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Propagation of high-frequency large-amplitude waves in media with varying disper-
sion is a rather general nonlinear problem with a wide area of physical applications, such
as, for instance, optical pulse transmission in dispersion-managed fibet Etresched
pulse generation in mode-locking fiber laser systémwsopagation of high-intensity
beams in second-order nonlinear media with periodic poling, soliton evolution in a peri-
odically modulated nonlinear waveguide, and other applications. Optical pulse transmis-
sion in fibers is one of the brightest demonstrations of practical application of the fun-
damental soliton theory. The traditional path-averaged optical soliton preserves its cosh-
type shape during propagation by compensating on average the fiber dispersion through
nonlinearity. This is possible because the pulse power oscillaiunes to periodic am-
plification of the pulse to compensate for the fiber Jom® very fast. Rapid oscillations
of the power can be averaged out, and, as a result, the slow pulse dynamics in the
traditional soliton-based transmission lines is governed by the intejrabielinear
Schralinger equatioNLSE). Interability of the NLSE makes it possible to apply the
well-developed and powerful mathematical method of the inverse-scattering trahsform
to a variety of practical problemsee, e.g., Refs. 4—7 and references ther&rperi-
mental(and even the first commercﬁalimplementations of multichannel soliton trans-
mission have stimulated further research in soliton theory. In this paper we apply Hamil-
tonian averaging and quasi-identity transformation to demonstrate that the averaged
dynamics of high-frequency nonlinear waves in systems with periodically varying dis-
persion can be described in some particular limits by the integrable NLSE. As a specific
physical and practical application, in the present paper we focus on dispersion-managed
soliton transmission. The dispersion-manad&M) periodic, breathing, soliton-like
pulse that stably propagates in a fiber system with large variations of the dispersion
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differs substantially from the fundament&lLSE) soliton®~2° There are two scales in the

DM pulse propagation: the firgfast dynamics corresponds to rapid oscillations of the
pulse width and power due to periodic variations of the dispersion and periodic amplifi-
cation; and the secon@low dynamicgoccurs due to the combined effects of nonlinear-

ity, residual dispersion, and averaged effects. The traditional soliton solution of the NLSE
with uniform dispersion and without loss realizes a continuous balance between nonlin-
earity and dispersion. Losses and variations of dispersion make it impossible in the
general case to support such a balance continuously. Nevertheless, a balance between
nonlinear effects and dispersion can be achiesadaverageover the compensation
period. As a result, the slow dynamics of the DM soliton can be described by the
propagation equation averaged over fast oscillatiddsthe DM pulse dynamics typi-

cally depends on many system parameters and is rather complicated. Different theoretical
approaches have been developed to describe the properties of the DM soliton: the varia-
tional approact~?°or the more advanced root-mean-square momentum métHoal-

tiscale analysfé~?*methods using averaging?%1?%2%ncluding averaging in the spec-

tral domain?>*3and expansion of the DM soliton in a basis of chirped Gauss—Hermite

functions?’281

Because of the practical importance of this problem, it is of obvious interest to
develop different theoretical methods to describe the main properties of the basic model
in different limits. A variety of complementary mathematical methods can be advanta-
geously used to find an optimal and economical description of any specific practical
application. In this paper, using Hamiltonian averaging and quasi-identity-like
transform>° we demonstrate that in some specific linfitscluding , in particular, a weak
dispersion maf5) the DM soliton is described by the integrable NLSE.

The evolution(in z) of a high-frequency wave in medium with periodically varying
dispersion and nonlinearity is governed by the NLSE with periodic coefficé#sand
c(z) (we assume here that both have the same pgristich can be written in the
Hamiltonian form

A _SH )
57 ~{AH}= — = —d2)Ac ec(@]AIPA, @

with the Hamiltonian

H=J[d(z)

and the Poisson brackets defined as

Z—SiZ) A

4] dt 2

SF 5G SF 5G
OA(1,2) 5A*(t,2) 6SA*(t,z) OA(L,2)

dt. 3

Fo)- |

In Eq. (1) the distancez is normalized by the compensation peribdd(z)=a+<d>
(<a)=0) describes the varying dispersion, ar(d@) corresponds to power oscillations
(due to loss and amplificatidonFor notation we refer to our previous papefél®The
small parametee=L/Z, , whereL is a compensation period aix,, (see, e.g., Refs.
13,]) is a characteristic nonlinear scale. The true DM soliton is a solution oflEgf the
form A(z,t)=exp(kz) M(zt) with a periodic functionM(z+L,t)=M(z,t). The DM
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soliton can be viewed as a kind of nonlinear Bloch wave in the language of solid-state
physics. The goal of the theoretical analysis is to present a systematic way to describe
family of solutionsM with differentk. The basic idea suggested in Refs. 1 and 12 is to
use a small parameterto derive a path-averaged model that gives a systematic, leading-
order description of the DM soliton. Averaging cannot be performed directly in(Bq.

because of the large variations?dﬁ>(d). However, path-averaged propagation equation
can be obtained in the frequency domini® The approach developed in Ref. 12 can be
considered as a decomposition of DM pulse dynamics in the fast evolution of the phase
and a slow evolution of the amplitude. The shape of the DM soliton then is given by
nonlocal nonlinear equation, steady state solutions of which give the leading-order ap-
proximation of DM solitons. In this paper we show that in some limits an averaged
equation can be transformed to théegrableNLSE. First, following Refs. 12 and 13, we

do the Fourier transform

A(t,z)zan, exp[—iwt]dew (here A,=A(w,2))

and rewrite the basic equation in the frequency domain.
Equation(1) then takes the form

A,
iy—d(z) w?A,+ EJ Fo12d2) S0+ 01— 0y~ w3) AT Ay Azdw dw,dws;=0,  (4)

whereF ,1,5=c(2). To eliminate the periodic dependence of the linear partfakow-
ing Refs. 12,18apply the so-called Floquet—Lyapunov transformation

A,=¢, expi{—i 0’Ry(2)—i O(w)}, dRy/dz=d(z)—(d). (5)

We have included here the phase fad#ow), which does not change tlreedependence

of the coefficients. The aim of this transformation is to eliminate the large coeffidient
from (1). In the new variables the equation has the form

b,
ii_<d> w® ¢, + EJ Gu12d2) 8(w+ 01— wy— w3) ¢T ¢ p3dwdw,dwz=0;  (6)

Jz
here G, 1,42) =c(2) expliAQRy(2+iAd and AQ=w?+ wi—w5— w3, A0=0,+6,
— 6,— 05. Note thatG 1,3 depends only on the specific combination of the frequencies
given by the resonance surfad€). Both the Fourier and the Floquet—Lyapunov trans-
form (5) are canonical, and the transformed Hamiltorfifuns

_ 2 2 G“’123 * g%
H—<d> w |¢w| do—e 2 N w+ w1— 0~ 03) p;, ¢ Prpsdwdwdordws.
(7)

Now we apply Hamiltonian averaging. Let us make the following change of the
variables

b=, TE€ f V,1238(0+ 01— 0~ w3) ¢F ¢ ¢3dwdwydws,

V1242) =i fo[Gw123( 7) =T y123]d 7,
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with
1 1
Tw123:<Gw123>:f Gwlziz)dzzf c(z) exp{iAQRy(2) +iAdidz. (8
0 0

The path-averaged equation has the form

J

i% —(d) ® ¢, + Ef To1230(0+ 01— 0~ 03) ¢] ¢ p3dwidw,dwz=0. (9)

Here ¢(w) is assumed to decay sufficiently fast to ensure convergence of the integral.
This equation was first derived in Refs. 12, 13 using simple physical considerations.
Since theg,, vary slowly, in the leading approximation, on the scale of one period, we
can neglect their evolution and integrate E@). over the period, placing, outside of

the integrals over. The Hamiltonian averaging introduced here presents a regular way to
calculate next-order corrections to the averaged model. From the Hamiltonian structure of
the starting equation it is clear that the matrix elemgpt,; has the following symme-

tries (compare with Ref. 31

T 0125= T1025= Tw132= T2301 - (10

In the case of the lossless mode(£) = co=const; for details see Ref) &nd a two-step
dispersion map built from a piece of a fiber with dispersiy+(d) and lengthl,
followed by a piece of fiber with dispersiaiy+(d) and lengthl,=1—1, (d{l;+d(1
—1,)=0), the matrix element ,;,; takes the especially simple form

sin[xAQ/2]

T 41237 Co T uAOR2 (11

The parameteju=d;l, introduced here is a characteristic of the map strength. Strong
dispersion management corresponds to large(d) and the so-called weak map corre-
sponds tou<<(d). We demonstrate below that, in particular, in the limit of smalhe
averaged equatiof®) can be transformed to the NLSE. Note that E®). possesses a
remarkable property: The matrix elemen,,3= ®(AQ)expiAd} is a function ofAQ,

and

1 1
<I>(0)=J'O c(z)dz=(c), ®'(0)=i(c RO>=ifO c(2) Ry(2)dz (12

on the resonant surface

w+o;—w,—0w3=0, AQ=0’+0i—w;—w;=0. (13

This observation allows us to make the following quasi-identity-like transformation,
which eliminates the variable part of the matrix elem&pt,;

€ Tu123=To %
(Pw:a‘"—’_@ Tal ap as 5(w+ (1)1_(1)2_(1)3) dwldwzdwg, (14)

whereT,=®(0)exdiAg}. This transformation has no singularities. If the integral part in
this transform is small compared with,, then in the leading order we get far,
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0a,

i(?—zw—<d> w?a,+ ef ToS(w+w;—wy—w3) al ayazdw;dw,dws=0. (15
This is nothing more than the integrable nonlinear Sdimger equation written in the
frequency domairthere we choos#=0).

Obviously, this is a quasi-identity transformation only if the integral in @¢) is
small compared witla,, . This is not so in the general case, and that is why the typical
DM soliton has a form different from the cosh-like shape usual for the NLSE soliton.
However, if the kernel function in Eq14) is small,

To~ Torod AQ
|S(AQ)|= OA;;;() <1, (16

then the averaged model can be reduced to the NLSE. In other terms, this is a condition
on the functionsc(z) andd(z) under which a quasi-identity transformation is possible.
For instance, one can check that for the two-step map described above, in the-lidit

this transformation is, indeed, a quasi-identity transformation and the path-averaged
model is the NLSE. Thus, we can expréss this limit) solutions of equatiori9), and,
consequently, of the original equati¢b) via solutions of the NLSE in the explicit form:

A(t,Z):f a, e{—iwt—iw2 Ro_ie}dw"l'é f lezga;f dp dg 8((,L)+ wl—wz—w3)

Xdwdw,dw;dw,
where
_ Tu125=To . _— .
W,1242) = Vw123+m exp{—iot—io“Ry(2)—if(w)} (17)

anda,, is a solution of the NLSE15).
The averaging transformation can also be presented as

=p,+ oK = K 18
¢w_(Pw 85¢w_¢w_8{ !(Pw}' ( )

Therefore, this transform can be viewed as the leading-order term in the expansion of a
canonical exponentigLie) transformation

d.,=exd{eK, .. .}He,, (19

with the functional

Vo
K=j 21235(w+w1—w2—w3)<p:)(p’1‘ pr03dwdwdw,dws.

After averaging the Hamiltoniahl takes the form

T
H)=(0) [ w?lp,2d0—s [ 22000+ 01— 03wy

X @4 @1 ¢2pzdwdw;dwdws. (20
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The quasi-identity transform of the Hamiltonigi) (T,105—To) iS given by
Eq. (19 with a corresponding functiond:

Tw123_ TO
2(d)A0

In conclusion, using Hamiltonian averaging and quasi-identity-like transformation,
we have shown that in some specific limits nonlinear wave propagation in a system with
periodically varying dispersion and nonlinearity can be described by the integrable
NLSE.

K]_: 5((1)"‘(1)1_(1)2_wg)azaiazagdwdwldwzdwg.
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The nonperturbative contribution to the one-gluon exchange produces a
universal linear term in the static potential at small distanAas
=6N.asor/27. Its role in the resolution of long-standing discrepan-
cies in the fine splitting of heavy quarkonia and improving agreement
with lattice data for static potentials is examined, and implications for
operator product expansigi®PE violating terms in other processes
are discussed. €1999 American Institute of Physics.
[S0021-364(99)00207-9

PACS numbers: 12.38.Bx, 12.38.Gc, 14.70.Dj

1. Possible nonperturbative contributions from small distances have drawn a lot of
attention recently:? In terms of the interquark potential the appearance of linear terms in
the static potentiaV/(r) =constr, wherer is the distance between charges, implies vio-
lation of OPE, since const (mass}, and this dimension is not available in terms of
field operators. There is however some analytitand numerical evidence for the
possible existence of such ter@m?/Q?) in the asymptotic expansion at lar@e

On a more phenomenological side the presence of a linear term at small distances
r<Tg4, whereTg is the gluonic correlation length® is required by at least two sets of
data.

First, the detailed lattice ddtao not support the much weaker quadratic behavior of
V(r)~constr? that follows from the OPE and the field correlator methodut instead
favor the same linear forv(r)=or at all distancegin addition to the perturbative
—C,a,/r term). Second, a small-distance linear term is necessary for the description of
the fine splitting in heavy quarkonia, since the spin—orbit Thomas t&fm
= —(1/2m?r)(dV/dr) is sensitive to the smatl-region, and an additional linear contri-
bution atr <T is needed to fit the experimental splittihtyloreover, lattice calculatiofis
exhibit 1t behavior ofV, in all of the measured region up te=0.1 fm.

Of crucial importance is the sign of tf@(m?/Q?) term, since the usual screening
correction(realm) leads to a negative sign of the linear potential, and one needs small-
distance nonperturbativélP) dynamics, which produces a negatigtachyonig sign of
m? (Refs. 1,2. Phenomenological implications of such contributions have been studied in
detail in Ref. 1. In what follows we show that the interaction of the gluon spin with the
NP background indeed yields a tachyonic gluon mass at small distances.

0021-3640/99/69(7)/4/$15.00 505 © 1999 American Institute of Physics
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2. In this letter we report the first application of the systematic background pertur-
bation theory°to the problem in question. One starts with the decomposition of the full
gluon vector potentiah, into the NP backgroun®, and perturbative fiela,,

A,=B,+a,, @

and make use of the 'tHooft identity for the partition function

1
z:f DAMe’S(A)=Nf DB,m(B)f Da,e” 59, 2

where 7(B) is the weight for NP fields, defining the vacuum averages, e.g.,

2(EB (x) B B )yt _ _
9(F L 0P YIFL (V)= 1 (9un v~ 8O ) D(X—Y) + Ay, 3

whereFﬁV and®®B are the field strength and parallel transporter made pbnly; A, is
the full derivative terrfi not contributing to the string tensiam, which is

1 2
o= Z—NJd xD(x) + O((FFFF)). (4)

The background perturbation theory is an expansion of the last integg&) im
powers ofga, and an averaging oveB, with the weight»(B,), as shown in(3).
Referring the reader to Refs. 9 and 10 for explicit formalism and renormalization, we
concentrate below on the static interquark interaction at smalb this end we consider
the Wilson loop of size X T, whereT is large,T—o, and define

(W)B,a=<Pexp{igfc(BMJraﬂ)dzM > =exp[—V(r)T}. (5)
B,a

Expanding(5) in powers ofga,, we obtain

<W>:W0+W2+, V=Vo(r)+V2(r)+V4(l’)+, (6)
whereV,(r) corresponds toga,)" and can be expressed in termsyfA,, and higher
correlators>®

Coming now toV,(r), describing one exchange of a perturbative gluon in the
background, we find from the term quadratic &y, in S(B+a) in the background
Feynman gauge the gluon Green’s function

G,,=—(D368,,+2igF> )"t D$?=d,8c,+gf%BY. 7

B
v

G=—-D 2+D 22igFBD ?2-D 22igFBD " 22igF®D 2+ ..., (8)

Expanding in powers of F we can writeG,,, as

and the first term on the right-hand side @ corresponds to the spinless gluon ex-
change, propagating in the confining film covering the Wilson Rb8pAs was shown
recently!! the termD ~2 produces only weak correctio@(r®) to the usual perturbative
potential at small distances, while it corresponds to the massive spinless propagator with
massm, at large distances.

In what follows we concentrate on the third term(B), which yield
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as(kZ) d3keikrﬂ2(k2) ~
2 (K+md)? =—AVR(NT, ©)

W= |
where we have defined, having in mind E4),

w26 |

From Eq.(10) we obtain the following positive contribution to the potentiglr) at
smallr (we neglect a constant ter@(1/mg):

AV,(1r)= p?(Kem) ars(Ke)r +O(r?),  r=T,. (11

Analysis of the integral9) shows thatk.z~1/r, and thereforeAV,(r) is determined
mostly by the short-distance dynamics.

D(z)e **d*z 2001 60N, 10
g n(0)= o (10

3. The analysis done heretofore concerns the static interquark potential and reveals
that even at small distances the NP background provides some contribution which is
incorporated in the negative mass-squared terpy.

Applying the same NP background formalism to other processes of interest, one
would get similar corrections of the order pf/p?, as was investigated in Ref. 1.

To check the self-consistency of our results, one can find the contributipA (&)
to the correlatoD,

d*pu’(p) 1,
D(q)~a ~—, — 00, 12

(@ S(q)J P+ Aa-p? 12
which is positive and consistent with recent lattice datesertion of(12) into (10) yields
constantu?(p) at largep (modulo logarithmy which implies self-consistent NP dynam-
ics at small distance@dargep). It is worthwhile to note also that the negative sign of the
w2 contribution is directly connected to the asymptotic freedom, where the same para-
magnetic term in the effective acti®y; (Ref. 129 enters with the negative sign, and one
can take into account that u?(X,y) ~ 6Seq/ 8a,,(x) 5a,,(y).
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V. |. Zakharov and helpful discussions to V. A. Novikov and V. I. Shevchenko.
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It is demonstrated that, due to the finite thickness of domain walls and
the consequent ambiguity in defining their locations, the effective string
description obtained by integrating out bulk degrees of freedom con-
tains ambiguities in the coefficients of the various geometric terms. The
only term with unambiguous coefficient is the zeroth-order Nambu—
Goto term. We argue that fermionic ghost fields which implement
gauge-fixing act to balance these ambiguities. The renormalized string
tension, obtained after integrating out both bulk and world sheet de-
grees of freedom, can be defined in a scheme-independent manner;
explicit finite expressions are computed, to one-loop, for the case of
compact quantum electrodynamics aptitheory. © 1999 American
Institute of Physicg.S0021-364(19)00307-3

PACS numbers: 11.25.Db, 12.20.Ds

A long-standing problem in the physics of interfaces in three-dimensional systems is
to describe the interface dynamics as a theory of fluctuating surfaces analogous to an
effective Euclidean string theory?> The interface surface can be interpreted as the world
sheet of an effective string in three dimensions, while the two phases on either side of the
interface represent the vacuum expectation values of a fundamental field. For example, in
the Ising model the field is the spin operator, and the interface is the set of links about
which the spin changes sign. An effective string action of this surface has a typical
geometric expansion which begins with the Nambu—Goto téhm arey next the ex-
trinsic curvature, and then higher-order curvature corrections. It is usually argued that the
higher-order corrections are irrelevant as far as the low energy dynamics is concerned,
and perturbation theory consisting in keeping only the area term and extrinsic curvature
is valid. However, we will demonstrate that such an ansatz is in fact ambiguous from the
outset. In particular, we will demonstrate that coefficients of the higher-order curvatures
are completely arbitrary, and depend upon the precise prescription implemented in de-
fining the position of the interface. Such an ambiguity is a direct consequence of the finite
thickness of the interface region. In spite of this ambiguity an effective string description
is possible if one includes in the action fermionic degrees of freedom which reinstate the
scheme-independent nature of the fundamental action.

In this work we concentrate on interfaces which occur in 3D compact quantum
electrodynamic$QED).* The analysis can be easily applied to any other field theory in
3D which has a soliton solution to the classical equations of motion. In compact QED,

0021-3640/99/69(7)/7/$15.00 509 © 1999 American Institute of Physics
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monopole instantons cause the electric fields between two charged particles to form a flux
tube, the potential between electric charges grows linearly with the distance between
them, and the charges are confifebhis picture of confinement is, however, a purely
classical one. In the full quantum theory the string of electric flux, along with the mag-
netic fields in the bulk, are not rigid but rather fluctuate.

Compact QED can be regarded as the low-energy effective theory for the Georgi—
Glashow model, where th8U(2) symmetry is spontaneously broken t1). The
monopoles appearing in the broken gauge theory are the classical solutions of the original
Higgs model which have finite Euclidean actidfihe collection of monopoles behave as
a gas of charged patrticles interacting through a Coulomb force. Since the charges are of
order/4w/g, whereg is the gauge coupling, the monopole configurations can be treated
using a semiclassical approximation in the limit of weak gauge coupling. The system then
reduces to the classical thermodynamics of a Coulomb gas and the partition function is a
sine-Gordon(SG) theory#

2
Z=f[d<p] exp{—Sng fd3x[(a<p)2—2m2:cos<p:] . (1)

The monopole density is the coefficient of the cosine interactieng®m?/3272. The
grand canonical partition function for the monopoles is recovered by expanding in pow-
ers of and performing the functional integral over In the presence of the monopole
solution the photon becomes massive and Wilson loop correlators obey an afeBhaw.
relevant order parameter in the original gauge the@gmpact QED is the vacuum
expectation value of the Wilson loop. There is a natural mapping between this correlator
and the following correlation function in the SG modél:

W(C)z<exp(iE fﬁch)>QED=<exp<% fs*d¢)>se' 2)

HereSis an arbitrary surface bounded by the cont@uiThe result can be shown to be
independent of the choice of this surface. We are interested in the behawi®r fof

large loops. The contou® will be assumed to lie at infinity in the;=0 plane. In this
case, it is possible to reformulate the problem. The operator on the right hand $&Je of
introduces a source for the SG field or, equivalently, one may assume thateriences

a jump of magnitude 2 across the surfac8 Since the potential is periodic i@, this

jump can be eliminated by shifting on one side of the surface byr2 This shift renders

the field continuous; however, it changes the boundary conditiong-ast«. Conse-
quently, performing such a shift am reduceq?2) to an evaluation of the path integrd)

with the boundary conditiong— 0 asx;— — and¢— 2 asxz— + . These bound-

ary conditions are precisely what is required for field configurations in the presence of a
domain wall. The domain wall in this case describes a world sheet of a string of electric
flux created by charges at infinity.

The first step in obtaining an effective string action is to obtain the classical solution
satisfying the appropriate boundary conditions. The solution is the SG soliton:

oq(X) =4 arctane™s, 3)
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which corresponds to a domain wall in tke=0 plane. The position of this domain wall

is in fact ambiguous. Conventionally, its position is given by the surface on which

= .57 However, other definitions are also possible, for example, the surface on which
the energy density is maxim&P. These definitions, although agreeing at the classical
level, do not agree once quantum corrections are included. Nevertheless, they will yield
the same result within an order of 1. This uncertainty is due to the finite thickness of
the domain wall and we will argue that this ambiguity translates into the nonuniversality
of the world-sheet action.

Upon inserting3) as a classical background field in the functional integral @var
(1), the collective coordinate method can be used to separate the integral over fluctuations
into an integral over the domain wall position, which we describe by a height function
f(X1,X5), and over the field fluctuations in the bulk:

ZIJ [del[dfIArd @]SIKLf,¢p]] € Ssd¥], (4)

whereK[f,¢]=[dxzK(X,x3g—f)o(X)—7 and Ad ¢]= K[ f,¢]/5f is the Faddeev—
Popov determinant is (x;,X»), andSgg is the same as ifil). A particular definition of
the domain wall position corresponds to choosing a keiknéThere is no unique choice
of this function. The definition of Refs. 6 and 7 correspond&te 5(x;— f), while the
standard collective coordinate methttin which the fluctuations of the domain wall are
associated with quasi-zero modes in the background of the classical sdRitiamorre-
sponds toK = ¢ (x3—f).

Integrating overe in (4) yields an effective action for the coordinatéx) of the
domain wall. In the semiclassical approximatipnis replaced by its classical solution.
The effective action is then given by

Seft= 09 f

where the string tension is determined by the mass of the SG sbfifon:

1 ! V)2
+§( )

+0O((V£)?), (5

2

g°m
J' ((93¢¢)?+2m?cog <Pc|))dxszﬁ-

g2
3272

Oo=

In S all higher-order corrections, coming from tree-level diagrams, were ignored. How-
ever, if terms which would contribute to higher curvature corrections are ignored, it is
possible to re-sum an infinite subset of the terms which were previously ignored. This can
be achieved by considering a domain wall solution which is curved; unfortunately, such
configurations are not solutions of the SG equations of motion. They can, on the other
hand, be considered as a constraint soldfien the solution of the equations of motion
with a source term proportional to the argument of the delta functidd)inThis can be
included in the action by introducing a Lagrange multiplier field. For slowly varying
this equation can be solved by perturbation theory in the derivativedfabnly the first
derivatives off are taken into accourtt.e., ignoring higher curvature correctionshe
solution can be constructed by the following simple argum&éMghen one neglects
higher derivatives this implies thétis a linear function of its arguments, which corre-
sponds to the plane domain wall rotated through an adgleith tan6= /G, where
G=1+(Vf)2 The classical solution in this case is obtained fré8 by rotation:
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o(X)=@q((xs—)/G). This solution is exact in the approximation of const&tt,

since no source term is required to produce it. Consequently, the Lagrange multiplier
appears only in the next order of the derivative expansion and is proportioWaftarhe
effective action with the above solution is equal to the area of the domain wall. The
rotated wall area element contains the factor 1&e§G, and the re-summed effective
action is therefore

Sei= 070 f d?x JVG(x). (6)

Since G is the determinant of the induced metric on the string world sheet, we have
obtained the Nambu—Goto action.

The next term in the derivative expansion will be of order of the Lagrange multiplier
squared, that isY?f)?, and will depend on the choice of the constraint. This arbitrariness
leads to an ambiguity in the coefficient of this term, which in the covariant description
corresponds to the extrinsic curvature squared. It appears that the ardé)tesihe only
universal part of the effective action. This is not surprising, since the parameter of the
derivative expansion ik/m, wherek is a momentum of the excitation on the string world
sheet. Higher derivative terms become important wkemn, i.e., when the wavelength
of the excitation is of the same order of the thickness of the domain wall. Such excita-
tions are of course indistinguishable from the fluctuations of the SG field in the bulk. As
such, including such fluctuations in the effective string action leads to ambiguities. Of
course, the computation of any physical quantity must be invariant under any choice of
the constraint. It is the Faddeev—Popov determinant which cancels the ambiguities aris-
ing in the bosonic sector of the theory — the full effective action contains the fermionic
ghosts coming from the determinant.

The universality of the Nambu—Goto term stems from the rotational invariance of
the original model. This holds even when quantum corrections are included as long as the
constraint respects rotational symmetry. Constraints which do not respect this symmetry
would produce actions that are not reparametrization invariant. We have explicitly
checked that when the kernel ) is chosen to b&(x,x3— ) = ¢ (x3— ), which is not
rotationally invariant, the one-loop correction to the constant and to W@ terms in
(6) disagree.

Let us now consider the quantum corrections. The string tension gains quantum
corrections from fluctuations of the domain wall and of the figlth the bulk. To study
how these two corrections are correlated we calculate the one-loop corrections to the
string tension. The parameter of the loop expansiotg?, is small sincem? is propor-
tional to the monopole density. These corrections will be computed in the background
field method starting from the classical soluti(8). The one-loop corrections in 3D SG
theory are linearly divergent, which leads to ambiguities in the definition of dimensional
gquantities like the string tension. However, the monopole gas representation implies the
particular UV regularization based on the normal-ordering prescription. To implement
this prescription in the background field method, it is instructive to first study the one-
loop corrections to the general classical solution. Expanding the quantum field as
= ¢+ n and integrating outy, we obtain:
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FIG. 1. Tadpole diagrams to be subtracted in the normal-ordering prescription.

bare, 1
S;"=z Trin

( — P+ m? cos<pc|)
5 —.

— 3%+ m?

The expansion 08, in the powers ofp yields the usual Feynman diagrams, while the
normal-ordering prescription consists in throwing out bubble diagr@figs 1). Thus, to
one-loop, the normal ordering is implemented by adding the following counter-term to
the effective action:

1 — 9%+ m? cose
Si=5 Trin| —————

m f dx( 1) f dp 1 @)
—_ X(COS — .
2 el (2m)% p?+m?

— %4 m?

This expression is free of all UV divergences. Notice that since the expansion of the
renormalized effective actioB, begins withe?, terms, the mass of the photon does not
acquire quantum corrections at one loop.

The spectrum of the operator describing the excitations of the soliton are well
known. It consists of plane waves in tlg¢ andx, directions; while thexs spectrum is
gapped, possessing a zero mode and then a set of continuum states corresponding to the
scattering of plane waves off the potential given by the solitonic solution. Inserting the
analytic form of the spectrum int(v) we find that the one-loop correction to the string
tension is,

1 [ d%
01=§f(2w)3ln(p2+m2)v(p3)

2

+1f d’p In(p?)+2 f d®p 1 m
5 n mf—————=—-—.
2 J (2m)? P (2m)3 p?+m? 4w

®

Here v(p3) is the difference of the density of scattering states in the presence and
absence of the kink, and can be obtained using the exact eigenmodes of the linearized SG
equation*?

2m
V(ps):J dx3(#5,(X3) Pp,(X3) —1) = —

p5+m?.
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The first term in(8) corresponds to the trace over continuum states; the second term
corresponds to the quasi-zero mode contribution; and the last term is the counter-term
prescribed by normal ordering. The sum of these three terms is UV finite, although each
term diverges individually. This leaves room for some ambiguity in the final finite result
depending on what regularization scheme is implemented. However, if the sum of the
terms is placed under one single integral, so that the function being integrated over has
finite UV behavior, the answer must be regularization independent. The difficulty in
implementing such a scheme is that the quasi-zero mode is a 2D integral, while all others
are 3D. It is possible to integrate out tpg component of the 3D integrals first, which
then leaves a single two-dimensional integral to perform. This is the scheme that was
used in(8).

Thus far, we have shown that after including one-loop effects the string tension in
the SG model is

g’m L wm)
o=—|1-5—]|.
2,”,2 292

We performed analogous calculation fgf theory with the potentiak (¢?—m?/\)?/2,
the result is

—4m31 94I3)\
=3 | a4

As mentioned earlier, different regularization schemes will lead to different final answers.
The authors of Ref. 13 performed similar calculation s ongAdheory using the zeta-
function regularization. That computation, however, did not include the integral over the
quasi-zero branch of the theory, and therefore corresponds to obtaining the one-loop
correction to the effective string tension rather than the one-loop renormalized string
tension. Excluding that branch still leads to finite results in their regularization scheme
since it is insensitive to power like divergences. Unfortunately, it yields an answer in-
compatible with the ansatz of first integrating quf and then performing the finite
integrals. This is to be expected, since the quasi-zero branch should and must contribute
to the renormalized string tension.

(o

In the preceding, all modes were including in computing the determinant. However,
it is possible to integrate out only the scattering states, i.e., to omit the second t)mn in
and obtain an effective action for the quasi-zero bratadhin Ref. 13. This branch
contains the modes responsible for shifting the surface irxjhdirection. Omitting the
second term in 8 is equivalent to keepiffixed and integrating out only bulk modes. The
one-loop correction with only bulk modes included is badly UV divergent and is not
regularization independent. In the naive cutoff regularization the effective string tension
for thef fields will be ~ A2In(A%n?), as can be easily checked fra@). Of course, hard
modes(with k=>m) of the fieldf cancel this divergence, rendering the physical string
tension finite. The implication is that the one-loop renormalization of the string tension is
known precisely, even though all the interaction terms are not known.

To summarize we have argued that the accuracy of the macroscopic description of
the confining string in compact QED is limited by the fact that the string is not infinitely
thin. As a consequence the higher-derivative terms in the world-sheet action are not
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universal. Formally, it is possible to obtain an effective string theory action by integrating
out ¢ in (4) exactly. However, the world-sheet action will be scheme dependent and must
be supplemented by the fermionic ghosts coming from the constraints. In addition, the
action contains rather peculiar divergences and the finite physical quantities obtained
from such an effective action appear only after delicate cancellations between these
divergences and the contribution of hard modes of the string coordinates.

It is worth mentioning that the derivation of the effective domain wall action by
collective coordinate method in one-dimension lower would lead to essentially the same
conclusions. In the 2D theory, which can be thought of as a high-temperature reduction of
the 3D theory:* domain walls correspond to soliton paths. Solitons in 2D SG theory are
known to be described by a local field theory, the Thirring mbdeind soliton
operator® look very much like the dimensional reduction of the Wilson lo¢ps'* the
only difference being a local factor rendering the solitons fermionic. Fermion propagators
have a well defined sum-over-path representation where the action is the supersymme-
trized length of the world line. Nevertheless, at weak SG coupling, solitons cannot be
described by the world-line theory, since the four-fermion interaction in the Thirring
model, which corresponds to a contact interaction in the sum-over-path picture, becomes
infinitely strong.
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A systematic theory of the formation of squeezed states during the
propagation of coherent light pulses in a medium with an inertial Kerr
nonlinearity is developed. It is established that the region of the spec-
trum where the quadrature fluctuations are weaker than the shot noise
depends on both the relaxation time of the nonlinearity and the magni-
tude of the nonlinear phase shift. It is also shown that the frequency at
which suppression of the fluctuations is greatest can be controlled by
adjusting the phase of the pulse.

© 1999 American Institute of Physids$0021-364(109)00407-7

PACS numbers: 42.50.Dv, 42.65.Tg

In the present letter we analyze the effect of the response time of the cubic nonlin-
earity of a medium on the formation of nonclassitsfueezedlight. The formation of
quadrature-squeezed light as a result of the self-effect of a light pulse is studied. This
process, together with the generation of optical solitons and parametric amplification
during pulsed pumping, serves as an efficient method for producing pulsed squeezed
light. The self-effect of ultrashort laser pulses has been used in Refs. 1-4 for producing
squeezed states of light. At the same time, all of the theoretical calcufatianscon-
nection with the analysis of the formation of nonclassical light in the presence of the
self-effect of pulses assume that the nonlinear response of the medium is instantaneous
and that the relative fluctuations are small. The latter assumption is, of course, valid for
the intense pulses ordinarily used in experiments. It should be expected that the response
time of the nonlinearity will determine the region of the spectrum of the quantum fluc-
tuations that play a large role in the formation of squeezed light. The point is that even
though the frequency band of the pulse is limited, the spectrum of the quantum fluctua-
tions of the pulse is unlimitedin the present-day theoryHowever, in order to take the
nonlinear response time of the medium into account it is necessary to develop an appro-
priate algebra of time-dependent Bose operators. We have developed such an algebra,
and this has made it possible to develop a consistent theory of the formation of nonclas-
sical light as a result of the self-effect of light pulses with no restrictions on their intensity
and on the ratio between the relaxation timeof the nonlinearity and the pulse duration
7,. We present below the results fog> 7, . We underscore that even in this case this
problem cannot be solved correctly without taking the finite relaxation time into account.

0021-3640/99/69(7)/5/$15.00 516 © 1999 American Institute of Physics
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The process under consideration is described by an interaction Hamiltonian of the
form

Hin=18 f:dt f_tha—tl)N[ﬁ(t,z)ﬁ(tl,z>]dtl, (1)

where the coefficienp is determined by the nonlinearity of the mediukh(t) is the
nonlinear response function of the mediuki(¢) #0 for t=0 andH(t)=0 for t<0; a

Kerr-type the nonlinearity is assumedN is the normal-ordering operaton(t,z)
=A"(t,2)A(t,2) is the photon number “density” operator, aid (t,z) andA(t,z) are
the Bose operators creating and annihilating photons in a given cross seaifae
medium at a given time (see, for example, Ref)6The operaton(t,z) commutes with
the Hamiltonian(1) and therefora(t,z) =n(t,z=0)=ny(t), wherez=0 corresponds to
the entrance into the nonlinear medium.

In accordance with Eq1) the spatial dynamics of the opera#(t,z) is described
by the equation

IA(t,2)
0z

+iBq[Ne(t)]A(t,2)=0, (2

which follows from the Heisenberg evolution equation, where

alio®]1= [ htfo(t-todt, (=),

Equation (2) is written in the traveling coordinate systemm=z and the timet=t’
—z/u, wheret’ is the running time and is the velocity of the pulse in the medium. The
solution of Eq.(2) is

A(t,2)=exd —i yalNo(H)1]Ao(1). 3)

Here Ay(t)=A(t,0), y=Bz. For h(t) =245(t) and Ay(t) =a, expressiong2) and (3)
assume a form corresponding to single-m@a@nochromatig radiation. The following
commutation relations should hold for arbitrary distanzeD:

[A(tlvz)7A+(t27z)]:5(tl_t2)1 [A(tlvz)7A(t212)]:O' (4)

To check the relation&4) and to calculate the quantum statistical characteristics of
a pulse we developed an algebra of time-dependent Bose operators. Specifically, we
obtained the commutation relation

Aot exi —iya[no(ty) 11=exd —i yalNo(ty)1—i yh(t;—t)JA(t) (5)

and the normal-ordering formula

exp[—ivq[ﬁom]]:Nexp[ fi[exrx—ithl))—l]ﬁo(t—01>d01 : (6)

Here time is normalized to the nonlinearity relaxation time i.e., =t/7,. Relations
(5) and (6) are a generalization of the well-known relations for the single-mode ‘case.
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The photon number operator remains unchanged in the presence of a self-effect.
This fact has already been used in E2). For this reason, in the presence of a self-effect
it is of greatest interest to study the fluctuations of the quadrature components. Let us
consider the quadrature component

N 1
X(t,2)=§[A+(t.2)+A(t,Z)]- (7
The correlation function of the quadrature fluctuatio(s, z)

R(t,t+7)= ;[<>“<(t,z)>“<(t+ 7,2))+(X(t+ 7,2)X(t,2)) = 2(X(t,2) {X(t+ 7,2))]
(8)

(the brackets denote averaging over the quantum state of the) psiigéven by the
expression

R(t,t+7)= %{5( ) — (t)h(7)sin 20 (t) + Y2(t)g( 7)SirPd (1)}, 9

where ¢(t)=2y|aq(t)|? is the nonlinear phase shiftyo(t) is an eigenvalue of the
operatorAg(t) of a pulse in a coherent statk(t) = /(t) + &(t) (o(t) is the initial phase
of the pulsg, 6(7) is a delta function, and)(7)=r, *(1+|7|/7)exp(|d/7) for the
nonlinearity relaxation response under stuldys) =7, 1exp(—|71lrr). The derivation of
Eq. (9) took into consideration the facts that the nonlinear phase shift per phetdn
and that the relaxation time is much shorter than the pulse duratjgar().

In accordance with Eq9) the spectral density of the quadrature fluctuations is

S(w,t)= J’iOR(t,t-i- T)eindT

1
= Z[1— 24(t)L(w)sin 20 (t) + 442 (t) L2 (w)sir? d(t)], (10

whereL (w)=1[1+ (w7,)?]. It follows from Eq.(10) that, depending on the value of the
phase®(t), the quadrature fluctuation can be weaker or stronger than the shot noise
corresponding to the coherent state of the pu&"(w)=%. In accordance with the
Heisenberg uncertainty relation, the behavior of the spectrum in the conjugate quadrature
is shifted in phase byr/2.

If the phase of the pulse is chosen optimal for a frequebgy
1
bo(t) = 5 tan *[(P(t)L(wo) 1= (1), (1D
the spectral density at this frequency is
1 21 2 2
S(wo,t) = Z[V1+ ¢ (DL (wo) —¢()L(wo)] (12)

and increases monotonically with the phagg).
For arbitrary frequency we have
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FIG. 1. Dispersion of the fluctuations of the quadrature component of a pulse attithas a function of the
maximum nonlinear phasg(0)= 27| a,(0)|2 and the reduced frequen€y= w, at values of the phase of the
pulse which are optimal fof2=0 (a) andQ =1 (b).

1
S(@,1)=S(wo,t) + 5 [L(@) = L(wo) JY(O{[L (@) + L (o) J¢(t)

1
—[1+(L(@)+L(wo)L(wo) ¢*()I[1+ ¥ (D)L (w)]™ 2. (13

The spectra calculated using Ef3) att=0 for o =0 andw= 7-[1 are presented in
Fig. 1. It is evident from Fig. 1a that fasy=0 the spectral density of the fluctuation s is
minimum at the frequencw=0 for any value of the phas¢(0). For wy#0 (Fig. 1b
and phases/(0)>1 the minimum of the fluctuation spectrum lies at frequencies
=7, 1 and fory(0)<1 the minimum lies nean~0. It is also obvious from Figs. 1a and
1b that the frequency band in which the spectral density of the quadrature fluctuations is
lower than the shot noise level depends on the nonlinear phaseyghift The corre-
sponding dependence far,=0 is displayed in Fig. 2, whence it follows that fgi(0)
>1 the width of the spectrum below the shot noise level is 1.5 times greater than the
width of the spectral response of the nonlinearity.

AQ

12

1.1

0 1 2 3 4 5 6
¥(0)

FIG. 2. Spectral bandQ=2Awr, (at half-height of the quadrature of a pulse with suppressed quantum
fluctuations as a function of the maximum nonlinear pha&e).
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The results obtained in the present letter can be used to analyze correctly the ex-
periments of Refs. 1-4, in which laser pulses with a duration of the order of 100 ps and
quartz optical fibers were used and the maximum nonlinear phaseyshifis greater
than 1. Of course, in measurements of the quadrature spectrum the suppression of quan-
tum fluctuations of a pulse will be smoothed dsee Eq.(13)). This time over which
“smoothing out” occurs in the case of balanced homodyne detettidetermined by
the duration of the heterodyne pulse.

The theory developed makes it possible to optimize the strategy for producing and
detecting ultrashort pulses in a squeezed state. Quantum fluctuations of short pulses are
ordinarily measured at high frequencies of the order of several tens of MHz in order to
avoid any effects due to technical fluctuations concentrated at low frequencies. However,
as a rule, the suppression of quantum fluctuations is greatest in this region. Our results
show that by adjusting the phase of the signal putsegenerally speaking, the phase of
the heterodyne pulgeone can achieve maximum suppression of the fluctuations specifi-
cally at the spectral component of interest to us. We underscore once again that this
spectral component can lie on the wing of the spectral response of the nonliriEagity
1b). This means that nonlinear media with a longer relaxation time and correspondingly
a larger nonlinearity can be used to obtain squeezed-light plilses.

In closing, we note that the approach developed in the present letter can be used
to analyze the formation of polarization-squeezed light in media with a cubic
nonlinearity'® and to develop a quantum theory of nonlinear matching deVides
pulsed signals.
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On harmonic generation in a photoionized gas
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The laws characterizing the radiation of high harmonics due to the
coherent bremsstrahlung effect are indicated in the limit of high inten-
sity of the laser pump photoionizing a gas in regime of suppression of
the ionization barrier. It is shown that the intensity of the harmonics is
determined by the quantum properties of the electron distribution in an
atom before it is ionized. €1999 American Institute of Physics.
[S0021-364(©9)00507-]

PACS numbers: 42.65.Ky, 52.40.Nk

The generation of high harmonics of optical radiation has been attracting a great
deal of attention in the last few years, both as a general problem of nonlinear optics and
as a problem whose solution opens up prospects for many applicafiéresstudy of the
generation of very high harmonics started with plasma as the nonlinear médinrthe
last few years harmonic generation has been studied in neutral @asedor example,

Refs. 4 and & However, as the lasers employed are improved and the energy flux density
of the laser radiation increases, neutral gases become idhiz&thus attention once
again turns to plasma as a nonlinear medium for generating high harmonics of laser
radiation. There is a tendency in experiments to increase the intensity of the laser radia-
tion when photoionization is the process used to ionize the gas.

In this letter we present the basic laws characterizing the efficiency of harmonic
generation in a photoionized plasma, which are determined by the quantum distribution
of electrons in an atom. The exposition is mainly of a qualitative nature and is based on
an associative generalization of the existing results of the theory of harmonic generation
in a preprepared classical plasma. In what follows we shall concentrate on the limit of a
pump field which is strong enough that photoionization occurs under conditions of sup-
pression of the ionization barri¢sIB).%° In so doing, first, we shall assume the ioniza-
tion potentiall; of the atoms to be small compared with the energy (rMZé of the
electron oscillations in the pump electric figl(t) = E coswt, whereVg=|eE/mo| is
the amplitude of the oscillatory electron velocity amdndm are the electron charge and
mass, respectively. This means that the Keldysh parameter of the theory of tunneling
ionization is small:y=(2|i/mVE)1’2<1 (Ref. 11. Second, we shall assume the param-
eterB=(1/162)(1; /1) %(E4/E) to be small. Her& is the nuclear charge of the atohy,
is the ionization potential of the hydrogen atom, dhg=5.13x 10° V/cm is the atomic
unit of electric field intensity. In the case of interest here, whgsel, according to Refs.

9 and 10 an electron is ionized from an atom without tunneling. In other words, photo-

0021-3640/99/69(7)/5/$15.00 521 © 1999 American Institute of Physics
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ionization in the SIB model is determined by the free, virtually unimpeded, escape of an
electron from an atom. For a spatially uniform distribution of atoms in a plasma this
makes it possible to express the electron momentum distribution function in the form
f(p,t)=F(p—mu(t)). Hereu(t) is the time-dependent electron velocity in the electric
field of the laser pump ionizing the atoms. This form of the electron distribution is similar
to that ordinarily arising in the theory of harmonic generation in a plasma in the first
collisionless approximatiohHowever, in the present case, in a coordinate system oscil-
lating together with the electron it is the electron momentum distribution inside an atom
before the radiation acts on the plasma. For a pure quantum state, to within a normaliza-
tion factor,

2

F<p>=§ lag(p)

where aq(p) is the electron wave function in the momentum representation and the
summation extends over all quantum numbers corresponding to the electron distribution
inside the atom. Such a distribution is physically obvious. It can also be obtained directly
by using the equation for the density matrix in the Wigner representatisee below.

The similarity so arising and, at the same time, the obvious difference between the
cases of a preprepared plasma and a photoionized plasma in the SIB regime makes it
possible to establish the following general law characterizing the generation efficiency
7@+ 1) of the (2 + 1)-st harmonic due to coherent bremsstrahl(cwnpare Refs. 2 and
13-15:

7@ =g Vig)={[v(V)/w]h(1)S([2] + 1][VIVE])}?, D

whereq®*1) andq are, respectively, the energy flux density of thé<2)-st harmonic

and the pump. In Eql) the functiony(V) is the electron-velocity-dependent electron—

ion collision frequency, which corresponds to the cause responsible for the harmonic
generation — bremsstrahlung due to the oscillatory motion of the electrons in the Cou-
lomb field of the ions, andi(l) is a function of the number of the harmonic and in the
case of a plane-wave geometry for both the pump and generated harmonic fields is given

by13—15
h()=[1(1+1/2)2(1+1)] 1.

Finally, the functionS, which is determined by the electron distribution inside the atom,
depends in the high-field regimé>V on the argument[@l + 11V/Vg), whereV is the
characteristic electron velocity for some electron velocity distribution that does not take
braking effects into account. This is similar to the results obtained in Refs. 13—-15, and it
can also be established directly for the photoelectron distribution in the SIB régame
below).

In order to use our general expressidhto examine the quantum properties of the
efficiency of harmonic generation in a photoionized plasma we shall first use the expres-
sion for the electron—ion collision frequency corresponding to the Fokker—Planck—
Landau collision integrak(V) =4me2e?n; A/m?V3, wheree;=Z;|€] is the ion chargen,
is the ion number density, andl is the Coulomb logarithm. For ionization in the SIB
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regime it is natural to tak® =V, whereV,=Ze?/# is the Coulomb unit of velocity®
andZ is the nuclear charge of an atom, as distinct frém which is the multiplicity of
ionization. Then

221,
o

v(Vy)  _ Zie'm
w 12 o)

wherel ,=Z?l,,, | is the ionization potential of a hydrogen atomZ=(4w/3)a§, and
=#%?/Ze’m is the Coulomb unit of lengtl Using a=7%2%/€?m=0.53x 10" 8 cm, we
write Eq. (1) in the form
2
] : 2

wheren;[20] is the ion number density in units of ¥cm 3. For what follows it is
helpful to write down in a similar form an expression for the energy flux density
q (W-cm2) of the pump radiation:

2 fw\?

Ta)

The maximum value of the efficiency® 1) corresponds to the maximum value of the
functionS(x) =S,,, which occurs ak=Xx,,. Substituting the corresponding numbers into
the formulas gives both the maximum generation efficiency of the-(2-st harmonic
and the corresponding flux density of the pump.
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Before illustrating the general laws presented above, determined by the quantum
properties of electrons in an atom, let us note that the main equation for the theory of
harmonic generation that determines the pump-induced electron current d§nshar-
acterizing the coherent bremsstrahlung of a plasma, is most easily obtained by using the
quantum density matrix in the Wigner representafioihis equation has the form

it m?  (27h)% G

d9dj 47e? e nA enm
799 _ ' fdrldr2 |2{sw[(muE(t)/ﬁ) 1—r5)]
2

X[hg(ro) ¢ (r2) + 45 (r1) ¢q(r2)]_COE{(mUE(t)/h)(rl_r2)]
X[hg(ra) g (r2) = g (r) g(r2) 1}

Here y,(r) is the wave function of an electron in an atom before it is ionized. This
function corresponds to the full set of quantum numlzecharacterizing the electronic

state. It should be stressed here that the electronic states of an atom have a substantial
influence on the source current for harmonic generation. This has not been appreciated at
all in the theory of coherent bremsstrahlung generation of harmonics in plas®mafor
example, the review Ref. 15

Let us illustrate the above for the photoionization of thesiate of a hydrogenlike
atom, where

S(x) = (4 {E1(X) +[ (413) + (x/3)]e "}, El(x)zfe(dt/t)e’t. 3
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According to Eq/(2), the function(3) describes harmonic generation over a wide range of
pump intensities. For this functioB,=0.28 atx,=3.34. Among other things, this
makes it possible to find from Eq&) and(3) the maximum efficiency, the correspond-
ing pump intensity, and the energy flux density of thé«2)-st harmonic:

i1 V=10 [h(N1A(Z{1Z%) (1 4/ ) 2(A110)2(ni[20])2,
Omas(21+1)=2.7xX 10"°Z2(1 + 1/12)*(h /1 4)?W- cm™ 2,

21+1
qm,lsngn,l-; )=

(21+1)_
m.1s 10

2.7X10°(n;[ 20])? (A)Z(Zi)“ )
- | W-cm™ -,
[(1+1/2)(1+1)]? z
Applying the latter formulas to a photoionized helium plasmaffar=4 eV pump ra-
diation and assuming. =10 andn;[20]=10 for the generation of the 63rd harmonic,

which corresponds to the optical transmission window of water, | obtgins(63)
=10 W-cm™2 andq{$3,=280 W-cm™ 2.

In conclusion, | note that an accurate memory of the electron distribution in an atom
is lost at times greater than the transit time

Z3

—15
Z.ni[20] 13X10 "~ s.

m?V3 T 10
tedV2) = . (

4me*An, 3AnO; A

Here 7,=%3%/€?m=2.42x 10 " s is the atomic unit of time, and the relatiog=Z;n;
between the electron and ion number densities is taken into account. For Heglium
=5x10"1°s. For long times the relaxation to a Maxwell distribution does not break the
quantum scalingl) and (2) of the dependence on the number of the harmonic, which
goes over to the classical temperature scaling of Ref. 14. Only changes of unit order in
the coefficients arise. The latter occurs over a comparatively long time interval. This
important property is due to the important circumstance that electron—ion collisions are
suppressed by a strong electromagnetic fieddd therefore the electron heating time is
much longer thar... For this reason, for a long time the electron “temperature” cor-
responds to the quantum energy of electron motion in the atom.

In summary, we have established new laws characterizing the generation of high
harmonics in a plasma photoionized by high-power radiation under conditions of sup-
pression of the ionization barri¢conditions which are discussed here for the first jime
such that a memory of the quantum electron distribution in the atom determines the
properties of the harmonic radiation.

This work was performed under the Government Program for Support of the Lead-
ing Scientific School§No. 96-15-96750 INTAS (Project No. 97-0368 and the Russian
Fund for Fundamental Resear@@roject No. 99-02-18075
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The visibility of the density interference pattern of two Bose—Einstein
condensates, which are produced in traps and overlap after the trapping
potential is switched off, is investigated. Coherent wave packets are
used to describe the order parameter in a second-quantization formal-
ism. This results in a decrease of the visibility of the interference
fringes with increasing time delay between the formation of the con-
densates and the observation of interference. In the two limiting cases
of ideal and very dense gases the correlation time increases, and

the result is identical to that obtained using an approach based on the
Gross—Pitaevskiequation. Under the conditions of the experiment per-
formed by M. R. Andrews, C. G. Townsend, H. J. Mieseeal.,, Sci-
ence275 6367(1997), the computed correlation time=0.2 s is much
longer than the confinement time of the condensate, and it is possible to
observe the predicted decrease of visibility of the interference fringes
of the density of the atoms. @999 American Institute of Physics.
[S0021-364(©9)00607-9

PACS numbers: 03.75.Fi, 03.75.Dg

Experiments were recently performed to observe the density interference between
two Bose condensatésAtoms trapped in a magnetic trap were spatially separated into
two groups by a laser beam and cooled. Then the trapping potential was switched off and
the condensates expanded and overlapped. The interference fringes of the atomic densi-
ties were observed in the overlap region.

In both the initial assumption in setting up this expeririemnd the theoretical
description following the experimetit the authors initially conjectured that the atomic
density interference fringes are formed as a result of the appearance of an order parameter
(or a macroscopic wave function of the conden)seitex)=<\if(x)>, which means that
invariance undetJ(1) gauge transformations breaks down. The wave function of the
condensate is a solution of the nonlinear Sdimger equation in which the interatomic

interaction is assumed to be a contact interaction andiﬂ‘@perator is replaced by a

c—number,\if(x)—>\lf(x).5'6 It is supposed that such an equation, called the Gross—
Pitaevski equation(GPE), completely describes the state of the system at temperature
T=0. Then there is no need to use the second-quantization formalism.

At the same time such a description of interference is not the only possible one. The

0021-3640/99/69(7)/6/$15.00 526 © 1999 American Institute of Physics
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assumption that a nonzero vaItQﬁf(x))#O is formed is actually equivalent to the
assumption that the condensate wave function is a superposition of |atesth dif-
ferent numbersN of particles. We suppose that this superposition has the form of a
coherent wave packet, used by Anderson to describe superfllidity,

(N .
V= A\N), Ay=7 YAN"Y2exp — +iNet, 1
2 AWN), Ay anz TiNe (6]

whereg is a phase.

The main assertion of the present letter is as follows. The use of the(&jate
describe interference results in a new qualitative result that does not occur in the GPE
approab — a decrease of the visibility of the interference pattern with increasing time
delay between the formation of the stdtB and the observation of the interference.
According to our estimates, such a decrease of visibility can be observed under the
conditions of the experiment of Ref. 1. Descriptions using the stajesnd on the basis
of the GPE lead to the same results only in the two limiting cases of an ideal gas and a
very dense gaén the latter case the correlation time increases very slomwhN° and
such conditions are virtually impossible to obtaifiince in the GPE approach essentially
nothing is known about the dynamics of the formation of both the dtBteand the
macroscopic wave function, at present only experiments can show which description is
the correct one.

Two possible formulations of an interference experiment are examined. In an ex-
periment of the first typél), which was realized in Ref. 1, a magnetic trap containing
trapped atoms is divided by a laser beam into two halves, which are cooled to a conden-
sate state, after which the trapping potential is switched off and the condensates overlap.
In the second casg@l), which was also discussed in Ref. 1, but which thus far has not
been realized as far as we know, a trap with the atoms cooled to a condensate state is
divided in half and after a time delay the trapping potential is switched off.

Following Ref. 4, we shall use the Wigner function

W(x,p,t)= %f ex;{ —i F;,l—y <\if+

where the brackets indicate averaging over the condensate state, to describe the interfer-
ence of the condensates.

y
X+§

\if(x— %>>dy, )

In the GPE approach there is no need for such averaging. In this\fc@s)eis a
c-number,

V(0= 1,00 VN, exp( — -t |+ 0,00 VN exp( - %Mﬁt), ®

wherey, ; are the solutions of the nonlinear Sctirger equation for each of the traps

a and B8, with particle numbersN, ; and chemical potentiala, 5, and¢ is a phase.
The average assumes the form

(PP = 3 g (X, (4)
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— i :
gaa:Na! dps= N,B! gaﬁzgza: NaNﬁex%g(Ma_Mﬁ)t+|¢ . (5)

For an ideal gas, after the potential is switched Bftx,p,t) satisfies the Liouville
equation, whence it is easy to conclfidbat density interference fringes form with
visibility V=2|g,4l/(94at9ss)- For N,=Ngz=N/2 Eq. (5) givesV=1. A numerical
solution of the GPE showédhat the interaction of the particles changes the structure of
the fringes, but the visibility is once again equal to unity.

When the second-quantization formalism is employed,=a0 only the ground-state

functions of the trapsif(x)zéaz/fa(x)+éﬁz,bﬁ(x) need be retained in the field operator.
Then expressiofd) retains its form, but the correlation function is equal to the average,
gi={(a"a,), and Eq.(5) changes. Otherwise, everything said about interference remains
in force.

A solution of the form(3) of the GPE is the only possible solution B&0. An
attempt to represent it as a superposition of the st@ewith different N, and N is
admissible only for an ideal gas. For a gas of interacting particles the particle number
dependence of the chemical potential would lead to temporal oscillations of both the
average total number of particles and the number of particles in each condensate. There-
fore, irrespective of the method used to produce condensates, the visibility in the GPE
approach equals unity/=1, and does not depend on the time. The situation is different
whenN-states and wave packets are used.

The calculation of an average value with the standard Q'thgeNB), corresponding
to a fixed number of particles in each condensate, leads to the tesutt(a,az) =0,
i.e., interferen ce vanishes. However, as was noted in Ref. 8, for the method used to cool
the atoms there are no grounds for assuming that the condensate state is a state with a
fixed number of particles. Let us assume, for example, that at the final stage of cooling
the wave function ol atoms in a trap is a superposition of the stdi¢®, . . .), corre-
sponding toN atoms in the ground state, apN—1,1,0,.. ), corresponding tiN—1
atoms in the ground state and one atom in the first excited state. The cooling rf field
removes an excited atom from the trap, switching the state-1,1,0,... into
IN—1,0,...). As a result, the final state is a superposition of states Witmd N—1
particles. It is obvious that in the general case, as a result of such a process, the state of
the condensate dt=0 is described by a superposition of functidhso, . . .)=|N) with
differentN. We shall assume that this superposition is of the ftin

Following Andersorf, we shall assume that the amplitudég have a sharp maxi-

mum atN= N with varianceAN?~N. In this case, the weak dependence of the functions
IN), which are a solution of the GP@r the equivalent Hartree—Fock equajioon the

numberN of particles can be neglected in the field operator, and we cakN$evt|W>.
We then obtain from Eq.l1) the value

<ﬁr>=<a>|ﬁ>=z Ay 1AgN el En-1-Enttie 6)
N
which is identical to the solution of the GPE, if in E() the small difference in the

coefficientsAy_,~Ay is neglected and it is assumed thAX= \/ﬁ while the energy
difference between the states is represented approximately in the EQrEy_,
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=5E/(9N=,u(ﬁ), neglecting the next higher-order terms in the expan@iothe case of an

ideal gas the next higher-order terms are absent and the result becomesTatdicy the

next term in the expansion into account and replacing the summation by integration, we
obtain

(é)=\/ﬁexp{—(t/7)2—i%t+i<p, r=2/IANs, s=duliN. (7)

In a type-l experiment, where the condensates are cooled independently, we obtain
(a,af)=(a,)(a;), whence

S CHEN O  B

Hence one can see that the correlation function and, correspondingly, the visibility of the
interference pattern decrease with increasing time intdrbatween the formation of a
coherent wave packél) and the observation of the interference fringes. The correlation

time 7 can be estimated by settimgN= \/ﬁ
For a rarefied gas the correction introduced to the enB(gy) of the ground state

of the system by the interaction of the particles can be calculated in the standard manner
asAE(N)=(N|U|N), where

t\2 (1) g
T_a) _(T_B) —i T tHi(ea ep) |- )

ISP 2mah? 4 —
U=Upagagapdg, Ug= | fo|*dr =gt w,

m

m is the mass of an atona, is the scattering lengthy, is the ground state function in a

parabolic trap,;:(warw +w,)/3 is the average frequency of the trap, agd
= 2lm(alR) V(wxwyw,)/w®, with R=\#/(mw). Finally, E(N)=%w(3N/2+gN?).
Naturally, in such a calculation the interaction is assumed to be wfdk:aN/R<1.
Hence we finddu/IN=d?E/IN?=2fwq and 7~ }(N) " Y%q 1.

ForgN>1 the Thomas—Fermi approximatibl! can be used to calculate the chemi-
cal potential,u = % w(15Na/R)?%, whencer~ ™ 1q~25NY10

Thus, as particle number increases, the correlation time at first decreasés a<,
reaches a minimum~ o~ *q~*?~0.03 s atN~10° (under the conditions of Ref. Iy
~10° s~ andg~10"3), and then increases very slowly as 0.0NY*°s. Formally, in
the limit N—o we obtaint—o, and Eq.(8) becomes identical to the GPE res(#).
Under the experimental conditions of Ref. 1, howewr; 10°, which is very far from
this limit, and 7=0.2 s. This time is much longer than the overlap tim8.04 s of the
condensates after the potential is switched off, but much shorter than the confinement
time ~30 s of the condensate state. Thus there arises the question of what to use as the
time origin in Eq.(8), which is unsatisfactory from this standpoint. We also note that if
the phases in the superpositi6h) are arbitrary, then the result is much less than that
obtained from Eq(8). An experimental investigation of the dependence of the visibility
of the fringes on the time delay between the formation of a condensate and the switching
off of the potential can shed light on this situation. We note that the replacement of
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summation ovelN by integration in the derivation of Eq7) suppressed the correlation
function revivals resulting from the revival of the order parameter, which was discussed
in Ref. 11.

We shall now discuss the type-Il experiment, where the condensate formed in a trap
is divided into two parts and the potential is switched off after a time deldy describe
this experiment there is no need to assud{d) violation.

Neglecting particle interaction before the division, the wave functioN afoms can
be written in the formW(xq, ... Xn) = ¥o(Xq) . . . ¥o(Xn), Wherey(x) is the ground-
state wave function of the trap. After the division this function assumes the form

WXy XN)=P(X) « o XN),  (X)=Cothu(X) + Cathp(X), 9)
ca=V\, Cp=V1-\€'¥, 0<A<L.

The coefficientn and the phase reflect the possible asymmetry of the division process.
Next, it is important to represent the ground sta® |N=N)=(N!)"*3c.a’
+cgaf)N0) as a superposition of the stateN,,Ng)=(N,INgl) Y3a;)Ne
x(ag)’\‘ﬁ|0> with N, and N particles in each condensate. Calculating the matrix
element

[ NI
VIl _ N, N
<Na!NB|N_N>_Ca CIB'B Na! NB' 5NB,N7Na1

we find the wave function of the two condensates

2
C_B) m|n+k,n—k>, n=N/2. (10)

The superpositiof10), like (1), is a wave packet, but the phases of the constituent states
are determined by the division process.

|N=N>=<cacﬁ>“;

We now note that foc,~cz~ 1/\/2 (the condensate is divided into two approxi-
mately equal parjghe terms in Eq(10) have a sharp maximum kt=0. In this case the
function (10) is also applicable for interacting particles, if the functiahg, are taken to
be the solutions of the Hartree—Fo@r GPB equation withN,=N;=N/2 particles.

Next, it is necessary to take into account the relation

(n+k,n—kla agn+k’,n—k"y= 8 11V (n+k)(n—k+1)el M,

whereQ(K) is the difference of the energies of the states, which it is convenient to write
in the form

QK)=po—pptS(k=1/2), S=du,lon+duglin=s,+sg. (11
Then all sums appearing in the calculation of the ave(éxjék) over the stat¢10) can
be calculated exactly, and we find

gi =N, |Ci|2’ gaﬁ(N) _ NchZe“/m(“a"‘B)t(|CB|2e(‘ i12h) Sty |Ca|2e(i/2h) SHyN-1,
(12
When the initial state of the condensate is described by the wave pégkéhe
correlation function(12) must also be averaged ovlt A calculation shows that this
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leads to an additional time dependence, but a much slower one than that(b2Edn

other words, in this case the description of the initial state of the condefisitere the
division) by a wave function with a fixed number of particles leads to the same results as
the description using a wave packet.

For equal number of particles in the condensdteg’=|c4|?=1/2 the visibility
V(t)=|cosB¥24)|N" corresponding to Eq(12) decreases from 1 at=0 to 0 in a
characteristic timet>7~2#%/S\N. With trivial modifications the same estimates are
valid for the correlation time- as in the case | after E(B). We underscore, however, that
in the case Il the time¢is determined uniquely: It is the time delay between the moment
when the condensate is divided and the moment when the potential is switched off.

At times which are multiples of,=4#2#//S, as one can see from E(L2), inter-
ference is revived. The visibility of the revived pattern is close to the initial visibility,
except when the two conditiongN>1 and|u,— ug|~u, g hold simultaneously, in
which case it is suppressed by the term quadratid,invhich was neglected in the
expansion(11).

The method for obtaining the wave functi¢tO) is similar in many respects to that
used in Ref. 12, but in Ref. 12 the authors arrive at a different result. They assert that the
time delay leads only to diffusion of the phase of the interference pattern, which ran-
domly fluctuates in different realizations of an experiment with the same time delays.

The decrease in the visibility and the revival of the interference pattern do not fit
into the GPE approach. The experimental observation or proof of the absence of these
phenomena could increase substantially our understanding of the process leading to the
formation of and the properties of condensate states.
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V. I. Fal'ko and C. J. Lambert
School of Physics and Chemistry, Lancaster University, LA1 4YB, UK

A. F. Volkov

School of Physics and Chemistry, Lancaster University, LA1 4YB, UK;
Institute of Radio Engineering and Electronics, 117454 Moscow, Russia

(Submitted 23 February 1999
Pis'ma Zh. Ksp. Teor. Fiz69, No. 7, 497-50210 April 1999

An analysis is made of the change in the resistance of a nanostructure
consisting of a diffusive ferromagneti€) wire and normal metal elec-
trodes, due to the onset of superconductiy@yin the normal electrode

and Andreev scattering processes. The superconducting transition re-
sults in an additional contact resistance arising from the necessity to
match the spin-polarized current in the F-wire to the spinless current in
the S reservoir, which is comparable to the resistance of a piece of F
wire with length equal to the spin relaxation length. It is also shown
that in the absence of spin relaxation the resistance of a two-domain
structure is the same for a ferro- or antiferromagnetic configuration if
one electrode is in the superconducting state.

© 1999 American Institute of Physids0021-364(109)00707-0

PACS numbers: 73.23b, 75.70.Pa, 74.80.Dm

In recent years studies of transport in mesoscopic conductors with strongly corre-
lated electrons have revealed a number of novel phenomena, including the occurrence of
a giant magnetoresistan@@MR) in multilayer FN structureSwhere EN) are ferromag-
netic (norma) metals. At the same time a variety of new transport properties arising from
superconductivityS) in mesoscopic NS structures have been identffiellore recently
the effect of superconductivity on the transport properties of spin-polarized electrons in
magnetic materials was studfefand it was observed that the onset of superconductivity
may lead to an increase or decrease of the conductance of an ¥ %ilthis change may
be as much as 10% of the normal state conductance and is too large to be attributed to the
superconducting proximity effedin magnetic materials, such as Ni and Co, the ex-
change energy,, is two orders of magnitude larger than the superconductinggap
which suppresses the proximity effict

It has been pointed out by de Jong and Beendkkext if the conductivitiesr; and
o, for spin-up and spin-down electrons in a ferromagnetic material are different, then the
resistance of a ferromagnetic wire increases due to contact with a superconductor. This is
because the electrical current in thgave superconductor is spinless, and matching the
spin-polarized current in the ferromagnet to the spinless current in the S reservoir in-

0021-3640/99/69(7)/7/$15.00 532 © 1999 American Institute of Physics
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FIG. 1. Pictorial representation of the two-domain FS structure with ferromagagtiod antiferromagnetig)
alignment of domains, a double Andreev reflection process in it, and of possible relations between Fermi
surfaces of spin-up and -down electrons in the F Wlie&) and in the NS) metal (right).

volves the Andreev scattering process, which increases the resistance of a system. When
the ferromagnetic wire is long and when spin relaxation processes in it are efficient, the
resistance variation of a diffusive FS structure caused by this mechanism has the form of
an additional contact resistarfef the FS interface, which can be also extended onto
multiterminal geometry’ The necessity to match the spinless and spin-polarized currents
at the FS interface also results in a different nonequilibrium population of spin-up and
-down states near the superconducting congaihin one spin relaxation lengthy).

In the present paper, we consider a nanostructure consisting of a ferromagnetic wire
with one (F,;;) or two anti-collinear(F;|) domains embedded between two normal res-
ervoirs , one of which becomes superconductind@ afT.. The sequence of domains in
a ferromagnetic wire represents our simplified view of a multilayer GMR structure. We
calculate the resistances of these structﬁr&,m, RNy RypsandR; g in the limit of
a long and short spin relaxation lengths&L, L,<L) and in the case when the FS
interface itself causes the spin relaxatidor example, due to spin—orbit couplingNe
find that, in the absence of spin relaxati®); N<R; n=R;;s =R; s, so that an applied
magnetic fieldwhich polarizes domaingields a nonzero resistance variation abdye
as in typical giant magnetoresistance systems, and gives no resistance variafion at
<T,.. Spin relaxation processes of any kif&ither due to spin—orbit coupling in the bulk
of a ferromagnetic metal and its surface, or caused by a noncollinearity of ferromagnetic
domains in the wirechange the resistané® s, leading to a nonzero magnetoresistance
atT<T,.

First of all, we consider the structure fN(S) shown in Fig. 1a, which consists of a
single ferromagnetic domain. The resistance of a disordered F wire can be found by
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solving diffusion equations for the isotropic part of the electron distribution function,
N,(z,e)=[dQyn,(z,p). Using the electron—hole symmetry, we restrict our analysis to
the calculation of a symmetrized functidh,(e,2)=1/24n_(z,&) +n,(z,— )], wheree

is determined with respect to the chemical potential in tkld) ®lectrode. In terms of
N.(&,2), the electric and spin current densities are given by

. o . = de
JQ,M:Jai]E! Ja=™ 04 J' ?&ZNQ(S’Z)’ (1)

— o0

where;=(L,T) for a=(1,!), ando,=¢€?v,D,, wherev, andD,, are the density of
states and diffusion coefficient for electrons in the spin stat&he functionsN,(€,z)
obey the diffusion equation

D 32N, (z,8) =W, v No(z,6) —Nx(z,8)], )

which is more convenient to use in the equivalent form
2 2 _ 2_ | -2 _ —
s 2 D,veN,=0, [d5— L “](N;—N;)=0. (3

The term on the right-hand side of E@) accounts for spin relaxation, which may
result from both spin—orbit or spin-flip scattering at defects. It can be used to define the
effective spin relaxation length,g asL_gzzw”[vT /D + v ID;]. This pair of equations,
which ignore any energy relaxation, should be complemented by four boundary condi-
tions, two on each side of the ferromagnetic wire.

The boundary conditions for Eq&) and(3) can be obtained in various ways. We
employ the model shown in Fig. 1, where the FS junction is replaced by a sandwich of
three layers(i) a ferromagneti¢F) wire of lengthL connected to the bulk F reservdiii,)

a normal metal layer (Nwhich never undergoes a superconducting transition by itself
and has a negligible resistance, afiid) a bulk electrode @) which undergoes the
superconducting transition. The insertion of a normal metal lay&etween the F and
S(N) parts allows us to formulate the boundary conditions at the FS interface using

known boundary conditions at theS\interface® For the sake of simplicity, we consider

N to be ballistic and the Fljunction to be semiclassically transparent, so that electrons
either pass from one side to the other, or are fully reflected, depending on whether this
process is allowed by energy—momentum conservation near the Fermi surface. The latter
approximation avoids resonances through the “surface stitefsie to multiple passage
through the normal layer inserted between S and F. As illustrated in Fig. 1, we approxi-
mate the spectrum of electrons by parabolic bands — two for spin-down and spin-up
electrons in F, and one in the N part, which we take into account by introducing the
parameterssay = 2/ Pz, and 82=(pg, /pgr)?<1. The W interface is assumed to be
ideal, and the Fermi surfaces in &hd N layers to be the same, so thab Mndreev
reflection has unit probability. In such a model, the momentum of an electron in the plane
of the junction is conserved.

The boundary conditions on the left end are given by the equilibrium distribution of
electrons in the F electrode,
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Na(—L/2,s)=%[nT(s—e\OnLnT(—e—eV)]. (4)

The boundary condition on the other end depends on the state of the electrode, and
in the superconducting state takes into account Andreev reflection at the NS intérface.
Since in our model of an ideal Fhhterface, the parallel component of the electron
momentum is conserved, the effective reflection/transmission of electrons in parts | and Il
of the ferromagnet Fermi surface sketched in Fig. 1 are different. Although nonequilib-
rium quasiparticles from F pass insideadd generate holes by being Andreev reflected
at the NS interface, only those holes which are created by quasielectrons from part | of
the Fermi surface in F may escape into the F wire. The spin-down holes which were
generated by spin-up electrons from part Il of the Fermi surface cannot find states in F,

so that they are totally internally reflected into Then, they undergo a second Andreev
reflection, convert into spin-up electrons, and return back into the ferromagnetic wire.
This results intotal internal reflectionof spin-up electrons from part Il of the Fermi
surface inside the F wire, which nullifies the spin current through its FS edge.

The boundary condition near the Finction can be found by matching the isoen-
ergetic electron fluxes determined in the diffusive region found in the ballistic F region
using the reflection/transmission relation between the distributions of incident and An-
dreev or normally reflected electrons. For quasiparticles with energies<QA this can
be written in the form

2 2

where x=(1-06%)%4 5%, 6*=p§ /pf <1, andNr(e)=1/An(e) +ns(—&)]=1/2 at
T=0. The spin relaxation term on the right hand side of &j.takes into account the
spin—orbit relaxation on the FN interface.

One can obtain boundary conditions in another way, after having considered both
the F wire and an auxiliary N piece of a normal metal in the diffusive limit, using the
known boundary conditions at the NS interfacehen, Eq.(5) follows from the condi-
tion ,f ,=0 at the NS interfac&* wheref ,=[n,+ (1—n4(—€)]/2 is the sum of the
distribution functions of electrons and holes. EquatiBnemerges from the equilibrium
condition for electrons and holes in opposite spin states at the SN intéiffaceneglect
the third term on the left in Eq(6) and set the electric potential equal to zero in S
At energies above the superconducting gapthe boundary conditions coincide with
Eq. (4).

For a ferromagnetic wire with sufficient intrinsic spin relaxatibg€L, we find that
the contact resistance of the FS boundary is equal to

Le <2 +RDI+ x
L, 1—¢2 3L, 1+g’

re=Rg

)
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where{=(o,—0)/( o,+0)) is the degree of spin polarization of a current in a mon-
odomain ferromagnetic wir€y is the resistance per square of a monodomain ferromag-
netic film, andL , is the wire width.

In the normal state of the right hand reservoir, the boundary conditions at the end of
an F wire depend on the relation between the Fermi momenta of electrons in the ferro-
magnet and normal metal,

4%aNDa
N,(z,e)+ U—5ZNQ(Z,8)

a

:NT(S)! (8)

z=L/2

wheresx = (1— 6%\)¥4 62y, 8.n<1,andx,=0, d,,=1, 52y=pZ/pZ,. These re-
sult in the contact resistance term

I (1+59) 3 )t
rg‘zRD+T((1—g)|+/LS+Ex+ﬁ,] , 9

which has sense only when it is larger than the resistance of a short piece of F wire with
length of the order of . . Otherwise, it should be neglected.

After comparing the latter result nof we find that the resistance of a long ferro-
magnetic wire attached to an S electrode exceeds the resistance of the same wire con-
nected to a normal reservoir by the resistance of an F segment of length of otder of
One can extend the result of E() to finite temperatures, which yields the resistance
variation below the superconducting transitidn

s L A(T)
Ry(T)— Ry~ e :RD tanl‘( T ) (10
Note that the increase of the resistance in Bd) originates fromthe matching of a
spin-polarized current in the highly resistive ferromagnetic wire to a spinless current
inside the superconductoWe expect this robust effect to be present both in the mon-
odomain and polydomain wires, with domain slzg>Lq.

The solution of Eqs(2)—(6) can also be used to describe the contrasting case of a
ferromagnetic wire where all spin relaxation processes take place only at the FS interface.
Such a structure may consist of either of one or of two ferromagnetic domains with
antiparallel magnetization@ntiferromagnetic configuratipnas shown Fig. 1b. In the
latter case, we neglect the local microscopj€ Finterface resistance, so that the bound-
ary conditions folN ,(x) at the domain wall can be reduced to the continuity equation for
the spin currentg,d,N, and for the distribution functionhl,. This yields

S Ry n=Ry s= L2t
IINT G NINTRUST 55
and

R”S:4(0'T0'l+S(L/2)(UT+O'l)) ' (13)

From this, we deduce that the alignment of magnetizations in two domains results in
a significant change of the resistance in the case of normal rese{Moiend leaves the
conductance unchanged when one of the reservoirs is a superconductor if spin relaxation
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is completely absent, or the wire is too shdkt;g(sL—0)—R; s. A similar behavior

has been observed in numerical simulations of the transport through the giant magnetore-
sistance system with S conta¢tdn a word, when superconducting leads inject a spinless
electric current into the spin-conserving multidomain system, the change in the polariza-
tion of domains does not affect of resistance of the system. Spin relaxation at the FS
surface restores the sensitivity of the system to the polarization state of domains, and in
a long wire L —) the interplay between Andreev scattering and spin relaxation results
in a contact resistance, similar to that in Ed):

s?  [A(T)
Note that the electric current generates a nonequilibrium magnetizadigh,
=u(v;JdeN;—v [deN,), which is different for different configurationgM,\=0,

1
zZIL+ =

OMy1s= >

1
Mo, 5MT1N:5MTLS:(E_|Z|/L)MO'

4VTVL

MO:eVVT+ Vlgﬂ
for T<T.. Here, u is the magnetic moment of electrons,L/2<z<L/2, andz=0
corresponds to the;F, domain wall.

In summary, we have shown that in the absence of any spin relaxation the resis-
tances of the structures N, F;|S and ;S are equal but differ from the resistance of
the RN structure. This can be regarded as a prediction of a suppression of the giant
magnetoresistance in multilayer FN structures with superconducting leads and no spin
relaxation. Surface spin relaxation at the FS interface alters the equivalence bBwgen
andR; s resistances. When the spin relaxation is fast in the bulk of the ferromagnetic
material, the resistance of the,S structure changes at the superconducting transition by
a contact resistance value which depends on the spin relaxation rate. For example, in a
ferromagnetic wire in which the size of a ferromagnetic domain is larger than the spin
relaxation lengthL g, the resistance variation is formed within the segment of the F
wire (where the spin-polarized current from the F part relaxes to a spinless current in S
andRg(T) — Ry increases from zero &t to a positive value al=0.

The authors thank V. Petrashov, R. Raimondi, E. McCann and S. lordanski for
discussions. This work was funded by EPSRC and EC TMR Program.

YThe indices| (|) stand for the alignment of the magnetizations of the domains, &xdfis$and for the normal
and superconducting states, respectively, of the right-hand reservoir.
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The results of investigations of the longitudinal relaxation rate of the
nuclear spins of liquid helium-3 in contact with finely dispersed LiYF
dielectric powders with various degrees of filling of the microcracks on
the crystal surface by water molecules are reported. It is found that
exchange correlations appear between paramagnetic defect centers on
the surface as a result of spin-density transfer via the molecular orbitals
of oxygen in the water molecule. @999 American Institute of Phys-
ics.[S0021-364(®9)00807-5

PACS numbers: 67.55s, 76.60.Es, 75.30.Pd

The success of the method of NMR of the nuclei in lig8iite for investigating the
unusual properties of this quantum liquid at low and ultralow temperatures is well known.
One such effect is the presence of magnetic coupling of the nuclear spins of liquid
helium-3 and the magnetic moments of a solid-state substrate. The nature of this coupling
is still not completely understood, even though the effect of the container walls on the
magnetic relaxation of spins in liquid helium-3 was observed 40 years hg&efs. 2
and 3 it was established reliably that magnetic coupling exists between the nuclear spins
of 1% fluorine present in the microspheres of finely disperé@@ um) DLX-6000
polytetrafluoroethylene powder, and in Ref. 4 transfer of magnetization front°fhe
nuclear spins to protons present in polystyrene microspheres via the nuclear spins of
liquid helium-3 was observed.

The cross relaxation observed in Ref. 5 between the nuclear magnetic moments of
169Tm in thulium ethylsulfate and the nuclear spins of liqdide stimulated the investi-
gation of magnetic coupling between liquid helium-3 and dielectric Van Vleck paramag-
nets. The magnetic relaxation of liquitle in contact with single crystals of the dielectric
Van Vleck paramagnet LiTmfand its diamagnetic analog LiyFwvas investigated in
Ref. 6. It was found that the magnetic relaxation of the nuclear spins of litjdel
present in the gap between two LiYBingle-crystal surfaces acquires substantially new
features as compared with relaxation in a bulk liquid. Thus, according to the
Bloembergen—Purcell-PouriBPP) theory! at temperatures 1-4 K the longitudinal and
transverse relaxation in bulk liquitHe are governed by the modulation of the dipole—
dipole interaction by the diffusive motion and have the same rates, of the order df 10
s~ 1. Even though the gap width is macroscopic {10n), the experimental results attest
to the existence of a large increase in the relaxation rates, and the transverse relaxation

0021-3640/99/69(7)/7/$15.00 539 © 1999 American Institute of Physics
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time T, of the nuclear spins of liquid helium-3 is much shorter than the longitudinal
relaxation timeT 4, similarly to the well-known picture of nuclear magnetic relaxation in
solids. When one of the diamagnetic LiY Erystals was replaced by a crystal of the Van
Vleck paramagnet LiTmf an even larger increase of the magnetic relaxation rates of
liquid helium-3 was observed. It was found that the experimental data cannot be ex-
plained on the basis of standard theories of magnetic relaxation, even taking account of
the effect of the nuclear magnetic moments of thulium, and a model of the effect of a
restricted geometrymicrocracks on the crystal surfagem the magnetic relaxation was
proposed. The basic idea of the proposed model consists in the following. In solids,
where there is essentially no translational motion of atoms, the magnetic resonance line is
quite wide and the transverse relaxation times are short. In liquids, on account of the
translational motion of the atoms the resonance line is strongly narrowed and the relax-
ation times are long. When a liquid in which the main relaxation mechanism is modula-
tion of the dipole—dipole interaction by diffusive motion is placed in a restricted geom-
etry, in contrast to the case of a bulk liquid not all modes of diffusive motion are possible
— only the resonant modes survive. Therefore a magnetic resonance line will not be
narrowed as much as in a bulk liquid, and at the same time it will not be as wide as in the
case of a solid. For a quantum liquid such as liquid helium-3 there may be even more
such limitations, for example, because of the Pauli exclusion principle, on the diffusive
motion. Numerical calculations for a spherical restricted geometry confirm these qualita-
tive considerations and show at least an order of magnitude difference between the
longitudinal and transverse relaxation times in liquid heliufi€%or this reason, mag-
netic relaxation in liquid helium-3 in contact with solids can be represented in a simpli-
fied way as follows: At first, because of the very efficient spin diffusion, magnetization is
transferred from the bulk liquid to atoms of liquid helium-3, which in a restricted geom-
etry are present in microcracks on the crystal surface where relaxation occurs. Magnetic
centers located on solid surfaces evidently strongly influence the relaxation rate.

Such microcracks, which have characteristic siz&sAQ on thesurface of powders
and single crystals of double fluorides have been observed by NMR cryoporometry and
atomic-force microscopy°

Paramagnetic defecF( centers appear on the surfaces of these microcracks as a
result of large distortions of the crystal lattice. The properties of these centers were
studied in Ref. 11 by EPR, conductometry, NMR '8F, and magnetization measure-
ments. The present work continues the study of both the magnetic properties of the
surfaces of double fluorides and the magnetic relaxation of ligdie in contact with a
solid substra — a crystal surface of finely dispersed Liy#ielectric powder.

Figure 1 shows the temperature dependence of the longitudinal relaxation rate of
nuclei of liquid *He in contact with “dry” LiYF, powder. Although the temperature
dependence obtained is weak, its slope is obviously opposite to the slope observed in
previous investigations of magnetic coupling in experiments on the magnetic relaxation
of liquid helium-3 in contact with LiYE—LiTmF, single crystal$, where the longitudi-
nal relaxation rate was proportional to the magnetization of solid-state magnetic moments
and therefore decreased with increasing temperature. To understand the reason for such a
radical change in the temperature dependence, we shall write down the expression for the
thermal contact of a nuclear spin system of liquid helium-3 and a solid-state substrate on
the basis of the relaxation model proposed in Ref. 6:
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FIG. 1. Temperature dependence of the longitudinal relaxation rate of nuclear spins of liquid helium-3 in pores
of “dry” micron-size LiYF, powder (O) and in pores of powder which are filled with distilled water and heavy
water for various water molecule concentrations as a percent of the total volume of voids in the sample. Inset:
Comparison of the relaxation rates of liquid helium-3 with 1% filling of the voids in the sample with H

and G.

-1 _ -1 -1
C3HeT1,meas_ C3He,bquT1,diff+C3He,restrT1,restr' (o
where
Cape= C3He,bu|k+ C3He,restr (2

is the total magnetic specific heat of nuclear spins of ligide, consisting of two terms
referring to, respectively, bulk helium-3 atoms and atoms located in microcracks on the
crystal surfacgresty. The relaxation timeT; ne,sis the measured valud,, 4 is the
characteristic transfer time of the longitudinal magnetization of the nuclear spins of liquid
helium-3 from atoms of the bulk liquid to atoms present in the restricted geometry in
microcracks on a crystal surface, aiid,.s;is simply the relaxation time of the nuclear
magnetizatio n of atoms of liquitHe in these microcracks. This time can be determined
by several mechanisms:

a) direct transfer of magnetization to magnetic moments of the solid-state substrate
which have close Larmor frequenciésee, for example, Ref.)2this mechanism is most
efficient when the frequencies are identi¢sge, for example, Refs. 5 and)12

b) relaxation of longitudinal magnetization in strongly fluctuating local magnetic
fields produced by paramagnetic defect centers on the surfaces of microcracks;

¢) relaxation as a result of fluctuations of local fields in the presence of quantum
exchange of helium-3 atoms on a solid surf&ti;is obvious that at temperatures above
1 K this mechanism is inefficient because the number of adsorbed helium-3 atoms is
small; and,
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d) relaxation in a restricted geometry because of large changes in the spectral char-
acteristics of diffusive motiofi;our calculations show that this mechanism should make
a temperature-independent contributi@one neglects the temperature dependence of
the diffusion coefficientto the measured relaxation rate.

It follows from Eq.(1) that in our experiments with single crystate bottleneck of
the process is the relaxation of magnetization at the surface because of the small relative
fraction of helium-3 atoms in microcracks. It can be concluded from the character of the
temperature and field dependences that the dominant relaxation mechanism is the second
one mentioned above. Indeed, the increase in magnetization of the paramagnetic defect
centers under the influence of temperature or magnetic field leads to an increase in the
amplitude of the fluctuating magnetic fields, which accelerates the relaxation process.

In the present experiments with finely dispersed powders the relative fraction of
helium-3 atoms in microcracks is high because of the extended crystal surface of micron-
size power particles. However, because of the high local magnetic fields in microcracks,
the Larmor frequencies of the nuclear spins of the atoms of liquid helium-3 in the
microcracks differ quite substantially from the Larmor frequency of the nuclear spins of
bulk liquid 3He. It is obvious that in such a situation the bottleneck in relaxation will be
the transfer of magnetization from the bulk liquid to the nuclear spindHsf in the
microcracks. For this reason, the increase in magnetization of the paramagnetic defect
centers as a result of a decrease in temperature will increase even more the mismatch of
the Larmor frequencies and, in consequence, slow down the relaxation of the longitudinal
magnetization. In this case, the quite large temperature-independent contribution to the
relaxation rate is governed by the relaxation mechanism in the restricted geometry.

Summarizing, we note that the present experiments have confirmed our coffjecture
that the efficiency of the magnetic relaxation of liquid helium-3 in contact with a solid-
state substrate is determined by the competition between two processes: the acceleration
of relaxation in nonuniform magnetic fields and the exchange of magnetization between
the atoms of liquid helium-3.

To study further the degree to which paramagnetic defect centers on a crystal sur-
face influence the magnetic relaxation of the nuclei of liquid helium-3, we performed
experiments to measure the temperature dependente foir *He nuclei with various
degrees of filling of microcracks on a crystal surface by molecules of distilled water.
Finely dispersed LiYk powder was placed in a Pyrex glass ampoule with a fill factor of
0.5. The ampoule was evacuated for several days and the powder was exposed to satu-
rated water vapor at room temperature for a certain period of time. After being detached
from the reservoir with saturated water vapor, the sample reached an equilibrium state in
several hours. The degree of filling of microcracks with water was monitored by NMR
cryoporometry, described in Refs. 9 and 10. The longitudinal relaxation rate of the
nuclear spins of liquid helium-3 at each temperature was determined from 50 values of
the amplitude of the free-induction decay signal for various delay tirmastween the rf
probe pulses §/2—r—/2). In all the experiments the evolution of the longitudinal
magnetization was described well by a single exponential.

The data from these measurements are displayed in Fapein symbols Compar-
ing the dependences obtained and the measurements of the relaxation rate of nuclei of
liquid helium-3 in contact with the “dry” LiYF, powder shows that in the case of the dry
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FIG. 2. Field dependence of the slope Bf*(T) at T=1.5 K with 0.5% filling of the voids in the sample
by H,O molecules.

powder the temperature dependence is quite weak, whereas even a small filling of the
microcracks with HO molecules increases the magnetic relaxation rate of liquid
helium-3 and results in a strong linear Curie—Weiss-type temperature dependence with a
characteristic temperatuiie,.=0.7 K. Such behavior oTl‘l(T) indicates that water mol-
ecules play a large role both in displacing atoms of liquid helium-3 from microcracks and
in the surface magnetism. A very low degree of filling of the microcracks with water
influences mainly the decrease in the mismatch of the Larmor frequencies, since water
molecules displace the rapidly relaxing atoms of liquid helium-3 from regions with the
largest nonuniformities of the local magnetic fields. A further increase of the concentra-
tion of water molecules results in a large decrease of the magnetic specific heat of the
rapidly relaxing atoms of liquid helium-&ee Eq(1)).

The increase in the slope of the temperature dependence of the longitudinal relax-
ation rate of liquid®He as the water molecule concentration increases from 0.25% to 1%
indicates that the above-mentioned mismatch of the Larmor frequencies decreases, i.e.,
the spatial fluctuations of the local magnetic fields in the microcracks on the surface
decrease. This fact can be explained by the appearance of correlations between the
magnetic moments of the defect centers. For this reason, it is reasonable to infer that the
paramagnetic defect cent&rsoncentrated on the surface form exchange-coupled mag-
netic pairs or clusters, where the exchange interaction occurs as a result of spin-density
transfer via the molecular orbitals of oxygen in the water molecules. This is indicated by
the fact that the temperature dependence of the relaxation rate remains unchanged when
the protons in the water are replaced by deuteriBig. 1, filled symbols An increase of
the temperature decreases the magnetization of such exchange-coupled pairs and, in
consequence, increases the relaxation rate of the nuclear magnetization of liquid
helium-3. The field dependence of the sIopeT@fl(T) atT=1.5 K and 0.5% filling of
microcracks with water molecules, as shown in Fig. 2, can serve as an additional argu-
ment in support of our picture of the magnetic relaxation of liquid helium-3 in contact
with a crystal surface. An increase of the magnetic field and the corresponding suppres-
sion of the correlations between the paramagnetic defect centers increase the spatial
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nonuniformities of the local magnetic fields in the microcracks and decrease the relax-
ation rate.

At this stage of the investigations, on account of the lack of detailed information
about the wave functions of paramagnetic defect centers, it is impossible to make quan-
titative estimates of the characteristic temperature for such magnetically coupled pairs
and to establish the structure of clusters. However, the experimental Vai@7 K lies
within reasonable limits when allowance is made for the two-dimensional character of the
arrangement of defect centers and their concentration at the stitface.

According to our calculation$® the mechanism of relaxation in a restricted geom-
etry is most efficient for pores less than 50 A in size. Therefore it is not surprising that in
experiments with water-filled pores the temperature-independent contribution to the mag-
netic relaxation rate is absent, and extrapolation of all temperature dependences in Fig. 1
gives the same characteristic temperature.

If the above-described magnetic relaxation mechanism due to the formation of
exchange-coupled pairs or clusters is correct, then replacing the diamagnetic water mol-
ecules by paramagnetic oxygen molecufedich actually means covering the entire
surface of the microcracks by a solid-state oxygen film, which could be in a magnetically
ordered stateshould smooth out the spatial fluctuations of the local magnetic fields and
increase the longitudinal relaxation rate. Indeed, such an acceleration by more than a
factor of 2 is observed experimentallnset in Fig. .

The experimental data — the temperature, field, and concentration dependences of
the longitudinal magnetic relaxation rate of the nuclear spins of liquid helium-3 — can be
described by the formula

T-T, 3
CB "’

Ty =A+

whereB is the magnetic induction an@d is a coefficient that contains information about

the magnetic properties of the surface paramagnetic centers and about the magnetic
interactions between these centers and the nuclear spins of liquid helium-3. The constant
term A describes the contribution of the relaxation mechanism in a restricted gedetry.

In conclusion, we note that our investigations make it possible, on the one hand, to
determine various channels in the magnetic relaxation of the nuclear spins of liquid
helium-3 in contact with a solid. On the other hand, the results obtained show that a
guantum liquid — helium-3 — can be used as a probe for investigating the magnetic
properties of a solid surface at low and ultralow temperatures. Moreover, the experimen-
tally observed mechanisms make it possible to determine the real possibilities of dynamic
polarization of nuclei of liquid helium-3 using paramagnetic centers on a solid surface. In
our future work we shall investigate the magnetic relaxation of liquid helium-3 in contact
with finely dispersed LiYE powder at temperatures below 1 K.

We thank V. A. Atsarkin and V. V. Dmitriev for their interest in this work and for
a discussion of the results, and R. Yu. Abdulsabirov and S. L. Korableva for growing the
crystals.
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It is shown that the contribution of low-frequency excitations with
characteristic energf§ w, to T-odd (nonreciprocal optical effects, in-
cluding spatial dispersion effects, at optical frequenciesw, can be
calculated in the zeroth-order approximation with respect to the param-
eterw,/w. This greatly simplifies their analysis. Some of these effects
are found to be frequency independent in the spectral regions where the
refractive indexn(w)~ const. It is shown that frequency-independent
Faraday rotation can be observed in media with zero magnetization,
including in media with zero microscopic magnetic moment density.
© 1999 American Institute of Physids$0021-364(19)00907-X

PACS numbers: 78.20.Ls

It is well known that the linear response of a solid, just like any system of charged
particles, in the field of an electromagnetic wave with frequendg determined prima-
rily by excitations with energieg,,— E,,=fhw,n~%w®, wheren and m enumerate the
states of the system. Therefore experiments in solids at optical frequencies carry infor-
mation about excitations with energiesl eV. Nonetheless, in certain cases it could be
desirable to use such experiments to investigate the properties of low-frequency excita-
tions w,m<w. This is based on the fact that sineg,,<w, the dynamics of low-
frequency excitations can be excluded from the high-frequency resficnsene can set
w,m=0) in the analysis of a number of optical effects. In these cases the analysis of the
high-frequency response is much simpler than the corresponding analysis of the low-
frequency susceptibility. For example, in Ref. 1 it was suggested that Faraday rotation
measurements in metals with strong electronic correlations,Si@u,_,O,,
YBa,Cu;0;_ ) at optical frequencies be used to determine the density and sign of the
carriers, since the complicated Fermi surface makes it difficult to obtain this information
from Hall effect measurements.

In the present letter it is shown that the zeroth approximation in the parameter
w,m/w can be used not only for the Faraday effect but also for othedd (nonrecip-
rocal) optical effects, whose existence is due to the nonzero wave Meaibfight, i.e.,
spatial dispersion effects. It is also shown that some of these effects are frequency
independent in the spectral regions where the refractive ine¥~ const, and they can
be observed in media with nontrivial types of magnetic ordering.

0021-3640/99/69(7)/5/$15.00 546 © 1999 American Institute of Physics
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In accordance with the condition> w,,, we will study dispersion optical effects
described by the Hermitian part of the permittivity tensor
4

oS g, I =K I =0T It Tt

w?V mn Opm— @ WnpmT @ Wnm

1)
J(k)=2, Ik,

where J(k) is the Fourier component of the current operatdf(k)=(e,/2m,)
X(m*e e+ e Tagz?) is the contribution of thexth particle to the current)X,,
=Jﬁm(0), hwm, is the transition energy, and, is the distribution function. The operator
71, which includes the spin—orbit interaction and the constant vector poténtlzds the
form m=p—eA/c+(2mc®) “1sx VV(r)—isxk, wheresis the spin operator. Ordinarily,
the last term in the operatat is neglected, but it is important far-odd optical spatial
dispersion effects.

Let us consider the contribution €, (w,k) of low-frequency excitations to the
permittivity tensore; (w,k). To zeroth order inw,,/® for k#0 we obtain from Eq(1)

4
w3V

This expression also holds lat=0 for the antisymmetric part of the tensqy, . Besides

the standard Onsager symmetry relatidns, (w,k, 7) =A¢i(w,—k,— %), expression

(2) possesses the additional symmetry; (w,k,7)=—A¢ei(w,—k, 7). Here the sym-

bol » denotes here @-odd quantity that characterizes the state of the medium and is a
tensor with respect to spatial transformations. These two symmetry relations are compat-
ible only if A¢(w,k,n) is an odd function of the parametex i.e., it describe§-odd

optical effects. Hence follows an important and perfectly general result: At optical fre-
quencies it is tol-odd optical effects that the low-frequency excitations make the maxi-
mum contribution with respect to the parametey,,,/w. It is also important that the
approximationw,,,/ =0 greatly simplifies the calculation df¢; (w,k), reducing it to

a calculation of the current commutator. It should be stressed that this result also pertains
to spatial dispersion effects, i.e., effects for whic# 0.

Aeik(w,k)=

([3'(=K),3K) ). )

The commutator in Eq2) can be calculated only in a concrete model. In the present
letter we consider only the general, model-independent properties of the high-frequency
responsg2), primarily the frequency dependence of the corresponding optical effects.
For this, using expressio(®), we write out the first few terms of the expansion of
A€ (w,k) in powers ofk up to terms cubic irk, inclusive, separating explicitly the
dependence ok and w:

1 k k2 k3
A€ik(w,K)= —eiksGst — YikM + —3 €iksXsinM My + — BikinsM MyMs. )
w w w w

Herem is a unit vector parallel t&. On this basis, the vectgrand the tensors, x, and

B areT-odd and do not depend dnand w. According to the Onsager principle, terms
that are even itk are antisymmetric i andk, while the odd are symmetric. Therefore
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the first terms describe Faraday rotation and the second terms describe nonreciprocal
birefringence. We note that in centrosymmetric melleg (w,k) is either an even or odd
function of k, depending the symmetry of the crystal and the paramgteNe shall
assume the parameterto be macroscopic, since it is only in this case thaf,(w,k)

can be a linear function of.

Since here we are interested in the propagation of characteristic waves in a medium,
to analyzeA ¢, (w,k) as a function of frequency the wave veckomust be assumed to
be a function of frequency, determined from the solution of the dispersion relation, so
thatck(w)/ w=n(w), where the latter is the refractive index. The frequency dependence
of A ¢ (w,k) is simplest in the frequency ranges whafe)~ const. As a rule, in solids
such regions precede the frequencies of ataimierband transitions.

We first consider the frequency dependence of the nonreciprocal birefringence. Such
birefringence is due to the terms in E) that contain odd powers &f. Since we have
assumed thatk(w)/w=n(w)= const, the contribution of the term linear lnto bire-
fringence, as is evident from E), decreases with increasing frequency as?1/The
contribution of the low-frequency excitations to ordinak/=0) birefringence, which is
a T-even effect, has a similar frequency dependence. In this connection we should note
the substantial methodological advantage of measuremeifitedd optical effects. Since
the parametem is macroscopic, in an experiment it is always possible in principle to
carry out the transformatiop— — » by means of external influences. This greatly in-
creases the accuracy and reliability of the measurements.

The frequency dependence of the contribution cubidk ito the birefringence is
altogether different from a linear dependence: In the regiaw) ~ const it is completely
frequency independent. Such behavior of an optical effect at frequencies much higher
than the resonance frequencies is quite unusual and is a specific feature of optical effects
due to spatial dispersion. The decrease with increasing frequency of the term litkear in
and thew independence of the term cubickmshould not, of course, be thought to mean
that the latter is large in magnitude compared to the former, since such frequency behav-
ior occurs only in comparatively narrow spectral regions. The expansi&nnriEg. (3)
is actually an expansion in the small parametéx, wherea is the interatomic distance
and\ is the wavelength. For this reason, the effect cubik is quite small in most cases
and can be observed only on account of the specific features of the magnetic and elec-
tronic structures of the medium.

A much more interesting effect, which likewise exhibits the property of frequency
independence, is Faraday rotation of the plane of polarization as a result of the terms in
Eg. (3) which are quadratic itkk. To obtain the frequency dependence of this effect it is
necessary to take into consideration the fact that the rotation angle of the plane of
polarization of the light<we,,, (k| z), i.e., it contains an extra frequency factor com-
pared with the corresponding terms in E8). This gives the well-known behavior of
ordinary Faraday rotationk0): 6 1/w?. As one can see from E¢B), the term qua-
dratic ink gives a frequency-independent contribution to the Faraday rotation.

In Refs. 2 and 3 frequency-independent Faraday rotation was observed in the trans-
parency region of yttrium iron garnet. It was shown in those works that the observed
effect can be explained by the precession of the magnetization in the field of the electro-
magnetic wave and it can be described phenomenologically by introducing off-diagonal
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components of the magnetic permeability tensor at optical frequencies. If the general
formula(2) is used as the starting point, this mechanism corresponds to a current operator
J(k) = (ie/m)sxKk.

My analysis shows that the frequency-independent Faraday rotation is a quite gen-
eral property of media with macroscopically brok&invariance. Thus, aside from me-
dia with spin ferromagnetism, it can also be observed in media with spontaneous orbital
ferromagnetism, which corresponds to a current operHtoy= (ie/2m)| xk, wherel is
the orbital angular momentum. We note that for spin and purely orbital ferromagnetism,
the existence of an effect quadratickrdoes not require the participation of a spin—orbit
interaction, while the contribution of the term wikh=0 to rotation in media with spon-
taneous ferromagnetism is nonzero only if the spin—orbit interaction is taken into ac-
count.

More interesting is the possibility of this effect occurring in media with a zero
macroscopic magnetic moment density. It is easy to obtain the symmetry-imposed nec-
essary condition for this. For this we note that the rotation arglef the plane of
polarization for a wave propagating in the directionhas the dependena®:wG-m
(Ref. 4, whereG is the gyration vector, dual to the antisymmetric pear‘r,f](w,k) of the
inverse permittivity tensor. Since the expansion of the teﬁé(w,k) in powers ofk is
of the same form as Ed3), we obtain for the rotation angle associated with the term
quadratic ink

0o (K(@)/ )2 Bigmsmym; 4)

whereg;y is aT-odd pseudotensor, analogous to the temsgrin Eq. (3). Since accord-

ing to Eq. (4) only the completely symmetric part of the tens8y, contributes to
rotation, it can be concluded that frequency-independent Faraday rotation is possible in
media whose symmetry admits the existence of such a tensor.

Aside from the ferromagnets mentioned above, certain antiferromagnetic magnetic-
symmetry classes also admit a tensor with such properties. Thus, in all cubic magnetic-
symmetry classes, where the piezomagnetic effect is allowed, for example, in the mag-
netic class T, the tensop;, is completely symmetric and has one independent
componentB,,,. The Faraday effect should exhibit strong anisotropy in such media.

Let us conclude by calling attention to another, much more complicated, type of
magnetic ordering for which frequency-independent Faraday rotation is possible. From
the standpoint of symmetry alone the nonzero tekgrin Eq. (4) can exist in magnetic
structures whose order parameter is related not with the average microscopic spin density
(S(r)), but rather with the three-point spin-density correlation function
(Si(r1)S(ra)Si(rs)).>® Here (S(r)) can be zerdin the exchange approximation If
such a correlation function contains a part that is symmetric in the indidesandl,
frequency-independent Faraday rotation is also possible in such a medium. Note, how-
ever, that the single-time current commutator in rela{i@nis not expressed directly in
terms of the correlation functions of the spin density, so that the question of the actual
existence and magnitude of this effect can be solved only on the basis of a model
analysis.

This work is supported by the Russian Fund for Fundamental Research and the
program “Fundamental Spectroscopy.”



550 JETP Lett., Vol. 69, No. 7, 10 April 1999 V. N. Gridnev

B. S. Shastry, B. I. Shraiman, and R, R. P. Singh, Phys. Rev. T&t2004 (1993.

2G. S. Krinchik and M. V. Chetkin, Zh. I&p. Teor. Fiz.36, 1924 (1959 [Sov. Phys. JETB, 1368(1959)].

3G. S. Krinchik and M. V. Chetkin, Zh. I&sp. Teor. Fiz41, 673(1961) [Sov. Phys. JETR4, 485(1962].

4L. D. Landau and E. M. LifshitzElectrodynamics of Continuous Megdiand ed., rev. and enl., by E. M.
Lifshitz and L. P. Pitaevskii, Pergamon Press, Oxford, 188#d Russ. edition, Nauka, Moscow, 1992

5V. I. Marchenko, JETP Lett48, 427 (1988.

6V. Barzykin and L. P. Gor'kov, Phys. Rev. Left0, 2479(1993.

Translated by M. E. Alferieff



JETP LETTERS VOLUME 69, NUMBER 7 10 APRIL 1999

Manifestation of magnetically induced spatial dispersion
in the cubic semiconductors ZnTe, CdTe, and GaAs

B. B. Krichevtsov,* R. V. Pisarev, and A. A. Rzhevskil

A. F. loffe Physicotechnical Institute, Russian Academy of Sciences,
194021 St. Petersburg, Russia

H.-J. Weber"
Department of Physics, Dortmund University, 44221 Dortmund, Germany

(Submitted 26 February 1999
Pis'ma Zh. Kksp. Teor. Fiz69, No. 7, 514-51910 April 1999

Nonreciprocal birefringence due to magnetically induced spatial disper-
sion was observed in thgs-class cubic semiconductors ZnTe, CdTe,
and GaAs near the fundamental absorption edge. The dispersion of the
parameteré\ andg, describing the contributions from terms of the type
Bik; to the diagonal and off-diagonal components of the permittivity
tensore;;(w,B,k), is determined for ZnTe and CdTe. Analysis of the
dispersion and anisotropy of the nonreciprocal birefringence shows that
in ZnTe, CdTe, and GaAs, in contrast to magnetic semiconductors of
the type Cd_,Mn,Te, it is due excitonic mechanisms. €999
American Institute of Physic§S0021-364(99)01007-5

PACS numbers: 78.20.Fm, 78.20.Ls, 71.35.Gg

Optical phenomena due to magnetically induced spatial dispersion, which are de-
scribed by terms of the typey;; Bk in the expansion of the permittivity tensor
€j(w,B,k), wherek is the wave vector of the light, can be observed in the presence of
an external magnetic fiel® in crystals without a center of inversidn® A striking
manifestation of magnetically induced spatial dispersion in the transparency region is
nonreciprocal birefringence, linear in the magnetic fidldnd odd in the wave vectdr
of the light. Nonreciprocal birefringence in semiconductors is of interest for several
reasons. In contrast to reciprocal birefringence, which is linear in the magnetic field and
is allowed only in magnetically ordered crystlspnreciprocal birefringence can exist in
dia- or paramagnets. It is sensitive to the crystal structure and can be observed only in
noncentrosymmetric crystals, which fundamentally distinguishes it from the Faraday
magnetooptic effect or the Voigt effect, which can be observed in all media. The mag-
nitude of the nonreciprocal birefringence depends on the orientation of the vBcamic
k relative to the crystal axes and, even in the case of cubic symgirif is determined
by two independent parametefsand g of the rank-4 axisymmetric tensay;j,; which
describe, respectively, the contributions of terms of the tBplg in the diagonal and
off-diagonal components of the tensgy. This opens up new possibilities for studying
the anisotropy of the electronic spectrum of cubic noncentrosymmetric crystals. We note
that the Faraday effect, the optical activity, and the linear electrooptic effect in Tjass-

0021-3640/99/69(7)/7/$15.00 551 © 1999 American Institute of Physics
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cubic crystals are described by rank-3 tensors with only one independent parameter.
Nonreciprocal birefringence in semiconductors is directly related with the presence of
contributions to the effective Hamiltonian of the electrons, holes, or excitons that are
linear in the quasimomentuie or bilinear ingq andB. This makes it possible, in prin-
ciple, to estimate the corresponding parameters of the Hamiltonian, if it is known which
optical transitions, interband or excitonic, are responsible for the nonreciprocal birefrin-
gence.

Up to now optical phenomena associated with the manifestation of magnetically
induced spatial dispersion in semiconductors have been observed in CdSe afubSslS
Cs,)° and GaAs(class T)° at low temperatures near excitonic transitions. These works
investigated the change induced in the intensity of light transmitted through a crystal
between crossed polarizers by a transverse magnetickfieBd Recently, nonreciprocal
birefringence was directly observed in the magnetic semiconductgrs,Md, Te (class
T4) by a polarimetric method, which made it possible to prove that the effect is o8d in
andk and to determine the paramete¥saindg.”® Analysis of the concentration depen-
dence and dispersion of the paramet&randg led to the conclusion that nonreciprocal
birefringence in magnetic semiconductors is due to the presence of manganese ions and
is due to interband optical transitions. The values of the paramétensd g in cubic
semiconductors with no magnetic ions have not been determined, and only theoretical
estimates are available for their rafidIn the present letter we report the observation of
a nonreciprocal birefringence in the claBg-cubic noncentrosymmetric crystals ZnTe
and CdTe near the fundamental absorption edge, we investigate the angular and spectral
dependences of the nonreciprocal birefringence and determine the parafeisils
and their dispersion, and we compare the results with the magnetic semiconductors
Cd; _,Mn,Te and with theoretical estimates.

Nonreciprocal birefringence was investigated by measuring the rotatitinear in
the magnetic fieldB, of the plane of polarization of light transmitted through a crystal,
placed in the gap of an electromagnet, and a quarter-wave’plaie study the azimuthal
dependence of the birefringence, the crystal was rotated around an axis oriented parallel
to the vectok. The direction of the magnetic fiel8l was set strictly perpendicular to the
vectork (kLB), since a Faraday effect linear in the magnetic field does not appear in
such a geometry. Two combinations of the relative orientations of the polariZatain
the incident light, the magnetic fieB, and the principal directio® of the quarter-wave
plate were used:)EE | B| O (E| B geometry and 2 E | O and with a 45° angle between
E and B (E45B geometry. The quantitye is determined by the orientation of the
principal directions and the ellipticity of the cross section of the indicatrix, which depend
on the azimutty of the crystal relative to the magnetic filfl Fork || [110] the angular
dependences(#) in the E || B (E45B) geometries can be described by the combination
of harmonicsa,cos9+a,cos¥ (b;sing+b,sin36), wherea, , (b, ;) are parameters that
depend oA andg. Given the experimental dependenedd) and the refractive index,
one can determine the paramet@randg. Fork || [111] the functionsx(6) are described
by third-order harmonics. In this geometry the parameter combin&tie2g is deter-
mined.

A dye laser in the wavelength range 570-610 nm, a titanium—sapphire laser in the
range 850-1000 nm, and a helium—neon laser emitting at 633 nm and 1150 mm were
used as light sources. The sensitivity of the measurements of the rotations of the polar-
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FIG. 1. Angular dependences 6) in ZnTe and CdTe in £110) type plane ¢=0 corresponds t8 parallel to
a[001] type axig. Solid lines — computational results obtained with adjustable param&tensig.

ization plane wadda~10". To eliminate any possible influence of photorefraction, the
radiation power was limited by means of filters. ZnTe and CdTe single crystal€litOa

type plane and GaAs single crystals ifild 1) type plane were investigated. The crystals
were~ (0.5—-1) mm thick. The band gaRy and the spectral dependences of the refrac-
tive indexn from Refs. 10—12 were used in the calculations. The measurements were
performed afl =294 K.

Figure 1 displays the angular dependeneé8)/B, measured at two wavelengths in
the geometries | B and E45B, in ZnTe and CdTe in a plane of th@10 type. In
accordance with the theory, the experimental dependea¢é¥y can be described by
harmonics of first and third orders. Both harmonics are observed in ZnTe, and the third-
order harmonic cogB(sin34) predominates in CdTe. In GaAs in(&11) type plane, the
experimental dependence$6) can be described by harmonics of third order. The non-
reciprocal birefringence increases as the fundamental absorption edge is approached.
Figure 2a displaysy versus the differenc&y—E, whereE is the photon energy. The
dependences obtained in the geom&iyB at #=0 (B||[001], k ||[110]) are presented
for ZnTe and CdTe. In this case= wgBK/n, i.e., it is determined only by the parameter
g (I is the sample thicknegsFor GaAs the dependences in the geom@&iyB with
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FIG. 2. a(E4—E) in ZnTe and CdTe wittB || [001] and GaAs withk || [111] and B[ [110] in the E| B
geometry. The bottom panel displays the spectral dependences of the Faraday effect from the present study
(filled circles and squargsnd from Refs. 13—1%open circles, triangles, and squares

B|[[112] andk||[111] are presented. In this case= w(A+ 2g)Bk/\/6In. Far from the
edge the the nonreciprocal birefringence is small and is essentially absef}-fdE
>0.2 eV. As the band edge is approachéds-Egy, the nonreciprocal birefringence
increases sharply, and By—E=0.1 eV it is characterized by a value2 deg/cmT.
Figure 3 shows the parameteéksaandg in ZnTe and CdTe as a function &f,— E. These
curves were calculated from the angular and spectral dependefiées). The error in
determining the parameters 1s15%. In both crystals the parametgrincreases a&
—Egy, and its dispersion is described by the power l&y E) ", wherer=2.0+0.3.
In ZnTe we haveA<g in the experimental spectral range. In CdTe the paranfeier
approximately 1.5 times smaller than

Near the band edge the nonreciprocal birefringence in semiconductors, like other
manifestations of magnetically induced spatial dispersion, could be due to interband or
excitonic optical transitions. In the case of interband transitions from the valencd jand
into the conduction banfig, a dependenmew(Eg—E)‘O-5 should be expectet The
contribution of interband transitions to the Faraday effect linear in the magnetic field
is likewise describe§ by a dependence(Eg—E)*O-S, while the contribution to the
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FIG. 3. A andg in ZnTe and CdTe versugy—E. Solid lines — calculation using the formulg=t(E,
—E) ™7, wheret and 7 are adjustable parameters.

quadratic Voigt effect is describ&dby the dependence(Eg—E)‘l-S. Thus, for the
interband mechanism the spectral dependences of the nonreciprocal birefringence and the
Faraday effect should be similar near the band edge.

The excitonic mechanisms of nonreciprocal birefringence in ¢lgssemiconduc-
tors have been examined in Ref. 9 for the case of axciton. Including in the effective
excitonic Hamiltonian terms linear iq,

H(a)=Cla{Ix(J— 3D+ cplle, (1)
and linear inB,
H(B) = geuss-Bln—2uplkI-B+a(B,J3+c.p)]le (2)

(s is the electron spin operator; all other notation corresponds to Refe&s forEg
—E>0.1 eV to dispersion of the parametésandg: A=g~ (E,— E) ! (Ref. . When
terms bilinear ing andB are included in the Hamiltonian,

H(q,B)=[B1([Bxal{JyJdz} +c.p) +Ba(Buau(J;—I5) +c.p)]le ©)
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an increase in the nonreciprocal birefringene(eEg—E)*2 is predicted as the edge is
approached. The ratio & andg is this case is determined by the Luttinger parameters,
andA/g~(0.1-0.15 for ZnTe, CdTe, and GaAs crystals.

The dependence df,— E of the rotatione in ZnTe, CdTe, and GaA&-ig. 2) and
of the parameter®\ and g in ZnTe and CdTe(Fig. 3 show that the nonreciprocal
birefringence in the crystals investigated is not due to the interband mechanism and must
therefore be attributed to excitonic transitions. This is indicated by the smallness of the
effect at a relatively small distance from the band edgg«E>0.2 eV), the sharp
increase~(Eg—E)*2 of the effect as the edge is approached, and also a ratio of the
parameter#\ andg that is uncharacteristic of the interband mechanigi A and ZnTe
andg>A in CdTe. The dispersion of the nonreciprocal birefringence in the experimental
crystals is substantially different from that of the Faraday effect. The Faraday effect in
ZnTe, CdTe, and GaAs is characterized by a relatively large magnitude far from the
absorption edge and increases weaklfEasE (Fig. 2).

The ratio of the parametefsandg and their frequency behavior in ZnTe and CdTe
nonetheless is not completely satisfactorily described by the expressions obtained taking
into account the contributions in the excitonic Hamiltonian which are linear and bilinear
in g andB.%° In ZnTe g>A, which does not agree with the estimates obtained in Refs.

6 and 9. In CdTag=1.5A (Fig. 3, which approximately corresponds to the mechanism

of the contributions linear i and B, but the dispersion of andg is stronger,~ (Eq

—E) "2, than that predicted by the modet,(Ey— E) L. In our opinion this discrepancy

is due to the fact that terms which are linear and bilineag endB must be taken into
account simultaneously in the excitonic Hamiltonian. In this @asan be greater thafy

if the contributions of the linear and bilinear terms have different signs. Another possible
reason for the discrepancy between the experimental and theoretical dependences of the
parameter#\ andg could be the inadequacy of taking account of only tlseekcitonic

states, since contributions of higher excitonic states, including states of unbound excitons,
could contribute to the nonreciprocal birefringence.

The dispersion of the parametArand that of the Faraday effect are close in the
magnetic semiconductors €dMn,Te. This attests to an interband mechanism. The
stronger dispersion of the nonreciprocal birefringence and the Faraday effect in magnetic
semiconductors,~ (E4— E) %5 than predicted by the interband transition model,
~(Eg—E)*°'5, can be explained by the dependence of the parameters of the exchange
interaction of electrons and holes with the 8lectrons of MA" ions on the wave vector
q.”13 Taking account of this dependence also permits explaining the strong dispersion of
the Voigt effect~(E;—E) *%in Cd,_,Mn,Te.'®

The strong differences in the spectral behavior of the paramAtersd g (Fig. 3
likewise attest to different mechanisms of magnetically induced spatially dispersion in
pure and Mn-containing semiconductors. The parantgtemagnetic semiconductors is
virtually dispersionless, while in pure semiconductors it is observed to increase sharply as
Ey is approached. In the magnetic semiconductorg ZMn,Te and Cd_,Mn,Te the
parameteA is much greater thag, while in ZnTe and CdTe the parametgis greater
thanA.

In summary, our investigation has shown that nonreciprocal birefringence due to
magnetically induced spatial dispersion is observed near the fundamental absorption edge
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in the cubic noncentrosymmetric semiconductors ZnTe, CdTe, and GaAs. Analysis of the
dispersion and anisotropy of the nonreciprocal birefringence and comparison with the
spectral dependences of the Faraday effect in pure and Mn-containing semiconductors led
to the conclusion that in pure semiconductors, in contrast to magnetic semiconductors,
the nonreciprocal birefringence is due not to interband but rather to excitonic mecha-
nisms. Further elaboration of the theory is required in order to give an adequate descrip-
tion of the anisotropy and dispersion of the nonreciprocal birefringence.
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The electronic contribution to friction between an atomically flat metal
surface and a dielectric layer absorbed on the surface is calculated. The
friction force decreases abruptly at the transition of the metal to the
superconducting state. @999 American Institute of Physics.
[S0021-364(09)01107-X

PACS numbers: 46.5%d, 68.35.Wm

In the last few years new experimental and computational possibilities have rapidly
increased the understanding of fundamental friction procéssgpecifically, it has been
shown experimentalf# and theoretically® that in an “atomically close” contact be-
tween two crystal bodies there is no static friction provided that the periods of the crystal
lattices of the bodies in contact are incommensurate. An additional condition is that there
must be no “elastic instabilities” at the contact of the two bodies, i.e., a unique equilib-
rium state of the system must correspond to each set of boundary conditions at infinity. If
the interaction of the surfaces is sufficiently weak, the condition that the contact be
monostable is always satisfied and the static friction vanishes. This situation is charac-
teristic, for example, for solid layers of inert gases adsorbed on gold and Site@n-
ever, the absence of static friction has also been confirmed experimentally for a
tungsten—silicon contaétThe latter example, which is a “metal—covalent crystal” tri-
bological contact, shows that zero static friction between crystalline materials with in-
commensurate lattices can also occur in systems which could be of practical value.

I shall assume in what follows a contact with zero static friction. However, this does
not mean that there is no friction at all. Generally speaking, the interaction of surface
atoms results in phonon generation and excitation of the electronic subsystem. This is
manifested in the presence of a “viscous” friction force, which is proportional to the
relative velocity of the moving bodies. Even though the phdiBmand electronit'!?
contributions to this viscous force have been intensively investigated theoretically, their
magnitude and ratio are still a subject of debate. Apparently, the most direct method for
distinguishing the electronic contribution could be the measurement of the friction force
near a superconducting transition. Masurements of the friction force between a layer of
lead and a solid layer of Nadsorbed on the lead have shown that the friction force
exhibits a jump, which cannot be explained in existing theoretical models, at the super-
conducting transition poirft Indeed, the fraction of electrons forming the superconduct-

0021-3640/99/69(7)/4/$15.00 558 © 1999 American Institute of Physics
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ing condensate increases continuously from zero at temperatures begldihe remain-

ing normal electrons must once again be excited by the adsorbed layer. Therefore the
friction stress belowvil . should decrease continuously. In the present letter it is shown that
the model which | proposed in previous wdfkgescribing the electronic contribution to

the friction force, gives a simple explanation of this effect.

Let us consider a metal sample in the form of a parallelepiped of thickhessone
surface of which a crystalline monolayer of a dielectric is adsorbed. Lettlz plane
be the friction surface, and let tlxeaxis be oriented in the direction of the relative motion
of the metal sample and the adsorbed layer. The spectrum of the electron gas does not
satisfy the Landau superfluidity condition. Therefore the electrons will be excited by the
moving monolayer and be “dragged” by it. If the electron mean free pgthith respect
to normal scattering processéwith conservation of the quasimomentuns much
shorter than the mean free pdthwith respect to processes that violate conservation of
guasimomentuniUmklapp processes and scattering by lattice nonuniformjtibe elec-
tron gas in the crystal is governed by a hydrodynamic equation. For a stationary flow in
the geometry described above, this equation has the form

PV pV
77(9—)/2—;—0- 1

HereV=V(y) is thex component of the hydrodynamic velocity of the electron gais

the viscosity of the electron gas,is the mass density of the gas, anglis the charac-
teristic free flight time with respect to processes that violate quasimomentum conserva-
tion. The characteristic length

=7y 1p) "2 @

can be formed from the coefficients in EG). The condition of applicability of Eq(1)

is that the mean free patky must be smaller than the dimensions of the body. Since we
are assuming thdg,>1y, we havel ~(Il\) Y>>y (see Ref. 14 Therefore Eq(1) is
also applicable at distances less than the characteristic léngth

There is an important circumstance not taken into account ifBqgThe described
“dragging” of the electron gas and the associated surface current will inevitably give rise
to an electric field and a counterflowing “bulk” current. In the presence of an electric
field Eq. (1) must be modified as follows:

#V  pV
n—— —+enE=0, ©)
ay? T

wheree is the elementary charga,is the electron density, arid is the intensity of the
electric field. This last quantity is itself determined by the condition that the total current
in the sample vanishes.

We shall consider separately the limiting cases of thati () and thin @<1) metal
layers.

I. d>1. The solution of Eq(3) that is bounded in the direction into the sample
(y—o0) and satisfies the condition that the total current in the sample is zero,
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d
fo V(y)dy=0, (4)

has the form

I/d 1
V(y):_Vol_”d+V01_|/dexlf—y/|)a (5)

whereV, is the velocity of the adsorbed layer.

Since the only friction mechanism considered here is momentum transfer to the
body of the crystal through the electron gas, the friction stress can be determined as the
viscous stress in the electron gasyatO:

Y

— v -1
oy =rpa-ua (6)

y=0

|0'n|:77

Thus the correction due to the return current is of the ordéfdfind can be neglected
for massive sampledor d>1).

Il. d<I. The effect of the reverse field turns out to be substantial for thin layers. This
case corresponds to the conditions of the experiment of Ref. 13, where lead electrodes
1500 A thick, deposited on a quartz crystal, were used.

a) Metal in the normal stateThe solution of Eq(3) satisfying the boundary condi-
tionsV(0)=V, andV(d) =0 and the conditiori4) has the form

V(y)=Vo(1—4y/d+3(y/d)?). (7)
The friction stress is

eV av, o

|Un|—77@y=0—777- (8

b) Metal in the superconducting statin this case the return current is due to the
flow of superconducting electrons&&=0. Correspondingly, the flow of the electron gas
in the sample is determined by Ed) with the same boundary conditions as above. Its
solution is

V(y)=Vo(1—y/d). 9
The friction stress is

av‘
Y,

Comparing Eqs(8) and(10) shows that the friction stress due to the conduction electrons
changes abruptly at the superconducting transition point, and the friction stress in thin
samples §<<I) decreases by a factor of 4 at the transition of the metal to the supercon-
ducting phase.

In the general case of a metal layer of arbitrary thickness the solution ¢8Egith
the additional equatiofd) for a metal in a normal state and Ed.) for a metal in the
superconducting state gives the following expressions for the friction stress:

Vo

|0's|:7]‘ =7q- (10)
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7]V0 ed/I + e—d/l

ol = T g _gdil (12)
in the superconducting state, and
\Y 1+d/e - (1—d/)e?
_ Vo (L+dihe ¥'—(1-di) 1

|0'n| | 4_Z(edll_'_efdll)+(d/|)(edll_e*d/|)

in the normal state. The experimentally observed ratido,~2 (Ref. 13 obtains for
d/I~2.3. Thereford ~650 Ais the characteristic perturbation length of the electron gas
in lead. Inclusion of the phonon contribution to the friction force does not change this
result, since, according to the results of Ref. 14, the phonon contribution to the friction
force at the superconducting transition temperature in (8&K) is much smaller than

the electronic contribution.

In summary, we have shown that the physical reason for the jump in the friction
force at a superconducting transition is that energy dissipation is due to both a surface
current, arising as a result of the electrons being “dragged” in the friction surface, and a
return current, which arises in order for the sample to remain electrically neutral. In the
superconducting state the second of these contributions is “switched off” at the transi-
tion point, since the return current is transported by the superconducting electrons with-
out dissipation.
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