 is propor-
tional to the monopole density. These corrections will be computed in the backgr
field method starting from the classical solution~3!. The one-loop corrections in 3D SG
theory are linearly divergent, which leads to ambiguities in the definition of dimensi
quantities like the string tension. However, the monopole gas representation implie
particular UV regularization based on the normal-ordering prescription. To implem
this prescription in the background field method, it is instructive to first study the
loop corrections to the general classical solution. Expanding the quantum fieldw
5wcl1h and integrating outh, we obtain:
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S1
bare5

1

2
Tr lnS 2]21m2 coswcl

2]21m2 D .

The expansion ofS1 in the powers ofwcl yields the usual Feynman diagrams, while t
normal-ordering prescription consists in throwing out bubble diagrams~Fig. 1!. Thus, to
one-loop, the normal ordering is implemented by adding the following counter-ter
the effective action:

S15
1

2
Tr lnS 2]21m2 coswcl

2]21m2 D 2
m2

2 E d3x~coswcl21!E d3p

~2p!3

1

p21m2
. ~7!

This expression is free of all UV divergences. Notice that since the expansion o
renormalized effective actionS1 begins withwcl

4 terms, the mass of the photon does n
acquire quantum corrections at one loop.

The spectrum of the operator describing the excitations of the soliton are
known. It consists of plane waves in thex1 andx2 directions; while thex3 spectrum is
gapped, possessing a zero mode and then a set of continuum states correspondin
scattering of plane waves off the potential given by the solitonic solution. Inserting
analytic form of the spectrum into~7! we find that the one-loop correction to the strin
tension is,

Ds15
1

2 E d3p

~2p!3
ln~p21m2!n~p3!

1
1

2 E d2p

~2p!2
ln~p 2!12mE d3p

~2p!3

1

p21m2
52

m2

4p
. ~8!

Here n(p3) is the difference of the density of scattering states in the presence
absence of the kink, and can be obtained using the exact eigenmodes of the lineariz
equation:12

n~p3!5E dx3~cp3
* ~x3!cp3

~x3!21!52
2m

p3
21m2

.

FIG. 1. Tadpole diagrams to be subtracted in the normal-ordering prescription.



term
r-term
each
sult
f the

er has
y in
others
h
t was

on in

ers.
-
r the
e-loop
tring
eme
r in-

tribute

ever,
in

e
not
sion

ing
on is

ion of
tely
e not

514 JETP Lett., Vol. 69, No. 7, 10 April 1999 Jaimungal et al.
The first term in~8! corresponds to the trace over continuum states; the second
corresponds to the quasi-zero mode contribution; and the last term is the counte
prescribed by normal ordering. The sum of these three terms is UV finite, although
term diverges individually. This leaves room for some ambiguity in the final finite re
depending on what regularization scheme is implemented. However, if the sum o
terms is placed under one single integral, so that the function being integrated ov
finite UV behavior, the answer must be regularization independent. The difficult
implementing such a scheme is that the quasi-zero mode is a 2D integral, while all
are 3D. It is possible to integrate out thep3 component of the 3D integrals first, whic
then leaves a single two-dimensional integral to perform. This is the scheme tha
used in~8!.

Thus far, we have shown that after including one-loop effects the string tensi
the SG model is

s5
g2m

2p2 S 12
p

2

m

g2D .

We performed analogous calculation forw4 theory with the potentiall(w22m2/l)2/2,
the result is

s5
4

3

m3

l S 12
9

32p
~42 ln3!

l

mD .

As mentioned earlier, different regularization schemes will lead to different final answ
The authors of Ref. 13 performed similar calculation s on thew4 theory using the zeta
function regularization. That computation, however, did not include the integral ove
quasi-zero branch of the theory, and therefore corresponds to obtaining the on
correction to the effective string tension rather than the one-loop renormalized s
tension. Excluding that branch still leads to finite results in their regularization sch
since it is insensitive to power like divergences. Unfortunately, it yields an answe
compatible with the ansatz of first integrating outp3 and then performing the finite
integrals. This is to be expected, since the quasi-zero branch should and must con
to the renormalized string tension.

In the preceding, all modes were including in computing the determinant. How
it is possible to integrate out only the scattering states, i.e., to omit the second term~8!,
and obtain an effective action for the quasi-zero branch~as in Ref. 13!. This branch
contains the modes responsible for shifting the surface in thex3 direction. Omitting the
second term in 8 is equivalent to keepingf fixed and integrating out only bulk modes. Th
one-loop correction with only bulk modes included is badly UV divergent and is
regularization independent. In the naive cutoff regularization the effective string ten
for the f fields will be;L2ln(L2/m2), as can be easily checked from~8!. Of course, hard
modes~with k@m) of the field f cancel this divergence, rendering the physical str
tension finite. The implication is that the one-loop renormalization of the string tensi
known precisely, even though all the interaction terms are not known.

To summarize we have argued that the accuracy of the macroscopic descript
the confining string in compact QED is limited by the fact that the string is not infini
thin. As a consequence the higher-derivative terms in the world-sheet action ar
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universal. Formally, it is possible to obtain an effective string theory action by integra
out w in ~4! exactly. However, the world-sheet action will be scheme dependent and
be supplemented by the fermionic ghosts coming from the constraints. In addition
action contains rather peculiar divergences and the finite physical quantities ob
from such an effective action appear only after delicate cancellations between
divergences and the contribution of hard modes of the string coordinates.

It is worth mentioning that the derivation of the effective domain wall action
collective coordinate method in one-dimension lower would lead to essentially the
conclusions. In the 2D theory, which can be thought of as a high-temperature reduct
the 3D theory,14 domain walls correspond to soliton paths. Solitons in 2D SG theory
known to be described by a local field theory, the Thirring model15 and soliton
operators16 look very much like the dimensional reduction of the Wilson loops~2!,14 the
only difference being a local factor rendering the solitons fermionic. Fermion propag
have a well defined sum-over-path representation where the action is the supers
trized length of the world line. Nevertheless, at weak SG coupling, solitons cann
described by the world-line theory, since the four-fermion interaction in the Thir
model, which corresponds to a contact interaction in the sum-over-path picture, bec
infinitely strong.

We are grateful to K. Selivanov and A. Zhitnitsky for discussions. This work
supported in part by NSERC of Canada, a NATO Science Fellowship and, in pa
RFFI Grant 98-01-00327.
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Squeezed states of light pulses in the presence of a self-
effect in an inertial nonlinear medium

F. Popesku and A. S. Chirkin*
M. V. Lomonosov Moscow State University, 119899 Moscow, Russia

~Submitted 26 February 1999!
Pis’ma Zh. Éksp. Teor. Fiz.69, No. 7, 481–485~10 April 1999!

A systematic theory of the formation of squeezed states during the
propagation of coherent light pulses in a medium with an inertial Kerr
nonlinearity is developed. It is established that the region of the spec-
trum where the quadrature fluctuations are weaker than the shot noise
depends on both the relaxation time of the nonlinearity and the magni-
tude of the nonlinear phase shift. It is also shown that the frequency at
which suppression of the fluctuations is greatest can be controlled by
adjusting the phase of the pulse.
© 1999 American Institute of Physics.@S0021-3640~99!00407-7#

PACS numbers: 42.50.Dv, 42.65.Tg

In the present letter we analyze the effect of the response time of the cubic no
earity of a medium on the formation of nonclassical~squeezed! light. The formation of
quadrature-squeezed light as a result of the self-effect of a light pulse is studied
process, together with the generation of optical solitons and parametric amplific
during pulsed pumping, serves as an efficient method for producing pulsed squ
light. The self-effect of ultrashort laser pulses has been used in Refs. 1–4 for prod
squeezed states of light. At the same time, all of the theoretical calculations4–6 in con-
nection with the analysis of the formation of nonclassical light in the presence o
self-effect of pulses assume that the nonlinear response of the medium is instanta
and that the relative fluctuations are small. The latter assumption is, of course, va
the intense pulses ordinarily used in experiments. It should be expected that the re
time of the nonlinearity will determine the region of the spectrum of the quantum
tuations that play a large role in the formation of squeezed light. The point is that
though the frequency band of the pulse is limited, the spectrum of the quantum flu
tions of the pulse is unlimited~in the present-day theory!. However, in order to take the
nonlinear response time of the medium into account it is necessary to develop an
priate algebra of time-dependent Bose operators. We have developed such an a
and this has made it possible to develop a consistent theory of the formation of no
sical light as a result of the self-effect of light pulses with no restrictions on their inten
and on the ratio between the relaxation timet r of the nonlinearity and the pulse duratio
tp . We present below the results fortp@t r . We underscore that even in this case th
problem cannot be solved correctly without taking the finite relaxation time into acco
5160021-3640/99/69(7)/5/$15.00 © 1999 American Institute of Physics
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The process under consideration is described by an interaction Hamiltonian o
form

Ĥ int5\b E
2`

`

dt E
2`

t

H~ t2t1!N@ n̂~ t,z!n̂~ t1 ,z!# dt1 , ~1!

where the coefficientb is determined by the nonlinearity of the medium,H(t) is the
nonlinear response function of the medium (H(t)Þ0 for t>0 andH(t)50 for t,0; a
Kerr-type the nonlinearity is assumed!, N is the normal-ordering operator,n̂(t,z)
5A1(t,z)A(t,z) is the photon number ‘‘density’’ operator, andA1(t,z) andA(t,z) are
the Bose operators creating and annihilating photons in a given cross sectionz of the
medium at a given timet ~see, for example, Ref. 6!. The operatorn̂(t,z) commutes with
the Hamiltonian~1! and thereforen̂(t,z)5n̂(t,z50)5n̂0(t), wherez50 corresponds to
the entrance into the nonlinear medium.

In accordance with Eq.~1! the spatial dynamics of the operatorA(t,z) is described
by the equation

]A~ t,z!

]z
1 ibq@ n̂0~ t !#A~ t,z!50, ~2!

which follows from the Heisenberg evolution equation, where

q@ n̂0~ t !#5E
2`

`

h~ t1!n̂0~ t2t1! dt1 ~h~ t !5H~ utu!!.

Equation ~2! is written in the traveling coordinate system:z5z and the timet5t8
2z/u, wheret8 is the running time andu is the velocity of the pulse in the medium. Th
solution of Eq.~2! is

A~ t,z!5exp@2 igq@ n̂0~ t !##A0~ t !. ~3!

Here A0(t)5A(t,0), g5bz. For h(t) 52d(t) and A0(t)5a0 expressions~2! and ~3!
assume a form corresponding to single-mode~monochromatic! radiation. The following
commutation relations should hold for arbitrary distanceszÞ0:

@A~ t1 ,z!,A1~ t2 ,z!#5d~ t12t2!, @A~ t1 ,z!,A~ t2 ,z!#50. ~4!

To check the relations~4! and to calculate the quantum statistical characteristic
a pulse we developed an algebra of time-dependent Bose operators. Specifica
obtained the commutation relation

A0~ t !exp@2 igq@ n̂0~ t1!##5exp@2 igq@ n̂0~ t1!#2 igh~ t12t !#A0~ t ! ~5!

and the normal-ordering formula

exp@2 igq@ n̂0~ t !##5N expH E
2`

`

@exp~2 igh~u1!!21#n̂0~ t2u1! du1J . ~6!

Here time is normalized to the nonlinearity relaxation timet r , i.e., u5t/t r . Relations
~5! and ~6! are a generalization of the well-known relations for the single-mode cas7
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The photon number operator remains unchanged in the presence of a self-
This fact has already been used in Eq.~2!. For this reason, in the presence of a self-eff
it is of greatest interest to study the fluctuations of the quadrature components. L
consider the quadrature component

X̂~ t,z!5
1

2
@A1~ t,z!1A~ t,z!#. ~7!

The correlation function of the quadrature fluctuationsX̂(t,z)

R~ t,t1t!5
1

2
@^X̂~ t,z!X̂~ t1t,z!&1^X̂~ t1t,z!X̂~ t,z!&22^X̂~ t,z!&^X̂~ t1t,z!&#

~8!

~the brackets denote averaging over the quantum state of the pulse! is given by the
expression

R~ t,t1t!5
1

4
$d~t!2c~ t !h~t!sin 2F~ t !1c2~ t !g~t!sin2F~ t !%, ~9!

where c(t)52gua0(t)u2 is the nonlinear phase shift,a0(t) is an eigenvalue of the
operatorA0(t) of a pulse in a coherent state,F(t)5c(t)1f(t) (f(t) is the initial phase
of the pulse!, d(t) is a delta function, andg(t)5t r

21(11utu/t r)exp(2utu/tr) for the
nonlinearity relaxation response under study,h(t)5t r

21exp(2utu/tr). The derivation of
Eq. ~9! took into consideration the facts that the nonlinear phase shift per photong!1
and that the relaxation time is much shorter than the pulse duration (t r!tp).

In accordance with Eq.~9! the spectral density of the quadrature fluctuations is

S~v,t !5E
2`

`

R~ t,t1t!eivt dt

5
1

4
@122c~ t !L~v!sin 2F~ t !14c2~ t !L2~v!sin2 F~ t !#, ~10!

whereL(v)51/@11(vt r)
2#. It follows from Eq.~10! that, depending on the value of th

phaseF(t), the quadrature fluctuation can be weaker or stronger than the shot
corresponding to the coherent state of the pulse,S(coh)(v)5 1

4. In accordance with the
Heisenberg uncertainty relation, the behavior of the spectrum in the conjugate quad
is shifted in phase byp/2.

If the phase of the pulse is chosen optimal for a frequencyv0,

f0~ t !5
1

2
tan21@~c~ t !L~v0!!21#2c~ t !, ~11!

the spectral density at this frequency is

S~v0 ,t !5
1

4
@A11c2~ t !L2~v0!2c~ t !L~v0!#2 ~12!

and increases monotonically with the phasec(t).

For arbitrary frequencyv we have
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S~v,t !5S~v0 ,t !1
1

2
@L~v!2L~v0!#c~ t !$@L~v!1L~v0!#c~ t !

2@11~L~v!1L~v0!!L~v0!c2~ t !#@11c2~ t !L2~v0!#2
1
2%. ~13!

The spectra calculated using Eq.~13! at t50 for v50 andv5t r
21 are presented in

Fig. 1. It is evident from Fig. 1a that forv050 the spectral density of the fluctuation s
minimum at the frequencyv50 for any value of the phasec(0). For v0Þ0 ~Fig. 1b!
and phasesc(0).1 the minimum of the fluctuation spectrum lies at frequenciesv
5t r

21 and forc(0),1 the minimum lies nearv'0. It is also obvious from Figs. 1a and
1b that the frequency band in which the spectral density of the quadrature fluctuatio
lower than the shot noise level depends on the nonlinear phase shiftc(0). Thecorre-
sponding dependence forv050 is displayed in Fig. 2, whence it follows that forc(0)
@1 the width of the spectrum below the shot noise level is 1.5 times greater than
width of the spectral response of the nonlinearity.

FIG. 1. Dispersion of the fluctuations of the quadrature component of a pulse at timet50 as a function of the
maximum nonlinear phasec(0)52gua0(0)u2 and the reduced frequencyV5vt r at values of the phase of the
pulse which are optimal forV50 ~a! andV51 ~b!.

FIG. 2. Spectral bandDV52Dvt r ~at half-height! of the quadrature of a pulse with suppressed quantu
fluctuations as a function of the maximum nonlinear phasec(0).



e ex-
s and

f quan-

and
ses are
er to
ever,
esults
of
cifi-

at this

ingly

used
ubic

earch
nt

520 JETP Lett., Vol. 69, No. 7, 10 April 1999 F. Popesku and A. S. Chirkin
The results obtained in the present letter can be used to analyze correctly th
periments of Refs. 1–4, in which laser pulses with a duration of the order of 100 p
quartz optical fibers were used and the maximum nonlinear phase shiftc was greater
than 1. Of course, in measurements of the quadrature spectrum the suppression o
tum fluctuations of a pulse will be smoothed out~see Eq.~13!!. This time over which
‘‘smoothing out’’ occurs in the case of balanced homodyne detection8 is determined by
the duration of the heterodyne pulse.

The theory developed makes it possible to optimize the strategy for producing
detecting ultrashort pulses in a squeezed state. Quantum fluctuations of short pul
ordinarily measured at high frequencies of the order of several tens of MHz in ord
avoid any effects due to technical fluctuations concentrated at low frequencies. How
as a rule, the suppression of quantum fluctuations is greatest in this region. Our r
show that by adjusting the phase of the signal pulse~or, generally speaking, the phase
the heterodyne pulse!, one can achieve maximum suppression of the fluctuations spe
cally at the spectral component of interest to us. We underscore once again th
spectral component can lie on the wing of the spectral response of the nonlinearity~Fig.
1b!. This means that nonlinear media with a longer relaxation time and correspond
a larger nonlinearity can be used to obtain squeezed-light pulses.6

In closing, we note that the approach developed in the present letter can be
to analyze the formation of polarization-squeezed light in media with a c
nonlinearity9,10 and to develop a quantum theory of nonlinear matching devices11 for
pulsed signals.

We thank K. N. Drabovich for helpful discussions of this work.
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On harmonic generation in a photoionized gas

V. P. Silin
P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Ru

~Submitted 10 February 1999; resubmitted 23 February 1999!
Pis’ma Zh. Éksp. Teor. Fiz.69, No. 7, 486–490~10 April 1999!

The laws characterizing the radiation of high harmonics due to the
coherent bremsstrahlung effect are indicated in the limit of high inten-
sity of the laser pump photoionizing a gas in regime of suppression of
the ionization barrier. It is shown that the intensity of the harmonics is
determined by the quantum properties of the electron distribution in an
atom before it is ionized. ©1999 American Institute of Physics.
@S0021-3640~99!00507-1#

PACS numbers: 42.65.Ky, 52.40.Nk

The generation of high harmonics of optical radiation has been attracting a
deal of attention in the last few years, both as a general problem of nonlinear optic
as a problem whose solution opens up prospects for many applications.1 The study of the
generation of very high harmonics started with plasma as the nonlinear medium.2,3 In the
last few years harmonic generation has been studied in neutral gases~see, for example,
Refs. 4 and 5!. However, as the lasers employed are improved and the energy flux de
of the laser radiation increases, neutral gases become ionized.6–8 Thus attention once
again turns to plasma as a nonlinear medium for generating high harmonics of
radiation. There is a tendency in experiments to increase the intensity of the laser
tion when photoionization is the process used to ionize the gas.

In this letter we present the basic laws characterizing the efficiency of harm
generation in a photoionized plasma, which are determined by the quantum distrib
of electrons in an atom. The exposition is mainly of a qualitative nature and is bas
an associative generalization of the existing results of the theory of harmonic gene
in a preprepared classical plasma. In what follows we shall concentrate on the limi
pump field which is strong enough that photoionization occurs under conditions of
pression of the ionization barrier~SIB!.9,10 In so doing, first, we shall assume the ioniz
tion potentialI i of the atoms to be small compared with the energy (1/2)mVE

2 of the
electron oscillations in the pump electric fieldE(t)5E cosvt, whereVE5ueE/mvu is
the amplitude of the oscillatory electron velocity ande andm are the electron charge an
mass, respectively. This means that the Keldysh parameter of the theory of tun
ionization is small:g5(2I i /mVE

2)1/2!1 ~Ref. 11!. Second, we shall assume the para
eterb5(1/16Z)(I i /I H)2(Eat/E) to be small. HereZ is the nuclear charge of the atom,I H

is the ionization potential of the hydrogen atom, andEat55.133109 V/cm is the atomic
unit of electric field intensity. In the case of interest here, whereb,1, according to Refs.
9 and 10 an electron is ionized from an atom without tunneling. In other words, ph
5210021-3640/99/69(7)/5/$15.00 © 1999 American Institute of Physics
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ionization in the SIB model is determined by the free, virtually unimpeded, escape
electron from an atom. For a spatially uniform distribution of atoms in a plasma
makes it possible to express the electron momentum distribution function in the
f (p,t)5F(p2mu(t)). Hereu„t) is the time-dependent electron velocity in the elect
field of the laser pump ionizing the atoms. This form of the electron distribution is sim
to that ordinarily arising in the theory of harmonic generation in a plasma in the
collisionless approximation.2 However, in the present case, in a coordinate system o
lating together with the electron it is the electron momentum distribution inside an
before the radiation acts on the plasma. For a pure quantum state, to within a norm
tion factor,

F~p!5(
q

uaq~p!u2,

where aq(p) is the electron wave function in the momentum representation and
summation extends over all quantum numbers corresponding to the electron distri
inside the atom. Such a distribution is physically obvious. It can also be obtained dir
by using the equation for the density matrix in the Wigner representation12 ~see below!.

The similarity so arising and, at the same time, the obvious difference betwee
cases of a preprepared plasma and a photoionized plasma in the SIB regime m
possible to establish the following general law characterizing the generation effic
h (2l 11) of the (2l 11)-st harmonic due to coherent bremsstrahlung~compare Refs. 2 and
13–15!:

h (2l 11)5~q(2l 11)/q!5$@n~V!/v#h~ l !S~@2l 11#@V/VE# !%2, ~1!

whereq(2l 11) andq are, respectively, the energy flux density of the (2l 11)-st harmonic
and the pump. In Eq.~1! the functionn(V) is the electron-velocity-dependent electron
ion collision frequency, which corresponds to the cause responsible for the harm
generation — bremsstrahlung due to the oscillatory motion of the electrons in the
lomb field of the ions, andh( l ) is a function of the number of the harmonic and in t
case of a plane-wave geometry for both the pump and generated harmonic fields is
by13–15

h~ l !5@ l ~ l 11/2!2~ l 11!#21.

Finally, the functionS, which is determined by the electron distribution inside the ato
depends in the high-field regimeVE@V on the argument (@2l 11#V/VE), whereV is the
characteristic electron velocity for some electron velocity distribution that does not
braking effects into account. This is similar to the results obtained in Refs. 13–15, a
can also be established directly for the photoelectron distribution in the SIB regime~see
below!.

In order to use our general expression~1! to examine the quantum properties of th
efficiency of harmonic generation in a photoionized plasma we shall first use the ex
sion for the electron–ion collision frequency corresponding to the Fokker–Plan
Landau collision integraln(V)54pe2ei

2niL/m2V3, whereei5Zi ueu is the ion charge,ni

is the ion number density, andL is the Coulomb logarithm. For ionization in the SI
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regime it is natural to takeV5VZ , whereVZ5Ze2/\ is the Coulomb unit of velocity,16

andZ is the nuclear charge of an atom, as distinct fromZi , which is the multiplicity of
ionization. Then

n~VZ!

v
53L

Zi
2e4m

\2~\v!
F4p

3

\6

m3Z3e6
ni G53LS Zi

Z D 2 2I Z

\v
OZni ,

whereI Z5Z2I H , I H is the ionization potential of a hydrogen atom,OZ5(4p/3)aZ
3 , and

aZ5\2/Ze2m is the Coulomb unit of length.16 Using a5\2/e2m>0.5331028 cm, we
write Eq. ~1! in the form

h (2l 11)>1.4331025@h~ l !#2
Zi

4

Z6 S I H

\v D 2S L

10D
2

~ni@20# !2H SS @2l 11#
VZ

VE
D J 2

, ~2!

whereni@20# is the ion number density in units of 1020 cm23. For what follows it is
helpful to write down in a similar form an expression for the energy flux den
q (W•cm22) of the pump radiation:

q5
c

8p
E25

Z

16p

VE
2

VZ
2 S \v

I Z
D 2 cIZ

aZ
3

5331016S VE

VZ@2l 11# D
2

Z2S l 1
1

2D 2S \v

I H
D 2

.

The maximum value of the efficiencyh (2l 11) corresponds to the maximum value of th
functionS(x)5Sm , which occurs atx5xm . Substituting the corresponding numbers in
the formulas gives both the maximum generation efficiency of the (2l 11)-st harmonic
and the corresponding flux density of the pump.

Before illustrating the general laws presented above, determined by the qua
properties of electrons in an atom, let us note that the main equation for the theo
harmonic generation that determines the pump-induced electron current densityd j , char-
acterizing the coherent bremsstrahlung of a plasma, is most easily obtained by usi
quantum density matrix in the Wigner representation.12 This equation has the form

]d j

]t
52

4pe2ei
2niL

m2

enim
2

~2p\!2 (
q
E dr1dr2

~r12r2!

ur12r2u2
$sin@~muE~ t !/\!~r12r2!#

3@cq~r1!cq* ~r2!1cq* ~r1!cq~r2!#2cos@~muE~ t !/\!~r12r2!#

3@cq~r1!cq* ~r2!2cq* ~r1!cq~r2!#%.

Here cq(r ) is the wave function of an electron in an atom before it is ionized. T
function corresponds to the full set of quantum numbersq characterizing the electroni
state. It should be stressed here that the electronic states of an atom have a sub
influence on the source current for harmonic generation. This has not been appreci
all in the theory of coherent bremsstrahlung generation of harmonics in plasma~see, for
example, the review Ref. 15!.

Let us illustrate the above for the photoionization of the 1s state of a hydrogenlike
atom, where

S~x!5~x3/4p!$E1~x!1@~4/3!1~x/3!#e2x%, E1~x!5E
x

P

~dt/t !e2t. ~3!
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According to Eq.~2!, the function~3! describes harmonic generation over a wide range
pump intensities. For this functionSm50.28 at xm53.34. Among other things, this
makes it possible to find from Eqs.~2! and~3! the maximum efficiency, the correspond
ing pump intensity, and the energy flux density of the (2l 11)-st harmonic:

hm,1s
(2l 11)'1026@h~ l !#2~Zi

4/Z6!~ I H /\v!2~L/10!2~ni@20# !2,

qm,1s~2l 11!'2.731015Z2~ l 11/2!2~\v/I H!2W• cm22,

qm,1s
(2l 11)5qm,1shm,1s

(2l 11)5
2.73109~ni@20# !2

@ l ~ l 11/2!~ l 11!#2 S L

10D
2S Zi

Z D 4

W•cm22.

Applying the latter formulas to a photoionized helium plasma for\v.4 eV pump ra-
diation and assumingL510 andni@20#510 for the generation of the 63rd harmoni
which corresponds to the optical transmission window of water, I obtainqm,1s(63)
51018 W•cm22 andqm,1s

(63) 5280 W•cm22.

In conclusion, I note that an accurate memory of the electron distribution in an
is lost at times greater than the transit time

tee~VZ!5
m2VZ

3

4pe4Lne

5
ta

3LneOZ
>S 10

L D Z3

Zini@20#
13310215 s.

Here ta5\3/e2m.2.42310217 s is the atomic unit of time, and the relationne5Zini

between the electron and ion number densities is taken into account. For heliutee

>5310215 s. For long times the relaxation to a Maxwell distribution does not break
quantum scaling~1! and ~2! of the dependence on the number of the harmonic, wh
goes over to the classical temperature scaling of Ref. 14. Only changes of unit or
the coefficients arise. The latter occurs over a comparatively long time interval.
important property is due to the important circumstance that electron–ion collision
suppressed by a strong electromagnetic field,2 and therefore the electron heating time
much longer thantee. For this reason, for a long time the electron ‘‘temperature’’ c
responds to the quantum energy of electron motion in the atom.

In summary, we have established new laws characterizing the generation of
harmonics in a plasma photoionized by high-power radiation under conditions of
pression of the ionization barrier~conditions which are discussed here for the first tim!,
such that a memory of the quantum electron distribution in the atom determine
properties of the harmonic radiation.

This work was performed under the Government Program for Support of the L
ing Scientific Schools~No. 96-15-96750!, INTAS ~Project No. 97-0369!, and the Russian
Fund for Fundamental Research~Project No. 99-02-18075!.
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Interference of two Bose–Einstein condensates

V. A. Alekseev*
P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Ru

~Submitted 2 December 1998; resubmitted 26 February 1999!
Pis’ma Zh. Éksp. Teor. Fiz.69, No. 7, 491–496~10 April 1999!

The visibility of the density interference pattern of two Bose–Einstein
condensates, which are produced in traps and overlap after the trapping
potential is switched off, is investigated. Coherent wave packets are
used to describe the order parameter in a second-quantization formal-
ism. This results in a decrease of the visibility of the interference
fringes with increasing time delay between the formation of the con-
densates and the observation of interference. In the two limiting cases
of ideal and very dense gases the correlation time increases,t→`, and
the result is identical to that obtained using an approach based on the
Gross–Pitaevski� equation. Under the conditions of the experiment per-
formed by M. R. Andrews, C. G. Townsend, H. J. Miesneret al., Sci-
ence275, 6367~1997!, the computed correlation timet'0.2 s is much
longer than the confinement time of the condensate, and it is possible to
observe the predicted decrease of visibility of the interference fringes
of the density of the atoms. ©1999 American Institute of Physics.
@S0021-3640~99!00607-6#

PACS numbers: 03.75.Fi, 03.75.Dg

Experiments were recently performed to observe the density interference be
two Bose condensates.1 Atoms trapped in a magnetic trap were spatially separated
two groups by a laser beam and cooled. Then the trapping potential was switched o
the condensates expanded and overlapped. The interference fringes of the atomic
ties were observed in the overlap region.

In both the initial assumption in setting up this experiment2 and the theoretica
description following the experiment3,4 the authors initially conjectured that the atom
density interference fringes are formed as a result of the appearance of an order par

~or a macroscopic wave function of the condensate! C(x)5^Ĉ(x)&, which means that
invariance underU(1) gauge transformations breaks down. The wave function of
condensate is a solution of the nonlinear Schro¨dinger equation in which the interatomi

interaction is assumed to be a contact interaction and theĈ operator is replaced by a

c-number, Ĉ(x)→C(x).5,6 It is supposed that such an equation, called the Gro
Pitaevski� equation~GPE!, completely describes the state of the system at tempera
T50. Then there is no need to use the second-quantization formalism.

At the same time such a description of interference is not the only possible one
5260021-3640/99/69(7)/6/$15.00 © 1999 American Institute of Physics
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assumption that a nonzero value^Ĉ(x)&Þ0 is formed is actually equivalent to th
assumption that the condensate wave function is a superposition of statesuN& with dif-
ferent numbersN of particles. We suppose that this superposition has the form
coherent wave packet, used by Anderson to describe superfluidity,7

C5(
N

ANuN&, AN5p21/4DN21/2expH 2
~N2N̄!

2DN2
1 iNwJ , ~1!

wherew is a phase.

The main assertion of the present letter is as follows. The use of the state~1! to
describe interference results in a new qualitative result that does not occur in the
approach — a decrease of the visibility of the interference pattern with increasing
delay between the formation of the state~1! and the observation of the interferenc
According to our estimates, such a decrease of visibility can be observed unde
conditions of the experiment of Ref. 1. Descriptions using the states~1! and on the basis
of the GPE lead to the same results only in the two limiting cases of an ideal gas
very dense gas~in the latter case the correlation time increases very slowly,t;N1/10, and
such conditions are virtually impossible to obtain!. Since in the GPE approach essentia
nothing is known about the dynamics of the formation of both the state~1! and the
macroscopic wave function, at present only experiments can show which descript
the correct one.

Two possible formulations of an interference experiment are examined. In a
periment of the first type~I!, which was realized in Ref. 1, a magnetic trap contain
trapped atoms is divided by a laser beam into two halves, which are cooled to a co
sate state, after which the trapping potential is switched off and the condensates o
In the second case~II !, which was also discussed in Ref. 1, but which thus far has
been realized as far as we know, a trap with the atoms cooled to a condensate s
divided in half and after a time delay the trapping potential is switched off.

Following Ref. 4, we shall use the Wigner function

W~x,p,t !5
1

2pE expS 2 i
py

\ D K Ĉ1S x1
y

2D ĈS x2
y

2D L dy, ~2!

where the brackets indicate averaging over the condensate state, to describe the i
ence of the condensates.

In the GPE approach there is no need for such averaging. In this caseĈ(x) is a
c-number,

C~x!5ca~x!ANa expS 2
i

\
mat D1eiwcb~x!ANb expS 2

i

\
mbt D , ~3!

whereca,b are the solutions of the nonlinear Schro¨dinger equation for each of the trap
a and b, with particle numbersNa,b and chemical potentialsma,b , andw is a phase.
The average assumes the form

^Ĉ1~x!Ĉ~x8!&5 (
i ,k5a,b

gikc i* ~x!ck~x8!, ~4!
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gaa5Na , gbb5Nb , gab5gba* 5ANaNb expS i

\
~ma2mb!t1 iw D . ~5!

For an ideal gas, after the potential is switched offW(x,p,t) satisfies the Liouville
equation, whence it is easy to conclude4 that density interference fringes form wit
visibility V52ugabu/(gaa1gbb). For Na5Nb5N/2 Eq. ~5! gives V51. A numerical

solution of the GPE showed3 that the interaction of the particles changes the structur
the fringes, but the visibility is once again equal to unity.

When the second-quantization formalism is employed, atT50 only the ground-state

functions of the trapsĈ(x)5âaca(x)1âbcb(x) need be retained in the field operato
Then expression~4! retains its form, but the correlation function is equal to the avera
gik5^ai

1ak&, and Eq.~5! changes. Otherwise, everything said about interference rem
in force.

A solution of the form~3! of the GPE is the only possible solution atT50. An
attempt to represent it as a superposition of the states~3! with different Na and Nb is
admissible only for an ideal gas. For a gas of interacting particles the particle nu
dependence of the chemical potential would lead to temporal oscillations of bot
average total number of particles and the number of particles in each condensate.
fore, irrespective of the method used to produce condensates, the visibility in the
approach equals unity,V51, and does not depend on the time. The situation is diffe
whenN-states and wave packets are used.

The calculation of an average value with the standard stateuNa ,Nb&, corresponding
to a fixed number of particles in each condensate, leads to the resultgab5^aa

1ab&50,
i.e., interferen ce vanishes. However, as was noted in Ref. 8, for the method used t
the atoms there are no grounds for assuming that the condensate state is a state
fixed number of particles. Let us assume, for example, that at the final stage of co
the wave function ofN atoms in a trap is a superposition of the statesuN,0, . . .&, corre-
sponding toN atoms in the ground state, anduN21,1,0, . . .&, corresponding toN21
atoms in the ground state and one atom in the first excited state. The cooling rf
removes an excited atom from the trap, switching the stateuN21,1,0, . . .& into
uN21,0, . . .&. As a result, the final state is a superposition of states withN and N21
particles. It is obvious that in the general case, as a result of such a process, the s
the condensate atT50 is described by a superposition of functionsuN,0, . . .&[uN& with
different N. We shall assume that this superposition is of the form~1!.

Following Anderson,7 we shall assume that the amplitudesAN have a sharp maxi-
mum atN5N̄ with varianceDN2'N̄. In this case, the weak dependence of the functi
uN&, which are a solution of the GPE~or the equivalent Hartree–Fock equation!, on the
numberN of particles can be neglected in the field operator, and we can setuN&5uN̄&.
We then obtain from Eq.~1! the value

^Ĉ&5^â&uN̄&5(
N

AN21ANANe~ i /\!~EN212EN)t1 iwuN̄, ~6!

which is identical to the solution of the GPE, if in Eq.~6! the small difference in the

coefficientsAN21'AN is neglected and it is assumed thatAN5AN̄, while the energy
difference between the states is represented approximately in the formEN2EN21



n, we

obtain

f the

tion

anner

a

i-

ement
as the
t if
hat
lity
tching
nt of

529JETP Lett., Vol. 69, No. 7, 10 April 1999 V. A. Alekseev
5]E/]N5m(N̄), neglecting the next higher-order terms in the expansion~in the case of an
ideal gas the next higher-order terms are absent and the result becomes exact!. Taking the
next term in the expansion into account and replacing the summation by integratio
obtain

^â&5AN̄ expF2~ t/t!22 i
m

\
t1 iwG , t52\/DNs, s5]m/]N. ~7!

In a type-I experiment, where the condensates are cooled independently, we

^âaâb
1&5^âa&^âb

1&, whence

gab5^âa&^âb
1&5AN̄aN̄b expF2S t

ta
D 2

2S t

tb
D 2

2 i
ma2mb

\
t1 i ~wa2wb!G . ~8!

Hence one can see that the correlation function and, correspondingly, the visibility o
interference pattern decrease with increasing time intervalt between the formation of a
coherent wave packet~1! and the observation of the interference fringes. The correla

time t can be estimated by settingDN5AN̄.

For a rarefied gas the correction introduced to the energyE(N) of the ground state
of the system by the interaction of the particles can be calculated in the standard m
asDE(N)5^NuUuN&, where

U5U0â0
1â0

1â0â0 , U05
2pa\2

m E uc0u4dr5q\v̄,

m is the mass of an atom,a is the scattering length,c0 is the ground state function in
parabolic trap, v̄5(vx1vy1vz)/3 is the average frequency of the trap, andq

5A2/p(a/R)A(vxvyvz)/v̄
3, with R5A\/(mv̄). Finally, E(N)5\v̄(3N/21qN2).

Naturally, in such a calculation the interaction is assumed to be weak:qN;aN/R!1.
Hence we find]m/]N5]2E/]N252\v̄q andt'v21(N̄)21/2q21.

For qN@1 the Thomas–Fermi approximation9,10can be used to calculate the chem
cal potential,m5 1

2\v(15N̄a/R)2/5, whencet'v21q22/5N̄1/10.

Thus, as particle number increases, the correlation time at first decreases as;N21/2,
reaches a minimumt;v21q21/2;0.03 s atN;103 ~under the conditions of Ref. 1,v
;103 s21 andq;1023), and then increases very slowly ast;0.05N1/10 s. Formally, in
the limit N→` we obtaint→`, and Eq.~8! becomes identical to the GPE result~5!.
Under the experimental conditions of Ref. 1, however,N;106, which is very far from
this limit, andt'0.2 s. This time is much longer than the overlap time;0.04 s of the
condensates after the potential is switched off, but much shorter than the confin
time ;30 s of the condensate state. Thus there arises the question of what to use
time origin in Eq.~8!, which is unsatisfactory from this standpoint. We also note tha
the phases in the superposition~1! are arbitrary, then the result is much less than t
obtained from Eq.~8!. An experimental investigation of the dependence of the visibi
of the fringes on the time delay between the formation of a condensate and the swi
off of the potential can shed light on this situation. We note that the replaceme
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summation overN by integration in the derivation of Eq.~7! suppressed the correlatio
function revivals resulting from the revival of the order parameter, which was discu
in Ref. 11.

We shall now discuss the type-II experiment, where the condensate formed in
is divided into two parts and the potential is switched off after a time delayt. To describe
this experiment there is no need to assumeU(1) violation.

Neglecting particle interaction before the division, the wave function ofN atoms can
be written in the formC(x1 , . . . ,xN)5c0(x1) . . . c0(xN), wherec(x) is the ground-
state wave function of the trap. After the division this function assumes the form

C~x1 . . . xN!5c̃~x1! . . . c̃~xN!, c̃~x!5caca~x!1cbcb~x!, ~9!

ca5Al, cb5A12leiw, 0,l,1.

The coefficientl and the phasew reflect the possible asymmetry of the division proce
Next, it is important to represent the ground state~9! uÑ5N&5(N!) 21/2(caâa

1

1cbâb
1)Nu0& as a superposition of the statesuNa ,Nb&5(Na!Nb!) 21/2(aa

1)Na

3(ab
1)Nbu0& with Na and Nb particles in each condensate. Calculating the ma

element

^Na ,NbuÑ5N&5ca
Nacb

NbA N!

Na!Nb!
dNb ,N2Na

,

we find the wave function of the two condensates

uÑ5N&5~cacb!n(
k

S ca

cb
D kA N!

~n1k!! ~n2k!!
un1k,n2k&, n5N/2. ~10!

The superposition~10!, like ~1!, is a wave packet, but the phases of the constituent st
are determined by the division process.

We now note that forca'cb'1/A2 ~the condensate is divided into two approx
mately equal parts! the terms in Eq.~10! have a sharp maximum atk50. In this case the
function ~10! is also applicable for interacting particles, if the functionsca,b are taken to
be the solutions of the Hartree–Fock~or GPE! equation withNa5Nb5N/2 particles.

Next, it is necessary to take into account the relation

^n1k,n2kuâa
1âbun1k8,n2k8&5dk8,k21A~n1k!~n2k11!e( i /\)Q(k)t,

whereQ(k) is the difference of the energies of the states, which it is convenient to w
in the form

Q~k!5ma2mb1S~k21/2!, S5]ma /]n1]mb /]n5sa1sb . ~11!

Then all sums appearing in the calculation of the average^âi
1âk& over the state~10! can

be calculated exactly, and we find

gii 5Ni uci u2, gab~N!5Ncbca* e~ i /\!(ma2mb)t~ ucbu2e~2 i /2\! St1ucau2e~ i /2\! St!N21.
~12!

When the initial state of the condensate is described by the wave packet~1!, the
correlation function~12! must also be averaged overN. A calculation shows that this
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leads to an additional time dependence, but a much slower one than that in Eq.~12!. In
other words, in this case the description of the initial state of the condensate~before the
division! by a wave function with a fixed number of particles leads to the same resu
the description using a wave packet.

For equal number of particles in the condensatesucau25ucbu251/2 the visibility
V(t)5ucos(St/2\)uN21 corresponding to Eq.~12! decreases from 1 att50 to 0 in a
characteristic timet.t'2\/SAN. With trivial modifications the same estimates a
valid for the correlation timet as in the case I after Eq.~8!. We underscore, however, tha
in the case II the timet is determined uniquely: It is the time delay between the mom
when the condensate is divided and the moment when the potential is switched o

At times which are multiples oft154p2\/S, as one can see from Eq.~12!, inter-
ference is revived. The visibility of the revived pattern is close to the initial visibil
except when the two conditionsqN@1 and uma2mbu;ma,b hold simultaneously, in
which case it is suppressed by the term quadratic ink, which was neglected in the
expansion~11!.

The method for obtaining the wave function~10! is similar in many respects to tha
used in Ref. 12, but in Ref. 12 the authors arrive at a different result. They assert th
time delay leads only to diffusion of the phase of the interference pattern, which
domly fluctuates in different realizations of an experiment with the same time dela

The decrease in the visibility and the revival of the interference pattern do n
into the GPE approach. The experimental observation or proof of the absence of
phenomena could increase substantially our understanding of the process leading
formation of and the properties of condensate states.
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Andreev reflections and magnetoresistance in
ferromagnet–superconductor mesoscopic structures
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An analysis is made of the change in the resistance of a nanostructure
consisting of a diffusive ferromagnetic~F! wire and normal metal elec-
trodes, due to the onset of superconductivity~S! in the normal electrode
and Andreev scattering processes. The superconducting transition re-
sults in an additional contact resistance arising from the necessity to
match the spin-polarized current in the F-wire to the spinless current in
the S reservoir, which is comparable to the resistance of a piece of F
wire with length equal to the spin relaxation length. It is also shown
that in the absence of spin relaxation the resistance of a two-domain
structure is the same for a ferro- or antiferromagnetic configuration if
one electrode is in the superconducting state.
© 1999 American Institute of Physics.@S0021-3640~99!00707-0#

PACS numbers: 73.23.2b, 75.70.Pa, 74.80.Dm

In recent years studies of transport in mesoscopic conductors with strongly c
lated electrons have revealed a number of novel phenomena, including the occurre
a giant magnetoresistance~GMR! in multilayer FN structures,1 where F~N! are ferromag-
netic~normal! metals. At the same time a variety of new transport properties arising f
superconductivity~S! in mesoscopic NS structures have been identified.2,3 More recently
the effect of superconductivity on the transport properties of spin-polarized electro
magnetic materials was studied4–8 and it was observed that the onset of superconducti
may lead to an increase or decrease of the conductance of an F film.4–6 This change may
be as much as 10% of the normal state conductance and is too large to be attributed
superconducting proximity effect~in magnetic materials, such as Ni and Co, the e
change energyeex is two orders of magnitude larger than the superconducting gapD,
which suppresses the proximity effect!.

It has been pointed out by de Jong and Beenakker9 that if the conductivitiess↑ and
s↓ for spin-up and spin-down electrons in a ferromagnetic material are different, the
resistance of a ferromagnetic wire increases due to contact with a superconductor.
because the electrical current in thes-wave superconductor is spinless, and matching
spin-polarized current in the ferromagnet to the spinless current in the S reservo
5320021-3640/99/69(7)/7/$15.00 © 1999 American Institute of Physics



. When
t, the
rm of

nto
ents
and

c wire
es-
n
We

S

n at
k
netic
ce

a
nd by

Fermi

533JETP Lett., Vol. 69, No. 7, 10 April 1999 Fal’ko et al.
volves the Andreev scattering process, which increases the resistance of a system
the ferromagnetic wire is long and when spin relaxation processes in it are efficien
resistance variation of a diffusive FS structure caused by this mechanism has the fo
an additional contact resistance10 of the FS interface, which can be also extended o
multiterminal geometry.11 The necessity to match the spinless and spin-polarized curr
at the FS interface also results in a different nonequilibrium population of spin-up
-down states near the superconducting contact~within one spin relaxation lengthLs).

In the present paper, we consider a nanostructure consisting of a ferromagneti
with one ~F↑↑) or two anti-collinear~F↑↓) domains embedded between two normal r
ervoirs , one of which becomes superconducting atT5Tc . The sequence of domains i
a ferromagnetic wire represents our simplified view of a multilayer GMR structure.
calculate the resistances of these structures,1! R↑↑N , R↑↓N , R↑↑S andR↑↓S in the limit of
a long and short spin relaxation length (Ls@L, Ls!L) and in the case when the F
interface itself causes the spin relaxation~for example, due to spin–orbit coupling!. We
find that, in the absence of spin relaxation,R↑↑N,R↑↓N5R↑↑S 5R↑↓S , so that an applied
magnetic field~which polarizes domains! yields a nonzero resistance variation aboveTc ,
as in typical giant magnetoresistance systems, and gives no resistance variatioT
!Tc . Spin relaxation processes of any kind~either due to spin–orbit coupling in the bul
of a ferromagnetic metal and its surface, or caused by a noncollinearity of ferromag
domains in the wire! change the resistanceR↑↑S , leading to a nonzero magnetoresistan
at T,Tc .

First of all, we consider the structure F↑↑N~S! shown in Fig. 1a, which consists of
single ferromagnetic domain. The resistance of a disordered F wire can be fou

FIG. 1. Pictorial representation of the two-domain FS structure with ferromagnetic~a! and antiferromagnetic~b!
alignment of domains, a double Andreev reflection process in it, and of possible relations between
surfaces of spin-up and -down electrons in the F wire~left! and in the N~S! metal ~right!.
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solving diffusion equations for the isotropic part of the electron distribution funct
na(z,«)5*dVpna(z,p). Using the electron–hole symmetry, we restrict our analysis
the calculation of a symmetrized functionNa(«,z)51/2@na(z,«)1na(z,2«)#, where«
is determined with respect to the chemical potential in the S~N! electrode. In terms of
Na(«,z), the electric and spin current densities are given by

j Q,M5 j a6 j ā , j a5sa E
2`

` d«

e
]zNa~«,z!, ~1!

whereā5(↓,↑) for a5(↑,↓), andsa5e2naDa , wherena andDa are the density of
states and diffusion coefficient for electrons in the spin statea. The functionsNa(e,z)
obey the diffusion equation

Da]z
2Na~z,«!5w↑↓nā@Na~z,«!2Nā~z,«!#, ~2!

which is more convenient to use in the equivalent form

]z
2 (

a5↑↓
DanaNa50, @]z

22Ls
22#~N↑2N↓!50. ~3!

The term on the right-hand side of Eq.~2! accounts for spin relaxation, which ma
result from both spin–orbit or spin-flip scattering at defects. It can be used to defin
effective spin relaxation length,Ls asLs

225w↑↓@n↑ /D↓1n↓ /D↑#. This pair of equations,
which ignore any energy relaxation, should be complemented by four boundary c
tions, two on each side of the ferromagnetic wire.

The boundary conditions for Eqs.~2! and ~3! can be obtained in various ways. W
employ the model shown in Fig. 1, where the FS junction is replaced by a sandwi
three layers:~i! a ferromagnetic~F! wire of lengthL connected to the bulk F reservoir,~ii !
a normal metal layer (N˜ ) which never undergoes a superconducting transition by it
and has a negligible resistance, and~iii ! a bulk electrode S~N! which undergoes the
superconducting transition. The insertion of a normal metal layer N˜ between the F and
S~N! parts allows us to formulate the boundary conditions at the FS interface u
known boundary conditions at the N˜S interface.3 For the sake of simplicity, we conside
Ñ to be ballistic and the FN˜ junction to be semiclassically transparent, so that electr
either pass from one side to the other, or are fully reflected, depending on whethe
process is allowed by energy–momentum conservation near the Fermi surface. Th
approximation avoids resonances through the ‘‘surface states’’12 due to multiple passage
through the normal layer inserted between S and F. As illustrated in Fig. 1, we app
mate the spectrum of electrons by parabolic bands — two for spin-down and sp
electrons in F, and one in the N part, which we take into account by introducing
parametersdaN

2 5pFN
2 /pFa

2 and d25(pF↓ /pF↑)
2,1. The ÑN interface is assumed to b

ideal, and the Fermi surfaces in N˜ and N layers to be the same, so that N˜S Andreev
reflection has unit probability. In such a model, the momentum of an electron in the
of the junction is conserved.

The boundary conditions on the left end are given by the equilibrium distributio
electrons in the F electrode,
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Na~2L/2,«!5
1

2
@nT~«2eV!1nT~2«2eV!#. ~4!

The boundary condition on the other end depends on the state of the electrod
in the superconducting state takes into account Andreev reflection at the NS interf13

Since in our model of an ideal FN˜ interface, the parallel component of the electr
momentum is conserved, the effective reflection/transmission of electrons in parts I
of the ferromagnet Fermi surface sketched in Fig. 1 are different. Although noneq
rium quasiparticles from F pass inside N˜ and generate holes by being Andreev reflec
at the ÑS interface, only those holes which are created by quasielectrons from par
the Fermi surface in F may escape into the F wire. The spin-down holes which
generated by spin-up electrons from part II of the Fermi surface cannot find states
so that they are totally internally reflected into N˜ . Then, they undergo a second Andre
reflection, convert into spin-up electrons, and return back into the ferromagnetic
This results intotal internal reflectionof spin-up electrons from part II of the Ferm
surface inside the F wire, which nullifies the spin current through its FS edge.

The boundary condition near the FN˜ junction can be found by matching the isoe
ergetic electron fluxes determined in the diffusive region found in the ballistic F re
using the reflection/transmission relation between the distributions of incident and
dreev or normally reflected electrons. For quasiparticles with energies 0,«,D this can
be written in the form

s↑]zN↑2s↓]zN↓52s~N↑2N↓!, ~5!

N↑1N↓1
2

3
¸d2l ↓]zN↓52NT~«!, ~6!

where ¸5(12d2)3/2/d2, d25pF↓
2 /pF↑

2 ,1, and NT(«)51/2@nT(«)1nT(2«)#51/2 at
T50. The spin relaxation term on the right hand side of Eq.~5! takes into account the
spin–orbit relaxation on the FN interface.

One can obtain boundary conditions in another way, after having considered
the F wire and an auxiliary N piece of a normal metal in the diffusive limit, using
known boundary conditions at the NS interface.3 Then, Eq.~5! follows from the condi-
tion ]zf a50 at the NS interface,3,14 where f a5@na1(12nā(2e)#/2 is the sum of the
distribution functions of electrons and holes. Equation~6! emerges from the equilibrium
condition for electrons and holes in opposite spin states at the SN interface~if we neglect
the third term on the left in Eq.~6! and set the electric potential equal to zero in!.
At energies above the superconducting gapD, the boundary conditions coincide wit
Eq. ~4!.

For a ferromagnetic wire with sufficient intrinsic spin relaxation,Ls!L, we find that
the contact resistance of the FS boundary is equal to

r c
S5Rh

Ls

L'

§2

12§2
1

Rhl 1

3L'

¸

11§
, ~7!



n-
ag-

nd of
ferro-

with

o-
re con-
of
ce

rent
on-

of a
rface.
with

d-
for

lts in

xation

536 JETP Lett., Vol. 69, No. 7, 10 April 1999 Fal’ko et al.
wherez5(s↑2s↓)/( s↑1s↓) is the degree of spin polarization of a current in a mo
odomain ferromagnetic wire,Rh is the resistance per square of a monodomain ferrom
netic film, andL' is the wire width.

In the normal state of the right hand reservoir, the boundary conditions at the e
an F wire depend on the relation between the Fermi momenta of electrons in the
magnet and normal metal,

Na~z,«!1
4¸aNDa

va
]zNa~z,«!U

z5L/2

5NT~«!, ~8!

where¸aN5(12daN
2 )3/2/daN

2 , daN,1, and¸aN50, daN>1, daN
2 5pFN

2 /pFa
2 . These re-

sult in the contact resistance term

r c
N5Rh

l 1~11§!

L'
H ~12§!l 1 /Ls1

3

2
¸1N

21 J 21

, ~9!

which has sense only when it is larger than the resistance of a short piece of F wire
length of the order ofl 1 . Otherwise, it should be neglected.

After comparing the latter result tor c
S, we find that the resistance of a long ferr

magnetic wire attached to an S electrode exceeds the resistance of the same wi
nected to a normal reservoir by the resistance of an F segment of length of orderLs .
One can extend the result of Eq.~7! to finite temperatures, which yields the resistan
variation below the superconducting transition10

RS~T!2RN'
§2

12§2

Ls

L'

Rh tanhS D~T!

2T D . ~10!

Note that the increase of the resistance in Eq.~10! originates fromthe matching of a
spin-polarized current in the highly resistive ferromagnetic wire to a spinless cur
inside the superconductor. We expect this robust effect to be present both in the m
odomain and polydomain wires, with domain sizeLD.Ls .

The solution of Eqs.~2!–~6! can also be used to describe the contrasting case
ferromagnetic wire where all spin relaxation processes take place only at the FS inte
Such a structure may consist of either of one or of two ferromagnetic domains
antiparallel magnetizations~antiferromagnetic configuration!, as shown Fig. 1b. In the
latter case, we neglect the local microscopic F↑F↓ interface resistance, so that the boun
ary conditions forNa(x) at the domain wall can be reduced to the continuity equation
the spin current,sa]zNa and for the distribution functionsNa . This yields

R↑↑N5
L

s↑1s↓
, R↑↓N5R↑↓S5

s↑1s↓
4s↑s↓

L,

and

R↑↑S5
L~s↑1s↓14s~L/2!!

4~s↑s↓1s~L/2!~s↑1s↓!!
. ~11!

From this, we deduce that the alignment of magnetizations in two domains resu
a significant change of the resistance in the case of normal reservoirs~N! and leaves the
conductance unchanged when one of the reservoirs is a superconductor if spin rela
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is completely absent, or the wire is too short:R↑↑S(sL→0)→R↑↓S . A similar behavior
has been observed in numerical simulations of the transport through the giant magn
sistance system with S contacts.15 In a word, when superconducting leads inject a spinl
electric current into the spin-conserving multidomain system, the change in the pol
tion of domains does not affect of resistance of the system. Spin relaxation at th
surface restores the sensitivity of the system to the polarization state of domains,
a long wire (L→`) the interplay between Andreev scattering and spin relaxation re
in a contact resistance, similar to that in Eq.~7!:

R↑↑S~T!2R↑↑N'
§2

2s
tanhS D~T!

2T D . ~12!

Note that the electric current generates a nonequilibrium magnetization,dM
5m(n↑*deN↑2n↓*deN↓), which is different for different configurations:dM ↑↑N50,

dM ↑↑S5S z/L1
1

2D M0 , dM ↑↓N5dM ↑↓S5S 1

2
2uzu/L D M0 ,

M05eV
4n↑n↓
n↑1n↓

§m

for T!Tc . Here, m is the magnetic moment of electrons,2L/2,z,L/2, and z50
corresponds to the F↑F↓ domain wall.

In summary, we have shown that in the absence of any spin relaxation the
tances of the structures F↑↓N, F↑↓S and F↑↑S are equal but differ from the resistance
the F↑↓N structure. This can be regarded as a prediction of a suppression of the
magnetoresistance in multilayer FN structures with superconducting leads and n
relaxation. Surface spin relaxation at the FS interface alters the equivalence betweeR↑↑S
and R↑↓S resistances. When the spin relaxation is fast in the bulk of the ferromag
material, the resistance of the F↑↑S structure changes at the superconducting transition
a contact resistance value which depends on the spin relaxation rate. For examp
ferromagnetic wire in which the size of a ferromagnetic domain is larger than the
relaxation lengthLs , the resistance variation is formed within theLs segment of the F
wire ~where the spin-polarized current from the F part relaxes to a spinless current!,
andRS(T)2RN increases from zero atTc to a positive value atT50.

The authors thank V. Petrashov, R. Raimondi, E. McCann and S. Iordansk
discussions. This work was funded by EPSRC and EC TMR Program.
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Effect of surface magnetism of solid-state substrates
on the NMR of liquid 3He

A. V. Klochkov, V. V. Naletov, M. S. Tagirov, and D. A. Tayurski 
Kazan State University, 420008 Kazan, Russia

~Submitted 21 January 1999; resubmitted 24 February 1999!
Pis’ma Zh. Éksp. Teor. Fiz.69, No. 7, 503–509~10 April 1999!

The results of investigations of the longitudinal relaxation rate of the
nuclear spins of liquid helium-3 in contact with finely dispersed LiYF4

dielectric powders with various degrees of filling of the microcracks on
the crystal surface by water molecules are reported. It is found that
exchange correlations appear between paramagnetic defect centers on
the surface as a result of spin-density transfer via the molecular orbitals
of oxygen in the water molecule. ©1999 American Institute of Phys-
ics. @S0021-3640~99!00807-5#

PACS numbers: 67.55.2s, 76.60.Es, 75.30.Pd

The success of the method of NMR of the nuclei in liquid3He for investigating the
unusual properties of this quantum liquid at low and ultralow temperatures is well kn
One such effect is the presence of magnetic coupling of the nuclear spins of
helium-3 and the magnetic moments of a solid-state substrate. The nature of this co
is still not completely understood, even though the effect of the container walls o
magnetic relaxation of spins in liquid helium-3 was observed 40 years ago.1 In Refs. 2
and 3 it was established reliably that magnetic coupling exists between the nuclear
of 19F fluorine present in the microspheres of finely dispersed~0.2 mm! DLX-6000
polytetrafluoroethylene powder, and in Ref. 4 transfer of magnetization from the19F
nuclear spins to protons present in polystyrene microspheres via the nuclear sp
liquid helium-3 was observed.

The cross relaxation observed in Ref. 5 between the nuclear magnetic mome
169Tm in thulium ethylsulfate and the nuclear spins of liquid3He stimulated the investi-
gation of magnetic coupling between liquid helium-3 and dielectric Van Vleck param
nets. The magnetic relaxation of liquid3He in contact with single crystals of the dielectr
Van Vleck paramagnet LiTmF4 and its diamagnetic analog LiYF4 was investigated in
Ref. 6. It was found that the magnetic relaxation of the nuclear spins of liquid3He
present in the gap between two LiYF4 single-crystal surfaces acquires substantially n
features as compared with relaxation in a bulk liquid. Thus, according to
Bloembergen–Purcell–Pound~BPP! theory,7 at temperatures 1–4 K the longitudinal an
transverse relaxation in bulk liquid3He are governed by the modulation of the dipole
dipole interaction by the diffusive motion and have the same rates, of the order of23

s21. Even though the gap width is macroscopic (1024 m!, the experimental results atte
to the existence of a large increase in the relaxation rates, and the transverse rel
5390021-3640/99/69(7)/7/$15.00 © 1999 American Institute of Physics
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time T2 of the nuclear spins of liquid helium-3 is much shorter than the longitud
relaxation timeT1, similarly to the well-known picture of nuclear magnetic relaxation
solids. When one of the diamagnetic LiYF4 crystals was replaced by a crystal of the V
Vleck paramagnet LiTmF4, an even larger increase of the magnetic relaxation rate
liquid helium-3 was observed. It was found that the experimental data cannot b
plained on the basis of standard theories of magnetic relaxation, even taking acco
the effect of the nuclear magnetic moments of thulium, and a model of the effect
restricted geometry~microcracks on the crystal surfaces! on the magnetic relaxation wa
proposed. The basic idea of the proposed model consists in the following. In s
where there is essentially no translational motion of atoms, the magnetic resonance
quite wide and the transverse relaxation times are short. In liquids, on account o
translational motion of the atoms the resonance line is strongly narrowed and the
ation times are long. When a liquid in which the main relaxation mechanism is mo
tion of the dipole–dipole interaction by diffusive motion is placed in a restricted ge
etry, in contrast to the case of a bulk liquid not all modes of diffusive motion are pos
— only the resonant modes survive. Therefore a magnetic resonance line will n
narrowed as much as in a bulk liquid, and at the same time it will not be as wide as
case of a solid. For a quantum liquid such as liquid helium-3 there may be even
such limitations, for example, because of the Pauli exclusion principle, on the diffu
motion. Numerical calculations for a spherical restricted geometry confirm these qu
tive considerations and show at least an order of magnitude difference betwee
longitudinal and transverse relaxation times in liquid helium-3.6,8 For this reason, mag
netic relaxation in liquid helium-3 in contact with solids can be represented in a sim
fied way as follows: At first, because of the very efficient spin diffusion, magnetizatio
transferred from the bulk liquid to atoms of liquid helium-3, which in a restricted ge
etry are present in microcracks on the crystal surface where relaxation occurs. Ma
centers located on solid surfaces evidently strongly influence the relaxation rate.

Such microcracks, which have characteristic sizes 100 Å , on thesurface of powders
and single crystals of double fluorides have been observed by NMR cryoporometr
atomic-force microscopy.9,10

Paramagnetic defect (F) centers appear on the surfaces of these microcracks
result of large distortions of the crystal lattice. The properties of these centers
studied in Ref. 11 by EPR, conductometry, NMR of19F, and magnetization measure
ments. The present work continues the study of both the magnetic properties o
surfaces of double fluorides and the magnetic relaxation of liquid3He in contact with a
solid substrate — a crystal surface of finely dispersed LiYF4 dielectric powder.

Figure 1 shows the temperature dependence of the longitudinal relaxation ra
nuclei of liquid 3He in contact with ‘‘dry’’ LiYF4 powder. Although the temperatur
dependence obtained is weak, its slope is obviously opposite to the slope obser
previous investigations of magnetic coupling in experiments on the magnetic relax
of liquid helium-3 in contact with LiYF4– LiTmF4 single crystals,6, where the longitudi-
nal relaxation rate was proportional to the magnetization of solid-state magnetic mo
and therefore decreased with increasing temperature. To understand the reason fo
radical change in the temperature dependence, we shall write down the expression
thermal contact of a nuclear spin system of liquid helium-3 and a solid-state substra
the basis of the relaxation model proposed in Ref. 6:
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C3HeT1,meas
21 5C3He,bulkT1,diff

21 1C3He,restrT1,restr
21 , ~1!

where

C3He5C3He,bulk1C3He,restr ~2!

is the total magnetic specific heat of nuclear spins of liquid3He, consisting of two terms
referring to, respectively, bulk helium-3 atoms and atoms located in microcracks o
crystal surface~restr!. The relaxation timeT1,meas is the measured value,T1,diff is the
characteristic transfer time of the longitudinal magnetization of the nuclear spins of l
helium-3 from atoms of the bulk liquid to atoms present in the restricted geomet
microcracks on a crystal surface, andT1,restr is simply the relaxation time of the nuclea
magnetizatio n of atoms of liquid3He in these microcracks. This time can be determin
by several mechanisms:

a! direct transfer of magnetization to magnetic moments of the solid-state sub
which have close Larmor frequencies~see, for example, Ref. 2!; this mechanism is mos
efficient when the frequencies are identical~see, for example, Refs. 5 and 12!;

b! relaxation of longitudinal magnetization in strongly fluctuating local magn
fields produced by paramagnetic defect centers on the surfaces of microcracks;

c! relaxation as a result of fluctuations of local fields in the presence of quan
exchange of helium-3 atoms on a solid surface;13 it is obvious that at temperatures abo
1 K this mechanism is inefficient because the number of adsorbed helium-3 ato
small; and,

FIG. 1. Temperature dependence of the longitudinal relaxation rate of nuclear spins of liquid helium-3 in
of ‘‘dry’’ micron-size LiYF4 powder (s) and in pores of powder which are filled with distilled water and hea
water for various water molecule concentrations as a percent of the total volume of voids in the sample
Comparison of the relaxation rates of liquid helium-3 with 1% filling of the voids in the sample with H2O
and O2.
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d! relaxation in a restricted geometry because of large changes in the spectra
acteristics of diffusive motion;6 our calculations show that this mechanism should m
a temperature-independent contribution~if one neglects the temperature dependence
the diffusion coefficient! to the measured relaxation rate.

It follows from Eq.~1! that in our experiments with single crystals6 the bottleneck of
the process is the relaxation of magnetization at the surface because of the small r
fraction of helium-3 atoms in microcracks. It can be concluded from the character o
temperature and field dependences that the dominant relaxation mechanism is the
one mentioned above. Indeed, the increase in magnetization of the paramagnetic
centers under the influence of temperature or magnetic field leads to an increase
amplitude of the fluctuating magnetic fields, which accelerates the relaxation proce

In the present experiments with finely dispersed powders the relative fractio
helium-3 atoms in microcracks is high because of the extended crystal surface of m
size power particles. However, because of the high local magnetic fields in microcr
the Larmor frequencies of the nuclear spins of the atoms of liquid helium-3 in
microcracks differ quite substantially from the Larmor frequency of the nuclear spin
bulk liquid 3He. It is obvious that in such a situation the bottleneck in relaxation will
the transfer of magnetization from the bulk liquid to the nuclear spins of3He in the
microcracks. For this reason, the increase in magnetization of the paramagnetic
centers as a result of a decrease in temperature will increase even more the mism
the Larmor frequencies and, in consequence, slow down the relaxation of the longitu
magnetization. In this case, the quite large temperature-independent contribution
relaxation rate is governed by the relaxation mechanism in the restricted geometry

Summarizing, we note that the present experiments have confirmed our conje6

that the efficiency of the magnetic relaxation of liquid helium-3 in contact with a so
state substrate is determined by the competition between two processes: the acce
of relaxation in nonuniform magnetic fields and the exchange of magnetization bet
the atoms of liquid helium-3.

To study further the degree to which paramagnetic defect centers on a crysta
face influence the magnetic relaxation of the nuclei of liquid helium-3, we perfor
experiments to measure the temperature dependence ofT1 for 3He nuclei with various
degrees of filling of microcracks on a crystal surface by molecules of distilled w
Finely dispersed LiYF4 powder was placed in a Pyrex glass ampoule with a fill facto
0.5. The ampoule was evacuated for several days and the powder was exposed
rated water vapor at room temperature for a certain period of time. After being deta
from the reservoir with saturated water vapor, the sample reached an equilibrium s
several hours. The degree of filling of microcracks with water was monitored by N
cryoporometry, described in Refs. 9 and 10. The longitudinal relaxation rate o
nuclear spins of liquid helium-3 at each temperature was determined from 50 valu
the amplitude of the free-induction decay signal for various delay timest between the rf
probe pulses (p/2–t –p/2). In all the experiments the evolution of the longitudin
magnetization was described well by a single exponential.

The data from these measurements are displayed in Fig. 1~open symbols!. Compar-
ing the dependences obtained and the measurements of the relaxation rate of nu
liquid helium-3 in contact with the ‘‘dry’’ LiYF4 powder shows that in the case of the d
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powder the temperature dependence is quite weak, whereas even a small filling
microcracks with H2O molecules increases the magnetic relaxation rate of liq
helium-3 and results in a strong linear Curie–Weiss-type temperature dependence
characteristic temperatureTc50.7 K. Such behavior ofT1

21(T) indicates that water mol-
ecules play a large role both in displacing atoms of liquid helium-3 from microcracks
in the surface magnetism. A very low degree of filling of the microcracks with w
influences mainly the decrease in the mismatch of the Larmor frequencies, since
molecules displace the rapidly relaxing atoms of liquid helium-3 from regions with
largest nonuniformities of the local magnetic fields. A further increase of the conce
tion of water molecules results in a large decrease of the magnetic specific heat
rapidly relaxing atoms of liquid helium-3~see Eq.~1!!.

The increase in the slope of the temperature dependence of the longitudinal
ation rate of liquid3He as the water molecule concentration increases from 0.25% to
indicates that the above-mentioned mismatch of the Larmor frequencies decrease
the spatial fluctuations of the local magnetic fields in the microcracks on the su
decrease. This fact can be explained by the appearance of correlations betwe
magnetic moments of the defect centers. For this reason, it is reasonable to infer th
paramagnetic defect centers11 concentrated on the surface form exchange-coupled m
netic pairs or clusters, where the exchange interaction occurs as a result of spin-d
transfer via the molecular orbitals of oxygen in the water molecules. This is indicate
the fact that the temperature dependence of the relaxation rate remains unchange
the protons in the water are replaced by deuterium~Fig. 1, filled symbols!. An increase of
the temperature decreases the magnetization of such exchange-coupled pairs
consequence, increases the relaxation rate of the nuclear magnetization of
helium-3. The field dependence of the slope ofT1

21(T) at T51.5 K and 0.5% filling of
microcracks with water molecules, as shown in Fig. 2, can serve as an additional
ment in support of our picture of the magnetic relaxation of liquid helium-3 in con
with a crystal surface. An increase of the magnetic field and the corresponding su
sion of the correlations between the paramagnetic defect centers increase the

FIG. 2. Field dependence of the slope ofT1
21(T) at T51.5 K with 0.5% filling of the voids in the sample

by H2O molecules.
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nonuniformities of the local magnetic fields in the microcracks and decrease the
ation rate.

At this stage of the investigations, on account of the lack of detailed informa
about the wave functions of paramagnetic defect centers, it is impossible to make
titative estimates of the characteristic temperature for such magnetically coupled
and to establish the structure of clusters. However, the experimental valueTc50.7 K lies
within reasonable limits when allowance is made for the two-dimensional character
arrangement of defect centers and their concentration at the surface.11

According to our calculations,6,8 the mechanism of relaxation in a restricted geo
etry is most efficient for pores less than 50 Å in size. Therefore it is not surprising th
experiments with water-filled pores the temperature-independent contribution to the
netic relaxation rate is absent, and extrapolation of all temperature dependences in
gives the same characteristic temperature.

If the above-described magnetic relaxation mechanism due to the formatio
exchange-coupled pairs or clusters is correct, then replacing the diamagnetic wate
ecules by paramagnetic oxygen molecules~which actually means covering the enti
surface of the microcracks by a solid-state oxygen film, which could be in a magnet
ordered state! should smooth out the spatial fluctuations of the local magnetic fields
increase the longitudinal relaxation rate. Indeed, such an acceleration by more
factor of 2 is observed experimentally~inset in Fig. 1!.

The experimental data — the temperature, field, and concentration dependen
the longitudinal magnetic relaxation rate of the nuclear spins of liquid helium-3 — ca
described by the formula

T1
215A1

T2Tc

CB
, ~3!

whereB is the magnetic induction andC is a coefficient that contains information abo
the magnetic properties of the surface paramagnetic centers and about the ma
interactions between these centers and the nuclear spins of liquid helium-3. The co
term A describes the contribution of the relaxation mechanism in a restricted geom6

In conclusion, we note that our investigations make it possible, on the one han
determine various channels in the magnetic relaxation of the nuclear spins of
helium-3 in contact with a solid. On the other hand, the results obtained show t
quantum liquid — helium-3 — can be used as a probe for investigating the mag
properties of a solid surface at low and ultralow temperatures. Moreover, the exper
tally observed mechanisms make it possible to determine the real possibilities of dy
polarization of nuclei of liquid helium-3 using paramagnetic centers on a solid surfac
our future work we shall investigate the magnetic relaxation of liquid helium-3 in con
with finely dispersed LiYF4 powder at temperatures below 1 K.

We thank V. A. Atsarkin and V. V. Dmitriev for their interest in this work and f
a discussion of the results, and R. Yu. Abdulsabirov and S. L. Korableva for growin
crystals.
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High-frequency asymptotic behavior of T-odd optical
effects

V. N. Gridnev
A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences,
194021 St. Petersburg, Russia

~Submitted 25 February 1999!
Pis’ma Zh. Éksp. Teor. Fiz.69, No. 7, 510–513~10 April 1999!

It is shown that the contribution of low-frequency excitations with
characteristic energy\v l to T-odd ~nonreciprocal! optical effects, in-
cluding spatial dispersion effects, at optical frequenciesv@v l can be
calculated in the zeroth-order approximation with respect to the param-
eterv l /v. This greatly simplifies their analysis. Some of these effects
are found to be frequency independent in the spectral regions where the
refractive indexn(v)' const. It is shown that frequency-independent
Faraday rotation can be observed in media with zero magnetization,
including in media with zero microscopic magnetic moment density.
© 1999 American Institute of Physics.@S0021-3640~99!00907-X#

PACS numbers: 78.20.Ls

It is well known that the linear response of a solid, just like any system of cha
particles, in the field of an electromagnetic wave with frequencyv is determined prima-
rily by excitations with energiesEn2Em5\vnm;\v, wheren and m enumerate the
states of the system. Therefore experiments in solids at optical frequencies carry
mation about excitations with energies;1 eV. Nonetheless, in certain cases it could
desirable to use such experiments to investigate the properties of low-frequency e
tions vnm!v. This is based on the fact that sincevnm!v, the dynamics of low-
frequency excitations can be excluded from the high-frequency response~i.e., one can set
vnm50) in the analysis of a number of optical effects. In these cases the analysis
high-frequency response is much simpler than the corresponding analysis of the
frequency susceptibility. For example, in Ref. 1 it was suggested that Faraday ro
measurements in metals with strong electronic correlations (La2SrxCu22xO4,
YBa2Cu3O72d) at optical frequencies be used to determine the density and sign o
carriers, since the complicated Fermi surface makes it difficult to obtain this inform
from Hall effect measurements.

In the present letter it is shown that the zeroth approximation in the param
vnm /v can be used not only for the Faraday effect but also for otherT-odd ~nonrecip-
rocal! optical effects, whose existence is due to the nonzero wave vectork of light, i.e.,
spatial dispersion effects. It is also shown that some of these effects are freq
independent in the spectral regions where the refractive indexn(v)' const, and they can
be observed in media with nontrivial types of magnetic ordering.
5460021-3640/99/69(7)/5/$15.00 © 1999 American Institute of Physics
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In accordance with the conditionv@vnm we will study dispersion optical effect
described by the Hermitian part of the permittivity tensor

e ik~v,k!5
4p

\v2V
(
m,n

rmFJmn
i ~k…Jnm

k ~2k!

vnm2v
1

Jmn
k ~2k…Jnm

i ~k!

vnm1v
2

Jmn
i Jnm

k 1Jmn
k Jnm

i

vnm
G ,

~1!

J~k!5(
a

Ja~k!,

where J„k… is the Fourier component of the current operator,Ja(k)5(ea/2ma)
3(pae2 ik–ra1e2 ik–rapa) is the contribution of theath particle to the current,Jnm

k

5Jnm
k (0), \vmn is the transition energy, andrm is the distribution function. The operato

p, which includes the spin–orbit interaction and the constant vector potentialA, has the
form p5p2eA/c1(2mc2)21s3¹V(r )2 is3k, wheres is the spin operator. Ordinarily
the last term in the operatorp is neglected, but it is important forT-odd optical spatial
dispersion effects.

Let us consider the contributionDe ik(v,k) of low-frequency excitations to the
permittivity tensore ik(v,k). To zeroth order invnm /v for kÞ0 we obtain from Eq.~1!

De ik~v,k!5
4p

\v3V
^@Ji~2k!,Jk~k!#&. ~2!

This expression also holds atk50 for the antisymmetric part of the tensore ik . Besides
the standard Onsager symmetry relationsDe ik(v,k,h)5Deki(v,2k,2h), expression
~2! possesses the additional symmetryDe ik(v,k,h)52Deki(v,2k,h). Here the sym-
bol h denotes here aT-odd quantity that characterizes the state of the medium and
tensor with respect to spatial transformations. These two symmetry relations are co
ible only if De ik(v,k,h) is an odd function of the parameterh, i.e., it describesT-odd
optical effects. Hence follows an important and perfectly general result: At optical
quencies it is toT-odd optical effects that the low-frequency excitations make the m
mum contribution with respect to the parametervnm /v. It is also important that the
approximationvnm /v50 greatly simplifies the calculation ofDe ik(v,k), reducing it to
a calculation of the current commutator. It should be stressed that this result also pe
to spatial dispersion effects, i.e., effects for whichkÞ0.

The commutator in Eq.~2! can be calculated only in a concrete model. In the pres
letter we consider only the general, model-independent properties of the high-freq
response~2!, primarily the frequency dependence of the corresponding optical eff
For this, using expression~2!, we write out the first few terms of the expansion
De ik(v,k) in powers ofk up to terms cubic ink, inclusive, separating explicitly the
dependence onk andv:

De ik~v,k!5
1

v3
eiksgs1

k

v3
g iklml1

k2

v3
eiksxslnmlmn1

k3

v3
b iklnsmlmnms . ~3!

Herem is a unit vector parallel tok. On this basis, the vectorg and the tensorsĝ, x̂, and
b̂ areT-odd and do not depend onk andv. According to the Onsager principle, term
that are even ink are antisymmetric ini andk, while the odd are symmetric. Therefor
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the first terms describe Faraday rotation and the second terms describe nonrec
birefringence. We note that in centrosymmetric mediaDe ik(v,k) is either an even or odd
function of k, depending the symmetry of the crystal and the parameterh. We shall
assume the parameterh to be macroscopic, since it is only in this case thatDe ik(v,k)
can be a linear function ofh.

Since here we are interested in the propagation of characteristic waves in a me
to analyzeDe ik(v,k) as a function of frequency the wave vectork must be assumed to
be a function of frequency, determined from the solution of the dispersion relatio
thatck(v)/v5n(v), where the latter is the refractive index. The frequency depende
of De ik(v,k) is simplest in the frequency ranges wheren(v)' const. As a rule, in solids
such regions precede the frequencies of atomic~interband! transitions.

We first consider the frequency dependence of the nonreciprocal birefringence.
birefringence is due to the terms in Eq.~3! that contain odd powers ofk. Since we have
assumed thatck(v)/v5n(v)' const, the contribution of the term linear ink to bire-
fringence, as is evident from Eq.~3!, decreases with increasing frequency as 1/v2. The
contribution of the low-frequency excitations to ordinary (k50) birefringence, which is
a T-even effect, has a similar frequency dependence. In this connection we should
the substantial methodological advantage of measurements ofT-odd optical effects. Since
the parameterh is macroscopic, in an experiment it is always possible in principle
carry out the transformationh→2h by means of external influences. This greatly
creases the accuracy and reliability of the measurements.

The frequency dependence of the contribution cubic ink to the birefringence is
altogether different from a linear dependence: In the regionn(v)' const it is completely
frequency independent. Such behavior of an optical effect at frequencies much h
than the resonance frequencies is quite unusual and is a specific feature of optical
due to spatial dispersion. The decrease with increasing frequency of the term lineak
and thev independence of the term cubic ink should not, of course, be thought to me
that the latter is large in magnitude compared to the former, since such frequency b
ior occurs only in comparatively narrow spectral regions. The expansion ink in Eq. ~3!
is actually an expansion in the small parametera/l, wherea is the interatomic distance
andl is the wavelength. For this reason, the effect cubic ink is quite small in most case
and can be observed only on account of the specific features of the magnetic and
tronic structures of the medium.

A much more interesting effect, which likewise exhibits the property of freque
independence, is Faraday rotation of the plane of polarization as a result of the te
Eq. ~3! which are quadratic ink. To obtain the frequency dependence of this effect i
necessary to take into consideration the fact that the rotation angle of the pla
polarization of the lightu}vexy , (k i z), i.e., it contains an extra frequency factor com
pared with the corresponding terms in Eq.~3!. This gives the well-known behavior o
ordinary Faraday rotation (k50): u}1/v2. As one can see from Eq.~3!, the term qua-
dratic in k gives a frequency-independent contribution to the Faraday rotation.

In Refs. 2 and 3 frequency-independent Faraday rotation was observed in the
parency region of yttrium iron garnet. It was shown in those works that the obse
effect can be explained by the precession of the magnetization in the field of the el
magnetic wave and it can be described phenomenologically by introducing off-diag
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components of the magnetic permeability tensor at optical frequencies. If the ge
formula~2! is used as the starting point, this mechanism corresponds to a current op
J(k)5( ie/m)s3k.

My analysis shows that the frequency-independent Faraday rotation is a quite
eral property of media with macroscopically brokenT-invariance. Thus, aside from me
dia with spin ferromagnetism, it can also be observed in media with spontaneous o
ferromagnetism, which corresponds to a current operatorJ(k)5( ie/2m) l3k, wherel is
the orbital angular momentum. We note that for spin and purely orbital ferromagne
the existence of an effect quadratic ink does not require the participation of a spin–or
interaction, while the contribution of the term withk50 to rotation in media with spon
taneous ferromagnetism is nonzero only if the spin–orbit interaction is taken into
count.

More interesting is the possibility of this effect occurring in media with a z
macroscopic magnetic moment density. It is easy to obtain the symmetry-imposed
essary condition for this. For this we note that the rotation angleu of the plane of
polarization for a wave propagating in the directionm has the dependenceu}vG–m
~Ref. 4!, whereG is the gyration vector, dual to the antisymmetric parte [ ik]

21 (v,k) of the
inverse permittivity tensor. Since the expansion of the tensore ik

21(v,k) in powers ofk is
of the same form as Eq.~3!, we obtain for the rotation angle associated with the te
quadratic ink

u}~k~v!/v!2b iklmimkml , ~4!

whereb ikl is aT-odd pseudotensor, analogous to the tensora ikl in Eq. ~3!. Since accord-
ing to Eq. ~4! only the completely symmetric part of the tensorb ikl contributes to
rotation, it can be concluded that frequency-independent Faraday rotation is poss
media whose symmetry admits the existence of such a tensor.

Aside from the ferromagnets mentioned above, certain antiferromagnetic mag
symmetry classes also admit a tensor with such properties. Thus, in all cubic mag
symmetry classes, where the piezomagnetic effect is allowed, for example, in the
netic class T, the tensorb ikl is completely symmetric and has one independ
componentbxyz. The Faraday effect should exhibit strong anisotropy in such media

Let us conclude by calling attention to another, much more complicated, typ
magnetic ordering for which frequency-independent Faraday rotation is possible.
the standpoint of symmetry alone the nonzero tensorb ikl in Eq. ~4! can exist in magnetic
structures whose order parameter is related not with the average microscopic spin d
^S(r )&, but rather with the three-point spin-density correlation funct
^Si(r1)Sk(r2)Sl(r3)&.5,6 Here ^S(r )& can be zero~in the exchange approximation5!. If
such a correlation function contains a part that is symmetric in the indicesi, k, and l,
frequency-independent Faraday rotation is also possible in such a medium. Note,
ever, that the single-time current commutator in relation~2! is not expressed directly in
terms of the correlation functions of the spin density, so that the question of the a
existence and magnitude of this effect can be solved only on the basis of a m
analysis.

This work is supported by the Russian Fund for Fundamental Research an
program ‘‘Fundamental Spectroscopy.’’



.

550 JETP Lett., Vol. 69, No. 7, 10 April 1999 V. N. Gridnev
1B. S. Shastry, B. I. Shraiman, and R. R. P. Singh, Phys. Rev. Lett.70, 2004~1993!.
2G. S. Krinchik and M. V. Chetkin, Zh. E´ ksp. Teor. Fiz.36, 1924~1959! @Sov. Phys. JETP9, 1368~1959!#.
3G. S. Krinchik and M. V. Chetkin, Zh. E´ ksp. Teor. Fiz.41, 673 ~1961! @Sov. Phys. JETP14, 485 ~1962!#.
4L. D. Landau and E. M. Lifshitz,Electrodynamics of Continuous Media, 2nd ed., rev. and enl., by E. M
Lifshitz and L. P. Pitaevskii, Pergamon Press, Oxford, 1984@cited Russ. edition, Nauka, Moscow, 1992#.

5V. I. Marchenko, JETP Lett.48, 427 ~1988!.
6V. Barzykin and L. P. Gor’kov, Phys. Rev. Lett.70, 2479~1993!.

Translated by M. E. Alferieff



e de-
r
e of

ion is

eral
and

in
nly in
aday
mag-

g
note
s-

JETP LETTERS VOLUME 69, NUMBER 7 10 APRIL 1999
Manifestation of magnetically induced spatial dispersion
in the cubic semiconductors ZnTe, CdTe, and GaAs
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Nonreciprocal birefringence due to magnetically induced spatial disper-
sion was observed in theTd-class cubic semiconductors ZnTe, CdTe,
and GaAs near the fundamental absorption edge. The dispersion of the
parametersA andg, describing the contributions from terms of the type
Bikj to the diagonal and off-diagonal components of the permittivity
tensore i j (v,B,k), is determined for ZnTe and CdTe. Analysis of the
dispersion and anisotropy of the nonreciprocal birefringence shows that
in ZnTe, CdTe, and GaAs, in contrast to magnetic semiconductors of
the type Cd12xMnxTe, it is due excitonic mechanisms. ©1999
American Institute of Physics.@S0021-3640~99!01007-5#

PACS numbers: 78.20.Fm, 78.20.Ls, 71.35.Gg

Optical phenomena due to magnetically induced spatial dispersion, which ar
scribed by terms of the typeg i jkl Bkkl in the expansion of the permittivity tenso
e i j (v,B,k), wherek is the wave vector of the light, can be observed in the presenc
an external magnetic fieldB in crystals without a center of inversion.1–3 A striking
manifestation of magnetically induced spatial dispersion in the transparency reg
nonreciprocal birefringence, linear in the magnetic fieldB and odd in the wave vectork
of the light. Nonreciprocal birefringence in semiconductors is of interest for sev
reasons. In contrast to reciprocal birefringence, which is linear in the magnetic field
is allowed only in magnetically ordered crystals,4 nonreciprocal birefringence can exist
dia- or paramagnets. It is sensitive to the crystal structure and can be observed o
noncentrosymmetric crystals, which fundamentally distinguishes it from the Far
magnetooptic effect or the Voigt effect, which can be observed in all media. The
nitude of the nonreciprocal birefringence depends on the orientation of the vectorsB and
k relative to the crystal axes and, even in the case of cubic symmetryTd , it is determined
by two independent parametersA and g of the rank-4 axisymmetric tensorg i jkl which
describe, respectively, the contributions of terms of the typeBkkl in the diagonal and
off-diagonal components of the tensore i j . This opens up new possibilities for studyin
the anisotropy of the electronic spectrum of cubic noncentrosymmetric crystals. We
that the Faraday effect, the optical activity, and the linear electrooptic effect in clasTd
5510021-3640/99/69(7)/7/$15.00 © 1999 American Institute of Physics
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cubic crystals are described by rank-3 tensors with only one independent para
Nonreciprocal birefringence in semiconductors is directly related with the presen
contributions to the effective Hamiltonian of the electrons, holes, or excitons tha
linear in the quasimomentumq or bilinear inq andB. This makes it possible, in prin
ciple, to estimate the corresponding parameters of the Hamiltonian, if it is known w
optical transitions, interband or excitonic, are responsible for the nonreciprocal bire
gence.

Up to now optical phenomena associated with the manifestation of magnet
induced spatial dispersion in semiconductors have been observed in CdSe and CdS~class
C6v)5 and GaAs~class Td)6 at low temperatures near excitonic transitions. These wo
investigated the change induced in the intensity of light transmitted through a cr
between crossed polarizers by a transverse magnetic fieldk'B. Recently, nonreciproca
birefringence was directly observed in the magnetic semiconductors Cd12xMnxTe ~class
Td) by a polarimetric method, which made it possible to prove that the effect is oddB
andk and to determine the parametersA andg.7,8 Analysis of the concentration depen
dence and dispersion of the parametersA andg led to the conclusion that nonreciproc
birefringence in magnetic semiconductors is due to the presence of manganese io
is due to interband optical transitions. The values of the parametersA and g in cubic
semiconductors with no magnetic ions have not been determined, and only theo
estimates are available for their ratio.6,9 In the present letter we report the observation
a nonreciprocal birefringence in the class-Td cubic noncentrosymmetric crystals ZnT
and CdTe near the fundamental absorption edge, we investigate the angular and s
dependences of the nonreciprocal birefringence and determine the parametersA and g
and their dispersion, and we compare the results with the magnetic semicond
Cd12xMnxTe and with theoretical estimates.

Nonreciprocal birefringence was investigated by measuring the rotationa, linear in
the magnetic fieldB, of the plane of polarization of light transmitted through a crys
placed in the gap of an electromagnet, and a quarter-wave plate.7,8 To study the azimutha
dependence of the birefringence, the crystal was rotated around an axis oriented p
to the vectork. The direction of the magnetic fieldB was set strictly perpendicular to th
vector k (k'B), since a Faraday effect linear in the magnetic field does not appe
such a geometry. Two combinations of the relative orientations of the polarizationE of
the incident light, the magnetic fieldB, and the principal directionO of the quarter-wave
plate were used: 1! E i B i O (E i B geometry! and 2! E i O and with a 45° angle betwee
E and B (E45B geometry!. The quantitya is determined by the orientation of th
principal directions and the ellipticity of the cross section of the indicatrix, which dep
on the azimuthu of the crystal relative to the magnetic field.7,8 For k i @110# the angular
dependencesa(u) in the E i B (E45B) geometries can be described by the combinat
of harmonicsa1cosu1a2cos3u (b1sinu1b2sin3u), wherea1,2 (b1,2) are parameters tha
depend onA andg. Given the experimental dependencesa(u) and the refractive index
one can determine the parametersA andg. Fork i @111# the functionsa(u) are described
by third-order harmonics. In this geometry the parameter combinationA12g is deter-
mined.

A dye laser in the wavelength range 570–610 nm, a titanium–sapphire laser
range 850–1000 nm, and a helium–neon laser emitting at 633 nm and 1150 mm
used as light sources. The sensitivity of the measurements of the rotations of the
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ization plane wasDa;109. To eliminate any possible influence of photorefraction,
radiation power was limited by means of filters. ZnTe and CdTe single crystals in a~110!
type plane and GaAs single crystals in a~111! type plane were investigated. The crysta
were;(0.521) mm thick. The band gapEg and the spectral dependences of the refr
tive index n from Refs. 10–12 were used in the calculations. The measurements
performed atT5294 K.

Figure 1 displays the angular dependencesa(u)/B, measured at two wavelengths
the geometriesE i B and E45B, in ZnTe and CdTe in a plane of the~110! type. In
accordance with the theory, the experimental dependencesa(u) can be described by
harmonics of first and third orders. Both harmonics are observed in ZnTe, and the
order harmonic cos3u (sin3u) predominates in CdTe. In GaAs in a~111! type plane, the
experimental dependencesa(u) can be described by harmonics of third order. The n
reciprocal birefringence increases as the fundamental absorption edge is appro
Figure 2a displaysa versus the differenceEg2E, whereE is the photon energy. The
dependences obtained in the geometryE i B at u50 (B i @001#, k i @110#) are presented
for ZnTe and CdTe. In this casea5pgBk/ ln, i.e., it is determined only by the paramet
g ( l is the sample thickness!. For GaAs the dependences in the geometryE i B with

FIG. 1. Angular dependencesa(u) in ZnTe and CdTe in a~110! type plane (u50 corresponds toB parallel to
a @001# type axis!. Solid lines — computational results obtained with adjustable parametersA andg.
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Bi@112# andk i @111# are presented. In this casea5p(A12g)Bk/A6ln. Far from the
edge the the nonreciprocal birefringence is small and is essentially absent forEg2E
.0.2 eV. As the band edge is approached,E→Eg , the nonreciprocal birefringenc
increases sharply, and atEg2E.0.1 eV it is characterized by a value;2 deg/cm•T.
Figure 3 shows the parametersA andg in ZnTe and CdTe as a function ofEg2E. These
curves were calculated from the angular and spectral dependencesa(u,l). The error in
determining the parameters is;15%. In both crystals the parameterg increases asE
→Eg , and its dispersion is described by the power law (Eg2E)2t, wheret52.060.3.
In ZnTe we haveA!g in the experimental spectral range. In CdTe the parameterA is
approximately 1.5 times smaller thang.

Near the band edge the nonreciprocal birefringence in semiconductors, like
manifestations of magnetically induced spatial dispersion, could be due to interba
excitonic optical transitions. In the case of interband transitions from the valence baG8

into the conduction bandG6, a dependenceA;(Eg2E)20.5 should be expected.7,8 The
contribution of interband transitions to the Faraday effect linear in the magnetic
is likewise described16 by a dependence;(Eg2E)20.5, while the contribution to the

FIG. 2. a(Eg2E) in ZnTe and CdTe withB i @001# and GaAs withk i @111# and Bi @110# in the E i B
geometry. The bottom panel displays the spectral dependences of the Faraday effect from the prese
~filled circles and squares! and from Refs. 13–15~open circles, triangles, and squares!.
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quadratic Voigt effect is described17 by the dependence;(Eg2E)21.5. Thus, for the
interband mechanism the spectral dependences of the nonreciprocal birefringence
Faraday effect should be similar near the band edge.

The excitonic mechanisms of nonreciprocal birefringence in class-Td semiconduc-
tors have been examined in Ref. 9 for the case of a 1s exciton. Including in the effective
excitonic Hamiltonian terms linear inq,

H~q!5C@qx$Jx~Jy
22Jz

2!%1 c.p.#I e , ~1!

and linear inB,

H~B!5gemBs–BI h22mB@kJ–B1q~BxJx
31c.p.!#I e ~2!

(s is the electron spin operator; all other notation corresponds to Ref. 9!, leads forEg

2E.0.1 eV to dispersion of the parametersA andg: A5g;(Eg2E)21 ~Ref. 6!. When
terms bilinear inq andB are included in the Hamiltonian,

H~q,B!5@B1~@B3q#x$JyJz%1c.p.!1B2~Bxqx~Jy
22Jz

2!1c.p.!#I e ~3!

FIG. 3. A and g in ZnTe and CdTe versusEg2E. Solid lines — calculation using the formulag5t(Eg

2E)2t, wheret andt are adjustable parameters.
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an increase in the nonreciprocal birefringence;(Eg2E)22 is predicted as the edge i
approached. The ratio ofA andg is this case is determined by the Luttinger paramete
andA/g;(0.1–0.15! for ZnTe, CdTe, and GaAs crystals.9

The dependence onEg2E of the rotationa in ZnTe, CdTe, and GaAs~Fig. 2! and
of the parametersA and g in ZnTe and CdTe~Fig. 3! show that the nonreciproca
birefringence in the crystals investigated is not due to the interband mechanism and
therefore be attributed to excitonic transitions. This is indicated by the smallness o
effect at a relatively small distance from the band edge (Eg2E.0.2 eV!, the sharp
increase;(Eg2E)22 of the effect as the edge is approached, and also a ratio o
parametersA andg that is uncharacteristic of the interband mechanism (g@A and ZnTe
andg.A in CdTe!. The dispersion of the nonreciprocal birefringence in the experime
crystals is substantially different from that of the Faraday effect. The Faraday effe
ZnTe, CdTe, and GaAs is characterized by a relatively large magnitude far from
absorption edge and increases weakly asE→Eg ~Fig. 2!.

The ratio of the parametersA andg and their frequency behavior in ZnTe and CdT
nonetheless is not completely satisfactorily described by the expressions obtained
into account the contributions in the excitonic Hamiltonian which are linear and bili
in q andB.6,9 In ZnTe g@A, which does not agree with the estimates obtained in R
6 and 9. In CdTeg.1.5A ~Fig. 3!, which approximately corresponds to the mechani
of the contributions linear inq andB, but the dispersion ofA andg is stronger,;(Eg

2E)22, than that predicted by the model,;(Eg2E)21. In our opinion this discrepancy
is due to the fact that terms which are linear and bilinear inq andB must be taken into
account simultaneously in the excitonic Hamiltonian. In this caseg can be greater thanA
if the contributions of the linear and bilinear terms have different signs. Another pos
reason for the discrepancy between the experimental and theoretical dependence
parametersA andg could be the inadequacy of taking account of only the 1s excitonic
states, since contributions of higher excitonic states, including states of unbound ex
could contribute to the nonreciprocal birefringence.

The dispersion of the parameterA and that of the Faraday effect are close in t
magnetic semiconductors Cd12xMnxTe. This attests to an interband mechanism. T
stronger dispersion of the nonreciprocal birefringence and the Faraday effect in ma
semiconductors,;(Eg2E)21.5, than predicted by the interband transition mod
;(Eg2E)20.5, can be explained by the dependence of the parameters of the exc
interaction of electrons and holes with the 3d electrons of Mn21 ions on the wave vecto
q.7,13 Taking account of this dependence also permits explaining the strong dispers
the Voigt effect;(Eg2E)23.5 in Cd12xMnxTe.18

The strong differences in the spectral behavior of the parametersA and g ~Fig. 3!
likewise attest to different mechanisms of magnetically induced spatially dispersio
pure and Mn-containing semiconductors. The parameterg in magnetic semiconductors i
virtually dispersionless, while in pure semiconductors it is observed to increase shar
Eg is approached. In the magnetic semiconductors Zn12xMnxTe and Cd12xMnxTe the
parameterA is much greater thang, while in ZnTe and CdTe the parameterg is greater
thanA.

In summary, our investigation has shown that nonreciprocal birefringence du
magnetically induced spatial dispersion is observed near the fundamental absorptio
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in the cubic noncentrosymmetric semiconductors ZnTe, CdTe, and GaAs. Analysis
dispersion and anisotropy of the nonreciprocal birefringence and comparison wit
spectral dependences of the Faraday effect in pure and Mn-containing semiconduct
to the conclusion that in pure semiconductors, in contrast to magnetic semicondu
the nonreciprocal birefringence is due not to interband but rather to excitonic me
nisms. Further elaboration of the theory is required in order to give an adequate de
tion of the anisotropy and dispersion of the nonreciprocal birefringence.
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Electronic contribution to sliding friction in normal
and superconducting states
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The electronic contribution to friction between an atomically flat metal
surface and a dielectric layer absorbed on the surface is calculated. The
friction force decreases abruptly at the transition of the metal to the
superconducting state. ©1999 American Institute of Physics.
@S0021-3640~99!01107-X#

PACS numbers: 46.55.1d, 68.35.Wm

In the last few years new experimental and computational possibilities have ra
increased the understanding of fundamental friction processes.1,2 Specifically, it has been
shown experimentally3,4 and theoretically5–8 that in an ‘‘atomically close’’ contact be
tween two crystal bodies there is no static friction provided that the periods of the cr
lattices of the bodies in contact are incommensurate. An additional condition is that
must be no ‘‘elastic instabilities’’ at the contact of the two bodies, i.e., a unique equ
rium state of the system must correspond to each set of boundary conditions at infin
the interaction of the surfaces is sufficiently weak, the condition that the contac
monostable is always satisfied and the static friction vanishes. This situation is ch
teristic, for example, for solid layers of inert gases adsorbed on gold and silver.4 How-
ever, the absence of static friction has also been confirmed experimentally
tungsten–silicon contact.3 The latter example, which is a ‘‘metal–covalent crystal’’ tr
bological contact, shows that zero static friction between crystalline materials wit
commensurate lattices can also occur in systems which could be of practical value

I shall assume in what follows a contact with zero static friction. However, this d
not mean that there is no friction at all. Generally speaking, the interaction of su
atoms results in phonon generation and excitation of the electronic subsystem. T
manifested in the presence of a ‘‘viscous’’ friction force, which is proportional to
relative velocity of the moving bodies. Even though the phonon9,10 and electronic11,12

contributions to this viscous force have been intensively investigated theoretically,
magnitude and ratio are still a subject of debate. Apparently, the most direct metho
distinguishing the electronic contribution could be the measurement of the friction
near a superconducting transition. Masurements of the friction force between a la
lead and a solid layer of N2 adsorbed on the lead have shown that the friction fo
exhibits a jump, which cannot be explained in existing theoretical models, at the s
conducting transition point.13 Indeed, the fraction of electrons forming the supercondu
5580021-3640/99/69(7)/4/$15.00 © 1999 American Institute of Physics
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ing condensate increases continuously from zero at temperatures belowTc . The remain-
ing normal electrons must once again be excited by the adsorbed layer. Therefo
friction stress belowTc should decrease continuously. In the present letter it is shown
the model which I proposed in previous work,14 describing the electronic contribution t
the friction force, gives a simple explanation of this effect.

Let us consider a metal sample in the form of a parallelepiped of thicknessd, on one
surface of which a crystalline monolayer of a dielectric is adsorbed. Let the (x,z) plane
be the friction surface, and let thex axis be oriented in the direction of the relative motio
of the metal sample and the adsorbed layer. The spectrum of the electron gas do
satisfy the Landau superfluidity condition. Therefore the electrons will be excited b
moving monolayer and be ‘‘dragged’’ by it. If the electron mean free pathl N with respect
to normal scattering processes~with conservation of the quasimomentum! is much
shorter than the mean free pathl U with respect to processes that violate conservation
quasimomentum~Umklapp processes and scattering by lattice nonuniformities!, the elec-
tron gas in the crystal is governed by a hydrodynamic equation. For a stationary fl
the geometry described above, this equation has the form

h
]2V

]y2
2

rV

tU
50. ~1!

HereV5V(y) is thex component of the hydrodynamic velocity of the electron gas,h is
the viscosity of the electron gas,r is the mass density of the gas, andtU is the charac-
teristic free flight time with respect to processes that violate quasimomentum cons
tion. The characteristic length

l 5~htU /r!1/2 ~2!

can be formed from the coefficients in Eq.~1!. The condition of applicability of Eq.~1!
is that the mean free pathl N must be smaller than the dimensions of the body. Since
are assuming thatl U@ l N , we havel'( l Ul N)1/2@ l N ~see Ref. 14!. Therefore Eq.~1! is
also applicable at distances less than the characteristic lengthl.

There is an important circumstance not taken into account in Eq.~1!. The described
‘‘dragging’’ of the electron gas and the associated surface current will inevitably give
to an electric field and a counterflowing ‘‘bulk’’ current. In the presence of an elec
field Eq. ~1! must be modified as follows:

h
]2V

]y2
2

rV

tU
1enE50, ~3!

wheree is the elementary charge,n is the electron density, andE is the intensity of the
electric field. This last quantity is itself determined by the condition that the total cu
in the sample vanishes.

We shall consider separately the limiting cases of thick (d@ l ) and thin (d! l ) metal
layers.

I. d@ l . The solution of Eq.~3! that is bounded in the direction into the samp
(y→`) and satisfies the condition that the total current in the sample is zero,
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E
0

d

V~y!dy50, ~4!

has the form

V~y!52V0

l /d

12 l /d
1V0

1

12 l /d
exp~2y/ l !, ~5!

whereV0 is the velocity of the adsorbed layer.

Since the only friction mechanism considered here is momentum transfer t
body of the crystal through the electron gas, the friction stress can be determined
viscous stress in the electron gas aty50:

usnu5hU]V

]yU
y50

5h
V

l
~12 l /d!21. ~6!

Thus the correction due to the return current is of the order ofl /d and can be neglecte
for massive samples~for d@ l ).

II. d! l . The effect of the reverse field turns out to be substantial for thin layers.
case corresponds to the conditions of the experiment of Ref. 13, where lead elec
1500 Å thick, deposited on a quartz crystal, were used.

a! Metal in the normal state.The solution of Eq.~3! satisfying the boundary condi
tions V(0)5V0 andV(d)50 and the condition~4! has the form

V~y!5V0~124y/d13~y/d!2!. ~7!

The friction stress is

usnu5hU]V

]yU
y50

5h
4V0

d
. ~8!

b! Metal in the superconducting state.In this case the return current is due to t
flow of superconducting electrons atE[0. Correspondingly, the flow of the electron g
in the sample is determined by Eq.~1! with the same boundary conditions as above.
solution is

V~y!5V0~12y/d!. ~9!

The friction stress is

ussu5hU]V

]yU
y50

5h
V0

d
. ~10!

Comparing Eqs.~8! and~10! shows that the friction stress due to the conduction electr
changes abruptly at the superconducting transition point, and the friction stress i
samples (d! l ) decreases by a factor of 4 at the transition of the metal to the supe
ducting phase.

In the general case of a metal layer of arbitrary thickness the solution of Eq.~3! with
the additional equation~4! for a metal in a normal state and Eq.~1! for a metal in the
superconducting state gives the following expressions for the friction stress:
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ussu5
hV0

l

ed/ l1e2d/ l

ed/ l2e2d/ l
~11!

in the superconducting state, and

usnu5
hV0

l

~11d/ l !e2d/ l2~12d/ l !ed/ l

422~ed/ l1e2d/ l !1~d/ l !~ed/ l2e2d/ l !
~12!

in the normal state. The experimentally observed ratiosn /ss'2 ~Ref. 13! obtains for
d/ l'2.3. Thereforel'650 Åis the characteristic perturbation length of the electron
in lead. Inclusion of the phonon contribution to the friction force does not change
result, since, according to the results of Ref. 14, the phonon contribution to the fri
force at the superconducting transition temperature in lead~7.2 K! is much smaller than
the electronic contribution.

In summary, we have shown that the physical reason for the jump in the fric
force at a superconducting transition is that energy dissipation is due to both a s
current, arising as a result of the electrons being ‘‘dragged’’ in the friction surface, a
return current, which arises in order for the sample to remain electrically neutral. I
superconducting state the second of these contributions is ‘‘switched off’’ at the tr
tion point, since the return current is transported by the superconducting electrons
out dissipation.
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